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Evolution of Sports Ultrasound

Jeffrey Smith, Allison N. Schroeder, 
Alexander R. Lloyd, and Kentaro Onishi

 Introduction

The history of ultrasound (US) in sports medicine 
dates back to the 1940s when it was first used as a 
diagnostic imaging modality by Karl Dussik to 
image brain tumors [1]. That application expanded 
into musculoskeletal (MSK) evaluation in 1958 
when US was used to measure the attenuation of 
articular and periarticular tissues [2]. The technol-
ogy and image quality further improved over the 
following decade, eventually leading to a paper 
documenting the ability to differentiate a Baker’s 
cyst from thrombophlebitis [3]. From here, the 
use of US in athletes expanded beyond the MSK 
system. Echocardiography was first used in the 
1970s to measure left ventricular end-diastolic 
volume and ventricular wall thickness and mass in 
an effort to diagnose athletic heart syndrome [4].

Ultrasound’s progress was eclipsed in the 1970s 
and 1980s by computed tomography (CT) and mag-

netic resonance imaging (MRI), both of which 
became the advanced imaging technologies of 
choice for the evaluation of MSK and sports medi-
cine conditions. CT was most useful in identifying 
bony pathology typically missed on plain films 
including stress fractures and small intra-articular 
fractures. MRI became popular for its ability to 
delineate soft tissues better than any existing imag-
ing technique [5–12]. Despite its early promise, the 
subpar spatial resolution and operator dependency 
of US during this period relegated it to a few spe-
cific applications outside of the MSK system.

However, further technological progress in the 
1980s and 1990s led to renewed interest in apply-
ing US to the MSK system, particularly for mus-
cle, ligament, and tendon pathology [13–16]. 
Rheumatologists were the first to widely adopt 
diagnostic US use and were the first to deploy it 
for procedural guidance during joint aspiration 
[17, 18]. Orthopedic surgeons soon recognized the 
value of US after several papers correlated sono-
graphically identified rotator cuff pathology with 
arthrography [19] and postoperative function [20]. 
Subsequent studies documenting the superiority of 
US compared to standard radiographs in the diag-
nosis of transient synovitis of the hip in children 
also strengthened the case for its utility [21, 22].

The publication of the first MSK US textbooks 
in the 1990s led to broader awareness of the ways 
US could be used for diagnostic evaluation and 
interventional procedures in sports medicine and 
orthopedics [23, 24]. US was subsequently shown 
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to make injections more accurate than similar 
injections done with landmark guidance for most 
peripheral joint and soft tissue injections, further 
boosting its popularity [25]. With increased inter-
est, US imaging evolved in the early twenty-first 
century as spatial resolution improved and porta-
bility increased [26]. Between 2000 and 2009, 
there was a 316% increase in procedural use of 
MSK US [27].

Today, the term “sports US” refers to the use of 
US for both diagnostic and therapeutic indica-
tions in sports medicine and includes the diagnos-
tic and interventional use of US for MSK 
conditions as well as the diagnostic use of US to 
evaluate non-MSK conditions in athletes [28–32]. 
The recent development of US-guided procedures 
indicates the ongoing interest in applying this 
technology to improve upon current procedural 
techniques [33–35]. This chapter will describe the 
current utility of diagnostic and interventional US 
in sports medicine. It will also review uses of US 
in procedures and emerging technologies address-
ing current limitations in US imaging.

 Diagnostic Ultrasound in Sports 
Medicine

 Advantages of Diagnostic Ultrasound 
in Sports Medicine

There are a number of advantages of diagnostic 
US compared to other imaging modalities such 
as x-ray, MRI, and CT (see Table  21.1). With 
increasing portability, US can be brought to the 
training rooms, injury clinics, or even athletic 
events to assist in a timely diagnosis and proper 
triaging for sports injuries from every organ sys-
tem [36–40]. Advances in telecommunications, 
such as fifth-generation (5G) wireless, allow 
ultrasound scanning to be remotely guided by an 
experienced practitioner and real-time dynamic 
imaging for faster diagnosis [41, 42].

US also offers high spatial resolution of soft 
tissue and neurovascular pathology. A 10 Mhz 
US probe can achieve axial in-plane resolution 
of approximately 150 μm, significantly more 
than the resolution of common clinical MRI 

machines which only reach 450 μm [43]. One 
study compared MRI and US in detecting periph-
eral nerve pathology and found better sensitivity 
with US, while the two were equivalent in speci-
ficity [44]. Because of this high resolution, ultra-
sound has proven to be a cost-effective diagnostic 
tool for sports injuries, and if utilized for appro-
priate indications, it has been shown to poten-
tially save billions of dollars [45–49]. Its 
real-time assessment allows for dynamic imag-
ing of pathology that may be missed using static 
imaging such as CT or MRI [50, 51]. It has the 
benefit of providing imaging of the healthy con-
tralateral side providing a control for compari-
son [52, 53].

Chronic musculoskeletal diseases such as 
knee OA, which are more prevalent in athletes, 
often require imaging to assess severity of dis-
ease [54, 55]. As the association of ionizing radi-
ation exposure and cancer risk has become better 
understood, the potential for significant radiation 
exposure over athletes’ lifetimes has raised con-
cern [56–58]. Ultrasound can provide equivalent 
imaging for the assessment of disease progres-
sion, such as OA-associated pathology, without 
any of the risks from ionizing radiation exposure 
[59–61].

Due to higher prevalence of chronic musculo-
skeletal diseases, athletes are more prone to joint 
replacement during their lifetime than in the gen-
eral population [55, 62, 63]. Evaluation of peri- 
prosthetic soft tissue can be difficult using CT or 

Table 21.1 Advantages of diagnostic US

Advantages of diagnostic US
Portable
Superior spatial resolution over MRI for soft tissue and 
neurovascular imaging
Cost-effective
Real-time, dynamic imaging
Ease of side-to-side comparative study
Less ionization compared to radiographs and CT
Lack of artifact or distortion near metal hardware
Movement artifact does not impede evaluation
Real-time vascular imaging (Doppler, SMI)
Tissue characterization (shear wave elastography, strain 
elastography, US tissue characterization)

MRI magnetic resonance imaging, CT computerized 
tomography, SMI superb microvascular imaging, US 
ultrasound
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MRI due to metal artifact obscuring structures 
[64, 65]. US is effective in detecting peri- 
prosthetic infections which are a leading cause of 
cause for revision of THAs and TKAs [66, 67]. 
Early identification of these infections to avoid 
revision due to septic loosening could reduce risk 
of prolonged postoperative pain due to septic 
joint replacement [68].

Ultrasound has the advantage of avoiding 
interference from motion artifact which are noted 
issues with CT and MRI assessment [69, 70]. It 
also has superior vascular imaging capability 
such as color and power Doppler which allow the 
identification of pathology such as muscle, ten-
don, and bone injury and permit the identification 
of vessels during ultrasound-guided procedures 
to limit complications [71, 72]. Neovasculariza-
tion has been identified as a key finding in tendi-
nosis, and advances in ultrasound technology 
such as superb microvascular imaging (SMI) 
have improved the identification of this pathol-
ogy compared to color or power Doppler [73–
75]. Other advances such as elastography or 
tissue characterization go beyond standard imag-
ing with B mode and allow for a more thorough 
assessment of mechanical properties of soft tis-
sues [76, 77].

