
Chapter 12
Collaborative Deep Neural Network
Inference via Mobile Edge Computing

Wen Wu, Yujie Tang, Peng Yang, Weiting Zhang, and Ning Zhang

12.1 Introduction

Advanced neural network techniques and ubiquitous Internet of Things (IoT)
devices enable deep neural network (DNN) inference as a key technology in
next generation wireless networks. In recent years, DNNs have been applied in
many intelligent applications, ranging from facility monitoring, fault diagnosis, to
object detection [1, 2]. For example, IoT devices in industrial applications, such
as vibration sensors, can sense the industrial operating environment. Then, the
sensing data is sent to a pre-trained DNN via wireless communication links, and
the DNN processes the sensing data and renders inference results. Such a process
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is referred to as DNN inference [3]. A large number of experimental results indicate
that DNN inference can achieve high inference accuracy as compared to traditional
alternatives, such as decision trees in classification tasks.

Executing DNN inference tasks is computation intensive. Tremendous num-
bers of multiply-and-accumulation operations are conducted in a DNN inference
task [4]. A device-only solution that purely executes DNN inference tasks at
resource-constrained mobile devices becomes intractable, due to prohibitive energy
consumption and a high service delay. For instance, processing an image using
AlexNet incurs up to 0.45 W energy consumption even in a tailored energy-efficient
chip [5]. An edge-only solution that purely offloads large-volume sensing data to
resource-rich edge nodes, e.g., access point (AP), suffers from an unpredictable
service delay due to time-varying wireless channels [6]. Therefore, neither a device-
only nor an edge-only solution can effectively support low-delay DNN inference
services.

Collaborative DNN inference, which coordinates resource-constrained mobile
devices and the resource-rich AP, is a potential framework to provide low-delay and
high-accuracy inference services [7]. Within the collaborative inference framework,
sensing data from mobile devices can be either processed locally or offloaded to the
AP. At mobile devices, light-weight compressed DNNs, i.e., neural networks are
compressed without significantly decreasing their performance, are deployed due to
constrained on-board computing capability, which saves computing resources at the
cost of inference accuracy [8, 9]. At the AP, uncompressed DNNs are deployed to
provide high-accuracy inference services at the cost of network resources including
computing and communication resources. The overall service performance can be
enhanced through the task offloading between mobile devices and the AP.

However, the sampling rate adaption technique that dynamically configures the
sampling rates of mobile devices, is seldom investigated in the collaborative DNN
inference framework. The sampling rates of mobile devices can be dynamically
adjusted based on mobile devices’ real-time channel conditions and the AP’s
computation workloads. As such, the sensing data from mobile devices can be
compressed, thereby reducing not only the offloaded data volume but also the
task computation workload. On the one hand, when the mobile device’s channel
condition is poor or the AP’s computation workload is heavy, the sampling rate
is decreased to reduce the offloaded data volume and the requested computation
workload. As a result, the service delay is reduced at the cost of limited inference
accuracy. Our experimental results show that the reduction of inference accuracy is
acceptable in harsh network environments. On the other hand, when the mobile
device’s channel condition is good and the edge computation workload is light,
the sampling rate can be increased to help deliver a high-accuracy service with an
acceptable service delay. Therefore, sampling rate adaption can effectively reduce
the service delay, which should be considered as an important component in the
collaborative DNN inference framework.

In this chapter, we present the collaborative DNN inference technology in
wireless networks. Firstly, we give a comprehensive overview of DNN inference,
mobile edge computing (MEC), and machine learning. Secondly, we study a detailed
case on collaborative DNN inference via device-edge orchestration. The problem
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is formulated as a constrained Markov decision process (CMDP) taking time-
varying channel conditions and random task arrivals into account. Specifically,
three decisions, i.e., sampling rates of mobile devices, task offloading, and edge
computation resource allocation, are jointly optimized to achieve the minimum
average service delay while guaranteeing the long-term accuracy requirements of
multiple DNN inference services. Thirdly, since traditional RL algorithms target at
optimizing a long-term reward without considering policy constraints, it is difficult
to directly apply them to solve the formulated CMDP with long-term constraints. To
address the issue, we propose a three-step solution: (1) the Lyapunov optimization
technique is leveraged to transform the CMDP into an MDP; (2) to solve the MDP,
a learning-based algorithm is developed based on the deep deterministic policy
gradient (DDPG) algorithm; and (3) the edge computing resource allocation can be
directly solved via an optimization subroutine, and then the optimization subroutine
is incorporated in the learning-based algorithm to reduce the training complexity.
Extensive simulations are conducted to validate the effectiveness of the proposed
algorithm in reducing the average service delay while preserving the long-term
accuracy requirements.

The remainder of this chapter is organized as follows. Section 12.2 presents a
comprehensive overview of three key technologies, including DNN inference, MEC,
and machine learning. The considered scenario, the system model, the formulated
problem, and the proposed learning-based solution are presented in Sect. 12.3.
Simulation results are given in Sect. 12.4. Finally, Sect. 12.5 concludes this chapter.

12.2 Background

12.2.1 DNN Inference

Recently, DNN inference for mobile devices has attracted much attention from
academia. A device-only solution resorts to on-board computing resources to
facilitate DNN inference services. DNN compression techniques are applied to
reduce the computational complexity at the mobile devices. Typical techniques
include weight pruning [8] and knowledge distillation [10]. The authors in [4]
designed a light-weight DNN inference model, which can dynamically compress
the model size in order to balance inference accuracy and energy efficiency, taking
the widely equipped energy-harvesting functionality in IoT devices into account.
In another line of research, by utilizing powerful edge computing servers, edge-
assisted DNN inference solutions can provide high-accuracy inference services. The
authors in [11] proposed an online video quality and computing resource allocation
strategy to maximize video analytic accuracy, thereby facilitating low-delay and
accurate DNN-based video analytics. Another important work proposed a novel
device-edge collaborative inference scheme [7]. In this work, the DNN model is
partitioned and deployed at both the device and the edge, and intermediate results
are transferred via wireless links. The above works can offer potential resource
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allocation solutions to enhance DNN inference performance. In comparison with
the existing works, the following case study in this chapter takes the sampling
rate adaption of IoT devices into account, aiming at providing accuracy-guaranteed
inference services in dynamic network environments.

