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Abstract. Every branch of the U.S Military, as well as foreign military agents,
have a vested interest in the broad applications and development of robotic sys-
tems. Advancements in data collection and storage capabilities has exposed an
opportunity to increase the utility of simulated environments. At the most basic
level, operations that involve robotic systems require detailed simulation envi-
ronments to test algorithms and edge cases. The wealth of information collected
from robotic platforms can be utilized to autonomously generate simulation envi-
ronments, which can provide a robust platform for enhanced decision-making
capabilities.

Current industry standards depend on labor intensive post processing methods
which generate static simulation environments. These simulation environments
lack much utility beyond controlled testing. To address this gap, we introduce
the foundational research for an intelligent simulation module, a system that uti-
lizes sensory data, collected from semi-autonomous robotic mapping platforms,
to generate in near-real time high fidelity digital twin simulation environments of
real-world locations. With this system, end-users will be provided with the details
they need to make operational decisions without the delay of post processing.

Our system bridges the ROS platform with Unity3D game engine to achieve
the generation of its simulated environments. Combat Engineer operations that rely
on autonomous robotic platforms will benefit from having a system that can gener-
ate high fidelity digital twin simulation environments to aid testing research, mis-
sion planning, and robotics control. In general, the intelligent simulation system
will allow for robust decision making in autonomous mobile robots, by improving
navigation, path planning, coordination between agents, and task planning.

This research has the potential of being utilized in hardware in the loop scenar-
ios where multi-agent control and coordination is required to complete a mission
thus advancing the field of cooperative estimation. Further, with the use of virtual
reality technology, an operator could potentially be inserted into an operation site
virtually; the virtual environment and agents operating within it would be parallel
to the physical site, and the operator can then possibly supervise, control, and
coordinate both virtual and real hardware robotic systems remotely.
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1 Introduction

This paper introduces the research, including the challenges and successes that we have
encountered while attempting to automate the process of generating a 3D simulated
environment which can be extended and further utilized with some additional research.

1.1 The Problem Space

Military engineers are presented with a broad scope of responsibilities that have a direct
impact on the built environment. One factor that is unique to the military engineer and
sets them apart from their civilian peers is the expectation to operate within austere
environments. The austere nature of these environments presents a significant amount
of risk to the field engineers assigned to analyze the potential usability of specified areas
of interest. To better carry out their mission, military engineers need to be provided with
the appropriate tools as well as accurate and robust sets of data. Current methods of
data collection provide a significant increase, both in the volume, and fidelity of data,
that engineering units have at their disposal. However, the process of converting this
data into a usable information platform is still a time consuming and resource intensive
process. The shortcoming of the current process sets the foundation of this research
effort. A concrete example is as follows; a military engineer is tasked with overseeing
a construction effort in an unknown environment. Data is collected on the unknown
environment, to provide the engineer with enough information for the planning and
execution of the mission. The system this paper proposes takes this data and automatically
generates a simulated environment; this simulated environment provides, to the engineer,
the collected information in a manner that is now easy to digest and actionable. The
engineer can interact with this simulation and plan out all the individual tasks for the
mission. The system this paper proposes also has the ability to display simulated vehicles
that can be synced to their physical counterparts, this means that engineers can also
monitor the whole operation in real time utilizing our system.

1.2 Interdisciplinary Topics

The sections below outline the approaches we took in analyzing modern processes of
collecting, storing, processing, and displaying data which include the use of robotic
and autonomous platforms. Our decision to explore Unity 3d was informed by related
research which conducted a comparative analysis of Gazebo and Unity [5, 16, 17] and
found that it offers a degree of extensibility that can be utilized in robotics applications.
Additionally, there has been a growing interest in connecting Unity to ROS [3, 4, 6] in
recent years. Even with recent developments in the field it is important to note that the
generation of a 3d simulation environments is inherently complicated, time consuming,
and resource intensive task.
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1.3 Primary Contributions