 Broad and Expanding Applicability 
of US Beyond Traditional MSK 
Applications

As discussed elsewhere in this book, US can be 
used to evaluate ligaments, muscles, nerves, ten-
dons, and vessels at the point of care [78–80]. 
However, the use of US in the diagnosis and 
treatment of athletes has expanded beyond the 
MSK system. In a study of ultrasonography at the 
2008 Beijing Olympics, US was found to be the 
imaging modality of choice in the Olympic vil-
lage polyclinic and was most commonly used to 
evaluate abdominal complaints (41% of US 
exams performed) [81]. US’s portability, real- 
time results, and accuracy made it an ideal tool 
for initial imaging at a large sporting event where 
transportation to local imaging facilities may be 
complicated or lead to delayed diagnosis. The 

use in imaging abdominal complaints highlights 
the technology’s utility beyond evaluation of the 
MSK system.

 US in Sports Medicine: Organ System 
Evaluation

Significant literature exists regarding the use of 
US for the evaluation of sports-related injuries. 
This section will highlight relevant organ sys-
tems and diagnoses for which US evaluation 
can be used in sports medicine and will include 
a discussion of the ways in which US evalua-
tion can facilitate a more rapid and accurate 
diagnosis.

 HEENT

Ocular Evaluation
Ocular examination with US is routinely used by 
radiologists, ophthalmologists, and emergency 
medicine physicians as a rapid, radiation-free, 
and accurate way to evaluate structures of the eye 
[82, 83]. Sports-related eye injuries account for 
approximately 1.5% of all sports injuries with 
higher rates in baseball, basketball, and racquet 
sports [84–87]. For some athletes, these injuries 
can lead to long-term vision loss [88]. US can 
serve as a triage tool on the sidelines to screen for 
severe eye injuries after trauma and is not hin-
dered by hyphema or lid edema often present in 
these injuries.

Frequent pathologies seen in sports settings 
amenable to US evaluation include retinal detach-
ment, retinal hemorrhage, and lens dislocation or 
subluxation (Fig.  21.1). Retinal detachment 
requires rapid diagnosis and referral for interven-
tion and can be readily visualized with US89. 
Untreated, symptomatic retinal detachment can 
progress to complete detachment within days and 
can result in complete loss of vision. Given the 
low incidence of retinal detachment among eye 
injuries in athletes, US is especially useful for 
ruling out a detachment in the setting of acute 
vision changes [90–92]. Research has shown that 
non-radiology specialists can be trained to reli-
ably use US for the identification of retinal 
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Fig. 21.1 Ocular US: 
globe on the left reveals 
a detached retina which 
is visualized as a 
hyperechoic line anterior 
to the posterior wall; the 
right is normal

detachment with sensitivity ranging from 97 to 
100% and specificity from 83 to 100% [89, 93, 
94]. Retinal hemorrhage and lens dislocation or 
subluxation can also be visualized during the 
same examination, facilitating rapid triage for 
emergent care and early warning to the  emergency 
department if urgent ophthalmologic evaluation 
is needed [82].

Ocular US can also be used for an assessment 
of elevated intracranial pressure (ICP) after head 
trauma. The optic nerve sheath is contiguous 
with the dura mater and expands when ICP is 
elevated. This expansion can be seen on US [95, 
96]. A meta-analysis reviewing studies that com-
pared optic nerve sheath diameters on US to CTs 
with findings suggestive of intracranial compres-
sion suggested a cutoff of sheath diameter of 
5mm in adults was 95.6% sensitive and 92.3% 
specific for elevated ICP [97].

Exercise-Induced Laryngeal Obstruction
Exercise-induced laryngeal obstruction (EILO), 
often referred to as vocal fold dysfunction, is an 
uncommon and likely underrecognized cause of 

breathing complaints in sport [98, 99]. The pre-
cise etiology is not well understood and is 
believed to have multiple independent causes 
that result in partial obstruction of the airway 
during exercise [99–101]. The presenting symp-
toms of EILO are very similar to those of 
exercise- induced asthma, resulting in frequent 
misdiagnosis [99, 101]. These symptoms include 
difficulty breathing, chest discomfort, wheezing, 
dry cough, and a feeling of throat constriction 
that doesn’t respond to standard asthma treat-
ment [102]. Fiber-optic video laryngoscopy is 
the gold standard for diagnosis, but requires spe-
cialized clinical space and equipment, which is 
often not available to sports medicine physi-
cians, especially when symptoms are occurring 
[101]. Since symptoms may be context depen-
dent and are transient, US offers the possibility 
of sideline evaluation and possible diagnosis 
while the athlete is symptomatic. One study 
demonstrated the ability to differentiate para-
doxical vocal fold motion from normal vocal 
fold motion with US, but additional research is 
needed for confirmation [101].

J. Smith et al.
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 Chest

Echocardiography
While rare, the most common cause of death in 
sport is sudden cardiac death [103]. These deaths 
are often preventable with adequate screening, 
but the type of screening and population to screen 
is debated [104, 105]. The history and physical 
exam (H&P) with or without electrocardiogram 
(EKG) are typically used as screening tools in the 
preparticipation evaluation (PPE) of athletes, but 
their effectiveness in disease identification is 
questioned [106]. A comprehensive review by 
Harmon et  al. found that the pooled sensitivity 
for the history was 20% (range 7–44%) and 9% 
for the physical exam (range 3–24%). Both were 
more specific at 94% and 97%, respectively, but 
sole use of the H&P will likely omit athletes 
potentially at risk [106]. While EKG is both sen-
sitive and specific at 94% (79–98%) and 93% 
(90–96%), respectively, it lacks portability and 
comes at a monetary cost [106]. Additionally, 
EKG may have a high false-positive rate, partly 
as a result of physiologic cardiac changes that 
occur in athletes and the variability in criteria 
used to define pathology in those settings [106, 
107]. These false positives can exclude healthy 
athletes from play while subjecting them to pro-
longed and expensive workups [108, 109].

US has a long history of use in cardiology set-
tings. While current data is insufficient to report 
well-defined sensitivity and specificity, some 
research has shown that echocardiography com-
bined with EKG might decrease the false- positive 
rate and reduce the need for subsequent cardiol-
ogy referrals [110–112]. One study of 3100 male 
soccer players who were screened with echocar-
diography found several cardiac anomalies 
missed by H&P and EKG, although most were 
mild valvular abnormalities with unclear clinical 
significance [113]. Severe abnormalities were 
rare in the study, and all that were present had an 
abnormal EKG [113].

The Early Screening for Cardiac Abnormalities 
with Preparticipation Echocardiography 
(ESCAPE) protocol was developed specifically 
to screen for the most concerning cardiac anoma-
lies in athletes using US. It examines the end- 

diastolic interventricular septal thickness, left 
ventricular diameter, left ventricular wall thick-
ness, and aortic root diameter [110, 114, 115]. 
Initial studies on this protocol have shown simi-
lar rates for the detection of anomalies between 
cardiologists and non-cardiologists [110, 116]. 
The role of screening echocardiography is still 
being debated and should not replace the H&P or 
EKG until more comprehensive and systematic 
research has been performed.

Rib Fracture and Pneumothorax
The etiology of chest pain after trauma can be 
difficult to determine acutely. Blunt trauma to the 
thorax can result in rib fracture, which is conven-
tionally diagnosed with radiographs. However, 
US has been shown to be equivalent or superior 
to radiographs for rib fracture diagnosis, and its 
portability allows for rapid evaluation on the 
sideline or in the training room [117, 118]. On 
US evaluation, fracture is seen as a discontinuity 
in the usually smooth, hyperechoic contour of the 
rib [117].

