
Chapter 9
Deep Reinforcement Learning for Mobile
Edge Computing Systems

Ming Tang and Vincent W. S. Wong

9.1 Introduction

Recently, humans use mobile devices to accomplish many computational intensive
tasks, such as artificial intelligence, distributed data analysis, virtual reality, and
augmented reality. Despite the fact that mobile devices have become increasingly
powerful, they may not be capable of processing all their tasks locally and meeting
the delay requirements of the tasks. Mobile edge computing (MEC) [1], also
known as multi-access edge computing [2] and fog computing [3], is emerging as a
promising architecture. In MEC systems, edge nodes equipped with processing and
storage resources are deployed close to the mobile devices. Thus, mobile devices can
offload their computational intensive tasks to the edge nodes for processing. When
compared with cloud computing systems [4], MEC systems can provide mobile
devices with a faster response and hence a low task latency. Mao et al. in [1], Qiu et
al. in [5], and Ranaweera et al. in [6] provided comprehensive surveys in the area of
MEC.

The environment in MEC systems may involve time-varying and complex system
dynamics, such as time-varying task arrivals, device mobility, wireless channel
variation, and the interaction among mobile devices. Meanwhile, the operators of
the MEC systems, mobile devices, and edge nodes may not be aware of these
system dynamics a priori. Such unknown system dynamics impose challenges
on addressing the deployment, management, and scheduling problems in MEC
systems. On the other hand, conventional network optimization approaches (e.g.,
online optimization [7], game-theoretic approach [8]) always rely on the modeling

M. Tang · V. W. S. Wong (�)
Department of Electrical and Computer Engineering, The University of British Columbia,
Vancouver, BC, Canada
e-mail: mingt@ece.ubc.ca; vincentw@ece.ubc.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_9&domain=pdf
mailto:mingt@ece.ubc.ca
mailto:vincentw@ece.ubc.ca
https://doi.org/10.1007/978-3-030-98064-1_9

176 M. Tang and V. W. S. Wong

of the environment in MEC systems. When the modeling of the environment does
not match the practical systems, these conventional approaches may fail to provide
a satisfactory performance. In addition, it may be challenging for these approaches
to address time-varying environment in MEC systems.

Deep reinforcement learning (DRL) [9] is a promising technique to address the
unknown and complex system dynamics in MEC systems [10]. With DRL, an agent
(e.g., a mobile device, an edge node, or a network operator in MEC systems)
can learn to make decisions (e.g., in terms of deployment, management, and
scheduling) by interacting with the environment. During the learning process, the
agent continuously gathers its experience from the interaction with the environment
and gradually learns the decision-making policy that optimizes its objective. In
comparison to conventional reinforcement learning (RL) approaches [11], DRL
employs deep learning techniques to tackle the curse of dimensionality issue. Due
to the strong capability of deep learning for analyzing and abstracting data, DRL is
capable of handling complex systems with large state spaces [9].

In this chapter, we aim at providing an overview on how DRL techniques can
benefit the MEC systems. In the rest of this chapter, we first present an overview of
DRL in Sect. 9.2. In Sect. 9.3, we demonstrate the application of DRL techniques
in MEC systems with a case study, which focuses on the task offloading problem.
Finally, in Sect. 9.4, we outline several challenges and future research directions.
For notation, let Z++ denote the set of positive integers.

9.2 Overview of Deep Reinforcement Learning

In this section, we first introduce the general DRL problem formulation. Then,
we present the main idea for obtaining the optimal policy using DRL algorithms.
Finally, we summarize some existing DRL algorithms.

9.2.1 DRL Problem Formulation

In general, a DRL problem can be formulated as a discrete time stochastic control
process [9]. In this problem, an agent interacts with the environment. Suppose there
are a set of time slots T. At the beginning of time slot t ∈ T, given the state of the
environment s(t), the agent gathers an observation o(t). Based on the observation,
the agent chooses an action a(t). After that, the agent obtains a reward r(t). The
environment then transits to the next state s(t + 1), and the agent gathers the next
observation o(t + 1). Through such an interaction with the environment, the agent
aims at learning an optimal policy that maximizes the expected long-term reward.

For the sake of simplicity, let us consider a fully observable system. In this
system, the agent can observe the actual state of the environment, i.e., o(t) = s(t)

for all t ∈ T. Meanwhile, suppose the transition of the state follows Markovian

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 177

stochastic control processes. The scenario with partially observable system and non-
Markovian environment can be found in [9, Section 10]. Let S and A denote the
state and action spaces. We denote π as the policy of the agent. Note that there
are two types of policy: deterministic policy π(s) : S → A and stochastic policy
π(s, a) : S × A → [0, 1], where π(s, a) is the probability that action a is selected
given current state s. Given any state s ∈ S, let V π(s) : S → R, also called the
value function, denote the expected long-term reward in state s under policy π . For
example, under the scenario with an infinite time horizon T = {1, 2, . . .}, the value
function V π(s) � E[∑∞

i=0 γ ir(t + i) | s(t) = s, π]. That is, given any s(t) = s, the
value function V π(s) is equal to the expected cumulative future discounted reward,
where γ ∈ (0, 1] is the discount factor. The value function under various scenarios
can be found in [11, Section 3.5]. The objective of the agent is to find a policy π∗
that maximizes V π(s). On the other hand, as an alternative to the value function,
Q-value function Qπ(s, a) : S × A → R is sometimes considered, which is the
expected long-term reward of choosing action a ∈ A in state s under policy π .

9.2.2 Determine the Optimal Policy with Deep Learning

To find the optimal policy, in conventional RL approaches, the agent estimates one
or multiple of the following components during the learning process [9, Section
3.2]:

(a) Value function V π(s) or Q-value function Qπ(s, a)

(b) Policy π(s) or π(s, a)

(c) The model of the environment, i.e., the transition function (from current state to
the next state) and the reward function (from state and action to the reward)

For the RL approaches requiring the estimation of components (a) and (b), they
are called model-free algorithms. When component (c) is considered, the associated
algorithm is called a model-based algorithm. Furthermore, the algorithms that esti-
mate (a) and (b) are called value-based and policy-based algorithms, respectively.
With the estimation of those components (a), (b), or (c), the agent can obtain the
optimal policy accordingly. For example, in a model-free value-based Q-learning
algorithm, the agent estimates the Q-value function and exploits a policy of choosing
the action with the maximum Q-value given each state. Due to the definition of Q-
value function, such a policy can maximize the expected long-term reward.

On the other hand, most real-world problems are very complex, e.g., the state
and action space can be high-dimensional and continuous. Thus, estimating the
value function, policy, and model can be challenging and requires a huge amount of
computational resource and memory. To address this issue, in DRL algorithms, deep
learning techniques are used for estimating the value function, policy, and model. In
particular, deep learning essentially relies on neural networks to estimate a mapping
from some input to some output, i.e., f : X → Y. The mapping is characterized
by the parameters of the neural network, denoted by θ , and can be represented by

178 M. Tang and V. W. S. Wong

y = f (x | θ). DRL employs neural networks to estimate certain mappings, such
as value function, policy, and model. During the learning process in DRL, based on
the gathered experience (i.e., state, action, next state, reward), the agent gradually
updates the parameters of the neural network (i.e., θ) using deep learning techniques
in order to make the neural network achieve an accurate approximation of the actual
mapping (e.g., the actual value function, policy, and model). Since neural networks
are capable of addressing complicated mappings with large input and output spaces,
they provide DRL the capability of addressing complex real-world environment.

9.2.3 Existing DRL Algorithms

For value-based DRL algorithms, deep Q-learning (DQL) [12] aims at estimating
the Q-value function using neural networks. In addition to DQL, double deep Q-
network (DQN) [13] can handle the issue of overestimation in DQL. Meanwhile,
dueling DQN [14] offers a more accurate estimation of the Q-value function
by separately learning the value resulting from the state and action. Instead of
estimating the expected reward in the value function as in DQL, distributional DQN
[15] aims at estimating the distribution of the cumulative reward under each state.
Such a distribution characterizes the randomness of the reward in the system.

