
Chapter 11
Modelling of the Personalized Skull
Prosthesis Based on Artificial Intelligence

Luiz Gustavo Schitz da Rocha, Yohan Boneski Gumiel, and Marcelo Rudek

11.1 Introduction

The recent evolutions in the Artificial Intelligence (AI) field have introduced inno-
vative approaches in the many medicals processes. Nowadays, the same pillars of
industry 4.0 revolution, as the Internet of Things (IoT) or IoHT to “health things”
in the medical area), Cloud Computing and Cyber-Physical Systems (CPS) have
made some relevant contributions to solve the problems in medicine with a focus on
processes optimization. Inside these innovative concepts, the data based on medical
images analysis are essential to support different processes.

From images, those processes that require 3D reconstruction depend on a wide
set of data, and from the engineering’s viewpoint, require a high computational
processing level.

Medical images from computed tomography (CT) ormagnetic resonance imaging
(MRI) are frequently used to model the existing bones structures, improve visual-
ization and clinical interpretation, and used in the surgical preparation of implants,
construction of molds, and virtual models for prosthetics pieces.

Virtual bonemodeling is a challenging process due to the complexity of the geom-
etry and because sometimes we do not have enough information to build a model.
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Real Case Virtual Model 

(a) Skull with frontal fractures 
(VISUALDATA 2021). 

(b) Region of interest (white part). 

Fig. 11.1 The problem interpretation for skull modeling

In this context, the skull prosthesis modeling has the same challenge, mainly for
non-symmetric fractures, because mirroring techniques are ineffective, for example,
as in Fig. 11.1a (VISUALDATA 2021). The conceptual basis for a personalized
reconstruction is to look for the image parameters from knowing data. In this way,
as in Fig. 11.1b, a virtual model can rebuild a complete skull, and an estimative of a
prosthesis piece can be calculated to fill the gaps in the bone. The region of interest
(ROI) addressed in this research is the calvaria region.

Following the concept presented in Fig. 11.1, some techniques were experimented
by the PPGEPS (Industrial and Systems Engineering Program) team during last years
based on optimization techniques and AI tools and made some different approaches
to virtualmodel creation as (i) Adjusted Ellipses and Super-Ellipses concept, (ii) PSO
(Particle SwarmOptimization), (iii) Splines and Bezier Curves, (iv) DataMining, (v)
Content-Based Retrieval, (vi) Neural Networks, (vii) CNNs (Convolutional Neural
Networks) and Deep learning, and (viii) Semantic Segmentation; all of them aligned
with virtual design systems integration. The unfolding from these initial experi-
ments using more advanced approaches as Variational AutoEncoder (VAE) has been
analyzed here. Thus, the objective is to show the advances in prosthesis modeling
by investigating the most recent research studies and propose a suitable solution for
the anatomic prosthesis.

11.2 The State of the Art for the Skull Modelling

Several approaches have been used over the years to address the task of skull recon-
struction. We reviewed these approaches by searching for articles related to skull
reconstruction in PubMed, Science Direct, and Google Academic as in the method
of (Reche et al. 2020). We considered all articles, with no restriction towards the
publication year. After our article selection step, we selected 34 articles that are
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summarized and analyzed over this section. All selected articles are summarized in
Table 11.1; we provide information regarding the dataset, the approach, the dataset
size, and the obtained results. Some of the articles evaluated their results visually,
others with knowing metrics, for instance, applying the Dice Similarity Coefficient
(DSC) and Hausdorff distance (HD).

Among the methods for skull modeling, there are approaches based on mirroring.
Mirroring uses the reflection of the healthy half of the skull onto the defective one,
using the patient’s data as a template for the implant (Marzola et al. 2019). Unilat-
eral defects can be solved with mirroring, either with minimal manual effort or
automatically (Mainprize et al. 2020).

Preliminary studies from Lee et al. (2002) and Hieu et al. (2003) from the 2000s.
Both used mirroring and an additional manual adjustment step. The approaches from
Gall et al. (2016) and Egger et al. (2017) also used mirroring and manual adjust-
ment. The adjustment was based on Laplacian smoothing followed by a Delaunay
triangulation. The mirroring provided an initial design, while the smoothing and
triangulation provided an aesthetic-looking and well-fitting outcome (Egger et al.
2017). The approach from Rudek et al. (2015b) also applied symmetric mirroring.
Further, Chen et al. (2017) developed a mirroring, contour clipping, and surface
fitting method. Marzola et al. (2019) developed a mirroring and surface interpolation
method for unilateral and quasi-unilateral defects.