Pneumothorax is a common sequelae of rib 
fractures and can be evaluated and diagnosed 
with US using several techniques [119]. The 
absence of lung sliding, absence of B lines, and 
presence of A lines indicate pneumothorax [119–
121] (US findings described in Table  21.2) 
(Fig. 21.2). The absence of lung sliding and pres-
ence of A lines have a sensitivity and specificity 
of 94 and 95%, respectively, for the diagnosis of 
pneumothorax [119]. Evaluation can be per-

Table 21.2 US findings in the lung exam for pneumo-
thorax. US, ultrasound

US in the lung exam for pneumothorax
US 
findings Description of finding
A lines Repetitive reverberation artifact of the 

pleural line
B lines Wide bands of hyperechoic artifact that 

originate at the pleural line and traverse the 
entire US screen in vertical orientation

Comet tail 
artifact

Short hyperechoic artifacts that originate at 
the pleural line and only traverse a portion 
of the screen in vertical orientation

Lung 
sliding

Parietal pleura sliding against visceral 
pleura with breathing

21 Evolution of Sports Ultrasound
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Fig.  21.2 Lung US: comet tail artifact in the upper right 
extending downward from the pleura; A lines are notable 
throughout the image; no B lines are present

formed by non-radiologists where x-ray equip-
ment may not be readily available or ambient 
noise may be too loud to permit auscultation 
[121–123]. The diagnostic sensitivity and speci-
ficity of US evaluation are superior to upright 
anterior to posterior chest x-ray and similar to CT 
scan of the chest, which is the gold standard for 
the diagnosis of pneumothorax [90, 124]. The 
portability of US allows for point-of-care pneu-
mothorax evaluation and rapid referral for care if 
present.

 Abdomen

Extended FAST (eFAST)
The Focused Assessment with Sonography in 
Trauma (FAST) was developed in the 1990s to 
identify abnormal intraabdominal fluid or solid 
organ injury in the setting of blunt thoracoab-
dominal trauma [125, 126]. It includes evaluation 
for hemoperitoneum, liver injury, hemopericar-
dium, pericardial or cardiac injury, and splenic or 
renal injury and should take the operator 5 min-
utes or less to perform [125, 127, 128]. The FAST 
examination was expanded to include the evalua-
tion for pneumothorax and hemothorax and 
termed the extended FAST (or eFAST) examina-
tion. These exams can be performed rapidly, help 

to triage athletes, do not increase the time to 
intervention in the emergency department, and 
may decrease the number of missed life- 
threatening injuries [127]. However, further 
research is needed to support its use in sports- 
specific environments [29].

Splenomegaly Monitoring 
in Mononucleosis
Infectious mononucleosis is the clinical mani-
festation of Epstein-Barr viral infection. While 
common symptoms include fatigue and malaise, 
transient splenomegaly is the most concerning 
effect of mononucleosis for athletes [129, 130]. 
Splenic rupture is a rare, but potentially fatal, 
complication of return to sport in the setting of 
splenomegaly [130]. While contact sports are 
most commonly associated with reports of 
splenic rupture, rupture can rarely occur with 
significant Valsalva in non-contact sports [130]. 
As a result, athletes are often prevented from 
returning to play for 3 to 4 weeks after disease 
onset to ensure resolution of their transient sple-
nomegaly [130].

US evaluation of the spleen has been proposed 
as a possible method to monitor splenomegaly 
and determine timing for safe return to play. 
However, there is significant interindividual 
sonographic variability of spleen size, making 
normal values difficult to establish [130, 131]. 
Without consistent baseline measurements, true 
splenomegaly is difficult to define and cannot 
guide return-to-play decisions as a result. It is 
possible that baseline measurements followed by 
serial scans would prove useful, but this is 
resource-intensive and likely impractical in many 
settings. More research is needed to determine 
the role of US in the evaluation of splenomegaly.

Abdominal Muscle Evaluation
Abdominal muscle pathology can often be visu-
alized with US. Pathology can include herniation 
of abdominal musculature through its fascial 
plane or injury to the musculature itself with a 
resulting defect and herniation of fat or abdomi-
nal contents. Spigelian hernias are rare, occur at 
the edge of the rectus abdominis along the linea 
semilunaris, and may be difficult to identify with 
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static imaging modalities [132, 133]. These her-
nias commonly contain fat, but can contain bowel 
and are seen on US protruding ventrally through 
the linea semilunaris with Valsalva [133]. 
Epigastric, umbilical, and incisional hernias can 
all be visualized as an outright defect in the 
abdominal wall or with ventral protrusion of 
abdominal contents with Valsalva [134]. Care 
should be taken to apply light transducer pressure 
when attempting to visualize herniation in these 
areas since it may be prevented or reduced with 
heavy pressure [135].

Injury to the abdominal musculature can also 
be visualized with US, including injury to the 
rectus abdominis, internal and external obliques, 
and transversus abdominis [136–139]. These 
injuries are often seen in throwers, who generate 
significant rotational forces in order to properly 
execute the throw [140]. These injuries appear on 
US as disruption of the fibrillar architecture of 
the muscle and areas of hypoechogenicity at the 
site of pain and are thought to represent hemor-
rhage, edema, and muscle fiber disruption [137].

Inguinal and Femoral Hernia Evaluation
US evaluation is often used to visualize hernias 
because they can be dynamically imaged during 
provocation maneuvers. Hernias may cause dif-
fuse and nonspecific pain in the groin and lower 
abdomen, making it difficult to differentiate from 
other pain generators and difficult to diagnose 
based on physical exam alone [141, 142]. 
Inguinal hernias are most common in men and 
can be either indirect or direct [143]. Indirect her-
nias involve herniation of abdominal contents 
through the deep inguinal ring and are visualized 
on dynamic US as tissue extension lateral to the 
external iliac vessels or inferior epigastric vessels 
[133, 144]. Direct hernias involve herniation of 
abdominal contents directly through Hesselbach’s 
triangle in the abdominal wall, and dynamic US 
evaluation will show abnormal anterior move-
ment of tissue medial to the inferior epigastric 
vessels [133, 144].

Femoral hernias are the most common type of 
hernia in women [145]. They occur below the 
level of the inguinal ligament, and dynamic US 
evaluation will reveal superior to inferior hernia-

tion of abdominal contents into the femoral canal 
medial to the femoral neurovasculature and ven-
tral to the pectineus muscle [133, 144].

Hernia Mimickers: Groin Pain 
in the Athlete
Evaluation of groin pain in the athlete should 
include examination of pain generators in the 
area, particularly if a true hernia is absent. “Sports 
hernia” and “athletic pubalgia” are ambiguous 
terms often used to describe groin pain in athletes 
and generally do not reflect a hernia of any kind. 
Instead, they encompass the broad differential of 
gastrointestinal, MSK, or neurologic pathologies 
that may cause groin pain, including intraarticu-
lar and periarticular hip joint pathology, muscu-
lotendinous injuries (including abdominals, hip 
adductors, and iliopsoas), inflammatory bowel 
disease, or nerve entrapment syndromes [146, 
147]. US can help narrow this broad differential 
diagnosis through its ability to evaluate the 
abdominal wall musculature (as described 
above), the rectus abdominis/adductor plate, and 
the adductor tendon origin dynamically at high 
resolution [141, 146] [148]. Additionally, the 
iliopsoas can be scanned dynamically to evaluate 
for snapping iliopsoas tendon [149, 150]. Nerves 
that can contribute to groin pain, including geni-
tofemoral nerve, obturator nerve, or medial fem-
oral cutaneous nerve, can also be evaluated 
[151–153].