Policy gradient algorithms belong to policy-based DRL algorithms and are
commonly used. These algorithms directly learn an optimal policy that maximizes
the expected long-term reward using gradient ascent. In the area of DRL, deep
deterministic policy gradient (DDPG) [16] learns the representation of a deter-
ministic policy, where this approach is applicable for continuous action space.
Distributed distributional DDPG [17] is a variant of DDPG that can be run in a
distributional fashion. Asynchronous advantage actor-critic (A3C) [18] exploits the
approximation of both policy and value function using neural networks. Built upon
A3C, actor-critic with experience replay [19] exploits the experience replay, which
can decrease the data correlation and increase the sample efficiency. Soft actor-critic
[20] encourages policy exploration by maximizing the entropy of the policy and the
expected long-term reward simultaneously. Twin delayed deep deterministic [21]
exploits double DQN to address the overestimation issue in actor-critic methods. In
addition, trust region optimization [22] introduces the idea of trust region to bound
the change in policy to guarantee monotonic reward improvement. As a variant of
trust region optimization, proximal policy optimization [23] introduces a penalty
term in the objective function to alleviate the change in policy, and it is easy for
implementation. In comparison to those value-based DRL methods, policy gradient
algorithms are capable of handling continuous action space and stochastic policy.

For model-based DRL algorithms, the agent either knows the model of the
environment a priori or uses the gathered experience to predict the model. The
model will be used for planning, i.e., taking the model as an input, the agent finds the
optimal policy for the interaction with the environment. For discrete action space,
lookahead search can be used by building a decision tree and exploring the potential

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 179

trajectories in the tree [9, Section 6.1]. Monte Carlo tree search [24] is a typical
family of approaches to lookahead search. Such methods have been incorporated
with deep learning for addressing real-world complex problem, e.g., the game of
Go [25]. For continuous action space, trajectory optimization can be used. For a
function that is differentiable, the agent can optimize the policy along trajectories
using gradient ascent. Plaat et al. in [26] and Franccois et al. in [9, Section 6]
provided comprehensive surveys for model-based DRL algorithms. In comparison
to model-free DRL algorithms, model-based DRL algorithms are more sample
efficient. That is, with the learned model, model-based algorithms can converge
with fewer samples (or gathered experience) than model-free algorithms.

9.3 Case Study: Deep Q-Learning for Task Offloading in
MEC

Due to the huge potential of addressing complex and dynamics systems, DRL has
been applied in various problems in MEC systems, such as task offloading, mobility
management, and edge maintenance. Luong et al. in [27, Section IV] and Wang et
al. in [10, Section VIII] surveyed the existing works using DRL in MEC systems.

In this section, we present a case study on the task offloading problem in MEC
systems, which is based on our earlier work [28]. In particular, in MEC systems,
edge nodes may have limited amount of processing capacity. The tasks offloaded
by different mobile devices at an edge node will share the processing capacity of
the edge node. Thus, from the perspective of a mobile device, if many other mobile
devices choose to offload to a particular edge node, then this mobile device may
choose not to offload to the same edge node in order to reduce the task delay. We
refer to the number of concurrent mobile devices offloading to an edge node as
the load level of the edge node. Such a load level depends on the task arrivals and
offloading decisions of all mobile devices. Thus, it is time varying and unknown to
the mobile devices a priori. This makes it challenging for a mobile device to make
the task offloading decision (i.e., whether to offload or not, and if yes, which edge
node to choose). On the other hand, although the challenge can be mitigated by
letting a centralized entity make a decision for the mobile device, such a centralized
decision making may require global information of the system and incur a high
signaling overhead.

To address the unknown load level dynamics, we propose a distributed DQL-
based task offloading algorithm. The proposed algorithm is a model-free value-
based approach that enables each mobile device to make its offloading decision
without knowing the task models and offloading decisions of other mobile devices.

In the following subsections, we first present the system model and task
offloading problem, respectively. Then, we propose the DQL-based algorithm for
MEC systems. Finally, we evaluate the performance of our proposed algorithm.

180 M. Tang and V. W. S. Wong

Fig. 9.1 An illustration of an MEC system with edge nodes and mobile devices

9.3.1 System Model

We consider an MEC system that has a set of mobile devices M = {1, 2, . . . , M}
and a set of edge nodesN = {1, 2, . . . , N}. We consider a time-slotted system with
a set of time slots T = {1, 2, . . . , T }. Let � (in seconds) denote the duration of each
time slot. An illustration of an MEC system is shown in Fig. 9.1.

In the following, we first present the task model and task offloading decisions.
Then, we discuss the local processing model and edge node offloading model.

9.3.1.1 Task Model

At the beginning of time slot t ∈ T, mobile device m ∈ M either may have a new
computational task to be processed or does not have any new task arrival. As in
some existing works (e.g., [29]), we assume that the mobile device has a new task
arrival at time slot t with a certain probability. If mobile device m has a new task,
then we refer to this task using an index km(t) ∈ Z++. For presentation simplicity,
if mobile device m does not have any new task, we set km(t) = 0.

Let λm(t) (in bits) denote the size of task km(t). For presentation simplicity, we
set λm(t) = 0 if km(t) = 0. We set the size of task km(t) to be from a discrete set
� � {λ1, λ2, . . . , λ|�|}, where |�| denotes the cardinality of set �. We consider a
setting where any task of mobile device m has a deadline τm (in time slots). That
is, task km(t) will be dropped if it has not been completely processed within τm

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 181

time slots. Moreover, as in some existing works (e.g., [30, 31]), we assume that the
number of CPU cycles required for processing a task is proportional to the size of
the task. Some examples satisfying this assumption include file compression, video
segment encoding and decoding, and object detection in video streaming. Let ρm

(in CPU cycles per bit) denote the processing density of any task of mobile device
m. Thus, ρmλm(t) CPU cycles are required for processing a task of mobile device
m with size λm(t).

9.3.1.2 Task Offloading Decision

If mobile device m ∈ M has a new task at the beginning of time slot t ∈ T, then it
needs to decide whether to process task km(t) locally or offload it to an edge node.
We use binary variable xm(t) ∈ {0, 1} to denote this decision. We set xm(t) = 1 if
the task is processed locally and set xm(t) = 0 if the task is offloaded to an edge
node.

If mobile device m decides to offload task km(t) to an edge node, then it needs
to decide which edge node to choose. We use binary variable ym,n(t) ∈ {0, 1} to
denote whether mobile device m chooses edge node n ∈ N to offload task km(t) or
not. We set ym,n(t) = 1 if mobile device m chooses edge node n and set ym,n(t) = 0
otherwise. Note that exactly one edge node can be chosen to offload task km(t), i.e.,

∑

n∈N
ym,n(t) = 1(xm(t) = 0), m ∈ M, t ∈ T, (9.1)

where indicator function 1(xm(t) = 0) = 1 if xm(t) = 0, and 1(xm(t) = 0) = 0
otherwise. Let vector ym(t) = (ym,n(t), n ∈ N).

9.3.1.3 Local Processing Model

If mobile device m decides to process task km(t) locally (i.e., xm(t) = 1), then it
will place task km(t) in the computation queue for local processing. The tasks in
the computation queue are processed in a first-in first-out (FIFO) manner. We use
f device

m (in CPU cycles) to denote the processing capacity of mobile device m ∈ M.
We assume that f device

m does not change across time slots. Meanwhile, we assume
that if a task has been processed in a time slot, then the processing of the next task
in the computation queue will start at the beginning of the next time slot.

For mobile device m ∈ M, at the beginning of time slot t ∈ T, let w
comp
m (t)

(in time slots) denote the remaining number of time slots until all the tasks placed
in the computation queue before time slot t have been either processed or dropped.
Note that if task km(t) is to be placed in the computation queue, then w

comp
m (t)

corresponds to the number of time slots that task km(t) will wait in the computation
queue for processing, i.e., the queuing delay of task km(t) at the computation queue.