However, just mirroring may not be enough for an implant, as human heads are
generally too asymmetric (Gall et al. 2016). Further, mirroring can only be applied to
unilateral defects, not to defects that cross the symmetry plane (Shi and Chen 2020;
Marzola et al. 2019).

An alternative is using slice-based techniques, where 2D images (generally CT
images) are used to fit curves to the bone contours (Marzola et al. 2019). The infor-
mation from the healthy part is usually used as a boundary to the curve optimization
algorithms and functions.

Among the techniques, Rudek et al. (2018), Rudek et al. (2016), and Rudek et al.
(2015a) generated control points for each CT slice with Cubic Bezier Curves and the
ABC algorithm to optimize the curve. Afterward, they compared control points of
the defective slices with healthy slices, selecting the healthy slice with the smallest
error to fulfill the missing part. Mohamed et al. (2015) also used Bezier Curves; they
combined C1 Rational Bezier Curves with Harmony Search (HS) to complete the
missing piece on every slice with a defect.

The approaches of Lin et al. (2017) and Chang and Cheng (2018) used methods
based on active contour models. Lin et al. (2017) developed a self-adjusting method
based on active contour models, optimizing the shape for every slice and then
combining the results for each slice. While Chang and Cheng (2018) developed
a self-adjusting method based on active contour models, using the Adaptive Balloon
Force Active Surface Model.

Further, Rudek et al. (2013) and Lin et al. (2016) used methods based on Superel-
lipses.Rudek et al. (2013) adjustedSuperellipses to themissing part. TheSuperllipses
parameters were optimized by Particle Swarm Optimization (PSO). Lin et al. (2016)
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Table 11.1 Articles regarding the reconstruction of skulls

Article Dataset Approach Dataset Results

Ellis and
Aizenberg (2020)

CQ500 Dataset Data
augmentation +
Unet

210 complete
skulls (630 files)

Mean DSC: Test
case (100) 0.944,
Test case (10)
0.932, Overall
(110) 0.942;
Mean HD: Test
case (100) 3.564,
Test case (10)
3.934, Overall
(110) 3.598

Kodym et al.
(2020a)

CQ500 Dataset CNN + 2 Unet 210 complete
skulls (630 files)

Mean DSC: Test
case (100) 0.920,
Test case (10)
0.910, Overall
(110) 0.919;
Mean HD: Test
case (100) 4.137,
Test case (10)
4.707, Overall
(110) 4.189

Mainprize et al.
(2020)

CQ500 Dataset Data
augmentation +
U-net +
post-processing

210 complete
skulls (630 files)

Mean DSC: Test
case (100) 0.907,
Test case (10)
0.87, Overall
(110) 0.904;
Mean HD: Test
case (100) 4.18,
Test case (10)
4.76, Overall
(110) 4.23

Bayat et al.
(2020)

CQ500 Dataset 2 CNN (2D CNN
+ 3D CNN)

210 complete
skulls (630 files)

Mean DSC: Test
case (100)
0.8957; Mean
HD: Test case
(100) 4.6019

Wang et al.
(2020)

CQ500
Dataset

RDU-Net 210 complete
skulls (630 files)

Mean DSC: Test
case (100)
0.8910, Test case
(10) 0.4729,
Overall (110)
0.8530; Mean
HD: Test case
(100) 6.9091,
Test case (10)
21.0492, Overall
(110) 8.1946

(continued)
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Table 11.1 (continued)

Article Dataset Approach Dataset Results

Jin, Li, and Egger
(2020)

CQ500
Dataset

V-net + image
partitioning

210 complete
skulls (630 files)

Mean DSC: Test
case (100)
0.8887; Mean
HD: Test case
(100) 5.5339

Eder, Li and
Egger (2020)

CQ500
Dataset

2 U-Net +
post-processing

210 complete
skulls (630 files)

Mean DSC: Test
case (100) 0.889;
Mean HD: Test
case (100) 5.534

Kodym et al.
(2020b)

CQ500
Dataset

2 U-net 189 complete
skulls (945
defective skulls)

Syntectic defects
average surface
error: 0.56 mm;
real defects
average surface
errors: 0.69 mm

