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and Robert Grepl1

1 Faculty of Mechanical Engineering, Brno University of Technology,
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Abstract. In this paper, an algorithm for global path planning of
nonholonomic unmanned ground vehicle (UGV), which moves through
diverse terrain, is presented. The proposed algorithm utilizes a simpli-
fied dynamic model of the vehicle to verify the passability of a planned
movement from node to node and to calculate the duration of this move-
ment and the actual velocity of the vehicle in these nodes. The algo-
rithm operates on a grid map that represents terrain elevation obtained
from a triangular irregular network (TIN) map. This map was received
from publicly available aerial laser scan data of a land surface in Cen-
tral Europe. The final path is optimised from the point of view of travel
time and respects the nonholonomic constraints of the UGV. This app-
roach ensures that the obtained path is feasible, not only considering
the geometric constraints of the vehicle but also its physical limits, i.e.,
maximum applied torque, maximum velocity, steering limit, etc.

Keywords: Global path panning · Nonholonomic vehicle · UGV ·
Elevation map · Hybrid A*

1 Introduction

The application of mobile robots in industrial and commercial settings has
become increasingly common in recent years. Mobile robots have the ability to
move through the environment autonomously and therefore save time and effort
when completing mundane or dangerous tasks. We have seen recent applica-
tions of UGVs in cooperation with unmanned aerial vehicles (UAV) conducting
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search and localization tasks [12], another application might be the use of UGVs
in military services [14] or in rescue operations and disaster robotics as described
by Jorge et al. [7]. Accomplishing these challenging tasks usually require more
advanced algorithms which obtain data from various sources and the task of
navigation is a more complicated one.

In general, autonomous navigation in an environment with some type of
uncertainty (e.g., unknown obstacles, different weather conditions, terrain con-
ditions, etc.) requires two different consecutive motion planning algorithms –
global and local path planners. The point of a global path planner (GPP) is to
find an approximate path through the environment which seems to be feasible on
a large scale using more general data which can be offline or online map data. On
the other hand, the local path planner uses sensors that provide data from imme-
diate proximity. These sensors can be, for example, LIDAR, cameras, ultrasonic
sensors, radars, IMUs or any other sensor used for typical SLAM algorithms.
Many of the experimental vehicles already contain all of the above sensors (e.g.
[4,13]), which makes the task easier. The local planner then finds a path through
the environment which not only avoids obstacles that do not have to be present
on a global map but also can react to changes in the environment (e.g., moving
obstacles).

In further sections, we propose a global path planning algorithm for an UGV
which uses offline map data containing digital terrain and digital surface models
of the environment. This data is usually well known and is fairly accurate to allow
for good global path planning on a large scale. In this paper, we will use map
data with a resolution of one meter and size ranging from one to two kilometers
square. Size of the map data depends on the path planning goal as well as on
the computational hardware and the time window in which the algorithm needs
to find the path.

1.1 Review of the Literature

Designing a GPP for a UGV moving through a difficult terrain is a complex task
involving selection and preparation of map data which will be used as an input to
the path planner. This preparation might include initial traversability assessment
and obstacle detection to already exclude some areas of the map which might
not be searched by the path planning algorithm. The algorithm itself is mostly
an enhanced version of standard algorithms which complies with nonholonomic
constrains of the vehicle and further evaluates its stability in terrain and respects
dynamics of the vehicle as well.

Map data can be obtained, for example, in the form of elevation maps com-
bined with maps of roads, settlements, waterways, vegetation, and so on, or in
the form of aerial scans of the ground for example from a UAV. Rybanský et al.
describe the process of combining multiple maps to characterize the traversabil-
ity in each location of the map [22]. The optimal path is then planned using
traction coefficients of the vehicle and geometric coefficients. Another approach
for classifying traversability using deceleration coefficients is presented in [10].
A very similar topic is covered in [1] where the traversability over microreliefs is
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determined by the geometric features of the vehicle. Situation where the map is
obtained from a UAV working in collaboration with UGV and exploring the ter-
rain ahead to plan the optimal path is described in [21]. Another application of
map data in the form of the pointcloud obtained from UAV is in [3]. Where the
traversibility of the map is classified only by geometrical features, for example,
slope, elevation difference and roughness.

