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Abstract. We present a simulation setup in the robot simulation soft-
ware CoppeliaSim which is used for a synthetic dataset generation for
training the neural network. In the simulator we can generate either
color and depth images which can be tuned according to the real cam-
eras mounted to the robot or robotic workplace. Vision sensors cap-
ture the simulated scene which contains different environment features,
obstacles and objects of interest which can be labeled automatically with
another filtering vision sensor. Except static environment which can be
imported in case of known setup or generated based on height-field or
simple objects. We can simulate randomly or with a specific pose ori-
ented and positioned objects which may appear in the field of view of
the robot. As an output the system produce RGB or depth information
which is stored as a RGB or a gray-scale image or a combined RGBA
image including the RGB data extended by depth data stored in the
alpha channel. Second product of the system is a label describing differ-
ent detectable classes for the neural network. The simulator is able to
generate large datasets in a short period of time and produce a highly
customized learning base for the neural network.
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1 Introduction

Synthetic dataset is a learning set of data for training a neural network which
is created in an artificial simulated environment. Neural network based image
recognition systems used in a cluttered environment require a large and highly
diverse dataset. Manual creation of a such dataset is a time consuming and
arduous work. In the first step the scene has to be set up according to the
situation we want to include in the training base of the neural network next we
need to capture this situation and label the regions of interest.

In a comparative study by Dandekar et al. [1] are described different tech-
niques of synthetic dataset acquisition. There are already available datasets made
by different research groups including RGB, depth and labeled ground truth
images. SceneNet [2] is a collection of data of indoor scenes. Dataset SYNTHIA
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[3] includes millions of data samples of the urban environment simulated in an
environment including roads, buildings, cars and thousands of different objects.
Except rendering different objects in the scene under specific conditions, there
might be incorporated also influencing factors extending the basic situations.
This can be the weather or light conditions as is described in the work of Khan
et al. [4] or in TartanAir dataset [5]. There is a difference between synthetic data
generated in the simulation and real world data, in the case of image recogni-
tion also depending on the capturing device. Domain adaption [6] considers the
differences between simulated and a real data.

In our research we focus on detection and localisation of hands and arms
of the operator working with the collaborative robot. For the hand recognition
there are datasets available based on real RGB-D data [7,8], special type is
dataset with the RGB-D source but labeled automatically with the additional
sensor [9], in this study is a comparison between different datasets and labeling
methods. Another way is a synthetic dataset generated for RGB tracking [10]
or systems using 3D data to recognize the pose of the hand [11]. These systems
usually use a simplified estimation of the position of the hand, it uses either
other detector to localise the specific region with the hand or methods based on
specific shape or color detection. Use of depth image instead of RGB helps to
focus more to the shape of the hand than the color which can be in the industrial
environment more various in connection with using protective equipment such
as gloves. Using RGB and depth together may bring a synergistic effect. There
are also datasets including not only the hands but also tools and other objects
which may be used during working operation [12] or during interaction with
objects [13].

According to Pasieka [14] there is a significant evolution of building synthetic
datasets. It can be stochastic, rule-based or generated by the artificial intelligence
systems. For the generation we can use simulation environment like CoppeliaSim,
game engines like Unity or Unreal Engine or custom software tools usually built
on computer vision libraries. The simplest methods are based on combination
of 2D images and different augmentations of its parts, more advanced methods
are based on placing a 3D object to the 3D environment including the influence
of other objects and environment like the occlusion, distortion or lights and ray
casting if we need also the color image and not only the depth information.

In the Sect. 2 we describe the simulation environment and conditions for
dataset generating. Description of the dataset image is provided. In the Sect. 3
we show the process of unification and tuning of the dataset with real conditions
captured with an RGB-D camera. In the Conclusion section we depict further
steps and usecase of the dataset.

2 Experiment Setup

In this section we describe conditions and the environment where we want to
use the image recognition with the neural network based system. The simulation
environment used in this research is CoppeliaSim software. CoppeliaSim provides
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simulation environment for script-controlled multi-object scenarios as well as
simulation of vision sensors which are used in this research. There is also powerful
remote API available for interaction with the simulator from a custom software
tools. We specify the vision sensor - simulated in the simulation environment and
the real camera which will be used with the neural network based recognizer,
then we describe the setup for the environment and the desired output.

