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Preface

This volume represents the refereed proceedings of the 14th International Confer-
ence on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
which was held online, August 10–14, 2020. The program of the conference
consisted of 97 recorded regular talks featured on the MCQMC presentations
YouTube channel. Highlights include the invited plenary talks presented live byYves
Atchadé (Boston University), Jing Dong (Columbia University), Pierre L’Ecuyer
(University of Montreal), Mark Jerrum (Queen Mary University London), Peter
Kritzer (RICAMLinz), ThomasMüller (NVIDIA), David Pfau (Google DeepMind),
Claudia Schillings (University of Mannheim), Mario Ullrich (JKU Linz), and the
tutorials by Aretha Teckentrup (Edinburgh) and Fred Hickernell (IIT). While the
MCQMC conference regularly attracts between 180 and 240 attendees, more than
600 participants registered for the online version of MCQMC 2020.

The articles in this volume were carefully screened and cover both the theory
and the applications of Monte Carlo and quasi-Monte Carlo methods in scientific
computing.We thank the anonymous reviewers for their reports andmany otherswho
contributed enormously to the excellent quality of the conference presentations and
to the high standards for publication in these proceedings by reviewing the abstracts
and manuscripts that were submitted.

The next International Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing (MCQMC 2022) will be hosted by the Johannes
Kepler University (JKU) and the Johann Radon Institute for Computational and
Applied Mathematics (RICAM) in Linz, Austria, in July 2022.

Berlin, Germany
November 2021

Alexander Keller
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The MCQMC Conference Series

The MCQMC conference series is a biennial meeting focused on Monte Carlo (MC)
and quasi-Monte Carlo (QMC) methods in scientific computing. Its aim is to provide
a forum where leading researchers and users can exchange information on the latest
theoretical developments and important applications of these methods. The events
are held in alternate yearswith the International Conference onMonteCarloMethods
and Applications (MCM).

In a nutshell, Monte Carlo methods study complex systems by simulations fed by
computer-generated pseudorandom numbers. Quasi-Monte Carlo methods replace
these random numbers bymore uniformly distributed and carefully selected numbers
to improve their effectiveness. A large variety of special techniques have been devel-
oped and used to make these methods more effective in terms of speed and accuracy.
The conference series focuses on the mathematical study of these techniques, their
implementation and concrete applications, and their empirical assessment.

The conference was initiated by Harald Niederreiter [6], who co-chaired the first
seven conferences. In 2006, Harald Niederreiter announced his wish to step down
from the organizational role, and a steering committee was formed to ensure and
oversee the continuation of the conference series. Both the steering committee and
the locations of the so far 15 conferences are set out below.

If you are interested in hosting a future MCQMC conference at your institution,
then please contact any member of the steering committee.

Steering Committee

Alexander Keller (Chair) Germany, NVIDIA
Josef Dick Australia, University of New South Wales
Fred J. Hickernell USA, Illinois Institute of Technology
Pierre L’Ecuyer Canada, University Montréal
Christiane Lemieux Canada, University of Waterloo
Art Owen USA, Stanford University
Friedrich Pillichshammer Austria, Johannes Kepler University Linz
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xii The MCQMC Conference Series

Conferences

We express our gratitude to Springer-Verlag for publishing the proceedings of the
MCQMC conferences.

1. University of Nevada in Las Vegas, Nevada, USA, June 1994 [9]
2. University of Salzburg, Austria, July 1996 [8]
3. Claremont Colleges in Claremont, California, USA, June 1998 [10]
4. Hong Kong Baptist University in Hong Kong, China, November 2000 [4]
5. National University of Singapore, Republic of Singapore, November 2002 [7]
6. Palais des Congrès in Juan-les-Pins, France, June 2004 [11]
7. Ulm University, Germany, July 2006 [5]
8. Université de Montréal, Canada, July 2008 [3]
9. University of Warsaw, Poland, August 2010 [13]
10. University of New South Wales, Sydney, Australia, February 2012 [2]
11. Katholieke Universiteit Leuven, Belgium, April 2014 [1]
12. Stanford University, USA, August 2016 [12]
13. University of Rennes, France, July 2018 [14]
14. University of Oxford, United Kingdom, held online, August 2020
15. Johannes Kepler University in Linz, Austria, July 2022
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Density Estimation by Monte Carlo
and Quasi-Monte Carlo

Pierre L’Ecuyer and Florian Puchhammer

Abstract Estimating the density of a continuous random variable X has been stud-
ied extensively in statistics, in the setting where n independent observations of X
are given a priori and one wishes to estimate the density from that. Popular methods
include histograms and kernel density estimators. In this review paper, we are inter-
ested instead in the situation where the observations are generated by Monte Carlo
simulation from a model. Then, one can take advantage of variance reduction meth-
ods such as stratification, conditional Monte Carlo, and randomized quasi-Monte
Carlo (RQMC), and obtain a more accurate density estimator than with standard
Monte Carlo for a given computing budget. We discuss several ways of doing this,
proposed in recent papers, with a focus on methods that exploit RQMC. A first idea
is to directly combine RQMC with a standard kernel density estimator. Another one
is to adapt a simulation-based derivative estimation method such as smoothed pertur-
bation analysis or the likelihood ratio method to obtain a continuous estimator of the
cumulative density function (CDF), whose derivative is an unbiased estimator of the
density. This can then be combined with RQMC. We summarize recent theoretical
results with these approaches and give numerical illustrations of how they improve
the convergence of the mean square integrated error.

Keywords Density estimation · Conditional Monte Carlo · Likelihood ratio ·
Kernel density
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4 P. L’Ecuyer and F. Puchhammer

1 Introduction

In September 2015, the first author (PL) had an interesting lunchtime discussion with
Art Owen and Fred Hickernell at a workshop on High-Dimensional Numerical Prob-
lems, at the Banff International Research Center, in the Canadian Rocky Mountains.
It went as follows. In the MCQMC community, we focus largely on studying QMC
and RQMC methods to estimate integrals that represent the mathematical expecta-
tions of certain random variables. In applications, the output random variable X of
interest often represents a random cost or performance measure. But why estimate
only the mean (the expectation) E[X ]? Data from simulation experiments can pro-
vide much more useful information than just an estimator and a confidence interval
for E[X ]. When the number n of realizations of X is large enough, it permits one to
estimate the entire distribution of X . And when X is a continuous random variable,
this distribution is best visualized by showing its density. On the other hand, den-
sity estimation from a sample of n independent realizations of X is known to be a
difficult problem in statistics. The leading density estimation methods, e.g., kernel
density estimators (KDEs), only achieve a convergence rate ofO(n−4/5) for the mean
square error (MSE) on the density at a given point, compared to a O(n−1) rate for
the expectation with MC. The main question raised in our 2015 discussion was: We
know that RQMC can improve the O(n−1) rate for the mean, but can it also improve
the O(n−4/5) rate for the density, by how much, and how?

Of course, this question makes sense only when the samples of X are obtained by
simulation fromamodel, and not in the situationwhere n independent observations of
X are given a priori.When the observations are generated from amodel, there is room
to change the way we generate them and construct the estimator, and in particular we
may use RQMC points in place of independent uniform random numbers to generate
the observations of X . Following this discussion, PL started exploring empirically
what happens when we do this with an ordinary KDE. That is, what happens with the
variance and MSE of the KDE estimator when the n observations of X are generated
by simulation using a set of n RQMCpoints in place of n independent points, just like
we do when estimating the mean. After much experiments and theoretical work with
co-authors, this led to [3]. In that paper, we were able to prove an upper bound for the
MSEwith KDE+RQMC, but this bound converges at a faster rate thanO(n−4/5) only
when the dimension s is very small. For moderate and large s, the bound converges
at a slower rate than for crude Monte Carlo (MC), although the observed MSE was
never larger than for MC in our experiments. The reason for the slow rate for the
bound is that when increasing n, we need to reduce the bandwidth of the KDE to
reduce the square bias and the MSE, but reducing the bandwidth increases rapidly
the variation of the estimator as a function of the uniform random numbers, and this
hurts the RQMC estimator.

We understood that for RQMC to be effective, we need smoother density estima-
tors. In January 2017, while PL was visiting A. Owen at Stanford University to work
on [3] he attended a talk by S. Asmussen who (by pure coincidence) was present-
ing [1], in which he shows how to obtain an unbiased density estimator for a sum
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of independent random variables by conditional Monte Carlo. The conditioning is
done by hiding the last variable in the sum and taking the density of the last variable
right-shifted by the sum of other variables as a density estimator. We extended this
idea to more general simulation models and this gave us what we needed to obtain
smooth unbiased and RQMC-friendly density estimators. This led to the conditional
density estimator (CDE) studied in [17], also presented in 2018 at a SAMSI work-
shop on QMCmethods in North Carolina and at a RICAMworkshop in Austria. The
idea of this CDE method is to define a continuous estimator of the CDF F(x) by
conditioning, and take its sample derivative with respect to x as a density estimator.
Under appropriate conditions, this provides an unbiased density estimator, and when
further favorable conditions hold, this estimator can be smooth and RQMC-friendly.
In March 2021, while we were finalizing this paper, Mike Fu pointed out that [6]
already contains an example in which he uses conditional Monte Carlo to estimate
the density of the length of the longest path in a six-link network in which the last
link is shared by all paths. His unbiased density estimator is essentially the same as
in [1]: it is the density of the length of the last link, right-shifted by the length of the
longest path up to that link.

At the Eleventh International Conference on Monte Carlo Methods and Appli-
cations (MCM), in July 2017, the authors of [10] presented a different approach
that can provide an unbiased density estimator for a sum of random variables as in
[1], except that the variables can be dependent. This approach can be generalized
to obtain a continuous CDF estimator and then an unbiased density estimator, via
the likelihood ratio (LR) simulation-based derivative estimation method [7, 11] and
a clever change of variable, and by taking again the sample derivative of this CDF
estimator. This likelihood ratio density estimator (LRDE) is discussed in Sect. 6 and
also in [16]. We also explain how it can be combined with RQMC.

A generalized version of the LR gradient estimator method, named GLR, was
proposed in [23] to handle situations in which neither the usual LR estimator nor the
direct sample derivative apply, because of discontinuities. In [18], the authors sketch
out how thisGLRmethod could be used to obtain an unbiased density estimator. Their
general formulas are not easy to understand and implement, but more convenient
formulas for theseGLRdensity estimators are given inTheorem1of [22]. Amodified
version of the GLR named GLR-U was developed recently in [24] to handle large
classes of situations that could not be handled easily by the original GLR from [23].
The model of [24] is expressed explicitly in terms of independent uniform random
variables over (0, 1). Density estimators can also be obtained by this method.

All these LR and GLR methods use a multivariate change of variable of some
sort. They provide unbiased density estimators that are often not smooth with respect
to the underlying uniforms, so their direct combination with RQMC does not always
bringmuch gain. However, it is often possible to smooth out the LR, GLR, or GLR-U
density estimator by conditioning just before applying RQMC.

The aim of this paper is to provide an overview of these recent developments
on density estimation for simulation models, by MC and RQMC. We summarize
the main theoretical results and give numerical illustrations on how the estimators
behave, using simple examples.
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The remainder is organized as follows. In Sects. 2 and 3,we recall basic facts about
one-dimensional density estimation and RQMC sampling. In Sect. 4, we summarize
what happens when we directly combine a KDE with RQMC. In Sect. 5, we discuss
the CDE and its combination with RQMC. In Sect. 6, we examine the LR and
GLR density estimators. Section 8 gives numerical illustrations. We wrap up with a
conclusion in Sect. 9.

2 Basic Density Estimation

Let X be a continuous real-valued random variable with CDF F and density f .
The goal is to estimate the density f over a finite interval [a, b], from a sample
X1, . . . , Xn of n realizations of X (not necessarily independent). This problem has
been studied at length in statistics for the case where X1, . . . , Xn are independent
[26]. Tomeasure the quality of an arbitrary density estimator f̂n based on this sample,
we will use the mean integrated square error (MISE), which is the integral of the
MSE over the interval [a, b]:

MISE = MISE( f̂n) =
b∫

a

E[ f̂n(x) − f (x)]2dx = IV + ISB (1)

where

IV =
b∫

a

E( f̂n(x) − E[ f̂n(x)])2dx and ISB =
b∫

a

(E[ f̂n(x)] − f (x))2dx

are the integrated variance (IV) and the integrated square bias (ISB), respectively.
Two popular types of density estimators are histograms and KDEs. To define a

histogram, one can partition [a, b] intom intervals of length h = (b − a)/m and put

f̂n(x) = n j

nh
for x ∈ I j = [a + ( j − 1)h, a + jh), j = 1, . . . ,m,

where n j is the number of observations Xi that fall in interval I j . To define a KDE
[21, 26], select a kernel k (usually a unimodal symmetric density centered at 0) and
a bandwidth h > 0 (an horizontal stretching factor for the kernel), and put

f̂n(x) = 1

nh

n∑
i=1

k

(
x − Xi

h

)
.

These two density estimators are biased. Asymptotically, when n → ∞ and h → 0
jointly, in the case of independent samples X1, . . . , Xn , the IV and ISB behave as
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Table 1 Constants involved in the convergence rates of the MISE for histograms and KDEs

C B α h∗ MISE

Histogram 1 R( f ′)/12 2 (nR( f ′)/6)−1/3 O(n−2/3)

KDE μ0(k2) (μ2(k))2R( f ′′)/4 4

(
μ0(k2)

(μ2(k))2R( f ′′)n

)1/5

O(n−4/5)

MISE = IV + ISB ∼ C/(nh) + Bhα

where C , B, and α depend on the method. The asymptotically optimal h is then

h∗ = (C/(Bαn))1/(α+1)

and it gives MISE ∼ Kn−α/(1+α) for some constant K . Table 1 gives expressions for
C , B, α, h∗, and α/(1 + α), for histograms and KDEs, with independent samples. It
uses the following definitions, for any g : R → R:

R(g) =
b∫

a

(g(x))2dx and μr (g) =
∞∫

−∞
xr g(x)dx for r = 0 and 2.

Note that these expressions hold under the simplifying assumption that h must
be the same all over [a, b]. One may often do better by varying the bandwidth over
[a, b], but this is more complicated. To estimate h∗ in practice, one can estimate
R( f ′) and R( f ′′) by using a KDE to estimate f ′ and f ′′ (very roughly). This type
of crude (plugin) estimate is often good enough. In the following, we will see how
to improve on these MISE rates and values in a simulation setting, by reducing the
variance. In general, using RQMC points instead of MC does not change the bias.

3 RQMC

We recall here some basic principles of RQMC used in the forthcoming sections.
For more extensive coverages, see [4, 12, 13, 20], for example. Suppose we want to
estimate μ = E[g(U)] where U = (U1, . . . ,Us) has the uniform distribution over
the s-dimensional unit cube (0, 1)s and g : (0, 1)s → R. With standard MC, we
draw n independent random points U i uniformly over (0, 1)s and we estimate the
expectation by the average

μ̂n,mc = 1

n

n∑
i=1

g(U i ). (2)

With RQMC, we replace the independent random points U i by a set of dependent
random points P̃n = {U1, . . . ,Un} ⊂ (0, 1)s such that (1) the point set P̃n covers
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the unit hypercube very evenly (in a sense that must be precisely defined) with
probability 1; and (2) each point U i has the uniform distribution over (0, 1)s . Then
we estimate the expectation by the same average as in (2), which we now denote
μ̂n,rqmc. For various spaces H of functions g, usually Hilbert or Banach spaces, we
have inequalities of the form

Var[μ̂n,rqmc] ≤ D2(Pn) · V2(g) (3)

where D(Pn) measures the discrepancy of Pn (with respect to the uniform distribu-
tion) and V(g) measures the variation of the function g. For many of these func-
tion spaces, we also know explicitly how to construct RQMC point sets for which
D(Pn) = O(n−α/2(log n)s−1) for some α > 1 [4, 9, 14]. This leads to

Var[μ̂n,rqmc] = O(n−α(log n)2(s−1))

when V( f ) < ∞. A classical case is the standard Koksma-Hlawka inequality, for
which α = 2,D(Pn) = D∗(Pn) is the star discrepancy, andV(g) is the variation in
the sense of Hardy and Krause, defined by

V(g) = VHK(g) =
∑

∅�=v⊆{1,...,s}

∫

(0,1)|v|

∣∣∣∣ ∂ |v|

∂uv
g(uv, 1)

∣∣∣∣ duv, (4)

where uv is the vector of coordinates whose indices belong to v, |v| is the cardi-
nality of v, and under the assumption that this expression is well defined. The main
construction methods for Pn are lattice rules and digital nets.

In the context of density estimation, the average in (2) is replaced by the density
estimator f̂n(x) at a given point x . If our density estimator can be written as an
average of the form

f̂n(x) = 1

n

n∑
i=1

g̃(x,U i ) (5)

where g̃ is a sufficiently smooth function of its second argument, then we can apply
the RQMC theory just described to this density estimator by replacing the function
g(·) by g̃(x, ·). We look at this in the next few sections.

4 Kernel Density Estimators with RQMC

The KDE at a given point x ∈ [a, b] is

f̂n(x) = 1

n

n∑
i=1

1

h
k

(
x − g(U i )

h

)
= 1

n

n∑
i=1

g̃(x,U i ).
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We assume that the kernel k is a smooth probability density, symmetric about 0, and
at least s times differentiable everywhere. With RQMC points U i , this is an RQMC
estimator ofE[g̃(x,U)] = E[ f̂n(x)]. RQMC does not change the bias of this density
estimator, but it may reduce Var[ f̂n(x)], which would reduce in turn the IV and the
MISE.

To prove RQMC variance bounds via (3), we need to bound the variation V(g̃).
This was done in [3] for the classical Hardy-Krause variation (4), which is bounded
if and only if all the partial derivatives

∂ |v|

∂uv
g̃(x, u) = 1

h

∂ |v|

∂uv
k

(
x − g(u)

h

)

exist and are uniformly bounded. The derivatives with respect to k are easily bounded
for instance if k is a standard normal density (the Gaussian kernel). However,
when expanding the derivatives via the chain rule, we obtain terms in h− j for
j = 2, . . . , |v| + 1. The dominant term asymptotically is the term for |v| = s, and

it grows in general as h−s−1
∣∣∣k(s) ((x − g(u))/h)

∏s
j=1 g{ j}(u)

∣∣∣ = O(h−s−1) when

h → 0, where g{ j} is the derivative of g with respect to its j th coordinate. We can
bring it down toO(h−s) via a change of variables, which leads to the following result
proved in [3]:

Proposition 1 Let g : [0, 1]s → R be piecewise monotone in each coordinate u j

when the other coordinates are fixed. Assume that all first-order partial derivatives
of g are continuous and that ‖gw1

gw2
. . . gw�

‖1 < ∞ for all selections of non-empty,
mutually disjoint index sets w1, . . . ,w� ⊆ {1, . . . , s}, where gw is the derivative of
g with respect to all the coordinates in the index set w.

Then the Hardy-Krause variation of g̃(x, ·) for any fixed x ∈ [a, b] satisfies

VHK(g̃(x, ·)) ≤ ch−s + O(h−s+1)

for some constant c > 0 given in [3], and with RQMC point sets having a star
discrepancy D∗(Pn) = O(n−1+ε) for all ε > 0 when n → ∞, we obtain

IV = O(n−2+εh−2s) for all ε > 0.

RQMC does not change the bias, so the ISB has exactly the same expression as for
MC. By picking h to minimize the MISE bound, we get MISE = O(n−4/(2+s)+ε).

This rate for the MISE is worse than the MC rate when s ≥ 4. The factor h−2s in
the IV bound really hurts. On the other hand, this is only an upper bound, not the
actual IV. Proposition 4.4 of [3] also shows via a different analysis that for the KDE,
there exist RQMC constructions for which the asymptotic decrease rate of the IV is
not worse than for MC.
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5 Conditional Density Estimation with RQMC

To estimate the density f (x) = F ′(x), one may think of simply taking the sample
derivative of an unbiased estimator of theCDF F(x). The simplest unbiased estimator
of this CDF is the empirical CDF

F̂n(x) = 1

n

n∑
i=1

I[Xi ≤ x].

However dF̂n(x)/dx = 0 almost everywhere, so this cannot be a useful density
estimator! We need a smoother CDF estimator, which should be at least continuous
in x .

One effective way of smoothing an estimator and often make it continuous is to
replace it by its conditional expectation given partial (filtered) information. This is
conditional Monte Carlo (CMC) [2]. That is, one replaces the indicator I[Xi ≤ x] in
the expression of F̂n(x) above by the conditional CDF F(x | G) = P[Xi ≤ x | G],
whereG is a sigma-field that contains not enough information to reveal X but enough
to compute F(x | G), then one takes the sample derivative. We call it the conditional
density estimator (CDE). For more details about the CMCmethod in general and the
choice of G in specific cases, see for example [2, 5, 15]. For examples in the context
of density estimation, see [17] and the examples in Sect. 8. We assume here that we
can compute the conditional density either directly or numerically by an iterative
algorithm. The following proposition, proved in [17], gives sufficient conditions for
this CDE to be an unbiased density estimator with finite variance.

Proposition 2 Suppose that for all realizations of G, F(x | G) is a continuous
function of x over [a, b], differentiable except perhaps over a denumerable set of
points D(G) ⊂ [a, b], and for which f (x | G) = F ′(x | G) = dF(x | G)/dx (when
it exists) is bounded uniformly in x by a random variable � such that E[�2] ≤ Kγ <

∞. Then, for all x ∈ [a, b], E[ f (x | G)] = f (x) and Var[ f (x | G)] < Kγ . More-
over, ifG ⊂ G̃ both satisfy the assumptions of this proposition, thenVar[ f (x | G)] ≤
Var[ f (x | G̃)].

For a sample of size n, the CDE becomes

f̂cde,n(x) = 1

n

n∑
i=1

f (x | G(i))

where G(1), . . . ,G(n) are n “realizations” of G. When the n realizations are indepen-
dent we have Var[ f̂cde,n(x)] ≤ Kγ /n = O(n−1).

To combine the CDEwith RQMC, we want to write f (x | G) = g̃(x, u) for some
function g̃ : [a, b] × [0, 1)s → R. This function g̃(x, ·) will be used in (5). The
combined CDE+RQMC estimator is then defined by
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f̂cde-rqmc,n(x) = 1

n

n∑
i=1

g̃(x,U i ). (6)

where {U1, . . . ,Un} is an RQMC point set.
If g̃(x, ·) has bounded variation, then we can get an O(n−2+ε) rate for the MISE,

and sometimes better. This holds in several examples that we tried. If g̃(x, ·) has
unbounded variation, RQMC may still reduce the IV, but there is no guarantee.

6 Likelihood Ratio Density Estimators

There are situations where a CDE as in Sect. 5 might be too difficult to obtain. An
alternative can be a likelihood ratio density estimator (LRDE), defined as follows.
Suppose that X = h(Y) where Y has known density fY over Rs , and we know how
to generate it and compute X = h(Y). For simplicity, let x > 0 (in case we are really
interested in some x ≤ 0, we can simply add a constant to the function h). We have

F(x) = P[h(Y) ≤ x] =
∫

Rs

I[h( y)/x ≤ 1] fY ( y)d y.

We want to change this integrand into a continuous function of x , so we can take
the derivative with respect to x inside the integral. One way to do this is to make a
change of variable y �→ z = z(x) of the form y = ϕx (z), with Jacobian |Jx (z)|, so
that h̃(z) = h(ϕx (z))/x no longer depends on x for any given z. We can then rewrite

F(x) =
∫

Rs

I[h̃(z) ≤ 1] fY (ϕx (z))|Jx (z)|dz.

In a small open neighborhood of a given x0 ∈ [a, b], we have

F(x) =
∫

Rs

I[h̃(z) ≤ 1]L(z; x, x0) fY (ϕx0(z))|Jx0(z)|dz

where

L(z; x, x0) = fY (ϕx (z))|Jx (z)|
fY (ϕx0(z))|Jx0(z)|

is the likelihood ratio between the density of z at x and at x0. Under appropriate
conditions:
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f (x) = d

dx

∫

Rs

I[h̃(z) ≤ 1]L(z; x, x0) fY (ϕx0(z))|Jx0(z)|dz

=
∫

Rd

I[h̃(z) ≤ 1]
(

d

dx
L(z; x, x0)

)
fY (ϕx (z))|Jx (z)|

L(z; x, x0) dz

=
∫

Rd

I[h̃(z) ≤ 1]
(

d

dx
ln L(z; x, x0)

)
fY (ϕx (z))|Jx (z)|dz

=
∫

Rs

I[h( y) ≤ x]S( y, x) fY ( y)d y

where

S( y, x) = d ln L(z; x, x0)
dx

= (∇(ln fY )( y)) · (∇xϕx (z)) + d ln |Jx (z)|
dx

is the score function associated with L . This gives the unbiased LRDE

f̂lrde(x) = I[h(Y) ≤ x] S(Y , x) (7)

where Y ∼ fY . Here, Y can have a multivariate distribution for which conditioning
is hard whereas S(Y , x) may be easier to compute.

This LR approach has been widely used to estimate the derivative ofE[h(Y)]with
respect to a parameter of the distribution of Y [2, 7, 8, 11]. Laub et al. [10] obtained
(via a different argument) the estimator (7) for the special case where h(Y) is a sum
of random variables. The following is proved in [16].

Proposition 3 Suppose that with probability one over realizations of Y = ϕx (Z),
fY (ϕx (Z))|Jx (Z)| is continuous in x over [a, b] and is differentiable in x except
perhaps at a countable set of points D(Y) ⊂ [a, b]. Suppose that there is also a
random variable � defined over the same probability space as Y , such that E[�2] <

∞, and for which
sup

x∈[a,b]\D(Y )

|I[h(Y) ≤ x] S(Y , x)| ≤ �.

Then, f̂lrde(x) = I[h(Y) ≤ x] S(Y , x) is an unbiased estimator of f (x) at almost all
x ∈ [a, b], with variance bounded uniformly by E[�2].

Note that the unbiased LRDE in (7) is usually discontinuous in the underlying
uniforms, because of the indicator function, so it is not a smooth RQMC-friendly
estimator. One can think of making it continuous by taking its conditional expecta-
tion. On the other hand, when we can find a conditioning that makes the indicator
continuous, then we may be able to apply the CDE instead and this is usually more
effective, according to our experiments. The LRDE is nevertheless useful for the
situations in which a CDE is difficult to obtain.
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7 Generalized Likelihood Ratio Estimators

Peng et al. [23] proposed a generalized likelihood ratio (GLR) method that general-
izes the LR derivative estimation approach. Peng et al. [22] gave an adaptation of this
method to density estimation. It goes as follows. Let X = h(Y) = h(Y1, . . . ,Ys) for
some random variables Y1, . . . ,Ys , and assume that X is a continuous random vari-
able with (unknown) density f . Let A(x, ε) = { y ∈ R

s : x − ε ≤ h( y) ≤ x + ε},
which is the inverse image of an ε-neighborhood of x by h. Suppose there is an
ε0 > 0 such that

lim
ε→0

sup
x∈[a−ε0,b+ε0]

λ(A(x, ε)) = 0,

where λ is the Lebesgue measure onRs . Select some index j ∈ {1, . . . , s} for which
Y j is a continuous random variable with CDF Fj and density f j , and is independent
of {Yk, k �= j}. Let h( j)( y) := ∂h( y)/∂y j , h( j j)( y) := ∂2h( y)/∂y2j , and


 j ( y) = ∂ ln f j (y j )/∂y j − h( j j)( y)/h( j)( y)
h( j)( y)

,

where all these derivatives are assumed to exist. Suppose that there are functions
v� : R → R for � = 1, . . . , s such that |h( j)( y)|−1 ≤ ∏d

�=1 v�(y�) and

lim
y→±∞ v j (y) f j (y) = 0 and E[v j (Y j )] < ∞.

Finally, suppose also that E[I[X ≤ x]
2
j (Y)] < ∞. Under all these conditions, a

simple modification of the proof of Theorem 1 in [22] yields the following:

Proposition 4 With the assumptions just given, D j (x,Y) = I[X ≤ x]
 j (Y) is an
unbiased and finite-variance estimator of the density f (x) at x.

When the conditions hold for all j = 1, . . . , s, as assumed in [22], this gives
s unbiased estimators D1(x,Y ), . . . , Ds(x,Y). Instead of selecting only one of
them,we can take a linear combination D(x,Y ) = w1D1(x,Y) + · · · + ws Ds(x,Y)

where w1 + · · · + ws = 1. This is exactly equivalent to taking, say D1(x,Y) as the
base estimator and the C j = Dj (x,Y) − D1(x,Y ) as mean-zero control variates,
for j = 2, . . . , s, because one has D(x,Y ) = D1(x,Y ) + w2C2 · · · + wsCs . There-
fore, standard control variate theory [2] can be used to optimize the coefficients w j .
When the conditions are satisfied only for certain values of j , then one can take the
linear combination only for these values. It may also happen that the assumptions
are satisfied for no j , in which case this method does not apply.

The GLR setting of [23] is more general. It permits one to estimate the deriva-
tive of E[ϕ(g(Y ; θ))] with respect to some parameter θ , where g(·; θ) : Rs → R

s

is continuous and one-to-one for the values of θ in the region of interest, so it cor-
responds to a multivariate change of variable in that region. The authors provide a
general form of the unbiased derivative estimator (see also [25]). The general for-
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mula is rather complicated and it can be found in the papers. One can use it in
principle to estimate the density of X by taking θ = x and selecting a g for which
ϕ(g(Y ; θ)) ≡ I[X ≤ x] = I[h(Y) − x ≤ 0] and for which the assumptions of [23]
are satisfied, when this is possible.

Peng et al. [24] extended the range of applicability of GLR by developing GLR-
U, a version of GLR in which the base model is expressed directly in terms of the
underlying uniform random numbers. That is, Y takes the form of a vector U which
has the uniform distribution over the unit hypercube (0, 1)s . This new setting covers
a larger class of models than in [23], including situations where the random variables
are generated by inversion, by the rejection method, or via Archimedean copulas, for
example. We outline how to use this method to estimate the density of X over [a, b].

The first step is to find a nonempty subset of the input variables ϒ ⊆ {1, . . . , s},
which we will assume (without loss of generality) to be ϒ = {1, . . . , d} for 1 ≤
d ≤ s, together with a function g(·; x) = g1(·; x), . . . , gd(·; x)) : (0, 1)s → R

d for
which ϕ(g(U; x)) ≡ I[X ≤ x] for all x ∈ [a, b] and which satisfies the following
assumptions. For any u ∈ (0, 1)s , we decompose u = (u(1), u(2))where u(1) contains
the first d coordinates and u(2) the other ones. When u(2) is fixed, g(·; x) becomes
a function of u(1) only, which we denote by g̃(·; u(2), x). An important condition is
that this function g̃ must be continuous and correspond to a multivariate change of
variable, whose Jacobian Jg(u; x) is a d × d invertible matrix whose element (i, j)
is ∂gi (u; x)/∂u j . For any u = (u1, . . . , us) ∈ (0, 1)s and j = 1, . . . , d, let u j and
u j be the vector u in the limit when u j → 1 from the left and the limit when u j → 0
from the right (see [24, 25]). Define

r j (u; x) = −(J−1
g (u; x))t · e j

and

v(u; x) = −
d∑
j=1

etj · (J−1
g (u; x))

(
dJg(u; x)

du j

)
(J−1

g (u; x)) · 1

where e j is the j th unit vector, 1 is a column vector of ones, and the derivative of
Jg(u; x) is element-wise. Then, under some mild regularity conditions, we have:

Proposition 5 The following is an unbiased density estimator at all x ∈ [a, b]:

G(U, x) = I[X ≤ x] v(U; x) +
s∑

j=1

[
ϕ(g(U j ; x))r j (U j ; x) − ϕ(g(U j ; x))r j (U j ; x)

]
.

(8)

Peng et al. [24, 25] show how to apply this method in the special case where X
is the maximum of several variables, each one being the sum of certain Y j ’s that
are generated by inversion from the Uj ’s. This may correspond to the length of the
longest path between a source node to a destination node in a directed network, for



Density Estimation by Monte Carlo and Quasi-Monte Carlo 15

example. It works in the same way if the maximum is replaced by a minimum, and
we will use it in Sect. 8. The number d of selected input variables in this case should
be equal to the number of independent paths.

8 Numerical Illustrations

We illustrate the applicability and performance of the various density estimators
discussed here on a small shortest path example definedbelow.We run the simulations
with MC and RQMC. For RQMC, we use Sobol’ nets with direction numbers taken
from [19], and randomized by a left matrix scramble followed by a digital shift. Each
RQMC experiment is repeated m = 100 times independently. The performance is
assessed via the estimatedMISE for n = 220 points. For RQMC,we also estimate the
convergence rate as follows: we assume that MISE ≈ n−β for some constant β > 0
and we estimate β by β̂ using linear regression in log scale, based on observations
obtained with n = 213, 214, . . . , 220. For MC, the rates are known theoretically to
be β = 0.8 for the KDE and β = 1 for the other methods. For the experiments with
the KDE, we select the bandwidth with the same methodology as in [3].

We consider an acyclic directed network as in Fig. 1, with s arcs. For j = 1, . . . , s,
arc j has random length Y j with continuous cdf Fj and density f j , and the Y j

are assumed independent. We generate Y j by inversion via Y j = F−1
j (Uj ) where

Uj ∼ U (0, 1). We want to estimate the density of the length X of the shortest path
from the source to the sink.

Fig. 1 Upper panel: a
directed network with 11
links. Lower panel: two
selected minimal cuts
L1 = {4, 5, 6, 7} (in light
blue) and L2 = {10, 11} (in
orange) for this network
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Fig. 2 Estimated density for
the shortest path example

In the network of Fig. 1, there are six different directed paths from the source to
the sink, each one being defined by a sequence of arcs. They are P1 = {1, 4, 10},
P2 = {1, 4, 8, 11},P3 = {2, 5, 10},P4 = {2, 5, 8, 11},P5 = {2, 6, 9, 11}, andP6 =
{3, 7, 9, 11}. The length of path p is L p = ∑

j∈Pp
Y j and the length of the shortest

path is
X = h(Y) = min

1≤p≤6
L p = min

1≤p≤6

∑
j∈Pp

F−1
j (Uj ). (9)

For our experiments, we assume that Y j is normal with mean μ j = 10 j and
standard deviation σ j = j (to make things simple). The probability of negative arc
lengths is negligible. (To be mathematically cleaner, we can truncate the normal
density to [0,∞), but it makes no visible difference in the numerical results.) We
estimate the density of X over [a, b] = [128.8, 171.2], which covers about 95% of
the density. This density is shown in Fig. 2. It is close to a normal distribution, which
is not surprising because all the Y j are normal.

For the CDE, we select a directed minimal cutL between the source and the sink,
and we condition on G = {Y j , j /∈ L}, similarly as for the SAN example in [17].
If Pj + Y j is the length of the shortest path that goes through arc j for j ∈ L, then
conditional on G, each Pj is known and the conditional cdf of X is

F(x | G) = P
[
X ≤ x | {Pj : j ∈ L}] = 1 −

∏
j∈L

(1 − Fj (x − Pj )). (10)

If the Y j ’s for j ∈ L are continuous variables, then the conditional density

f (x | G) = d

dx
F(x | G) =

∑
j∈L

f j (x − Pj )
∏

l∈L, l �= j

(1 − Fl(x − Pl))

is an unbiased density estimator. In our numerical experiments, we try the two cuts
L1 and L2 shown on the lower panel of Fig. 1.

For the LRDEwe notice that h(Y) is the minimum over the lengths of six possible
paths. These lengths, in turn, are simple sums of several of the Y j , so we have
h(cY) = ch(Y) for any constant c > 0. Therefore, with the change of variables
ϕx (z) = x z one obtains that h(ϕx (z))/x = h(ϕx (z)/x) = h(z) is independent of x .
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For x > 0 this leads to the LRDE

f̂lrde(x) = I[h(Y) ≤ x] x−1

⎛
⎝−

s∑
j=1

(Y j − μ j )Y jσ
−2
j + s

⎞
⎠ . (11)

For GLR, the estimator in Proposition 4 does not apply to this example, because
for the function h given in (9), for any choice of j , the required derivatives do not
always exist. For the GLR-U, we want to find a subset of indices and a function g
that satisfy the required conditions. In particular, g̃ must be a one-to-one continu-
ous map between the selected inputs Uj and a selected subset of the path lengths
L p, so that the latter subset is sufficient to determine X and the Jacobian Jg(·; x)
of this mapping is invertible. Note that the six path lengths are not independent:
we have L1 + L4 = L2 + L3. But after removing one of these four paths, there
is no linear relationship between any of the five L p’s that remain. Then we must
select five input variables Uj for which the mapping g between those selected Uj ’s
and the five L p’s is one-to-one when the other Uj ’s are fixed. There are several
possibilities for the selection of these five indexes j for the inputs, each one lead-
ing to a different estimator. We will try two of them in our experiments, namely
J1 = {1, 2, 3, 6, 8} and J2 = {5, 7, 8, 10, 11}. Assuming that we remove the path
P4 and select J1, we obtain g(U) = (g1(U), . . . , g5(U))t where gp(U) = L p for
p = 1, 2, 3 and gp(U) = L p+1 for p = 4, 5, and the Jacobian is computed by inter-
preting the gp(U) as functions ofU1,U2,U3,U6,U8 alone, with the otherUj ’s fixed.
The GLR-U density estimator in (8) turns out to be

G1(U; x) = −I[h(Y) ≤ x]
3∑
j=1

j−1�−1(Uj ) = −I[h(Y) ≤ x]
3∑
j=1

j−2(Y j − 10 j)

(12)
for J1 and

G1(U; x) = −I[h(Y) ≤ x]
11∑

j=10

j−1�−1(Uj ) = −I[h(Y) ≤ x]
11∑

j=10

j−2(Y j − 10 j)

(13)
for J2, where � denotes the standard normal cdf.

Table 2 summarizes our numerical results for this example, for all the methods.
It reports − log2(MISE) for n = 220 as well as the convergence rate exponent β for
MC and its (noisy) estimate β̂ for RQMC.

We find that the CDE combined with RQMC outperforms all other methods by a
widemargin. Compared with the KDEwithMC (the traditional approach), it reduces
theMISE for n = 220 by a factor of about 225 ≈ 32 millions. The orange cutL2 does
better than the blue cut L1, especially for plain MC. This could appear surprising,
becauseL2 has fewer arcs, but the explanation is that the two arcs ofL2 have a much
larger variance, so it pays off to hide them. Generally speaking, we want to select a
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Table 2 Estimated values of − log2(MISE) with n = 220 points and estimated MISE rate β̂ for
various methods, for the shortest path example. The 21.3 entry (for example) means that for the
KDE with MC and n = 220 points, we have MISE ≈ 2−21.3

Method MC RQMC

− log2(MISE) β − log2(MISE) β̂

KDE 21.3 0.8 25.7 0.96

CDE (blue cut) 24.7 1.0 45.6 2.12

CDE (orange cut) 29.1 1.0 46.5 1.66

LRDE 20.2 1.0 27.8 1.38

GLR-U in (12) 15.4 1.0 23.2 1.29

GLR-U in (13) 21.5 1.0 29.6 1.35

conditioning that hides (or integrate out) variables that capture as much variance as
possible. (For the blue cut, the noise in the linear regression model and the estimate
β̂ appears quite significant.)

We also observe a significant difference of performance between the two choices
of input variables for GLR-U. With I2, the performance is better than for the KDE,
whereas for I1 it is worse. This shows that the choice of input variables may have a
significant impact on theperformance ingeneral.Note thatI2 contains input variables
that have much more variance than I1. By comparing (12) and (13), we can see why
the second estimator has less variance: the terms in the sum that multiplies the
indicator have larger constants in the denominator, and therefore a smaller variance.
In some sense, the GLR-U estimator integrates out part of the variance contained in
the selected input variables, so it makes sense to select a subset of input variables
that captures more of the variance.

The LRDE has a largerMISE than the KDEwith n = 220 MC samples, but it beats
the KDE when using RQMC. It also performs better than GLR-U for one choice of
inputs and worse for the other choice.

With the same network, we now consider a slightly different problem.We assume
that the Y j ’s are random link capacities instead of random lengths, and we want to
estimate the density of themaximumflow that can be sent from the source to the sink.
This maximum flow h(Y) is equal to the capacity of the minimal directed cut having
the smallest capacity. Here, we assume that Y j is normal with mean μ j = 10 and
standard deviation σ j = 1 for j < 10 and normal with mean μ j = 20 and standard
deviation σ j = 4 for j = 10 and 11. For the CDE, if we take G as in the previous
case, the distribution of X conditional on G typically has a probability mass at some
point. For instance, if L = L1, then after the conditioning, Y10 + Y11 is known and
there is a positive probability that this is the value of the maximum flow. As a result,
the conditional cdf is sometimes discontinuous and the CDE is no longer an unbiased
density estimator. This motivates the use of LRDE for this example.

Similarly as in the previous example, h(Y) is the minimum over several simple
sums of Y j ’s, so multiplying all Y j ’s by a positive constant multiplies the maximum
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Table 3 Values of the log2(MISE) estimated with n = 220 points and the estimated MISE rate β̂

for various methods for the maximum flow example

Method MC RQMC

− log2(MISE) − log2(MISE) β̂

KDE 18.3 19.7 0.86

LRDE 18.7 23.6 1.23

GLR-U 17.7 23.2 1.26

flow h(Y) by the same constant. Therefore, the change of variables ϕx (z) = x z can
be used again and provides the exact same LRDE as in (11), but with the modified
h, μ j , and σ j .

For GLR-U, the construction is similar as for the previous example, except that
we select a subset of minimal cuts with independent capacities instead of a sub-
set of paths. There are hundreds of thousands of ways of selecting the subset of
minimal cuts. We tried a few of them and obtained the best results by selecting
the set of cuts: {{10, 11}, {1, 2, 7}, {1, 2, 9}, {1, 2, 11}, {1, 5, 9}, {2, 3, 4}, {4, 5, 11},
{8, 9, 10}, {2, 3, 8, 10}, {6, 7, 8, 10}} and then hiding Y11. This gives the estimator

G(U; x) = −I[h(Y) ≤ x] ((Y1 − 10) + (Y4 − 10) + (Y10 − 20)/16) .

Numerical results for the KDE, LRDE, and GLR-U for this example are given in
Table 3. In terms of MISE, under MC, the LRDE performs better than GLR-U and
slightly better than the KDE, but not much. However, RQMC improves the MISE
for n = 220 by a factor of about 30 for the LRDE, a bit more for GLR-U, and about
3 for the KDE. The combination of LRDE or GLR-U with RQMC also improves the
convergence rate β̂.

9 Conclusion

We discussed and compared several recent developments regarding density estima-
tion for simulation models, with Monte Carlo and quasi-Monte Carlo methods. Most
of these methods provide unbiased density estimators and some of them are also
RQMC-friendly, in which case their MISE can converge at a faster rate than the
canonical rate of O(1/n) as a function of the sample size n. For the classical density
estimators in statistics, in contrast, the MISE converges at a slower rate thanO(1/n).
In our numerical example (and several other experiments not reported here), the CDE
combined with RQMC was by far the best performer. However, for some types of
problems it may be difficult to apply, and then one can rely on one of the alternatives.
In future work, these density estimators should be adapted, implemented, and com-
pared for a larger variety of Monte Carlo applications for which density estimates
are useful.
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Michael J. McCourt, and Aleksei G. Sorokin

Abstract Practitioners wishing to experience the efficiency gains from using low
discrepancy sequences need correct, robust, well-written software. This article, based
on our MCQMC 2020 tutorial, describes some of the better quasi-Monte Carlo
(QMC) software available. We highlight the key software components required by
QMC to approximate multivariate integrals or expectations of functions of vector
random variables. We have combined these components in QMCPy, a Python open-
source library, which we hope will draw the support of the QMC community. Here
we introduce QMCPy.
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1 Introduction

Quasi-Monte Carlo (QMC)methods promise great efficiency gains over independent
and identically distributed (IID) Monte Carlo (MC) methods. In some cases, QMC
achieves one hundredth of the error of IID MC in the same amount of time (see
Fig. 6). Often, these efficiency gains are obtained simply by replacing IID sampling
with low discrepancy (LD) sampling, which is the heart of QMC.

Practitioners might wish to test whether QMCwould speed up their computation.
Access to the best QMC algorithms available would make that easier. Theoreticians
or algorithm developers might want to demonstrate their ideas on various use cases
to show their practical value.

This tutorial points to some of the best QMC software available. Then we describe
QMCPy [6],1 which is crafted to be a community-ownedPython library that combines
the best QMC algorithms and interesting use cases from various authors under a
common user interface.

The model problem for QMC is approximating a multivariate integral,

μ :=
∫

T

g(t)λ(t) dt, (1)

where g is the integrand, and λ is a non-negative weight. If λ is a probability distri-
bution (PDF) for the random variable T , then μ is the mean of g(T ). Regardless, we
perform a suitable variable transformation to interpret this integral as the mean of a
function of a multivariate, standard uniform random variable:

μ = E[ f (X)] =
∫

[0,1]d
f (x) dx, X ∼ U[0, 1]d . (2)

QMC approximates the population mean, μ, by a sample mean,

μ̂ := 1

n

n−1∑
i=0

f (X i ), X0, X1, . . .
M∼ U[0, 1]d . (3)

The choice of the sequence {X i }∞i=0 and the choice of n to satisfy the prescribed error
requirement,

|μ − μ̂| ≤ ε absolutely or with high probability, (4)

are important decisions, which QMC software helps the user make.

1 QMCPy is in active development. This article is based on version 1.2 on PyPI.
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Fig. 1 IID points (left) contrasted with LD points (right). The LD points cover the square more
evenly

Here, the notation
M∼ means that the sequence mimics the specified, target distri-

bution, but not necessarily in a probabilistic way. We use this notation in two forms:
IID∼ and

LD∼ .
IID sequences must be random. The position of any point is not influenced by

any other, so clusters and gaps occur. A randomly chosen subsequence of an IID

sequence is also IID. When we say that X0, X1, . . .
IID∼ F for some distribution F ,

we mean that for any positive integer n, the multivariate probability distribution of
X0, . . . , Xn−1 is the product of the marginals, specifically,

Fn(x0, . . . , xn−1) = F(x0) · · · F(xn−1).

When IID points are used to approximate μ by the sample mean, the root mean

squared error is O(n−1/2). Figure 1 displays IID uniform points, X IID
0 , X IID

1 , . . .
IID∼

U[0, 1]2, i.e., the target distribution is Funif(x) = x1x2.
LD sequences may be deterministic or random, but each point is carefully coordi-

natedwith the others so that they fill the domain well. Subsequences of LD sequences

are generally not LD. When we say that X0, X1, . . .
LD∼ U[0, 1]d , we mean that for

any positive integer n, the empirical distribution of X0, . . . , Xn−1, denoted F{X i }n−1
i=0

,
approximates the uniform distribution, Funif, well (relative to n). (The empirical dis-
tribution of a set assigns equal probability to each point.).

A measure of the difference between the empirical distribution of a set of points
and the uniform distribution is called a discrepancy and is denoted D({X i }n−1

i=0 ) [10,
17, 18, 38]. This is the origin of the term “low discrepancy” points or sequences. LD
points by definition have a smaller discrepancy than IID points. Figure 1 contrasts

IID uniform points with LD points, XLD
0 , XLD

1 . . .
LD∼ U[0, 1]2, in this case, linearly

scrambled and digitally shifted Sobol’ points.
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The error in using the sample mean to approximate the integral can be bounded
according to the Koksma-Hlawka inequality and its extensions [10, 17, 18, 38] as
the product of the discrepancy of the sampling sequence and the variation of the
integrand, denoted V (·):

|μ − μ̂| =
∣∣∣∣

∫

[0,1]d
f (x) d

(
Funif − F{X i }n−1

i=0

)
(x)

∣∣∣∣ ≤ D
({X i }n−1

i=0

)
V ( f ). (5)

The variation is a (semi-) norm of the integrand in a suitable Banach space. The
discrepancy corresponds to the norm of the error functional for that Banach space.
For typical Banach spaces, the discrepancy of LD points is O(n−1+ε), a higher con-
vergence order than for IID points. For details, readers may refer to the references.

Here, we expect the reader to see in Fig. 1 that the LD points cover the integration
domain more evenly than IID points. LD sampling can be thought of as a more even
distribution of the sampling sites than IID. LD sampling is similar to stratified sam-
pling. In the examples below, the reader will see the demonstrably smaller cubature
errors arising from using LD points.

In the sections that follow, we first overview available QMC software. We next
describe an architecture for good QMC software, i.e., what the key components are
and how they should interact. We then describe howwe have implemented this archi-
tecture in QMCPy. Finally, we summarize further directions that we hope QMCPy
and other QMC software projects will take. Those interested in following or con-
tributing to the development of QMCPy are urged to visit the GitHub repository at
https://github.com/QMCSoftware/QMCSoftware.

We have endeavored to be as accurate as possible at the time of writing this article.
We hope that progress in QMC software development will make this article happily
obsolete in the coming years.

2 Available Software for QMC

QMC software spans LD sequence generators, cubatures, and applications. Here we
review the better-known software, recognizing that some software overlaps multiple
categories. Whenever applicable, we state each library’s accessibility in QMCPy,
or contrast its functionalities with QMCPy’s—where we lag behind in QMCPy, we
strive to catch up in the near future.

Software focusing on generating high-quality LD sequences and their generators
includes the following, listed in alphabetical order:

BRODA Commerical and non-commercial software developed jointly with I.
M. Sobol’ in C++, MATLAB, and Excel [28]. BRODA can generate Sobol’
sequences up to 65,536 dimensions. In comparison, QMCPy supports Sobol’
sequences up to 21,201 dimensions.

https://github.com/QMCSoftware/QMCSoftware
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Burkhardt Various QMC software for generating van der Corput, Faure, Halton,
Hammersley, Niederreiter, or Sobol’ sequences in C, C++, Fortran, MATLAB,
or Python [4]. In QMCPy, we have implemented digital net, lattice, and Halton
generators.

LatNet Builder The successor to Lattice Builder [34], this is a C++ library with
Python and Java interfaces (in SSJ below) for generating vectors or matrices
for lattices and digital nets [9, 33]. QMCPy contains a module for parsing the
resultant vectors or matrices from LatNet Builder for compatibility with our LD
point generators.

MATLAB Commercial software for scientific computing [51], which contains
Sobol’ and Halton sequences in the Statistics and Machine Learning Toolbox.
Both generators can be applied jointly with the Parallel Computing Toolbox
to accelerate their execution speed. The dimension of the Sobol’ sequences is
restricted to 1,111, which is relatively small, yet sufficient for most applications.

MPS Magic Point Shop contains lattices and Sobol’ sequences in C++, Python,
and MATLAB [39]. QMCPy started with MPS for developing LD generators.

Owen Owen’s randomizedHalton sequenceswith dimensions up to 1,000 [43] and
scrambled Sobol’ sequences with dimensions up to 21,021 [41, 44] in R. QMCPy
supportsOwen’sHalton randomizationmethod, andweplan to implementOwen’s
nested uniform scrambling for digital nets in the near future.

PyTorch Open-source Python library for deep learning, with unscrambled or
scrambled Sobol’ sequences [46, 47]. PyTorch enables seamless utilization of
Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs).

QMC.jl LD Sequences in Julia [48]. Julia [3] is an interpreted language similar
to Python and R in terms of ease of use, but is designed to run much faster.

qrng Randomized Sobol’, Halton, and Korobov sequences in R [23]. The default
Halton randomization in QMCPy utilizes the methods from qrng.

SciPy Scientific computing library in Python with Latin hypercube, Halton, and
Sobol’ generators [52].

TF Quant Finance Google’s Tensorflow deep-learning library [1] specialized for
financial modeling [12]. It contains lattice and Sobol’ generators alongside with
algorithms sped up with GPUs, FGPAs, or Tensor Processing Units (TPUs).

Software focusing on QMC cubatures and applications includes the following:

GAIL The Guaranteed Automatic Integration Library contains automatic (Q)MC
stopping criteria in MATLAB [5, 14]. These are iterative procedures for one- or
high-dimensional integration that take a user’s input error tolerance(s) and deter-
mine the number of (Q)MC sampling points necessary to achieve user-desired
accuracy (almost surely). Most of GAIL’s (Q)MC functions, some with enhance-
ments, are implemented in Python in QMCPy.

ML(Q)MC Multi-Level (Q)MC routines in C, C++, MATLAB, Python, and
R [11]. We have ported ML(Q)MC functions to QMCPy.

MultilevelEstimators.jl ML(Q)MC methods in Julia [49]. The author, Pieterjan
Robbe, has contributed cubature algorithms and use cases to QMCPy.
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OpenTURNS Open source initiative for the Treatment of Uncertainties, Risks’N
Statistics [40] written in C++ and Python, leveraging R statistical packages, as
well as LAPACK and BLAS for numerical linear algebra.

QMC4PDE QMC for elliptic PDEs with random diffusion coefficients in
Python [30].

SSJ Stochastic Simulation with the hups package in Java [32].
UQLab Framework for Uncertainty Quantification inMATLAB [36]. The core of

UQLab is closed source, but a large portion of the library is open source. Recently,
UQ[py]Lab, the beta release of UQLab with Python bindings, is available as
Software as a Service (SaaS) via UQCloud [31].

The sections that follow describe QMCPy [6], which is our attempt to establish a
framework for QMC software and to combine the best of the above software under a
common user interface written in Python 3. The choice of language was determined
by the desire to make QMC software accessible to a broad audience, especially the
technology industry.

3 Components of QMC Software

QMC cubature can be summarized as follows. We want to approximate the expecta-
tion, μ, well by the sample mean, μ̂, where (1), (2), and (3) combine to give

μ :=
∫

T

g(t)λ(t) dt =E[ f (X)] =
∫

[0,1]d
f (x) dx ≈ 1

n

n−1∑
i=0

f (X i ) =: μ̂,

X ∼ U[0, 1]d , X0, X1, . . .
M∼ U[0, 1]d . (6)

Moreover, we want to satisfy the error requirement in (4). This requires four com-
ponents, which we implement as QMCPy classes.

Discrete Distribution produces the sequence X0, X1, . . . that mimics U[0, 1]d ;
True Measure t �→ λ(t)dt defines the original measure, e.g., Gaussian or

Lebesgue;
Integrand g defines the original integrand, and f defines the transformed version

to fit the DiscreteDistribution; and
Stopping Criterion determines how large n should be to ensure that |μ − μ̂| ≤ ε

as in (4).

The software libraries referenced in Sect. 2 provide one or more of these com-
ponents. QMCPy combines multiple examples of all these components under an
object-oriented framework. Each example is implemented as a concrete class that
realizes the properties andmethods required by the abstract class for that component.
The following sections detail descriptions and specific examples for each component.
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Thorough documentation of allQMCPyclasses is available in [7].Demonstrations
of how QMCPy works are given in Google Colab notebooks [15, 16]. The project
may be installed from PyPI into a Python 3 environment via the command pip
install qmcpy. In the code snippets that follow, we assume QMCPy has been
imported alongside NumPy [13] via the following commands in a Python Console:

>>> import qmcpy as qp
>>> import numpy as np

4 Discrete Distributions

LD sequences typically mimicU[0, 1]d . Good sequences mimicking other distribu-
tions are obtained by transformations as described in the next section. We denote by
DiscreteDistribution the abstract class containing LD sequence generators.
Inmost cases that have been implemented, the points X0, . . . , Xn−1 have an empirical
(discrete) distribution that closely approximates the uniform distribution, say, in the
sense of discrepancy.We also envision future possible DiscreteDistribution
objects that assign unequal weights to the sampling points. In any case, the term
“discrete” refers to the fact that these are sequences of points (and weights), not
continuous distributions.

QMCPy implements extensible LD sequences, i.e., those that allow practitioners
to obtain and use Xn, Xn+1, . . .without discarding X0, . . . , Xn−1. Halton sequences
do not have preferred sample sizes n, but extensible integration lattices and digital
sequences in base b prefer n to be a power of b. For integration lattices and digital
sequences, we have focused on base b = 2 since this is a popular choice and for
convenience in generating extensible sequences.

Integration lattices and digital sequences in base 2 have an elegant group structure,
whichwe summarize in Table 1. The addition operator2 is⊕, and its inverse is	. The
unshifted sequence is Z0, Z1, . . . and the randomly shifted sequence is X0, X1, . . .

We illustrate lattice and Sobol’ sequences using QMCPy. First, we create an
instanceof ad=2dimensionalLatticeobject of theDiscreteDistribution
abstract class. Then we generate the first eight (non-randomized) points in this
lattice.

2 The operator⊕ is commonly used to denote exclusive-or,which is itsmeaning for digital sequences
in base 2. However, we are using it here in a more general sense.
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Table 1 Properties of lattices and digital net sequences. Note that they share group properties but
also have distinctives

Define …

Z1, Z2, Z4, . . . ∈ [0, 1)d chosen well

Zi := i0Z1 ⊕ i1Z2 ⊕ i2Z4 ⊕ i3Z8 ⊕ · · · for i = i0 + i12 + i24 + i38 + · · · , i� ∈ {0, 1}
X i := Zi ⊕ �, where �

IID∼ [0, 1)d
Rank-1 Integration Lattices Digital Nets

t ⊕ x := (t + x) mod 1 t ⊕ x := binary digitwise addition,⊕dig

require Z2m ⊕ Z2m = Z�2m−1� ∀m ∈ N0

Then it follows that …

Pm := {Z0, . . . , Z2m−1}, Zi ⊕ Z j ∈ Pm

P�,m := {X0, . . . , X2m−1}, X i ⊕ X j 	 Xk ∈ P�,m

}
∀i, j, k ∈ {0, . . . , 2m − 1}
∀m ∈ N0

>>> lattice = qp.Lattice(dimension =2, randomize=False)
>>> lattice.gen_samples(n=8)
"ParameterWarning:

Non -randomized lattice sequence includes the origin"
array ([[0. , 0. ],

[0.5 , 0.5 ],
[0.25 , 0.75 ],
[0.75 , 0.25 ],
[0 .125, 0.375],
[0 .625, 0.875],
[0 .375, 0.125],
[0 .875, 0.625 ]])

The first three generators for this lattice are Z1 = (0.5, 0.5), Z2 = (0.25, 0.75), and
Z4 = (0.125, 0.375). One can check that (Z2 + Z4) mod 1 = (0.375, 0.125) = Z6,
as Table 1 specifies.

The random shift has been turned off above to illuminate the group structure. We
normally include the randomization to ensure that there are no points on the boundary
of [0, 1]d . Then, when points are transformed to mimic distributions such as the
Gaussian, no LD points will be transformed to infinity. Turning off the randomization
generates a warning when the gen_samples method is called.

Now,we generate Sobol’ points using a similar process aswe did for lattice points.
Sobol’ sequences are one of the most popular example of digital sequences.
>>> sobol = qp.Sobol (2, randomize=False)
>>> sobol.gen_samples (8, warn=False)
array ([[0. , 0. ],

[0.5 , 0.5 ],
[0.25 , 0.75 ],
[0.75 , 0.25 ],
[0 .125, 0.625],
[0 .625, 0.125],
[0 .375, 0.375],
[0 .875, 0.875 ]])

Here, Z4 differs from that for lattices, but more importantly, addition for digital
sequences differs from that for lattices.Usingdigitwise addition for digital sequences,
we can confirm that according to Table 1,
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Z2 ⊕dig Z4 = (0.25, 0.75) ⊕dig (0.125, 0.625)

= (20.010, 20.110) ⊕dig (20.001, 20.101) = (20.011, 20.011)

= (0.375, 0.375) = Z6.

By contrast, if we construct a digital sequence using the generators for the lattice
above with Z2 = (0.25, 0.75), and Z4 = (0.125, 0.375), we would obtain

Z6 = Z2 ⊕dig Z4 = (20.010, 20.110)⊕dig(20.001, 20.011)

= (20.011, 20.101) = (0.375, 0.625),

which differs from the Z6 = (0.375, 0.125) constructed for lattices. To emphasize,
lattices and digital sequences are different, even if they share the same generators,
Z1, Z2, Z4, . . ..

The examples of qp.Lattice and qp.Sobol illustrate howQMCPy LD gen-
erators share a commonuser interface.Thedimension is specifiedwhen the instance is
constructed, and the number of points is specified when the gen_samplesmethod
is called. Following Python practice, parameters can be input without specifying
their names if input in the prescribed order. QMCPy also includes Halton sequences
and IID sequences, again deferring details to the QMCPy documentation [7].

A crucial difference between IID generators and LD generators is reflected in the
behavior of generating n points. For an IID generator, asking for n points repeatedly
gives different points each time because they are meant to be random and indepen-
dent.
>>> iid = qp.IIDStdUniform (2); iid.gen_samples (1)
array ([[0 .40538109, 0.12255759 ]])
>>> iid.gen_samples (1)
array ([[0 .50913741, 0.11312201 ]])

Your output may look different depending on the seed used to generate these random
numbers.

On the other hand, for an LD generator, asking for n points repeatedly gives the
same points each time because they are meant to be the first n points of a specific
LD sequence.
>>> lattice = qp.Lattice (2); lattice.gen_samples (1)
array ([[0 .2827584 , 0.36731649 ]])
>>> lattice.gen_samples (1)
array ([[0 .2827584 , 0.36731649 ]])

Here we allow the randomization so that the first point in the sequence is not the
origin. To obtain the next n points, one may specify the start and ending indices of
the sequence.
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Fig. 2 Randomized lattice and Sobol’ points mimicking aU[0, 1]2 measure for n = 64, 128, and
256. Note how increasing the number of points evenly fills in the gaps between the points

>>> lattice.gen_samples (2)
array ([[0 .2827584 , 0.36731649],

[0 .7827584 , 0.86731649 ]])
>>> lattice.gen_samples(n_min =1, n_max =2)
array ([[0 .7827584 , 0.86731649 ]])

Figure 2 shows how increasing the number of lattice and Sobol’ LDpoints through
powers of two fills in the gaps in an even way.

5 True Measures

The LD sequences implemented as DiscreteDistribution objects mimic the
U[0, 1]d distribution. However, wemay need sequences tomimic other distributions.

This is implemented via variable transformations, �. In general, if X
M∼ U[0, 1]d ,

then
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T = �(X) := a + (b − a) � X
M∼ U[a, b], (7a)

T = �(X) := a + A�−1(X)
M∼ N(a, �), (7b)

where �−1(X) :=
⎛
⎜⎝

�−1(X1)
...

�−1(Xd)

⎞
⎟⎠ , � = AAT ,

and � denotes term-by-term (Hadamard) multiplication. Here, a and b are assumed

to be finite, and � is the standard Gaussian distribution function. Again we use
M∼ to

denote mimicry, not necessarily in a probabilistic sense.
Figure 3 displays LD sequences transformed as described above to mimic a uni-

form and a Gaussian distribution. The code to generate these points takes the follow-
ing form for uniform points based on a Halton sequence:
>>> u = qp.Uniform(
... sampler = qp.Halton (2),
... lower_bound = [-2, 0],
... upper_bound = [2, 4])
>>> u.gen_samples (4)
array ([[ 1.80379772, 3.51293599],

[-0 .19620228, 0.84626932],
[ 0.80379772, 2.17960265],
[-1 .19620228, 3.95738043 ]])

whereas for Gaussian points based on a lattice sequence, we have:

>>> g = qp.Gaussian(qp.Lattice (2),
... mean = [3, 2],
... covariance = [[9, 5],
... [5, 4]])
>>> g.gen_samples (4)
array ([[-0 .00920667, 0.29392389],

[ 5.02422481, 1.45408341],
[ 6.53688109, 5.14785917],
[ 2.58403124, 1.16941969 ]])

Here the covariance decomposition � = AAT is done using principal component
analysis. The Cholesky decomposition is also available.

The Brownian motion distribution arises often in financial risk applications. Here
the d components of the variable T correspond to the discretized Brownian motion
at times τ/d, 2τ/d, . . . , τ , where τ is the time horizon. The distribution is a special
case of the Gaussian with covariance

� = (τ/d)
(
min( j, k)

)d
j,k=1 (8)

and mean a, which is proportional to the times (τ/d)(1, 2, . . . , d)T . The code for
generating a Brownian motion is
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Fig. 3 Halton samples transformed to mimic a uniform U
([−2

0

]
,
[
2
4

])
distribution (left) and

lattice samples transformed to mimic a Gaussian N
([

3
2

]
,
[
9 5
5 4

])
distribution (right)

Fig. 4 Sobol’ samples transformed to mimic a 52-dimensional Brownian Motion without drift
(left) and with drift coefficient 2 (right)

>>> bm = qp.BrownianMotion(qp.Sobol (4), drift =2)
>>> bm.gen_samples (2)
array ([[-0 .28902829, 0.48582198, 1.81113976, 2.2376372 ],

[ 1.41552651, 1.93926124, 1.27619672, 1.47496128 ]])

Figure 4 displays a Brownian motion based on Sobol’ sequence with and without a
drift.

6 Integrands

Let’s return to the integration problem in (1), which we must rewrite as (2). We
choose a transformation of variables defined as t = �(x) where � : [0, 1]d → T .
This leads to
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μ =
∫

T

g(t)λ(t) dt =
∫

[0,1]d
g
(
�(x)

)
λ
(
�(x)

) |� ′(x)| dx =
∫

[0,1]d
f (x) dx,

where f (x) = g
(
�(x)

)
λ
(
�(x)

) |� ′(x)|, (9)

and |� ′(x)| := |∂�/∂x| represents the Jacobian of the variable transformation.
The abstract class Integrand provides f based on the user’s input of g and
the TrueMeasure instance, which defines λ and the transformation �. Differ-
ent choices of � lead to different f , which may give different rates of convergence
of the cubature, μ̂ to μ.

We illustrate the Integrand class via an example of Keister [27]:

μ =
∫

Rd

cos(‖t‖) exp(−tT t) dt =
∫

Rd

πd/2 cos(‖t‖)︸ ︷︷ ︸
g(t)

π−d/2 exp(−tT t)︸ ︷︷ ︸
λ(t)

dt. (10)

Since λ is the density forN(0, I/2), it is natural to choose � according to (7b) with
A = √

1/2 I, in which case λ(�(x))|� ′(x)| = 1, and so

μ =
∫

[0,1]d
πd/2 cos(‖�(x)‖)︸ ︷︷ ︸

f (x)

dx, �(x) := √
1/2�−1(x).

The code below sets up an Integrand instance using QMCPy’s CustomFun
wrapper to tie a user-defined function g into the QMCPy framework. Then we eval-
uate the sample mean of n = 1000 f values obtained by sampling at transformed
Halton points. Notice how a two-dimensional Halton generator is used to construct
a Gaussian true measure, which is applied alongside the my_Keister function to
instantiate a customized, QMCPy-compatible integrand for this problem.
>>> def my_Keister(t):
... d = t.shape [1] # t is an (n x d) array
... norm = np.sqrt ((t**2) .sum (1))
... out = np.pi **(d/2)*np.cos(norm)
... return out # size n vector
...
>>> gauss = qp.Gaussian(qp.Halton (2), covariance =1/2)
>>> keister = qp.CustomFun(true_measure=gauss, g=my_Keister)
>>> x = keister.discrete_distrib.gen_samples (1000)
>>> y = keister.f(x)
>>> y.mean ()
1.809055768468628

We have no indication yet of how accurate our approximation is. That topic is treated
in the next section. Figure 5 visualizes sampling on the original integrand, g, and
sampling on the transformed integrand, f .

Another way to approximate the Keister integral in (10) is to write it as an integral
with respect to the Lebesgue measure:
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Fig. 5 Right: Sampling the transformed Keister integrand f at Halton points X i
LD∼ U[0, 1]2. Left:

Sampling the original Keister integrand g at T i = �(X i )
M∼ N(0, I/2) where � is defined in (7b)

μ =
∫

Rd

cos(‖t‖) exp(−tT t)︸ ︷︷ ︸
g(t)

1︸︷︷︸
λ(t)

dt

=
∫

[0,1]d
cos(‖�(x)‖) exp(−�T(x)�(x))|� ′(x)|︸ ︷︷ ︸

f (x)

dx,

where � is any transformation from [0, 1]d to Rd . Now λ is not a PDF. QMCPy can
perform the cubature this way as well.
>>> def my_L_Keister(t):
... norm_sq = (t**2) .sum (1)
... out = np.cos(np.sqrt(norm_sq))*np.exp(-norm_sq)
... return out
...
>>> lebesgue_gauss = qp.Lebesgue(qp.Gaussian(qp.Halton (2)))
>>> keister = qp.CustomFun(lebesgue_gauss, my_L_Keister)
>>> x = keister.discrete_distrib.gen_samples (1000)
>>> y = keister.f(x)
>>> y.mean ()
1.8056340581961572

The � chosen when transforming uniform sequences on the unit cube to fill Rd is
given by (7b) with A = I.

In the examples above, one must input the correct g into CustomFun along
with the correct TrueMeasure λ to define the integration problem. The Keister
integrand included in the QMCPy library takes a more flexible approach to defin-
ing the integration problem μ in (10). Selecting a different sampler � performs
importance sampling, which leaves μ unchanged.
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>>> # default transform
>>> keister = qp.Keister(qp.Halton (2))
>>> x = keister.discrete_distrib.gen_samples (1e4)
>>> keister.f(x).mean ()
1.8082377673556123
>>> # custom transform for importance sampling
>>> keister = qp.Keister(sampler=qp.Gaussian(qp.Halton (2)))
>>> x = keister.discrete_distrib.gen_samples (1e4)
>>> keister.f(x).mean ()
1.8080555069060817

In the first case above, the λ in (9) corresponds to the Gaussian density with mean
zero and variance 1/2 by default, and the corresponding variable transformation, �,
is chosen to make λ

(
�(x)

)|� ′(x)| = 1 and f (x) = g (�(x)). In the second case,
we choose an importance sampling density λIS, corresponding to standard Gaussian,
and the variable transformation � IS makes λIS

(
�IS(x)

)|� ′
IS(x)| = 1. Then

μ =
∫

T

g(t)λ(t) dt =
∫
T
g(t)

λ(t)
λIS(t)

λIS(t)dt

=
∫

[0,1]d
g
(
� IS(x)

) λ
(
�IS(x)

)
λIS

(
�IS(x)

)λIS
(
� IS(x)

) |� ′
IS(x)| dx

=
∫

[0,1]d
fIS(x) dx

where fIS(x) = g
(
� IS(x)

) λ
(
�IS(x)

)
λIS

(
�IS(x)

) . (11)

Because LD samples mimic U[0, 1]d , choosing a different sampler is equivalent
to choosing a different variable transform.

7 Stopping Criteria

The StoppingCriterion object determines the number of samples n that are
required for the sample mean approximation μ̂ to be within error tolerance ε of the
true mean μ. Several QMC stopping criteria have been implemented in QMCPy,
including replications, stopping criteria that track the decay of the Fourier complex
exponential or Walsh coefficients of the integrand [20, 21, 26], and stopping criteria
based on Bayesian credible intervals [24, 25].

The CubQMCSobolG stopping criterion used in the example below assumes the
Walsh-Fourier coefficients of the integrand are absolutely convergent. The algorithm
iteratively doubles the number of samples used in the integration and estimates the
error using the decay of theWalsh coefficients [20].When the estimated error is below
the user-specified tolerance, it finishes the computation and returns the estimated
integral.
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Let us return to the Keister example from the previous section. After setting up a
default Keister instance via a Sobol’ DiscreteDistribution, we choose a
StoppingCriterion object that matches the DiscreteDistribution and
input our desired tolerance. Calling theintegratemethod returns the approximate
integral plus some useful information about the computation.
>>> keister = qp.Keister(qp.Sobol (2))
>>> stopping = qp.CubQMCSobolG (keister, abs_tol =1e-3)
>>> solution_qmc,data_qmc = stopping.integrate ()
>>> data_qmc # equivalent to print(data_qmc)
LDTransformData (AccumulateData Object)

solution 1.808
error_bound 6.06e -04
n_total 2^(13)
time_integrate 0.008

CubQMCSobolG (StoppingCriterion Object)
abs_tol 0.001
rel_tol 0
n_init 2^(10)
n_max 2^(35)

Keister (Integrand Object)
Gaussian (TrueMeasure Object)

mean 0
covariance 2^(-1)
decomp_type PCA

Sobol (DiscreteDistribution Object)
d 2^(1)
dvec [0 1]
randomize LMS_DS
graycode 0
entropy 326942311248945520670220938885737472885
spawn_key ()

The second output of the stopping criterion provides helpful diagnostic information.
This computation requires n = 213 Sobol’ points and 0.008 seconds to complete.
The error bound is 0.000606, which falls below the absolute tolerance.

QMC, which uses LD sequences, is touted as providing substantially greater
computational efficiency compared to IID MC. Figure 6 compares the time and
sample sizes needed to compute the 5-dimensional Keister integral (10) using IID
sequences and LD lattice sequences. Consistent with what is stated in Section 1, the
error of IID MC is O(n−1/2), which means that the time and sample size to obtain
an absolute error tolerance of ε is O(ε−2). By contrast, the error of QMC using LD
sequences is O(n−1+ε), which implies O(ε−1−ε) times and sample sizes. We see that
QMC methods often require orders of magnitude fewer samples than MC methods
to achieve the same error tolerance.

For another illustration of QMC cubature, we turn to pricing an Asian arithmetic
mean call option. The (continuous-time) Asian option is defined in terms of the
average of the stock price, which is written in terms of an integral. The payoff of this
option is the positive difference between the strike price, K , averaged over the time
horizon:

payoff(S) = max

⎛
⎝ 1

2d

d∑
j=1

(Sj−1 + Sj ) − K , 0

⎞
⎠ , S = (S0, . . . , Sd).