Many of the typical GPP algorithms use A* [5] or RRT algorithm [17] to
find a path between two points resulting in a holonomic path which does not
have to be suitable for a UGV especially if the vehicle in question is not a
small one. Some of the typical nonholonomic planning algorithms are Hybrid A*
[2,19,29], RRT* [11], algorithms using Reeds Shepp curves [8] or Dubins path
[30]. A different approach is energy-optimal trajectory planning described in [28]
or in [15] a length-optimal trajectory algorithm for an UAV is presented. These
path planners ensure that the resulting path will be suitable for a vehicle with
given kinematics and nonholonomic constrains. However, even this may not be
sufficient for a vehicle moving through a challenging terrain where other factors
come into play, like limitations of the vehicle powertrain, wheel slipping, losing
contact with the ground, tipping over, sliding of the vehicle on a slippery terrain
or getting stuck in mud or sand and so on.

Another step to make these nonholonomic path planners more suitable for
planning a path through a non-planar terrain is to add some information about
the terrain traversability. This information might be a simple one, for example,
the limitation of the maximal slope angle as in [16] where Muñoz et al. present
their approach based on A* algorithm to plan a path in digital terrain map
(DTM). More sophisticated traversibility classification methods are used in [11]
and [3]. In the first mentioned one, Krüsi et al. use RRT and RRT* planners in
combination with traversibility classification based on the surface roughness and
maximal roll and pitch angles. In the latter, Fedorenko et al. use only RRT and
the same traversibility classification methods as in the previous work to plan a
path in the pointcloud data obtained from a UAV. The Hybrid A* algorithm is
used by Thoresen et al. [29] in combination with the fast marching grid heuristic
to plan a path in already known traversibility map.

Path planners that are able to combine kinematic and dynamic constrains
belong to the category of kinodynamic planners. These planners may either
improve the previously mentioned nonholonomic path planners (PRM [9], RRT
[18]) or come up with their own unique approach of path generation as in [27].
They also greatly differ in a complexity of the dynamic model and influences that
it takes into account depending on the targeted application and computational
power. Some researchers simplify the vehicle to the point mass [9,25] therefore
assume that all wheels are in permanent contact with the ground and that there
is no slip between the wheel and the ground. Others take into consideration
the whole 3D dynamics and six degrees of freedom motion of the vehicle [27].
Another difference is in the way how the surface is represented Shiller et al. in
[25] represents the surface as a B patch where as Kobilarov et al. in [9] assumes
that the surface is composed of angled planar sections. Some works take into
account other influences such as different soil types and their interaction with
the tires [26].
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Based on these related works and our goal, which is to create a global path
planner able to find a path in considerable large areas based on aerial laser
scans of the terrain, we will extend the Hybrid A* algorithm by using a sim-
plified dynamic model of the vehicle to asses the traversability of the terrain
and to obtain a near time optimal path. This approach will secure that the
resulting path meets kinematic and dynamic constrains and it is easily modifi-
able to account for various influences. This method might be also suitable for the
enhancement of the current applications which already use Hybrid A* algorithm.

2 Implementation

This section describes the input conditions for our research, limits, theoretical
basement and the final algorithm of the solution.

2.1 Terrain Map

To be able to perform the global path planning, map data is required. In this
case, two types of map data were obtained – digital terrain model (DTM) and
digital surface model (DSM), both in the triangular irregular network (TIN)
format. DTM in the version called DMR 5G contains data specifying only the
terrain profile without any structures, trees and obstacles. DSM in the version
called DMP 1G contains a height profile including the latter. Difference between
these two types of maps is depicted in the Fig. 1. DMR 5G and DMP 1G maps
are published by Czech Office for Surveying, Mapping and Cadastre (ČÚZK).

Fig. 1. DTM vs. DSM map comparison

These types of maps can be obtained from UAV drones, enforcing the idea of
cooperation between UAV and UGV. The data itself is obtained using a LIDAR
scan of the ground, obtaining the DSM and interpolating between the lowest
points to produce the DTM. More advanced algorithms can also use radar or
sonar to improve the quality of mapping or in the latter case to also get the
DTM data of underwater sections.

An essential step that affects the final result is the postprocessing of the data.
The main goals of the postprocessing are:
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– grid interpolation,
– obstacle detection.

Since the raw data is in the TIN format, it needs to be transformed into an
uniform grid which is more convenient for path planning. This transformation is
done via linear interpolation. This interpolation introduces an error that causes
an inaccurate representation of the true terrain. However, this effect is negligible
considering the size of the search area and the fact that we are designing a global
planner, in which case some inaccuracies are permissible. The error also decreases
with the grid resolution, which was set to 1 m.