12.2.2 Mobile Edge Computing

In the current wireless networks, a large volume of computing demands are gen-
erated by mobile devices to support emerging applications, such as intelligent path
planning, safety applications, and on-board entertainments. Taking the autonomous
driving service as an example, when an autonomous vehicle is on the road, a
large number of computation-intensive tasks are required to be processed [12].
Processing such computation-intensive tasks by mobile devices requires expensive
on-device computing facilities and degrades energy efficiency. As a remedy to
these limitations, a potential solution is to explore the MEC paradigm. In the MEC
paradigm, mobile devices can offload these computation tasks to nearby radio access
networks (RANs) with computation-powerful edge servers for prompt processing.
Extensive experiments show that the task processing delay can be significantly
reduced by leveraging the MEC paradigm.

Recently, MEC problems have been widely investigated from many perspectives
in wireless networks. In high-mobility vehicular networks, the roadside MEC
servers judiciously collaborate with each other to provide low-latency services for
autonomous vehicles [13]. Also, in the context of vehicular networks, a dynamic
RAN slicing framework taking roadside MEC servers into account is proposed to
guarantee the quality of service requirements of autonomous driving services [14].
In recent emerging unmanned aerial vehicle (UAV) networks, a UAV endowed with
an MEC server is dispatched to collect and then process tasks from a large number
of IoT devices in the remote area [15]. In this chapter, the MEC server at the AP is
applied to handle the computation-intensive DNN inference task.

12.2.3 Machine Learning

Recently, machine learning (ML) has achieved great success in a number of
research fields, ranging from computer vision, gaming, natural language processing,
object detection, and traffic prediction [16]. The machine learning methods can
be classified into three categories: (1) supervised learning, in which the training
data structure includes both feature and label. For example, the support vector
machine algorithm is supervised learning; (2) unsupervised learning, in which the
training structure only includes feature without label, e.g., K-means algorithm; and
(3) RL, in which the data structure is defined by state, action, and reward. As
shown in Fig. 12.1, the action can be the control decisions, the state can be the
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Fig. 12.1 An illustrative example of RL algorithms

environment conditions, and the observed reward from the environment can be
system performance. The objective of RL is to learn a good policy in a sequential
decision-making problem, such that the learning agent can take appropriate actions
based on the current state. A typical example of RL algorithm is the deep Q
learning algorithm. Seeing the great benefits of different machine learning methods,
it is expected that ML will be widely applied in future wireless networks. The
potential ML applications in next generation wireless networks, i.e., 6G networks,
are investigated in [17–19], ranging from network slicing, traffic prediction, to
digital twin management.

The main benefits of ML methods can be summarized as follows: (1) model-
free, which makes ML methods different from traditional model-based approaches.
It learns from the data and does not suffer from complicated modelling and strong
assumptions; and (2) flexible, which means that ML methods can adaptively adjust
the decision based on the current network environment. By training the learning
modules properly offline, ML methods can make quick online decisions in highly
complex scenarios.

Among different categories of ML algorithms, RL has attracted great attention
from both academia and industry in the field of wireless communications. RL
algorithms have been widely applied in network resource allocation, such as service
migration in vehicular networks [20], network slicing in cellular networks [17],
content caching in edge networks [21, 22], and beam alignment in mmWave
networks [23, 24]. Hence, RL algorithms can be considered as potential solutions to
manage network resources for DNN inference services. In this chapter, we propose
a deep RL-based algorithm to deal with resource allocation and sampling rate
selection issues in the collaborative DNN inference problem.

12.3 Collaborative DNN Inference via Device-Edge
Orchestration

In this section, we introduce a case study on collaborative DNN inference, in which
mobile devices and the network edge are orchestrated to provide DNN inference
services. The collaborative DNN inference framework is presented in Sect. 12.3.1,
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Fig. 12.2 An illustrative example of the collaborative DNN inference framework

and the corresponding detailed performance analysis on service delay and accuracy
is provided in Sect. 12.3.2. Based on the system model, the problem is presented in
Sect. 12.3.3, which is solved via a learning-based algorithm in Sect. 12.3.4.

12.3.1 Collaborative DNN Inference Framework

We consider a wireless network with one AP to serve multiple types of mobile
devices, as illustrated in Fig. 12.2. In the network, the AP collects network
information and then conducts resource orchestration decisions. Let M denote a
set of M types of supported inference services, e.g., facility fault diagnosis and
facility monitoring services [25]. The set of mobile devices subscribed to service m

is denoted by Nm, and the set of all mobile devices is denoted by N = ∪m∈MNm.
Consider industrial facility monitoring services as an example. In a smart factory,

wireless sensors are equipped to measure the status of the industrial facility.
Vibration sensors can sense the operation condition of a facility with a certain
sampling rate, e.g., 24KHz. Mobile devices send the sensing data to a DNN for
a specific inference service, and then DNN processes the sensing data and conducts
inference, e.g., fault diagnosis.

In the collaborative inference framework, two kinds of DNNs are deployed:

• Compressed DNN, which is deployed on mobile devices. The compressed
DNN can be implemented via the weight pruning technique, which prunes less-
important weights to reduce computational complexity while maintaining similar
inference accuracy [8].
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• Uncompressed DNN, which is deployed at the AP. As such, M types of
uncompressed DNNs share the edge computing resource to serve different kinds
of inference requests.

