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Abstract. Pneumatic cylinders have become integral parts of today’s
production machinery. In the age of just-in-time inventory system and
with it the related production process, new, increased requirements were
introduced. As a result, even the smallest fault in the system can lead
to degradation in the product’s quality in addition to this it can cause
unplanned downtime leading to delays in production, not to mention
higher costs. The availability of cheap sensors, big data, and algorithms
from the field of predictive maintenance made the aforementioned prob-
lem tractable.

This paper examines whether signal-based condition indicators pro-
vide commercially viable and affordable basis for development of a health
monitoring system for pneumatic actuator-based production machinery.
The experiments and their results presented in this paper served two
objectives. The first was to examine if faults on such equipment can be
detected. The second was to identify the best combination of sensors,
which are able to detect and identify fault with required accuracy. The
evaluation of the sensors was not solely based on fault detection capa-
bilities, but other practical aspects (price and durability of the sensors)
were also taken into account.

Keywords: Health monitoring · Fault detection and isolation ·
Pneumatic cylinder · Production machinery

1 Introduction

Nowadays in the world of meticulously planned and timed production processes,
even the smallest faults in production machinery can have serious consequences,
leading to performance degradation, decrease in production, unplanned down-
time, delays in production, problems with logistics not to mention safety hazards.
Mechanical actuators, e.g. motors, hydraulic actuators, and pneumatic actuators
are amongst the most vital parts of production machinery.
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This paper examines the applicability of state-of-the-art techniques for mon-
itoring the evolution of the health conditions of pneumatic cylinders-based pro-
duction machinery. The presupposition of these methods was affordability and
increased accessibility of sensors which has led to the availability of big data
and revolution of the maintenance procedure. A new approach called predictive
maintenance has been developed which, contrary to the previously used tech-
niques, introduced improvements in the field of condition monitoring, providing
advancement in:

– fault detection and isolation (FDI),
– predicting the remaining useful life (the time interval in which the machine

is expected to work as intended).

Condition monitoring is a term defining a group of methods that aim to eval-
uate the health of a system and its components by analysing and interpreting
the data collected from the given system through sensors or transducers. Con-
dition monitoring includes detection, isolation (diagnosis), and prediction of the
faults in a system in the earliest possible stage. According to the definition of
Prof. Rolf Isermann [1]: “A fault is unpermitted deviation of at least one char-
acteristic property (feature) of the system from the acceptable, usual, standard
condition”. Eventually, it can result in loss or reduction of the capability to
perform the required function and lead to failure and malfunction [1].

Fault detection and isolation deals with the detection of fault occurrence
and pinpointing its source (location) in the system. Current applications of fault
detection and identification systems are widespread, ranging from wind farms
[2,3], electro-mechanical systems [6,12], pneumatic systems [4,5] up to machinery
used for oil refinement in the petrochemical industry [13], or fault detection of
sensors in a safety-critical control application [8].

Early fault detection methods were based on limit-checking of the monitored
quantity, meaning the system is considered healthy if the monitored quantity
Y lies between pre-defined upper and lower threshold values Ymax respectively
Ymin [1]. Despite the method’s simplicity, its significance was lost to condition
indicator-based methods as the system’s complexity increased.

Condition indicators are features of the data, that characterise the degrada-
tion process, meaning their value changes reliably and in a predictable manner as
the system’s health condition degrades. Due to their reliability, they are helpful
in distinguishing healthy from faulty conditions, and they may even serve as a
way to identify the source of the given faulty condition (e.g., excessive amount
of vibration measured on a DC motor might suggest worn-out bearings) [19].
Generally, two main types of condition indicator are used:

– model-based condition indicator
– signal-based condition indicator

Of the two above-mentioned methods, the model-based condition indicators
were the older approach [20]. The signal-based condition indicators were only
developed in the 1980s as a result of technological advancements in the field of
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digital signal processing. These new methods called signal-based methods were
based on real-time processing of the measured signals which, included extraction
and identification of properties or patterns within the signals that were corre-
lated with changes in health conditions of the system, hence the name condition
indicators. Deviation from the healthy values of the condition indicator is a sign
of change in health conditions, which can be used to detect and identify different
fault conditions.

The experiments in this paper on signal-based fault detection techniques
will provide the foundation for the development of a commercially available
health monitoring solution for pneumatic production machines. The planned
solution should work as an early warning system by being able to detect faults
before they would even occur, and warn the operators about their occurrence,
and at the same time pinpoint their source. As a result, targeted maintenance
action can be facilitated on the exact location of the fault at the right time,
thus avoiding harm to the products or to the machine itself, saving expenses
and making the manufacturing process more efficient. The application of the
mathematical apparatus, and the algorithms in this paper is not only limited to
pneumatic manufacturing equipment, but can be applied to other systems e.g.,
unmanned autonomous vehicles (UAV) with pneumatic suspensions, pneumatic
break systems.