To detect obstacles, we use the fact that the DSM map contains the obstacles
and the DTM map does not. Therefore, we subtract the DTM map from the DSM
and locations with nonzero elevation, with some tolerance margin, correspond
to the location of obstacles. The resulting map with separated obstacles can be
seen in the Fig. 2.

Since the input map data contains information only about the elevation of
the terrain, we assume that the surface of the terrain is smooth and uniform
throughout the map. Although this assumption might be violated in many cases
additional map data can be included with minor modifications of the path finding
algorithm.

Fig. 2. Obstacle classification based on DTM and DSM subtraction

2.2 Hybrid A* Algorithm

The proposed path planner uses a modified Hybrid A* algorithm which is based
on the standard A* algorithm [6]. The A* algorithm is well known and its grid-
based version will be only briefly described to clarify used notation.

A* algorithm works with two sets of nodes: open O and closed C. Each
iteration of the algorithm starts with a selection of the most promising node out
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of the open set. At the beginning, only the start node is in the open set. This
node is selected based on its total cost f = g+h consisting of two parts, where g
cost represents the total cost required to get from the start node to the current
node. The second part is the heuristic cost h which represents the cost estimate
of getting from the current node to the goal. The better this heuristic cost is, the
fewer nodes are required to be expanded and the faster the whole algorithm is.
This node is then expanded to find further possible movements. In a grid-based
A*, the expansion is either to four neighbouring cells or to all eight adjacent
cells. These child nodes are then checked for collision with obstacles and checked
if they are already in the close set or in the open set with a higher cost. Then
they are added to the open set and the whole process repeats unless the goal is
reached or there are no more nodes to expand.

The original Hybrid A* algorithm described in [2] was designed for path
planning of autonomous nonholonomic vehicles in DARPA Urban Challenge in
2007. It improves the A* algorithm in a way that the expansion is done not only
for four or eight neighbouring cells but by motion primitives generated using a
kinematic model of the respective vehicle as can be seen in the Fig. 3 assuming
movement with constant velocity. It, therefore, transforms the input in the joint
space of the nonholonomic vehicle to the search space (x, y, ψ). Where x and
y is a Cartesian position of the vehicle and ψ is the yaw angle of the vehicle.
Each node of the graph, therefore, stores not only its discrete state but also the
continuous state of the vehicle together with the respective cost.

Fig. 3. Node expansion for Hybrid A* algorithm

Choosing a node for expansion is done in the same way as in the case of
original A*. Only cost functions are modified.
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g function represents the distance between the current node and the child node,
which also includes penalties for reversing and changing the direction of move-
ment.
h function original algorithm uses two heuristic functions. The first function
calculates the distance from a current state to the goal state, ignoring obstacles
but respecting the nonholonomic nature of the vehicle.

The second heuristic function provides the shortest distance from a current
state to the goal state, ignoring nonholonomic constraints but considering obsta-
cles. The resulting h cost is taken as the maximum of both outputs of the upper
mentioned heuristic functions.

Another addition to the standard A* algorithm is the analytical expansion,
where the Reed-Shepp curve is calculated from the current state to the goal
and the node is added only if the calculated path is obstacle-free. This addition
improves the precision and performance of the algorithm. It should be noted that
this analytical expansion is calculated only for some nodes and the frequency of
this calculation is increasing towards the goal.

2.3 Nonholonomic Path Planner with Dynamic Model

The proposed algorithm for global path planning in an elevation grid map is
based on the Hybrid A* algorithm described in the previous section. Unlike
the original algorithm, this method does not expect the vehicle to move with a
constant velocity but the velocity is based on a simplified dynamic model. There-
fore, the search space of the algorithm is (x, y, ψ, v), where v is the longitudinal
velocity of the vehicle.

Each expanded node N of the graph holds the following information:

N = (x̃, ỹ, x, y, ψ, v, d, δ, g, f) (1)

where x̃ and ỹ are discrete vehicle coordinates corresponding with centers of
individual grid cells G of the map, d is a vehicle direction, where 1 represents
forward movement and −1 reverse movement and δ is a steering angle. We also
denote n = (x, y) as a vector of continuous positions of the node N .