The collaborative DNN inference framework operates in a time-slotted manner.
The procedure consists of the following two steps:

• Step 1: Sampling rate selection. Mobile devices select their sampling rates
based on channel conditions and computation workloads. The set of candidate
sampling rates is denoted by K = {θ1, θ2, ..., θK }, where θK denotes the raw
sampling rate. We assume the sampling rate in K increases linearly with the
index, i.e., θk = kθK/K . Let t denote the time index, where t ∈ T =
{1, 2, . . . , T }. Let Xt denote the sampling rate decision matrix in time slot t ,
whose element xt

n,k = 1 indicates the mobile device n ∈ N selects the k-th
sampling rate.

• Step 2: Task processing. The sensing data from mobile devices within a time
slot is deemed as a computation task, which can be either offloaded to the AP or
executed locally. Let ot ∈ R

|N|×1 denote the offloading decision vector in time
slot t , whose element ot

n = 0 indicates offloading the computation task from
mobile device n. Otherwise, ot

n = 1 indicates executing the computation task
locally.

12.3.2 Service Delay and Accuracy Analysis of Collaborative
DNN Inference

In this subsection, we analyze the inference delay and accuracy performance in the
considered collaborative DNN inference framework.

12.3.2.1 Inference Delay Analysis

In the considered framework, a computation task can be either processed locally
or offloaded to the AP. In the following, we analyze the service delay in these two
cases, i.e., executing tasks locally or offloading tasks to AP.

Case 1: Executing Tasks Locally The task arrival rate of the n-th mobile device
in time slot t is denoted by λt

n. We assume that the task arrival follows a general
random distribution. Let ξ t

n = λt
nνm,∀n ∈ Nm denote the raw data size of the

generated tasks at the n-th device. Here, νm denotes the raw data size of a task for
service m. When the sampling rate is selected, we can represent the data size of the
generated task by:
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ζ
(
xt
n

) =
K∑

k=1

xt
n,kξ

t
nk

K
. (12.1)

Here, xt
n = {xt

n,k}k∈K is the n-th device’s sampling rate selection decision vector. If
the inference task is processed via a compressed DNN in the local mobile device, the
service delay should consist of two parts: the queuing delay in the local computing
queue and the task processing delay. The detailed calculation of the two parts is
given by:

dt
n,l = ot

nηm,c

(
Bt

n + ζ
(
xt
n

))

fn

,∀n ∈ Nm. (12.2)

Here, fn denotes the n-th mobile device’s central processing unit (CPU) frequency,
and ηm,c represents the computation intensity of the compressed DNN for the m-
th service. Let Bt

n denote the backlogged computation tasks (in bits) in the local
computing queue, which is updated via

Bt+1
n = min

{[
Bt

n + ot
nζ

(
xt
n

) − fnτ

ηm,c

]+
, Bmax

n

}

, (12.3)

where [x]+ = max{x, 0}. Here, Bmax
n represents the local computing queue

capacity, and τ denotes a time slot duration. It is worth noting that tasks have to
be dropped if the local computing queue is full. The amount of the dropped tasks in
the local computing queue of device n can be represented by:

Ψ t
b,n = max

{
Bt

n + ot
nζ

(
xt
n

) − fnτ

ηm,c

− Bmax
n , 0

}
. (12.4)

Here, Ψ t
n,b > 0 indicates that a local computing queue overflow event occurs at the

n-th device. Then, a corresponding penalty will be incurred to avoid queue overflow.

Case 2: Offloading Tasks to AP If a task is offloaded to the AP, the task
will be processed by an uncompressed DNN. The service delay consists of three
components: task offloading delay, queuing delay in the edge computing queue, and
task processing delay, which are analyzed respectively as follows.1

Task Offloading Delay Component The offloading delay of the n-th mobile device
is given by:

dt
n,o =

(
1 − ot

n

)
ζ

(
xt
n

)

Rt
n

. (12.5)

1 Note that we assume free transmission backlog in this chapter.
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Here, the transmission rate between the n-th mobile device and the AP, Rt
n is

represented by:

Rt
n = W

N
log2

(
1 + PT G(H t

n)

Nf σ 2

)
. (12.6)

In the above equation, W , PT , G(Ht
n), and Nf represent the system bandwidth,

transmit power, channel gain, and noise figure, respectively. Here, the background
noise is denoted by σ 2 = NoW/N , where No is thermal noise spectrum density.
In this chapter, we assume that channel gain G(Ht

n) varies in terms of channel state
Ht

n. Based on extensive real-time measurements, a finite set of channel statesH can
be used to model channel state Ht

n [26]. A discrete-time and ergodic Markov chain
model can be used to characterize the evolution of channel states. The evolution is
given by a transition matrix P ∈ R

|H|×|H|.

Task Processing Delay Component The tasks from all mobile devices subscribed to
the m-th service are placed in the edge computing queue for the m-th service. Here,∑

n∈Nm

(
1 − ot

n

)
ζ

(
xt
n

)
represents the amount of aggregated tasks. The computing

resource is dynamically allocated among multiple services at the AP based on
service task arrivals. The dynamic resource allocation can be implemented via
a number of existing containerization techniques, such as Dockers and Kuber-
netes [27]. The computing resource allocation decision vector in time slot t is
denoted by ct ∈ R

M×1, whose each element 0 ≤ ct
m ≤ 1 represents the portion

of the allocated computing resource to the m-th service. As such, the processing
delay can be calculated by:

dt
n,p = ηm,u

(
1 − ot

n

)
ζ

(
xt
n

)

ct
mfb

,∀n ∈ Nm. (12.7)

Here, fb represents the computing server’s CPU frequency at the AP. The compu-
tation intensity of processing the m-th service task by the uncompressed DNN is
represented by ηm,u. It is worth noting that ηm,u > ηm,c. The underlying reason is
that the uncompressed DNN consumes more computing resource.