The paper examines, whether faults in pneumatic machines are detectable,
identifiable and whether their source can be identified from analysis of sensor
readings. The presented experiments will first and foremost concern the two most
common sources of faults in real-life applications:

– faults of initial configuration of the machine (e.g. incorrect tuning of pressure
level)

– faults emerging with usage of the machine as a result of wear

Several experiments were designed and performed to detect and identify these
faults with the highest possible granularity, as well as to complete the following
tasks:

– to identify the extent of detectability and identifiability of faults of a pneu-
matic actuator-based manufacturing machine from the available sensors

– to identify optimal sensor(s) that satisfy not just the precision requirements
on condition monitoring but also requirements necessary for their deployment
in a real-world industrial application, such as the following ones:

• durability of the sensor (if possible, no mechanical parts)
• no maintenance requirements
• simple mounting
• cost efficiency

A vital part of the signal-based approach is the extraction of the right condi-
tion indicators, from which the most expressive set of indicators can be selected
for fault detection and isolation. A very powerful and popular group of condition
indicators are features extracted from the frequency domain [3,4,12,15]. In [4]
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the authors reached the conclusion that faults in pneumatic cylinders can be
very well detected in the frequency domain of acoustic emission signal, while the
emergence of new peaks in the frequency domain is correlated with faults in the
system. In [15] authors successfully used frequency features of vibration signal
successfully for health monitoring of bearings of DC motors.

Another popular source of condition indicators is the time-domain signal.
In works [2] and [17] time-domain features such as kurtosis, crest factor, peak
value, and RMS are used for health monitoring of a wind turbine. In [18] used
similar time-domain condition indicators to detect faults in a gearbox. In [16]
the author proposed a method, which exploited average time-domain vibration
signal to detect health status changes of the gearbox.

The structure of this paper is as follows. Section 2 presents theoretical back-
ground with an emphasis on the workflow used and the processing steps carried
out in each of its stages. Sections 3 and 4 describe the pneumatic testbench
and the data acquisition signal chain used in the experiments. Section 3 takes a
detailed look on the hardware, including the used sensors and adjustable param-
eters of the bench. Section 4 deals with the description of the data acquisition
signal chain. The experiments and their results are presented in Sect. 5.

2 Signal-Based Condition Indicators

Keeping manufacturing machinery working effectively and minimising unavoid-
able downtime are two vital objectives in every production plant which are only
achievable through a good maintenance strategy. Therefore maintenance tim-
ing is essential for efficient and cost-effective production. Based on the timing
of the service intervention the following three maintenance strategies can be
distinguished:

– Reactive maintenance:
• the maintenance action takes place after a fault has already occurred
• it is unexpected therefore the maintenance personnel cannot prepare for

it
• usually results in downtime of the machinery

– Preventive maintenance:
• is carried out in fixed time intervals, regardless of whether the upkeep

was needed
• it was designed to keep parts in good condition

– Predictive maintenance:
• the maintenance action is based on the analysis of information concerning

the actual state of the machine
• the upkeep action is targeted
• it can be planned in advance
• rarely results in a total shutdown of the whole factory
• the parts are replaced right before a fault would occur, therefore their full

lifetime is used
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A more detailed description and comparison of the advantages and disad-
vantages of maintenance types is available in [7]. In the following section closer
look on predictive maintenance workflow will be taken, while breaking the pro-
cess up to its stages. In the following sections theoretical background will be
explained in relations to the methodology used in our experiments.

3 Data Processing Workflow

The block diagram in Fig. 1 illustrates the main stages taken in the development
of our fault detection and identification procedure. Contrary to the general pre-
dictive maintenance workflow which ends with implementation and deployment
of the developed algorithm, this paper intends to serve only as a proof of concept
of application of predictive maintenance for condition monitoring of a pneumatic
actuator.

Fig. 1. Data processing workflow

In the following subsections, a detailed look at the individual stages of the
above-presented workflow will be taken.