The primary contribution of this research is to create an enhanced 3D simulation environ-
ment which can be generated, updated, and displayed without relying on post processing.
An additional requirement of this research mandates that this environment should be gen-
erated with minimal input from the end users. By addressing the issue stated above with
an automated system we would enable the rapid utilization of data collected from the
field in near real time. The development of such a system carries significant implica-
tions in the development and application of multi robot systems [6, 7], training machine
learning algorithms [5], human machine interfacing via virtual and augmented reality
[8-10] and cooperative estimation. Our own internal research confirms that there is a
growing need for the capability to control and monitor multiple platforms in a safe and
efficient manner. Although the research detailed in this passage does not fully meet this
need, it begins to create a foundation that is robust and flexible enough to incorporate
these capabilities in future research efforts.

By the end of this effort, we have been able to generate a 3D simulated environment
without the extensive hassle of post processing. We were able to cut down the total time
and effort required to create a simulated environment while ensuring that the environment
accurately represents the real-world landscape where the data was collected. The findings
of this research are promising, however there remains a significant amount of work to
be done in order to optimize and further automate this process. This will be elaborated
on in the results section of this paper.

1.4 Paper Outline

Section 2 will give a brief overview of the technology and research that provide the
foundation for the efforts discussed in this paper. Section 3 will elaborate further on
related research before we delve into the technical details that address the primary scope
of this paper. Section 4 will provide the technical details that outline how we were able
to create our simulation environment. The related research section (Sect. 3) will make
use of the terms defined in the background section (Sect. 1) and will prepare the reader
to better understand the methods section (Sect. 4). Finally, Sect. 5 concludes this paper
by providing the results, limitations, and future efforts of our research.

2 Background and Rational

This section will briefly introduce the Robotics for Engineer Operations (REO) research
project that preceded the efforts outlined in this paper. By the end of this section there
should be a clear understanding of where our data sets come from, how they are pro-
cessed, and where they are stored prior to map creation. To do this we briefly introduce
the platform hardware, as well as the software dependencies that exist in our system.
Additionally, this section should provide an explanation of our objectives which will
later tie into our justification and the impact of applying this research.
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2.1 Project Background

The effort to explore autonomously generated simulation environments is an expansion
of the REO research effort being conducted at the Construction Engineering Research
Center. REO seeks to extend the capabilities of military engineer units into the modern
era by providing a semi-autonomous robotic platform which is capable of surveying
and accurately depicting real-world operating environments to expose any challenges
or obstacles that the warfighter might encounter. One outcome of this research to date
is the development of a large data storage system, which we refer to as the Site Model
Database. Proper utilization of the Site Model Database has allowed us to create a
data visualization system that is generated in near real time, without the need of post
processing, that provides the end user with a robust information system that can be used
to guide them in their decision-making process.

An in-depth description of the REO system is outside of the scope of this manuscript.
However, in order to explain our data acquisition strategy, it is necessary to provide
a high-level overview of the REO system. This REO overview can be found in the
system hardware section below. Additionally, the software section will cover the typical
workflow that is followed during data collection and processing.

2.2 System Hardware

The data collection portion of this research is carried out on a semi-autonomous robotic
platform which is designed to function in a completely offline environment by utilizing
standard simultaneous localization and mapping algorithms. The robotic platform that
we utilize can be retrofitted with sensor payloads that are specific to its individual mission.
For the purpose of this paper the platform was equipped with a 16 channel Velodyne
sensor which provides us with our primary point cloud dataset. In order to collect enough
information to enable the user to make robust decisions we also use stereo and mono
cameras to collect colorized image data. This data is combined with the lidar data in
order to create a depth image of the operating environment. In order to facilitate on board
processing the payload includes at least one Karbon 700 computers. In order to conduct
our tests we ran the program on Razor’s Blade 15 studio edition laptop.