Quasi-Monte Carlo Software 39

Fig. 6 Comparison of run times and sample sizes for computing the 5-dimensional Keister integral
(10) using IID and LD lattice sequences for a variety of absolute error tolerances. The respective
stopping criteria are qp.CubMCG [19] and qp.CubQMCLatticeG [26]. The LD sequences
provide the desired answer much more efficiently

Here Sj denotes the asset price at time τ j/d, and a trapezoidal rule is used for discrete
approximation of the integral in time that defines the average. The trapezoidal rule
is a more accurate approximation to the integral than a rectangle rule. A basic model
for asset prices is a geometric Brownian motion,

S j (T ) = S0 exp((r − σ2/2)τ j/d + σTj ), j = 1, . . . , d, T = (T1, . . . , Td ) ∼ N(0, �),

where � is defined in (8), r is the interest rate, σ is the volatility, and S0 is the initial
asset price. The fair price of the option is then the expected value of the discounted
payoff, namely,

price = μ = E[g(T)], where g(t) = payoff
(
S(t)

)
exp(−rτ ).

The following code utilizes QMCPy’s Asian option Integrand object to
approximate the value of an Asian call option for a particular choice of the parame-
ters.
>>> payoff = qp.AsianOption(
... qp.Sobol (52), # weekly monitoring
... start_price = 100,
... strike_price = 120,
... volatility = 0.5,
... interest_rate = 0,
... t_final = 1,
... call_put = "call")
>>> qmc_stop_crit = qp.CubQMCSobolG(payoff, abs_tol =0.001)
>>> price,data = qmc_stop_crit.integrate ()
>>> print("Option price = $%.3f using %.3f seconds, %.2e samples"
... %( price, data.time_integrate, data.n_total))
Option price = $5.194 using 0.587 seconds, 1.31e +05 samples
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Because thisIntegrand object has the built-in Brownianmotion TrueMeasure,
one only need provide the LD sampler.

Out of the money option price calculations can be sped up by adding an upward
drift to the Brownian motion. The upward drift produces more in the money paths
and also reduces the variation or variance of the final integrand, f . This is a form of
importance sampling. Using a Brownian motion without drift we get
>>> payoff = qp.AsianOption(qp.Sobol (52),
... start_price =100, strike_price =200)
>>> qmc_stopper = qp.CubQMCSobolG (payoff, abs_tol =0.001)
>>> price,data = qmc_stopper.integrate ()
>>> print("Option price = $%.4f using %.3f seconds, n = %.2e"
... %( price, data.time_integrate, data.n_total))
Option price = $0.1757 using 0.583 seconds, n = 1.31e +05

Adding the upward drift gives us the answer faster:

>>> payoff = qp.AsianOption (
... sampler = qp.BrownianMotion (qp.Sobol (52), drift =1),
... start_price =100, strike_price =200)
>>> qmc_stopper = qp.CubQMCSobolG(payoff, abs_tol =0.001)
>>> price,data_drift = qmc_stopper.integrate ()
>>> print("Option price = $%.4f using %.3f seconds, n = %.2e"
... %( price, data_drift.time_integrate, data_drift.n_total))
Option price = $0.1754 using 0.085 seconds, n = 1.64e +04
>>> print("Using drift required %.0f%% the time, %.0f%% the n"
... %(100* data_drift.time_integrate / data.time_integrate,
... 100* data_drift.n_total / data.n_total))
Using drift required 15% the time, 12% the n

The choice of a good drift is an art.
The improvement in time is less than that in n because the integrand is more

expensive to compute when the drift is employed. Referring to (11), in the case of
no drift, the λ corresponds to the density for the discrete Brownian motion, and
the variable transformation � is chosen so that f (x) = g (�(x)). However, in the
case of a drift, the integrand becomes fIS(x) = g

(
� IS(x)

)
λ
(
�IS(x)

)
/λIS

(
�IS(x)

)
,

which requires more computation time per integrand value.

8 Under the Hood

In this section, we look at the inner workings of QMCPy and point out features
we hope will benefit the community of QMC researchers and practitioners. We also
highlight important nuances of QMC methods and how QMCPy addresses these
challenges. For details, readers should refer to the QMCPy documentation [7].

8.1 LD Sequences

LD sequences are the backbone of QMC methods. QMCPy provides generators that
combine research from across the QMC community to enable advanced features and
customization options.
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Two popular LD sequences are integration lattices and digital netswhichwe previ-
ously outlined in Table 1. These LD generators are comprised of two parts: the static
generating vectors Z1, Z2, Z4, . . . ∈ [0, 1)d and the callable generator function. By
default, QMCPy provides a number of high-quality generating vectors for users to
choose from. For instance, the default ordinary lattice vector was constructed by
Cools, Kuo, and Nuyens [8] using component-by-component search, is extensible,
has order-2 weights, and supports up to 3600 dimensions and 220 samples. However,
users who require more samples but fewer dimensions may switch to a generating
vector constructed using LatNet Builder [9, 33] to support 750 dimensions and 224

samples. Moreover, the qp.Lattice and qp.DigitalNet objects allow users
to input their own generating vectors to produce highly customized sequences. To
find such vectors, we recommend using LatNet Builder’s construction routines as
the results can be easily parsed into a QMCPy-compatible format.

Along with the selection of a generating vector, QMCPy’s low discrepancy
sequence routines expose a number of other customization parameters. For instance,
the lattice generator extends the Magic Point Shop [39] to support either linear or
natural ordering. Digital sequences permit either standard or Gray code ordering
and may be randomized via a digital shift optionally combined with a linear scram-
bling [37]. Halton sequences may be randomized via the routines of either Owen [43]
or Hofert and Lemieux [23].

8.2 A Word of Caution When Using LD Sequences

Although QMCPy’s DiscreteDistributions have many of the same param-
eters and methods, users should be careful when swapping IID sequences with LD
sequences. While IID node-sets have no preferred sample size, LD sequences often
require special sampling ranges to ensure optimal discrepancy. As mentioned ear-
lier, base-2 digital nets and extensible integration lattices show better evenness for
sample sizes that are powers of 2. On the other hand, the preferred sample sizes for
d-dimensional Halton sequences are n = ∏d

j=1 p
m j

j where p j is the j th prime num-
ber and m j ∈ N0 for j = 1, . . . , d. Due to the infrequency of such values, Halton
sequences are often regarded as not having a preferred sample size.

Users may also run into trouble when trying to generate too many points. Since
QMCPy’s generators construct sequences in 32-bit precision, generating greater
than 232 consecutive samples will cause the sequence to repeat. In the future, we
plan to expand our generators to support optional 64-bit precision at the cost of
greater computational overhead.

Another subtlety arises when transforming LD sequences to mimic different dis-
tributions. As mentioned earlier, unrandomized lattice and digital sequences include
the origin, making transformations such as (7b) produce infinite values.

Some popular implementations of LD sequences drop the first point, which is the
origin in the absence of randomization. The rationale is to avoid the transformation of
the origin to infinity whenmimicking a Gaussian or other distribution with an infinite
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sample space. Unfortunately, dropping the first point destroys some nice properties of
the first n = 2m points of LD sequences, which can degrade the order of convergence
for QMC cubature. A careful discussion of this matter is given by [42].

8.3 Transformations

The transformation � connects a DiscreteDistribution and
TrueMeasure. So far, we have assumed the DiscreteDistribution mim-
ics aU[0, 1]d distribution with PDF 	(x) = 1. However, it may be advantageous to
utilize a DiscreteDistribution that mimics a different distribution.

Suppose we have a DiscreteDistributionmimicking density 	 supported
on X. Then using the variable transformation �,

μ =
∫

T

g(t)λ(t) dt =
∫

X

f (x) 	(x)dx for f (x) = g
(
�(x)

) λ
(
�(x)

)
	(x)

|� ′(x)|,

which generalizes (9). QMCPy also includes support for successive changes of
measures so users may build complex variable transformations in an intuitive
manner. Suppose that the variable transformation is a composition of several
transformations: � = �̂L = �L ◦ �L−1 ◦ · · · ◦ �1 as in (11). Here, �l : Xl−1 →
Xl , X0 = X, and XL = T so that the transformations are compatible with the
DiscreteDistribution and TrueMeasure. Let �̂l = �l ◦ �l−1 ◦ · · · ◦ �1

denote the composition of the first l transforms and assume that �̂0(x) = x, the
identity transform. Then we may write μ = ∫

X f (x) 	(x)dx for

f (x) = g
(
�̂L(x)

)λ
(
�̂L(x)

)
	(x)

L∏
l=1

∣∣� ′
l

(
�̂l−1(x)

)∣∣.

It is often the case that �l is chosen such that �l(X) is stochastically equivalent to
a random variable with density λl on sample space Xl when X is a random variable
with density 	l on sample space Xl−1. This implies 	l(x) = λl(�l(x))|� ′

l(x)| so
that

f (x) = g
(
�̂L(x)

)λ
(
�̂L(x)

)
	(x)

L∏
l=1

	l(�̂l−1(x))

λl(�̂l(x))
.

For an example, we return to the Keister integral (10). The following code con-
structs three Keister instances: one without importance sampling, one importance
sampled by a Gaussian distribution, and one importance sampled by the composition
of a Gaussian distribution with a Kumaraswamy distribution [29]. All Integrands
use a Sobol’ DiscreteDistribution, making 	(x) = 1 and X = [0, 1]d . The
TrueMeasure is N(0, I/2) making λ(t) = π−d/2 exp(−tT t) and T = R

d .



Quasi-Monte Carlo Software 43

Fig. 7 Keister functions
with and without importance
sampling (IS). Note that the
Keister functions using
importance sampling are
generally less variable and
therefore easier to integrate,
as evidenced by the faster
integration times

0 1
x

−1

3

f
( x

)

Default Keister
Gaussian IS
Gaussian-Kumaraswamy IS

The table below displays the variable transformations and the measures for these
three cases. In all cases 	1(x) = · · · = 	L(x) = 1 because the �l utilize inverse
cumulative distributions.

Integrand L λ1 �1 λ2 �2 f
K 1 N(0, I/2) (7b) g(�1(·))

K_gauss 1 N(0, 3I/4) (7b) g(�1(·)) λ(�1(·))
λ1(�1(·))

K_gauss_kuma 2 Kum F−1
Kum N(0, I) (7b)

g(�2(�1(·)))λ(�2(�1(·)))
λ1(�1(·))λ2(�2(�1(·)))

Here Kum denotes the multivariate Kumaraswamy distribution with independent
marginals, and F−1

Kum denotes the element-wise inverse cumulative distribution func-
tion. The code below evaluates the Keister integral (10) for d = 1 and error tolerance
ε = 5 × 10−8. The timings for each of these different integrands are displayed.
>>> sobol = qp.Sobol (1)
>>> K = qp.Keister(sobol) # keister 0
>>> K_gauss = qp.Keister( # keister 1
... qp.Gaussian(sobol, covariance=.75))
>>> K_gauss_kuma = qp.Keister( # keister 2
... qp.Gaussian(
... qp.Kumaraswamy(sobol, a=.8, b=.8)))
>>> for i,keister in enumerate ([K, K_gauss, K_gauss_kuma ]):
... stopper = qp.CubQMCSobolG (keister, abs_tol =5e-8)
... sol,data = stopper.integrate ()
... print("keister %d integration time = %.3f seconds"
... %(i, data.time_integrate))
keister 0 integration time = 0.815 seconds
keister 1 integration time = 0.338 seconds
keister 2 integration time = 0.040 seconds

Successful importance sampling makes the transformed integrand, f , more flat.
The shorter cubature times correspond to flatter integrands, as illustrated in Fig. 7.
The above example uses d = 1 to facilitate the plot in Fig. 7; however, the same
example works for arbitrary dimensions.
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9 Further Work

QMCPy is ripe for growth and development in several areas. We hope that the QMC
community will join us in making this a reality.

Multi-level (quasi-)Monte Carlo (ML(Q)MC) methods make possible the com-
putation of expectations of functionals of stochastic differential equations and partial
differential equations with random coefficients. Such use cases appear in quantitative
finance and geophysical applications. QMCPy’s ML(Q)MC’s capability is rudimen-
tary, but under active development.

We hope to add a greater variety of use cases and are engaging collaborators to
help. Sobol’ indices, partial differential equations with random coefficients, expected
improvement measures for Bayesian optimization, and multivariate probabilities are
some of those on our radar.

Recently, several QMC experts have focused on developing LD generators for
Python. Well-established packages such as SciPy [50] and PyTorch [47] are have
developed QMC modules that support numerous LD sequences and related func-
tionalities. We plan to integrate the routines as optional backends for QMCPy’s LD
generators. Creating ties to these other packageswill allowusers to call their preferred
generators from within the QMCPy framework. Moreover, as features in QMCPy
become more common and prove their value, we will try to incorporate them into
SciPy and other popular, general-purpose packages.

We also plan to expand our library of digital net generating matrices. We wish to
incorporate interlaced digital nets, polynomial lattices, and Niederreiter sequences,
among others. By including high-quality defaults in QMCPy, we hope to make these
sequences more readily available to the public.

Our DiscreteDistrution places equal weights on each support point, X i .
In the future, we might generalize this to unequal weights.

QMCPy already includes importance sampling, but the choice of sampling distri-
bution must be chosen a priori. We would like to see an automatic, adaptive choice
following the developments of [2, 35, 45].

Control variates can be useful for QMC as well as for IID MC [22]. These should
be incorporated into QMCPy in a seamless way.

We close with an invitation. Try QMCPy. If you find bugs or missing features,
please submit an issue to https://github.com/QMCSoftware/QMCSoftware/issues.
If you wish to add your great algorithm or use case, please submit a pull request
to our GitHub repository at https://github.com/QMCSoftware/QMCSoftware/pulls.
We hope that the community will embrace QMCPy.

Acknowledgements The authors would like to thank the organizers for a wonderful MCQMC
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cubature. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational
Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer, Berlin
(2018). https://doi.org/10.1007/978-3-319-72456-0

22. Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for quasi-Monte Carlo. Stat. Sci.
20, 1–31 (2005). https://doi.org/10.1214/088342304000000468

23. Hofert, M., Lemieux, C.: qrng R package (2017). https://cran.r-project.org/web/packages/
qrng/qrng.pdf

24. Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using lattice sampling.
Stat. Comput. 29, 1215–1229 (2019). https://doi.org/10.1007/s11222-019-09895-9

25. Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling
(2021+). In preparation for submission for publication

26. JiménezRugama, Ll.A., Hickernell, F.J.: Adaptivemultidimensional integration based on rank-
1 lattices. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics,
vol. 163, pp. 407–422. Springer, Berlin (2016). ArXiv:1411.1966

27. Keister, B.D.: Multidimensional quadrature algorithms. Comput. Phys. 10, 119–122 (1996).
https://doi.org/10.1063/1.168565

28. Kucherenko, S.: BRODA (2020). https://www.broda.co.uk/index.html
29. Kumaraswamy, P.: A generalized probability density function for double-bounded random

processes. J. Hydrol. 46(1), 79–88 (1980). https://doi.org/10.1016/0022-1694(80)90036-0
30. Kuo, F.Y., Nuyens, D.: Application of quasi-MonteCarlomethods to elliptic PDEswith random

diffusion coefficients—a survey of analysis and implementation. Found. Comput. Math. 16,
1631–1696 (2016). https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/

31. Lataniotis, C., Marelli, S., Sudret, B.: Uncertainty quantification in the cloud with UQCloud.
In: 4th International Conference on Uncertainty Quantification in Computational Sciences and
Engineering (UNCECOMP 2021), pp. 209–217 (2021)

32. L’Ecuyer, P.: SSJ: Stochastic Simulation in Java (2020). https://github.com/umontreal-simul/
ssj

33. L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC
andRQMCpoint sets. In: Arnaud, E., Giles,M., Keller, A. (eds.)Monte Carlo andQuasi-Monte
Carlo Methods: MCQMC, Oxford 2020 (2021+)

34. L’Ecuyer, P., Munger, D.: Algorithm 958: Lattice Builder: a general software tool for con-
structing rank-1 latice rules. ACM Trans. Math. Softw. 42, 1–30 (2016)

35. L’Ecuyer, P., Tuffin, B.: Approximate zero-variance simulation. In: Proceedings of the 40th
Conference on Winter Simulation, WSC ’08, pp. 170–181. Winter Simulation Conference
(2008)

36. Marelli, S., Sudret, B.: UQLab: A framework for uncertainty quantification in MATLAB.
In: The 2nd International Conference on Vulnerability and Risk Analysis and Management
(ICVRAM 2014), pp. 2554–2563. ASCE Library (2014). https://www.uqlab.com

37. Matoušek, J.: On the L2-discrepancy for anchored boxes. J. Complex. 14, 527–556 (1998)
38. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF

Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)
39. Nuyens, D.: Magic Point Shop (2017). https://people.cs.kuleuven.be/~dirk.nuyens/qmc-

generators/
40. OpenTURNS Developers: An Open Source Initiative for the Treatment of Uncertainties, Risks

’N Statistics (2020). http://www.openturns.org

https://doi.org/10.1007/978-3-642-41095-6
https://doi.org/10.1007/978-3-642-41095-6
http://arxiv.org/abs/1410.8615
https://doi.org/10.1007/978-3-319-72456-0
https://doi.org/10.1214/088342304000000468
https://cran.r-project.org/web/packages/qrng/qrng.pdf
https://cran.r-project.org/web/packages/qrng/qrng.pdf
https://doi.org/10.1007/s11222-019-09895-9
http://arxiv.org/abs/1411.1966
https://doi.org/10.1063/1.168565
https://www.broda.co.uk/index.html
https://doi.org/10.1016/0022-1694(80)90036-0
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
https://github.com/umontreal-simul/ssj
https://github.com/umontreal-simul/ssj
https://www.uqlab.com
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
http://www.openturns.org


Quasi-Monte Carlo Software 47

41. Owen, A.B.: Scrambling Sobol’ and Niederreiter-Xing points. J. Complex. 14(4), 466–489
(1998)

42. Owen, A.B.: On dropping the first Sobol’ point. In: Keller, A. (ed.) Monte Carlo and Quasi-
Monte Carlo Methods. Springer Proceedings in Mathematics & Statistics, vol. 387, pp. 71–86.
Springer, Cham (this volume). https://doi.org/10.1007/978-3-030-98319-2_4

43. Owen, A.B.: Randomized Halton Sequences in R (2020). http://statweb.stanford.edu/~owen/
code/

44. Owen, A.B.: About the R function: rsobol (2021). https://statweb.stanford.edu/~owen/reports/
seis.pdf

45. Owen, A.B., Zhou, Y.: Safe and effective importance sampling. J. Am. Stat. Assoc. 95, 135–143
(2000)

46. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An imperative style,
high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

47. PyTorch Developers: PyTorch (2020). https://pytorch.org
48. Robbe, P.: Low Discrepancy Sequences in Julia (2020). https://github.com/PieterjanRobbe/

QMC.jl
49. Robbe, P.: Multilevel Monte Carlo simulations in Julia (2021). https://github.com/

PieterjanRobbe/MultilevelEstimators.jl
50. SciPy Developers: SciPy Ecosystem (2018). www.scipy.org
51. The MathWorks Inc: MATLAB R2021a. Natick, MA (2020)
52. Virtanen, P.,Gommers, R.,Oliphant, T.E.,Haberland,M., Reddy, T., Cournapeau,D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman,
K.J.,Mayorov,N., Nelson,A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng,Y.,
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A Tool for Custom Construction of QMC
and RQMC Point Sets

Pierre L’Ecuyer, Pierre Marion, Maxime Godin, and Florian Puchhammer

Abstract We present LatNet Builder, a software tool to find good parameters for
lattice rules, polynomial lattice rules, and digital nets in base 2, for quasi-Monte
Carlo (QMC) and randomized quasi-Monte Carlo (RQMC) sampling over the s-
dimensional unit hypercube. The selection criteria are figures of merit that give
different weights to different subsets of coordinates. They are upper bounds on the
worst-case error (for QMC) or variance (for RQMC) for integrands rescaled to have
a norm of at most one in certain Hilbert spaces of functions. We summarize what are
the various Hilbert spaces, discrepancies, types of weights, figures of merit, types of
constructions, and search methods supported by LatNet Builder. We briefly discuss
its organization and we provide simple illustrations of what it can do.
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1 Introduction

QMC methods approximate an integral of the form

μ =
1∫

0

· · ·
1∫

0

f (u1, . . . , us) du1 . . . dus =
∫

(0,1)s

f (u) du = E[ f (U)] (1)

where f : (0, 1)s → R andU is a uniform random vector over [0, 1)s , by the average

μ̄n = 1

n

n−1∑
i=0

f (ui ) (2)

where Pn = {u0, . . . , un−1} ⊂ [0, 1)s is a set of n deterministic points that cover the
unit hypercube more evenly than typical independent random points. That is, the
discrepancy between their empirical distribution and the uniform distribution over
[0, 1)s is smaller than for independent random points and converges to 0 faster than
O(n−1/2) when n → ∞. This discrepancy can be defined in many ways. It usually
represents theworst-case integration error for a given class of integrands f . Typically,
this class is a reproducing-kernel Hilbert space (RKHS)H of functions, such that

|En| := |μ̄n − μ| ≤ D(Pn)V( f ) (3)

for all f ∈ H , where V( f ) is the norm of f − μ in H (we call it the variation
of f ) and D(·) is the discrepancy measure associated with this Hilbert space [8,
19, 40]. For a fixed f ∈ H with V( f ) > 0, the error bound in (3) converges at
the same rate as D(Pn). A traditional version of (3), whose derivation does not
involve Hilbert spaces, is the classical Koksma-Hlawka inequality, in which V( f )
is the Hardy-Krause variation andD(Pn) is the star discrepancy, which converges as
O((log n)s−1n−1) for well-selected point sets [40]. Another important choice for H
is a Sobolev space of functions whose mixed partial derivatives of order up to α are
square-integrable. It is known that for this space, one can construct point sets whose
discrepancy converges as O((log n)(s−1)/2n−α), and that this is the best possible rate
[4, 8, 15–18]. The main classes of QMC point sets are lattice points and digital nets.

For RQMC, the n QMC points are randomized to provide a set of random points
{U0, . . . ,Un−1} ⊂ (0, 1)s for which (i) each U i individually has the uniform distri-
bution over [0, 1)s , and (ii) the points keep their highly-uniform distribution collec-
tively. Randomizations that provably preserve the low discrepancy generally depend
on the type of QMC construction: some are used for lattice points and others for
digital nets. In some cases, the randomization may even improve the convergence
rate of the mean square discrepancy. The RQMC estimator
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μ̂n,rqmc = 1

n

n−1∑
i=0

f (U i ), (4)

which is now random, is unbiased for μ and one wishes to minimize its variance. For
more details on RQMC, see for example [23, 27, 30, 31, 38, 45–47].

The aim of this paper is to introduce LatNet Builder, a software tool designed to
construct good lattice and digital point sets for QMC and RQMC, in any number
of dimensions, for an arbitrary number of points, arbitrary weights on the subsets
of coordinates, arbitrary smoothness of the integrands, a variety of construction and
randomization methods, and several choices of discrepancies. The point sets can also
be extensible in the number of points and number of dimensions. By “constructing
the points” here we mean defining the set Pn by selecting the parameter values for a
general structure, by trying to miminize a figure of merit (FOM) that may represent
a discrepancy D(Pn) or be an upper bound on it. Once this is done, other software
can be used to randomize and generate the points for their utilization in applications;
see [28, 43] for example. LatNet Builder is available in open source at https://github.
com/umontreal-simul/latnetbuilder. It is a descendant of Lattice Builder [34], whose
scope was limited to ordinary lattice rules. Another related tool is Nuyens’ fast CBC
constructions [41].

The rest of this paper is organized as follows. In Sect. 2, we recall the types of
QMC point sets covered by our software, namely ordinary lattice points, polynomial
lattice points, digital nets, and their higher-order and interlaced versions, as well
as the main randomization methods to turn these point sets into RQMC points.
The discrepancies that we consider often provide upper bounds on the mean square
integration error when using these randomizations, for certain classes of functions.
In Sect. 3, we give the general form of weighted RKHS used in this paper and the
corresponding generalized Koksma-Hlawka inequality. We also recall the common
types of weights, all supported by the software. In Sect. 4, we review and justify the
various discrepancies that are supported by LatNet Builder and can be used as FOMs
to select the parameters of point set constructions. In Sect. 5, we summarize the
search methods implemented in our software. In Sect. 7, we compare FOM values
obtained by various point set constructions and search methods. We also compare
RQMC variance for simple integrands f . Section 8 gives a conclusion.

2 Point Set Constructions and Randomizations

LatNet Builder handles ordinary rank-1 lattice points as well as digital nets, which
include polynomial lattice rules and high-order and interlaced constructions.

For a rank-1 lattice rule, the point set is

Pn = {ui = iv1 mod 1, i = 0, . . . , n − 1}

https://github.com/umontreal-simul/latnetbuilder
https://github.com/umontreal-simul/latnetbuilder
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where nv1 = a = (a1, . . . , as) ∈ Z
s
n ≡ {0, . . . , n − 1}s . It is a Korobov rule if a =

(1, a, a2 mod n, . . . , as−1 mod n) for some integer a ∈ Zn . The parameter to select
here is the vector a, for any given n. The usual way to turn a lattice rule into an
RQMC point set is by a random shift: generate a single random point U uniformly
in (0, 1)s , and add it to each point of Pn , modulo 1, coordinate-wise. This satisfies
the RQMC conditions. For more details on lattice rules and their randomly-shifted
versions, see [20, 21, 27, 30, 33, 50].

The Digital nets in base 2 handled by LatNet Builder are defined as follows.
The number of points is n = 2k for some integer k. We select an integer w ≥ k
and s generating matrices C1, . . . ,Cs of dimensions w × k and of rank k, with
elements in Z2 ≡ {0, 1}. The points ui , i = 0, . . . , 2k − 1, are defined as follows:
for i = ai,0 + ai,12 + · · · + ai,k−12k−1, we take

⎛
⎜⎝
ui, j,1

...

ui, j,w

⎞
⎟⎠ = C j

⎛
⎜⎝

ai,0
...

ai,k−1

⎞
⎟⎠ mod 2, ui, j =

w∑
�=1

ui, j,�2
−�,

and ui = (ui,1, . . . , ui,s). There are more general definitions in [8, 40]. The parame-
ters to optimize are the elements of the matrices C j . Since each C j has rank k, each
one-dimensional projection truncated to its first k digits isZn/n = {0, 1/n, . . . , (n −
1)/n}. The ordinary digital nets constructed by LatNet Builder often have w = k, so
the points have only k digits, but this is not always true.

The most popular digital net constructions are still the Sobol’ points [52], in base
b = 2, with k × k generating matrices that are upper triangular and invertible. These
matrices are constructed by a specific method, but the bits of the first few columns
above the diagonal can be selected arbitrarily, and their choice has an impact on the
quality of the net. General-purpose choices have been proposed in [25, 35], e.g.,
based on the uniformity of two-dimensional projections. LatNet Builder allows one
to construct the matrices based on a much more flexible class of criteria.

A polynomial lattice rule (PLR) in base 2 with n = 2k points is defined as follows.
We denote by Z2[z] the ring of polynomials with coefficients in Z2, by L2 the set
of formal series of the form

∑∞
�=�0

x�z−� with each x� ∈ Z2 and �0 ∈ Z, and for any
given integer w ≥ k, we define ϕw : L2 → R by

ϕw

( ∞∑
�=�0

x�z
−�

)
=

w∑
�=max(�0,1)

x�2
−�. (5)

We select a polynomial modulus Q = Q(z) ∈ Z2[z] of degree k, and a generating
vector a(z) = (a1(z), . . . , as(z)) ∈ Z2[z]s , whose coordinates are polynomials of
degrees less than k having no common factor with Q(z). The point set of cardinality
n = 2k is

Pn =
{(

ϕw

(
h(z)a1(z)

Q(z)

)
, . . . , ϕw

(
h(z)as(z)

Q(z)

))
: h(z) ∈ Z2[z], deg(h(z)) < k

}
. (6)



A Tool for Custom Construction of QMC and RQMC Point Sets 55

Here, wewant to optimize the vector a(z). This point set turns out to be a digital net in
base 2whose generatingmatricesC j contain the firstw digits of the binary expansion
of the a j (z)/Q(z). These are Hankel matrices: each row is the previous one shifted
to the left by one position, with the last entry determined by the recurrence with
characteristic polynomial Q(z), applied to the entries of the previous row. In theory,
they have an infinite number of rows, but in practice we truncate them tow ≥ k rows.
This finite w should be as large as possible to obtain a good approximation of the
true PLR points. Typically, w = 31, but it could be w = 63 if we use 64-bit integers.
See [8, 26, 36, 39, 40] for further details on PLRs.

A high-order polynomial lattice rule (HOPLR) of order α with n = 2k points is
obtained by constructing an ordinary PLR with polynomial modulus Q̃(z) of degree
αk having 2αk points in s dimensions, and using only the first n = 2k points. See
[1, 2, 7]. This type of construction can achieve a higher order of convergence for
the error (almost O(n−α)) than an ordinary PLR for integrands f in a Sobolev space
of smoothness order α (i.e., when all mixed partial derivatives of up to order α are
square integrable). One drawback is that because of the high degree of Q̃, the cost of
a full CBC construction (see Sect. 5) is much higher since there are 2αk possibilities
to examine each time we select a new coordinate of the generating vector.

Dick [3, 4] also proposed an interlacing construction, for digital nets in gen-
eral (which includes PLRs), that can provide the higher-order convergence rate of
almost O(n−α) for the integration error, for integrands with smoothness order α. For
an interlacing factor d ∈ N, the method first constructs a digital net in sd dimen-
sions, with generating matrices C1, . . . ,Csd . Then the generating matrices of the
s-dimensional interlaced net are C (d)

1 , . . . ,C (d)
s , where the rows of C (d)

j are the first
rows of C( j−1)d+1, . . . ,C jd in this order, then the second rows of these matrices in
the same order, and so on.

The simplest way to define a RQMC point set from a digital net in base 2 is to add
a digital random shift modulo 2 to all the points. To do this, we generate a single point
U = (U1, . . . ,Us) uniformly in (0, 1)s , and perform a bitwise exclusive-or (XOR)
between the binary digits of U and the corresponding digits of each point ui .

A more involved randomization method for digital nets is the nested uniform
scramble (NUS) ofOwen [45, 46]. In base 2, for each coordinate,wedo the following.
With probability 1/2, flip the first bit of all the points. Then, for the points whose first
bit is 1, with probability 1/2, flip all the second bits. Do the same for the points whose
first bit is 0, independently. Then do this recursively for all the bits. After all flipping
is done for the first � bits, partition the points in 2� batches according to the values
of their first � bits, and for each batch, flip bit � + 1 of all the points with probability
1/2, independently across the batches. This requires (2� − 1)s random bits to flip the
first � bits of all coordinates. One can equivalently do this only for the first k bits,
and generate the other bits randomly and independently across points [38].

A less expensive scramble, which gives less independence than NUS but more
than a digital random shift, is a (left) linear matrix scramble (LMS) followed by a
digital random shift (LMS+shift) [23, 24, 38, 48]. The LMS replaces C j by C̃ j =
L jC j mod 2, where L j is a random non-singular lower-triangular w × w binary
matrix.
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Owen [46] proved that under sufficient smoothness conditions on f , the RQMC
variance with NUS on digital nets with fixed s and bounded t converges as
O(n−3(log n)s−1). A variance bound of the same order was shown for LMS+shift in
[23, 54]. Note that these results were proved under the assumption that w = ∞.

3 Hilbert Spaces and Projection-Dependent Weights

The FOMs used by LatNet Builder are based on generalized (weighted) Koksma-
Hlawka inequalities of the form (3) where

Vp( f ) =
∑

∅
=u⊆{1,2,...,s}
γ−p
u Vp( fu) (7)

and
Dq(Pn) =

∑
∅
=u⊆{1,2,...,s}

γq
uDq

u(Pn), (8)

where 1/p + 1/q = 1, γu ∈ R is a weight assigned to the subset u, V( fu) is the
variation of fu, Du(Pn) is the discrepancy of the projection of Pn over the subset
u of coordinates, and f = ∑

u⊆{1,2,...,s} fu is the functional ANOVA decomposition
of f [10, 47]. LatNet Builder allows any q ∈ [1,∞]. Taking q = ∞ with p = 1
means removing the q and taking the max instead of the sum in (8), while p = ∞
with q = 1 means removing the p and taking the max instead of the sum in (7). The
most common choice is p = q = 2.

LatNet Builder implements a variety of choices for Du(Pn), depending on the
point set constructions. Some of these measures correspond to the worst-case error
in some function space, assuming that the points of Pn are not randomized. Others
correspond to the mean-square error (or variance), assuming that the points are ran-
domized in some particular way. This is typically done by defining a RKHS with
a kernel that is invariant with respect to the given randomization (i.e., digital shift-
invariant, scramble-invariant, etc.), and taking the worst-case error in that space.

The role of the weights is to better recognize the importance of the subsets u for
which fu contributes the most to the error or variance. That is, ifV( fu) is unusually
large, we want to divide it by a larger weight γu to control its contribution toV( f ),
but then we have to multiply Du(Pn) in (8) by the same weight. The final effect is
that the FOM will penalize more the discrepancy for that particular projection.

In principle, theweights γu can be arbitrary. But for large s, defining arbitrary indi-
vidual weights for the 2s − 1 projections is impractical, so special forms of weights
that are parameterized by much fewer than 2s − 1 parameters have been proposed.
The most common ones are product weights, for which a weight γ j is assigned
to coordinate j for j = 1, . . . , s, and γu = ∏

j∈u γ j ; order-dependent weights, for
which γu = �|u| where �1, . . . , �s are selected constants and |u| is the cardinality of
of u; and the product-and-order-dependent (POD) weights, which are a combination
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of the two, with γu = �|u|
∏

j∈u γ j . These are all available in LatNet Builder. For
more discussion on how to select the weights, see [8, 12, 32–34], for example.

LatNet Builder can construct point sets that are extensible in the number of dimen-
sions and also in the number of points, which means that we can construct point sets
that perform well in the first s dimensions for s = smin, . . . , smax, and/or if we take
the first n points for n = n1, n2, . . . , nm , simultaneously. Typically, one would take
n j = 2kmin+ j−1 for j = 1, . . . ,m, so nm = 2kmax = 2kmin+m−1 [22]. The global FOM
in this case will be a weighted sum or maximum of the FOMs over the considered
dimensions s and/or cardinalities n j . The CBC construction approach described in
Sect. 5 already gives a way to implement the extension in s. For the extension in n
(or k), LatNet Builder implements criteria and heuristic search methods that account
for a global FOM.

4 Figures of Merit

In this section, we review the FOMs implemented in LatNet Builder. Most of them
have the general form (8) where typically, when the points have the appropriate
special structure of a lattice, polynomial lattice, or digital net, and with an adapted
FOM, we have

Dq
u(Pn) = 1

n

n−1∑
i=0

∏
j∈u

φ(ui, j ) (9)

for some functionφ : [0, 1) → R.With productweights γu = ∏
j∈u γ j , this becomes

Dq(Pn) = −1 + 1

n

n−1∑
i=0

s∏
j=1

(1 + γ
q
j φ(ui, j )),

which can be computed with O(ns) evaluations of φ.
As an illustration, for a randomly-shifted lattice rule, the variance is:

Var[μ̂n,rqmc] =
∑

0 
=h∈L∗
s

| f̂ (h)|2, (10)

where L∗
s ⊂ Z

s is the dual lattice [30]. It is also known that for periodic continuous
functions having square-integrable mixed partial derivatives up to order α/2 for
an even integer α ≥ 2, one has | f̂ (h)|2 = O((max(1, h1) · · ·max(1, hs))−α). This
motivates the well-known FOM [33, 40, 50]:
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Pα :=
∑

0 
=h∈L∗
s

(max(1, h1) . . .max(1, hs))
−α

= 1

n

n−1∑
i=0

∑
∅
=u⊆{1,...,s}

(−(−4π2)α/2

α!
)|u| ∏

j∈u
Bα(ui, j ) (11)

where Bα/2 is the Bernoulli polynomial of degree α/2 (B1(u) = u − 1/2, B2(u) =
u2 − u + 1/6, etc.), and the equality in (11) holds only when α is an even integer.
Moreover, there are rank-1 lattices point sets Pn for whichPα converges asO(n−α+ε)

for any ε > 0 [9, 49, 50]. Adding projection-dependent weights γu leads to the
weighted Pγ,α, defined by (8) and (9) with q = 2,

φ(ui, j ) = −(−4π2)α/2Bα(ui, j )/α!,

and D2
u(Pn) = Pα,u(Pn) is the Pα for the projection of Pn on the coordinates in u.

There is a similar variance expression for digital nets in base 2 with a random
digital shift, with the Fourier coefficients f̂ (h) replaced the the Walsh coefficients,
and the dual lattice replaced by the dual net [8, Definition 4.76] or the dual lattice
in the case of PLRs [26, 36]. Thus, FOMs that correspond to variance bounds can
be obtained by finding easily computable bounds on the Walsh coefficients. By
assuming a rate of decrease of O(2−α|h|) of the Walsh coefficients f̃ (h) with h =
(h1, . . . , hs) ∈ N

s and |h| = |h1| + · · · + |hs |, and using a RKHS with shift- and
scramble-invariant kernel, [6, 54] obtain a FOM of the form (8) and (9) with

φ(x) = φα(x) = μ(α) − I[x > 0] · 2(1+log2(x)�)(α−1)(μ(α) + 1),

where I is the indicator function, −log2 x� is the index of the first nonzero digit in

the expansion of x , and μ(α) = (
1 − 21−α

)−1
for any real number α > 1. This gives

μ(2) = 2, μ(3) = 4/3,…, For α = 2, this gives

φ2(x) = 2(1 − I[x > 0] · 3 · 2log2(x)�),

which corresponds to the FOM suggested in [36, Sect. 6.3] for PLRs. In [23, 54],
φ(x) is written in terms of η = α − 1 instead, but it is exactly equivalent. These
papers also show the existence of digital nets for which the FOM converges as
O(n−α(log n)s−1) for any α > 1. This FOM can be seen as a counterpart of Pα and
we call it P̃α. Its value P̃α,u(Pn) on the projection of Pn on the coordinates in u can
be used forD2

u(Pn), with q = 2. Note that under our assumption that the first k rows
of each generating matrix are linearly independent, −log2(ui, j )� never exceeds k
when ui, j 
= 0, and therefore this FOM depends only on the first k bits of output.

Dick and Pillichshammer [8, Chap. 12] consider a RKHSwith shift-invariant ker-
nel, which is a weighted Sobolev space of functions whose mixed partial derivatives
of order 1 are square-integrable. This gives a FOM of the form (8) and (9) with q = 2
and



A Tool for Custom Construction of QMC and RQMC Point Sets 59

φ(x) = 1/6 − I[x > 0] · 2log2(x)�−1.

They show that there are digital nets for which this FOM (and therefore the square
error) converges almost as O(n−2). In their Chap. 13, they find that the scramble-
invariant version gives the sameφ. Note that thisφ(x) is equal toφ2(x) above, divided
by 12. Therefore, we can get the corresponding FOM just from P̃2 by multiplying
the weights by order-dependent factors of 1/12 j for order j .

Goda [13] examines interlaced polynomial lattice rules (IPLR), also for a Sobolev
space of order α, with an interlacing factor d > 1. He provides two upper bounds on
the worst-case error in a deterministic setting. These bounds can be used as FOMs.
The first is valid for all positive integer values of α and d > 1, whereas the second
holds only for 1 < d ≤ α, but is tighter when it applies. These two bounds have the
form (8) and (9) with q = 1, γu replaced by γ̃u, and

φ(xi, j ) = −1 +
d∏

�=1

(1 + φα,d,�(xi,( j−1)d+�)),

where for the first bound, γ̃u = γu2α(2d−1)|u|/2,

φα,d,�(x) = 1 − 2(min(α,d)−1)log2 x�(2min(α,d) − 1)

2(α+2)/2(2min(α,d)−1 − 1)

for all x ∈ [0, 1), where 2log2 0� = 0, while for the second bound, γ̃u = γu and

φα,d,�(x) = 2d−1(1 − 2(d−1)log2 x�(2d − 1))

2�(2d−1 − 1)
.

One can achieve a convergence rate of almost O(n−min(α,d)) for these FOMs (and
therefore for the worst-case error). We denote these two FOMs by I(a)

α,d and I(b)
α,d .

Goda and Dick [14] proposed another FOM, also for a Sobolev space of order
α, for interlaced randomly-scrambled PLRs of high order. They showed that this
scheme can achieve the best possible convergence rate of O(n−(2min(α,d)+1)+δ) for
the variance. The FOM, denoted I(c)

α,d , has the same form, but with q = 2,

φ(x) = φα,d(x) = 1 − 22min(α,d)log2 x�(22min(α,d)+1 − 1)

2α(22min(α,d) − 1)
,

and γu replaced by γ̃u = γu D|u|
α,d where Dα,d = 22max(d−α,0)+(2d−1)α.

Another set of FOMs are obtained from upper bounds on the star discrepancy of
D∗(Pn) or its projections on subsets of coordinates, when Pn is a digital (t, k, s)-net.
One such bound isD∗(Pn) ≤ 1 − (1 − 1/n)s + R2 where



60 P. L’Ecuyer et al.

R2 = −1 + 1

n

n−1∑
i=0

s∏
j=1

[
n−1∑
k=0

2−log2 k�−1walk(ui, j )

]
(12)

walk is the kth Walsh function in one dimension, and we assume that the generating
matrices C j are k × k. See [8, Theorems 5.34 and 5.36], where a more general
version with projection-dependent weights is also given. For PLRs in base b = 2,
this criterion is equal to R′

2,γ given in [8, Chap. 10]:

R′
2,γ = −

∑
∅
=u⊆{1,2,...,s}

γu + 1

n

n−1∑
i=0

∑
∅
=u⊆{1,2,...,s}

γu
∏
j∈u

φk(ui, j ) (13)

where φk(u) = −log2(u)�/2 if u ≥ 2−k and φk(u) = 1 + k/2 otherwise.
A classical upper bound on the star discrepancy is also given by the t-value of the

digital net:

D∗(Pn) ≤ 2t

n

s−1∑
j=0

(
k − t

j

)
.

If we use this upper bound for each projection on the subset u of coordinates, we get
the FOM (8) with q = 1 and

Du(Pn) = 2tu

n

|u|−1∑
j=0

(
k − tu

j

)

where tu = tu(Pn) is the t-value of the projection of Pn on the coordinates in u.
LatNet Builder implements this with arbitrary weights, using algorithms described
in [37]. Dick [4] obtains worst-case error bounds that converge at rate almostO(n−α)

for interlaced digital nets, based on the t-values of the projections.

5 Search Methods

For given construction type, FOM, andweights, finding the best choice of parameters
may require to try all possibilities, but their number is usually much too large. LatNet
Builder implements the following search methods.

In an exhaustive search, all choices of parameters are tried, so we are guaranteed
to find the best one. This is possible only when there are not too many possibilities.

A randomsearch samples uniformly and independently afixednumber r of param-
eter choices, and the best one is retained.

In a full component-by-component (CBC) construction, the parameters are selected
for one coordinate at a time, by taking into account the choices for the previous coor-
dinates only [5, 8, 51]. The parameters for coordinate j (e.g., the j th coordinate of
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the generating vector in the case of lattices), are selected by minimizing the FOM for
the first j coordinates, in j dimensions, by examining all possibilities of parameters
for this coordinate, without changing the parameter choices for the previous coor-
dinates. This is done for the s coordinates in succession. This greedy approach can
reduce by a huge factor (exponential in the dimension) the total number of cases that
are examined in comparison with the exhaustive search. What is very interesting is
that for most types of QMC constructions and FOMs implemented in LatNet Builder,
the convergence rate for the worst-case error or variance obtained with this restricted
approach is provably the same as for the exhaustive search [8, 15].

For lattice-type point sets, with certain FOMs and choices of weights (e.g.,P2 and
P̃2 with product and/or order-dependent weights), a fast CBC construction can be
implemented by using a fast Fourier transform (FFT), so the full CBC construction
can be performed much faster [8, 42, 44]. LatNet Builder supports this.

When the number of choices for each coordinate is too large or fast-CBC does not
apply, one can examine only a fixed number of random choices for each coordinate
j ; we call this the random CBC construction.

For lattice-type constructions, one can also further restrict the search to Korobov-
type generating vectors. The first coordinate is set to 1 and only the second coordinate
needs to be selected. This can be done either by an exhaustive search or by just taking
a random sample for the second coordinate (random Korobov).

For digital nets, a mixed CBC method is also available: it uses full CBC for the
first d − 1 coordinates and random CBC for the other ones, for given 1 ≤ d ≤ s.

6 Usage of the Software Tool

At the first level, LatNet Builder is a library written in C++ which implements
classes and methods to compute FOMs and search for good point sets for all the con-
struction methods and FOMs discussed in this paper. The source code and a detailed
reference manual for the library are provided at https://github.com/umontreal-simul/
latnetbuilder. The library can be used directly from C++ programs and can be
extended if desired. This is the most flexible option, but it requires knowledge of
C++ and the library.

At the second level, there is an executable latnetbuilder program that can be
called directly from the command line in Linux, Mac OS, orWindows. This program
has a large number of options to specify the type and number of points, number of
dimensions, search method, FOM, weights, output file format, etc. We think this is
the most convenient way of using LatNet Builder in practice. In addition to giving
the search results on the terminal, the program creates a directory with two output
files: one summarizes the search parameters and the other one puts the parameters
of the selected point set in a standard format designed for reading by other software
that can generate and use the RQMC points in applications. There are selected file
formats for ordinary lattice rules, polynomial lattice rules, Sobol points, and general

https://github.com/umontreal-simul/latnetbuilder
https://github.com/umontreal-simul/latnetbuilder
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digital nets in base 2. A tutorial on the command line and a summary of the options
can be found in the reference manual.

At a third level, there is a Java interface in SSJ, a Python interface included in the
distribution, and a Graphical User Interface (GUI) based on the Jupyter ecosystem,
written in Python. These interfaces use the command line internally. With the GUI,
the user can select the desired options in menus, write numerical values in input
cells, write the name of the desired output directory, and launch a search. The LatNet
Builder program with the Python interface and the GUI can be installed as a Docker
container on one’s machine. An even simpler access to the GUI is available without
installing anything: just click on the “Launch Binder” black and pink link on the
GitHub site and it will run the GUI with a version of the program hosted by Binder.
This service provides limited computation resources but is convenient for small
experiments and to get a sense of what the software does.

We now give examples to illustrate how the command line works, how the results
look like, and give some idea of the required CPU times for the search. The timings
were made in a VirtualBox for Ubuntu Linux running atop Windows 10 on an old
desktop computer with an Intel i7-2600 processor at 3.4GHz and 32 Gb of memory.

The following commandmakes a search for a polynomial lattice rule with n = 216

points in 256 dimensions, with the default irreducible polynomial modulus, using
the fast-CBC search method, the P̃2 criterion, q = 2, and order-dependent weights
�2 = 10, �3 = 0.1, �4 = 0.001, and the other weights equal to 0 (recall that �1 has
no impact on the selection). These weights decrease quickly with the order because
the number of projections of any given order increases very quickly with the order.
If they decrease too slowly, the total weight of the projections of order 2 in the FOM
will be negligible compared to those of order 4, for instance. For a smaller s, the
weights may decrease more slowly.

latnetbuilder -t lattice -c polynomial -s 2ˆ16 -d 256 -e fast-CBC
-f CU:P2 -q 2 -w order-dependent:0,0,10.,0.1,0.001 -O lattice

This search takes about 840 s to complete and the retained rule had an FOM of
60.235. About 70% of this FOM is contributed by the projections of order 4 and less
than 1% by the projections of order 2. The output file looks like:

# Parameters for a polynomial lattice rule in base 2
256 # s = 256 dimensions
16 # n = 2ˆ16 = 65536 points
96129 # polynomial modulus
1 # coordinates of generating vector, starting at j=1
47856
60210
44979
.
.
.

Instead of making the search directly in the polynomial lattice space, we can
make the same search by viewing the PLR as a digital net, using the option “-t
net.” With that option, fast-CBC search is not available, but we can do a random
CBC search, say with 100 samples for each coordinate. With either search method,
instead of reporting the modulus and generating vector of the PLR in the output file,
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we can have all the columns of the generating matrices, by using the option “-O
net” instead of “-O lattice.” The command is:
latnetbuilder -t net -c polynomial -s 2ˆ16 -d 256
-e random-CBC:100 -f CU:P2 -q 2
-w order-dependent:0,0,10.,0.1,0.001 -O net

With this, the search takes about 160 s and gives an FOM of 63.25. The output file
looks like this, with 16 integers per dimension, one integer for each column:

# Parameters for a digital net in base 2
256 # s = 256 dimensions
16 # n = 2ˆ16 = 65536 points
31 # r = 31 binary output digits
# Columns of gen. matrices C_1,...,C_s, one matrix per line:
33260 66520 133040 266081 532162 1064325 2128651 4257303 ...
1561357389 975231131 1950462262 1753440876 1359398105 ...
1642040599 1136597551 125711455 251422911 502845823 ...
.
.
.

For a search in 32 dimensions instead of 256, it takes about 40 s for the first case
and 8 s for the second case.

As another example, the following command launches a search for good direction
numbers for Sobol’ points for up to 216 points in 256 dimensions. It uses a mixed
CBC search which does a full CBC evaluation for the first 10 coordinates and then a
random-CBC searchwith 100 random samples for each of the remaining coordinates.
The criterion is the maximum t-value with order-dependent weights of �2 = 1.0,
�1 = 0.5, and 0 for everything else. Here, since we take the sup over the projections,
the weights can decrease much more slowly.

latnetbuilder -t net -c sobol -s 2ˆ16 -d 256 -e mixed-CBC:100:10
-f projdep:t-value -q inf -w order-dependent:0:0,1.0,0.5

The search took about 3340 s and returned a FOM of 8.0. The output file provides
the retained direction numbers and it looks like this:
# Initial direction numbers m_{j,c} for Sobol points
# s = 256 dimensions
1 # This is m_{j,k} for the second coordinate
1 1
1 1 1
1 1 1
1 1 5 1
1 3 5 1
1 1 1 9 9
1 1 1 9 17
.
.
.

If we change s to 32, the search takes 12 s and the FOM is 5.0 instead.
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7 Simple Numerical Illustrations

Here we give a few simple examples of what LatNet Builder can do. The simulation
experiments, including the generation and randomization of the points, were done
using SSJ [29].

7.1 FOM Quantiles for Different Constructions

One might be interested in estimating the probability distribution of FOM values
obtained when selecting parameters at random for a given type of construction, per-
haps under some constraints, and as a function of n. Herewe estimate this distribution
by its empirical counterpart with an independent sample of size 1000 (with replace-
ment), and we report the 0.1, 0.5 and 0.9 quantiles of this empirical distribution, for
n going from 26 to 218. We do this for PLRs, Sobol’ points, and digital nets with arbi-
trary invertible and projection-regular generating matrices (random nets), with P̃2

taken as the FOM, in s = 6 dimensions, with γu = 0.7|u| for all u. We also report the
value obtained by a (full) fast CBC search for a PLR. The results are displayed in the
first panel of Fig. 1. We see that the FOM distribution has a smaller mean and much
less variance for the Sobol’ points than for the other contructions. Even the median
obtained for Sobol’ beats (slightly) the FOM obtained by a full CBC construction
with PLRs. The quantiles for random PLRs and random nets are approximately the
same.

The second panel of the figure shows the results of a similar sampling for PLRs
with I(c)

2,2 as a FOM, also in 6 dimensions. Here, the FOM values are more dispersed
and the fast CBC gives a significantly better value than the best FOM obtained by
random sampling. Also the search for the point set parameters is much quicker with
the fast CBC construction than with random sampling of size 1000.

7.2 Comparison with Tabulated Parameter Selections

We now give small examples showing how searching for custom parameter values
with LatNet Builder can make a difference in the RQMC variance compared with
pre-tabulated parameter values available in software or over the Internet. We do
this for Sobol’ nets, and our comparison is with the precomputed direction numbers
obtained by Joe and Kuo [25], which are arguably the best proposed values so far.
These parameters were obtained by optimizing a FOM based on the t-values over
two-dimensional projections, using a CBC construction. With LatNet Builder, we
can account for any selected projections in our FOM. For instance, if we think all
the projections in two and three dimensions are important, we can select a FOM that
accounts for all these projections. To illustrate this, we made a CBC construction of
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Fig. 1 The 0.1, 0.5, and 0.9 quantiles of the FOM distribution as functions of n for various con-
structions, in log-log scale

Fig. 2 Distributions of t-values for 2-dim and 3-dim projections, for three Sobol’ point sets: (1)
Joe-Kuo taken from [25], (2)Max and (3) Sum are found by LatNet Builder as explained in the text.
For each case, we report the number of projections having any given t-value, as well as the average
t-value (dashed vertical lines)

n = 212 Sobol’ points in s = 15 dimensions, using the sum or the maximum of t-
values in the two- and three-dimensional projections. Figure 2 shows the distribution
of t-values obtained with the sum, the max, and the points from [25]. Compared
with the latter, we are able to reduce the worse t-value over 3-dim projections from
8 to 5 when using the max, and to reduce the average t-value when using the sum.
However, when using the max, we get a few poor two-dim projections, because we
compare the t-values on the same scale for two and three dimensions. We should
probably multiply the t-value by a scaling factor that decreases with the dimension.
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In our next illustration, we compare the RQMC variances for Sobol’ points with
direction numbers taken from [25] and direction numbers found by LatNet Builder
using a custom FOM for our function. We want to integrate

f (u) =
5∏
j=1

(ψ(u j ) − μ) +
10∏
j=6

(ψ(u j ) − μ),

whereψ(u) = (
(u − 0.5)2 + 0.05

)−1
andμ = E[ψ(U )] ≈ 10.3whenU ∼ U (0, 1).

This function is the sum of two five-dimensional ANOVA terms for a more general
function taken from [11]. A good FOM for this function should focusmainly on these
two five-dim projections, namely u = {1, 2, 3, 4, 5} and u = {6, 7, 8, 9, 10}, and not
on the two-dim projections as in [25]. So wemade a search with the P̃2 criterion with
weights γu = 1 for these two projections and 0 elsewhere, to obtain new direction
numbers for n = 220 Sobol’ points in 10 dimensions. Then we estimated the variance
of the sample RQMC average over these n points with the two choices of direction
numbers (those of [25] and ours), using m = 200 independent replications of an
RQMC scheme that used only a random digital shift. The empirical variance with
our custom points was smaller by a factor of more than 18.

7.3 Variance for Another Toy Function

Here we consider a family of test functions similar to those in [53]:

fs,c(u) =
s∏

j=1

(1 + c j · (u j − 1/2))

for u ∈ (0, 1)s , where c = (c1, . . . , cs) ∈ (0, 1)s . The ANOVA components are, for
all u ⊂ {1, . . . , s},

( fs,c)u(u) =
∏
j∈u

c j · (u j − 1/2)).

For an experiment,we take arbitrarly s = 3 and c = (0.7, 0.2, 0.5).We useLatNet
Builder to search for good PLRs with a fast CBC construction, with product weights
γ j = c j , with the FOMs P2, I(c)

2,2, and I(c)
3,3 (whose interlacing factors d are 1, 2, and

3, respectively). For each n = 2k , k = 5, . . . , 18, we estimate the RQMC variance
with m independent replications of the randomization scheme, with m = 1000 for
LMS+shift, and m = 100 for NUS. For the interlaced points, the randomization is
performed before the interlacing, as in [14]. Figure 3 shows the variance as a function
of n, in log-log scale.We see that the two randomization schemes give approximately
the same variance. However, the time to generate and randomize the points is much
larger for NUS than for LMS+shift: around 10 times longer for 211 points and 50
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Fig. 3 Variance as a function of n in log-log scale, for PLRs with two randomization schemes and
three interlacing factors d , found with LatNet Builder. We also report the average time to generate
and randomize the points with LMS+shift

times longer for 218 points. As expected, the variance reduction and the convergence
rate are larger when the interlacing factor increases, although the curves are more
noisy.

8 Conclusion

LatNet Builder is both a tool for researchers to study the properties of highly uniform
point sets and associated figures of merit, and for practitioners who want to find good
parameters for a specific task. It is relatively easy to incorporate new FOMs into the
software, especially if they are in the kernel form (9).

Many questions remain open regarding the roles of the construction, the search
method, the randomization, and (perhapsmore importantly) the choice of theweights.
It is our hope that the software presented here will spur interest into these issues.
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On Dropping the First Sobol’ Point

Art B. Owen

Abstract Quasi-Monte Carlo (QMC) points are a substitute for plain Monte Carlo
(MC) points that greatly improve integration accuracy undermild assumptions on the
problem. Because QMC can give errors that are o(1/n) as n → ∞, and randomized
versions can attain root mean squared errors that are o(1/n), changing even one point
can change the estimate by an amount much larger than the error would have been
and worsen the convergence rate. As a result, certain practices that fit quite naturally
and intuitively with MC points can be very detrimental to QMC performance. These
include thinning, burn-in, and taking sample sizes such as powers of 10, when the
QMC points were designed for different sample sizes. This article looks at the effects
of a common practice in which one skips the first point of a Sobol’ sequence. The
retained points ordinarily fail to be a digital net and when scrambling is applied,
skipping over the first point can increase the numerical error by a factor proportional
to

√
n where n is the number of function evaluations used.

Keywords Burn-in · Scrambled nets · Thinning

1 Introduction

A Sobol’ sequence is an infinite sequence of points u1, u2, . . . ∈ [0, 1]d constructed
to fill out the unit cube with low discrepancy, meaning that a measure of the distance
between the discrete uniform distribution on u1, . . . , un and the continuous uniform
distribution on [0, 1]d is made small. These points are ordinarily used to approximate

μ =
∫

[0,1]d
f (x) dx by μ̂ = μ̂u,1 = 1

n

n∑
i=1

f (ui ).
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The reason for calling this estimate μ̂u,1 will become apparent later. Sobol’ sequences
are often used to estimate expectations with respect to unbounded random variables,
such as Gaussians. In such cases f subsumes a transformation from the uniform
distribution on [0, 1]d to some other more appropriate distribution. This article uses
1-based indexing, so that the initial point is u1. Sometimes 0-based indexing is used,
and then the initial point is denoted u0. Both indexing conventions are widespread in
mathematics and software for Sobol’ points and both have their benefits. Whichever
convention is used, the first point should not be dropped.

The initial point of the Sobol’ sequence is u1 = (0, 0, . . . , 0). A common practice
is to skip that point, similar to the burn-in practice in Markov chain Monte Carlo
(MCMC). One then estimates μ by

μ̂ = μ̂u,2 = 1

n

n+1∑
i=2

f (ui ).

One reason to skip the initial point is that a transformation to a Gaussian distribu-
tion might make the initial Gaussian point infinite. That is problematic not just for
integration problems but also when f is to be evaluated at the design points to create
surrogate models for Bayesian optimization [1, 13]. If one skips the initial point,
then the next point in a Sobol’ sequence is usually (1/2, 1/2, . . . , 1/2). While that
is an intuitively much more reasonable place to start, starting there has detrimental
consequences and there are better remedies, described here.

A discussion about whether to drop the initial point came up in the plenary tutorial
of Fred Hickernell atMCQMC2020 about QMCPy [5] software for QMC, discussed
in [6]. The issue has been discussed by the pytorch [39] community at https://github.
com/pytorch/pytorch/issues/32047, and the scipy [47] community at https://github.
com/scipy/scipy/pull/10844, which are both incorporatingQMCmethods. QMCand
RQMC code for scipy is documented at https://scipy.github.io/devdocs/reference/
stats.qmc.html.

This article shows that skipping even one point of the Sobol’ sequence can be
very detrimental. The resulting points are no longer a digital net in general, and in
the case of scrambled Sobol’ points, skipping a point can bring about an inferior
rate of convergence, making the estimate less accurate by a factor that is roughly
proportional to

√
n.

A second difficulty with Sobol’ sequence points is that it is difficult to estimate the
size |μ̂ − μ| of the integration error from the data. The well-known Koksma-Hlawka
inequality [15] bounds |μ̂ − μ| by the product of two unknown quantities that are
extremely hard to compute, and while tight for some worst case integrands, it can
yield an extreme overestimate of the error, growing ever more conservative as the
dimension d increases.

Randomly scrambling the Sobol’ sequence points preserves their balance prop-
erties and provides a basis for uncertainty quantification. Scrambling turns points
ui into random points xi ∼ U[0, 1]d . The points x1, . . . , xn are not independent.
Instead they retain the digital net property of Sobol’ points and consequent accu-

https://github.com/pytorch/pytorch/issues/32047
https://github.com/pytorch/pytorch/issues/32047
https://github.com/scipy/scipy/pull/10844
https://github.com/scipy/scipy/pull/10844
https://scipy.github.io/devdocs/reference/stats.qmc.html
https://scipy.github.io/devdocs/reference/stats.qmc.html
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racy properties. The result is randomized QMC (RQMC) points. RQMC points also
have some additional accuracy properties stemming from the randomization. With
scrambled Sobol’ points, we estimate μ by

μ̂ = μ̂x,1 = 1

n

n∑
i=1

f (xi ).

One can estimate the mean squared error using R independent replicates of the n-
point RQMC estimate μ̂x,1. It is also possible to drop the first point in RQMC,
estimating μ by

μ̂ = μ̂x,2 = 1

n

n+1∑
i=2

f (xi ).

The purpose of this paper is to show that μ̂x,1 is a much better choice than μ̂x,2.
Many implementations of a Sobol’ sequence will produce n = 2m points ui ∈

{0, 1/n, 2/n, . . . , (n − 1)/n}d ⊂ [0, 1)d . In that case, there is a safer way to avoid
having a point at the origin than skipping the first point. We can use ui + 1/(2n)

componentwise and still have a digital net. This is reasonable if we have already
decided on the value of n to use. It does not work to add that same value 1/(2n)

to the next 2m points and subsequent values. For one thing, the result may produce
values on the upper boundary of [0, 1]d in the very next batch and will eventually
place points outside of [0, 1]d . It remains better to scramble the Sobol’ points.

We will judge the accuracy of integration via scrambled Sobol’ points through
E((μ̂ − μ)2)1/2, the root mean squared error (RMSE). Plain Monte Carlo (MC)
attains an RMSE of O(n−1/2) for integrands f ∈ L2[0, 1]d .

This paper is organized as follows. Section 2 defines digital nets and shows that
skipping over the first point can destroy the digital net property underlying the analy-
sis of Sobol’ sequences. It also presents properties of scrambled digital nets. Section 3
shows some empirical investigations on some very simple and favorable integrands
where μ̂x,1 has an RMSE very near to the rate O(n−3/2) while μ̂x,2 has an RMSE
very near to O(n−1). These are both in line with what we expect from asymptotic
theory. The relevance is not that our integrands are as trivial as those examples, but
rather that when realistic integrands are well approximated by such simple ones we
get accuracy comparable to using those simple functions as control variates [16]
but without us having to search for control variates. In skipping the first point we
stand to lose a lot of accuracy in integrating the simple functions and others close
to them. There is also no theoretical reason to expect μ̂x,2 to have a smaller RMSE
than μ̂x,1 does, and so there is a Pascal’s wager argument against dropping the first
point. Section 4 looks at a ten dimensional function representing the weight of an
airplane wing as a function of the way it was made. We see there that skipping the
first point is very detrimental. Section 5 considers some very special cases where
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burn-in might be harmless, recommends against using round number sample sizes
and thinning for QMC points, and discusses distributing QMC points over multiple
parallel processors.

2 Digital Nets and Scrambling

In this section we review digital nets and describe properties of their scrambled
versions. The points from Sobol’ sequences provide the most widely used example
of digital nets. For details of their construction and analysis, see the monographs
[11, 28]. There are numerous implementations of Sobol’ sequences [2, 18, 45]. They
differ in what are called ‘direction numbers’ and they can also vary in the order with
which the points are generated. The numerical results here use direction numbers
from [18] via an implementation from Nuyens’ magic point shop, described in [22]
and scrambled as in [29]. The Sobol’ and scrambled Sobol’ points in this paper were
generated using the R function rsobol that appears in http://statweb.stanford.edu/
~owen/code/ along with some documentation. That code also includes the faster and
more space efficient scrambling of Matousek [26].

We begin with the notion of elementary intervals, which are special hyper-
rectangular subsets of [0, 1)d . For an integer base b � 2, a dimension d � 1, a vector
k = (k1, . . . , kd) of integers k j � 0 and a vector c = (c1, . . . , cd) of integers with
0 � c j < bk j , the Cartesian product

E(k, c) =
d∏
j=1

[ c j
bk j

,
c j + 1

bk j

)

is an elementary interval in base b. It has volume b−|k| where |k| = ∑d
j=1 k j .

Speaking informally, the set E(k, c) has a proportion b−|k| of the volume of
[0, 1]d and so it ‘deserves’ to get (i.e., contain) nb−|k| points when we place n points
inside [0, 1]d . Digital nets satisfy that condition for certain k. We use the following
definitions from Niederreitter [27].

Definition 1 For integers m � t � 0, the n = bm points u1, . . . , un ∈ [0, 1]d are a
(t,m, d)-net in base b � 2, if every elementary interval E(k, c) ⊂ [0, 1]d of volume
bt−m contains exactly bt of the points u1, . . . , un .

Every elementary interval that ‘deserves’ bt points of the digital net, gets thatmany
of them. When we speak of digital nets we ordinarily mean (t,m, d)-nets though
some authors reserve the term ‘digital’ to refer to specific construction algorithms
rather than just the property in Definition 1.

Definition 2 For integers t � 0, b � 2 and d � 1, the infinite sequence u1, u2, . . . ∈
[0, 1]d is a (t, d)-sequence in base b if u(r−1)bm+1, . . . , urbm is a (t,m, d)-net in base
b for any integers m � t and r � 1.

http://statweb.stanford.edu/~owen/code/
http://statweb.stanford.edu/~owen/code/
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Sobol’ sequences [42] are (t, d)-sequences in base 2. From Definition 2, we
see that the first 2m points of a Sobol’ sequence are a (t,m, d)-net in base 2 for
any m � t . So are the second 2m points, and if we merge both of those point sets,
we get a (t,m + 1, d)-net in base 2. We can merge the first two of those to get a
(t,m + 2, d)-net in base 2 and so on ad infinitum.

Given b, m and d, smaller values of t are better. It is not always possible to have
t = 0 and the best possible t increases monotonically with d. The best known values
of t for (t, d)-sequences and (t,m, d)-nets are given in the online MinT web site
[40]. The published t value for a Sobol’ sequence might be conservative in that the
first bm points of the Sobol’ sequence can possibly be a (t ′,m, d)-net for some t ′ < t .

The proven properties of digital nets including those taken from Sobol’ sequences
derive from their balanced sampling of elementary intervals. The analysis path can
be via discrepancy [28] or Haar wavelets [43] or Walsh functions [11].

The left panel in Fig. 1 shows the first 16 points of a Sobol’ sequence in two
dimensions. Fifteen of them are small solid disks and one other is represented by
concentric circles at the origin. Those points form a (0, 4, 2)-net in base 2. Reference
lines divide the unit square into a 4 × 4 grid of elementary intervals of size 1/4 × 1/4.
Each of those has one of the 16 points, often at the lower left corner. Recall that
elementary intervals include their lower boundary but not their upper boundary.
Finer reference lines partition the unit square into 16 strips of size 1 × 1/16. Each of
those has exactly one point of the digital net. The same holds for the 16 rectangles of
each of these shapes: 1/2 × 1/8, 1/8 × 1/2 and 1/16 × 1. All told, those 16 points
have balanced 80 elementary intervals and the number of balanced intervals grows
rapidly with m and d.

The point u1 = (0, 0) is problematic as described above. If we skip it and take
points u2, . . . , u17 thenwe replace it with the large solid disk at (1/32, 17/32). Doing
that leaves the lower left 1/4 × 1/4 square empty and puts two points into a square
above it. The resulting 16 points now fail to be a (0, 4, 2)-net.

The introductionmentioned some randomizations of digital nets. There is a survey
of RQMC in [24]. For definiteness, we consider the nested uniform scramble from
[29]. Applying a nested uniform scramble to a (t, d)-sequence u1, u2, . . . in base b
yields points x1, x2, . . . that individually satisfy xi ∼ U[0, 1]d and collectively are a
(t, d)-net in base bwith probability one. The estimate μ̂x,1 then satisfiesE(μ̂x,1) = μ

by uniformity of xi . The next paragraphs summarize some additional properties of
scrambled nets.

If f ∈ L1+ε[0, 1]d for some ε > 0 then [37] show that Pr(limm→∞ μ̂x,1 = μ) =
1, where the limit is through (t,m, d)-nets formed by initial bm subsequences the
(t, d)-sequence of xi . If f ∈ L2[0, 1]d then var(μ̂x,1) = o(1/n) as n = bm → ∞
[30]. That is, the RMSE is o(n−1/2), superior to MC. Evidence of convergence rates
for RQMC better than n−1/2 have been seen for some unbounded integrands from
financial problems. For instance variance reduction factors with respect to MC have
been seen to increase with sample size in [23].

The usual regularity condition for plainMC is that f (x) has finite variance σ 2 and
the resulting RMSE is σn−1/2. When f ∈ L2[0, 1]d with variance σ 2 then scrambled
net sampling with n = bm satisfies
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RMSE(μ̂x,1) � �1/2σn−1/2 (1)

for some � < ∞ [32]. For digital nets in base 2, such as those of Sobol’, it is known
that � is a power of two no larger than 2t+d−1 [38]. Equation (1) describes a worst
case f ∈ L2[0, 1]d that maximizes the ratio of the RMSE for RQMC to that of MC.

The accuracy ofQMCpoints ismost commonly described by aworst case analysis
with |μ − μ̂| = O(n−1 log(n)d−1) when f has bounded variation in the sense of
Hardy and Krause (BVHK). These powers of log(n) are not negligible for practically
relevant values of n, when d is moderately large. Then the bound gives amisleadingly
pessimistic idea of the accuracy one can expect. The bound in (1) shows that the
RMSE of scrambled nets is at most �1/2σ/

√
n, a bound with no powers of log(n).

This holds for f ∈ L2, which then includes any f in BVHK as well as many others
of practical interest, such as some unbounded integrands. Note that integrands in
BVHK must be bounded and they are also Riemann integrable [37], and so they are
in L2.

Under further smoothness conditions on f , RMSE(μ̂x,1) = O(n−3/2

(log n)(d−1)/2). This was first noticed in [31] with a correction in [33]. The weak-
est known sufficient conditions are a generalized Lipschitz condition from [48].
The condition in [33] is that for any nonempty u ⊆ {1, . . . , d} the mixed par-
tial derivative of f taken once with respect to each index j ∈ u is continuous
on [0, 1]d . To reconcile the appearance and non-appearance of logarithmic fac-
tors, those two results give RMSE(μ̂x,1) � min(�1/2σn−1/2, An) for some sequence
An = O(n−3/2 log(n)(d−1)/2). The logarithmic factor can degrade the n−3/2 rate but
only subject to a cap on performance relative to plain MC. Finally, Loh [25] proves
a central limit theorem for μ̂x,1 when t = 0.

The right panel of Fig. 1 shows a nested uniform scramble of the points in the
left panel. The problematic point u1 becomes a uniformly distributed point in the
square, and is no longer on the boundary. If we replace it by u17 then just as in the
unscrambled case, there is an empty 1/4 × 1/4 elementary interval, and another one
with two points.

There is a disadvantage to μ̂x,2 compared to μ̂x,1 when the latter attains a root
mean squared error O(n−3/2+ε), for then

μ̂x,2 = μ̂x,1 + 1

n

(
f (xn+1) − f (x1)

)
. (2)

The term ( f (xn+1) − f (x1))/n = O(1/n) will ordinarily decay more slowly than
|μ̂x,1 − μ|. Then skipping the first point will actually make the rate of convergence
worse. A similar problem happens if one simply ignores x1 and averages the n − 1
points f (x2) through f (xn). A related issue is thatwhen equallyweighted integration
rules have errors O(n−r ) for r > 1, this rate can only realistically take place at
geometrically separated values of n. See [34, 44]. The higher order digital nets of
[9] attain o(1/n) errors under suitable regularity conditions and their randomizations
in [10] attain RMSEs of o(1/n). The argument against skipping the first point also
applies to these methods.
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Fig. 1 The left panel shows the first 17 Sobol’ points in [0, 1]2. The initial point at (0, 0) is shown
in concentric circles. The 17’th point is shown as a large disk. Solid reference lines partition [0, 1]2
into 16 congruent squares. Dashed reference lines partition it into 256 congruent squares. The right
panel shows a nested uniform scramble of these 17 points

3 Synthetic Examples

Here we look at some very simple modest dimensional integrands. They fit into a
‘best case’ case analysis for integration, motivated as follows. We suppose that some
sort of function g(x) is extremely favorable for a method and also that it resembles
the actual integrand. We may write

f (x) = g(x) + ε(x).

In the favorable cases, ε is small and g is easily integrated. For classical quadratures
g may be a polynomial [8]. For digital nets, some functions g may have rapidly
converging Walsh series [11], others are sums of functions of only a few variables
at a time [3]. For lattice rules [41], a favorable g has a rapidly converging Fourier
series. The favorable cases work well because

1

n

n∑
i=1

f (xi ) = 1

n

n∑
i=1

g(xi ) + 1

n

n∑
i=1

ε(xi )

with the first term having small error because it is well suited to the method and
the second term having small error because ε(·) has a small norm and we take an
equal weight sample of it instead of using large weights of opposite signs. A good
match between method and g saves us the chore of searching for one or more control
variates. Choosing cases where a method ought to work is like the positive controls
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Fig. 2 Solid points show
RMSE for scrambled Sobol’
estimate μ̂x,1 versus n from
R = 10 replicates. A
reference line parallel to
n−3/2 goes through the first
solid point. Open points
show RMSE for scrambled
Sobol’ estimates μ̂x,2 which
drop the initial zero. A
reference line parallel to n−1

goes through the first open
point

used in experimental science. We can use them to verify that the method or its
numerical implementation work as expected on the cases they were designed for.
There can and will be unfavorable cases in practice. Measuring the sample variance
under replication provides a way to detect that.