3.1 Data Acquisition and Pre-processing

Successful implementation of condition monitoring algorithms requires a data set
of appropriate size and properties. The exact size of the data set is unknowable,
therefore it has to be determined empirically, while taking into account the
following properties also discussed in [9]:

– complexity of the problem
– complexity of the classification algorithm

It is also required for the used data set to include sufficient representation
of the system’s behaviour under a range of healthy and faulty conditions. This
requirement is necessary in order to train a classifier with good generalisation
properties. Further details on the parameters used to acquire data will be dis-
cussed in Sect. 5.1.

Pre-processing of the acquired data is the second stage in our workflow and
it is an integral part of the process as the quality of the extracted condition
indicator and also the accuracy of fault detection is dependent on the information
content of the measured signal. Therefore, it is important to improve the quality
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of the raw data by pre-processing it. Due to the high quality of sensors used and
measurement hardware, the level of noise and other unwanted disturbances was
acceptable, therefore pre-processing was limited only to the following operations:

– signals from the sensors were converted to physical quantities
– derivation of velocity and acceleration from the measured position data
– acquiring frequency domain representation of the signals through FFT

3.2 Condition Indicator Extraction

For the purpose of this paper MATLAB’s Diagnostic Feature Designer was used
to extract and select signal-based condition indicators from the measured sig-
nals. Signal-based condition indicators are the features of the signal, quantities
that describe its behaviour, shape, frequency content and their value changes
simultaneously with the system’s degradation. They serve as a simple, compu-
tationally efficient, powerful, and reliable tools to produce features that can be
used as condition indicators. The extracted features were from:

– time domain
– frequency domain

The application was used to generate a function to extract features. This function
was later used to automate the feature extraction process and to produce features
from the different measurements (Table 1).

Table 1. List of condition indicators extracted from the measured signals

List of condition indicators

Domain Condition indicator

Time-domain Mean

Standard deviation

RMS

Shape factor

Kurtosis

Skewness

Peak value

Crest factor

Impulse factor

Clearance factor

Total harmonic distortion

Signal-to-noise ratio

SINAD

Frequency-domain Peak amplitude

Peak frequency

Band power
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3.3 Condition Indicator Selection

Feature selection is the fourth stage of the process. It is used to reduce the
dimensionality of the feature space, which ranks and discards features that have
bad predictive power. Feature selection is favourable because it improves the
quality of the classification model, for the following reasons:

– prevents overfitting
– improves model size
– improves accuracy
– reduces training time

There is an abundance in various feature selection algorithms, the selection
of which was made based on the findings of the paper [11]. The authors of the
paper compared the performance of different selection algorithms on synthetic
data, and the Relieff algorithm came out on top. In addition to the fact that
this method belongs to the category of feature selection algorithms called filter
methods (model with lowest computational cost), it performs well in rejecting
correlated and redundant features and is not susceptible to non-linearity and
noise of the features.

3.4 Verification of the Results

The fifth and final stage in our workflow was the verification of the chosen
features, and simultaneously with it, the selection of sensors, i.e., sensor number
reduction. To verify the fault detection quality of the sensors and their features,
machine learning models were trained (no deep learning models) and the training
results were validated using 6-fold cross-validation.

Table 2. Classifiers used during the verification procedure. In the column Usage, the
letter M stands for multi-class classifier and B for binary classifier

Classification algorithms

Family Algorithm Usage

Tree Bagged M

Boosted M

Fine B

Medium B

k-Nearest Neighbour Fine B/M

Medium B/M

Weighted B/M

Support Vector Machine Cubic M

Medium Gaussian M

Quadratic M

Discriminant Analysis Subspace M
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The performed experiments from the perspective of how the classification
problem is posed (i.e., number of classes) are of two kinds, binary and multi-
class classification problems. Therefore suitable classifiers had to be chosen -
11 different classification models overall. The selected models are the best per-
forming classifier models based on earlier experiments on the test data set. The
selected algorithms are from 4 basic families of classifiers, ranging from Tree and
Support Vector Machine to k-Nearest Neighbour and Discriminant analysis. The
complete list of classifiers is available in Table 2.

The trained classification models were then tested by a cross-validation algo-
rithm. Eventually, these results served as an indicator of the quality of the sensor
and were used to pick the best combination of sensors that will be used during
the further stages of our research and development activity.

MATLAB’s Classification Learner application was used to train and test the
machine learning models on the feature set.

4 Testbench Description

Data for the experiments was collected on a custom-built pneumatic device,
which was designed and built to model the behaviour of pneumatic manufac-
turing equipment. The device has been developed to be able to model different
stages of the manufacturing process (e.g., drilling, press-fit, etc.) and to mimic
their behaviour not just under healthy conditions but also to simulate fault
conditions.