182 M. Tang and V. W. S. Wong

Here, we use notation w for the short form of “wait.” The expression of w
comp
m (t) is

derived as follows. For mobile device m ∈ M, wcomp
m (t) = 0 for t = 1, and

w
comp
m (t) = min

{[

w
comp
m (t − 1) +

⌈
λm(t − 1)xm(t − 1)

f device�/ρm

⌉

− 1

]+
, τm − 1

}

,

t ∈ T \ {1}, (9.2)

where �·� is the ceiling function, and operator [z]+ = max{z, 0}. Specifically, for
t ∈ T \ {1}, if task km(t − 1) was placed in the computation queue, then given
w

comp
m (t −1), the first term in the min operator corresponds to the remaining number

of time slots until task km(t − 1) has been processed since the beginning of time
slot t . The second term corresponds to the remaining number of time slots until
task km(t − 1) has been dropped. On the other hand, if either λm(t − 1) = 0 or
xm(t − 1) = 0, then we have w

comp
m (t) = [wcomp

m (t − 1) − 1]+. The second term
in the min operator is canceled out, because w

comp
m (t) < τm holds for t ∈ T. In this

case, no task was placed in the computation queue in time slot t − 1. Thus, from
time slot t − 1 to t , the associated remaining number of time slots is decremented
by one.

Suppose task km(t) is processed locally (i.e., xm(t) = 1). Let d local
m (t) denote the

corresponding delay for local processing, i.e., the number of time slots required to
process task km(t). The expression of d local

m (t) is derived as follows:

d local
m (t) =

⌈
λm(t)

f device�/ρm

⌉

,m ∈ M, t ∈ {t ′ | t ′ ∈ T, km(t ′) 	= 0, xm(t ′) = 1}.
(9.3)

Let Delaym(t) denote the delay of task km(t). Recall that the tasks in the
computation queue are processed in an FIFO manner. If task km(t) is processed
locally, then the delay of task km(t) can be derived as follows:

Delaym(t) = min
{
w

comp
m (t) + d local

m (t), τm

}
,

m ∈ M, t ∈ {t ′ | t ′ ∈ T, km(t ′) 	= 0, xm(t ′) = 1}. (9.4)

Specifically, the delay of task km(t) is equal to its queuing delay at the computation
queue, i.e., wcomp

m (t), plus the processing delay, i.e., d local
m (t). Note that if the delay

exceeds τm time slots, then the task will be dropped immediately. Without loss of
generality, if task km(t) has been dropped, then we set the value of Delaym(t) to
be τm.1

1 This setting is for the simplicity of mathematical presentation. For any task km(t) that has been
dropped, the value of Delaym(t)will not be taken into account in our proposed algorithm according

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 183

9.3.1.4 Edge Node Offloading Model

If mobile device m ∈ M decides to offload task km(t) to an edge node (i.e., xm(t) =
0), then it places task km(t) in the transmission queue. Tasks in the transmission
queue are sent in an FIFO manner. After task km(t) has been sent to the chosen edge
node based on decision ym(t), it will be processed by the edge node.

Transmission to an Edge Node The tasks in the transmission queue will be
forwarded to the chosen edge node using a wireless network interface. We assume
that the mobile devices transmit using orthogonal channels. Thus, there is no
interference between mobile devices. Let |hm,n|2 denote the channel gain from
mobile device m ∈ M to edge node n ∈ N. Let P denote the transmission power of
the mobile device. Thus, the transmission rate from mobile device m to edge node
n can be computed as follows:

r tranm,n = W log2

(

1 + |hm,n|2P
σ 2

)

, m ∈ M, n ∈ N, (9.5)

where W denotes the bandwidth allocated to the channel, and σ 2 denotes the
received noise power at the edge node. We assume that the transmission rate r tranm,n

does not change across time slots. If a task has been sent in a time slot, then the next
task in the transmission queue will be sent at the beginning of the next time slot.

For mobile device m ∈ M, at the beginning of time slot t ∈ T, let wtran
m (t) (in

time slots) denote the remaining number of time slots until all the tasks placed in
the transmission queue before time slot t have been either processed or dropped. If
task km(t) is to be offloaded to an edge node, then wtran

m (t) also corresponds to the
number of time slots that task km(t) will wait in the transmission queue, i.e., the
queuing delay of task km(t) at the transmission queue. The expression of wtran

m (t) is
given as follows. For mobile device m ∈ M, wtran

m (t) = 0 for t = 1, and

wtran
m (t) = min

{[

wtran
m (t − 1) +

⌈
∑

n∈N

λm(t − 1)ym,n(t − 1)

r tranm,n�

⌉

− 1

]+
, τm − 1

}

,

t ∈ T \ {1}. (9.6)

The interpretation of wtran
m (t) is similar to that of w

comp
m (t). If there is no task arrival

in time slot t−1 (i.e., λm(t−1) = 0), thenwtran
m (t) = [wtran

m (t−1)−1]+. Meanwhile,
if task km(t − 1) was placed in the computation queue (i.e., xm(t − 1) = 1), then
ym,n(t − 1) = 0 for all n ∈ N according to (9.1), and hence wtran

m (t) = [wtran
m (t −

1) − 1]+.

to Sects. 9.3.2 and 9.3.3. Meanwhile, the delay of a dropped task is not accounted when we evaluate
the average delay of the tasks with our proposed algorithm and benchmark methods in Sect. 9.3.4.

184 M. Tang and V. W. S. Wong

If task km(t) is offloaded to an edge node, then the number of time slots required
to send task km(t) to the edge node, denoted by d tran

m (t), is computed as follows:

d tran
m (t) =

⌈
∑

n∈N

λm(t)ym,n(t)

r tranm,n�

⌉

,m ∈ M, t ∈ {t ′ | t ′ ∈ T, km(t ′) 	= 0, xm(t ′) = 0}.
(9.7)

Processing at an Edge Node At any edge node n ∈ N, the tasks from different
mobile devices are placed in different queues. We refer to the queue that stores the
tasks of mobile device m ∈ M as the queue of mobile device m. We assume that
when a task has been sent to an edge node in a time slot, the edge node places the
task into the associated queue at the beginning of the next time slot.

At edge node n ∈ N, let q
edge
m,n (t) (in bits) denote the occupancy of the queue of

mobile device m ∈ N at the end of time slot t ∈ T. Let k
edge
m,n (t) denote the index

of the task placed in the queue of mobile device m at the beginning of time slot
t . Specifically, if task km(t ′) is offloaded to edge node n in time slot t − 1 (i.e.,
t ′ + wtran

m (t ′) + d tran
m (t ′) − 1 = t − 1 and ym,n(t

′) = 1), then k
edge
m,n (t) = km(t ′).

If there does not exist such a task, then we set k
edge
m,n (t) = 0. We denote λ

edge
m,n (t)

(in bits) as the size of task k
edge
m,n (t). If k

edge
m,n (t) = 0, then we set λ

edge
m,n (t) = 0. In

time slot t , we refer to the queue of mobile device m as an active queue if either the
queue is non-empty or there exists a new task arrival at the queue. Thus, the set of
active queues at edge node n in time slot t , denoted by Bn(t), is defined as

Bn(t) =
{
m

∣
∣
∣ q

edge
m,n (t − 1) > 0 or λ

edge
m,n (t) > 0,m ∈ M

}
. (9.8)

Let Bn(t) denote the number of active queues, i.e., Bn(t) = |Bn(t)|.
Let f

edge
n (in CPU cycles per second) denote the processing capacity of edge

node n. Within each time slot t ∈ T, the active queues in set Bn(t) equally share
the processing capacity of edge node n ∈ N. This is the generalized processor
sharing (GPS) model with equal processing capacity sharing [32]. Note that the
number of active queues, i.e., Bn(t), varies across time slots and is unknown to the
mobile devices and edge nodes a priori. This corresponds to the unknown load level
dynamics at the edge nodes and leads to the associated uncertain processing delay.