2.1 Virtual Vision Sensor

In this experiment setup we use an Intel RealSense D435i RGB-D camera. This
camera provides up to 1920× 1080 pixel resolution 16 bit color image at maximal
frame rate 30 FPS or 60 FPS for lower resolutions. Depth is calculated based on
active stereo vision technology. Camera provides either the 1280× 720 raw image
from both infrared cameras used for stereo vision computation of the distance
or the camera provides already calculated depth stream which is even refined
with pattern emitted with laser projector. Resolution of the depth stream is
1280× 720 at 30 FPS or even 90 FPS for lower resolutions. In the presented
approach we try to simulate this depth stream. It is important to pay attention
to the specific characteristics and limitations of the stereo vision technology.
There is a shadow and invalid data band on one side of the image which are
caused by unavailability of the data from both sensors (Fig. 1).

In the CoppeliaSim environment there is an object called vision sensor avail-
able which can provide either RGB image and depth. According to extrinsic
parameters of the real camera we can use 2 vision sensors, one for RGB and sec-
ond for depth which will be shifted because of the distance between sensors on
the real camera. Setting the perspective angle and resolution unites the field of
view of the real and virtual vision sensor. To display depth on the image we use
intensity clipped to the minimum and maximum distance which is set equally
with the real camera. The product is a gray-scale image (Fig. 1) which can be
saved and used later for training of the neural network. In this study we do not
use the RGB data, but we use a second vision sensor which also captures the
depth. This sensor does not capture the whole scene but only a specific objects
of interest, output of this image is transformed to binary producing the mask
which is described later in the paper.

The main aim for a synthetic dataset generator is to produce depth images
corresponding to the output of the depth camera scaled to the gray-scale image.

2.2 Working Environment

By specifying the obstacles directly according the environment where the system
will be used we can set objects which should be detected, which should be
recognized or ignored. There are three types of obstacles which are used in the
generator:

– Static environment A static environment in the industrial applications
may be the working table, frame of the workplace, several component supply
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(a) (b)

Fig. 1. Depth image colorized in gray-scale in a specific clipping distance: (a) Image
captured by the depth camera with visible shadow which is a characteristic for the
stereo vision method, (b) image captured in simulation.

devices, clamping units etc. This type of obstacles are usually available as a
3D model of the workstation. This model can be imported to the simulation
scene as a mesh. We want to teach the neural network to ignore the static
environment.

– Objects of interest Objects of interest are things or body parts which we
want to detect, distinguish in the scene and localize. The goal is to label these
objects in the dataset and train the neural network to recognize these objects.

– Other objects Object in the scene which may be similar to the objects of
interest but we do not want to detect those objects and we need to teach the
neural network to ignore those objects as well as the static environment. This
may be the handled/manufactured parts, tools, free wires etc.

In our experiments we want to detect a hand and arm of the operator so
we use a 3D model of the right hand in the simulation. It is not necessary to
include left hand to the dataset generation because during training phase of the
neural dataset we can add augmentations to the input image such as flips and
rotations. In different setups we use hand with open palm gesture and pointing
with index finger. During dataset generation the hand position is changing. This
may be done randomly but we use a spatial linear pattern, where the fingertip
of the index finger is shifted in every iteration in one direction, at the end of the
area which is captured by the camera the fingertip is shifted in a perpendicular
direction, when the finger finishes the layer it is shifted by the selected increment
in the z-direction closer to the camera. With this pattern we ensure to capture
the object of interest in all positions of the workplace. Moreover we set a semi-
random orientation of the hand. Roll, pitch and yaw are limited in order to make
the hand visible in obtainable positions according to the real environment. In our
experiment we use limits ±90◦ for yaw, ±60◦ for pitch and ±30◦ for roll of the
hand. The combination of the position and the random orientation is checked
during two tests (Fig. 2). First test is a check if the majority of the hand is
visible within the camera field of view. Images with only fragment of the hand
may confuse the neural network. We check if the fingertip of the index finger and



326 A. Vysocký et al.

a point in the center of the palm are present in a truncated pyramid representing
the camera work-space. Second test is a check if an obstacle does not cover the
hand, this may occur when the obstacle position is closer to the camera than
the hand. Because we use obstacles of simple shapes, we test if the centroid of
the obstacle is within a certain distance in the X-Y plane to the point in the
center of the palm, if this occurs we check the Z coordinate (the depth) of both
of those points. When the obstacle is closer to the camera we move the obstacle
more further. If any of those two tests records a problem situation, the scene is
regenerated without capturing the image.

