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Utility-Based Dynamic Resource
Allocation in IEEE 802.11ax Networks:
A Genetic Algorithm Approach
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4.1 Introduction

Wireless local area networks (WLANs) have grown extensively over decades as
advanced services such as ultra HD and 4K video, multimedia streaming, and rapid
file transfer have become widespread among the general public. As a result, the
number of personal devices, including smartphones, laptops, and high-definition
multimedia devices, dramatically increases. As the number of devices increases,
it leads to severe congestion, and the devices can hardly be connected to the
Internet. Because of the congestion, the latest WLAN standard, IEEE 802.11ax [1],
is primarily aimed at improving efficiency in high-density WLANs.

One of the most promising techniques in IEEE 802.11ax to deal with the dense
deployment scenario is orthogonal frequency division multiple access (OFDMA),
which has been adopted in various existing standards such as IEEE 802.16e
WiMAX [2], long-term evolution (LTE), and 5G new radio (NR). In the OFDMA
technique adopted in IEEE 802.11ax, the entire bandwidth is divided into several
resource units (RUs). By allowing multi-user channel access and multi-user data
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transmission through orthogonal RU allocation, OFDMA can significantly reduce
contention and preamble overhead.

On the other hand, as the number of access points (APs) is rapidly increased,
each basic service set (BSS) becomes seriously overlapped. Therefore, a network-
wide optimization for OFDMA resource allocation should be considered. Only a
few studies considered adjacent BSSs; however, they only investigated interference
mitigation issues through directional transmissions, and OFDMA resource alloca-
tion was not taken into consideration in detail.

In this chapter, we propose a utility-based dynamic resource allocation (UDRA)
scheme in which a network-wide utility maximization problem is formulated to
consider AP throughput and fairness among associated stations jointly. Since the
formulated problem is an NP-hard problem, we map the optimization problem
onto the genetic algorithm for a realistic WLAN environment. Extensive simulation
results demonstrate that the proposed genetic algorithm has much lower complexity
than the exhaustive search algorithm, while its performance in terms of throughput
and fairness is nearly identical to the exhaustive search algorithm.

This chapter’s key contribution is twofold. The first is that the frequency resource
can be dynamically optimized using an interaction without any wired connectivity
among APs. The simulation shows that depending on the given parameters, the
network throughput of UDRA is 38% higher than conventional algorithms, or Jain’s
fairness index [3] of UDRA is higher than that of other algorithms. The second is
that UDRA exhibits nearly the same performance thanks to the genetic algorithm
compared to an exhaustive searching algorithm while the running time of UDRA is
significantly reduced.

The remainder of this chapter is organized as follows. Sections 4.2 and 4.3
summarize the related works on OFDMA resource management. Sections 4.4 and
4.5 describe OFDMA operation in 802.11ax, which is a foundation for UDRA
and demonstrates the formulated problem and the genetic algorithm to solve
it. Simulation results and concluding remarks are given in Sects. 4.6 and 4.7,
respectively.

4.2 Related Works

A fundamental problem for OFDMA resource management is how to allocate
limited resources to the stations efficiently. That is, to increase spectral efficiency,
stations should be allocated to appropriate time and frequency resource. Unfortu-
nately, the problem of finding the optimal allocation was shown to be NP-hard in [4].
Therefore, many studies have focused on reducing computational complexity for
resource management. The approaches to overcome this computational complexity
can be categorized mainly into (1) solving sub-optimal solutions relying on
relaxation [5–8] and (2) introducing alternative frameworks [9, 10].

A mixed integer nonlinear problem (MINLP) was formulated in [5], and the
authors proposed a sub-optimal solution to the MINLP problem relying on convex
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relaxation. In [6], an optimal problem of assigning users to RUs while maximizing
their sum rate was formulated, and a relaxed scheduling and resource allocation
problem utilizing the divide-and-conquer approach was introduced. One approach
assumes a more realistic and practical assumption. Since OFDMA is a technique for
enabling multi-user transmission, the authors of [7] developed a resource allocation
algorithm in which a scheduled duration is optimally determined to minimize the
padding overhead occurring in the stations that are not transmitting at that time.
In [8], the authors defined resource allocation as a selecting block for services,
in order to meet some requirements such as the latency or traffic demands. The
authors then proposed a sub-optimal and low-complexity algorithm to perform the
assignment of blocks to services.