The configuration presented above provides the general hardware pieces that are
needed to gather and process the data that we use to create our simulated environment.
To explain the software components of this research the next section will provide a brief
workflow and address the individual software pieces that are responsible for each section
of the workflow.

2.3 Software

Initially, our platform is introduced to the environment where it will begin collecting
data and building a map using iterative closest point (ICP). In an effort to increase the
ability for the platform to localize, our system ingests an initial set of a-priori data. This
a-prioi data is data which has already been previously collected and made available for
use. In our case the data sets we utilize as a-priori data are 2D GeoTiffs (Fig. 1).
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Fig. 1. A-prioi input and 3D mapped output

In order to facilitate the interchange of data between internal subsystems of our
platform we rely on ROS. ROS is a set of open-source software libraries and tools which
facilitate many common robotic operations [13]. Our data is sent through a series of
ROS nodes where it is translated and voxelated before it finally reaches our internal
database which we refer to as the Site Model Database. The voxel becomes a core data
structure, which is addressed below in the methods section. In order to work with the
large quantity of data that is collected in the map building process we chose to use a
non-relational database scheme which is currently facilitated by MongoDB. Once the
data has gone through some initial processing and is stored in the Site Model Database
it can be used to generate display outputs for 2D, 3D, and AR/VR systems. At this point,
the initial processing of data is complete, and it is now stored in a format that we can
work with to create a simulated environment inside of Unity 3D.

It is important to highlight some of the significant software dependencies that influ-
enced our design decisions of this system’s architecture. Perhaps the most significant
requirement belongs to ROS and Unity. ROS is compatible with Linux operating systems,
whereas Unity 3D is currently most stable on Windows. This set of requirements presents
a significant challenge in the attempt to create a bridge between the two operating sys-
tems. Fortunately, this issue has been addressed and has seen significant development
in previous years [1]. Some related research suggests that in the coming years and the
further development of ROS 2 will eliminate this dependency on a ROS-Unity bridge.
For now, this connection is made using previously explored socket technology and ROS
# [11]. For the purpose of comparability, it is important to note that this project used the
HTC Vive system for our virtual reality display. This system operates Steam VR which
is the software component for the HTC Vive. Any other dependencies and limitations
of this research will be elaborated on in the results and conclusion section of this paper.

2.4 Objectives

After conducting this research, it has become clear that there are multiple objectives that
can be obtained through continued advancement of this foundational research. First and
foremost, the objective of this research is to establish an applied framework for automat-
ing the creation of simulated environments which are identical to real world locations.
In essence, we aim to create digital twins of real-world operating environments in an
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autonomous fashion. This research establishes a proof of concept that carries significant
implications to future work which will be addressed below. With these implications in
mind, it is also an objective of this research to create an environment using software com-
ponents that are flexible and extensible. The intention of this environment is to enhance
the end user’s ability to view and interact with the data collected.

2.5 Justifying the Research

By creating a 3dimensional simulation environment that is accurate and reflects the
real-world operating environment we provide the end user with a data rich, responsive,
and integrated environment that is created for, tasks that involve the use of cooperative
estimation. There are two functional scales at which we operate at for this research. The
first is at the sensor-to-sensor level, where a suite of sensor work together to accurately
locate objects as they appear in the real world. Once this research is expanded the
capability to use and track multiple machines in the same operating environment can
be utilized to perform cooperative estimation as a means of confirmation of the systems
accuracy.

3 State of the Art

Past work in the area of modeling and simulation in the fields of robotics has focused
mostly on generating an accurate representation of a robotic agent that can be observed
and utilized in a simulated environment. This paper focuses on the simulated environment
itself; generating a simulated environment near-real time, that is as close to a real location
as possible so that robotic agents can be studied in this simulated space. In this section,
we will discuss some of the past works that are related to this research.