(a) (b)

Fig. 2. Tests for omission of invalid situations: (a) top view indicating the obstacle
within a monitored area of the hand on the left and the fingertip of the right hand
located outside the field of view of the camera, (b) side view indicating the position of
the obstacle closer to the camera than is the hand.

Tests are demonstrated in the Fig. 2. There are two situations in the scene,
hand on the left pass the first test because both fingertip and center of the palm
are within the camera field of view represented with blue color. The hand on the
right fails the first test because the fingertip is outside the truncated pyramid.
The hand on the left fails during the second test because the centroid of the
yellow cube representing the obstacle is within the observed distance and the
cube is closer to the camera than the hand.

2.3 Dataset Image

Output of this generator is a set of image couples (Fig. 3). Depth image of
the scene is saved as gray-scale image. 8 bit format allows to save the depth
in resolution of 256 values, this is approximately 4 mm of depth resolution if
a clipping distance is 1 m. This resolution may be sufficient for recognition of
bigger objects, such as the hand. If we want to detect more details, the depth
map may be stored in different format, we used 8 bit resolution in order to keep
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the size of the file small. Depth image is stored as a single channel 8 bit depth
gray-scale image.

Second image is a mask or ground truth for neural network training process.
The mask is binary and it is captured with a vision sensor which can detect only
objects of interest and the result of the depth sensor is transformed to binary
image. The image may be stored as single channel 1 bit depth gray-scale image.
Mask corresponds to the desired output of the neural network based recognizer.

Both images are saved directly from the CoppeliaSim software, further post-
processing is done with custom software tools based on OpenCV library. Images
are saved to separate folders with the same name for easy pairing in the training
process.

(a) (b)

Fig. 3. Output of the generator is a couple of depth image (a) and a binary label (b)
where white are pixels of the object of interest and black is the rest.

3 Synthetic Dataset Generation

In the first simulation scenario (Fig. 4), there is no static environment and
the camera is placed one meter above the plane surface. We simulate the floor
or the surface below the camera with a height-field which represents uneven
surface. In the real camera image there are surface irregularities but also some
reflections which can cause false irregularities on the flat surface. The height-field
is randomly generated. In our scenario we use a height-field which is wider than
the camera field of view and by changing position of the height-field below the
camera we make the background random. The height-field is generated from the
gray-scale image based on the Perlin noise. Perlin noise is a gradient type noise
which creates a very natural pseudo-random appearance. It is used in virtual
landscape simulation.

Obstacles in this test are simple shape primitives such as cuboid boxes and
cylinders. Long cylinders with a small diameter represent tools or pencils which
may occur in the scene and the shape is close to fingers. Moving the obsta-
cles to random positions and orientations creates a highly variable cluttered
environment.
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(a) (b)

Fig. 4. Simulation environment in CoppeliaSim software: (a) top view corresponding
to the view from the camera, (b) view from the side with visible height-field illustrating
the background noise.

Comparing the image made by real RGB-D camera (Fig. 5) to the dataset
generator output (Fig. 3) shows, that synthetic and real data is similar which
was intended in the experiment. Camera image was post-processed to remove
the shadow caused by the depth capturing technology which was shown on the
Fig. 1. We used a hole filling filter which fills in the missing values. Our custom
filter use a static background environment which is captured before the moving
objects appear in the scene, for different situations we can use different methods
which are also provided by the Intel RealSense camera. Basic filters use the
value based on the surroundings of the missing pixel. It can be either copied or
calculated to best fit to the missing region.

It is not necessary, that the hand, or the object of interest in general, is closer
to the camera than other objects in the background. Some recognizers use this
feature to separate the area with the hand from the background. In our system
we don’t take the object of interest as the object in the foreground but objects
of interest are labeled with the labeling vision sensor. This makes the system
more versatile but we need to handle the possible occlusions which may disrupt
the learning process.

If it is necessary to use higher resolution of the output image, there may be
problem with sharper edges in the simulation than in the real camera image,
where reflections on the surface and other disruptive effect cause that the shape
of the object is not as sharp as in the simulation. Further post processing, such
as a blur filter or another noise added to the image helps with unification of the
image.