In [9], the authors defined a welfare function that reflected the total benefit
covering all players and formulated the resource allocation problem as a game-
theoretical framework. In [10], an auction-theoretic approach is proposed for the
resource allocation problem to reduce the computation time. In this literature,
several resource allocation schemes have been proposed, but most of them attempt
to optimize OFDMA resource allocation within BSS without considering resource
allocation information from adjacent BSSs.

Recent works on resource management consider a more challenging environment
with multiple and densely deployed APs. In [11, 12], transmit beamforming
was considered to mitigate the effect of inter-cell interference. The authors also
investigated an achievable rate when transmit beamforming is applied. Indeed,
this approach, such as transmit beamforming, is challenging to adopt in a WLAN
because it requires a directional transmission. Although these studies consid-
ered adjacent BSSs, they only investigated interference mitigation issues through
directional transmissions, and OFDMA resource allocation was not taken into
consideration in detail.

4.3 Background on OFDMA and RU Allocation in IEEE
802.11ax

The basic OFDM principle is to utilize orthogonal subcarriers in frequency for data
transmissions. Thus, broadband wireless radio channels with frequency-selective
fading are replaced by a set of narrow-band channels (subcarriers) with flat
fading. Each data symbol is then transmitted in one subcarrier, which is robust for
multipath propagation. Additional advantages of OFDM are its highly efficient use
of frequencies, its cost-effective and flexible digital signal processing, and its low
complexity of MIMO principles.

802.11ax, which is the most widely used standard for WLAN, supports bands of
20 MHz, 40 MHz, 80 MHz, 80+80 MHz (combining two 80 MHz channels), and
160 MHz (single 160 MHz channel) [1]. In OFDMA transmission, the spectral band
is divided into several resource units (RUs). In the time domain, the RU spans the
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Fig. 4.1 Subdividing 20MHz channel using OFDMA in IEEE 802.11ax

Table 4.1 Total number of RUs by channel bandwidth

RU type 20 MHz 40 MHz 80 MHz 160 and 80+80 MHz

26-subcarrier RU 9 18 37 74

52-subcarrier RU 4 8 16 32

106-subcarrier RU 2 4 8 16

242-subcarrier RU 1 2 4 8

484-subcarrier RU N/A 1 2 4

996-subcarrier RU N/A N/A 1 2

2x996-subcarrier RU N/A N/A N/A 1

entire data portion of the High Efficiency (HE) PLCP Protocol Data Unit (PPDU).
In the frequency domain, it consists of a subset of successive subcarriers. In the
frequency domain, RUs can be 26, 52, 106, 242, 484, or 996. RUs in HE multi-
user (MU) PPDUs that use OFDMA transmissions can be one of these sizes. The
position of the RU in the HE PPDU is fixed. Each RU, larger than 26, can be divided
into two smaller RUs. The entire bandwidth can be used as a single 484-tone RU,
or divided into two 242-tone RUs, each of which can be split into smaller RUs
until a 26-tone RU is reached. When an RU is created, the AP assigns one RU to
each user or a group of users for transmission. When bandwidth is split into RUs
and is allocated to each user, the transmission is pure OFDMA, which can also be
used for MU-MIMO if the RU is a 106 or higher subcarrier, then referred to as a
joint transmission between MU-MIMO and OFDMA. Figure 4.1 illustrates how an
802.11ax system multiplexes a 20 MHz channel using different resource unit (RU)
sizes. The smallest division of the channel can support up to 9 users simultaneously
for every 20 MHz of bandwidth. The number of users that can be supportable for
the RU type and various available channels are listed in Table 4.1. In this chapter,
we follow the existing parameters regarding OFDMA.