Lin et al. (2017) – Active contour
models

– Only visual
evaluation

Chang and Cheng
(2018)

– Active contour
models

– Only visual
evaluation

Chang et al.
(2021)

DICOM images
from the
Department of
Neurosurgery

CNN Seventy-three
complete skulls
sets (7,154
augmented sets)

–

Lin et al. (2016) – Superellipse – Fitness of 0.26
(0.06) for the
outer border and
0.25 (0.05) for
the inner border

Hsu and Tseng
(2001)

– orthogonal NN – –

Rudek et al.
(2018)

Cubic Bezier
Curves

One skull (7
artificially
created defective
slices)

Maximum error
of 1.7087 mm in
comparison to the
real skull

Hsu and Tseng
(2000)

– orthogonal NN One defective
skull

–

Li et al. (2020) CQ500
Dataset

2
encoder-decoder
network +
bounding box

210 complete
skulls (630 files)

N1: DSC 0.8097,
HD (mm) 5.4404,
RE (%) 0.20; N2:
DSC 0.8555, HD
(mm) 5.1825, RE
(%) 0.15;

(continued)
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Table 11.1 (continued)

Article Dataset Approach Dataset Results

Matzkin et al.
(2020a)

Division of
Anesthesia of the
University of
Cambridge

U-net 98 CT images Superior results
with U-Net and
direct estimation
of the bone flap

Rudek et al.
(2013)

– Superellipse – Only visual
evaluation

Rudek et al.
(2016)

– Cubic Bezier
Curves

One skull (15
artificially
created defective
slices)

Maximum error
of 1.7087 mm in
comparison to the
real skull

Da Rocha et al.
(2020)

CQ500
Dataset

Cubic Bezier
Curves + NN

90 skulls (the
dataset contains
491 skulls)

An error of
2.184% of the
volume

Rudek et al.
(2015a)

– Cubic Bezier
Curves

One skull (25
artificially
created defective
slices)

Only visual
evaluation

Rudek et al.
(2015b)

– Mirroring One skull Only visual
evaluation

Marzola et al.
(2019)

– Mirroring +
surface
interpolation

– The tests cases
proved the
effectiveness of
the method

Morais, Egger
and Alves (2019)

1200 Subjects
Release
(S1200)

Volumetric
Convolutional
Denoising
Autoencoder

113 MRI scans Average
reconstruction
errors lower than
4%

Chen et al. (2017) – Mirroring +
contour clipping
+ surface fitting

– Intra-rater
reability of 87.07
+ - 1.6% and
inter-rater
reability of 87.73
+ -1.4%

Gall et al. (2016) – Mirroring +
manual fitting

– The tool can
enable surgeons
to generate
implants in
several minutes

Lee et al. (2002) – Mirroring +
manual fitting

– The custom
implant reduced
the operation time

Hieu et al. (2003) – Mirroring +
manual fitting

– Reduced design
time and required
design skills

(continued)
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Table 11.1 (continued)

Article Dataset Approach Dataset Results

Mohamed et al.
(2015)

– C1 Rational
Bezier Curves

2 CT images According to the
author, the
method might be
effective in real
clinical practice

Egger et al.
(2017)

– Mirroring +
manual fitting

– The software was
successful in
planning and
reconstructing

Fuessinger et al.
(2018)

– SSM + GM – Precise and
straightforward
tool to
reconstruction,
showing higher
precision in
comparison to
mirroring

developed a self-adjusting method based on Superellipse combined with Differential
Evolution for the Superellipse parameter optimization.

The downside of Curve optimization methods is that they work only at slice-level
and only consider information about that specific slice for which the curve is being
optimized. Hence, the lack of information about the missing area (all slices that have
a defect) could affect the reconstruction (Marzola et al. 2019). Further, methods
trained over several images have a better chance of “learning” the characteristics of
missing parts in general and better designing more realistic implants.

Over time deep learningmodels have become an alternative to traditional machine
algorithms traditionally used in medical imaging (Singh et al. 2020). Convolution
neural networks (CNNs) are widely used in medical imaging, considering 2D or
3D images. Additionally, classification problems involving 3D images, such as CT
images, can always be downgraded to 2D-level. The drawbacks of developing deep
learning for 3D images are the limited available data to the algorithms and compu-
tational cost (Singh et al. 2020). However, data augmentation techniques and more
powerful GPUs mitigate these issues (Singh et al. 2020).