In order to have versatile test equipment that can replicate accurately the
behaviour of a pneumatic actuator under different production stages and also
simulate fault condition, the testbench was designed to have adjustable param-
eters. The alterations can be made in:

– pressure of compressed air
– pressure reduction of the reduction valve
– the amount of the load acting on the cylinder (the platform’s own weight is

7 kg)
– damping

• both shock absorbers on two ends disengaged
• both shock absorbers on both ends deployed
• only one type of shock absorber on both ends is connected

∗ with adjustable damping (9 levels of damping)
∗ with constant damping

From the above-mentioned tuneable parameters the air pressure and the
adjustments of the reduction valve are parameters, whose faults can occur from
the negligence of the operator. While the other two parameters (e.g.: load, and
damping) provide an easy way to replicate faults related to the manufacturing
process (Fig. 2).
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Fig. 2. Schematics of the pneumatic testbench

4.1 Sensors

Information on the motion and the state of the bench was obtained through a
wide variety of sensors (8 types, 14 sensors altogether), in order to capture the
most possible information, these sensors were mounted on different parts of the
test bench (Fig. 3 and Fig. 4). Table 3 contains information regarding their type
and the measured quantities:

Table 3. List of sensors mounted on the pneumatic test bench

List of sensors

Code Sensor type Manufacture number Range

S1 Accelerometer TE Connectivity 4030-006-120 ±6 g

S2 Flow sensor Festo SFAB-50U-WQ6-2SV-M12 0–50 l/m

S3 Proximity switch Festo SMT-8M-A-PS-24V-E-0.3-M8D –

S4 Load cell Burster 8524 0–2 kN

S5 Pressure sensor Festo SDEI-D10-G2-MS-L-P1-M12 0–10 bar

S6 Microphone VMA309 50–50 kHz

S7 Thermocouple Omega SA2 −50–200 ◦C
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Fig. 3. Sensors of the test bench (front view)

Fig. 4. Sensors of the test bench (rear view)
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4.2 Reference Settings

Three common processes from automated manufacturing were chosen as the
subjects of our experiment, namely:

– drilling
– assembly by press-fitting of parts
– transfer of assembled parts between workstations

Before the experiments could be carried out, the unknown values for the
bench’s adjustable parameters for the above-mentioned processes had to be
identified. Altogether 7 different prescriptions for ideal working conditions were
obtained (2x drilling, 2x assembly by press-fitting, 3x transfer). These settings
will be used during the experiments as reference states (healthy conditions), since
they define how the testbench should behave under normal operating conditions.
The following table presents the mentioned healthy conditions:

Table 4. Healthy (reference) states of adjustable parameters of the pneumatic test
bench

Operations Transfer Assembly Drilling

ID 11 12 13 21 22 31 32

Load [kg ] 6,25 5 0 0 1,25 0 1,25

Pressure [bar ] 6 6 6 6 6 5,5 6

Reduction valve 1 4 4 3 3 3 5 5

Reduction valve 2 2 2 3 3 3 3 3

Bottom shock absorber Adjustable damping 4 4 3 3 3 5 5

Constant damping 4 4 3 3 3 5 5

5 Data Acquisition

Fig. 5. Block diagram of the data acquisition signal chain

The block diagram in Fig. 5 presents the data acquisition signal chain used in
our experiments. The used measurement chain consists of six NI cDAQ modules,
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the complete list of modules, connection diagram, and sampling information
are presented in Table 5. To control the timing and the data transfer from the
individual modules, NI’s cDAQ-9172 chassis was used.

In addition to the high slot count among other advantages of this chassis is
the possibility of multi-rate sampling of the modules (3 objects each with its
own sampling rate). This property was highly advantageous due to the fact that
the measured quantities have different dynamics. Therefore, the measured signals
were grouped into three groups based on their sampling rate. Three microphones
were sampled at a rate of 40 kHz, the thermocouple at 0,1 Hz, and the rest of
the sensors at 1 kHz.