 MSK
US evaluation of the MSK system is covered in 
extensive detail in Chaps. 5, 6, 7, 8, 9, 10, and 11 
of this book. US is effective for the evaluation of 
a wide variety of MSK complaints, including 
major joints, muscles, tendons, and ligaments in 
the extremities [28].

 Peripheral Nerve Injuries
Peripheral nerve injuries are believed to be rare in 
athletes but may just be underrecognized by cli-
nicians [154]. Peripheral nerve injuries can con-
tribute to significant pain and inability to return 
to play [155, 156]. While electrodiagnostic test-
ing (EDX) is the most common method to local-
ize and determine the nature of these lesions, 
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diagnosis is often delayed by the one to several 
weeks it takes for EDX to be positive [157]. 
During this time, athletes may be symptomatic 
and unable to return to play without an accurate 
diagnosis to guide effective treatment. While US 
is not a substitute for EDX, it can assist in local-
izing nerve injury and facilitate diagnosis and 
early management [158, 159]. The development 
of high-resolution US (HRUS), typically defined 
as 12 MHz or greater depending on the depth of 
evaluation, allows for the evaluation of nerve or 
fascicle enlargement indicating compression or 
irritation and visualization of small nerves that 
would be difficult or impossible to evaluate with 
EDX and that may not be adequately visualized 
on MRI [158, 160–164]. US examination is also 
less painful than EDX testing and may be better 
tolerated than EDX. Finally, US can supplement 
EDX since EDX is a physiologic test that evalu-
ates the strength and speed of nerve conductions, 
while US evaluates other characteristics such as 
morphology of the nerve and nerve fascicles or 
nerves’ relationship to surrounding structures 
that might contribute to nerve irritation 
[165–172].

Characteristics of nerve injury seen on US 
include increased nerve or fascicle cross- sectional 
area due to edema, increased connective tissue 
formation from scarring, thickened and hyper-
echoic epineurium, or a hypoechoic internal 
appearance [169, 173, 174]. A study of nerve 
characteristics in peripheral nerve compression 
found increased transverse cross-sectional area 
(CSA) was most reliable for the diagnosis of 
nerve injury [175]. Several neuropathies that can 
be identified on US are described below, but this 
is not a comprehensive list, and research on 
peripheral nerve evaluation with US is ongoing.

Median Nerve
Carpal tunnel syndrome (CTS) is the most com-
mon mononeuropathy in the general population 
and is also common among wheelchair athletes 
[176, 177]. US has been used in the diagnosis of 
CTS and has shown sensitivity and specificity 
similar to EDX in several studies while also 
allowing immediate therapeutic injection or 
US-guided transverse carpal ligament release 

[178–183]. CSA of the median nerve at the inlet 
of the carpal tunnel has been found to be most 
sensitive and specific in diagnosing CTS [184]. 
While normal nerve size can vary and exact cut-
offs are still debated, median nerve CSA between 
9.0 and 12.6mm2 measured at the inlet has been 
shown to have sensitivity of 81% and specificity 
of 84% [184]. The color Doppler, power Doppler 
sonography, and contrast-enhanced ultrasonogra-
phy can be used to identify median nerve hyper-
emia in the acute stage of CTS [185–187]. Superb 
microvascular imaging (SMI) is a novel technol-
ogy which allows improved visualization of flow 
of both small and large vessels without requiring 
contrast enhancement and may be more sensitive 
to detecting blood flow changes due to CTS [188, 
189].

Ulnar Nerve
The second most common upper extremity neu-
ropathy is ulnar entrapment, often at the ulnar 
groove of the cubital tunnel, less frequently 
caused by the humeroulnar arcade [190]. This 
occurs with compression or recurrent subluxation 
of the nerve. While entrapment at the elbow 
occurs most commonly in baseball players, it can 
occur at the hand or wrist, especially in Guyon’s 
canal between the pisiform and the hook of 
hamate in wheelchair athletes, cyclists, and ski-
ers [191, 192]. While EDX remains the gold stan-
dard for the localization of ulnar neuropathy, 
diagnostic accuracy improves when US is per-
formed concomitantly [193, 194]. The normal 
ulnar nerve size varies between individuals and 
anatomic location, but some suggest a cutoff of 
10 mm2 or greater as a diagnostic of cubital tun-
nel syndrome [195]. One study of patients in 
whom EDX was unsuccessful in  localization 
found all injury locations were identifiable with 
HRUS [196].

Sciatic Nerve Branches
The common fibular nerve is frequently injured 
through direct trauma in football, hockey, and 
soccer players as it is superficial and prone to 
trauma at the lateral knee near the fibular head 
[197]. It is also susceptible to repetitive stress in 
runners [198, 199]. The tibial nerve can be 
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injured in combination with the fibular nerve in 
acute ligamentous knee injuries, dislocations, 
fractures, or entrapment in tarsal tunnel syn-
drome at the medial ankle [200]. Both nerves can 
be visualized at the posterior distal thigh and can 
be traced to determine if and where injury 
occurred, providing diagnostic value comparable 
to that of MRI [201–205].

Lateral Femoral Cutaneous Nerve
Meralgia paresthetica, or neuropathy of the lat-
eral femoral cutaneous nerve, is another com-
monly discussed focal mononeuropathy 
described in gymnasts, baseball players, and soc-
cer players [206–210]. Diagnosis of this injury 
with EDX is possible, but can be technically dif-
ficult and may be significantly limited by body 
habitus [211]. Multiple reports have demon-
strated HRUS is useful in identifying nerve 
entrapment at the lateral end of the inguinal liga-
ment and for performing guidance diagnostic 
blocks and pain relief [212, 213].

Brachial Plexus
The brachial plexus is a common area for neuro-
pathic injury in sports, especially those involving 
blunt trauma [214]. While most brachial plexus 
injuries are “stingers” that cause transient motor 
and sensory symptoms, others like neurogenic 
thoracic outlet syndrome (nTOS) result can also 
result in injuries to brachial plexus structures 
[215]. nTOS is the most common type of thoracic 
outlet syndrome comprising more than 95% of 
cases and can result from cervical trauma or from 
repetitive overhead activities that result in rela-
tive hypertrophy of muscles such as the pectora-
lis minor that can compress the brachial plexus 
and cause symptoms consistent with lower trunk 
brachial plexopathy [216]. While still under 
debate, US may be useful in identifying anoma-
lous fibromuscular bands, sometimes referred to 
as “Roos ligaments,” compressing the lower 
trunk of the brachial plexus and causing nTOS 
[217]. It can also be useful in evaluating pectoral 
muscles for compression and tension placed 
upon the medial and lateral cord [218, 219]. 
Nerve compression between the clavicle, first rib, 
and scalene muscles due to muscle hypertrophy 

can cause brachial plexus compression and 
occurs more frequently among overhead athletes 
compared to the general population [220]. 
Ultrasound can identify the entrapment and guide 
anesthetic injection to the anterior scalene mus-
cle to promote relaxation which correlates with 
good surgical outcomes [221, 222]. EDX can 
identify lesions that result in prolonged symp-
toms, but abnormalities will only appear after 
several weeks of persistent symptoms. US is 
capable of immediately visualizing nerve roots 
from the vertebral foramina through the trunks, 
divisions, cords, and branches to the axillary 
region, potentially providing earlier visualization 
of significant pathology and more rapid subse-
quent intervention although the clavicle can 
interrupt visualization from the supraclavicular 
area to the subpectoral area [223].