Expansion
The purpose of the expansion is to find new possible movements of the vehicle
from the current node N0. A node with the lowest cost f is chosen from the
open set O for expansion. Children of this node lie on the end of the motion
primitives. These primitives are generated based on a bicycle kinematic model
[20]. This model was chosen as a simplification of the Ackermann model, where
the front and the rear wheels of the bicycle lie in the middle of the front and
rear axis of the four-wheel vehicle. Each motion primitive has the same length
p and is calculated for a fixed steering angle δ of the front wheel. The range of
these steering angles is a user input into the planner.

Calculation of the motion primitive from node N0 to the child node N1

is covered by Eqs. (2)–(7) and depicted in the Fig. 4. The continuous vehicle
position n1 in node N1 is obtained from the Eq. (6) and its yaw angle is based
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Fig. 4. Kinematic bicycle model

on the Eq. (7). These equations differ if the vehicle is going straight or if it
is turning. Position in node N1 is derived as position n0 in node N0 to which
the difference between positions n0 and n1 in local vehicle coordinate system
is added. This difference is rotated by angle ψ0 to the global coordinate system
using rotation matrix R. Calculation of the yaw angle is straightforward; if the
vehicle is not turning, the yaw angle is preserved. Otherwise, the turning angle
ϕ is added. This turning angle depends on the radius of curvature rN which is
based on the simple geometrical formulas (2) and (3).

rB =
l

tan δ
(2)

rN =
√

l2r + r2B (3)

ϕ = p/rN (4)

R =
[
cos ψ0 − sin ψ0

sin ψ0 cos ψ0

]
(5)

n1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n1 + R

[
rN sin ϕ

rN (1 − cos ϕ)

]
if δ �= 0

n1 + R

[
p

0

]
otherwise

(6)
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ψ1 =

{
ψ0 + ϕ if δ �= 0
ψ0 otherwise

(7)

G Function
Unlike most of the derivations of the A* algorithm, the output of our g function is
not the distance between two nodes, which might be penalized in numerous ways,
but time. This time is calculated based on a mass point equation of motion (10).

We will use the simplified dynamic model of the vehicle where the vehicle
is considered as a point mass. Due to the coarse resolution of the map data
and lack of any information about the surface of the terrain, we will neglect the
assessment of the vehicle stability and we will assume no slip and permanent
contact between the wheels and the ground.

Based on our kinematic model of the bicycle, the path between two consecu-
tive nodes can be either a straight line or a circular arc. Since each node N may
have a different elevation, based on its corresponding node G, the path between
nodes might be inclined. This transforms the circular arc path into the part of a
helix as can be seen in the Fig. 5. In the same way, the straight-line path might
be angled towards the horizontal plane.

The helical path can be transformed into the orthogonal triangle provided
we neglect the wheel slip and centripetal forces. In this orthogonal triangle, the
legs represent the length of the motion primitive p and the elevation difference
ΔH, the hypotenuse is the actual length of the slope s. Using this simplification,
both turning and going straight can be assessed in the same way.

To calculate the length of the slope s the Eq. 8 is used, where ΔH is the
elevation difference between grid cells G1 a G0. The slope angle is given by
Eq. 9.

s =
√

ΔH2 + p2 (8)

θ = atan
ΔH

p
(9)

The following equations of motion are based on the Fig. 6. Since we neglect
the rotation of the wheel and consider the whole vehicle as a point mass, the
only relevant equation of motion for our case is Eq. (10) in direction of Xl of the
local coordinate system. Members of Eq. (10) are calculated based on Eqs. (11)–
(15). Symbols used in the following equations are described in the Table 1. There
are two types of dissipative forces in our model. The first one is the torque Mf

representing rolling resistance and the second one is Fb which depends on the
velocity and represents all other losses.
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Fig. 5. Vehicle path

Table 1. Table of symbols

Symbol Description

m Vehicle mass

a Vehicle acceleration

Mm Driving torque

Fm Driving force

Mf Rolling resistance torque

r Wheel radius

Fg Vehicle weight

FN Normal force

v0 Initial velocity

Fb Resistive force

ξ Coefficient of rolling resistance

t Time

Xl : ma = 4Fm − 4
Mf

r
− Fg sin θ − Fb (10)

Fm =
Mm

r
(11)

Mf = FNξ (12)

FN =
Fg cos θ

4
(13)

Fg = mg (14)

Fb = bv2 (15)
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Fig. 6. Free-body diagram of a vehicle on a slope

We can numerically solve Eq. (10) to obtain the position and velocity
throughout time. Based on these values, we can determine if the vehicle reached
the node N1, how long did it take and what was the velocity of the vehicle at
that time. This velocity will be used for the calculation of g cost from the node
N1 to its child nodes. The resulting g cost corresponds to time required to move
from N0 to N1. If the node N1 is unreachable, g cost is set to a high value.