Queuing Delay Component The queuing delay consists of the following two
parts:

• The first part is the time taken to process backlogged tasks in the edge computing
queue, which is given as follows:

dt
n,q = Qt

mηm,u

ct
mfb

,∀n ∈ Nm. (12.8)

In the above equation, Qt
m represents the edge computing queue backlog for

the m-th service in time slot t . The task arrival can be represented by at
m =∑

n∈Nm

(
1 − ot

n

)
ζ

(
xt
n

)
, and hence the edge computing queue backlog is updated
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according to

Qt+1
m = min

{[
Qt

m + at
m − ct

mfbτ

ηm,u

]+
,Qmax

m

}

. (12.9)

Similar to that in local computing queues, tasks have to be dropped once the edge
computing queue is full, As such, the amount of dropped tasks for the m-th edge
computing queue is given as follows:

Ψ t
q,m = max

{
Qt

m + at
m − ct

mfbτ

ηm,u

− Qmax
m , 0

}
. (12.10)

In the above equation,Ψ t
q,m > 0 indicates that an edge computing queue overflow

event occurs.
• The second part is the average waiting time among all newly arrived tasks until

all the tasks of mobile device n are processed, which is given as follows:

dt
n,w = ηm,u

∑
i �=n,i∈Nm

(
1 − ot

i

)
ζ

(
xt
i

)

2ct
mfb

, (12.11)

where
∑

i �=n,i∈Nm

(
1 − ot

i

)
ζ

(
xt
n

)
represents the amount of the aggregated tasks

excluding the task of mobile device n.

Overall, taking both local execution and task offloading into consideration, the
inference delay of the collaborative DNN in time slot t is calculated as follows:

Dt =
∑

n∈N

(
dt
n,l + dt

n,o + dt
n,p + dt

n,q + dt
n,w

)

+ wp

(
∑

n∈N
1{Ψ t

b,n>0} +
∑

m∈M
1{Ψ t

q,m>0}

)

.

(12.12)

Here, 1{x} the indicator function, which takes a value of 1 when the event x is
true, and wp > 0 is the positive unit penalty cost for queue overflow. In the
above equation, the first term indicates the required delay of completing all the
tasks in time slot t , and the second term indicates the penalty for the local and edge
computing queues overflow events.

12.3.2.2 Inference Accuracy Analysis

The achieved DNN inference accuracy is determined by two factors: the sampling
rate of a task and the type of DNN that executes a task. To obtain the inference
accuracy, the following two steps are conducted:
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Fig. 12.3 Inference accuracy in terms of different sampling rates on the bearing vibration
dataset [29]

• Firstly, we characterize the relationship between the inference accuracy and the
sampling rate. The relationship is specified by accuracy function g(θk),∀θk ∈ K.
To obtain the function, we first implement a DNN inference algorithm, i.e.,
AlexNet [28]. Then, we use the AlexNet to diagnose facility fault type according
to the collected bearing vibration signal [29]. This adopted bearing vibration
dataset in the experiment collects the vibration signal of drive end bearings at
a sampling rate of 48KHz, and there are 10 types of possible faults. As shown
in Fig. 12.3, inference accuracy grows sub-linearly with the sampling rate. For
example, when the sampling rate increases from 18 to 24KHz, the accuracy
increases from 95 to 98.7%. Finally, we measure the accuracy function values
in terms of the sampling rates, and the accuracy function is plotted in Fig. 12.3.
We can see that the inference accuracy increases with the sampling rate, while
the accuracy performance gain decreases at a high sampling rate.

• Secondly, we characterize the relationship between the inference accuracy and
the type of DNN via experiments. Here, for the m-th service, the inference
accuracy of the compressed DNN is represented by hm,c, and that of the
uncompressed DNN is represented by hm,u. It is worth noting that we have
hm,c < hm,u. The underlying reason is that an uncompressed DNN achieves
higher fault diagnosis accuracy than a compressed DNN.

As the sampling rate selection and the DNN model selection (i.e., task offloading
decision) are independent, DNN inference accuracy can be calculated via the
product of the accuracy value in terms of the selected sampling rate and the accuracy
value in terms of the selected DNN type, i.e.,
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g

(
∑

k∈K
xt
n,kθk

)
(
ot
nhm,c + (

1 − ot
n

)
hm,u

)
.

As such, in time slot t , the average inference accuracy for the m-th service can
be calculated as follows:

At
m =

∑

n∈Nm

1

|Nm|g
(

∑

k∈K
xt
n,kθk

)

· (
ot
nhm,c + (

1 − ot
n

)
hm,u

)
. (12.13)

The above calculation takes both executing locally and offloading to the AP cases
into consideration.

The above DNN inference model can be easily extended and applied to cases
when other inference methods are adopted. The reason is that the accuracy
values in terms of sampling rates and DNN types can be acquired via practical
experiments rather than theoretical models.

12.3.3 Joint Sampling Rate Selection and Resource Allocation
Problem

12.3.3.1 Constrained Markov Decision Process

In the DNN inference services, not only the service delay is required to be
minimized, but also their long-term accuracy requirements should be guaranteed.
The CMDP is a class of problems that target at maximizing the long-term reward
while satisfying the constraints on the long-term cost [30]. Hence, such problem is
suitable to be modeled as a CMDP. We define the action, state, reward, and state
transition matrix of the CMDP as follows:

Action The action of the CMDP includes the sampling rate selection, task offload-
ing, and edge computing resource allocation decisions, i.e.,

ât = {Xt , ot , ct }.

It is worth noting that the action’s components should satisfy following con-
straints:

• The sampling rate selection decision is constrained by xt
n,k ∈ {0, 1}.

• The binary task offloading decision is required, i.e., ot
n ∈ {0, 1}.
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• The continuous computing resource allocation decision is constrained by∑
m∈M ct

m ≤ 1 and 0 ≤ ct
m ≤ 1.