Over the literature, we verified a predominance of publications involving CNN-
basedmodels in the latest years, especially in 2020 and 2021.Most of the publications
were related to the AutoImplant 2020 shared task,1 with 210 complete skulls from
the CQ500 dataset2 with their corresponding defective skulls and the implants (Li
and Egger 2020a, b).

The approaches used for the AutoImplant 2020 challenge are detailed below.
Pimentel et al. (2020) adjusted a 3D statistical shape model (SSM) to locate and

1 (https://autoimplant.grand-challenge.org/).
2 (http://headctstudy.qure.ai/dataset).

https://autoimplant.grand-challenge.org/
http://headctstudy.qure.ai/dataset
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correct the defect, followed by a 2D generative adversarial network (GAN) to make
corrections and better fit the design. Shi and Chen (2020) decomposed into slices for
each axis (2D level), applying three 2DCNNs (one for each axis) and then combining
the results from all axes. Further, Bayat et al. (2020) approached was based on
CNNs, with a 3D encoder-decoder to complete the downsampled defected followed
by a 2D upsampler to upsample the shape. Downsampling turned the approach more
feasible for commonly availableGPUs. Li et al. (2020) developed a baseline approach
for the AutoImplant 2020 shared task. The approach was based on an encoder-
decoder network that predicted a downsampled coarse implant; afterward, the data
is upsampled, a bounding box is applied to locate the defected region on the high-
resolution volume, and the data passes by another encoder/decoder network that
generated an implant from the bounded region.

Several of the papers used models based on U-net (Ronneberger et al. 2015).
As highlighted by (Ronneberger et al. 2015), the U-net model has the advantage of
being trained end-to-end from very few images, achieving excellent results while the
training is fast.

The papers that used models based on U-net are detailed further below. Ellis
and Aizenberg (2020) augmented the dataset with data transformations that added
different shapes and orientations (9903 additional images—significant augmenta-
tion) and used a U-Net model with residual connections. Kodym et al. (2020a)’s
approach was based on skull alignment with landmark detection with 3D CNN
and two 3D U-net models for the reconstruction. They also applied shape pros-
processing steps. Mainprize et al. (2020) predicted the skull with a U-Net model and
data augmentation, subtracted from the original skull to obtain the prosthesis, and
added further post-processing. The data augmentation occurred by adding cubic and
spherical defects. Eder et al. (2020)’s framework used 2 U-Net models, the first one
was used to reconstruct the skull with low-resolution data, and the other was used to
up-sample the low-resolution data. Also, they applied some post-processing filters
to provide specific corrections. Kodym et al. (2020b) predicted the implant with two
U-net models, testing discriminative and generative models. Additionally, provided
tests with synthetic data.

Further, Matzkin et al. (2020b) adapted the model from Matzkin et al. (2020a) to
consider flaps similar to the ones for the challenge dataset, tested two methods: (1)
using a 3D DE-UNet model and (2) DE-UnET model with data augmentation from
additional input from shape priors. Wang et al. (2020) predicted the complete skull
with a Residual Dense U-net (RDU-Net) model with the encoder of the Variational
Auto-encoder (VAE)model being added as theU-net regulation term, later subtracted
the defective skull to delimiter the implant. Jin et al. (2020) approach was based on
a V-net model, an adaptation of the U-Net model proposed by Milletari et al. (2016).
To address the problem of high-resolution input images to neural networks tested
two methods: resizing the images and partitioning the images.

Among the papers related to the AutoImplant 2020 shared task, we highlight the
approach of Ellis and Aizenberg (2020), in which the augmentation of training data
with registration directly improved the classifier results. Further, for Matzkin et al.
(2020b), data augmentation was helpful for out-of-distribution cases, in which the
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defects did not follow the distribution from the training data, where the network
tended to fail. Thus, data augmentation can provide additional data for the network’s
training with the cost of computational power. Generally, deep learning models tend
to achieve superior performance by providing additional data.

