
Wireless Networks

Lin Cai
Brian L. Mark
Jianping Pan Editors

Broadband
Communications,
Computing,
and Control
for Ubiquitous
Intelligence

Wireless Networks

Series Editor

Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada

The purpose of Springer’s Wireless Networks book series is to establish the state
of the art and set the course for future research and development in wireless
communication networks. The scope of this series includes not only all aspects
of wireless networks (including cellular networks, WiFi, sensor networks, and
vehicular networks), but related areas such as cloud computing and big data.
The series serves as a central source of references for wireless networks research
and development. It aims to publish thorough and cohesive overviews on specific
topics in wireless networks, as well as works that are larger in scope than survey
articles and that contain more detailed background information. The series also
provides coverage of advanced and timely topics worthy of monographs, contributed
volumes, textbooks and handbooks.

** Indexing: Wireless Networks is indexed in EBSCO databases and DPLB **

Lin Cai • Brian L. Mark • Jianping Pan
Editors

Broadband Communications,
Computing, and Control for
Ubiquitous Intelligence

Editors
Lin Cai
Department of Electrical &
Computer Engineering
University of Victoria
Victoria, BC, Canada

Brian L. Mark
Department of Electrical & Computer
Engineering
George Mason University
Fairfax, VA, USA

Jianping Pan
Department of Computer Science
University of Victoria
Victoria, BC, Canada

ISSN 2366-1186 ISSN 2366-1445 (electronic)
Wireless Networks
ISBN 978-3-030-98063-4 ISBN 978-3-030-98064-1 (eBook)
https://doi.org/10.1007/978-3-030-98064-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-98064-1

Preface

This book is a collection of chapters on some of the latest developments in
broadband communications for ubiquitous connectivity and caching, computing,
and control for ubiquitous intelligence, which were contributed by former PhD
students, postdoctoral fellows, and visiting scientists who have worked under the
supervision of Professor Jon W. Mark during his long and distinguished academic
career in the Department of Electrical & Computer Engineering at the University
of Waterloo. For years, several former students and colleagues of Professor Mark
have been contemplating some way of honoring him. This volume is a tribute to
Professor Mark for his scientific contributions to the academic communities, and
his enormous impact on their lives and professional careers.

This volume showcases leading-edge work on broadband communications, com-
puting, and control that Professor Mark’s former students and academic descendants
are involved in, and should be a valuable resource for readers interested in pursuing
research in these areas. The book has two parts: Part I contains chapters related
to broadband communications, while Part II is related to caching, computing, and
control. These chapters reflect the breadth and depth of Professor Mark’s research
interests in these areas, as well as the new directions branched out by his former
students. Chapter 1 of the book contains brief stories, well wishes, and greetings by
the alumni of Professor Mark’s research group at the University of Waterloo.

Brief Biography of Jon W. Mark
Jon Wei Mark was born and raised in Toisan, a city-level county in Guangdong
province. His father had emigrated to Canada not long after Jon’s birth to find
work and send money back home to the family in a time of economic hardship.
Jon showed an aptitude for academics early on, breezing through primary school
in record time. In his early teens, seeing little prospects available to him in China,
Jon wrote a letter to his father asking him to sponsor him to emigrate to Canada. A
couple of years later, Jon arrived in Toronto and reunited with his father.

Due to his father’s work arrangement in a small town outside of Toronto, Jon
lived independently, working a job in a restaurant while attending school in Toronto.
He started in middle school, mainly to learn English. Soon after gaining sufficient

v

vi Preface

proficiency in the language, he moved to a commercial school where he learned
practical skills such as shorthand, typing, and accounting. Jon’s father had a dream
that the two of them could own and operate their own restaurant one day. Jon,
however, found that he had other dreams. He decided to transfer from commercial
school to Jarvis Collegiate Institute to pursue an academic path. Although such a
transfer was uncommon, Jon’s outstanding talents in mathematics and science were
recognized, and he was admitted to Jarvis Collegiate, where he continued to excel
academically. A couple of years later, he was admitted to the University of Toronto
and then graduated with a BASc degree in electrical engineering in 1962.

Upon graduation, Jon took a position as an engineer with Canadian Westinghouse
Company, Ltd., in Hamilton, Ontario, and quickly rose to the rank of senior
engineer. While working full-time at Westinghouse, he graduated with an MEng
degree in electrical engineering from McMaster University in March 1968. His
MEng thesis was entitled Optimal Detection for Echo Ranging in a Randomly
Fading Environment. From October 1968 to August 1970, he was on a leave
of absence from Westinghouse to pursue PhD degree in electrical engineering
at McMaster University under the auspices of a National Research Council Post
Industrial Experience fellowship. Jon’s doctoral dissertation, entitled Adaptive
Signal Processing for Digital Communication over Dispersive Unknown Channels
and finished in a record-breaking speed, was conducted under the supervision of
Professor Simon Haykin.

After completion of his PhD Jon began his distinguished academic career in the
Department of Electrical Engineering (later renamed the Department of Electrical &
Computer Engineering) at the University of Waterloo in September 1970. While at
Waterloo, he took several sabbatical leaves at various places. He was on sabbatical
leave from 1976 to 1977, with the IBM Thomas Watson Research Center, Yorktown
Heights, New York, USA, as a visiting research scientist; from 1982 to 1983, at
AT&T Bell Laboratories, Murray Hill, New Jersey, USA, as a resident consultant;
from 1990 to 1991, at the Laboratorie MASI, Université Pierre et Marie Curie, Paris,
France, as an invited professor; and from 1994 to 1995, with the Department of
Electrical Engineering, National University of Singapore, Singapore, as a visiting
professor. Along the way, he supervised over 40 PhD students, postdocs, and visiting
researchers at the University of Waterloo, continuing well past his official retirement
as a regular faculty member in 2001. He currently holds the title of Distinguished
Professor Emeritus at the University of Waterloo.

At U. Waterloo, he was a founding member of the Computer Communications
Networks Group (CCNG) and later established the BroadBand Communications
Research (BBCR) group. In 1996, he established the Centre for Wireless Commu-
nications as the Founding Director. Throughout his career, he was very active in the
IEEE Communications Society. Dr. Mark was an editor for the IEEE Transactions
on Communications from 1983 to 1989. He served as the Technical Program Chair
of the Eighth Annual Joint Conference of the IEEE Computer and Communications
Societies (IEEE INFOCOM) in 1989. He was a member of the Inter-society Steering
Committee of the IEEE/ACM Transactions on Networking from 1992 to 2003, an

Preface vii

editor for the ACM/Baltzer Wireless Networks Journal from 1997 to 2004, and an
associate editor for Telecommunication Systems from 1996 to 2004.

Research Areas of Interest
Professor Mark’s research interests have broadly been in the areas of communica-
tions, communication networks, and signal processing. He began his professional
career as an engineer at Westinghouse working on problems related to satellite
communications, radar, and sonar. He went on to work in the areas of adaptive equal-
ization, spread-spectrum communications, anti-jamming secure communications
over satellites, image coding, and broadband communication networks. His more
recent research interests have included broadband and wireless communications and
networks, including power control, resource allocation, mobility management, and
end-to-end quality-of-service provisioning in hybrid wireless/wireline networks.

Acknowledgements
We would like to thank Professor Sherman Shen for reaching out to the publisher,
Springer, and for all of his encouragement for this project. We thank everyone who
helped make this volume possible by contributing a chapter or a personal message
in Chapter 1 or sending a note of encouragement. It has been a pleasure interacting
with alumni from Professor Mark’s research group. We feel like an extended family
of brothers and sisters sharing the common bond of having been mentored and
inspired by Professor Mark. We take this opportunity to thank Professor Mark for
teaching us, sharing his technical expertise with us, and, more importantly, serving
as a role model for being a world-class academic researcher, mentor, teacher, and
visionary leader.

Victoria, BC, Canada Lin Cai
Fairfax, VA, USA Brian L. Mark
Victoria, BC, Canada Jianping Pan

Contents

1 Tribute to Professor Jon W. Mark . 1
Lin Cai

Part I Broadband Communications for Ubiquitous Connectivity

2 Network Slicing for 5G Networks and Beyond . 17
Qiang Ye and Wen Wu

3 Responsive Regulation of Dynamic UAV Communication
Networks Based on Deep Reinforcement Learning . 35
Ran Zhang, Duc Minh (Aaron) Nguyen, Miao Wang, Lin X. Cai,
and Xuemin (Sherman) Shen

4 Utility-Based Dynamic Resource Allocation in IEEE
802.11ax Networks: A Genetic Algorithm Approach 65
Taewon Song, Taeyoon Kim, and Sangheon Pack

5 Intelligentized Radio Access Network for Joint Optimization
of User Association and Power Allocation . 81
Hui-Chi Yu and Kuang-Hao Liu

6 Routing Algorithms for Heterogeneous Vehicular Networks 105
Yujie Tang and Wen Wu

7 Teaching from Home: Computer and Communication
Network Perspectives . 125
Jianping Pan

Part II Caching, Computing, and Control for Ubiquitous
Intelligence

8 State Transition Field: A New Framework for Mobile
Dynamic Caching . 143
Jie Gao, Mushu Li, Xinhua Ling, Lian Zhao,
and Xuemin (Sherman) Shen

ix

x Contents

9 Deep Reinforcement Learning for Mobile Edge
Computing Systems . 175
Ming Tang and Vincent W. S. Wong

10 Mobile Computation Offloading with Hard Task
Completion Times . 203
Peyvand Teymoori, Arvin Hekmati, Terence D. Todd, Dongmei Zhao,
and George Karakostas

11 Online Incentive Mechanism Design in Edge Computing. 233
Gang Li and Jun Cai

12 Collaborative Deep Neural Network Inference via Mobile
Edge Computing . 263
Wen Wu, Yujie Tang, Peng Yang, Weiting Zhang, and Ning Zhang

13 Automated Data-Driven System for Compliance Monitoring 291
Humphrey Rutagemwa and François Patenaude

14 AI Driven User Authentication . 313
Hien Nguyen

15 Control and Communication Coordination for Industrial
Digital Twins of Sintering Process . 327
Cailian Chen, Xiaojing Wen, Xuehan Bai, Lei Xu, Cheng Ren,
Jiale Ye, Yehan Ma, and Xinping Guan

Index . 351

Contributors

Xuehan Bai Department of Automation, Shanghai Jiao Tong University, Shanghai,
China

Jun Cai Department of Electrical and Computer Engineering, Concordia Univer-
sity, Montreal, QC, Canada

Lin Cai Department of Electrical and Computer Engineering, University of
Victoria, Victoria, BC, Canada

Lin X. Cai Department of Electrical and Computer Engineering, Illinois Institute
of Technology, Chicago, IL, USA

Cailian Chen Department of Automation, Shanghai Jiao Tong University, Shang-
hai, China

Jie Gao School of Information Technology, Carleton University, Ottawa, Canada

Xinping Guan Department of Automation, Shanghai Jiao Tong University, Shang-
hai, China

Arvin Hekmati Department of Computer Science, University of Southern Califor-
nia, Los Angeles, CA, USA

George Karakostas Department of Computing and Software, McMaster Univer-
sity, Hamilton, ON, Canada

Taeyoon Kim Department of Mobile System Engineering, Dankook University,
Yongin-si, South Korea

Gang Li Department of Electrical and Computer Engineering, Concordia Univer-
sity, Montreal, QC, Canada

Mushu Li Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada

Xinhua Ling XLNTec Inc., Waterloo, ON, Canada

xi

xii Contributors

Kuang-Hao Liu Institute of Communications Engineering, National Hsing Hua
University, Hsinchu, Taiwan

Yehan Ma John Hopcroft Center, Shanghai Jiao Tong University, Shanghai, China

Brian L. Mark Department of Electrical and Computer Engineering, George
Mason University, Fairfax, VA, USA

Duc Minh (Aaron) Nguyen College of Engineering and Computing, Miami Uni-
versity, Oxford, OH, USA

Hien Nguyen Distilled Identity, Boston, MA, USA

Sangheon Pack School of Electrical Engineering, Korea University, Seoul, South
Korea

Jianping Pan Department of Computer Science, University of Victoria, Victoria,
BC, Canada

François Patenaude Communications Research Centre, Ottawa, ON, Canada

Cheng Ren Department of Automation, Shanghai Jiao Tong University, Shanghai,
China

Humphrey Rutagemwa Communications Research Centre, Ottawa, ON, Canada

Xuemin (Sherman) Shen Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada

Taewon Song Department of Internet of Things SCH MediaLabs, Soonchunhyang
University, Asan, South Korea

Ming Tang Department of Electrical and Computer Engineering, The University of
British Columbia, Vancouver, BC, Canada

Yujie Tang School of Computer Science and Technology, Algoma University, Sault
Ste. Marie, ON, Canada

Peyvand Teymoori Department of Electrical and Computer Engineering, McMas-
ter University, Hamilton, ON, Canada

Terence D. Todd Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada

Miao Wang Miami University, Oxford, OH, USA

Xiaojing Wen Department of Automation, Shanghai Jiao Tong University, Shang-
hai, China

Vincent W. S. Wong Department of Electrical and Computer Engineering, The
University of British Columbia, Vancouver, BC, Canada

Wen Wu Pengcheng Laboratory, Shenzhen, P.R. China

Contributors xiii

Lei Xu Department of Automation, Shanghai Jiao Tong University, Shanghai,
China

Peng Yang School of Electronic Information and Communications, Huazhong
University of Science and Technology, Wuhan, P.R. China

Jiale Ye Department of Automation, Shanghai Jiao Tong University, Shanghai,
China

Qiang Ye Department of Computer Science, Memorial University of Newfound-
land, St. John’s, NL, Canada

Hui-Chi Yu Department of Electrical Engineering, National Cheng Kung Univer-
sity, Tainan City, Taiwan

Ning Zhang Department of Electrical and Computer Engineering, University of
Windsor, Windsor, ON, Canada

Ran Zhang College of Engineering and Computing, Miami University, Oxford,
OH, USA

Weiting Zhang School of Electronic and Information Engineering, Beijing Jiaotong
University, Beijing, P.R. China

Dongmei Zhao Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada

Lian Zhao Department of Electrical, Computer and Biomedical Engineering,
Toronto Metropolitan University, Toronto, ON, Canada

Chapter 1
Tribute to Professor Jon W. Mark

Lin Cai

Personal Stories

Stephen Ng (Ph.D. 1977)

“One phone call changed my life.
Back in 1974, while doing my summer job in Toronto I decided to do a Ph.D. in

computer communication and called Professor Mark at the University of Waterloo,
who was very active in that field. He invited me to see him. We had a very good talk
and I decided to do my graduate studies with him. Professor Mark was excellent in
coaching me and worked very hard with his students; after one year he went to IBM
Thomas J. Watson Research Center at Yorktown Heights, New York for sabbatical;
however, during his sabbatical we managed to write a few good papers. We became
good friends; his students and I visited his family a couple of times a year, his wife
Betty was very kind and welcoming. I am very grateful that I came across such
a good teacher and friend; we are still keeping in touch with each other since my
graduation.”

George Freeman (Ph.D. 1984)

“There is one thing which invariably causes me to think of Prof Jon Mark. It’s
when I hear talk that we should avoid doing something because it is too hard. I
can look back on almost forty-five years of relationships with Jon: as my instructor
in undergraduate and graduate courses, as my (co-)supervisor in graduate studies, as

L. Cai (�)
Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
e-mail: cai@ece.uvic.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_1&domain=pdf
mailto:cai@ece.uvic.ca
https://doi.org/10.1007/978-3-030-98064-1_1

2 L. Cai

my chair and mentor while starting out as a new faculty member, as my colleague
and sometimes research collaborator throughout most of my career at Waterloo.
Always, what stands out in my recollection is authenticity. The state of the practice
or the research or the department is what it is. We can observe that. The real
question is what should we do about it? Is the task important? Then, if it’s difficult
to understand, we work hard to understand it! If it needs mathematics we don’t
know, we learn the mathematics! If it’s hard to do, we work hard! This is the path to
advances beyond small increments.

It was a conversational nudge from Prof Mark which led me into applying for
scholarship support and entering the world of graduate studies. I loved it from the
first day, as I felt the rush of seeing the deeper mathematics and science and learning
the frontiers of knowledge through journal papers and conferences. I remember
the care Jon took with onboarding new students. Before we began, I had to meet
many other faculty members to ensure I was hooking up with the best supervisor
for my interests. Then, I had to read widely and critically in the research literature
to ensure I found a topic which sparked my curiosity. It’s not that common anymore
to experience such a degree of autonomy and ability to follow one’s curiosity,
even though, in my opinion, these are the most effective known ways to advance
knowledge. I treasure that experience.

Because Prof Mark was heavily involved in administration while I was his
graduate student, I feel I got some early exposure to academic politics and the
mismatches between achievement and recognition. From that time, I’ve carried in
my mind a distinction between recognition for a specific advancement to a field
and recognition for accumulated incremental works (what I’ve since heard called
“famous for being famous”).

I can’t help but cherish Jon’s passion as an educator. There are so many
examples, but crystal clear in my mind is sitting in comprehensive or thesis defense
examinations where a student is not living up to their full potential. I would sense the
intensity from Prof Mark as he almost levitated an inch above his chair, impatient to
delve into the issues with incisive questions to open the student’s mind to wider or
deeper perspectives.

So how to summarize Jon’s early influence on me? Perhaps the following.
Excellence is a choice. The choice may lead to hard work. The result is its own
best recognition. I’ve tried to carry that authenticity forward in my own career
and believe it has served me well. I feel honored to have worked with Jon in so
many ways and enthusiastically add my congratulations to this celebration of his
achievements!”

Sanqi Li (Ph.D. 1985)

“Not only did Professor Mark serve as my Ph.D. thesis advisor, but he was also
an incredible mentor and role model who always inspired me to do my best and
helped me strive for my goals. His guidance, trusted confidence, and friendship
were essential to the nurturing and cultivation of my career.

1 Tribute to Professor Jon W. Mark 3

When I first wrote a letter to Professor Mark while applying for graduate studies
at the University of Waterloo in 1980, I was part of the “lost generation” that
grew up during China’s chaotic 10-year cultural revolution. I had never received
a middle or high school education, had only five courses on record through the
entirety of my college life, and lived as a so-called worker-peasant-soldier student.
So, without a transcript and without professor recommendations or references, I
submitted my application. . . and beyond one’s imagination, I was admitted into the
graduate program at University of Waterloo. I will never forget the first time I met
Professor Mark in his office. I understood less than 20% of his English and my oral
English was not much better. He calmed me down and encouraged me to take some
advanced courses to help. Back then, I had no confidence in myself and my only goal
was to survive and not be kicked out of school and have to return to China. I still
remember how panicked I had felt after taking my first midterm exam and making
some stupid errors. I almost collapsed in the elevator after expressing my frustration
and concerns to Professor Mark in the hallway. Professor Mark then proceeded to
call me the next morning and inform me that I had gotten the highest score in the
class. Throughout my first two semesters, Professor Mark often informed me of
my course exam scores where I continued to rank among the highest. Although
he shared some of my concerns given my previous education, he always patiently
guided me and encouraged me through these lifetime changing moments, which
helped me fundamentally in building my own self-confidence and has motivated me
to always strive for the best.

As the first generation of graduate students from mainland China, many of
us experienced some level of mental loneliness and self-isolation, largely due to
extreme financial constraints and the slow adaptation of western culture during that
time. During the Christmas holiday season, my memories often bring me back
to my first ever Christmas party at Professor Mark’s house. At night during a
heavy snowfall, I started walking from the university campus to Professor Mark’s
house using his hand-drawn map but got lost somewhere along the way while I
was completely absorbed in the bright and colorful neighborhood Christmas light
displays. By the time a nice gentleman offered me a ride in the freezing weather, I
realized I was already nearly a mile away from Professor Mark’s house. This was
my first time being invited to a “western” social gathering, which not only made me
feel more accepted but also encouraged me to come out of my shell. Ever since that
night, I was often invited back to Professor Mark’s house for more gatherings and it
is where we built our lasting and trusted friendship.

I am deeply grateful to Professor Mark for inspiring and encouraging me
throughout my Ph.D. thesis work. His infectious enthusiasm for research and
exploring new ideas made a significant impact on my late professional career
development. I still remember the moment right after I had made some significant
analytical progress in my Ph.D. thesis work, which I found out that the same work
was just published at a recent conference by Bell Labs. Afterwards, I was so nervous
and struggled with whether or not I should change the direction of my research.
By then Professor Mark was on sabbatical leave in the USA and during our next
conference call he enthusiastically encouraged me to further expand my research

4 L. Cai

scope rather than change direction. As a direct result, three journal papers were
published from my Ph.D. thesis.

When I was about to graduate, Professor Mark introduced me to the leading
research authorities at Bell Labs, Columbia University, and IBM Thomas J. Watson
Research Center in the telecommunication network field, and I subsequently landed
a position at Columbia University as a Research Scientist to continue carrying out
my advanced research. This paved the way for my late career development which
led to my positions as a professor at the University of Texas at Austin, as a founder
at multiple startups, and then as a worldwide CTO at Huawei HQ in China. Those
initial five years I spent at University of Waterloo for graduate study under Professor
Mark’s guidance laid out a solid foundation that I was able to build upon for my later
career success.”

Oliver Yang (Ph.D. 1988)

“So the world is deploying 5G and researching on 6G networks nowadays. I still
remember when I joined the CCNG (Computer Communication Network Group)
under the supervision of Prof. Jon Mark in the 1980s; I was working on MANs
(Metropolitan Area Networks) as a bridge between LANs and WANs. During my
tenure at the University of Ottawa, my CCNR (Computer Communication Network
Research) Lab had evolved into and investigated various “dynamic” and “static”
issues in wireless networks, photonic networks and others, with focus on their
design, analysis and performance evaluations.

As Jon’s Ph.D. student, I could choose my research topics under the general
direction while Prof Mark was advising me on research methodology and helping
on various difficulties that arose. This is the freedom I enjoyed and followed when
it was my turn to supervise my own Ph.D. students. In those old days at UW,
the research group activities were based in CPH (Carl Pollock Hall) which was
conveniently located next to my home in the MSA (Married Student Apartment).
My wife and I enjoyed the social life in the CCNG which I still cherish in my
memory.

Undoubtedly, Jon is an accomplished researcher as evidenced by his publications
and by the talent/achievements of the students and other researchers he had
supervised. Congratulations on the publication of this book that will be a good
opportunity to honor his accomplishments.

Good health forever, Prof. Mark.”

Jing Fei Ren (Postdoctoral Fellow and then Research Assistant Professor, 1995)

“I went to Japan from China to attend graduate school. In summer of 1990, I
was working at a Panasonic lab in Japan as a visiting researcher after receiving
a Ph.D. from Kyoto University. A few months before my contract ended, I sent an
email to Prof. Mark to see if I could do some research in his group. At the time, email

1 Tribute to Professor Jon W. Mark 5

was not widely used in Japan and was not that reliable. To my surprise, I received a
positive response from Prof. Mark. He asked me to arrange a recommendation letter
from one of my references which I did. A few days later, I received an email offer
from Prof. Mark. The opportunity was an important turning point in my life. My
first trip to North America was filled with anxiety. At Kyoto University, I tried to
learn English by reading and writing research papers, but I did not have a chance to
practice my English in conversation. Prof. Mark told me he booked an airport van
and gave me detailed instructions at Toronto Pearson International Airport to board
the van. The plane landed in the evening. I was nervous and did not even know
where I would stay for the first night in Canada. The driver took me to Prof. Mark’s
home where I met Prof. Mark, Betty, and Brian who was a university student then.
They were waiting for me and had arranged their guest room for me to stay. My first
real English conversation started from Prof. Mark’s home. The next day, Prof. Mark
brought me to school and introduced me to Guoliang and other students in BBCR
group. Two months later, my wife got her visa and joined me with our 2-year-old
son. We spent almost 5 years in Waterloo. Our daughter was born in K-W hospital.
The experience in Waterloo is what our family will remember and cherish forever.

I interacted with students in Prof Mark’s group on daily basis and learnt a lot from
Prof Mark and his students as a Postdoc then as a Research Assistant Professor.
Prof Mark led BBCR to successfully complete several CITR projects. On several
occasions, I met a few of Prof Mark’s former students who had become influential
leaders in their respective technical fields. Every year when Prof Mark was in
Waterloo, he would invite his group and their families to his Post Horn Pl home
to have parties. He would cook barbeque for us in addition to many gourmet dishes
prepared by Betty. I remember the drumstick barbeque was one of the very popular
items. We would eat, chat, and laugh for several hours. When it was time to say
goodbye, Prof Mark would put everyone’s shoes at the entrance in order and send
them off.

I joined Texas Instruments and moved to Dallas. My wife stayed in Waterloo
with our two kids to finish her last semester at WLU. In April of 1996, I went back
to move my family to Dallas. Prof Mark and Betty drove their new car to send our
family to Pearson Airport. I have not seen Prof Mark and Betty since Infocom 96
in San Francisco but still remember the good times our family spent in Waterloo
and the care, guidance, and inspiration from Prof Mark and Betty. In the time to
celebrate Prof Mark’s retirement, my wife, our son, and daughter join me to say
congratulations to Prof Mark and Betty and wish them a very happy retirement life.”

Vincent Wong (MASc. 1996)

“I had the privilege to work under the supervision of Prof. Jon Mark for my
Master’s study at the University of Waterloo from 1994 to 1996. My impression
of Prof. Mark is that he is full of energy, dedicated to his research, and cares a
lot about his graduate students. He enjoyed having coffee break with Profs. Ian
Blake and Sujeet Chaudhuri. He enjoyed playing tennis after work. I remember

6 L. Cai

that before our weekly meetings at his corner office in Davis Centre (DC), I would
send Prof. Mark a report. He always read the report and provided very nice hand-
written comments. Prof. Mark has made seminal contributions in communications
and networking. I have learnt a lot from Prof. Mark on research, ranging from
choosing a topic, literature survey, problem formulation, solution approaches, and
paper writing. After I joined the University of British Columbia (UBC), Prof. Mark
still served as one of my mentors and provided excellent career advice. When I
visited Prof. Mark and Mrs. Betty Mark at their place in Toronto several years ago,
Prof. Mark gave me many useful advice on healthy diet and daily exercise. I feel
very proud to be one of his graduate students and am very grateful for all of his help.
I take this opportunity to thank Prof. Mark for the great work he has accomplished
as a researcher and mentor to many graduate students.”

Lian Zhao (Ph.D. 2002)

“I was fortunate to be one of Prof. Mark’s Ph.D. students. Prof. Mark has had a
significant influence on me in my career path in academia. Without his guidance
and tremendous support, I would not have been able to achieve what I could achieve
today.

I still clearly remember that in the early stage of my Ph.D. study, I received a
review invitation from IEEE Transactions on Communications and did not know
what to do with it, as I had not published any journal papers yet. I was very unsure
if I could accept the review invitation because I do not know whether I could provide
a qualified review for this top-rank journal. I talked with Prof. Mark. He said, “Do
accept the review invitation, carefully read the manuscript, and write down your
review comment. I will help you proofread it before you send the review back.” So
I did and Prof. Mark guided me throughout the whole review process and taught me
how to become a good reviewer and also how to write good papers of my own.

In 2002, I completed my thesis defense and planned to find a job in IT
industry at that time or a temporary postdoc position. I just had no confidence to
apply for a faculty position. It was a difficult time due to the breakdown of the
telecommunication bubble in industry. I received an offer to work as a postdoc,
which required me to stay half a year in a university in Europe and half a year in
a university in Canada. When I talked with Prof. Mark and expressed my concern
about this arrangement. Prof. Mark said to me, “You don’t need to accept this offer.
You can continue to work with me as a postdoc till you find a desirable position. You
can also apply for a faculty position.” Encouraged by Prof. Mark’s words and great
support, I stayed at Waterloo and started applying for a faculty position. Towards
the end of 2002, I had one interview with a university in Singapore in early 2003.
Unfortunately, the outbreak of SARS in early 2003 caused the postponement of this
interview. Prof. Mark talked with me a few times and asked me to be patient and
keep looking. In May 2003, I was invited to have an interview at Ryerson University
and I was given an offer after the interview. I really appreciated Prof. Mark’s
encouragement and support during this long and daunting job hunting process.

1 Tribute to Professor Jon W. Mark 7

After my graduation, I continued feeling how fortunate I was to be Prof. Mark’s
student. Bobby Ma, who was Prof. Mark’s former student and started working at
Ryerson University in early 1990s, greeted me during my interview and welcomed
me at Ryerson as a colleague. His greeting greatly calmed my nervousness down
during my interview. In the past 18 years, I have been fortunate to have an elder-
academic-brother as a colleague and a friend! Bobby’s family and mine visited
Prof. Mark’s lakeside home in Toronto from time to time. We were all impressed
by the warm welcome and hospitality from Prof. Mark and his dear wife Betty. I
really cherish Prof. Mark’s mentorship throughout the years and sincerely wish him
the best for a wonderful and happy life to be celebrated!”

Dongmei Zhao (Ph.D. 2002)

“I first met Prof. Mark in Hangzhou, China in the spring of 1998 when he and Prof.
Sherman Shen attended a Wireless ATM workshop. At the time, I just received my
offer to join Prof. Mark and Prof. Shen’s group as a Ph.D. student. The workshop
was held in a nice hotel beside West Lake. Between sessions, we walked by the lake,
and Prof. Mark and Prof. Shen talked to me about living and studying in Waterloo.
I arrived at Waterloo a few days before the New Year of 1999. Two days later,
Prof. Shen took me to attend the New Year party at Prof. Mark’s house. That was
my first party in Canada. I can still remember the delicious food that Betty made
on the day. My time at Waterloo was busy and fulfilling thanks to the guidance of
Prof. Mark and Prof. Shen. I used to print out my work reports and put them into
Prof. Mark’s mail slot. His hand-written comments often filled up all the line spaces
when I had the reports back. He encouraged me to pursue an academic position,
helped me polish my interview presentation, and recommended me to people when
we were in conferences. I am very fortunate to have worked with him. His kindness,
guidance, and encouragement have helped me so much during my graduate study
and after graduation. I am extremely grateful for the help Prof. Mark has given me
over the years. I thank him for his wonderful supervision and wish him a long,
healthy life.”

Jun Cai (Ph.D. 2004)

“To my most beloved and respected supervisor: Prof. Jon W. Mark
When I sat in front of the computer to write this message, I suddenly didn’t

know where to start. For six and a half years of life in Waterloo, all scenes suddenly
appeared in front of me. 20 years ago, I sat in the classroom listening to Prof. Mark’s
lectures, discussed research with him in his office, and time-to-time consulted him
for my future career. Under his patient supervision, I learned how to do scientific
research, how to write papers, and more importantly, how to be a man and a scholar:
with integrity, meticulous, and diligent. I really want to share a little story, which I
often share with my own students.

8 L. Cai

I remember once, I racked my brains and came up with an idea that I thought was
perfect. So I eagerly found Prof. Mark, hoping to get his opinion. After listening to
my thoughts, Prof. Mark only said to me “you haven’t understood the fundamental
knowledge yet.” You can imagine how frustrated I was at that time. However, soon,
I understood the meaning of this sentence. How can tall buildings be built without a
good foundation? Without solid basic knowledge, there is no decent research.

A thousand words cannot express my gratitude to Prof. Mark. Perhaps only if I
work hard and study hard can I repay the help and support he has given me.

Best wishes to Prof. Mark for an enjoyable and healthy retirement life!”

Lin Cai (MASc. 2002, Ph.D. 2005)

“In 1999, I quit my job in China to join my husband, Jianping, a postdoc fellow
supervised by Prof. Mark, with no clue about my future. Jianping’s research looked
fascinating, but I had no background in communications or networking. The life-
changing moment happened when Profs. Shen and Mark accepted me to their
Broadband Communications Research (BBCR) lab, opening for me a door to a new,
exciting world.

To make up for the missing background, I spent all of my savings to take four
undergraduate courses in Waterloo, including the popular networking course taught
by Prof. Mark. During the lectures, he often raised questions to challenge students,
pushing me, originally a quiet and invisible student, to step out of my comfort zone,
sharpen my mind, and voice my opinions in the large-size class. His lectures were
very rich in content but without any sample questions similar to the assignments and
exams. Many assignment questions were difficult; however, they were deliberately
designed with a few sub-questions, guiding us to find the final answer step by step.
Doing the assignments was such a rewarding brain-exercise experience, and I cannot
wait to work on them. His exams were also full of surprises, while his marking was
generous to honor any meaningful exploring efforts. His course was exceptional, not
only delivering the knowledge but also training our critical thinking and research
skills. Most importantly, he passed his endless passion in research to us.

Prof. Mark co-supervised me during my five-year Master’s and then Ph.D. pro-
grams in Waterloo. He was a patient mentor, giving us all the freedom to formulate
the problems by ourselves. Prof. Mark stopped me from working on incremental
research (e.g., developing an algorithm to improve the performance by a few
percentages in given experimental settings) and suggested focusing on significant
ones (e.g., modeling and analysis of the system to find systematic, provable
solutions). When I entered a dead-end or hit a wall during research, he encouraged
me to take a few steps back, think hard, and RE-search a new direction.

After graduation, when I encounter any difficulty, Prof. Mark’s voice will ring a
bell in my mind loudly: “Work hard and think harder, Lin.”

Jianping and I were also very lucky to live in Prof. Mark’s big house in Waterloo
for a few months before and during his sabbatical trip to Singapore. I took the chance

1 Tribute to Professor Jon W. Mark 9

to learn a lot from Mrs. Mark, particularly the simple, healthy, and green lifestyle.
We are so grateful for their mentorship, teaching us how to be a better person and
citizen. Wish them a happy retirement filled with fun and happiness.”

Ahmed Hamza (Ph.D. 2015)

“I am profoundly indebted to my supervisor, Professor Jon W. Mark. For me, he was
not only an academic supervisor but also a life coach. During my Ph.D. and after it,
he was not only caring about my academic progress but also very supportive to me
in my personal life.

I remember very well, in January 2011, four months after I had started my
Ph.D. when I sent him an email to request to travel back to my home country. At that
time, there was a revolution in my home country and communications were cut and
I started to feel very worried about my family. I am still keeping his reply: “If you
feel you can help your family being there, and that it is safe for you to go back there,
then by all means.” I was amazed by his response, kindness, and support. He was
not concerned about how this could affect my academic progress; his only concern
was my safety.

During my Ph.D., I got married and I had my first kid. He and his dear wife Mrs.
Betty were very supportive to me and my wife. I remember the great advice that
Mrs. Betty gave to my wife since this was our first child and we did not have family
support.

In my Ph.D., he was a great supervisor that taught me how to conduct research
and that the most important step in the research is not solving the research problem
but formulating the research problem. I was so proud when I went to another
university to attend my friend’s defense and his supervisor knew that my supervisor
was Prof. Jon Mark and he told me how lucky I was to have him as a supervisor.

Even after finishing my Ph.D., the kindness of Prof. Mark has not stopped. He
visited me at work and my manager was so happy because he was a UW Alumni
and remembered Prof. Mark from his undergraduate years. It was a great honor for
me when Prof. Mark invited me and my family to his condo in Toronto, then he took
us on a walking tour around the harbor front. We were astonished by the hospitality
of him and his great wife Mrs. Betty.

Congratulations to Prof. Mark on his retirement! Wishing him the best of health
and happiness.”

Ning Zhang (Ph.D. 2015, Postdoc 2016)

“Back to the year of 2009, I was quite dazed and confused about the future, as a
graduate student in Beijing, China. I decided to take an adventure and apply for
Ph.D. programs overseas. With not much research experience, I doubted if I could
even get an offer. It was an unforgettable moment when I received the letter from
Professor Jon W. Mark, at University of Waterloo. I really appreciate the chance and

10 L. Cai

trust that Prof. Mark gave to me, considering he actually had retired for many years.
At that time, he indeed opened a new door to me, which changed my life path. Now
I still keep the hard copy of the offer letter at home.