The constraint of each action component is satisfied via projecting it into a feasible
action set.

State The state of the CMDP includes four components: local computing queues
backlog of mobile devices Bt

n, edge computing queues backlog Qt
m, channel

conditions of mobile devices Ht
n, and the raw data size of the generated tasks at

mobile devices ξ t
n. Hence, we have

ŝt ={{Bt
n}n∈N, {Qt

m}m∈M, {Ht
n}n∈N, {ξ t

n}n∈N}. (12.14)

In the above state, both queue backlogs, including {Bt
n}n∈N and {Qt

m}m∈M, adopt a
unit in bits. As such, it results in a large state space, especially when the number of
mobile devices is large.

Reward The reward of the CMDP is designed to achieve the service delay
minimization, as shown in (12.12) in time slot t . In this way, the reward is defined
as

r̂ t
(
ŝt , ât

) = −Dt .

State Transition Probability State transition probability of the CMDP is given as
follows:

Pr
(
ŝt+1|ŝt , ât

)
=

∏

n∈N
Pr

(
Bt+1

n |Bt
n, x

t
n,k, o

t
n

)
·

∏

m∈M
Pr

(
Qt+1

m |Qt
m,Xt , ot

)
·
∏

n∈N
Pr

(
Ht+1

n |Ht
n

)
·

∏

n∈N
Pr

(
ξ t+1
n |ξ t

n

)
.

(12.15)

The above equality holds since different state terms are independent. Specifically,
the first two terms are controlled by the evolution of both local computing queues
and edge computing queues, as detailed in (12.3) and (12.9), respectively. The third
term is evolved based on the discrete-time Markov chain of channel conditions
as mentioned above. The last term is determined by the memoryless task arrival
pattern. It is worth noting that each of those state terms only depends on its previous
state terms. Such behavior indicates the state transition is Markovian.

In our case, we aim to find a stationary policy π ∈ Π that can dynamically con-
figure sampling rates selection Xt , task offloading ot , and edge computing resource
allocation ct based on state ŝt . The policy can minimize the service delay and
guarantee long-term inference accuracy requirements {Ath

m }m∈M simultaneously. To
acquire the policy, the optimization problem is formulated as follows:
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P0 : min
π∈Π

lim
T →∞

1

T

T∑

t=1

Eπ

[
Dt

]
(12.16a)

s.t. lim
T →∞

1

T

T∑

t=1

At
m ≥ Ath

m ,∀m ∈ M. (12.16b)

The above problem can be deemed as a CMDP.

It is challenging to directly solve the above CMDP via dynamic programming
solutions [30]. The reasons are two-fold:

• Firstly, the state transition probability is unknown due to the lack of
statistical information on the channel condition variation and task arrival
patterns of all mobile devices.

• Secondly, even if the state transition probabilities are known, large action
space and state space that grow with respect to the number of mobile
devices incur an extremely high computational complexity, which makes
dynamic programming solutions intractable.

To solve the CMDP in dynamic environments, we aim to adopt a deep RL-based
algorithm. The benefit is that RL-based algorithm can be applied in large-scale
networks without requiring statistical information of network dynamics.

However, the existing RL algorithms, such as DDPG, are designed to solve
MDP problems without considering policy constraints. Due to the underlying
differences between CMDP and MDP, CDMP cannot be solved via traditional
RL algorithms.

To solve the problem, we propose a novel learning-based solution for CMDP in
the following.

12.3.4 Deep RL-Based Solution

The proposed deep RL-based solution consists of the following three steps:

• Step 1: We leverage the Lyapunov optimization technique to deal with the long-
term constraints and transform the problem into an MDP, which is suitable to be
solved by RL algorithms.
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• Step 2: We develop a deep RL-based algorithm to solve the MDP.
• Step 3: We embed an optimization subroutine in the proposed RL algorithm to

directly obtain the optimal edge computation resource allocation.

These three steps are detailed in the following.

12.3.4.1 Markov Decision Process Transformation (Step 1)

To solve problem P0, the major challenge is to handle the long-term constraints. To
address this challenge, we leverage the Lyapunov technique [31, 32].

The basic idea of the step is to construct accuracy deficit queues to charac-
terize the satisfaction status of the long-term accuracy constraints, thereby
guiding the learning agent to meet the long-term accuracy constraints.

As such, the problem is transformed in the following way:

• Firstly, inference accuracy deficit queues are constructed for all services. The
dynamics of the queue evolve as follows:

Zt+1
m =

[
Ath

m − At
m + Zt

m

]+
,∀m ∈ M. (12.17)

Here, the deviation of the achieved instantaneous accuracy from the long-term
accuracy requirement is represented by Zt

m. Its initial state is set to Z0
m = 0.

Next, we introduce a Lyapunov function to characterize the satisfaction status of
the long-term accuracy constraint. The Lyapunov function is defined as [31–33]

L
(
Zt

m

) =
(
Zt

m

)2

2
.

In the above equation, a smaller value ofL
(
Zt

m

)
means better long-term accuracy

constraint satisfaction.
• Secondly, to guarantee the long-term accuracy constraints, the Lyapunov function

should be consistently pushed to a relatively low value. Therefore, a one-shot
Lyapunov drift is introduced to capture the Lyapunov function’s variation across
two subsequent time slots [31]. When Zt

m is given, we define the one-shot
Lyapunov drift as follows: 


(
Zt

m

) = L
(
Zt+1

m

) − L
(
Zt

m

)
. We can obtain an

upper bound as follows:
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Δ
(
Zt

m

) = 1

2

((
Zt+1

m

)2 − (
Zt

m

)2
)

≤ 1

2

((
Zt

m + Ath
m − At

m

)2 − (
Zt

m

)2
)

= 1

2

(
Ath

m − At
m

)2 + Zt
m

(
Ath

m − At
m

)

≤ Cm + Zt
m

(
Ath

m − At
m

)
.