4.4 System Model

In this section, UDRA, an optimization problem that jointly considers the network
throughput and the fairness index in OFDMA resource allocation, is addressed. To
this end, we first describe a systemmodel on which UDRA is based and demonstrate
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Fig. 4.2 Schematic representation of UDRA

Fig. 4.3 The timing diagram of UDRA in the system model

an illustrative example of UDRA. Next, a modified CTS (M-CTS) frame structure,
which is essential to operate UDRA, is followed.

In our model, each BSS consists of one AP and one or more STAs. Only downlink
traffic from APs to STAs is considered since it occupies a dominant portion of
traffic for WLAN applications. Furthermore, we assume that the AP’s buffer to be
transmitted to associated stations is in a saturated state, which means the APs always
have frames to be sent.

Figures 4.2 and 4.3 show a schematic example of how UDRA works. In this
example, as shown in Fig. 4.2, there are two APs, APs a and b, where STAs a1,
a2, and a3 are connected to AP a. STA a3 is on the area where two transmission
ranges are overlapped. The solid arrows and the dotted arrows stand for determined
transmissions and overheard transmissions, respectively. Once STA a3 that resides
in the overlapped area overhears a data frame from AP b, it will know RU
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Fig. 4.4 A modified CTS (M-CTS) frame

information of AP b by means of the PHY preamble in the data frame. When STAs
a1, a2, and a3 receive a multi-user request-to-send (MU-RTS) frame from AP a, all
the STAs are required to respond with an M-CTS frame, which will be addressed
in the next section. Besides, STA a3 reports the RU allocation information of AP b

to AP a by including the information in the M-CTS frame, as shown in Fig. 4.3. As
a result, AP a can obtain network-wide RU allocation information, which will then
be used for the utility optimization problem in Sect. 4.5.

Some information, such as transmission duration and transmission signal power
from adjacent BSSs, is required to formulate a network-wise utility maximization
problem. Since an AP can receive the signal only from associated STAs in the
existing IEEE 802.11, a new method to deliver the information collected by adjacent
APs is needed. To this end, we introduce the M-CTS frame, which includes
the identification (e.g., transmitter ID), overheard signal power, RU allocation
information, and transmission duration of the overheard data frame. When a STA
listens to a data frame whose destination is another STA, it first records the signal
strength and time stamp. After that, the STA decodes the overheard data frame
and detects the RU allocation information. Once AP solicits the STA via the MU-
RTS frame, the STA transmits the M-CTS frame so that AP can know the above
information.

Figure 4.4 shows the M-CTS frame structure. Interference Strength field
describes the signal strength for letting the associated AP know the amount of
interference that the STA suffers. The AP can be aware of the RU allocation status
of adjacent BSS utilizing RU Allocation field. Duration field lets the AP know how
long the transmission of adjacent BSS lasts. Although Interference Strength, RU
Allocation, and Duration fields have not been defined in the existing CTS frame,
we can modify some existing fields to describe them or define a newly designed
frame format. Formatting these fields is beyond the scope of this chapter, and the
formats of these fields are not restricted.

4.5 Utility-Based Dynamic Resource Allocation Scheme

In this section, an optimization problem that jointly considers the network through-
put and the fairness [3] in OFDMA resource allocation is defined. Also, as a
practical solution to the problem, we mapped UDRA to genetic algorithm in the
following subsection.
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4.5.1 Optimal Resource Allocation Problem Formulation

Let N and M be the number of STAs and the number of sub-channels, respectively.
Y = {0, 1}N×M represents the assignment matrix where an element of Y , yn,m, is 1
if STA n occupies sub-channel m; otherwise, yn,m = 0. Meanwhile, I = R

N×M

is the interference matrix where an element of I , in,m, is the value included in
the Interference Strength field of the M-CTS frame. S = R

N×M is the signal
power matrix where its element, sn,m, refers to the signal power of STA n in sub-
channel m.