After joining Broadband Communications Research (BBCR) Lab at University
of Waterloo in 2010, I had the chance to work with and learn from absolutely
brilliant minds from all over the world. As I was a beginner researcher, Prof. Mark
gave me plenty of patience and freedom to explore different topics. As a senior,
Prof. Mark insisted on going to Campus for conducting research and meeting
students. Through weekly meetings, he provided guidance/advices and taught me
how to do research step by step. He also helped me build confidence little by little.
I remember there was a formal forum that Prof. Mark gave a presentation in to give
an introduction to his research works. He had tons of outstanding research works,
but he picked my ongoing, preliminary research to talk in front of audiences, which
was really encouraging to me and motivated me to work hard.

In the very first year, he always tried his best to help in my research during weekly
meetings. As my English was not very good, I was recording during the meetings
using my mobile phone so that I could replay them to digest what he said. One day,
he spoke Cantonese to me for the first time and I still remember the sound “Wang
zi cheng long” (Every parent wants their children to succeed). Then, he started to
share a story about his past. During World War II, he was a child in a village in
Guangdong Province, China. Facing the food shortage issue, he learnt that a Kung
Fu school was recruiting students which could provide food to the students. To be
admitted, all the children had to practice horse stance in a competition and those
who gave up would have no chance. Probably over a night, Prof. Mark said he
was one of those children who persevered until the end. Then, he joined that Kung
Fu school and started learning Kung Fu. He showed me an old picture of all the
students and masters in this Kung Fu school and asked if I could tell which child was
him. Among all those students, I quickly recognized him with no reason. I feel his
willpower, perseverance, and determination had never changed since then. Being a
Ph.D. student, one might have the feeling of anxiety, frustration, and self-doubt. But
it is also a rewarding journey. With Prof. Mark’s helpful guidance, I completed all
the works for my thesis and planned to have the defense in 2014. I printed my thesis
and came to his office for further comments at a regular meeting time. However,
there was no response behind the door, which was quite rare. Later on, I received an
email from Prof. Mark saying that he didn’t feel very well and had to rest at home.
However, he still cared about my thesis and asked me to bring a hard copy to his
house. When I came to his house, no one was there, and I left my thesis at the front
door, wondering what happened and starting to worry about his health. Then, I met
him in the hospital and at that time he had a very bad health condition. Luckily,
he went through it and gradually recovered. In the beginning of 2015, Prof. Mark
managed to attend my Ph.D. thesis defense and I successfully passed it. I really
appreciate Prof. Mark’s efforts and would also like to thank Prof. Sherman Shen for
providing great support as a co-supervisor in that period.

I am very grateful for all the support that Prof. Mark provided during my time
at University of Waterloo. I deeply appreciate his continuous encouragement and

1 Tribute to Professor Jon W. Mark 11

guidance in my research. Although new challenges rise all the time in research and
life, the characteristics learned from Prof. Mark, such as critical thinking, focus,
perseverance, and passion, can help conquer any difficulties and challenges and pave
the way towards success.”

Yujie Tang (Ph.D. 2017, Postdoc 2019)

“I would never forget the moment when I received the offer letter from Professor
Mark in late 2010, and that opportunity opened a big gate for me to chase my dream
since I was a young girl at the age of six, to be a professor. It was also an important
turning point in my life. I started a whole new life at the other end of the world, far
away from my parents and sister, explored a brand-new environment both physical
and cultural, and met with new friends and colleagues. The very first challenge that
I met was my poor English speaking at that time, which made me quite unconfident
to talk. Prof. Mark was the first person to encourage me and give me useful advice
on how to be more confident and comfortable to speak English.

Prof. Mark was an incredible mentor and a real role model who always inspired,
encouraged, and guided me through every step of my academic journey, ranging
from choosing topics, literature survey, problem formulation, solution approach,
and paper writing. At the beginning of my Ph.D. thesis work, I was in fear of
making mistakes and anxious about picking a wrong research direction. I am very
grateful to Prof. Mark for being so patient and open-minded to allow me to explore
different topics at that time. I am also deeply impressed by his infectious enthusiasm
for research and how tirelessly he worked, even though he had retired at the time.
He never missed any meeting with me, even when he had a serious eye infection,
which deeply touched me. He always provided very nice hand-written comments on
every report and manuscript that I sent to him. I still keep all the copies and cherish
them as the true gem in this current digitized world. As a scholar and role model,
his guidance, trust, and encouragement made a significant impact on my academic
career and will shine for many years to come.

At a personal level, Prof. Mark and his wife Betty are very good friends and
very kind and welcoming. They sent their sincere blessings through lovely cards
and gifts on the two most important moments in my life, as a newly married and
as a new mom. They shared a good deal of useful advice on healthy diet and living
when we had dinner with them. The great time and experience in Waterloo is what
my family will remember and cherish forever.

Joined by my husband and our daughter, we would like to send our sincere
congratulations to celebrate Prof. Mark’s retirement and wish him and Betty a
retirement life full of happiness and health.”

Yu Cheng

“I joined BBCR lab as a Ph.D. student under the supervision of Prof. Weihua
Zhuang in 1999. In the first year of my study, I worked as a teaching assistant

12 L. Cai

(TA) for the networking course by Prof. Jon Mark. Prof. Mark used the textbook
“Data Networks” by Bertsekas and Gallager, which is heavily mathematically
oriented. That was a tough TA job. I had not learnt the textbook before, so
Prof. Mark requested me to study the textbook, work out the homework problems
independently, and then do the tutorials. Once, my solution to a homework problem
was not fully correct, making Prof. Mark unsatisfied. I am now working as a
Professor at Illinois Institute of Technology. The TA jobs here are much easier, e.g.,
homework grading according to solution manuals, or monitoring lab sessions. The
difference between our expectation on a TA nowadays and Prof. Mark’s expectation
around 20 years ago can speak on his high standard on graduate students’ capability
and quality. It is no wonder why Prof. Mark could achieve such a splendid academic
career and cultivated many great students. I am really honored that I can share a
story here and show my deepest respect to Prof. Mark.”

Greeting Messages from Alumni

Gordon L. Stuber (Ph.D. 1986) “Thank you Prof. Mark for being my Ph.D. co-
advisor along with Ian Blake. You helped me greatly, during my 4 years of graduate
studies. You always treated your graduate students well, helped them flourish, and
also to have fun. I will always remember Globecom’85 in New Orleans, hurricanes
in hand on Bourbon Street. You’re truly a ball of fire, actively carrying on your
research at Waterloo many years into your retirement. Waterloo was lucky to have
you.”

Hien Nguyen (Ph.D. 1993) “Congratulations on your retirement. It is still hard
for me to process how you would be able to “retire” given that I know how much
you love to work. I felt fortunate and would like to thank you for having chosen
me as one of your Ph.D. students. My life had changed for the better from that
point. I still have many fond memories of our discussion together (technical or not),
and the warm Christmas parties that you, Betty, and Brian had organized for us.
Back then, the world was much less connected and we didn’t have YouTube nor cell
phones. Thanks to your teaching devotion and kindness, many of us were able to
learn enough and helped create computer networks that bring people much closer
together for a better world. Please know that you have done much more than enough,
compared to the rest of us, and that you can truly enjoy your retirement.”

Robert Lehr (Ph.D. 1997) “Thank you, Dr. Mark, for all the support and encour-
agement you have provided to your graduate students over the years. From advice
on writing papers, to helping your students financially, you always guided us with
your experience and compassion. You have made a long-lasting, positive impact on
our careers and lives, and we will always be grateful.”

1 Tribute to Professor Jon W. Mark 13

David Tung Chong Wong (Ph.D. 1999) “Thank you for your guidance and help
during and after my Ph.D. I appreciate them very much. Take care and enjoy your
retirement. ”

Michael Cheung (Ph.D. 2000) “I am grateful to having Professor Mark supervis-
ing my doctoral studies. He is a true scholar, a good mentor, and a role model of a
great person. His dedication to research and academic excellence has been passed
on to countless number of outstanding researchers in both the academia and the
industry, making valuable contributions to the scientific world. I am proud being
your student.”

Minghui Shi (Ph.D. 2006) “I feel very fortunate and privileged to be one of
Prof. Mark’s students. Prof. Mark was my co-supervisor at the UW. He guided
me through my studies as a role model. After many years, I still remember his
excellent art of lecturing, passion, encouragement, and, of course, the amount of
editing remarks on my work. The care from Prof. Mark even went beyond the
academic work and extended to my personal life and my family. Thank you very
much, Prof. Mark, for everything you have done for me and other students. My
family and I wish Prof. Mark good health and all the best and joy in the continuing
adventures of life.”

Qiang Ye (Postdoc 2019) and Wen Wu “As BBCR graduates, we have been
deeply influenced by Prof. Mark’s education, support, and help which are always
our precious lifetime treasure. Congratulations on the retirement! We sincerely wish
Prof. Mark the very best of health, happiness, and full of joy on the new journey in
life! Enjoy the rest and relaxation!”

Part I
Broadband Communications for

Ubiquitous Connectivity

Chapter 2
Network Slicing for 5G Networks
and Beyond

Qiang Ye and Wen Wu

2.1 Introduction to 5G Communication Networks

With the advancement of telecommunication industry, the cellular communication
system has been evolving to the fifth generation (5G). Different from previous
generations, the 5G communication networks are expected to provide fine-grained
and customized end-to-end (E2E) service deliveries with diverse and differenti-
ated quality-of-service (QoS) provisioning for Internet of Things (IoT) [1]. The
supported IoT service types range from smart homing, industrial automation,
intelligent transportation systems to e-health care systems, smart cities, etc. The
3rd generation partnership project (3GPP) technical report (Release 15) specifies
three main characteristics of 5G networking paradigm [2]:

1. Enhanced mobile broadband (eMBB) communications: The 5G networks are
expected to provide seamless communication coverages for more and more end
user terminals with enhanced mobility (e.g., vehicles on highways, high-speed
trains), supporting increasing types of high data rate services, such as high-
definition (HD) video streaming/conferencing, virtual reality/augmented reality
(VR/AR). To accommodate largely increased communication demands, both 5G
wireless and core network capacities are enhanced, through intensified network
deployment for spatially multiplexing on currently employed network resources.

2. Massive machine-type communications (mMTC): Another key feature of 5G
networks is to maintain a large number of heterogeneous machine-type com-

Q. Ye (�)
Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada
e-mail: qiangy@mun.ca

W. Wu
Pengcheng Laboratory, Shenzhen, P.R. China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_2&domain=pdf
mailto:qiangy@mun.ca
https://doi.org/10.1007/978-3-030-98064-1_2

18 Q. Ye and W. Wu

munication connections to realize massive IoT. To guarantee the IoT service
quality, the utilization of network resources needs to be boosted to support the
ever-increasing IoT traffic volume.

3. Ultra-reliability and low-latency communications (URLLC): IoT applications
often require different dimensions and levels of QoS satisfaction. For example,
industrial IoT services require strict and deterministic time-lines in task pro-
cessing, while autonomous driving tasks demand low processing latency and
ultra-high reliability [3, 4]. Therefore, the network resources need to be managed
to support customized IoT services with QoS isolation [5]. The QoS isolation
ensures that the minimum QoS requirements of any service are not violated when
network dynamics happen due to end device mobility, channel quality variation,
or network traffic load fluctuations.

The key features of 5G networks pose significant challenges on QoS-oriented
resource provisioning. In the wireless network domain, a multi-tier of wireless
base stations (BSs) are deployed, i.e., macro-cell BSs (MBSs) underlaid by mul-
tiple layers of small-cell BSs (SBSs), to exploit the spatial reuse of currently
employed radio spectrum resources. However, the increasingly intensified network
deployment leads to the rise of both capital and operational expenses (CapEx
and OpEx) and also the increased levels of inter-cell interference. In the core
network domain, data traffic from radio access networks (RANs) are aggregated
at the edge (e.g., gateways) of the network core, and then traverse a sequence of
network functions, such as access and mobility management function (AMF) and
session management function (SMF) [2], instantiated on different network servers
to realize E2E service deliveries. A traffic flow of certain service type refers to
an aggregation of data packets traversing between two anchor points of a core
network. Specifically, each flow is routed through a sequence of network functions,
consuming computing resources (i.e., CPU time cycles) on servers and transmission
resources on physical links for certain E2E service provisioning. With increasing
traffic volume from different services carried in core networks, adding more network
resources, including network servers providing different functionalities, physical
transmission links, and forwarding devices (e.g., switches, routers), becomes cost-
ineffective.

2.2 Network Slicing

To accommodate highly increased communication demands with differentiated
QoS provisioning and low service delivery cost, the current resource management
policies need improvement. Network function virtualization (NFV) is a cost-
effective solution to softwarize network functions on servers using virtualization
technologies, i.e., instantiating network functions on a virtualized environment (e.g.,
virtual machines (VMs)) [6, 7]. In such a way, the virtual network functions (VNFs)
are decoupled from vendor-specific servers and can be flexibly programmed at dif-

2 Network Slicing for 5G Networks and Beyond 19

ferent network server locations with low installation and operation cost, the process
of which is also called VNF placement. The servers equipped with virtualization
platforms (e.g., VMware, OpenStack) become commodity servers, also called NFV
nodes, that can instantiate VNFs as software to provide different functionalities. By
using NFV in core networks, the virtual computing/storage/networking resources
on network servers are abstracted and flexibly distributed to different VMs on NFV
nodes to host different sets of VNFs. The placement of VNFs is centrally controlled
by an NFV controller with the consideration of in-network resource availability.
Traffic flows from different service types are often required to traverse different sets
of VNFs for E2E service deliveries. For example, video streaming traffic needs to
pass through a transcoding function for raw video content compression and then a
firewall function to ensure a secured E2E video delivery, while DNS request traffic
goes through a firewall function and DNS server in sequence to search for domain
name to IP address mapping.

A set of VNFs connected in a specific sequence for executing certain service
functionalities is called service function chain (SFC). There is a fundamental
research issue of how to deploy an SFC over a physical substrate in a cost-effective
manner, including instantiating VNFs on appropriate NFV nodes and configuring a
routing path passing through these functions, to guarantee E2E service quality [8, 9].
To enable the programmability on routing configurations with simplified data plane
operations, the NFV controller is also enabled with the software-defined networking
(SDN) control functionality [10]. With SDN, the forwarding control functions at
each network node are decoupled from the physical hardware and migrated to the
centralized controller as a program. Based on the global network state information,
the controller can be programmed with different routing algorithms for customized
E2E service deliveries, and the routing decisions are enforced from the controller
to each forwarding device through the OpenFlow protocol [11]. By decoupling
the traffic forwarding control, the traffic routing performance in the data plane is
significantly improved.

Under the SDN-enabled NFV architecture, when multiple SFCs are placed
onto the physical network, it is likely that more than one VNF is instantiated
on a same NFV node and traffic routing paths for different SFCs are (partially)
overlapped to save CapEx and OpEx. However, when SFCs share a common set of
network resources, including virtual computing resources on network servers and
transmission resources on links, how to slice a pool of virtual resources among
the SFCs to achieve QoS isolation is essential. This process is called network
slicing [12, 13]. In 5G core networks, a key research issue is how to jointly slice
the computing and transmission resources among traffic flows traversing different
SFCs, with the consideration of the correlation of resource consumption between
the two resource types, which is also termed as bi-resource slicing [12]. In 5G
wireless networks, the baseband processing and radio resource control functions
are virtualized and centrally managed by an SDN-enabled NFV controller. Radio
resources on heterogeneous wireless BSs are aggregated as a resource pool, and
are flexibly sliced and reserved for different BSs to improve the overall spectrum
resource utilization for better QoS customization. In the wireless network domain,

20 Q. Ye and W. Wu

the network slicing is studied in terms of radio resource slicing [5], which mainly
deals with how to determine the optimal ratios of sliced radio resources among BSs
such that the overall resource utilization is maximized.

In this section, we present an E2E network slicing framework for both 5G
wireless and core network domains. For 5G wireless networks, a dynamic radio
resource slicing scheme is proposed in Sect. 2.2.1 to maximize the network-wide
communication resource utilization by enabling resource sharing among BSs,
while guaranteeing the QoS isolation between mobile broadband data services and
machine-to-machine (M2M) communication services. For 5G core networks, we
study in Sect. 2.2.2 how virtual computing resources and networking resources are
jointly sliced among traffic flows with fairness guarantee and service quality satis-
faction. We also discuss in Sect. 2.2.3 how artificial intelligence (AI) technologies
are applied in automating the process of slice creation especially in beyond 5G
networks with increased network complexity and dynamics.

2.2.1 Network Slicing in 5G Wireless Networks

5G wireless networks are built on multi-tiers of heterogeneous BS deployment,
e.g., multiple layers of SBSs underlying MBS coverages, to explore the spatial
reuse of radio spectrum resources for enhancing the network capacity. To further
improve the overall resource utilization with reduced network deployment cost,
the SDN-enabled NFV architecture softwarizes the radio processing and resource
control functionalities on BSs to enable resource programmability and centralized
control over heterogeneous BSs. In such a way, the radio resources can be sliced
and reconfigured on BSs according to data traffic load conditions for differentiated
QoS provisioning.

2.2.1.1 Dynamic Radio Resource Slicing Framework

Radio resource slicing has two levels of resource partitioning: network level and
service level. In the network level, the aggregated resources are sliced among BSs
and reserved for user/device groups of different services (i.e., service groups) under
the BS coverages; in the service level, the sliced radio resources on each BS are
partitioned among service groups for customized QoS provisioning. Most existing
studies mainly focus on service-level slicing, with a focus on how to slice resources
among different groups of users/devices under each BS for differentiated QoS
satisfaction [14, 15]. By facilitating resource sharing among BSs, the network-level
slicing needs investigation to maximize the overall resource utilization.

1. Network model: We consider a two-tier downlink heterogeneous wireless net-
work, as shown in Fig. 2.1, where an MBS, denoted by B0, is deployed at
the center of a macro-cell to provide wide-area communication coverage. The

2 Network Slicing for 5G Networks and Beyond 21

MTDMU MBS SBS

Small cell

Macro-cell

Wireless link

Available Network
information

Direct network control

SDN-enabled

NFV controller

Fig. 2.1 A two-tier heterogeneous wireless network with MTDs and MUs

macro-cell is underlaid by n small-cells within the MBS coverage area, each
with an SBS located at the cell center, to boost the network capacity in
support of the increasing M2M communication demands. The set of SBSs
under consideration is denoted by B = {B1, B2, . . . , Bn}. There are machine-
type communication devices (MTD) and mobile users (MUs) randomly located
within the BS coverages. Denote byMi,k and Nj,k the sets of MTDs and MUs
(Mi,k andNj,k are the set cardinalities), respectively, from M2M communication
service i (i = 1, 2, . . . , I) and broadband data service j (j = 1, 2, . . . , J)
within the coverage of Bk (k = 0, 1, . . . , n), where I and J denote the total
number of supported machine-type and broadband data service types. Binary
variable xm,i,k (yl,j,k) is used to denote the association pattern between MTD
m (MU l) from service i (j) and SBS Bk that covers the device (user), where
xm,i,k = 1 (yl,j,k = 1) if MTD m (MU l) is associated with Bk and xm,i,k = 0
(yl,j,k = 0) if MTD m (MU l) is associated with MBS B0. Since the MTDs
(MUs) solely covered by the MBS have only one association pattern, we have
xm,i,0 = 1 (yl,j,0 = 1). Each BS is equipped with a number of link-layer
transmission queues, each for downlink packet transmissions with an associated
end device/user. Let λi (λj) be the average packet arrival rate at each transmission
queue of service i (j). The downlink M2M communication services and mobile
broadband data services have different traffic arrival patterns. The M2M packet

22 Q. Ye and W. Wu

arrivals are often triggered by specific controlling/monitoring events and are thus
event-driven, whereas the arrival process of mobile broadband traffic is periodic.

2. Radio resource slicing optimization framework: Initially, the radio spectrum
resources on the MBS and SBSs, denoted by Wm and Ws, are pre-configured,
which are assumed orthogonal to avoid inter-network-tier transmission inter-
ference. All n SBSs with non-overlapping communication coverages reuse the
same set of radio resources to exploit the spatial multiplexing gain. Under the
SDN-enabled NFV architecture, the radio resources on heterogeneous BSs are
abstracted and aggregated as a resource pool, denoted by Wv(= Wm +Ws), and
are further sliced as ρmWv and ρsWv for the MBS and SBSs, respectively, based
on current network state information (e.g., number of devices in each network
cell, traffic arrival statistics, and inter-cell interference levels). Given a set of BS-
device (user) association patterns, {xm,i,k} and {yl,j,k}, the sliced radio resources
on the BSs are further partitioned, with the ratio of fi,k (gj,k), for the group of
MTDs (MUs) belonging to service i (j) under the coverage of Bk . Note that the
radio resource slicing ratios, the BS-device (user) association patterns, and the
resource partitioning ratios among service groups are updated in a large timescale
(e.g., hours) in response to the network dynamics.

The objective of the proposed slicing framework is to determine the optimal
radio resource slicing ratios, ρ∗m and ρ∗s , on the MBS and the SBSs, respectively,
with the optimal BS-device (user) association patterns, {x∗m,i,k} and {y∗l,j,k}, and the
optimal resource partitioning ratios, f ∗i,k and g∗j,k , for each service group under Bk .
By enabling the network-level resource sharing, the overall radio resource utilization
is maximized under different dimensions of QoS constraints (e.g., packet loss rate
bound and packet transmission delay constraint for M2M communication services
and minimum data rate requirement for mobile broadband services). The operation
procedure of the radio resource slicing optimization includes the following three
steps (refer to [5] for a detailed mathematical formulation of the optimization
problem):

Step 1 Through signaling exchange between the SDN-enabled NFV controller
and the BSs, the controller periodically collects the updated network state
information, including the total number of MTDs and MUs,Mi,k and Nj,k , from
M2M service i and broadband data service j within the coverage area of BS Bk ,
traffic load statistics λi and λj , and wireless channel conditions between the BSs
and end devices (users) considering the inter-cell interference.

Step 2 Based on the updated network information, the controller executes the
radio resource slicing optimization to maximize the overall communication
resource utilization under differentiated QoS constraints for both M2M and
broadband data services, upon which the optimal slicing ratios, the optimal BS-
MTD (MU) association patterns, and the optimal resource partitioning ratios for
service groups under each BS are obtained.

Step 3 Repeat Step 2 to update ρ∗m and ρ∗s , {x∗m,i,k} and {y∗l,j,k}, and f ∗i,k and g∗j,k ,
when the network traffic load varies, to achieve consistently maximum network-
level radio resource utilization.

2 Network Slicing for 5G Networks and Beyond 23

2.2.2 Network Slicing in 5G Core Networks

In 5G core networks, to improve resource utilization with reduced network deploy-
ment and operation cost, it is likely that multiple SFCs are placed over a common
(or partially overlapped) physical network path, sharing virtual computing resources
on NFV nodes to instantiate multiple VNFs and transmission resources on physical
links. In Fig. 2.2, we provide an illustrative example of accommodating two service
traffic flows over a common network path in a core network, where packets from
flow x of a DNS request service traverses in sequence a firewall function F1 and a
DNS function F2 on NFV nodes S1 and S2, respectively, and traffic flow y passes
through F1 and an intrusion detection system (IDS) function F3 on the same set
of NFV nodes for a secured E2E steaming service. After traversing an NFV node,
each of the traffic flows is forwarded over a number of virtual switches (vSwtiches)
[16] connected by transmission links before reaching a subsequent NFV node or the
destination anchor node in the core network. For a general case, a set of L traffic
flows are placed on a common network path, along which there are v NFV nodes,
denoted by {S1, S2, . . . , Sv}, and nu pairs of transmission links and vSwitches
connecting Su (u < v) and Su+1.

vSwitch NFV node Firewall IDS DNS

Transmission link Programmable link Traffic flow direction

Flow x

Flow y

1F

1S

2F

3F

Flow x

Flow y

... ...

2S

SDN-enabled
NFV controller

Fig. 2.2 An illustrative example of traffic flows traversing SFCs placed over a common network
path in a 5G core network

24 Q. Ye and W. Wu

2.2.2.1 Joint Computing and Transmission Resource Slicing

When each packet of a traffic flow, say flow x, passes through a VNF on an NFV
node, it consumes Tx,1 amount of time for CPU processing on the NFV node and
Tx,2 amount of time for packet transmission on the server output link, provided that
all the computing resources on the server and transmission resources on the link
are allocated to the traffic flow. This two dimensional time vector,

[
Tx,1, Tx,2

]
, is

called resource consumption profile of flow x traversing a specific VNF on an NFV
node. However, traffic flows of different service types often demonstrate discrepant
resource consumption profiles when passing through an NFV node. For example,
a DNS request packet with long packet header and short payload sizes takes more
time for CPU processing, whereas a video packet consumes more resources on link
transmission than processing. The type of resource that a service packet consumes
more when traversing a function on an NFV node is termed a dominant resource
type.

When multiple traffic flows from different services pass through a common NFV
node, both computing resources on the server and transmission resources on the
output link need to be sliced properly among the flows to ensure QoS isolation.
Therefore, how to design a joint resource slicing scheme to achieve high resource
utilization with fair sharing among traffic flows is a challenging research issue. By
assuming that both types of resources are infinitely divisible, generalized processor
sharing (GPS) is a fluid-flow based resource scheduling mechanism to realize
service differentiation [17]. In GPS, every traffic flow is assigned a weighting factor,
based on which a minimum service rate is allocated. When some of the flows do not
have packets to be transmitted at the current moment, their allocated transmission
resources are redistributed among other backlogged flows to exploit the resource
multiplexing gain. Clearly, GPS achieves QoS isolation by guaranteeing a minimum
packet service rate for each flow.

However, if GPS is directly employed for joint computing and transmission
resource slicing when traffic flows traverse an NFV node (also called bi-resource
GPS [12]), it may not be efficient due to the discrepant resource consumption
profiles. As illustrated in Fig. 2.2, when two equally weighted traffic flows of
different service types traverse a firewall function F1 at NFV node S1, the DNS
traffic flow x and the streaming traffic flow y have time consumption profiles of[
Tx,1, Tx,2

]
and

[
Ty,1, Ty,2

]
, respectively. Since the dominant resource type for the

DNS service is CPU resource and for the streaming service is link transmission
resource, we have Tx,1 > Tx,2 and Ty,1 < Ty,2. If bi-resource GPS is applied,
both CPU and transmission resources on S1 are equally partitioned between the two
traffic flows (applying GPS for both resource types), i.e., hx,i = hy,i (i = 1, 2),
where hx,i and hy,i denote the fractions of type i resources sliced for traffic flows x
and y, respectively. However, due to discrepant time consumption profiles, the equal
partitioning on both resource types results in imbalanced resource provisioning, i.e.,
the sliced transmission resources for flow x are over-provisioned as Tx,1 > Tx,2,
leading to a certain level of resource wastage, and for flow y are insufficient, causing
packet accumulation at the output link port.

2 Network Slicing for 5G Networks and Beyond 25

To improve the overall resource utilization with low E2E delay and at the same
time maintain the resource sharing fairness, we employ dominant resource GPS
(DR-GPS) as our joint resource slicing scheme [18, 19]. In DR-GPS, the fractions
of sliced dominant resources are equalized among all the traffic flows, and the non-
dominant resources are sliced in proportion to the resource consumption profile of
each flow to maximize the joint resource utilization. When some of the flows have
no packets to be transmitted, their sliced resources are redistributed among other
backlogged flows according to GPS. Taking the example in Fig. 2.2, when flow x

and flow y pass through firewall function F1 at S1, we equalize the CPU resource
slicing ratio for flow x with the transmission resource slicing ratio for flow y, i.e.,
hx,1 = hy,2, to guarantee a fair resource sharing for the more demanding resource
types. To reduce the packet queueing at output transmission link and improve the
utilization of both types of resources, the non-dominant resources of both flows
are sliced proportional to their time consumption profiles, i.e., hx,2 = Tx,1

Tx,2
hx,1

and hy,1 = Ty,1
Ty,2
hy,2. By using DR-GPS, QoS isolation among different services

is achieved by guaranteeing a minimum fraction of computing and transmission
resources with high resource multiplexing gain. Moreover, the scheme always
maintains fair resource sharing among dominant resource types and improves the
joint resource utilization with good E2E performance.

2.2.3 AI-Assisted Network Slicing in Beyond 5G Networks

As mentioned above, the advantages of network slicing have been elaborated clearly
in 5G networks, and some solutions have been proposed either in the wireless
network domain (Sect. 2.2.1) or in the core network domain (Sect. 2.2.2). Since 5G
networks are being widely deployed starting from 2020, people are envisioning
beyond 5G (B5G) networks, such as 6G networks. Seeing the great success of
network slicing, it is expected that network slicing will continue evolving and play
an increasingly important role in the future B5G networks [20]. In this subsection,
we first introduce the potential new features in B5G networks and the corresponding
new challenges. Then, we discuss how to leverage AI techniques to assist network
slicing to address these challenges in the future B5G networks.

2.2.3.1 Beyond 5G Networks

Compared with the current 5G networks, the B5G networks will witness an
improvement of key performance indicators (KPI) requirements, such as increased
data rates, enhanced network capacity, and low latency. The detailed KPI require-
ments of the 5G and B5G networks are as follows: (1) 5G networks—Aiming at
supporting typical services, i.e., enhanced mobile broadband services, ultra-reliable
low-latency communications services, and massive machine-type communications

26 Q. Ye and W. Wu

services, 5G is required to meet several KPI requirements, such as 20 Gbps peak
data rate, 0.1 Gbps user experienced data rate, 1 ms end-to-end latency and 1
million devices/km2. Such requirements are achieved by adopting several key
enabling technologies, such as millimeter-wave (mmWave), massive multiple-input
multiple-output, ultra-dense networks, and non-orthogonal multiple access [21];
(2) B5G networks—The B5G networks offer more than increased data rates but
also expanded capacity, lower latency, and larger coverage. According to a very
recent white paper, B5G networks are expected to deliver 1 Tbps peak data rate,
20–100 Gbps user experienced data rate, 0.1 ms end-to-end latency, 10 million
devices/km2 and near 100% coverage, which are an order of magnitude higher than
that in 5G networks [22].

In addition to the improvement of KPI requirements, B5G networks are expected
to have the following new features:

• Space-air-ground integrated network (SAGIN)—Although the current 5G
networks can provide good coverage in highly populated areas, such as
urban/suburban areas, B5G networks are required to deliver universal coverage,
including in rural areas, remote lands, and sparsely populated areas. To achieve
the goal, B5G would exploit the altitude dimension. Space networks, such as
low earth orbit, medium earth orbit, and geosynchronous earth orbit satellites,
aerial networks, such as unmanned aerial vehicles (UAVs) and balloons, and
ground networks, such as cellular and Wi-Fi networks, can be integrated into the
SAGIN, to provide global coverage, facilitate on-demand services, and support
high-rate low-delay services [23, 24];

• Abundant services with stringent QoS requirements—A large number of emerg-
ing applications are expected to have stringent QoS requirements in multiple
dimensions. Some bandwidth-consuming applications, such as mobile aug-
mented reality, mobile virtual reality (VR), and hologram video streaming
applications, usually require an extremely high data rate. Taking mobile VR as an
example, the required uplink data rate is up to 5 Gbps. Some other applications,
such as autonomous driving, industrial IoT networks, and UAV control systems,
usually require extremely high reliability. Taking the autonomous driving as an
example, the required reliability is up to 99.999%.

Due to the above features, applying existing network slicing schemes in B5G
networks faces the following new challenges. Firstly, in the future SAGIN, not only
the number of network components increases, but also the slice scope increases
due to global network coverage. As such, it is necessary to develop efficient
network management schemes for a large number of network slices with massive
network nodes. Secondly, the stringent QoS requirements of emerging services
call for effective network slice management schemes to guarantee stringent QoS
requirements. Thirdly, since B5G networks are expected to be highly dynamic due
to user mobility and time-varying service demands, the developed slice management
schemes should be adaptive to dynamic network environments. These new chal-
lenges may undermine the feasibility of applying the traditional optimization based
network slicing schemes in B5G networks. Hence, to address these challenges, it

2 Network Slicing for 5G Networks and Beyond 27

is desired to develop efficient, effective, and adaptive network slicing schemes for
future B5G networks. Leveraging AI techniques to handle complicated network
slicing problems is a potential solution, thereby fostering AI-assisted network
slicing schemes.

2.2.3.2 AI-Assisted Network Slicing

Recently, AI techniques have achieved great success in many fields. Fuelled by
powerful computing facilities and well-curated datasets, AI techniques, especially
deep neural networks, have been applied in various tasks, including object detection
and classification, audio recognition, and content recommendation. By directly
mining from massive data, AI can handle complicated problems and adapt to
the environment dynamics without requiring an accurate mathematical model
beforehand. Endowed with these advantages, AI has been applied to handle many
problems in wireless networks, such as beam alignment in mmWave networks [25],
resource management in industrial IoT networks [26], mobility prediction in
vehicular networks [27], and trajectory planning in UAV networks [28].

AI-assisted network slicing which applies AI techniques for performing network
slice management can reduce the network slice management complexity [14]. In
existing empirical network slicing schemes, some experienced network engineers
are hired to configure a number of slice parameters according to network environ-
ments, which incurs human labor costs. Moreover, when the number of supported
services is large, the number of slice parameters can be extremely high. Empirical
schemes may not achieve optimal resource utilization with increased resource
consumption cost. AI-assisted network slicing schemes can automatically manage
network slices. This can reduce network slice management complexity and support
more diverse services. By mining from extensive slice operation data, AI-assisted
network slicing schemes can directly learn the optimal scheme in dynamic network
environments, such that resource consumption cost can be reduced.

To better understand the detailed roles of AI-assisted network slicing, we first
introduce the three stages in the network slicing lifecycle and their corresponding
functions. The network slicing lifecycle consists of three phases: preparation,
planning, and scheduling, as shown in Fig. 2.3. These three stages work together
to facilitate network slicing for wireless networks. The functions of the three stages
are detailed as follows:

• Preparation stage—Based on service requirements and virtual resource avail-
ability, the preparation phase is to construct and configure network slices.
Specifically, service requirements are extracted to classify services based on
their QoS requirements, such as service delay, service priority, throughput, and
reliability. In addition, network resources (e.g., the communication, computing,
and caching resources) and network functions (e.g., firewall, network name
translation, domain name system) are virtualized. After virtualization, the SDN

28 Q. Ye and W. Wu

Network
Slicing

Commun.
Resources

Computing
Resources

Caching
Resources

Slice 2

Slice N

Slice 1Service 1 Service 2 Service N

Requirement 1

SDN Controller

...

...

Service Requirement Extraction

Requirement 2 Requirement N

Commun.

Resource

Computation

Resource

Caching

Resource

Virtualized
Resources

Traffic/User
Information

User

Mobility

Channel
Condition

Virtualized
Network Function

Firewall

Network Name

Translation

Domain Name

System

Traffic
Load

Feedback

User 1

User 2

User 3

Resource Block

Time

Planning

Planning

Decision

Slice Admission

Virtual Function

Placement

Resource

Reservation

RAT Selection

User Association

Resource

Orchestration

Scheduling

Fig. 2.3 An illustrative example for the lifecycle of network slicing. The left part is the preparation
stage, the right-top part is the planning stage, and the right-bottom section is the scheduling stage

controller can efficiently manage the resources and network functions in a
centralized manner.

• Planning stage—The main goal of the stage is to reserve network resources
for different slices. To achieve this goal, extensive network information can
be collected from underlying physical networks by the SDN controller, such
as service demand patterns, stochastic channel conditions, and user mobility
patterns. Then, the SDN controller will reserve the virtualized communication,
caching, and computing resources for different slices.

• Scheduling stage—The main goal of the stage is to schedule the reserved
resources of a slice for end users. Specifically, given the planning decision,
i.e., resource reservation decision, the SDN controller dynamically allocates
the reserved resource blocks to end users according to users’ real-time service
requests.