(12.18)

In the above equation, Cm = (
Ath

m − Amin
m

)2
/2 is a constant. Here, Amin

m is
the lowest inference accuracy, which can be required for service m. Due to the
substitution of (12.17), the first inequality holds. The second inequality can be
derived due to Am

(
Xt , ot

) ≥ Amin
m .

• Thirdly, leveraging the Lyapunov optimization theory, the original CMDP to
minimize the service delay and guarantee the long-term accuracy requirements
can be transformed to a problem of minimizing a drift-plus-cost. The transformed
problem is given as follows:

∑

m∈M
Δ

(
Zt

m

)+V ·Dt ≤
∑

m∈M
Cm +

∑

m∈M
Zt

m

(
Ath

m − At
m

)
+V ·Dt . (12.19)

In the above equation, the inequality holds due to the upper bound in (12.18).
Here V represents a positive parameter, which can adjust the tradeoff between
the satisfaction status of the long-term accuracy constraints and the service delay
minimization. The rationale behind this is that when the long-term accuracy
constraint is violated, i.e., Zt

m > 0, it is more urgent to stratify the long-term
constraints via improving the instantaneous inference accuracy than to reduce
the service delay.

Through this transformation, we reformulate the CMDP problem as a regular
MDP problem. The objective of the MDP is to minimize the upper bound of drift-
plus-cost as shown in (12.19). In such a reformulated MDP, we should modify the
action, state, reward, and state transition matrix since the accuracy deficit queues
are incorporated. The modified elements of the MDP are given as follows:

Modified Action The action is the same as that in the CMDP, i.e.,

at = ât = {Xt , ot , ct }.

Modified State The accuracy deficit queue backlog of services {Zt
m}m∈M should

be incorporated in the state space, as compared to the state of the CMDP. The
modified state is given by:

st = {ŝt , {Zt
m}m∈M}. (12.20)
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Modified Reward To minimize the drift-plus-cost in (12.19), the reward is modi-
fied as follows:

rt = −V · Dt −
∑

m∈M
Zt

m

(
Ath

m − At
m

)
. (12.21)

It is worth noting that we ignore the constant term
∑

m∈M Cm in (12.19) in the
reward for simplicity.

Modified State Transition Probability The evolution of state transition probabil-
ity changes due to the incorporation of accuracy deficit queue backlogs in the state,
which is detailed as follows:

Pr
(
st+1|st , at

)
= Pr

(
ŝt+1|ŝt , ât

)
·

∏

m∈M
Pr

(
Zt+1

m |Zt
m,Xt , ot

)
. (12.22)

In the above equation, the second term represents the evolution of the accuracy
deficit queue backlog based on (12.17). It is clear that the Markovian property holds
for the overall state transition.

Based on the above reformulation and modification, we transform problem P0
into an MDP problem as follows:

P1 : min
π∈Π

lim
T →∞

1

T

T∑

t=1

Eπ

[
∑

m∈M
Zt

m

(
Ath

m − At
m

)
+ V · Dt

]

. (12.23)

Similar to solving CMDP as mentioned above, using dynamic programming
solutions to solve an MDP faces the curse of dimensionality issue since the state
space is large. Therefore, we propose a deep RL-based algorithm to deal with the
MDP in the following.

12.3.4.2 Optimization Subroutine for Resource Allocation (Step 3)

For better understanding, we first introduce the third step in the optimization
subroutine and then introduce the second step in the RL algorithm design.

As mentioned above, problem P1 can be solved by RL algorithms. However,
we can leverage an inherent property of edge computing resource allocation to
reduce the training complexity of RL algorithms. Based on theoretical analysis
on (12.23), we find that the edge computing resource allocation and the inference
accuracy performance are independent. Specifically, the edge computing resource
allocation only impacts the one-shot service delay performance. Therefore, in time
slot t , when task offloading and sampling rate selection decisions are given, we can
obtain the optimal computing resource allocation decision via solving the following
optimization problem:
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P2 : min
ct

Dt

s.t.
∑

m∈M
ct
m ≤ 1 (12.24a)

0 ≤ ct
m ≤ 1. (12.24b)

Furthermore, an analysis of (12.12) demonstrates that the edge computing
resource allocation only impacts the task processing delay and queuing delay at

the AP, i.e.,
∑

n∈N
(
dt
n,p + dt

n,q + dt
n,w

)
. In addition, we find that the aggregated

delay from the perspective of all devices is equivalent to the aggregated delay from
the perspective of all services. As such, we can rewrite the objective function in P2
as

∑
m∈M dt

m. As such, we have

dt
m =

∑

n∈Nm

(
ηm,u

(
1 − ot

n

)
ζ

(
xt
n

)

ct
mfb

+ Qt
mηm,u

ct
mfb

+ ηm,u

∑
i �=n,i∈Nm

(
1 − ot

i

)
ζ

(
xt
i

)

2ct
mfb

)

.

(12.25)
The above equation represents the experienced delay of the m-th service. Through
analysis, we show the convexity property of the problem. Then, the following
theorem can be used to obtain the optimal edge computation resource allocation
in each time slot.

Theorem 12.1 The optimal edge computing resource allocation for problem P2 is
given by:

ct,�
m =

√
�t

m∑
m∈M

√
�t

m

,∀m ∈ M, (12.26)

where

�t
m =

∑

n∈Nm

⎛

⎝ηm,u

(
1 − ot

n

)
ζ

(
xt
n

) + Qt
mηm,u + ηm,u

2

∑

i �=n,i∈Nm

(
1 − ot

i

)
ζ

(
xt
i

)
⎞

⎠ .