Table 5. Connection diagram of the used test bench

Sensor type HW Signal type Sampling rate [kHz]

Pressure sensor NI 9221 Analog 1

Flow sensor NI 9221 Analog 1

Accelerometer NI 9221 Analog 1

Linear encoder NI 9401 Analog 1

Load cell NI 9211 Analog 1

Proximity sensor NI 9411 Digital 1

Microphone NI 9215 Analog 40

Thermocouple NI 9419 Analog 0,1

5.1 Data Acquisition Firmware

The configuration of the data acquisition hardware and the data measurement
session was controlled by MATLAB’s Data Acquisition Toolbox, which provided
a powerful yet simple-to-use environment to exploit the device specific features
of the NI hardware. As it was mentioned above, due to the different nature of
the measured quantities, multi-rate sampling was deemed an optimal technique
to use. To utilise NI hardware’s multi-rate functionality, three separate data
acquisition objects (“daq”) were created. Sensors through measurement chan-
nels were assigned to each of these objects according to the table above. The
specificity of this multi-rate approach is that in order to trigger and synchronize
the execution of the data acquisition objects one of them has to be selected as
the master, while the rest of them are slave objects. Practically, it means that
the master object is started manually with a run command from the MATLAB
script and subsequently triggers the acquisition start of the slave objects. In
addition to scripts that control the data acquisition, further conversion func-
tions were created which convert the electrical quantities from the sensors to
the given physical quantity of the measured signals. Lastly, a function converts
the individual timetables with measurement data (each sensor has its own) to
a large table, containing the measurements from the data acquisition objects to
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a format suitable for further processing with the feature extractor application
called Diagnostic Feature Designer - part of MATLAB’s Predictive Maintenance
Toolbox.

6 Experimental

Among the goals of this paper was to experimentally identify the extent to
which faults can be detected and identified with sufficient detection accuracy.
Therefore, experiments with increasing complexity were designed. Starting from
detection of fault (distinguishing between healthy and faulty conditions) to iden-
tifying the source and the degree by which the faulty configuration is offset from
the healthy conditions. The of experiments in execution order is presented below:

– Single fault condition
1. Fault detection in one specific process
2. Fault detection and isolation in one specific process

a identification of the source of the fault
b identification of the source (exact setting of the adjustable parameter)

– Combination of two fault conditions
1. Fault detection and isolation in one specific process, where the combina-

tion of two fault conditions occur at the same time

The course of the experiments was identical in every case. With each setting
of the adjustable parameters, 20 cycles (in our case a cycle consists of a full extru-
sion of the cylinder’s rod and its return to its original position) worth of data was
captured. The number of cycles was determined by taking into account two fac-
tors. The first of them was the selection of classification algorithms, which was
constrained to supervised learning models not requiring deep learning. As result,
there were fewer parameters to learn during the training of the classifier, and at
the same time the training data set could be kept reasonable small. The second
factor was know-how, collected from previous experiments on the testbench.

Each set of measurements for the given reference setting consisted of data
representing both healthy and faulty conditions. The healthy conditions were
the reference settings themselves (available in Table 4 while the faulty condi-
tions were defined as any deviation of adjustable parameters from the prescribed
reference settings.

7 Results

Table 6 displays the results of the first experiment for process 11 are displayed.
As the results point out, the best fault detection accuracy is provided by the
sensors such as linear encoder and microphone, where the accuracy reaches 100%.
As for the other sensors the fault detection accuracy is very high as well (greater
than 90%). The other processes showed similar results to the ones presented in
Table 6 (Fig. 6).
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Table 6. Classification results of single-fault fault detection. In column Acc. the clas-
sification accuracy is presented in percentage and in column Classifier, the name of the
best performing classifier model’s name is displayed.

Transfer between stages

Sensor 11

Acc. Classifier

Accelerometer 1 Y-axis 99.6 Fine KNN

Accelerometer 1 Z-axis 98.2 Weigh. KNN

Accelerometer 2 Y-axis 95.6 Bagged Tree

Accelerometer 2 Z-axis 93.3 Medium Tree

Encoder 100 Fine KNN

Flow Sensor 1 99.7 Fine KNN

Flow Sensor 2 99.4 Fine KNN

Microphone 1 97.3 Fine KNN

Microphone 2 99.9 Weight. SVN

Microphone 3 100 Fine KNN

Load Cell 99.4 Fine Tree

Pressure 90.8 Boost. Tree

Based on the results, it can be concluded that all of the available sensors
passed the first test and can undergo further investigation in order to find the
extent to which these sensors are suitable for a more complex tasks.

Table 7. Classification results of single-fault fault detection and isolation for the pro-
cess transfer between stages. In column Acc. the classification accuracy is presented in
percentage and in column Classifier, the name of the best performing classifier model’s
name is displayed.