Here we consider some cases where scrambled nets should work well. The first is

g0(x) =
d∑
j=1

(
ex j − e + 1

)
, (3)

which clearly hasμ = 0. This sum of centered exponentials is smooth and additive. It
is thus very simple for QMC and RQMC. It is unlikely that anybody turns to RQMC
for this function but as remarked above the integrand one has may be close to such
a simple function.

Figure 2 shows the RMSE for this function g0 based on R = 10 independent
replicates of both μ̂x,1 and μ̂x,2. Reference lines show a clear pattern. The error
follows a reference line parallel to n−3/2 on a log-log plot for μ̂x,1. For μ̂x,2, the
reference line is parallel to n−1. These slopes are exactly what we would expect
from the underlying theory, the first from [31] and the second from Equation (2).
In both cases the line goes through the data for n = 32 and is then extrapolated to
n = 214 = 16,384 with the given slopes. That is a more severe test for the asymptotic
theory than fitting by least squares would be. In this instance, the asymptotic theory
is already close to the measurements by n = 32.

An earlier version of this article used g0(x) = ∑d
j=1 x j instead of the function g0

above. The RMSEs for that function also closely follow the predicted rates. It is not
however as good a test case because it is antisymmetric about x = (1/2, . . . , 1/2),
meaning that (g0(x) + g0(x̃))/2 = μ for all x, where x̃ = 1 − x componentwise.
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Fig. 3 Solid points show
RMSE for scrambled Sobol’
estimate μ̂x,1 versus n from
R = 10 replicates. A
reference line parallel to
n−3/2 goes through the first
solid point. Open points
show RMSE for scrambled
Sobol’ estimates μ̂x,2 which
drop the initial zero. A
reference line parallel to n−1

goes through the first open
point
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If we use such an antisymmetric function, then we will get highly accurate results
just from having a nearly antithetic set of evaluation points that may or may not be
equidistributed.

The second function is

g1(x) =
( d∑

j=1

x j

)2

. (4)

Unlike g0 this function is not additive. It has interactions of order 2 but no higher in
the functional ANOVA decomposition [17, 43] and it also has a substantial additive
component. It is not antisymmetric about (1/2, 1/2, . . . , 1/2). It has μ = d/3 +
d(d − 1)/4. Figure 3 shows the RMSE for μ̂x,1 and μ̂x,2. Once again they follow
reference lines parallel to n−3/2 and n−1 respectively. Asymptotic theory predicts a
mean squared error with a component proportional to n−3 and a second component
proportional to log(n)n−3 that would eventually dominate the first, leading to an
RMSE that approaches n−3/2 log(n)1/2.

Next we look at a product

g2(x) =
d∏
j=1

(ex j − e + 1).

This function has μ = 0 for any d. It is surprisingly hard for (R)QMC to handle
this function for modest d, much less large d. It is dominated by 2d spikes of oppo-
site signs around the corners of [0, 1]d . It may also be extra hard for Sobol’ points
compared to alternatives, because Sobol’ points often have rectangular blocks that
alternate between double the uniform density and emptiness. In a functional ANOVA
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Fig. 4 The integrand is a product of 3 centered exponentials. Solid points show RMSE for scram-
bled Sobol’ estimate μ̂x,1 versus n from R = 10 replicates. A reference line parallel to n−3/2 goes
through the first solid point. Open points show RMSE for scrambled Sobol’ estimates μ̂x,2 which
drop the initial zero. A reference line parallel to n−1 goes through the first open point. A dashed
reference line through the first solid point decays as log(n)/n3/2

decomposition, it is purely d-dimensional in that the only non-zero variance com-
ponent is the one involving all d variables. Asymptotic theory predicts an RMSE of
O(n−3/2 log(n)(d−1)/2).

Figure 4 shows results for d = 3 and this g2(x). The rate for μ̂x,1 shows up as
slightly worse than n−3/2 while the one for μ̂x,2 appears to be slightly better than
n−1. Both are much better than O(n−1/2). Putting in the predicted logarithmic factor
improves the match between asymptotic prediction and empirical outcome for μ̂x,1.
It is not clear what can explain μ̂x,2 doing better here than the asymptotic prediction.
Perhaps the asymptotics become descriptive of actual errors at much larger n for this
function than for the others. Judging by eye it is possible that the convergence rate is
worse when the first point is dropped, but the evidence is not as clear as in the other
figures where the computed values so closely follow theoretical predictions. There
is an evident benefit to retaining the initial point that at a minimum manifests as a
constant factor of improvement.

In some of the above examples the asymptotic theory fit very well by n = 32.
One should not expect this in general. It is more reasonable to suppose that that
is a consequence of the simple form of the integrands studied in this section. For
these integrands the strong advantage of retaining the original point shows in both
theory and empirical values. There is no countervailing theoretical reason to support
dropping the first point.
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Table 1 Variables and their ranges for the wing weight function

Variable Range Meaning

Sw [150, 200] Wing area (ft2)

Wfw [220, 300] Weight of fuel in the wing (lb)

A [6, 10] Aspect ratio

� [−10, 10] Quarter-chord sweep (degrees)

q [16, 45] Dynamic pressure at cruise (lb/ft2)

λ [0.5, 1] Taper ratio

tc [0.08, 0.18] Aerofoil thickness to chord ratio

Nz [2.5, 6] Ultimate load factor

Wdg [1700,2500] Flight design gross weight (lb)

Wp [0.025, 0.08] Paint weight (lb/ft2)

4 Wing Weight Function

The web site [46] includes a 10 dimensional function that computes the weight of an
airplane’swing based on a physicalmodel of theway thewing ismanufactured.While
one does not ordinarily want to know the average weight of a randomlymanufactured
wing, this function is interesting in that it has a real physical world origin instead of
being completely synthetic. It is easily integrated by several QMCmethods [36] and
so it is very likely that it equals g + ε for a favorable g and a small ε.

The wing weight function is

0.036S0.758w W 0.0035
fw

( A

cos2(�)

)0.6
q0.006λ0.04

( 100tc
cos(�)

)−0.3
(NxWdg)

0.49 + SwWp.

The definition and uniform ranges of these variables are given in Table 1.
For this function the standard deviation among 10 independent replicates is used

instead of the RMSE. The results are in Fig. 5. Once again there is a strong disad-
vantage to dropping the first Sobol’ point. The RMSE when dropping the first point
is very nearly O(n−1). The RMSE for not dropping the first point is clearly better.
The pattern there is not linear on the log-log scale so we cannot confidently conclude
what convergence rate best describes it.

5 Discussion

MC and QMC and RQMC points all come as an n × d matrix of numbers in [0, 1]
that we can then pipe through several functions to change the support set and dis-
tribution and finally evaluate a desired integrand. Despite that similarity, there are
sharp differences in the properties of QMC and RQMC points that affect how we
should use them.
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Fig. 5 Solid points show
standard deviation for
scrambled Sobol’ estimate
μ̂x,1 versus n from R = 10
replicates. A reference line
parallel to n−3/2 goes
through the first solid point.
Open points show standard
deviation for scrambled
Sobol’ estimates μ̂x,2 which
drop the initial zero. A
reference line parallel to n−1

goes through the first open
point

This paper has focussed on a small burn-in, dropping just one of the points and
picking up the next n. Burn-in makes no difference to plain MC apart from doing
some unneeded function evaluations, and it can bring large benefits to MCMC. See
the comment by Neal in the discussion [19]. Burn-in typically spoils the digital net
property. It is safer to scramble the points which removes the potentially problematic
first point at the origin while also increasing accuracy on very favorable functions
like those in the examples and also on some unfavorable ones having singularities
or other sources of infinite variation in the sense of Hardy and Krause. See [37].

There are some exceptional cases where burn-in of (R)QMCmay be harmless. For
d = 1, any consecutive 2m points of the van der Corput sequence [7] are a (0,m, 1)-
net in base 2. As we saw in Fig. 1 that is not always true for d > 1. Dropping the first
N = 2m

′
points of a Sobol’ sequence for m ′ ≥ m should cause no problems because

the next 2m points are still a (t,m, s)-net. Most current implementations of Sobol’
sequences are periodic with xi = xi+2M for a value of M that is typically close to
30. Then one could take m ′ = M − 1 allowing one to use m up to M − 1.

The Halton sequence [14] has few if any especially good sample sizes n and
large burn-ins have been used there. For plain MC points it is natural to use a round
number like 1000 or 106 of sample points. That can be very damaging in (R)QMC
if the points were defined for some other sample size. Using 1000 points of a Sobol’
sequence may well be less accurate than using 512. Typical sample sizes are powers
of 2 for digital nets and large prime numbers for lattice rules [24, 41]. The Faure
sequences [12] use b = p � d where p is a prime number. With digital nets as with
antibiotics, one should take the whole sequence.

Another practice that works well in MCMC, but should not be used in (R)QMC is
‘thinning’. InMCMC, thinning can save storage space and in some cases can improve
efficiency despite increasing variance [35]. One takes every k’th point, xk×i for some
integer k > 1, or in combination with burn-in xB+k×i for some integer B � 1. To
see the problem, consider the very basic van der Corput sequence xi ∈ [0, 1]. If
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Fig. 6 The left panel shows a histogram of every 10’th xi1 from the first 220 Sobol’ points. The
right panel shows a histogram of every 10’th xi2 from the first 220 Sobol’ points

xi ∈ [0, 1/2) then xi+1 ∈ [1/2, 1). For instance [4] use that observation to point out
that simulating a Markov chain with van der Corput points can be problematic. Now
suppose that one thins the van der Corput sequence to every second point using k = 2.
All of the retained points are then in either [0, 1/2) or in [1/2, 1). One will estimate
either 2

∫ 1/2
0 f (x) dx or 2

∫ 1
1/2 f (x) dx by using that sequence. The first component

of a Sobol’ sequence is usually a van der Corput sequence.
Thinning for QMC was earlier considered by [21] who called it ‘leaping’. They

find interesting results taking every L’th point from aHalton sequence, taking L to be
relatively prime to all the bases used in the Halton sequence. Empirically, L = 409
was one of the better values. They also saw empirically that leaping in digital nets
of Sobol’ and Faure lead to non-uniform coverage of the space.

The Matlab R2020a sobolset function https://www.mathworks.com/help/
stats/sobolset.html as of August 11, 2020 includes a thinning/leaping option through
a parameter Leap which is an interval between points, corresponding to k − 1 in the
discussion above. It also has a parameter Skip, corresponding to burn-in, which is a
number of initial points to omit. Fortunately both Leap and Skip are turned off by
default. However even having them present is problematic. It is not clear how one
should use them safely. The left panel of Fig. 6 shows a histogram of the values x10i,1
for 1 � i � �220/10�. The right panel shows a histogram of the values x10i,2.

Another area where QMC requires more care than plain MC is in parallel com-
puting where a task is to be shared over many processors. When there are p proces-
sors working together, one strategy from [20] is to use a d + 1 dimensional QMC
construction of which one dimension is used to assign input points to processors.
Processor k ∈ {0, 1, . . . , p − 1} gets all the points ui with �pxi,c� = k for some
c ∈ {1, 2, . . . , d + 1}. It then uses the remaining d components of ui in its computa-
tion. With this strategy each processor gets a low discrepancy sequence individually
which is better than thinning to every p’th point would be. They collectively have a
complete QMCpoint set. See [20] for this and formore references about parallelizing
QMC.

https://www.mathworks.com/help/stats/sobolset.html
https://www.mathworks.com/help/stats/sobolset.html
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On the Distribution of Scrambled
(0,m, s)−Nets Over Unanchored Boxes

Christiane Lemieux and Jaspar Wiart

Abstract Weintroduce anewqualitymeasure to assess randomized low-discrepancy
point sets of finite size n. This new quality measure, which we call “pairwise sam-
pling dependence index”, is based on the concept of negative dependence. A negative
value for this index implies that the corresponding point set integrates the indicator
function of any unanchored box with smaller variance than the Monte Carlo method.
We show that scrambled (0,m, s)−nets have a negative pairwise sampling depen-
dence index. We also illustrate through an example that randomizing via a digital
shift instead of scramblingmay yield a positive pairwise sampling dependence index.

Keywords Negative dependence · Scrambled nets · Discrepancy

1 Introduction

The quality of point sets used within quasi-Monte Carlo (QMC) methods is often
assessed using the notion of discrepancy. For a point set Pn = {ui : i = 1, . . . , n},
its star-discrepancy is given by D∗

n(Pn) = supA∈A0
|Jn(A) − Vol(A)| where A0 is

the set of all boxes A ⊆ [0, 1)s anchored at the origin, and Jn(A) = ∑n
i=1 1ui∈A/n.

The extreme discrepancy is instead given by Dn(Pn) = supA∈A |Jn(A) − Vol(A)|
where A is the set of all boxes in [0, 1)s . Both quantities are typically interpreted
as comparing the empirical distribution induced by Pn with the uniform distribution
over [0, 1)s in terms of the probability they assign to a given set A of boxes. Using
inclusion-exclusion arguments, one can derive the bound Dn(Pn) ≤ 2s D∗

n(Pn).
Many asymptotic results for D∗

n(Pn) and Dn(Pn) have been derived for various
low-discrepancy sequences [1, 6]. These sequences are understood to be such that

C. Lemieux (B)
University of Waterloo, 200 University Ave. West ON, Waterloo, ON N2L 3G1, Canada
e-mail: clemieux@uwaterloo.ca

J. Wiart
Johannes Kepler University, Altenbergerstr. 69, Linz, Upper Austria 4040, Austria
e-mail: jaspar.wiart@jku.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Keller (ed.), Monte Carlo and Quasi-Monte Carlo Methods, Springer Proceedings
in Mathematics & Statistics 387, https://doi.org/10.1007/978-3-030-98319-2_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98319-2_5&domain=pdf
mailto:clemieux@uwaterloo.ca
mailto:jaspar.wiart@jku.at
https://doi.org/10.1007/978-3-030-98319-2_5


88 C. Lemieux and J. Wiart

D∗
n(Pn) ∈ O((log n)s/n), and the above mentioned results often focus on studying

the constant terms in the big-Oh notation and how it behaves as a function of s.
In practice, when using QMC methods, one is often working in settings where n

is not too large, and a primary goal is to make sure that the QMC approximation will
result in a better approximation than the one that would be obtained by using plain
MonteCarlo sampling.One is also typically interested in assessing the approximation
error, something naturally embedded inMonte Carlo methods via variance estimates
and the central limit theorem.

In this setting, the use of randomized QMC methods is very appealing, as it pre-
serves the advantage ofQMC induced by the use of low-discrepancy sequences,while
at the same time allowing for error estimates through independent and identically
distributed (iid) replications.

In this paper, we focus on the above settings, i.e., where one (1) works with n not
too large; (2) uses randomized QMC, and (3) hopes to do better than Monte Carlo.

To this end, we propose to reinterpret the measures D∗
n(Pn) and Dn(Pn) and

propose a new, related measure that is designed for our chosen setting, which we
refer to as “pairwise sampling dependence index”. While this measure is meant to
assess the uniformity of point sets much like the star and extreme discrepancies
do, it also has another interpretation, which is that a point set with negative pairwise
sampling dependence index estimates the expected value of the indicator function 1A

for any A ∈ Awith variance smaller than theMonteCarlomethod. This newmeasure
is defined in Sect. 2, Eq. (1). In Sect. 3 we revisit the result from [10], which shows
that scrambled (0,m, s)−nets have a negative pairwise sampling dependence index
over all anchored boxes. In Sect. 5 we show that this result extends to unanchored
boxes in Theorem 4, which is the main result of this paper. Hence the extension
to unanchored boxes does not cause the same deterioration of the bound for this
uniformity measure as is the case when applying an inclusion-exclusion argument
to go from the star to the extreme discrepancy.

The proof of this result is essentially a very difficult problem in linear program-
ming, (something that is rather obscured by the fact that, since the number of variables
depends on m, we work in �1(N) and its dual �∞(N) rather than a finite dimen-
sional space). Indeed, we must demonstrate that (1) is always negative for scrambled
(0,m, s)-nets. We see in Theorem 2 that (1) is actually a linear equation whose
variables are non-negative and are further constrained, in the one-dimensional case,
according to Lemma 2. The constraints define a convex region whose extreme points,
in the one-dimensional case, are found in Theorem 1 and given by (10) in the higher
dimensional case. The remainder of the proof boils down to proving that (1) is non-
negative at these extreme points. This requires the use of several technical lemmas
(given in the appendix) proving sufficiently tight bounds on various combinatorial
sums, which is precisely why we do not have to rely on an inclusion-exclusion argu-
ment to go from the anchored case to the unanchored one. We briefly discuss in
Sect. 6 the advantage of scrambling over simpler randomization methods such as a
digital shift. Ideas for future work are presented in Sect. 7.
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2 Pairwise Sampling Dependence

We start by revisiting the definition of extreme discrepancy using a probabilistic
approach, despite the fact that the point set Pn may be deterministic. We do so by
introducing a quality measure we call sampling discrepancy, given by Dn(Pn) :=
supA∈A |Pn(A) − Vol(A)|, where Pn(A) is the probability that a randomly chosen
point in Pn will fall in A. For a deterministic point set, this probability is given by
Pn(A) = Jn(A)/n, and so in this case Dn(Pn) = Dn(Pn). This definition captures
how the discrepancy is often described as a distance measure between the empirical
distribution induced by the point set Pn and the uniform distribution. Since the
uniform distribution is viewed as a target distribution in this setting, we want this
distance to be as small as possible.

In this paper we are interested in randomized QMC point sets P̃n . We assume
P̃n is a valid sampling scheme, meaning that Ui ∼ U (0, 1)s for each Ui ∈ P̃n , with
possibly some dependence among the Ui ’s. When we write P̃n , we are thus not
referring to a specific realization of the randomization process, which we instead
denote by P̃n(ω), where ω ∈ �, and � is the sampling space associated with our
randomization process for Pn .

In that setting, we could compute Dn(P̃n(ω)) and then perhaps compute the
expected value of Dn(P̃n(ω)) over all these realizations ω, or the probability that
it will be larger than some value, as done in [3], for example. If we instead interpret
Pn(A) as the probability that a randomly chosen point Ui from P̃n falls in A, then
we would get Dn(P̃n) = 0, which is of little use.

To define an interesting alternative measure of uniformity for randomized QMC
point sets, we introduce instead a “second-moment” version of the sampling discrep-
ancy, in which we consider pairs of points rather than single points, and where the
distribution against which we compare the point set is that induced by random sam-
pling, where points are sampled independently from one another. When considering
pairs of points, our goal is to examine the propensity for points to repel each other,
which is a desirable feature if we want to achieve greater uniformity than random
sampling. Note that this notion of “propensity to repel” is in line with the concept of
negative dependence.

More precisely, we want to verify that the pairs of points from P̃n are less likely
to fall within the same box A than they would if they were independent. Note that
here, as was the case withDn(Pn), we are comparing the distribution induced by P̃n
with another distribution. But rather than comparing to a target distribution to which
we want to be as close as possible, we are comparing to a distribution upon which
we want to improve, and thus are not trying to be close to that distribution.

The measure we propose to assess the quality of a point set via the behavior of its
pairs is called pairwise sampling dependence index and is given by

En(P̃n) := sup
A∈A

Hn(A) − Vol2(A), (1)

where the probability Hn(A) := P((U,V) ∈ A × A), (2)
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with U and V being distinct points randomly chosen from P̃n . We say P̃n has a
negative pairwise sampling dependence index when En(P̃n) ≤ 0. (This terminology
is consistent with other measures of negative dependence: see, e.g., [10].)

Note that because we are not taking the supremum over all products of the form
A × B with A, B ∈ A and instead only consider A × A, it is possible, if P̃n is
designed so that points tend to cluster away from each other, that the probability
Hn(A) will never be larger than what it is under random sampling, as given by
Vol2(A). This is not the case with the measure Dn(Pn), where having Pn(A) <

Vol(A) implies there will be some A′ for which Pn(A′) > Vol(A′). There the goal
is to show there exist point sets Pn with |Pn(A) − Vol(A)| very close to 0, and
becoming closer to 0 as n goes to infinity. In our case, we instead want to show, for
a given n, that there exist sampling schemes P̃n with En(P̃n) ≤ 0.

So far we mentioned the work done in [3, 10], but concepts of dependence based
on measures different from (1) have recently been used in other works to analyze
lattices [11], Latin hypercube sampling [4] and scrambled nets [2].

3 Revisiting Pairwise Sampling Dependence Over
Anchored Boxes

In what follows, we assume P̃n is a scrambled (0,m, s)−net in base b ≥ s, where
n = bm , and Pn represents the underlying (0,m, s)−net being scrambled.We assume
the reader is familiar with the concept of digital nets and (t,m, s)−nets, as presented
in e.g., [1, 6]. Also, when referring to scrambled nets, we refer to the scrambling
method studied in [10], which originates from [8].

In [10], it was shown that if we restrict En(P̃n) to anchored boxes—denote this
version of En by En,0—then En,0(P̃n) ≤ 0. In fact, a stronger result is shown in [10],
which is that for (U,V) a pair of distinct points randomly chosen from P̃n ,

P((U,V) ∈ [0, x) × [0, y)) ≤ Vol([0, x) × [0, y)), for any x, y ∈ [0, 1]s .

For simplicity, in what follows we assume x = y and let A = [0, x).
Next, to define a key quantity called the volume vector of a subset of [0, 1]2s , we

first define the regions Ds
i := {(x, y) ∈ [0, 1)2s : γ s

b(x, y) = i}, where γ s
b(x, y) :=

(γb(x1, y1), . . . , γb(xs, ys)) and γb(x, y) ≥ 0 is the unique number i ≥ 0 such that


bi x� = 
bi y� but 
bi+1x� �= 
bi+1y�. (3)

That is, γb(x, y) is the exact number of initial digits shared by x and y in their base
b expansion. If x = y then we let γb(x, y) = ∞. Also, (3) implies γb(x, y) is well
defined for any x, y ∈ [0, 1) even if x, y do not have a unique expansion in base b.

LetN0 = {0, 1, 2, . . .}. We can now define, for A, B ⊆ [0, 1]s , the volume vector
V (A × B) ∈ �1(Ns

0), whose component Vi (A × B) associated to i ∈ N
s
0 is given by
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Vi (A × B) :=
∫

A×B

1Ds
i
dudv = Vol((A × B) ∩ Ds

i ) ∈ [0, 1].

A key step used in [10] to prove that Hn(A) ≤ Vol(A × A) is to find a con-
ical combination of products of the form 1k × 1k, where 1k = ∏s

j=1[0, b−k j ),
k j ∈ N0, j = 1, . . . , s, whose volume vector is the same as that of A × A. More
precisely, one can find coefficients tk ≥ 0 with

∑
k≥0 tk = Vol(A × A), such that

Vi (A × A) =
∑

k≥0

tkb
2|k|Vi (1k × 1k) for all i ∈ N

s
0. (4)

The coefficients tk are shown in [10] to be given by tk = ∏s
j=1 tk j , where

tk =
{

bVk (A×A)−Vk−1(A×A)

b−1 if k > 0
bV0(A×A)

b−1 if k = 0.
(5)

From here, rather than following the proof in [10], we exploit the fact that the
joint pdf of points (U,V) from a scrambled (0,m, s)−net is a simple function that is
constant on the Di regions. The volume vector simply keeps track of how much the
Di region is covered by A × A, allowing Hn(A) to be written as a linear sum. Since
the joint pdf is a simple function, these sums always have finitely many non-zero
terms. See [10, Sect. 2.3] for more details.

Lemma 1 Let A = [0, x) with x ∈ [0, 1]s , and let tk be the coefficients for which
(4) holds. Then for a scrambled (0,m, s)−net P̃n

Hn(A) =
∑

k≥0

tkb
2|k|Hn(1k). (6)

Proof As shown in [10], we use the (constant) valueψi of the joint pdf ofU,V from
P̃n over Ds

i to compute Hn(A) as

Hn(A) =
∑

i≥0

ψi × Vi (A × A) (7)

and then use (4) to get Hn(A) = ∑
i≥0 ψi

∑
k≥0 tkb

2|k|Vi (1k × 1k) = ∑
k≥0 tkb

2|k|
Hn(1k) where the order of summation can be changed thanks to Tonelli’s theorem.

�

Next, rather than computing Hn(1k) by writing it as an integral involving the joint
pdf associated with (U,V) (as we just did in the proof of Lemma 1), we instead use a
conditional probability argument that allows us to directly connect this probability to
the counting numbers mb(k; Pn) used in [10], which for Pn a digital net, represents
the number of points u j ∈ Pn satisfying γ s

b(ul,u j ) ≥ k for a given l �= j . (For an
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arbitrary Pn , this number depends on � but for a (0,m, s)−net, it is invariant with
�, hence we drop the dependence on � in our notation. Also, since mb(k; Pn) =
mb(k; P̃n), we work with the deterministic point sets when using these counting
numbers.) This is a key step, as it allows us to write Hn(A) as a linear equation
instead of an integral, thereby yielding a linear programming formulation for our
main result, which is to show Hn(A) ≤ Vol(A × A). Specifically, we write

Hn(1k) = P(V ∈ 1k|U ∈ 1k)P(U ∈ 1k) = mb(k; Pn)
n − 1

b−|k|. (8)

If Pn is a (0,m, s)−net in base b, then mb(k; Pn) = max(bm−|k| − 1, 0) [10]. These
counting numbers are also closely connected to the key quantities [10]

Cb(k; Pn) = b|k|mb(k; Pn)
n − 1

.

Combining (6) and (8), we get that for P̃n a scrambled (0,m, s)−net,

Hn(A) =
∑

k≥0

tkb
|k|mb(k; Pn)

n − 1
=
∑

k≥0

tkCb(k; Pn) ≤
∑

k≥0

tk = Vol(A × A), (9)

since Cb(k; Pn) ≤ 1 when Pn is a (0,m, s)−net [10].

4 Decomposing Unanchored Intervals

We now consider the case where A is an unanchored box of the form A =∏s
j=1[a j , A j ), with 0 ≤ a j < A j ≤ 1, j = 1, . . . , s. In Sect. 5, we will prove in

Theorem 3 that for a scrambled (0,m, s)−net, we still have Hn(A) ≤ Vol(A × A)

in this case, which is the main result of this paper. The proof of this result is much
more difficult than in the anchored case because when A is not anchored at the origin,
we cannot always find a conical decomposition of products of elementary intervals
as in (4) that has the same volume vector as A × A.

Before going further, we note that it is sufficient to focus on the decomposition
of one-dimensional intervals A since a box is just a product of intervals. Hence for
the rest of this section, we assume s = 1.

The reason why the decomposition (4) cannot be used for unanchored intervals is
that it may produce coefficients tk that are negative, whichmakes the inequality in (9)
not necessarily true. In turn, this happens because the key property bVi (A × A) ≥
Vi−1(A × A) that holds for an anchored interval A and that is used to show that
tk ≥ 0 in [10] is not always satisfied when A is an unanchored interval. In this
case, the volume vector corresponding to A × A may be such that V0(A × A) > 0,
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V1(A × A) = · · · = Vr−1(A × A) = 0, Vi (A × A) > 0 for i ≥ r . Because of this,
we can see from (5) that some tk may be negative.

To get a decomposition with non-negative coefficients, we introduce a family of
regions of the form Y × Y where Y is not an elementary interval anchored at the
origin. More precisely, for d, k non-negative integers, we define what we call an
elementary unanchored (d, k)−interval

Y (d)
k :=

[
1

bd+1
− 1

b2+k+d
,

1

bd+1
+ 1

b2+k+d

)

.

As a first step, in the following lemma we establish some key properties for the
volume vector corresponding to an unanchored interval A. It is the counterpart to
the property that bVi (A × A) ≥ Vi−1(A × A) for anchored boxes, and shows that
the Vi (A × A)’s do not decrease too quickly with i in the unanchored case, which is
essential to prove the decomposition given in Theorem 1. The proof of this lemma is
in the appendix. Note that this lemma applies to half-open intervals strictly contained
in [0, 1); the interval [0, 1) can be handled using the decomposition from [10], which
was described in the previous section.
Lemma 2 Let A ⊂ [0, 1) be a half-open interval and let r ≥ 1 be the smallest
integer such that we can write A = [hb−r+1 + gb−r − z, hb−r+1 + Gb−r + Z) with
0 ≤ h < b, 1 ≤ g ≤ G ≤ b − 1 and z, Z ∈ [0, b−r ). Then V (A × A) is such that:

1. Vi (A × A) = 0 for i = 0, . . . , r − 2;
2. bVi+1(A × A) ≥ Vi (A × A) for all i ≥ r;
3. Vr−1(A × A) − b(b−2)

b−1 Vr (A × A) ≤ Ṽr (A × A), where Ṽr (A × A) = ∑∞
i=r Vi

(A × A).

The next result establishes that any unanchored interval A in [0, 1) has a volume
vector V (A × A) that can be decomposed into a conical combination of volume
vectors of elementary unanchored (d, k)-intervals Y (d)

k and elementary (anchored)
k−intervals 1k . Its proof is in the appendix.

Theorem 1 Let A ⊆ [0, 1) be a half-open interval. For A �= [0, 1), let r ≥ 1
be the smallest positive integer such that we can write A = [hb−r+1 + gb−r −
z, hb−r+1 + Gb−r + Z) with 0 ≤ h < b, 1 ≤ g ≤ G ≤ b − 1, and z, Z ∈ [0, b−r ).
For A = [0, 1), let r = 1. Then there exists non-negative coefficients (αk)k≥0 and
(τk)k≥0 such that Vol(A × A) = ∑

k≥0(αk + τk) and

V (A × A) =
∞∑

k=0

αk
b2(k+r+1)

4
V (Y (r−1)

k × Y (r−1)
k ) +

∞∑

k=0

τkb
2kV (1k × 1k).
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5 Pairwise Sampling Dependence of Scrambled
(0,m, s)−Nets on Unanchored Boxes

This section contains our main result, which is that scrambled (0,m, s)−nets have a
negative pairwise sampling dependence index.That is, for this construction, Hn(A) ≤
Vol(A × A) for any unanchored box A. To prove this result, we must first provide
a decomposition for Hn(A) that makes use of elementary intervals and elementary
unanchored (d, k)−intervals. To do so, we use the decomposition of an unanchored
interval given in Theorem 1. First, we introduce some notation to denote regions in
[0, 1)2s that will be used repeatedly in this section, starting with those we get from
the decomposition proved in Theorem 1:

D(k, d, J ) :=
∏

j∈J

Y
(d j )

k j
× Y

(d j )

k j

∏

j∈J c

1k j × 1k j , (10)

where J ⊆ {1, . . . , s}. The interval Y (d j )

k j
is decomposed further using

Y
(d j )

k j ,1 :=
[

1

bdj+1 − 1

b2+k j+2 j
,

1

bdj+1

)

, and Y
(d j )

k j ,2 :=
[

1

bdj+1 ,
1

bdj+1 + 1

b2+k j+2 j

)

.

We also make use of the following sub-regions, where I, K ⊆ J :

E(k, d, J, I ) :=
∏

j∈I
1k j+d j+2 × 1k j+d j+2

∏

j∈J c

1k j × 1k j

Ẽ(k, d, J, I, K ) :=
∏

j∈I∩K

Y
(d j )

k j ,2 × Y
(d j )

k j ,2

∏

j∈I∩Kc

Y
(d j )

k j ,1 × Y
(d j )

k j ,1

∏

j∈J c

1k j × 1k j

F(k, d, J, I ) := E(k, d, J, I ) ×
∏

j∈J∩I c

Y
(d j )

k j ,1 × Y
(d j )

k j ,2

F(k, d, J, I, K ) := Ẽ(k, d, J, I, K )
∏

j∈J∩I c∩K

Y
(d j )

k j ,1 × Y
(d j )

k j ,2

∏

j∈J∩I c∩Kc

Y
(d j )

k j ,2 × Y
(d j )

k j ,1 .

The region F(k, d, J, I ) in which a pair of points (U,V) lies will sometimes be
written as the product of the two regions obtained by projecting it over the coordinates
ofU and thenV, using the notation F(k, d, J, I ) = F1(k, d, J, I ) × F2(k, d, J, I ).
That is, Fi (k, d, J, I ) := ∏

j∈I 1k j+d j+2
∏

j∈J c 1k j

∏
j∈J∩I c Y

(d j )

k j ,i
for i = 1, 2.

Next, we define the counting numbersmb(k, d, c, J, I ; Pn). The parameter c ≥ 0
is used to specify the number of initial common digits over the subset I .

Definition 1 For Pn a digital net, let mb(k, d, c, J, I ; Pn) be the number of points
u�, for a given point ui ∈ Pn , which are different from ui and satisfy:
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γb(ui, j , u�, j ) ≥ k j + d j + c if j ∈ I ;
γb(ui, j , u�, j ) ≥ k j if j ∈ J c;
γb(ui, j , u�, j ) = d j if j ∈ J ∩ I c.

The properties stated in the next lemma involve the above regions and will be
useful to prove Theorems 2 and 3. Its proof is in the appendix.

Lemma 3 Let |k|J denote the sum∑ j∈J k j with also |k + 2|J = ∑
j∈J (k j + 2) =

|k|J + 2|J |. Then:
1. Vol(D(k, d, J )) = 22|J |b−2(|k|+|d+2|J ).
2. Vol(F1(k, d, J, I )) = b−(|k|+|d+2|J ).
3. P(V ∈ F2(k, d, J, I )|U ∈ F1(k, d, J, I )) = mb(k,d,2,J,I ;Pn)

n−1
(b−1)|I |−|J |

b|k|J∩I c +|J |−|I | .

4. Wehave D(k, d, J ) = ∪K ,I⊆J F(k, d, J, I, K ) and P((U,V) ∈ F(k, d, J, I ))=
P((U,V) ∈ F(k, d, J, I, K )) for all K , I ⊆ J .

The next result provides us with a key decomposition for Hn(A).

Theorem 2 Let A = ∏s
j=1[a j , A j ) be an unanchored box, where 0 ≤ a j < A j ≤

1, j = 1, . . . , s. For J ⊆ {1, . . . , s} and k ∈ N
s
0 , let α̃k,J = ∏

j∈J α
( j)
k j

∏
j∈J c τ

( j)
k j

,

where the α
( j)
k j

and τ
( j)
k j

come from the decomposition given in Theorem 1 applied to
the interval [a j , A j ), j = 1, . . . , s. In particular, this means α̃k,J ≥ 0 and

∑

k≥0

∑

J⊆{1,...,s}
α̃k,J = Vol(A × A). (11)

Let (U,V) be a randomly chosen pair of points from a point set P̃n. Then

Hn(A) =
∑

k≥0

∑

J⊆{1,...,s}

α̃k,J

Vol(D(k, d, J ))
P((U,V) ∈ D(k, d, J )).

Proof Using Theorem 1 we can write

V (A × A) =
s∏

j=1

⎛

⎝
∑

k j≥0

α
( j)
k j

b2(k j+d j+2)

4
V (Y

(d j )

k j
× Y

(d j )

k j
) +

∑

k j≥0

τ
( j)
k j

b2k j V (1k j × 1k j )

⎞

⎠

=
∑

k≥0

∑

J⊆{1,...,s}

⎛

⎝
∏

j∈J

α
( j)
k j

b2(k j+d j+2)

4

∏

j∈J c
b2k j τ ( j)

k j

⎞

⎠ V (D(k, d, J ))

=
∑

k≥0

∑

J⊆{1,...,s}
α̃k,J2

−2|J |b2(|k|+|d+2|J )V (D(k, d, J ))

=
∑

k≥0

∑

J⊆{1,...,s}

α̃k,J

Vol(D(k, d, J ))
V (D(k, d, J )),
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where the last equality follows from Part 1 of Lemma 3. Then, using the same kind
of reasoning as in Lemma 1, we get

Hn(A) =
∑

k≥0

∑

J⊆{1,...,s}

α̃k,J

Vol(D(k, d, J ))
P((U,V) ∈ D(k, d, J )).

�

It is clear from Theorem 2 that in order to prove that Hn(A) ≤ Vol(A × A), it is
sufficient to prove that P((U,V) ∈ D(k, d, J )) ≤ Vol(D(k, d, J )) for all k, d, J.
That is, the regions D(k, d, J ) correspond to the extreme points in the linear pro-
gramming formulation of our problem.

A key quantity to analyze this probability is the following weighted sum of count-
ing numbers for Pn , where J ⊆ {1, . . . , s} and I ∗ := I ∪ J c:

m̃b(k, d, J ; Pn) := 1

2|J |
∑

I⊆J

b|k|I∗ +|d|J+|J |+|I |(b − 1)|I |−|J |mb(k, d, 2, J, I ; Pn)
n − 1

.

(12)

Theorem 3 Let A be an unanchored box in [0, 1)s . Let Hn(A) and α̃k,J be defined
as in Theorem 2. Let Pn have counting numbers mb(k, d, 2, J, I ; Pn) such that

m̃b(k, d, J ; Pn) ≤ 1, (13)

where m̃b(k, d, J ; Pn) is defined in (12). Then the scrambled point set P̃n is such
that

Hn(A) ≤
∑

k≥0

∑

J⊆{1,...,s}
α̃k,J = Vol(A × A).

Proof Asmentioned earlier, based on Theorem 2, it suffices to show that P((U,V) ∈
D(k, d, J )) ≤ Vol(D(k, d, J )) for all 5-tuples (m, s, k, d, J ), where m ≥ 1, s ≥
1, k ≥ 0, d ≥ 0, J ⊆ {1, . . . , s}. Indeed, if this holds, then from Theorem 2 and
using the fact that α̃k,J ≥ 0, we can derive the inequality

Hn(A) =
∑

k

∑

J

α̃k,J
P((U,V) ∈ D(k, d, J ))

Vol(D(k, d, J ))
≤
∑

k

∑

J

α̃k,J = Vol(A × A),

where the last equality is obtained from (11), also proved in Theorem 2.
To analyze the probability P((U,V) ∈ D(k, d, J )), we use the decomposition of

D(k, d, J ) into the sub-regions F(k, d, J, I ) outlined in Part 4 of Lemma 3:
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P((U,V) ∈ D(k, d, J ))

Vol(D(k, d, J ))
=
∑

I⊆J

2|J | P((U,V) ∈ F(k, d, J, I ))

Vol(D(k, d, J ))

= 1

Vol(D(k, d, J ))
·

·
∑

I⊆J

2|J |P(U ∈ F1(k, d, J, I ))P(V ∈ F2(k, d, J, I )|U ∈ F1(k, d, J, I ))

=
∑

I⊆J

2|J |Vol(F1(k, d, J, I ))

Vol(D(k, d, J ))

mb(k, d, 2, J, I ; Pn)
n − 1

(b − 1)|I |−|J |

b|k+1|J∩I c

=
∑

I⊆J

2|J | b−(|k|+|d+2|J )

22|J |b−2(|k|+|d+2|J )
mb(k, d, 2, J, I ; Pn)

n − 1

(b − 1)|I |−|J |

b|k+1|J∩I c

=
∑

I⊆J

1

2|J | b
|k|I∗ +|d|J+|J |+|I |(b − 1)|I |−|J |mb(k, d, 2, J, I ; Pn)

n − 1

= m̃b(k, d, J ; Pn) ≤ 1,

where the first equality comes from Lemma 3 (Part 4), the third from Lemma 3 (Part
3), the fourth from Lemma 3 (Parts 1, 2), and the last inequality follows from (13).

�

To get to our ultimate goal—which is captured in Theorem 4 and is to prove that
Hn(A) ≤ Vol(A × A) for an unanchored box A for a scrambled (0,m, s)−net—
thanks to Theorem 3 all we need to do is to show that the condition (13) indeed holds
for a (0,m, s)−net. The rest of this section is devoted to this (cumbersome) task.

First we write m̃b(k, d, J ; Pn) = ∑
I ψm(k, d, J, I )/2|I |, where

ψm(k, d, J, I ) := b|k|I∗+|d|J+|J |+|I |(b − 1)|I |−|J |mb(k, d, 2, J, I ; Pn)
n − 1

. (14)

The difficulty that arises when trying to bound the sum (12) by 1 is that some of
the terms (14) can be larger than 1 for certain combinations ofm, k, d, and J . Hence
we need to show that the smaller terms compensate for those larger than 1 so that
overall, the average of these terms is indeed bounded by 1.

Now, we will not work directly with the counting numbers mb(k, d, 2, J, I ; Pn)
and will instead bound them, which in turn will yield a bound on ψm(k, d, J, I ) via
(14) and thus a bound on m̃b(k, d, J ; Pn). To show this bound is no larger than 1.
we break the problem in different cases, depending on the relative magnitude of m
vs. |k|, |d|J and |J |, with resulting bounds shown in Propositions 1, 2 and 3.

The bounds on theψm(k, d, I, J ) terms will make use of the following functions.

Definition 2 Let �, j, i be non-negative integers with j > i . We define

h j,i (�) = b j+i−�

(b − 1) j−i

(
j − i − 1

� − 2i

)

, 2i + 1 < � < j + i, 0 ≤ i < j, (15)
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and g j,i (�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if � ≥ i + j or, if � > 2i and � is even

1 + h j,i (�) if 2i + 1 < � < j + i and � is odd
(

b
b−1

) j−i−1
if � = 2i + 1

0 if � ≤ 2i.

(16)

In some cases, the following bound on gi, j (�) will be enough for our purpose.
(Both Lemmas 4 and 5 are proved in the appendix.)

Lemma 4 Let j > i ≥ 0. Then

gi, j (�) ≤
(

b

b − 1

)i+ j−�

when 2i < � < i + j.

The next lemma gives a bound on ψm(k, d, J, I ) in the case of a (0,m, s)−net.

Lemma 5 If Pn is a (0,m, s)−net, then for I ⊂ J , ψm(k, d, J, I ) satisfies

ψm(k, d, J, I ) ≤ bm

bm − 1
g|J |,|I |(m − |k|I ∗ − |d|J ). (17)

Moreover, when 2|I | < m − |k|I ∗ − |d|J < |J | + |I |, then

ψm(k, d, J, I ) ≤ bm

bm − 1

(
b − 1

b

)m−|k|I∗ −|d|J−|I |−|J |
. (18)

Having found a bound for ψm(k, d, J, I ) for the possible ranges of values for m,
we can now return to the task of bounding the weighted sum m̃b(k, d, J ; Pn). We
start with the easiest case.

Proposition 1 Let Pn be a (0,m, s)−net. If J �= ∅ and m ≥ |k| + |d|J + 2|J | then
m̃b(k, d, J ; Pn) ≤ 1.

Proof In this case,m − |k|I ∗ − |d|J ≥ |I | + |J | for all I (for a given J ) and therefore

m̃b(k, d, J ; Pn) = 1

2|J |
∑

I⊆J

ψm(k, d, J, I ) ≤ 1

2|J |
bm

bm − 1

∑

I⊂J

1 + 1

2|J | ψm(k, d, J, J ),

where the inequality is derived from Lemma 5. Observing that mb(k, d, 2, J, J ; Pn)
= mb(k̃; Pn), where k̃ j := k j if j ∈ J c and k̃ j := k j + d j + 2 if j ∈ J , we get

ψm(k, d, J, J ) = b|k|+|d|J+2|J |mb(k̃; Pn)
n − 1

= b|k|+|d|J+2|J | b
m−|k|−|d|J−2|J | − 1

n − 1
(19)

and therefore obtain
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m̃b(k, d, J ; Pn) ≤ 1

2|J |
bm

bm − 1

∑

I⊂J

1 + 1

2|J | b
|k|+|d|J+2|J | b

m−|k|−|d|J−2|J | − 1

bm − 1

= 2|J | − 1

2|J |
bm

bm − 1
+ 1

2|J |
bm − b|k|+|d|J+2|J |

bm − 1

= 1

2|J |(bm − 1)

(
bm2|J | − b|k|+|d|J+2|J |)

= bm

bm − 1

(
2|J | − b|k|+|d|J+2|J |−m

2|J |

)

.

Therefore m̃b(k, d, J ; Pn) ≤ 1 if bm2|J | − b|k|+|d|J+2|J | ≤ 2|J |(bm − 1), or equiva-
lently, if 2|J | ≤ b|k|+|d|J+2|J |, which is true since b ≥ 2, and |k| + |d|J + 2|J | > |J |.

�

Next, we deal with the more difficult case m < |k| + |d|J + 2|J |, which implies
that the bound given in Lemma 5 forψm(k, d, J, I ) is sometimes larger than 1. Note
that from (19), we see that mb(k̃; Pn) = 0 and thus ψm(k, d, J, J ) = 0 in this case.

To handle this case, we need to analyze the function

G(m, s, J, k, d) =
∑

I⊂J

g|J |,|I |(m − |k|I ∗ − |d|J ),

which we may at times write as

G(m, s, J, k, d)

=
∑

I⊂J :m∗>2|I |+1

1 +
∑

I∈M(J )

h|J |,|I |(m∗) +
∑

I⊂J :m∗=2|I |+1

(
b

b − 1

)|J |−0.5(m∗−1)−1

where m∗ := m − |k|I ∗ − |d|J and M(J ) = {I ⊂ J : 2|I | + 1 < m∗ < |I | + |J |,
m∗odd}.

To show m̃b(k, d, J ; Pn) = ∑
I⊂J ψm(k, d, J, I )/2|J | ≤ 1, from the bound (17)

on ψm(k, d, J, I ) we see it is sufficient to show G(m, s, J, k, d) ≤ 2|J | bm−1
bm since

then

m̃b(k, d, J ; Pn) ≤ 1

2|J |
bm

bm − 1
G(m, s, J, k, d) ≤ 1.

The following lemma will allow us to set d = 0when bounding G(m, s, J, k, d).

Lemma 6 If g0 ≥ 0 is a constant such that G(m, s, J, k, 0) ≤ g0 for all (m, s, J, k),
then G(m, s, J, k, d) ≤ g0 for all (m, s, J, k, d).

Proof Ifm < |d|J thenm∗ < 2|I | for all I ⊂ J and therefore G(m, s, J, k, d) = 0.
If m ≥ |d|J then it is easy to see that G(m, s, J, k, d) = G(m − |d|J , s, J, k, 0),
because (m, s, J, k, d) and (m − |d|J , s, J, k, 0) yield the same m∗ for all I ⊂ J ,
and G(m, s, J, k, d) only depend on m, k, and d through m∗. �
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Based on this result, we set d = 0 in what follows, and consider two different
sub-cases. The respective bounds on G(m, s, J, k, 0) are given in Propositions 2 and
3, which also establish that the condition (13)—stating that m̃b(k, d, J ; Pn) ≤ 1—
holds for each sub-case. Before we state and prove these two propositions, we first
state a technical lemma needed in the proof of Proposition 2, and proved in the
appendix.

Lemma 7 For b ≥ s ≥ 2 and s̃ = 
 s
2� − 1. Then

R(b, s) := 1

2s

s̃∑

j=0

(
s

j

)(
b

b − 1

)s− j

≤ 1.

Proposition 2 Let Pn be a (0,m, s)−net. If J �= ∅ and m < |J | then
G(m, s, J, k, 0) ≤ (b − 1)/b for all k and therefore m̃b(k, 0, J ; Pn) ≤ 1.

Proof The fact that m < |J | implies m − |k|I ∗ < |J | + |I | for all I . Also, if |I | ≥
0.5(|J | − 1), then m − |k|I ∗ ≤ 2|I | for all k and then g|J |,|I |(m − |k|I ∗) = 0. Thus

G(m, s, J, k, 0) ≤
∑

I :|I |<0.5(|J |−1)

g|J |,|I |(m − |k|I ∗).

It turns out that in this case, the simpler but larger bound (18) can be used (since
the only non-zero g|J |,|I |(m − |k|I ∗) terms are those for which 2|I | < m − |k|I ∗ <

|I | + |J |, which means (18) can indeed be applied), so we have

G(m, s, J, k, 0)

≤
∑

I :|I |<0.5(|J |−1)

(
b − 1

b

)m−|k|I∗−|J |−|I |
≤


0.5|J |�−1∑

i=0

(
s

i

)(
b

b − 1

)|J |−i−1

= b − 1

b


0.5|J |�−1∑

i=0

(|J |
i

)(
b

b − 1

)|J |−i

, (20)

where the second inequality comes from the fact thatm − |k|I ∗ > 2|I | implies |J | +
|I | + |k|I ∗ − m ≤ |J | − |I | − 1.

Using Lemma 7 with s = |J |, we get that the sum in (20) is bounded by 1. Hence

m̃b(k, 0, J ; Pn) ≤ 1

2|J |
bm

bm − 1

b − 1

b
< 1, for any |J | ≥ 2,m ≥ 1.

�
The last case we need to deal with is when m is such that |J | ≤ m < |k| + 2|J |.

Let B be the set of pairs (m, k) satisfying this assumption.
To handle this case, we make use of the following two lemmas about

G(m, s, k, J, 0). The first one shows that when k = d = 0 the maximum is reached
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when m = 2|J | − 1. The second one shows it is sufficient to bound G(m, s, J, k, 0)
at k = 0.

Lemma 8 If k = d = 0, then G(m, s, J, 0, 0) ≤ G(2|J | − 1, s, J, 0, 0) = 2|J | − 1
for all m such that (m, 0) ∈ B.
Lemma 9 Consider a pair (m, k) with possibly k �= 0. Then there exists an odd
integer value m̃ such that G(m̃, s, J, 0, 0) ≥ G(m, s, J, k, 0).

Using these two lemmas (proved in the appendix), we get a bound on
G(m, s, J, k, 0) for this last case, which in turn allows us to show that (13) also
holds then.

Proposition 3 Let Pn be a (0,m, s)−net. Assume m is such that |J | ≤ m < |k| +
2|J |. Then G(m, s, J, k, 0) ≤ 2|J | − 1 and therefore m̃b(k, 0, J ; Pn) ≤ 1.

Proof For a given s and J , we need to find a bound forG(m, s, J, k, 0) over all pairs
(m, k) ∈ B, and do so by showing it is maximized when k = 0 and m = 2|J | − 1.

First, from Lemma 9, we have that for a given (m, k) ∈ B, we can find a pair inB
of the form (m̃, 0) such that G(m̃, s, J, 0, 0) ≥ G(m, s, J, k, 0). Hence we can set
k = 0. Next, we use Lemma 8, which shows that for pairs in B of the form (m, 0),
the function G(m, s, J, k, 0) is maximized when m = 2|J | − 1.

Putting these two lemmas together, we get that for a given s and
J , G(m, s, J, k, 0) ≤ G(m̃, s, J, 0, 0) ≤ G(2|J | − 1, s, J, 0, 0) = 2|J | − 1 for all
(m, k) ∈ B. Hence

m̃b(k, d, J ; Pn) ≤ 1

2|J |
bm

bm − 1
(2|J | − 1) = bm

bm − 1

2|J | − 1

2|J | ≤ 1,

which holds since 2|J | ≤ bm , as b ≥ 2, and m ≥ |J |. �

Having examined all possible cases, we can now state our main result.

Theorem 4 If P̃n is a scrambled (0,m, s)−net in base b, then Hn(A) ≤ Vol(A × A)

for any unanchored box A ∈ A, and thus its pairwise sampling dependence index
satisfies En(P̃n) ≤ 0.

Proof Using Theorem 3, we need to show that m̃b(k, d, J ; Pn) ≤ 1 for all k, d, J
for a (0,m, s)−net Pn , i.e., that condition (13) holds for a (0,m, s)−net. First, from
Proposition 1, if J �= ∅ and m ≥ |k| + |d|J + 2|J | then

m̃b(k, d, J ; Pn) ≤ bm

bm − 1

(
2|J | − b|k|+|d|J+2|J |−m

2|J |

)

≤ 1.

Next, from Proposition 2 we have that if J �= ∅ and m < |J | then

m̃b(k, d, J ; Pn) ≤ bm

bm − 1

1

2|J |
b − 1

b
≤ 1.
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Then, using Proposition 3 we get that if 0 < |J | < m < |k| + |d|J + 2|J | then

m̃b(k, d, J ; Pn) ≤ bm

bm − 1

2|J | − 1

2|J | ≤ 1.

Finally, if J = ∅ then

m̃b(k, d, J ; Pn) = P((U,V) ∈ D(k, d, J ))

Vol(D(k, d, J ))
= 1

b−2|k| b
−|k|max(bm−|k| − 1, 0)

bm − 1

= b|k|max(bm−|k| − 1, 0)

bm − 1
= Cb(k; Pn),

which was shown to be smaller or equal to 1 in [10] for a (0,m, s)−net. �

Using Theorem 4, we obtain the following result, which shows that a scrambled
net integrates the indicator function 1A of any unanchored box A with variance no
larger than the Monte Carlo estimator variance. To our knowledge, this was not
previously known. What is well known is that since A is an axis-parallel box, then
1A has bounded variation in the sense of Hardy and Krause and therefore a scrambled
net has variance in O(n−2(log n)s) [9].

Proposition 4 Let A be an unanchored box in [0, 1)s . Let μ̂n,A be the estimator for
μA = E(1A) = Vol(A) based on a scrambled (0,m, s)−net in base b with n = bm.
Then Var(μ̂n,A) ≤ μA(1 − μA)/n.

Proof The result follows from the fact that Var(μ̂n,A) = μA(1 − μA)/n +
(Hn(A) − μ2

A)(n − 1)/n, and then applying Theorem 4 to show that (Hn(A) −
μ2

A) ≤ 0. �

6 The Scrambling Advantage

We now give an example showing the advantage of scrambling over a digital shift,
which is a simpler randomization. It uses a point set Pn with Cb(k; Pn) ≤ 1 such
that P((U,V) ∈ A × A) > Vol(A × A) for an anchored box A, for (U,V) a pair of
distinct points randomly chosen from the digitally shifted point set P̃dig

n . So even
the less restrictive condition En,0(P̃

dig
n ) ≤ 0 is not met. On the other hand, since

Cb(k; Pn) ≤ 1, Theorem 4.16 in [10] implies that P(U ∈ A,V ∈ A) ≤ Vol2(A) for
(U,V) randomly chosen from the scrambled point set P̃n .

Example Consider the two-dimensional point set Pn = {(i/5, i/5), (i/5, ((i +
1) mod 5)/5), i = 0, . . . , 4}. We first verify that Cb(k; Pn) ≤ 1: this clearly holds
for k = 0. For k ∈ {(1, 0), (0, 1)}, we have Cb(k; Pn) = 5 × 1/9. And for k with
|k| ≥ 2 we have Cb(k; Pn) = 0. Now consider the box A = [0, 1/10) × [0, 2/5).
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Let us compute P((U,V) ∈ A × A), where (U,V) is a pair of distinct points ran-
domly chosen from P̃dig

n , where P̃dig
n = Pn + v, where the addition is done dig-

itwise and v ∼ U (0, 1)2. Let v = (v1, v2) with v j = 0.v j,1v j,2 . . ., j = 1, 2. Then
we see that among the 52 possibilities for (v1,1, v2,1), one point from P̃dig

n will
be in the square [0, 1/5) × [0, 1/5) and one in the square [0, 1/5) × [1/5, 2/5)
if and only if v1,1 = v2,1, which happens with probability 1/5. Given that this
happens, then it should also be clear that both points in that pair will be in A
if and only if (0.0v1,2v1,3 . . . , 0.0v2,2v2,3 . . .) ∈ [0, 1/10) × [0, 1/5), which hap-
pens with probability 1/2 since v ∼ U (0, 1)2. Putting this all together, we get
P((U,V) ∈ A × A) = 1

5
1
45

1
2 = 1

450 , where the fraction 1/45 corresponds to the
probability of choosing the pair of points falling in the squares (0,0) and (0,1)
among the 45 different (unordered) pairs. Since Vol(A) = 1/25, we have that
P((U,V) ∈ A × A) > (Vol(A))2 = 1/625.

7 Future Work

In this paper, we have introduced ameasure of uniformity for randomizedQMCpoint
sets that compares them to random sampling. This pairwise sampling dependence
index was shown to be no larger than 0 for scrambled (0,m, s)−nets, thus extending
from anchored boxes to unanchored boxes themain result from [10]. For future work,
we plan to try to extend our proof to the first n points of a scrambled (0, s)−sequence.
We also plan to explore how this result can lead to new bounds for the variance of
scrambled (0,m, s)−nets in terms of the Monte Carlo variance for some functions.
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Appendix: Proofs and Technical Lemmas

We first prove results stated in the main part of the paper. These proofs make use of
Lemmas 10 to 15, which are presented in the second part of the appendix.

Proof (of Lemma 2) In what follows, we will use the notation x� to represent the
�th digit in the base b representation of x ∈ [0, 1), i.e., x = ∑

�≥1 x�b−�, and the
corresponding notation x = 0.x1x2x3 . . ..

First, we decompose A into three parts as A1 = [hb−r+1 + gb−r −
z, hb−r+1 + gb−r ), A2 = [hb−r+1 + Gb−r , hb−r+1 + Gb−r + Z), A3 =
[hb−r+1 + gb−r , hb−r+1 + Gb−r ). Hence we have
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Vi (A × A) =
3∑

�=1

Vi (A� × A�) + 2(Vi (A1 × A2) + Vi (A1 × A3) + Vi (A2 × A3)), i ≥ 0. (21)

Since A1 and A2 are both completely contained in the respective inter-
vals [hb−r+1 + (g − 1)b−r , hb−r+1 + gb−r ) and [hb−r+1 + Gb−r , hb−r+1 + (G +
1)b−r ), any x in A1 is of the form0.h1 . . . hr−1(g − 1)xr+1xr+2 . . .. Similarly, y ∈ A2

is of the form 0.h1 . . . hr−1(G)yr+1yr+2 . . .. On the other hand, for z ∈ A3 we have
that zi = hi for i ≤ r − 1, zr ∈ {g, . . . ,G − 1}, and z� ≥ 0 for � > r . From this we
infer:

1. No pair of points from A1 or A2 can have less than r initial common digits, thus
Vi (A� × A�) = 0 for i = 0, . . . , r − 1 and � = 1, 2.

2. No pair of points from A3 can have less than r − 1 initial common digits, thus
Vi (A3 × A3) = 0 for i = 0, . . . , r − 2.

3. A pair of points from any two of the following subsets: A1, A2, [hb−r+1 + βb−r ,

hb−r+1 + (β + 1)b−r ) ⊆ A3, where β = g, . . . ,G − 1 has exactly r − 1 initial
common digits, thus Vr−1(A j × A�) = Vol(A j )Vol(A�) for j �= �, Vr−1(A3 ×
A3) = (G − g)(G − g − 1)b−2r and Vi (A j × A�) = 0 for i ≥ r, j �= �.

Note that this implies that Ṽr (Ai × Ai ) = Vol2(Ai ) for i = 1, 2, and (using item (3))
Ṽr (A3 × A3) = Vol2(A3) − Vr−1(A3 × A3) = (G − g)b−2r .

The above statements also allow us to simplify (21) as follows:

Vr−1(A × A) = Vr−1(A3 × A3) + 2
∑

1≤i<�≤3

Vr−1(Ai × A�)

= Vr−1(A3 × A3) + 2
∑

1≤i<�≤3

Vol(Ai )Vol(A�) (22)

Vi (A × A) =
3∑

�=1

Vi (A� × A�) i ≥ r. (23)

To prove (ii), consider the mappings ϕ j : [0, 1) → [0, 1), 1 ≤ j ≤ 3 defined as:

ϕ1(hb
−r+1 + gb−r − x) = 1 − x, 0 ≤ x < b−r

ϕ2(hb
−r+1 + Gb−r + x) = x, 0 ≤ x < b−r

ϕ3(hb
−r+1 + gb−r + x) = x, 0 ≤ x < (G − g)b−r .

All three are isometric mappings and such that ϕ1(A1) = [1 − z, 1), ϕ2(A2) =
[0, Z), and ϕ3(A3) = [0, (G − g)b−r ). Also, since ϕ j simply amounts to chang-
ing the first r digits of a point in A j (and applies the same change to all points in
A j ), it implies

γb(ϕ j (ν j,�), ϕ j (ν j,h)) = γb(ν j,�, ν j,h), j = 1, 2, 3,
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where ν1,� = hb−r+1 + gb−r − x, ν1,h = hb−r+1 + gb−r − y, ν2,� = hb−r+1 +
Gb−r + x, ν2,h = hb−r+1 + Gb−r + y, and ν3,� = hb−r+1 + gb−r + w, ν3,h =
hb−r+1 + gb−r + z. Therefore

Vi (A1 × A1) = Vi (ϕ1(A1) × ϕ1(A1)) = Vi ([1 − z, 1) × [1 − z, 1)) = Vi ([0, z), [0, z))
Vi (A2 × A2) = Vi (ϕ2(A2) × ϕ2(A2)) = Vi ([0, Z) × [0, Z))

Vi (A3 × A3) = Vi (ϕ3(A3) × ϕ2(A3)) = Vi ([0, (G − g)b−r ) × [0, (G − g)b−r )).

These intervals, being anchored at the origin, satisfy the assumptions of Lemma
2.6 from [10], which implies bVi+1(A j × A j ) − Vi (A j × A j ) ≥ 0 for j = 1, 2, 3
and i ≥ 0. Combining this with (23), property (ii) in the statement of Lemma 2 is
established.

For (iii), let us first assume g = G, and thus A3 = ∅. Then, using
(22), we get Vr−1(A × A) = 2Vol(A1 × A2). Furthermore, Ṽr (A, A) = Ṽr (A1 ×
A1) + Ṽr (A2 × A2) = Vol2(A1) + Vol2(A2). Since 2Vol(A1 × A2) ≤ Vol2(A1) +
Vol2(A2), (iii) is proved.

Now assume g < G. In this case, we need to further refine A1 and A2 as:

A1 = [hb−r+1 + gb−r − db−(r+1) − f, hb−r+1 + gb−r )

A2 = [hb−r+1 + Gb−r , hb−r+1 + Gb−r + Db−(r+1) + F),

where 0 ≤ d, D ≤ b − 1, f, F ∈ [0, b−(r+1)). Using (22) and (23), we then write

Vr−1(A × A) = Vr−1(A3 × A3) + 2
∑

1≤i<�≤3

Vol(Ai )Vol(A�)

= (G − g)(G − g − 1)

b2r
+ 2

((
d

br+1
+ f

)(
D

br+1
+ F

)

+G − g

br

(
d

br+1
+ f

)

+ G − g

br

(
D

br+1
+ F

))

Vr (A × A) =
3∑

�=1

Vr (A� × A�) = Vr (A1 × A1) + Vr (A2 × A2) + G − g

b2r
b − 1

b

= (d − 1)d

b2(r+1)
+ 2 f d

br+1
+ (D − 1)D

b2(r+1)
+ 2FD

br+1
+ G − g

b2r
b − 1

b

Ṽr (A × A) =
(

d

br+1
+ f

)2

+
(

D

br+1
+ F

)2

+ G − g

b2r
.

The last equality for Vr (A × A) is obtained by observing that for (x, y) to be in
Vr (A1 × A1), either (i) x = 0.h1 . . . hr−1(g − 1)d1 . . . and y = 0.h1 . . . hr−1(g −
1)d2 . . . with d1 �= d2 ∈ {0, . . . , d − 1}, or (ii) one of them is of the form
z1 + (0.h1 . . . hr−1(g − 1)d) with z1 ∈ [0, f ) and the other is of the form
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0.h1 . . . hr−1(g − 1)d1 . . . with d1 ∈ {0, . . . , d − 1}. Case (i) contributes a volume
of size (d − 1)db−2(r+1) and case (ii) contributes 2 f db−(r+1). A similar argument
can be used to derive Vr (A2 × A2).

Therefore Vr−1(A × A) − b(b−2)
b−1 Vr (A × A) ≤ Ṽr (A × A) holds if

(G − g)(G − g − 1)

b2r
+ 2

(
G − g

br

(
d + D

br+1 + f + F

))

+ 2

(
d

br+1 + f

)(
D

br+1 + F

)

−b(b − 2)

b − 1

(
(d − 1)d

b2(r+1)
+ 2 f d

br+1 + (D − 1)D

b2(r+1)
+ 2FD

br+1 + G − g

b2r
b − 1

b

)

≤
(

d

br+1 + f

)2

+
(

D

br+1 + F

)2

+ G − g

b2r
. (24)

Since

2

(
d

br+1
+ f

)(
D

br+1
+ F

)

≤
(

d

br+1
+ f

)2

+
(

D

br+1
+ F

)2

it means that to prove (24) it is sufficient to show that

(G − g)(G − g − 1)

b2r
− (b − 2)

G − g

b2r
+ 2

(
G − g

br

(
d + D

br+1
+ f + F

))

− b(b − 2)

b − 1

(
(d − 1)d

b2(r+1)
+ 2 f d

br+1
+ (D − 1)D

b2(r+1)
+ 2FD

br+1

)

≤ G − g

b2r
,

or equivalently, that

− b2(G − g)(b − (G − g)) + 2b(G − g)
(
d + D + br+1( f + F)

)

− b(b − 2)

b − 1

(
(d − 1)d + 2 f dbr+1 + (D − 1)D + 2FDbr+1

) ≤ 0. (25)

Note that G − g ≤ b − 2 by assumption. We proceed by considering three cases:
Case 1: G − g ≤ b − 4. This implies b − (G − g) ≥ 4 (and thus b ≥ 4). Also, to
handle this case we use the fact that 0 ≤ f br+1, Fbr+1 < 1. By making appropriate
substitutions for f and F , we see that to prove (25) holds it is sufficient to show that

−4b2(G − g) + 2b(G − g)(d + D + 2) − b(b − 2)

b − 1
(d(d − 1) + D(D − 1)) ≤ 0

which holds because d + D + 2 ≤ 2b.
Case 2: G − g = b − 3 First note that this implies b ≥ 3. Next, we replace G − g
with b − 3 in (25) and divide each term by b. For this case, we can use the bound
0 ≤ f br+1, Fbr+1 < 1 and by substituting appropriately, it means it is sufficient to
show
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−3b(b − 3) + 2(b − 3)(d + D + 2) − b − 2

b − 1
(d(d − 1) + D(D − 1)) ≤ 0.

We view the LHS as the sum of two quadratic polynomials, p(d) and p(D), and thus
argue it is sufficient to show that

p(d) := −(b − 2)

b − 1
d2 + d

(

2(b − 3) + b − 2

b − 1

)

− (b − 3)(3b/2 − 2) ≤ 0.

We will show this holds by finding the value dmax of d that maximizes p(d) and
show that p(dmax ) ≤ 0. We have that

p′(d) = −2d
b − 2

b − 1
+ 2(b − 3) + b − 2

b − 1
.

Therefore

dmax =
(

2(b − 3) + b − 2

b − 1

)
b − 1

2(b − 2)
= (b − 3)(b − 1)

b − 2
+ 1

2
.

Hence dmax ∈ (b − 2.5, b − 1.5). Thus it is sufficient to show p(b − 2) ≤ 0. Now,

p(b − 2) = − (b − 2)3

b − 1
+ (b − 2)

(

2(b − 3) + b − 2

b − 1

)

− (b − 3)(3b/2 − 2)

therefore

(b − 1)p(b − 2) = −(b − 2)3 + 2(b − 1)(b − 2)(b − 3) + (b − 2)2

−
(
3b

2
− 2

)

(b − 3)(b − 1)

= (3 − b)(b2 − 3b + 4)/2 = (3 − b)(b(b − 3) + 4)/2 ≤ 0

since b ≥ 3.
Case 3: G − g = b − 2

In this case (25) becomes

− 2b2(b − 2) + 2b(b − 2)(d + D + ( f + F)br+1)

− b(b − 2)

b − 1

(
d(d − 1) + D(D − 1) + 2br+1( f d + FD)

) ≤ 0

⇔ − 2b + 2(d + D + ( f + F)br+1)

− 1

b − 1

(
d(d − 1) + D(D − 1) + 2br+1( f d + FD)

) ≤ 0.
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As in the case G − g = b − 3, we argue it is sufficient to show each of the quadratic
polynomials in d and D on the LHS (which are the same) is bounded from above by
0. That is, we need to show

q(d) := −d2

b − 1
+ d

(

2 + 1

b − 1
− 2 f br+1

b − 1

)

− (b − 2 f br+1) ≤ 0.

Now

q ′(d) = −2d

b − 1
+ 2 + 1

b − 1
− 2 f br+1

b − 1

and thus dmax =
(
2 + 1

b−1 − 2 f br+1

b−1

)
b−1
2 = b − 0.5 − f br+1, which implies dmax ∈

(b − 1.5, b − 0.5). Thus it is sufficient to show q(b − 1) ≤ 0. We have that

q(b − 1) = −(b − 1) + (b − 1)

(

2 + 1

b − 1
− 2 f br+1

b − 1

)

− (b − 2 f br+1)

= (b − 1) + 1 − 2 f br+1 − b + 2 f br+1 = 0

as required. �

Proof (of Theorem 1) To simplify the notation, we define Zk := b2kV (1k × Ik) and
(W (r−1)

k := (b2(k+r+1)/4)V (Y (r−1)
k × Y (r−1)

k ) to be the (normalized) volume vectors
of k−elementary intervals and elementary unanchored (k, r − 1)−intervals, respec-
tively. Since the coordinates of each of these vectors are positive and sum to one,
V (A × A) = ∑

k≥0(αk + τk) follows immediately from the last equality in the state-
ment of the theorem.

Based on the definition of Y (r−1)
k , the vectors W (r−1)

k satisfy, for i ≥ 0, r ≥ 1,

W (r−1)
i,k =

⎧
⎪⎨

⎪⎩

1/2 if i = r − 1

(b − 1)/2bi−(k+r) if i ≥ k + r + 1

0 otherwise,

while

Zi,k =
{
0 if i < k

(b − 1)/bi−k+1 if i ≥ k.

Note that

W (r−1)
r−1,k = 1/2 for all k ≥ 0 (26)

W (r−1)
i,k = Zi,k+r+1/2 for i ≥ k + r + 1. (27)
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There are two cases to consider. First, if Vr−1(A × A) ≤ bVr (A × A), then based
on Properties (i) and (ii) from Lemma 2 we can decompose V (A × A) solely with
the Zk’s , i.e., we set αk = 0 for all k and

τk = bVk(A × A) − Vk−1(A × A)

b − 1
k ≥ r − 1

and τk = 0 if 0 ≤ k ≤ r − 2. Note that A = [0, 1) fits into this first case.
Second, if Vr−1(A × A) ≥ bVr (A × A), then we first decompose the vector∑∞
k=r Vk(A × A)ek , where ek is a (canonical) vector of zeros with a 1 in position k,

(note that this agrees with the vector V (A × A) everywhere except on index r − 1,
where it has a 0 instead of Vr−1(A × A)) as

∞∑

k=r

Vk(A × A)ek =
∞∑

k=r

τ̄k Zk

with τ̄r = bVr (A × A)/(b − 1) ≥ 0, τ̄k = 0 if k < r (from Part (i) of Lemma 2), and

τ̄k = bVk(A × A) − Vk−1(A × A)

b − 1
k ≥ r + 1.

From Lemma 2 we know τ̄k ≥ 0 for k ≥ r + 1. Note that bτ̄r Zr−1 − τ̄r Zr =
bVr (A × A)er−1, i.e., bτ̄r Zr−1 agrees with τ̄r Zr everywhere except on index r − 1.
Therefore

V (A × A) − bτ̄r Zr−1 −
∞∑

k=r+1

τ̄k Zk = (Vr−1(A × A) − bVr (A × A))er−1.

Hence the
∑∞

k=0 αkW
(r−1)
k part of the decomposition is only needed to decompose

Vr−1(A × A) − bVr (A × A). We claim there exists ᾱk ≥ 0, k ≥ r + 1 such that

Vr−1(A × A) − bVr (A × A) =
∞∑

k=r+1

ᾱk/2, (28)

and such that ᾱk/2 ≤ τ̄k for k ≥ r + 1. This can be seen using Part (iii) of Lemma
2. Indeed, to ensure the existence of these ᾱk’s, we need to prove that

Vr−1(A × A) − bVr (A × A) ≤
∑

k=r+1

τ̄k . (29)

Now,
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∑

k=r+1

τ̄k =
∞∑

k=r+1

bVk(A × A) − Vk−1(A × A)

b − 1

= Ṽr+1(A × A) − Vr (A × A)

b − 1
= Ṽr (A × A) − Vr (A × A) − Vr (A × A)

b − 1
.

Therefore, (29) holds if and only if

Vr−1(A × A) − bVr (A × A) ≤ Ṽr (A × A) − Vr (A × A) − Vr (A × A)

b − 1

which holds if and only if Vr−1(A × A) ≤ Ṽr (A × A) + b(b−2)
b−1 Vr (A × A), which

is precisely what Part (iii) of Lemma 2 shows. Having proved the existence of
non-negative coefficients ᾱk satisfying (28) implies we can write Vr−1(A × A) −
bVr (A × A) = ∑∞

k=r+1 ᾱkW
(r−1)
r−1,k−(r+1) by using (26). Hence all that is left to do is

to find the combination of Zk’s that can cancel out
∑∞

k=r+1 ᾱkW
(r−1)
i,k−(r+1) for i ≥ r + 1

(we can ignore the case i = r becauseW (r−1)
r,k−(r+1) = 0 for all k ≥ r + 1). This is done

by using (27), which implies that

∞∑

k=r+1

ᾱkW
(r−1)
i,k−(r+1) =

∞∑

k=r+1

(ᾱk/2)Zi,k .