(12.27)

Proof The theorem is proved via the following two steps:

• Firstly, we prove the problem to be a convex optimization problem. For simplic-
ity, t is omitted in the proof. By the definition of �m in (12.27), we can rewrite
the objective function as

∑
m∈M �m/(cmfb). The second-order derivative of the

objective function can be derived as 2�m/
(
fbc

3
m

)
> 0. In addition, we know that

the inequality constraint is linear. Hence, the problem is a convex optimization
problem.

• Secondly, we construct a Lagrange function for the problem by ignoring the
inequality constraints, which is given as follows:
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L (c, a) =
∑

m∈M

�m

cmfb

+ a

(
∑

m∈M
cm − 1

)

. (12.28)

Here, a represents the Lagrange multiplier. According to Karush–Kuhn–Tucker
conditions for convex optimization [34], the following equation is obtained:

∂L (c, a)

∂cm

= − �m

fbc2m
+ a = 0,∀m ∈ M. (12.29)

Here, c�
m = √

�m/afb,∀m ∈ M, can be obtained by solving the above
equation. Then, we substitute the above result into the complementary slackness
condition

∑
m∈M c�

m − 1 = 0. Then, the optimal value of a can be given by

a� = (∑
m∈M

√
�m

)2
/fb. Based on the above equation, a� takes a positive

value, and hence {c�
m}m∈M are positive values, which shows that constraint

(12.24b), i.e., ct
m ≥ 0,∀m ∈ M, is automatically satisfied. We can then prove

Theorem 12.1 by substituting a� into the complementary slackness condition.
��

This optimization subroutine for the edge computing resource allocation is
embedded in the following proposed deep RL-based algorithm. As such, we
can reduce the training complexity of the proposed RL algorithm. The reason
is that it is no longer necessary to train the neural networks to obtain an
optimal edge computing resource allocation policy.

12.3.4.3 Deep RL-Based Algorithm (Step 2)

In the following, we propose a deep RL-based algorithm to solve problem P1.
The proposed algorithm is extended from the well-known DDPG algorithm [35].
However, the DDPG algorithm and the proposed algorithm are different. The main
difference is that we embed the above optimization subroutine for computing
resource allocation into the RL algorithm to reduce the training complexity. The
proposed algorithm can be deployed at the AP that is in charge of collecting the
network state information and enforcing the policy to all connected mobile devices.

In the proposed algorithm, the learning agent consists of an actor network that
determines the action based on the current state and a critic network that evaluates
the determined action based on the reward feedback from the environment. The
actor network and the critic network are denoted by μ(s|φμ) and Q(s, a|φQ),
respectively. The corresponding neural network weights are represented by φμ

and φQ, respectively. The details of the deep RL-based algorithm are shown in
Algorithm 1.
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Algorithm 1 Deep RL-based algorithm for sampling rate adaption and resource
allocation

Initialize all neural networks and the experience replay memory;
for each episode do

Reset the environment and obtain initial state s0;
for time slot t ∈ T do

Determine sampling rate selection and task offloading actions {Xt , ot } according to st ;
Determine edge computing resource allocation action ct by (12.26);
Send joint action at = {Xt , ot , ct } to all mobile devices by the AP;
Execute the joint action at mobile devices;
Observe reward rt and new state st+1;
Store transition {st , at , rt , st+1} in the experience replay memory;
Sample a random minibatch transitions from the experience replay memory;
Train the critic and actor network by (12.30) and (12.31), respectively;
Update target networks by (12.32).

end for
end for

The proposed algorithm operates in a time-slotted manner, which consists of the
following three stages:

• Stage 1: Obtain experience by interacting with the environment. The actor
network generates the task offloading and sampling rate selection decisions
based on the current network state st . The decisions are generated with an
additive policy exploration noise that follows a Gaussian distribution N

(
0, σ 2

)
.

Additionally, the edge computation resource allocation action is generated by the
optimization subroutine. Next, the joint action is executed at all mobile devices,
and the corresponding reward rt is obtained. In addition, we can observe the
next state st+1 from the environment. The state transition tuple {st , at , rt , st+1}
is stored in the experience replay memory for actor and critic network training.

• Stage 2: Train the actor and critic network based on the stored experience.
A minibatch of transitions are randomly sampled from the experience replay
memory to break experience correlation, thereby avoiding the divergence issue
caused by DNN. By minimizing the following loss function, the critic network is
trained:

Loss
(
φQ

)
= 1

Nb

Nb∑

i=1

(
yi − Q(si, ai |φQ)

)2
, (12.30)

where

yi = ri + γQ′(si+1, μ
′(si+1|φμ′

)|φQ′
).

Here, Nb represents the minibatch size μ′(s|φμ′
) and Q′(s, a|φQ′

) indicate actor
and critic target networks with weights φμ′

and φQ′
, respectively. The actor

network is trained via the following policy gradient:
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∇φμ ≈ 1

Nb

Nb∑

i=1

∇aQ(si, a|φQ)|s=si ,a=μ(si )∇θμμ(si |φμ)|si . (12.31)

• Stage 3: Update target networks. The actor and critic target networks are softly
updated according to the following equations to ensure network training stability,
i.e.,

φQ′ = δφQ + (1 − δ)φQ′

φμ′ = δφμ + (1 − δ)φμ′
.

(12.32)

In the above equations, 0 < δ � 1 is the target network update ratio.

Remark Traditional RL algorithms, e.g., DDPG, can be applied to solve MDP
problems, in which learning agents seek to optimize a long-term reward
without policy constraints, while they cannot deal with constrained long-term
optimization problems [30, 36]. Our proposed deep RL-based algorithm can
address long-term constraints within the RL framework by the modification
of reward based on the Lyapunov optimization technique. In addition, an
optimization subroutine is embedded in our algorithm to further reduce the
training complexity.