To jointly consider both throughput and fairness index, we need to calculate
the normalized throughput and fairness. For the normalized throughput, signal-to-
interference-plus-noise ratio (SINR) needs to be first defined. When STA n occupies
sub-channel m and the assignment matrix is given by Y , SINR can be expressed
as

SINRn,m(Y ) = t

T
· sn,m[mW]· yn,m

in,m[mW]·N0[mW] , (4.1)

where t is the length interfered by the adjacent AP, which can be obtained by
overhearing data frames from adjacent AP, while T is the frame length in bytes. N0
is the thermal noise, which is expressed as −174 + 10log10

B
M

[13, 14] and f [mW]
represents that f is in a milli-watts scale. Then, the attainable throughput of STA n

from sub-channel m is expressed as

cn,m(Y ) = B

M
· log2(1 + SINRn,m(Y )). (4.2)

Since there are M resource units, the total attainable throughput of STA n is given
by:

cn(Y ) =
M∑

m=1

cn,m(Y ) =
M∑

m=1

B

M
· log2(1 + SINRn,m(Y )). (4.3)

Using Eq. (4.3), the attainable network throughput per transmission and the
fairness index can be derived. First of all, the attainable network throughput per
transmission can be expressed as

c(Y ) =
N∑

n=1
cn(Y ). (4.4)
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Meanwhile, the Jain’s fairness index can be computed as

f (Y ) =

(
N∑

n=1
cn(Y )

)2

N ·
N∑

n=1
cn(Y )2

. (4.5)

Using Eqs. (4.4) and (4.5), the utility to balance the throughput and fairness can
be defined as

u(Y ) = α· c(Y ) + (1 − α)· f (Y ), (4.6)

where α is a weighting factor to prioritize either the attainable network throughput
or the fairness between STAs. For example, once α approaches to one, the attainable
network throughput will be prioritized. On the contrary, when α approaches to zero,
the fairness among STAs is preferred and the fairness will be emphasized.

Finally, the utility optimization problem can be expressed as

max
Y∈{0,1}N×M

u(Y ),

s.t.
N∑

n=1
yn,m ≤ 1,∀m ∈ {1, 2, . . . ,M},

(4.7)

where the constraint represents that two or more STAs cannot occupy the same sub-
channel.

Assuming the signal powers of sub-channels that suffer channel fading are
independently and identically distributed (i.i.d.), the complexity of the utility
optimization problem in (4.7) can be O(2M·N) with big-O notation, which is known
as NP-hard. Thus, we will explain a practical genetic algorithm for this problem in
the next subsection.

4.5.2 Genetic Algorithm

Genetic Algorithm (GA) is a meta-heuristic popular in computer science [15].
GA applies the principle of survival of the fittest to produce a better and better
approximation to the solution of the problem that GA is trying to solve. For
each generation, a new set of approximations is created through the process of
selecting individuals according to their level of fitness in the problem domain,
and propagating the individuals together using operators borrowed from genetic
processes carried out in nature (e.g., crossover and mutation) is created. This
process, as occurs in natural adaptation, leads to the evolution of groups of
individuals who adapt better to the environment than the individuals from which
they were created.
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Genetic algorithm is a well-known heuristic algorithm to deal with the NP-hard
problem, which emulates the evolution process in nature and the process consists of
natural selection, reproduction, and mutation.

In the genetic algorithm, the following concepts are employed to find the optimal
solution. First of all, a chromosome is a set of parameters, which defines a proposed
solution to the problem that the genetic algorithm is trying to solve. For standard
optimization algorithms, this can be the domain of the objective function. This set of
chromosomes is called population. On the other hand, the fitness function represents
a function to be optimized, i.e., objective function, and the fitness value is the output
of the fitness function when one of chromosomes is given by an input.

For each generation, a predetermined number of chromosomes are arbitrarily
selected and their fitness values are compared among them. After the comparison,
the natural selection process starts with the selected chromosomes that have greater
fitness value than others. This selected chromosomes are then reproduced for the
next generation. Above-mentioned procedure continues for a certain number of
generations.