Note that some feedback information from the system is sent to the SDN controller,
such as the resource utilization, system performance, and service-level agreement
satisfaction. Based on the feedback information, the SDN controller can adjust the
network slicing decisions to adapt to dynamic environments and guarantee slices’
performance.

Knowing that three stages have different functions in network slicing, it is
obvious that AI will play different roles in the three stages. The detailed roles of
AI in the network slicing lifecycle are given as follows:

• AI for preparation: One exemplary task is service demand prediction. Based
on the historical service traffic load, the service demand can be predicted via
AI methods, such as recurrent neural networks. The predicted service demand
information is utilized for decision making in the planning stage.

• AI for planning: There are multiple tasks in the planning stage that can be
conducted via AI methods. Two examples are detailed as follows: (1) Slice
admission, in which the SDN controller admits the slices to maximize system
revenue, based on the network resource availability and service demand of these

2 Network Slicing for 5G Networks and Beyond 29

slices. As the decision variable is binary, this problem can be considered as an
integer optimization problem. In a large-scale network, traditional optimization
methods become infeasible, and deep learning is a potential solution to address
the optimization problem; (2) Resource reservation, in which the SDN controller
reserves resources for different slices based on the service demand of different
slices. Since the service demands are time-varying, the resource reservation
should be adaptive to the service demand dynamics, which can also be addressed
via a reinforcement learning method.

• AI for scheduling: There are also multiple tasks that can be conducted via
AI methods in the scheduling stage. We take resource orchestration as an
example. The reserved resource of a slice is allocated to end users after the
planning decision is given. The resource orchestration decision is determined
based on real-time user mobility, channel condition, etc. To efficiently utilize
resources, a reinforcement learning method is desired for dynamic resource
orchestration. Another example is radio access technology (RAT) selection,
in which a user decides to select an optimal RAT among multiple candidate
RATs. The user-perceived performance of a RAT is stochastic due to dynamic
wireless environments and user mobility. Hence, the RAT selection problem can
be modeled as a multi-armed bandit problem, whose objective is to identify the
optimal RAT.

2.3 Case Study

In this section, a case study is presented to demonstrate the effectiveness of the
proposed network slicing frameworks through computer simulations. A two-tier
wireless network is created using MATLAB, where an MBS with the cell coverage
radius of 600 m is deployed and is underlaid by 4 SBSs with the communication
radius of 200 m. The downlink wireless transmission power levels are set as 40 dBm
and 30 dBm on the MBS and each of the SBSs, respectively. The separation distance
between the MBS and each SBS is set to 400 m. The pre-configured radio spectrum
resources on each BS is 10 MHz, and all the SBSs reuse the same portion of
spectrum resources to exploit the spatial multiplexing gain. MTDs and MUs are
randomly deployed within the BS coverage areas, and we assume that all MTDs
belong to one machine-type service and all MUs are subscribed to one broadband
data service. The processes of downlink packet arrivals at each BS are assumed
Poisson, with the rate parameter of 5 packet/s, for each MTD and periodic with
the rate of 20 packet/s for each MU. The packet sizes of each machine-type packet
and each data packet are set as 2000 bits and 9000 bits, respectively. For the core
network, two SFCs from the DNS service and the streaming service are placed on a
common network path, as shown in Fig. 2.2, with the firewall function F1 placed on
NFV node S1 and the DNS function F2 and the IDS function F3 placed on NFV node
S2. There are two equally weighted traffic flows x and y traversing the respective

30 Q. Ye and W. Wu

SFCs (F1 −→ F2 and F1 −→ F3) through the configured common traffic routing
path.

The physical network path deployment and the packet-level traffic forwarding
are simulated in OMNeT++ [29]. The average packet arrival rates at S1 and the
streaming service are set as 150 packet/s with the packet size of 4000 bits for the
DNS service and in-between 150 packet/s and 350 packet/s with the packet size of
16,000 bits for the streaming service. The time consumption profiles for flows x and
y traversing S1 are tested over a resource virtualization platform OpenStack [30],
where the VNFs of both SFCs are instantiated on different virtual machines (VMs)
as customized software. By injecting each of the traffic flows to pass through the
corresponding VNFs, the resource consumption profiles for flow x traversing F1 and
F2 are [1000, 2000] packet/s and [1000, 1250] packet/s, and for flow y traversing
F1 and F3 are [750, 500] packet/s and [800, 312.5] packet/s [19].

For the 5G wireless network, we compare the proposed network-level radio
resource slicing framework with the service-level slicing scheme [15]. In the
proposed framework, the radio resource slicing ratios on BSs are dynamically
adjusted in response to the traffic load variations in each small-cell, as shown
in Fig. 2.4, to maximize the network-wide communication resource utilization. In
contrast, for the service-level resource slicing, the radio resources on each BS are
partitioned among groups of service users/devices under the BS coverage. However,
resource sharing among BSs is not activated.

50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2.4 Optimal radio resource slicing ratio on SBSs with varying network load conditions

2 Network Slicing for 5G Networks and Beyond 31

150 200 250 300 350
10-3

10-2

10-1

100

101

Fig. 2.5 Packet queueing delay at S1 for link transmission

For the 5G core network, the proposed joint computing and transmission resource
slicing scheme is compared with bi-resource GPS [12, 18], in terms of packet
queueing delay at the output transmission link when flows x and y traverse NFV
node S1. We can see from Fig. 2.5 that the queueing delay achieved by the proposed
slicing scheme is much lower than the bi-resource GPS scheme. As the proposed
slicing scheme maximizes the utilization of both resource types, the queueing delay
at the output link port of S1 is minimal, whereas the transmission resource slicing is
imbalanced between the traffic flows resulting in packet accumulation on the output
transmission link for one of the traffic flows.

2.4 Conclusion

In this chapter, we have presented a comprehensive network slicing framework for
E2E 5G networks, including both 5G wireless and core network domains. Based
on the distinct features of 5G networking and service requirements, we propose
new network slicing solutions to provide fine-grained resource orchestration using
SDN and NFV technologies, such that the networking and computing resource
utilization is improved with customized QoS satisfaction for different services.
Specifically, for 5G wireless networks, a two-level dynamic radio resource slicing
framework is proposed to maximize the overall communication resource utilization

32 Q. Ye and W. Wu

by enabling the network-level resource sharing among heterogeneous BSs; for
5G core networks, a joint computing and transmission resource slicing scheme is
designed to achieve high resource utilization with the slicing fairness guarantee
for dominant resource types and QoS isolation among different service flows. We
also discuss an AI-assisted network slicing lifecycle with specific functionalities
to automate the slice creation process with reduced slice management complexity
for B5G networks. A case study is presented to demonstrate the effectiveness and
advantages of the proposed E2E network slicing framework.

References

1. J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J.J. Ramos-Munoz, J. Lorca, J. Folgueira,
Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE
Commun. Mag. 55(5), 80–87 (2017)

2. Technical Specification Group Services and System Aspects; Summary of Rel-15 Work Items
(Release 15), 3rd Generation Partnership Project, Sophia Antipolis Valbonne, France, Tech.
Rep. TR 21.915 V15.0.0 (2019)

3. W. Zhuang, Q. Ye, F. Lyu, N. Cheng, J. Ren, SDN/NFV-empowered future IoV with enhanced
communication, computing, and caching. Proc. IEEE 108(2), 274–291 (2019)

4. Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, X. Shen, Joint RAN slicing and computation
offloading for autonomous vehicular networks: a learning-assisted hierarchical approach. IEEE
Open J. Veh. Technol. 2, 272–288 (2021). https://doi.org/10.1109/OJVT.2021.3089083

5. Q. Ye, W. Zhuang, S. Zhang, A.L. Jin, X. Shen, X. Li, Dynamic radio resource slicing for a two-
tier heterogeneous wireless network. IEEE Trans. Veh. Technol. 67(10), 9896–9910 (2018)

6. F. Bari, S.R. Chowdhury, R. Ahmed, R. Boutaba, O.C.M.B. Duarte, Orchestrating virtualized
network functions. IEEE Trans. Netw. Serv. Manage. 13(4), 725–739 (2016)

7. R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, T. Ahmed, Scheduling wireless virtual
networks functions. IEEE Trans. Netw. Serv. Manage. 13(2), 240–252 (2016)

8. J. Li, W. Shi, Q. Ye, N. Zhang, W. Zhuang, X. Shen, Multi-service function chain embedding
with delay-guarantee: a game-theoretical approach. IEEE Internet Things J. 8, 11219–11232
(2021). https://doi.org/10.1109/JIOT.2021.3051905

9. O. Alhussein, P.T. Do, Q. Ye, J. Li, W. Shi, W. Zhuang, X. Shen, X. Li, J. Rao, A virtual
network customization framework for multicast services in NFV-enabled core networks. IEEE
J. Sel. Areas Commun. 38(6), 1025–1039 (2020)

10. Q. Duan, N. Ansari, M. Toy, Software-defined network virtualization: an architectural frame-
work for integrating SDN and NFV for service provisioning in future networks. IEEE Netw.
30(5), 10–16 (2016)

11. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, et al.,
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun.
Rev. 38(2), 69–74 (2008)

12. Q. Ye, J. Li, K. Qu, W. Zhuang, X.S. Shen, X. Li, End-to-end quality of service in 5G networks:
examining the effectiveness of a network slicing framework. IEEE Veh. Technol. Mag. 13(2),
65–74 (2018)

13. X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, J. Rao, AI-assisted network-slicing
based next-generation wireless networks. IEEE Open J. Veh. Technol. 1, 45–66 (2020)

14. W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, X. Li, Dynamic RAN slicing for
service-oriented vehicular networks via constrained learning. IEEE J. Sel. Areas Commun.
39(7), 2076–2089 (2021)

https://doi.org/10.1109/OJVT.2021.3089083
https://doi.org/10.1109/JIOT.2021.3051905

2 Network Slicing for 5G Networks and Beyond 33

15. C. Liang, F.R. Yu, H. Yao, Z. Han, Virtual resource allocation in information-centric wireless
networks with virtualization. IEEE Trans. Veh. Technol. 65(12), 9902–9914 (2016)

16. J. Chen, Q. Ye, W. Quan, S. Yan, P.T. Do, P. Yang, W. Zhuang, X. Shen, X. Li, J. Rao, SDATP:
an SDN-based traffic-adaptive and service-oriented transmission protocol. IEEE Trans. Cogn.
Commun. Netw. 6(2), 756–770 (2019)

17. A.K. Parekh, R.G. Gallager, A generalized processor sharing approach to flow control in
integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344–357
(1993)

18. W. Wang, B. Liang, B. Li, Multi-resource generalized processor sharing for packet processing,
in Proceedings of ACM IEEE/ACM International Symposium on Quality of Service (IWQoS)
(2013), pp. 1–10

19. Q. Ye, W. Zhuang, X. Li, J. Rao, End-to-end delay modeling for embedded VNF chains in 5G
core networks. IEEE Internet Things J. 6(1), 692–704 (2018)

20. W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, W. Zhuang, X. Shen, AI-native network
slicing for 6G networks (2021). arXiv:2105.08576

21. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will
5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

22. N. Rajatheva, I. Atzeni, E. Bjornson, A. Bourdoux, S. Buzzi, J.-B. Dore, S. Erkucuk, M.
Fuentes, K. Guan, Y. Hu, et al., White paper on broadband connectivity in 6G (2020).
arXiv:2004.14247

23. N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, X. Shen, Software defined space-air-
ground integrated vehicular networks: challenges and solutions. IEEE Commun. Mag. 55(7),
101–109 (2017)

24. C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, X. Shen, Deep reinforcement learning
for delay-oriented IoT task scheduling in space-air-ground integrated network. IEEE Trans.
Wireless Commun. 20(2), 911–925 (2021)

25. W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, X. Shen, Fast mmwave beam alignment via
correlated bandit learning. IEEE Trans. Wireless Commun. 18(12), 5894–5908 (2019)

26. W. Wu, P. Yang, W. Zhang, C. Zhou, X. Shen, Accuracy-guaranteed collaborative DNN
inference in industrial IoT via deep reinforcement learning. IEEE Trans. Ind. Informat. 17(7),
4988–4998 (2021)

27. Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, X. Shen, Delay-minimization routing for
heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh.
Technol. 68(4), 3967–3979 (2019)

28. C. Zhou, H. He, P. Yang, F. Lyu, W. Wu, N. Cheng, X. Shen, Deep RL-based trajectory
planning for AoI minimization in UAV-assisted IoT, in International Conference on Wireless
Communications and Signal Processing (WCSP) (2019), pp. 1–6

29. OMNeT++ 5.0, http://www.omnetpp.org/omnetpp. Accessed June 2021
30. Openstack (Release Pike), https://www.openstack.org. Accessed June 2021

http://www.omnetpp.org/omnetpp
https://www.openstack.org

Chapter 3
Responsive Regulation of Dynamic UAV
Communication Networks Based on Deep
Reinforcement Learning

Ran Zhang, Duc Minh (Aaron) Nguyen, Miao Wang, Lin X. Cai, and
Xuemin (Sherman) Shen

3.1 Introduction

Unmanned aerial vehicles (UAVs) have been attracting increasing attention as a key
component in the future wireless communications [1]. Compared to the terrestrial
base stations (BSs) [2, 3], UAVs equipped with wireless transceivers can serve as
mobile BSs and stand out in providing highly on-demand services, better wireless
connectivity to the ground users, and much lower deployment cost due to the almost
infrastructure-free network construction [4]. As reported in [5], the UAV market is
estimated at USD 27.4 billion in 2021 and is projected to reach USD 58.4 billion by
2026. In this booming market, UAVs have been exploited in many applications such
as mobile edge computing [6, 7], crowd/traffic surveillance [8], emergency rescue
[9], cached content delivery [10, 11], network coverage enhancement and extension
[12], etc.

R. Zhang (�) · D. M. (Aaron) Nguyen
College of Engineering and Computing, Miami University, Oxford, OH, USA
e-mail: zhangr43@miamioh.edu; nguyendm@miamioh.edu

M. Wang
Miami University, Oxford, OH, USA
e-mail: wangm64@miamioh.edu

L. X. Cai
Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago,
IL, USA
e-mail: lincai@iit.edu

X. (Sherman) Shen
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON,
Canada
e-mail: sshen@uwaterloo.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_3&domain=pdf
mailto:zhangr43@miamioh.edu
mailto:nguyendm@miamioh.edu
mailto:wangm64@miamioh.edu
mailto:lincai@iit.edu
mailto:sshen@uwaterloo.ca
https://doi.org/10.1007/978-3-030-98064-1_3

36 R. Zhang et al.

Various aspects of UAV-based communications have been extensively studied,
ranging from radio resource allocation and trajectory design to energy management
and computing offloading [13, 14]. Conventional approaches typically formulate
the studied problems into (mixed integer) non-convex optimization problems. The
original NP-hard problem is generally decoupled into a set of sub-problems and
solved by iterative algorithms [6, 15–22]. This conventional methodology is a
better fit where the network parameters are fixed. In UAV-based communications,
parameters such as the network topology, wireless channel conditions, and user
distributions are usually time-varying due to the mobility of UAVs, topographic
relief and the temporality of the on-demand services. As a result, the above methods
need to be re-executed each time the parameters are updated. With the exponentially
increasing network scale and heterogeneity in the future, it will be increasingly
difficult for conventional approaches to handle the network dynamics.

Thanks to recent advances in machine learning [23], reinforcement learning
(RL) [24, 25] is becoming a promising solution to UAV communication problems.
By constantly interacting with the environment and learning from the interaction
experiences, RL agents are strongly capable of making sequential decisions in time-
varying environments free of the environment models. Existing RL-based studies
on UAV communications focus mainly on control policy development given a fixed
set of UAVs [26–37]. Few works have investigated how the network should be
regulated considering the dynamic lineup change of the serving UAVs. Due to
the ad hoc nature of the UAV networks, the serving UAV lineup can dynamically
change at times. UAVs have to quit the network when their batteries are depleted;
supplementary UAVs can also join the serving lineup whenever needed. Either
case will inevitably create fluctuations in the network performance, thus calling
for responsive regulation strategies when such changes happen. When regulated,
the network should not passively react after the change, but identify the upcoming
change and take actions in advance to minimize (or maximize) the performance loss
(or gain) during the transition to the new optimal UAV positions. Such procedure is
referred to as proactive self-regulation (PSR) in this chapter. A major challenge of
using RL for PSR include is that the dimensions of the state and action space both
change during the training process, which is irregular for RL. Another challenge
is how to promote the learning exploration around the time of change so that the
agent is able to take actions in advance. In addition, most of the existing works
only consider stationary user distribution, whereas the distribution can be dynamic
in practice. The works [29] and [38] considered user mobility in the RL framework,
but the UAV trajectories are limited to a mesh grid.

Motivated by the above considerations, PSR of a UAV communication network
is investigated in this chapter with dynamic change in UAV lineup and user
distributions. We aim to achieve an optimal UAV control policy via deep RL (DRL)
which relocates the UAVs in advance when (1) at least one UAV is about to quit or
join the network, or (2) the user distribution changes, rather than passively relocates
the UAVs after the change. To the best of our knowledge, this is the first work
on optimal regulation of a UAV communication network that jointly considers the
dynamic UAV lineup and user distribution. The contributions are given as follows.

3 Responsive Regulation of Dynamic UAV Communication Networks 37

• A DRL-based approach for PSR of UAV communication network is developed.
The approach aims to maximize the accumulated user satisfaction (US) score
of the considered time horizon where the change in UAV lineup happens. To
accommodate the continuous state space and action space, the state-of-the-art
actor-critic learning method, deep deterministic policy gradient (DDPG) [39], is
selected among all the DRL variants so that the UAV battery status, positions,
and movements can be accurately recorded.

• To promote the learning exploration around the lineup change and achieve better
training performance on both the actor and critic networks, an asynchronous
parallel computing (APC) structure is proposed. The proposed PSR approach
under APC is referred to as PSR-APC.

• The PSR-APC approach is further extended to the case of dynamic user
distribution. Time is integrated as one of the learning states to achieve a time-
dependent control policy.

• Extensive simulations are conducted to demonstrate the convergence and efficacy
of the proposed PSR-APC approach. Compared to a passive reaction method,
the proposed approach achieves surpassing accumulated US scores during the
transition period.

The remainder of the chapter is organized as follows. Section 3.3 describes
the system model and formulates the problem. Section 3.4 introduces preliminary
knowledge on DRL and the adopted DDPG algorithm. Section 3.5 elaborates the
detailed design of the proposed APC-PSR approach. Section 3.6 extends the APC-
PSR from fixed user locations to dynamic user distributions. Numerical results are
presented in Sect. 3.7. Finally, Sect. 3.8 concludes the chapter.

3.2 Related Works

The conventional optimization or rule-based methods have been extensively applied
to UAV communications. For instance, Nasir et al. [12] and Zeng et al. [15]
studied the resource allocation (RA) and trajectory design problem of a single-
UAV to maximize the minimum user rate and the mission completion time,
respectively. When multiple UAVs are present, UAVs need to be coordinated in
interference management, trajectory design, and user association. Mozaffari et al.
[19] studied the joint UAV positioning, frequency planning, and user association
problem to minimize the UAV-user latency. Wu et al. [20] additionally considered
UAV trajectory design and power control. Mozaffari et al. [21] focused on energy
consumption and minimized the total propulsion energy of UAVs.

When the network environment is time-varying and sequential decisions need
to be made, RL-based UAV control approaches have been studied. Many existing
works rely on a centralized agent to learn optimal joint policies for all the network
entities. For instance, Singh et al. [31], Challita et al. [32], and Tang et al. [33]
applied deep Q-learning (QL) to optimize the RA, interference management, and

38 R. Zhang et al.

trajectory design of UAVs, respectively, in UAV-assisted cellular networks. Liu et
al. [35] employed double QL to design optimal UAV trajectories that maximize
the number of satisfied users with time-constrained requirements. To accommodate
large action space and expedite convergence, actor-critic (AC) based deep RL (DRL)
is applied. Cheng et al. [34] proposed an AC RL approach to optimize RA and task
scheduling in UAV-assisted computing offloading. Khairy et al. [37] studied the
joint altitude control and channel access problem of a solar-powered UAV network
by employing actor-critic RL. Liu et al. [36] targeted the energy concerns of UAVs
and exploited the up-to-date AC variant, i.e., deep deterministic policy gradient
(DDPG) algorithm, to jointly maximize the energy efficiency, user fairness and
network coverage.

Multi-agent RL (MARL) has been exploited in a few existing works to make the
learning distributed and scalable to the network size. For instance, Klaine et al. [26]
proposed a distributed QL approach to find the UAV positions that maximize the
total amount of covered users. Cui et al. [27] and Hu et al. [28] applied multi-agent
QL to optimize RA and trajectory design, respectively. Liu et al. [29] developed
a multi-agent QL framework to optimize the UAV trajectory and power control,
considering the ground user mobility. Hu et al. [30] proposed a value decomposition
based MARL solution coupled with a meta-training mechanism to accelerate the
learning of multi-UAV trajectories while generalizing the learning to unfamiliar
environments. Pham et al. [40] and Chen et al. [41] integrated game theories into
MARL to solve the complex dynamic of the joint UAV actions and simplify the
complex interactions between multiple objectives and multiple UAVs, respectively.

All the above works consider a fixed set of serving UAVs. The proposed work
will be among the first to fill this research gap.

3.3 System Model and Problem Formulation

In this section, the system model is first depicted, followed by the problem
formulation.

3.3.1 Network Environment

As illustrated in Fig. 3.1, we consider a target area A with a set Sur of Nu ground
users served by a lineup SUAV ofNUAV UAVs. The target area is an L-by-L square.
A large percentage of the users are randomly distributed around several separate hot
spots while the remaining are uniformly distributed throughout A. The UAVs fly
within A at a fixed altitude H to serve the ground users with guaranteed minimum
throughput. The antennas of each UAV are strongly directional such that the transmit
power is concentrated within an aperture angle of θ right below the UAV. As a result,

3 Responsive Regulation of Dynamic UAV Communication Networks 39

Fig. 3.1 UAV coverage range as a disk area

the coverage of a UAV on the ground is a disk area with radius r = H tan(θ2), as
shown in Fig. 3.1. Users will not be interfered by a given UAV if they are outside its
coverage disk.

3.3.2 Spectrum Access

All the UAVs are connected to external networks via back-haul links (e.g., satellite
links). There is no spectrum overlapping between the UAV back-haul links and the
UAV-user links so that there is no mutual interference. We denote the path loss from
UAV i to ground user u as PLiu which follows a commonly adopted model by
Al-Hourani et al. [42]:

PLiu = 20 log10

(
4πfcdiu
c

)
+ η (dB), (3.1)

where fc denotes the center frequency of the spectrum assigned to user u, diu
denotes the 3-D distance between UAV i and user u, c denotes the speed of the
light, and η denotes extra loss taking different values for LoS and non-LoS links.
Given Eq. (3.1), the signal-to-interference-and-noise ratio (SINR) from UAV i to
user u is calculated as

SINRiu = PtGiu

n0 +∑j∈SUAVu \{i} PtGju
, (3.2)

where Giu = 10−PLiu/20. In Eq. (3.2), Pt is the power spectrum density (psd) of
UAV transmissions, n0 is the psd of the environment noise, SUAVu is the set of UAVs
that cover user u.

Each user requires a minimum throughput of Ru. Thus, user u can be served by
UAV i only when i ∈ SUAVu and the following condition is met:

Wiu log2 (1 + SINRiu) ≥ Ru, (3.3)

40 R. Zhang et al.

whereWiu is the bandwidth assigned to user u from UAV i. According to Eq. (3.3),
each user is associated with the UAV which provides the highest SINR with
sufficient available bandwidth.

3.3.3 Energy-Related Considerations

We consider that each UAV i has an initial battery level Ei0. The time horizon is
divided into time slots of duration T . In time slot t , UAV i spends time up to T1 <

T to move a distance of dit ∈ [0, dmax] at a constant speed v in the direction of
αit ∈ [0, 2π) and then hovers in the new position for the remaining time to serve.
The power consumption of level flight is given as follows according to [43],

Plevel = W√
2ρA

1
√

v2 +
√
v4 + 4V 4

h

, (3.4)

where Vh =
√

W
2ρA , W is the weight of UAV in Newtons (N), ρ is the air density,

and A is the total area of UAV rotor disks. From Eq. (3.4), it can be inferred that due
to speed v, the power of level flight is interestingly less than that of hovering. The
energy consumption of UAV i in time slot t (denoted as ECit) is then represented as

ECit = EFLT (v, dit , T)+ ETX + EOP (T). (3.5)

According to Eq. (3.5), the energy consumption of a UAV has three components:
(1) energy spent on flying as a function of level speed v, flying distance dit , and
slot duration T , (2) energy consumed by signal transmission on both UAV-user and
UAV back-haul links, and (3) energy used for operational cost which is assumed to
be proportional to T .

Denote the battery residual of UAV i at the end of time slot t as Eit . When Eit
is below a threshold EThre, UAV i will quit the network immediately for charging.
Denote the altitude of UAV i at the end of time slot t as Hit ∈ [Hmin,H], where
Hmin is the altitude of the UAV charging point. A UAV will stop elevating when
it reaches the serving altitude H . The variable Hit will be used in the case of UAV
join-in.

3.3.4 Problem Formulation

The learning agent aims to find an optimal multi-UAV relocation policy which
maximizes the accumulated US scores within a time horizon ofNT time slots, where
UAVs may quit or join in the network. The optimization problem is given as follows.

3 Responsive Regulation of Dynamic UAV Communication Networks 41

max
xit ,y

i
t

NT∑

t=1
SCt

s.t. 0 ≤ xit ≤ L,∀i ∈ {1, 2, · · · , NUAV }
0 ≤ yit ≤ L,∀i ∈ {1, 2, · · · , NUAV },

where

SCt :=
(∑

u∈Sur X
u
t

)β
.

(3.6)

In Eq. (3.6), (xit , y
i
t) represents the horizontal coordinates of UAV i. The US score

in time slot t is denoted as SCt and defined as the function of the total number of
users that get served with satisfied throughput requirement. Define Xut ∈ {0, 1} as
an indicator which takes value 1 when user u is successfully served and 0 when
not. The value of Xut is jointly determined by UAV parameters (i.e., the number
of serving UAVs, the positions, battery status, altitude), user distribution dynamics,
and spectrum access policy. The exponent β > 0 is a factor weighing how much
the agent cares about the overall user satisfaction based on the number of users
successfully served.

With the above formulation, when one UAV is about to be depleted and needs to
quit soon, the agent is expected to relocate the serving UAVs ahead of the quit to
reduce service holes as much as possible, rather than to react after the UAV quits.
When one UAV is joining in the network, the agent is expected to determine its
horizontal positions while elevating to the serving height.

3.4 Preliminaries

In the context of general RL, the agent interacts with the environment by taking an
action At for the environment state (or observation) St at time step t . A reward rt+1
is then obtained for taking At at St . The learning target is an optimal policy π which
determines the best action A for every state S that maximizes the expected future
return R defined as

R =
∞∑

t=0

γ t rt+1, γ ∈ [0, 1]. (3.7)

There are generally two basic categories of RL approaches: value-based and
policy-based RL. Q-learning (QL) [44] is a basic and representative value-based
method. QL achieves the optimal π by estimating the value of taking action A
at state S which is quantified by the function Q(S,A). The optimal policy π∗ is
obtained as the collection of A∗ = arg max

A
Q(S,A),∀S. The Q(S,A) function is

iterated to a guaranteed convergence according to the following formula,

42 R. Zhang et al.

Qt+1(St , At)

= Qt(St , At)+ α
[
rt+1 + γ max

A
Qt(St+1, A)−Qt(St , At)

]
,

(3.8)

where α is the learning rate of the RL agent. Nevertheless, QL has a major drawback
that it suffers from the “curse of dimensionality.” AQ-matrix needs to be maintained
for each state-action pair, which is prohibitive when the state space is extremely
large or infinite. This is often the case in communication and networking. To tackle
this issue, deep QL (DQL) was developed which exploits a deep neural network
(DNN), referred to as deep Q-network (DQN), to approximate the Q(·) function
[45]. The number of inputs of the DQN is equal to the dimension of the state space,
and the number of outputs is equal to the cardinality of the action set. Compared to
the Q-matrix, a DQN reduces the input count to the dimension of the state space
and consequently solves the memory anxiety by avoiding a large state space. The
DQN is trained by minimizing the loss function below [46]:

L(θQ) = E[yt −Q(St , At |θQ)]2, (3.9)

where θQ denotes the tunable weights of the DQN, yt is the label value obtained as
follows,

yt =
{
rt+1, if St is a terminal state;
rt+1 + γ max

At+1
Q(St+1, At+1|θQ), otherwise. (3.10)

DQL solves the dimension anxiety in state space, but the value-based methods
may only apply to problems with low-dimensional discrete action space. The
reason is that the value-based methods need to exhaustively search all possible
actions to determine the best for a state. Such exhaustive search is difficult to
achieve for a large or infinite action space. When power control or UAV mobility
control (as considered in this chapter) are involved, the action space is continuous.
Discretizing the action space is one possible option, but will lead to prohibitive
training complexity and/or non-negligible loss in accuracy.

Policy-based methods can well solve the dimension anxiety in the action
space. Instead of determining the optimal policy via the Q(·) values, the methods
parameterize and optimize the policy π(θμ) itself. The Q(·) values may still be
used to update the policy parameters θμ, but not for selecting actions directly. The
actor-critic (AC) method stands out among all the policy-based methods due to the
merit of reducing variance of the policy gradients. A basic AC agent is shown in
Fig. 3.2. The agent consists of a critic and an actor, both being DNNs. The critic
uses the collected experiences to update theQ(·) function via updating θQ. The actor
combines the updatedQ(·) values and the experiences to update π via updating θμ.
The new action A′ to be performed is determined by the actor network.

Among all the AC variants, DDPG is one of the best to handle the problem of
convergence instability [39]. Specifically, DDPG exploits target networks for both
the critic network (Q(S,A|θQ)) and actor network (μ(S|θμ)). The target networks,

3 Responsive Regulation of Dynamic UAV Communication Networks 43

Fig. 3.2 The diagram for AC method

denoted as Q′(S,A|θQ′) and μ′(S|θμ′), have the same setup and initialization as
Q(S,A|θQ) and μ(S|θμ), respectively, but are updated much more slowly in each
time step:

θQ′ = τθQ + (1 − τ)θQ′ , θμ′ = τθμ + (1 − τ)θμ′ , (3.11)

where τ � 1. The target networks are used to update the label value yt in Eq. (3.9).
Correspondingly, Eq. (3.10) is re-written as

yt =
{
rt+1, if St is terminal state;
rt+1 + γQ′(St+1, μ

′(St+1|θμ′)|θQ′), otherwise.
(3.12)

The slow update of the target networks prevents a bad yt from being generated due
to a bad deviation in θQ or θμ, thus significantly stabilizing the convergence. Using
the updatedQ values, the actor network is updated as follows:

∇θμJ ≈ E[GaGμ],
where Ga = ∇μ(S|θμ)Q(S,A|θQ),

Gμ = ∇θμμ(S|θμ).
(3.13)

3.5 Learning Algorithm Design for Proactive Self-Regulation
Strategy

The design of the proposed PSR-APC approach is detailed in this section. The
DDPG agent is implemented in a centralized server, which communicates regularly
with all the UAVs via their back-haul links. During training, the agent keeps
collecting the interaction experiences between UAVs and the network environment

44 R. Zhang et al.

and updating both critic and actor networks. When the training is complete and
the strategy is executed, the well-trained actor network sequentially collects the
UAV information (states) as inputs and outputs flying instructions (actions) to each
UAV in each time step. These movements collectively result in an optimal set of
UAV trajectories to maximize the accumulative US score within the considered time
horizon.

In addition, we consider that after one UAV quits or joins in, all the serving
UAVs have sufficient time to reach the new optimal positions before another lineup
change happens. Therefore, the case of multiple lineup changes can be regarded as
multiple cases of a single lineup change. In such a case, a different trained agent
for each lineup change will be exploited sequentially to regulate the network in the
considered time horizon.

In the following, we elaborate the design from the aspects of states, actions,
reward function, state transitions, tune-ups, and parallel computing. The cases of
UAV quit and join-in are both considered.

3.5.1 State Space

3.5.1.1 Case of UAV Quit

The timing of UAV quit and the resultant UAV movements are closely dependent on
the battery level of the UAVs. Hence, the learning states will include UAV positions
and battery residual of each UAV.

The UAV positions directly determine the number of users that get successfully
served in each time step. As the UAVs fly at a fixed height when serving, only the
2-D coordinates (xit , y

i
t), ∀i ∈ SUAV need to be considered at time step t ≤ NT .

The movements of UAVs are limited within the target area A, i.e., xit , y
i
t ∈ [0, L].

The battery residual of UAVs {Eit } is a key conditional factor. It has little impact
on the UAV movements when the battery level of all the UAVs is adequate. Yet
when any Eit falls close to EThre (i.e., any UAV is running out of battery and about
to quit), this factor should have significant impact on the UAV movements. The
best timing of enabling the significance of {Eit } will be learnt by the DDPG agent.
Moreover, Eit is bounded within [EThre, Ei0].

Collectively, the formal state vector of the designed learning approach is
defined as St = [x1

t , · · · , xNUAVt , y1
t , · · · , yNUAVt , E1

t , · · · , ENUAVt], with cardinal-
ity 3NUAV .

3.5.1.2 Case of UAV Join-In

A UAV is considered to start serving only when it reaches the serving altitude H .
Similar to the battery residual of UAVs in the case of UAV quit, UAV altitude is the
key factor in this case which determines the timing of proactive UAV relocation. The

3 Responsive Regulation of Dynamic UAV Communication Networks 45

existing UAVs will bide their time until the joining UAV is about to reach the serving
altitude. While elevating to the serving altitude, the joining UAV needs to adjust its
horizontal position since where to join the UAV network is critical to maximizing
the accumulative US score.

Hence, the formal state vector of the designed learning approach is defined
as St = [x1

t , · · · , xNUAVt , y1
t , · · · , yNUAVt , H 1

t , · · · ,HNUAVt], with cardinality of
3NUAV . Based on the collected experiences, the agent will learn the best period
for {Hit } to take effect.

3.5.2 Action Definition

The action set of the APC-PSR approach is the same for both cases. As a centralized
agent controls the movements of all the UAVs, the collective actions from all the
UAVs form the agent action At in time step t . The action Ait of UAV i has two
dimensions: moving direction αit ∈ [0, 2π) and moving distance dit ∈ [0, dmax]. In
each time step, one UAV could either keep hovering still or move in any direction for
a maximum distance dmax . Thus, the formal action vector of the proposed APC-PSR
approach is defined as

At = [α1
t , · · · , αNUAVt , d1

t , · · · , dNUAVt],

with cardinality 2NUAV .

3.5.3 Reward Function Design

Both the cases of UAV quit and join-in share the same reward function design. Let
rt denote the reward at time step t . To align with the maximization objective in
Eq. (3.6), rt is designed as a function of the instantaneous US score in step t , i.e.,
SCt :

rt =
(∑

u∈Sur X
u
t

Nu

)β
= SCt

(Nu)β
. (3.14)

In (3.14), the instantaneous US score SCt is divided by (Nu)
β . Empirically

speaking, keeping the absolute value of the instantaneous reward within 1 may
result in better convergence. In addition, when β > 1, the reward difference
between different (

∑
u∈Sur X

u
t) values is amplified. This promotes the agent to act

in advance when the UAV lineup is about to change. However, β cannot be too large
as β ≥ 3 has been shown to end up with lower converged values in our preliminary

46 R. Zhang et al.

simulations. Moreover, under this design, maximizing the accumulated reward is
equivalent to maximizing the accumulated US scores within NT time steps.