At the beginning of time slot t , let w
edge
m,n (t) (in time slots) denote the remaining

number of time slots until all the tasks placed in the queue of mobile device m at
edge node n before time slot t have been either processed or dropped. Due to the
unknown load level dynamics at the edge nodes, the mobile devices and edge nodes
are unaware of the value ofwedge

m,n (t) before all those tasks have been either processed

or dropped. Let d
edge
m,n (t) denote the number of time slots required to process task

k
edge
m,n (t). For presentation simplicity, we set d

edge
m,n (t) = 0 if k

edge
m,n (t) = 0, and

w
edge
m,n (1) = 0. The values of w

edge
m,n (t) and d

edge
m,n (t) satisfy the following constraints:

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 185

w
edge
m,n (t) = min

{[
w

edge
m,n (t − 1) + d

edge
m,n (t − 1) − 1

]+
, τm − 1

}

,

m ∈ M, n ∈ N, t ∈ T \ {1}, (9.9)

t+w
edge
m,n (t)+d

edge
m,n (t)−1∑

t ′=t+w
edge
m,n (t)

1
(
m ∈ Bn(t

′)
)
f
edge
n �

ρmBn(t ′)
≥ λ

edge
m,n (t), m ∈ M, n ∈ N, t ∈ T,

(9.10)
t+w

edge
m,n (t)+d

edge
m,n (t)−2∑

t ′=t+w
edge
m,n (t)

1
(
m ∈ Bn(t

′)
)
f
edge
n �

ρmBn(t ′)
< λ

edge
m,n (t), m ∈ M, n ∈ N, t ∈ T.

(9.11)
The intuition of (9.9) is similar to those for w

comp
m (t) in (9.2) and wtran

m (t) in (9.6).

In inequality (9.10), t + w
edge
m,n (t) and t + w

edge
m,n (t) + d

edge
m,n (t) − 1 correspond to

the time slots when the processing of task k
edge
m,n (t) starts and ends, respectively.

Thus, inequalities (9.10) and (9.11) ensure that the processing of task k
edge
m,n (t) can

be accomplished by time slot t+w
edge
m,n (t)+d

edge
m,n (t)−1 and cannot be accomplished

by t + w
edge
m,n (t) + d

edge
m,n (t) − 2.

For a task km(t) that was offloaded to edge node n, it is placed in the associated
queue of edge node n at the beginning of time slot φm(t) � t + wtran

m (t) + d tran
m (t).

Thus, its queuing delay at edge node n is w
edge
m,n (φm(t)), and its processing time is

d
edge
m,n (φm(t)). Thus, the delay of task km(t) is derived as follows:

Delaym(t) = min

{

w
comp
m (t) + d local

m (t)

+
∑

n∈N
ym,n(t)

(
w

edge
m,n (φm(t)) + d

edge
m,n (φm(t))

)
, τm

}

,

m ∈ M, t ∈ {t ′ | t ′ ∈ T, km(t) 	= 0, xm(t) = 0}. (9.12)

Note that the above expressions (9.2)–(9.4), (9.6), (9.7), and (9.9)–(9.12) are
used for presenting our system model. In practical systems, each mobile device can
directly observe the delay of the tasks Delaym(t) after those tasks have either been
processed or dropped.

9.3.2 Task Offloading Problem

We consider a fully observable system, where the mobile devices can observe the
actual values of the state (e.g., queue information, task size). In particular, at the

186 M. Tang and V. W. S. Wong

beginning of time slot t ∈ T, mobile device m ∈ M observes its state. If mobile
device m has a new task to be processed, then it will choose an action for the task,
i.e., whether to offload the task or not, and which edge node to offload the task to.
The state and action will result in a cost. We define the cost as the delay of the task if
the task has been processed, and define it as a penalty if the task has been dropped.
The objective is to find an optimal policy, i.e., a mapping from state to action, that
minimizes the expected long-term cost.

9.3.2.1 State

Let H (t) denote the historical load level dynamics of the edge nodes within the
previous T step time slots. It is a matrix with size T step × N and contains the number
of active queues of all edge nodes from time slot t − T step to t − 1. In particular,
element (i, j) of matrix H (t) is denoted by {H (t)}i,j , which corresponds to the
number of active queues at edge node j in time slot t − T step + i − 1. That is,
{H (t)}i,j = Bj (t −T step+ i −1). We assume that the edge nodes will broadcast the
number of active queues at the end of each time slot. The number of active queues
can be represented by a maximum of �log2 M�+ 1 bits. For example, if M = 1000,
then a maximum of 10 bits are needed.

At the beginning of time slot t ∈ T, each mobile device m ∈ N observes the task
size λm(t), the number of time slots required to wait for processing and offloading
(i.e., w

comp
m (t) and wtran

m (t)), the queue occupancy at all the edge nodes q
edge
m (t −

1) � (q
edge
m,n (t − 1), n ∈ N), and the historical load level H (t). The state can be

represented as follows:

sm(t) =
(
λm(t), w

comp
m (t), wtran

m (t), q
edge
m (t − 1),H (t)

)
. (9.13)

Mobile device m can compute q
edge
m (t −1) locally based on the tasks that have been

offloaded to the edge nodes and the number of active queues at the edge nodes. Let
S denote the finite and discrete space of the state. That is, S � �×{0, 1, . . . , T }2×
Q× {0, 1, . . . , M}T step×N , where Q denotes the set of available queue occupancy at
the edge nodes within T time slots.

9.3.2.2 Action

After mobile device m observes state sm(t) at the beginning of time slot t , if there
is a new task arrival (i.e., λm(t) > 0), then the mobile device will choose an action
for the task, denoted by am(t). We consider an action space A = {0} ∪ N. If the
mobile device chooses to process the task locally, then am(t) = 0. If the mobile
device offloads the task to edge node n ∈ N, then am(t) = n. That is,

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 187

am(t) =
{
0, xm(t) = 1,
n such that ym,n(t) = 1, xm(t) = 0.

(9.14)

Note that we represent the task offloading decisions xm(t) and ym(t) using am(t)

for the presentation simplicity of the algorithm.

9.3.2.3 Cost

Given the state sm(t) and action am(t), mobile device m will observe a cost after
task km(t) has either been processed or being dropped due to the task deadline. If
task km(t) has been processed, then we define the cost as the delay of task km(t),
i.e., Delaym(t). If the task km(t) has been dropped, then we set the cost to be a
constant penalty Cm, where Cm is larger than the maximum delay τm. Specifically,
cost function cm(sm(t), am(t)) is defined as follows:

cm(sm(t), am(t)) =
{
Delaym(t), if task km(t) has been processed,
Cm, if task km(t) has been dropped.

(9.15)

In the rest of this chapter, we will use the short form cm(t) to denote
cm(sm(t), am(t)).

Note that we focus on the unknown load level dynamics at the edge nodes. That
is, a mobile device does not know the number of tasks offloaded by other mobile
devices to an edge node a priori. Thus, when a mobile device makes an offloading
decision for a task, it does not know the cost for choosing that decision. This leads to
the necessity of using DRL to address the unknown and complex system dynamics.

9.3.2.4 Problem Formulation

For each mobile device m ∈ M, the objective is to find an optimal policy π∗
m : S →

A that minimizes the expected long-term cost. That is,

π∗
m = argminimizeπm E

[
∑

t∈T
γ t−1cm(t)

∣
∣
∣
∣
∣

πm

]

subject to constraints (9.1)–(9.4), (9.6), (9.7), (9.9)–(9.12),
(9.16)

where the parameter γ ∈ (0, 1] is a discount factor. This discount factor captures
the discounted cost in the future. The expectation E[·] is with respect to the time-
varying parameters, e.g., the task arrivals and the task offloading decisions of other
mobile devices.

188 M. Tang and V. W. S. Wong

9.3.3 Deep Q-Learning-Based Algorithm

In this section, we propose a DQL-based task offloading algorithm, under which
the mobile devices can make their offloading decisions without knowing the system
dynamics a priori. In this algorithm, each mobile device aims at learning a Q-value
for each action given each state. The Q-value reveals the expected long-term cost of
the mobile device given the state by selecting the associated action. The mapping
from the state to the Q-value of each action is characterized by a neural network.
With such a mapping, each mobile device can minimize its expected long-term cost
by selecting the action with the minimum Q-value under its state.

In the following, we first present the neural network. Then, we propose the DQL-
based algorithm.