H Function. Since the g cost represents time, the output of the h function
has to be time as well. The original H* algorithm uses two heuristic functions
as described in Sect. 2.2. These heuristics are well suited for the conditions of
the autonomous car moving through mostly flat areas with known obstacles. In
our case, the classified obstacles are only obstacles resulting from the difference
of DSM and DTM maps, these are vegetation, buildings and other man-made
structures, as described in Sect. 2.1. Therefore, all terrain obstacles such as cliffs,
ridges, hills, etc. are not considered as obstacles. Since we designed our path
planner for a vehicle moving through challenging terrain where terrain obstacles
are dominant, the original heuristics were not very beneficial.

Our heuristic function (16) calculates time required to move from the child
node to the goal as an Euclidean distance divided by the maximum allowable
velocity vmax of the vehicle. The Euclidean distance is a spatial distance consid-
ering also the elevation of the child node and the goal.

h =

√
(ng − n1)2 + (Hg − H1)2

vmax
(16)

3 Experiments

We decided to test our algorithm in locations with a challenging terrain where
our dynamic model can be fully evaluated and where it can be also compared to
a known optimal path. Therefore, locations of quarries were chosen since they
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provide a difficult terrain and roads for mining vehicles which can be used for
comparison. We used DSM and DTM maps of three quarry sites located in the
Czech Republic for testing, namely quarries in Jakubčovice nad Odrou, Mokrá–
Horákov and Dolńı Kounice.

For the purpose of the following tests, a 4WD (wheel drive) vehicle with the
following parameters was chosen (Table 2).

Table 2. Vehicle parameters

Parameter Value

m [kg] 500

l [m] 1.5

lr [m] 0.75

Mm [Nm] 65

r [m] 0.2

ξ [m] 0.02

b [kgm−1] 50

During each step of expansion, five motion primitives with length p of 2 m
were generated for both forward and reverse direction with maximal steering
angle δ of 40◦.

The algorithm was programmed in MATLABR© and the experiments were
conducted on the PC running Ubuntu 20.04 with IntelR© XeonTMCPU E3-1245
v3 @ 3.40 GHz and 16 GB of RAM.

Map data from the query in Dolńı Kounice were used for the first experiment.
Locations of the start and goal nodes together with a found path and expanded
nodes are shown in Fig. 7a. For comparison, there is an aerial view of the quarry
in the Fig. 7b. The aerial view does not match with the map data due to different
dates of capturing data. It can be seen that there are classified obstacles at the
bottom of the quarry near the start node and that the start node is surrounded by
steep slopes from three sides. Therefore, the only way to the goal leads through
the obstacles and via a side road on the left side of the quarry. Calculation of
the path took 17 s and 78 956 nodes were expanded.

The second experiment presented in this paper was conducted with data from
the quarry in Mokrá–Horákov (see Fig. 8). This quarry has an interesting layout
with two quarries separated by a narrow passageway. Calculation of the path
took 114 s and 474 139 nodes were expanded.

The last experiment presents the influence of the driving torque Mm on
the planned path. This experiment was conducted on map data from a quarry
in Jakubčovice nad Odrou. The experiment was conducted for three different
settings of the driving torque with the same position of the start and goal nodes
in all three conditions. The lowest driving torque was set to a value which still
enables the vehicle to successfully find a path. The middle value was the same as
in the previous experiments and the highest setting was set to more than double
of the standard driving torque.
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(a) Map view with found path (b) Aerial view [23]

Fig. 7. Quarry in Dolńı Kounice

4 Results

The result of the first experiment can be seen in the Fig. 7a. The proposed
planner was able to find a way through the bottom of the query and successfully
avoided all classified obstacles. It also found a side road leading towards the top
of the query while avoiding cliffs and steep slopes. This evaluation was done
solely based on the simplified dynamic model of the vehicle.