Transfer between stages

Sensor 11 12 13

Acc. Classifier Acc. Classifier Acc. Classifier

Accelerometer 1 Y-axis 98.9 Quadr. SVM 93.3 Cubic SVM 98.6 Gauss. SVM

Accelerometer 1 Z-axis 92.9 Weigh. KNN 91.8 Weigh. KNN 94.7 Quadr. SVM

Accelerometer 2 Y-axis 93.9 Quadr. SVM 82.3 Boost. Tree 85.8 Bagged Tree

Accelerometer 2 Z-axis 91.4 Quadr. SVM 87.0 Boosted Tree 95.8 Cubic SVM

Encoder 99,6 Fine KNN 99.9 Fine KNN 100 Fine KNN

Flow Sensor 1 99.4 Quadr. SVM 99.9 Cubic SVM 98.8 Cubic SVM

Flow Sensor 2 98.5 Quadr. SVM 99.1 Cubic SVM 94.6 Bagged Tree

Microphone 1 95.8 Quadr. SVM 82.4 Bagged Tree 88.5 Bagged Tree

Microphone 2 93.6 Quadr. SVM 93.3 Bagged Tree 94.0 Boosted Tree

Microphone 3 90.8 Bagged Tree 91.8 Boosted Tree 92.2 Boost. Tree

Load Cell 99.1 Quadr. SVM 98.8 Quadr. SVM 98.8 Bagged Tree

Pressure 80.6 Weigh. KNN 78.5 Quadr. SVM 87.5 Boosted Tree
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In the case of the next experiment (Tables 7, 8 and 9), the fault detection
and identification capabilities of the sensors were tested. This time just like in
the case of the previous experiment only a single fault condition was modeled
(only one adjustable parameter was changed against the reference states) at a
time.

Table 8. Classification results of single-fault fault detection and isolation for the pro-
cess assembly by press-fitting. In column Acc. the classification accuracy is presented in
percentage and in column Classifier, the name of the best performing classifier model’s
name is displayed.

Assembly by press-fitting

Sensor 21 22

Acc. Classifier Acc. Classifier

Accelerometer 1 Y-axis 81.0 Cubic SVM 81.8 Gauss. SVM

Accelerometer 1 Z-axis 90.6 Quadr. KNN 87.9 Weigh. KNN

Accelerometer 2 Y-axis 73.8 Boost. Tree 82.6 Gauss. SVM

Accelerometer 2 Z-axis 76.8 Quadr. SVM 85.6 Quadr. SVM

Encoder 99,4 Cubic SVN 99.7 Fine KNN

Flow Sensor 1 97.7 Quadr. SVM 100 Cubic SVM

Flow Sensor 2 98.2 Quadr. SVM 99.9 Fine KNN

Microphone 1 84.3 Quadr. SVM 85.3 Boosted Tree

Microphone 2 84.0 Weigh. SVM 81.1 Quadr. SVM

Microphone 3 89.9 Quadr. SVM 88.5 Quadr. SVM

Load Cell 93.2 Bagged Tree 98.0 Cubic SVM

Pressure 63.2 Boost. Tree 88.0 Weigh. KNN

As a result of the higher requirements on the desired output, the classifier
had to distinguish more nuanced differences within the data in order to identify
the source of the fault.
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Table 9. Classification results of single-fault fault detection and isolation for the pro-
cess drilling. In column Acc. the classification accuracy is presented in percentage and in
column Classifier, the name of the best performing classifier model’s name is displayed.

Drilling

Sensor 31 32

Acc. Classifier Acc. Classifier

Accelerometer 1 Y-axis 62.4 Boosted Tree 62.3 Quadr. SVM

Accelerometer 1 Z-axis 84.8 Bagged Tree 85.6 Quadr. SVM

Accelerometer 2 Y-axis 44.1 Med. KNN 46.5 Quadr. SVM

Accelerometer 2 Z-axis 52.1 Quadr. SVM 48.2 Quadr. SVM

Encoder 98.5 Quadr. SVM 99.1 Quadr. SVM

Flow Sensor 1 99.5 Quadr. SVM 95.2 Cubic. SVM

Flow Sensor 2 96.3 Bagged Tree 98.5 Weigh. SVM

Microphone 1 88.4 Boosted Tree 81.8 Cubic SVM

Microphone 2 94.1 Boosted Tree 91.2 Quadr. SVM

Microphone 3 94.8 Bagged Tree 90.3 Bagged Tree

Load Cell 99.3 Quadr. SVM 99.2 Quadr. SVM

Pressure 82.4 Weigh. SVM 85.9 Quadr. SVM

Table 10. Single-fault detection and isolation (with identification of the exact settings)
for the process transfer between stages. In column Acc. the classification accuracy is
presented in percentage and in column Classifier, the name of the best performing
classifier model’s name is displayed.