9.3.3.1 Neural Network

For each mobile device, we use a neural network to characterize the mapping from
each state to the Q-value of each action. The neural network contains six layers, as
shown in Fig. 9.2. For the neural network of mobile device m ∈ M, we use θm to
denote the parameter vector. This vector contains the biases of all neurons and the
weights of all connections from the input layer to A&V layer (see Fig. 9.2).2 In the
following, we present each layer in detail.

Fig. 9.2 The neural network of mobile device m ∈ M

2 The weights of the connections between the A&V layer and the output layer as well as the bias of
the neurons in the output layer are given and fixed. Hence, we do not include them in the network
parameter vector θm, as the vector θm includes the parameters that are adjustable through learning
in the DQL-based algorithm.

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 189

Input Layer In the neural network of any mobile device m ∈ M, an input layer is
responsible for taking the state (i.e., sm(t)) as input to the neural network.

Long Short-Term Memory (LSTM) Layer After the input layer, the LSTM is
in charge of predicting the load level dynamics at the edge nodes in the short-term
future. In the LSTM layer, there is an LSTM network that has T step LSTM units.
The LSTM units are connected in sequence. Let {Hm(t)}i denote the ith row of the
historical load level dynamics matrix Hm(t). The ith LSTM unit takes {Hm(t)}i as
an input. These LSTM units can record the variations of the load level dynamics
at the edge nodes from {Hm(t)}1 to {Hm(t)}T step . The output of the last LSTM
unit is connected to the next layer in the neural network. This output can reveal the
information indicating the load level dynamics in the short-term future.

Fully Connected (FC) Layer There are two FC layers after the LSTM layer. These
layers are in charge of mapping from the learned load level dynamics and the state
information to the Q-value of each action. Each FC layer has a set of neurons with
rectified linear unit (ReLU). In the first FC layer, each neuron has full connections
to all neurons (except those related to H (t)) in the input layer and the output of the
LSTM network. In the second FC layer, each neuron is connected to all neurons in
the first FC layer.

A&V Layer and Output Layer We include an A&V layer after the FC layers.
This is inspired by dueling DQN technique [14]. The main idea is to separately
estimate the state-value (i.e., the part of Q-value resulting from the state) and the
advantage-value for each action (i.e., the part of Q-value resulting from the action).
The Q-value of each action given a state is the combination of the associated state-
value and the advantage-value of the action.

In particular, in the A&V layer, there are two networks, i.e., network A and
network V. Network A contains |A| neurons, where |A| = 1 + N is the number
of available actions. This network is in charge of estimating the advantage-value for
each action a ∈ A. Recall that θm denotes the biases and weights from the input
layer to the A&V layer. Given parameter vector θm, let Am(sm(t), a; θm) denote the
advantage-value of action a ∈ A under state sm(t) ∈ S. Network V contains one
neuron. It is responsible to estimate the state-value. Given parameter vector θm, we
denote Vm(sm(t); θm) as the state-value of state sm(t). Note that parameter vector
θm needs to be trained during the DQL-based algorithm.

The output layer determines the Q-value of each action a ∈ A given state sm(t) ∈
S. Such a Q-value can be determined as follows [14]:

Qm(sm(t), a; θm) = Vm(sm(t); θm) +
(

Am(sm(t), a; θm)

− 1
|A|

∑
a′∈A Am(sm(t), a′; θm)

)

.

(9.17)

190 M. Tang and V. W. S. Wong

Specifically, the Q-value of an action is equal to the summation of the corresponding
state-value and the additional advantage-value of the action, where the additional
advantage-value is with reference to the average advantage-value among all actions.

9.3.3.2 Algorithm Design

We now present our proposed DQL-based task offloading algorithm. To reduce the
computational loads at the mobile devices, we consider a setting where the edge
nodes help mobile devices to perform training of the neural network. In particular,
let nm ∈ N denote the edge node that helps mobile device m ∈ M for training. This
edge node can be the one that has the maximum transmission capacity with mobile
device m. For edge node n ∈ N, let Mn ⊂ M denote the set of mobile devices for
which the edge node performs training, i.e., Mn = {m | nm = n,m ∈ M}.

Mobile device m ∈ M and edge node n ∈ N execute Algorithms 1
and 2, respectively. In particular, mobile device m collects experience
(sm(t), am(t), cm(t), sm(t + 1)) for t ∈ T through the interaction with the MEC
system. The associated edge node nm maintains an experience replay Dm, which
stores the experience of mobile device m. For presentation simplicity, we use the
experience t of mobile device m to refer to (sm(t), am(t), cm(t), sm(t + 1)). Edge
node nm learns the mapping from each state to the Q-value of each action using the
experience. Specifically, edge node nm keeps two neural networks for mobile device
m, including an evaluation network Netm and a target network Target_Netm. Both
neural networks follow the structure presented in Sect. 9.3.3.1. Nevertheless, they
have different parameter vectors, i.e., θm for Netm and θ−

m for Target_Netm, and
different functionalities. Edge node nm aims at training the evaluation network Netm
to characterize the mapping from state to Q-values. During the training process,
edge node nm uses Netm for action selection. It uses the target network Target_Netm
to approximate the expected long-term cost of each action given any state. We call
the output of the target network as target Q-value. Edge node nm will update the
parameter vector of Netm by minimizing the gap between the target Q-value and the
Q-value under Netm.

Algorithm 1 at Mobile Device m ∈ M The algorithm iterates for E episodes. At
the beginning of each episode, mobile device m ∈ M initializes the state, i.e.,

sm(1) = (λm(1), wcomp
m (1), wtran

m (1), qedge
m (0),H (1)). (9.18)

We set qedge
m,n (0) = 0 for all n ∈ N and set H(1) as a zero matrix with size T step×N .

At the beginning of time slot t ∈ T, if mobile device m has a new task
arrival km(t), then it will request the recent parameter vector of network Netm, i.e.,
θm, through sending a parameter_request to edge node nm. Note that in practical
systems, the mobile device can choose not to request the parameter vector in every
time slot with new task arrivals in order to reduce the signaling overhead. Although
reducing such a frequency may degrade the convergence rate of the proposed

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 191

Algorithm 1 Deep Q-learning-based algorithm at mobile device m ∈ M
1: for episode = 1, 2, . . . , E do
2: Initialize state sm(1);
3: for time slot t ∈ T do
4: if mobile device m has a new task arrival km(t) then
5: Send a parameter_request to edge node nm;
6: Receive network parameter vector θm;
7: Select an action am(t) according to (9.19);
8: end if
9: Observe the next state sm(t + 1);
10: Observe a set of costs {cm(t ′), t ′ ∈ T̃m,t };
11: for each task km(t ′) with t ′ ∈ T̃m,t do
12: Send (sm(t ′), am(t ′), cm(t ′), sm(t ′ + 1)) to edge node nm;
13: end for
14: end for
15: end for

algorithm, we have evaluated empirically that the degradation of the convergence
rate is minimal if the frequency is maintained within a certain range. For example,
with the system setting in Sect. 9.3.4, requesting the parameter vector every 100
time slots leads to a similar convergence rate as requesting it every time slot.

With a probability of ε, mobile device m randomly selects an action in set A.
With a probability of 1 − ε, given the recent state sm(t), it selects an action that
leads to the minimum Q-value according to θm. That is,

am(t) =
{
a random action fromA, with a probability of ε,

argmin
a∈AQm(sm(t), a; θm), with a probability of 1 − ε.