In the second experiment, the planner found a way through the narrow
section separating both quarries and precisely followed the same road towards
the goal which is regularly used by mining trucks. The result of this experiment
is in the Fig. 8a. Finding a way through narrow sections is a difficult task for all
planners, especially in our case where the movement of the vehicle is constrained
by the kinematic model and by the number of generated motion primitives. This
causes that the vehicle cannot reach an arbitrary yaw angle and therefore it has
to alternate between left and right turns to reach a goal in certain directions.

Results of the last experiment are shown in the Fig. 9. It can be seen that if
the driving torque is set low, it will result in the situation shown in the Fig. 9a.
In this case, the vehicle was able to reach the goal but it had to take a longer
“zigzag” path while going up the hill to minimize the slope angle and therefore
the torque required to move. The middle Fig. 9b depicts a situation where the
vehicle has a reasonably set driving torque. The planned path follows the existing
road and tends to the goal. In the last presented case shown in the Fig. 9c, the
driving torque is set too high which results in the planned path going almost
directly towards the goal. This result is correct but may not be feasible for a
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(a) Map view with found path (b) Aerial view [24]

Fig. 8. Quarry in Mokrá–Horákov

(a) Mm = 47Nm (b) Mm = 65Nm (c) Mm = 150Nm

Fig. 9. Comparison of different driving torque settings

real vehicle since our model does not account for the tipping over of the vehicle.
If the driving torque was set even higher, the resulting path would be a straight
line connecting the start and goal nodes.

5 Discussion

Based on the results presented in the previous subsection, the algorithm proved
to be capable of finding a global path while respecting all constraints. The aim of
this paper is to present an idea of extending the Hybrid A* algorithm by a sim-
plified dynamic model of the vehicle which is used for traversability assessment
and obtaining a near time optimal path.

To improve the performance of the planner and preserve the simplicity of the
whole algorithm, some simplifications of the vehicle model were made. These
simplifications are acceptable since the proposed planner is meant to be a global
planner and all errors resulting from the simplifications should be handled by
the local planner of the vehicle. Nevertheless, there is still space for further
improvements described below.

The whole algorithm can be improved by incorporating the findings of other
researchers. For example, the used grid map can be expanded by additional
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layers in [22] which will provide information about settlements, roads, waterways,
vegetation, soils, etc. This information can be incorporated either directly into
the dynamic model or as additional heuristics.

Another improvement might be to smooth out and post-process the found
path as in [2]. Since the expansion of each node is only to several discrete loca-
tions, the resulting path is usually not smooth and might frequently change the
steering angle.

Further improvements can be directed towards the dynamic model of the
vehicle which could take into account other influences mentioned for example in
[27] and [9]. It could also consider the real center of gravity of the vehicle and its
dimensions, so any tip-over of the vehicle could be penalised, this would prevent
the situation shown in the Fig. 9c. Addition of side forces could help to better
describe the turning motion of the vehicle.

An addition to the dynamic model could be a collision model of the vehicle
as presented in [1] which could better assess collisions between a vehicle and
microrelief objects.

For the final application the algorithm has to be greatly optimised and rewrit-
ten to C++ to improved its performance. Another possibility is to parallelize cer-
tain parts of the algorithm, especially the expansion section can benefit from it.

6 Conclusion

A kinodynamic global path planner has been presented in this paper. This path
planner operates on a grid map with obstacles and elevation data in each cell
of the grid. This grid map is based on TIN data obtained either from a UAV or
publicly available DTM and DSM maps.

A modified Hybrid A* algorithm was used as a graph search method, where
the total cost of movement from the start node to the goal node is expressed a
time. Therefore, the resulting path is time optimal. The evaluation of the cost
required to move from one node to the other was based on the dynamic simu-
lation of the simplified dynamic vehicle model. This ensures that the resulting
path not only complies with the nonholonomic constraints of the vehicle but also
with the limitations of the vehicle powertrain. Inclusion of the dynamic model
of the vehicle which is numerically solved and which can be further expanded to
include other influences into the simulation is the main innovation of this work.

The proposed planner was tested on map data of several quarries which pro-
vide challenging terrain for testing the algorithm with numerous terrain obsta-
cles. These terrain obstacles are not classified as physical obstacles and have to
be identified by the dynamic simulation. The planner was able to find paths
that correspond to the regular roads used in these quarries. These roads can
be considered time-optimal and is proven that these roads are traversable for
nonholonimic mining vehicles.
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