In the second experiment (Fig. 7) we set the environment according to a real
workplace which is available in our laboratory. There is a robot Universal Robots
UR3 mounted to the table which is intended for human-robot cooperation during
assembly. The robot is capable of handling the maximal payload of 3 kg and the
operation radius is 500 mm. This robot is intended for collaborative operation
next to the human operator and it is certified as safe for collisions under a specific
circumstances (regulated velocity, safe tool and other safety precautions essential



Simulation Environment for Neural Network Dataset Generation 329

(a) (b)

Fig. 5. Image captured with a real RGB-D camera mounted 1 m above the ground,
scene includes objects of basic shapes and the hand: (a) RGB image of the scene, (b)
depth image with applied hole filling filter.

(a) (b)

Fig. 6. Augmentations used in the dataset: (a) different gestures may be used in the
simulation according to imported model of the hand, (b) selective blur filter applied to
the image may help to blunt the edges of the simulated objects and additional noise
represents different reflections and surface irregularities.

for the safe human-machine cooperation). The robot has six degrees of freedom
and the body of the robot is made of aluminium cylinders and plastic covers.
The plane of the working table is approximately one meter above the ground
which means that the standing operator can freely operate with his hands on
the table. One meter above the working plane is a platform where an RGB-D
camera is mounted same as in the first experiment. 3D model of the construction
of the workplace is imported to the simulation software and the virtual sensor
is placed to the same place as the real camera is mounted.
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(a) (b)

Fig. 7. Experimental workplace with the robot Universal Robots UR3: (a) Simulation
environment CoppeliaSim with imported workplace including robot UR3. Figurine has
a hand with pointing gesture mounted to the right arm. Output of the generator are
depth (upper) and label (bottom) images, (b) image captured with real camera at the
workplace in the laboratory.

Object of interest is a part of the figurine, hand and arm are visible for the
labelling sensor. The hand and arm are moving in the same pattern as in the
first experiment. Instead of random basic shape obstacles there is a robot which
is moving to random valid positions. Lightweight industrial robot as UR3 may
appear in the image very similar to the human arm. In this experiment we intend
to teach the neural network based recognizer to recognize the arm but to ignore
the robot during operation (Fig. 6).

4 Conclusion

Proposed synthetic dataset generator is able to generate large sets of labeled
images in a short period of time. Moreover the CoppeliaSim simulation environ-
ment may be operated in multiple instances on a single computer or it can be run
on more machines with different augmentations of the scene. In our experiment
we store the images on the hard drive of the computer, so for better operation we
try to minimize the size of the file. Size of the image 320× 240 pixels which was
used in the experiment was sufficient for the given scene and objects of interest.
We used a post-processing for dataset split into train/validation and test parts.
In this simulation environment this could be done by additional random process
or by random save to different locations without additional post-processing of
the dataset. By increasing the size of the dataset we can capture more details of
the scene, this may be necessary if we want to detect screw heads or small parts,
on the other hand bigger file takes up more space on hard drive which may be
significant in datasets including millions of images. Secondly the training phase
of the neural network gets longer with larger images. This also applies to the
inference phase where we need the time for recognition as short as possible to
ensure the operation without delays.
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The scene based on the imported workplace and a 3D scan of the hand in the
simulation is a source of images very similar to the images taken by the depth
camera in the real workplace. Simple post-processing of the simulated image or
the real camera image may further increase the similarity between those data
sources. Simulation image can be blurred for refinement of sharp edges or we can
add some additional noise to prepare the network for the real data. The noise and
unclear segments are cleaned from the real camera image. The setup of the real
camera and the properties of the post-processing of the generated images may
be tuned to get the best combination for reaching the best similarity between
generated images and real camera images in the specific environment.

With this generator we can simulate environment with some specific shapes
and characteristics typical in the industrial area. The dataset is more specific
and the neural network recognizer may be trained with stronger emphasis to the
specific workplace. 3D model of the workplace is usually available from the design
stage and is a part of documentation of the workplace. Therefore the process of
setup of the environment in the simulation software is fast. First tests with
the training of the neural network have very positive results and specification
of the training phase and comparing to the existing recognition ways will be
done in the further research. For industrial purposes we need to localise the
hand and recognise the gesture for a natural human robot interaction, there is
also a second purpose to use the localisation for safety reasons. In this case the
system must be very robust for predicting the collision between the operator
and a moving part of the machine and the operation must be without delays
and if possible close to the real-time operation. Basic dataset we intend to use
in semantic segmentation with hand area extraction. This may be used as an
input to the OpenPose network which requires color image with specified hands
locations. From the CoppeliaSim environment we can extract hands and fingers
joints positions and gesture types and train network for detection.
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