 Vascular Injuries
While vascular injuries are uncommon in sports, 
they can cause significant symptoms in all 
extremities and should be considered when clau-
dication symptoms are present. Vascular causes 
of exertional lower leg pain include external iliac 
artery endofibrosis and popliteal artery entrap-
ment syndrome. External iliac artery endofibrosis 
results from intimal fibrosis of the arterial wall 
resulting in progressive stenosis and subsequent 
ischemic pain during exercise [224]. It is typi-
cally seen in endurance athletes such as cyclists 
and marathon runners [225]. Untreated, endofi-
brosis can lead to arterial dissection or thrombo-
sis [226, 227]. US can be used to identify 
endofibrotic lesions, which appear as a segmental 
thickening of the intimal arterial wall with 
increased echogenicity of the arterial wall [228]. 
Doppler studies are normal at rest but show a 
decreased ankle brachial index (ABI) following 
exercise [229].

Popliteal artery entrapment occurs due to the 
compression of the artery by the anatomy of the 
gastrocnemius or popliteus muscles or dynamic 
compression by the soleus and can cause claudi-
cation symptoms [230, 231]. If undiagnosed, it 
can progress functional occlusion during activity, 
aneurysm, or thrombosis [232]. According to a 
meta-analysis, US Doppler ABI has a sensitivity 
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of 90%, but specificity data is limited and may 
result in a high number of false-positive sono-
graphic findings as a result [233]. This is sup-
ported by a study that found arterial occlusion 
induced with knee extension and subsequent 
plantarflexion and dorsiflexion in up to 50% of 
asymptomatic individuals [234].

Overhead athletes can also incur vascular 
injuries, especially aneurysms of the axillary 
artery and its branches including the posterior 
circumflex humeral artery (PCHA). This can lead 
to thrombosis or emboli causing subsequent digi-
tal ischemia [235–237]. Both symptomatic and 
asymptomatic volleyball players have been found 
to have PCHA aneurysms with a high prevalence 
of symptoms of digital ischemia thought to be 
secondary to microemboli [238, 239]. US has 
shown promise in the recognition of a PCHA 
aneurysm, which appears as a segmental vessel 
dilatation of greater than 50% compared to the 
closest normal-appearing vessel segment [240].

Overhead athletes are also susceptible to vas-
culogenic thoracic outlet syndrome, which can be 
of two forms: arterial thoracic outlet syndrome 
(aTOS) due to compression of the subclavian 
artery and venous thoracic outlet syndrome 
(vTOS) due to compression of the subclavian 
vein [241]. vTOS presents with fatigue or numb-
ness that worsens when the arm is abducted and 
externally rotated [242, 243]. US has proven to 
have a role in diagnosis as episodes of occlusion 
have been identified by Doppler US, especially 
while observing during provocative maneuvers 
of the extremity [244, 245].

 US in Sports Medicine: Physiologic 
Measures

US has been used experimentally to monitor 
physiologic parameters in an attempt to opti-
mize training regimens and improve sports 
performance.

 Muscle Glycogen
Evaluation of muscle glycogen content, an 
important source of energy for athletes, may help 
athletes evaluate their body’s response to training 

stimuli and assist with nutrition decisions. This 
might subsequently help prevent fatigue and 
overtraining syndrome while helping athletes and 
coaches optimize competition, training, recovery, 
and nutrition strategies [246–248]. Currently, 
muscle biopsy is the gold standard for determin-
ing glycogen quantity, but this is an invasive and 
uncomfortable procedure that is unrealistic for 
use during training. An application called 
MuscleSound (MuscleSound LLC, Denver, CO) 
has been developed using US to quantify and cor-
relate the water content of muscles with glycogen 
content. Two studies funded by MuscleSound 
LLC have shown a strong correlation between 
muscle biopsy and MuscleSound measured gly-
cogen content [249, 250]. An independently 
funded study found poor correlation between 
glycogen quantity measured by MuscleSound 
when compared to muscle biopsy [251]. More 
research is needed on the validity of this technol-
ogy before the utility of noninvasive measure of 
muscle glycogen content can be established.

 Body Composition
Many athletes, especially those in weight- 
sensitive sports, monitor and attempt to modulate 
body composition to improve performance [252]. 
US has been identified as a tool to assist in deter-
mining body fat measurements by measuring the 
thickness of adipose tissue [253]. This could 
replace the traditional use of fat calipers, which 
lack accuracy due to tissue compression during 
measurement [254, 255]. US was shown to have 
a better inter-rater reliability than the use of cali-
pers for measuring body fat composition, but US 
scanning protocols for body composition are still 
under development [256].

 Tendon Stiffness
Prior muscle or tendon injury has been identified 
as one of the major risk factors in the recurrence 
of injury and thus has been examined as a factor 
in determining return to play. Identifying weak-
ened tissue is important in both diagnosing injury 
and determining timing for safe return to play 
without risking reinjury. Elastography estimates 
tissue hardness and can be used to estimate the 
mechanical properties of tissues. This may, in 
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turn, help with early identification of at-risk indi-
viduals, outcome tracking, and treatment moni-
toring [257]. There are three types of elastography: 
acoustic radiation force impulse elastography, 
compression (strain) elastography, and shear 
wave elastography. Unfortunately, technical 
issues such as a lack of standardization and insuf-
ficient data on the characteristics of normal ver-
sus diseased tissues still limit the wide use of 
elastography [257]. The types of elastography 
and their respective utility in sports medicine are 
highlighted below.

Acoustic radiation force impulse (ARFI) elas-
tography uses focused acoustic beams to convert 
acoustic compression waves to shear waves by 
absorbing acoustic energy [258]. The reaction of 
tissue to this process is monitored within the 
range of excitation, and images are generated 
from sequential data collection with lateral move-
ment at given positions. The speed of shear wave 
propagation outside the range of excitation is 
used to estimate the tissue shear modulus [259]. 
While ARFI elastography has been used exten-
sively in hepatic imaging, it has only recently 
received investigation in musculoskeletal evalua-
tion [258, 260, 261].

SE uses US imaging to measure the amount of 
deformation following manual compression. 
Software then converts tissue hardness into a 
color map on the US machine. It has been used to 
evaluate tendon pathology including Achilles 
tendon [262–264], patellar tendon [264], epicon-
dylar tendons of the elbow [265–270], rotator 
cuff tendons [268, 271–274], and biceps tendon 
[275]. Most studies have found that pathologic 
tendons are softer than normal tendon, with only 
one study finding that pathologic Achilles ten-
dons are stiffer than normal tendons [276]. 
Additionally, SE has been used to show that heal-
ing Achilles tendons postoperatively are stiffer 
than normal tendons [277, 278]. Further studies 
are needed to validate the inter- and intra-rater 
reliability of SE and determine its role in the 
diagnosis of tendon injury and its use for moni-
toring recovery [279].