Hence the final decomposition is given by

V (A × A) =
∞∑

k=r+1

ᾱkW
(r−1)
k−(r+1) + bτ̄r Zr−1 +

∞∑

k=r+1

(τ̄k − ᾱk/2)Zk

=
∞∑

k=0

αkW
(r−1)
k +

∞∑

k=0

τk Zk

with αk = ᾱk+(r+1), k ≥ 0, τk = τ̄k − ᾱk/2, k ≥ r + 1, τr−1 = bτ̄r and τk = 0 for
0 ≤ k ≤ r − 2, k = r . �

Proof (of Lemma 3) (1) From the definition of D(k, d, J ), we have that

Vol(D(k, d, J )) = b−2|k|Jc 22|J |b−2(|k+d+2|J ) = 22|J |b−2(|k|+|d+2|J ).

(2) Similarly, from the definition of F1(k, d, J, I ) we get

Vol(F1(k, d, J, I )) = b−|k|Jc b−(|k+d+2|J ) = b−(|k|+|d+2|J ).

(3) This conditional probability is given by η/n − 1, where η is the number of points
u� with � �= i that are in F2 if ui ∈ F1. Hence for j ∈ I wemust have γb(ui, j , u�, j ) ≥
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k j + d j + 2; for j ∈ I cwemust haveγb(ui, j , u�, j ) ≥ k j . For j ∈ J ∩ I c, the require-
ment that ui, j ∈ F1 means u�, j must satisfy:

(a) it must have the same first d j digits as ui, j ;
(b) its (d j + 1)th digit must be 1 (while the (d j + 1)th digit of ui, j is 0);
(c) the digits u�, j,r for d j + 2 ≤ rd j + k j + 2 must be 0

If we only had to satisfy requirement (a), then we would have η = mb(k, d, 2, J, I ).
However, the requirements (b) and (c) imply

η = mb(k, d, 2, J, I )
∏

j∈J∩I c

1

b − 1

1

bk j+1 ,

where the term1/(b − 1)handles restriction (b)while the termb−k j−1 handles restric-
tion (c). Therefore

P(V ∈ F2(k, d, J, I )|U ∈ F1(k, d, J, I )) = mb(k, d, 2, J, I )

n − 1

(
1

b − 1

)|J |−|I | 1

b|k+1|J∩I c

= mb(k, d, 2, J, I )

n − 1

(b − 1)|I |−|J |
b|k|J∩I c+|J |−|I | .

(4) The decomposition ∪K ,I⊆J F(k, d, J, I, K ) is obtained by expanding each Y
(d j )

k j

as Y
(d j )

k j ,1 ∪ Y
(d j )

k j ,2 . Then, we need to prove that for K1, K2 ⊆ J ,

P(U,V) ∈ F(k, d, J, I, K1) = P(U,V) ∈ F(k, d, J, I, K2). (30)

Noting that the equality (7) can be generalized to P((U,V) ∈ R) = ∑
i≥0 ψiVi (R), it

is clear that to prove (30), it is sufficient to show that the volumevectors corresponding
to F(k, d, J, I, K1) and F(k, d, J, I, K2) are equal. To do so, since each entry
Vi (R) = ∏s

j=1 Vi j (R j ) (where for R = R1 × R2 we write R j = R1, j × R2, j ), it is

sufficient to show that for fixed k and d, V11 := V (Y (d)
k,1 × Y (d)

k,1 ) = V (Y (d)
k,2 × Y (d)

k,2 ) =:
V2,2 and V12 := V (Y (d)

k,1 × Y (d)
k,2 ) = V (Y (d)

k,2 × Y (d)
k,1 ) =: V2,1. But this follows from an

argument similar to the one used in the proof of Lemma 4.14 in [10], which we adapt
for our setup. First we introduce the set F = {ab−k : a ∈ Z, k ∈ N} ⊆ R which has
Lebesgue measure 0. Then, we argue that for x, y ∈ (0, b−(k+d+2)) ∩ F c, we have

γb

(
1

bd+1
− x,

1

bd+1
− y

)

= γb

(
1

bd+1
+ x,

1

bd+1
+ y

)

γb

(
1

bd+1
− x,

1

bd+1
+ y

)

= γb

(
1

bd+1
+ x,

1

bd+1
− y

)

.

Therefore, for (x, y) ∈ Y (d)
k × Y (d)

k , Di is, up to a set of measure 0, invariant under
the transformation (x, y) �→ (

2
bd+1 − x, 2

bd+1 − y
)
. This transformation maps Y (d)

k,1 ×
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Y (d)
k,1 to Y (d)

k,2 × Y (d)
k,2 (and vice-versa) and Y (d)

k,1 × Y (d)
k,2 to Y (d)

k,2 × Y (d)
k,1 (and vice-versa).

Therefore V11 = V22, and V12 = V21, as required. �

Proof (of Lemma 4) First, if � = 2i + 1, then

gi, j (�) =
(

b

b − 1

) j−i−1

≤
(

b

b − 1

)i+ j−�

and (
b

b − 1

)i+ j−�

=
(

b

b − 1

)i+1− j

so in this case we actually have an equality, i.e.,

gi, j (�) =
(

b

b − 1

)i+ j−�

.

If 2i < � < i + j and � is even, then

(
b

b − 1

)i+ j−�

≥ 1 = g j,i (�)

since � < i + j . If 2i < � < i + j and � is odd, then we must show that

1 + b j+i−�

(b − 1) j−i

(
j − i − 1

� − 2i

)

≤
(

b

b − 1

)i+ j−�

. (31)

Now let k = � − 2i and r = j − i . This means k is odd and k > 1, and also k < r ≤
j ≤ s which means r ≥ 4. Using this notation, (31) is equivalent to

bk
(
b − 1

b

)r

+
(
r − 1

k

)

≤ (b − 1)k and thus to

(
b − 1

b

)r−k

+
(r−1

k

)

(b − 1)k
≤ 1.

(32)
Now,

(
b − 1

b

)r−k

=
r−k∑

j=0

(
r

j

)(−1

b

) j

and
(r
j

)
/b j is decreasing with j , therefore

(
b − 1

b

)r−k

≤ 1 − r − k

b
+ (r − k)(r − k − 1)

2b2
,

because the condition that k > 1 and k is odd implies k ≥ 3. Therefore a sufficient
condition for the second inequality in (32) to hold is if we have
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1 − r − k

b
+ (r − k)(r − k − 1)

2b2
+ (r − 1)(r − 2) . . . (r − k)

(b − 1)(b − 1) . . . (b − 1)

1

k! ≤ 1

which holds iff
(r − k)(r − k − 1)

2b2
+ (r − 1)(r − 2) . . . (r − k)

(b − 1)(b − 1) . . . (b − 1)

1

k! ≤ r − k

b

which holds iff
r − k − 1

2b
+ (r − 1)(r − 2) . . . (r − k + 1)

(b − 1)(b − 1) . . . (b − 1)

b

b − 1

1

k! ≤ 1. (33)

Now,
r − k − 1

2b
<

1

2
⇔ r − k − 1 < b,

and the latter inequality holds since b ≥ s ≥ r and k ≥ 3. Also,

r − k + 1

2(b − 1)
≤ 1

2
⇔ r − k + 1 ≤ b − 1 ⇔ r + 2 − k ≤ b

and the latter inequality holds since k ≥ 3 and b ≥ s ≥ r . Therefore, for k ≥ 3 the
LHS of (33) is bounded (strictly) from above by

1

2
+ 1

2

(r − 1)(r − 2) . . . (r − k + 2)

(b − 1)(b − 1) . . . (b − 1)

b

b − 1

1

k(k − 1) . . . 3
< 1

because
(r − 1)(r − 2) . . . (r − k + 2)

(b − 1)(b − 1) . . . (b − 1)
≤ 1

since b ≥ s ≥ r and
b

b − 1

1

k(k − 1) . . . 3
≤ 4

3
× 1

3
< 1

since b/(b − 1) decreases with b, and the condition 1 < k < r ≤ s with k ≥ 3means
we can assume b ≥ s ≥ r ≥ 4. This proves that (32) holds. �

Proof (of Lemma 5) (i) Using Lemma 12 with c = 2 (which implies c|I | + |I ∗c| =
|J | + |I |), we first consider the case wherem − |k|I ∗ − |d|J ≥ |I | + |J |. In this case

m(k, d, 2, J, I ) = (b − 1)|J |−|I |bm−|k|I∗ −|d|J−|J |−|I |.

Hence if m − |k|I ∗ − |d|J ≥ |I | + |J |, then

ψm(k, d, J, I ) = (b − 1)|J |−|I |

n − 1
bm−|k|I∗ −|d|J−|J |−|I |b|k|I∗ +|d|J+|J |+|I |(b − 1)|I |−|J |

= bm

bm − 1
.

(ii) Next, again based on Lemma 12, we consider the case 2|I | + 1 < m − |k|I ∗ −
|d|J < |I | + |J |. First, if m − |k|I c − |d|J is odd and m − |k|I c − |d|J > 2|I | + 1,
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then

m(k, d, 2, J, I ) ≤
(

bm−|k|I∗−|d|J−2|I |
(
b − 1

b

)|J |−|I |
+
( |J | − |I | − 1

m − |k|I ∗ − |d|J − 2|I |
))

.

(34)

Hence in that case

ψm (k, d, J, I ) ≤ 1

bm − 1
b|k|I∗+|d|J+|J |+|I |(b − 1)|I |−|J |

·
(

bm−|k|I∗−|d|J−2|I |
(
b − 1

b

)|J |−|I |
+
( |J | − |I | − 1

m − |k|I∗ − |d|J − 2|I |
))

= 1

bm − 1

(

bm + b|k|I∗+|d|J+|J |+|I |(b − 1)|I |−|J |
( |J | − |I | − 1

m − |k|I∗ − |d|J − 2|I |
))

= bm

bm − 1

(

1 + b|J |+|I |−(m−|k|I∗−|d|J )

(b − 1)|J |−|I |
( |J | − |I | − 1

m − |k|I∗ − |d|J − 2|I |
))

.

A similar calculation shows that if m − |k|I ∗ − |d|J is even then

ψm(k, d, J, I ) ≤ bm

bm − 1
.

If m − |k|I c − |d|J − 2|I | = 1, then from Lemma 12 we know that
m(k, d, 2, J, I ) = (b − 1), and thus

ψm(k, d, J, I ) = 1

bm − 1
b|k|I∗+|d|J+|J |+|I |(b − 1)|I |−|J |(b − 1)

= bm

bm − 1
b|J |−|I |−1(b − 1)1+|I |−|J | = bm

bm − 1

(
b

b − 1

)|J |−|I |−1

.

Combining these three cases, we get that for 2|I | < m − |k|I ∗ − |d|J < |J | + |I |,

ψm(k, d, J, I ) = bm

bm − 1
g|J |,|I |(m − |k|I ∗ − |d J )

with

g|J |,|I |(m − |k|I ∗ − |d J )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + h|J |,|I |(m − |k|I ∗ − |d|J ) ifm − |k|I ∗ − |d|J > 2|I | + 1

andm − |k|I ∗ − |d|J is odd
(

b
b−1

)|J |−|I |−1
ifm − |k|I ∗ − |d|J = 2|I | + 1

1 ifm − |k|I ∗ − |d|J is even,

where
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h j,i (�) = b j+i−�

(b − 1) j−i

(
j − i − 1

� − 2i

)

.

(iii) When m − |k|I ∗ − |d|J ≤ 2|I |, then m(k, d, 2, J, I ) = 0 and therefore we
can set g|J |,|I |(m − |k|I ∗ − |d|J ) = 0. �

Proof (of Lemma 7) First we observe that

R(b, s) =
(

b

2(b − 1)

)s

Ps̃,s((b − 1)/b),

where Pm,n(z) is the polynomial defined in Lemma 10, and recall that s̃ = 
s/2� − 1.
In the notation of (41), z = (b − 1)/b, z/(z + 1) = (b − 1)/(2b − 1), and 1 + z =
(2b − 1)/b. Therefore

R(b, s) =
(

b

2(b − 1)

)s (2b − 1

b

)s

Pr

(

X >
b − 1

2b − 1

)

,

where X is a Beta rv with parameters s̃ + 1, s − s̃. Now, it is known that a beta
distribution with parameters a, c such that 1 < a < c has a median no larger than
a/(a + c). Therefore, if we can show that

s̃ + 1

s + 1
≤ b − 1

2b − 1
,

then it means Pr(X > (b − 1)/(2b − 1)) ≤ 1/2. Now,

b − 1

2b − 1
= 1

2
− 1

2(2b − 1)
≥ 1

2
− 1

2(2s − 1)
.

On the other hand,
s̃ + 1

s + 1
≤ s

2(s + 1)
= 1

2
− 1

2(s + 1)
.

Since 2(2s − 1) ≥ 2(s + 1) for s ≥ 2, we have that

s̃ + 1

s + 1
≤ 1

2
− 1

2(s + 1)
≤ 1

2
− 1

2(2s − 1)
≤ b − 1

2b − 1
,

as required. So the last step is to show that

1

2

(
b

2(b − 1)

)s (2b − 1

b

)s

≤ 1. (35)

The inequality (35) is equivalent to
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(
2b − 1

2b − 2

)s

≤ 2, to s ln
2b − 1

2b − 2
≤ ln 2, and finally to s ln(1 + 1

2(b − 1)
) ≤ ln 2.

Now, ln(1 + 1
2(b−1) ) ≤ ln(1 + 1

2(s−1) ) ≤ 1
2(s−1) , hence it is sufficient to show that

1

2(s − 1)
≤ ln 2

s
⇔ s

s − 1
≤ 2 ln 2 = 1.3862...

which holds for any s ≥ 4. For s = 2, we have that R(b, 2) = 0.25(b/(b − 1))2 and
since b ≥ s we have that b/(b − 1) ≤ 2, which implies 0.25(b/(b − 1))2 ≤ 1 for all
b ≥ 2. When s = 3, then R(b, 3) = 0.125(b/(b − 1))3 ≤ 1. �

Proof (of Lemma 8)We have that (m, 0) ∈ B is equivalent to assuming |J | ≤ m <

2|J |. We will deal with the case m = 2|J | − 1 separately, and will first assume
|J | ≤ m ≤ 2|J | − 3 and m is odd.

(i) Case where |J | ≤ m ≤ 2|J | − 3 and m is odd:
In this case, m∗ = m > 2|I | if and only if |I | < 0.5m, i.e., |I | ≤ 0.5(m − 1).

Also, m∗ = m < |I | + |J | if and only if |I | > m − |J |. So G(m, s, J, 0, 0) is of the
form

G(m, s, J, 0, 0)

=
0.5(m−3)∑

j=0

(|J |
j

)

1 +
0.5(m−3)∑

j=m−|J |+1

(|J |
j

)

h j (m) +
( |J |
0.5(m − 1)

)(
b

b − 1

)|I |−0.5(m−1)−1

=
0.5(m−3)∑

j=0

(|J |
j

)

+
0.5(m−3)∑

j=m−|J |+1

(|J |
j

)(|J | − j − 1

m − 2 j

)
(b(b − 1)) j

(b − 1)|J |bm−|J |

+
( |J |
0.5(m − 1)

)(
b

b − 1

)|J |−0.5(m−1)−1

. (36)

Using Lemma 14 with s = |J |, we know that (36) is increasing with m, so
G(m, s, J, 0, 0) ≤ G(2|J | − 3, s, J, 0, 0) for allm ≤ 2|J | − 3 such that (m, 0) ∈ B.
Furthermore, we have that

G(2|J | − 3, s, J, 0, 0) =
|J |−3∑

j=0

(|J |
j

)

+
(|J |

2

)(
1

1

)
b

(b − 1)

= 2|J | − 1 − |J | + |J |(|J | − 1)

2

(
b

b − 1
− 1

)

= 2|J | − 1 − |J | + |J |(|J | − 1)

2(b − 1)
≤ 2|J | − 1 − |J |

2
,

where the last inequality is obtained by observing that |J | ≤ s ≤ b.
(ii) Case where m = 2|J | − 1.



On the Distribution of Scrambled (0,m, s)−Nets Over Unanchored Boxes 117

In this case, m ≥ |I | + |J | for all I such that |I | ≤ |J | − 2. Also, for subsets I
such that |I | = |J | − 1, we cannot have 2|I | < m < |I | + |J | since in that case |I | +
|J | − 2|I | = |J | − |I | = 1. Therefore, there is no I such that 2|I | < m < |I | + |J |,
and thus

G(2|J | − 1, s, J, 0, 0) =
|J |−1∑

j=0

(|J |
j

)

= 2|J | − 1 ≥ G(2|J | − 3, s, J, 0, 0). (37)

(iii) If m is even with |J | ≤ m < 2|J |, then G(m, s, J, 0, 0) ≤ ∑|J |−1
j=0

(|J |
j

) =
2|J | − 1. �

Proof (of Lemma 9) We let j = |J | and write

G(m, k) =
∑

I :|I |≤ j−1

g j,|I |(m − |k|I ∗).

That is, G(m, k) = G(m, s, J, k, 0), i.e., we drop the dependence on s, J and d.
First, we define ι as the size of the largest (strict) subset I of J that contributes a

non-zero value to G(m, k). That is,

ι := max{|I | : I ⊂ J,m − |k|I ∗ ≥ 2|I | + 1}.

Note that 0 ≤ ι ≤ j − 1. Also, it is useful at this point to mention that our optimal
solution (m̃, 0) will be such that m̃ = 2ι + 1.

We then define Gm,k := {I : 0 ≤ |I | ≤ ι}. Using this notation we can write

G(m, k) =
∑

I :I∈Gm,k

g j,|I |(m − |k|I ∗). (38)

This holds because if I /∈ Gm,k, thenm − |k|I ∗ ≤ 2|I | and thus g j,|I |(m − |k|I ∗) = 0.
Next we introduce a definition:

Definition: For a given J and I ⊂ J , we say that (m, k) is dominated by (m ′, 0) at
I if g j,|I |(m − |k|I ∗) ≤ g j,|I |(m ′).

Our strategywill be as follows: consider the setM = {1, 3, . . . , 2ι + 1}.We claim
that for each I ∈ Gm,k, there exists (m ′, 0)withm ′ ∈ M such that (m, k) is dominated
by (m ′, 0) at I . In turn, this will allow us to bound each term g j,|I |(m − |k|I ∗) in (38)
by a term of the form g j,|I |(m ′). We then only need to keep track, for each m ′, of
how many times g j,|I |(m ′) has been used in this way—something we will do by
introducing counting numbers denoted by η(·). This strategy is a key intermediate
step to get to our end result, which is to show that G(m, k) ≤ G(m̃, 0).

To prove the existence of this m ′, we define a mapping Lm,k : Gm,k → M that
will, for a givenm and k, assign to each subset I ∈ Gm,k, the largest integerm ′ ∈ M′
such that (m, k) is dominated by (m ′, 0) at I . The reason why we choose the largest
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m ′ ∈ M is that this provides us with the tightest bound on g j,|I |(m − |k|I ∗), as should
be clear from the behavior of the function g j,i (�), as described in Lemma 13.

The mapping Lm,k(I ) is defined as follows:

Lm,k(I ) :=

⎧
⎪⎨

⎪⎩

2ι + 1 ifm − |k|I ∗ ≥ 2ι + 1

2� + 1 if 2� + 1 ≤ m − |k|I ∗ ≤ 2� + 2 where 0 ≤ � < ι

1 ifm − |k|I ∗ ≤ 0.

Claim: For each I ∈ G̃m,k, (Lm,k(I ), 0) dominates (m, k) at I .
Proof: We need to show that g j,|I |(m − |k|I ∗) ≤ g j,|I |(Lm,k(I )). We proceed by
examining the three possible cases for Lm,k(I ) based on its definition.

(i) Assume m − |k|I ∗ ≥ 2ι + 1 and therefore Lm,k(I ) = 2ι + 1. By definition of
ι we have 2ι + 1 > 2i , and therefore Part 2 of Lemma 13 applies, which implies
that g j,|I |(2ι + 1) ≥ g j,|I |(m − |k|I ∗). (ii) We now assume 2� + 1 < m − |k|I ∗ ≤
2� + 2 for some 0 ≤ � < ι. In this case, Lm,k(I ) = 2� + 1 and m − |k|I ∗ is either
equal to 2� + 1 or to 2� + 2. If m − |k|I ∗ = 2� + 1 then clearly g j,|I |(Lm,k(I )) ≥
g j,|I |(m − |k|I ∗) since in fact these two quantities are equal. If m − |k|I ∗ = 2� + 2
then sinceLm,k(I ) = 2� + 1 ≥ 1 is odd we can use Part 1 of Lemma 13 to conclude
that g j,|I |(Lm,k(I )) ≥ g j,|I |(m − |k|I ∗). (iii) If m − |k|I ∗ ≤ 0, then m − |k|I ∗ ≤
2|I | since I ∈ Gm,k implies 0 ≤ |I | ≤ ι, and therefore g j,|I |(m − |k|I ∗) = 0 ≤
g j,|I |(1). �

Now, recall that shortly after stating (38), when we explained our strategy to
replace the terms g j,|I |(m − |k|I ∗) by g j,|I |(m ′) in (38), we also said we would need
counting numbers η(·) to tell us how many times, for eachm ′, the term g j,|I |(m ′) has
been used in this way. These counting numbers are essential to apply the optimization
result involving weighted sums that is given in Lemma 15, which is the key to get
our final result. They are defined as follows, for 0 ≤ i, � ≤ ι:

η(�, i, k) := |{I ∈ Gm,k : |I | = i,Lm,k(I ) = 2(ι − �) + 1}|.

Note that
∑ι

�=0 η(�, i, k) = ( j
i

)
. Also we can think of p(�, i, k) = η(�, i, k)/

( j
i

)
as

the probability that a randomly chosen subset I of i elements from J is such that
|k|I ∗ ∈ R�, where

R� :=

⎧
⎪⎨

⎪⎩

{0, 1, . . . ,m − (2ι + 1)} if � = 0

{m − (2ι + 1) + 2� − 1,m − (2ι + 1) + 2�)} if 1 ≤ � < ι

{m − 2,m − 1, . . .} if � = ι.

(39)

To get the final result, we write:
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G(m, k) =
∑

I :0≤|I |≤ι

g j,|I |(m − |k|I ∗)

≤
ι∑

i=0

ι∑

�=0

η(�, i, k)g j,i (2(ι − �) + 1)

=
ι∑

i=0

ι∑

�=0

p(�, i, k)
(
j

i

)

g j,i (2(ι − �) + 1)

=
ι∑

i=0

ι−i∑

�=0

p(�, i, k)
(
j

i

)

g j,i (2(ι − �) + 1) (40)

≤
ι∑

i=0

(
j

i

)

g j,i (2ι + 1) = G(m̃, 0),

where m̃ = 2ι + 1. In the above, the first inequality is obtained by replacing
g j,|I |(m − |k|I ∗) by g j,i (2(ι − �) + 1) for each of the η(�, i, k) pairs (m, k) dom-
inated by (2(ι − �) + 1, 0) at I , where |I | = i ; the third equality holds because if
� > ι − i , then 2(ι − �) + 1 < 2(ι − (ι − i)) + 1 = 2i + 1 and therefore g j,i (2(ι −
�) + 1) = 0. Similarly, � ≤ ι − i implies 2(ι − �) + 1 ≥ 2i + 1 and so g j,i (2(ι −
�) + 1) > 0 in this case. The last inequality comes from applying Lemma 15, whose
conditions hold because:

1.
( j
i

)
g j,i (2(ι − �) + 1) corresponds to x�+1,i+1 in Lemma 15;

2. Lemma 14 together with (37) shows the decreasing row-sums condition is satis-
fied, i.e., G(2(ι − �) + 1, 0) = ∑

i x�+1,i+1 is decreasing with �;
3. The increasing-within-column assumption of Lemma 15 is satisfied because the

sum (40) only includes positive values of g j,i (2(ι − �) + 1) (as shown above),
which in turn allows us to invoke Part 2 of Lemma 13;

4. p(�, i, k) corresponds to α�+1,i+1 in Lemma 15;
5. To see that the p(�, i, k)’s obey the decreasing-cumulative-sums condition (51) in

Lemma 15, we argue that our probabilistic interpretation of the p(�, i, k) based
on the sets defined in (39) should make it clear that for i = 0, . . . , ι − 1 and
0 ≤ r ≤ ι,

r∑

�=0

p(�, i, k) ≥
r∑

�=0

p(�, i + 1, k).

Therefore G(m, k) ≤ G(m̃, 0), as required. �

Technical Lemmas

The following result [7, Lemma 2] is used to prove intermediate inequalities needed
in our analysis.
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Lemma 10 Let Pm,n(z) be the polynomial defined by

Pm,n(z) =
m∑

j=0

(
n

j

)

z j , 0 < m < n − 1,

Then for z �= −1

Pm,n(z)

(1 + z)n
(n
m

)
(n − m)

=
1∫

z/(z+1)

um(1 − u)n−m−1du. (41)

We also need the following identity for integers c > a ≥ 0, which may be found
in [5, (5.16)]

a∑

j=0

(
c

j

)

(−1) j =
(
c − 1

a

)

(−1)a . (42)

We now state and prove a number of technical lemmas that were used within the
above proofs. The first two lemmas are used to prove Lemma 5, and the next three
are used for Lemmas 8 and 9.

Lemma 11 For b ≥ s ≥ 2 and 0 ≤k < s, let

Q(b, k, s) :=
k∑

j=0

(−1) j
(
s

j

)

(bk− j − 1).

Then

Q(b, k, s) ≤

⎧
⎪⎨

⎪⎩

bk
(
b−1
b

)s
if k is even

bk
(
b−1
b

)s + (s−1
k

)
if k > 1 is odd,

(b − 1) if k = 1.

(43)

Proof The statement holds trivially for k = 0. For k > 0 we apply Lemma 10 and
(42) to obtain

Q(b, k, s) = bk Pk,s(−1/b) −
(
s − 1

k

)

(−1)k

= bk
(
b − 1

b

)s
1∫

−1/(b−1)

uk(1 − u)s−k−1ck,sdu −
(
s − 1

k

)

(−1)k

= bk
(
b − 1

b

)s

⎛

⎜
⎝

0∫

−1/(b−1)

uk(1 − u)s−k−1ck,sdu + 1

⎞

⎟
⎠−

(
s − 1

k

)

(−1)k
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where ck,s is the constant that makes the integrand a beta pdf with parameters (k +
1, s − k), i.e., ck,s = s

(s−1
k

)
.

Now, if k is odd then
∫ 0
−1/(b−1) u

k(1 − u)s−k−1ck,sdu ≤ 0 and thus we get

Q(b, k, s) ≤ bk
(
b − 1

b

)s

+
(
s − 1

k

)

.

Note also that when k = 1, Q(b, k, s) = b − 1 (which is not necessarily bounded
from above by bk

(
b−1
b

)s + (s−1
k

) = b((b − 1)/b)s + s − 1. It is for this reason we
treat the case k = 1 separately). If k is even, then

0∫

−1
b−1

uk(1 − u)s−k−1ck,sdu ≤ ck,s
1

b − 1

1

(b − 1)k

(

1 + 1

b − 1

)s−k−1

= ck,s
bs−k−1

(b − 1)s
.

Therefore when k is even

Q(b, k, s) = bk
(
b − 1

b

)s (

1 + ck,s
bs−k−1

(b − 1)s

)

−
(
s − 1

k

)

= bk
(
b − 1

b

)s

+
( s

b
− 1

)(s − 1

k

)

≤ bk
(
b − 1

b

)s

since s ≤ b. �

Lemma 12 Consider a (0,m, s)-net in base b. Let ∅ �= J ⊂ {1, . . . , s}, and I ⊆ J ,
with I ∗ = I ∪ J c. Then the following bounds hold:
(i) if m ≥ |k|I ∗ + d J + c|I | + |I ∗c|, then

mb(k, d, c, J, I ; Pn) = bm−|k|I∗ −|d|J−c|I |−|I ∗c|(b − 1)|I
∗c|;

(ii) if |k|I ∗ + |d|J + c|I | + 1 < m < |k|I ∗ + d J + c|I | + |I ∗c| then

mb(k, d, c, J, I ; Pn) ≤ bm−|k|I∗ −|d|J
(
b − 1

b

)|I ∗c|

+
( |I ∗c| − 1

m − |k|I ∗ − |d|J − c|I |
)

1m−|k|I∗ −|d|J−c|I |

where

1x =
{
1 if x is odd

0 otherwise.

(iii) if m = |k|I ∗ + |d|J + c|I | + 1 then
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mb(k, d, c, J, I ; Pn) = (b − 1).

(iv) if m ≤ |k|I ∗ + |d|J + c|I | then mb(k, d, c, J, I ; Pn) = 0.

Proof Using the quantities nb(k) defined in [10], their relation to mb(k; Pn) and the
value of the latter for a (0,m, s)-net, we write

mb(k, d, c, J, I ; Pn) =
∑

i j≥k j , j∈J c;i j≥k j+d j+c, j∈I
nb(i I ∗ : d I ∗c)

=
∑

e∈{0,1}|I∗c |
(−1)|e|mb((kJ c : (k + d + 2)I : (d + e)I ∗c); Pn)

=
|I ∗c|∑

j=0

(−1) j
(|I ∗c|

j

)

max(bm−|k|I∗ −|d|J−c|I |− j − 1, 0) (44)

where (i I : d I c) represents the vector with j th component given by i j if j ∈ I and
by d j if j /∈ I . If m − |k|I ∗ − |d|J − c|I | − |I ∗c| ≥ 0 then the above sum is given
by

mb(k, d, c, J, I ; Pn) = bm−|k|I∗ −|d|J−c|I |−|I ∗c|
|I ∗c|∑

j=0

(−1) j
(|I ∗c|

j

)

b|I ∗c|− j

= bm−|k|I∗ −|d| j−c|I |−|I ∗c|(b − 1)|I
∗c|.

If m − |k|I ∗ − |d|J − c|I | ≤ 0 then the max inside the sum (44) always yields 0.
When 1 < m − |k|I ∗ − |d|J − c|I | < |I ∗c|, then (44) is given by

m−|k|I∗−|d|J−c|I |∑

j=0

(−1) j
(|I ∗c|

j

)

(bm−|k|I∗−|d|J−c|I |− j − 1)

≤
(

bm−|k|I∗ −|d|J
(
b − 1

b

)|I ∗c|
+
( |I ∗c| − 1

m − |k|I ∗ − |d|J − c|I |
)

1m−|k|I−|d|I c−c|I |

)

,

where the last inequality is obtained by applying Lemma 11 with s = |I c| and
k = m − |k|I ∗ − |d|J − c|I |. Finally, when m = |k|I ∗ + |d|J + c|I | + 1, then (44)
is given by

1∑

j=0

(−1) j
(|I c|

j

)

(b1− j − 1) = b − 1.

�
Lemma 13 The function g j,i (�) defined in (16) with 0 ≤ i < j and j ≥ 1 satisfies
the following properties.
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1. For a given i , if � ≥ 1 is odd then g j,i (�) ≥ g j,i (� + 1).
2. For a given i , if � > 2i is odd then g j,i (�) ≥ g j,i (� + r) for all r ≥ 0.

Proof For (1): if � ≥ j + i then g j,i (�) = g j,i (� + 1) = 1; if 2i < � < j + i , then
g j,i (�) > 1 while g j,i (� + 1) = 1; if � ≤ 2i then g j,i (�) = 0 and since � is odd,
it means � ≤ 2i − 1, and thus � + 1 ≤ 2i , implying that g j,i (� + 1) = 0. For (2): if
� ≥ j + i then g j,i (� + r) = 1 for all r ≥ 0; if 2i + 1 < � < j + i , then the function
g j,i (�) is increasing as � decreases over odd values strictly between j + i and 2i +
1; this is because when � decreases by 2, h j,i (�) increases by a factor of at least
2b2/(( j − i − 1)( j − i − 2)), which is at least 1 since j ≤ s ≤ b. Finally, we need
to show that g j,i (2i + 1) = (b/(b − 1)) j−i−1 ≥ g j,i (2i + 3), i.e., that

(
b

b − 1

) j−i−1
≥ 1 + b j+i−(2i+3)

(b − 1) j−i

(
j − i − 1

2i + 3 − 2i

)

= 1 +
(

b

b − 1

) j−i 1

b3

(
j − i − 1

3

)

.

Using the bound ((b − 1)/b) j ≤ (b − j − 1)/(b − 1) shown in the proof of Lemma
14, we have that the above holds if

b − 1

b
≥ ( j − i − 1)( j − i − 2)( j − i − 3)

6b3
+ b − ( j − i) − 1

b − 1

⇔ (b − 1)2 − b(b − j + i − 1)

b(b − 1)
≥ ( j − i − 1)( j − i − 2)( j − i − 3)

6b3

⇔ 6b2(1 + b( j − i − 1)) ≥ (b − 1)( j − i − 1)( j − i − 2)( j − i − 3),

which is clearly true since j ≤ s ≤ b and i ≥ 0 and therefore 6b3( j − i − 1) ≥
(b − 1)( j − i − 1)( j − i − 2)( j − i − 3). �

Lemma 14 Let s ≥ 3 and b ≥ s. Let m be odd with 1 ≤ m ≤ 2s − 3, and consider
the function

G(m, s) =
0.5(m−3)∑

j=0

(
s

j

)

+
0.5(m−3)∑

j=max(0,m−s+1)

(
s

j

)

hs, j (m) +
(

s

0.5(m − 1)

)(
b

b − 1

)s−0.5(m−1)−1

,

where hs, j (m) is as defined in (15), i.e.,

hs, j (m) =
(
s − j − 1

m − 2 j

)
bs+ j−m

(b − 1)s−m
.

Then G(m, s) ≥ G(m − 2, s) for m ≥ 3 odd. That is, G(m, s) is decreasing over the
odd integers from 2s − 3 down to 3.
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Proof First, we compute

(
b

b − 1

)s−0.5(m−1)−1

− hs,0.5(m−1)(m)

=
(

b

b − 1

)s−0.5(m−1)−1

−
(
s − 0.5(m − 1) − 1

1

)
b0.5(m−1)+s−m

(b − 1)s−0.5(m−1)

=
(

b

b − 1

)s−0.5(m−1) b − 1 − (s − 0.5(m − 1) − 1)

b

=
(

b

b − 1

)s−0.5(m−1) b − (s − 0.5(m − 1))

b
.

Using this, we can write

G(m, s) =
0.5(m−3)∑

j=0

(
s

j

)

+
0.5(m−1)∑

j=max(0,m−s+1)

(
s

j

)

hs, j (m)

+
(

s

0.5(m − 1)

)(
b

b − 1

)s−0.5(m−1) 0.5(m − 1) + b − s

b
. (45)

Next, we show that for 2 ≤ j ≤ 0.5(m − 1):

(
s

j

)

hs, j (m) ≥
(

s

j − 2

)

hs, j−2(m − 2). (46)

(
s

j

)

hs, j (m) −
(

s

j − 2

)

hs, j−2(m − 2)

=
(
s

j

)(
s − j − 1

m − 2 j

)
bs+ j−m

(b − 1)s− j
−
(

s

j − 2

)(
s − ( j − 2) − 1

m − 2 − 2( j − 2)

)
bs+ j−2−(m−2)

(b − 1)s−( j−2)

=
(
s

j

)(
s − j − 1

m − 2 j

)
bs+ j−m

(b − 1)s− j
−
(

s

j − 2

)(
s − j + 1

m − 2 j + 2

)
bs+ j−m

(b − 1)s− j+2

=
(
s

j

)(
s − j − 1

m − 2 j

)
bs+ j−m

(b − 1)s− j

·
(

1 − j ( j − 1)

(s − j + 2)(s − j + 1)

(s − j + 1)(s − j)

(m − 2 j + 2)(m − 2 j + 1)

1

(b − 1)2

)

.

Hence to prove (46), we need to show that

1 ≥ j ( j − 1)

(s − j + 2)(s − j + 1)

(s − j + 1)(s − j)

(m − 2 j + 2)(m − 2 j + 1)

1

(b − 1)2
,
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which holds because

j ( j − 1)

(s − j + 2)(s − j + 1)

(s − j + 1)(s − j)

(m − 2 j + 2)(m − 2 j + 1)

1

(b − 1)2
≤ j ( j − 1)

6

1

(b − 1)2

≤ (s − 2)(s − 3)

6(b − 1)2
≤ 1

6
≤ 1,

since j ≤ 0.5(m − 1) ≤ s − 2 and b ≥ s.
Using (45), G(m, s) ≥ G(m − 2, s) can be shown to hold if

0.5(m−3)∑

j=0

(
s

j

)

+
0.5(m−1)∑

j=max(0,m−s+1)

(
s

j

)

hs, j (m)

+
(

s

0.5(m − 1)

)(
b

b − 1

)s−0.5(m−1) 0.5(m − 1) + b − s

b

≥
0.5(m−5)∑

j=0

(
s

j

)

+
0.5(m−3)∑

j=max(0,m−2−s+1)

(
s

j

)

hs, j (m − 2)

+
(

s

0.5(m − 3)

)(
b

b − 1

)s−0.5(m−3) 0.5(m − 3) + b − s

b
. (47)

In turn, using (46), we know that:

0.5(m−1)∑

j=max(0,m−s+1)

(
s

j

)

hs, j (m) ≥
0.5(m−5)∑

j=max(0,m−2−s+1)

(
s

j

)

hs, j (m − 2)

and therefore to show (47) it is sufficient to show that

(
s

0.5(m − 3)

)

+
(

s

0.5(m − 1)

)(
b

b − 1

)s−0.5(m−1) 0.5(m − 1) + b − s

b

≥
(

s

0.5(m − 3)

)

hs,0.5(m−3)(m − 2)

+
(

s

0.5(m − 3)

)(
b

b − 1

)s−0.5(m−3) 0.5(m − 3) + b − s

b
, (48)

where

hs,0.5(m−3)(m − 2) =
(
s − 0.5(m − 3) − 1

m − 2 − (m − 3)

)
bs+0.5(m−3)−(m−2)

(b − 1)s−0.5(m−3)

= (s − 0.5(m − 1))

(
b

b − 1

)s−0.5(m−1) 1

b − 1
.
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The following inequality will be helpful in this proof:

Claim 1 For b ≥ 2 and j ≥ 1, we have that

(
b

b − 1

) j

≤ b − 1

b − ( j + 1)
. (49)

Proof The inequality is equivalent to having

(b − 1) j+1 ≥ b j (b − ( j + 1)).

Applying the mean value theorem to f (x) = x j+1 and noticing f ′(x) is monotone
increasing for x ≥ 0 , we get that f (b) − f (b − 1) = f ′(ξ) ≤ f ′(b) for some ξ ∈
(b − 1, b) and thus (b − 1) j+1 ≥ b j+1 − ( j + 1)b j . �

Going back to our goal of proving (48), it is sufficient to show that

1 +
(

b

b − 1

)s−0.5(m−1) s − 0.5(m − 3)

0.5(m − 1)

0.5(m − 1) + b − s

b

≥
(

b

b − 1

)s−0.5(m−1) ( s − 0.5(m − 1)

b − 1
+ b

b − 1

0.5(m − 3) + b − s)

b

)

⇔
(
b − 1

b

)s−0.5(m−1)

+ s − 0.5(m − 3)

0.5(m − 1)

0.5(m − 1) + b − s

b

≥
(
s − 0.5(m − 1)

b − 1
+ 0.5(m − 3) + b − s

b − 1

)

. (50)

Using (49) to simplify the LHS of (50), we see that (50) holds if

b − (s − 0.5(m − 1)) − 1

b − 1
+ s − 0.5(m − 3)

0.5(m − 1)

0.5(m − 1) + b − s

b

≥
(
s − 0.5(m − 1)

b − 1
+ 0.5(m − 3) + b − s

b − 1

)

⇔ s − 0.5(m − 3)

0.5(m − 1)

0.5(m − 1) + b − s

b
≥ s − 0.5(m − 1)

b − 1

⇔b − 1

b
≥ s − 0.5(m − 1)

s − 0.5(m − 3)

0.5(m − 1)

0.5(m − 1) + b − s
,

which holds because s − 0.5(m − 3) ≤ s ≤ b and b−1
b ≥ b−1−x

b−x if x ≥ 0.

Definition 3 Wedenote byAw the set ofw × �weightmatrices Awith entriesαi, j ≥
0 that satisfy the following two conditions: 1)

∑w
i=1 αi, j = 1 for all j = 1, . . . , �;

2) the weights αi, j obey a decreasing-cumulative-sums condition as follows: for
1 ≤ i ≤ w, 1 ≤ j ≤ �, let
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Ai, j =
i∑

k=1

αk, j . (51)

Then Ai, j ≥ Ai, j+1 for each i = 1, . . . , w and j = 1, . . . , � − 1 (when i = w we
have Aw, j = 1 for all j). This means the weights on the first row are decreasing from
left to right; the partial sums of the two first rows are decreasing from left to right,
etc.

Lemma 15 Let X be a w × � matrix with � ≥ w and entries xi, j ≥ 0 and of the
form

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1,1 · · · x1,�−w+1 · · · x1,�−1 x1,�
x2,1 · · · x2,�−w+1 · · · x2,�−1 0
...

... . .
.

. .
.

xw−1,1 · · · xw−1,�−w+1 xw−1,�−w+2 0 · · ·
xw,1 · · · xw,�−w+1 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

that is xi, j > 0 if and only if i + j ≤ � + 1, for 1 ≤ i ≤ w, 1 ≤ j ≤ �. We assume
X satisfies the following two conditions: first,

�∑

j=1

x1, j ≥
�−1∑

j=1

x2, j ≥ · · · ≥
�−w+1∑

j=1

xw, j

(we refer to this as the decreasing-row-sums condition) and second,

x1, j ≤ x2, j ≤ · · · ≤ xmin(w,�−i+1), j , j = 1, . . . , � (52)

(we refer to this as the increasing-within-column condition).
Let A be a weight matrix inAw and let

‖A ◦ X‖1 =
�∑

j=1

α1, j x1, j +
�−1∑

j=1

α2, j x2, j + · · · +
�−w+1∑

j=1

αw, j xw, j .

Then for any A ∈ Aw

‖A ◦ X‖1 ≤
�∑

j=1

x1, j . (53)

That is, the weight matrix A ∈ Aw that maximize the LHS of (53) is the one with 1’s
on the first row and 0’s elsewhere.

Proof First, note that A ∈ Aw implies that cumulative sums from the last row up are
increasing, i.e., for Ri, j = ∑w

k=i αk, j , we have Ri, j ≤ Ri, j+1 for j = 1, . . . , � − 1.
We proceed by induction on w ≥ 2.
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If w = 2, then it suffices to show that for A ∈ A2, we have that

�∑

j=1

α1, j x1, j +
�−1∑

j=1

(1 − α1, j )x2, j ≤
�∑

i=1

x1, j ⇔
�−1∑

j=1

(1 − α1, j )x2, j ≤
�∑

j=1

(1 − α1, j )x1, j ,

or, equivalently, that

�−1∑

j=1

(1 − α1, j )(x2, j − x1, j ) ≤ (1 − α1,�)x1,�.

Now, we know that

�∑

j=1

x1, j ≥
�−1∑

j=1

x2, j ⇔
�−1∑

j=1

(x2, j − x1, j ) ≤ x1,�

with x2, j − x1, j ≥ 0. Therefore

�−1∑

j=1

(1 − α1, j )(x2, j − x1, j ) ≤ (1 − α1,�)

�−1∑

j=1

(x2, j − x1, j ) ≤ (1 − α1,�)x1,�,

where the first inequality holds because the α1, j ’s are decreasing.
Now assume the statement holds for w − 1 ≥ 2. First we create a new weight

matrix Ã by merging the two last rows into the second-to-last one and setting the last
one to zero, i.e., we define α̃w−1, j as

α̃w−1, j = αw−1, j + αw, j j = 1, . . . , �

α̃w, j = 0 j = 1, . . . , �

α̃i, j = αi, j , i = 1, . . . , w − 2, j = 1, . . . , �.

With this change, we claim that Ã ∈ Aw. Indeed:

1. α̃i, j ≥ 0
2.
∑w

i=1 α̃i, j = ∑w−2
i=1 αi, j + (αw−1, j + αw, j ) + 0 = 1.

3. Ãi, j = Ai, j for i = 1, . . . , w − 2 and Ãw−1, j = Aw, j = 1 for j = 1, . . . , �.

Next, we show that
‖ Ã ◦ X‖1 ≥ ‖A ◦ X‖1. (54)

Since αi, j = α̃i, j for i < w − 1, then (54) holds if and only if
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�−w+2∑

j=1

(αw−1, j + αw, j )xw−1, j ≥
�−w+2∑

j=1

αw−1, j xw−1, j +
�−w+1∑

j=1

αw, j xw, j

⇔
�−w+1∑

j=1

αw, j xw−1, j + αw,�−w+2xw−1,�−w+2 ≥
�−w+1∑

j=1

αw, j xw, j

⇔
�−w+1∑

j=1

αw, j (xw, j − xw−1, j ) ≤ αw,�−w+2xw−1,�−w+2.

By the decreasing-row-sum assumption on the xi, j ’s we know that

0 ≤
�−w+1∑

j=1

(xw, j − xw−1, j ) ≤ xw−1,�−w+2

and by assumption that A ∈ Aw we have that αw,1 ≤ αw,2 ≤ · · · ≤ αw,�. Therefore

�−w+1∑

j=1

αw, j (xw, j − xw−1, j ) ≤ αw,�−w+1

�−w+1∑

j=1

(xw, j − xw−1, j )

≤ αw,�−w+1xw−1,�−w+2 ≤ αw,�−w+2xw−1,�−w+2,

as required to show that (54) holds.
Next, to use the induction hypothesis, we observe that α̃w, j = 0 implies we can

essentially ignore the xw, j ’s. More formally, let Ãw−1 be the matrix formed by the
first w − 1 rows of Ã and similarly for Xw−1. Then Ãw−1 ∈ Aw−1, since

1. α̃i, j ≥ 0 for i = 1, . . . , w − 1, j = 1, . . . , �
2.
∑w−1

i=1 α̃i, j = ∑w
i=1 αi, j = 1 for j = 1, . . . , �

3. Ãi, j ≥ Ãi, j+1 as verified earlier (and note that α̃w−1,1 ≤ · · · ≤ α̃w−1,� by assump-
tion that A ∈ Aw and since α̃w−1, j = Rw−1, j .)

By applying the induction hypothesis, we obtain

‖ Ãw−1 ◦ Xw−1‖1 ≤
�∑

j=1

x1, j

and since ‖A ◦ X‖1 ≤ ‖ Ã ◦ X‖1 = ‖ Ãw−1 ◦ Xw−1‖, this proves the result. �
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Lower Bounds for the Number
of Random Bits in Monte Carlo
Algorithms

Stefan Heinrich

Abstract We continue the study of restricted Monte Carlo algorithms in a general
setting. Here we show a lower bound for minimal errors in the setting with finite
restriction in terms of deterministic minimal errors. This generalizes a result of
Heinrich, Novak, and Pfeiffer (in: Monte Carlo and Quasi-Monte Carlo Methods
2002, H. Niederreiter, ed., Springer-Verlag, Berlin, 2004, pp. 27–49) to the adaptive
setting. As a consequence, the lower bounds on the number of random bits from that
paper also hold in this setting.We also derive a lower bound on the number of needed
bits for integration of Lipschitz functions over the Wiener space, complementing a
result of Giles, Hefter, Mayer, and Ritter (J. Complexity 54 (2019), 101395).

Keywords Random bit · Complexity theory · Lower bounds · Integration ·
Wiener space

1 Introduction

RestrictedMonte Carlo algorithms were considered in [3–6, 11–14, 16, 17]. Restric-
tion usually means that the algorithm has access only to random bits or to random
variables with finite range. Most of these papers on restricted randomized algorithms
consider the non-adaptive case. Only [5] includes adaptivity, but considers a class of
algorithms where each information call is followed by one random bit call.

Ageneral definition restrictedMonteCarlo algorithmswasgiven in [10]. It extends
the previous notions in two ways: Firstly, it includes full adaptivity (in particular, an
information call must not necessarily be followed by a random bit call), and secondly,
it includes models in which the algorithms have access to an arbitrary, but fixed set
of random variables, for example, uniform distributions on [0, 1]. In [10] the relation
of restricted to unrestricted randomized algorithms was studied. In particular, it was
shown that for each such restricted setting there is a computational problem that can
be solved in the unrestricted randomized setting but not under the restriction.
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The aim of the present paper is to continue the study of the restricted setting. The
main result is a lower bound forminimal errors in the settingwith a finite restriction in
terms of deterministic minimal errors. This generalizes a corresponding result from
[11], see Proposition 1 there, to the adaptive setting with arbitrary finite restriction.
The formal proof in this setting is technically more involved. As a consequence
the lower bounds on the number of random bits from [11] also hold in this setting.
Another corollary concerns integration of Lipschitz functions over the Wiener space
[5]. It shows that the number of random bits used in the algorithm from [5] is optimal,
up to logarithmic factors.

2 Restricted Randomized Algorithms in a General Setting

We work in the framework of information-based complexity theory (IBC) [13, 15],
using specifically the general approach from [7, 8].We recall the notion of a restricted
randomized algorithm as recently introduced in [10]. This section is kept general, for
specific examples illustrating this setupwe refer to the integrationproblemconsidered
in [10] as well as to the problems studied in Sect. 4.

We consider an abstract numerical problem

P = (F,G, S, K ,�), (1)

where F and K are a non-empty sets, G is a Banach space, S a mapping from F to
G, and � a nonempty set of mappings from F to K . The operator S is understood
to be the solution operator that sends the input f ∈ F to the exact solution S( f ) and
� is the set of information functionals about the input f ∈ F that can be exploited
by an algorithm.

A probability space with access restriction is a tuple

R = (
(�,�,P), K ′,�′), (2)

with (�,�,P) a probability space, K ′ a non-empty set, and �′ a non-empty set
of mappings from � to K ′, the set of randomization functionals, supplying the
admissible randomness to the algorithm (e.g., random bits, see (8) below). Define

K̄ = K ∪̇K ′, �̄ = �∪̇�′,

where ∪̇ is the disjoint union, and for λ ∈ �̄, f ∈ F , ω ∈ � we set

λ( f,ω) =
{

λ( f ) if λ ∈ �

λ(ω) if λ ∈ �′.

An R-restricted randomized algorithm for problem P is a tuple
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A = ((Li )
∞
i=1, (τi )

∞
i=0, (ϕi )

∞
i=0)

such that L1 ∈ �̄, τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N

Li+1 : K̄ i → �̄, τi : K̄ i → {0, 1}, ϕi : K̄ i → G

are any mappings. Given f ∈ F and ω ∈ �, we define (λi )
∞
i=1 with λi ∈ �̄ as fol-

lows:

λ1 = L1, λi = Li (λ1( f,ω), . . . ,λi−1( f,ω)) (i ≥ 2). (3)

If τ0 = 1, we define

card�̄(A, f,ω) = card�(A, f,ω) = card�′(A, f,ω) = 0.

If τ0 = 0, let card�̄(A, f,ω) be the first integer n ≥ 1 with

τn(λ1( f,ω), . . . ,λn( f,ω)) = 1,

if there is such an n. If τ0 = 0 and no such n ∈ N exists, put card�̄(A, f,ω) = ∞.
Furthermore, set

card�(A, f,ω) = |{k ≤ card�̄(A, f,ω) : λk ∈ �}|
card�′(A, f,ω) = |{k ≤ card�̄(A, f,ω) : λk ∈ �′}|.

We have card�̄(A, f,ω) = card�(A, f,ω) + card�′(A, f,ω). The output A( f,ω)

of algorithm A at input ( f,ω) is defined as

A( f,ω) =
{

ϕ0 if card�̄(A, f,ω) ∈ {0,∞}
ϕn(λ1( f,ω), . . . ,λn( f,ω)) if 1 ≤ card�̄(A, f,ω) = n < ∞.

(4)
Informally speaking, the algorithm starts by evaluating an information functional

L1 ∈ � at input f ∈ F , that is L1( f ) ∈ K , or by evaluating a randomization func-
tional L1 ∈ �′ at ω ∈ �, thus producing an instance of admissible randomness
L1(ω) ∈ K ′. Next a termination function τ1(L1( f,ω)) is evaluated. If its value is
1, the process is stopped. If the value is 0, we go on and choose, depending on
L1( f,ω), another functional L2 ∈ �∪̇�′, then L2( f,ω) is evaluated, and so on. The
process is terminated as soon as τn(L1( f,ω), . . . , Ln( f,ω)) = 1 for some n. Finally,
the mapping ϕn : Kn → G is applied to the obtained string of functional values
(L1( f,ω), . . . , Ln( f,ω)), representing the computations that lead to the approxi-
mation A( f,ω) to S( f ) in G.

Thus, in contrast to an unrestricted randomized algorithm (see the definition,
e.g., in [7, 8, 10]), a restricted randomized algorithm can access the randomness of
(�,�,P) only through the functionals λ(ω) for λ ∈ �′.
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The set of allR-restricted randomized algorithms forP is denoted byAran(P,R).
LetAran

meas(P,R) be the subset of those A ∈ Aran(P,R)with the following properties:
For each f ∈ F the mappings

ω → card�(A, f,ω) ∈ N0 ∪ {∞}, ω → card�′(A, f,ω) ∈ N0 ∪ {∞}

(and hence ω → card�̄(A, f,ω)) are �-measurable and the mapping ω → A( f,ω)

∈ G is�-to-Borel measurable andP-almost surely separably valued, the latter mean-
ing that there is a separable subspace G f ⊂ G such that P({ω ∈ � : A( f,ω) ∈
G f }) = 1. The error of A ∈ Aran

meas(P,R) is defined as

e(P, A) = sup
f ∈F

E ‖S( f ) − A( f,ω)‖G . (5)

Given n, k ∈ N0, we define Aran
n,k(P,R) to be the set of those A ∈ Aran

meas(P,R) sat-
isfying for each f ∈ F

E card�(A, f,ω) ≤ n, E card�′(A, f,ω) ≤ k.

The (n, k)-th minimal R-restricted randomized error of S is defined as

erann,k(P,R) = inf
A∈Aran

n,k (P,R)
e(P, A). (6)

Hence, erann,k(P,R) is theminimal error among allR-restricted randomized algorithms
that use, on the average, notmore than n information functionals and k randomization
functionals.

Special cases of access restrictions are the following: An access restriction R is
called finite, if

|K ′| < ∞, λ−1({u}) ∈ � (λ′ ∈ �′, u ∈ K ′). (7)

In this case any R-restricted randomized algorithm satisfies the following. For fixed
i ∈ N0 and f ∈ F the functions (see (3))

ω → Li (λ1( f,ω), . . . ,λi−1( f,ω)) ∈ �, ω → λi ( f,ω) ∈ K

take finitely many values and are �-to-�0(�)-measurable (respectively �-to-
�0(K )-measurable), where �0(M) denotes the σ-algebra generated by the finite
subsets of a set M . This is readily checked by induction. It follows that the mapping

ω → τi (λ1( f,ω), . . . ,λi ( f,ω)) ∈ {0, 1}

is measurable and
ω → ϕi (λ1( f,ω), . . . ,λi ( f,ω)) ∈ G
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takes only finitely many values and is �-to-Borel-measurable. Consequently, for
each f ∈ F the functions card(A, f,ω) and card′(A, f,ω) are �-measurable,
A( f,ω) takes only countably many values and is �-to-Borel-measurable, hence
A ∈ Aran

meas(P,R).
An access restriction is called bit restriction, if

|K ′| = 2, �′ = {ξ j : j ∈ N} (8)

with ξ j : � → K ′ = {u0, u1} an independent sequence of random variables such that

P({ξ j = u0}) = P({ξ j = u1}) = 1/2, ( j ∈ N). (9)

The corresponding restricted randomized algorithms are called bitMonte Carlo algo-
rithms. A non-adaptive version of these was considered in [3, 11, 14, 17].

Most frequently used is the case of uniform distributions on [0, 1]. This means
K ′ = [0, 1] and �′ = {η j : j ∈ N}, with (η j ) being independent uniformly distribu-
ted on [0, 1] random variables over (�,�,P).

We also use the notion of a deterministic and of an (unrestricted) randomized
algorithm and the corresponding notions of minimal errors. For this we refer to [7,
8] as well as to Sect. 2 of [10]. Let us however mention that the definition of a
deterministic algorithm follows a similar scheme as the one given above. More than
that, we can give an equivalent definition of a deterministic algorithm, viewing it as
a special case of a randomized algorithm with an arbitrary restriction R. Namely, a
deterministic algorithm is an R-restricted randomized algorithm A with

L1 ∈ �, Li+1(K
i ) ⊆ � (i ∈ N).

Consequently, for each f ∈ F and ω,ω1 ∈ � we have card�′(A, f,ω) = 0 and

A( f ) := A( f,ω) = A( f,ω1)

card(A, f ) := card�̄(A, f,ω) = card�(A, f,ω) = card�(A, f,ω1).

Thus, such an algorithm ignores R completely. For a deterministic algorithm A
relation (5) turns into

e(P, A) = sup
f ∈F

‖S( f ) − A( f )‖G . (10)

A deterministic algorithm is in Aran
n,k(P,R) iff sup f ∈F card(A, f ) ≤ n. Taking the

infimum in (6) over all such A gives the n-th minimal error in the deterministic
setting edetn (P). Clearly, e(P, A) and edetn (P) do not depend on R. It follows that for
each restriction R and n, k ∈ N0

erann,k(P,R) ≤ edetn (P).
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A restricted randomized algorithm is a special case of an (unrestricted) randomized
algorithm. Being intuitively clear, this was formally checked in [10], Proposition 2.1
and Corollary 2.2. Moreover, it was shown there that for each restriction R and
n, k ∈ N0

erann (P) ≤ erann,k(P,R),

where erann (P) denotes the n-th minimal error in the randomized setting.

3 Deterministic Versus Restricted Randomized Algorithms

In this section we derive a relation betweenminimal restricted randomized errors and
minimal deterministic errors for general problems. Variants of the following result
have been obtained for non-adaptive random bit algorithms in [11, Proposition 1],
and for adaptive algorithms that ask for random bits and function values in alternating
order in [5]. Obviously, the latter does not permit to analyze a trade-off between the
number of randombits and the number of function values to be used in a computation.

Theorem 1 Forall problemsP = (F,G, S, K ,�)andprobability spaceswith finite
access restriction R = (

(�,�,P), K ′,�′), see (7), and for all n, k ∈ N0 we have

erann,k(P,R) ≥ 1

3
edet3n|K ′ |3k (P).

Without loss of generality in the sequel we only consider access restrictions with the
property K ∩ K ′ = ∅, thus K̄ = K ∪ K ′, �̄ = � ∪ �′.

Lemma 1 Let n, k ∈ N0, let A be a randomized algorithm forPwith access restric-
tion R = (

(�,�,P), K ′,�′). For each f ∈ F let

B f = {ω ∈ � : card(A, f,ω) ≤ n, card′(A, f,ω) ≤ k}. (11)

Then there is an R-restricted randomized algorithm Ã for P̃ = (F, G̃, S̃,�, K ),
where G̃ = G ⊕ R and S̃ = (S( f ), 0), satisfying for all f ∈ F and ω ∈ �

card( Ã, f,ω) ≤ n (12)

card′( Ã, f,ω) ≤ k (13)

Ã( f,ω) = (A( f,ω) · 1B f (ω), 1B f (ω)). (14)
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Proof Let A = ((Li )
∞
i=1, (τi )

∞
i=0, (ϕi )

∞
i=0). For i ∈ N0 anda = (a1, . . . , ai ) ∈ K

i
let

di+1(a) = |{L1, L2(a1), . . . , Li+1(a1, . . . , ai )} ∩ �|
d ′
i+1(a) = ∣∣{L1, L2(a1), . . . , Li+1(a1, . . . , ai )} ∩ �′∣∣

ζi (a) =
{
1 if (di+1(a) > n) ∨ (d ′

i+1(a) > k)
0 otherwise.

Now we define Ã = ((Li )
∞
i=1, (τ̃i )

∞
i=0, (ϕ̃i )

∞
i=0) by setting for i ∈ N0 and a ∈ K

i

τ̃i (a) = max(τi (a), ζi (a))

ϕ̃i (a) =
{

(ϕi (a), 1) if ζi (a) ≤ τi (a)

(0, 0) if ζi (a) > τi (a).

To show (12)–(14) we fix f ∈ F , ω ∈ � and define

a1 = L1( f,ω), ai = (Li (a1, . . . , ai−1))( f,ω) (i ≥ 2).

Letm = card(A, f,ω) and letq be the smallest numberq ∈ N0 with ζq(a1, . . . , aq) =
1. First assume that ω ∈ B f . Then for all i < m

(di+1(a1, . . . , ai ) ≤ n) ∧ (d ′
i+1(a1, . . . , ai ) ≤ k),

thus ζi (a1, . . . , ai ) = 0 and therefore τ̃i (a1, . . . , ai ) = 0. Furthermore,

ζi (a1, . . . , am) ≤ τm(a1, . . . , am) = 1,

which means card( Ã, f,ω) = m,

card( Ã, f,ω) = dm(a1, . . . , am−1) ≤ n

card′( Ã, f,ω) = d ′
m(a1, . . . , am−1) ≤ k

Ã( f,ω) = (ϕm(a1, . . . , am), 1) = (A( f,ω), 1).

Now let ω ∈ �\B f , hence

τ0 = τ1(a1) = · · · = τq (a1, . . . , aq ) = 0

(dq+1(a1, . . . , aq ) > n) ∨ (d ′
q+1(a1, . . . , aq ) > k),

thus τ̃q(a1, . . . , aq) = 1. Consequently,

card( Ã, f,ω) ≤ dq (a1, . . . , aq−1) ≤ n

card′( Ã, f,ω) ≤ d ′
q (a1, . . . , aq−1) ≤ k

Ã( f,ω) = (0, 0). �



138 S. Heinrich

The key ingredient of the proof of Theorem 1 is the following.

Lemma 2 Let n, k ∈ N0 and let A be a randomized algorithm for P with finite
access restriction R = (

(�,�,P), K ′,�′) such that

card(A, f,ω) ≤ n, card′(A, f,ω) ≤ k (15)

for all f ∈ F and ω ∈ �. Then there exists a deterministic algorithm A∗ for P with

A∗( f ) = E (A( f, ·)), card(A∗, f ) ≤ n|K ′|k ( f ∈ F). (16)

Proof LetP = (F,G, S, K ,�), A = ((Li )
∞
i=1, (τi )

∞
i=0, (ϕi )

∞
i=0).Weargueby induc-

tionoverm = n + k. Ifm = 0, then τ0 = 1, hence card(A, f,ω) = 0, thus A( f,ω) =
ϕ0 for all f ∈ F and ω ∈ �, and the result follows.

Now let m ≥ 1. We can assume that τ0 = 0, otherwise A satisfies (15) with n =
k = 0 and we are back to the case m = 0. Let K̃ ⊂ K be defined by

K̃ =
{{

u ∈ K : L−1
1 ({u}) �= ∅}

if L1 ∈ �{
u ∈ K ′ : P(L−1

1 ({u})) �= 0
}

if L1 ∈ �′.

For every u ∈ K̃ we define a problem Pu = (Fu,G, Su, K ,�u) and a probability
space with access restriction Ru = (

(�u, �u,Pu), K ′,�′
u

)
as follows. If L1 ∈ �,

we set Ru = R and

Fu = { f ∈ F : L1( f ) = u}, Su = S|Fu , �u = {λ|Fu : λ ∈ �}.

If L1 ∈ �′, we put Pu = P and

�u = {ω ∈ � : L1(ω) = u}, �u = {B ∩ �u : B ∈ �}
Pu(C) = P (�u)

−1
P (C) (C ∈ �u), �′

u = {λ′|�u : λ ∈ �′}.

Let 
u : � ∪ �′ → �u ∪ �′
u be defined as


u(λ) =
{

λ|Fu if λ ∈ �

λ|�u if λ ∈ �′

and let σu : �u ∪ �′
u → � ∪ �′ be any mapping satisfying


u ◦ σu = id�u∪�′
u
. (17)

Furthermore, we define a random algorithm Au = ((Li,u)
∞
i=1, (τi,u)

∞
i=0, (ϕi,u)

∞
i=0) for

Pu with access restriction Ru by setting for i ≥ 0, z1, . . . , zi ∈ K
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Li+1,u(z1, . . . , zi ) = (

u ◦ Li+2

)
(u, z1, . . . , zi ) (18)

τi,u(z1, . . . , zi ) = τi+1(u, z1, . . . , zi ) (19)

ϕi,u(z1, . . . , zi ) = ϕi+1(u, z1, . . . , zi ) (20)

(in this and similar situations below the case i = 0 with variables z1, . . . , zi is under-
stood in the obvious way: no dependence on z1, . . . , zi ).

Next we establish the relation of the algorithms Au to A. Fix f ∈ Fu , ω ∈ �u ,
and let (ai )∞i=1 ⊆ K be given by

a1 = L1( f,ω) = u (21)

ai = (
Li (a1, . . . , ai−1)

)
( f,ω) (i ≥ 2), (22)

and similarly (ai,u)∞i=1 ⊆ K by

ai,u = (
Li,u(a1,u, . . . , ai−1,u)

)
( f,ω). (23)

We show by induction that
ai,u = ai+1 (i ∈ N). (24)

Let i = 1. Then (23), (18), (21), and (22) imply

a1,u = L1,u( f,ω) = (
L2(u)

)
( f,ω) = (

L2(a1)
)
( f,ω) = a2.

For the induction step we let j ∈ N and suppose that (24) holds for all i ≤ j . Then
(23), (18), (24), and (22) yield

a j+1,u = (L j+1,u(a1,u, . . . , a j,u))( f,ω) = (L j+2(u, a1,u, . . . , a j,u))( f,ω)

= (L j+2(a1, a2, . . . , a j+1))( f,ω) = a j+2.

This proves (24). As a consequence of this relation and of (18), (19), and (20) we
obtain for all i ∈ N0

Li+1,u(a1,u, . . . , ai,u) = (

u ◦ Li+2

)
(u, a1,u, . . . , ai,u) = (


u ◦ Li+2
)
(a1, . . . , ai+1)

τi,u(a1,u, . . . , ai,u) = τi+1(u, a1,u, . . . , ai,u) = τi+1(a1, . . . , ai+1)

ϕi,u(a1,u, . . . , ai,u) = ϕi+1(u, a1,u, . . . , ai,u) = ϕi+1(a1, . . . , ai+1).

Hence, for all f ∈ Fu and ω ∈ �u

card(Au, f,ω) = card(A, f,ω) − 1

Au( f,ω) = A( f,ω). (25)

Furthermore, if L1 ∈ �, then
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card(Au, f,ω) = card(A, f,ω) − 1 ≤ n − 1

card′(Au, f,ω) = card′(A, f,ω) ≤ k,

and if L1 ∈ �′,

card(Au, f,ω) = card(A, f,ω) ≤ n

card′(Au, f,ω) = card′(A, f,ω) − 1 ≤ k − 1.

Now we apply the induction assumption and obtain a deterministic algorithm

A∗
u = ((L∗

i,u)
∞
i=1, (τ

∗
i,u)

∞
i=0, (ϕ

∗
i,u)

∞
i=0)

for Pu with
A∗
u( f ) = E Pu (Au( f, ·)) (26)

and

card(A∗
u, f ) ≤

{
(n − 1)|K ′|k if L1 ∈ �

n|K ′|k−1 if L1 ∈ �′ (27)

for every f ∈ Fu .
Finally we use the algorithms A∗

u to compose a deterministic algorithm

A∗ = ((L∗
i )

∞
i=1, (τ

∗
i )∞i=0, (ϕ

∗
i )

∞
i=0)

for P. This and the completion of the proof is done separately for each of the cases
L1 ∈ � and L1 ∈ �′.

If L1 ∈ �, then we set

L∗
1 = L1, τ ∗

0 = τ0 = 0, ϕ∗
0 = ϕ0,

furthermore, for i ∈ N, z1 ∈ K̃ , z2, . . . , zi ∈ K we let (with σz1 defined by (17))

L∗
i+1(z1, . . . , zi ) = (

σz1 ◦ L∗
i,z1

)
(z2, . . . , zi ) (28)

τ ∗
i (z1, . . . , zi ) = τ ∗

i−1,z1(z2, . . . , zi ) (29)

ϕ∗
i (z1, . . . , zi ) = ϕ∗

i−1,z1(z2, . . . , zi ). (30)

For i ≥ 1, z1 ∈ K \ K̃ , and z2, . . . , zi ∈ K we define

L∗
i+1(z1, . . . , zi ) = L1, τ ∗

i (z1, . . . , zi ) = 1, ϕ∗
i (z1, . . . , zi ) = ϕ0.

Let u ∈ K̃ and f ∈ Fu . We show that
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A∗( f ) = A∗
u( f ) (31)

card(A∗, f ) = card(A∗
u, f ) + 1. (32)

Let (bi )∞i=1 ⊆ K be given by

b1 = L∗
1( f ) = L1( f ) = u (33)

bi = (
L∗
i (b1, . . . , bi−1)

)
( f ) (i ≥ 2), (34)

and similarly (bi,u)∞i=1 ⊆ K by

bi,u = (
L∗
i,u(b1,u, . . . , bi−1,u)

)
( f ). (35)

Then
bi+1 = bi,u (i ∈ N). (36)

Indeed, for i = 1 we conclude from (34), (33), (28), and (35)

b2 = (L∗
2(b1))( f ) = (L∗

2(u))( f ) = L∗
1,u( f ) = b1,u .

Now let j ∈ N and assume (36) holds for all i ≤ j . By (34), (33), (28), and (35)

b j+2 = (L∗
j+2(b1, b2, . . . , b j+1))( f ) = (L∗

j+2(u, b1,u, . . . , b j,u))( f )

= (L∗
j+1,u(b1,u, . . . , b j,u))( f ) = b j+1,u .

This proves (36). It follows from (36), (33), (29), and (30) that for all i ∈ N0

τ ∗
i+1(b1, . . . , bi+1) = τ ∗

i+1(u, b1,u, . . . , bi,u) = τ ∗
i,u(b1,u, . . . , bi,u)

ϕ∗
i+1(b1, . . . , bi+1) = ϕ∗

i+1(u, b1,u, . . . , bi,u) = ϕ∗
i,u(b1,u, . . . , bi,u).

This shows (31) and (32). From (31), (26), and (25) we conclude for u ∈ K̃ , f ∈ Fu ,
recalling that Ru = R,

A∗( f ) = A∗
u( f ) = E P(Au( f, ·)) = E P(A( f, ·)).

Since ∪u∈K̃ Fu = F , the first relation of (16) follows. The second relation is a direct
consequence of (32) and (27), completing the induction for the case L1 ∈ �.

If L1 ∈ �′, then we use the algorithms (A∗
u)u∈K̃ for Pu = P and Lemma 3 of [8]

to obtain a deterministic algorithm A∗ for P such that for f ∈ F

A∗( f ) =
∑

u∈K̃
P(L−1

1 ({u})A∗
u( f ) (37)

card(A∗, f ) =
∑

u∈K̃
card(A∗

u, f ). (38)
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It follows from (37), (26), and (25) that

A∗( f ) =
∑

u∈K ′ :P(L−1
1 ({u}))>0

P(L−1
1 ({u})E Pu Au( f, ·)

=
∑

u∈K ′ :P(L−1
1 ({u}))>0

∫

L−1
1 ({u})

Au( f,ω)dP(ω)

=
∑

u∈K ′ :P(L−1
1 ({u}))>0

∫

L−1
1 ({u})

A( f,ω)dP(ω) = E PAu( f, ·).

Furthermore, (27) and (38) imply card(A∗, f ) ≤ n|K ′|k . �

Proof of Theorem 1 The proof is similar to the proof of [5, Lemma 11]. Let δ > 0
and let

A = ((Li )
∞
i=1, (τi )

∞
i=0, (ϕi )

∞
i=0) ∈ Aran

n,k(P,R)

be a randomized algorithm for P with restriction R satisfying

e(A,P) ≤ erann,k(P,R) + δ. (39)

For f ∈ F define

B f = {ω ∈ � : card(A, f,ω) ≤ 3n, card′(A, f,ω) ≤ 3k}.

Observe that B f ∈ � and P(B f ) ≥ 1/3. For the conditional expectation

E (A( f, ·) | B f ) = E
(
A( f, ·) · 1B f

)

P(B f )

of A( f, ·) given B f we obtain

3E ‖S( f ) − A( f, ·)‖G
≥ E

(‖S( f ) − A( f, ·)‖G | B f
) ≥ ∥∥S( f ) − E

(
A( f, ·) | B f

)∥∥
G (40)

by means of Jensen’s inequality. Our goal is now to design a deterministic algorithm
with input-output mapping f �→ E (A( f, ·) | B f ).

From Lemma 1 we conclude that there is an R-restricted randomized algorithm
Ã = ((Li )

∞
i=1, (τ̃i )

∞
i=0, (ϕ̃i )

∞
i=0) for P̃ = (F, G̃, S̃,�, K ), where G̃ = G ⊕ R and

S̃( f ) = (S( f ), 0) ( f ∈ F), satisfying for all f ∈ F and ω ∈ �

card( Ã, f,ω) ≤ 3n, card′( Ã, f,ω) ≤ 3k,

Ã( f,ω) = (A( f,ω) · 1B f (ω), 1B f (ω)).
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By Lemma 2 there is a deterministic algorithm A∗ = ((L∗
i )

∞
i=1, (τ

∗
i )∞i=0, (ϕ

∗
i )

∞
i=0) for

P̃ such that for all f ∈ F

card(A∗, f ) ≤ 3n|K ′|3k, A∗( f ) =
⎛

⎜
⎝

∫

B f

A( f,ω)dP(ω),P(B f )

⎞

⎟
⎠ .