An alternative design of reward function is to give negative rewards as a
punishment when any UAV move out of the boundaries [36]. The reward function
will be something like:

rt =
{(∑

u∈Sur X
u
t /Nu

)β
, if inside boundaries

P, otherwise
(3.15)

where P can be a negative constant or variable proportional to the number of UAVs
crossing the boundaries. During training, when one UAV moves out of boundaries,
its current movement will be cancelled. A negative reward will be issued for taking
the current action At at the current state St . With such a design, all the episodes
will have a fixed number NT of time steps. Reasonable as this design is, it may
make convergence more difficult. This is because in a good reward design with
both positive and negative rewards, the negative rewards need to “combat” the
positive ones closely during the training for better convergence performance and
speed. However, the relative ratio between the positive and negative rewards keeps
changing during the training, making it more challenging and computationally
complex to achieve satisfying convergence.

3.5.4 State Transition Definition

In either case, a state is a terminal state if at least one of the two conditions is met: i)
when any UAV moves outside the boundaries of the target area, i.e., xit < 0, yit < 0,
xit > L, or yit > L; or ii) when NT time steps are completed. The current episode
will end when the terminal state is reached and a new one will start.

Due to the dynamic UAV lineup change, the number of UAVs in the network
may change accordingly. This causes the dimension of the actual state-action space
to explore during the training to vary after one UAV quits or joins the network.

3.5.4.1 Case of UAV Quit

Consider that UAV i quits the network at time step tq . Then xit , y
i
t , and Eit will

stay unaltered for any t > tq . Whatever actions αit and dit (t > tq) are selected, the
positions and battery residual of UAV i will never be updated. In other words, the
actual dimension of the explorable state space is reduced from 3NUAV to 3(NUAV −
1). At the same time, UAV i will not be considered in the reward calculation
after tq .

3 Responsive Regulation of Dynamic UAV Communication Networks 47

3.5.4.2 Case of UAV Join-In

Suppose UAV i completes charging and is ready to take off to join the network
at time step tc. When t < tc, xit , y

i
t , and Hit will stay unaltered. Suppose UAV i

elevates to the serving altitude at time step ts . When tc ≤ t < ts , UAV i is excluded
from the instantaneous reward calculation, but its horizontal positions (xit , y

i
t) will

change towards the optimal position to maximize the instantaneous reward when
formally joining the network. A constant elevation distance h per time step will be
used.

3.5.5 Training Tune-Ups

3.5.5.1 Tune-Ups for Neural Network Training

Both the critic and actor networks are DNNs. We design both networks to be
just complex enough to accurately learn the nonlinear mappings between inputs
and outputs while preventing overfitting. Both DNNs contain 2 fully connected
hidden layers with 400 and 300 hidden nodes, respectively. To bound the actions
as designed in Sect. 3.5.2, we employ tanh and scaling layers in the actor network.
In both networks, ReLU function is used as the activation function, and L2
regularization is adopted to suppress overfitting. The learning rates for updating
both θQ and θμ is 10−4. Although a larger learning rate may expedite convergence,
it more likely leads to convergence instability or sub-optimum. We set the mini-
batch size for DNN training to 512, which is a compromise between computational
complexity and variance reduction of the gradients of the loss functions. Input
normalization is also enabled for faster convergence.

3.5.5.2 Tune-Ups for RL Training

During RL training, both target networks Q′(S,A|θQ′) and μ′(S|θμ′) are updated
slowly at a rate τ = 0.001. The discount factor γ is set to 0.9. A higher γ will force
the agent to account more of the future rewards, thus making convergence more
difficult. In addition, DDPG adopts an exploration algorithm where the output of
the actor network is added with a random noise of zero mean and decaying variance
over time steps. In our implementation, the initial variance is 0.6 and decays at a
rate of 0.9995. Experience replay is used with sufficient buffer to contain all the
experiences. Insufficient buffer may make the agent lose valuable experiences at an
early stage if one does not know well which experiences to drop, which will cause
notable convergence instability or even divergence.

48 R. Zhang et al.

3.5.6 Parallel Computing

One major challenge during the training is how to fully explore the state-action
space to promote action-taking ahead of the lineup change. Failing to do so will
lead to convergence to a sub-optimal (sometimes even bad) result, which is often the
case in our early simulations. The reason of insufficient exploration is mainly two-
fold. First, although experience replay randomly sample experiences from the entire
buffer to train the DNNs, the sampled experiences in one mini-batch will inevitably
have some correlation due to the Markov nature of RL. Correlation among training
examples of DNN will harm the learning accuracy. Second, the dimension of the
explorable state space changes accordingly when the UAV lineup changes. Such
a change during training often leads to no UAV relocation after the change or no
proactive movement ahead of the change.

Increasing the random noise added to the output of the actor network does not
help in our case. Inspired by the asynchronous advantage actor-critic (A3C) [47]
algorithm, we propose to use the structure of asynchronous parallel computing
(APC) to promote exploration, as shown in Fig. 3.3. The structure contains a host
client and multiple parallel workers. The host client maintains a unified pair of
critic and actor networks and periodically updates both networks from the collected
experiences. The parallel workers are mutually independent, each interacting with
an independent copy of the same environment. In A3C, each worker has its own
set of network parameters and sends the gradients of policy loss to the host client.
But in APC, the parallel workers share the same set of policy parameters from the
host client and upload their own experiences to the host client to update the unified

Fig. 3.3 The diagram for asynchronous parallel computing (APC) of DDPG algorithm

3 Responsive Regulation of Dynamic UAV Communication Networks 49

neural networks. In our implementation, each worker uploads the experiences
upon completion of the current episode and immediately receives updated policy
parameters from the host, thus being asynchronous from each other.

Algorithm 1 PSR-APC approach: host client side (UAV quit/join-in)
1: /*Host Client*/
2: Randomly initialize critic networkQ(S,A|θQ) and actor network μ(S|θμ);
3: Initialize the target networks Q′(S,A|θQ′) and μ′(S|θμ′) with the same weights: θQ′ :=
θQ, θμ′ := θμ;

4: while Not all workers complete all episodes do
5: if Receive experience set Ep from worker k then
6: Store Ep into experience replay buffer B;
7: Send θμ to worker k;
8: end if
9: Sample a mini-batch of experiences from B;

10: Update θQ according to Eqs. (3.9) and (3.12);
11: Update θμ according to Eq. (3.13);
12: Update θQ′ and θμ′ according to (3.11);
13: end while

Since independent workers interact with different copies of the same environ-
ment, the experiences from each worker will be independent. In this way, the
correlation among the sampled experiences in a mini-batch are significantly diluted,
thus leading to potentially better network training performance. Note that APC itself
does not increase the convergence speed in our case as the computational complexity
of neural network training is much higher than that of simulating the environment.
As a summary, Algorithms 1 and 2 display the pseudo-codes of the proposed APC-
PSR approach for both cases of UAV quit and join-in.

3.6 Proactive Self-Regulation with Dynamic User
Distribution

The above section considers a fixed user distribution in the entire time horizon. But
it may be more practical if a dynamic user distribution is considered. With dynamic
user distribution in the considered time horizon, the optimal UAV positions may
have to change from time to time in order to maximize the accumulated US score.
This is more challenging compared to the case of the fixed distribution. In such
a situation, the optimal self-regulation of UAVs is more towards the optimal UAV
trajectory design, with additional proactive response to the UAV lineup change.

In this problem, how to determine the optimal trajectories for all the UAVs
according to the dynamically changing user distributions is the key. Some existing
works [10, 29] have considered time-varying user distributions under the RL frame-
work. In these works, time-varying user mobility patterns are first predicted using

50 R. Zhang et al.

Algorithm 2 PSR-APC approach: parallel worker side (UAV quit/join-in)
1: /*Parallel Worker*/
2: for episode := 1, · · · , N do
3: Obtain the initial state S1, IsTerminal := False;
4: for epoch t := 1, · · · , NT do
5: At = μ(St |θμ)+N, where N is stochastic noise with zero mean and decaying variance

over t ;
6: Execute At and observe next state St+1;
7: for UAV i := 1, · · · , NUAV do
8: /*Case of UAV Quit*/
9: if Eit <= EThre then

10: Sit+1 := Sit , where Sit ={xit , yit , Eit };
11: Exclude UAV i when calculating rt+1;
12: else
13: Obtain Sit+1 according to Sit and At ;
14: end if
15: /*Case of UAV Join-In*/
16: if Hit < H then
17: Exclude UAV i when calculating rt+1;
18: Hit+1 = min{Hit + h,H };
19: end if
20: Obtain {xit+1, y

it+1 } according to Sit and At ;
21: /*Shared codes begin*/
22: if UAV i goes out of boundaries then
23: Cancel the movement of UAV i;
24: IsTerminal := True;
25: end if
26: end for
27: Calculate rt+1;
28: if IsTerminal==True then
29: Break;
30: end if
31: end for
32: Send experiences in this episode to host client;
33: Obtain updated θμ from host client;
34: end for

either echo state networks (ESNs) or Long-Short Term Memory (LSTM), based
on which (multi-agent) QL is employed to achieve the optimal UAV trajectories.
Nevertheless, the trajectories are obtained in such a way that optimal positions
in each time slot are first derived by RL algorithms given a slot-specific user
distribution, and then stringed together into the trajectories. These methods have to
train the RL agent(s) once every time slot, instead of training once for the entire time
horizon with dynamic user distribution. This may incur high training complexity
if a large number of time slots are involved. Different from the above works, we
incorporate the time slot t as one dimension of the state space, so that the obtained
policy is determined not by one specific distribution in a particular time step, but by
a dynamic distribution along the entire time horizon. In this manner, the agent only
needs to be trained once over the entire time horizon and ends up with a time-aware

3 Responsive Regulation of Dynamic UAV Communication Networks 51

0

1

2

3

4

5

6

7

8

9

10

(a)

0

1

2

3

4

5

6

7

8

9

10

(b)

0

1

2

3

4

5

6

7

8

9

10

(c)

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(d)

Fig. 3.4 Illustration of time-varying user distribution: Snapshots of different time slots. Users are
represented by dots of different colors. Black-dot users are uniformly distributed throughout A,
and users of each other color belong to one hot spot. From snapshots 1 to 4, hot spots move from
being scattered to being overlapped. (a) Snapshot 1. (b) Snapshot 2. (c) Snapshot 3. (d) Snapshot 4

optimal policy that may take different actions at different time slots even if the rest
of the states are the same.

A simplified model on dynamic user distribution is exploited to investigate the
learning performance of the APC-PSR approach on the time-variability of the user
distribution. Instead of specifying mobility models for individual users, a different
trace is considered for each hot spot center. That is, the center of each hot spot
follows a different race to move in the target area A with time t . The percentage
of users in proximity to each hot spot can be either fixed or moderately varying.
Figure 3.4 illustrates an example of moving hot spots and the corresponding user
distribution. It can be seen that there are 4 hot spots initially located at the 4 corners
of A. During NT time steps, the 4 hot spots first move towards the center of A,
i.e., (L/2,L/2), stop when reaching a certain distance from the center, stay for a
period, and finally move back to where they were initially. Such a disperse-gather-
disperse procedure can be used to simulate some realistic scenarios such as when
users commute between residences and a central business district during workdays.1

As the user distribution is changing, the agent may take different actions even if
the UAVs are in the same positions and energy/altitude status at different time steps.

1 In such a scenario, the duration of one time step needs to be scaled up to the order of minutes.

52 R. Zhang et al.

Therefore, the design of the APC-PSR approach needs to be modified to include
time as one of the states. Hence we re-define the states of the proposed APC-PSR
approach as: St = [x1

t , · · · , xNUAVt , y1
t , · · · , yNUAVt , E1

t , · · · , ENUAVt , t] (case of
UAV quit), or St = [x1

t , · · · , xNUAVt , y1
t , · · · , yNUAVt , H 1

t , · · · ,HNUAVt , t] (case of
UAV join-in), both with cardinality 3NUAV + 1.

Note that despite the example user distribution, the proposed approach is deemed
to be applicable to any kind of distribution dynamics as long as the distribution can
be considered invariant within one time step.

3.7 Numerical Results

Numerical results are presented in this section to demonstrate the performance of
the proposed APC-PSR approach.

3.7.1 Simulation Setup

The target area is a 10 × 10 unit square with each unit being 100 meters. The
simulations are conducted using Reinforcement Learning Toolbox of Matlab 2020a
on a Windows 10 server with Intel Core i7-7700 CPU @ 3.60 GHz and 16 GB RAM.
The training has a maximum 10000 episodes, each having up to 100 time steps.
The trained agents are tested for a period of NT = 100 time steps. In addition,
we consider the transmission-related power of UAVs negligible compared to the
propulsion power [48]. Table 3.1 summarizes the main parameters below. Note that
unit · s in the table indicates that the value is a product of power (1 power unit =
9.428 W according to Eq. (3.4)) and time (unit is second).

The learning converges to a narrow range instead of a fixed value in most of
the simulated cases. For the sake of better presentation, we smooth the convergence
curve of the episode reward by averaging over the latest 100 episodes. Intermediate
agents with good episode rewards are saved during training and compared during
tests to determine the best trained agent.

3.7.2 Simulation Results

3.7.2.1 Case Without UAV or User Dynamics

We first simulate the cases without any UAV lineup or user distribution change to
get a reference of optimal UAV positions under different NUAV . Figure 3.5 shows
the convergence performance of the accumulated US scores. The initial positions
of all the UAVs are the evenly separated dots on a circle centered at (5,5). It

3 Responsive Regulation of Dynamic UAV Communication Networks 53

Table 3.1 Summary of main parameters

Parameters Values

Default number of users Nu 100

Default number of UAVs NUAV 5

UAV level speed v 40 km/h

UAV max. elevation speed 14.4 km/h

UAV weightW , air density ρ 4 kg×9.8 m/s2, 1.225 kg/m3

Total area of rotor disks A 0.18 m2

UAV height H , aperture angle θ 3 units, 60◦

Max. distance per epoch dmax 1 unit

Spectrum center frequency fc 2 GHz

Spectrum access technology LTE with resource blocks (RBs)

Spectrum and RB bandwidth 4.5 MHz and 180 kHz

psd of transmission and noise −49.5 dBm, −174 dBm

Required user throughput Ru 250 kbps

LOS path loss parameter η 1 dB

Time duration per epoch T 10 s

Maximum UAV moving time per epoch T1 9 s

Maximum UAV communication time per epoch T − T1 1 s

Factor of US score β 2

Energy threshold to quit EThre 150 unit·s

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

10

20

30

40

50

60

70

80

A
ve

ra
g

e
A

cc
u

m
u

la
te

d
 U

S
 S

co
re

N
UAV

=3

N
UAV

=4

N
UAV

=5

N
UAV

=6

Fig. 3.5 Convergence with 95% credit interval for differentNUAV without UAV or user dynamics
as a benchmark

can be seen that for all the simulated NUAV values, the accumulated US scores
eventually converge, with larger NUAV taking more training episodes. The reason
is straightforward: the more UAVs there are, the larger dimension of the state-action
space has, thus requiring more time to fully explore and exploit. In addition, the

54 R. Zhang et al.

Table 3.2 Maximum
number of served users with
NUAV

NUAV 3 4 5 6

Number of served users 56 71 80 88

Increment – 15 9 8

0 1000 2000 3000 4000 5000 6000
Episode

0

10

20

30

40

50

60

70
A

ve
ra

g
e

A
cc

u
m

u
la

te
d

 U
S

 S
co

re

N
UAV

=6, 1 UAV quits

N
UAV

=5, 1 UAV quits

N
UAV

=4, 1 UAV quits

Fig. 3.6 Convergence performance with 95% credit interval for the case of UAV quit

converged accumulated US score is smaller for smaller NUAV , which aligns with
the fact that more UAVs can cover more users until the target area is saturated with
UAVs. However, as NUAV increases, the increment in the number of served users
reduces according to Table 3.2.

3.7.2.2 Case of UAV Quit

We then simulate the case of UAV quit whereNUAV UAVs start off in the beginning
and 1 UAV quits within the considered period. The UAVs are initially positioned at
the optimal locations obtained via Fig. 3.5. Although multiple UAVs may quit during
the period, we consider that when one UAV quits, the remaining UAVs will reach the
new optimal positions before another UAV quits. Hence the case of multi-UAV quit
can be broken into multiple cases of single-UAV quit. The convergence performance
is presented in Fig. 3.6. It can be seen that it takes more episodes for larger NUAV
to converge. Then, the optimal epoch-wise US scores are shown in Fig. 3.7. As a
comparison to the proposed PSR-APC approach, a passive reaction approach is also
simulated, which only relocates the remaining UAVs passively after one UAV quits
the network.

The epoch-wise US scores in Fig. 3.7 are obtained by combining the agents
achieved in Figs. 3.5 and 3.6. The UAVs start from the circular positions, then to the
optimal positions maximizing the epoch US score; a UAV then quits the network
and the remaining UAVs are finally relocated to the new optimal positions. It can
be observed that for all the simulated NUAV , the epoch US score first increases to a

3 Responsive Regulation of Dynamic UAV Communication Networks 55

0 10 20 30 40 50 60 70 80 90 100

Epoch (t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

o
ch

-w
is

e
U

S
 S

co
re

PSR-APC Approach
Passive Reaction Approach

24 26 28 30
0.4

0.5

0.6

0.7

0.8

Timing of Quit

(a)

10 20 30 40 50 60 70 80 90 100

Epoch (t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
p

o
ch

-w
is

e
U

S
 S

co
re

100

150

200

250

300

350

400

450

500

R
es

id
u

e
E

n
er

g
y

o
f

U
A

V

Passive Reaction Approach
PSR-APC Approach
Residual Energy of Quitting UAV

36 38 40 42 44
0.3

0.4

0.5

0.6

0.7

Timing of
Quit

(b)

0 10 20 30 40 50 60 70 80 90 100

Epoch (t)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
p

o
ch

-w
is

e
U

S
 S

co
re

Passive Reaction Approach
PSR-APC Approach

24 26 28 30 32 34
0.1

0.2

0.3

0.4

0.5

0.6

Timing of UAV Quit

(c)

Fig. 3.7 Case of UAV quit: Epoch-wise reward comparison between the PSR-APC approach and
the passive reaction approach. (a) NUAV = 6. (b) NUAV = 5. (c) NUAV = 4

maximum as the UAVs are heading to the optimal positions. When a UAV quits the
network, the epoch US scores drop dramatically due to the service holes caused by
the quit. After a short period of self-regulation, the scores rise up to a new maximum
smaller than the previous one when the remaining UAVs reach the new optimal
positions. The proposed PSR-APC and the passive reaction approach differ around
the timing of UAV quit. The passive reaction approach has no reaction before UAV
quit and thus experiences dramatic drop in US scores. On the contrary, the PSR-APC
approach monitors the UAV battery status and starts moving the UAVs one or two
epochs before the UAV quit. Although the epoch US scores may drop early due to
pre-movements, they will not drop that low when the UAV quits as those under
the passive reaction approach. Besides, the transition process will be completed
earlier. As a result, the accumulated US scores during the transition are higher than
those under the passive reaction approach, as shown in Fig. 3.8. However, proactive
movement is not always considerably beneficial since the gain depends on specific
user distribution and user-to-UAV ratio. WhenNUAV = 4, the gain is marginal. The
reason is that before one UAV quits, the 4 UAVs are separately positioned over 4
hot spots far away from each other. When one UAV quits, at least one UAV needs to

56 R. Zhang et al.

4 5 6
NUAV

0

5

10

15

G
ai

n
 D

u
ri

n
g

 T
ra

n
si

ti
o

n

Fig. 3.8 Case of UAV quit: gain (%) of PSR-APC over the passive reaction approach in
accumulated US scores during transition to the new optimal UAV positions

move a long way to the next optimal position, along which the epoch US score even
drops lower. In such a situation, the gain of pre-movements are significantly diluted
by the long transition period.

3.7.2.3 Case of UAV Join-In

The case of UAV join-in is then simulated with different NUAV . The epoch-wise
US scores under both the PSR-APC approach and the passive reaction approach are
presented in Fig. 3.9. There are initiallyNUAV UAVs that start off at the unit circular
positions, and then reach the optimal positions. A joining UAV starts elevating from
the ground in the center (5,5) at epoch 11, and reaches the serving altitude (i.e.,
formally join the network) at epoch 19. The passive reaction approach in this case
relocates UAVs only after the joining UAV joins the network right above (5,5), while
the PSR-APC approach starts tuning the horizontal positions of the joining UAV
right after it starts off. This ensures that when the joining UAV reaches the serving
altitude, all the UAVs are already near the new optimal positions. This is confirmed
by the curves in Fig. 3.9. It can be observed that under the PSR-APC approach,
all the UAVs are at the new optimal positions in the very first epoch after the new
UAV joins in, while it takes the passive approach couple of epochs to dispatch the
UAVs to the new optimal positions. In addition, there is no pre-movement of the
existing UAVs when the new UAV is about to join. This is because the new optimal
positions of the existing UAVs are within 1 epoch reach to the previous optimal
positions in our user distribution settings. The gain in accumulated US score during
the transition period introduced by the PSR-APC approach is shown in Fig. 3.10,
achieving at least 10% for all simulated NUAV .

3.7.2.4 Case of UAV and User Dynamics

At last, the case with dynamic user distribution is simulated. The disperse-gather-
disperse procedure shown in Fig. 3.4 is employed. We divide the 100 epochs evenly
into 10 segments. The centers of the hot spots are updated (i.e., user distribution
is updated) at the beginning of each segment. The order of update is snapshot

3 Responsive Regulation of Dynamic UAV Communication Networks 57

Epoch (t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

o
ch

-w
is

e
U

S
 S

co
re

PSR-APC Approach
Passive Reaction Approach

18 20 22 24
0.6

0.65

0.7

0.75

0.8

Timing of UAV
Join-in

(a)

0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50
Epoch (t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
p

o
ch

-w
is

e
U

S
 S

co
re

PSR-APC Approach
Passive Reaction Approach

17 18 19 20 21 22 23
0.45

0.5

0.55

0.6

0.65

Timing of UAV
Join-in

(b)

0 5 10 15 20 25 30 35 40 45 50

Epoch (t)

0

0.1

0.2

0.3

0.4

0.5

E
p

o
ch

-w
is

e
U

S
 S

co
re

PSR-APC Approach
Passive Reaction Approach

18 20 22 24

0.3

0.4

0.5

Timing of UAV
Join-in

(c)

Fig. 3.9 Case of UAV join-in: epoch-wise reward comparison between the PSR-APC approach
and the passive reaction approach. (a) NUAV = 5. (b) NUAV = 4. (c) NUAV = 3

3 4 5
NUAV

0

0.05

0.1

0.15

0.2

G
ai

n
 (

x1
00

%
)

Fig. 3.10 Case of UAV join-in: gain (%) of PSR-APC over the passive reaction approach in
accumulated US scores during transition to the new optimal UAV positions

1→2→3→4→4→4→4→3→2→1. The NUAV UAVs start off initially from the
optimal positions of snapshot 1, and move accordingly while the user distribution
changes. The convergence of 4 situations is shown in Fig. 3.11: 4 UAVs and 5
UAVs with no UAV quit or join-in, 5 UAVs with 1 UAV quit, and 4 UAVs with
1 UAV join-in. In addition, the epoch-wise reward of each situation is presented

58 R. Zhang et al.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Episode

0

10

20

30

40

50

60

A
ve

ra
g

e
A

cc
u

m
u

la
te

d
 U

S
 S

co
re

N
UAV=4, w/o UAV lineup change

N
UAV

=5, w/o UAV lineup change

N
UAV

=5, 1 UAV quit

N
UAV

=4, 1 UAV join-in

Fig. 3.11 Convergence with 95% credit interval with user dynamics

in Fig. 3.12. It can be observed that the epoch-wise rewards are relatively steady
within each time segment (where the hotspot centers remain still), but experience
considerable changes when crossing the time segments. As shown in Fig. 3.12b, c,
our proposed approach can also handle the change in UAV lineup with time-varying
user distribution, by getting the UAVs to the new optimal positions soon after the
change.

The UAV trajectories are also demonstrated in Fig. 3.13. As the disperse-gather
procedure is just the opposite mirror of the gather-disperse procedure, we only
present the first 50 epochs. In all 4 subfigures, the black dashed lines represent
the traces of the hotspot centers, moving from corners towards the center of the
target region, and stops 1 unit away from the center. In Fig. 3.13a, as the hotspots
move, the 4 UAVs proactively move from the initial positions (solid aqua circles)
towards the region center to cover as many users as possible. But instead of exactly
following the hotspot centers, the UAVs stop farther from the region center (solid
brown pentagrams). This is because (1) the ground coverage radius of each UAV
is larger than 1 unit, and (2) coverage overlapping of UAVs will lead to significant
intercell interference and further affect the user QoS. Situations are different when
there are 5 UAVs, as shown in Fig. 3.13b. Interestingly, while hotspots move, UAV
1 and UAV 3 almost stay still because of the existence of UAV 2. As UAV 2 moves
towards the region center, it is able to cover most of the user flows from hotspots in
the top and bottom right corners, so that UAV 1 and UAV 3 can stay put to cover
more uniformly distributed users. Accordingly, the trace of UAV 4 leans a little
towards the center to help cover the center users, and the trace of UAV 5 backs off a
little to reduce overlapping.

Figure 3.13c shows the UAV traces when UAV 1 quits the network around epoch
16. It can be observed that after UAV 1 quits, the traces of UAV 2 and 5 turn
more towards the hotspot in the top right corner to cover more users. UAV 4 goes

3 Responsive Regulation of Dynamic UAV Communication Networks 59

0 10 20 30 40 50
Epoch (t)

0.3

0.4

0.5

0.6

0.7
R

ew
ar

d
 r

t

N=5, no lineup change
N=4, no lineup change

(a)

0 10 20 30 40 50
Epoch (t)

0.3

0.4

0.5

0.6

0.7
N=5, one UAV quit
Timing of UAV quit

(b)

0 10 20 30 40 50
Epoch (t)

0.3

0.4

0.5

0.6

0.7

N=4, one UAV join-in
Timing of UAV join-in

(c)

Fig. 3.12 Epoch-wise reward of different situations with dynamic user distributions. (a) No UAV
lineup change. (b) NUAV = 5 with one UAV quit. (c) NUAV = 4 with one UAV join-in

deeper towards the region center to cover the users missed by UAV 2 and 5 while
UAV 3 stays put. Figure 3.13d shows the UAV traces when UAV 2 starts off at the
region center and formally joins the network at epoch 14. The dashed part of UAV 2
represents horizontal trace before it reaches the serving altitude. It can be observed
that before UAV 2 joins the network, the 4 existing UAVs move very similarly to
Fig. 3.13a. After UAV 2 joins, UAV 1 and 3 gradually back to the proximity of their
original starting points, while UAV 4 and 5 start to move like Fig. 3.13b where there
are 5 existing UAVs.

60 R. Zhang et al.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

Starting point
Ending point

Traces of Hot
spot center

UAV traces

(a)
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

UAV 2

UAV 3

UAV 1

UAV 5

UAV 4

(b)

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

UAV 2

UAV 5

UAV 3UAV 4

UAV 1

(c)
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

UAV 1

UAV 2

UAV 3

UAV 5

UAV 4

(d)

Fig. 3.13 Optimal UAV trajectories with user distribution dynamics. The x and y axis represent
the horizontal coordinates. (a)NUAV = 4 w/o UAV lineup change. (b)NUAV = 5 w/o UAV lineup
change. (c) NUAV = 5 with one UAV quit. (d) NUAV = 4 with one UAV join-in

3.8 Conclusions

In this chapter, an RL-based regulation strategy of a UAV communication network
has been investigated with dynamic UAV lineup and user distribution. The learning
approach, i.e., PSR-APC, has been designed to responsively control the UAV
trajectories when the group of serving UAVs or the user distribution changes within
a considered time horizon. Simulation results have demonstrated that compared to
the passive reaction approach, the proposed approach can achieve up to 20% higher
accumulated US scores during the transition process. In addition, when the user
distribution is dynamically changing, the proposed approach has been shown to be
able to capture the dynamics and move UAVs accordingly.

3 Responsive Regulation of Dynamic UAV Communication Networks 61

References

1. Q. Zhang, M. Jiang, Z. Feng, W. Li, W. Zhang, M. Pan, IoT enabled UAV: network architecture
and routing algorithm. IEEE Internet Things J. 6(2), 3727–3742 (2019)

2. X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, J. Rao, Ai-assisted network-slicing
based next-generation wireless networks. IEEE Open J. Veh. Technol. 1, 45–66 (2020)

3. W. Zhuang, Q. Ye, F. Lyu, N. Cheng, J. Ren, SDN/NFV-empowered future IOV with enhanced
communication, computing, and caching. Proc. IEEE 108(2), 274–291 (2019)

4. Y. Zeng, R. Zhang, T.J. Lim, Wireless communications with unmanned aerial vehicles:
opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)

5. Unmanned aerial vehicle (UAV) market (2019). https://www.marketsandmarkets.com/Market-
Reports/unmanned-aerial-vehicles-uav-market-662.html

6. M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, X. Shen, Energy-efficient UAV-assisted mobile
edge computing: resource allocation and trajectory optimization. IEEE Trans. Veh. Technol.
69(3), 3424–3438 (2020)

7. D. Shi, H. Gao, L. Wang, M. Pan, Z. Han, H.V. Poor, Mean field game guided deep
reinforcement learning for task placement in cooperative multi-access edge computing. IEEE
Internet Things J. 7, 9330–9340 (2020)

8. N.H. Motlagh, M. Bagaa, T. Taleb, UAV-based IoT platform: a crowd surveillance use case.
IEEE Commun. Mag. 55(2), 128–134 (2017)

9. N. Zhao, W. Lu, M. Sheng, Y. Chen, J. Tang, F.R. Yu, K.-K. Wong, UAV-assisted emergency
networks in disasters. IEEE Wireless Commun. 26(1), 45–51 (2019)

10. M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, C.S. Hong, Caching in the sky: proactive
deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience.
IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017)

11. H. Wu, F. Lyu, C. Zhou, J. Chen, L. Wang, X. Shen, Optimal UAV caching and trajectory in
aerial-assisted vehicular networks: a learning-based approach. IEEE J. Sel. Areas Commun.
38(12), 2783–2797 (2020)

12. A.A. Nasir, H.D. Tuan, T.Q. Duong, H.V. Poor, UAV-enabled communication using NOMA.
IEEE Trans. Commun. 67(7), 5126–5138 (2019)

13. M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, M. Debbah, A tutorial on UAVs for wireless
networks: applications, challenges, and open problems. IEEE Commun. Surv. Tuts. 21(3),
2334–2360 (2019)

14. Q. Wu, L. Liu, R. Zhang, Fundamental trade-offs in communication and trajectory design for
UAV-enabled wireless network. IEEE Wireless Commun. 26(1), 36–44 (2019)

15. Y. Zeng, X. Xu, R. Zhang, Trajectory design for completion time minimization in UAV-enabled
multicasting. IEEE Trans. Wireless Commun. 17(4), 2233–2246 (2018)

16. Q. Wu, R. Zhang, Common throughput maximization in UAV-enabled OFDMA systems with
delay consideration. IEEE Trans. Commun. 66(12), 6614–6627 (2018)

17. Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with rotary-wing
UAV. IEEE Trans. Wireless Commun. 18(4), 2329–2345 (2019)

18. H. Guo, J. Liu, UAV-enhanced intelligent offloading for internet of things at the edge. IEEE
Trans. Ind. Inf. 16(4), 2737–2746 (2019)

19. M. Mozaffari, A.T.Z. Kasgari, W. Saad, M. Bennis, M. Debbah, Beyond 5G with UAVs:
foundations of a 3D wireless cellular network. IEEE Trans. Wireless Commun. 18(1), 357–
372 (2018)

20. Q. Wu, Y. Zeng, R. Zhang, Joint trajectory and communication design for multi-UAV enabled
wireless networks. IEEE Trans. Wireless Commun. 17(3), 2109–2121 (2018)

21. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Mobile unmanned aerial vehicles (UAVs) for
energy-efficient internet of things communications. IEEE Trans. Wireless Commun. 16(11),
7574–7589 (2017)

22. Z. Yang, C. Pan, K. Wang, M. Shikh-Bahaei, Energy efficient resource allocation in UAV-
enabled mobile edge computing networks. IEEE Trans. Wireless Commun. 18(9), 4576–4589
(2019)

https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html

62 R. Zhang et al.

23. E. Alpaydin, Introduction to Machine Learning (MIT Press, Cambridge, 2020)
24. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2nd edn. (Bradford Books,

Cambridge, 2018)
25. N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, D.I. Kim, Applications

of deep reinforcement learning in communications and networking: a survey. IEEE Commun.
Surv. Tuts. 21(4), 3133–3174 (2019)

26. P.V. Klaine, J.P. Nadas, R.D. Souza, M.A. Imran, Distributed drone base station positioning for
emergency cellular networks using reinforcement learning. Cognit. Comput. 10(5), 790–804
(2018)

27. J. Cui, Y. Liu, A. Nallanathan, Multi-agent reinforcement learning-based resource allocation
for UAV networks. IEEE Trans. Wireless Commun. 19(2), 729–743 (2019)

28. J. Hu, H. Zhang, L. Song, Z. Han, H.V. Poor, Reinforcement learning for a cellular internet of
UAVs: protocol design, trajectory control, and resource management. IEEE Wireless Commun.
27(1), 116–123 (2020)

29. X. Liu, Y. Liu, Y. Chen, L. Hanzo, Trajectory design and power control for multi-UAV assisted
wireless networks: a machine learning approach. IEEE Trans. Veh. Technol. 68(8), 7957–7969
(2019)

30. Y. Hu, M. Chen, W. Saad, H. V. Poor, S. Cui, Distributed multi-agent meta learning for
trajectory design in wireless drone networks (2020). arXiv:2012.03158

31. S. Singh, A. Kumbhar, I. Güvenç, M.L. Sichitiu, Distributed approaches for inter-cell
interference coordination in UAV-based LTE-Advanced HetNets, in 2018 IEEE 88th Vehicular
Technology Conference (VTC-Fall) (IEEE, Piscataway, 2018), pp. 1–6

32. U. Challita, W. Saad, C. Bettstetter, Interference management for cellular-connected UAVs:
a deep reinforcement learning approach. IEEE Trans. Wireless Commun. 18(4), 2125–2140
(2019)

33. F. Tang, Y. Zhou, N. Kato, Deep reinforcement learning for dynamic uplink/downlink resource
allocation in high mobility 5G HetNet. IEEE J. Sel. Areas Commun. 38(12), 2773–2782 (2020)

34. N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, X. Shen, Space/aerial-assisted computing
offloading for IoT applications: a learning-based approach. IEEE J. Sel. Areas Commun. 37(5),
1117–1129 (2019)

35. X. Liu, M. Chen, C. Yin, Optimized trajectory design in UAV based cellular networks for 3D
users: a double Q-learning approach (2019). arXiv:1902.06610

36. C.H. Liu, Z. Chen, J. Tang, J. Xu, C. Piao, Energy-efficient UAV control for effective and
fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas
Commun. 36(9), 2059–2070 (2018)

37. S. Khairy, P. Balaprakash, L. X. Cai, Y. Cheng, Constrained deep reinforcement learning
for energy sustainable multi-UAV based random access IoT networks with NOMA (2020).
arXiv:2002.00073

38. Y. Huang, X. Mo, J. Xu, L. Qiu, Y. Zeng, Online maneuver design for UAV-enabled NOMA
systems via reinforcement learning, in 2020 IEEE Wireless Communications and Networking
Conference (WCNC). (IEEE, Piscataway, 2020), pp. 1–6

39. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,
Continuous control with deep reinforcement learning (2015). arXiv:1509.02971

40. H.X. Pham, H.M. La, D. Feil-Seifer, A. Nefian, Cooperative and distributed reinforcement
learning of drones for field coverage (2018). arXiv:1803.07250

41. D. Chen, Q. Qi, Z. Zhuang, J. Wang, J. Liao, Z. Han, Mean field deep reinforcement learning
for fair and efficient UAV control. IEEE Internet Things J. 8(2), 813–828 (2020)

42. A. Al-Hourani, S. Kandeepan, A. Jamalipour, Modeling air-to-ground path loss for low altitude
platforms in urban environments, in 2014 IEEE Global Communications Conference (IEEE,
Piscataway, 2014), pp. 2898–2904

43. J.M. Seddon, S. Newman, Basic Helicopter Aerodynamics, vol. 40 (Wiley, Hoboken, 2011)
44. M. Han, S. Khairy, L. X. Cai, Y. Cheng, R. Zhang, Reinforcement learning for efficient and

fair coexistence between LTE-LAA and Wi-Fi. IEEE Trans. Veh. Technol. 69(8), 8764–8776
(2020)

3 Responsive Regulation of Dynamic UAV Communication Networks 63

45. D. Shi, J. Ding, S.M. Errapotu, H. Yue, W. Xu, X. Zhou, M. Pan, Deep Q-network-based
route scheduling for TNC vehicles with passengers’ location differential privacy. IEEE Internet
Things J. 6(5), 7681–7692 (2019)

46. T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al., Deep Q-learning from demonstrations, in Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

47. V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu,
Asynchronous methods for deep reinforcement learning, in International Conference on
Machine Learning (2016), pp. 1928–1937

48. Y. Zeng, R. Zhang, Energy-efficient UAV communication with trajectory optimization. IEEE
Trans. Wireless Commun. 16(6), 3747–3760 (2017)

Chapter 4
Utility-Based Dynamic Resource
Allocation in IEEE 802.11ax Networks:
A Genetic Algorithm Approach

Taewon Song, Taeyoon Kim, and Sangheon Pack

4.1 Introduction

Wireless local area networks (WLANs) have grown extensively over decades as
advanced services such as ultra HD and 4K video, multimedia streaming, and rapid
file transfer have become widespread among the general public. As a result, the
number of personal devices, including smartphones, laptops, and high-definition
multimedia devices, dramatically increases. As the number of devices increases,
it leads to severe congestion, and the devices can hardly be connected to the
Internet. Because of the congestion, the latest WLAN standard, IEEE 802.11ax [1],
is primarily aimed at improving efficiency in high-density WLANs.