12.4 Performance Evaluation

12.4.1 Experiment Setup

We consider a smart factory in which mobile devices such as vibration sensors
are randomly scattered. Those devices mounted on industrial facilities (e.g., robot
arms) capture the operating information. Those sensing data are then either locally
processed or offloaded to an AP in the factory.

DNN Inference Services We consider two kinds of DNN inference services:

• Type I Service: A facility fault diagnosis service that identifies the type of fault
according to the collected bearing vibration signal dataset [29]. Because the
period of a time slot is one second, we configure the task data size to be the
data volume of a one-second signal, given by the multiplication of the raw
sampling rate and the signal quantization parameter. The bearing vibration signal
is captured at 48KHz sampling rate and 16 bit quantization. The resulting task
data size is 768Kb. For this type of service, we set the long-term accuracy
threshold to be 0.8.
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• Type II Service: An extended service from the Type I that diagnoses facility
fault based on a low-grade bearing vibration dataset at higher inference accuracy
requirement, 0.9. The low-grade dataset senses the vibration at a lower sampling
rate of 32KHz, and the resulting task data size is 512Kb.

We assume the task arrival rates of both services at each device in each time slot
form a uniform distribution. Four potential sampling rates for each device are
considered in the simulation, which are 25%, 50%, 75%, and 100% of the raw
sampling rate. Accordingly, based on extensive experiments on the dataset [29],
the required accuracy to those sampling rates are 0.59, 0.884, 0.950, and 0.987, and
the balance parameter, V , is set to be 0.05.

Neural Network Structure To train the proposed deep RL-based algorithm, we
set the learning rate of the actor and the critic to be 10−4 and 10−3, respectively.
The hidden units of both the actor and the critic are set to be (64, 32), while the
ReLU function is employed for hidden activation. Note that the Tanh function is
used for actor output activation. The training process lasts for 1000 episodes, each
of which consists of 200 time slots.

Benchmark We consider the following two benchmark algorithms for perfor-
mance comparison:

• Delay myopic: Each device dynamically determines the sampling rate and task
offloading decisions, to maximize the one-step reward in (12.21) based on the
network state.

• Static configuration: Each device follows a fixed configuration on the sampling
rate and the task offloading, which satisfy the services’ accuracy requirements.

12.4.2 Convergence Performance

Figure 12.4 shows the performance comparison of service delay in the training
stage. The average service delay drops as the training continues, which suggests the
convergence of the proposed RL-based algorithm. In addition, Fig. 12.5 illustrates
the accuracy performance for both services with training episodes. The accuracy
performance fluctuates at the beginning of the training. But after around 1000
episodes of training, the average accuracy converges to the required level.

12.4.3 Impact of Task Arrival Rate

After the algorithm is well-trained offline, the performance of the proposed infer-
ence algorithm is evaluated in an online scenario. Figure 12.6 gives the comparison
on the average service delay with respect to different task arrival rates for W =
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Fig. 12.4 Average delay performance of the proposed algorithm with respect to training episodes
in the training stage

20MHz. Each arrival rate is added up with a 95% confidence interval. It is
shown that the service delay grows with the task arrival rate of the constrained
communication and computing resources. Meanwhile, the proposed RL-based
algorithm gives significantly lower service delay than the benchmark schemes. This
is because the proposed algorithm can capture network dynamics, including the
pattern of task arrival and channel condition variation, by continuously interacting
with the environment. Such knowledge is learnt and utilized by the algorithm to
make online decisions that improves long-term performance. In contrast, benchmark
schemes only focus on performance in the short term, and they cannot adapt to
network dynamics either. In particular, the proposed algorithm reduces the average
service delay by 19% and 25%, respectively, as compared with delay myopic and
static configuration schemes.

We also give the boxplot accuracy distribution of both services with respect
to different task arrival rates in Fig. 12.7. In this figure, the long-term accuracy
requirements for both services are 0.8 and 0.9, respectively. The proposed algorithm
is able to guarantee the long-term accuracy requirements of both services, with the
maximum error probability less than 0.5%.
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Fig. 12.5 Inference accuracy performance of the proposed learning algorithm with respect to
training episodes in the training stage

12.4.4 Impact of Optimization Subroutine

We further evaluate the performance of the proposed algorithm with a fixed
computing resource allocation strategy (referred to as proposed-fixed). This strategy
allocates edge computing resource based on the average computing demand of
two services. As shown in Fig. 12.8, the proposed algorithm provides significant
performance gain in case of limited edge computing resource. Specifically, the
performance gain in reducing the service delay decreases from 1.98× at 1GHz
CPU frequency to only 1.02× at 1.2GHz CPU frequency. The underlying reason
is that efficient resource allocation weighs higher in resource-constrained scenarios.
The simulation curves confirm the effectiveness of the optimization subroutine of
computing resource allocation. In light of this optimization subroutine, reducing the
training complexity of the proposed RL algorithms can also be considered.

12.5 Conclusion

In this chapter, we have jointly investigated the collaborative DNN inference with
sampling rate adaption and resource allocation problem in wireless networks. A
deep RL-based algorithm has been devised to capture the pattern of the channel
variation and the task arrival, which is then employed to deliver accuracy-guaranteed
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Fig. 12.6 Performance comparison of the service delay in terms of different task arrival rates

Fig. 12.7 Inference accuracy performance comparison in terms of different task arrival rates

DNN inference services. The proposed algorithm can dynamically reduce the
service delay, without requiring prior information of network dynamics.

For DNN inference, further research is required in the following aspects:
(1) DNN inference performance should be investigated in the mobile scenarios
considering device mobility; and (2) instead of task offloading, the DNN model can
be partitioned into a device-side model and a server-side model for collaborative
inference. As such, the partition point and resource (computing and spectrum)
allocation should be judiciously considered, especially in dynamic network envi-
ronments.
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Fig. 12.8 Service delay in terms of CPU frequency of the edge server
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