Transfer between stages

Sensor 11 12 13

Acc. Classifier Acc. Classifier Acc. Classifier

Accelerometer 1 Y-axis 83.5 SubSp. Disc 81.7 Cubic SVM 81.0 SubSp. Disc.

Accelerometer 1 Z-axis 80.8 Cubic SVM 78.3 Quadr. SVM 83.5 SubSp. Disc.

Accelerometer 2 Y-axis 70.6 SubSp. Disc 68.5 Bagged. Tree 57.3 Gauss. SVM

Accelerometer 2 Z-axis 63.0 Gauss. SVM 61.8 Bagged Tree 67.7 Gauss. SVM

Encoder 96.5 Cubic SVM 99.1 Fine KNN 100 Fine KNN

Flow Sensor 1 99.6 Cubic SVM 93.2 Quadr. SVM 93.0 SubSp. Disc.

Flow Sensor 2 88.9 Quadr. SVM 92.9 SubSp. Disc 88.8 Quadr. SVM

Microphone 1 80.6 Gauss. SVM 70.0 Bagged Tree 72.2 Quadr. SVM

Microphone 2 80.8 Cubic KNN 86.4 Quadr. SVM 83.3 Quadr. SVM

Microphone 3 80.6 Gauss. SVM 85.8 Quadr. SVM 84.8 Cubic SVM

Load Cell 91.7 Quadr. SVM 92.7 Bagged Tree 92.5 Bagged Tree

Pressure 63.0 Quadr. SVM 64.1 Bagged Tree 66.7 SubSp. Disc

As expected, the more refined differences in data made the classifiers work
complex, which resulted in decreased classification performance in case of every
used sensor. The biggest decrease in performance (50%), in comparison to the
first experiment, occurred in the case of the accelerometer fixed to the frame of
the test bench.
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Table 11. Single-fault detection and isolation (with identification of the exact settings)
for the process assembly by press-fitting. In column Acc. the classification accuracy is
presented in percentage and in column Classifier, the name of the best performing
classifier model’s name is displayed.

Assembly by press-fitting

Sensor 21 22

Acc. Classifier Acc. Classifier

Accelerometer 1 Y-axis 57.9 SubSp. Disc 49.9 SubSc. Disc.

Accelerometer 1 Z-axis 75.0 SubSc. Disc 67.1 SubSc. Disc.

Accelerometer 2 Y-axis 41.4 SubSc. Disc 46.2 SubSc. Disc.

Accelerometer 2 Z-axis 39.9 SubSc. Disc 45.3 SubSc. Disc.

Encoder 99,4 Cubic SVN 98.9 Quadr. SVM

Flow Sensor 1 92.5 Quadr. SVM 97.0 Cubic SVM

Flow Sensor 2 94.0 SubSp. Disc 95.0 SubSc. Disc.

Microphone 1 62.2 Bagged Tree 58.8 Bagged Tree

Microphone 2 59.12 Quadr. SVM 61.2 Quadr. SVM

Microphone 3 66.8 Quadr. SVM 69.1 Quadr. SVM

Load Cell 87.5 Cubic SVM 98.9 Quadr. SVM

Pressure 61.0 SubSp. Disc 75.0 SubSc. Disc

Table 12. Single-fault detection and isolation (with identification of the exact settings)
for the process drilling. In the column Acc. the classification accuracy is presented in
percentage and in column Classifier, the name of the best performing classifier model’s
name is displayed.

Drilling

Sensor 31 32

Acc Classifier Acc Classifier

Accelerometer 1 Y-axis 43.6 Quadr. SVM 37.2 Quadr. SVM

Accelerometer 1 Z-axis 61.9 Quadr. SVM 55.7 Cubic SVM

Accelerometer 2 Y-axis 26.7 SubSp. Disc 23.8 Gauss. SVM

Accelerometer 2 Z-axis 30.5 Quadr. SVM 27.1 Gauss. SVM

Encoder 98.6 Cubic SVM 94.6 Quadr. SVN

Flow Sensor 1 90.5 SubSp. Disc 92.7 Quadr. SVM

Flow Sensor 2 92.4 SubSp. Disc 87.4 Cubic SVM

Microphone 1 66.7 Quadr. SVM 61.8 Quadr. SVM

Microphone 2 84.7 Quadr. SVM 79.2 Quadr. SVM

Microphone 3 82.2 Quadr. Tree 76.4 Quadr. SVM

Load Cell 92.9 Bagged Tree 94.7 Quadr. SVM

Pressure 77.1 Weigh. SVM 62.3 Quadr. SVM
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In the case of the other sensors, the drop in performance was less signif-
icant. Among the best performing sensors were the linear encoder, both flow
sensors, load cell, and the accelerometer mounted on the moving part that lifts
the weights. The accuracy of these sensors was above 90%.