Babaians et al. make two contributions with their work. First, they propose a method
to interface ROS from the Unity engine. Second, they simulate various robotic sensors
such as LIDAR, RGBD and Monocular cameras in Unity. Although our work does not
share their objectives, it does shed some light on the advantages and shortcomings of
ROS# as ROS to Unity interface (which is the interface we use in our research). Their
work also highlights the tools and techniques available in Unity to simulate robotic
sensors, which is something that will be added to our system in future efforts. This paper
also highlights that: “Simulators cannot guarantee the final result for industrial or mobile
robotic applications since the success of off-line programming depends on how similar
the real environment of the robot is to the simulated environment” [1]. This statement
supports the need for a system like ours, that generates a simulated environment that is
analogous to the real environment the robot operates in.

Codd-Downey et al. develop in their work a virtual reality-based teleoperation inter-
face for autonomous systems by bridging ROS and Unity [2]. Utilizing their system, a
user can take control and teleoperate a robotic ground vehicle through a virtual reality
platform. The simulated environment that the user can drive the robotic vehicle through
is mapped by the robot utilizing a standard SLAM algorithm and afterwards it is pre-
stored and loaded into Unity as a particle system. Thus, the simulated environment in
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this system is static and offers little details to the user; in comparison, the system pro-
posed in our work generates dynamic maps that offer detailed information of the robotic
vehicle’s surroundings.

Hu et al. present in their work a real-time three-dimensional simulation system,
ROSUnitySim, for local planning by miniature unmanned aerial vehicles (UAVs) in
cluttered environments [3]. In this work the authors focus on sensor modeling (mainly
LIDAR), the interface between ROS and Unity and multiplatform control. This last
feature is something that we would like to add to our system in future efforts; the
ability to control and observer several robotic vehicles at the same time. The simulated
environment that was used to fly the simulated UAVs in this work was static. handcrafted
and did not necessarily resemble any real-life location. Handcrafting a map requires
time and effort from developers and it is not guaranteed to resemble the target real-
life location, thus here we see an example where our system would’ve been a better
environment choice for the simulated UAV flights.

4 Methodology

The following sections present the architecture of the Environment Simulation System
developed in this work. This research was conducted in order to generate a near-real time
simulated environment that is dynamic, immersive, and interactive. This section con-
cludes with a discussion of the separate components that comprise our system. Using the
processes outlined below we were able to successfully establish an automated approach
to displaying large quantities of data into an interactive simulated environment. The foun-
dational platform that was established with these methods can be used to improve the
level of detail provided to the end user and ultimately better inform their decision-making
process.

Linux Windows

Fig. 2. Architecture for the environment simulation system

4.1 Architecture

An overview of the proposed architecture can be seen in Fig. 2. As shown in the figure,
there are four main components that make up this system: the data pump, data processing
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module, database, and data visualization module. The general workflow of this system
is as follows; first, the data pump component introduces real-world data into the system.
This data is then used to generate the simulated environment. Next, the data processing
module takes in the real-world data, provided by the data pump, generates voxel objects,
and stores them in the database; it also handles one end of the interface between the
simulated environment and the robotic vehicle.

The Site Model database houses the voxel objects generated by the data processing
module. This database is where the voxel objects will be stored until they are called
upon for visualization. Finally, the data visualization module retrieves the voxels from
the database, generates the simulated environment, and renders the environment for
the user. Additionally, the data visualization module handles user input and facilitates
interactions between the simulated environment and the simulated vehicle. it also takes
care of user input and the other end of the interface between the simulated environment
and the robotic vehicle.

4.2 Data Storage and Utilization Components

This section will present an in-depth description of the backend of the developed system.
The components discussed in this section are responsible for gathering real-world data,
generating voxel objects, and storing said voxels.

Data Pump. The Data Pump gathers and introduces real-world data into the system
through its two main methods: the GIS maps and the robotic vehicle. In the first method,
we utilize GIS maps, which can be collected from either satellite imagery, or unmanned
aerial vehicle (UAV) imagery, to provide an accurate geographic description of the area
to be modeled by the system. All the pixels in these maps are geographic points tied
to real coordinates, therefore they introduce to the system a list of points with latitude,
longitude, altitude and RGBA color information that is then used to generate the voxels.