It remains to modify A∗ as follows

Ã∗ = ((L∗
i )

∞
i=1, (τ

∗
i )∞i=0, (ψ

∗
i )

∞
i=0),

where for i ∈ N0 and a ∈ K i

ψ∗
i (a) =

{
ϕ∗
i,1(a)

ϕ∗
i,2(a)

if ϕ∗
i,2(a) �= 0

0 if ϕ∗
i,2(a) = 0,

with ϕ∗
i (a) = (ϕ∗

i,1(a),ϕ∗
i,2(a)) being the splitting into the G and R component.

Hence for each f ∈ F

card( Ã∗, f ) ≤ 3n|K ′|3k
Ã∗( f ) = E (A( f, ·) | B f ),

and therefore we conclude, using (39) and (40),

edet3n|K ′ |3k (P) ≤ e( Ã∗, P̃) ≤ 3e(A,P) ≤ 3(erann,k(P,R) + δ)

for each δ > 0. �

4 Applications

4.1 Integration of Functions in Sobolev Spaces

Let r, d ∈ N, 1 ≤ p < ∞,Q = [0, 1]d , letC(Q)be the space of continuous functions
on Q, and Wr

p(Q) the Sobolev space, see [1]. Then Wr
p(Q) is embedded into C(Q)

iff
(p = 1 and r/d ≥ 1) or (1 < p < ∞ and r/d > 1/p). (41)

Let BWr
p(Q) be the unit ball of Wr

p(Q), BWr
p(Q) ∩ C(Q) the set of those elements of

the unit ball which are continuous (more precisely, of equivalence classes, which
contain a continuous representative), and define
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F1 =
{

BWr
p(Q) if the embedding condition (41) holds

BWr
p(Q) ∩ C(Q) otherwise.

Moreover, let I1 : Wr
p(Q) → R be the integration operator

I1 f =
∫

Q

f (x)dx .

and let �1 = {δx : x ∈ Q} be the set of point evaluations, where δx ( f ) = f (x). Put
into the general framework of (1), we consider the problemP1 = (F1,R, I1,R,�1).

Set p̄ = min(p, 2). Then the following is known (for (42–44) below see [9] and
references therein). There are constants c1−6 > 0 such that for all n ∈ N0

c1n
−r/d−1+1/ p̄ ≤ erann (P1) ≤ c2n

−r/d−1+1/ p̄, (42)

moreover, if the embedding condition holds, then

c3n
−r/d ≤ edetn (P1) ≤ c4n

−r/d , (43)

while if the embedding condition does not hold, then

c5 ≤ edetn (P1) ≤ c6. (44)

Theorem1 immediately gives (compare thiswith the rate in the unrestricted setting
(42)).

Corollary 1 Assume that the embedding condition (41) does not hold and let R be
any finite access restriction, see (7). Then there is a constant c > 0 such that for all
n, k ∈ N

erann,k(P1,R) ≥ c.

It was shown in [11], that if the embedding condition holds, then (2 + d) log2 n
random bits suffice to reach the rate of the unrestricted randomized setting, thus, if
R is a bit restriction (see (8)–(9)), then there are constants c1, c2 > 0 such that for
all n ∈ N

c1n
−r/d−1+1/ p̄ ≤ erann (P1) ≤ erann,(2+d) log2 n

(P1,R) ≤ c2n
−r/d−1+1/ p̄. (45)

The following consequence of Theorem 1 shows that the number of random bits used
in the (non-adaptive) algorithm from [11] giving (45) is optimal up to a constant
factor, also for adaptive algorithms.

Corollary 2 Assume that the embedding condition holds and let R be any finite
access restriction. Then for each σ with 0 < σ ≤ 1 − 1/ p̄ and each c0 > 0 there are
constants c1 > 0, c2 ∈ R such that for all n, k ∈ N
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erann,k(P1,R) ≤ c0n
−r/d−σ.

implies
k ≥ c1σ log2 n + c2.

Proof Let R = (
(�,�,P), K ′,�′). By Theorem 1 and (43),

c0n
−r/d−σ ≥ erann,k(P1,R) ≥ 3−1edet3n|K ′ |3k (P1) ≥ 3−1c3(n|K ′|3k)−r/d ,

implying

log2 c0 − σ log2 n ≥ log2(c3/3) − 3kr

d
log2 |K ′|,

thus,

k ≥ d

3r log2 |K ′| (σ log2 n − log2 c0 + log2(c3/3)).

�

4.2 Integration of Lipschitz Functions Over the Wiener Space

Let μ be the Wiener measure on C([0, 1]),

F2 = { f : C([0, 1]) → R, | f (x) − f (y)| ≤ ‖x − y‖C([0,1]) (x, y ∈ C([0, 1]))},

G = R, let I2 : F → R be the integration operator given by

I2 f =
∫

C([0,1])
f (x)dμ(x),

and�2 = {δx : x ∈ C([0, 1])}, so we consider the problemP2 = (F2,R, I2,R,�2).

There exist constants c1−4 > 0 such that

c1n
−1/2(log2 n)−3/2 ≤ erann (P2) ≤ c2n

−1/2(log2 n)−1/2 (46)

and
c3(log2 n)−1/2 ≤ edetn (P2) ≤ c4(log2 n)−1/2 (47)

for every n ≥ 2, see [2], Theorem 1 and Proposition 3 for (47) and Theorems 11 and
12 for (46). Moreover, it is shown in [5], Theorem 8 and Remark 9, that if R is a bit
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restriction, then there exist a constants c1 > 0, c2 ∈ N such that for all n ∈ N with
n ≥ 3

erann,κ(n)(P2,R) ≤ c1n
−1/2(log2 n)3/2, (48)

where
κ(n) = c2�n(log2 n)−1 log2(log2 n)�. (49)

Our results imply that the number of random bits (49) used in the algorithm of [5]
giving the upper bound in (48) is optimal (up to log terms) in the following sense.

Corollary 3 Let R be a finite access restriction. For each α ∈ R and each c0 > 0
there are constants c1 > 0 and c2 ∈ R such that for all n, k ∈ N with n ≥ 2

erann,k(P2,R) ≤ c0n
−1/2(log2 n)α.

implies
k ≥ c1n(log2 n)−2α + c2. (50)

Proof LetR = (
(�,�,P), K ′,�′). We use Theorem 1 again. From (47) we obtain

c0n
−1/2(log2 n)α ≥ erann,k(P2,R) ≥ 3−1edet3n|K ′ |3k (P2) ≥ 3−1c3 log2(3n|K ′|3k)−1/2,

thus

log2(3n) + 3k log2 |K ′| ≥ c23
9c20

n(log2 n)−2α,

which implies

k ≥ (3 log2 |K ′|)−1

(
c23
9c20

n(log2 n)−2α − log2(3n)

)
. (51)

Choosing n0 ∈ N in such a way that for n ≥ n0

c23
18c20

n(log2 n)−2α ≥ log2(3n)

leads to

k ≥ (3 log2 |K ′|)−1

(
c23
18c20

n(log2 n)−2α − log2(3n0)

)
.
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Massively Parallel Path Space Filtering

Nikolaus Binder, Sascha Fricke, and Alexander Keller

Abstract Restricting path tracing to a small number of paths per pixel in order
to render images faster rarely achieves a satisfactory image quality for scenes of
interest. However, path space filtering may dramatically improve the visual quality
by sharing information across vertices of paths classified as proximate. Unlike screen
space approaches, these paths neither need to be present on the screen, nor is filtering
restricted to the first intersection with the scene. While searching proximate vertices
had been more expensive than filtering in screen space, we greatly improve over this
performance penalty by storing, updating, and looking up the required information
in a hash table. The keys are constructed from jittered and quantized information,
such that only a single query very likely replaces costly neighborhood searches. A
massively parallel implementation of the algorithm is demonstrated on a graphics
processing unit (GPU).

Keywords Integral equations · Real-time light transport simulation · Variance
reduction · Hashing · Monte Carlo integration · Massively parallel algorithms

1 Introduction

Realistic image synthesis consists of high-dimensional numerical integration of func-
tions with potentially high variance. Restricting the number of samples therefore
often results in visible noise, which efficiently can be reduced by path space filtering
[19] as shown in Fig. 1.
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Fig. 1 Path tracing at one path per pixel (top) in combination with hashed path space filtering
(middle) very closely approximates the reference solution using 1024 paths per pixel (bottom) and
does so with an overhead of about 1.5 ms in HD resolution. Scene courtesy of Epic Games

We improve the performance of path space filtering by replacing costly neighbor-
hood search with averages of clusters in voxels resulting from quantization. Our new
algorithm is suitable for interactive and even real-time rendering and it enables many
applications trading a controllable bias for a dramatic speedup and noise reduction.

2 Light Transport Simulation

As illustrated in Fig. 2, light transport is simulated by tracing rays to create paths that
connect the light sources and the camera sensor through a three-dimensional scene
that is represented by surfaces and scattering properties of the materials and volumes
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Fig. 2 Geometry of light transport simulation by path tracing. Starting from the eye on the left
through the image plane P , a light transport path segment ends in x . (a) Forward path tracing
continues the path until it terminates on the surface of a light source. A path can also be completed
by directly connecting to a point y on the surface of a light source (next event estimation) or to a
vertex y of the same or a different path (subpath connection). (b) Radiance in point x can directly
be evaluated by accumulating radiance in vertices x ′ in a local neighborhood either for density
estimation or path space filtering

of participating media. Light transport is ruled by an integral equation: the incident
radiance

Li (x, ω) = Le(x, ω) + Lr (x, ω) (1)

is the sum of the emitted radiance Le and the reflected radiance Lr in directionω. The
following equations show four equivalent ways to formulate the reflected radiance
Lr in a point x in direction ωr and Fig. 2 illustrates the corresponding sampling
techniques:

Lr (x, ωr )

=
∫

S2−(x)

Li (x, ω) fr (ωr , x, ω) cos θxdω (2)

=
∫

∂V

Li (x, ω) fr (ωr , x, ω) cos θx
cos θy

|x − y|2 V (x, y)dy (3)

= lim
r(x)→0

∫

∂V

∫

S2−(y)

1B(r(x))
(
x, h(y, ω)

)
πr(x)2

Li
(
h(y, ω), ω

)·

· fr
(
ωr , h(y, ω), ω

)
cos θydωdy (4)

= lim
r(x)→0

∫

S2−(x)

∫
∂V 1B(r(x))

(
x, x ′)w(x, x ′)Li (x ′, ω) fr (ωr , x, ω) cos θx ′dx ′∫
∂V 1B(r(x))

(
x, x ′, r(x)

)
w(x, x ′)dx ′ dω

(5)
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Here, the ray tracing function h(y, ω) determines the closest point of intersection
of the scene surface and a ray starting in the point y traced into direction ω. The
characteristic function

1B(r)(c, x) :=
{
1 ‖c − x‖2 < r

0 otherwise.
(6)

determines whether the point x is inside the ball B with radius r centered at c or, in
other words, whether the points c and x are no further apart than the distance r . The
sampling techniques are:

Forward Path Tracing: While in reality paths of photons start on emissive sur-
faces, and the camera sensor measures the ones terminating on its surface, sim-
ulations often construct paths backwards. Somewhat counter-intuitively, such a
simulation in reverse photon direction is called “forward path tracing”—forward
in view direction. Equation (2) integrates radiance over the upper hemisphere S2−
by multiplying the incident radiance Li from the angle ω in the point x with the
spatio-directional reflectivity fr for the two angles in the point x and the cosine
between the normal of the surface and the incident ray to account for the change
of area of the projected solid angle. Inserting the equation into Eq. (1) and the
result back into Eq. (2) allows for subsequently prolonging paths and is known as
(recursive) forward path tracing.

Next Event Estimation and Subpath Connection: Equation (3) changes the
integration domain to the scene surface ∂V so that a path can be constructed
in which the point x connects to any point y on the scene surfaces. The integrand
is then extended by the mutual visibility V of the two points x and y. The frac-
tion of the cosine of the second angle and the squared distance of the two points
accounts for the change of measure. One often refers to this fraction as the geo-
metric term. Equation (3) is especially useful since it allows to directly connect
to the surface of a light source (next event estimation) or any other vertex of any
path (subpath connection).

Density Estimation: Equation (4) again integrates over the scene surface. How-
ever, it realizes density estimation by restricting to a local neighborhood in a sphere
with radius r(x) using the characteristic function of the ball 1B . The density is
then obtained by dividing by the area of the circle that stems from the intersec-
tion of the ball and the flat surface. For a radius going to zero, the formulation is
equivalent to the previous formulations. Density estimation tracing photons from
the light sources is referred to as photon mapping [17].

Path Space Filtering: Similarly, Eq. (5) integrates over a local neighborhood of
x . In contrast to density estimation, a local weighted average is calculated. This
local average is normalized by the integral of all weights in the neighborhood
instead of the area of a circle. For a finite non-zero radius, the method trades a
certain bias for variance reduction. Due to the filtering of the local average this
technique has been introduced as path space filtering [19].
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While implementations of equations (2)–(5) each individually come with their
own strengths and weaknesses and are therefore often combined for robustness in
offline rendering applications [12, 15, 21, 35], time constraints of real-time image
synthesis as well as advances in path guiding [6, 26, 27] lead to the vast majority of
implementations only employing equations (2) and (3).Ourwork aims at a substantial
acceleration of path space filtering, resulting in a considerable variance reduction in
real-time applications at the cost of a controllable amount of bias.

2.1 Previous Work

Filtering results of light transport simulation is gaining more and more attention
in real-time, interactive, and even offline rendering. The surveys by Zwicker et al.
[37] and Sen et al. [33] present an overview of recent developments. The fastest
approaches use only information available at primary intersections and perform fil-
tering in screen space. Further recent work is based on deep neural networks [1, 4],
hierarchical filtering with weights based on estimated variance in screen space [31],
or on improving performance by simplifying the overall procedure [24].

Fast filtering is also possible in texture space [28], which requires a bijection
between the scene surface and texture space. While this may be tricky already, issues
may arise along discontinuities of a parametrization in addition. Furthermore, filter-
ing is restricted to locations on surfaces when operating in texture space, and thus
volumetric effects must be filtered separately.

Path space filtering [19], on the other hand, averages contributions of light trans-
port paths in path space, which allows for filtering at non-primary intersections and
for a more efficient handling of dis-occlusions during temporal filtering. Multiple
Importance Sampling weights, for example those for path space filtering, can be
further optimized [36]. However, querying the contributions in path space so far
had been significantly more expensive than filtering the contributions of neighboring
pixels in screen space. Neglecting the fact that locations that are close in path space
are not necessarily adjacent in screen space enables interactive filtering in screen
space [11]. As a consequence, filtering in screen space is almost only efficient for
primary rays or reflections from sufficiently smooth and flat surfaces. In fact, such
filtering algorithms are a variant of a bilateral filtering using path space proximity
to determine weights. Sharing information across pixels according to a similarity
measure dates back as early as the 1990s [18]. Since then, several variants have
been introduced, for example by re-using paths in nearby pixels [2], for filtering by
anisotropic diffusion [25] or using edge-avoiding Á-Trous wavelets [7].

Kontkanen et al. explore irradiance filtering, a subset of path space filtering [20].
Spatial caching of shading results in a hash table for walkthroughs of static scenes [8]
uses similarmethods to the ones presented in this work for the lookup of these results.
Again, the method can be seen as a subset of path space filtering: It is restricted to
caching diffuse illumination and neither includes filtering nor spatial and temporal
integration in an arbitrary number of vertices of a light path.
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Hachisuka et al. also use a hash table in a light transport simulation on the
GPU [14]. The approach is fundamentally different in two aspects: First, it traces
photons and stores them in the hash table for density estimation, while our method
averages radiance in vertices from arbitrary light paths. Second, their method imple-
ments simple sampling without replacement in voxels, culling all but one photon per
voxel. Our method does the exact opposite: It collects radiance from all paths whose
vertices coincide in a voxel.

Mara et al. summarize and evaluate a number of methods for photon mapping on
the GPU [23]. Their evaluation also includes work fromMa and McCool using hash
tables with lists of photons in per voxel [22]. While all examined methods may be
used for path space filtering instead of photon mapping, their performance is at least
limited by the maintenance of lists.

Havran et al. use two trees for final gathering with photon mapping [16]. The
overhead of tree construction and traversal aswell as iterating through lists of vertices
severely limit the performance in our intended real-time use case.

3 Algorithm

Likepath spacefiltering [19], the algorithm receives a set of vertices inwhich radiance
should be filtered to reduce variance. For each vertex complementary information
such as the surface normal, the attenuation from the camera along the light transport
path up to the vertex, and incident radiance is provided.

A first phase generates the aforementioned data from light transport paths, for
example, by path tracing. The second phase averages the radiance of vertices in
voxels, as described in Sect. 3.1, and stores and looks up the averages in a hash
table, see Sect. 3.2. Finally, for each vertex its associated average is multiplied by its
attenuation and accumulated in its respective pixel. Techniques described in Sect. 3.3
reduce the variance of voxels with a small number of vertices. Sect. 3.4 discusses
filtering over time for interactive light transport simulation.

3.1 Averaging in Voxels

Rather than averaging the radiance of vertices in a three-dimensional ball,wepartition
the space of vertex information into voxels and compute one average per voxel. We
therefore introduce the concept of a key k of a vertex x . The key is a subset of
the data stored for a vertex and at least contains the 3-dimensional position of the
vertex x along with possibly other vertex data, for example, the surface normal
(see Sect. 3.1.1). The voxels result from quantizing the scaled components of a
key vector to integers. The scale defines the size of the voxels and is determined
by the resolution selection function s(k), which itself may depend on the key (see
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Sect. 3.1.2). It balances bias and variance, while remaining quantization artifacts are
taken care of by stochastic interpolation (see Sect. 3.1.3).

We define the characteristic function

1V (k, k ′) :=
{
1 �s(k) � k� = �s(k ′) � k ′� ∧ s(k) = s(k ′)
0 otherwise,

(7)

telling us whether two key vectors k and k ′ of vertices x and x ′, respectively, share
the same voxel. Note that sharing the same voxel requires identical scale vectors,
too. Here � denotes component-wise multiplication and the floor function �·� is
applied per component. Depending on the number of components selected for a key,
voxels are not necessarily three-dimensional, and their extent may vary between
components.

Replacing the characteristic function 1B by 1V in path space filtering as given by
equation (5), selecting the weight w(x, x ′) ≡ 1, and considering an approximation
rather than the limit, we obtain

Lr (x, ωr ) ≈
∫

S2−(x)

∫
∂V 1V (k, k ′)Li (x ′, ω) fr (ωr , x, ω) cos θx ′dx ′∫

∂V 1V (k, k ′)dx ′ dω. (8)

If fr (ωr , x, ω) is separable into fr (ωr , x) · fi (x, ω), and fi (x, ω) is—at least
approximately—constant within the voxel, we will be able to rewrite Eq. (8) as

Lr (x, ωr ) ≈ fr (ωr , x)
∫

S2−(x)

∫
∂V 1V (k, k ′)Li (x ′, ω) fi (x ′, ω) cos θx ′dx ′∫

∂V 1V (k, k ′)dx ′ dω. (9)

In the following, we call the product Li (x ′, ω) · fi (x ′, ω) · cos θx ′ the contribution of
the vertex in x ′. Since all terms of the integrand except for 1V (k, k ′) are independent
of x and ωr , it is now possible to calculate the integral in Eq. (9) only once for all
vertices sharing a voxel. Thereby, the integral calculated per voxel is independent of
those components excluded from the key.

3.1.1 Construction of Keys

The key k of a vertex is a vector that contains a subset of the information stored with
a vertex x . This vector incorporates all information required to cluster proximate
vertices. The selection of components is critically important for defining the tradeoff
between bias and variance reduction: including additional components of the vertex
information in the key may reduce the bias, while excluding components allows for
the inclusion of more vertices in the integral in Eq. (9), therefore reducing variance.
In the following we will give an overview of components (see Fig. 3) that one would
typically include in the key.
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Fig. 3 The components of the key vector k of a vertex usually consist of the coordinates of the
point x of the vertex and optionally may include the normal in x , the angle of incidence of radiance,
and an identifier of a layer of a bidirectional scattering distribution function (BSDF)

The quality of the approximation in Eq. (9) highly depends on the deviation of Li

in x ′ from the one in x . First and foremost, it is therefore recommended to restrict the
world space extent of the voxel by including the position x of the vertex in the key
k. While Li is not continuous in practice—for example along shadow edges—the
visible error of the approximation decreases with the world space extent of a voxel.

In practice, one can furthermore not guarantee that limx ′→x cos θx ′ = cos θx due
to different surface orientations in the two locations, for example along edges of
objects. Including the normal of the surface in the point x in the key avoids a potential
“smearing” around edges and “flattening” of surfaces. Representations of unit vectors
are surveyed in [5].

Splitting fr (ωr , x, ω) into fr (ωr , x) · fi (x, ω) is not always possible. On highly
reflective surfaces, fr is defined as a Dirac delta function, and filtering is pointless.
Therefore, vertices on such surfaces should not be selected in the first place. On
glossy surfaces, however, filtering may reduce variance efficiently, again at the cost
of a certain bias. While fr cannot be split on these surfaces without unpleasantly
and undesirably changing the visual appearance, partitioning the domain of incident
angles and computing separate averages for each interval may be a viable tradeoff.
Therefore, for vertices on such surfaces one can append the incident angle to the key
in order to identify vertices with similar incident angle.

Materials are often composedof different layerswith different properties. Filtering
the layers independently offers the opportunity to use different voxel resolutions as
well as constructing keys with different components for the different layers. For
example, a material consisting of a glossy layer on top of a diffuse layer could only
include the angleωr in the key used for filtering the glossy layer since the attenuation
of the diffuse layer is independent of it. In turn, the integral for the diffuse layer
benefits from including more samples. Appending an identifier of the layer to the
key partitions the average into several individual ones, which can be combined later.

3.1.2 Adaptive Resolution

In the simplest case, the resolution selection function s(k) is a constant. In practice, it
is often advisable to increase the world space extent of a voxel with its distance to the
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Fig. 4 The characteristic function of a voxel 1V (k, k′) is 1 for all k, k′ inside the same voxel, here
depicted by the same color. A constant resolution selection function s(k) yields uniformly sized
voxels (a), while increasing s(k) along the x0-axis from left to right shrinks voxels according to
distance (b) reminiscent of a quad-tree structure

camera sensor along the light transport path. Then, one can filter more aggressively
in distant voxels, and increasing the size counteracts the decrease of the density of
vertices from paths directly coming from the camera sensor with increasing distance.
Our implementation parameterizes s(k) by defining an area on the screen, and then
calculates the projected size of the area on the screen using the projection theorem.
Fig. 4 illustrates the principle for sets of two-dimensional keys defined by this char-
acteristic function. In practice, keys are at least three-dimensional, i.e. defined by the
world space position of the vertex.

The choice of the resolution selection function s(k) is crucial for finding a good
tradeoff between visible bias and reduction of variance. Shrinking the voxels by
increasing s(k) reduces bias by averaging over a smaller neighborhood, but increases
variance. In theory, s(k) should be large in areas with a lot of high frequency detail in
Li . In practice, those areas are almost always unknown since Li is unknown. Fig. 5
shows how a sharp shadow is blurred due to averaging radiance in a large voxel. One
would therefore like to adaptively chose a finer resolution along its boundary.

Finite spatial differences may be used in heuristics for adaptation. While their
computation either introduces a certain overhead or reduces the number of indepen-
dent samples, cost may be amortized over frames in environments changing only
slowly over time. Note that finite differences only estimate spatial variations of the
averages, and one must therefore carefully both choose and adjust such heuristics as
well as determine the number samples used for finite spatial differences.
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Fig. 5 Increasing the filter size by lowering the resolution s(k) (left to right) increasingly blurs
shadows and also increases the amount of light and shadow leaking. The leftmost image is repre-
sentative of the reference solution

3.1.3 Filter Kernel Approximation by Jittering

The discontinuities of quantization are removed by jittering components of the key,
which in fact amounts to approximating a filter kernel by sampling. Jittering depends
on the kind of component of the key, for example, positions are jittered in the tangent
plane of an intersection, see Algorithm 1. The resulting noise is clearly preferable
over the visible discretization artifacts resulting from quantization, as illustrated and
shown in Figs. 6 and 7. In contrast to discretization artifacts, noise from jitter is less
perceptually pronounced and simple to filter. Note that jittering is not limited to the
position; in fact jittering is advantageous for all continuous components of the key
that may suffer discontinuities introduced by quantization, such as the normal.

Jittering can be performed either before accumulation or before lookup, leading to
similar results. In practice, we suggest using the same jittered key for both accumu-
lation and lookup. Then, the contribution is guaranteed to be included in the average.
Furthermore, this allows us to determine the index in the hash table only once for
accumulation, and re-use the index later for the lookup of the average without having
to calculate the two hash functions and solve potential collisions with linear probing
redundantly.

Fig. 6 Jittering trades quantization artifacts for noise. Left: Note that the resolution s(k) at the
jittered location (red) may differ from the one of the original location (green). Spatial jittering hides
otherwise visible quantization artifacts (middle): The resulting noise (right) is more amenable to
the eye and much simpler to remove by a secondary filter
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(a) (b) (c) (d)

Fig. 7 Two-dimensional example for averages in voxels: The noisy input (a) is filtered in each vertex
by path space filtering (b) yielding a splotchy result that is difficult to filter. Instead, the newmethod
filters in each voxel, resulting in block artifacts (c). Additionally jittering before accumulation and
lookup resolves the artifacts in noise that is simple to filter (d)

3.2 Accumulation and Lookup in a Hash Table

The averages in each voxel can be calculated in two different ways: First, each voxel
can gather radiance of all included vertices. This process may run in parallel over
all voxels and does not require any synchronization. On the other hand, a list of
voxels as well as a list of vertices per voxel must be maintained. The second way
to calculate the average radiance in a voxel runs in parallel over all vertices: Each
vertex atomically adds its contribution Li (x ′, ω) fi (x ′, ω) cos θx ′ to a running sum of
the voxel and increments the counter of the voxel. Dividing the sum by the counter
yields the average. While the latter approach requires atomic operations, it does not
involve the maintenance of any lists. Furthermore, the summation can be parallelized
over the paths or over the vertices, matching the parallelization scheme of typical
light transport simulations. Finally, parallelization per path or per vertex exposes
more parallelism, and therefore the second approach significantly outperforms the
first one on modern graphics processing units (GPUs).

Accumulation with the latter approach needs a mapping from the key of a vertex
to the voxel with its running sum and counter. Typically, the set of voxels is sparse
since vertices are mostly on two-dimensional surfaces in three-dimensional space.
Additional components of the key increase sparsity even further.

Hash tables provide such a mapping in constant time for typical sets of keys: First,
a hash of the key is calculated using a fast hash function. A modulo operator then
wraps this hash into the index range of the table cells. Since both the hash function
as well as the modulo operator are not bijective, different keys may be mapped to
the same index. Therefore, an additional check for equality of keys is required, and
keys must also be stored in the table. Sect. 3.2.1 details a cheaper alternative for long
keys.

Upon index collision with a different key, linear probing subsequently increments
the index, checking if the table cell at the updated index is empty or occupied by
an entry with same key. There exist various other collision resolution methods that
improve upon several aspects of linear probing and have proven to bemore efficient in
certain use cases, especially for hash tables with high occupancy. On the other hand,
we do not primarily aim to minimize the size of the hash table, and our experiments
show that linear probing comes with a negligible overhead if the table is sufficiently
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large. We restrict the number of steps taken for linear probing to avoid performance
penalties of extreme outliers, and resort to the unfiltered contribution of the vertex
if the number of steps exceeds this limit. So far, our choices for the table size and
number of steps so extremely rarely resulted in such failures that further improvement
has been deemed unnecessary. Sect. 3.2.2 broadens the application of linear probing
from only collision resolution to an additional search for similar voxels.

3.2.1 Fingerprinting

Instead of storing and comparing the rather long keys, we calculate a shorter finger-
print [30, 34] from a second, different hash function of the same key and use it for
this purpose, see Algorithm 1. Using a sentinel value that cannot be a fingerprint, we
can furthermore mark empty cells.

Using fingerprints instead of the full keys is a tradeoff between correctness and
performance: In theory, fingerprints of different keys may coincide. In practice, our
choice of 32bit fingerprints never caused any collision in our evaluation of several test
scenes and numerous simulations. Still, there is a certain probability of failure, and
we deliberately favor the tiny probability of a failure over the performance penalty
of storing and comparing full length keys.

Algorithm 1: Computation of the two hashes used for lookup. Note that the
arguments of a hash function, which form the key, may be extended to refine
clustering (denoted by “...”, see Sect. 3.1.2).
Input: Location x of the vertex, the normal n, the position of the camera pcam, and the scale

s (see Sect. 3.1.1).
Output: Hash i to determine the position in the hash table and hash f for fingerprinting.
l ← level_of_detail(|pcam − x |)
x ′ ← x+ jitter(n) · s · 2l
l ′ ← level_of_detail(|pcam − x ′|)
x̃ ←

⌊
x ′

s·2l′
⌋

i ← hash(x̃, . . .)
f ← hash2(x̃, n, . . .)

3.2.2 Searching by Linear Probing

As shown in Fig. 8, linear probing may be used to differentiate attributes of the light
transport path at a finer resolution: For example, normal informationmay be included
in the key handed to the fingerprinting hash function instead of already including it
in the main key. This allows one to search for similar normals by linear probing.
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Fig. 8 Instead of including normals in the key (a) to differentiate contributions whose vertices fall
into the same voxel (b), the fingerprint of a key may include normal information. This allows one
to differentiate normal information by linear probing as shown in (c)

Note that due to completely unrelated voxels also possibly occupying neighboring
cells in the hash table, searching with linear probing must go beyond those with
mismatching fingerprints. Therefore, the method works best if both the number of
additional contributions as well as the occupancy of the hash table are low.

3.3 Handling Voxels with a low Number of Vertices

Often, there exists a tiny number of voxels that contain very few vertices. Examples
of such voxels include those that are only slightly overlapped by objects. Sects. 3.3.1
and 3.3.2 present two approaches that reduce variance in such voxels at an almost
negligible cost.

3.3.1 Neighborhood Search

Accumulation in voxels by using quantized keys and a hash table requires one
atomicAdd operation for each component of the radiance of each vertex as well as
one atomicAdd or atomicInc operation for updating the counter of the voxel.
The final average is computed with one additional non-atomic read operation per
component for the sum and one for the counter. So, as long as access to the hash
table happens in constant time, the calculation of the average also takes constant
time. This is in sharp contrast to existing methods that compute sums or averages in
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Fig. 9 Instead of searching the nd neighborhood in d dimensions (left), we utilize clustering
resulting from quantization at a lower resolution to accumulate contributions, which allows for a
single look up (right). We only resort to an additional neighborhood search in the rare case that the
number of vertices in a voxel falls below a certain threshold

a spatial neighborhood which for each vertex takes linear time for a search within
a given radius or (typically) logarithmic time for a fixed number of neighboring
vertices.

Even if primarily only one average per voxel is computed and looked up, searching
for neighboring voxels can still be valuable: In theory, increasing the resolution s(k)
and additionally searching for neighboring voxels may result in variance reduction
similar to the one at a lower resolution, however then with a lower bias. Yet, the
number of neighbors grows exponentially with the number of components of the key.
Hence, such an approach is ruled out by the time constraints of real-time applications.
Fig. 9 shows a comparison between neighborhood search and clustering by selecting
a coarser resolution.

Neighborhood search is still very valuable as a fallback: If the number of vertices
in a voxel falls below a certain threshold, we allow for an additional search. We
observe that given an appropriate threshold, the number of such voxels is so low that
the overhead is negligible while the perceptual improvement is clearly visible.

3.3.2 Multiresolution Accumulation

A special treatment of voxels with averages from only very few vertices is important
for visual fidelity: Even if the number of voxels with a high variance is very low,
they may be very visible, especially since their appearance is so different from the
rest. Such voxels are very often found on the silhouette of objects. While one may
not be able to identify them in still images, they become especially visible across
frames. Besides searching in a local neighborhood to reduce variance in these cases
(see Sect. 3.3.1), selecting a coarser resolution also effectively increases the number
of vertices in the local average—at the price of an increased bias. Using more than
one resolution at a time avoids the chicken-and-egg problem that arises from first
selecting an appropriate resolution, and then, after accumulation according to this
resolution, determining that it has been set too high or too low.
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For simulations in interactive scenarios, one may also select the resolution based
on information from previous frames, see Sect. 3.4.1.

3.4 Accumulation over Time

Reusing contributions over time dramatically increases efficiency. Attention should
be paid to pitfalls and aspects of efficiency: Sect. 3.4.1 details the differences and
similarities between filtering and integration across frames, Sect. 3.4.2 explains the
handling of resolution changes across frames, and Sect. 3.4.3 is concerned with the
amount of information stored over time to avoid running out of memory in the hash
table.

3.4.1 Temporal Filtering and Temporal Integration

For static scenes, the averages will converge with an increasing number of frames.
For dynamic environments, maintaining two sets of averaged contributions and com-
bining them with an exponential moving average c = α · cold + (1 − α) · cnew is a
common tradeoff between convergence and temporal adaptivity.

However, combining the averages cold and cnew by an exponential moving average
is not equivalent to temporal integration. Especially averages in voxels with relatively
few samples do not converge. In fact, denoting Nold and Nnew the number of vertices
in the voxel in the previous and current frame, and setting α := Nold

Nold+Nnew
correctly

integrates across frames. On the other hand, temporal integration is only possible if
the underlying setting, including lighting conditions and object positions, remains
unchanged across frames.

A first, simple heuristic is to accumulate samples over time up to a certain degree.
This may be implemented using a fixed threshold for the number of samples and
accumulating samples across frames until reaching it. Note that this heuristic is
completely unaware of changes in the scene.

A second, more expensive heuristic builds upon temporal finite differences: A
number of paths is re-evaluated with the same parameters, and the difference of their
contribution to the original ones allows one to detect changes that affect the current
voxel. Similar to the spatial finite differences in Sect. 3.1.2, the additional cost may
be amortized across frames, and the number of samples used for finite differences
as well as their influence on the balance between temporal adaptation and temporal
integrationmust be carefully optimized. Note that averaging in voxels can be used for
the samples used for finite differences, too. Figure 10 shows a comparison of temporal
filtering, temporal integration and a hybrid that blends both based on temporal finite
differences. A similar approach for screen space filtering has been explored in detail
by Schied et al. [32].
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(a) temporal filtering (b) temporal integration (c) hybrid

Fig. 10 In a scene with a moving light source, temporal filtering using an exponential moving
average blurs shadow boundaries (a), and temporal integration averages out the entire shadow (b).
Adaptively blending α between zero (for large temporal differences) and α := Nold

Nold+Nnew
(for no

temporal differences) combines both and preserves sharp shadow boundaries (c). Note that jittering
has deliberately been disabled here to enable simple distinction

3.4.2 Changing Resolution Across Frames

In many simulations, the camera is dynamic, and therefore the resolution of a voxel
may change across frames if it depends on the position of the camera. Then accu-
mulated contributions in a voxel at one resolution must be copied to a voxel at either
a higher or lower resolution.

If the resolution in the new frame decreases, one can simply add up the contri-
butions in voxels of higher resolution. Since we store sums and counters, both only
need to be added individually.

If the resolution in the new frame increases, the contributions in voxels of lower
resolution must be distributed to voxels at a higher resolution. Due to the lack of
resolution, this case is much nuanced: On the one hand, using already collected
contributions lowers variance, but on the other hand, the coarser resolution may
becomeunpleasantly visible.One therefore needs tofind agood compromise between
the two, and set α in the exponential moving average accordingly.

Finite spatial or temporal differences can also be filtered across frames in a similar
way.

3.4.3 Voxel Eviction Strategy

Evicting contributions of voxels which have not been queried for a certain period of
time is necessary for larger scenes and changing camera. Besides the least recently
used (LRU) eviction strategy, heuristics based on longer term observations are effi-
cient.

A very simple method relies on replacing the most significant bits of the fin-
gerprinting hash by a priority composed of for example the number of vertices in
the voxel and last access time during temporal filtering. Thus the pseudo-randomly
hashed least significant bits guarantee eviction to be uniformly distributed across the
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scene, while the most significant bits ensure that contributions are evicted according
to priority. This allows collision handling and eviction to be realized by a single
atomicMin operation.

4 Results and Discussion

While filtering contributions at primary intersections with the proposed algorithm is
quite fast, it only removes some artifacts of filtering in screen space. However, hashed
path space filtering has been designed to target real-time light transport simulation:
It is the only efficient option when screen space filtering fails or is not available, for
example, when filtering after the first diffuse bounce (Fig. 11).

Filtering on non-diffuse surfaces requires to include additional parameters in the
key and heuristics such as increasing the quantization in areas with non-diffuse
materials to reduce the visible artifacts.

Filtering, and especially accumulating contributions, is always prone to light and
shadow leaking (see Fig. 5), which is the price paid for performance. Some artifacts
may be ameliorated by employing suitable heuristics as reviewed in [19, Sect. 2.1]
and in Sect. 3.1.2.

The new algorithm filters incoherent intersections at HD resolution (1920 × 1080
pixels) in about 3ms on an NVIDIA Titan V GPU. Filtering primary intersections
doubles the performance due to the more coherent memory access patterns.

The image quality is determined by the filter size, which balances noise versus
blur as shown in Fig. 5. Both the number of collisions in the hash table and hence the
performance of filtering depend on the size of the voxels, too. We found specifying
the voxel size by s0-times the projected size of a pixel most convenient. Since s0
specifies the tradeoff between bias and variance reduction, its value highly depends
on the scene and variance. Values between 4 and 16 may serve as a good starting
point.

Note that maximum performance does not necessarily coincide with best image
quality. The hash table size is chosen proportional to the number of pixels at target
resolution such that potentially one vertex could be stored per pixel. In practice,
filtering requires multiple vertices to coincide in a voxel, and therefore the occupancy
of the hash table is rather low. Such a small occupancy improves the performance as
it lowers the number of collisions and time spent for collision resolution.

While path space filtering dramatically reduces the noise at low sampling rates
(see Fig. 1), some noise is added back by spatial jittering. Instead of selecting the first
sufficiently diffuse vertex along a path from the camera, path space filtering can be
applied at any vertex. For example, filtering at the second sufficiently diffuse vertex
as shown in Fig. 11 resembles final gathering or local passes [17]. Furthermore,
it is possible to filter in several vertices along the path at the same time. In fact,
path space filtering trades variance reduction for controlled bias and is orthogonal
to other filtering techniques. We therefore abstain from comparisons with these:
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Fig. 11 Indirect illumination by hashed path space filtering only at the second bounce: At 16 paths
per pixel (left), the variance of the integrand is dramatically reduced (right)

temporal anti-aliasing and complimentary noise filters in screen space are appropriate
to further reduce noise [24]. A local smoothing filter [31] can even help reduce the
error inherent in the approximation.

5 Conclusion

In combination with hardware accelerated ray tracing, our variance reduction tech-
nique enables visual fidelity of light transport simulation in real-time. Relying on
only a few synchronizations during accumulation, path space filtering based on hash-
ing scales on massively parallel hardware. Both accumulation as well as queries run
in constant time per vertex. Neither the traversal nor the construction of a hierarchi-
cal spatial acceleration data structure is required. At the same time, the simplistic
algorithm overcomes many restrictions of screen space filtering, does not require
motion vectors, and enables variance reduction beyond the first intersection of a
light transport path, including non-diffuse surfaces.

The hashing scheme still bears potential for improvement. For example, important
hashes could be excluded from eviction by reducing the resolution that is accumu-
lating their contributions at a coarser level. Other than selecting the resolution by
the length of the path, path differentials and variance may be used to determine the
appropriate resolution.

Besides the classic applications of path space filtering [19, Sect. 3] likemulti-view
rendering, spectral rendering, participating media, and decoupling anti-aliasing from
shading, the adaptive hashing scheme can be applied to photon mapping [13, 17] and



Massively Parallel Path Space Filtering 167

irradiance probes in reinforcement learned importance sampling [6] in combination
with final gathering. Since the first publication of this work as a technical report
evolutions of the presentedmethod have improved the efficiency of real-time ambient
occlusion inmassive scenes [9, 10], reinforcement learned importance sampling [29],
and reservoir-based importance resampling [3] in light transport simulation.

Acknowledgements The authors thank Petrik Clarberg for profound discussions and comments.
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12. Georgiev, I., Křivánek, J., Davidovič, T., Slusallek, P.: Light transport simulation with vertex
connection and merging. ACM Trans. Graph. 31(6), 192:1–192:10 (2012)

13. Hachisuka, T., Jensen, H.: Stochastic progressive photon mapping. In: SIGGRAPH Asia ’09:
ACM SIGGRAPH Asia 2009 papers, pp. 1–8. ACM (2009)

14. Hachisuka,T., Jensen,H.: Parallel progressive photonmappingonGPUs. SIGGRAPHSketches
(2010). https://doi.org/10.1145/1899950.1900004

15. Hachisuka, T., Pantaleoni, J., Jensen, H.W.: A path space extension for robust light transport
simulation. ACM Trans. Graph. 31(6) (2012). https://doi.org/10.1145/2366145.2366210

https://doi.org/10.1145/3072959.3073708
https://doi.org/10.2312/EGWR/EGWR02/125-134
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1109/RT.2007.4342602
https://doi.org/10.1145/2614106.2614117
https://doi.org/10.1145/2614106.2614117
https://doi.org/10.1145/1899950.1900004
https://doi.org/10.1145/2366145.2366210


168 N. Binder et al.

16. Havran, V., Herzog, R., Seidel, H.P.: Fast final gathering via reverse photon mapping. Comput.
Graph. Forum 24(3), 323–332 (2005)

17. Jensen, H.: Realistic Image Synthesis Using Photon Mapping. AK Peters (2001)
18. Keller, A.: Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. Ph.D. thesis, Uni-

versity of Kaiserslautern, Germany (1998)
19. Keller, A., Dahm, K., Binder, N.: Path space filtering. In: Cools, R., Nuyens, D. (eds.) Monte

Carlo and Quasi-Monte Carlo Methods 2014, pp. 423–436. Springer, Berlin (2016)
20. Kontkanen, J., Räsänen, J., Keller, A.: Irradiance filtering forMonte Carlo ray tracing. In: Talay,

D., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 259–272.
Springer, Berlin (2004)

21. Lafortune, E., Willems, Y.: Bi-directional path tracing. In: Proceedings of Third International
Conference on Computational Graphics and Visualization Techniques (Compugraphics’ 93)
(1998)

22. Ma, V., McCool, M.: Low latency photon mapping using block hashing. In: Ertl, T., Heidrich,
W., Doggett, M. (eds.) SIGGRAPH/EurographicsWorkshop onGraphics Hardware. The Euro-
graphics Association (2002). https://doi.org/10.2312/EGGH/EGGH02/089-098

23. Mara,M., Luebke, D.,McGuire,M.: Toward practical real-time photonmapping: efficient GPU
density estimation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D’13) (2013). https://casual-effects.com/research/Mara2013Photon/
index.html

24. Mara, M., McGuire, M., Bitterli, B., Jarosz, W.: An efficient denoising algorithm for global
illumination. In: ACM SIGGRAPH/Eurographics High Performance Graphics, p. 7 (2017).
http://casual-effects.com/research/Mara2017Denoise/index.html

25. McCool, M.: Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18
(2002). https://doi.org/10.1145/318009.318015

26. Müller, R., McWilliams, B., Rousselle, F., Gross, M., Novák, J.: Neural importance sampling.
ACM Trans. Graph. 38(5), 145:1–145:19 (2019)

27. Müller, T., Gross, M., Novák, J.: Practical path guiding for efficient light-transport simulation.
Comput. Graph. Forum 36(4), 91–100 (2017)

28. Munkberg, J., Hasselgren, J., Clarberg, P., Andersson, M., Akenine-Möller, T.: Texture space
caching and reconstruction for ray tracing. ACM Trans. Graph. 35(6), 249:1–249:13 (2016).
https://doi.org/10.1145/2980179.2982407

29. Pantaleoni, J.: Online path sampling control with progressive spatio-temporal filtering (2020)
30. Rabin, M.: Fingerprinting By Random Polynomials. Center for Research in Computing Tech-

nology, Harvard University, Technical report (1981)
31. Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C., Burgess, J., Liu, S., Dachs-

bacher, C., Lefohn, A., Salvi, M.: Spatiotemporal variance-guided filtering: Real-time recon-
struction for path-traced global illumination. In: Proceedings of High Performance Graphics,
HPG ’17, pp. 2:1–2:12. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3105762.
3105770

32. Schied, C., Peters, C., Dachsbacher, C.: Gradient estimation for real-time adaptive temporal
filtering. Proc. ACM Comput. Graph. Interact. Tech. 1(2) (2018)

33. Sen, P., Zwicker, M., Rousselle, F., Yoon, S.E., Kalantari, N.: Denoising your Monte Carlo
renders: recent advances in image-space adaptive sampling and reconstruction. In: ACM SIG-
GRAPH 2015 Courses, SIGGRAPH ’15, pp. 11:1–11:255. ACM, NewYork, NY, USA (2015).
https://doi.org/10.1145/2776880.2792740

34. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lecture notes].
IEEE Signal Process. Mag. 25(2), 128–131 (2008). https://doi.org/10.1109/MSP.2007.914237

35. Veach, E.: Robust Monte CarloMethods for Light Transport Simulation. Ph.D. thesis, Stanford
University (1997)

36. West, R., Georgiev, I., Gruson, A., Hachisuka, T.: Continuous multiple importance sampling.
ACM Trans. Graph. (Proceedings of SIGGRAPH) 39(4) (2020)

37. Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler,
C., Yoon, S.E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo
rendering. Comput. Graph. Forum 34(2), 667–681 (2015)

https://doi.org/10.2312/EGGH/EGGH02/089-098
https://casual-effects.com/research/Mara2013Photon/index.html
https://casual-effects.com/research/Mara2013Photon/index.html
http://casual-effects.com/research/Mara2017Denoise/index.html
https://doi.org/10.1145/318009.318015
https://doi.org/10.1145/2980179.2982407
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/2776880.2792740
https://doi.org/10.1109/MSP.2007.914237


A fresh Take on ‘Barker Dynamics’
for MCMC

Max Hird, Samuel Livingstone, and Giacomo Zanella

Abstract We study a recently introduced gradient-basedMarkov chainMonte Carlo
method based on ‘Barker dynamics’. We provide a full derivation of the method
from first principles, placing it within a wider class of continuous-timeMarkov jump
processes. We then evaluate the Barker approach numerically on a challenging ill-
conditioned logistic regression example with imbalanced data, showing in particular
that the algorithm is remarkably robust to irregularity (in this case a high degree of
skew) in the target distribution.

Keywords MCMC · Markov chains · Barker dynamics · Langevin dynamics ·
Metropolis–Hastings

1 Introduction

For over half a century now Markov chain Monte Carlo has been used to sample
from and compute expectations with respect to unnormalised probability distribu-
tions [16]. The idea is to construct a Markov chain for which a distribution of interest
is invariant. Provided that the chain is π -irreducible and aperiodic (see e.g. [20]),
then the distribution of Xn , the nth point in the chain, will approach the invariant dis-
tribution as n → ∞, and ergodic averages from the chain can be used to approximate
desired integrals.
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Restricting attention to X ⊂ R
d , one way to confirm that a distribution on X

with density π(x) is invariant for a Markov chain with transition kernel Q(x, A) :=∫
A q(x, y)dy is to establish that the equation

π(y)q(y, x)

π(x)q(x, y)
:= t (x, y) = 1 (1)

holds for all x, y ∈ X such that π(x)q(x, y) > 0, and that π(y)q(y, x) = 0 else-
where. These are the well-known detailed balance equations. The celebrated
Metropolis–Hastings algorithm [10, 16] is built on the idea of coercing a Markov
chain into having a specified invariant distribution. This is achieved through what
will be called a balancing function in this article. Consider the scenario in which π

is not invariant for Q, meaning (1) does not hold. A new kernel can be created which
in fact does satisfy Eq. (1) by setting

p(x, y) := g(t (x, y))q(x, y), (2)

where g(t) satisfies
g(t) = tg(1/t) (3)

whenever t > 0, and g(0) := 0. By noting that π(x)q(x, y)t (x, y) = π(y)q(y, x)
and t (y, x) = 1/t (x, y), it is easily seen that

π(x)p(x, y) = π(x)q(x, y)g(t (x, y)) (4)

= π(x)q(x, y)t (x, y)g(1/t (x, y)))

= π(y)q(y, x)g(t (y, x))

= π(y)p(y, x)

as required.
The problem, however, with taking the above strategy is that there is no guarantee

that
∫
p(x, y)dy = 1, in fact this is extremely unlikely to be the case. More steps

must be taken, therefore, to create a Markov process. TheMetropolis–Hastings solu-
tion is to restrict to balancing functions that satisfy g(t) ≤ 1 for all t ∈ [0,∞). This
ensures that the kernel K (x, A) := ∫

A p(x, y)dy satisfies K (x,X) ≤ 1. The remain-
ing probability mass can then be found by simply adding a rejection step, meaning
that with probability 1 − K (x,X) the chain remains at its current point x .

There is, however, another way to create a Markov process from p(x, y), without
resorting to theMetropolis–Hastings approach. This consists of defining a continuous
time Markov jump process in which jumps from the point x occur with intensity

λ(x) =
∫

p(x, y)dy, (5)
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and the jump location y is sampled from a distribution with density p(x, y)/λ(x).
The function p(x, y) then describes the rate at which the process jumps from x to
y, and (4) indicates that the process is π -invariant. The challenge associated with
this second approach is that the integral (5) will often be intractable, meaning that
simulating the process is not straightforward. Here we describe a solution that is
outlined in the recent contribution [14], through a judicious choice of g and a suitable
approximation to t (x, y). It should of course be noted that in the case of finite X then
(5) becomes a sum, and so the process can be exactly simulated. We do not consider
this setting here, but direct the interested reader to [18], in which the approach is
elegantly described, following earlier work in [23].

In the next section we discuss Barker’s accept-reject rule, an early Markov chain
Monte Carlo method from which we draw inspiration, before covering the general
approach to the design of Markov jump processes with a prescribed invariant dis-
tribution in Sect. 3. It is here that we derive a Markov process that approximately
preserves a given distribution, and show that the Barker balancing function is the only
choice giving rise to such a process. In Sect. 4 we reveal the Barker proposal scheme,
in which this new process is used as a proposal mechanism within a Metropolis–
Hastings algorithm. In Sect. 5 we discuss the merits of using this new algorithm, by
comparing it to suitable alternatives both theoretically and numerically, in the latter
case using a challenging logistic regression example with imbalanced categorical
data.

2 Barker’s Rule and the Peskun Ordering

Readers who are familiar with the Metropolis–Hastings algorithm will naturally
gravitate towards the choice of balancing function g(t) = min(1, t) in (2), resulting
in the familiar Hastings acceptance probability

gH (t (x, y)) = min

(

1,
π(y)q(y, x)

π(x)q(x, y)

)

. (6)

It should be noted, however, that several other choices of g are possible. One alter-
native proposed by Barker in [3] is g(t) = t/(1 + t), resulting in the acceptance
probability

gB(t (x, y)) = π(y)q(y, x)

π(x)q(x, y) + π(y)q(y, x)
(7)

after multiplying the numerator and denominator by π(x)q(x, y). In the case
q(x, y) = q(y, x) this further reduces to π(y)/(π(x) + π(y)). Note that both gH
and gB satisfy g ≤ 1.

The reason that gH is preferred to gB in the context of the Metropolis–Hastings
algorithm is due to the work of Peskun [17] and Tierney [22], which established that
for the same choice of q(x, y) the acceptance rate gH will result in Markov chains
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that produce ergodic averages with smallest asymptotic variance. A key part of the
argument is that gH will maximize the probability of moving from x to y, for any
y �= x . When comparing (6) and (7) this is easy to see, as

gB(t (x, y)) = π(y)q(y, x)

π(x)q(x, y) + π(y)q(y, x)
≤ π(y)q(y, x)

π(x)q(x, y)

whenever π(x)q(x, y) > 0. Combining with the fact that gB ≤ 1 gives that gB ≤ gH
for every value of t (x, y).

It is important to emphasize, however, that the above discussion and conclusions
about the optimality of gH are confined to the scenario in which (2) is used to create
a Metropolis–Hastings algorithm. It no longer applies to the setting in which the
function p(x, y) is used to define a Markov jump process with transition rates given
by (5). Furthermore, in this case the stipulation that g ≤ 1 is not required. This
presents an opportunity to consider not just gH but also alternatives such as gB and
others when designing jump processes of the type described in Sect. 1.

3 Designing Jump Processes Through a Balancing Function

The dynamics of a jump process for which transitions from x to y occur at the rate
p(x, y) are as follows: if the current point at time t is Xt = x ∈ X, the process will
remain at x for an exponentially distributed period of time τ ∼ Exp(λ(x)), with λ(x)
defined in (5), before moving to the next point using the Markov ‘jump’ kernel J ,
defined for any event A as

J (x, A) :=
∫

A

p(x, y)

λ(x)
dy. (8)

In order to simulate such a process, we must therefore be able to compute λ(x) :=∫
p(x, y)dy, and also to simulate from J (x, ·), for any x ∈ X.
Note, however, that if λ(x) were constant, we could simply use the jump kernel J

directly and simulate a discrete-time Markov chain. To see this, note that in general
the jump kernel will have invariant density proportional to λ(x)π(x), as the equation

λ(x)π(x)
p(x, y)

λ(x)
= λ(y)π(y)

p(y, x)

λ(y)

simplifies to π(x)p(x, y) = π(y)p(y, x), which holds by design. If λ(x) = λ then
the above equation simply shows that J is π -reversible. We can therefore either
simulate the continuous-time process with constant jump rate λ, or just ignore this
step and take J as the kernel of a discrete-time Markov chain. In Sect. 3.1, we show
that making a careful approximation to t (x, y) allows just such a constant jump rate
process to be found.
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3.1 Tractability Through a 1st Order Approximation
of t(x, y)

Recalling that p(x, y) = g(t (x, y))q(x, y), the jump rate λ(x) is the integral

∫
g(t (x, y))q(x, y)dy,

which in general will not be tractable. A natural starting point for simplifying the
problem is to restrict to the family of transition densities forwhich q(x, y) = q(y, x),
and further to the random walk case q(x, y) = q(y − x). When this choice is made
then t (x, y) = π(y)/π(x). Restricting for now toX ⊂ R, a first order approximation
of this ratio can be constructed using a Taylor series expansion as

π(y)/π(x) = exp{logπ(y) − logπ(x)} ≈ exp{(y − x)∇ logπ(x)}

for y suitably close to x . The purpose of using this approximation is that y now
only enters the expression through the difference term z := y − x , and furthermore
it holds that

t∗x (z) := ez∇ logπ(x) = 1/e−z∇ logπ(x) = 1/t∗x (−z). (9)

Since q(x, y) = q(z) we can therefore express the entire integral as

λ∗(x) :=
∞∫

−∞
g(t∗x (z))q(z)dz.

By first writing λ∗(x) as the sum of two integrals over the disjoint regions (∞, 0]
and [0,∞), then switching the limits of integration through a change of variables in
the first of these and finally re-combining, we arrive at the expression

λ∗(x) =
0∫

−∞
g(t∗x (z))q(z)dz +

∞∫

0

g(t∗x (z))q(z)dz

=
∞∫

0

[
g(t∗x (−z))q(−z) + g(t∗x (z))q(z)

]
dz

=
∞∫

0

[
g(t∗x (−z)) + g(t∗x (z))

]
q(z)dz,

where the last line follows from the fact that q(z) = q(−z). Using (9) and then the
balancing property (3) reveals that
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g(t∗x (−z)) = g(1/t∗x (z)) = g(t∗x (z))/t
∗
x (z),

meaning that setting t∗x (z) := t∗ the term in square brackets inside the integral can be
written (1 + 1/t∗)g(t∗). Note that if this expression were in fact equal to a constant,
then λ∗(x) would become tractable, and furthermore it would not depend on x . The
Barker rule is the unique (up to constant multiple) choice of balancing function for
which this property holds. To see this, note that for any c �= 0

(1 + 1/t∗)g(t∗) = c ⇐⇒ g(t∗) = c

1 + 1/t∗
.

Setting c = 1 and multiplying by t∗/t∗ reveals the choice gB(t∗) = t∗/(1 + t∗), and
furthermore

λ∗(x) =
∞∫

0

q(z)dz = 1

2
,

using the facts that q(z) = q(−z) and
∫
q(z)dz = 1. In fact the choice of c is irrele-

vant here as it simply acts as a constant multiple to the jump rate and does not enter
into the jump kernel expression. We refer to the resulting Markov process as Barker
dynamics.

3.2 A Skew-Symmetric Markov Transition Kernel

The family of skew-symmetric distributions on R has densities of the form

2F(βz)φ(z), (10)

where φ is a symmetric probability density function, F is a cumulative distribution
function such that F(0) = 1/2 and F ′ is a symmetric density, and β ∈ R [2]. Choos-
ing β > 0 induces positive skew and vice versa (setting β = 0 means no skew is
induced). In fact βz can be replaced with more general functions of z, but the above
suffices for our needs.

The jump kernel (8) with symmetric choice of q, the approximation t∗ in (9) and
Barker balancing function gB leads to the Markov kernel

J ∗(x, A) :=
∫

A

2gB(exp{(y − x)∇ logπ(x)})q(y − x)dy (11)

for any event A. Writing FL(z) := 1/(1 + e−z), the cumulative distribution function
of the logistic distribution, and noting that gB(ez) = FL(z), the associated transition
density can be written

j∗(x, x + z) = 2FL(βx z)q(z)
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where
βx := ∇ logπ(x).

We see, therefore, that the resulting transition is skew-symmetric, with the level of
skew at the current state x determined by ∇ logπ(x). Because of this, a convenient
algorithm for drawing samples from this transition kernel exists, and consists of the
following:

1. Draw ξ ∼ q(·)
2. Set b = 1 with probability FL(βxξ), otherwise set b = −1
3. Set z = bξ
4. Return x + z.

The resulting draw is from the kernel J ∗(x, ·). To see this, note that the probability
density associated with any z is

j∗(x, x + z) = q(z)FL(βx z) + q(−z)(1 − FL(−βx z)),

which gives the density associated with either drawing z and setting b = 1 or draw-
ing −z and setting b = −1. After noting that q(z) = q(−z) and 1 − FL(−βx z) =
FL(βx z) by the symmetry of the logistic distribution, this simplifies to

j∗(x, x + z) = 2FL(βx z)q(z)

as required. Figure 1 illustrates the inner workings of such a transition. It is natural
to consider whether other choices of skewing function derived from other balancing
functions can be used to produce such a Markov transition. It is shown in Appendix
F of [14], however, this is not possible, more precisely it is shown that gB is the

Fig. 1 A diagram of a
typical draw from the
transition kernel (11) using
the algorithm outlined in
Sect. 3.2. The white ball x is
the current state, and the
sizes of the black balls
indicate the probability of
moving to that point, given
that the innovation drawn in
step 1 is ξ = 1.2. A move in
the direction of the gradient
is clearly more probable
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unique choice of balancing function leading to a skew-symmetric transition kernel
when the first order approximation t∗(x, y) is used in place of t (x, y). This is in fact
evident from the calculations of Sect. 3.1.

4 The Barker Proposal in X ⊂ R
d

The culmination of Sect. 3 is a Markov transition kernel (11) and an algorithm
in Sect. 3.2 to draw samples from this kernel. Note, however, that this transition
kernel will not in general have equilibrium distribution π , owing to the 1st order
approximation used in Sect. 3.1. In some cases it might be reasonable to simply
ignore this fact and use the method regardless, in the hope that any approximation
error is small (the authors will discuss this approach in forthcoming work). The
resolution we will adopt here, however, is to use the transition as a proposal within
a Metropolis–Hastings algorithm. Note that the transition density can be written
j∗(x, y) ∝ q(y − x)/(1 + e(x−y)∇ logπ(x)) with q(y − x) = q(x − y), meaning that
the Metropolis–Hastings acceptance probability becomes

α1(x, y) = min

(

1,
π(y)(1 + e(x−y)∇ logπ(x))

π(x)(1 + e(y−x)∇ logπ(y))

)

.

Wehave also restricted attention thus far to the one-dimensional setting, as extend-
ing to a d-dimensional transition kernel for d > 1 can be done in many different
ways. It is natural to consider as a starting point a d-dimensional symmetric and
centered density q. There are, however, many different ways to introduce the skew-
ing mechanism into a d-dimensional distribution, which is done in one dimension
through the variable b ∈ {−1, 1}. We consider two here, which we believe to be
natural generalizations, and of which one is in fact clearly preferable to the other.
The first is to simply introduce the same variable b, and after drawing ξ ∼ q(·), set
P[b = 1] = FL(β

T
x ξ), where βx := ∇ logπ(x) as in Sect. 3.2. The only difference

between this and the one-dimensional case is that now βx and ξ are d-dimensional
vectors, meaning the scalar product is replaced by an inner product. This procedure
is a single global skewing of the initial symmetric distribution q.

It turns out, however, that a much more favorable approach is to skew each
dimension individually. This involves defining b ∈ {−1, 1}d , and settingP[bi = 1] =
FL(βx,iξi ) for i ∈ {1, . . . , d}, where βx,i := ∂ logπ(x)/∂xi , the i th partial deriva-
tive of logπ(x). This approach allows a much more flexible level of skewing to be
applied to the base distribution q. In fact, once the initial ξ ∼ q(·) is drawn, the first
approach only considers two possible candidate moves: x + ξ and x − ξ . In a high
dimensional setting it may not be that either of these candidate moves is particu-
larly favourable in terms of helping the chain mix. By contrast, the second approach
allows for 2d possible moves after ξ has been sampled. Figure 2 illustrates how this
increased flexibility can result in much more favourable transitions.
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Fig. 2 A typical draw from the two different multi-dimensional transition kernels described in
Sect. 4 when d = 2. The white ball x is the current state, and the sizes of the black balls indicate the
probability of moving to each candidate point after the initial innovation ξ has been drawn. Using
the first variant (left-hand side) only twomoves are possible, neither of which move the chain closer
to the high probability region of π . By contrast, using the second variant (right-hand side) 2d moves
are possible, and the most likely of these will move the chain in a favorable direction

One can make the comparison between the two approaches more concrete. In
[14], it is shown that the asymptotic variance of the first d-dimensional version of
the Barker proposal will be at least half as large as that of a random walk Metropolis
algorithm. As such, using scaling arguments based on limiting diffusion approxima-
tions, it can be shown that O(d) iterations of the algorithm are needed to achieve
estimates of a fixed level of precision as d → ∞. By contrast, in the same work it
is shown that only O(d1/3) iterations are needed for the second version to achieve
the same goal. This is akin to the Metropolis-adjusted Langevin algorithm, another
popular gradient-basedMetropolis–Hastings algorithm (e.g. [19]).When referring to
the Barker method in d-dimensions, from this point forward wewill exclusively refer
to the second approach described in this section. A single transition of the resulting
d-dimensional Metropolis–Hastings algorithm with current state x is given below.

1. Draw ξ ∼ q(·)
2. For i ∈ {1, . . . , d} set bi = 1 with probability (1 + e−βx,i ξi )−1, otherwise set bi =

−1, where βx,i := ∂ logπ(x)/∂xi
3. Set y := x + b · ξ , where a · b = (a1b1, a2b2, . . . , adbd) defines the element-

wise product of two vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd

4. Set the next state to be y with probability

αd(x, y) = min

(

1,
π(y)

π(x)

d∏

i=1

1 + e(xi−yi )βx,i

1 + e(yi−xi )βy,i

)

,

otherwise remain at x .
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We note that the algorithm requires the same ingredients as MALA, and has the
same computational cost per iteration, which is dominated by the calculation of the
gradient and target distribution. A simple function to run the Barker proposal in the
R programming language is provided at https://github.com/gzanella/barker.

5 Why Use the Barker Algorithm?

Gradient-based MCMC methods are typically used because they perform well in
high-dimensional settings. The Barker algorithm is no exception here, achieving the
same O(d−1/3) asymptotic efficiency as the popular Metropolis-adjusted Langevin
algorithm (MALA) for suitably regular problems, where d represents the dimension
of the state space [14]. The design of the Barker scheme, however, does differ from
other gradient-based schemes such asMALA and HamiltonianMonte Carlo (HMC).
In both of the latter well-known approaches the gradient is incorporated through a
deterministic drift, which depends linearly on ∇ logπ(x). In MALA, for example,
if the current point is x the proposal will be

y = x + h2

2
∇ logπ(x) + hξ,

where ξ ∼ N (0, 1) and h > 0. When the gradient is suitably regular and h well-
chosen this transition can be very desirable; for example if π is Gaussian then the
proposal becomes y = (1 − h2/2)x + hξ , leading to dynamics in which the chain
drifts towards the centre of the space very quickly provided that h2 < 2. In the same
setting, however, it is immediately clear that choosing h2 > 2will lead to undesirable
behaviour. The Barker proposal, by contrast, does not exhibit such a sharp cut-off
between a good and bad choice of h in this example.

The above case is indicative of a much more general phenomenon that is well-
known to practitioners, namely that popular gradient-based methods often produce
fast-mixing Markov chains on a particular class of problems and provided that the
tuning parameters of the algorithm are well-chosen, but that this class of problems
is smaller than ideal, and that performance degrades rapidly when a poor choice of
tuning parameters is made. This phenomenon is not only restricted to settings in
which the MALA proposal becomes unstable (as in the Gaussian case), and means
that it is also often difficult to tune the methods adaptively during the course of
the simulation, an issue that is discussed in [14]. In that work the authors focus on
characterizing robustness to tuning, providing a mathematical argument to show that
for MALA and HMC performance is much more sensitive to the choice of proposal
tuning parameters than for the Barker proposal.

https://github.com/gzanella/barker
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5.1 Skewed Target Distributions

One scenario in which gradient-based algorithms can perform poorly is when the
distribution of interest π exhibits considerable skew. To explore this phenomenon we
first consider a simple one-dimensional model problem, before performing a more
comprehensive numerical study on a challenging ill-conditioned logistic regression
example.Wewill show that in both of these cases theBarker algorithm is considerably
more robust to the level of skewness exhibited than other gradient-based schemes.
In essence the challenge is that the gradient near the mode will diverge with the
skewness of the distribution, causing pathologies in gradient-based proposals unless
accounted for.

A model problem. Consider the family of skew-normal probability distributions
πη on R indexed by a skewness parameter η > 0. A given member of the family
will have density πη(z) := 2φ(z)�(ηz) where where φ and � are the density and
cumulative distribution function of a standard normal distribution. Note that as η

increases so does the skewness and that πη becomes a truncated Gaussian truncated
to be positive as η → ∞. Take x > 0 larger than the mode of πη, and set y = 0,
noting that this implies sign(∇ logπη(x)) = −sign(∇ logπη(y)). The choice y = 0
is important only for the limiting result, in reality algorithmic difficulties will occur
for any point in the neighborhood of zero for which the gradient is large and positive
when η � 0. For these choices, as η → ∞ it holds that πη(x) → 2φ(x), πη(y) →
1/

√
2π , and∇ logπη(x) → −x ,whereas∇ logπη(y)) → ∞ as the density becomes

increasingly skewed. Recall that the MALA proposal density is

log qM
η (z1, z2) := − 1

2h2

(

z2 − z1 − h2

2
∇ logπη(z1)

)2

− 1

2
log

(
2πh2

)
.

This implies that log qM
η (y, x) → −∞ as η → ∞, whereas log qM

η (x, y) remains
finite. As a consequence the reverse move from y to x becomes increasingly unlikely
as η grows, causing the acceptance rate

αM
η (x, y) := min

(

1,
πη(y)qM

η (y, x)

πη(x)qM
η (x, y)

)

to become arbitrarily small, such thatαM
η (x, y) → 0 as η → ∞. TheBarker proposal

density is

log qB
η (z1, z2) := − log

(
1 + exp((z1 − z2)∇ logπη(z1)

) + C

for some finite constant C . Since (y − x) and ∇ logπη(y) have opposite signs, their
product tends to −∞ in the same limit, meaning log qB

η (y, x) → C . The acceptance
rate αB

η (x, y) for the Barker algorithm therefore remains stable and converges to a
positive value in the same limit.
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Fig. 3 The forward (blue) and reverse (green) proposal densities associated with two points sepa-
rated by a mode for an example target distribution that contains skew. In theMALA case the current
point x is quite unlikely under the reverse proposal density (green curve), whereas for the Barker
algorithm this is not the case

Figure 3 provides some more intuition for the contrasting behaviour between the
two methods in this example.

5.2 A Logistic Regression Example with Imbalanced Data

Skewed posterior distributions appear in many common modeling settings, but it is
perhaps surprising that even seemingly simple logistic regression models can exhibit
such a degree of skew that they pose a significant challenge to MCMC methods.
This is despite the fact that the posterior distribution is strongly log-concave and the
gradient is Lipschitz, meaning that several favorable results on the mixing properties
of classical gradient-based algorithms can been established (e.g. [6–8]).

We consider an example using the arrythmia dataset from the UCI machine learn-
ing repository, available at https://archive.ics.uci.edu/ml/datasets/arrhythmia. The
dataset consists of 452 observations of 279 different covariates. The modeling task is
to detect the presence or absence of cardiac arrythmia. The data presents a challenge
as there are many imbalanced categorical covariates with only a few observations in
certain categories.

The number of predictors compared to the size of the dataset makes the problem
highly ill-conditioned. To combat this we selected 25 imbalanced covariates and 25
others, meaning 50 covariates in total for our problem. The 25 imbalanced predictors
were chosen from among the categorical covariates for which one category appeared
two or fewer times in the dataset, whereas the remaining 25 were chosen from the
remaining set. Despite this pre-processing the problem is still highly ill-conditioned
and the maximum likelihood estimator is undefined, making a Bayesian approach
very natural for the problem.We also note that despite the reduced number of covari-

https://archive.ics.uci.edu/ml/datasets/arrhythmia
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Fig. 4 Example marginal distributions for selected covariates using the output of the Barker algo-
rithm, illustrating varying degrees of skew in different dimensions. The plots are shown for the raw
data

ates the final problem is still of large enough dimension that simpler fitting methods
will be ineffective, in line with the recommendations of [5]. The choice of dataset
was inspired by [11], in which the authors highlight that imbalanced categorical data
can cause problems for Markov chain Monte Carlo methods. In this case the result
is a logistic regression posterior distribution with a pronounced level of skewness in
certain dimensions, as shown in Fig. 4.

For the Barker scheme we choose a Gaussian q(·) (although we note anecdotally
that ongoing work suggests that other choices may be preferable). With the goal
of minimizing the degree of hand-tuning needed for each algorithm, we used an
adaptive approach to choosing algorithmic tuning parameters, precisely Algorithm
4 of [1], which consists of a Robbins–Monro scheme for learning a single global
scale λ and a covariance matrix �, which combine to form the pre-conditioning
matrix λ2�. We set the Robbins–Monro learning rate at time t to be t−0.6. The
matrix � can be dense or restricted to diagonal; the former allows correlations to be
better navigated by the sampler, but the diagonal approach means less parameters
must be learned during the simulation. A weakly-informative independent Gaussian
prior with zero mean and variance 25 was chosen for each model parameter. It is
also sometimes recommended in logistic regression problems to first standardise the
covariates, transforming each to have zero mean and unit variance. This can have the
effect of making the posterior more regular and as a consequence the inference less
challenging, but is not always done by practitioners. In our case the scales by which
the covariates were standardized range from ~0.05 to ~32.

The above considerations led us to four different testing scenarios for each algo-
rithm: dense � with raw data, dense � with standardized data, diagonal � with raw
data and diagonal� with standardized data. For each of these scenarios we compared
the Barker proposal scheme with MALA, a classical gradient-based alternative, as a
simple illustration of the different patterns of behavior that the two algorithms can
exhibit.

Trace plots showing the performance of the MALA and Barker algorithms in
each scenario are shown in Fig. 5. It is immediately clear that MALA struggles to
reach equilibrium in 3 out of 4 scenarios, only really performing reasonably when
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Fig. 5 A selection of trace plots from the MALA and Barker algorithms for the logistic regression
example. 1st row: raw data with dense �; 2nd row: standardized data with dense �; 3rd row: raw
data with diagonal �; 4th row: standardized data with diagonal �

� is diagonal and the data is standardized. As expected, standardizing the data
aids performance, but it is perhaps surprising that the sampler also struggles in the
dense � setting. By comparison, visually the Barker algorithm behaves reasonably
in all scenarios. To evaluate the samplers at equilibrium and once the adaptation has
stabilized, we examine effective sample sizes for each scenario in which equilibrium
is visually reached after 30,000 iterations in Table 1. The effective sample sizes allow
us to see that performance once equilibrium is reached is largely comparable between
the two schemes once the scenario is favourable. The key strengths of the Barker
approach in this example are its robustness to lack of standardization and robustness
to different adaptation strategies.
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Table 1 Minimum and median effective sample sizes (ESS) for the logistic regression example

Dataset Algorithm ESS (min., med.)