Another interesting fact is that the condition indicators from processes such
as drilling and assembly by press-fitting turned out to be harder to detect.

Table 13. Classification accuracy for detection and isolation of combination of two
faults. In the column Acc. the classification accuracy is presented in percentage and in
column Classifier, the name of the best performing classifier model’s name is displayed.

Assembly by press-fitting

Sensor 32

Acc. Classifier

Accelerometer 1 Y-axis 84.0 Cubic SVM

Accelerometer 1 Z-axis 80.1 Quadr. SVM

Accelerometer 2 Y-axis 59.4 Bagged Tree

Accelerometer 2 Z-axis 59.3 Bagged Tree

Encoder 99.2 Cubic SVM

Flow Sensor 1 95.5 Quadr. SVM

Flow Sensor 2 94.4 Cubic SVM

Microphone 1 66.7 Bagged Tree

Microphone 2 84.8 Bagged Tree

Microphone 3 84.0 Bagged Tree

Load Cell 94.3 Bagged Tree

Pressure 67.0 Bagged Tree

In the last experiment which dealt with the detection and identification of a
single fault, the goal of the experiment was to detect and identify faults to the
extent in which the classifier can tell not just the exact source of the fault, but
also how much the current setting differs from the reference setting, e.g., in the
case of reference state 11, the Reduction Valve 1 was set to position 9 instead of
4. In this case, an overall slight worsening of accuracy is noticeable (Tables 10, 11
and 12). Sensors such as the linear encoder, load cell, and both flow sensors are
still providing results with over 90% accuracy, however, the rest of the sensors
have inferior capabilities to detect faults with such detailedness.

The last experiment was designed to detect fault detection and isolation
capabilities of the sensors for the combination of two fault conditions occurring
at the same time. In this experiment, the results (Table 13) were the same as
in the case of experiment number 3. The best overall performance was obtained
from the features from sensors such as the linear encoder, load cell, and both
flow sensors. The encoder was the best by significant margin, reaching 99.2%
accuracy.
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In each case where classification is discussed, it is vital to mention the stabil-
ity of the results after multiple re-training of the classifier models. The overall
fluctuation in the results of classification accuracy was around 2–3%, while in
the case of the encoder, the stability of the results was even greater around 0.1
percentage points.

By considering factors, namely cost and practicality related to the use and
mounting of the sensor, there is a slight alteration in the end result (Table 14).
Sensors such as flow sensor and load cell become impractical. In the case of the
load cell, it is due to its cost and problematic mounting. Based on the results
above, it is clear that condition indicators from encoders provide incomparable
classification performance despite their relatively high cost. Accelerometers are
not suited for detection of the degree by which the fault condition of the machin-
ery differs from the ideal state, however, they make up for it in the other two
vital perspectives.

Table 14. Comparison of the four best sensors based on classification accuracy (Accu-
racy), price Cost, and ease of usage and application Practicality

Sensor Accuracy Cost Practicality

Linear encoder � � � � � �� ��

Flow sensor � � � � � � � � �

Accelerometer � � � � � �� � � � � �

Load cell � � � � � � �

8 Conclusion

The main contribution of our work is proof showing that signal-based condition
indicators are a viable approach to monitor the health condition and to detect
and identify faults in the case of pneumatic actuator-based production machines.
The presented methods can be further applied to a variety of pneumatic systems
e.g., suspension of UAVs, break systems.

Based on the presented results from the previous section, it can be concluded
that condition indicators from sensors, such as the encoder, flow sensor, or load
cell are capable of identifying even the degree by which the fault condition of the
machinery differs from the ideal, healthy state of the machine. It was also shown
that condition indicators from these sensors are capable of detecting single fault
and also the combination of two faults, which occur at the same time. In the
case of reduced requirements, which only require identification of the source of
the fault, the accelerometer mounted onto the moving part of the machine can
be a viable option.

Inclusion of other aspects to our evaluation such as practicality or the cost
of the sensors changes the end result. Based on the new evaluation criterion,
the encoder will become the single best sensor for all of the examined tasks.
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However, if we are satisfied only with the identification of the source of the
fault, accelerometer is an obvious choice due to its low cost and ease of usage.

Acknowledgment. We would like to thank Mechatronic Design Solution ltd. for their
help in designing and building the pneumatic test bench and for their expertise with
pneumatic actuator-based production machinery.
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