SWE uses an acoustic radiation force pulse to 
generate shear waves that propagate perpendicu-
lar to the US beam and can be converted to a 

measure of density using Young’s modulus [280]. 
SWE produces a more objective and quantitative 
assessment compared to strain elastography since 
the operator is not involved in stressing the tis-
sues. Shear wave has been used to evaluate mus-
cle, ligaments, and tendons [281, 282]. Findings 
have largely paralleled those seen with SE includ-
ing softening of tendinopathic tendons [283, 284] 
and stiffening of post-surgical tendons [285]. 
SWE has also been used to monitor gastrocne-
mius, soleus, and Achilles tendon injuries and 
may be useful in guide return to play [286, 287]. 
As with SE, further studies on SWE are needed to 
validate inter- and intra-rater reliability and 
determine its role in the diagnosis of tendon 
injury, ability to monitor recovery, and usefulness 
in guiding return to play.

US tissue characterization (UTC) was devel-
oped to provide a standard assessment of tissue 
stiffness [77]. UTC utilizes a motorized device 
that guarantees a fixed US transducer position 
that obtains 600 contiguous transverse images in 
45 seconds at intervals of 0.2 millimeters over a 
12 centimeter distance to render a 3D block of 
US images [288]. After images are obtained, a 
complex algorithm characterizes each area of 
tendon into one of four echotypes based on pixel 
stability which is correlated to stiffness [288]. 
UTC has primarily been used for large tendons 
and ligaments, such as the Achilles tendon and 
patellar ligament [289–293]. Of note, the device 
used for standardized image acquisition in UTC 
has to be built specifically for each tendon. 
Similar to strain elastography (SE) and shear 
wave elastography (SWE), the role of UTC in the 
diagnosis of pathologic conditions and guiding 
return to play is yet to be determined, but shows 
promise in its ability to monitor the effect of load 
or treatment on tendon structure [77].

 US in Sports Medicine: Guiding 
Return to Play

As discussed above, the improving portability of 
US and the ability to perform serial examinations 
make US an ideal imaging modality for guiding 
return-to-play decisions. Many physicians utilize 
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US both to immediately assess ability to return to 
play on the field (i.e., triage) and to help deter-
mine when an athlete is sufficiently healed to 
resume play. However, imaging criteria and 
 published guidelines are lacking, and clinicians 
generally rely on a combination of clinical exam-
ination and functional performance measures 
correlated with imaging findings when returning 
athletes to sport. A few studies on muscle injuries 
in athletes have shown that evidence of disorga-
nized fibrous tissue, intramuscular hematoma, 
intermuscular hematoma, and power Doppler 
signal on US examination predict longer time to 
return to play [294–296].

 Interventional Use of Ultrasound 
for Procedural Guidance

 Advantages of Interventional US 
in Sports Medicine

Ultrasound also has multiple advantages when 
used to assist with sports medicine procedures 
(see Table 21.3). If an interventional treatment is 
determined to be needed following diagnostic 
US, it can often be performed immediately after 
evaluation without the additional time delay 
required when obtaining an MRI or CT for diag-
nosis [80]. Injection accuracy is improved with 
the utilization of ultrasound for needle guidance 
for most structural targets [297, 298]. Doppler 
US can also be used to visualize blood vessels to 
evaluate vascular malformations as well as vas-
cularity of soft tissue masses which can contrib-
ute to diagnosis [299–301]. The use of US 
guidance is even more important for advanced 
procedures such as barbotage and percutaneous 
fasciotomy and tenotomy (described in more 

detail below), which could not be performed 
accurately without US guidance [302–304]. 
Some US-guided interventions have additionally 
shown shorter recovery times with less post- 
procedural pain than open surgical procedures 
with similar clinical outcomes [305, 306]. Many 
peripheral nerve procedures exist and can relieve 
pain; however, they all require perineural needle 
placement which increases risk of nerve injury 
through intraneural injection or nerve penetration 
[307, 308].

The American Medical Society for Sports 
Medicine (AMSSM) has suggested that 
US-guided procedures can be divided into three 
different generations [309]. First-generation 
techniques are those that apply US guidance to 
improve accuracy of established procedures. 
Second-generation techniques are those that have 
been developed primarily as a result of US guid-
ance and utilize commonly available needles. 
Examples include needle tenotomy for chronic or 
calcific tendinosis, neovessel ablation and tendon 
scraping, fenestration of the transverse carpal 
ligament, A1 pulley fenestration, and nerve 
hydrodissection. Third-generation techniques 
utilize specially designed surgical tools or devices 
to duplicate well-established surgical procedures 
under US guidance. These include A1 pulley 
release using a hook knife, carpal tunnel release 
using Guo wires or specially designed devices, 
and tenotomy or fasciotomy using meniscotomes, 
Guo wires, or hook knives [25].

 First-Generation Procedures
Since the initial use of US by Karl Dussik to eval-
uate the MSK system, US’s ability to visualize 
both soft tissue and neurovascular structures has 
made it popular for procedural guidance. The use 
of US for diagnosis affords an easy transition to 
performance of US-guided procedures with supe-
rior accuracy to palpation guidance [302]. In a 
position statement on US-guided procedures, the 
AMSSM concluded that there is high-quality evi-
dence that US-guided injections are more accu-
rate than landmark-guided injections in large 
joints (accuracy 91–100% for US-guided and 
64–81% for landmark-guided), intermediate 
joints (approximately 95% for US-guided and 

Table 21.3 Advantages of interventional US

Advantages of interventional US
Immediate intervention following diagnosis
Improved accuracy of most injection procedures
Visualization of nearby vascular and neural structures 
to avoid inadvertent injuries
Conversion to less invasive interventions for 
traditionally operative interventions
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78% for landmark-guided), small joints (accu-
racy 94–100% for US-guided and 0–96% for 
landmark-guided), and tendon sheaths (accuracy 
87–100% for US-guided and 27–60% for 
landmark- guided), though the difference in effi-
cacy and cost has not yet been determined [309]. 
Individual joint procedures are discussed in more 
detail in Chaps. 5, 6, 7, 8, 9, 10, and 11.

Historically, corticosteroid injection near the 
target structure was believed to be sufficient to 
provide therapeutic benefit. The local and sys-
temic effects of corticosteroid allowed for thera-
peutic benefit even if the injection was not 
precisely placed. As corticosteroid use has fallen 
out of favor due to its toxic effects on tendon and 
cartilage, newer agents have arisen that are 
thought to require precise placement at the site of 
injury for maximum efficacy. These include 
autologous blood products, bone marrow, adi-
pose tissue, allogenic amniotic membrane, or 
dextrose solutions [309]. As a result, it is recom-
mended to perform these injections under US 
guidance to achieve the highest injection accu-
racy and best outcomes [309]. Further informa-
tion on and discussion of regenerative medicine 
injectates can be found in Chaps. 1, 2, and 3, and 
procedures are reviewed in Chaps. 12 and 13.

 Second-Generation Procedures
Greater spatial resolution has made it possible to 
perform procedures that require detailed needle 
visualization beyond mere guidance to a target. 
This includes using needles to fenestrate or cut a 
pathologic calcification, ligament, tendon, or 
retinaculum.