The second method of data collection utilizes our robotic platform. The J8 Atlas
Xtreme Terrain Robot robotic vehicle, is a ROS based electric, eight-wheeled, amphibi-
ous, and all-terrain mobile unmanned ground vehicle (UGV) [14]. Once this platform is
fitted with an array of sensors it can capture a detailed map of its surroundings and inject
this map into the simulation generator. Our J§ load-out is capable of gathering lidar data,
providing camera feedback, reporting its live GPS location, as well as other important
feedback data. Although the different data collected by the J8 are important, this system
is primarily interested in the lidar data. Using the lidar data, the Data Processing Module
can generate the voxel objects that make up the simulated world environment.

Data Processing Module. The Data Processing Module is responsible for managing
the interface between the system and the robotic vehicle. This module is also responsible
for generating and storing voxels, as well as managing the Linux end of the interface
between the robotic vehicle and the simulated environment. This module is comprised
of four components: the vehicle interface, the sensor data voxelization service, the ROS-
Unity interface, and the GIS data voxelization service.
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Due to the current limitations of ROS that are outlined in the related research section
above, each of these components operate within the Linux operating system. In order
to interact with the robotic platform directly, we placed the vehicle interface, ROS-
Unity interface, and the Sensor Data Voxelization service inside the ROS platform.
This design decision can be seen in Fig. 2. The Vehicle Interface is a series of ROS
scripts that enable communication and data transfer between the on-board computer(s)
in the robotic vehicle and the rest of the system. The ROS-Unity Interface handles
communication between the robotic vehicle and the simulated environment on the Linux
side of things. This component is essentially a bridge between Linux and Windows,
specifically between ROS and Unity. The ROS-Unity Interface mainly makes use of
ROSH#, a set of open-source software libraries and tools in C# for communicating with
ROS from.NET applications, in particular Unity [12].

Within the ROS# libraries, the ROS-Unity Interface utilizes the ROS package
file_server, which allows the system to transfer files between platforms. With this pack-
age the system can transfer the robotic vehicle URDF files (XML format that represents
arobot model) to Unity where the model is rendered for the user. Another important ROS
package used by the ROS-Unity Interface is the rosbridge_server, this package creates a
WebSocket connection that allows outside platforms to interact with ROS through JSSON
messages. The rosbridge_server package can receive JSON strings and convert them into
ROS calls, as well as convert ROS responses into JSON string. The ROS-Unity Interface
utilizes this package to transfer sensor data and teleoperation commands between the
two platforms. The GIS Data Voxelization service is a series of scripts that take GIS map
data and generate voxel objects with it. The service iterates through the pixels of a GIS
map and retrieves the following information from each pixel: geographical coordinates
(latitude, longitude, altitude), local pose (xyz coordinates based on the origin of the map
and x y z w orientation), and RGBA color information (red, green, blue, alpha).

With this information the service generates a voxel object that corresponds to each
pixel and stores it in the Site Model Database. The voxel object contains an id, the
type of material, its geographical coordinates, and its local pose. The type of material is
determined by the service utilizing a simple classifier based on the color information of
the pixel. Figure 3 shows the structure of a voxel object with details on the information it
holds. Once all the voxels are generated, they are inserted into the Site Model database.
The generation of our simulated environment happens in two phases. First the Voxels
that are created from GIS map data form are added into the environment. Once the GIS
generated voxels are added, the system ingests the data that was collected from the J8’s
sensors. After the J8 data is added, our simulated environment is complete.
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Fig. 3. Voxel object UML diagram

The last component of the Data Processing Module, the Sensor Data Voxelization
service, is a series of scripts that take in colorized point cloud data from the Vehicle
Interface and generate voxel objects with it. The service iterates through each point in
the point cloud data, extracts relevant information (abovementioned in the GIS Data
Voxelization service description), generates a voxel object for each point and inserts
them into the Site Model Database. This service is responsible for consistently updating
the simulated environment, thus any changes in the real-life environment captured by
the robotic vehicle will be reflected in the simulated one. Also, this service fills the
information gaps in the environment left by the GIS map data; for example, a GIS
map may have information on the roof of a building, but no information on any of its
walls, with the Sensor Data Voxelization service, it is possible to generate that missing
information and introduce it to the simulated environment.