(9.19)

Then, at the beginning of time slot t + 1, mobile device m can observe the next
state sm(t + 1). Note that in our system setting, the processing of task km(t) does
not need to be accomplished within time slot t . Thus, at the beginning of time slot
t + 1, the cost cm(t) associated with task km(t) may have not been observed. Due to
the same reason, mobile device m may observe a set of costs associated with some
tasks km(t ′) arrived in time slot t ′ ≤ t . Thus, we denote T̃m,t ⊂ T as the set of time
slots such that the tasks associated with those time slots have been either processed
or dropped within time slot t . That is,

T̃m,t = {t ′ | t ′ = 1, 2, . . . , t, λm(t ′) > 0, t ′ + Delaym(t ′) − 1 = t}, (9.20)

where set T̃m,t can be an empty set for some m ∈ M and t ∈ T. At the beginning of
time slot t + 1, mobile device m can observe a set of costs {cm(t ′), t ′ ∈ T̃m,t }.
For each task km(t ′) with t ′ ∈ T̃m,t , mobile device m sends the associated
experience (sm(t ′), am(t ′), cm(t ′), sm(t ′ + 1)) to edge node nm. To reduce the
signaling overhead, we consider a setting where mobile device m does not send
matrices H (t ′) and H (t ′+1) in states sm(t ′) and sm(t ′+1). This is feasible because

192 M. Tang and V. W. S. Wong

Algorithm 2 Deep Q-learning-based algorithm at edge node n ∈ N
1: Initialize neural network Netm with random θm for m ∈ Mn;
2: Initialize neural network Target_Netm with random θ−

m for m ∈ Mn;
3: Initialize experience replay Dm for m ∈ Mn and Count ← 0;
4: while True do
5: if receive a parameter_request from m ∈ Mn then
6: Send the recent parameter vector θm to mobile device m;
7: end if
8: if receive an experience (sm(t), am(t), cm(t), sm(t + 1)) from m ∈ Mn then
9: Store (sm(t), am(t), cm(t), sm(t + 1)) in experience replay Dm;
10: Sample a set of experiences (denoted by I) from Dm;
11: for each experience i ∈ I do
12: Obtain experience (sm(i), am(i), cm(i), sm(i + 1));

13: Compute Q̂
Target
m,i according to (9.23);

14: end for

15: Set vector Q̂
Target
m ← (Q̂

Target
m,i , i ∈ I);

16: Update θm to minimize L(θm, Q̂
Target
m) in (9.21);

17: Count ← Count + 1;
18: if mod(Count, Replace_Threshold) = 0 then
19: θ−

m ← θm;
20: end if
21: end if
22: end while

we have assumed that the edge nodes broadcast their load level dynamics in each
time slot.

Algorithm 2 at Edge Node n ∈ N Edge node n ∈ N first initializes neural
networks Netm and Target_Netm and experience replay Dm for mobile device
m ∈ Mn. Then, it will wait for the messages from the mobile devices.

If edge node n receives a parameter_request from mobile device m ∈ Mn, then
it will forward the recent parameter vector θm to mobile device m. If edge node n

receives an experience frommobile devicem ∈ Mn, then it will store the experience
in the experience replay Dm. After that, edge node n will update the parameter
vector θm of network Netm according to steps 10−20 in Algorithm 2. The edge
node first randomly samples I experiences fromDm. LetI denote the set of sampled
experiences. For each experience i ∈ I, edge node n will compute a target Q-value

Q̂
Target
m,i (to be explained in the next paragraph) and update θm by minimizing the

following loss function:

L

(

θm, Q̂
Target
m

)

= 1

I

∑

i∈I

(

Q̂
Target
m,i − Qm(sm(i), am(i); θm)

)2

, (9.21)

where Q̂
Target
m = (Q̂

Target
m,i , i ∈ I). This loss function captures the difference

between the target Q-value and the output of network Netm for each experience i ∈

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 193

I. The edge node minimizes the loss function using backpropagation (see Section 6
in [33]).

Edge node n determines the target Q-value Q̂
Target
m,i for i ∈ I using double DQN

technique [13]. This technique can improve the approximation of the expected long-
term cost when compared with the conventional method (e.g., [12]). To determine
the target Q-value, we denote aNexti as the action that leads to the minimumQ-value
given the next state sm(i + 1) under network Netm, i.e.,

aNexti = argmin
a∈AQm(sm(i + 1), a; θm). (9.22)

The target Q-value Q̂
Target
m,i is computed as follows:

Q̂
Target
m,i = cm(i) + γQm

(
sm(i + 1), aNexti ; θ−

m

)
. (9.23)

Intuitively, the target Q-value is equal to the summation of the cost in experience
i and the discount factor multiplied by the Q-value of action aNexti given the next
state sm(i +1) under network Target_Netm. This value essentially approximates the
expected long-term cost of action am(i) given state sm(i).

To keep the parameter vector θ−
m of Target_Netm up-to-date, edge node n updates

θ−
m every several number of training rounds by copying the parameter vector θm of

network Netm. Such updates make the target Q-value (which is derived based on
Target_Netm) a more accurate approximation of the expected long-term cost. We use
Replace_Threshold to denote the corresponding number of training rounds, where
mod(·) is the modulo operator in step 18 in Algorithm 2.

Discussion on Convergence Despite that we are able to prove the convergence of
Q-learning algorithm, the convergence of a DQL-based algorithm is still an open
problem. This is because the neural network is essentially an approximation of the
mapping from state to Q-values. Due to such an approximation, the convergence
may no longer be guaranteed. In this chapter, we empirically evaluate the conver-
gence performance of the proposed algorithm in Sect. 9.3.4.

9.3.4 Performance Evaluation

We consider five edge nodes and 50 mobile devices. Table 9.1 shows the parameter
settings of the MEC system and the hyperparameters of the proposed algorithm. As
shown in Table 9.1, we consider a setting where each task has a deadline τm = 10
time slots regardless of the task size. For example, for a video segment decoding
task in live streaming, a video segment should always be decoded before a certain
deadline to avoid rebuffering, where the deadline is independent of the number of
image frames in the video segment. We set the penalty for dropped tasks Cm to 20

194 M. Tang and V. W. S. Wong

Table 9.1 Parameter settings of the MEC system

Parameter Value Parameter Value

� 0.1 second f device
m ,m ∈ M 2.5GHz [34]

λm(t),m ∈ M, t ∈ T Discrete uniform
distribution over set {2.0,
2.1, . . . , 5.0} Mbits [35]

r tranm,n,m ∈ M, n ∈ N 14 Mbps [36]

ρm,m ∈ M 0.297 Gigacycles per Mbits
[35]

f
edge
n , n ∈ N 41.8GHz [34]

τm,m ∈ M 10 time slots (i.e., 1 second
[37])

Cm,m ∈ M 20

Task arrival probability 0.3 Discount factor 0.9

Learning rate 0.001 Batch size 16

ε Decrement from 1 to 0.01

for m ∈ M, where this value is twice as large as the maximum delay of a processed
task (i.e., 10 time slots). Such a penalty setting makes the cost of a dropped task
be always larger than the cost of a processed task, under which the proposed DQL-
based algorithm will avoid tasks being dropped by optimizing the task offloading
decision. In addition, we consider a setting where the task arrival probability is a
constant value [29]. Despite that the task arrival probability is fixed across time,
the number of tasks offloaded to an edge node can be time varying and is unknown
to any particular mobile device, due to the time-varying and unknown offloading
decisions of other mobile devices. This leads to the unknown load level dynamics at
the edge nodes and the necessity of using our proposed DQL-based approach.

In the following, we evaluate the algorithm convergence. Then, we compare the
performance of our proposed algorithm with some existing algorithms.

9.3.4.1 Algorithm Convergence

Figure 9.3 shows the convergence of the average cost among mobile devices of our
proposed algorithm under different hyperparameters. For comparison, we show the
random policy, where mobile devices randomly select their actions.

Figure 9.3(a) shows the algorithm convergence under different values of batch
size, i.e., the number of experience sampled in one training round (i.e., I). When
the batch size is increased from 2 to 8, the average cost converges to a lower value.
Further increasing the batch size to 32 does not make a significant difference. Thus,
a small batch size (e.g., 8) is sufficient for achieving a satisfactory convergence.

Figure 9.3(b) shows the algorithm convergence under different values of learning
rate, which is the step size for updating network Netm. As shown in the figure, when
the learning rate is equal to 0.001, the average cost converges relatively fast and
converges to a smaller value when compared with the other values of learning rate.