One of the most promising techniques in IEEE 802.11ax to deal with the dense
deployment scenario is orthogonal frequency division multiple access (OFDMA),
which has been adopted in various existing standards such as IEEE 802.16e
WiMAX [2], long-term evolution (LTE), and 5G new radio (NR). In the OFDMA
technique adopted in IEEE 802.11ax, the entire bandwidth is divided into several
resource units (RUs). By allowing multi-user channel access and multi-user data

T. Song
Department of Internet of Things, SCH Media Labs, Soonchunhyang University, Asan, South
Korea
e-mail: twsong@sch.ac.kr

T. Kim
Department of Mobile System Engineering, Dankook University, Yongin, South Korea
e-mail: 2000kty@dankook.ac.kr

S. Pack (�)
School of Electrical Engineering, Korea University, Seoul, South Korea
e-mail: shpack@korea.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_4&domain=pdf
mailto:twsong@sch.ac.kr
mailto:2000kty@dankook.ac.kr
mailto:shpack@korea.ac.kr
https://doi.org/10.1007/978-3-030-98064-1_4

66 T. Song et al.

transmission through orthogonal RU allocation, OFDMA can significantly reduce
contention and preamble overhead.

On the other hand, as the number of access points (APs) is rapidly increased,
each basic service set (BSS) becomes seriously overlapped. Therefore, a network-
wide optimization for OFDMA resource allocation should be considered. Only a
few studies considered adjacent BSSs; however, they only investigated interference
mitigation issues through directional transmissions, and OFDMA resource alloca-
tion was not taken into consideration in detail.

In this chapter, we propose a utility-based dynamic resource allocation (UDRA)
scheme in which a network-wide utility maximization problem is formulated to
consider AP throughput and fairness among associated stations jointly. Since the
formulated problem is an NP-hard problem, we map the optimization problem
onto the genetic algorithm for a realistic WLAN environment. Extensive simulation
results demonstrate that the proposed genetic algorithm has much lower complexity
than the exhaustive search algorithm, while its performance in terms of throughput
and fairness is nearly identical to the exhaustive search algorithm.

This chapter’s key contribution is twofold. The first is that the frequency resource
can be dynamically optimized using an interaction without any wired connectivity
among APs. The simulation shows that depending on the given parameters, the
network throughput of UDRA is 38% higher than conventional algorithms, or Jain’s
fairness index [3] of UDRA is higher than that of other algorithms. The second is
that UDRA exhibits nearly the same performance thanks to the genetic algorithm
compared to an exhaustive searching algorithm while the running time of UDRA is
significantly reduced.

The remainder of this chapter is organized as follows. Sections 4.2 and 4.3
summarize the related works on OFDMA resource management. Sections 4.4 and
4.5 describe OFDMA operation in 802.11ax, which is a foundation for UDRA
and demonstrates the formulated problem and the genetic algorithm to solve
it. Simulation results and concluding remarks are given in Sects. 4.6 and 4.7,
respectively.

4.2 Related Works

A fundamental problem for OFDMA resource management is how to allocate
limited resources to the stations efficiently. That is, to increase spectral efficiency,
stations should be allocated to appropriate time and frequency resource. Unfortu-
nately, the problem of finding the optimal allocation was shown to be NP-hard in [4].
Therefore, many studies have focused on reducing computational complexity for
resource management. The approaches to overcome this computational complexity
can be categorized mainly into (1) solving sub-optimal solutions relying on
relaxation [5–8] and (2) introducing alternative frameworks [9, 10].

A mixed integer nonlinear problem (MINLP) was formulated in [5], and the
authors proposed a sub-optimal solution to the MINLP problem relying on convex

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 67

relaxation. In [6], an optimal problem of assigning users to RUs while maximizing
their sum rate was formulated, and a relaxed scheduling and resource allocation
problem utilizing the divide-and-conquer approach was introduced. One approach
assumes a more realistic and practical assumption. Since OFDMA is a technique for
enabling multi-user transmission, the authors of [7] developed a resource allocation
algorithm in which a scheduled duration is optimally determined to minimize the
padding overhead occurring in the stations that are not transmitting at that time.
In [8], the authors defined resource allocation as a selecting block for services,
in order to meet some requirements such as the latency or traffic demands. The
authors then proposed a sub-optimal and low-complexity algorithm to perform the
assignment of blocks to services.

In [9], the authors defined a welfare function that reflected the total benefit
covering all players and formulated the resource allocation problem as a game-
theoretical framework. In [10], an auction-theoretic approach is proposed for the
resource allocation problem to reduce the computation time. In this literature,
several resource allocation schemes have been proposed, but most of them attempt
to optimize OFDMA resource allocation within BSS without considering resource
allocation information from adjacent BSSs.

Recent works on resource management consider a more challenging environment
with multiple and densely deployed APs. In [11, 12], transmit beamforming
was considered to mitigate the effect of inter-cell interference. The authors also
investigated an achievable rate when transmit beamforming is applied. Indeed,
this approach, such as transmit beamforming, is challenging to adopt in a WLAN
because it requires a directional transmission. Although these studies consid-
ered adjacent BSSs, they only investigated interference mitigation issues through
directional transmissions, and OFDMA resource allocation was not taken into
consideration in detail.

4.3 Background on OFDMA and RU Allocation in IEEE
802.11ax

The basic OFDM principle is to utilize orthogonal subcarriers in frequency for data
transmissions. Thus, broadband wireless radio channels with frequency-selective
fading are replaced by a set of narrow-band channels (subcarriers) with flat
fading. Each data symbol is then transmitted in one subcarrier, which is robust for
multipath propagation. Additional advantages of OFDM are its highly efficient use
of frequencies, its cost-effective and flexible digital signal processing, and its low
complexity of MIMO principles.

802.11ax, which is the most widely used standard for WLAN, supports bands of
20 MHz, 40 MHz, 80 MHz, 80+80 MHz (combining two 80 MHz channels), and
160 MHz (single 160 MHz channel) [1]. In OFDMA transmission, the spectral band
is divided into several resource units (RUs). In the time domain, the RU spans the

68 T. Song et al.

Fig. 4.1 Subdividing 20 MHz channel using OFDMA in IEEE 802.11ax

Table 4.1 Total number of RUs by channel bandwidth

RU type 20 MHz 40 MHz 80 MHz 160 and 80+80 MHz

26-subcarrier RU 9 18 37 74

52-subcarrier RU 4 8 16 32

106-subcarrier RU 2 4 8 16

242-subcarrier RU 1 2 4 8

484-subcarrier RU N/A 1 2 4

996-subcarrier RU N/A N/A 1 2

2x996-subcarrier RU N/A N/A N/A 1

entire data portion of the High Efficiency (HE) PLCP Protocol Data Unit (PPDU).
In the frequency domain, it consists of a subset of successive subcarriers. In the
frequency domain, RUs can be 26, 52, 106, 242, 484, or 996. RUs in HE multi-
user (MU) PPDUs that use OFDMA transmissions can be one of these sizes. The
position of the RU in the HE PPDU is fixed. Each RU, larger than 26, can be divided
into two smaller RUs. The entire bandwidth can be used as a single 484-tone RU,
or divided into two 242-tone RUs, each of which can be split into smaller RUs
until a 26-tone RU is reached. When an RU is created, the AP assigns one RU to
each user or a group of users for transmission. When bandwidth is split into RUs
and is allocated to each user, the transmission is pure OFDMA, which can also be
used for MU-MIMO if the RU is a 106 or higher subcarrier, then referred to as a
joint transmission between MU-MIMO and OFDMA. Figure 4.1 illustrates how an
802.11ax system multiplexes a 20 MHz channel using different resource unit (RU)
sizes. The smallest division of the channel can support up to 9 users simultaneously
for every 20 MHz of bandwidth. The number of users that can be supportable for
the RU type and various available channels are listed in Table 4.1. In this chapter,
we follow the existing parameters regarding OFDMA.

4.4 System Model

In this section, UDRA, an optimization problem that jointly considers the network
throughput and the fairness index in OFDMA resource allocation, is addressed. To
this end, we first describe a system model on which UDRA is based and demonstrate

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 69

Fig. 4.2 Schematic representation of UDRA

Fig. 4.3 The timing diagram of UDRA in the system model

an illustrative example of UDRA. Next, a modified CTS (M-CTS) frame structure,
which is essential to operate UDRA, is followed.

In our model, each BSS consists of one AP and one or more STAs. Only downlink
traffic from APs to STAs is considered since it occupies a dominant portion of
traffic for WLAN applications. Furthermore, we assume that the AP’s buffer to be
transmitted to associated stations is in a saturated state, which means the APs always
have frames to be sent.

Figures 4.2 and 4.3 show a schematic example of how UDRA works. In this
example, as shown in Fig. 4.2, there are two APs, APs a and b, where STAs a1,
a2, and a3 are connected to AP a. STA a3 is on the area where two transmission
ranges are overlapped. The solid arrows and the dotted arrows stand for determined
transmissions and overheard transmissions, respectively. Once STA a3 that resides
in the overlapped area overhears a data frame from AP b, it will know RU

70 T. Song et al.

Fig. 4.4 A modified CTS (M-CTS) frame

information of AP b by means of the PHY preamble in the data frame. When STAs
a1, a2, and a3 receive a multi-user request-to-send (MU-RTS) frame from AP a, all
the STAs are required to respond with an M-CTS frame, which will be addressed
in the next section. Besides, STA a3 reports the RU allocation information of AP b
to AP a by including the information in the M-CTS frame, as shown in Fig. 4.3. As
a result, AP a can obtain network-wide RU allocation information, which will then
be used for the utility optimization problem in Sect. 4.5.

Some information, such as transmission duration and transmission signal power
from adjacent BSSs, is required to formulate a network-wise utility maximization
problem. Since an AP can receive the signal only from associated STAs in the
existing IEEE 802.11, a new method to deliver the information collected by adjacent
APs is needed. To this end, we introduce the M-CTS frame, which includes
the identification (e.g., transmitter ID), overheard signal power, RU allocation
information, and transmission duration of the overheard data frame. When a STA
listens to a data frame whose destination is another STA, it first records the signal
strength and time stamp. After that, the STA decodes the overheard data frame
and detects the RU allocation information. Once AP solicits the STA via the MU-
RTS frame, the STA transmits the M-CTS frame so that AP can know the above
information.

Figure 4.4 shows the M-CTS frame structure. Interference Strength field
describes the signal strength for letting the associated AP know the amount of
interference that the STA suffers. The AP can be aware of the RU allocation status
of adjacent BSS utilizing RU Allocation field. Duration field lets the AP know how
long the transmission of adjacent BSS lasts. Although Interference Strength, RU
Allocation, and Duration fields have not been defined in the existing CTS frame,
we can modify some existing fields to describe them or define a newly designed
frame format. Formatting these fields is beyond the scope of this chapter, and the
formats of these fields are not restricted.

4.5 Utility-Based Dynamic Resource Allocation Scheme

In this section, an optimization problem that jointly considers the network through-
put and the fairness [3] in OFDMA resource allocation is defined. Also, as a
practical solution to the problem, we mapped UDRA to genetic algorithm in the
following subsection.

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 71

4.5.1 Optimal Resource Allocation Problem Formulation

Let N andM be the number of STAs and the number of sub-channels, respectively.
Y = {0, 1}N×M represents the assignment matrix where an element of Y , yn,m, is 1
if STA n occupies sub-channel m; otherwise, yn,m = 0. Meanwhile, I = RN×M
is the interference matrix where an element of I , in,m, is the value included in
the Interference Strength field of the M-CTS frame. S = R

N×M is the signal
power matrix where its element, sn,m, refers to the signal power of STA n in sub-
channel m.

To jointly consider both throughput and fairness index, we need to calculate
the normalized throughput and fairness. For the normalized throughput, signal-to-
interference-plus-noise ratio (SINR) needs to be first defined. When STA n occupies
sub-channel m and the assignment matrix is given by Y , SINR can be expressed
as

SINRn,m(Y) = t

T
· sn,m[mW]· yn,m
in,m[mW]·N0[mW] , (4.1)

where t is the length interfered by the adjacent AP, which can be obtained by
overhearing data frames from adjacent AP, while T is the frame length in bytes. N0
is the thermal noise, which is expressed as −174 + 10log10

B
M

[13, 14] and f [mW]
represents that f is in a milli-watts scale. Then, the attainable throughput of STA n
from sub-channel m is expressed as

cn,m(Y) = B

M
· log2(1 + SINRn,m(Y)). (4.2)

Since there are M resource units, the total attainable throughput of STA n is given
by:

cn(Y) =
M∑

m=1

cn,m(Y) =
M∑

m=1

B

M
· log2(1 + SINRn,m(Y)). (4.3)

Using Eq. (4.3), the attainable network throughput per transmission and the
fairness index can be derived. First of all, the attainable network throughput per
transmission can be expressed as

c(Y) =
N∑

n=1
cn(Y). (4.4)

72 T. Song et al.

Meanwhile, the Jain’s fairness index can be computed as

f (Y) =

(
N∑

n=1
cn(Y)

)2

N ·
N∑

n=1
cn(Y)2

. (4.5)

Using Eqs. (4.4) and (4.5), the utility to balance the throughput and fairness can
be defined as

u(Y) = α· c(Y)+ (1 − α)· f (Y), (4.6)

where α is a weighting factor to prioritize either the attainable network throughput
or the fairness between STAs. For example, once α approaches to one, the attainable
network throughput will be prioritized. On the contrary, when α approaches to zero,
the fairness among STAs is preferred and the fairness will be emphasized.

Finally, the utility optimization problem can be expressed as

max
Y∈{0,1}N×M

u(Y),

s.t.
N∑

n=1
yn,m ≤ 1,∀m ∈ {1, 2, . . . ,M},

(4.7)

where the constraint represents that two or more STAs cannot occupy the same sub-
channel.

Assuming the signal powers of sub-channels that suffer channel fading are
independently and identically distributed (i.i.d.), the complexity of the utility
optimization problem in (4.7) can beO(2M·N) with big-O notation, which is known
as NP-hard. Thus, we will explain a practical genetic algorithm for this problem in
the next subsection.

4.5.2 Genetic Algorithm

Genetic Algorithm (GA) is a meta-heuristic popular in computer science [15].
GA applies the principle of survival of the fittest to produce a better and better
approximation to the solution of the problem that GA is trying to solve. For
each generation, a new set of approximations is created through the process of
selecting individuals according to their level of fitness in the problem domain,
and propagating the individuals together using operators borrowed from genetic
processes carried out in nature (e.g., crossover and mutation) is created. This
process, as occurs in natural adaptation, leads to the evolution of groups of
individuals who adapt better to the environment than the individuals from which
they were created.

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 73

Genetic algorithm is a well-known heuristic algorithm to deal with the NP-hard
problem, which emulates the evolution process in nature and the process consists of
natural selection, reproduction, and mutation.

In the genetic algorithm, the following concepts are employed to find the optimal
solution. First of all, a chromosome is a set of parameters, which defines a proposed
solution to the problem that the genetic algorithm is trying to solve. For standard
optimization algorithms, this can be the domain of the objective function. This set of
chromosomes is called population. On the other hand, the fitness function represents
a function to be optimized, i.e., objective function, and the fitness value is the output
of the fitness function when one of chromosomes is given by an input.

For each generation, a predetermined number of chromosomes are arbitrarily
selected and their fitness values are compared among them. After the comparison,
the natural selection process starts with the selected chromosomes that have greater
fitness value than others. This selected chromosomes are then reproduced for the
next generation. Above-mentioned procedure continues for a certain number of
generations.

A problem mapping the optimization algorithm on genetic algorithm is depicted
in Fig. 4.5. In our RU allocation problem, we denote an assignment matrix, Y , as a
chromosome. A fitness value is calculated for each chromosome. In this problem, the
fitness value can be a utility, u(Y), as seen in Eq. (4.7). Chromosomes are randomly
generated within the universal set, which is a binary matrix with M rows and N
columns that satisfy constraints.

A detailed procedure for solving the RU allocation problem can be represented
as follows. This procedure is depicted in Algorithm 3. First of all, the generation
number, i, is initiated (see line 1). Once an AP transmits MU-RTS to associated
STAs, some respond to MU-RTS by transmitting M-CTS if they overheard any data
frames from adjacent APs. In so doing, the AP can obtain the interference matrix I
and the signal power matrix S (see line 2). At the first generation, the AP randomly
generates jmax , a predefined population size, assignment matrices. After that, the
AP calculates the utility for each matrix (see lines 6 to 9). Next, some “winner”
matrices are survived, and the next generation will be triggered. This procedure
continues until the difference between the utility of the ith generation and the (i −
1)th is smaller than a predefined threshold, uthreshold , or the maximum running time,
Tmaxstall , elapsed.

Even though the exhaustive search requires exponential processing time, the
genetic algorithm has a polynomial executing time because it runs up to imax · jmax
cycles at most and each cycle requires polynomial processing time. In the literature,
several studies have been conducted to determine the optimal number of popula-
tions, jmax . Since the derivation of the optimal number is beyond the scope of this
chapter, jmax is set to 10 ∗M·N according to [16].

74 T. Song et al.

Fig. 4.5 Mapping from UDRA to genetic algorithm

4.6 Simulation Results

Extensive simulations have been conducted by a MATLAB simulator to evaluate
the performance of UDRA. Simulation parameters are based on the IEEE 802.11ax
standard. Defined parameters are summarized in Table 4.2. First of all, we show how
UDRA performs and how fast it runs compared to an exhaustive search. After that,
we analyze the throughput and fairness aspects of UDRA compared to conventional
algorithms for α and examine the effect of α in detail.

4.6.1 UDRA vs. Exhaustive Search

Complexity and the resulting performance degradation between exhaustive search
and UDRA are presented in Fig. 4.6. Specifically, this figure shows how much can
UDRA reduce its running time compared to exhaustive search and how much does
UDRA underperform exhaustive search. Since the complexity of exhaustive search
grows exponentially, the simulations are conducted in a small-scale environment
with 2 to 4 stations and 8 RSUs.

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 75

Algorithm 3 Genetic algorithm for UDRA
1: i = 1
2: Obtain the interference matrix I and the signal power matrix S
3: Randomly generate a set of jmax assignment matrices Yi which meet the constraint of the

optimization problem in Eq. (4.7)
4: while |ui − ui−1| > uthreshold for Tmaxstall times do
5: j = 1
6: for each assignment matrix Yi,j in Yi do
7: Calculate a utility for the assignment matrix by means of Eqs. (4.1)–(4.7)
8: j = j + 1
9: end for

10: Calculate the best utility, ui = max∀j u(Yi,j)
11: Select a portion of the assignment matrices and leave them for the next population
12: Randomly generate assignment matrices and make a set of assignment matrices with the

survived assignment matrices for the next generation Yi+1
13: i = i + 1
14: end while
15: Determine the assignment matrix that makes the utility maximum value
16: return assignment matrix Y

Table 4.2 Simulation parameters

Parameter Value

Multiple access scheme OFDMA

Channel bandwidth 80 MHz

RU type 106-subcarrier RU

Number of RUs 8

Noise model Thermal noise

Optimization methodology Genetic algorithm

Number of populations 10 ∗M ·N
Max stall generations 150

As shown in Fig. 4.6, UDRA exhibits the same performance when the number
of STAs is 2. Meanwhile, UDRA shows degraded throughput compared with the
exhaustive search by 3.56 and 3.77% when the numbers of STAs are 3 and 4,
respectively. Even though the genetic algorithm has slightly reduced throughput,
it significantly reduces running time compared with the exhaustive search. For
example, UDRA can achieve 31.25, 2.93, and 0.24% of the exhaustive search for
the running time for the cases with 2, 3, and 4 STAs, respectively.

4.6.2 Network-Wise Throughputs and Fairness Indexes

Figures 4.7 and 4.8 show the total network throughput and the Jain’s fairness index
for UDRA, round-robin algorithm, and randomly allocation algorithm as the number
of stations varies. From Fig. 4.7, it can be seen that the throughputs of round-robin

76 T. Song et al.

432

Number of stations

0

0.5

1

1.5

2

2.5

3

3.5

4
P

er
fo

rm
an

ce
 d

ef
ic

ie
nc

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

R
at

io
 o

f R
un

ni
ng

 C
ou

nt
s

(%
)

31.25

2.9297 0.24

Fig. 4.6 UDRA vs. exhaustive search

2 3 4 5 6 7 8

Number of stations

320

340

360

380

400

420

440

460

480

N
et

w
or

k
T

hr
ou

gh
pu

ts
 (

M
bp

s)

UDRA(=0.9)
UDRA(=0.1)
Round-robin
Random

Fig. 4.7 Throughputs

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 77

2 3 4 5 6 7 8

Number of stations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ja
in

's
 F

ai
rn

es
s

In
de

x
UDRA(=0.9)
UDRA(=0.1)
Round-robin
Random

Fig. 4.8 Jain’s fairness indexes

and random allocation hardly increase as the number of STAs increases. This is
because the total resource, i.e., the channel bandwidth, to be allocated is identical
regardless of the number of stations, and they allocate the resources evenly to the
stations in the long term. On the other hand, the AP in UDRA can finely allocate RUs
to STAs by solving the formulated optimization. Therefore, it can be found that the
network throughput of UDRA increases with the increase in the number of STAs,
although the total resource does not vary. Specifically, UDRA with α = 0.1 and
with α = 0.9 exhibits from 5.6 to 19.5% and from 13.2 to 39.2% higher throughputs
compared to conventional algorithms as the number of stations varies, respectively.
Meanwhile, throughput of UDRA with α = 0.1 is 16.9–27.0% lower than that with
α = 0.9. This is because UDRA with α = 0.1 prioritizes the normalized fairness
rather than the normalized throughput.

Figure 4.8 shows the Jain’s fairness index depending on the number of STAs.
It can be seen that overall fairness trends consistently increase as the number of
stations increases. UDRA with α = 0.1 outperforms other algorithms in terms
of fairness. Also, it can be seen that the fairness indexes of the random algorithm
are inferior to the other algorithms. This is because the random algorithm does not
consider whether an associated station is affected by adjacent AP’s transmission or
not, and this causes severe collisions, especially when the number of APs becomes
large.

78 T. Song et al.

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
370

380

390

400

410

420

430

440

450

460

470
N

et
w

or
k

T
hr

ou
gh

pu
ts

 (
M

bp
s)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ja
in

's
 F

ai
rn

es
s

In
de

x

Network Throughputs
Jain's Fairness Index

Fig. 4.9 Effect of α

Figure 4.8 also shows the Jain’s fairness index depending on the number of STAs.
It can be seen that overall fairness trends consistently increase as the number of
stations increases for the same reason mentioned above.

As shown in Figs. 4.7 and 4.8, the performance of UDRA is highly affected
by α, and thus we analyze the effect of α. From Fig. 4.9, the throughput becomes
higher while the fairness index gets smaller as α increases. This can be explained
as follows. When α is high, the normalized throughput is emphasized, and thus
each AP tends to allocate the best sub-channel to the best STA, leading to a severe
imbalance of throughput. For example, an STA whose SINR is much stronger than
other STAs will occupy most of the RUs, and thus the STA can get much higher
throughput for a high value of α.

On the other hand, the normalized fairness is prioritized when α is low, and
therefore each AP tends to allocate sub-channels fairly to the STAs. In this case,
STAs residing in the overlapped area, e.g., station a3 in Fig. 4.2, will have an
opportunity to access the medium since it has a higher opportunity to suffer higher
interference than station b1. Apparently, such fair resource allocation leads to
degraded network throughput, and thus the optimal value of α should be carefully
chosen under the service requirements.

Besides, the slope of network throughputs increases nearly linearly, whereas the
slope of Jain’s fairness index tends to decrease sharply as seen in Figs. 4.7 and 4.8.
When α = 1, UDRA would behave as if it allocates RUs to the stations in a greedy
manner, and thus the metric of fairness becomes degraded. Also, at α = 1, the

4 UDRA in IEEE 802.11ax Networks: A Genetic Algorithm Approach 79

network throughput increases linearly, while the fairness index decreases sharply, so
a small amount of concern for fairness can result in a quite fair resource allocation
while performing large throughputs.

4.7 Conclusion

In this chapter, a utility-based dynamic resource allocation algorithm for OFDMA-
based wireless networks is proposed. By using M-CTS, stations residing in over-
lapped area can overhear RU allocation and interference power. Then the station
can deliver information to its associated AP and thus the AP can utilize it for
utilizing RUs efficiently. After that, AP operates utility maximization problem
with a factor, α. By adjusting α, the throughput as well as the fairness can be
achieved. We next formulate genetic algorithm that operates in polynomial running
time. The simulation results demonstrated that the genetic algorithm has few or no
performance drop while its running time remarkably decreases.

References

1. Institute of Electrical and Electronics Engineering (IEEE), 802.11ax-2021 - IEEE standard for
information technology–telecommunications and information exchange between systems local
and metropolitan area networks–specific requirements part 11: wireless LAN medium access
control (MAC) and physical layer (PHY) specifications amendment 1: enhancements for high-
efficiency WLAN

2. Institute of Electrical and Electronics Engineering (IEEE), IEEE standard for air interface for
broadband wireless access systems

3. R. Jain, D.-M. Chiu, W.R. Hawe, A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer System, vol. 38 (Eastern Research Laboratory, Digital
Equipment Corporation Hudson, Hudson, 1984)

4. K. Jain, J. Padhye, V.N. Padmanabhan, L. Qiu, Impact of interference on multi-hop wireless
network performance. Wireless Netw. 11(4), 471–487 (2005)

5. A. Abdelnasser, E. Hossain, D.I. Kim, Tier-aware resource allocation in OFDMA macrocell-
small cell networks. IEEE TransI Commun. 63(3), 695–710 (2015)

6. K. Wang, K. Psounis, Scheduling and resource allocation in 802.11ax, in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, vol. 2018 (2018), pp. 279–287

7. M. Karaca, S. Bastani, B.E. Priyanto, M. Safavi, B. Landfeldt, Resource management for
OFDMA based next generation 802.11 WLANs, in 2016 9th IFIP Wireless and Mobile
Networking Conference (WMNC) (2016), pp. 57–64

8. L. You, Q. Liao, N. Pappas, D. Yuan, Resource optimization with flexible numerology and
frame structure for heterogeneous services. IEEE Commun. Lett. 22(12), 2579–2582 (2018)

9. H. Dai, Y. Huang, R. Zhao, J. Wang, L. Yang, Resource optimization for device-to-device and
small cell uplink communications underlaying cellular networks. IEEE Trans. Veh. Technol.
67(2), 1187–1201 (2018)

10. N. Tadayon, S. Aissa, Radio resource allocation and pricing: auction-based design and
applications. IEEE Trans. Signal Process. 66(20), 5240–5254 (2018)

80 T. Song et al.

11. K. Ishihara, T. Murakami, Y. Asai, Y. Takatori, M. Mizoguchi, Cooperative inter-cell inter-
ference mitigation scheme with downlink MU-MIMO beamforming for dense wireless LAN
environment. Wireless Pers. Commun. 93, 661–674 (2014)

12. K. Ishihara, T. Murakami, H. Abeysekera, M. Akimoto, Y. Takatori, Distributed smart antenna
system for high-density WLAN system. Electron. Lett. 54(6), 336–338 (2018)

13. J.B. Johnson, Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).
http://link.aps.org/doi/10.1103/PhysRev.32.97

14. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).
http://link.aps.org/doi/10.1103/PhysRev.32.110

15. Z. Bankovic, D. Stepanovic, S. Bojanic, O. Nieto-Taladriz, Improving network security using
genetic algorithm approach. Comput. Electr. Eng. 33(5), 438–451 (2007)

16. R. Storn, On the usage of differential evolution for function optimization, in Proceedings of
North American Fuzzy Information Processing (2002), pp. 519–523

http://link.aps.org/doi/10.1103/PhysRev.32.97
http://link.aps.org/doi/10.1103/PhysRev.32.110

Chapter 5
Intelligentized Radio Access Network for
Joint Optimization of User Association
and Power Allocation

Hui-Chi Yu and Kuang-Hao Liu

5.1 Introduction

With the rapid growth of mobile data traffic, the traditional cellular network faces
numerous challenges to fulfill the demand of higher data rates and persistent service
quality. On one hand, high cell density is beneficial to reduced propagation loss due
to distance. On the other hand, the inter cell interference (ICI) increases with the cell
density that dramatically degrades the service quality of cellular users. To alleviate
the aforementioned problem, multi-cell coordination has been considered by 3rd
Generation Partnership Project (3GPP) as an effective means to mitigate strong ICI
through cell coordination [1]. Different implementation choices of cell coordination
have been proposed, including coordinated schedule/beamforming (CS/CB), joint
transmission (JT), and dynamic point selection (DPS). The early standardization
efforts aim to define the high-level requirements on the changes of the specifications
to support multi-cell coordination. More recent work has been focusing on the new
control signaling for enabling multi-cell coordination [2]. It is expected that the
next-generation cellular network will undergo a major evolution on the network
infrastructure where the notion of the cell boundary will be more vague because of
cell coordination.

To enable multi-cell coordination, both the radio access network (RAN) and
the core network (CN) that serve as two major entities of the cellular network
will undergo some major changes. In the traditional RAN, each radio tower or the
base station (BS) needs to handle both signal processing and resource management

H.-C. Yu
Department of Electrical Engineering, National Cheng Kung University, Tainan City, Taiwan

K.-H. Liu (�)
Institute of Communications Engineering, National Hsing Hua University, Hsinchu, Taiwan
e-mail: khliu@ee.nthu.edu.tw

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_5

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_5&domain=pdf
mailto:khliu@ee.nthu.edu.tw
https://doi.org/10.1007/978-3-030-98064-1_5

82 H.-C. Yu and K.-H. Liu

for the users within its coverage. These two functions will be split in the future
RAN where the signal transmission and reception will be performed by the
entity called the transmission/reception point (TRP). The resource management
task will be covered by another entity called the distributed unit (DU). Thus the
functionality of the traditional BS is replaced by one DU connected with several
TRPs. This new infrastructure with functional split facilitates cell coordination in
a cost-effective manner because now the hardware/software resources of a DU
can be shared by multiple TRPs. On the other hand, the future CN will be fully
configurable by software so that network operators can flexibly split their networks
into several slices for satisfying diverse service requirements and upgrading their
CN conveniently [3].

With the flexible infrastructure to support multi-cell coordination, the RAN still
needs to be optimized to achieve the maximum performance. In order to make
efficient use of radio resources, the RAN can be configured to activate a set of TRPs
to serve a user equipment (UE), referred to as the user association (UA) problem.
Here two critical factors that affect the network performance include: which set of
TRPs should be active and what transmission power should be allocated to serve
the UE? By properly activating TRPs, severe ICI can be avoided. For example,
neighboring TRPs can jointly design their beamforming vectors to cancel ICI or
transmit the same downlink data that turns the ICI into useful signal. The former
is known as CB and the latter as JT in the categories of multi-cell coordination.
The 3GPP specification mainly focuses on the control plane to support multi-cell
coordination while the formation of a coordinating TRP set, or commonly referred
to as the cluster, is subject to practical implementation. Also, transmission power
allocation (PA) is defined only for legacy single-TRP transmission but that across
multiple coordinated TRPs is open.

5.2 Related Work

Traditional RAN The joint UA and PA optimization is important to the future RAN
featured by multi-cell coordination. Most of the existing works consider UA and
PA separately. PA for sum rate maximization under the maximal power constraint is
a well-known non-convex optimization problem and it is NP-hard. Hence the best
practice is to transfer the PA problem into a convex one that facilitates efficient
problem solving algorithms [4, 5] despite the obtained solution is sub-optimal in
general. On the other hand, UA for load balancing has also shown to be an NP-hard
problem [6], which makes it difficult to find the exact optimal solution directly. The
joint UA and PA design has been addressed in [7, 8] . Due to the NP hardness of
the problem, iterative algorithms have been proposed in the previous work to deliver
the near-optimal solutions. However, these algorithms require global channel state
information (CSI) and their performance is sensitive to the CSI accuracy.

5 Intelligentized RAN for Joint Optimization of UA and PA 83

Clustering When a set of TRPs are activated to serve the same UE, they form a
cluster and exchange information to enable multi-TRP transmission. The clustering
scheme is critical to the network-wide performance, but it is often considered as
an implementation issue not specified in the standard. From the implementation
perspective, there are two kinds of clustering schemes, including the network-centric
and the user-centric clustering [9]. In the network-centric clustering, different TRPs
are configured according to the network architecture. For example, the TPRs that
belong to the same site may form a so-called intra-site cluster, which appears to be
the easiest way to perform multi-TRP transmission because information exchange
within the same site can be readily realized through an internal pipeline. It may
also be possible to group the TRPs of different sites into a cluster, namely, the
inter-site cluster provided with fast backhaul links for information exchange across
different sites. System-level simulations reveal that in the dense urban scenario,
the intra-site clustering often performs better than the inter-site clustering [10]. In
practice, the backhaul link has limited capacity and non-negligible latency. Hence
the implementation of inter-site clustering is more challenging than the intra-site
clustering. Thanks to recent advances in optical fiber technologies, instant and
reliable backhaul transmission becomes more promising. The encouraging devel-
opment of backhaul transmission stimulates the standardization progress to support
multi-TRP transmission by defining detailed control-plane specifications [2].

In the user-centric clustering, multiple TRPs are grouped as a cluster based on the
user reference. For example, the first few TRPs that provide the strongest reference
signal received power (RSRP) to the user can form a cluster. Alternatively, a cluster
may be formed by the neighboring TRPs whose RSRP values are sufficiently
close [11]. Clearly, the TRPs in the user-centric cluster may not belong to the same
site and not even close in their locations due to potential shadowing and blockage
effects. Compared with the network-centric clustering, the user-centric clustering
usually achieves a higher gain than the network-centric clustering [11] despite its
stringent requirement on the backhaul link.