Raw Barker (dense) 38.82, 156.67

Raw Barker (diag.) 65.55, 164.67

Raw MALA (dense) N/a

Raw MALA (diag.) N/a

Standardised Barker (dense) 53.36, 98.44

Standardised Barker (diag.) 44.19, 101.51

Standardised MALA (dense) N/a

Standardised MALA (diag.) 37.21, 87.14

6 Discussion

We have given a pedagogical treatment of the Barker proposal scheme, a new
gradient-based MCMC algorithm that we argue has some desirable features when
compared to classical gradient-based alternatives, namely its robustness (in a very
general sense). There are numerous ways in which classical schemes such as MALA
andHMCcan bemademore robust in different settings (e.g. [4, 12, 15, 21]), but these
often introduce additional tuning parameters and can suffer from other issues, mean-
ing that the quality of performance becomes very problem-specific. Another alter-
native approach are second-order methods that incorporate the Hessian of logπ(x)
in some way (e.g. [9, 13]), but generally the cost of their implementation is large,
and can grow cubically with dimension. Based on the simplicity, scaling properties
and robustness of the Barker proposal we argue that there are likely to be many
realistic scenarios in which it proves useful, and in addition there is much room for
the development of further algorithms within the general framework discussed in
Sect. 3.
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On the Selection of Random Field
Evaluation Points in the p-MLQMC
Method

Philippe Blondeel, Pieterjan Robbe, Stijn François, Geert Lombaert,
and Stefan Vandewalle

Abstract Engineering problems are often characterized by significant uncertainty
in their material parameters. A typical example coming from geotechnical engi-
neering is the slope stability problem where the soil’s cohesion is modeled as a
random field. An efficient manner to account for this uncertainty is the novel sam-
pling method called p-refined Multilevel Quasi-Monte Carlo (p-MLQMC). The p-
MLQMCmethod uses a hierarchy of p-refined finite element meshes combined with
a deterministic Quasi-Monte Carlo sampling rule. This combination yields a signif-
icant computational cost reduction with respect to classic Multilevel Monte Carlo.
However, in previous work, not enough consideration was given to how to incorpo-
rate the uncertainty, modeled as a random field, in the finite element model with the
p-MLQMC method. In the present work we investigate how this can be adequately
achieved by means of the integration point method. We therefore investigate how the
evaluation points of the random field are to be selected in order to obtain a variance
reduction over the levels. We consider three different approaches. These approaches
will be benchmarked on a slope stability problem in terms of computational runtime.
We find that for a given tolerance the local nested approach yields a speedup up to
a factor five with respect to the non-nested approach.
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1 Introduction

Starting from the work by Giles, see [7–9], we developed a novel multilevel method
called p-refined Multilevel Quasi Monte Carlo (p-MLQMC), see [1]. Similar to
classic Multilevel Monte Carlo, see [7], p-MLQMC uses a hierarchy of increasing
resolution finite element meshes to achieve a computational speedup. Most of the
samples are taken on coarse and computationally cheap meshes, while a decreasing
number of samples are taken on finer and computationally expensive meshes. The
major difference between classic Multilevel Monte Carlo and p-MLQMC resides in
the refinement scheme used for constructing themesh hierarchy. In classicMultilevel
Monte Carlo (h-MLMC), an h-refinement scheme is used to build themesh hierarchy,
see, for example [4]. The accuracy of themodel is increased by increasing the number
of elements in the finite element mesh. In p-MLQMC, a p-refinement scheme is
used to construct the mesh hierarchy. The accuracy of the model is increased by
increasing the polynomial order of the element’s shape functions while retaining the
same number of elements. This approach reduces the computational cost with respect
to h-MLMC, as shown in [1]. Furthermore, instead of using a random sampling rule,
i.e., the Monte Carlo method, p-MLQMC uses a deterministic Quasi-Monte Carlo
(QMC) sampling rule, yielding a further computational gain.

However, the p-MLQMC method presents the practitioner with a challenge. This
challenge consists of adequately incorporating the uncertainty, modeled as a random
field, into the finite element model. For classic Multilevel (Quasi)-Monte Carlo (h-
ML(Q)MC) this is typically achieved by means of the midpoint method [11]. The
model uncertainty is represented as scalars resulting from the evaluation of the ran-
domfield at centroids of the elements. These scalars are then assigned to the elements.
With this method, the uncertainty is modeled as being constant inside each element.
In h-refined multilevel methods, the midpoint method intrinsically links the spatial
resolution of themeshwith the spatial resolution of the randomfield.An h-refinement
of the mesh will result in a finer representation of the random field. However, for
the p-MLQMC method, the midpoint method cannot be used. This is because the
refinement scheme used in p-MLQMC does not increase the number of elements.
The p-MLQMCmethod makes use of the integration point method, see [13]. Scalars
resulting from the evaluation of the random field at certain spatial locations are taken
into account during numerical integration of the element stiffness matrices. With this
method, the uncertainty varies inside each element. In the present work, we inves-
tigate how to adequately select the spatial locations used for the evaluation of the
random field. Specifically, we distinguish three different approaches to how to select
these random field evaluation points. The Non-Nested Approach (NNA), the Global
Nested Approach (GNA), and the Local Nested Approach (LNA).We investigate how
these approaches affect the variance reduction in the p-MLQMC method, and how
the total computational runtime increases over the levels. These approaches will be
benchmarked on a model problem which consists of a slope stability problem, which
assesses the stability of natural or man made slopes. The uncertainty is located in the
soil’s cohesion, and is represented as a two-dimensional lognormal random field.
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The paper is structured as follows. First we give a theoretical backgroundmotivat-
ing our research, and give a concise overview of the building blocks of p-MLQMC.
Second, we present the three approaches. Hereafter, we shortly discuss the under-
lying finite element solver, and introduce the model problem. Last, we present the
results obtained with p-MLQMC for the three different approaches. Here we focus
on the variance reduction over the levels and the effect on the total computational
runtime.

2 Theoretical Background

Multilevel Monte Carlo methods rely on a hierarchy of meshes in order to achieve
a speedup with respect to Monte Carlo. This speedup is achieved by writing the
expected value of a quantity of interest on a fine mesh as the expected value of a
quantity of interest on a coarse mesh together with a series of correction terms that
express the difference in expected value of the quantity of interest on two successive
finer meshes. In particular, given the hierarchy of approximations P0, P1, . . . , PL
for the quantity of interest P computed on an increasingly finer mesh, we have the
telescopic sum identity,

E[PL] = E[P0] +
L∑

�=1

E[P� − P�−1]. (1)

This hierarchy of meshes can be obtained by applying an h-refinement scheme
or a p-refinement scheme to a coarse mesh model. We opt for a hierarchy based
on p-refinement. The hierarchy applied to a discretized model of the slope stability
problem is shown in Fig. 1.Here, the finite element nodal points are represented as red
dots. A more thorough discussion of the slope stability problem and the underlying
finite element model is given in Sect. 4.

In the Multilevel Monte Carlo setting, the meshes in the hierarchy are commonly
referred to as ‘levels’. The coarsest mesh is referred to as level 0. Subsequent finer
meshes are assigned the next cardinal number, e.g., level 1, level 2, . . .

The number of samples to be taken on levels greater than 0 (� > 0), is proportional
to the sample variance of the difference, V [�P�] with �P� = P� − P�−1 and P a
chosen quantity of interest (QoI). It is only for determining the number of samples on
level 0 that the sample varianceV [P�] is used. In order to obtain a decreasing number
of samples per increasing level, i.e., N0 > N1 > · · · > NL, it is necessary to have a
variance reduction over the levels, i.e., V [�P1] > V [�P2] > · · · > V [�PL], and
an increasing cost ‘of one solve’ per increasing level, i.e., C0 < C1 < · · · < CL. This
variance reduction is only obtained when a strong positive correlation is achieved
between the results of two successive levels. We have that
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Fig. 1 p-refined hierarchy of approximations used for the slope stability problem

V [�P�] = V
[
P� − P�−1

]

= V [P�] + V
[
P�−1

] − 2cov (P�, P�−1) ,
(2)

where cov (P�, P�−1) = ρ�,�−1

√
V [P�]V

[
P�−1

]
is the covariance between P� and

P�−1 with ρ�,�−1 the correlation coefficient. The value of cov (P�, P�−1) must be
larger than 0 to have a large variance reduction, and hence an efficient multilevel
method.

In our p-MLQMCalgorithmapplied to a slope stability problem, see [1], themodel
uncertainty representing the soil’s cohesion is located in the elastic constitutivematrix
D. It is taken into account at the locations of the quadrature points when computing
the integral in the element stiffness matrices Ke, i.e.,

Ke =
∫

�e

BTDBd�e. (3)

This is calculated in practice as

Ke =
|q|∑

i=1

BT
i DiBiwi , (4)

where the matrix Bi = B(qi ) contains the derivatives of the shape functions, eval-
uated at the quadrature points qi , the matrix Di = D

(
xi , ω

)
contains the model

uncertainty computed at point xi , and wi are the quadrature weights. The set of
quadrature points q is expressed in a local coordinate system of the triangular refer-
ence element. The uncertainty in the matrix Di is represented by a scalar originating
from the evaluation of the random field at a carefully chosen spatial location. This
approach is commonly referred to as the integration point method [13]. Note that here
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the uncertainty is not constant in an element, i.e., D1 �= D2 �= · · · �= Di in Eq. (4).
The scalar used in the matrix Di originates from the evaluation of the random field
at spatial location xi ∈ x, in a global coordinate system of the mesh, by means of the
Karhunen-Loève (KL) expansion with stochastic dimension s, i.e.,

Z(x, ω) = Z(x) +
s∑

n=1

√
θnξn(ω)bn(x) , (5)

where Z(x) is the mean of the field and ξn(ω) denote i.i.d. standard normal ran-
dom variables. The symbols θn and bn(x) denote the eigenvalues and eigenfunctions
respectively, which are the solutions of the eigenvalue problem

∫
D C(x, y)bn(y)dy =

θnbn(x) with a given covariance kernel C(x, y). Note that in order to represent the
uncertainty of the soil’s cohesion in the considered slope stability problem, we do
not use Z(x, ω) but exp(Z(x, ω)), see Sect. 4.

Our goal is to select evaluation points for Eq. (5), grouped in sets {x�}L�=0, in
order to ensure a good correlation between P� and P�−1, i.e., such that the covari-
ance, cov (P�, P�−1), is as large as possible, see Eq. (2). We distinguish three differ-
ent approaches for selecting the evaluation points on the different levels, the Non-
Nested Approach (NNA), the Global Nested Approach (GNA) and the Local Nested
Approach (LNA). All the approaches start from the given sets of quadrature points
on the different levels {q�}L�=0. Note that the number of quadrature points per level
increases, |q0| < |q1| · · · < |qL|. Given the sets {q�}L�=0, we select evaluation points

for the random field in a local coordinate system and group them in sets
{
xlocal�

}L
�=0,

with the condition that |xlocal� | = |q�|. The points in the sets
{
xlocal�

}L
�=0 are then trans-

formed to points in global coordinates, resulting in sets {x�}L�=0. The points belonging
to {x�}L�=0 are then used in Eq. (1). Note that with the integration point method, the
spatial resolution of the field is proportional to the number of quadrature points.
Increasing the number of quadrature points will result in a finer resolution of the
random field.

Before elaborating further upon these approaches, we first introduce the estimator
used in our p-MLQMC algorithm. The estimator is given by

QMLQMC
L := 1

R0

R0∑

r=1

1

N0

N0∑

n=1

P0(u
(r,n)
0 )+

L∑

�=1

1

R�

R�∑

r=1

{
1

N�

N�∑

n=1

(
P�(u

(r,n)
� ) − P�−1(u

(r,n)
� )

)}
.

(6)

It expresses the expected value of the quantity of interest on the finest level L as
the sample average of the quantity of interest on the coarsest level, plus a series of
correction terms. A particularity of MLQMC consists of the use of deterministic
sample points per level u(r,n)

� in the unit cube, i.e., [0, 1]s , combined with an average
over a number of shifts R� on each level �. Averaging over the number of shifts is
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performed in order to obtain unbiased estimates of the computed stochastic quantities.
The representation of these uniform distributed quasi-Monte Carlo sample points in
[0, 1]s is given by

u(r,n) = frac (φ2(n)z + 
r ) for n ∈ N, (7)

where frac (x) = x − (x), x > 0, φ2 is the radical inverse function in base 2, z is
an s-dimensional vector of positive integers, 
r ∈ [0, 1]s is the random shift with
r = 1, 2, . . . , R�, and s the stochastic dimension. The representation of the points
from Eq. (7) is known as a shifted rank-1 lattice rule. The generating vector z was
constructed with the component-by-component (CBC) algorithm with decreasing
weights, γ j = 1/j2, see [10]. In the scope of this work, the uniform quasi-Monte
Carlo sample pointsu(r,n)

� aremapped from [0, 1]s toR
s bymeans of the inverse of the

univariate standard normal cumulative distribution function, �−1(·). The standard
normal distributed quasi-Monte Carlo points, �−1(u(r,n)) are then substituted in
Eq. (5), and used as the random standard normal distributed ξn(ω) in order to generate
random field instances.

3 Incorporating the Uncertainty in the Model

In this section, we will discuss the mechanics behind the three approaches. We will
show how the evaluation points of the random field are selected on each level � =
{0, . . . ,L} for the different approaches. Each of the approaches selects the evaluation
points differently. However, all approaches start from the given set of the quadrature
points q�. The points qi� ∈ q� are represented by ��, on a reference triangular finite
element on level �. Given the sets of quadrature points, the evaluation points of the
random field, represented by��, are selected on a reference triangular finite element
on level �, and grouped in the set xlocal� .

The quadrature points consist of a combination of points developed by Dunavant
[5] andWandzurat [16], see Table1. The code used to generate the Wandzurat points
can be found at [3].

3.1 Non-nested Approach

For the Non-Nested Approach, the quadrature points on each level are selected as the
evaluation points of the random field, i.e., xlocal� = q� for � = {0, . . . ,L}. Because
the sets of quadrature points are not nested over the levels, i.e., q0 � q1 � · · · � qL,
it follows that the sets of the evaluation points of the random field are not nested,
i.e., xlocal0 � xlocal1 � · · · � xlocalL , and thus x0 � x1 � · · · � xL. This approach is the
most straightforward one, and is illustrated in Fig. 2. In Algorithm 1, we present the
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Fig. 2 Locations of the quadrature points � and of the evaluation points of the random field � on
a reference triangular element in NNA

procedure which selects the evaluation points of the random field for each level in
local coordinates and groups them in sets {xlocal� }L�=0.

Algorithm 1: Generation of the evaluation points of the random field in NNA.
Data:
Max level L, Set of quadrature points per level {q�}L�=0
� ← L;
while � ≥ 0 do

xlocal� ← q�;
� ← � − 1 ;

end

return
{
xlocal�

}L
�=0

3.2 Global Nested Approach

For the Global Nested Approach, we proceed in a different way. All the levels are
correlatedwith each other. The sets of evaluation points of the randomfield are chosen
such that they are nested over all the levels, i.e., xlocal0 ⊆ xlocal1 ⊆ · · · ⊆ xlocalL , and thus
x0 ⊆ x1 ⊆ · · · ⊆ xL. For GNA, the sets of evaluation points are not equal to the sets
of quadrature points, except on the finest level, i.e., xlocal� �= q� for � = {0, . . . ,L − 1}
and xlocalL = qL. The approach for selecting the evaluation points of the random field
is as follows. The quadrature points on the finest level L are selected as the evaluation
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Fig. 3 Locations of the quadrature points � and of the evaluation points of the random field � on
a reference triangular element in GNA

points of the random field, i.e., xlocalL = qL. The points selected for xlocal� on levels
� = {L − 1, . . . , 0}, consist of a number of points |q�|, which are selected from the
set xlocal�+1 , such that each selected point is the closest neighbor of a point of the set
q�, i.e., xlocal� := argmin

xlocal� ⊆xlocal�+1
|xlocal

�
|=|q� |

D
(
xlocal�+1 ,q�

)
, where D (a,b) := ∑

a∈a
d (a,b) is the distance

between two sets, and where d (a,b) := inf {d (a, b) |b ∈ b} is the minimal distance
between a point and a set, with d (a, b) the Euclidean distance between two points.
This is illustrated in Fig. 3. The procedure used to select the evaluation points for
GNA is given in Algorithm2.

Algorithm 2: Generation of the evaluation points of the random field in GNA.
Data:
Max level L, Set of quadrature points per level {q�}L�=0
xlocalL ← qL;
� ← L − 1;
while � ≥ 0 do

i ← 1 ;
xlocal� ← ∅ ;
while i ≤ |q�| do

Find the point p ∈ xlocal�+1 ,which is not in xlocal� , closest to qi� ;
xlocal� ← xlocal� ∪ {p}; // Add it to the array
i ← i + 1 ;

end
� ← � − 1 ;

end

return
{
xlocal�

}L
�=0
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3.3 Local Nested Approach

As was the case for the previous approaches, the user first defines which sets of
quadrature points q� are to be used. Herewe set q�,fine := q�, and q�,coarse := q�−1,fine.
The Local Nested Approach is as follows. Rather than correlating all the levels with
each other, we now correlate them two-by-two. Each level � = {1, . . . ,L} has two
sets of evaluation points x�,coarse and x�,fine, which are nested, i.e., x�,coarse ⊆ x�,fine.
The points in these sets are used to generate a coarse and a fine representation of the
random field on level �. NNA and GNA have only one set of points per level, and
thus only one representation of the random field per level. The coarse representation
of the random field essentially acts as a representation of the field on level � − 1.
This is because q�,coarse = q�−1,fine. The selection process is as follows. For each
level � = {0, . . . ,L}, xlocal�,fine = q�,fine. The points in xlocal�,coarse are selected according to
the same methodology as in GNA, i.e., they are selected from the set xlocal�,fine, such
that each selected point is the closest neighbor to a point of the set q�,coarse. This is
illustrated in Fig. 4. Themain advantage of this approach is level exchangeability and
extensibility. With exchangeability we mean that if one pair of correlated levels, say
τ and τ − 1, exhibits a ‘sub-optimal’ value of V [�Pτ ] with respect to the variances
V [�P�] on other levels, this pair can easily be exchanged against another newly
computed pair with a different set of quadrature points. This is in contrast with GNA
where the whole hierarchy needs to be recomputed. With level extensibility we mean
that if for a user requested tolerance ε and maximum level L, the tolerance is not
reached, the hierarchy can easily be extended by supplying the extra needed level(s)
and reusing the previously computed samples. In case of GNA, the whole hierarchy
needs to be recomputed with extra level(s) and the previously computed samples
cannot be reused. This level extensibility is the major advantage of LNA over GNA.

An important note must be made concerning the LNA approach.While it success-
fully correlates the solutions of two successive levels, the expected value obtained
from the telescoping sum is biased.Wehave observed a small bias of the order of 10−6

with respect to the actual values, an error that is well below the discretization error of
the finite element discretization. The reasons behind this additional bias stems from
the fact that substitute random fields are used. We are currently investigating how
this additional bias can be avoided.

The procedure used to generate the point set for LNA is given in Algorithm3. For
LNA, each level has two representations of the random field, a coarse and a fine one,
with sets x�,coarse and x�,fine.

3.4 Discussion of the Computational Cost

We will now discuss how the computational cost for each of the approaches can
be determined. This is done regardless of the number of samples. The total com-
putational cost is split in an offline part, i.e., the cost of computing the eigenvalues
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Fig. 4 Locations of the quadrature points � and of the evaluation points of the random field � on
a reference triangular element in LNA
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Algorithm 3: Generation of the evaluation points of the random field in LNA.
Data:
Max level L, Set of quadrature points per level

{
q�,coarse

}L
�=0 and

{
q�,fine

}L
�=0

� ← L ;
while � > 0 do

xlocal�,fine ← q�,fine;

xlocal�,coarse ← ∅ ;
i ← 1 ;
k ← |q�,coarse|;
while i ≤ k do

Find the point p ∈ xlocal�,fine ,which is not in xlocal�,coarse, closest to q
i
�,coarse ;

xlocal�,coarse ← xlocal�,coarse ∪ {p}; // Add it to the array
i ← i + 1 ;

end
� ← � − 1;

end
xlocal0,fine ← q0,fine;

return
{
xlocal0,fine, x

local
1,fine, x

local
1,coarse, x

local
2,fine, x

local
2,coarse, . . .

}

and eigenvectors of the random fields, and an online part, i.e., the cost of comput-
ing point evaluations of the random fields at the evaluation points. The offline cost
is only accounted for at startup, while the online cost is accounted for when com-
puting each sample. For NNA, the offline cost is equal to

∑L
�=0 C

eig
� , with Ceig

� the
cost of computing the eigenvalues and eigenvectors of the random field on level �.
For LNA, this cost is equal to

∑L
�=0 C

eig
�,fine. Only the eigenvalues and eigenvectors

of the fine representation of the fields on each level need be computed. Note that
Ceig

� = Ceig
�,fine. For GNA, the offline cost equals

∑L
�=0 C

eig
� . In case of GNA, the

choice could be made to compute the eigenvectors and eigenfunctions only on the
finest level L, resulting in the offline cost Ceig

L . This is only possible because of the
property x0 ⊆ x� ⊆ · · · ⊆ xL, see Sect. 3.2. In practice this will not be done, because
of a drastic increase of the online cost, see further on. The online cost for NNA
on levels � > 0 is equal to the cost of computing point evaluations of the random
field on level �, C samp

� , and on level � − 1, C samp
�−1 . This yields a total cost per sample

equal to C samp
� + C samp

�−1 . For LNA, the online cost on level � > 0 is only equal to
the cost of computing point evaluations of the fine representation of the field on
level �, C samp

�,fine. In order to represent the coarse field on level �, a restriction of the
point evaluations of the fine random field on level � is taken. This is because of the
property x�,coarse ⊆ x�,fine, see Fig. 4. There is no cost associated with the restriction.
Note that C samp

� = C samp
�,fine. For GNA, the online cost on level � > 0 amounts toC samp

� ,
if the eigenfunctions and eigenvectors have been computed for each level �. Then,
the online cost is equal to the one of LNA. However, if the eigenfunctions and eigen-
values have only been computed on the finest level, the online cost for GNA equals
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C samp
L regardless of the level. Point evaluations of the random field are computed on

level L and restricted to the desired level �. In practice this is not done because of
the much higher cost this incurs, C samp

L 
 C samp
� .

4 Model Problem

The model problem we consider for benchmarking the three approaches consists of
a slope stability problem where the soil’s cohesion has a spatially varying uncer-
tainty [17]. In a slope stability problem the safety of the slope can be assessed by
evaluating the vertical displacement of the top of the slope when sustaining its own
weight.We consider the displacement in the plastic domain, which is governed by the
Drucker–Prager yield criterion. A small amount of isotropic linear hardening is taken
into account for numerical stability reasons. Because of the nonlinear stress-strain
relation arising in the plastic domain, a Newton–Raphson iterative solver is used. In
order to compute the displacement in a slope stability problem, an incremental load
approach is used, i.e., the total load resulting from the slope’s weight is added in
steps starting with a force of 0N until the downward force resulting from the slope’s
weight is reached. This approach results in the following system of equations for the
displacement,

K�u = r, (8)

where�u stands for the displacement increment,K the global stiffnessmatrix result-
ing from the assembly of element stiffness matrices Ke, see Eq. (3). The vector r is
the residual,

r = f + �f − k, (9)

where f stands for the sum of the external force increments applied in the previous
steps, �f for the applied load increment of the current step and k for the internal
force resulting from the stresses. For a more thorough explanation on the methods
used to solve the slope stability problem we refer to [2, Chap. 2 Sect. 4 and Chap. 7
Sects. 3 and 4].

The mesh hierarchy shown in Fig. 1 is generated by using a combination of the
open source mesh generator GMSH [6] and Matlab [12]. Table1 lists the number
of elements (Nel), degrees of freedom (DOF), element order per level (Order), the
number of quadrature points per element (Nquad), and the reference for the quadra-
ture points (Ref) per level for p-MLQMC. The number of quadrature points is chosen
as to increase the spatial resolution of the field per increasing level, and to ensure
numerical stability of the computations of the displacement in the plastic domain. In
this paper we consider two-dimensional uniform, Lagrange triangular elements.

We consider the vertical displacement in meters of the upper left node of the
model as a quantity of interest (QoI). This is depicted in Fig. 5 by the arrow. The
uncertainty of the soil’s cohesion is represented by means of a lognormal random
field. This field is obtained by applying the exponential to the field obtained in Eq. (5),
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Table 1 Number of elements, degrees of freedom, element order and number of quadrature points
for the model problem

p-MLQMC

Level Nel DOF Order Nquad Refs.

0 33 160 2 16 Dunavant [5]

1 33 338 3 19 Dunavant [5]

2 33 582 4 28 Dunavant [5]

3 33 892 5 37 Dunavant [5]

4 33 1268 6 61 Dunavant [5]

5 33 1710 7 73 Dunavant [5]

6 33 2218 8 126 Wandzurat
and Xiao [16]

Fig. 5 The vertical
displacement of the upper
left node as the QoI,
indicated with an arrow

Z lognormal(x, ω) = exp(Z(x, ω)). For the covariance kernel of the random field, we
use the Matérn covariance kernel,

C(x, y) := σ 2 1

2ν−1� (ν)

(√
2ν

‖x − y‖2
λ

)ν

Kν

(√
2ν

‖x − y‖2
λ

)
, (10)

with ν = 2.0 the smoothness parameter, Kν the modified Bessel function of the sec-
ond kind, σ 2 = 1 the variance and λ = 0.3 the correlation length. The characteristics
of the lognormal distribution used to represent the uncertainty of the soil’s cohesion
are as follows: a mean of 8.02 kPa and a standard deviation of 400 Pa. The spatial
dimensions of the slope are: a length of 20m, a height of 14m and a slope angle
of 30◦. The material characteristics are: a Young’s modulus of 30MPa, a Poisson
ratio of 0.25, a density of 1330 kg/m3 and a friction angle of 20◦. Plane strain is
considered for this problem. The number of stochastic dimensions considered for
the generation of the Gaussian random field is s= 400, see Eq. (5). With a value
s= 400, 99% of the variability of the random field is accounted for.

The stochastic part of our simulations was performed with the Julia packages
MultilevelEstimators.jl, see [15], and GaussianRandomFields.jl, see [14]. The
finite element code used is an in-house Matlab code developed by the Structural
Mechanics Section of the KU Leuven. All the results have been computed on a
workstation equipped with 2 physical cores, Intel Xeon E5-2680 v3 CPU’s, each
with 12 logical cores, clocked at 2.50 GHz, and a total of 128 GB RAM.
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5 Numerical Results

In this sectionwe present our numerical results obtainedwith the p-MLQMCmethod.

5.1 Displacement

In Fig. 6, we show the displaced meshes and their nodes for a single sample of the
random field on different levels. For better visualization, the displacement of the
mesh and nodes in the figure have been exaggerated by a factor 20. The value of the
QoI is listed beneath each figure depicting the displacement.

5.2 Variance and Expected Value Over the Levels

In Fig. 7 we show the sample variance over the levels V [P�], the sample variance of
the difference over the levels V [�P�], the expected value over the levels E [P�] and
the expected value of the difference over the levels E [�P�].

As expected with multilevel methods, we observe that E [P�] remains constant
over the levels, while E [�P�] decreases with increasing level. This is the case for
all approaches we introduced in Sect. 3.

As explained in Sect. 2, multilevel methods are based on a variance reduction by
means of a hierarchical refinement of finite element meshes. In practice this means
that the sample variance V [P�] remains constant across the levels, while the sample
variance of the difference over the levelsV [�P�] decreases for increasing level. This

Fig. 6 Displaced meshes and QoI for different samples of the random field
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Fig. 7 Variance and Expected Value over the levels

is indeed what we observe for GNA and LNA. For NNA we observe that V [�P�]
does not decrease. From Fig. 7, we can conclude that the choice of using nested
over non-nested spatial locations over the levels as evaluation points for the random
field greatly improves the behavior of V [�P�]. This influence stems from a ‘bad’
correlation between the results of two successive levels in the NNA case, see Eq. (2).
We will show in the next section that the number of samples per level required by
NNA will be larger than GNA or LNA. This will impact the total runtime.

5.3 Number of Samples

In Fig. 8, we show the number of samples for the three approaches for thirteen
different tolerances on the RMSE. These numbers do not include the number of
shifts, which value is taken to be R� = 10 for � = {0, . . . ,L}.

We observe that for a given tolerance ε, the number of samples for NNA for levels
greater than 0 is higher than for GNA and LNA. This is due to the slow decrease of
V [�P�], see Fig. 7.

UnlikeMultilevelMonte Carlo, the number of sample per level forMLQMC is not
the result of an optimization problem, see [7]. The number of samples inMLQMCare
chosen according to an adaptive ‘doubling’ algorithm, where the number of samples
is each time multiplied by a factor until the statistical constrain are satisfied. For a
more thorough explanation we refer to [9, Sect. 5]. The advantage of an adaptive
algorithm consists of the fact that no equation expressing the number of samples in
function of the variance has to be derived. Indeed, such an expression would require
the evaluation of terms which are difficult to estimate at runtime. In our approach,
the sample multiplication factor is chosen as 1.2. The multiplication factor of 1.2 is
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Fig. 8 Number of samples for the three implementations for a given tolerance ε

chosen over the more naive value of 2 because, in the current setting each sample
involves the solution of a complex PDE,where the doubling of the number of samples
would lead to huge jumps in the total cost of the estimator. The reduction from 2 to
1.2 is a compromise leading to a more gradual increase of the computational cost,
while ensuring that enough progress is made.

5.4 Runtimes

We show the absolute and relative runtimes as a function of the user requested
tolerance ε on the RMSE for the different implementations in Fig. 9.

For the shown results, the maximal number of available levels in the p-MLQMC
method has been set to 7, i.e., L = 6. The algorithm adaptively choses the number
of levels needed to satisfy a given tolerance on the RMSE during runtime. If for a
given tolerance on the RMSE, 8 levels are needed, an extra level can easily be added
in case of the LNA approach while reusing the previously computed samples. For
GNA, an extra level can also be added but the previously computed samples can not
be reused in the new hierarchy of meshes.

The results for the absolute runtime are expressed in seconds. For the relative
runtime, we have normalized the computational cost of all three approaches such
that the results for LNA for each tolerance have unity cost. For both the results of
the absolute and the relative runtime, we show the average, computed over three
independent simulation runs, together with the minimum and maximum bounds.

We observe that for a given tolerance, LNAachieves a speedup up to a factor 5with
respect to NNA and a factor 1.5 with respect to GNA. GNA also outperforms NNA in
terms of lower computational cost. This better performance of GNA and LNA is due
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Fig. 9 Runtimes as a function of requested user tolerance

to a lower number of samples per level, resulting from a better correlation between
the successive levels.We can thus state that the Local and Global Nested Approaches
achieve a lower computational cost with respect to the Non-Nested Approach for a
given tolerance.

6 Conclusions

In this work, we investigated how the spatial locations used for the evaluation of
the random field by means of a Karhunen-Loève expansion impact the performance
of the p-MLQMC method. We distinguished three different approaches, the Non-
Nested Approach, the Global Nested Approach and the Local Nested Approach. We
demonstrated that the choice of the evaluation points of the random field impacts
the variance reduction over the levels V [�P�]. We showed that the Global and
Local Nested approaches exhibit a much better decrease of V [�P�] due to a better
correlation between the levels than the Non-Nested Approach. This leads to a lower
number of samples for the Nested Approaches and thus a lower total runtime for a
given tolerance. Furthermore we have shown that the Local Nested Approach has
the additional properties of level exchangeability and extensibility with respect to
the Global Nested Approach. By correlating the levels two-by-two, in the Local
Nested Approach, one pair of levels can easily be exchanged for another computed
pair, if needed. In addition, the hierarchy can also easily be extended by adding a
newly computed pair. When exchanging a pair of levels or extending the hierarchy,
the previously computed samples can be reused. The Global Nested Approach does
not have these properties. There, the whole mesh hierarchy needs to be recomputed
with the extra added and/or exchanged level(s). The previously computed samples
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cannot be reused. In addition to these properties, the Local Nested Approach also
has a smaller runtime for a given tolerance on the RMSE than the Global Nested
Approach. Based on the results in this work, we conclude that for selecting the
random field evaluation points, an approach where the points are nested across the
mesh hierarchy provides superior results compared to a non-nested approach. Of
the nested approaches we consider in this paper, the Local Nested Approach has
the smallest computational runtime, outperforming the Non-Nested Approach by a
factor 5.
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Scalable Control Variates for Monte
Carlo Methods Via Stochastic
Optimization
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Abstract Control variates are awell-established tool to reduce the variance ofMonte
Carlo estimators. However, for large-scale problems including high-dimensional and
large-sample settings, their advantages can be outweighed by a substantial computa-
tional cost. This paper considers control variates based on Stein operators, presenting
a framework that encompasses and generalizes existing approaches that use poly-
nomials, kernels and neural networks. A learning strategy based on minimizing a
variational objective through stochastic optimization is proposed, leading to scal-
able and effective control variates. Novel theoretical results are presented to provide
insight into the variance reduction that can be achieved, and an empirical assessment,
including applications to Bayesian inference, is provided in support.
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1 Introduction

This paper focuses on the approximation of the integral of an arbitrary function
f : Rd → R with respect to a distribution �, denoted �[ f ] := ∫

f d�. It will be
assumed that � admits a smooth and everywhere positive Lebesgue density π such
that the gradient of logπ can be pointwise evaluated. This situation is typical in
Bayesian statistics,where� represents a posterior distribution and, to circumvent this
intractability, Markov chain Monte Carlo (MCMC) methods are used. Nevertheless,
the ergodic average of MCMC output converges at a slow rate proportional to n−1/2

and, for finite chain length n, there can be considerable stochasticity associated with
the MCMC output.

A control variate (CV) is a variance reduction technique for Monte Carlo (MC)
methods, including MCMC. Given a test function f , the general approach is to
identify another function, g, such that the variance of the estimator with f replaced
by f − g is smaller than that of the original estimator, and such that �[g] = 0, so
the value of the integral is unchanged. Such a g is called a CV. CVs are widely-used
in statistics and machine learning, including for the simulation of Markov processes
[25, 37], stochastic optimization [55], stochastic gradient MCMC [3], reinforcement
learning [22, 23, 30], variational inference [42, 46, 47] and Bayesian evidence
evaluation [40].

Given a test function f , the problem of selecting an appropriate CV is non-trivial
and a variety of approaches have been proposed. Our discussion focuses only on the
setting where π is provided only up to an unknown normalization constant; i.e., the
setting where MCMC is typically used. The most widely-used approach to selection
of a CV is based on g = ∇ logπ and simple (e.g., linear) transformations thereof [2,
17, 35, 43]; note that under weak tail conditions on π , the CV property �[g] = 0
is assured. Recently several authors have proposed the use of more complicated
or even non-parametric transformations, such as based on high order polynomials
[52], kernels [6, 38, 39] and neural networks (NNs) [22, 30, 36, 54]. These new
approaches have been shown empirically—and theoretically, in the case of kernels
[6, 38]—to provide substantial reduction in variance for MCMC.

These recent developments are closely related to Stein’s method [12, 49, 53], a
tool used in probability theory to quantify howwell one distribution�′ approximates
another distribution�. Recall that, given a collection of functions g forwhich�[g] =
0 is satisfied, Stein’s method uses supg �′[g] as ameans of quantifying the difference
between � and �′. As a byproduct, researchers in this field have constructed a large
range of functions g that can be used as CVs. Although Stein’s method has recently
been applied to a variety of problems includingMCMCconvergence assessment [19–
21], goodness-of-fit testing [15, 32, 56], variational inference [46, 47], estimators
for models with intractable likelihoods [5, 34] and the approximation of complex
posterior distributions [13, 14, 31–33, 48], a unified account of how Stein’s method
can be exploited for the construction of CVs, encompassing existing polynomial,
kernel and NN transformations, has yet to appear.
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The organization and contributions of this paper are as follows. The literature on
polynomial, kernel, and NNCVs is reviewed in Sect. 2. An efficient learning strategy
for CVs based on stochastic optimization is proposed in Sect. 3. A theoretical analysis
is provided in Sect. 4, which provides general sufficient conditions for variance
reduction to be achieved. Finally, an empirical assessment is provided in Sect. 5 and
covers a range of synthetic test problems, as well as problems arising in the Bayesian
inferential context.

2 Background

In what follows, it is assumed that an approximate sample {xi }ni=1 ⊂ R
d from �

have been obtained and our goal is to construct an estimator for �[ f ] of the form
1

n−m

∑n
i=m+1 f (xi ) − g(xi ) where g is a CV learned using a subset of size m ≤ n

from the {xi }ni=1.
Several approaches have been proposed.One approach is to use aTaylor expansion

of the test function f [42, 55], or perhaps a polynomial approximation to f learned
from regression [28]. Unfortunately, this will only be a feasible approach when
integrating against simple probability distributions � for which polynomials can be
exactly integrated, such as a Gaussian. CVs may also be directly available through
problem-specific knowledge, e.g., for certain Markov processes [25, 37], but this is
rarely the case in general. Alternatively, CVs can sometimes be built using known
properties of the method used for obtaining samples; see [1, 7, 9, 11, 16, 24] for
CVs that are developed with a particular MCMC method in mind. See also [26] for
CVs specialized to quasi Monte Carlo (QMC). An obvious drawback to the methods
above is that they impose strong restrictions on the methods that one may use to
obtain the {xi }mi=1.

An arguablymore general framework, and our focus in this paper, is to first curate a
rich setG of candidateCVs, and then to employ a learning procedure to approximately
select an optimal CV g ∈ G. This should be done according to a suitable optimality
criterion based on f and the given set {xi }mi=1. The methodological challenges are
therefore twofold; first, wemust constructG and second,wemust provide a procedure
to select a suitable CV from this set. The construction of a candidate set G has been
approached by several authors using a variety of regression-based techniques:

• Motivated by physical considerations, [2] proposed to use g = Hu, based on the
Schrödinger-type Hamiltonian H = −0.5� + 0.5(

√
π)−1�

√
π, where � is the

Laplacian and u is a polynomial of fixed degree. See also [17, 35, 43].
• An approach called control functionals (CFs) was proposed in [39], where the set
G consisted of functions of the form g = ∇ · u + u · ∇ logπ, where ∇· denotes
the divergence operator, ∇ denotes the gradient operator and u : Rd → R

d is
constrained to belong to a suitable Hilbert space of vector fields on R

d . See also
[6, 38, 51] for the connection with Stein’s method.
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• In more recent work, [54] extended the CF approach to the case where a NN is
used to provide a parametric family of candidates for the vector field u. The set of
all such functions g generated using a fixed architecture of NN is taken as G. See
also [30, 36].

Thus, several related options are available for constructing a suitable candidate set
G. However, where existing literature diverges markedly is in the procedure used to
select a suitable CV from this set:

• For approaches based on polynomials, [2] proposed to select polynomial coeffi-
cients θ in order to minimize the sum-of-squares error

∑m
i=1( f (xi ) − gθ (xi ))2.

Here gθ is used to emphasize the dependence on coefficients θ of the polynomial.
For even moderate degree polynomials, the combinatorial explosion in the num-
ber of coefficients as d grows necessitates regularized estimation of θ ; suitable
regularizers are evaluated in [45, 52].

• For the CF approaches, regularized estimation is essential since the Hilbert space
is infinite dimensional. Here, [39] proposed to select g as a minimal norm element
of the Hilbert space for which the interpolation equations f (xi ) = c + g(xi ) are
satisfied for all i = 1, . . . ,m and some c ∈ R. A major drawback of this approach
is the O(m3) computational cost.

• The approach based on NN also exploited a sum-of-squares error, but in [54] the
authors proposed to include an additional regularizer term λ

∑m
i=1 gθ (xi )2, for

some pre-specified constant λ, to avoid over-fitting of the NN. Optimization over
θ , the parameters of the NN that enter into gθ , was performed using stochastic
gradient descent.

It is therefore apparent that, in existing literature, the construction of the candidate
set G is intimately tied to the approach used to select a suitable element from it.
This makes it difficult to draw meaningful conclusions about which CVs are most
suitable for a given task; from a theoretical perspective, existing analyses make
assumptions that are mutually incompatible and, from a practical perspective, the
different techniques and software involved in implementing existing methods pre-
cludes a straightforward empirical comparison. Our attention therefore turns next to
the construction of a general framework that can be used to learn a wide range of
CVs, including polynomial, kernel and NN, under a single set of theoretical assump-
tions and algorithmic parameters, enabling a systematic assessment of CV methods
to be performed.

3 Methods

Here we present a general framework for the construction of CVs: In 3.1 the con-
struction of a candidate setG is achieved using Stein operators, which unifies the CVs
proposed in existing contributions such as [2, 39, 54] and covers simultaneously the
case of polynomials, kernels and NNs. Then, in 3.2, we present an approach to selec-
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tion of a suitable element g ∈ G, based on a variational formulation and performing
stochastic optimization on an appropriate objective functional.

3.1 Classes of Control Variates G

The construction of non-trivial functions g : Rd → Rwith the property �[g] = 0 is
not straight-forward in the setting where MCMC would be used, since for general f
the integral �[ f ] cannot be exactly computed. Stein’s method [53] offers a solution
to this problem in the case where the gradient of logπ can be evaluated pointwise,
which we describe next. A Stein characterization of a distribution � consists of a
pair (U ,L), where U is a set of functions whose domain is Rd and L is an operator,
such that �′ [Lu] = 0 ∀u ∈ U if and only if the distributions �′ and � are equal. In
this case U is called a Stein class andL is called a Stein operator.1 Clearly, if one can
identify a Stein characterization for�, then one could take G = LU = {Lu : u ∈ U}
as a set of candidates CVs.

The literature on Stein’s method provides general approaches to identify a Stein
characterization [12, 49]. In the generator approach,L is taken to be the infinitesimal
generator of aMarkov process which is ergodic with respect to� [4]. For example, if
L is the infinitesimal generator of an overdampedLangevin diffusion then one obtains
the Langevin Stein operator, which acts on vector fields u on Rd as LLu = ∇ logπ ·
u + ∇ · u. This recovers the operator used in the control functional (CF) approach
of [39], as well as the operator used in the NN approach of [54]. Alternatively, we
could construct an operator that acts on scalar-valued functions by replacing the
vector field u with the potential ∇u in the previous operator, leading to the scalar-
valued Langevin (SL) Stein operator LSLu = �u + ∇u · ∇ logπ . This recovers the
operator used with polynomials in [2, 35]. Trivially, a scalar multiple of a Stein
operator is a Stein operator, and one may combine Stein characterizations (Ui ,Li )

linearly as Lu = L1u1 + L2u2, u ∈ U1 × U2, so that considerable flexibility can be
achieved. We will see in Sect. 5 that this can lead to scalable and flexible classes of
CVs.

3.2 Selection of a Control Variate g ∈ G

Once a set G of candidate CVs has been constructed, we must consider how to select
a suitable element g ∈ G (or equivalently u ∈ U) that leads to improved performance
of the MC estimator when f is replaced by f − g. In general this will depend on
the specific details of the MC method; for example, in MCMC one would select g
to minimize asymptotic variance [7, 16], while in QMC one would minimize the

1 To simplify presentation in the paper, we always assume U is amaximal set of functions for which
Lu is well-defined and �[Lu] = 0.
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Hardy-Krause variation [26]. The situation simplifies considerably when G contains
an element g∗ such that f − g∗ is constant. This optimal function g∗ = Lu∗, if it
exists, is given by the solution of Stein’s equation: Lu∗(x) = f (x) − �[ f ]. This
paper proposes to directly approximate a solution of this equation (a linear partial
differential equation) by casting it in a variational form and solving over a subset
V ⊆ U . The variational characterization that we use is that J (u∗) = 0, where

J (u) := ‖ f − Lu − �[ f ]‖2L2(�) = Var�[ f − Lu],

with L2(�) being the space of square-integrable functions with respect to �. In the
spirit of empirical risk minimization, we propose to minimize an empirical approxi-
mation of this functional, computed based on samples (xi )mi=1 that are drawn either
exactly or approximately from �. There are two natural approximations that could
be considered. The first is based on the variance representation

J (u) = Var�[ f − Lu] ≈ JV
m (u)

JV
m (u) := 2

m(m−1)

∑
i> j ( f (xi ) − Lu(xi ) − f (x j ) + Lu(x j ))

2, (1)

providing an approximation of J at cost O(m2), used in [8]. The second is based on
the least-squares representation

J (u) = min
c∈R

‖ f − Lu − c‖2L2(�) ≈ minc∈R JLS
m (c, u),

JLS
m (c, u) := 1

m

∑m
i=1 ( f (xi ) − Lu(xi ) − c)2 , (2)

providing an approximation of J at cost O(m), used in [2, 35, 38, 39]. These approx-
imations will be unbiased when the xi are independent draws from �, but this will
not necessarily hold for the MCMC case. To approximately solve this variational
formulation we consider a parametric subset V ⊆ U , where elements of V can be
written as vθ for some parameter θ ∈ R

p. Depending on the specific nature of the
functions gθ , it can occur that the optimization problem is under-constrained, e.g.,
when p > m. Therefore, following [39, 52, 54], we also allow for the possibility of
additional regularization at the level of θ . Thus we aim to minimize objectives of
the form J̃V

m (θ) + λm�(θ) and J̃LS
m (c, θ) + λm�(θ) over c ∈ R and θ ∈ R

p, where
J̃V
m (θ) := JV

m (vθ ), J̃V
m (c, θ) := JV

m (c, vθ ), λm > 0 and �(θ) is a regularization term
to be specified. To reduce notational overhead, for the least-squares case we let
θ0 := c and simply write J̃LS

m (θ) where θ ∈ R
p+1.

To perform the minimization, we propose to use stochastic gradient descent
(SGD). Thus, to minimize a functional F(θ), we iterate through θ(t+1) = θ(t) −
αt ∇̂F(θ (t)), where the learning rate αt decreases as t → ∞ and ∇̂F is an unbiased
approximation to ∇F . In our experiments, ∇̂F is constructed using a randomly cho-
sen subset from (xi )mi=1, with this subset being re-sampled at each step of SGD (i.e.,
mini-batch SGD).
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Fig. 1 Scalable Control Variates in High Dimensions. Here we consider the toy problem of inte-
grating f (x) = x1 + · · · + xd againstN (0, Id×d ). The total sample size is n = 1000 andm = 500
of these were used as the training set. Here 20 realizations (blue dashed lines) are shown and blue
dots represent the mean absolute error. The red lines represent the performance and computational
cost of solving the corresponding linear system exactly, our benchmark. Similarly, the green lines
represent the MC estimator with no CV used

This framework is compatible with any parametric function class and has the
potential to provide significant speed-ups, relative to existing methods, due to the
efficiency of SGD. For example, taking V to be the polynomials of degree at most
k in each variable recovers the same class as [2, 35, 43, 52], but with a parameter
optimization strategy based on SGD as opposed to exact least squares. This problem
is hence closely related to the ADALINE algorithm with basis functions which
integrate to zero.

For SGD with t iterations and mini-batches of size b, our computational cost
will be of order O(dkbt), whereas exact least squares must solve a linear system of
size O(dk), leading to a cost of O(d3k + mdk). Similarly, taking V to be a linear
space spanned by m translates of a kernel recovers the CF method of [39]. SGD
has computational cost ofO(mdbt), whereas CFs requiresO(m3 + m2d) due to the
need to invert an m-dimensional matrix.

Significant reduction in computational cost can also be obtained for ensembles: a
combination of polynomial and kernel basis functions, as considered in [51], would
cost O((md + dk)bt) compared to the O(m3 + d3k + m2 + mdk) cost when the
linear system is exactly solved. Furthermore, any hyper-parameters, such as kernel
parameters, can be incorporated into the minimization procedure with SGD, so that
nested computational loops are avoided.

Some of these speed-ups are illustrated on a toy example in Fig. 1. Even for this
moderately-sized problem, the use of SGDprovides significant speed-ups.Additional
experiments with values of m = 5000 in [50] show that larger speed-ups can be
obtained for large scale problems.
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4 Theoretical Assessment

In this section we present our novel theoretical results for CVs trained using SGD.
All proofs are contained in the Appendix.

The first question is whether it is possible to obtain zero-variance CVs, i.e. can
we find a u ∈ U such that J (u) = Var�[ f − Lu] = 0. The answer is “yes” under
regularity conditions on � and L, and whenever V is large enough. In particular,
a fixed parametric class may not be large enough, but we can consider a nested
sequence of sets V1 ⊆ V2 ⊆ · · · such that ∪p∈NVp is dense in U . For example, Vp

could be polynomials of degree p, or NNs with p hidden units.

Proposition 1 Let U be a normed space and L : U → L2(�) be a bounded lin-
ear operator. Consider a sequence of nested sets V1 ⊆ V2 ⊆ · · · such that ∪p∈NVp

is dense in U . If ∃u ∈ U that solves the Stein equation Lu = f − �[ f ], then
lim p→∞ infv∈Vp J (v) = 0.

Of course, the existence of a solution to the Stein equation needs to be verified. This
point has not yet, to the best of our knowledge, been addressed in the literature onCVs.
Our next result below provides regularity conditions for the existence of a solution
when using LSL, the Stein operator used in our experiments. Denote the Sobolev
spaceWk,p(�) of functions whose weak derivatives of order k are in L p(�) and the
Sobolev space Wk,p

loc of functions whose p-th power weak derivatives of order k are
locally integrable; these are formally defined in Appendix 7.1. For a vector-valued
function h : Rd → R

p we let ‖h‖L p(�) := (
∑d

i=1 ‖hi‖2L p(�))
1/2.

Proposition 2 Consider the vector space U = W 2,2(�) ∩ W 1,4(�) equipped with
norm ‖u‖U := max(‖u‖W 1,4(�), ‖u‖W 2,2(�)). Then LSL : U → L2(�) is a bounded
linear operator with ‖LSL‖U→L2(�) ≤ 2(‖∇ logπ‖2L4(�)

+ 1)
1
2 .

Furthermore, suppose that

(i)
∫ ‖x‖K

2 d�(x) < ∞ for some K > 8,
(ii) (∇ logπ)(x) · (x/‖x‖2) ≤ −r‖x‖α

2 for someα > −1, r > 0, andall‖x‖2 > M
for some M > 0,

(iii) | f (x)| ≤ C1 + C2‖x‖β

2 for some C1,C2 ≥ 1 and β < K/4 − 2.

Then, ∃u ∈ U that solves the Stein equation LSLu = f − �[ f ].
The fact that the space U in Theorem 2 is separable ensures that suitable approxi-
mating sets Vp can be constructed. For example, if {ui }∞i=1 is a spanning set for U
then we may set Vp = span(u1, . . . , u p), in which case ∪p∈NVp is dense in U so the
result of Theorem 2 holds.

Notice that a solution to the Stein equation will not be unique, since one can
introduce an additive constant. This motivates, in practice, the use of an additional
regularizer �(θ) to ensure uniqueness of the minimum of θ �→ J (vθ ).

In [50] we also recall a standard convergence result for SGD in settings where
the objective is convex, focusing on the case where G is a finite dimensional linear
space. This result is thus applicable to polynomials and kernels, but not NN-based
CVs.
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Table 1 Mean absolute error (based on 20 repetitions) for polynomial-based CV, kernel-based CV
and an ensemble of these, for the Genz benchmark [18]. We took n = 1000,m = 500 and d = 1.
The training time presented is for 25 epochs, averaged over repetitions for all integrands

Integrand f MC Poly. CV Ker. CV Poly.+Ker. CV

Continuous 2.77e–03 3.21e–03 3.28e–04 1.85e–04

Corner peak 5.76e–03 1.07e–03 9.27e–06 6.05e–06

Discontinuous 2.04e–02 1.32e–02 3.91e–03 2.65e–03

Gaussian peak 1.47e–03 1.40e–03 1.24e–05 1.05e–05

Oscillatory 4.17e–03 1.06e–03 4.63e–06 3.90e–06

Product peak 1.37e–03 1.32e–03 2.12e–05 2.52e–06

Time (s) 7.10e–02 4.30e+00 2.60e+00 5.70e+00

5 Empirical Assessment

Here we assess our method on both synthetic problems and on problems arising in
a Bayesian statistical context. Our aim is twofold; (i) to assess whether our learning
procedure provides a speed-up compared to existing approaches, and (ii) to gain
insight into which class of CV may be most appropriate for a given context. The
Stein operatorLSL was used for all experiments. For the polynomial and kernel CVs,
the regularizer �(θ) = ‖θ‖22 was used, while for NN CVs the regularizer �(θ) =∑m

i=1 gθ (xi )2 was used, following [54]. The regularization strength parameter λ was
tuned by cross-validation. For some datasets, we employed two ensemble CVs: a
sum of kernel and a polynomial (i.e., kernel + polynomial); and a sum including
two kernels with different hyperparameters and a polynomial (i.e., multiple kernels
+ polynomial). Implementation details and further experiments are provided in [50].

Genz Test Functions:
The Genz functions are a standard benchmark used to evaluate a numerical inte-
gration method [18]. These functions f exhibit discontinuities and sharp peaks, but
nevertheless they can be exactly integrated. The purpose of this first experiment is
simply to assess whether any variance reduction can be achieved using our general
framework in challenging and pathological situations.2 Results are shown in Table
1 for polynomial-based and kernel-based CVs, as well as an ensemble of both. The
CVs are trained using SGD on the least-squares objective functional with batch size
b = 8 for 25 epochs. For each f , the mean absolute error (MAE) of polynomial
CVs is always the largest while the linear combination of kernel and polynomial
consistently performs the best. This is likely due to the increased flexibility of the
CV. In all cases a substantial reduction in MAE was achieved, compared to MC. Full
details and an extensive range of additional experiments are provided in [50].

2 We emphasize that MC can be evaluated at negligible cost and we are not advocating that our
methods should be preferred for this task.
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Fig. 2 Integrating Gaussian Processes. Left and centre-left: The mean absolute error (based on
20 repetitions) of the CV estimators as a function of the training set size m and dimension d.
Centre-right and right: Compute times for polynomial and kernel CVs as a function of m and d

Integrating Gaussian Processes:
To automatically generate test problems, we modeled f as a Gaussian process (GP)
and sampled (�[ f ], f (x1), . . . , f (xn)) from its Gaussian marginal; here the GP
was centered and a squared-exponential covariance function was used, and the dis-
tribution � was taken to be an L-component Gaussian mixture model. In this way
infinitely many problem instances can be generated, of a similar nature to those aris-
ing in computer experiments [27] and Bayesian numerical methods [10, 41]. We
compared CVs based on polynomials, kernels, and NNs (three-layer ResNet with
ReLU activation with 50 neurons per layer).

Results are presented in Fig. 2, with implementational details in [50]. The left-
most panel presents the performance of each CV for minimizing either J̃V

m or J̃LS
m

in d = 1. Polynomials are not flexible enough for such complex integrands, but
kernels and NNs can achieve substantial reduction in error. However, we found that
the “effective” time requires to implement a NN, including initialization of SGD
and selecting an appropriate learning rate, meant that NN were not time-competitive
with the other methods considered. The center-left panel studies the impact of d
on the performance of each method. The performance of polynomial and kernel
CVs degrades rapidly with d, but this is not the case for NNs. In both panels, J̃LS

m

leads to improved results compared to J̃V
m . The centre-right and right panels report

computational times of linear system and mini-batch SGD as d and m grows. These
two panels verify that mini-batch SGD has linear time complexity as n or d is
increased, whist exact solution of linear systems leads to exponential computational
costs for polynomial and kernel CVs.

Parameter Inference for Ordinary Differential Equations:
Here we consider the problem of inference for parameters α, β, γ, δ of the Lotka-
Volterra equations ẋ = αx − βxy, ẏ = δxy − γ y, a popular ecological model for
competing populations. Our experimental set up is identical to that used in [48]. Our
task is to compute posterior means of these dynamic parameters based on datasets of
size n arising as a subsample from Metropolis-adjusted Langevin algorithm output;
the full MCMC output provided the ground truth. Half of the sample was used to
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Fig. 3 Parameter Inference for Ordinary Differential Equations. Each panel except the rightmost
presents the mean absolute error (based on 20 repetitions) for approximation of posterior expecta-
tions of model parameters using MCMC output. The rightmost panel presents the computing time
of training these CVs. Here “MC” represents the benchmark where no CV is used

train CVs (m = n
2 ) and a batch size of b = 8 was used over 25 epochs in SGD based

on the least-squares objective functional.
Figure 3 displays the performance of different CVs under sizes of training dataset.

In each case the standard MC estimate is outperformed, with ensemble of multiple
kernels with a polynomial or the NN performing uniformly best. Due to the compu-
tational cost of training NNs as shown in the rightmost panel, we found the ensemble
to be preferable. The ensemble also leads to a convex objective which is easier to
minimize.

High-dimensional Bayesian Logistic Regression
In this final example, we consider Bayesian logistic regression. We experimented on
two different datasets: the Sonar data and the Madelon data. The Sonar dataset has
dimension d = 61, which is lower than the d = 500 of the Madelon dataset. Results
were similar for both experiments, and the Sonar data is therefore relegated to [50].

The Madelon data is an artificial dataset, which was part of the NIPS/NeurIPS
2003 feature selection challenge. This is a two-class classification problem with
500 continuous input variables. We denote by β the weight vector that includes all
parameters to infer in the Bayesian logistic regression. MCMC was used to sample
from the posterior of β. Our task is to approximate the posterior probability that an
unlabeled data point z corresponds to label 1, rather than 0, based on a subset of size
m from the MCMC output. Thus f (β) = (1 + exp(−z�β))−1. The entire chain was
used to establish “ground truth” for the value of this integral.

In these experiments, JLS
m was used with m = n and batch sizes of b = 8 over

25 epochs of SGD. Figure 4 compares the performance of different CV methods.
The two ensemble CVs and the NNs perform significantly better than other CVs.
When m < 1000, the NNs and the CV with multiple kernels and a polynomial have
similar performance, better than others.Whenm ≥ 1000, the ensembleCV surpasses
NNs. One possible explanation is that for all values of m we used the same multi-
layer perceptron with 6 layers and 20 nodes in each of them. Therefore, the NNs
size (capacity) remains the same while the training data size m increases. Further
growing the depth of NN could lead to an improved performance. Furthermore, the
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Fig. 4 Madelon Dataset.
The mean absolute error
(left) and compute times
(right), as a function of the
size m of the training set;
based on 20 repetitions

results for polynomials and kernels demonstrate that our general framework based
on SGD can achieve comparable MAE with exactly solving the linear systems, but
with a fraction of the associated computational overhead. The compute time of NN
in Fig. 4 does not capture the time required to manually calibrate SGD, so that the
“effective” compute time is much higher than reported.

6 Conclusion

This paper outlined a general framework for developing CVs using Stein opera-
tors and SGD. It was demonstrated that (i) the proposed training scheme leads to
speed-ups compared to existing CV methods; (ii) novel CV methods (e.g., ensem-
ble methods) can be easily developed; (iii) theoretical analysis can be performed
in quite a general setting that simultaneously encompasses multiple CV methods.
Further research could explore the use of other Stein classes and operators. In terms
of Stein classes, one could consider the use of wavelets, which are known for their
good performance for multi-scale function approximation, or other NN architectures
which could provide further gains in high dimensions. Stein operators are not unique
and one could explore parameterized operators [29] and include these parameters in
the optimization scheme. Finally, one could construct novel CVs on other spaces,
such as general smooth manifolds or countable spaces [6].

7 Appendix

This appendix contains proofs for the results in the main text.
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7.1 Some Elements from Functional Analysis

Let X and Y be two normed real vector spaces. A function f : X → Y is called
Lipschitz continuous if there exists a constant L such that, ∀x, x ′ ∈ X : ‖ f (x) −
f (x ′)‖Y ≤ L‖x − x ′‖X . The smallest such L ≥ 0 is called the Lipschitz constant
of f . The norm of a bounded linear operator L : X → Y is given by: ‖L‖X→Y :=
inf {c ≥ 0 : ‖Lx‖ ≤ c‖y‖ ∀x ∈ X}. For 1 ≤ p < ∞ we denote

L p(�) :=
{

f : Rd → R measurable
∣
∣
∣‖ f ‖L p(�) :=

(∫

Rd
| f (x)|p�(dx)

) 1
p

< ∞
}

L p
loc :=

{

f : Rd → R measurable
∣
∣
∣

(∫

K
| f (x)|pdx

) 1
p

< ∞, ∀compact K ⊂ R
d

}

.

As usual, L p(�) can be interpreted as a normed space via identification of functions
that agree�-almost everywhere onRd . Using this definition, we can now also define
weighted Sobolev spaces of integer smoothness:

Wk,p(�) :=
{
f ∈ L p(�)

∣
∣
∣Dα f ∈ L p(�) ∀|α| ≤ k

}

Wk,p
loc :=

{
f ∈ L p

loc

∣
∣
∣Dα f ∈ L p

loc ∀|α| ≤ k
}

In this definition, α = (α1, . . . , αd) ∈ N
d
0 is a multi-index and Dα denotes the weak

derivative of order α, i.e. Dα f := ∂ |α| f/∂xα1
1 . . . ∂xαd

d . Recall that Wk,p(�) can be
interpreted as a normed space with norm

‖u‖Wk,p(�) :=
⎛

⎝
k∑

i=0

∑

α:|α|=i

∫
|Dαu(x)|pd�(x)

⎞

⎠

1
p

,

again via identification of functions whose derivatives up to order |α| ≤ k agree
�-almost everywhere on R

d .

7.2 Proof of Proposition 1

Proof Let u ∈ U solve the Stein equation Lu = f − �[ f ]. Since L is a bounded
linear operator between normed spaces,

J (v) = ‖ f − �[ f ] − Lv‖2L2(�) = ‖Lu − Lv‖2L2(�) ≤ ‖L‖2U→L2(�)‖u − v‖2U
where ‖L‖U→L2(�) < ∞. Fix ε > 0. Since u ∈ U and ∪p∈NVp is dense in U , there
exists v ∈ ∪p∈NVp such that ‖u − v‖U < ε. In particular, there exists q ∈ N such
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that v ∈ Vq . Moreover, since Vq ⊆ Vp for all q ≤ p, the function p �→ infv∈Vp J (v)

is non-increasing. Thus

0 ≤ lim
p→∞ inf

v∈Vp

J (v) ≤ inf
v∈Vq

J (v) ≤ ‖L‖2U→L2(�) inf
v∈Vq

‖u − v‖2U ≤ ‖L‖2U→L2(�)ε
2.

Since ε > 0 was arbitrary, the right hand side can be made arbitrarily small.

7.3 Proof of Proposition 2

Proof First wewill show thatLSL is a bounded linear operator fromU = W 2,2(�) ∩
W 1,4(�) to L2(�). To this end:

‖LSLu − LSLv‖2L2(�) = ‖∇ logπ · ∇(u − v) + ∇ · ∇(u − v)‖2L2(�) (3)

≤ 2
[
‖∇ logπ · ∇(u − v)‖2L2(�) + ‖∇ · ∇(u − v)‖2L2(�)

]
(4)

≤ 2
[
‖∇ logπ‖2L4(�)

‖∇(u − v)‖2L4(�) + ‖u − v‖2W 2,2(�)

]
(5)

≤ 2
(
‖∇ logπ‖2L4(�) + 1

) (
‖u − v‖2W 1,4(�) + ‖u − v‖2W 2,2(�)

)
, (6)

≤ 4
(
‖∇ logπ‖2L4(�) + 1

)
max

(‖u − v‖W 1,4(�), ‖u − v‖W 2,2(�)

)2
(7)

Equation (3) follows by definition of the Stein operator, Equation (4) follows from
the fact that (a + b)2 ≤ 2(a2 + b2). Equation (5) follows from the vector-valued
Hölder inequality together with the definition of ‖ · ‖W 2,2(�). Equation (6) follows
from the definition of ‖ · ‖W 1,4(�). Thus LSL is a bounded linear operator as claimed,
and moreover ‖LSL‖U→L2(�) ≤ 2(‖∇ logπ‖2L4(�)

+ 1)
1
2 .

The second task is to establish that there exists a solution to the Stein equation
LSLu = f − �[ f ]. For this we leverage [44, Theorem 1] which states that, if condi-
tions (ii), (iii) hold, there exists a solution u to the Stein equation which is continuous
and belongs to W 2,q

loc for all q > 1. Moreover, ∀m > β + 2 there exists Cm such that
|u(x)| + |∇u(x)| ≤ Cm(1 + |x |m) for all x ∈ R

d . By assumption (i) it follows that
u ∈ W 1,4(�).Moreover, sinceπ was assumed to be smooth (recall, this was assumed
at the outset in Sect. 1), standard regularity results imply that u is smooth and so, is
a classical solution. We can therefore write

|�u(x)| ≤ | f (x)| + |�( f )| + |∇ logπ(x) · ∇u(x)|, x ∈ R
d ,

so that ‖�u‖L2(�) ≤ 2‖ f ‖L2(�) + ‖∇ logπ‖L4(�)‖u‖W 1,4(�) < ∞. It follows that
u ∈ W 2,2(�) ∩ W 1,4(�), as claimed.
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Simulation of Conditional Expectations
Under Fast Mean-Reverting Stochastic
Volatility Models

Andrei S. Cozma and Christoph Reisinger

Abstract We study the simulation of a large system of stochastic processes subject
to a common driving noise and fast mean-reverting stochastic volatilities. This model
may be used to describe the firm values of a large pool of financial entities. We then
seek an efficient estimator for the probability of a default, indicated by a firm value
below a certain threshold, conditional on common factors. We consider approxima-
tions where coefficients containing the fast volatility are replaced by certain ergodic
averages (a type of law of large numbers), and study a correction term (of central
limit theorem-type). The accuracy of these approximations is assessed by numerical
simulation of pathwise losses and the estimation of payoff functions as they appear
in basket credit derivatives.

Keywords Particle systems · Common noise · Multiple time scales · Ergodicity ·
Stochastic filtering · Basket credit derivatives

1 Introduction and Preliminaries

Consider a complete filtered probability space that is the product of two independent
probability spaces,

(�,F , {Ft }t≥0,P) = (�x,y × �†,F x,y ⊗ F †, {F x,y
t ⊗ F †

t }t≥0,P
x,y × P

†),

such that (�x,y,F x,y, {F x,y
t }t≥0,P

x,y) supports a two-dimensional standard Brow-
nian motion (Wx ,W y) adapted to {F x,y

t }t≥0 and with correlation −1 < ρxy < 1,
and (�†,F †, {F †

t }t≥0,P
†) supports an infinite i.i.d. sequence of two-dimensional

uncorrelated standard Brownian motions (Wx,i ,W y,i )i≥1 adapted to {F †
t }t≥0.
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For positive Nf ∈ Z, we study an Nf × 2-dimensional system of SDEs of the form

dXi
t = μ(V i

t ) dt + σ(V i
t )
(
ρx dW

x
t +

√
1 − ρ2

x dW
x,i
t

)
,

dV i
t = −k

ε
V i
t dt + g(V i

t )√
ε

(
ρy dW

y
t +

√
1 − ρ2

y dW
y,i
t

)
,

(1)

with ρx , ρy ∈ (−1, 1), ε, κ > 0 all constant; μ : R → R and σ, g : R → R+ given
functions; ((Xi

0, V
i
0 ))i≥1 are an exchangeable infinite sequence of two-dimensional

random variables that are measurable with respect to F0 = F x,y
0 ⊗ F †

0 .
Wewill consider themarginal distribution of any Xi

t , conditional onF x,y
t , which is

the reason forwriting theBrownian driver in the decomposedway above. Specifically,
we study the setting of small ε, a characteristic, dimensionless reversion time of V
to its mean. The mean is chosen 0 here without loss of generality, but the general
case is obtained by adding the constant mean to Y and re-defining σ and μ.

The process X is thought to describe the log-asset prices of a large portfolio
of financial entities and V their instantaneous stochastic volatilities. The event of
Xi being below a certain threshold, or barrier, B models the default of that entity.
Therefore, estimating marginal distributions of Xi conditional on the market factors
is important for the valuation and risk management of basket credit derivatives.

A simplified version of X in (1) with constant σ has been considered in [4],
where an SPDE for the empirical measure in the large pool limit is derived and used
to compute tranche spreads of collateralised debt obligations, extended to jump-
diffusions in [3]. The multilevel estimation of conditional expectations using the
SDE system is analysed in [2], and a multilevel scheme for the SPDE in [9].

The large pool limit under stochastic volatilities is studied in [10]. Computation-
ally, this presents extra difficulties partly because of the extra dimension of the con-
ditional expectations, but also because empirical data demonstrate a fast timescale in
the volatility component (see [6–8]), which makes accurate simulation substantially
more time consuming. Motivated by the earlier work above on ergodic limits in the
context of derivative pricing (and hence parabolic PDEs), [12] derive convergence in
distribution of the conditional law of X as ε → 0, leading to an SDEwith coefficients
averaged over the ergodic measure of the fast volatility process.

In this paper, we first present in Sect. 2 the simulation schemes used, including
the standard Euler-Maruyama scheme and an improved scheme which exploits exact
integration of the fast process. We then investigate in Sect. 3 a number of approx-
imations to the X process where the coefficients depending on V are replaced by
certain ergodic averages, and give an application to credit derivatives in Sect. 4.
Moreover, we compute novel correction terms, heuristically motivated by a central
limit theorem-type argument, which are shown to give significantly improved results,
across all scenarios considered.
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For simplicity, we will restrict ourselves to the case of constant g = √
2ξ , i.e., an

Ornstein-Uhlenbeck (O–U) process V , and Xi
0 = 0 and Y i

0 = y0 deterministic for all
i . In that case, if we introduce a process Z as the (strong) solution to

dZt = −k

ε
Zt dt + ξ

√
2√
ε

ρy dW
y
t , Z0 = 0, (2)

then (X,Y ) with Y := V − Z satisfies, for 1 ≤ i ≤ Nf ,

⎧
⎪⎪⎨
⎪⎪⎩

dXi
t = μ(Y i

t + Zt )dt + σ(Y i
t + Zt )

(
ρx dW x

t +√1 − ρ2
x dW

x,i
t

)
, Xi

0 = 0,

Xi
0 = 0,

dY i
t = − k

ε
Y i
t dt + ξ

√
2√
ε

√
1 − ρ2

y dW
y,i
t , Y i

0 = y0.

(3)

Consider now the 2-dimensional empirical measure

νNf ,t = 1

Nf

Nf∑
i=1

δXi
t ,Y

i
t
. (4)

Using exchangeability, [11] prove the existence of a limit measure

νt = lim
Nf →∞ νNf ,t , (5)

where the weak limit exists almost surely in P, when μ = r − σ 2/2 for constant r
and continuous bounded σ . This follows [4] for the one-dimensional case of constant
volatility, and [10] for stochastic volatility of Cox–Ingersoll–Ross type.

Moreover, for any Borel set A, we have in the set-ups of [4, 10, 11, 13] that

νt (A) = P
(
(X1

t ,Y
1
t ) ∈ A |F x,y

t

)
, (6)

where (F x,y
t )t≥0 is here taken to be the filtration generated by the market Brownian

drivers Wx and W y . Hence, the limit measure can be regarded as the behaviour of a
single firm given the market drivers are known.

We expect these results to hold for general μ above also, but do not provide a
proof for this as it is not the focus of this paper.

2 Simulation Schemes for the Fast O–U Process

Here, we first give the standard Euler–Maruyama scheme for the fast O–U processes
and then give an alternative discretisation based on the closed-from expression for
the O–U processes,
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Y i
t = y0e

− k
ε
t + ξ

√
2√
ε

√
1 − ρ2

y

t∫

0

e− k
ε
(t−s) dW y,i

s ,

Zt = ξ
√
2√
ε

ρy

t∫

0

e− k
ε
(t−s) dW y

s .

(7)

For the Euler–Maruyama scheme, we use a timemesh with timestep εδt , for some
δt > 0 independent of ε. The discrete-time approximation of (Zt ) is thus generated
by

Ẑn = Ẑn−1 − k δt Ẑn−1 + ξ
√
2√
ε

ρy

(
W y

tn − W y
tn−1

)
, n = 1, 2, . . . , Ẑ0 = 0,

(8)
where tn = nδtε, and similar for Y .

The strong error is of order 1 in δt as the diffusion coefficient is constant and
the Euler–Maruyama scheme coincides with the Milstein scheme. By choosing the
time step proportionally to ε, we found empirically that the error is asymptotically
independent of ε, but the cost increases proportionally to ε−1.

In our second scheme, we use the closed-form expressions of Y i and Z . From (7)

Y i
t ∼ N

(
y0e

− k
ε
t ,

ξ 2

k
(1 − ρ2

y)
(
1 − e− 2k

ε
t
))

ε→0→ N
(
0,

ξ 2

k
(1 − ρ2

y)

)
, (9)

and

Zt ∼ N
(
0,

ξ 2

k
ρ2
y

(
1 − e− 2k

ε
t
))

ε→0→ N
(
0,

ξ 2

k
ρ2
y

)
. (10)

Furthermore, the processes are independent across time in the limit ε → 0 since they
decorrelate exponentially fast on the time scale ε (see [7]).

For a fixed time horizon T > 0, consider now a uniform grid tn = nδt , n ∈
{0, 1, ..., N }, where T = Nδt . The discrete-time approximation processes are thus

yitn = y0e
− k

ε
tn + ξ

√
2√
ε

√
1 − ρ2

y

N∑
j=1

e− k
ε
(tn−t j−1)

(
W y,i

t j − W y,i
t j−1

)

= e− k
ε
δt

(
yitn−1

+ ξ
√
2√
ε

√
1 − ρ2

y

(
W y,i

tn − W y,i
tn−1

))
, yi0 = y0, (11)

and

ztn = ξ
√
2√
ε

ρy

N∑
j=1

e− k
ε
(tn−t j−1)

(
W y

t j − W y
t j−1

)

= e− k
ε
δt

(
ztn−1 + ξ

√
2√
ε

ρy

(
W y

tn − W y
tn−1

))
, z0 = 0. (12)
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Finally, the approximated log-asset price processes are

xitn = xitn−1
+ μ(yitn−1

+ ztn−1)δt + σ(yitn−1
+ ztn−1)

(
ρx

(
Wx

tn − Wx
tn−1

)

+
√
1 − ρ2

x

(
Wx,i

tn − Wx,i
tn−1

))
, xi0 = 0. (13)

We found in experiments that if we discretize the formulae (7) instead of the SDEs,
this yields a lower time-discretization error. We will therefore use the schemes (11)
to (13) for the numerical tests in the subsequent sections.

3 Pathwise Conditional CDF

In this section,we give approximations to the loss function LT = P

(
X1
T ≤ B |F x,y

T

)
,

i.e. the CDF of X1
T conditional on the market factors Wx and W y , using ergodic

averages of coefficients and a correction term from a central limit theorem.