Site Model Database. The Site Model Database component contains the data elements
required to create the simulated environment as a list of voxel objects. These voxel
objects are inserted by the Data Processing module and retrieved over the network by
the Data Visualization module. This database was set up utilizing MongoDB, a document
database that stores data in JSON-like documents. The advantages of using MongoDB
are its data flexibility (data structure can be changed over time), ad hoc queries, it is a
distributed database, and it is free to use. Figure 4 shows an example of a voxel object
stored in the Site Model database.
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Fig. 4. Voxel object example in the database

4.3 Data Visualization and Interaction

This section presents a detailed description for the frontend of the developed system.
The component discussed in this section is responsible for generating and rendering the
simulated environment, as well as managing the user interface.

Data Visualization Module. The Data Visualization module is responsible of manag-
ing the user interface, managing the simulated vehicle interface, generating and rendering
the simulated environment with voxel objects, and managing the Windows end of the
interface between the robotic vehicle and the simulated environment. This module is
made up of four components: the World Generation service, the Unity-ROS interface,
User Interface, and Sim Vehicle Interface. These components operate in the Windows
operating system and within the Unity game engine as seen in Fig. 2.

The World Generation service is a series of scripts that generate and render the
simulated environment based on the voxel objects available in the Site Model database.
The simulated environment is made up of quads (Unity primitive plane that has edges
of one unit long and its surface is oriented in the XY plane of the local coordinate space
[15]) that are meshed to form blocks (simple cubes with one-unit long sides), these
blocks are then meshed to form chunks and the chunks are lined up to form the world
or simulated environment. Figure 5 shows the structure of the simulated environment.
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Quad Block Chunk World

Fig. 5. Structure of the simulated environment

The steps taken to achieve the simulated environment generation and rendering can
be seen in the flowchart in Fig. 6 and 7. The Unity-ROS Interface makes use of ROS#.
Specifically, the following ROS# plugins are utilized: RosBridgeClient and UrdfIim-
porter. The RosBridgeClient plugin is the.NET API that interacts with ROS through the
rosbridge_server package and allows communication between the platforms from the
Unity side. The UrdfImporter plugin imports the robot’s URDF files to Unity, parses
them, and generates a model of the robot in the Unity environment (Fig. 8).
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Fig. 6. Left to right: generate chunk, generate block
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Fig. 7. Left to right: overview, generate world, generate chunk, generate block workflows.

The Sim Vehicle Interface is a series of scripts tied to the robotic vehicle simulated
model that allows the user to interact with the simulated robotic vehicle and with the
actual robotic vehicle. With this interface, and using the ROS# plugins, the simulated
robot could receive sensor feedback from the physical platform and display it for the
user. Additionally, it could receive user input (like teleoperation commands from Unity)
and execute them in the physical robotic vehicle. Thus, this interface permits a synchro-
nization between the simulated robotic model and the physical platform; it also gives
the user control over the simulated robotic vehicle in the simulated environment.



286 I. Toledo-Lopez et al.

Draw_Chunk(chunk) )

l

Create empty Unity game object
for chunk

l

‘ counter = 0
False

————————————>Counter < Chunk_Siz&:——————— 3 Combine all quads Into one mesh

l‘fxuu l
Attach mesh to empty game
object

‘ block = chunk[counter]

I |

Verify material of nelghbors to
determine If they are solid.