On the other hand, in practical systems, the task arrival probability can be non-
stationary. Under such a scenario, once the environment has changed, the proposed

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 195

0 250 500 750 1000
Episode

0.4

0.6

0.8

1
Av

er
ag

e
C

os
t

random
batch size = 2
batch size = 8

batch size = 16
batch size = 32

0 250 500 750 1000
Episode

0.4

0.6

0.8

1

Av
er

ag
e

C
os

t

random
lr=0.0001

lr=0.0005
lr = 0.001

lr=0.01
lr=0.1

)b()a(

Fig. 9.3 Algorithm convergence under different: (a) batch size and (b) learning rate (denoted by
“lr”)

0 500 1000 1500 2000
Episode

0

0.4

0.8

1.2

Av
er

ag
e

C
os

t

Random
DQL

Task arrival
probability
increases
from 0.3 to 0.5

Fig. 9.4 An illustration of the algorithm performance with non-stationary task arrival probability

algorithm can adapt to it by resetting the probability of random exploration to be one
in order to enable the random exploration again. Figure 9.4 shows an example of the
performance of the proposed DQL-based algorithm with non-stationary task arrival
probability. In this simulation, at around 1000 episodes, the task arrival probability
increases from 0.3 to 0.5. Hence, the average cost of both the random policy and our
proposed DQL-based algorithm are changed accordingly. As the episodes proceed,
our proposed algorithm gradually adapts to the change of task arrival probability and
converges again. We will leave it as future work to design an efficient algorithm for
addressing frequent environmental changes. Candidate approaches include concept
drift detection [38] and non-stationary reinforcement learning [39, 40].

9.3.4.2 Method Comparison

We compare our proposed algorithm with several benchmark methods. These
include no offloading (denoted by No Offl.), random offloading (denoted by R.

196 M. Tang and V. W. S. Wong

0.05 0.15 0.25 0.35 0.45
Task Density (Gigacycles per Mbits)

0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f D

ro
pp

ed
 T

as
ks

No Offl.
R. Offl.
PGOA
ULOOF
DQL

0.05 0.15 0.25 0.35 0.45
Task Density (Gigacycles per Mbits)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

D
el

ay
 (S

ec
)

No Offl.
R. Offl.
PGOA
ULOOF
DQL

)b()a(

Fig. 9.5 Performance with different task densities: (a) ratio of dropped tasks and (b) average delay

Offl.), potential game-based offloading algorithm (PGOA) in [31], and user-level
online offloading framework (ULOOF) in [34]. With PGOA and ULOOF, mobile
devices make their offloading decisions based on a best response algorithm for
potential game and the capacity estimation with historical observations, respec-
tively. In the simulation results, we use “DQL” to refer to our proposed DQL-based
algorithm.

In the simulations, we consider two performance metrics. The first is the ratio of
dropped tasks. This is the ratio of the number of dropped tasks to the total number
of tasks. The second is the average delay of the tasks that have been processed.

Task Density In Fig. 9.5, as the task density increases, the ratio of dropped tasks
and the average delay of each method increase. This is because a larger task
density implies a higher computational requirement of each task. As the task
density increases from 0.05 to 0.25 Gigacycles per Mbits, the ratio of dropped tasks
and average delay of our proposed algorithm increase less drastically than those
of the benchmark methods. When the density is 0.25 Gigacycles per Mbits, our
proposed algorithmmaintains a ratio of dropped tasks of around 0.01 and an average
delay of 0.47 second. As the task density further increases to 0.5 Gigacycles per
Mbits, although all methods have a similar average delay, our proposed algorithm
can reduce the ratio of dropped tasks by 41.4%–74.1% when compared with the
benchmark methods.

Processing Capacity of Edge Node As shown in Fig. 9.6, under various values of
the processing capacity of each edge node, our proposed algorithm can reduce the
ratio of dropped tasks and the average delay when compared with the benchmark
methods. The reduction of the ratio of dropped tasks is especially significant when
the processing capacity of each edge node is small. When the processing capacity is
15GHz, the proposed algorithm reduces the ratio of dropped tasks by at least 57.0%
and reduces the average delay by at least 9.4% when compared with the benchmark
methods. As the processing capacity further increases, both performance metrics
converge, because further increasing the capacity does not reduce the delay of those

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 197

15 35 55 75
Processing Capacity of Edge Node (GHz)

0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f D

ro
pp

ed
 T

as
ks

No Offl.
R. Offl.
PGOA

ULOOF
DQL

15 35 55 75
Processing Capacity of Edge Node (GHz)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

D
el

ay
 (S

ec
)

No Offl.
R. Offl.
PGOA
ULOOF
DQL

)b()a(

Fig. 9.6 Performance with different processing capacities of edge nodes: (a) ratio of dropped tasks
and (b) average delay

1 2 3 4 5 6
Processing Capacity of Mobile Device (GHz)

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f D
ro

pp
ed

 T
as

ks

No Offl.
R. Offl.
PGOA
ULOOF
DQL

1 2 3 4 5 6
Processing Capacity of Mobile Device (GHz)

0

0.2

0.4

0.6

0.8

1
Av

er
ag

e
D

el
ay

 (S
ec

)

No Offl.
R. Offl.
PGOA

ULOOF
DQL

)b()a(

Fig. 9.7 Performance with different processing capacities of mobile devices: (a) ratio of dropped
tasks and (b) average delay

tasks offloaded due to the limited transmission capacity. The converged ratio of
dropped tasks and the average delay of our proposed algorithm is at least 84.3% and
17.2% less than those of the benchmark methods, respectively.

Processing Capacity of Mobile Devices In Fig. 9.7, as the processing capacity
of each mobile device increases, our proposed algorithm has a more significant
decrease in terms of the ratio of dropped tasks and average delay when compared
with PGOA and ULOOF. When the processing capacity increases to 3.5GHz, our
proposed algorithm achieves a ratio of dropped tasks of 0.007, which is 93.9%–
96.5% lower than those of the benchmark methods. Meanwhile, our algorithm
achieves an average delay that is 31.4% and 29.4% lower than those of PGOA
and ULOOF, respectively. As the processing capacity of each mobile device
further increases, processing a task locally becomes optimal. Thus, our proposed
algorithm tends to choose local processing and achieves a similar performance as
no offloading.

198 M. Tang and V. W. S. Wong

9.4 Challenges and Future Directions

Despite the fact that DRL can effectively address the unknown and time-varying
system dynamics, there are still several remaining challenges and future research
directions for the deployment of DRL algorithms in MEC systems.

First, the training process of DRL algorithms may require substantial compu-
tational resource consumption. Meanwhile, under the scenario where the training
process is offloaded to some devices with sufficient computational resources, the
offloading may lead to communication resource consumption for neural network
transmission. As a result, the scalability of DRL algorithms in MEC systems may
be a concern. To address these issues, we may include both offline phase and
online phase for DRL algorithms, where the offline phase is performed offline with
powerful devices (e.g., cloud server). Transfer learning techniques [41] may be
utilized for the online phase to make the neural network quickly adapt to the real-
world environment. Moreover, deep compression techniques [42], such as network
pruning (i.e., reducing the number of weights in neural networks) and quantization
(i.e., reducing the number of bits for representing a weight), may be used to reduce
the communication resource requirement.

Second, the environment in MEC systems may be time varying. Thus, DRL
algorithms should be able to detect the change of the environment and quickly
adapt to the new environment after changing. Methods for concept drift detection
[38] are applicable for detecting the change of the environment. In addition,
techniques for lifelong learning [43] may be applicable for handling the non-
stationary environments. Meanwhile, existing works, e.g., [39, 40], proposed DRL
algorithms for non-stationary reinforcement learning, which may be applicable to
MEC systems.

Third, in MEC systems with a large number of mobile devices and edge nodes,
there are potentials for the mobile devices and edge nodes to cooperate to learn
the optimal policy through their interaction with the environments. In other words,
the mobile devices and edge nodes may cooperatively train the neural networks
in the DRL algorithms. Such a collaboration can alleviate the requirements for
computational resources and improve the resource efficiency. Federated learning
techniques [44] can enable the collaboration among mobile devices and edge nodes
for neural network training and hence may be incorporated in DRL algorithms.