3.1 Conditional CDF and Monte Carlo Estimators

Let B ∈ R and consider the loss function at time T for a default level B,

LN f ,T = 1

Nf

N f∑
i=1

1Xi
T ≤B, (14)

i.e., the proportion of companies that are in default at time T . Since
{
1Xi

T ≤B : 1 ≤
i ≤ Nf

}
are conditionally (on F x,y

T ) independent and identically distributed random
variables, Birkhoff’s Ergodic Theorem (see [16, Sect. V.3]) implies that the limiting
loss function can be regarded as the marginal CDF, i.e.,

LT = lim
Nf →∞ LNf ,T = P

(
X1
T ≤ B |F x,y

T

)
. (15)

We use a conditional Monte Carlo technique to estimate the marginal CDF. Denote
by F x,y,y1 the filtration generated by the Brownian motions Wx , W y , W y,1. Then

P

(
X1
T ≤ B |F x,y

T

)
= E

[
E

[
1X1

T ≤B |F x,y,y1
T

] ∣∣F x,y
T

]

= E

[
P

(
X1
T ≤ B |F x,y,y1

T

)∣∣F x,y
T

]
. (16)
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Conditional on the σ -algebra F x,y,y1
T , noting Wx,1 independent of W y,1 and W y ,

T∫

0

σ(Y 1
t + Zt )dW

x,1
t

law
=

√√√√√
T∫

0

σ 2(Y 1
t + Zt )dt W1, (17)

where W1 is a standard normal random variable. Hence, we deduce from (3) that

P

(
X1
T ≤ B |F x,y,y1

T

)
= 


⎛
⎝ B − ∫ T

0 μ(Y 1
t + Zt )dt − ρx

∫ T
0 σ(Y 1

t + Zt )dWx
t√

(1 − ρ2
x )
∫ T
0 σ 2(Y 1

t + Zt )dt

⎞
⎠ ,

(18)
where 
 is the standard normal CDF. Using the discretizations from (11) and (12),

P

(
X1
T ≤ B |F x,y,y1

T

)
≈ (19)




⎛
⎝ B − δt

∑N−1
n=0 μ(y1tn + ztn ) − ρx

∑N−1
n=0 σ(y1tn + ztn )

(
Wx

tn+1
− Wx

tn

)
√

(1 − ρ2
x )δt

∑N−1
n=0 σ 2(y1tn + ztn )

⎞
⎠ .

(20)

The marginal CDF, i.e., the outer expectation in (16), is estimated by a Monte Carlo
average over a sufficiently large number of samples of W y,1. As an aside, we can
estimate the marginal density function by differentiating (19) with respect to B.

3.2 Ergodic Averages

Wewill define approximations to the process by averaging SDE coefficients over the
ergodic distribution of the O–U process,

〈 f 〉Y =
∞∫

−∞
f (y)φY(y)dy, (21)

where φY is the centered normal density with variance ξ 2(1 − ρ2
y)/k.

Linear Y -average. We first approximate the marginal CDF (in x) by using an
ergodic Y 1 average (abbreviated erg1Y) over its stationary distribution, namely

T∫

0

σ(Y 1
t + Zt )dW

x
t ≈

T∫

0

〈σ(· + Zt )〉Y dW x
t , (22)
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which matches the first conditional (on F x,y
T ) moment of the stochastic integral in

the limit ε → 0. Hence, we obtain

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ B − ∫ T

0 〈μ(· + Zt )〉Y dt − ρx
∫ T
0 〈σ(· + Zt )〉Y dW x

t√
(1 − ρ2

x )
∫ T
0 〈σ 2(· + Zt )〉Y dt

⎞
⎠

≈ 


⎛
⎝ B − δt

∑N−1
n=0 〈μ(· + ztn )〉Y − ρx

∑N−1
n=0 〈σ(· + ztn )〉Y

(
Wx

tn+1
− Wx

tn

)
√

(1 − ρ2
x )δt

∑N−1
n=0 〈σ 2(· + ztn )〉Y

⎞
⎠ .

(23)

Quadratic Y -average. Alternatively, we will use a quadratic ergodic Y 1 average
(abbreviated erg2Y), namely

T∫

0

σ(Y 1
t + Zt )dW

x
t ≈

T∫

0

〈σ 2(· + Zt )〉
1
2
Y dW

x
t , (24)

which matches the first and second unconditional moments of the stochastic integral
in the limit ε → 0, to obtain

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ B − ∫ T

0 〈μ(· + Zt )〉Y dt − ρx
∫ T
0 〈σ 2(· + Zt )〉

1
2
Y dW

x
t√

(1 − ρ2
x )
∫ T
0 〈σ 2(· + Zt )〉Y dt

⎞
⎠

≈ 


⎛
⎜⎝
B − δt

∑N−1
n=0 〈μ(· + ztn )〉Y − ρx

∑N−1
n=0 〈σ 2(· + ztn )〉

1
2
Y

(
Wx

tn+1
− Wx

tn

)
√

(1 − ρ2
x )δt

∑N−1
n=0 〈σ 2(· + ztn )〉Y

⎞
⎟⎠ .

(25)

Linear Y and Z -average. Third, we approximate the marginal CDF by using an
ergodic Y 1 and Z average (abbreviated erg1YZ) over their stationary distribution,

f̄ = 〈〈 f (· + Z)〉Y 〉Z = 〈 f 〉Y+Z =
∞∫

−∞
f (y)φY+Z (y)dy, (26)

where φY+Z is the centered normal density with variance ξ 2/k. Hence, we obtain

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ B − μ̄T − ρx σ̄Wx

T√
(1 − ρ2

x )σ
2T

⎞
⎠ . (27)
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Quadratic Y and Z -average. Alternatively, we will use a quadratic ergodic Y 1 and
Z average (abbreviated erg2YZ) in the stochastic integral to obtain

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ B − μ̄T − ρxσ 2

1
2 Wx

T√
(1 − ρ2

x )σ
2T

⎞
⎠ . (28)

3.3 Approximation of Marginal CDF by a CLT-Type
Argument

Here, we introduce an approximation to the marginal CDF in Y 1 (abbreviated appY ),
and hence to the limiting loss function, by adding a correction term from a central
limit theorem (CLT). We note that, as ε → 0, the process (Y 1

t )0≤t≤T decorrelates
exponentially fast, on the time scale ε. Arguing informally with the central limit
theorem under strong mixing (see, e.g., [1, Theorem 27.5]), we approximate for
small ε, conditional on F x,y

T ,

∫ T
0 σ(Y 1

t + Zt )dWx
t − ∫ T

0 〈σ(· + Zt )〉Y dW x
t√∫ T

0

(
〈σ 2(· + Zt )〉Y − 〈σ(· + Zt )〉2Y

)
dt

law≈ W1, (29)

whereW1 is a standard normal randomvariable. Similarly, for small ε and conditional
on F x,y

T , we use
T∫

0

f (Y 1
t + Zt )dt

law≈
T∫

0

〈 f (· + Zt )〉Y dt . (30)

Note that, for any c0, c1 ∈ R,

E

[


(
c0 − c1W1

)] = 


⎛
⎝ c0√

1 + c21

⎞
⎠ . (31)

Combining (16), (18) and (29)–(31) yields

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ B − ∫ T

0 〈μ(· + Zt )〉Y dt − ρx
∫ T
0 〈σ(· + Zt )〉Y dW x

t√∫ T
0 〈σ 2(· + Zt )〉Y dt − ρ2

x

∫ T
0 〈σ(· + Zt )〉2Y dt

⎞
⎠

≈ 


⎛
⎝ B − δt

∑N−1
n=0 〈μ(· + ztn )〉Y − ρx

∑N−1
n=0 〈σ(· + ztn )〉Y

(
Wx

tn+1
− Wx

tn

)
√

δt
∑N−1

n=0 〈σ 2(· + ztn )〉Y − ρ2
x δt
∑N−1

n=0 〈σ(· + ztn )〉2Y

⎞
⎠ .

(32)
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3.4 Exponential Ornstein–Uhlenbeck Model

Henceforth, we consider an exponential Ornstein–Uhlenbeck stochastic volatility
model for the dynamics of the asset price processes. The drift coefficient is μ(y) =
− 1

2 σ 2(y), whereas the diffusion coefficient is σ(y) = mey, see [14]. We do not have
a closed-form formula for the conditional CDF is not available under this model.

We substitute the specific coefficients into the above formulae for the conditional
CDF and use moment generating functions. From (19), we find an estimate for the
conditional (on F y1

T ) marginal (in x) CDF,

P

(
X1
T ≤ B |F x,y,y1

T

)
≈ 


⎛
⎝ Bm−1 + 1

2 mδt
∑N−1

n=0 e2y
1
tn +2ztn

√
(1 − ρ2

x )δt
∑N−1

n=0 e2y
1
tn +2ztn

− ρx√
1 − ρ2

x

∑N−1
n=0 ey

1
tn +ztn

(
Wx

tn+1
− Wx

tn

)
√

δt
∑N−1

n=0 e2y
1
tn +2ztn

⎞
⎠ . (33)

From (32), we find an estimate for the approximate conditional CDF,

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎜⎜⎝
Bm−1e− ξ2

k (1−ρ2
y ) + 1

2 me
ξ2

k (1−ρ2
y )δt

∑N−1
n=0 e2ztn√(

1 − ρ2
x e

− ξ2

k (1−ρ2
y )
)

δt
∑N−1

n=0 e2ztn

− ρx√
e

ξ2

k (1−ρ2
y ) − ρ2

x

∑N−1
n=0 eztn

(
Wx

tn+1
− Wx

tn

)
√

δt
∑N−1

n=0 e2ztn

⎞
⎠ . (34)

Y -averages. From (23) and (25), we find an estimate for the conditional CDF with
the (linear and quadratic) ergodic Y 1 average,

P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ Bm−1e− ξ2

k (1−ρ2
y ) + 1

2 me
ξ2

k (1−ρ2
y )δt

∑N−1
n=0 e2ztn√

(1 − ρ2
x )δt

∑N−1
n=0 e2ztn

− ρx√
1 − ρ2

x

e−λ
ξ2

2k (1−ρ2
y )
∑N−1

n=0 eztn
(
Wx

tn+1
− Wx

tn

)
√

δt
∑N−1

n=0 e2ztn

⎞
⎟⎠ , (35)

where λ = 0 for the quadratic average and λ = 1 for the linear average.
Y and Z -averages. Finally, from (27) and (28),wefindan estimate for themarginal

CDF with the (linear or quadratic) ergodic Y 1 and Z average,
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P

(
X1
T ≤ B |F x,y

T

)
≈ 


⎛
⎝ Bm−1e− ξ2

k + 1
2 me

ξ2

k T√
(1 − ρ2

x )T
− ρx√

1 − ρ2
x

e−λ
ξ2

2k W x
T√

T

⎞
⎠ . (36)

The formulae (33)–(36) indicate that the approximation errors as well as the differ-
ence between the approximations will increase with |ρx |.

3.5 Pathwise Numerical Tests

A motivation for considering pathwise tests of the different approximations is the
filtering interpretation of the equations.

We fix the time horizon T = 1 and the default level B = −0.1, and assign the
following values to the underlying model parameters:

y0 = 0.2, m = 0.1, k = 1.0, ξ = 0.26, ρx = 0.9, ρy = 0.5, ρxy = −0.6;
(37)

we vary ε. We refer to [6, 8] for data that suggest a mean-reversion time of a few
days for the S&P500.

To produce the results in Table1, we fixed the paths for (Wx ,W y), generated by
standard sampling of i.i.d. normal increments, and then produced 4 · 105 samples of
W y,1 to estimate the outer expectation in (16), using the time stepping approxima-
tion (19). The number of samples was chosen such that the relative statistical error,
estimated as the corrected sample standard deviation of the estimator divided by the
value itself, was below 0.15%.

Our tests with different ε suggest that the number of time steps should scale
with ε−1 for uniform accuracy. More specifically, for a fraction ε of a year, 40 time
steps were required for a sufficiently small time-discretization error that matches the
statistical error.

The computations were carried out in MATLAB R2016b on a laptop with the
following specifications: Intel(R) Core(TM) i7-6700HQ CPU 2.60GHz, 8GB RAM,
runningWindows 10 (64 bit). The computations below took several hours to compute
the ‘true’ loss, which is why we considered only three ‘outer’ sample paths. The
computation time for the various approximations was negligible as no inner sampling
was required. This gain in efficiency is a major motivation for the approximations
studied in this paper.

The results are presented in Table1 and Figure 1.
The approximate conditional CDF (appY), derived from Lyapunov’s central limit

theorem, provides a good fit to the true conditional CDF for small ε across all
samples. Figure 1 allows a comparison of this error to an asymptotic behaviour of
order ε1/2, however, due to the irregular behaviour of the individual path realisations,
no definitive conclusions are possible.

For linear averaging of the volatility function in Y 1, erg1Y, which gives the correct
conditional (on Wx ,W y) expectation of X1 for ε → 0, the error broadly decreases
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Fig. 1 Double logarithmic
plot of the relative errors
(RE) of three approximations
to the marginal CDF, for
three realizations of
(Wx ,W y). Shown are the
errors of the CLT
approximation, appY
(circles), and the linear and
quadratic Y -averages, erg1Y
(crosses) and erg2Y
(squares), respectively, for
three sample paths

for decreasing ε but is significantly larger than in the CLT-based approximation. A
similar behaviour is observed for quadratic averaging erg2Y, which gives the correct
asymptotic second unconditional moment of X1.

The approximations based on full (Y and Z) linear and quadratic averages, erg1YZ
and erg2YZ, respectively, are independent of ε. It is seen from the last columns of
Table1 that they give a poor approximation to the true loss and are therefore not
included in Fig. 1 for clarity.

The latter observations are in line with [12, Theorem 2.4] who derive a limiting
particle system for ε → 0 in which the averaged squared volatility and a modified
correlation coefficient appear. In the SPDE for the limit empirical measure, this is
replaced by a linear average and a yet different correlation coefficient. As per [12,
Corollary 2.8], this indicates that except for ρy = 0, convergence is generally only
observed in a distributional sense and not strongly.

4 Weak Approximation of Loss Function

In this section, we give an application to basket credit derivatives and analyse numer-
ically the accuracy of the approximations.

Let a ∈ [0, 1] and consider a call option on the limiting loss function at time T ,

Ca = E
[
(LT − a)+

]
, (38)

with fixed default level B. For convenience, we assume that ρx > 0. This type of
payoffs is common in credit derivatives, e.g., in single tranche CDOs [4, 9].

We can compute the call price via (33) by estimating the limiting loss function at
time T by Monte Carlo sampling of W y,1, and then the outer expectation in (38) by
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sampling of Wx and W y (abbreviated limCall). Alternatively, for a large number of
firms, we can approximate the call price by

CNf ,a = E
[
(LNf ,T − a)+

]

and then estimate the expectation by aMonte Carlo average over discrete trajectories
of Wx , W y , Wx,1, . . . ,Wx,Nf , W y,1, . . . ,W y,Nf (abbreviated firmsCall). The latter
method does not require that we simulate an inner expectation, which can be very
expensive, but we lose the smoothness in the loss function.

4.1 Call Price Approximation by Conditional CLT Argument

Here, we approximate the call price using the approximate marginal CDF from

(32).We can decompose the BrownianmotionWx asWx = ρxyW y +
√
1 − ρ2

xy W̃
x ,

where W y and W̃ x are independent Brownian motions. Let F y be the filtration
generated by the market Brownian driver W y . Conditional on the σ -algebra F y

T ,

T∫

0

〈σ(· + Zt )〉Y dW̃ x
t

law
=

√√√√√
T∫

0

〈σ(· + Zt )〉2Y dt W1,

whereW1 is a standard normal random variable. Hence, the approximate conditional
(onF y

T ) law of the limiting loss function at time T is that of

(
cY,0 − cY,1W1

)
, where

cY,0 = B − ∫ T
0 〈μ(· + Zt )〉Y dt − ρxρxy

∫ T
0 〈σ(· + Zt )〉Y dW y

t√∫ T
0 〈σ 2(· + Zt )〉Y dt − ρ2

x

∫ T
0 〈σ(· + Zt )〉2Y dt

, (39)

cY,1 = ρx

√
1 − ρ2

xy

√√√√
∫ T
0 〈σ(· + Zt )〉2Y dt∫ T

0 〈σ 2(· + Zt )〉Y dt − ρ2
x

∫ T
0 〈σ(· + Zt )〉2Y dt

. (40)

Using a conditioning technique, we can express the call price as

Ca = E

[
E

[
(LT − a)+ |F y

T

]]
. (41)

Upon noticing that cY,1 > 0, we can compute the inner expectation
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E

[
(LT − a)+ |F y

T

]
≈ E

[(


(
cY,0 − cY,1W1

)− a
)+ |F y

T

]

=
w0∫

−∞

(


(
cY,0 − cY,1w

)− 

(

−1(a)

))
φ(w)dw

=
w0∫

−∞


(
cY,0 − cY,1w

)
φ(w)dw − a
(w0), (42)

with φ the standard normal PDF and w0= cY,0−
−1(a)

cY,1
. By [15, formula 10,010.1],

w0∫

−∞


(
cY,0 − cY,1w

)
φ(w)dw = BvN

⎛
⎝ cY,0√

1 + c2Y,1

, w0; cY,1√
1 + c2Y,1

⎞
⎠ , (43)

where the bivariate normal CDF is

BvN (h, k; ρ) = 1

2π
√
1 − ρ2

k∫

−∞

h∫

−∞
exp

(
− x2 − 2ρxy + y2

2(1 − ρ2)

)
dx dy. (44)

Combining (42)–(43) yields

E

[
(LT − a)+ |F y

T

]
≈ (45)

BvN

⎛
⎝ cY,0√

1 + c2Y,1

,
cY,0 − 
−1(a)

cY,1
; cY,1√

1 + c2Y,1

⎞
⎠− a


(
cY,0 − 
−1(a)

cY,1

)
.(46)

Finally, we discretize the two coefficients, i.e., cY,0 ≈ c̄Y,0 and cY,1 ≈ c̄Y,1, where

c̄Y,0 = Bm−1e− ξ2

k (1−ρ2
y ) + 1

2 me
ξ2

k (1−ρ2
y )I − ρxρxye

− ξ2

2k (1−ρ2
y )M√(

1 − ρ2
x e

− ξ2

k (1−ρ2
y )
)

δt
∑N−1

n=0 e2ztn
, with (47)

I =
N−1∑
n=0

e2ztn δt, M =
N−1∑
n=0

eztn
(
W y

tn+1
− W y

tn

)
, and c̄Y,1 =

ρx

√
1 − ρ2

xy√
e

ξ2

k (1−ρ2
y ) − ρ2

x

,

and estimate the outer expectation in (41) by Monte Carlo sampling of W y .
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4.2 Call Price Approximation by Ergodic Averages

Y -averages. First, we approximate the call price by employing a linear or quadratic
ergodic Y 1 average. Recall from (23) and (25) that

LT ≈ 


⎛
⎜⎜⎜⎜⎝
B − ∫ T

0 〈μ(· + Zt )〉Y dt − ρx
∫ T
0 〈σ 2−λ(· + Zt )〉

1
2−λ

Y dW x
t√

(1 − ρ2
x )

T∫
0

〈σ 2(· + Zt )〉Y dt

⎞
⎟⎟⎟⎟⎠

. (48)

Proceeding as before, we deduce that

E

[
(LT − a)+ |F y

T

]
≈ BvN

⎛
⎝ cY,2√

1 + c2Y,3

,
cY,2 − 
−1(a)

cY,3
; cY,3√

1 + c2Y,3

⎞
⎠ (49)

−a


(
cY,2 − 
−1(a)

cY,3

)
,

where

cY,2 = B − ∫ T
0 〈μ(· + Zt )〉Y dt − ρxρxy

∫ T
0 〈σ 2−λ(· + Zt )〉

1
2−λ

Y dW y
t√

(1 − ρ2
x )
∫ T
0 〈σ 2(· + Zt )〉Y dt

, (50)

cY,3 =
ρx

√
1 − ρ2

xy√
1 − ρ2

x

√√√√
∫ T
0 〈σ 2−λ(· + Zt )〉

2
2−λ

Y dt∫ T
0 〈σ 2(· + Zt )〉Y dt

. (51)

As before, we discretize the two coefficients, i.e., cY,2 ≈ c̄Y,2 and cY,3 ≈ c̄Y,3, where

c̄Y,2 = Bm−1e− ξ2

k (1−ρ2
y ) + 1

2 me
ξ2

k (1−ρ2
y )I − ρxρxye

−λ
ξ2

2k (1−ρ2
y )M√

(1 − ρ2
x )δt

∑N−1
n=0 e2ztn

, (52)

c̄Y,3 =
ρx

√
1 − ρ2

xy√
1 − ρ2

x

e−λ
ξ2

2k (1−ρ2
y ), (53)

and estimate the outer expectation in (41) by a sample average over W y .
Y and Z-averages. Last, we approximate the call price by linear and quadratic

ergodic Y 1 and Z average. Using (27) and (28), we can deduce in a similar fashion
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Ca ≈ BvN

⎛
⎝ c0√

1 + c21

,
c0 − 
−1(a)

c1
; c1√

1 + c21

⎞
⎠− a


(
c0 − 
−1(a)

c1

)
, (54)

where c0 = Bm−1e−
ξ2

k + 1
2 me

ξ2

k T√
(1 − ρ2x )T

, c1 = ρx√
1 − ρ2x

e−λ
ξ2

2k . (55)

4.3 Expected Loss

In the special case of a linear payoff (a = 0), the call price is simply the expected lim-
iting loss function at time T (abbreviated expLoss). Using a conditioning technique
and (15), we can write the expected loss as

E [LT ] = E

[
E

[
1X1

T ≤B |F x,y
T

]]
= P

(
X1
T ≤ B

)
= E

[
P

(
X1
T ≤ B |F y,y1

T

)]
.

(56)
From (3) we deduce that

E [LT ] = E

⎡
⎣


⎛
⎝ B − ∫ T

0 μ(Y 1
t + Zt )dt − ρxρxy

∫ T
0 σ(Y 1

t + Zt )dW
y
t√

(1 − ρ2
xρ

2
xy)
∫ T
0 σ 2(Y 1

t + Zt )dt

⎞
⎠
⎤
⎦ ,

(57)
which can be estimated by a Monte Carlo average over samples of W y and W y,1.
Hence, this provides a much faster method in the special case of a linear payoff.

4.4 Numerical Tests

We perform numerical tests for the weak errors with the different approximations.
We fix the time horizon T = 1 and the default level B = −0.1 as in Sect. 3, and
assign the same values to the underlying model parameters as in (37). Furthermore,
we fix ε = 4 ·10−3 as in [5], a choice which corresponds to a mean-reversion time
of 1.5 days, as observed from S&P500 data (see [8]).

The number of samples for the outer expectations in, e.g., (41), was 1.2 · 106 and
gave a small statistical error, estimated as the corrected sample standard deviation
of the estimator divided by the value itself, of 0.15% for the call price and 0.05%
for the approximations and the expected loss. We have verified numerically that the
errors associated with the number of time steps N and the number of firms Nf from
Table2 match the statistical errors.
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Table 2 The call option price, its approximations and the corresponding relative errors (RE) for 3
different strikes a ∈ {0.00, 0.05, 0.10}. The number of time steps is N = 104, the number of firms
is Nf ∈ {5, 150, 100}—each value corresponds to one of the 3 strikes—and the relative statistical
errors are 0.15% for the call price and 0.05% for the approximations and the expected loss

Strike = 0.00 Strike = 0.05 Strike = 0.10

Method Price RE (%) Price RE (%) Price RE (%)

expLoss 0.18835 – – – – –

firmsCall 0.18843 0.05 0.16170 – 0.14132 –

appY 0.18878 0.23 0.16155 0.09 0.14078 0.38

erg1 Y 0.18390 2.36 0.15860 1.92 0.13941 1.35

erg2 Y 0.18872 0.20 0.16342 1.06 0.14410 1.97

erg1 YZ 0.18262 3.04 0.15724 2.76 0.13789 2.42

erg2 YZ 0.18912 0.41 0.16376 1.27 0.14423 2.06

We infer from the data in Table2 that ε = 4 ·10−3 gives a very small appY-
approximation error throughout. Squared averaging (conditional on Z or uncon-
ditional), where the first two moments of the X process are matched, results in a very
good approximation for a linear payoff, but in a worse approximation than the linear
average for a non-linear payoff.

5 Conclusions

It has recently been shown theoretically in [12] that large pool models of pro-
cesses with fast mean-reverting stochastic volatility may be approximated by one-
dimensional models with constant, averaged model parameters. The limit as the
mean-reversion speed goes to infinity is generally only attained in a distributional,
but not in a strong sense.

We show in this paper how such averaged equations can be implemented numer-
ically, but also observe that the approximation quality is poor in both the strong and
the weak sense in cases of interest.

The main finding of the paper is an improved approximation obtained by a central
limit theorem argument, which leads to consistently good accuracy both in a path-
wise sense conditional on common noise, and in a weak sense when considering
expected nonlinear functionals of the solution. A theoretically rigorous analysis of
this empirically improved estimator will be the topic of future research.
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Generating From the Strauss Process
Using Stitching

Mark Huber

Abstract The Strauss process is a point process with unnormalized density with
respect to a Poisson point process of rate λ, where each pair of points within a spec-
ified distance r of each other contributes a factor γ ∈ [0, 1] to the density. Basic
acceptance-rejection works spectacularly poorly for this problem, which is why sev-
eral other perfect simulationmethods have been developed. Thesemethods, however,
also work poorly for reasonably large values of λ. Recursive Acceptance Rejection
Stitching is a new method that works much faster, allowing the simulation of point
processes with values of λ much larger than ever before.

Keywords Perfect simulation · Spatial process · Acceptance rejection

1 Introduction

Repulsive point processes arise asmodels of spatial data where points lie farther apart
from one another than would be expected if they were independent. For instance,
Glass and Tobler [2] studied the locations of cities on a plain in Spain and Strand [16]
looked at the locations of a certain species of trees in a forest. In both instances, the
points appear to repulse one another, and appear farther apart than would be seen in
a basic Poisson point process.

To fit a statistical model to this type of data, Strauss [17] introduced what today is
known as the Strauss process. This is a point process that has a density with respect
to an underlying Poisson point process that penalizes configurations where pairs of
points are too close to one another. Such a model can be used to model data from
repulsive point processes [8].

As with most such unnormalized density models, there is no known efficient way
to find the normalizing constant of the model for various values of the parameters.
Hence to find something like amaximum likelihood estimate or amethod ofmoments
estimate, it is necessary to take a Monte Carlo approach. Early methods built con-
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tinuous time Markov chains [14] which could obtain approximate samples, but the
mixing time of such chains was often unknown.

More recently, perfect simulation algorithms such as coupling from the past [15]
were developed that could draw samples exactly from the stationary distribution
of Markov chains. This type of algorithm employed a random number of recursive
calls in order to draw the samples. The dominated coupling from the past method
was created by Kendall and Møller [10] to draw from the stationary distribution of
continuous time Markov chains.

However, this algorithm had limits on its effectiveness. One of the parameters of
the Strauss process was λ, which controls the number of points. For small values of
λ, these types of algorithms ran in polynomial time, but for larger values exponential
time was needed. If the data was best fitted by a Strauss process with λ greater than
the algorithm could handle, the results would be unreliable.

New types of perfect simulation algorithms not based on Markov chains, such as
the partial rejection sampling (PRS) method of Guo and Jerrum [7] appeared, but
they did not increase the λ values where the algorithm was effective.

In this work, a completely different approach is used. It is still a perfect simu-
lation algorithm that returns draws exactly from the Strauss process, but by careful
management of how draws are taken, can be effective in ranges of λ not possible
before.

1.1 The Strauss Process

Given a space S ⊂ R
n of nonzero finite Lebesgue measure, say that X ⊂ S is a point

process if it contains a finite number of points with probability 1.
Apoint process X is aPoisson point process of rateλ over S if the number of points

in X has a Poisson distribution with mean equal to λ times the Lebesgue measure of
S, and given the number of points in X , each is uniformly distributed over S. The
newmethod presented here works on Poisson point processes with more general rate
functions, but for simplicity of presentation, here the rate will be assumed to be a
constant λ over S. The set S need not be convex or connected.

For a point process X ⊂ S and positive constant r , let cr (X) be the number of
pairs of distinct points in X that are at most distance r apart. For γ ∈ [0, 1], let

fγ,r (x) = γ cr (x). (1)

A point process with (unnormalized) density fγ,r with respect to the underlying
measure that is a Poisson point process with rate λ over S is a Strauss process [17].
Because γ ≤ 1, this density penalizes point process that have many points within
distance r of each other. This density can also be written as a product:

f (x) =
∏

{xi ,x j }⊆x

[γ · I(dist(xi , x j ) ≤ r) + 1 · I(dist(xi , x j ) > r)]. (2)
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Here I is the usual indicator function that evaluates to 1 if the argument is true and
is 0 otherwise.

Say that a density is a bounded factor density if it consists of factors each of which
is at most 1. For such a density, the acceptance-rejection (AR) method can be used
to generate samples exactly from the target distribution. This method was the first
method for generating exactly from the Strauss process. The general AR protocol
goes back to [13]. More recently, new perfect simulation methods for the Strauss
process have been developed. These include:

• Dominated coupling from the past (DCFTP) [9–11].
• Birth-death-swap with bounding chains (BDS) [5].
• Partial rejection sampling (PRS) [7] (when γ = 0).

See [4, 6] for more detail and the theory underlying these methods. In particular,
DCFTP, BDS, and PRS all rely on the process being locally stable. A density f is
locally stable if for any set of points x ⊂ S and any point a in S, there is a constant
K such that f (x ∪ {a}) ≤ K f (x) (see [10].) Approaches that require local stability
will be referred to as local methods.

The running time of AR is exponential in λ and the size of the point space S. The
running time of localmethods tend to be polynomial in the size of Swhenλ lies below
a certain threshold (the critical value) and then exponential above that threshold. This
makes generating from the Strauss process difficult for high values of λ.

In this work, a new method for generating from the Strauss process is presented.
Like generic AR the new method has an exponential running time in λ, but the rate
of exponential growth is much smaller in the size of the point space S. Therefore,
the rate of the exponential is much lower than both AR and local methods past their
critical point.

The result is an algorithm that allows generation of Strauss processes over
(λ, γ, S) triples that were computationally infeasible before. For instance, Fig. 1
illustrates such a process with λ = 200, γ = 0, and r = 0.15. Using the convention
that 00 = 1, note that the Strauss process for γ = 0 reduces to the uniform density
over configurations where the distance between any two points is greater than r .

The rest of the paper is organized as follows. The next section presents the new
stitching algorithm, and contains the proof that the algorithm is correct. Section 4
then gives numerical results on the running time. Section 5 then concludes.

2 Acceptance Rejection and Stitching

For a given target density h, let hS(x) = h(x ∩ S) be the density applied to the points
in x that fall into S. Given that h is an unnormalized bounded factor density with
h ≤ 1 for all S together with underlying probability measure μ, the general AR
algorithm begins by drawing a point process X from the reference measureμ over S.
With probability hS(X), X is accepted as coming from density hS with respect to μ.
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Fig. 1 This represents a Strauss process over S = [0, 1] × [0, 1] with γ = 0, λ = 200, and r =
0.15. The black dots represent the actual locations of the points. The fact that γ = 0 means that no
two points are located within distance 0.15 of each other. Around each black dot is a blue circle of
radius 0.15/2 in order to illustrate that in fact all of these points are this far apart. This also shows
why this model is also known as a hard-disks model

Otherwise, the point process X is rejected as a sample. If rejection occurs, then
recursion is used and the acceptance rejection algorithm calls itself to find a new
sample Y which is then returned as the draw. For speed purposes a while or repeat
loop is typically used instead of recursive calls for basic AR.

The recursive acceptance rejection stitching (RARS) algorithm is different.
Instead of generating a sample over the entire space of points S, first S is parti-
tioned into two regions S1 and S2. The algorithm then recursively draws X1 from hS1
and X2 from hS2 . Next suppose that the target hS can be factored as follows:

hS(x) = hS1(x ∩ S1)hS2(x ∩ S2)hS1,S2(x),

where each factor is at most 1.
The first two factors have the same form as the original hS , just over smaller

spaces. Therefore, recursive calls to our algorithm can be used to sample draws from
these densities. The final factor stitches the two factors together to result in the overall
density. In order to make sure that this factor appears in the density of the output of
the algorithm, a rejection step will be implemented. Given a proposed configuration
found by combining the output of the recursive calls over S1 and S2, the result will
be accepted with probability proportional to the third hS1,S2 density evaluated at the
proposed configuration.

This idea leads to the following probabilistic recursive algorithm, which has three
inputs. First is the target density h, next the underlying probability measure μ which
is easy to sample from, and finally the space S where the points are located. The
output of the algorithm will be a draw from the density hS with respect to μ.
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RARS(h, μ, S)

1. Draw X from μ with point space S.
2. Draw U1 uniform over [0, 1].
3. If U1 ≤ hS(X), then return X and quit.
4. Partition S into (S1, S2).
5. Draw X1 using RARS(h, μ, S1), draw X2 using RARS(h, μ, S2).
6. Draw U2 uniformly from [0, 1].
7. If U2 ≤ hS1,S2(X1 ∪ X2) then return X1 ∪ X2.
8. Else draw Y from RARS(h, μ, S). Return Y and exit.

The proof usesThe Fundamental Theorem of Perfect Simulation (FTPS) [6]which
gives two conditions under which the output of a probabilistic recursive algorithm
A comes from the target distribution. These conditions are as follows.

1. The algorithm A must terminate with probability 1 on all inputs.
2. The algorithmmust be locally correct. Consider an algorithmA′ where the recur-

sive calls inA are replacedwith oracles that generate from the correct distribution.
IfA′ has output that provably comes from the correct distribution, say thatA′ is
locally correct.

For the following lemmas, let

Zh =
∫

hS(x) dμ(x)

be the normalizing constant for the unnormalized density hS .

Lemma 1 If Zh > 0, then RARS(h, μ, S) terminates in finite time with probability
1 regardless of the choice of partition at line 4.

Proof Let r(p) be the supremum over the expected number of times X is generated
over all choices of S1, S2, and h when the probability X is accepted in line 3 is p.
Our goal will be to bound r(p) in terms of p > 0.

Let p1 be the probability that X is accepted in the recursive call over S1, p2 the
acceptance probability over S2, and p3 the probability that (X1, X2) is accepted in
line 7.

Because hS factors into hS1 , hS2 and hS1,S2 , p = p1 p2 p3. There is always at least
one draw of X in any call, followed by a 1 − p chance of two recursive calls, followed
by a 1 − p3 chance of a third recursive call. Hence

r(p) ≤ 1 + (1 − p)[r(p1) + r(p2) + (1 − p3)r(p)]. (3)

This holds for all p′ ≥ p, so letting w = supp′∈[p,1] r(p) gives

w ≤ 1 + (1 − p)[3w]. (4)

An easy calculation then gives for p ≥ 3/4, r(p) ≤ w ≤ 4.
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This forms the base case for an induction proof of the following fact: For all
i ∈ {0, 1, 2, . . .}, if p ≥ (3/4)(1 − p)i , then r(p) is finite.

Consider the induction step: suppose for all p ≥ (3/4)(1 − p)i , there is a finite
M such that r(p) ≤ M . Consider i + 1, and assume p ≥ (3/4)(1 − p)i+1.

If p1 ≥ (3/4)(1 − p)i and p2 ≥ (3/4)(1 − p)i , then

r(p) ≤ 1 + (1 − p)[M + M + (1 − p3)r(p)], (5)

and r(p) ≤ (1 + (1 − p)2M)/(1 − (1 − p)(1 − p3)), completing the induction.
Note that if p3 < 1 − p, then p1 > p/p3 = (3/4)(1 − p)i and p2 > p/p3 =

(3/4)(1 − p)i and so the induction step also holds in this case.
It cannot hold that both p1 and p2 are less than (3/4)(1 − p)i , as that would make

p < (9/16)(1 − p)2i < (3/4)(1 − p)i+1. Hence the only case that remains to con-
sider is if p3 > 1 − p and exactly one of p1 or p2 (say p1 without loss of generality)
is less than (3/4)(1 − p)i .

If p3 > 1 − p, then (1 − p3) < p, and by the induction hypothesis

r(p) ≤ 1 + (1 − p)[r(p) + M + p · r(p)], (6)

which gives r(p) ≤ (1 + (1 − p)M)/p2, completing the induction.
Since p > 0, there is some i such that p ≥ (3/4)(1 − p)i , and so r(p) is finite

for all p > 0. �

Lemma 2 If Zh > 0, then RARS(h, μ, S) terminates in finite time with probability
1 with output distributed as unnormalized density hS with respect to μ over S.

Proof The algorithm terminates with probability 1 by the previous lemma. Hence
by the FTPS, it is only necessary to show that the algorithm is locally correct.

Let A′ be the algorithm where lines 5 and 8 are replaced with oracles drawing
from the correct distributions. In particular, Y is a draw from μ restricted to point
space S. For any measurable B, note

∫

B

hS(x) dμ(x) = Zh

Zh

∫

B

hS(x) dμ(x) = ZhP(Y ∈ B).

Fix a measurable set A, and let W be the output of A′. Then the chance the
output is in A can be broken down into the probability of three disjoint events e1,
e2, and e3, representing acceptance at line 3, rejection at line 3 and acceptance at
line 7, or rejection at lines 3 and 7 and Y ∈ A respectively. That is, P(W ∈ A) =
P(e1) + P(e2) + P(e3) where

e1 = (X ∈ A,U1 ≤ hS(X))

e2 = (
U1 > hS(X), X1 ∪ X2 ∈ A,U2 ≤ hS1,S2(X1 ∪ X2)

)

e3 = (
U1 > hS(X),U2 > hS1,S2(X1 ∪ X2),Y ∈ A

)
.
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From basic AR theory (see for instance [1, 3, 12]),

P(e1) = P(Y ∈ A)Zh . (7)

The chance that X is not accepted at line 3 is

P(U > hS(X)) = 1 − P(U ≤ hS(X)) = 1 −
∫

hS(x) dμ = 1 − Zh . (8)

Since (X,U1) and (X1, X2,U2) are independent:

P(e2) = P(U1 > hS(X))P(X1 ∪ X2 ∈ A,U2 > hS1,S2(X1 ∪ X2))

= (1 − Zh)

∫

x1∪x2∈A

hS1(x1)hS2(x2)hS1,S2(x1, x2) dμ

= (1 − Zh)

∫

x1∪x2∈A

hS(x1 ∪ x2) dμ

= (1 − Zh)ZhP(Y ∈ A).

Similarly, using independence of the pieces of the last term, the chance that we
reject twice and then the recursive call lands in A is

P(e3) = (1 − Zh)(1 − Zh)P(Y ∈ A). (9)

Putting these terms together gives

P(W ∈ A) = P(Y ∈ A)[Zh + (1 − Zh)Zh + (1 − Zh)
2]

= P(Y ∈ A)

which completes the proof of correctness. �

In some cases, it is possible to know when h is easy to sample from using AR, at
which point, one can substitute basic AR in for line 3. In AR for the Strauss process,
acceptance occurs with probability 1 when there are no points in the draw. Hence for
S small enough that λS < 1, there is at least an exp(−1) chance of accepting. The
criterion for what is easy will vary from problem to problem.

RAR-stitch-base (h, μ, S)

1. For (h, S) easy, draw Z using AR. Return Z .
2. Partition S into S1 and S2.
3a. Draw X1 using RAR-stitch-base (h, μ, S1).
3b. Draw X2 using RAR-stitch-base (h, μ, S2).
4. Draw U2 uniformly from [0, 1].
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5. If U2 ≤ hS1,S2(X1 ∪ X2) then return X1 ∪ X2.
6. Else draw Y from RAR-stitch-base (h, μ, S).

Lemma 3 If Zh > 0, then RAR-stitch-base(h, μ, S) terminates in finite time
with probability 1 with output distributed as unnormalized density h with respect to
μ over S.

Proof The proof follows the same outline as for RARS(h, μ, S). �

3 Stitching in Practice

To illustrate stitching in practice, consider the Strauss process and the Ising model.

3.1 The Strauss Process

The Strauss density is determined by the parameters S, λ, r , and γ .
Given a process X1 over S1 and X2 over S2, hS1,S2(X1 ∪ X2) is γ raised to the

number of pairs of points (x1, x2)where x1 ∈ S1 and x2 ∈ S2 that are within distance
r of each other. This gives the following algorithm.

Strauss-AR-stitch-base (λ, r, γ, S)

1. If λ times the Lebesgue measure of S is at most 5, draw X using AR, and
return X .

2. Partition S into S1 and S2.
3a. Draw X1 using Strauss-AR-stitch-base (λ, r, γ, S1).
3b. Draw X2 using Strauss-AR-stitch-base (λ, r, γ, S2).
4. Draw U2 uniformly from [0, 1]. Let c be the number of ai ∈ X1 and b j ∈ X2

such that dist(ai , b j ) ≤ r .
5. If U2 ≤ γ c then return X1 ∪ X2.
6. Else return a draw from Strauss-AR-stitch-base (λ, r, γ, S).

3.2 The Ising Model

In the Isingmodel (and its extension, the Potts model), each vertex of a graph is given
a label from a color set. In the ferromagnetic model, edges of the graph are penalized
by exp(−2β) (for β > 0 a constant) when the two edges of the set are colored
differently. The reference measure is uniform over all colorings of the vertices.
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In other words, the density for a graph with edge set E is

f (x) =
∏

{i, j}∈E
[exp(−2β)I(x(i) 
= x( j)) + I(x(i) = x( j))] (10)

with respect to counting measure over all colorings of the vertices of the graph.
A partition of a vertex set of a graph is called a cut. The stitching needs only check

edges which cross the cut, meaning that the endpoints of the edges lie in different
halves of the cut. The density (and reference measure) are determined by β, the edge
set E , and the vertex set V .

Ising-AR-stitch-base (β, E, V )

1. If V = {v}, then choose X (v) uniformly from the set of colors, return X .
2. Partition V into V1 and V2.
3a. Draw X1 using Ising-AR-stitch-base (β, E, V1).
3b. Draw X2 using Ising-AR-stitch-base (β, E, V2).
4. DrawU2 uniformly from [0, 1]. Let c be the number of i ∈ V1 and j ∈ V2 such

that x(i) 
= x( j).
5. If U2 ≤ exp(−2βc) then return (X1, X2).
6. Else return a draw from Ising-AR-stitch-base (β, E, V ).

4 Numerical Results

For the Ising model, there are effective methods to perfectly sample for β above and
below the critical temperature [15], so only the Strauss process is considered here.

In order to evaluate the running time behavior of various algorithms for generating
from the Strauss process, timings were run on S = [0, 1] × [0, 1] for basic AR, the
PRS method of [7], and stitching. AR is always exponential in λ, while PRS stays
polynomial in λ before moving to exponential in λ past a certain threshold. Recursive
Acceptance Rejection Stitching is also exponential in λ, but at a much smaller rate
(Fig. 2).

Whenever one is constructing an RARS algorithm, a choice must be made how to
partition the state space. Here the choice made was as follows. Given a rectangular
space S, partition into two rectangles by dividing the space in half using a line parallel
to the shorter sides.

A plot of the log of the timings shows the exponential nature of the growth. The
originalAR algorithmquickly becomes exponential inλ, while PRS stays polynomial
until the critical point where it switches over to exponential behavior. RARS also
appears to be polynomial before turning exponential, but the slope of the log line
is much lower than that of AR and PRS, allowing for sampling from much higher
values of λ (Fig. 3).
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Fig. 2 Timings of
Acceptance Rejection,
Partial Rejection Sampling,
and Recursive Acceptance
Rejection with Stitching for
varying λ over
S = [0, 1] × [0, 1]

Fig. 3 Log timings of
Acceptance Rejection,
Partial Rejection Sampling,
and Recursive Acceptance
Rejection with Stitching for
varying λ over
S = [0, 1] × [0, 1].

4.1 Code

The code for the numerical examples above can be found in Sect. 4 of https://arxiv.
org/pdf/2012.08665.pdf.

5 Conclusion

Stitching is a simple to implement algorithm that has an exponential running time
with a rate far lower than either acceptance rejection or various local methods. It
applies to any density that can be factored into three pieces where two of the pieces
can be sampled from recursively, and the third piece is at most 1. In particular, this
applies to point processes such as the Strauss process. Experimentally, it has been
found that this algorithm can generate exact instances of the Strauss process over
values of the parameter space that were previously unobtainable in a reasonable
amount of time.

https://arxiv.org/pdf/2012.08665.pdf
https://arxiv.org/pdf/2012.08665.pdf
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A Note on Transformed Fourier Systems
for the Approximation of Non-periodic
Signals

Robert Nasdala and Daniel Potts

Abstract A variety of techniques have been developed for the approximation of
non-periodic functions. In particular, there are approximation techniques based on
rank-1 lattices and transformed rank-1 lattices, including methods that use sam-
pling sets consisting of Chebyshev- and tent-transformed nodes. We compare these
methods with a parameterized transformed Fourier system that yields similar �2-
approximation errors.

Keywords Change of variables · Lattice rule · Fast Fourier transform

1 Introduction

For the approximation of non-periodic functions defined on the cube [0, 1]d , fast
algorithms based on Chebyshev- and tent-transformed rank-1 lattice methods have
been introduced and studied in [8, 10–12, 16, 19, 22]. Recently, we suggested a
general framework for transformed rank-1 lattice approximation, in which functions
defined on a cube [0, 1]d (or on R

d ) are periodized onto the torus T
d � [0, 1)d ,

[17, 18]. In these approaches we define parameterized families ψ(·, η) : [0, 1]d →
[0, 1]d , η ∈ R

d+ of transformations that, depending on the parameter choice, yield
a certain smoothening effect when composed with a given non-periodic function.
This periodization strategies also lead to general parameterized classes of orthonor-
mal systems in weighted Hilbert spaces. However, these methods have the natural
drawback of singularities appearing at the boundary points of the cube, so that any
approximation error estimates have to be done with respect to weighted L∞- and
L2-norms.

We summarize some crucial properties of rank-1 lattice approximation. Then, we
compare the approximation with a half-periodic cosine system and tent-transformed
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sampling nodes [1–3, 13, 22], the Chebyshev approximation [16, 19], as well as
the general framework for the parameterized transformed Fourier system [18]. We
discuss numerical results in up to dimension d = 7 and highlight the controlled
smoothening effectwhen varying the parameter η in the transformedFourier systems.

2 Approximation Methods

At first, we summarize the main ideas of the Fourier approximation with sampling
sets in the form of rank-1 lattices [7, 14, 21]. Afterwards, we consider Chebyshev-
and tent-transformed rank-1 lattices in the context of Chebyshev and cosine approx-
imation methods [16, 22]. Finally, we outline the transformed Fourier system for
the approximation of non-periodic signals, as introduced in [18], and provide two
examples of parameterized transformations.

2.1 Fourier Approximation

For any frequency set I ⊂ Z
d of finite cardinality |I | < ∞ we denote the space of

all multivariate trigonometric polynomials supported on I by

�I := span

{
e2π ik·x =

d∏
�=1

e2π ik�x� : k ∈ I, x ∈ T
d

}
.

with k = (k1, . . . , kd)�, x = (x1, . . . , xd)�. The trigonometric polynomials are
orthonormal with respect to the L2(T

d)-scalar product

( f, g)L2(Td ) :=
∫
Td

f (x) g(x) dx, f, g ∈ L2(T
d).

For all k ∈ Z
d we denote the Fourier coefficients ĥk by

ĥk := (h, e2π ik(·))L2(Td ) =
∫
Td

h(x) e−2π ik·x dx,

and the corresponding Fourier partial sum by SI h(x) := ∑
k∈I ĥk e2π ik·x.

We use sampling nodes in a rank-1 lattice �(z, M) of size M ∈ N generated by
the vector z ∈ Z

d , that is defined as
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�(z, M) :=
{
xlattj := j

M
z mod 1 ∈ T

d : j = 0, . . . , M − 1

}
, (1)

with 1 := (1, . . . , 1)�, which allows the fast evaluation of Fourier partial sums via
[14, Algorithm 3.1]. For any frequency set I ⊂ Z

d the difference set is given by

D(I ) := {k ∈ Z
d : k = k1 − k2 with k1,k2 ∈ I }. (2)

We define the reconstructing rank-1 lattice �(z, M, I ) as a rank-1 lattice�(z, M)

for which the condition

t · z �≡ 0 (modM) for all t ∈ D(I ) \ {0} (3)

holds.
Given a reconstructing rank-1 lattice �(z, M, I ), we have exact integration for

all multivariate trigonometric polynomials p ∈ �D(I ), see [21], so that

∫
Td

p(x) dx = 1

M

M−1∑
j=0

p(x j ), x j ∈ �(z, M, I ). (4)

In particular, for h ∈ �I and k ∈ I we have h(·) e−2π ik(·) ∈ �D(I ) and

ĥk =
∫
Td

h(x) e−2π ik·x dx = 1

M

M−1∑
j=0

h(x j ) e
−2π ik·x j , x j ∈ �(z, M, I ). (5)

Next, we focus on functions in the Wiener algebraA(Td) containing all L1(T
d)-

functions with absolutely summable Fourier coefficients ĥk given by

A(Td) :=
{
h ∈ L1(T

d) :
∑
k∈Zd

|ĥk| < ∞
}

. (6)

For an arbitrary function h ∈ A(Td) ∩ C(Td) and lattice points x j ∈ �(z, M, I )
we lose the former mentioned exact integration property and get approximated
Fourier coefficients ĥ�

k of the form

ĥk ≈ ĥ�
k := 1

M

M−1∑
j=0

h(x j ) e
−2π ik·x j

leading to the approximated Fourier partial sum S�
I h given by
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h(x) ≈ S�
I h(x) :=

∑
k∈I

ĥ�
k e2π ik·x.

For the matrix-vector-expression with respect to the frequency set Ilatt ⊂ Z
d we put

Flatt :=
{
e2π ik·xlattj

}M−1

j=0,k∈Ilatt
, hlatt := (

h(xlattj )
)M−1

j=0
.

The evaluation of the function h and the reconstruction of the approximated Fourier
coefficients ĥ := (ĥ�

k )k∈Ilatt are realized by the fast Algorithms outlined in [14, Algo-
rithm 3.1 and 3.2] that solve the systems

hlatt = Flattĥ and ĥ = 1

M
F∗
latthlatt,

wherewehaveF∗
lattFlatt = MI byconstructionwith the identitymatrix I ∈ C

|Ilatt |×|Ilatt |.

2.2 Cosine Approximation

Next, we consider the half-periodic cosine system

{
λk(x) := √

2
‖k‖0

d∏
�=1

cos(πk�x�)

}
k∈Itent

, Itent ⊂ N
d
0 , x ∈ [0, 1]d , (7)

with the zero-norm ‖k‖0 := |{� ∈ {1, . . . , d} : k� �= 0}| and √
2
‖k‖0 := ∏d

�=1

√
2
‖k�‖0 .

In [13] it is pointed out that this system can alternatively be defined in one dimension
over the domain t ∈ [−1, 1] as the system λ0(x) = 1√

2
, λk(t) = cos(kπ t), λ̃k(t) =

sin((k − 1
2 )π t), which yields the original cosine system after applying the transfor-

mation t = 2x − 1.
The cosine system (7) is orthonormalwith respect to the L2([0, 1]d)-scalar product

given by

( f, g)L2([0,1]d ) :=
∫

[0,1]d
f (x) g(x) dx, f, g ∈ L2([0, 1]d).

For k ∈ Z
d the cosine coefficient of a function h ∈ L2

([0, 1]d) is naturally defined
as ĥcosk := (h, λk)L2([0,1]d) and for I ⊂ Z

d the corresponding cosine partial sum is

given by SI h(x) := ∑
k∈I ĥ

cos
k λk(x).We transfer the crucial properties of the Fourier

system via the tent transformation
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ψ(x) := (ψ1(x1), . . . , ψd(xd))
�, ψ�(x�) =

{
2x� for 0 ≤ x� < 1

2 ,

2 − 2x� for 1
2 ≤ x� ≤ 1.

(8)

We have sampling nodes in the tent-transformed rank-1 lattice �ψ(z, M) defined as

�ψ(z, M) := {
ycosj := ψ

(
xlattj

) : xlattj ∈ �(z, M), j = 0, . . . , M − 1
}

and we speak of a reconstructing tent-transformed rank-1 lattice �ψ(z, M, I ) if
the underlying rank-1 lattice is a reconstructing one. Recalling the definition of
difference sets D(I ) in (2), multivariate trigonometric polynomials h(·), h(·) and
λk(·) that are in �D(I ) and supported on k ∈ I ⊂ N

d
0 inherit the exact integration

property (4), because with the tent transformation as in (8) and transformed nodes
ycosj = ψ(xlattj ) ∈ �ψ(z, M, I ) with xlattj = (x j

1 , . . . , x
j
d )

� ∈ �(z, M, I ) we have

ĥcosk =
∫

[0,1]d
h(y) λk(y) dy = √

2
‖k‖0

∫
Td

h(ψ(x))
d∏

�=1

cos(2πk�x�) dx

=
√
2

‖k‖0

2d

∫
Td

h(ψ(x))
(
e2π ik·x + e−2π ik·x) dx

=
√
2

‖k‖0

2d
1

M

M−1∑
j=0

h(ψ(x j ))
(
e2π ik·x j + e−2π ik·x j

)

= √
2

‖k‖0 1

M

M−1∑
j=0

h(ψ(x j ))

d∏
�=1

cos(2πk�x
j
� )

= 1

M

M−1∑
j=0

h(ycosj ) λk(ycosj ).

For an arbitrary function h ∈ C ([0, 1]d), we lose the former mentioned exactness

and define the approximated cosine coefficients ĥcos,�k of the form

ĥcosk ≈ ĥcos,�k := 1

M

M−1∑
j=0

h(ycosj ) λk(ycosj ), ycosj ∈ �ψ(z, M, I ),

and obtain approximated cosine partial sum S�
I h given by

h(x) ≈ S�
I h(x) :=

∑
k∈I

ĥcos,�k λk(x). (9)

In matrix-vector-notation we have
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C := {
λk

(
ycosj

)}M−1

j=0,k∈Itent , htent := (
h(ycosj )

)M−1

j=0
.

Both the evaluation of h and the reconstruction of the approximated cosine coeffi-

cients ĥ :=
{
ĥcos,�k

}
k∈Itent

is realized by solving the systems

htent = Cĥ and ĥ = 1

M
C∗htent, (10)

where we have C∗C = MI by construction with the identity matrix I ∈ C
|Itent |×|Itent |.

Fast algorithms for solving both systems are described in [16, 22].

2.3 Chebyshev Approximation

We consider the Chebyshev system, that is defined for x ∈ [0, 1]d and a finite fre-
quency set Icheb ⊂ N

d
0 as{

Tk(x) := √
2

‖k‖0
d∏

�=1

cos (k� arccos(2x� − 1))

}
k∈Icheb

. (11)

The Chebyshev system (11) is an orthonormal system with respect to the weighted
scalar product

(Tk1 , Tk2)L2([0,1]d ,ω) :=
∫

[0,1]d
Tk1(x) Tk2(x) ω(x) dx, ω(x) :=

d∏
�=1

2

π
√
4x�(1 − x�)

.

The Chebyshev coefficients of a function h ∈ L2
([0, 1]d , ω)

are naturally defined

as ĥchebk := (h, Tk)L2([0,1]d ,ω),k ∈ Z
d and for I ⊂ Z

d the corresponding Chebyshev

partial sum is given by SI h(x) := ∑
k∈I ĥ

cheb
k Tk(x). We transfer some properties of

the Fourier system via the Chebyshev transformation

ψ(x) := (ψ1(x1), . . . , ψd(xd))
�,

ψ�(x�) := 1

2
+ 1

2
cos

(
2π

(
x� − 1

2

))
, x� ∈ [0, 1] , � ∈ {1, . . . , d}. (12)

We have sampling nodes in the Chebyshev-transformed rank-1 lattice �ψ(z, M)

defined as

�ψ(z, M) := {
ychebj := ψ

(
xlattj

) : xlattj ∈ �(z, M), j = 0, . . . , M − 1
}
.



A Note on Transformed Fourier Systems for the Approximation … 259

It inherits the reconstruction property (3) of the underlying reconstructing rank-1
lattice �(z, M, I ) and is denoted by �ψ(z, M, I ). We note that Chebyshev trans-
formed sampling nodes are fundamentally connected to Padua points and Lissajous
curves, as well as certain interpolation methods that are outlined in [4, 9].

Recalling the definition of difference sets D(I ) in (2), multivariate trigonomet-
ric polynomials h(·) and h(·) Tk(·) are in �D(I ) and supported on k ∈ I ⊂ N

d
0

inherit the exact integration property (4), because with the Chebyshev transfor-
mation ψ as in (12) and transformed nodes ychebj = ψ(xlattj ) ∈ �ψ(z, M, I ) with

xlattj = (x j
1 , . . . , x

j
d )

� ∈ �(z, M, I ) we have

ĥchebk =
∫

[0,1]d
h(y) Tk(y) ω(y) dy = √

2
‖k‖0

∫
Td

h(ψ(x))
d∏

�=1

cos(2πk�x�) dx

=
√
2

‖k‖0

2d

∫
Td

h(ψ(x))
(
e2π ik·x + e−2π ik·x) dx

=
√
2

‖k‖0

2d
1

M

M−1∑
j=0

h(ψ(x j ))
(
e2π ik·x j + e−2π ik·x j

)

= √
2

‖k‖0 1

M

M−1∑
j=0

h(ψ(x j ))

d∏
�=1

cos(2πk�x
j
� )

= 1

M

M−1∑
j=0

h(ychebj ) Tk(ychebj ).

For an arbitrary function h ∈ L
([0, 1]d , ω) ∩ C ([0, 1]d), we lose the former men-

tioned exactness and define the approximated Chebyshev coefficients ĥcheb,�k of the
form

ĥchebk ≈ ĥcheb,�k := 1

M

M−1∑
j=0

h(ychebj ) Tk(ychebj ), ychebj ∈ �ψ(z, M, I ),

leading to the approximated Chebyshev partial sum

h(x) ≈ S�
I h(x) :=

∑
k∈I

ĥcheb,�k Tk(x). (13)

In matrix-vector-notation this reads as

T := {
Tk(ychebj )

}M−1

j=0,k∈Icheb , hcheb := (
h(ychebj )

)M−1

j=0
.
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The evaluation of h as well as the reconstruction of the approximated Chebyshev

coefficients ĥ :=
(
ĥcheb,�k

)
k∈Icheb

of h are realized by fast Algorithms outlined in [16,

19, 22], that solve the systems

hcheb = Tĥ and ĥ = 1

M
T∗hcheb, (14)

where we have T∗T = MI by construction with the identity matrix I ∈ C
|Icheb|×|Icheb|.

2.4 Transformed Fourier Approximation

We recall the ideas of a particular family of parameterized torus-to-cube transfor-
mations as suggested in [18], that generalize the construction idea of the Chebyshev
system in composing a mapping with a multiple of its inverse.

We call a continuously differentiable, strictly increasingmapping ψ̃ : (0, 1) → R

with ψ̃(x + 1
2 ) being odd and ψ̃(x) → ±∞ for x → {0, 1} a torus-to-R transforma-

tion. We obtain a parameterized torus-to-cube transformation
ψ(·, η) : [0, 1] → [0, 1] with η ∈ R+ := (0,∞) by putting

ψ(x, η) :=

⎧⎪⎨
⎪⎩
0 for x = 0,

ψ̃−1(η ψ̃(x)) for x ∈ (0, 1) ,

1 for x = 1,

(15)

which are continuously differentiable, increasing and have a first derivativeψ ′(·, η) ∈
C0([0, 1]), where C0 ([0, 1]) denotes the space of all continuous functions van-

ishing to 0 towards their boundary points. It holds ψ−1(y, η) = ψ
(
y, 1

η

)
and we

call 
(y, η) := (ψ−1)′(y, η) = ψ ′
(
y, 1

η

)
the density of ψ . In multiple dimensions

d ∈ N with η = (η1, . . . , ηd)
� we put

ψ(x, η) := (ψ1(x1, η1), . . . , ψd(xd , ηd))
�, (16)

ψ−1(y, η) := (ψ−1
1 (y1, η1), . . . , ψ

−1
d (yd , ηd))

�,


(y, η) :=
d∏

�=1


�(y�, η�) with 
�(y�, η�) := 1

ψ ′(ψ−1(y�, η�))
,

where the univariate torus-to-cube transformationsψ�(·, η�) and their corresponding
densities 
�(·, η�) may be different in each coordinate � ∈ {1, . . . , d}.

We consider integrable weight functions
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ω(y) :=
d∏

�=1

ω�(y�), y ∈ [0, 1]d ,

such that for any given torus-to-cube transformation ψ(·, η) as in (16) we have

ω(ψ�(·, η�))ψ
′(·, η�) ∈ C0 ([0, 1]) .

Applying a torus-to-cube transformation to a functionh ∈ L2([0, 1]d , ω) ∩ C([0, 1]d)
generates a periodic function f ∈ L2(T

d) of the form

f (x) := h(ψ(x, η))

√√√√ω(ψ(x, η))

d∏
�=1

ψ ′
�(x�) with ‖h‖L2([0,1]d ,ω) = ‖ f ‖L2(Td ),

(17)

that is approximated by the classical Fourier system. To construct an approximant
for the original function h we apply the inverse torus-to-cube transformation to the
Fourier system, yielding for a fixed η ∈ R

d+ the transformed Fourier system

{
ϕk(·) :=

√

(·, η)

ω(·) e2π ik·ψ−1(·,η)

}
k∈I

, (18)

which forms an orthonormal system with respect to the weighted L2
([0, 1]d , ω)

-

scalar product. For all k ∈ Z
d the transformed Fourier coefficients ĥk are naturally

defined as

ĥk := (h, ϕk)L2([0,1]d ,ω) =
∫

[0,1]d

h(y) ϕk(y) ω(y) dy,

and the corresponding Fourier partial sum is given by SI h(y) := ∑
k∈I ĥk ϕ(y). The

corresponding sampling nodes will be taken from the torus-to-cube-transformed
(abbreviated: ttc) rank-1 lattice �ψ(z, M) defined as

�ψ(z, M) := {
yttcj := ψ

(
xlattj , η

) : xlattj ∈ �(z, M), j = 0, . . . , M − 1
}

and we speak of a reconstructing torus-to-cube-transformed rank-1 lattice �ψ

(z, M, I ) if the underlying rank-1 lattice is a reconstructing one.
Furthermore, the multivariate transformed trigonometric polynomials supported

on I ⊂ Z
d are given by �ttc

I := span{ϕk : k ∈ I } and inherit the exact integration
property (5), thus, for h ∈ �ttc

I we have
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ĥk =
∫

[0,1]d
h(x) ϕk(x) dx = 1

M

M−1∑
j=0

h(yttcj ) ϕk(yttcj ), yttcj ∈ �ψ(z, M, I ).

For an arbitrary function h ∈ L2([0, 1]d , ω) ∩ C([0, 1]d) we lose the former men-
tioned exactness and define approximated transformed coefficients of the form

ĥ�
k := 1

M

M−1∑
j=0

h(yttcj ) ϕk(yttcj )

and leads to the approximated transformed Fourier partial sum S�
I h given by

h(y) ≈ S�
I h(y) :=

∑
k∈I

ĥ�
k ϕk(y). (19)

In matrix-vector-notation we have

httc := (
h(yttcj )

)M−1

j=0
, Fttc := {

ϕk
(
yttcj

)}M−1

j=0,k∈Ittc .

The evaluation of h and the reconstruction of the approximated transformed Fourier

coefficients ĥ :=
{
ĥ�
k

}
k∈Ittc

is realized by solving the systems

httc = Fttcĥ. and ĥ = 1

M
F∗
ttchttc. (20)

Fast algorithms for solving both systems are described in [18].

2.5 Comparison of the Orthonormal Systems

The previously presented approximation approaches are based on very different
orthonormal systems and use differently transformed sampling sets, which is sum-
marized in dimension d = 1 in Table 1 with the definition of the hyperbolic cross I 1N
given in (23).

Given an univariate continuous function h ∈ C([0, 1]), both composition with the
tent transformation (8) and the Chebyshev transformation (12) can be interpreted as
mirroring a compressed version of h at the point 1

2 , so that h(ψ(x)) = h(ψ(1 − x))
for all x ∈ [0, 1

2 ]. In contrast to the the Chebyshev transformation case, for the tent
transformation we generally won’t expect the resulting function h ◦ ψ to be smooth
at the point 1

2 , which will be reflected in the approximation results later on.
The parametrized torus-to-cube transformations (15) are a fundamentally different

transformation class in the sense that the periodization effect is caused primarily by
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Table 1 Comparison of the univariate orthonormal system, sampling sets and frequency sets from
the Chebyshev, cosine and transformed Fourier approximation methods
Orthonormal system {ϕk (x)}k∈I Scalar product

weight ω

Sampling transformation ψ Frequency set I

√
2
‖k‖0 cos(πkx) 1

{
2x for 0 ≤ x < 1

2 ,

2 − 2x for 1
2 ≤ x ≤ 1.

I dN ∩ N
d
0

√
2
‖k‖0 cos (k arccos(2x − 1)) 1

2π
√
x(1−x)

1
2 + 1

2 cos
(
2π(x − 1

2 )
)

I dN ∩ N
d
0√


(x,η)
ω(x) e2π ikψ

−1(x,η) ω(x) ψ(x, η) I dN

the multiplication of h(ψ(·, η))with the first derivativeψ(·, η) ∈ C0([0, 1]) (assum-
ing a constant weight function ω ≡ 1), so that the function h(ψ(·, η))

√
ψ(·, η) ends

up being continuously extendable to the torusT. Additionally, now there is the param-
eter η involved which controls the smoothening effect on the periodized function,
see [18].

We find various suggestions for torus-to-R transformations in [5, Sect. 17.6], [20,
Sect. 7.5] and [17]. We list some induced combined transformations ψ(x, η) and
the corresponding density function 
(y, η) = (ψ−1)′(y, η) in the sense of defini-
tion (15):

• the logarithmic torus-to-cube transformation

ψ(x, η) := 1

2
+ 1

2
tanh(η tanh−1(2x − 1)), 
(y, η) = 4

η

(4y − 4y2)
1
η
−1(

(2y)
1
η + (2 − 2y)

1
η

)2 ,

(21)

based on the mapping

ψ̃(x) = 1

2
log

(
2x

2 − 2x

)
= tanh−1(2x − 1),

• the error function torus-to-cube transformation

ψ(x, η) = 1

2
erf(η erf−1(2x − 1)) + 1

2
, 
(y, η) = 1

η
e
(1− 1

η2
)(erf−1(2y−1))2

,

(22)

based on the mapping

ψ̃(x) = erf−1(2x − 1),

which is the inverse of the error function
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Fig. 1 Left: The tent-transformation (8) the Chebyshev-transformation (12). Right: The parame-
terized logarithmic transformation (21) for η ∈ {2, 4}

erf(y) = 1√
π

y∫
−y

e−t2 dt, y ∈ R,

In Fig. 1 we provide a side-by-side comparison of all the previously mentioned
transformation mappings.

3 Approximation Results and Error Analysis

Based on the weight function

ωhc(k) :=
d∏

�=1

max(1, |k�|), k ∈ Z
d ,

we define the hyperbolic cross index set

I dN := {
k ∈ Z

d : ωhc(k) ≤ N
}

(23)

and for β ≥ 0 we furthermore have the Hilbert spaces

Hβ(Td) :=
{
f ∈ L2(T

d) : ‖ f ‖2Hβ (Td ) :=
∑
k∈Zd

ωhc(k)2β | f̂k|2 < ∞
}

(24)

that are closely related to the Wiener Algebra A(Td) given in (6). For λ > 1
2 and

fixed d ∈ N the continuous embeddings Hβ+λ(Td) ↪→ A(Td) was shown in [15,
Lemma 2.2]. Next, we introduce the analogue on the cube [0, 1]d for the Hilbert
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Fig. 2 The univariate B2-cutoff h1(y) = B2(y) and the two-dimensional tensored B2-cutoff
h2(y1, y2) = B2(y1) B2(y2)

spaceHβ(Td) as in (24). We define the space of weighted L2
([0, 1]d , ω)

-functions

with square summable Fourier coefficients ĥk := (h, ϕk)L2([0,1]d ,ω) by

Hβ
([0, 1]d , ω) :=

{
h ∈ L2

([0, 1]d , ω) : ‖h‖Hβ([0,1]d ,ω) < ∞
}

,

‖h‖2Hβ([0,1]d ,ω) :=
∑
k∈Zd

ωhc(k)2β |ĥk|2. (25)

In case of a constant weight function ω ≡ 1 we just writeHβ
([0, 1]d).

We define a shifted, scaled and dilated B-spline of second order as

B2(x) :=
{

−x2 + 3
4 for 0 ≤ x < 1

2 ,
1
2

(
x2 − 3x + 9

4

)
for 1

2 ≤ x ≤ 1,
(26)

which we refer to as the B2 -cutoff, that was also used in [18, 19]. It is in C1([0, 1])
and depicted in Fig. 2. Even though it is only once continuously differentiable, it
is also an element in H 5

2 −ε ([0, 1]) for any ε > 0, which the following arguments
show. It’s well-known a second order B-spline is the result of a convolution of
three step functions χ[0,1] (where χ denotes the indicator function) with themselves,
whose respective Fourier coefficients (χ[0,1](·), e2π ik(·))L2([0,1]) decay like |k|−1 for
k → ±∞. Hence, the Fourier coefficients ĥk = (B2, e2π ik(·))L2([0,1]) of the B2-cutoff
(26) decay like |k|−3 for k → ±∞. Considering a constant weight function ω ≡ 1,
the ‖ · ‖Hβ ([0,1])-norm given in (25) of B2 is finite if

‖B2‖2Hβ ([0,1]) =
∑
k∈Z

ωhc(k)
2β |ĥk |2 �

∑
k∈Z

max{1, |k|}2β 1

|k|6 < ∞,

which is the case for

|k|2β−6 ≤ k−(1+ε) ⇔ β ≤ 5

2
− ε, ε > 0.
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Next, we approximate the tensored B2-cutoff

h(x) =
d∏

�=1

B2(x�) ∈ H 5
2 −ε([0, 1]d), ε > 0, (27)

by the approximated Chebyshev, cosine or transformed Fourier partial sums S�
I h

given in (9), (13) and (19). We study the resulting relative �2-and �∞-approximation
errors

εR
p (h) :=

∥∥∥(
h(x j ) − S�

I h(x j )
)R
j=1

∥∥∥
�p∥∥∥(

h(x j )
)R
j=1

∥∥∥
�p

, p ∈ {2,∞}, (28)

that are evaluated at R ∈ N uniformly distributed points x j ∼ U([0, 1]d). The
approximated coefficients appearing in the approximated partial sums (13), (9) and
(19) are calculated by solving the corresponding systems (14), (10) or (20).

3.1 The Numerical Results of �2-Approximation

Throughout this section we repeatedly use the bold number notation 1 = (1, . . . , 1)�
that we already used in the definition of rank-1 lattices (1) and expressions like η = 2
mean that η� = 2 for all � ∈ {1, . . . , d}.

In [6, 23, 24] we find a broad discussion on the approximation error decay of
function in the Sobolev space Hβ(Td),m ∈ N0. It was proven that there is a worst
case upper error bound of the form

εR
2 (h) ≈

∥∥∥h − S�

I dN
h
∥∥∥
L2([0,1]d)

� N−m(log N )(d−1)/2. (29)

In [18] we find conditions on the logarithmic and the error function transformation
ψ(·, η), given in (21) and (22), such that a certain degree of smoothness of the given
Cm(Td)-function is preserved under composition withψ(·, η) and the resulting peri-
odized function is at least inH�(Td), � ≤ m and for each � it was calculated how large
the parameter η has to be chosen. According to the conditions in [18, Theorem 4], the
tensored B2-cutoff in (27) is transformed into a function f ∈ H0(Td) of the form (17)
for all considered torus-to-cube transformationsψ(·, η)with parameters 1 < η� ≤ 3,
and into a function f ∈ H1(Td) for parameters η� > 3, � ∈ {1, . . . , d}. While these
conditions are independent of the particular considered function h ∈ Cm(Td), they
are pretty coarse in the sense of not catching the additional smoothness of func-
tions like the B2-cutoff given in (27) which is an almostH 5

2 ([0, 1]d)-function as we
showed earlier. In numerical tests we showcase that in certain setups the Chebyshev
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Fig. 3 The hyperbolic cross
I 28 (left) and its first quadrant
I 28 ∩ N

2
0 (right)

coefficients and the transformed Fourier coefficients will indeed decay faster than
the worst case upper bound (29).

In dimensions d ∈ {1, 2, 4, 7} we compare the discrete �2-approximation error
ε2, given in (28), with R = 1.000.000 uniformly distributed evaluation points for all
of the previously introduced approximation approaches. We consider frequency sets
I dN for all transformed Fourier systems and I dN ∩ N

d
0 for the cosine and Chebyshev

systems. Both frequency sets are illustrated in dimension d = 2with N = 8 in Fig. 3.
We use N ∈ {1, . . . , 140} for d = 1, N ∈ {1, . . . , 80} for d = 2, N ∈ {1, . . . , 50}

for d = 4 and N ∈ {1, . . . , 30} for d = 7.
In dimensions d = 1 and d = 2 we observe that the approximation errors are

significantly better for η = 4 than for η = 2, indicating the increased smoothening
effect of both the logarithmic and the error function transformation. In dimensions
d ∈ {4, 7}, the errors for η = 4 turn out to be worse than for η = 2, which we suspect
might be due to the increase of certain constants depending on η in the error estimate
(29). The Chebyshev approximation turns out to be a solid candidate to approximate
the B-spline given in (27). In this specific setup, we also checked the error behavior
for other parameters η ∈ {2.1, 2.2, . . . , 3.8, 3.9, 4.1, 4.2, . . .}. As it turns out, η =
4 is the best choice for the logarithmic transformation and for the error function
transformation the best choice is η = 2.5.