Create quads (Top, Bottom, Quads will be created for the sides
Front. Back, LeTt. Right) that have no solid neighbors
44 counter += 1

Fig. 8. Workflow for drawing a chunk

( Return )

The final component in the Data Visualization Module is the User Interface, which
is a series of scripts that allow the user input commands to interact with the simulated
environment and simulated robotic vehicle. The User Interface gives the user a Virtual
Reality (VR) and a First-Person control over the whole system. The VR controls were
achieved utilizing Unity’s XR Interaction Toolkit plugin. This plugin tracks the user’s
VR headset movement (in this case the HTC Vive Pro) to control the in-game camera
and the hand controllers to move around the simulated environment. The First-Person
controls were achieved with a series of Unity scripts, and they allow the user to control
the simulated robotic vehicle and move around the simulated environment with the use
of regular joystick controllers or with a mouse and keyboard.

5 Conclusion

5.1 Results

Through the efforts of this research, we have been able to connect the Site Model
Database system hosted in Linux to the Unity 3d platform hosted in Windows. The large
technical challenge here is presented by bridging these separate systems and allowing
them to properly communicate with each other without introducing significant lag and
without relying on postprocessing. This has been an issue that was thoroughly explored
in previous research. Once this was resolved we were able to pull large amounts of
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voxelated data (around 650,00 voxels that cover a radius of 250 m around the GIS map’s
origin) into the unity environment in approximately 6 min and 26 s. Figure 9 shows the
render time of the environment in relation to the number of voxels.
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Fig. 9. Graph of the number of voxels vs. the render time (in seconds)

This time expands in an inconsistent manner once we integrated the virtual reality
interface into the system. When conducting this exercise, we have experienced rendering
times of around 7 to 7:30 min. Table 1 shows the render time for the system in different
scenarios and with different combinations of elements integrated into the system, like
for example the virtual reality controller. As for fps (frames per seconds) performance,
we did not observe any change in performance in relation to the number of voxels, it
maintained a steady rate between 900 and 1000 fps. We did observe fps drops when we
integrated other elements into the system, for example by integrating the virtual reality
controller we observed the frames per second drop to around 42 fps. Table 1 shows the
frames per second observed in the different test scenarios. At this point the ability to
automate the production of digital environments has been established.

With the current state of the research, we have been able to establish Unity 3d as a
flexible environment. Using Unity, we have been able to establish control of a camera
avatar allowing a user to navigate the world freely. Additionally, we have been able to
establish rudimentary control of a simulated robotic platform and drive it around the
simulated world. Additional work is needed to improve this system to add more features
and increase its utility. These improvements are discussed in the future work section.
Screenshots of the product can be seen in Fig. 10.
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Table 1. Scenario based performance comparisons based on render time

Sim objects rendered Render time (minutes/seconds) Frames per seconds
World 6:26 900

World & sim. robotic vehicle 6:27 700

World & first-person controller | 6:26 84

World & VR controller 7:30 45

World & VR controller & sim 7:31 42

robotic vehicle

Fig. 10. Left: J8 rendered in simulation. Right: Simulated environment output

5.2 Future Work

The previous section established that we have successfully created an automated work-
flow for generating a 3D Simulated environment inside of Unity. Additionally, we have
established the ability to navigate a viewport around the environment as well as control a
simulated robot. This research confirmed that Unity is collaborative and flexible enough
to handle additional capabilities with further research.

Short term work will focus on optimizing the display and generation of the world
environment. The goal of this effort will be to establish a consistent and reliable load time
while increasing the resolution of displayed data. Additional work efforts will focus on
utilizing the connection between the simulated platform and the real world platform, to
simulate several different robotic sensors, increase the level of control the user can exhibit
within Unity, add user interface options that take provide better situational awareness
to the end user, increase the level of automation in this process, add the ability to send
world modification updates back to the site model database, and explore this platform’s
potential to control multiple real world robots. Once this final effort is complete this
system would be able to utilize cooperative estimation algorithms as a means of redundant
verification of real-world object placement.
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