Outside of the AutoImplant 2020 shared task dataset, some papers used neural
networks. Hsu and Tseng (2000) and Hsu and Tseng (2001) are preliminary studies
that addressed that used models based on 3D orthogonal neural networks. Further,
Rocha et al. (2020) used a Generative Adversarial Network (GAN) model to predict
the missing part of each slice. Additionally, the Morais et al. (2019) approach was
based on the Volumetric Convolutional Denoising Autoencoder model that Sharma
et al. (2016) proposed with some adaptions. Further, they used MRI images, not CT
images. Fuessinger et al. (2018)’s approach used a statistical shape model (SSM)
based on 131 CT scans combined with geometric morphometrics (GM) methods,
comparing the results with the mirroring technique (only for unilateral defects).

Further, (Chang et al. 2021) used a CNN-based deep learning network with 12
layers and data augmentation to complete the defect, subtracting the completed skull
from the incomplete skull to obtain the implant. In the approach proposed byMatzkin
et al. (2020a), the images passed by registration, resampling, and thresholding being
fed into a U-Net that directly predicted the implant. Tested several architectures and
reconstruction strategies (direct estimation and reconstruct and subtract), achieving
superior results with U-Net and direct estimation of the implant.

Hence, in general, we verified that most of the preliminary studies addressed the
reconstruction task with mirroring or slice-based techniques. With the advances in
deep learning models, especially CNNs and their variants (U-net), deep learning-
based models became the primary approach. Further, techniques that relieve the
computational cost of the training, such as the usage of downsampling combinedwith
upsampling techniques and data augmentation techniques that provide additional
images to the training step, are relevant to the research theme.

Among the techniques that were used to address skull reconstruction, VAEmodels
have addressed the task well. Hence, in the next section, we detail some of our
experiments of skull reconstruction with a VAE-based model. The following section
provides details about our proposedmethod with its results. Additionally, we provide
details about standard evaluation metrics and several images to give the viewer a
better understanding of the whole process.

11.3 Background

11.3.1 The VAE Neural Network

The Variational AutoEncoder (VAE), as presented in Fig. 11.2, is a neural network
that encodes and decodes data. In the encoding part, the data is compressed into a
regularized latent space. In the decoding part, the data is decompressed from this



320 L. G. S. da Rocha et al.

Fig. 11.2 The VAE architecture

space. The regularization of the latent space is made by minimizing the Kullback
and Leibler Divergence (KL divergence), this makes the VAE a generative model.

Figure 11.2 represents the VAE architecture where x represents the input data,
h represents the coded data, σ represents the measure of the standard deviation of
h, μ represents the measure of the mean of h, z represents the sampled data of the
probability distributionμ+ p(0, 1)*σ 2 and ŷ represents the classification of decoding
data.

11.3.2 Evaluation Criteria

The VAE neural network (Patterson and Gibson 2017) is a generative model that
encodes the input into a latent space close to the uniform distribution using KL loss
and decodes the latent space into a classification problemmeasured using reconstruc-
tion loss, additional methods like dice similarity coefficient and Hausdorff distance
are used to compare results between proposed method and results in (Li and Egger
2020a, b), assuming y is the removed part of skull and ỹ is 1 where ŷ > 0.5 and 0
otherwise. The measuring methods are described below.

11.3.2.1 The Dice Similarity Coefficient

As presented by Taha and Habury (2015), the Dice Similarity Coefficient (DSC)
measures the difference between an y and an ỹ. Both images are required to have the
same size and pixels values should be 0 or 1. The formula uses the sum of pixels and
the intersection between both images, according to Eq. 11.1.

DSC = 2 ∗ sum(y ∗ ỹ)

sum(y) + sum(ỹ)
(11.1)
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11.3.2.2 The Hausdorff Distance

According to Taha and Habury (2015), the Hausdorff Distance (HD) is a way of
measuring the difference between two images based on the maximum distance
between a pixel in y and a pixel in ỹ, according to Eq. 11.2.

HD = max
aεy

min
bεỹ

‖a − b‖ (11.2)

11.3.2.3 The Kullback and Leibler Divergence

From Bonaccorso (2018), the Kullback and Leibler divergence (KL divergence) is
used to compare two distributions, where the KL loss is the comparison between a
p(μ, σ) distribution and a normal distribution p(0,1), with μ the measured mean and
σ the measured standard deviation, according to Eq. 11.3.

K Lloss =
∑N

i

μi
2 + eσi

2 − 1 − σi
2

2
(11.3)

11.3.2.4 The Reconstruction Loss

As presented in Bonaccorso (2018), the Reconstruction lossmeasures a classification
using a reference binary image and a classification image with values between 0 and
1, according to Eq. 11.4.