A problem mapping the optimization algorithm on genetic algorithm is depicted
in Fig. 4.5. In our RU allocation problem, we denote an assignment matrix, Y , as a
chromosome. A fitness value is calculated for each chromosome. In this problem, the
fitness value can be a utility, u(Y ), as seen in Eq. (4.7). Chromosomes are randomly
generated within the universal set, which is a binary matrix with M rows and N

columns that satisfy constraints.
A detailed procedure for solving the RU allocation problem can be represented

as follows. This procedure is depicted in Algorithm 3. First of all, the generation
number, i, is initiated (see line 1). Once an AP transmits MU-RTS to associated
STAs, some respond to MU-RTS by transmitting M-CTS if they overheard any data
frames from adjacent APs. In so doing, the AP can obtain the interference matrix I

and the signal power matrix S (see line 2). At the first generation, the AP randomly
generates jmax , a predefined population size, assignment matrices. After that, the
AP calculates the utility for each matrix (see lines 6 to 9). Next, some “winner”
matrices are survived, and the next generation will be triggered. This procedure
continues until the difference between the utility of the ith generation and the (i −
1)th is smaller than a predefined threshold, uthreshold , or the maximum running time,
Tmaxstall , elapsed.

Even though the exhaustive search requires exponential processing time, the
genetic algorithm has a polynomial executing time because it runs up to imax · jmax

cycles at most and each cycle requires polynomial processing time. In the literature,
several studies have been conducted to determine the optimal number of popula-
tions, jmax . Since the derivation of the optimal number is beyond the scope of this
chapter, jmax is set to 10 ∗ M·N according to [16].
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Fig. 4.5 Mapping from UDRA to genetic algorithm

4.6 Simulation Results

Extensive simulations have been conducted by a MATLAB simulator to evaluate
the performance of UDRA. Simulation parameters are based on the IEEE 802.11ax
standard. Defined parameters are summarized in Table 4.2. First of all, we show how
UDRA performs and how fast it runs compared to an exhaustive search. After that,
we analyze the throughput and fairness aspects of UDRA compared to conventional
algorithms for α and examine the effect of α in detail.

4.6.1 UDRA vs. Exhaustive Search

Complexity and the resulting performance degradation between exhaustive search
and UDRA are presented in Fig. 4.6. Specifically, this figure shows how much can
UDRA reduce its running time compared to exhaustive search and how much does
UDRA underperform exhaustive search. Since the complexity of exhaustive search
grows exponentially, the simulations are conducted in a small-scale environment
with 2 to 4 stations and 8 RSUs.
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Algorithm 3 Genetic algorithm for UDRA
1: i = 1
2: Obtain the interference matrix I and the signal power matrix S

3: Randomly generate a set of jmax assignment matrices Yi which meet the constraint of the
optimization problem in Eq. (4.7)

4: while |ui − ui−1| > uthreshold for Tmaxstall times do
5: j = 1
6: for each assignment matrix Yi,j in Yi do
7: Calculate a utility for the assignment matrix by means of Eqs. (4.1)–(4.7)
8: j = j + 1
9: end for
10: Calculate the best utility, ui = max∀j

u(Yi,j )

11: Select a portion of the assignment matrices and leave them for the next population
12: Randomly generate assignment matrices and make a set of assignment matrices with the

survived assignment matrices for the next generation Yi+1
13: i = i + 1
14: end while
15: Determine the assignment matrix that makes the utility maximum value
16: return assignment matrix Y

Table 4.2 Simulation parameters

Parameter Value

Multiple access scheme OFDMA

Channel bandwidth 80 MHz

RU type 106-subcarrier RU

Number of RUs 8

Noise model Thermal noise

Optimization methodology Genetic algorithm

Number of populations 10 ∗ M · N
Max stall generations 150

As shown in Fig. 4.6, UDRA exhibits the same performance when the number
of STAs is 2. Meanwhile, UDRA shows degraded throughput compared with the
exhaustive search by 3.56 and 3.77% when the numbers of STAs are 3 and 4,
respectively. Even though the genetic algorithm has slightly reduced throughput,
it significantly reduces running time compared with the exhaustive search. For
example, UDRA can achieve 31.25, 2.93, and 0.24% of the exhaustive search for
the running time for the cases with 2, 3, and 4 STAs, respectively.