Calcific Barbotage
Calcific barbotage is used for the treatment of 
calcific tendinopathy [310, 311] and is most 
effective for intratendinous calcification rather 
than osseous extension [312]. The goal of the 
procedure is to break up the painful calcifications 
within the tendon. This involves lavage of the cal-
cific particles using injection of normal saline 
and a needle (commonly 18-gauge) to repeatedly 
inject and aspirate the calcification under direct 
US guidance [313]. Soft and middle-sized calci-
fications generally respond best to this treatment 

[314]. Repeat barbotage may be required to fully 
address some calcific lesions [315] and may be 
combined with subacromial corticosteroid injec-
tion for greater relief [316]. Several reviews and 
meta-analyses describe calcific barbotage as safe 
and effective for the treatment of calcific rotator 
cuff tendinosis [313, 316–318]. Compiled results 
show up to 55% improvement in pain and indi-
cate that it can be used as a first-line treatment 
[313, 316–318]. Calcific barbotage may also be 
used to treat calcific tendinopathy of the gluteal 
tendons [319] and the common extensor tendon 
at the elbow [320].

Neovessel Ablation
Neovessel ablation procedures include tendon 
scraping and high-volume image-guided injec-
tion (HVIGI) that can be performed together or in 
isolation under US guidance. The goal of these 
procedures is to disrupt the neovessels and neo-
nerves that grow from fat pads like Hoffa’s or 
Kager’s fat pad that lie deep to large tendons. 
These neonerves and neovessels are thought to 
contribute to pain associated with patellar [321] 
and Achilles [322] tendinopathy. US with color 
Doppler allows for the visualization and targeting 
of these neovessels pre-procedurally with the 
hope of subsequently disrupting the accompany-
ing neonerves. A significant advantage of these 
extra-tendinous procedures is that the integrity of 
the tendon is not compromised. This results in a 
more rapid return to activity after the procedure 
than what is recommended for intra-tendinous 
procedures.

The tendon scraping procedure can be per-
formed entirely under US guidance through an 
11-blade stab incision with an 18-gauge needle or 
meniscotome inserted perpendicular to the ten-
don under US guidance. This is then passed back 
and forth in a sweeping motion deep to the ten-
don at the area of neovascularization. While the 
utility of open and mini-open surgical tendon 
scraping to treat Achilles tendinosis is well docu-
mented, only one study has examined percutane-
ous Achilles tendon scraping under US guidance. 
In that study, percutaneous scraping of 19 ten-
dons showed similar efficacy to an open proce-
dure [322]. One case has been published on the 
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use of tendon scraping to treat patellar tendinopa-
thy that resulted in complete resolution of symp-
toms and full return to play at 4 weeks with no 
recurrence at 11-month follow-up321.

HVIGI typically consists of a 40–50mL injec-
tion of normal saline and aims to separate the ten-
don from the deep fat pad while disrupting 
neovessels and neonerves [323–331]. HVIGI has 
been shown to improve pain and physical func-
tion in multiple case reports, case series, one ran-
domized controlled trial (RCT), and a 
retrospective cohort study, but rates of return to 
sport varied [323, 325–330, 332]. When com-
pared to PRP or eccentric exercises alone, HVIGI 
had better results at 6 weeks than PRP and eccen-
tric exercises alone, and both PRP and HVIGI 
were superior to eccentric exercises alone at 24 
weeks [324]. HVIGI to treat greater trochanteric 
pain syndrome [333] and shoulder impingement 
[331] have been studied by one author, but found 
either no benefit or only short-term benefit, 
respectively.

 Third-Generation Procedures
More recently, specific tools have been devel-
oped to perform procedures under US guidance 
that were historically performed by open or 
arthroscopic surgery. US-guided procedures 
allow for smaller incision sites that are associated 
with reduced post-procedure pain and improved 
function with a more rapid return to baseline 
activity. These procedures are also likely less 
costly with lower complication rates and 
increased patient satisfaction [334–336]. 
However, if these procedures are performed by 
practitioners with inadequate anatomical and 
procedural competence, they carry significantly 
higher risk for injury to surrounding structures. 
Correct identification of the anatomy and pathol-
ogy is central to any US-guided procedure, and 
most third-generation procedures should be prac-
ticed on cadavers prior to use in patients. Use of 
cutting devices without adequate experience 
could lead to severe and irreversible injury to 
critical structures. Therefore, these procedures 
are best performed by experienced sonographers 
and proceduralists.

Ligament or Retinaculum Release
Ligament or retinaculum release can now be per-
formed under US guidance through a very small 
incision. This has been demonstrated with release 
of the transverse carpal ligament (TCL) in carpal 
tunnel syndrome, release of the A1 pulley in trig-
ger finger, release of the flexor retinaculum in 
tarsal tunnel syndrome, and release of the first 
dorsal compartment of the wrist to treat de 
Quervain’s tenosynovitis.

Release of the TCL under US guidance to treat 
carpal tunnel syndrome has evolved from a pro-
cedure done with US assistance to one done com-
pletely under US guidance through needle 
fenestration [337–339], use of a wire to cut the 
TCL [340–342], use of a hook knife to cut the 
TCL [305, 343–347], or use of commercially 
available devices such as the SX-ONE device 
[348–351]. US guidance allows for the direct 
visualization of pertinent anatomy that must be 
avoided during the procedure. This includes the 
transverse safe zone (bordered radially by the 
median nerve and ulnarly by the hook of the 
hamate or ulnar artery), palmar cutaneous branch 
of the median nerve, Berrettini branch, recurrent 
motor branch of the median nerve, and other neu-
rovascular anomalies [352]. Overall, studies on 
US-guided carpal tunnel release with the 
SX-ONE device report successful release of the 
TCL in over 600 wrists with minimal complica-
tions and a 95% success rate [348].

Trigger finger release with a needle can be per-
formed under US guidance with improved cosme-
sis and fewer days absent from work than open 
surgical release [306, 353, 354]. This is commonly 
performed after failure of a corticosteroid injec-
tion. Trigger finger release under US guidance can 
also be accomplished with use of a hook knife or 
wire to cut in a retrograde direction (intra or extra 
sheath) or use of a needle or needle knife (Nokor 
needle) to cut in an anterograde direction [355]. 
Cadaveric and clinical data have shown a higher 
complete pulley release rate when using a hook 
knife instead of a needle [355–358]. When com-
pared to surgery, US-guided trigger finger release 
has a shorter procedure time, lower cost, and more 
rapid return to normal activities [306, 359].
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US-guided tarsal tunnel release with a hook 
knife [360] and first dorsal compartment release 
with a needle have also been described. These 
procedures theoretically afford less pain, are 
lower cost, and have a more rapid recovery than 
their respective surgical procedures, but more 
research is needed [361].

Tendon, Muscle, or Fascial Release
Tendon, muscle, and fascial release can be per-
formed under US guidance and is most beneficial 
for those who are poor surgical candidates or need 
a more rapid return to activities than that afforded 
by surgery. To date, several cadaveric and a few 
patient studies of these techniques have been pub-
lished. Current limitations to these procedures 
include operator skill and lack of procedure- 
specific tools. The procedures are highlighted 
below, although a full description of these tech-
niques is beyond the scope of this chapter.

Biceps tendon release using different devices 
(hook knife, scalpel, banana blade, retractable 
blade, serrated blade) with retrograde cutting of 
the biceps tendon at various locations (rotator 
interval, bicipital anchor, and bicipital groove) 
have been described [362–364]. Cases performed 
in the bicipital groove using a scalpel or hook 
knife were most successful in releasing the long 
head of the biceps in cadavers.

Plantaris tendon release using a hook knife 
[365] and adductor release using a Guo cutting 
wire [366] in a retrograde direction under US 
guidance have been described in cadavers and are 
thought to be safe.