However, as shown inFig. 4, only the error function transformation is able tomatch
the approximation error of the Chebyshev approximation, which also showswhenwe
investigate and compare the error decay rates of εR

2 (h) thatwere numerically observed
for the univariate case d = 1. In this specific setup, h is still the continuous second-
order B-spline given in (27) that is an element ofH 5

2 −ε
([0, 1]d). Hence, we expect to

obtain an error decay at most εR
2 (h) � N− 5

2 +ε for any ε > 0 and increasing values of
N when approximating hwith respect to any transformed Fourier system.We achieve
these decay rates numerically with the Chebyshev system and with the transformed
Fourier system when considering the logarithmic transformation with η ∈ {2.5, 4}.
Interestingly, the decay rates of the cosine system remain at N−1.5. In comparison,
the logarithmically transformed Fourier systemwith η = 2 loses half an order, which
is slightly improved for η = 4. In total we observe that some transformed Fourier
systems are able to achieve the same decay rates as the Chebyshev system, when
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Fig. 4 Comparing the approximation errors εR2 (h) of the tensored B2-cutoff (27) approximated by
various orthonormal systems in dimensions d ∈ {1, 2, 4, 7}

we use parameterized torus-to-cube transformations ψ(·, η) and pick an appropriate
parameter η ∈ R+. The results are summarized in Table 2.

3.2 A Note on �∞-Approximation

As derived in [18] and recalled in (17), the transformed Fourier system (18) for non-
periodic funtions is the result of applying an inverted change of variable ψ−1(·, η)

in the form of (15) to the Fourier system elements within the L2(T
d)-scalar product,

in order to generate another orthonormal system in a given space L2
([− 1

2 ,
1
2 ]d , ω

)
.

There are two interpretations for the resulting integral of the form

∫
[0,1]d


(y, η)

ω(y)
e2π i(k−m)ψ−1(y,η) ω(y) dy =

∫
Td

e2π i(k−m)x dx = δk,m.
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Table 2 The observed decay rates of the discrete approximation error εR2 (h) as given in (28) when
h is the univariate B2-cutoff as defined in (26)

Transformation εR2 (h)

Equation (7) Cosine system N−1.5

Equation (11) Chebyshev system N−2.45

Equation (21) Log transf. Fourier, η = 2 N−1

Equation (21) Log transf. Fourier, η = 4 N−2.25

Equation (22) Error fct. transf. Fourier, η = 2 N−1.9

Equation (22) Error fct. transf. Fourier,
η = 2.5

N−2.5

Equation (22) Error fct. transf. Fourier, η = 4 N−2.5

We either have another periodic system of the form
{
e2π ik·ψ−1(·,η)

}
k∈I

and the

weighted L2
([0, 1]d , 
(·, η)

)
-scalar product; or we attach

√

(·, η)/ω(·) to the indi-

vidual exponentials e2π ik·ψ−1(·,η) and end up with the non-periodic system (18) and
the originally given weighted L2

([− 1
2 ,

1
2 ]d , ω

)
-scalar product. If we consider a con-

stant weight function ω ≡ 1, then there is a drawback that comes with the later
choice, because 
 is unbounded and causes singularities at the boundary points of
the elements in the approximated transformed Fourier sum (19). So, the pointwise
approximation error εR∞ in (28) isn’t finite, unless we consider a suitably weighted
�∞-norm that counteracts the behavior of the approximant towards the boundary
points, which is discussed more thoroughly in [18]. This strategy is based on choos-
ing the weight function ω in such a way that the quotient 
(·, η)/ω(·) is either
constant or converges at the boundary points. However, for any chosen torus-to-cube
transformation—especially for the presented parameterized transformations ψ(·, η)

in (21) and (22) with a fixed parameter η—the weight function has to be chosen in
such a way so that on one hand the singularities of the density function are controlled
and on the other hand the given function h is still in L2([0, 1]d , ω).

We achieve this effect for example by showing the connection of the transformed
Fourier framework with the Chebyshev system, when we put the Chebyshev trans-
formation (12) into the transformed Fourier system (18) despite the fact that it is
not a torus-to-cube transformation as in (15). Considering the hyperbolic cross I 1N
as defined in (23) and x, y ∈ [0, 1], we choose ψ to be the Chebyshev transfor-
mation (12) of the form ψ(x) = 1

2 + 1
2 cos

(
2π(x − 1

2 )
)
, with the inverse ψ−1(y) =

1
2 + arccos(2y−1)

2π and the density
(y) = 1
2π

√
y(1−y)

. By puttingω(y) = 
(y), the trans-
formed Fourier system (18) turns into

ϕk(y) = eπ ik+ik arccos(2y)

= (−1)k(cos(k arccos(2y − 1)) + i sin(k arccos(2y − 1)))
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for k ∈ {−N , . . . , N } and by combining the positive and negative frequencies we
obtain

ϕk(y) =
{
1 for k = 0,

(−1)k2 cos(k arccos(2y − 1)) for k ∈ {1, 2, . . . , N },

which is orthogonal with respect to the L2 ([0, 1], ω)-scalar product with ω(y) =
1

2π
√
y(1−y)

. With some additional scaling we obtain an orthonormal system that’s
equivalent to the Chebyshev system (11).

4 Conclusion

Weconsidered the approximation of non-periodic functions on the cube [0, 1]d bydif-
ferent systems of orthonormal functions. We compared the Chebyshev system that is
orthonormalwith respect to aweighted L2-scalar product, the systemof half-periodic
cosines that uses tent-transformed sampling nodes and a parameterized transformed
Fourier system. For the cosine system, which basically only mirrors a non-periodic
function at it’s boundary points, as well as the transformed Fourier system with a
small parameter, yielded the worst approximation errors. Switching to the Cheby-
shev system, which mirrors and additionally smoothens a given function, improved
the approximation error decay. The same effect was obtained for the transformed
Fourier system after increasing the parameter enough to obtain a better smoothening
effect. The numerical experiments showcased the proposed parameter control in [18]
that is set up by periodizing functions via families of parameterized torus-to-cube
mappings. This approach in particular generalizes the idea used to derive Chebyshev
polynomials.
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Applications of Multivariate
Quasi-Random Sampling with Neural
Networks

Marius Hofert, Avinash Prasad, and Mu Zhu

Abstract Generativemomentmatching networks (GMMNs) are suggested formod-
eling the cross-sectional dependence between stochastic processes. The stochastic
processes considered are geometric Brownian motions and ARMA–GARCH mod-
els. Geometric Brownian motions lead to an application of pricing American basket
call options under dependence andARMA–GARCHmodels lead to an application of
simulating predictive distributions. In both types of applications the benefit of using
GMMNs in comparison to parametric dependence models is highlighted and the fact
that GMMNs can produce dependent quasi-random samples with no additional effort
is exploited to obtain variance reduction.

Keywords Generative moment matching networks · Copulas · Quasi-random
sampling · American basket option pricing · ARMA–GARCH · Predictive
distributions

1 Introduction

Given data X1, . . . , Xntrn ∼ FX inRd , a fundamental statistical task is to learn some-
thing about the distribution FX itself. Traditionally, this is done by assuming FX to
belong to a certain parametric family, say, FX(·; θ), and estimating the parameter
vector θ from data, e.g., by maximum likelihood.

Alternatively, we can learn to generate samples from FX directly. Specifically,
given a sample V 1, . . . , V ngen ∼ FV in Rd , where FV is a simple distribution (e.g.,
the independent standard normal or standard uniform), can we learn a generator
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G(·) such that G(V 1), . . . ,G(V ngen) ∼ FX? An answer to this question has been
provided recently by the machine learning community [2, 9]: yes, we can do so
using a so-called generative moment matching network (GMMN).

We have found [6] that GMMNs, once trained, also allow us to generate quasi-
random samples (QRS) from FX “for free”. This is exciting because we thus have
a universal and flexible approach for constructing cross-sectionally dependent QRS
from a large variety of different models, including parametric models but especially
also empirical ones (for which the true underlying dependencemodel is unknown). In
the present paper, we will first give a quick overview of what GMMNs are, and how
they can be used to generate QRS from almost any distribution. We will then focus
on two applications: pricing American basket call options, and making probabilistic
forecasts for multivariate time series.

Throughout the paper, we rely heavily on the decomposition afforded by Sklar’s
Theorem [16], namely,

FX(x) = C(FX1(x1), . . . , FXd (xd)), x = (x1, . . . , xd) ∈ Rd ,

whereC : [0, 1]d �→ [0, 1] is the unique underlying copula [3, 12], and FX1 , . . . , Fxd
are the continuous marginal distributions of X1, . . . , Xd . This allows us to focus
on the problem of generating Uk = G(V k) ∼ C , k = 1, . . . , ngen, from which
we can simply obtain Xk = F−1

X (Uk) ∼ FX , k = 1, . . . , ngen, where F−1
X (u) ≡

(F−1
X1

(u1), . . . , F
−1
Xd

(ud)).
For both applications we present in this paper, we have not just static data X ∼ FX

but realizations of a stretch of a stochastic process X t over time, with

X tk = η(Zk | X t1 , . . . , X tk−1), k = 1, . . . , ntrn, (1)

where Z1, . . . , Zntrn
ind.∼ FZ andη is “decomposable” into component-wise ormarginal

functions η j , in the sense that, for each j = 1, . . . , d, we have

Xtk , j = η j (Zk, j | Xt1, j , . . . , Xtk−1, j ). (2)

The key structure here is that, for any fixed j , Z1, j , . . . , Zntrn, j
ind.∼ FZ j but, for any

fixed k, Zk,1, . . . , Zk,d are dependent. For each j , the functionη j allows us to describe
the marginal stochastic processes Xt, j as a transformation of iid random variables
Zt, j . In the two applications we consider, η j can be viewed as a function of the
conditional mean and variance processes; see Sects. 3.1 and 4.1 for details. However,
the functional form of η j can be fairly general and the only restriction is that it is
invertible.

Conceptually, we may think of a Sklar decomposition at every time point t ,

FX tk
(x) = C(FXtk ,1(x1), . . . , FXtk ,d (xd)),
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where the copula C remains constant over time and hence the same at all t , but the
marginal distributions FXtk ,1 , . . . , FXtk ,d may vary over time. And the operation

F−1
X tk

(Uk) = (F−1
Xtk ,1

(Uk,1 |Ftk−1,1), . . . , F
−1
Xtk ,d

(Uk,d |Ftk−1,d))

is now conditional on the entire history of the process up to and including time tk−1,
denoted here by the natural filtration Ftk−1 , where, for any given s, Fs, j = σ({Xs ′, j :
s ′ ≤ s}) for all j = 1, . . . , d. Under (1)–(2), the component-wise conditional oper-
ation F−1

Xtk , j
(· |Ftk−1, j ) is simply

F−1
Xtk , j

(Uk, j |Ftk−1, j ) = η j (F
−1
Z j

(Uk, j ) | Xt1, j , . . . , Xtk−1, j ).

For American basket call options, each FXtk , j (· |Ftk−1, j ) is dictated by an underly-
ing geometric Brownian motion (GBM). For multivariate time series, each FXtk , j

(· |Ftk−1, j ) is dictated by an underlying ARMA–GARCH process [1, 17].
To priceAmerican basket call options aswell as tomake probabilistic forecasts for

multivariate time series, the key lies in repeatedly simulating the time path forward
for each Xt, j . For any given path i and time point tk , this is done by generating

X̂ (i)
tk , j

= F̂−1
Xtk , j

(
U (i)

k, j |F (i)
tk−1, j

) = η̂ j
(
F̂−1
Z j

(U (i)
k, j ) | X̂ (i)

t1, j
, . . . , X̂ (i)

tk−1, j

)
, (3)

where X̂ (i)
s, j = Xs, j across all i if time point s is part of the training set. Typically, each

U (i)
k = (U (i)

k,1, . . . ,U
(i)
k,d)

	 is generated from a parametric copula model, whereas we
propose to generate it nonparametrically from a GMMN fitted to the training data.

2 GMMNs, Pseudo-Random and Quasi-Random Sampling

As established in Sect. 1, we focus on generating U1, . . . ,Ungen from the underlying

copula C . To do so, we rely on training data Û1, . . . , Ûntrn . These can be obtained
by first estimating and then removing the marginal distributions from X tk . For our
two applications, this is achieved by

Ûk, j = F̂Xtk , j (Xtk , j |Ftk−1, j ) = F̂Z j

(
η̂−1
j (Xtk , j | Xt1, j , . . . , Xtk−1, j )

)
(4)

under (1)–(2).
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2.1 Generative Moment Matching Networks (GMMNs)

Let G denote a set of neural networks with a pre-determined architecture. A GMMN
is the solution to the following minimization problem:

min
G∈G

1

n2trn

ntrn∑

k=1

ntrn∑

k ′=1

K (Ûk, Û k ′) − 2

ntrnngen

ntrn∑

k=1

ngen∑

k ′=1

K (Ûk,G(V k ′))

+ 1

n2gen

ngen∑

k=1

ngen∑

k ′=1

K (G(V k),G(V k ′)), (5)

where K (u, v) is a kernel function, such as the Gaussian or radial basis kernel. The
minimizer of (5) ensures the distribution of the generated sample {G(V k ′)}ngenk ′=1 is as
close as possible to that of the training sample {Ûk}ntrnk=1. This is because the criterion
being minimized in (5) is equal to

∥∥∥
∥

1

ntrn

ntrn∑

k=1

ϕ(Ûk) − 1

ngen

ngen∑

k ′=1

ϕ(G(V k ′))

∥∥∥
∥

2

,

where ϕ(·) is the implied feature map of K such that K (u, v) = ϕ(u)	ϕ(v)

and, for the Gaussian kernel and its implied feature map, the two statistics —
(1/ntrn)

∑ntrn
k=1 ϕ(Û k) and (1/ngen)

∑ngen
k ′=1 ϕ(G(V k ′)) — contain all empirical

moments of the training sample {Ûk}ntrnk=1 and the generated sample {G(V k ′)}ngenk ′=1,
respectively. This is also where the name GMMN comes from.

Here, we will not go into any more details of how the optimization problem (5) is
actually solved; instead, we simply refer the reader to [2, 6, 9]. A very short summary
is “by stochastic gradient descent” but there are many practical details such as the
need for mini-batch optimization, and the use of a mixture (rather than a single)
kernel function, and so on.

2.2 Pseudo-Random Sampling

After having trained a GMMN, generating npth paths of ngen d-dimensional pseudo-
random samples from it can be done as follows.

2.3 Quasi-Random Sampling

As mentioned in Sect. 1, we have found in [6] that GMMNs can preserve low
discrepancy—and thus achieve a variance reduction effect—if fed with quasi-
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Algorithm 1: Pseudo-random sampling of GMMN-dependent paths

1. Fix npth, the number of paths, and ngen, the number of d-dimensional samples to be
generated for each path.

2. For i = 1, . . . , npth, k = 1, . . . , ngen, draw V (i)
k = (V (i)

k,1, . . . , V
(i)
k,d )

ind.∼ FV , for example, via

V (i)
k = F−1

V (U ′(i)
k ), where U ′(i)

k = (U ′(i)
k,1 , . . . ,U ′(i)

k,d )
ind.∼ U(0, 1)d .

3. Return the pseudo-observations of U (i)
k = G(V (i)

k ), i = 1, . . . , npth, k = 1, . . . , ngen.

random samples. In Algorithm 1 above, we can simply replace U ′(i)
k

ind.∼ U(0, 1)d , for

i = 1, . . . , npth and k = 1, . . . , ngen, by a randomized quasi-Monte Carlo (RQMC)
point set, such as a randomized Sobol’ sequence; see [6] for empirical evidence under
a great variety ofmultivariate distributions (specifically, copulas). As in [8, Sect. 7.3],
we generate the RQMC point set in a specific way. To this end, let d∗ = ngen · d.
We then generate an RQMC point set P̃npth = {ṽ1, . . . , ṽnpth} of npth d∗-dimensional
points, resulting in an (npth, d∗)-matrix, whose columns are blocked in ngen groups
of size d each to form npth paths of ngen d-dimensional quasi-random samples from
the trained GMMN. We thus obtain the following algorithm.

Algorithm 2: Quasi-random sampling of GMMN-dependent paths

1. Fix npth, the number of paths, and ngen, the number of d-dimensional samples to be
generated for each path. Furthermore, set d∗ = ngen · d.

2. Compute a d∗-dimensional RQMC point set P̃npth = {ṽ1, . . . , ṽnpth }, for example, as a
randomized Sobol’ sequence.

3. Compute V (i)
k = F−1

V (ṽi,(k−1)d+1, . . . , ṽi,kd ), i = 1, . . . , npth, k = 1, . . . , ngen.

4. Return the pseudo-observations of U (i)
k = G(V (i)

k ), i = 1, . . . , npth, k = 1, . . . , ngen.

3 American Basket Option Pricing

In this section, we demonstrate the usefulness of GMMNs and the dependent quasi-
random samples they can generate for pricing American basket call options.
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3.1 Model

Thebasket portfolio consists ofd assetswhose prices Xt,1, . . . , Xt,d followgeometric
Brownian motions. With risk-neutral drift, (Xt, j )t≥0 can be represented as

Xt, j = X0, j exp(Yt, j ) for Yt, j = (r − σ 2
j /2)t + σ jWt, j , (6)

where r is the risk-free interest rate, σ j is the volatility parameter of the j th asset
(quantified as the standard deviation of Yt, j over one unit of time) and Wt, j is a
standard Wiener process. A discretization of Wt, j on 0 = t0 < t1 < · · · < tntrn is
given by

Wtk , j =
k∑

l=1

√
tl − tl−1Zl, j , Z1, j , . . . , Zntrn, j

ind.∼ N(0, 1), (7)

and thus a discretization of (6) is given by

Xtk , j = Xt0, j exp(Ytk , j ) for Ytk , j = (r − σ 2
j /2)tk + σ j

k∑

l=1

√
tl − tl−1Zl, j ; (8)

this is in linewithEquation (2).Dependencebetween Xtk ,1, . . . , Xtk ,d is introducedby
making the increments Zk,1, . . . , Zk,d dependent either through a parametric copula
CPM (in which case we speak of a copula–GBM model for the joint stock price
process X tk = (Xtk ,1, . . . , Xtk ,d), k = 0, . . . , ntrn) or through a GMMN (in which
case we speak of a GMMN–GBM model).

3.2 Estimation

Suppose that for each j = 1, . . . , d, we have ntrn + 1 realizations Xtk , j , k = 0, . . . ,
ntrn. We fix the risk-free interest rate to be r and estimate σ j as the sample standard
deviation σ̂ j of the log-returns Ytk , j = log(Xtk , j/Xtk−1, j ), k = 1, . . . , ntrn. We then
recover the realizations Ẑ1, j , . . . , Ẑntrn, j from Xt0, j , . . . , Xtntrn , j via (7) and (8) by

Ŵtk , j = 1

σ̂ j

(
log

(
Xtk , j

Xt0, j

)
−

(
r − σ̂ 2

j

2

)
tk

)
, k = 0, . . . , ntrn,

Ẑk, j = Ŵtk , j − Ŵtk−1, j√
tk − tk−1

, k = 1, . . . , ntrn,

a process we refer to as deBrowning (analogously to deGARCHing known for
ARMA–GARCH processes); this is in line with Eq. (4). The cross-sectional depen-
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dence of the iid Ẑk = (Ẑk,1, . . . , Ẑk,d), k = 1, . . . , ntrn, with supposedly standard
normal margins is then modeled based on the pseudo-observations

Ûk, j = R̂k, j

ntrn + 1
, k = 1, . . . , ntrn, j = 1, . . . , d, (9)

where R̂k, j denotes the rank of Ẑk, j among Ẑ1, j . . . , Ẑntrn, j . Note that using the
pseudo-observations instead of assuming standard normality of the margins of
Ẑk = (Ẑk,1, . . . , Ẑk,d) reduces the effect of a potential misspecification of the mar-
gins on the estimation of the cross-sectional dependence; see [4]. As cross-sectional
dependence model for the distribution of Ûk = (Ûk,1, . . . , Ûk,d), k = 1, . . . , ntrn,
we use either a fitted parametric copula ĈPM or a trained GMMN G : Rd → [0, 1]d .
Analogously to ĈPM, we denote the copula of the samples generated from the trained
GMMNby ĈNN andview themas an approximation to the target dependence structure
of Û1, . . . , Ûntrn . In our option pricing application, we compare the trained GMMN
with fitted Clayton, normal and t copulas — with unstructured correlation matrices
for the latter two. We also include the independence copula as benchmark.

3.3 Simulation

For simulating the dependent asset prices, samples from ĈNN and ĈPM are mapped to
N(0, 1)margins to obtain samples from the joint increment distribution and thus, after
undoing deBrowning, to obtain samples from the dependent asset prices. Algorithm 3
describes these steps for simulating npth-many paths of X tk = (Xtk ,1, . . . , Xtk ,d), k =
0, . . . , ngen, for our newly proposedGMMN–GBMmodel. The dependent asset price
processes then serve as inputs for computing the present value of theAmerican basket
call option considered.

3.4 Application

To price an American basket call option, we assume the option can be exercised at
t1, . . . , tngen and that tngen = T is the maturity (or expiry) of the option contract. We
are then interested in estimating

max
k=1,...,ngen

E(exp(−r tk)H(X tk , tk)), (10)

where H(X tk , tk) = max
{(

(1/d)
∑d

j=1 Xtk , j
) − K , 0

}
is the payoff function for the

American basket call option with strike price K ; note that the expectation in (10)
is with respect to the risk-neutral measure. To find a solution of (10), we follow
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Algorithm 3: Pseudo- and quasi-random sampling of GMMN-GBM paths

1. Fix npth, the number of paths, and ngen, the number (or total time steps) of d-dimensional
samples to be generated for each path. Furthermore, fix the risk-free interest rate r , the

estimated asset price volatilities σ̂ j , j = 1, . . . , d, and the initial asset prices X̂
(i)
t0 = X tntrn ,

i = 1, . . . , npth.

2. Generate U (i)
k =(U (i)

k,1, . . . ,U
(i)
k,d ), i=1, . . . , npth, k = 1, . . . , ngen, according to Algorithm 1

(for pseudo-random samples) or Algorithm 2 (for quasi-random samples).
3. Compute the increments Z (i)

k =(Z (i)
k,1, . . . , Z

(i)
k,d ) with Z (i)

k, j = �−1(U (i)
k, j ) for i = 1, . . . , npth,

k = 1, . . . , ngen, where �−1 is the N(0, 1) quantile function.

4. Compute X̂
(i)
tk = (X̂ (i)

tk ,1
, . . . , X̂ (i)

tk ,d
) with

X̂ (i)
tk , j

= X̂ (i)
t0, j

exp

(
(r − σ̂ 2

j /2)tk + σ̂ j

k∑

l=1

√
tl − tl−1Z

(i)
l, j

)

for i = 1, . . . , npth, k = 1, . . . , ngen; see (8).

5. Return X̂
(i)
tk , i = 1, . . . , npth, k = 1, . . . , ngen.

the dynamic programming principle and traverse each simulated path of the under-
lying asset price process backwards in time (starting at maturity) while making
hold/exercise decisions at each time point. To make such decisions along the i th
path, we need to compare the exercise value H(X (i)

tk , tk) with the expected continu-
ation value. To this end, we work with the least squares Monte Carlo algorithm of
[10] according to which the expected continuation value is estimated by regressing
the realized option payoffs from continuation on basis functions of the basket price.
As basis functions we use the first three weighted Laguerre polynomials

L0(x) = e−x/2, L1(x) = e−x/2(1 − x2/2), L2(x) = e−x/2(1 − 2x + x2/2),

where x is the current asset price, and we also use their corresponding three cross-
products L0(x)L1(x), L0(x)L2(x) and L1(x)L2(x).Algorithm4provides the details;
see also [10].

As data application we consider daily adjusted closing prices of 10 S&P 500 con-
stituents from 1995-01-01 to 2015-12-31. The selected constituents include three
stocks from the information technology sector (Intel Corp. (INTC), Oracle Corp.
(ORCL) and International Business Machines Corp. (IBM)), three stocks from the
financial sector (Capital One Financial Corp. (COF), JPMorgan Chase & Co. (JPM)
and American International Group Inc (AIG)) and four stocks from the industrial
sector (3M Company (MMM), Boeing Company (BA), General Electric (GE) and
Caterpillar Inc. (CAT)). In addition, we also consider sub-portfolios of these con-
stituents with dimensions d = 5 (consisting of INTC, ORCL, IBM, COF and AIG)
and d = 3 (consisting of INTC, IBM and AIG). The data used for this application
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Algorithm4:Least squaresMonteCarlo forAmerican basket call option pricing

1. Simulate asset price paths X̂
(i)
tk , i = 1, . . . , npth, k = 1, . . . , ngen, using Algorithm 3 based

on either GMMN pseudo-random samples or GMMN quasi-random samples.

2. Compute the value of the American basket call option at maturity: V̂ (i)
tngen

= H(X̂
(i)
tngen

, tngen ),
i = 1, . . . , npth.

3. For k = ngen − 1, . . . , 1 do:

a. Compute the discounted values V̂ (i)
tk = exp(−r(tk − tk−1))V̂

(i)
tk+1

, i = 1, . . . , npth.

b. Compute the basket price ¯̂X (i)
tk = 1

d

∑d
j=1 X̂

(i)
tk , j

, i = 1, . . . , npth.

c. Compute the design matrix Dtk ∈ Rnpth×7 with i th row given by (1, L0(
¯̂X (i)
tk ), L1(

¯̂X (i)
tk ),

L2(
¯̂X (i)
tk ), L0(

¯̂X (i)
tk )L1(

¯̂X (i)
tk ), L0(

¯̂X (i)
tk )L2(

¯̂X (i)
tk ), L1(

¯̂X (i)
tk )L2(

¯̂X (i)
tk )), i = 1, . . . , npth.

d. Regress V̂ (i)
tk , i = 1, . . . , npth, on Dtk and use the fitted values of the regression as

continuation values, i.e., Ĉ (i)
tk = Dtk (D

′
tk Dtk )

−1D′
tk V̂

(i)
tk , i = 1, . . . , npth. Adjust the

continuation values for bias by setting Ĉ (i)
tk = max{Ĉ (i)

tk , 0}, i = 1, . . . , npth; see [10].

e. Compute the exercise values Ê (i)
tk = H

(
X̂

(i)
tk , tk

)
, i = 1, . . . , npth.

f. Set V̂ (i)
tk = Ê (i)

tk for all i = 1, . . . , npth such that Ê (i)
tk ≥ Ĉ (i)

tk .

4. Compute the American basket call option price as e−r(t1−t0) 1
npth

∑npth
i=1 V̂

(i)
t1 .

can be obtained from the R package qrmdata. We choose the risk-free interest rate
to be r = 0.0005 (annualized), in line with the US treasury bond yield rates at the
onset of the option contract for maturities similar to the lengths of the contracts con-
sidered; the maturities in our pricing exercise range from one day to 100 days. When
selecting the strike price K for the various basket options with different maturities,
we try to ensure that the values of these basket call options are not too close to zero
by selecting K to be close to the current market value of the basket—specifically,
101% of the basket value at time point tntrn .

To model the pseudo-observations (9) of each of the the three portfolios con-
sidered, we use parametric copulas CPM that are known to capture the dependence
between financial return series well, such as the normal and the t . We also consider
a Clayton copula which is lower tail dependent. The choice of the normal and the
t is also because we are able to generate quasi-random samples from them, while
quasi-random sampling is not readily available for all parametric copula models; see
[6]. This allows us to compare the variance reduction factors achieved when pricing
American basket call options with the GMMN versus parametric copulas such as the
normal and the t . For GMMNs, we use the same architecture and choice of hyper-
parameters as described in [6]. All parametric copulas are fitted using the maximum
pseudo-likelihood method; see [5, Sect. 4.1.2]. For a detailed comparison of run time
measurements between GMMNs and parametric copulas in the contexts of training
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Fig. 1 Boxplots basedonnrep = 100 realizations of Sntrn,ngen computed for portfolios of dimensions
d = 3 (left), d = 5 (middle) and d = 10 (right) with training sample size ntrn = 5287. For each
fitted dependence model we generate a pseudo-random sample of size ngen = 10 000. From these
box plots, we can see that theGMMNs provide amuch better fit thanwell-known parametric copulas
for all three portfolios considered

(or model fitting), as well as for pseudo-random and quasi-random sampling, refer
to [6, Appendix B].

To evaluate the fit of a dependence model, we use a Cramér-von-Mises type test
statistic introduced by [14] to assess the equality of two empirical copulas; see [6].
This statistic is defined as

Sntrn,ngen = 1
√

1
ntrn

+ 1
ngen

∫

[0,1]d

(
Cntrn(u) − Cngen(u)

)2
du, (11)

where Cntrn(u) is the empirical copula of the ntrn pseudo-observations used to fit the
dependence model (see (9)) and Cngen(u) is the empirical copula of the ngen samples

generated from the fitted dependence model (either ĈPM or ĈNN). Figure 1 shows
box plots of Sntrn,ngen for the different models based on nrep = 100 repetitions; see
[14, Sect. 2] for how to evaluate Sntrn,ngen . As we can see, GMMNs provide the best
fit according to Sntrn,ngen across all dimensions considered.

Figure 2 shows (Wald-type) 95%-confidence intervals of the American basket
call option price for all dependence models for different maturities (columns) and
portfolios (rows) based on nrep = 25 replications. We see that the GMMN leads to
option prices that are similar to those given by the normal and the t copulas. This is
not surprising as those two parametric copulas arewidely used and generally believed
to be “not too wrong” for these types of financial data, unlike the independence or the
Clayton copulas which are “clearly wrong”. However, we also notice that the pricing
provided by the GMMN is often a few cents different from the ones given by the
normal and t copulas. While we do not know what the true dependence model and
hencewhat the true prices are, given that theGMMNfits better (Fig. 1) our results here
suggest that, more likely than not, the normal and t copulas do not correctly capture
the underlying dependence among these asset prices, either, and that those who are
willing to so speculate can exploit the potential arbitrage opportunities created by
the GMMN.
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Fig. 2 95%-confidence intervals of American basket call option prices with strike prices K = 79
(top), K = 69 (middle) and K = 81 (bottom) based on nrep = 25 replications and npth = 10 000
sample paths in each replication at T = 10 (left), T = 50 (middle) and T = 100 (right) days to
maturity based on portfolios of sizes d = 3 (top), d = 5 (middle) and d = 10 (bottom). From these
plots, we see that the option prices produced by GMMNs are similar to those produced by the t and
normal copulas, but still not the same as either of them

In Fig. 3 we focus on the best three models according to Fig. 1 and investigate the
mean variance reduction factors (determined based on nrep = 25 replications) when
moving from pseudo-random to quasi-random numbers.We see that for shorter times
to maturity we get larger variance reduction factors, but the effect deteriorates for
longer times to maturity. This is true across all considered dependence models.
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Fig. 3 Mean variance reduction factor estimates (computed over nrep = 25 replications and npth =
10 000 paths in each replication) as a function of days to maturity for portfolios of sizes d = 3 (left),
d = 5 (middle) and d = 10 (right). From these plots, we see that the variance reduction effects are
roughly similar for both the GMMNs and the two copula models and that this effect deteriorates
when pricing options with longer times to maturity

4 Probabilistic Forecasting for Multivariate Time Series

In this section, we consider the application of analyzing multivariate time series data
X t = (Xt,1, . . . , Xt,d) using the copula–GARCH approach [7, 13].

4.1 Model

For simplicity, we model each individual time series Xt, j as an ARMA(1, 1)–
GARCH(1, 1) process

Xtk , j = μtk , j + σtk , j Zk, j ,

μtk , j = μ j + φ j (Xtk−1, j − μ j ) + γ j (Xtk−1, j − μtk−1, j ),

σ 2
tk , j = ω j + α j (Xtk−1, j − μtk−1, j )

2 + β jσ
2
tk−1, j ,

whereω j > 0,α j , β j ≥ 0,α j + β j < 1, |φ j |, |γ j | < 1, andφ j + γi = 0 toguarantee
a causal, invertible and covariance stationary solution; see [11, Chap. 4]. Of course,
higher-order ARMA–GARCH processes can also be used, but that does not affect
what we are trying to demonstrate in this section.

For fixed j , the Zk, j ’s are iid according to FZ j across all time points tk with mean
zero and unit variance. In financial time series applications, it is common to model
FZ j as a standard normal, standardized t or standardized skewed t distribution. In the
case of the latter, it is important to note that each FZ j is allowed to have a different
degree of freedom.

These marginal ARMA–GARCH models capture the serial dependence within
each individual time series. To capture the cross-sectional dependence between indi-
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vidual series, copulas are used to model the distribution of (FZ1(Zk,1), . . . , FZd

(Zk,d)).

4.2 Estimation

In the context of this application, (4) amounts to the process of estimating
everything—i.e.,μ j , φ j , γ j , ω j , α j , β j and (parameters of) FZ j—and then removing
them from all the given data Xtk , j , k = 1, . . . , ntrn, by

Ẑk, j = (Xtk , j − μ̂tk , j )/σ̂tk , j ,

Ûk, j = F̂Z j (Ẑk, j ).

These steps are known in the literature as deGARCHing. As in Sect. 3, using the
resulting Ûk, j , we can either estimate a parametric copula model, ĈPM, or train a
nonparametric GMMN, ĈNN. In the case of the former, we call this the copula–
GARCH approach; in the case of the latter, we call it theGMMN–GARCH approach.

4.3 Forecast

To produce probabilistic forecasts, we must now simulate each Xt, j process forward,
according to (3). Suppose we have observed the process up to and including time tk ,
andwould like to forecast h periods ahead; that is,we’d like to independently simulate
npth paths forward and generate X̂

(i)
tk′ , j for i = 1, . . . , npth and k ′ = k + 1, . . . , k + h.

For fixed i and k ′, this is achieved for the GMMN–GARCH approach by first
generating U (i)

k ′ = (U (i)
k ′,1, . . . ,U

(i)
k ′,d) with either Algorithm 1 (for pseudo-random

samples) or Algorithm 2 (for quasi-random samples), then letting

Z (i)
k ′, j = F̂−1

Z j
(U (i)

k ′, j ),

and finally simulating X̂ (i)
tk′ , j according to

μ̂
(i)
tk′ , j = μ̂ j + φ̂ j (X̂

(i)
tk′−1, j

− μ̂ j ) + γ̂ j (X̂
(i)
tk′−1, j

− μ̂
(i)
tk′−1, j

),

σ̂ 2(i)

tk′ , j = ω̂ j + α̂ j (X̂
(i)
tk′−1, j

− μ̂
(i)
tk′−1, j

)2 + β̂ j σ̂
2(i)

tk′−1, j
,

X̂ (i)
tk′ , j = μ̂

(i)
tk′ , j + σ̂ 2(i)

tk′ , j Z
(i)
k ′, j ,

where, for k ′ ≤ k, we simply set X̂ (i)
tk′ , j = Xtk′ , j , σ̂

2(i)

tk′ , j = σ̂ 2
tk′ , j , and μ̂

(i)
tk′ , j = μ̂tk′ , j for

all i . Notice that it’s possible to do this at tk > tntrn . Then, all observed quantities up
to and including X tk are used to make forecasts, but we do not re-estimate anything
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that has already been estimated in Sect. 4.2 using only observed quantities up to and
including X tntrn .

The collection of simulated paths,

{X̂ (i)
tk+1

, X̂
(i)
tk+2

, . . . , X̂
(i)
tk+h

|F (i)
tk }npthi=1,

encode an empirical predictive distribution (EPD) at each time point tk+1, . . . , tk+h ,
from which various probabilistic forecasts can be made— for example, we can fore-

cast P(X tk+h ∈ A) by (1/npth)
∑npth

i=1 1(X̂
(i)
tk+h

∈ A) for any given A ⊂ Rd . However,
below when we assess h-period-ahead EPDs (made at time tk), we will only be com-

paring {X̂ (i)
tk+h

|F (i)
tk }npthi=1 with X tk+h , not any of the “intermediate” forecasts made along

the way at tk+1, . . . , tk+h−1.

4.4 Application

We illustrate with two exchange rate data sets: a US dollar (USD) data set consisting
of daily exchange rates of Canadian dollar (CAD), Pound sterling (GBP), Euro
(EUR), Swiss Franc (CHF) and Japanese yen (JPY) with respect to the USD; and a
GBP data set consisting of daily exchange rates of CAD, USD, EUR, CHF, JPY and
the Chinese Yuan (CNY) with respect to the GBP. For further details regarding both
the data sets, see the R package qrmdata.

In particular, we consider these multivariate time series from t1=2000-01-01 to
tnall=2015-12-31, treating data up to tntrn=2014-12-31 as the training set and the
remainder as a held-out test set.

The distribution FZ j (zi ) = tν j (z j
√

ν j/(ν j − 2)) is chosen to be the scaled t-
distribution for all j = 1, . . . , d. After the steps in Sect. 4.2, we fit three depen-
dence models to Ûk, j , k = 1, . . . , ntrn, j = 1, . . . , d: as ĈPM, a normal copula and
a t-copula, both with unstructured correlation matrices; and as ĈNN, a GMMN with
the same architecture and hyperparameters as described in [6]. In addition, we use
batch normalization and dropout regularization (with a dropout rate of 0.3) to help
control for overfitting while training.

To assess the fit of these dependence models, we use a Cramér-von-Mises type
test statistic presented in (11). From Fig. 4 which displays box plots of Sntrn,ngen for the
different models based on nrep = 100 repetitions, we can see that GMMNs clearly
provide the best fit across both FX USD and FX GBP data sets.

The key question, though, is whether better fits translate to better predictions. For

fixed horizon h, we can produce an h-day-ahead EPD {X̂ (i)
tk+h

|F (i)
tk }npthi=1 at every tk =

tntrn , . . . , tnall−h in the test period. To assess the quality of the EPDs produced by the
copula–GARCH and the GMMN–GARCH approaches, we compare the respective
EPDwith the actual realization X tk+h in the held-out test set using the variogram score
introduced by [15],which, in our context, assesses if theEPD is biased for the distance
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Fig. 4 Box plots based on nrep = 100 realizations of Sntrn,ngen computed for the FX USD (left) and
FX GBP (right) data sets of size ntrn = 5478 with dimensions d = 5 and d = 6, respectively, and
for each fitted dependence model using a pseudo-random sample of size ngen = 10 000. From these
box plots, we can see that the GMMNs provide a much better fit than the two parametric copulas
for both data sets

between any two component samples. For a single numeric summary, we work with
an average variogram score (of order r ) over the entire period tntrn , . . . , tnall−h

AVSrh

= 1

nall − h − ntrn

nall−h∑

k=ntrn

d∑

j1=1

d∑

j2=1

(
|Xtk+h , j1 − Xtk+h , j2 |r − 1

npth

npth∑

i=1

|X̂ (i)
tk+h , j1

− X̂ (i)
tk+h , j2

|r
)2

.

(12)

Scheuerer and Hamill [15] numerically demonstrated that, by focusing on pairwise
distances between component samples, this metric discriminates well between var-
ious dependence structures. They also stated that a typical choice of the variogram
order might be r = 0.5, but noted in their concluding remarks that smaller values of r
could potentially yield more discriminative metrics when dealing with non-Gaussian
data, which is why we choose to work with r = 0.25.

Figure 5 shows that, for both theUSDand theGBPdata sets, theGMMN–GARCH
approach has produced better EPDs (smaller variogram scores) overall for held-out
realizations in the test set. Moreover, the resulting variogram scores are also more
stable (less variation) over replications of the same experiment when quasi-random
(as opposed to pseudo-random) samples are used.
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Fig. 5 Replications ofnrep = 25 average variogramscoresAVS0.25h basedonnpth = 1000 simulated
paths in each replication, for h = 1 (left), h = 5 (middle) and h = 10 (right) using pseudo-random
as well as quasi-random samples from normal copulas, t copulas, and GMMNs for the FX USD
(top) and FX GBP (bottom) data sets. From these plots, we observe that GMMN–GARCH models
yield smaller variogram scores and hence better EPDs when compared to various copula–GARCH
models. Furthermore,weobserve a clear variance reduction effectwhenusingquasi-randomsamples
to compute the variogram scores across multiple replications

5 Conclusion

We suggested GMMNs as cross-sectional dependence models for multivariate
discrete-time stochastic processes. As examples, we considered discretized geomet-
ric Brownian motions with an application to pricing American basket call options
under dependence, as well as ARMA–GARCH models with an application to
obtain predictive distributions. These examples have demonstrated two advantages
of GMMNs as dependence models. First, they provide more flexible dependence
models than parametric copulas, which make a difference when estimating quanti-
ties of interest such as option prices and making probabilistic forecasts. Second, they
come with a “built-in” option to generate quasi-random samples and thus allow us
to obtain a variance reduction effect without additional effort.
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Artificial Neural Networks Generated
by Low Discrepancy Sequences

Alexander Keller and Matthijs Van keirsbilck

Abstract Artificial neural networks can be represented by paths. Generated as ran-
domwalks on a dense network graph, we find that the resulting sparse networks allow
for deterministic initialization and even weights with fixed sign. Such networks can
be trained sparse from scratch, avoiding the expensive procedure of training a dense
network and compressing it afterwards. Although sparse, weights are accessed as
contiguous blocks of memory. In addition, enumerating the paths using determinis-
tic low discrepancy sequences, for example variants of the Sobol’ sequence, amounts
to connecting the layers of neural units by progressive permutations, which naturally
avoids bank conflicts in parallel computer hardware.Wedemonstrate that the artificial
neural networks generated by low discrepancy sequences can achieve an accuracy
within reach of their dense counterparts at a much lower computational complexity.

Keywords Neural networks · Low discrepancy sequences · Sparsity ·
Deterministic algorithms · Parallel computer hardware

1 Introduction

The average human brain has about 1011 nerve cells, where each of them may be
connected to up to 104 others. Yet, the complexity of artificial neural networks quite
often is determined by fully connected sets of neurons. Therefore, we investigate
algorithms for artificial neural networks that are linear in the number of neurons and
explore their massively parallel implementation in hardware.

In order to reduce complexity, we motivate the principle of representing an arti-
ficial neural network by paths instead of matrices in Sect. 2. Rather than creating
such sparse networks by importance sampling paths from a trained dense network,
training may be much more efficient when considering artificial neural networks that
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are sparse from scratch as discussed in Sect. 3. Enumerating the paths of an artificial
neural network using a deterministic low discrepancy sequence and exploiting its
structural properties, leads to an efficient hardware implementation, whose advan-
tages are detailed in Sect. 4. Initial numerical evidence to support the approach is
reported in Sect. 5 before drawing the conclusions. A noteworthy result is that quasi-
Monte Carlo methods enable a completely deterministic approach to artificial neural
networks.

2 Representing Artificial Neural Networks by Paths

In order to provide an intuition why representing artificial neural networks as paths
may lower their computational complexity, we review their basic principles.

As depicted in Fig. 1, the computational graph of a basic artificial neural network
or multi-layer perceptron (MLP) may be organized in L + 1 ∈ N layers, each com-
prising of nl ∈ N neural units, where 0 ≤ l ≤ L . Given an input vector a0, the output
vector aL is computed layer by layer, where each vertex determines the activations

al,i := max

{
0,

nl−1−1∑
j=0

wl, j,i · al−1, j

︸ ︷︷ ︸
=:zl,i

}
. (1)

For the purpose of the article, it is sufficient to consider the non-linearity max{0, x}
as an activation function, yielding the so-called rectified linear unit (ReLU). The
vertices of the graph are connected by edges with their associated weightswl, j,i ∈ R.
In summary, each neural unit computes a weighted average of the activations in the

Fig. 1 Representing the graph of an artificial neural network by paths (colored) instead of fully
connected layers (including gray) allows for algorithms linear in the number of vertices in time and
space
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previous layer. If the average is non-positive, it is clipped to zero, which renders
the neural unit inactive. Otherwise the neural unit is called active and passes on the
positive average.

In order to learn the weights from training data, backpropagation [35] has become
the most popular algorithm: Given an input vector a0 and a desired output vector d,
the approximation error

δL := aL − d (2)

is propagated back through the network by computing the weighted average of the
error

δl−1,i :=
∑
al, j>0

δl, j · wl, j,i (3)

of all active neural units in a layer. If a neural unit is active, the weight

w′
l, j,i := wl, j,i − λ · δl, j · al−1,i if al, j > 0 (4)

of an edge connecting it to a previous neural unit is updated by the product of the
learning rate λ ∈ R

+, the error at the active neural unit, and the activation of the
previous neural unit.

As formalized by Eq. 1 and shown in Fig. 1, all neural units of one layer are
connected to all neural units of the next layer. Such “fully connected” layers are found
in many modern artificial neural networks, for example at the end of classification
networks or as so-called 1x1-convolutions, which are fully connected layers with
weight sharing across inputs. Obviously, the computational complexity as well as
the number of weights of a layer is determined by the product of the number of neural
units in the current and previous layer.

In order to motivate an algorithm linear in time and space, we rewrite Eq. 1, which
is the non-linearity applied to the average, equivalently as average of the non-linear
activation functions:

zl,i =
nl−1−1∑
j=0

wl, j,i · max{0, zl−1, j }

Considering an integral

zl(y) :=
1∫

0

wl(x, y) · max{0, zl−1(x)}dx

rather than a sum, reveals that layers in artificial neural networks relate to high-
dimensional integro-approximation. Hence, in continuous form, an artificial neural
network is a sequence of linear integral operators applied to non-linear functions.

From the domain of integral equations, especially the domain of computer graph-
ics, we know how to deal with such sequences: Sampling path space, we trace light
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transport paths that connect the light sources and camera sensors to render synthetic
images. It now is obvious that an artificial neural network may be represented by
paths that connect inputs and outputs, too. Computation only along the paths (colored
in Fig. 1) results in a complexity in space and time that is linear in the number of
paths times the depth of the neural networks and hence may be linear in the number
of neural units.

2.1 Quantization of Artificial Neural Networks by Sampling

In [29] we derived an algorithm that quantizes a trained artificial neural network such
that the resulting complexity may be linear. To create these paths given a trained
neural network, we exploit an invariant of the rectified linear units (ReLU): In fact,
scaling the activations by a positive factor f ∈ R

+ and dividing the weighted average
by the same factor leaves the result unchanged.

Choosing this factor as the one-norm of the weights of a neural unit, the factor
can be propagated forward through the neural network, leaving the weights of each
neural unit as a discrete probability density.

Given the n weights of a single neural unit, assuming
∑n−1

k=0 |wk | = ‖w‖1 = 1
and defining a partition of the unit interval by Pm := ∑m

k=1 |wk |, it is straightforward
to trace paths from the outputs back to the inputs by sampling proportional to the
discrete densities. The graphs in Fig. 2 provide evidence that sampling only a fraction
of the connections results in no notable degradation in the test accuracy. A similar
approach can be used to quantize not just weights, but also activations and gradients
to arbitrary precision. For more details and data, we refer to [29, 30].

Fig. 2 Test accuracy of a selection of classic artificial neural networks for image recognition. Using
only about 10% (or even less) of the connections of the original trained networks does not result
in a notable loss in test accuracy, indicating potential efficiency gains. The paths through the fully
connected layers of the artificial neural networks have been sampled proportionally to the trained
weights
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Above we used the L1-norm to generate probabilities from the weights. It is also
possible to use more advanced importance estimation techniques. This can be used
both during training to precondition the model so it can be pruned to higher sparsity
levels [28]. Similarly, subsets of neurons orweights can be selected such that a certain
sparsity level is maintained throughout training for increased efficiency [3, 17].

2.2 Sampling Paths in Convolutional Neural Networks
(CNNs)

Convolutional neural networks [27] contain layers that compute features by convolu-
tions. For example, common features include first and second derivatives to identify
edges of different orientations in an image.

A convolutional neuron (also called filter or kernel) is specified by a 3D tensor of
weights ofwidthw, height h, and depth cin (also called channel dimension). Typically,
the dimensions w × h are small, for example, 3 × 3. Given an input tensor of width
W , height H , and depth cin, each 2D depth slice is convolved with the corresponding
2D depth slice of shape w × h of the weight tensor. Then the resulting features are
summed along the depth dimension to produce one output feature channel of shape
W × H × 1. With cout convolutional neurons each computing one output channel
from the input tensor, a CNN layer may be interpreted as a function that maps cin
input channels to cout output channels, just like an MLP.

Hence, to create a sparse CNN, we trace an edge of a path the same way as for
MLPs: by selecting one of the cin input channels, and one of the cout convolutional
neurons in the layer. This activated edge means the selected w × h depth slice in the
3D weight tensor of the selected neuron will be convolved with the corresponding
slice of the input tensor.

Many recent CNN architectures such as MobileNet, DenseNet, or QuartzNet [23]
use 1 × 1-convolutions, where w = h = 1. This important special case amounts to a
structure identical to a fully connected layer [1, 15], where weights are reused across
the elements of the input tensor. Paths are traced in the sameway as described before.

Tracing paths through trained convolutional networks is related to “channel prun-
ing” [28]. This enables coarse sparsity on the filter level, which is more efficient on
current hardware than fine-grained sparsity [1], i.e. selecting single weights.

3 Training an Artificial Neural Network Sparse from
Scratch

Quantizing an artificial neural network by sampling paths still requires to train the
full network. This complexity issue may be resolved by training an artificial neural
network sparse from scratch as principled by the implementation provided in Fig. 3.
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Fig. 3 Implementation of an artificial neural network represented by paths using rectified linear
units (ReLU) as activation functions. Given the numbers of layers, paths, and the array of
neuronsPerLayer, the array index stores the indices of neural units along a path p created
by randomly selecting a neural unit per layer. Before training by backpropagation, the weight
of each edge is set to a constant initialWeight. For inference, the activations a of the first
layer are set to the input data, while the remaining activations are set to zero. Enumerating all
activations for all subsequent layers and for all paths, each activation along an edge is updated, if
its previous activation along the path is active, i.e. larger than zero, which amounts to the rectified
linear unit (ReLU) activation function
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We start by storing random paths as an array index[][] of indices and enumerate
all layers and paths. In layer l of path p, the index of a neural unit is just randomly
selected among the neuron units of that respective layer.

The evaluation—also called inference—of an artificial neural network represented
by paths first copies all inputs to an array of activations and then initializes all other
activations to zero. The actual computation then loops over all layers and paths,
where an activation is updated only if the previous vertex along the path p is positive,
meaning active. This is an implicit implementation of the rectified linear neural unit
(ReLU) introduced in Eq. 1.

In the same manner, restricting training by backpropagation [35] as defined by
Eqs. 2, 3, and 4 to the representation by paths is straightforward. In analogy to
Sect. 2.2, convolutional layers can be represented by paths and be trained sparse
from scratch, too, resembling methods to create predefined sparse kernels [24, 25].

It is obvious that the complexity of inference and training is linear in the number
of paths times the depth of the neural network. Also note, that although sparse,
all weights are accessed in linear order, which is the most efficient memory access
pattern on modern computer hardware.

For random paths, multiple paths may select the same weights while leaving
others untouched. Thiswastesmemory and computation andmaymake trainingmore
difficult. A solution to this issue is to use low discrepancy sequences to generate the
paths, as will be discussed in Sect. 4.

3.1 Constant Initialization

For a fully connected neural network, all neurons in a layer have the same connectiv-
ity, i.e. each neuron is connected to the same neurons in the previous and following
layer. If all weights were initialized uniformly, all neurons would receive the same
updates, and the network would learn nothing during training. The usual way to pre-
vent this is to initialize the weights by sampling randomly from some distribution.
There has been a lot of work done on finding good initializations, depending on the
used activation function, size of weight tensor, and other factors [11, 13, 37].

However with sparse networks, each neuron has a different connectivity pattern.
Instead of introducing randomness by sampling random weights, the non-uniform
connectivity pattern ensures that not every neuron learns the same thing. This allows
one to get rid of the random initialization, as shown in the code in Fig. 3, where the
weights along the edges of the paths are initialized with a constant.

The value of the constant itself is still important as it controls the operator norm
of the affine transformation that each neuron performs. Following the analysis of
[13], and considering that our networks use the ReLU activation function, we use
winit = 6√

fan_in+fan_out , where fan_in is the number of inputs to a neural unit
and fan_out the number of its connections to the next layer. Biases are initialized
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with 0, and scale and shift parameters of batch normalization layers are initialized
with 1 and 0, respectively.

We may conclude that the classic random weight initialization required to make
fully connected layers learn is replaced by the fact that in a artificial neural network
sparse from scratch neural units don’t share the same set of connections.

3.2 Non-negative Weights

Weights may change sign during training. Yet, it has been observed that a graph of an
artificial neural network including static signs of the weights may be separated from
training the magnitudes of the weights [10, 40]. However, finding this graph and
its associated static signs requires pruning a trained, fully connected, and randomly
initialized artificial neural network.

When working with optical implementations of artificial neural networks, only
non-negative weights may be used, because either there is light or not [9]. The
lack of negative weights is accounted for by amplifying differences of weighted
sums similar to how operational amplifiers work. A modern example are ternary
quantized artificial neural networks [41], where a first binary matrix accounts for all
non-negative weights of a layer, and a second binary matrix produces the sums to be
subtracted. Still, finding the ternary representation requires pruning a fully connected
network and retraining.

Representing artificial neural networks by paths, we propose to attach one fixed
sign to each path. As paths are generated by random walks, selecting the weights of
the even paths to be non-negative and the weights of the odd paths to be non-positive
perfectly balances the number of positive and negative weights. Alternatively, any
ratio of positive and negativeweightsmay be realized by for example determining the
sign of a path by comparing its index to the desired number of positive paths (even per
layer). This architecture can be thought of as an inhibiting network superimposed on a
supporting network. Such a networkmay be trained by, for example, backpropagation
with the only restriction that weights cannot become negative.

3.3 Normalization

Using a constant value for weight initialization allows one to fulfill normalization
constraints. For example, knowing the number of edges incident to a neural unit, it is
straightforward to determine the initial weight such that any selected p-norm of a set
of weights will be one. Uniformly scaling the initial weights allows one to control
the operator norm of the artificial neural network represented by paths [29].
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4 Low Discrepancy Sequences to enumerate Network
Graphs

Low discrepancy sequences [8, 31] may be considered the deterministic counterpart
of pseudo-random number generators. Abandoning the simulation of independence,
they generate points in the unit hypercube much more uniformly distributed than
random numbers ever can be. Improving convergence speed, they have become the
industry standard for generating light transport paths in computer graphics [14, 21].

Reviewing classic concepts of parallel computation (see Sect. 4.1), taking advan-
tage of the properties of lowdiscrepancy sequences (see Sect. 4.2) yields an algorithm
to enumerate the graph of an artificial neural network (see Sect. 4.3) that perfectly
suits an implementation in massively parallel hardware (see Sect. 4.4).

4.1 Parallel Computer Architecture

Already in the 1970s, the concepts of systolic arrays [26] and the perfect shuffle [38]
have been investigated in the context of parallel computer architecture.

Systolic arrays are based on simple processing units that are chained to form
pipelines. As an example, the top of Fig. 4 shows a multiply-and-add-unit that com-
putes a · x + b. Both x and b are buffered by a register. Chaining multiple such
compute units allows one to parallelize large parts of matrix multiplication. Obvi-
ously the latency of a systolic array pipeline is determined by the length of the chain
of processing elements. The notion “systolic” stems from the analogy to the heart
pumping in and out blood within a heartbeat, where in systolic arrays data is pumped

Fig. 4 Parallel computer architecture. Top: Systolic arrays tile identical processing units for parallel
processing. Here, instances of a multiply-and-add unit with input and output registers are chained
to parallelize matrix multiplications. Bottom: Linking registers and processing units using the inter-
leaving permutation as given by a perfect shuffle allows for parallelizing many useful computations,
the most prominent example being the fast Fourier transform (FFT)
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in and out within a cycle. In fact, Google’s tensor processing units (TPU) are based
on this architecture.

Perfect shuffle networks connect an array of registers to an array of processing
units by the permutation resulting from perfectly interleaving two decks of cards
one by one from each deck (see the bottom part of Fig. 4). The architecture has
many famous applications, including the efficient implementation of the fast Fourier
transform (FFT). The number of iterations is the latency, which amounts to the
logarithm in base 2 of the number of registers, i.e. values to process.

Unrolling the iteration results in a structure reminiscent of the layer structure of
artificial neural networks (see Fig. 1) and in fact has been tried to construct simple
optical neural networks [34].Yet, the connection pattern of the perfect shuffle appears
to be too restrictive. In a series of articles [4–6] more general permutations to connect
layers have been explored. The permutations have their origins in interleaver design
and interleaved codes. Visualizing the connection patterns in the unit square [4,
Figs. 4 and 5], where a point means a connection of the neuron at coordinate x to a
neuron in the next layer at coordinate y in the subsequent layer, tends to make one
think of sampling patterns as used in random number generation and quasi-Monte
Carlo methods [31].

4.2 Progressive Permutations

Many low discrepancy sequences are based on radical inversion. The principle is
best explained by taking a look at the van der Corput sequence

�b : N0 → Q ∩ [0, 1)
i =

∞∑
l=0

al(i)b
l 
→ �b(i) :=

∞∑
l=0

al(i)b
−l−1

in base b ∈ N \ {1} thatmaps the integers to the unit interval: Representing the integer
i as digits al(i) in base b and mirroring this representation at the decimal point yields
a fraction between zero and one.

For contiguous blocks of indices k · bm ≤ i < (k + 1) · bm − 1 for any k ∈ N0,
the radical inverses �b(i) are equidistantly spaced. As a consequence of this perfect
stratification, the integers �bm�b(i)� are a permutation of {0, . . . , bm − 1}. Fixing
bm , k enumerates a sequence of permutations. As an example for b = 2, the first
24 = 16 points yield the permutation

16 · �2(i)|15i=0 = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15).

These properties are shared by the individual components of the s-dimensional
Sobol’ sequence [36], which may be the most popular low discrepancy sequence: Its
first component is x (0)

i := �2(i), while the subsequent components
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x ( j)
i = (2−1 · · · 2−m) ·

⎛
⎜⎝C j ·

⎛
⎜⎝

a0(i)
...

am−1(i)

⎞
⎟⎠

⎞
⎟⎠

︸ ︷︷ ︸
in F2

∈ Q ∩ [0, 1) (5)

multiply a generator matrix C j with the vector of digits before radical inversion. The
generator matrices C j are determined by the j-th primitive polynomial and for more
details we refer to [8, 18, 19, 36].

The matrix vector multiplication takes place in the field F2 of two elements and
very efficiently can be implemented using bit-wise parallel operations on unsigned
integers. For each digit set in the integer i , the corresponding column of the generator
vector just needs to be xor-ed with the so far accumulated value:

unsigned int x = 0;

for (unsigned int k = 0; i; i >>= 1, ++k)
if (i & 1)

x ˆ= C[k]; // parallel addition of column k of the matrix C

Experimentingwith the Sobol’ sequence [36] is very practical, because an efficient
implementation [18] along with the source code and generator matrices has been
provided at https://web.maths.unsw.edu.au/~fkuo/sobol/. Blocking groups of bits
during radical inversion allows for an even faster generation of the Sobol’ sequence,
see [39, Listing 3.2].

The permutation properties described above are a consequence of each component
of the Sobol’ sequence being a (0, 1)-sequence in base b = 2. As the Sobol’ sequence
produces Latin hypercube samples for each number of points being a power of 2, it
can be used to create permutations in a progressive way. For more detail on (t, s)-
sequences that in fact are sequences of (t,m, s)-nets, we refer to [31, Chap. 4].

4.3 Sampling Quasi-Random Paths

We will use the components of the Sobol’ sequence instead of the pseudo-random
number generator that sampled the path indices of the sparse networks in Sect. 3. As
contiguous blocks of lengths of powers of 2 form permutations, we choose a power
of 2 neurons per layer. This links the neural units

(
a
l,

⌊
nl ·x (l)

i

⌋, a
l+1,

⌊
nl+1·x (l+1)

i

⌋
)

(6)

along the i-th path according to Eq. 5. Similar to generating the paths by a pseudo-
random number generator, the connectivity of the network does not need to be stored
explicitly, because the components of the Sobol’ sequence in Eq. 5 can be computed

https://web.maths.unsw.edu.au/~fkuo/sobol/
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Fig. 5 Progressive enumeration of paths: For each 32 neural units in 5 layers, 32 (top left), 64 (top
right), and 128 (bottom) paths generated by the Sobol’ sequence are shown. The number of paths
per neural unit is 1, 2, or 4, respectively

Fig. 6 Illustration of classic network architectures generated by the Sobol’ sequence. Left: 32
inputs are encoded to 4 outputs. Such architectures are typically used for classification tasks. Right:
32 inputs are encoded to a latent space of 8 neural units and decoded back to 32 outputs. This is a
common architecture of auto-encoders, whose typical task is filtering signals. Note that the number
of neural units in each layer and the number of paths are powers of 2 and the fan-in and fan-out is
constant across each layer

on the fly. When the numbers of neurons in the input or output layer are not powers
of two, one may choose to just fully connect these layers with their corresponding
hidden layers.

The example in Fig. 5 demonstrates one advantage of encoding the network topol-
ogy by a lowdiscrepancy sequence.As the permutations are progressive, it is straight-
forward to add another power of 2 connections. Enumerating the network topology
from sparse to fully connected becomes natural.

Figure 6 shows an example of a sparse classifier network generated by the Sobol’
sequence. A high dimensional input vector on the left is condensed to a vector of
classes on the right. Each layer has a power of 2 neurons and each neuron in a
layer has the exact same constant number of connections. The next example is an
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autoencoder structure that is often used for filtering signals. Input and output layer
are of the same dimension.

Creating a sparse network with non-negative weights like in Sect. 3.2 is as simple
as selecting the first half of the paths to have non-negative weights and the second
half to have non-positive weights. A second option is to dedicate one dimension of
the Sobol’ sequence to determine whether the weights of a path shall be non-negative
or non-positive just by checking whether the component is smaller than 1

2 or not.
More details on partitioning one low discrepancy sequence into many are found in
[22]. If the number of paths is a power of 2, partitioning a network generated by
the Sobol’ sequence into supporting and inhibiting network as described will result
in a zero sum of weights per neuron if neurons in a layer have constant valence.
This nicely complements the normalized initialization (see Sect. 3.1 and Sect. 3.3)
and typically is not guaranteed when using a pseudo-random number generator to
generate the paths.

When the number of paths exceeds the product of the number of neurons in
two successive layers, edges will be selected more than once. Even before reaching
that bound and although the components of the Sobol’ sequence create progressive
permutations, it may happen that multiple edges as defined by Eq. 6 coincide. While
coalescing edges are not a problem for the algorithm inFig. 3, havingmultipleweights
associated to one edge is redundant and may reduce the capacity of the network. This
reason for this issue has been known for a long time in the domain of quasi-Monte
Carlo methods and especially from the Sobol’ sequence, where low dimensional
projections may expose very regular correlation patterns between the dimensions.
To improve on the issue, low discrepancy sequences have been scrambled [32] and
optimized [18, 20]. We have been successful by simply omitting the dimensions
of the Sobol’ sequence whose generator matrices result in coalescing edges, which
can be interpreted as a permutation of the sequence of the Sobol’ generator matrices.
Using the cascaded construction of Sobol’ points [33] that forces each successive pair
of dimensions to form a (0,m, 2)-net, coalescing edges are avoided by construction.
The respective numerical results are presented in Sect. 5.3.

4.4 Hardware Considerations

Representing sparse networks by paths, the algorithm in Fig. 3 linearly streams the
weights from memory. Such an access pattern perfectly matches the parallel loading
of contiguous blocks of weights in one cache line by the pre-fetcher as it is common
for current processor hardware.

Similar to [7] and [6, Fig. 4], the permutations generated by the Sobol’ sequence
guarantee streaming weights in contiguous blocks of size of a power of 2 free of
memory bank conflicts. For the same reason, weights can be routedwithout collisions
through a crossbar switch inside the processor. Both advantages cannot be guaranteed
when creating paths by pseudo-random number generators.
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Determining the permutations generated by �2 in hardware amounts to bit rever-
sal, which is straightforward to hardwire. Implementing the permutations generated
by Eq. 5 in hardware requires to unroll the loop over the bit-parallel XOR operations
(see the algorithm in Sect. 4.2). This results in a tiny circuit with a matrix of flip-
flops to hold the generator matrix C j . Replicating parts of the circuit for all numbers
representable by the m least significant bits allows one to create 2m values of the
permutation in parallel.

For backpropagation, we can take advantage of the fact the Sobol’ sequence is
invertible. Computing the inverse of Eq. 5 just requires to determine C−1

j . Propagat-
ing errors back through the network, the memory access remains contiguous when
enumerating the array of weights backwards.

5 Numerical Results

We perform numerical experiments to evaluate the accuracy of neural networks rep-
resented by paths generated by the Sobol’ low discrepancy sequence. We take a look
at classification tasks using classic multilayer perceptrons (MLP) as illustrated in
Fig. 1, convolutional neural networks, the set of hyperparameters, and the initializa-
tion of sparse neural networks.

5.1 Performance of Sparse Neural Networks Represented
by Paths

Using the algorithm in Fig. 3, we demonstrate the linear complexity of sparse neural
networks represented by paths as compared to fully connected networks represented
by matrices. While it is possible to compress sparse matrices, there is an additional
cost for decompression that needs to be amortized. In contrast, representing the neural
network by paths, a linear speedup results for any desired sparsity. Figure 7 compares
the relative runtimes for 1 epoch for a network of four layers with 256 neurons per
layer, varying the number of paths, and compares them to the sparsity and accuracy.
The experiments were run on a single core of an AMD 7 5800X CPU.

5.2 Training Sparse from Scratch

For the simple examples of recognizing digits in tiny images (see Fig. 7), training
a sparse-from-scratch artificial neural network reveals that only a tiny fraction of
paths as compared to the number of connections within the fully connected network
is required to come very close to the test accuracy of the fully connected variant.
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Fig. 7 Accuracy, sparsity and runtime relative to the fully connected neural network for image
classification on MNIST for sparse networks represented by paths with 4 hidden layers of 256
neurons

Comparing paths generated by pseudo-random numbers to paths generated by a
low discrepancy sequence does not show a big difference in accuracy compared to
random walks. However, as stated in Sect. 4.3, using the Sobol’ low discrepancy
sequence allows for routing without bank conflicts and avoids duplicate weights.
This guarantee is also a big advantage over pseudo-random number generated access
patterns when considering a hardware implementation [4, 6].

5.3 Random and Quasi-Random Paths in CNNs

Similar to the fully connected neural networks, convolutional neural networks
(CNNs) represented by paths (see Sect. 2.2) can be trained sparse from scratch.
For the numerical experiments, we use the CIFAR-10 image recognition data set.
Our CNN has 5 convolutional layers with a number of channels 16, 32, 32, 64,
64, respectively, followed by one fully connected layer with a softmax activation
function to produce 10 output features each identifying one of the dataset classes.
Every convolutional layer is followed by a Batch Norm layer [16] and a ReLU acti-
vation function [11]. Training is done using stochastic gradient descent (SGD) with
a momentum of 0.9 and weight decay of 0.0001, for 182 epochs. The learning rate
starts at 0.1, and is decreased by factor 10 at epochs 91 and 136. We normalize the
input images using the mean and standard deviation over the training set, and apply
additional augmentation in the form of random horizontal flips as well as a 32 × 32
crop after padding the input image 4 pixels on every side.

Figure 8 shows the accuracy of sparse from scratch CNNs compared to a fully
connected CNN, and Fig. 9 shows the corresponding number of non-zero parameters.
We observe a sharp increase in accuracy initially and then a slower convergence
towards the accuracy of the fully connected network. Importantly, the graphs show
that an accuracy close to the fully connected network can be reached with far fewer
weights by sparse networks.The figure also shows that sampling paths randomly
or quasi-randomly using the Sobol’ sequence performs very similarly in terms of
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Fig. 8 Test accuracy of a convolutional neural network (CNN) represented by paths and trained
sparse from scratch compared to the fully connected counterpart. The task is recognizing 10 classes
of objects in 32 × 32 pixel images (CIFAR-10). Around 1024 paths the accuracy reaches a plateau
very close to the maximum accuracy, advocating sparse networks

Fig. 9 Sparse networks created with random paths may have some parts of the paths overlap,
creating coalescing edges. For the Sobol’ sequence it may occur that certain combinations of
dimensions result in coalescing edges aswell (blue line). This can be resolved by simply omitting the
dimensions of concern (purple line). CascadedSobol’ points avoid coalescing edges by construction.
Note that for 1024 paths the accuracy (see Fig. 8) already has reached a plateau

accuracy. However, as remarked in Sect. 4.3, there are large potential hardware
advantages when using quasi-random methods.

5.4 Relation of Number of Paths, Layer Width, and Accuracy

It has been observed that wider but sparse networks have higher representational
capacity than narrower dense networks [2, 12]. Selecting the convolutional neural
network as in the previous section, we try to verify this empirically in Table 1, where
we investigate how the accuracy changes when we scale the number of neurons per
layer, i.e. the network width, but keep the number of weights constant. This can be
done by increasing the sparsity as the width increases. In a fully connected network
the number of weights increases quadratically with width, whereas for networks
defined by paths the number of weights is determined by the number of paths. The
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Table 1 Comparing fully connected to wider, sparser networks created by random paths. The
number of paths is chosen such that all networks have around 70400weights like the fully connected
network. All networks are close, but highest accuracy is achieved for width multiplier 1.25

Width multiplier Number of paths Sparsity (%) Test accuracy (%) Test loss

1.0 Fully connected 0 87.27 0.384

1.25 4150 35.51 87.60 0.387

1.5 3050 55.12 87.12 0.392

2.0 2420 74.64 86.93 0.399

4.0 1950 93.59 86.68 0.408

8.0 1800 98.37 84.86 0.448

experiment shows that some sparse models can achieve better accuracy than the fully
connected model, but accuracy starts degrading when the networks get too sparse.

5.5 Initialization of Structurally Sparse Networks

Verifying the analysis from Sects. 3.1 and 3.2, we compare different initialization
strategies and show the results in Table 2.

For the fully connected networks, setting all weights to the same value prevents
learning as expected. Similarly, using the samemagnitude but setting the sign positive
forweightswith even index and negative otherwise ("alternating")makes the network
too regular to learn. However, we see that simply choosing a random sign can result
in very high accuracy, provided the constant winit is chosen carefully as described in
Sect. 3.1. We also find that initializing the weights sparse doesn’t hurt accuracy, and
in fact seems to slightly improve it. With 90% sparsity, it may happen that a weight
slice (see Sect. 2.2) is completely zero at initialization. This is not a problem as long
as there are non-zero values in the other filters belonging to that neuron.

For the sparse networks, we can make use of the paths for initialization, setting
weights belonging to a path with an even index positive and negative otherwise.
This can be done only for initialization or permanently in order to save one bit of
storage per weight. The last 2 rows of Table 2 show what happens if the signs of the
weights are fixed and we only train the weight magnitudes. The signs can be stored or
generated dynamically as described in Sect. 3.2. Training only weight magnitudes,
while initializing all weightswith the same constant, the networks still reach accuracy
within 3% of the fully randomly initialized network.

Care needs to be taken when choosing to fix the sign for all weights along a path in
a CNN. As a path touches not a single weight but a w × h depth slice (see Sect. 2.2),
enforcing the same sign for all these weights prevents the network from learning
many types of features like edges. Still, such a sparse network using random paths
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Table 2 Comparison of initializing weights uniformly random, constant positive, constant with
half the initial values negative, or constant but positive for odd neuron indices and negative other-
wise (“alternating”). The task is image classification (CIFAR-10). The sparse convolutional neural
network (CNN) is created by tracing 1024 random paths. These sparse neural networks have 26.4K
weights as compared to 70.6K for the dense net. “Signs non-trainable” means that signs are kept
fixed after initialization, while training only the weight magnitudes

CNN Initialization method Test accuracy (%)

Dense Uniformly random 87.27

Constant, positive 10.00

Constant, alternating sign 10.00

Constant, random sign 86.88

Constant, random sign, 90%
sparse

87.39

Sparse Uniformly random 83.71

Constant, positive 82.15

Constant, alternating sign 83.70

Constant, random sign 83.40

Constant, sign along path 83.75

Sparse, signs fixed (train only
magnitude)

Constant, alternating sign 80.77

Constant with constant sign
along path

77.61

is able to reach 80% accuracy. Note that this is not an issue for the common case of
1 × 1-convolutions, where w = h = 1.

The sparse networks are far more robust to the initialization and do not fail in any
of the cases even with all weights in a layer set to the same positive constant. Using
a deterministic low discrepancy sequence to enumerate the paths and to determine
the signs of the weights allows for deterministic initialization and hence brings us
one step closer to completely deterministic training.

6 Conclusion

Encoding the network topology by a deterministic low discrepancy sequence brings
together quasi-Monte Carlo methods and artificial neural networks. The resulting
artificial neural networks may be trained much more efficiently, because they are
structurally sparse from scratch. In addition they allow for deterministic initialization.
As shown for the example of the Sobol’ sequence, the resulting memory access and
connection patterns are especially amenable to a hardware implementation, because
they guarantee collision-free routing and constant valences across the neural units.

In future work, we will extend the investigations of quasi-Monte Carlo methods
applied to other types of neural networks. Especially in the domain of speech recog-
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nition, preliminary experiments are very promising. Furthermore, we like to look at
more low-discrepancy sequences and at growing neural networks during training by
progressively sampling more paths as generated by the low discrepancy sequence.
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