4.6.2 Network-Wise Throughputs and Fairness Indexes

Figures 4.7 and 4.8 show the total network throughput and the Jain’s fairness index
for UDRA, round-robin algorithm, and randomly allocation algorithm as the number
of stations varies. From Fig. 4.7, it can be seen that the throughputs of round-robin
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and random allocation hardly increase as the number of STAs increases. This is
because the total resource, i.e., the channel bandwidth, to be allocated is identical
regardless of the number of stations, and they allocate the resources evenly to the
stations in the long term. On the other hand, the AP in UDRA can finely allocate RUs
to STAs by solving the formulated optimization. Therefore, it can be found that the
network throughput of UDRA increases with the increase in the number of STAs,
although the total resource does not vary. Specifically, UDRA with α = 0.1 and
with α = 0.9 exhibits from 5.6 to 19.5% and from 13.2 to 39.2% higher throughputs
compared to conventional algorithms as the number of stations varies, respectively.
Meanwhile, throughput of UDRA with α = 0.1 is 16.9–27.0% lower than that with
α = 0.9. This is because UDRA with α = 0.1 prioritizes the normalized fairness
rather than the normalized throughput.

Figure 4.8 shows the Jain’s fairness index depending on the number of STAs.
It can be seen that overall fairness trends consistently increase as the number of
stations increases. UDRA with α = 0.1 outperforms other algorithms in terms
of fairness. Also, it can be seen that the fairness indexes of the random algorithm
are inferior to the other algorithms. This is because the random algorithm does not
consider whether an associated station is affected by adjacent AP’s transmission or
not, and this causes severe collisions, especially when the number of APs becomes
large.
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Figure 4.8 also shows the Jain’s fairness index depending on the number of STAs.
It can be seen that overall fairness trends consistently increase as the number of
stations increases for the same reason mentioned above.

As shown in Figs. 4.7 and 4.8, the performance of UDRA is highly affected
by α, and thus we analyze the effect of α. From Fig. 4.9, the throughput becomes
higher while the fairness index gets smaller as α increases. This can be explained
as follows. When α is high, the normalized throughput is emphasized, and thus
each AP tends to allocate the best sub-channel to the best STA, leading to a severe
imbalance of throughput. For example, an STA whose SINR is much stronger than
other STAs will occupy most of the RUs, and thus the STA can get much higher
throughput for a high value of α.

On the other hand, the normalized fairness is prioritized when α is low, and
therefore each AP tends to allocate sub-channels fairly to the STAs. In this case,
STAs residing in the overlapped area, e.g., station a3 in Fig. 4.2, will have an
opportunity to access the medium since it has a higher opportunity to suffer higher
interference than station b1. Apparently, such fair resource allocation leads to
degraded network throughput, and thus the optimal value of α should be carefully
chosen under the service requirements.

Besides, the slope of network throughputs increases nearly linearly, whereas the
slope of Jain’s fairness index tends to decrease sharply as seen in Figs. 4.7 and 4.8.
When α = 1, UDRA would behave as if it allocates RUs to the stations in a greedy
manner, and thus the metric of fairness becomes degraded. Also, at α = 1, the
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network throughput increases linearly, while the fairness index decreases sharply, so
a small amount of concern for fairness can result in a quite fair resource allocation
while performing large throughputs.

4.7 Conclusion

In this chapter, a utility-based dynamic resource allocation algorithm for OFDMA-
based wireless networks is proposed. By using M-CTS, stations residing in over-
lapped area can overhear RU allocation and interference power. Then the station
can deliver information to its associated AP and thus the AP can utilize it for
utilizing RUs efficiently. After that, AP operates utility maximization problem
with a factor, α. By adjusting α, the throughput as well as the fairness can be
achieved. We next formulate genetic algorithm that operates in polynomial running
time. The simulation results demonstrated that the genetic algorithm has few or no
performance drop while its running time remarkably decreases.
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