ML for UA and PA To embrace significant system-wide capacity improvement of
multi-cell coordination, fast algorithms to solve the joint UA and PA optimization
problem is of paramount importance. This motivates some recent efforts on applying
machine learning (ML) approaches to solve classical optimization problems in
wireless networks. For example, the weighted minimum mean squared error
(WMMSE) algorithm is popular for solving the PA problem [4], but it requires
extensive matrix inversion and bisection search to obtain a good solution. The
authors in [12] propose to approximate WMMSE by a fully connected deep neural
network (DNN). Their results indicate that the sum rate achieved by the DNN is
very close to that obtained by WMMSE with less computational time. Similar to the
original WMMSE, the DNN used in [12] requires network-wide CSI. To alleviate
the signaling overhead for collecting full CSI, the authors in [13] proposed to train
a convolutional neural network (CNN) offline and then each transmitter (i.e., the

84 H.-C. Yu and K.-H. Liu

agent) decides the transmission power by the trained CNN using local CSI. The
PA problem for the massive multi-input multi-output (MIMO) network is studied in
[14]. Considering the huge dimension of the training data due to the large number of
antennas, a DNN for solving the PA problem is trained by user locations instead of
the exact channel coefficients as in [12, 13]. It is demonstrated that geographical
location information of UEs is a good proxy sufficient for a DNN to learn the
optimal transmission power. In the aforementioned work, the employed ML model
falls in the category of supervised learning, which requires a large set of training
data to ensure learning accuracy and thus it encounters the scalability problem, e.g.,
when multi-cell coordination is required to serve a large number of users.

Deep Reinforcement Learning-Based Approaches Another line of research
employs reinforcement learning (RL) to find the near-optimal solution of important
problems in wireless networks. Particularly, Q-learning has been widely used for
its simplicity and acceptable performance. In Q-learning, an agent interacts with
the environment by taking an action based on its observation about the status of the
environment and the reward it receives by taking a specific action. In [15], the joint
UA and PA problem is solved by a multi-agent Q-learning approach, where each
user acts as an agent. Each agent needs to maintain a Q-table, which stores the state–
action pairs about the past experience of interacting with the environment. Such a
lookup table-based approach is not practical to handle the problem with large action
and state spaces. A promising solution is to replace the Q-table by a neural network,
leading to the so-called deep Q-learning (DQL). Some attempts have successfully
applied DQL for solving various problems in wireless networks. For example,
DQL is used in [16] to enable distributed dynamic spectrum access for network
utilization maximization. In [17], a DQL-based approach is developed to solve the
PA problem in a multi-cell network. DQL is also used in [18] for transmission
power allocation in dense small-cell networks. The work in [19, 20] focuses on how
DQL can learn the optimal transmission power allocation in the presence of random
variations and delays in the CSI. Particularly, it is shown in [19] that the past state
and reward information can help the DQN learn the optimal solution when the
wireless channels are time varying. Furthermore, [20] demonstrates that the DQN
zero discount factor can be used as an estimator of the optimal transmission power.

The above existing work focuses on the PA problem assuming a serving cell
for each user has been determined, i.e., a certain UA scheme is in place. The
joint UA and PA problem is investigated in [21, 22] using the DQN as the solver
to approximate the optimal solution with different objectives. Particularly, the
maximum sum rate is considered in [22], while the maximum energy efficiency
is addressed in [22]. Their results suggest that compared to the DQN for solving the
PA problem along, the DQN trained to learn the optimal UA and PA solution jointly
possesses a larger performance gap from the real optimal solution.

5 Intelligentized RAN for Joint Optimization of UA and PA 85

5.3 Main Contribution

With the support of multi-cell coordination in the future RAN, each cell can
cooperate with its neighboring cells to decide its serving users and transmission
power. As the UA and PA are coupled decisions, they should be decided jointly
to achieve the optimum performance. Clearly, the joint UA and PA optimization is
non-convex and combinatorial and thus searching for the global optimal solution
is highly challenging. The classical optimization would use a certain iterative
algorithm where each iteration requires to solve either the UA or PA sub-problem
when the solution of the other is fixed. Many iterations are required before the
algorithm delivers a converged result. Iterative algorithms often encounter two
major challenges in solving the joint UA and PA problem: scalability and conver-
gence speed. In the context of multi-cell coordination, the widely used performance
indicator, such as the sum rate or energy efficiency, involves not only the channel
gains within the cell but also those in neighboring cells. Besides, the UA and PA
decisions taken by neighboring cells will influence the performance of each other.
As a result, the classical iterative-based algorithms need to handle a large solution
space and consume more iterations to converge. On the other hand, the ML-based
approaches have demonstrated great success in solving complex combinatorial
problems in numerous fields. Therefore, it would be interesting to explore the ML-
based approaches for solving the performance optimization problem for the future
RAN with multi-cell coordination. Most of the existing works reviewed in Sect. 5.2
focus on a single-cell scenario, while only very few consider the multi-cell network
without cross-cell coordination. To the best of our knowledge, how to apply ML to
solve the joint UA and PA problem under the coordination across different cells is
still an open issue and thus this contribution is devoted to fill the gap.

5.4 System Model

Network Architecture Consider a cellular network with N sites where each site
covers a geographic area consisting of three cells. Each site has K UEs uniformly
located and each cell has one TRP with Nt antennas. Each UE is assumed to have
one antenna for simplicity but the considered framework can be readily modified
to handle the case with multi-antenna UEs. For convenience, denote the set of sites
TRPs and UEs as N,M, and U, respectively. Under the considered cell structure,
there are 3N TRPs and KN UEs in the network. At time slot t , let ζm,u ∈ {0, 1}
indicate whether TRP m is activated to serve a UE u, i.e.,

ζm,u =
{

1, if UE u is served by TRP m,

0, otherwise.
(5.1)

86 H.-C. Yu and K.-H. Liu

Channel Model The radio propagation over the wireless medium suffers both large-
scale and small-scale fading. For UE u, the channel coefficient between this UE and
TRP m can be modeled by:

gm,u =
√
βm,uhm,u, (5.2)

where βm,u captures the distance-dependent path-loss and log-normal shadowing
and hm,u ∈ C1×Nt ∼ CN(0, 1) is the Rayleigh fading coefficient due to time-
varying multi-path propagation. The time variation is modeled by a first-order
complex Gauss–Markov process as given by Nasir and Guo [19]:

h(t)m,u = ρh(t−1)
m,u + eu, (5.3)

where ρ is the correlation coefficient and eu ∼ (0, 1 − ρ). According to the well-
known Jakes’ model, ρ = J0(2πdf T), where J0(·) is the first-kind zero order
Bessel function, fd is the maximum Doppler frequency, and T is the slot length.

Signal Model Based on the considered network structure, the received signal of
user u at slot t is given by:

y(t)u =
∑

m∈M
ζ (t)m,u

√
p
(t)
m g(t)m,uw

(t)
m,ux

(t)
m

+
∑

m∈M
(1 − ζ (t)m,u)

√
p
(t)
m g(t)m,uw

(t)
m,us

(t)
m + z(t)u , (5.4)

where pm(t) ∈ R, w
(t)
m,u ∈ CNt×1, and x(t)m ∈ C denote the transmission power,

precoding vector, and transmission signal by TRP m at slot t for UE u. The symbol
† represents the conjugate and transpose of a complex vector. Here, the first term is
the desired signal of UE u, the second term corresponds to the overall interference
signal, and z(t)u is the additive white Gaussian noise (AWGN) with zero mean
and variance σ 2. To maximize the received signal power, TRP m employs the
maximum transmission ratio (MTR) precoder to serve UE u as given by w

(t)
m,u =

(h(t)m,u)
†/‖h(t)m,u‖. According to (5.4), the received signal-to-interference-plus-noise

ratio (SINR) of UE u at slot t is given by:

SINR(t)u =
∑
m∈M ζ

(t)
m,u(G

(t)
m,u)

2pm(t)
∑
m∈M(1 − ζ (t)m,u)(G(t)m,u)2pm(t)+ σ 2

, (5.5)

where G
(t)
m,u = |(g(t)m,u)†w(t)m,u| represents the precoded channel gain. As a result, the

spectral efficiency of the downlink transmission for UE u at slot t can be expressed
as

C(t)u (p
(t), ζ (t)) = log2(1 + SINR(t)u), (5.6)

5 Intelligentized RAN for Joint Optimization of UA and PA 87

Table 5.1 Table of notations

Notation Meaning Notation Meaning

A Number of quantized power
levels

s(t)/a(t)/r(t) State/action/reward at slot t

C
(t)
u Spectral efficiency of UE u at

slot
T Slot length

C̄
(t)
u Normalized spectral efficiency

of UE u
Um Candidate UE set of TRP m

Cm The set of TRPs in the same
cluster as TRP m

w
(t)
m,u Precoding vector used by

TRP m for UE u at slot t

fd Maximum Doppler frequency βm,u Large-scale fading
coefficient

gm,u/Gm,u Channel coefficient/precoded
channel gain between TRP m
and UE u

γ Discount factor

hm,u Small-scale fading coefficient ε Probability of exploration

Iu The set of selected interfering
TRPs of UE u

ζm,u Decision variable for UA

kc Number of candidate UEs η Learning rate

Pmax Maximum transmission power θ
(t)
target/θ

(t)
train Model parameters of

target/train DQN

p
(t)
m Transmission power of TRP m

at slot t
ρ Correlation coefficient

Qm The set of UEs interfered by
TRP m

R(t) Accumulated reward up to slot t σ 2 Noise power

where [p(t)1 , · · · , p(t)M]T � p(t) and [ζ (t)1,1, · · · , ζM,KN]T � ζ (t) represent the
transmitting power vector and the user association vector at slot t that need to be
jointly optimized to maximize the total spectral efficiency.

5.5 Problem Formulation

In this section, we formulate the joint PA and UA problem that aims to maximize
the sum rate in the downlink transmission with multi-cell coordination. Based on
the described system model, the design problem can be formulated as follows:

(P) max
p(t),ζ (t)

N∑

n=1

∑

u∈U
C(t)u (p

(t), ζ (t))

s.t. 0 ≤ p(t)m ≤ Pmax, ∀ m ∈M (5.7)

88 H.-C. Yu and K.-H. Liu

∑

m∈M
ζ (t)m,u ≤ Nc, ∀ n ∈ N, u ∈ U (5.8)

ζ (t)m,u ∈ {0, 1}, ∀ m ∈M, n ∈ N, u ∈ U, (5.9)

where (5.7) follows because of the maximum power of each TRP, (5.8) specifies the
maximum cluster size to Nc, and (5.9) corresponds to the binary UA decision. It is
known that the optimal power control that maximizes the sum rate is an NP-hard
problem [23]. With the additional UA variables, it is more challenging to solve (P)
even in a single-cell setup. Despite the optimal solution can be found by searching
all possible combinations of (p(t), ζ (t)), the computational complexity is extremely
high for a large-scale network with many TRPs and UEs. This motivates a multi-
agent DQL approach, which can efficiently provide the close-to-optimal solutions
with affordable complexity.

5.6 DQL Framework

Among numerous machine learning models, Q-learning falls in the category of
model-free RL. Let S denote the state space of all possible states in the considered
network and A denote the action space consisting of user association and power
allocation decisions. By observing state s(t) ∈ S at time slot t , the agent takes
action at) ∈ A. After interacting with the environment, the agent receives a reward
r(t) and moves to the new state s(t+1) at slot t + 1. Traditional RL deals with
discrete state spaces. In our problem, S includes the channel status, which may
change with time in different rates depending on the UE moving speed and the
propagation environment. Since a discrete state space cannot fully characterize the
time-varying channel status, a neural network-based formulation of RL is adopted
as will be detailed in the following.

Figure 5.1 illustrates the proposed DQL framework for jointly optimizing trans-
mission power and user association. Specifically, each TRP acts as an agent to
take an action based on the observed state from the environment. The definition
of states and actions critically affects the learning accuracy of DQL and they will
be elaborated in Sec. 5.6.2. A policy π refers to the rule for the agent to choose an
action from the action space for a given state. To evaluate the expected return for
selecting action a in state s under policy π , a Q-function, also known as the DQN,
is used as given by:

Qπ(s, a; θ) = Eπ
[
R(t)

∣
∣∣∣s
(t) = s, a(t) = a

]
, (5.10)

where θ represents the set of DQN parameters and R(t) is the accumulated
discounted reward given as

5 Intelligentized RAN for Joint Optimization of UA and PA 89

Fig. 5.1 The proposed DQL framework

R(t) =
∞∑

τ=0

γ τ r(τ+t), (5.11)

where 0 ≤ γ ≤ 1 is a discount factor that strikes the balance between the future
reward and the current one by taking an action. Then the optimal policy can be
expressed as

Q∗(s, a) = Es′
[
r + γ max

a′
Q
(
s′, a′

) |s′ = s, a′ = a
]
. (5.12)

5.6.1 DQN

Since the Q-function is non-linear, a neural network is used to approximate
the optimal Q-function, Q(s, a; θ) ≈ Q∗(s, a). Whether the approximation is
sufficiently accurate relies on the independence of the training data. Instead of

90 H.-C. Yu and K.-H. Liu

learning from the training data in sequential order, the experience replay technique is
commonly used, where the experience tuple

(
s(t), a(t), r(t), s(t+1)

)
is stored into the

memory set D, which is a first-in-first-out queue with capacity Cmemory. Besides,
a DQL may overestimate action values under certain conditions and thus double
Q-learning has been widely adopted [24]. With double Q-learning, two DQNs
are employed, namely the target DQN with parameter θ

(t)
target and train DQN with

parameter θ
(t)
train.

During training, the DQN samples a random mini-batch D(t) from D to update
θ
(t)
train. On the other hand, θ

(t)
target is synchronized with θ

(t)
train once every Tc steps to

reduce its correlations with the target DQN. At time t , the train DQN updates its
parameter θ

(t)
train by considering the loss function in the mean square error sense as

given by:

L(θ
(t)
train) =

∑

(s(t),a(t),r(t),s(t+1))∈D(t)

(
y
(t)
DQN−Q(s(t), a(t); θ (t)train)

)2
, (5.13)

where

y
(t)
DQN = r(t) + γ max

a′
Q
(
s(t+1), a′; θ (t)target

)
. (5.14)

Based on stochastic gradient descent (SGD), θ train is updated as

θ
(t+1)
train = θ

(t)
train + η

(
y
(t)
DQN −Q

(
s(t), a(t); θ (t)train

))
·
�
Q
(
s(t), a(t); θ (t)train

)
,

(5.15)

where 0 ≤ η ≤ 1 is the learning rate. To approximate the near-optimal solution,
centralized training is considered in the training stage, while each agent trains a
single DQN by using all agents’ experience memory. The shared experience across
all agents not only helps to stabilize the training of the DQN but also improves the
learning efficiency.

5.6.2 Design the DQN

As mentioned, each TRP acts as an agent and chooses an action using a dedicated
DQN consisting of an input layer, followed by L fully connected hidden layers each
with Nl neurons and a fully connected output layer. For TRP m, the input layer of
the DQN is fed by the state vector s(t)m . Based on the input, the DQN estimates the
Q-value of each action for a given state. Then, the agent takes the action according
to the adaptive ε-greedy algorithm. Specifically, an agent takes the action that has
the maximum Q-value with probability 1 − ε and it randomly selects an action

5 Intelligentized RAN for Joint Optimization of UA and PA 91

with probability ε to balance exploration and exploitation. After interacting with
the environment, TRP m receives a reward r(t)m and moves to the next state s(t+1)

m .
When applying the DQN to solve the joint power control and user association

problem, three key elements including states, actions, and rewards need to be
carefully designed. They are defined as follows:

State In multi-TRP transmission, a UE suffers two kinds of interference, including
the one from the TRPs within the same cluster, referred to as the intra-cluster
interference, as well as the one from the TRPs of different clusters, referred to
as the inter-cluster interference. Both types of interference can be well suppressed
by carefully choosing the TRP’s transmission power and the serving/cooperating
TRPs for each UE. This implies the state information about the TRPs within the
same cluster is as important as that of other clusters. However, each TRP only
has some local information about the environment and thus information exchange
among different TRPs is necessary to assist a better decision making.

To avoid catastrophic bandwidth consumption for information exchange, each
TRP considers a set of candidate UEs, which is denoted asU(t)m for TRPm at time t .
Only the state information related to the candidate UEs is collected and exchanged.
A simple choice of U(t)m is to pick those UEs that have stronger channel gains with
TRP m because their superior channel conditions are beneficial to boost the sum
rate. For each candidate UE in U(t)m , the state is composed of three feature groups.
For simplicity, suppose the number of candidate UEs of each TRP, denoted by kc, is
identical to all TRPs.

1. Intra-cluster features The intra-cluster feature group consists of five sets of
information: current and the past CSI, the indication about how likely a TRP
may serve a UE, and the current and the past transmission power. Each type of
information has its own purpose to the DQL. For illustration, let Cm denote the
set of TRPs within the same cluster as TRP m.

• Current CSI: To support multi-TRP transmission, each TRP needs to collect
not only the CSI about itself but also the CSI about other TRPs in the same
cluster. Thus there are three sets of CSI collected by each TRP.

– The first-type CSI refers to the serving channel between each TRP in Cm
and its candidate UEs inU(t)m . The serving channel gain G

(t)
m,u for u ∈ U(t)m

allows TRP m to evaluate the downlink spectral efficiency .
– Each TRP collects the channel gains between its candidate UEs and other

TRPs in the same cluster, namely, G(t)
m′,u form′ ∈ C(t)m \m and u ∈ U(t)m . The

second-type channel has two roles depending on the transmission mode. In
the multi-TRP transmission mode, TRP m′ in C(t)m serves UE u ∈ U(t)m
together with TRP m and thus G

(t)

m′,u is also the serving channel gain. In
the single-TRP transmission mode, the transmission from TRP m′ causes
interference to UE u ∈ U(t)m . In this case, G

(t)

m′,u is used by TRP m to

estimate the interference level for UE u ∈ U(t)m .

92 H.-C. Yu and K.-H. Liu

– The channel gain of the third type is denoted by G
(t)

m′,u′ for m′ ∈ U(t)m \m
and u′ ∈ U(t)

m′ , which is also the first-type CSI associated with TRP m′ in

the same cluster as TRPm. By exchanging the third-type CSI, TRPs in C(t)m
can diagnose the gain and loss of performing multi-TRP transmission.

• Past CSI: Besides the CSI at the current slot t , TRP m also collects that at
time t − 1, i.e., G

(t−1)
m,u , G

(t−1)
m′,u , G

(t−1)
m′,u′ to help track the variation of CSI for

m ∈ U(t)m , m′ ∈ C(t)m \m, u ∈ U(t)m , and u′ ∈ U(t)
m′ . Although having more past

measurements helps the agent to make a better decision, the complexity of the
DQN also grows.

• Preference indication: With multi-TRP transmission, each TRP’s transmission
power and association decision will affect the interference power experienced
by not only its serving UE but also other non-serving UEs. Due to this depen-
dence, we implement a candidate indicator denoted by V u,m′ ∈ {0, 1}kc×1 for

m′ ∈ Cm and u ∈ U(t)m , which indicates whether each candidate UE of TRP
m is also the candidate UE of TRP m′ in the same cluster with TRP m. For
example, if the candidate UE u ∈ U(t)m coincidentally is the kth candidate
UE of TRP m′’s in Cm, the kth element of V u,m′ will be one, and it is zero
otherwise. Similar to CSI, the preference indicator at time t−1 is also included
in s(t)m .

• Past transmission power: The last set of state information is the transmission
power used by all the TRPs in the same cluster. For TRPm, p(t−1)

m′ , ∀m′ ∈ Cm
will be included in s(t)m .

2. Inter-cluster features With dense deployments cells, a UE may suffer severe
interference from the TRPs of other clusters. Information such as CSI and
transmission power of TRPs from other clusters would be useful for each TRP to
learn its best action under the interference from other clusters. Since collecting
the information from all the other clusters is costly, we limit the information
exchange across clusters only to the first few inter-cluster TRPs that have the
largest channel gain to the candidate UE of each TRP because they serve as the
strongest interferers. To this end, let Iu represent the set of selected inter-cluster
interfering TRPs to UE u ∈ U(t)m . Then the channel gains G

(t)
i,u and transmission

powers p(t)i at time t as well as G
(t−1)
i,u and p(t−1)

i at time t − 1 for i ∈ Iu and

u ∈ U(t)m are included in s(t)m .

5.6.2.1 Actions

Based on the state information, the actions to take by each agent (i.e., TRP) include
which candidate user to serve (i.e., user association) and the transmission power.
Recall that the transmission power p(t)m is a continuous decision variable in (5.7).
While DQN can handle continuous action spaces through methods such as actor-

5 Intelligentized RAN for Joint Optimization of UA and PA 93

critic or policy gradient, we choose to use discrete actions because the transmission
power is also the state information that needs to be exchanged between TRPs.
Using quantized transmission power as the DQN state is commonly considered
in the related literature [18, 19]. To facilitate state information exchange between
TRPs, the interval [0, Pmax] is split into A levels, corresponding to �log2(A)�
number of bits with �·� denoting the ceiling function. As a result, the set of possible
transmission power can be represented as {0, Pmax

A−1 ,
2Pmax
A−1 · · · , Pmax}. On the other

hand, the set of UA variables for TRP m is {ζ (t)m,1, · · · , ζ (t)m,kc }. The action space for
TRP m is thus fully characterized by:

Am = {(ζ (t)m,1, 0), (ζ (t)m,1,
Pmax

A− 1
), · · · , (ζ (t)m,kc , 0), · · · , (ζ

(t)
m,kc

, Pmax)}. (5.16)

5.6.2.2 Reward

The proposed DQL framework is expected to solve the optimization problem (P).
Thus the action adopted by the agent should maximize the sum rate as given by the
objective function of (P). However, simply defining the sum rate as the reward for
each agent is problematic in the considered multi-agent DQL. Specifically, the sum
rate achieved by the multi-TRP transmission is always higher than that by the single-
TRP transmission. Thus each agent tends to maximize its reward by persistently
participating in the multi-TRP transmission with other agents. However, the gain of
the multi-TRP transmission comes at the cost of excessive use of resources. As a
result, less number of UEs can be served if the multi-TRP transmission is overused
that does not maximize the sum rate. To avoid overestimating the contribution of
a TRP to the sum rate, we introduce the notion of normalized spectral efficiency
(NSE), which normalizes the spectral efficiency achieved by serving a UE to the
number of TRPs used for serving that UE. For an arbitrary UE u associated with
TRP m, its NSE can be expressed as

C̄(t)u = C
(t)
u

∑
m∈M ζ

(t)
m,u

, (5.17)

where the numerator is the spectral efficiency given in (5.6) and denominator
indicates the number of active TRPs for serving UE u, which acts as a penalty to
the active TRP due to its introduced interference to other UEs. Then we define the
reward for TRP m as the difference between the gain and the cost of serving UE
u. In specific, the NSE in (5.17) presents the gain that TRP m contributes to the
network by serving UE u. On the other hand, TRP m causes interference to other
UEs in the proximity that results in reduced sum rate. Hence the cost of serving UE
u is measured as the reduced NSE due to the association between TRPm and UE u.
LetQ(t)m denote the set of UEs interfered by TRPm. For any UE inQ(t)m , the achieved
NSE when TRP is not active in serving UE u is given by:

94 H.-C. Yu and K.-H. Liu

C̄u′∈Qm(t),∼m= log2

(

1+
∑
m∈M ζ

(t)

m,u′(G
(t)

m,u′)
2p
(t)
m

∑
m′∈M\m(1 − ζ (t)m′,u′)(G(t)m′,u′)2p(t)m′ + σ 2

)/∑

m′∈M
ζ
(t)

m′,u′ .

(5.18)

Finally the reward of TRP m for serving UE u is

r(t)m = C̄(t)u −
∑

u′∈Qm(t)

(
C̄u′∈Qm(t),∼m − C̄(t)u′

)
, (5.19)

where the summation term accounts for the reduced NSE of each UE in Q(t)m due to
TRP m’s transmission.

5.7 Results and Discussions

Simulations are performed to evaluate the performance of the proposed DQN for
solving (P). In simulations, the number of sites N varies from 4 to 25 with the
minimum inter-site distance of 500 m. Each site has three TRP, each with two
antennas. UEs are uniformly distributed in the area whose size depends on N . The
small-scale fading gain follows the Rayleigh distribution with Doppler frequency
fd = 10 Hz. To model the path loss, the COST Hata model is considered with

β =46.3 + 33.9log10 (fc)− 13.82log10 (hBS)

− a (hUE)+
[
44.9 − 6.55log10 (hBS)

]
log10 (d) [dB] , (5.20)

where fc is the carrier frequency, hTRP and hUE denote the antenna height of the
TRP and UE antennas, respectively, d (km) is the distance between a TRP and a
UE. For the suburban scenario,

a (hUE) =
(
1.1log10 (f)− 0.7

)
hUE −

(
1.56log10 (fc)− 0.8

)
. (5.21)

The rest of physical parameters are listed in Table 5.2.
The DQN architecture, as shown in Fig. 5.1, contains L = 5 hidden layers of

fully connected neural networks with 512, 256, 256, 128, and 64 neurons in each
layer, respectively. For each hidden layer, rectified linear unit (Relu) is adopted as
the activation function, while the linear activation function is used for the output
layer. The input layer is fed with the intra-cluster and inter-cluster feature groups.
The state of the intra-cluster feature group has 128 elements and that of inter-cluster
feature group has 100 elements. Thus, each state has a total dimension of 228.
In addition, the number of power levels A is set to 10 as in [19]. The number of
candidate UEs per TRP is set to kc = 5. For each UE, the set of interfering TRPs

5 Intelligentized RAN for Joint Optimization of UA and PA 95

Table 5.2 Physical parameters considered in simulations

Parameter Value

System frequency fc 2000 MHz

TRP antenna height hBS 32 m

UE antenna height hUE 1 m

Antenna pattern A(θ) A(θ) = −min[12(θ
θ3dB
, Am)] θ3 textdB = 70◦, Am = 20 dB [1]

Log-normal shadowing
standard deviation

8 dB

Maximum transmit power
Pmax

38 dBm

AWGN power σ 2 −114 dBm

Table 5.3 DQN parameters

Parameter Value

Maximum training episodes Emax 5000

Training interval Tmax 10

Memory size Cmem 50,000

Learning rate η 10−3

Initial epsilon 0.2

Final epsilon 10−4

Im has five TRPs and the cluster size |Cm| for each TRP m is equal to three. As to
each TRP, the set of interfered UEs Qm has the size of five.

Train the DQN We implement the proposed DQUPA with TensorFlow. In the
training stage, the model parameters θtrain and θtarget are randomly initialized and
then trained with the maximum number of episodes denoted by Emax. Each episode
contains Tmax time slots during which the large-scale fading remains constant and
the small-scale fading changes independently from one slot to another. At the end
of an episode, the UE locations are re-drawn randomly. Each agent, namely TRP,
takes actions following the adaptive ε-greedy policy, which determines the user
association and power allocation based on the estimated Q-value to compromise
between exploitation and exploration. In this way, exploration enables an agent to
improve more informed decisions and avoid trapping in the sub-optimal decision.
The DQN is trained by taking a random mini-batch D(t) from the memoryD every
Tc slots, and the Adam algorithm is adopted as the optimizer in our work. During
the testing stage, the ε-greedy algorithm is inactivated, i.e., the agent only takes the
action with the maximum Q-value from the output layer. Important DQN parameters
are listed in Table 5.3.

Benchmarks In the following figures, the results obtained by jointly solving UA
and PA using DQN are denoted by

DQN (joint).

96 H.-C. Yu and K.-H. Liu

In comparison, a few benchmark schemes are considered as explained below:

• Greedy UA: each UE is associated with the TRP, which offers the strongest
channel gain.

• Genetic algorithm (GA): GA is a well-known meta-heuristic algorithm. We use
GA to solve the UA sub-problem assuming each TRP has global CSI, i.e., every
channel gain in the network is available to each TRP. With this ideal assumption,
the solution obtained by GA is close to optimal.

• Max-P: Each TRP transmits with the maximum power without power allocation.
• WMMSE [23]: This algorithm delivers the optimal power allocation that maxi-

mizes the sum rate under the condition that global CSI is available at each TRP.
• DQN (Separate): Two separate DQNs are used to solve (P) sequentially. The

UA sub-problem is solved by one DQN assuming each TRP transmits with the
maximum power. Then the PA sub-problem is solved by the other DQN based on
the UA result delivered by the first DQN.

While the high complexity of (P) makes it difficult to find the exact optimal
solution, we anticipate that the solution obtained by subsequently solving the UA
sub-problem and the PA sub-problem using GA and WMMSE, respectively, should
be close to the optimal one. In what follows, the results obtained using GA and
WMMSE is denoted as “GA+WMMSE.”

5.7.1 Training and Testing Results

We first study the training performance under different DQN parameters forM = 12
TRPs and K = 10 UEs in each cell. Figure 5.2a, b shows the SE during the training
stage under different discount rate γ and batch size D, respectively. One can see
that there exists a good choice of the discount rate that leads to the best training
performance, and same as the batch size. It is shown from Fig. 5.2 that when an
agent trusts all future awards (i.e., γ = 1) or when it cares about an immediate
award only (i.e., γ = 0), it does not learn the best action appropriately. Weighting
the recent awards more than the future awards by choosing a smaller discount factor,
say γ = 0.3, achieves a faster convergence of the training process than a larger
value (e.g., γ = 0.9). Similarly, a mild choice of the batch size, e.g., D = 128 is
promising to stabilize the training process.

The training performance of the proposed DQN in comparison with some
benchmarks is depicted in Fig. 5.3. As can be seen, the proposed DQN for jointly
solving UA and PA shows a linear improvement of the average SE over the first 4000
episodes. At the 4000th episode, we deactivate the adaptive ε-greedy algorithm such
that the agents only take the action with the maximum output value of DQN output
layer. Consequently, the average SE slightly fluctuates between 5.25 and 5.5 bps/Hz,
indicating that the proposed DQN reaches a convergence.

Figure 5.4 shows the testing result after training. The proposed DQN (joint)
achieves nearly the same SE as GA+WMMSE. This may be a sign that the proposed

5 Intelligentized RAN for Joint Optimization of UA and PA 97

Fig. 5.2 Training results during 5000 episodes. (a) Impact of discount rate γ . (b) Impact of batch
size D

Fig. 5.3 Training results during 5000 episodes

Fig. 5.4 Testing results over 3000 episodes

98 H.-C. Yu and K.-H. Liu

Fig. 5.5 CDF of the average spectral efficiency per UE

DQN (joint) delivers near-to-optimal solutions of (P). On the other hand, DQN
(separate) incurs a slight performance loss (about 6.2%) compared with DQN
(joint). All these schemes perform much better than Greedy+Max-P, which will be
considered as a performance lower bound in the subsequent discussions.

5.7.2 UE Performance

Figure 5.5 shows the CDF of the average spectral efficiency per UE of dif-
ferent schemes. Again, the performance of DQN (joint) is very close to that
of GA+WMMSE. Compared with the two DQN-based schemes, DQN (joint)
slightly improves the average spectral efficiency per UE and they both significantly
outperform Greedy+Max-P.

5.7.3 Robustness

In the considered scenario, the channel fading is a time-varying process that
introduces correlation to the training data. Figure 5.6 shows the average spectral
efficiency per TRP as a function of the maximum Doppler frequency fd . With a
fixed slot duration, a smaller fd results in a slower change on the channel fading
and thus the channel gains between consecutive slots are more correlated and vice
versa. As fd → ∞, the correlation coefficient ρ is close to zero in which case the
channel gains are uncorrelated variables. This case is labeled as “uncorrelation”
in the figure. As can be seen, the proposed DQN is robust to the time-varying
channels. We note that the SE achieved by GA+WMMSE and Greedy+Max-P is
not sensitive to ρ because both schemes solve (P) in a centralized manner assuming

5 Intelligentized RAN for Joint Optimization of UA and PA 99

Fig. 5.6 Average spectral efficiency per TRP under different correlation coefficient ρ

Fig. 5.7 Average spectral efficiency per TRP vs. number of TRPs

global and accurate CSI is available at a central controller. Differently, the proposed
DQN is implemented at each TRP with local CSI and limited CSI exchange with
neighboring clusters.

5.7.4 Scalability

In the multi-agent DQL, each TRP acts as an agent that takes its own actions
based on some local information. To observe how the proposed DQL performs in a
network with a large number of TRPs, Fig. 5.7 shows the average spectral efficiency
per TRP of the considered algorithms with varied number of TRPs from 12 to 75.
To do so, the number of sites is increased from 4 to 25 and each site has three
cells. The number of users per cell is set to 10 as before. This results in higher

100 H.-C. Yu and K.-H. Liu

Fig. 5.8 Comparison of computational time

density of TRPs and users in a fixed geographical area. One can see that as the
TRPs are deployed denser, the spectral efficiency per TRP of all the schemes gets
reduced. Despite network densification improves the received signal strength due
to the shortened distance between the activated TRPs and their served users, the
intra-cluster and inter-cluster interference also increases. We note that the MRT
precoder does not mitigate the intra-cluster and inter-cluster interference, which
needs to be canceled via coordinated beamforming or scheduling across different
cells not considered in the present work. Another important observation is that
the performance gap between DQN (joint) and GA+WMMSE is nearly constant
in the figure, suggesting that the proposed DQN (joint) can scale well even in the
interference-limited scenario. However, the difference between DQN (separate) and
GA+WMMSE increases from 5% to 11% as the number of TRPs increases from 12
to 75. This indicates that with more TRPs, i.e., agents in the network, the actions
taken by individual agent deviate more severely from the global optimal.

We also compare the complexity of each algorithm by showing their computa-
tional time per episode in Fig. 5.8. All the algorithms are implemented in Python on
an Intel CPU at 2.5 GHz (128 GHz RAM) desktop. It is shown that when the number
of TRPs increases from 12 to 75, the computational time of the proposed DQN
(joint) and DQN (separate) is nearly constant. The computational time of the DQN
mainly depends on the number of states. In the proposed DQN, the information
exchange within the same cluster is limited to a fixed number of candidate UEs
such that the number of states per DQN is kept unchanged. Clearly this results in a
certain performance loss because only partial information about the neighboring
cells is available to each agent. As discussed in Fig. 5.7, the spectral efficiency
loss of DQN (joint) is quite small while that of DQN (separate) is slightly larger.
Although GA+WMMSE achieves the highest spectral efficiency, its computation
time is about ten times longer than the proposed DQN. The above results allow

5 Intelligentized RAN for Joint Optimization of UA and PA 101

(a) (b)

(c) (d)

Fig. 5.9 Performance of separate DQN: (a) Training results of the UA sub-problem, (b) Testing
results of the UA sub-problem, (c) Training results of the PA sub-problem, and (d) Testing results
of the PA sub-problem

us to conclude that the proposed DQN with limited information exchange among
agents can adapt to network topology changes with desired scalability.

5.7.5 Closer Look at DQN

To better understand how DQN performs in solving the UA and PA sub-problems,
we show the results of using DQN to solve the two sub-problems individually in
Fig. 5.9 along with those from the benchmark schemes. As before, the SE per TRP
is considered as the performance metric. For a fair comparison, all the active TRPs
transmit with the maximum power in the considered schemes. The results clearly
show that the proposed DQN can efficiently migrate to a better solution during
the training period and consistently locate the close-to-optimal solution during the
testing period. From Fig. 5.9c, d, it is observed with the UA solution obtained by
GA, the proposed DQN performs as good as WMMSE for solving the PA sub-
problem. However, the proposed DQN only delivers sub-optimal solution for the

102 H.-C. Yu and K.-H. Liu

UA sub-problem as indicated in Fig. 5.9a, b. From the above results, the UA sub-
problem seems to be harder to DQN comparing to the PA sub-problem. It is thus
inferred that the deficiency of the DQN for solving the UA sub-problem is the root
cause of the error when using the DQN to solve the joint UA and PA problem.