Reconstructionloss = −
N∑

i

yi ∗ ln
(
y
∧

i

) + (1 − yi ) ∗ ln
(
1 − y

∧

i

)
(11.4)

11.4 Proposed Method

The method uses a Variational AutoEncoder (VAE) neural network (Patterson and
Gibson 2017) to generate each layer of the prosthesis. The method was separated
into fourmain steps: (i) image selection, (ii) image segmentation, (iii) neural network
training, and (iv) reconstruction, as in Fig. 11.3.
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Fig. 11.3 The step sequence of the proposed method

11.4.1 Step 1—Image Selection

The creation of the training, validation and test sets separated some files of skulls
without fracture identification. The fracture identification was performed by three
specialists and noted in an auxiliary dataset as in Table 11.2. The skulls without any
indication of fracture were selected. The images size is 512 × 512 pixels, with voxel
dimensions from 0.441 × 0.441 × 0.625 mm to 0.488 × 0.488 × 0.625 mm. Also,
each exam having from 233 to 256 image slices of the upper skull region (calvaria
region). The selection resulted in 123 skulls, where 80% of them were used for
training, 10% for validation, and 10% for the test.

Table 11.3 represents the voxel height statistics considering those images without
fracture, with a dimension of 512 × 512 pixels and a voxel depth of 0.625 mm.

Table 11.2 Discrepancy on
Fracture indications from
experts’ observation

CT number Expert #1 Expert #2 Expert #3

CQ500-CT-109 Yes No No

CQ500-CT-167 No No No

CQ500-CT-449 Yes Yes No

CQ500-CT-417 Yes Yes Yes

CQ500-CT-240 No Yes No

Table 11.3 Voxel height

Metric Mean Std Min 25% 50% 75% Max

value (mm) 0.471 0.061 0.213 0.411 0.473 0.488 0.877
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Table 11.4 Number of layers

Metric Mean Std Min 25% 50% 75% Max

Value 225.269 77.0245 1 233 250 256 413

Fig. 11.4 Region of interest
in skull calvaria

Table 11.4 shows the statistics of the number of layers after voxel selection
between 25 and 75%.

The region of interest was selected as 40% of the upper layers, as presented in
Fig. 11.4. We can simulate a frontal defect area in this region by removing the data
from a one-by-one 2D CT slicing.

11.4.2 Step 2—Image Segmentation

Bone tissue was identified using the Hounsfield scale in the image sets. The value of
500HUwas found based on segmentation tests and histogram comparison. After, for
each skull, a volume was created with the CT slices overlapping operation. Finally,
identifying connected pixels and selection of the largest connected group, removing
unwanted objects presented in Fig. 11.5.

11.4.3 Step 3—Neural Network Training

The training set and the validation set of CT images were used to train and validate
the neural network. The total number of skull images was augmented by changes in
position and size to increase the number of data samples. From each skull file, the
image is transformed by: a vertical inversion with a 50% change, rotated between
–45° and 45°, scaled between 90 and 110%, and finally translocated between –16 and
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(b) Histogram.(a) CT image.

Fig. 11.5 CT image sample and its respective Hounsfield scale histogram

16 pixels. After the transformation, up to 25% of the image is removed and used as
the neural network’s output. Further, the image complement is used as the input of the
neural network. Figure 11.6 represents an example of each type of transformation.

The VAE neural network architecture was used with input and output of 512 ×
512 × 1, six layers of convolution and deconvolution with 2layer filters, latent space
with two layers of 4096 and samples among the latent space. The ReLu was used
as the activation function in the convolution and deconvolution layers. The Linear
activation function was applied in the latent space layers, and the Sigmoid activation
function was used in the output of the neural network. Figure 11.7 represents the

(a) Flip (b) Rotate (c) Scale

(d) Translation (e) Remove (f) Aug. and remove 

Fig. 11.6 Transformation examples performed for each skull from the dataset
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Fig. 11.7 The pipeline for generation of a virtual prosthesis layer

generation of a prosthesis layer, going through the stages of convolution, parameter
estimation, sampling, and deconvolution.

The sum of Reconstruction Loss with KL Loss was used as the loss function. The
Reconstruction Loss was calculated between ŷ and y. The KL Loss was calculated
between μ and σ. The DSC and HD metrics were calculated between y and ỹ, these
metrics were used only for visualization and did not interfere with learning. The
ADAM optimizer (Bonaccorso 2018) was used for training. Figure 11.8 represent
the metrics in respective scale.