Plantar fascia release under US guidance 
using a hook knife to cut in a retrograde medial to 
lateral direction [367] in cadavers or a beaver 
blade to cut in a deep to superficial direction in 
patients [368] have been found to be successful.

Fasciotomy of the anterior and lateral com-
partments of the lower leg for treatment of 
chronic exertional compartment syndrome has 
also been successfully performed on cadavers 
under US guidance using a meniscotome and 
anterograde release [34].

Although many of these procedures are still in 
development, the use of US to guide procedures 
offers a promising method to minimize the inva-
siveness of surgical procedures, decrease recov-
ery time, and decrease cost. However, additional 
research is needed to develop specific tools to 
improve the ease of US-guided procedures and to 
directly compare outcomes between surgical and 
non-surgical procedures. The next step in the 
development of US-guided procedures is to 
determine if repair of tissues performed under 
US guidance has similar outcomes to open or 
arthroscopic surgical procedures and what differ-
ences in complications and rehabilitation proto-
cols and timeline are noted. A protocol outlining 
US-guided repair of the lateral ligament complex 
of the ankle has been published and shows prom-
ise [369].

 US in Orthopedics: Use of US 
in Preoperative Planning 
and in the Operating Room

In addition to assisting with diagnosis, US can 
be used to assist orthopedic surgeons during pre-
operative planning and intraoperatively to aug-
ment visualization of relevant structures. Several 
studies have shown that preoperative sono-
graphic measurements of the patellar tendon 
[370], quadriceps tendon [371], and gracilis and 
semitendinosus tendons [372–374] predict ACL 
graft size. Preoperative US mapping of periph-
eral nerves targeted for surgical intervention has 
also been used to speed identification and access 
to the target, minimize tissue destruction, and 
decrease operating time [375]. US can also be 
utilized preoperatively to tag nerves commonly 
injured during certain procedures that are diffi-
cult to localize intraoperatively. This includes 
avoiding sensitive structures during Achilles ten-
don repair [376], plantar fascia repair [377], and 
medial elbow arthroscopy [378] and localizing 
the lateral femoral cutaneous nerve for operative 
decompression [379].
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 Current Limitations and Future 
Directions

In spite of the dramatic expansion of US tech-
nology over the last several decades, US still 
has several limitations (Table 21.4). Overcoming 
these limitations is the topic of ongoing 
research, and promising methods are discussed 
below.

While US is often touted as a portable imag-
ing modality, especially compared to x-ray, 
MRI, and CT, companies continue to push the 
limits of portability to make US truly “pocket-
portable.” The first US machine small enough to 
be used on the battlefield was developed in 1996 
[380], and portable US machines have contin-
ued to demonstrate utility in field clinics after 
natural disasters [381]. Transducers that attach 
to phones and tablets are now commonplace. 
Transducers the size of a pen are actively in 
development, but several disadvantages and bar-
riers to production remain for these small 
devices. Smaller probes and US machines often 
compromise image resolution, field of view, 
ability to employ multiple scanning modes 
(such as Doppler), machine durability, and bat-

tery life (although alternative battery sources, 
such as solar power, are also in development) 
[382]. In spite of that, technological progress 
continues to move toward a world where side-
line US evaluation could be as simple as pulling 
out a durable, pocket-sized probe that syncs 
wirelessly with a mobile device or laptop.

The “operator dependency” of US is fre-
quently cited as a weakness, but this is likely 
improving as US training increases. US training 
is being incorporated into medical school, resi-
dency programs, fellowships, and national work-
shops to improve and standardize operator skill 
[383, 384]. The number of articles cited in 
PubMed that utilize US to evaluate MSK condi-
tions has increased exponentially since the 1970s 
with over 2800 articles published in 2018 alone. 
Despite this, inter-rater reliability in MSK and 
nerve evaluation still varies based on the site 
examined, whether the tissue is healthy or patho-
logic, and how much training the examiner has 
received [385–389]. New technology, such as 
UTC, attempts to standardize US evaluation by 
removing the human operator, but remains 
impractical for widespread implementation as 
described previously.

Additionally, US evaluation is limited by 
beam attenuation caused by superficial structures 
that impede deeper visualization. B-mode US 
relies on high-frequency sound waves to provide 
sufficient spatial resolution for tissue differentia-
tion, but these high-frequency waves are attenu-
ated when they pass through tissue layers, 
especially subcutaneous fat. This makes sono-
graphic imaging of obese patients difficult. While 
deeper penetration can be achieved by using a 
lower-frequency transducer, this results in 
decreased resolution [390]. Tissue harmonic 
imaging (THI) is one attempt to overcome this 
problem. It utilizes higher-frequency harmonic 
sound waves produced by the original US wave 
interacting with nonlinear tissues of deep struc-
tures. These higher-frequency waves reflected 
from deep structures are captured by the probe, 
allowing for higher-resolution visualization of 
deep structures that would not be possible with 
standard B-mode US [391, 392]. In addition to 

Table 21.4 Limitations of US and research addressing 
these limitations. US, ultrasound

Limitation Future direction/research
Lack of high-quality 
portable images

Technological improvements 
and improved resolution of 
small US machines with 
transducers the size of a pen. 
Transducers that attach to 
phones and tablets

Operator dependent Access to education. 
Standardization of image 
acquisition

Inability to visualize 
deep structures 
(particularly in obese 
patients) due to beam 
attenuation

Tissue harmonic imaging, 
spatial compound imaging, 
speckle reduction, and tissue 
aberration correction

Inability to penetrate 
bone and visualize 
inside joints

Development of tools for 
in-office arthroscopy such as 
MiEye

Limited field of view Extended view imaging
Conventional US is in 
two dimensions

3D US imaging
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THI, technological developments such as spatial 
compound imaging, speckle reduction, and tissue 
aberration correction are all image processing 
enhancements that improve image resolution 
[393–395].

US field of view is limited by the size of the 
transducer, which traditionally provides a two- 
dimensional view. As a result, the examiner must 
formulate a three-dimensional (3D) view in their 
mind using orthogonal planes and may need to 
gather multiple images to measure a long struc-
ture. To overcome this limitation, extended field 
of view US was developed in the late 1990s. It 
uses image registration technology to stitch 
together a larger field of view and allow for accu-
rate measurement of larger objects including 
rotator cuff tears, fluid collections, and masses 
[396, 397]. 3D US has been developed to over-
come the 2D nature of current US evaluation. It 
utilizes processing of data from multiple US 
images to form a 3D image. Though primarily 
used outside of the MSK system [398–400], it 
has also been trialed in the assessment of muscle 
volume and muscle fascicle length and architec-
ture [48, 401].

 Conclusion

US has played a role in MSK evaluation for over 
50 years and has several advantages over other 
imaging modalities. Recent progress has 
expanded the scope of US in sports medicine to 
include other organ systems. US is an ideal imag-
ing modality for injury evaluations at sporting 
events for its portability. Further, new programs 
enable physiologic and biological assessment of 
injured tissues to make return-to-play decisions. 
Its use in procedural guidance has improved the 
accuracy of existing office-based procedures 
while also opening the door for US-based micro- 
invasive surgical interventions. Ongoing research 
continues to expand the diagnostic and interven-
tional capabilities of US, broadening the indica-
tions of US in the hands of skilled sports medicine 
physicians.
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