5.8 Summary

A DQL-based approach is proposed in this work to solve the joint optimization
problem of UA and PA for the future RAN supported by multi-cell coordination.
The proposed DQN is implemented at each TRP with limited information exchange
across a small number of clusters. Simulation results demonstrate that the proposed
DQN is able to deliver closed-to-optimal solutions that are dynamically formed to
serve UEs. Besides, it is robust to the time-varying fading channels that introduce
correlation to the input state. Although some performance loss is incurred when the
number of TRPs is increased, the proposed DQN can still perform comparably to
the scheme, which first finds the optimal UA decision using GA and then obtains the
optimal PA using the WMMSE algorithm, assuming a centralized implementation
with global CSI. Since the proposed DQN is deployed at each TRP using local and
limited CSI from neighboring clusters, it helps to intelligentize the future RAN with
low signaling overhead for multi-cell coordination.

References

1. 3GPP TR 36.819 (V.11.2.0), Coordinated multi-point operation for LTE physical layer aspects
(2013)

2. 3GPP TSG RAN WG1 Meeting #86bis, Final report. R1-1608562 (2016)
3. X. Foukas, G. Patounas, A. Elmokashfi, M.K. Marina, Network slicing in 5G: survey and

challenges. IEEE Commun. Mag. 55(5), 94–100 (2017)
4. Q. Shi, M. Razaviyayn, Z.-Q. Luo, C. He, An iteratively weighted mmseapproach to distributed

sum-utility maximization for a mimo interfering broadcastchannel. IEEE Trans. Signal Pro-
cess. 59(9), 4331–4340 (2011)

5. K. Shen, W. Yu, Fractional programming for communication systems - Part I: power control
and beamforming. IEEE Trans. Signal Process. 66(10), 2616–2630 (2018)

6. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, J.G. Andrews, User association for load
balancing in heterogeneous cellular networks. IEEE Trans. Wireless Commun. 12(6), 2706–
2716 (2013)

7. S.G. Kiani, G.E. Oien, D. Gesbert, Maximizing multicell capacity using distributed power
allocation and scheduling, in Proceedings IEEE Wireless Communications and Networking
Conference (WCNC), Hong Kong (2007), pp. 1690–1694

8. T. Zhou, Z. Liu, J. Zhao, C. Li, L. Yang, Joint user association and power control for load
balancing in downlink heterogeneous cellular network. IEEE Trans. Veh. Technol. 67(3),
2582–2593 (2018)

9. S. Bassoy, H. Farooq, M.A. Imran, A. Imran, Coordinated multi-point clustering schemes: a
survey. IEEE Commun. Surv. Tuts. 19(2), 743–764 (2017)

5 Intelligentized RAN for Joint Optimization of UA and PA 103

10. 3GPP TSG RAN WG1 Meeting #95, Intra-site vs. inter-site clustering for nc-jt and dps in
dense urban. R1-1813612 (2018)

11. 3GPP TSG RAN WG1 Meeting #95, Comaprison of nc-jt performnance with coordinated and
independent scheduling in dense urban scenario. R1-1813613 (2018)

12. H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, N.D. Sidiropoulos, Learning to optimize: training
deep neuralnetworks for interference management. IEEE Trans. Signal Process. 66(20), 5438–
5453 (2018)

13. W. Lee, M. Kim, D.-H. Cho, Deep power control: transmit power control scheme based on
convolutional neural network. IEEE Commun. Lett. 22(6), 1276–1279 (2018)

14. L. Sanguinetti, A. Zappone, M. Debbah, Deep learning power allocation in massive MIMO,
in Proceedings of Asilomar Conference on Signals, Systems, and Computers, Pacific Grove
(2018), pp. 1257–1261

15. D. Li, H. Zhang, K. Long, W. Huangfu, J. Dong, A. Nallanathan, User association and power
allocation based on Q-learning in ultra dense heterogeneous networks, in Proceedings of IEEE
Global Communications Conference (GLOBECOM),Waikoloa (2019), pp. 1–5

16. O. Naparstek, K. Cohen, Deep multi-user reinforcement learning for dynamic spectrum
access in multichannel wireless networks, in Proceedings of IEEE Global Communications
Conference (Globecom), Singapore (2017), pp. 1–7

17. K.I. Ahmed, E. Hossain, A deep Q-learning method for downlink power allocation in multi-cell
network (2019). arXiv:1904.13032

18. L. Xiao, H. Zhang, Y. Xiao, X. Wan, S. Liu, L.-C. Wang, H.V. Poor, Reinforcement
learning-based downlink interference control for ultra-dense small cells. IEEE Trans. Wireless
Commun. 19(1), 423–434 (2020)

19. Y.S. Nasir, D. Guo, Multi-agent deep reinforcement learning for dynamic power allocation in
wireless networks. IEEE J. Sel. Areas Commun. 37(1), 2239–2250 (2019)

20. F. Meng, P. Chen, L. Wu, Power allocation in multi-user cellular networks with deep Q
learning approach, in Proceedings of IEEE International Conferenceon Communications
(ICC), Shanghai (2019), pp. 1–6

21. S. Xu, P. Liu, R. Wang, S.S. Panwar, Realtime scheduling and power allocation using
deep neural networks, in Proceedings of IEEE Wireless Communications and Networking
Conference (WCNC), Marrakesh (2019), pp. 1–5

22. H. Ding, F. Zhao, J. Tian, D. Li, H. Zhang, A deep reinforcement learning for user association
and power control in heterogeneous networks. Ad Hoc Netw. 102(1), 102069 (2019)

23. Z.-Q. Luo, S. Zhang, Dynamic spectrum management: complexity and duality. IEEE J. Sel.
Top. Signal Process. 2(1), 57–73 (2008)

24. H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in
Proceedings of Thirtieth AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016)

Chapter 6
Routing Algorithms for Heterogeneous
Vehicular Networks

Yujie Tang and Wen Wu

6.1 Introduction

Conventionally, ad hoc mode transmissions based on the connections between
vehicles and roadside units (RSUs) in vehicular networks are referred to as vehicular
ad hoc networks (VANETs), which mainly focus on road safety applications. With
the new era of the Internet of Things (IoT), the conventional VANETs have evolved
to the Internet of Vehicles (IoV) [1].

IoV is an important component of intelligent transportation systems (ITS) and
has emerged as an active research topic in recent years. The main goal of IoV is to
alleviate traffic congestion, enhance road safety, improve transportation efficiency,
and provide Internet access and entertainment service for both passengers and
drivers [2]. In IoV, vehicles and RSUs such as roadside base stations or access
points are installed with short range wireless transceivers. Vehicles are connected
through vehicle-to-infrastructure (V2I) or vehicle-to-vehicle (V2V) communication
links [3]. There is a suite of wireless standards referred to as dedicated short-range
communication (DSRC) [4], which includes IEEE 802.11p, IEEE 1609.1/.2/.3/.4
protocol family, and SAE J2735 message set dictionary [5]. DSRC supports both
V2I and V2V communications. In IoV, RSUs are fixed infrastructure deployed along
the road to provide services for vehicles. The vehicles are equipped with on-board
unit (OBU) so that they can communicate with other vehicles and RSUs. In addition
to DSRC, the existing Wi-Fi and cellular technology such as long-term evolution
(LTE) can also be the options for next-generation vehicular networks.

Y. Tang (�)
School of Computer Science and Technology, Algoma University, Sault Ste. Marie, ON, Canada
e-mail: yujie.tang@algomau.ca

W. Wu
Pengcheng Laboratory, Shenzhen, P.R. China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_6&domain=pdf
mailto:yujie.tang@algomau.ca
https://doi.org/10.1007/978-3-030-98064-1_6

106 Y. Tang and W. Wu

IoV has encountered several unique challenging issues. First, the vehicular
network topology is highly dynamic due to rush hours and traffic jams. Second, the
high mobility characteristic of vehicles results an intermittent connectivity between
the vehicles and RSUs or among the vehicles. In other words, communication links
in IoV may have frequent outages when they are exchanging information. However,
traditional routing schemes such as ad hoc on-demand distance vector (ADOV) [6],
optimized link state protocol (OLSR) [7], and dynamic source routing (DSR) [8] are
not efficient or fully applicable to IoV. Therefore, in order to address the challenges
in IoV, various ad hoc routing protocols have been proposed [9–11]. These protocols
adopt hello messages to detect neighbor nodes. The hello messages are used to carry
the vehicle’s geographic position, velocity, and moving direction information. This
kind of information tends to exhaust the communication bandwidth due to periodic
beaconing. Moreover, heavy control cost occurs under the rapidly changing network
topology. Software-defined network (SDN) has emerged as a solution to control
the networks with low communication cost. In the SDN paradigm, it separates the
data plane and control plane to simplify the network management and expedite
system evolution [12]. There are three advantages of SDN-based IoV. First, the
network management and control can be simplified through the SDN controller
since it decouples the control and data planes as well as provides elasticity for
IoV. Second, the SDN controller can collect the global information to make the
optimal routing decision, and switches report vehicle status information to the SDN
controller, but they do not need to exchange beacon information with each other
periodically. Routing overhead can be reduced. Third, since routing decisions may
change due to the failures of some switches, the central SDN controller is aware
of the connections among switches, which makes the routing accurate and flexible.
Nevertheless, there are still many challenges need to be solved. Vehicles are moving
fast and vehicular network topology changes dynamically. Therefore, the decisions
made by the SDN controller need to be timely. In addition, even though the SDN
controller can make the optimal routing decision based on the global information, it
is not easy to achieve.

In order to address the open issues, we introduce a unicast routing protocol
for IoV [13] in this chapter. The main goal is to minimize the delay without
continuously monitoring vehicle locations since the continuous monitoring may
cause a large amount of overhead. The routing decision may not be accurate enough
due to the high mobility of vehicles, so mobility prediction would be a better choice
to estimate the vehicle connections. The proposed centralized routing scheme with
mobility prediction (CRS-MP) can guarantee more timely and reliable transmissions
for IoV, in which the SDN controller can intelligently predict vehicle arrivals and
therefore vehicle connections.

The remainder of this chapter is organized as follows. Section 6.2 introduces
an overview of the routing algorithms in IoV. Specifically, the CRS-MP routing
algorithm is presented in Sect. 6.3. Simulation results are demonstrated in Sect. 6.4.
Finally, conclusions are given in Sect. 6.5.

6 Routing Algorithms for Heterogeneous Vehicular Networks 107

6.2 Background

6.2.1 Unicast Routing Algorithms

Through unicast routing algorithms, a source vehicle is able to deliver a message to
a specific destination vehicle. Therefore, the main goal of unicast routing in IoV is to
transmit data from one vehicle to the other via wireless multi-hops. Unicast routing
can be classified into four categories: position-based, topology-based, map-based,
and path-based. In position-based routing, packets are forwarded based on locations
of vehicles’ neighbors and destinations, while in topology-based routing, packets
are delivered based on the information of network links. In map-based routing,
packets are forwarded according to the forwarding path, which is calculated based
on vehicle’s location and placement on the map. Path-based routing makes use of
the vehicle mobility prediction to calculate the packet delivery delay and find the
next hop to forward a packet. In this chapter, the routing algorithm presented in
Sect. 6.3 belongs to the unicast routing.

6.2.2 Broadcast Routing Algorithms

In IoV, vehicles can share emergency, traffic, weather, and other information through
broadcast transmissions. Broadcast routing algorithms enable the broadcast trans-
missions that one vehicle delivers a message to other vehicles within its transmission
range. However, the broadcast protocols rely on large message dissemination and
hence may cause a high communication overhead and message congestion on the
network. Therefore, broadcast storm is a big challenge in broadcast transmissions.
In order to solve this issue, a two-phase multi-hop broadcast routing algorithm
is proposed in [14], which focuses on the urban area. An emergency broadcast
routing algorithm is presented by Durresi et al. The algorithm is operated based on
geographical locations of the vehicles in a partitioned highway. Sensors are installed
in vehicles and they continuously gather important information. If any emergency
is detected, it will be broadcasted to other vehicles [15]. In [16], Fang and Luo
proposed a two-timer-based broadcast routing algorithm, which is totally distributed
and only relies on GPS information, but it has faster packet penetration speed and
smaller delay compared with slotted routing algorithm and the traditional flooding-
based routing algorithm.

6.2.3 Geocast Routing Algorithms

Geocast routing algorithms are basically location-based multicast routings. In
geocast routing, messages can be delivered to a group of vehicles in an IoV based

108 Y. Tang and W. Wu

on their geographic locations. Many IoV applications can benefit from it. Celes et
al. in [17] presented a spatial information-based approach for routing in IoV, in
which user trajectories can be combined with a geocast strategy to improve the
data delivery rate in sparse IoV. In [18], the authors proposed a vehicle-mobility-
aware and vehicle-contact-aware geocast routing algorithm for urban IoV from
the delay-tolerant network perspective to deal with the high mobility and transient
connectivity issues.

6.2.4 Related Work in Routing Algorithms

Routing algorithms for IoV have been widely investigated in the literature [19–
23]. Most of existing works primarily focus on broadcast routing protocols for IoV.
In fact, message broadcast wastes the bandwidth and increases the communication
overhead. Therefore, we consider the unicast scenario [9, 10, 24] in which messages
are delivered by V2V transmission instead of broadcasting. Security issues are
studied in [25–27], which may be integrated in our work, but they are beyond the
scope of this work. In addition, the establishment of routing path in IoV needs
frequent negotiation since the topology may change very fast. Thus, conventional
routing protocols can still result in network congestion, although the monitoring can
be done by basic safety message. Nevertheless, in our scheme, the routing-related
control messages are sent through LTE, which avoids frequent rebroadcasting and
makes the network less congested.

To establish the end-to-end route, transmit packets timely, and reduce the infor-
mation exchange cost, there are several research works focusing on investigating
the routing algorithms based on SDN. Destounis et al. in [28] provided a practical
way of keeping the routing cost small within a given reconfiguration constraint.
Nevertheless, this SDN-based routing algorithm focuses on the routing policy
among the nodes with wired connections. In [29], Duan et al. assumed that the SDN
controller monitors the location of vehicles without the update information from
vehicles. This kind of assumption reduces the communication cost but increases
the complexity of SDN controller. Liu et al. formulated the cooperative data
scheduling algorithm in [30], in which the RSU chooses source and destination
vehicles and corresponding data for V2V communication. At the same time, the
RSU broadcasts a message to vehicles that are informed to tune to the V2I channel.
Nevertheless, only one-hop V2V communication is considered in this work. In [31],
the SDN controller sets up the routing paths of the periodic warning messages to
the destination RSUs based on geographical and topological information. However,
when network size increases, it becomes difficult to manage the dynamically
changing requests. Thus, it brings some new challenges, though SDN-based IoV
improves the network efficiency by increasing throughput, reducing latency, and
enhancing reliability of the network.

The most challenging issue for SDN-based IoV is that even though SDN can
make decision on optimal routing path based on the global information, the network

6 Routing Algorithms for Heterogeneous Vehicular Networks 109

topology changes very fast in IoV, especially when the vehicle speed is high. Thus,
mobility prediction becomes a crucial component in the SDN controller, since the
predicted information can help the SDN controller make decision ahead of time.
Usually, machine learning can be used for prediction. In [32], Shen et al. proposed a
novel adaptive fuzzy logic inference system to predict and estimate the probability
information for wireless communication networks, and the prediction is performed
using the recursive least square approach. However, ANN is a more powerful
approach in machine learning. It is widely used in solving various classification and
forecasting problems. In [33], the authors proposed a spectrum detection method by
adopting ANN. In [34], ANN is adopted by the authors to predict the traffic flow by
developing an optimized structure through layer-by-layer feature granulation with
a greedy-layer-wise unsupervised learning algorithm. Nevertheless, the presented
work focuses on the vehicle mobility prediction by using ANN. A traffic flow
prediction method is proposed in [35] by using a deep learning approach. However,
the prediction period is quite long, which is not feasible for IoV due to the high
mobility feature in IoV.

Moreover, many research works focus on designing efficient routing algorithms
for IoV. Since the vehicle traffic varies during the day, i.e., the IoV can be either
sparsely connected (non-rush hour) or fully connected (rush hour), which depends
on the time of the day [2]. In majority of existing works, the vehicle arrival
is usually modeled as a Poisson process [36, 37]. However, in reality, there are
multiple busy periods due to rush hours. Thus, because of the characteristic of non-
homogeneous Poisson process (NHPP), it is more appropriate to model vehicle
arrivals that exhibit in multiple busy periods. The stochastic monotonicity and
related properties of the inter-arrival time of an NHPP have been studied by Kochar
[38] and Pellerey et al. [39]. Nevertheless, in NHPP, the arrival rate function is used
for the probability and delay analysis, which is very challenging to obtain due to the
dynamic traffic conditions and random vehicle arrivals. The next section presents a
mobility prediction based on NHPP model.

6.3 Machine Learning-Based Routing Algorithm for IoV
with Mobility Prediction

A unicast routing protocol, referred to as CRS-MP, is introduced in this section, in
which ANN is employed to learn and predict the vehicle arrival rate. Afterwards,
based on the prediction, the RSU/BS integrates a stochastic urban traffic model in
the analysis to estimate the average delay and successful transmission probability.
Depending on the locations of source vehicle and destination vehicle, whether the
SDN controller decides the routing path or the RSU/BS makes the routing decision
can be determined.

For each RSU/BS, during the request scheduling process, vehicles in the V2I
channel and the V2V channel can transmit simultaneously since V2I and V2V

110 Y. Tang and W. Wu

communications are using different spectrum access technologies. The motivation
of requests’ scheduling is serving the vehicles that are far away from each other and
alleviating the burden of the RSU/BS in rush hours as well as improving the vehicle
connectivity through the assistance of RSU/BS in non-rush hours. In particular, the
main contributions of the proposed routing algorithm are outlined as follows:

• In the CRS-MP routing scheme, the controller does not need to continuously
monitor vehicle locations. ANN is implemented by the controller to learn and
predict the vehicle arrival rate, which reaps the powerful learning capability of
ANN. Through building the statistical traffic model, the RSU/BS can do the
traffic mobility estimation based on the vehicle arrival rate function and then
make routing decisions and inform the vehicles.

• In the mobility prediction, successful transmission probability and average time
delay of not only single-hop and multi-hop V2V transmissions but also V2I
communications are analyzed in vehicles based on the NHPP traffic model and
the learnt arrival function.

• The routing problem is aiming to minimize the overall vehicular service delay in
IoV and is formulated as an integer programming problem that is NP-hard.

• The NP-hard routing problem is solved by performing a bipartite matching
algorithm, and a request delivery algorithm is designed to further improve the
network performance. Meanwhile, the serving capability of RSU/BS is taken
into consideration.

6.3.1 Network Model

We present the network model of a joint V2I and V2V communication system
for IoV in urban area. The ubiquitous coverage can be achieved through cellular
networks, i.e., BS, as shown in Fig. 6.1. A distributed SDN controller is adopted
in this work, which copes with the distributed and heterogeneous nature of modern
overlay networks. Each controller is responsible for an SDN domain that refers to
cities or communities. There exists a stable TCP/IP connection between distributed
controllers and the BS/RSUs, which minimizes the probability of unsuccessful
transmission and packet loss. Each SDN controller collects the information from all
the BS and RSUs within its charged area, and the BS and the RSUs are considered
as the switches that can communicate with each other. The RSUs are located in each
intersection since deploying RSUs at intersections can reduce the need for non-line-
of-sight transmissions along the road to provide better service coverage. The RSUs
serve the vehicles within the RSUs’ coverage area, while the BS serves the vehicles
that are out of the coverage area of any RSU. The vehicles send their requests as
well as the IP addresses of both themselves and their destinations to the RSU/BS.
Then, the RSU/BS delivers the information to the controller. Afterwards, the SDN
controller converts the IP addresses to the vehicle indexes according to the locations
of both source vehicle and destination vehicle and makes the routing decision.

6 Routing Algorithms for Heterogeneous Vehicular Networks 111

Fig. 6.1 Scenario in urban area

Both IEEE 802.11p and LTE interfaces are installed on each vehicle since
this hybrid architecture has been recently adopted to exploit both the low cost
of IEEE 802.11p and the wide-range low-latency communication of the cellular
networks [40]. DSRC that is based on IEEE 802.11p protocol is used for V2V
communications, where a 75 MHz band is allocated with 7 channels, each with
10 MHz bandwidth. Meanwhile, V2I communications operate through LTE, in
which multiple vehicles can share the spectrum resources by orthogonal frequency
division multiple access. The communications among the BS and RSUs are via
wired connections. The neighboring RSUs communicate with each other using
different bandwidth to avoid the interference. The control channel is for the standard
usage in DSRC such as the safety message broadcasting, while the other 6 channels
are used for V2V communications. The routing-related messages are sent through
the LTE system. Orthogonal signaling is assumed for LTE in each time slot (one
request scheduling period), and each resource block is allocated to each request.
Each RSU can serve up to C vehicles, and the transmission range of each RSU isD
meters. The rest of the notations used in this chapter are listed in Table 6.1.

6.3.2 Statistical Mobility Model

An NHPP A counts the number of vehicles that enters the road, and A is
characterized by its arrival rate function λ(t), (t ≥ 0) which is also referred to

112 Y. Tang and W. Wu

Table 6.1 Notations table

Notation Description

λ(t) Arrival rate function

�(t) Mean value function

R
y
m Uplink transmission rate from vehicle m to RSU y

R
y
n Downlink transmission rate from RSU y to vehicle n

RVk Transmission rate of per hop V2V communication

PV Transmission power of vehicles

Py Transmission power of RSU y to vehicles

N0 Power of additive white Gaussian noise (AWGN)

Wm Bandwidth allocated for uplink transmission

Wn Bandwidth allocated for downlink transmission

WV Bandwidth allocated for V2V transmission

dm Distance from source vehicle m to RSU y

dn Distance from RSU y to destination vehicle n

dk Inter-vehicle spacing of kth hop transmission

X Number of requests of vehicles

Y Number of RSUs

Z Size of request packet

H Number of hops transmitting from vehicle m to vehicle n

as the intensity function, and �(t) = ∫ t
0 λ(u)du denotes the mean value function,

which is the expected number of arrivals on the time interval (0, t). Let N(x, t) be
the number of vehicles in the road segment (0, x] at time t , and n(x, t) be the density
of vehicles in road segment (0, x] at time t . The expectation of N(x, t) is expressed
by:

E[N(x, t)] =
∫ t

0
λ(u)du. (6.1)

The relationship between N(x, t) and n(x, t) would be described by:

n(x, t) = ∂N(x, t)

∂x
. (6.2)

6.3.2.1 Inter-Arrival Time Distribution

Given that the NHPP starts at T0 = 0, the arrival times are denoted by
T1, T2, . . . , Tn, and the corresponding inter-arrival times are represented by
X1 = T1, X2 = T2 − T1, . . . , Xn = Tn − Tn−1(n = 1, 2, . . .). According to
the deduction from (3) in [41], the probability density function of Tn, i.e., fn(t), is

6 Routing Algorithms for Heterogeneous Vehicular Networks 113

fn(t) = λ(t)e−�(t) [�(t)]n−1

(n− 1)! , t > 0, n ≥ 1. (6.3)

For t > 0, the probability density functions of X1 and Xn, i.e., g1(t) and gn(t),
are given, respectively, by (see (7) of [41]):

g1(t) = λ(t)e−�(t), (6.4)

gn(t) =
∫ +∞

0
λ(x)λ(t + x)e−�(t+x) [�(x)]

n−2

(n− 2)! dx, n ≥ 2. (6.5)

6.3.2.2 Inter-Vehicle Spacing Distribution

The vehicles are moving at an average speed v, and the inter-vehicle spacing follows
the NHPP with intensity function λS(s). Thus, the inter-vehicle spacing φn(s) can
be characterized by the following distribution which is given by:

φ1(s) = λS(s)e−�S(s), s > 0, (6.6)

φn(s) =
∫ +∞

0
λS(x)λS(s + x)e−�S(s+x) [�S(x)]

n−2

(n− 2)! dx,

s > 0, n ≥ 2,

(6.7)

where the parameter λS(s) and �S(s) can be represented by:

λS(s) = λ
(s
v

)
(6.8)

and

�S(s) =
∫ s

0
λS(u)du, (6.9)

respectively.

6.3.3 Channel Model

The uplink transmission rate Rym and the downlink transmission rate Ryn of RSU y
for V2I communication are described by:

114 Y. Tang and W. Wu

R
y
m = Wm · log2

(
1 + PV

N0
δd

−γ
m |h|2m,y

)
(6.10)

and

R
y
n = Wn · log2

(
1 + Py

N0
δd

−γ
n |h|2y,n

)
, (6.11)

respectively. PV represents the transmission power of the vehicles. Py is the
transmission power of RSU y. When y = 0, it refers to the transmission power
of BS. Wm denotes the bandwidth allocated for uplink, while Wn is the bandwidth
allocated for downlink. N0 is the power of additive white Gaussian noise (AWGN),
and δ is the log-normal shadowing component, with a mean of 0 dB and standard
deviation σS . dm and dn are the distances from the source vehicle m to RSU y and
from RSU y to the destination vehicle n, respectively. γ is the path fading exponent,
which is typically chosen within [2, 4]. |h|m,y and |h|y,n are the Rayleigh-distributed
fading magnitude with E[|h|2] = 1.

The transmission rate of per hop V2V communication is presented by:

RVk = WV · log2

(
1 + PV

N0
δd

−γ
k |h|2k

)
, (6.12)

where WV is the bandwidth allocated for V2V communication, and dk is the inter-
vehicle spacing of kth hop transmission, which is a positive value since backward
transmission is considered. |h|k is the Rayleigh-distributed fading magnitude with
E[|h|2] = 1. dm, dn, and dk can be estimated through the probability density
function of inter-vehicle spacing. Based on the estimation of the distance, we can
obtain the transmission rates Rym, Ryn , and RVk .

6.3.4 ANN Model

ANN imitates the neural structure of the human brain and it is a powerful technique.
In ANN, knowledge can be obtained by the network through a learning process, and
the knowledge can be stored. There are three main benefits of ANN. First, ANN
can adapt itself according to the input data without knowing any information of the
signal. Second, ANN can approximate any function with arbitrary accuracy. Third,
ANN is a nonlinear model and can be applied to most of real-world applications.

As the aforementioned merits, ANN has a natural propensity for storing expe-
riential knowledge and makes it available for use. Therefore, we use ANN to
predict the vehicle arrival function and further estimate the successful transmission
probability and average delay of multi-hop transmission.

There are many different types of ANN, and we focus on a simple and effective
model of ANN, i.e., back-propagation neural network (BPNN), which has three

6 Routing Algorithms for Heterogeneous Vehicular Networks 115

layers: input layer, hidden layer, and output layer. A two-layer neural network is
selected in this work. There are 20 neurons in the hidden layer and the number the
neurons is chosen according to the empirical value. The transfer function is “transig”
in the hidden layer. The other layer is the output layer with one neuron, and the
transfer function is “purelin.” Function “transig” and “purelin” are the two transfer
functions of BPNN. A training function “trainlm,” one of the training functions of
BPNN, is chosen.

After obtaining the ANN training results, SDN can get the real-time traffic arrival
rates. Based on that, SDN estimates the successful transmission probability and
average delay of multi-hop transmission of each request. Then, the SDN controller
is able to make routing decisions.

6.4 Performance Evaluation

The simulation model is built based on the system architecture described in Sect. 6.2.
We consider that all the vehicles drive in the same direction and the arrival
rate of vehicles in each lane follows the NHPP. A wide range of vehicle speeds
are simulated to evaluate the system performance under different scenarios. In
each lane, the vehicle speed is selected by the given specific vehicle arrival rate
function. The communication characteristics are simulated based on DSRC for V2V
communication, and LTE for V2I and I2I communications. The scheduling period
is the same as the maximum waiting time. Each vehicle can submit a request to the
SDN controller at any time. The total number of submitted requests varies from 10%
to 90% out of the total number of vehicles in each lane. Detailed vehicular system
parameters are summarized in Table 6.2.

The proposed ANN model is applied to the data collected from the Coquitlam
database as a numerical example. The traffic data are collected every 1 min from
individual detectors along the roads. We adopt the data from the vehicle volumes

Table 6.2 Simulation parameter

Parameter Value

Mobility model Non-homogeneous Poisson process

Transmission protocol LTE for V2I & DSRC for V2V

RSU transmission range 500 m

Vehicle transmission range 200 m

Serving capability of RSU 10

Transmission power of RSU 20 dBm

Transmission power of vehicle 10 dBm

Bandwidth 10 MHz

Packet size 5 Mbit

Number of iterations 1000

116 Y. Tang and W. Wu

Time (min)
0 20 40 60 80 100 120

N
o

. o
f

ve
h

ic
le

s

0

5

10

15

20

25

30

35

Real value

Predicted value

Fig. 6.2 ANN prediction with 20 epochs

in the intersection of Eagleridge Dr. and Lansdowne Dr., Coquitlam, BC, Canada.
The traffic flow data collected in the weekdays of the year 2016 are divided into
two groups: one for training and the other one for testing. Training parameters are
set as follows: training goal is 10−1, training epoch is 20, and learning rate is 0.01.
During the training process, the thresholds and weights of each unit in the network
are adjusted iteratively in such a way that the error between the actual output and
the desired output is reduced. We apply ANN to predict the vehicle arrivals with
a setting of 20 epochs and then use the least square method to fit the arrival rate
function.

Testing results and fitting function are shown in Figs. 6.2 and 6.3. The vehicle
arrival rate is predicted by ANN as shown in Fig. 6.2 and the arrival rate function
is fitted as shown in Fig. 6.3. The x-axis represents the time that varies within
two hours, and the y-axis denotes the number of vehicle arrivals per minute. Blue
circles are the real vehicle arrival rate, and red stars are the predicted vehicle
arrival rate. The green line is the function we fit based on the predicted data.
The iterations of least square method is set to 20, and the obtained arrival rate
function is λ(t) = 1.6415× 10−13x10 − 5.4755× 10−11x9 + 7.7203× 10−09x8 −
5.9885×10−7x7+2.7844×10−5x6−0.00079247x5+0.013523x4−0.12985x3+
0.61408x2 − 0.49383x + 3.0104.

Figures 6.4 and 6.5 shows the probability density function (PDF) and cumulative
distribution function (CDF) of the inter-vehicle spacing, respectively. n represents
the nth inter-vehicle spacing between vehicle n and vehicle n+1. In order to simplify
the analysis, we set the vehicle arrival function as a linear function λ(t) = a · t + b,
in which a = 6.25 × 10−5, b = 0.05. Accordingly, the vehicle arrival rate varies

6 Routing Algorithms for Heterogeneous Vehicular Networks 117

Time (min)
0 20 40 60 80 100 120

N
o

.
o

f
v
e
h

ic
le

s

0

5

10

15

20

25

30

35

Predicted value

Fitting function

Fig. 6.3 Least square fitting

x
0 1 2 3 4 5 6

n
(x

)

0

0.2

0.4

0.6

0.8

1

1.2
Probability density function (PDF)

n=1
n=2
n=3
n=4

�

Fig. 6.4 PDF of the inter-vehicle spacing

from 0.05 (vehicle/sec) to 0.5 (vehicle/sec) within 2 h. As shown in the figures, we
can see that as n increases, the inter-vehicle spacing becomes smaller.

The successful transmission probability of V2V is shown in Fig. 6.6, which is
calculated in the SDN controller based on the ANN training results. It can be seen
that successful transmission probability decreases with the increase of the number

118 Y. Tang and W. Wu

x
0 1 2 3 4 5 6

n
(x

)

0

0.2

0.4

0.6

0.8

1
Cumulative distribution function (CDF)

n=1
n=2
n=3
n=4

�

Fig. 6.5 CDF of the inter-vehicle spacing

Vehicle arrival rate (veh/sec)
0 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5

S
u

cc
es

sf
u

l t
ra

n
sm

is
si

o
n

 p
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-hop

2-hop

3-hop

Fig. 6.6 V2V n-hop successful transmission probability

of hops. Moreover, the higher vehicle arrival rate corresponds to higher successful
transmission probability.

The average delays of V2I and V2V transmission mode are shown in Figs. 6.7
and 6.8, respectively. In Fig. 6.7, we compare three cases with different maximum
waiting time: T = 1, T = 3, and T = 5. A longer waiting time leads to a higher
average delay. The V2I average delay decreases to approximately 0 as the vehicle
arrival rate reaches 0.15 (veh/sec) for all the three cases. Moreover, when the vehicle

6 Routing Algorithms for Heterogeneous Vehicular Networks 119

Vehicle arrival rate (veh/sec)
0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
el

ay
 (

se
c)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T=5

T=3

T=1

Fig. 6.7 V2I average delay

Vehicle arrival rate (veh/sec)
0 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.40 0.45 0.5

D
el

ay
 (

se
c)

0

5

10

15

1-hop

2-hop

3-hop

Fig. 6.8 V2V average delay

arrival rate is smaller than 0.1, the maximum waiting time has more impact on
the average delay. In this case, the lower the vehicle arrival rate and the larger the
maximum waiting time, the higher the average delay. We set the maximum waiting
time T = 5 in Fig. 6.8. The average delay increases with the increase of the number
of hops, and the delay decreases to almost 0 when the vehicle arrival rate is larger
than 0.25 (veh/sec), since it is the rush hour when the vehicle density should be
high.

120 Y. Tang and W. Wu

Speed (km/h)
50 60 80 100 120

D
el

ay
 (

se
c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
CRS-MP V2I V2V

Fig. 6.9 Comparison of the delay among CRS-MP, V2I, and V2V with different speeds

The parameter settings of our proposed CRS-MP algorithm simulation are listed
in Table 6.2. The simulation is repeated 1000 times, and the average delay is
calculated. The number of vehicles is 40, and the maximum accessing number of
vehicles (serving capacity) of RSU is 20. In the simulation, we assume that 60%
of the vehicles will send requests and these vehicles are randomly selected. The
simulation results are shown in Fig. 6.9. The objective of our proposed CRS-MP
is to minimize the overall vehicular service delay in comparison with V2I mode
and V2V mode. In V2I mode, all the vehicles communicate through the RSU with
the help of controller, while all the vehicles communicate with each other through
multi-hop transmission without the help of RSU in V2V mode. The performance
of traditional routing schemes generally degrade when the speed increases [42].
However, the performance of our centralized routing scheme is more robust since it
does not degrade much when the vehicle speed increases, as shown in Fig. 6.9 where
we vary the speed from 13.9 m/s (50 km/h) to 33.3 m/s (120 km/h).

In Fig. 6.10, the average vehicle speed in the lane is set to 13.9 m/s (50 km/h), and
the speed limit is 16.7 m/s (60 km/h). The number of vehicles is set to 40, 80, and
120 in each sub-figure, respectively. In each sub-figure, we vary the request fraction
with 10, 50, and 90%. The serving capacity of RSU is 100. Figure 6.10 shows that
our proposed CRS-MP scheme outperforms the routing scheme without mobility
prediction as it achieves lower delay when the number of vehicles increases under
different request fraction scenarios. Moreover, the delay of the scheme without
mobility prediction increases faster than our proposed routing scheme when the
request fraction becomes higher since the serving capacity of RSU is limited. When
the number of requesting vehicles is close to the serving capacity of RSU, the
subsequent vehicles have to wait to access the RSU. Therefore, the overall vehicular
service delay increases faster without mobility prediction.