11.4.4 Step 4—Reconstruction

The test set without transformation and with removed skull parts was used to create
the three-dimensional models, where the interference between x and ỹ was removed.
The marching cubes (Lorensen and Cline 1987) method was used to obtain the
vertices and faces of the triangles obtained on the surface of the prosthesis (super-
imposition of layers), using the voxel dimensions as a reference. The Laplacian
smoothing (Vollmer et al. 1999) method was used to reduce the sharp surface
differences. Figure 11.9 represents the reconstruction process.

11.5 Application Example

The dataset provided by the Center for Advanced Research in Imaging, Neuro-
sciences, and Genomics (CARING) (VISUALDATA 2021) was used in the simula-
tions. It contains 491 skulls with andwithout fractures, and each skull is composed of
different data collections where the number of files and the dimensions of the voxel
(Height, Width, Depth) may vary. The absolute path, study name, fracture identifi-
cation, image size, image position, and voxel dimensions (HxWxD) were mapped
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(b) Reconstruction loss(a) KL loss

(d) HD(c) DSC

Fig. 11.8 The metrics of reconstructed piece evaluation

(a) CT slices stack. (b) Marching Cubes. (c) Laplacian Smoothing. 

Fig. 11.9 The reconstruction process slice by slice superimposed and surface enhancement
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to each file. A machine with AMD Ryzen 5 3600X Hexa-core processor, NVIDIA
Graphics Card, was used for neural network training and 3D mesh generation. An
RTX 2060 super 8 GB VRAM, 32 GB RAM, and Windows 11 operating system.
Python programming language was used for software development.

Figure 11.10 shows the synthetic cut artificially created in (a) by removing 25%
of the skull and the generated prosthesis in (b). The colors scale in (b) represents
the distance between the prosthesis and the original removed part of the skull. See
Fig. 11.11 about color scale and respective metrics.

(a) external view (synthetic). (b) adjusted piece from VAE.

Fig. 11.10 The synthetic removed piece from skull and its respective virtual model

(d) inner surface right.(c) inner surface left.

(f) error scale legend.(e) inner view.

Fig. 11.11 Sample of Model of the generated prosthesis
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Table 11.5 The metrics
obtained from simulated cut
as in Fig. 11.10a

Metric Value

Quantity of Images 87

Voxel dimensions 0.488 × 0.488 × 0.625 mm

Mean Reconstruction loss 2202.046

Mean KL loss 167.175

Mean HD 5.587 pixels (2.726 mm)

Mean DSC 0.792

Sampled vertices 77,682

Min Distance (inner surface) –3.073 mm

Max Distance (outer surface) 3.786 mm

Mean Distance 0.150 mm

Standard Deviation 1.134

Figure 11.10b shows differences in the prosthesis boundary connected with the
original removed piece, with measures differences around 2 mm as indicated by the
green representation. Table 11.5 represents the metrics obtained from removed part
of the skull (piece cut as in Fig. 11.10a). The (+) and (–) signals represent if the
difference is on outer or inner surface respectively by comparing with the real bone.

The other view of the generated prosthesis is presented in Fig. 11.11. From colored
scale, in green the distances are between –2 and 2mm; in red, the distances are greater
than 2 mm; and in blue, the distances are smaller than -2 mm.

11.6 Conclusion

The research presented the advances to skull prosthesis modeling based on a liter-
ature review and respective content analysis. A set of 35 papers were selected to
demonstrate the techniques addressed in recent years. The CNN-based techniques
are proved as the best way to find missing information on CT/MRI images with
efficiency validated by the metrics Mean DSC and Mean HD.

We observed that the virtual skull repairing based on Variational Auto-encoder
(VAE) model presented in literature looks like promisor and we investigated its
application for own method. As presented in example, the best result for our method
was 0.792 to Mean DSC and 5.587 to Mean HD.

The performance achieved by the proposedmethod according to themetrics:Mean
HD and Mean DSC, present important improvement by comparison of the previous
explored methods if compared with PSO, Superellipse, ABC and other previously
studied by the authors. However, the metrics indicates that we do not get similar
results as found in literature.

The next step is improving HD and DSC by testing addicting 3D CNN, more
filters in convolution/deconvolution or more neurons in latent space.
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