9.5 Conclusion

In this chapter, we provided an overview of the DRL algorithms for MEC systems.
We introduced DRL fundamentals and then presented a case study on task offloading
in MEC systems. In this case study, we focused on the unknown and time-varying
load level dynamics at the edge nodes and proposed a DQL-based algorithm that
enables the mobile devices to make task offloading decisions in a decentralized

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 199

fashion. We conducted simulations and showed that the proposed algorithm can
reduce the task delay and ratio of dropped tasks. Finally, we outlined the challenges
and future research directions for DRL algorithms in MEC systems.

References

1. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: the
communication perspective. IEEE Commun. Surv. Tutorials 19(4), 2322–2358, Fourth quarter
(2017)

2. P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, T. Taleb, Survey on multi-access edge
computing for Internet of things realization. IEEE Commun. Surv. Tutorials 20(4), 2961–2991
(2018)

3. F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of things,
in Proc. ACM SIGCOMM Workshop on Mobile Cloud Computing (MCC), Helsinki, August
2012

4. Z. Sanaei, S. Abolfazli, A. Gani, R. Buyya, Heterogeneity in mobile cloud computing:
taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1), 369–392, First quarter
(2014)

5. T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, D.O. Wu, Edge computing in industrial
Internet of things: architecture, advances and challenges. IEEE Commun. Surv. Tutorials 22(4),
2462–2488, Fourth quarter (2020)

6. P. Ranaweera, A.D. Jurcut, M. Liyanage, Survey on multi-access edge computing security and
privacy. IEEE Commun. Surv. Tutorials 23(2), 1078–1124, Second quarter (2021)

7. T. Chen, Q. Ling, G.B. Giannakis, An online convex optimization approach to proactive
network resource allocation. IEEE Trans. Signal Process. 65(24), 6350–6364 (2017)

8. H. Shah-Mansouri, V.W.S. Wong, Hierarchical fog-cloud computing for IoT systems: a
computation offloading game. IEEE Internet Things J. 5(4), 3246–3257 (2018)

9. V. François-Lavet, P. Henderson, R. Islam, M.G. Bellemare, J. Pineau, An introduction to deep
reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)

10. X. Wang, Y. Han, V.C.M. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge computing
and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904,
Second quarter (2020)

11. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2nd edn. (MIT Press,
Cambridge, MA, 2018)

12. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves,
M. Riedmiller, A.K. Fidjeland, G. Ostrovski, Human-level control through deep reinforcement
learning. Nature 518(7540), 529–533 (2015)

13. H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in
Proc. AAAI Conf. on Artificial Intelligence, Phoenix, AZ, May 2016

14. Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas, Dueling network
architectures for deep reinforcement learning, in Proc. Int’l Conf. on Machine Learning
(ICML), New York City, NY, June 2016

15. M.G. Bellemare,W. Dabney, R. Munos, A distributional perspective on reinforcement learning,
in Proc. Int’l Conf. on Machine Learning (ICML), Sydney, August 2017

16. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,
Continuous control with deep reinforcement learning. Preprint, arXiv:1509.02971, July 2019

17. G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, T.B. Dhruva, A. Muldal,
N. Heess, T. Lillicrap, Distributed distributional deterministic policy gradients, in Proc. Int’l
Conf. on Learning Representations (ICLR), Vancouver, April 2018

18. V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu,
Asynchronous methods for deep reinforcement learning, in Proc. Int’l Conf. on Machine
Learning (ICML), New York City, NY, June 2016

200 M. Tang and V. W. S. Wong

19. Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, N. de Freitas, Sample
efficient actor-critic with experience replay. Preprint, arXiv:1611.01224, July 2017

20. T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: off-policy maximum entropy
deep reinforcement learning with a stochastic actor, in Proc. Int’l Conf. on Machine Learning
(ICML), Stockholm, June 2018

21. S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-critic
methods, in Proc. Int’l Conf. on Machine Learning (ICML), Stockholm, June 2018

22. J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization, in
Proc. Int’l Conf. on Machine Learning (ICML), Lille, June 2015

23. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization
algorithms. Preprint, arXiv:1707.06347, August 2017

24. C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, S. Colton, A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intel. AI 4(1), 1–43 (2012)

25. D. Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature
529(7587), 484–489 (2016)

26. A. Plaat, W. Kosters, M. Preuss, Model-based deep reinforcement learning for high-
dimensional problems, a survey. Preprint, arXiv:2008.05598, December 2020

27. N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, D.I. Kim, Applications
of deep reinforcement learning in communications and networking: a survey. IEEE Commun.
Surv. Tutorials 21(4), 3133–3174, Fourth quarter (2019)

28. M. Tang, V.W.S. Wong, Deep reinforcement learning for task offloading in mobile edge
computing systems. IEEE Trans. Mobile Comput. 21(6), 1985–1997 (2020)

29. J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task scheduling for mobile-
edge computing systems, in Proc. IEEE Int’l Symp. on Information Theory (ISIT), Barcelona,
July 2016

30. X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Distributed online
optimization of fog computing for selfish devices with out-of-date information. IEEE Trans.
Wirel. Commun. 17(11), 7704–7717 (2018)

31. L. Yang, H. Zhang, X. Li, H. Ji, V. Leung, A distributed computation offloading strategy in
small-cell networks integrated with mobile edge computing. IEEE/ACM Trans. Netw. 26(6),
2762–2773 (2018)

32. A.K. Parekh, R.G. Gallager, A generalized processor sharing approach to flow control in
integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344–357
(1993)

33. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
34. J.L.D. Neto, S.-Y. Yu, D.F. Macedo, M.S. Nogueira, R. Langar, S. Secci, ULOOF: a user level

online offloading framework for mobile edge computing. IEEE Trans. Mobile Comput. 17(11),
2660–2674 (2018)

35. C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading and resource allocation
in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8),
4924–4938 (2017)

36. Speedtest Intelligence, Speedtest global index: Canada average mobile upload speed based on
March 2021 data, https://www.speedtest.net/reports/canada/. Accessed 25 June 2021

37. X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, R.P. Liu, Energy-efficient admission of delay-
sensitive tasks for mobile edge computing. IEEE Trans. Commun. 66(6), 2603–2616 (2018)

38. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept drift: a review. IEEE
Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

39. A. Xie, J. Harrison, C. Finn, Deep reinforcement learning amidst lifelong non-stationarity.
Preprint, arXiv:2006.10701, June 2020

40. V. Lomonaco, K. Desai, E. Culurciello, D. Maltoni, Continual reinforcement learning in 3D
non-stationary environments, in Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, June 2020

https://www.speedtest.net/reports/canada/

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 201

41. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey
on transfer learning. Proc. IEEE 109(1), 43–76 (2021)

42. S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding, in Proc. Int’l Conf. on Machine Learning
(ICML), New York City, NY, June 2016

43. Z. Chen, B. Liu, Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12(3),
1–207 (2018)

44. W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao,
Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv.
Tutorials 22(3), 2031–2063, Third quarter (2020)

	9 Deep Reinforcement Learning for Mobile EdgeComputing Systems
	9.1 Introduction
	9.2 Overview of Deep Reinforcement Learning
	9.2.1 DRL Problem Formulation
	9.2.2 Determine the Optimal Policy with Deep Learning
	9.2.3 Existing DRL Algorithms

	9.3 Case Study: Deep Q-Learning for Task Offloading in MEC
	9.3.1 System Model
	9.3.1.1 Task Model
	9.3.1.2 Task Offloading Decision
	9.3.1.3 Local Processing Model
	9.3.1.4 Edge Node Offloading Model

	9.3.2 Task Offloading Problem
	9.3.2.1 State
	9.3.2.2 Action
	9.3.2.3 Cost
	9.3.2.4 Problem Formulation

	9.3.3 Deep Q-Learning-Based Algorithm
	9.3.3.1 Neural Network
	9.3.3.2 Algorithm Design

	9.3.4 Performance Evaluation
	9.3.4.1 Algorithm Convergence
	9.3.4.2 Method Comparison

	9.4 Challenges and Future Directions
	9.5 Conclusion
	References