6 Routing Algorithms for Heterogeneous Vehicular Networks 121

Fig. 6.10 Comparison of the
delay of routing scheme with
and without mobility
prediction with different
numbers of vehicles under
different request fraction
scenarios

Request fraction (vehicle no. = 40)
10% 50% 90%D

el
ay

 (
se

c)

0

2

4
With MP
W/O MP

Request fraction (vehicle no. = 80)
10% 50% 90%D

el
ay

 (
se

c)

0

2

4
With MP
W/O MP

Request fraction (vehicle no. = 120)
10% 50% 90%D

el
ay

 (
se

c)
0

2

4
With MP
W/O MP

6.5 Conclusion

In this chapter, we first presented a brief introduction of routing algorithms in IoV.
Then, we discussed different types of routing algorithms adopted in IoV in detail.
Afterwards, we demonstrated the proposed centralized routing scheme for end-to-
end unicast communication in IoV. The proposed routing scheme has the prediction
capability and selects the optimal routing path based on the global information.
To adapt to the dynamic changing network topology, the proposed routing scheme
can choose either V2I or V2V communication. We have simulated our proposed
routing scheme with NHPP and compared it with other routing protocols (pure V2I
and pure V2V) in IoV. Simulation results have shown that our proposed CRS-MP
scheme outperforms other routing schemes in terms of overall vehicular service
delay. Besides, the proposed scheme is more robust when the vehicle speeds vary.
For our future work, we will implement practical vehicle arrival model in order to
make the mobility prediction more accurate for enhancing the routing performance
of IoV.

References

1. X. Shen, R. Fantacci, S. Chen, Internet of vehicles. Proc. IEEE. 108(2), 242–245 (2020)
2. W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, X. Shen, Internet of vehicles in big data

era. IEEE/CAA J. Autom. Sin. 5(1), 18–35 (2018)
3. N. Cheng, L. Feng, J. Chen, W. Hu, H. Zhou, S. Zhang, X. Shen, Big data driven vehicular

networks. IEEE Netw. 32(6), 160–167 (2018)
4. FCC, Amendment of the commission’s rules regarding dedicated short-range communication

services in the 5.850–5.925 GHz band. FCC Report and order. 06–110 (2006)
5. Y.L. Morgan, Notes on DSRC & WAVE standards suite: its architecture, design, and charac-

teristics. IEEE Commun. Surv. Tuts. 12(4), 504–518 (2010)

122 Y. Tang and W. Wu

6. C. Perkins, E. Belding-Royer, S. Das, Ad hoc on-demand distance vector (AODV) routing.
RFC 3561 (Experimental) (2003)

7. T. Clausen, P. Jacquet, Optimized link state routing protocol (OLSR). RFC 3626 (Experimen-
tal) (2003)

8. D. Johnson, Y. Hu, D. Maltz, The dynamic source routing protocol (DSR) for mobile ad hoc
networks for IPv4. RFC 4728 (Experimental) (2007)

9. D. Tian, K. Zheng, J. Zhou, X. Duan, Y. Wang, Z. Sheng, Q. Ni, A microbial inspired routing
protocol for VANETs. IEEE Internet Things J. 5(4), 2293–2303 (2018)

10. N. Alsharif, X. Shen, iCAR-II: infrastructure-based connectivity aware routing in vehicular
networks. IEEE Trans. Veh. Technol. 66(5), 4231–4244 (2017)

11. J. He, L. Cai, J. Pan, P. Cheng, Delay analysis and routing for two-dimensional VANETs using
carry-and-forward mechanism. IEEE Trans. Mobile Comput. 16(7), 1830–1841 (2017)

12. ONF, Software-defined networking: the new norm for networks. Open Networking Foundation
White Paper (2012)

13. Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, X. Shen, Delay-minimization routing for
heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh.
Technol. 68(4), 3967–3979 (2019)

14. G. Korkmaz, E. Ekici, F. Özgüner, Ü Özgüner, Urban multi-hop broadcast protocol for inter-
vehicle communication systems, in Proceedings of 1st ACM International Workshop Vehicular
Ad Hoc Network (2004), pp. 76–85

15. M. Durresi, A. Durresi, L. Barolli, Emergency broadcast protocol for inter-vehicle communi-
cations, in Proceddings of 11th International Conference Parallel Distributed Systems (2005),
pp. 402–406

16. S. Fang, T. Luo, A novel two-timer-based broadcast routing algorithm for vehicular ad-
hoc networks, in Proceedings of IEEE International Conference on Green Computing and
Communications (2013), pp. 1518–1522

17. C. Celes, R.B. Braga, C.T. De Oliveira, R.M.C. Andrade, A.A.F. Loureiro, GeoSPIN: an
approach for geocast routing based on SPatial INformation in VANETs, in Proceedings of
IEEE 78th VTC Fall (2013), pp. 1–6

18. L. Zhang, B. Yu, J. Pan, GeoMobCon: a mobility-contact-aware geocast scheme for urban
VANETs. IEEE Trans. Veh. Technol. 65(8), 6715–6730 (2016)

19. A.M. Mezher, M.A. Igartua, Multimedia multimetric map-aware routing protocol to send
video-reporting messages over VANETs in smart cities. IEEE Trans. Veh. Technol. 66(12),
10611–10625 (2017)

20. N. Li, J.-F. Martínez-Ortega, V.H. Díaz, J.A.S. Fernandez, Probability prediction-based reliable
and efficient opportunistic routing algorithm for VANETs. IEEE/ACM Trans. Netw. 26(4),
1933–1947 (2018)

21. M.H. Eiza, T. Owens, Q. Ni, Q. Shi, Situation-aware QoS routing algorithm for vehicular ad
hoc networks. IEEE Trans. Veh. Technol. 64(12), 5520–5535 (2015)

22. M.A. Togou, A. Hafid, L. Khoukhi, SCRP: stable CDS-based routing protocol for urban
vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 17(5), 1298–1307 (2016)

23. M.A. Salkuyeh, B. Abolhassani, An adaptive multipath geographic routing for video transmis-
sion in urban VANETs. IEEE Trans. Intell. Transp. Syst. 17(10), 2822–2831 (2016)

24. D. Lin, J. Kang, A. Squicciarini, Y. Wu, S. Gurung, O. Tonguz, MoZo: a moving zone based
routing protocol using pure V2V communication in VANETs. IEEE Trans. Mobile Comput.
16(5), 1357–1370 (2017)

25. H. Zhu, X. Lin, R. Lu, Y. Fan, X. Shen, SMART: a secure multilayer credit-based incentive
scheme for delay-tolerant networks. IEEE Trans. Veh. Technol. 58(8), 4628–4639 (2009)

26. H. Li, H. Zhu, S. Du, X. Liang, X. Shen, Privacy leakage of location sharing in mobile social
networks: attacks and defense. IEEE Trans. Depend. Sec. Comput. 15(4), 646–660 (2018)

27. H. Zhu, C. Fang, Y. Liu, C. Chen, M. Li, X. Shen, You can jam but you cannot hide: defending
against jamming attacks for geo-location database driven spectrum sharing. IEEE J. Sel. Areas
Commun. 34(10), 2723–2737 (2016)

6 Routing Algorithms for Heterogeneous Vehicular Networks 123

28. A. Destounis, S. Paris, L. Maggi, G.S. Paschos, J. Leguay, Minimum cost SDN routing with
reconfiguration frequency constraints. IEEE/ACM Trans. Netw. 26(4), 1577–1590 (2018)

29. X. Duan, Y. Liu, X. Wang, SDN enabled 5G-VANET: adaptive vehicle clustering and
beamformed transmission for aggregated traffic. IEEE Commun. Mag. 55(7), 120–127 (2017)

30. K. Liu, J.K.Y. Ng, V.C.S. Lee, S.H. Son, I. Stojmenovic, Cooperative data scheduling in hybrid
vehicular ad hoc networks: VANET as a software defined network. IEEE/ACM Trans. Netw.
24(3), 1759–1773 (2016)

31. Y. Liu, C. Chen, S. Chakraborty, A software defined network architecture for geoBroadcast in
VANETs, in Proceedings of IEEE International Conference on Communications (2015), pp.
6559–6564

32. X. Shen, J.W. Mark, J. Ye, User mobility profile prediction: an adaptive fuzzy inference
approach. Wireless Netw. 6(5), 363–374 (2000)

33. Y. Tang, Q. Zhang W. Lin, Artificial neural network based spectrum sensing method for
cognitive radio, in Proceedings of International Conference on Wireless Communications
Networking and Mobile Computing (2010), pp. 1–4

34. H.-F. Yang, T.S. Dillon, Y.-P. Chen, Optimized structure of the traffic flow forecasting model
with a deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2371–2381
(2017)

35. Y. Lv, Y. Duan, W. Kang, Z. Li, F. Wang, Traffic flow prediction with big data: a deep learning
approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

36. Q. Ye, J. Li, K. Qu, W. Zhuang, X. Shen, X. Li, End-to-end quality of service in 5G networks-
examining the effectiveness of a network slicing framework. IEEE Veh. Technol. Mag. 13(3),
65–74 (2018)

37. L. Zhu, C. Li, Y. Wang, Z. Luo, Z. Liu, B. Li, X. Wang, On stochastic analysis of greedy
routing in vehicular networks. IEEE Trans. Intell. Transp. Syst. 16(6), 3353–3366 (2015)

38. S.-C. Kochar, Some results on interarrival times of nonhomogeneous Poisson processes.
Probabil. Eng. Inf. Sci. 10(1), 75–85 (1996)

39. F. Pellerey, M. Shaked, J. Zinn, Nonhomogeneous Poisson processes and logconcavity.
Probabil. Eng. Inf. Sci. 14(3), 353–373 (2000)

40. S. Ucar, S.C. Ergen, O. Ozkasap, Multihop-cluster-based IEEE 802.11p and LTE hybrid
architecture for VANET safety message dissemination. IEEE Trans. Veh. Technol. 65(4),
2621–2636 (2016)

41. L. Baxter, Reliability applications of the relevation transform. Naval Res. Logist. Quart 29(2),
323–329 (1982)

42. P. Fazio, F.D. Rango, C. Sottile, A predictive cross-layered interference management in a
multichannel MAC with reactive routing in VANET. IEEE Trans. Mobile Comput. 15(8),
1850–1862 (2016)

Chapter 7
Teaching from Home: Computer and
Communication Network Perspectives

Jianping Pan

7.1 Introduction

Starting from early 2020, CoViD-19 has fundamentally changed how teaching
and learning are done from K-12 schools to colleges and universities around the
world [1]. Many education institutions had to move their in-person teaching online
without advance notice [2]. Although there are many online conferencing, lecturing,
and meeting (CLM) platforms such as Blackboard Collaborate Ultra, WebEx, Zoom,
etc., this sudden and massive move still created a lot of new challenges for teachers
and students [3]. Online teaching or distance education is not entirely new, but
often supported by professional information technology (IT) staff in education
institutions [4]. Teaching from home, on the other hand, is totally new for most
instructors who have to deliver their lectures, tutorials, and even labs online. Many
teachers and students have noticed considerable degradation of their teaching and
learning experience.

Due to the lack of dedicated IT support staff, teaching from home encountered
technical challenges in addition to pedagogical ones. Many instructors were caught
off guard, even though most of them do have Internet access at home. However, their
work-from-home computers and Internet access are not intended for teaching activ-
ities, especially synchronous lecturing and online discussion (e.g., office hours).
Although Blackboard, WebEx, and Zoom all increased their network and data center
capacity and improved their software on short notice, teachers and students still
observed unacceptable audio/video quality degradation during prearranged sessions.

J. Pan (�)
Department of Computer Science, University of Victoria, Victoria, BC, Canada
e-mail: pan@uvic.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_7

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_7&domain=pdf
mailto:pan@uvic.ca
https://doi.org/10.1007/978-3-030-98064-1_7

126 J. Pan

Upon close examination, many of the issues happened at their home and from it to
the Internet, as most home Internet access has been designed and optimized for
Email, Web browsing, and video streaming-like applications, i.e., the massive data
stream is mainly going from the Internet to the home user.

Online teaching and learning, as its name implies, is a two-way, synchronous
and interactive communication process, where one or a few teaching staff interact
with a potentially large population of students possibly scattered around the world.
Online CLM platforms dealt with this challenge by deploying their cloud meeting
platforms all around the world in dedicated data centers, often interconnected
by private network links with high quality of service (QoS) guarantees, such as
sufficient link bandwidth, limited delay variation, and negligible communication
loss. Home Internet access, on the other hand, is likely arranged by individual
consumers, constrained by available service providers and plans in certain regions,
which usually advertise download data rates much higher than upload ones and can
easily become the bottleneck for two-way communications to the Internet. If the
lecturer’s audio, video, or screen-sharing streams were delayed or lost, it will affect
all students regardless of their own locations or network provisioning.

Therefore, the uplink capacity and reliability become the bottleneck of “teaching
from home” and are the main focus of this book chapter. Based on the experience
since Spring 2020 when we switched to online teaching in the middle of the
semester, and the input from professional IT support staff, this book chapter first
presents the challenges brought by this new teaching and learning paradigm. Next,
it examines the possible technologies and alternatives in home networks and Internet
access, leveraging the decades-long advance of computer networking research and
education. Further, it proposes a few new approaches and solutions to improving
the capability and reliability of wireless fidelity (WiFi) home networks and digital
subscriber line (DSL) and cable modem (CM) Internet access, which are commonly
used by many instructors at home. The purpose of this book chapter is to create
the much needed discussion on these technical issues that have been impeding the
successful delivery of online teaching during the pandemic, and it can offer further
insights into the future online and distance education paradigm, where “lifetime
teaching and learning anywhere” is the ultimate goal, regardless of whether there is
another “stay at home” order due to pandemic or other reasons, as well as for home,
small- and medium-sized business (SMB) without dedicated IT infrastructure and
support staff.

The rest of the book chapter is organized as follows. Section 7.2 scans the
literature on related work, and Sect. 7.3 summarizes and compares the existing
networking technologies for teaching from home. Section 7.4 proposes feasible
approaches to addressing the WiFi interference problem and Internet access reli-
ability problem and makes some recommendations. Further discussion is offered in
Sect. 7.5, and Sect. 7.6 concludes the book chapter with future work and directions.

7 Teaching from Home: Computer and Communication Network Perspectives 127

7.2 Related Work

Both home network and Internet access have been well studied and developed in
academia and industry, and there is a rich body of the literature on distance education
(e.g., pedagogy) and IT technical support in not-for-profit institutions and for-profit
organizations [4]. Mature online lecturing, meeting, and conferencing (CLM) tools
are readily available at affordable cost, many of which offer free or extended free
services during the pandemic, and some have been integrated at least partially with
mainstream learning management systems (LMS) [3]. Thus we refer interested
readers to each branch of the related work for the status quo and the state-of-the-art.

However, study on “teaching from home” is quite rare and was considered
unrealistic pedagogically and technically. Here, “home” refers to the places not
where traditional classroom education happens, regardless at K-12, college, or
university levels [4]. There have been some attempts on “learning from home”
and online learning with various degrees of success and acceptance. Nevertheless,
classroom teaching and learning are still the mainstream in normal days, and many
hi-tech equipments such as computers, video/data projectors, smart boards, etc.,
become more and more commonplace. Flipped classroom also happens, where
students conduct some, if not all, learning activities in their own time, probably
at home, but come to classroom for face-to-face interaction and discussion with
instructors and other classmates, supported by many newer LMS systems [5].
Regardless, none of them have gone that far to totally “home,” which was set
precedent by this pandemic worldwide. SMB such as YouTube broadcasters may
encounter similar problems.

With the “stay at home” orders in various forms, teachers and students have
to continue their teaching and learning missions entirely online, and for teachers,
most likely to instruct from their own home. This is a brand new adventure for
many instructors. There are lots of pedagogical challenges, but the focus of this
book chapter is on technical ones. Of course, pedagogy is more important, and
we try to achieve the same pedagogical goals as classroom teaching, with the
assistance of existing technologies, to the maximum possibility first [4–6]. A lot
of teachers, students, and some literature have pointed out the long preparation and
low efficiency of online teaching and learning, contributed by many factors beyond
the scope of this book chapter. Here, we differentiate teaching from home vs. the
usual teaching from classroom or office and learning from home and have identified
the bottleneck at the instructor’s first hop to the Internet, i.e., home networks and
Internet access.

The majority of the existing home network and Internet access technologies is
designed, engineered, and optimized to deliver massive data from the Internet to
home users for Email, Web browsing, and video streaming-like applications. For
example, DSL and CM both have more bandwidth allocated to downlink (from the
Internet to home) than uplink (vice versa). Even the WiFi access points (AP) in
our home and cellular base stations (BS) on the street are engineered to give more
opportunities to downlink traffic. These asymmetric links work well until we have

128 J. Pan

the need for broadcasting from home, for teaching or other purposes. There are
symmetrically allocated links such as Ethernet, leased circuits, and fiber optics, but
they are mostly available in business and backbone settings nowadays, even though
the networking research communities and standardization bodies have recognized
the need for symmetric links, driven by the previous ups and downs of consumer
peer-to-peer (P2P) applications, where the uplink was also a bottleneck. However,
with synchronous teaching, meeting, and discussion from home, the bottleneck is
severer as the audio and video sources come from ordinary houses. Most CLM
platforms allow audio streams to “call in” through telephone systems or bridges,
which is very cumbersome and incurs additional cost for education entities.

In this book chapter, we are motivated to make the best out of the existing
technologies, to improve the capability and reliability of home network and Internet
access. It seems to be a short-term solution but can also shed light into the future of
online teaching and learning, for lifetime anywhere, and family Skype video calls.

7.3 Network Technologies Involved

In this section, we first examine the network technologies involved in supporting
teaching from home, by host computers, home networks, and Internet access,
from the computer and communication network support viewpoint, as illustrated
in Fig. 7.1 with recommendations proposed in Sect. 7.4.

7.3.1 Host Computers

Most online CLM tools can run as a standalone application (normally requires
download and installation on Windows, Mac OS, and Linux desktop or laptop
computers), or an app (lightweight application on portable devices such as iOS
and Android tablet computers or smart phones), or even in a Web browser (without
additional download and installation and thus operating systems, OS, independent).

Internet
No−New−Wires
Wireless Distribution System (WDS)

Ethernet

CLM server

CLM server

DSL/fiber modem

CellularSatellite

Home router Cable modem

WiFi APWiFi AP

Fig. 7.1 Teaching from home: computer and communication network support

7 Teaching from Home: Computer and Communication Network Perspectives 129

Besides user preferences, here we are concerned about their impact on the computer
and communication network support for online teaching.

7.3.1.1 Desktop, Laptop, or Tablet?

The choice of desktop, laptop, or tablet computers for online teaching is mainly
device availability and user preferences. Different educational institutions may have
different policies to bring institutional equipment home for work or teaching, and
some educators have to use their personal devices. Most desktop computers come
with Ethernet network interface controller (NIC), for wired network connectivity
most common in workplace. At home, Ethernet wall socket may not be available, so
alternate wires (see Sect. 7.3.2.2) or wireless (Sect. 7.3.2.3) interfaces and adapters
are needed. For laptop computers, most of them come with WiFi interfaces for
mobility, but WiFi coverage may vary at home and have high interference from
neighbors (see Sect. 7.3.2.3). Some old laptops may have Ethernet NIC embedded,
and for newer ones, external Ethernet or additional WiFi adapters via PCMCIA or
USB ports are also feasible. Tablet computers are very convenient for annotation
during online lecturing, and most of them only have embedded WiFi and some
may have cellular Internet capabilities (e.g., through 4G or the emerging 5G mobile
communication systems). For tablets and smartphones, external Ethernet interface
may be possible through dedicated adapters with micro-USB, Lightning, or USB-C
connectors. The form factor further affects the sensitivity of internal antennas, as
well as human body (hand and grip gestures) shadowing effect on WiFi signals.

7.3.1.2 Windows, Mac OS, or Linux?

Windows, Mac OS, and Linux, and their tablet and smartphone counterparts, such
as iOS and Android, all have the capability of being connected to the Internet
through the standard TCP/IP protocol stack. Again, the choice for teaching is mainly
personal preferences but dependent on the device availability. From the viewpoint of
network support, all these mainstream operating systems come with some network
diagnosis tools, such as ping for end-host reachability and traceroute (or
tracert on Windows) to discover the routing path. More advanced tools (e.g.,
tcpdump to capture packets and observe protocol interactions) with better user
interface (wireshark) are also available with additional packages or installation,
e.g., Windows or Mac OS Network or Wireless Diagnostics. Popular
network performance testing websites, e.g., speedtest.net, further allow users
to check their achievable download and upload throughput and ping time to one of
the available test servers (often auto-selected by testing websites according to the
user location and server availability and load) through any web browser, thus OS
independent and convenient. These tools are useful for teachers at home too.

130 J. Pan

7.3.1.3 Other Necessary Peripherals

Besides host computers running online CLM tools, instructors may choose to use
wireless camera (for multi-view), headset (microphone with in or on-ear buds), and
in-hand presenters to enrich their presentation. Many of these devices use either
Bluetooth, WiFi, or proprietary radio technologies, but often in the same license-free
channels as WiFi, which may cause some extra noise and interference. Also many of
these devices are powered by batteries and use power-saving techniques extensively
to reduce the need of frequent recharging, at the cost of additional delay for audio
and video, increasing the mouth-to-ear latency and variation (e.g., voice cutoff or
skipping at the beginning of a talk spurt). Whenever possible, wired connectivity
(e.g., by USB) of such peripherals to host computer is preferred, especially when
the host computer relies on WiFi for Internet access.

7.3.2 Home Networks

As the “last-meter” technology, home network is responsible to interconnect home
computers and connect them to the Internet.

7.3.2.1 Ethernet Structured Wiring

Ethernet is the most preferred way of constructing local-area computer networks
(LAN) and universally adopted in workplace such as office and commercial
buildings. It also becomes common in newly built houses and apartment buildings.
Wherever Ethernet is available, it is highly recommended to host computers for
reliability and consistency. Even if the host computer does not have an Ethernet
interface, various Ethernet adapters are available for different desktop, laptop, and
tablet computers and smart phones. However, for most existing houses, Ethernet
wiring is not available, and it is very expensive and cumbersome to retrofit for
Ethernet structured wiring. Thus, the following options can be considered and are
in fact more widely used at home.

7.3.2.2 No-New-Wires Home Backbone

Most existing houses have telephone and television cables wired and sockets
installed in some if not all rooms on different floors. Regardless, almost all rooms
have power line and outlets for electricity. IP television (IPTV) at the beginning
of this century has witnessed the booming of the so-called no-new-wires (NNW)
technologies, to transport Ethernet frames over telephone, television, and electricity
wires, through an extra adapter connected to computers by wired or wireless
Ethernet or USB. Older adapters and technologies only allow networking over a

7 Teaching from Home: Computer and Communication Network Perspectives 131

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

P
in

g
tim

e
(m

s)

Ping sequence

Fast Ethernet
HomePlug AV2

MoCA 2.0
WiFi 2.4GHz

WiFi 5GHz

Fig. 7.2 Ping time from the host to home gateway through Ethernet vs. HPPA vs. MoCA vs. WiFi

given type of wires, e.g., HPNA for telephone wires, MoCA for coaxial cables and
HPPA (HomePlug) for power lines, and the connectivity is limited, so is the capacity,
as each kind of these wires shares their capacity, sometimes even with neighbors.
The newer adapters following the G.hn standards can run over different wires, and
some even multiple (different kinds of) wires, greatly improving availability and
capacity. However, when compared with the switched Ethernet, MoCA is still
the second choice due to the high noise, interference, and collision in the house as
shown in Fig. 7.2.

7.3.2.3 Wireless Home Network

WiFi probably is the most common home network technology preferred by many
users, especially due to the support for portability and mobility. However, running in
2.4 GHz license-free industrial, scientific, and medical (ISM) and 5 GHz unlicensed
wireless channels also means WiFi has to compete with other WiFi and household
devices such as cordless phones, microwave ovens, and baby monitors. Particularly,
the high-power microwave ovens running in 2.4 GHz frequency bands can easily
kill any ongoing WiFi or Bluetooth sessions, as shown in Fig. 7.2 around ping
#30 for WiFi 2.4GHz, despite various techniques to avoid so. For office buildings,
WiFi access points (AP) and channel allocation have been carefully surveyed and
arranged, so the interference between nearby APs is minimized. However, in a

132 J. Pan

home environment, WiFi AP is collocated with Internet service provider (ISP)’s
modem, depending on the location of point of entry to a house. A single WiFi AP
often cannot have an adequate coverage for the entire house, especially when the
AP is located at a corner of a house where the modem is located. Even worse,
users can easily find many WiFi APs around their house by a simple channel scan,
as shown in Fig. 7.4, some even stronger than their own (e.g., Cable and DSL-
2.4GHz and 5GHz). Certain coordination with neighbors is possible but not always
feasible. Compared with Ethernet, 1-hop WiFi has much higher delay (in 64-
byte round-trip time by ping) and more variation as shown in Fig. 7.2, even for
5 GHz due to heavier propagation loss. We will focus on how to address this problem
in Sect. 7.4.1, which is one of the two main technical contributions of this book
chapter.

7.3.3 Internet Access

The “last-mile” ISPs are responsible to provide Internet connectivity to end users.
Based on the communication infrastructure that ISPs use, common consumer-
market Internet access technologies are summarized below and further compared
for the purpose of online teaching.

7.3.3.1 Fiber, Cellular, or Satellite?

Fiber optics are the most common communication medium used by the Internet
backbone and commercial Internet access networks commonly found in business
organizations, education institutions, and government agencies, mainly due to its
high capacity and cost, often associated with the need to lay down the fiber optical
cable. Fiber to the node, curb, building, and home (FTTN/C/B/H, or FTTx) starts
to appear on the consumer market, especially in some countries with emerging
economy and highly concentrated population. However, it is still not readily and
widely available in many places around the world at consumer level, other than
some pilot projects such as Google Fiber. Cellular coverage is almost ubiquitous
in urban and suburban areas, but the high cost of data plans in many countries still
limits it to an emergency replacement or backup only for home Internet access.
Similar concerns are for satellite-based Internet access.

7.3.3.2 Telephone Service Providers

DSL through telephone service providers is one of the two most common home
Internet access technologies. Initially designed to carry voice traffic with limited
bandwidth and data rate, unshielded twisted pairs (UTP) are the most common wires
from telephone companies to customer premises in local loop. Dial-up modem was

7 Teaching from Home: Computer and Communication Network Perspectives 133

the first widely adopted Internet access technology, followed by DSL where larger
bandwidth is freed over shorter distance through the same UTP wires with limited
capacity and susceptible to electromagnetic noise and interference. However, due
to the wide availability of dedicated telephone wires to most houses, DSL is still
very popular, although some telephone companies are now motivated to bring fiber
optics to consumers in selected markets. DSL is less likely affected by neighbors.

7.3.3.3 Television Service Providers

Coaxial cables due to its shield construction and thus much wider bandwidth and
better electromagnetic properties were initially used for cable TV broadcasting.
With the booming of the Internet, television service providers also upgraded their
infrastructure with bidirectional power amplifiers and hybrid fiber-cable (HFC)
networks to provide Internet services. Due to the large link bandwidth, cable modem
(CM) often can provide higher data rates than their DSL competitors. On the
other hand, neighbors do share the same drop cable, and thus the bandwidth and
achievable throughput can vary significantly.

As shown in Fig. 7.3, DSL has smaller delay and less variation than Cable
modem, as the latter is indeed affected by neighbors, and Fiber has the smallest
delay, while LTE the highest. Compared with Fig. 7.2, the “last-mile” delay around
10 ms is actually smaller and more stable than the “last-meter” in-home WiFi.

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

P
in

g
tim

e
(m

s)

Ping sequence

Fiber
DSL

Cable
LTE

Fig. 7.3 Ping time from the home gateway to first ISP router by Fiber vs. DSL vs. Cable vs. LTE

134 J. Pan

7.4 Improvement for Online Teaching

Based on the summary and comparison of the existing technologies above, in this
section we focus on how to improve WiFi home networks and leverage both DSL
and CM ISPs for reliability.

7.4.1 WiFi Interference Avoidance

Many home Internet access issues are actually the problem caused by WiFi networks
at home. Service providers often advise their customers to troubleshoot their Internet
access problems with a wired Ethernet cable to their so-called modem, AP, or router.
A ping and traceroute can easily identify the additional delay caused by home
WiFi networks, due to the poor coverage and severe interference. The following
approaches can address these issues with the technologies already existing in most
homes.

7.4.1.1 A Better (Al)located WiFi AP

As analyzed above, WiFi home networks have two major issues: coverage and
interference. Most DSL or cable modems come with an IEEE 802.11a/b/g/n/ac WiFi
AP running in 2.4 GHz and 5 GHz, with 20, 40, or 80 MHz-wide channels. Normally
speaking, the higher the operation frequency, more and wider channels available,
and shorter the transmission range at the same transmission power due to more
signal attenuation (path loss), as shown in Fig. 7.4 with received power in dBm as a
quality (Q) indicator, so higher Q for 2.4GHz channels (1 to 14) than 5GHz ones
(36 to 165). Thus, the choice of operation frequency and communication channel
depends on the location of WiFi AP and host computer for online teaching, as well
as the nearby appliances (particularly microwave ovens) and neighbor APs. Many

Fig. 7.4 Home WiFi signals in 2.4 GHz and 5 GHz channels

7 Teaching from Home: Computer and Communication Network Perspectives 135

newer APs allow them to “automatically” select a channel based on observation,
and some third parties (e.g., WiFi Analyzer) offer tools to survey and visualize
wireless channels to help consumers choose a less congested channel with stronger
signals, e.g., the purposely spaced out 5GHz channels in Fig. 7.4. Nevertheless, a
single WiFi AP, as the default setting for many users (channel 1, 11, 40 and 140),
still suffers the whole-house coverage and interference problems.

7.4.1.2 Wired Interconnected WiFi APs

For some houses, a single WiFi AP is not sufficient to cover the entire house
well, especially when the DSL or cable modem is at one corner of the house. To
improve the coverage, multiple WiFi APs at different locations can be deployed and
interconnected by Ethernet cables if available through the LAN ports of these APs,
which is very similar to the setting in workplace. If Ethernet is not available, NNW
in Sect. 7.3.2.2 can be used, as shown in Fig. 7.1. With multiple WiFi APs, certain
coordination is needed to designate one as the Internet gateway to the outside world
with DSL or cable modem, and other APs running in access point mode only, with
coordinated addressing and routing if multiple subnets exist. On the other hand,
these WiFi APs can run in different channels to minimize the interference among
themselves. Instructors can choose the best operation frequency and channel for
their host computer. This is often the best home network configuration. Unfortu-
nately, Ethernet is not always available, and NNW can introduce delay variation
and security concerns.

7.4.1.3 Wireless Interconnected WiFi APs

On the other hand, when neither Ethernet nor NNW links are available, WiFi
APs can be interconnected without wires through wireless distribution system
(WDS) [7], which is equivalent to a wired home network backbone. Such approach
is often used in cellular systems to interconnect BSs in their wireless backhaul
network. Not all DSL or cable modems with integrated AP support WDS in
their stock firmware, but many off-the-shelf consumer WiFi APs, especially those
powered by OpenWRT and DD-WRT, can be easily configured to support WDS and
have more advanced and flexible configuration. Due to the wireless interconnection,
further attention on channel selection is needed to avoid the interference between the
home backbone and access networks. By associating to nearby APs, WDS offers a
smooth roaming experience, similar to a wired backbone.

136 J. Pan

7.4.2 WAN Reliability Augmentation

Both consumer-grade DSL and cable Internet access services suffer reliability
issues, far below what fiber optics can offer in commercial workplace. For instruc-
tors to lose connection to the Internet, even briefly or intermittently, is unacceptable
for a potentially large group of students during lectures. In the following, we
examine and compare DSL- and CM-based Internet access and the possibility to
leverage both ISPs when feasible to improve reliability.

7.4.2.1 DSL vs. Cable Modem

As discussed in Sects. 7.3.3.2 and 7.3.3.3, DSL and cable both have their pros and
cons. DSL is not affected by neighbors but has limited bandwidth and is more
susceptible to noise and interference. CM has more bandwidth but has to share
the capacity with neighbors, especially for the uplink. For example, an advertised
25/5 Mbps (for downlink and uplink, respectively) DSL plan only achieves a 3 Mbps
uplink, but the ping time from the DSL modem to the first DSL ISP router is lower
and more stable due to the dedicated uplink. An advertised 50/5 Mbps CM plan can
achieve a 59 Mbps downlink during off-peak hours, but its ping time to the first CM
ISP router is a bit higher and highly variable due to the shared capacity, as shown in
Fig. 7.3. According to the most CLM platforms, a 500 kbps uplink is sufficient for
a standard-definition video stream, which is well accommodated by most DSL and
CM links, but delay and loss affect the live video streaming much more.

However, from the DSL and CM ISP networks to CLM data centers, depending
on how and where CLM providers deploy their services, the varying bandwidth
and delay can cause additional QoS fluctuation, as illustrated in Table 7.1 with
traceroute to a public enhanced DNS server. In terms of reliability, both
DSL and CM can vary by providers and regions, the cable plant, and supporting
infrastructures. Consumer-grade ISPs and plans also have routine maintenance and
unexpected outage without guaranteed backup and recovery as allowed by their
service agreement. Thus, relying on one DSL or CM service provider is often not
sufficient for high reliability. Paying higher cost for a business service plan is an
option, but in the following we explore other more flexible alternatives.

Table 7.1 Traceroute from the home gateway to 1.1.1.1: Cable vs. DSL ISP

Hop Cable modem DSL (router IP, RTT)

1 XX.66.224.1, 10.153 ms 10.31.254.1, 6.553 ms

2 YY.59.161.241, 13.243 ms * * *

3 YY.163.72.22, 11.705 ms AAA.11.12.198, 11.644 ms

4 YY.163.68.18, 13.340 ms BBB.41.104.52, 10.739 ms

5 ZZ.81.81.10, 13.713 ms 1.1.1.1, 10.973 ms

6 1.1.1.1, 14.765 ms

Bold indicates the destination (1.1.1.1) reached

7 Teaching from Home: Computer and Communication Network Perspectives 137

DSL/Fiber

Twisted pair; fiber

Load−balancing

WAN1WAN2

NAS

Pass−thruPass−thru

Failover

Ethernet, MoCA, WDS

Access Point

Coaxial cable

Cable

Fig. 7.5 Home network improvement for teaching from home

7.4.2.2 Primary vs. Backup

As shown in Fig. 7.5, we subscribed to two ISPs, one DSL and one CM, which
are often available in and competing for the same market. Note that some DSL and
CM ISPs wholesale from other major ISPs and then resale to consumers, but here we
know these two ISPs are actually independent in terms of their wiring infrastructures
and maintenance schedules, to improve reliability. Depending on the service quality
and cost of these two ISPs, one can be designated as the primary upstream ISP
(e.g., the one offers a flat monthly fee or without data cap) and the other backup
(the one charges by the data amount transferred, including cellular or satellite ISPs).
To facilitate the automatic switch between the primary and backup upstream ISP,
the WiFi AP (or an interconnected group of them) with routing functionalities and
connected to both DSL and cable modems shall check the liveliness of the primary
ISP, e.g., by pinging a known IP address periodically, and then set the default route
to the backup ISP when the primary one fails. Depending on the user-defined policy,
the home gateway can keep checking the primary ISP periodically and switch back
when the primary one becomes available. In this case, there is only one active ISP at
any time by default routing. It improves the reliability, unless both fail at the same
time, without additional capacity.

Most modern Web-era applications, including Blackboard, WebEx, and Zoom,
can sustain the switch of ISPs, and thus the change of the publicly assigned IP

138 J. Pan

address, during an active audio and video session, as these applications keep their
session states and recognize mobile users in the application layer (e.g., by HTTP
cookies), instead of by IP addresses and TCP or UDP port numbers. When one
connection fails, others are automatically created to continue the session, similar to
multi-path TCP (MPTCP) [8]. This is also used by many smart phones to switch
between WiFi and cellular connections automatically. For old, single-connection
applications such as ssh, however, users have to reconnect manually.

7.4.2.3 Load Balancing

Beyond primary and backup ISPs, it is also possible to bond both DSL and CM
ISPs at the same time, through a technique known as load balancing, i.e., some
connections use one ISP and others use another, either equally or proportionally
to a predefined or self-learned weight, as shown in Fig. 7.5. The advantage is
obvious: user can utilize both links if paid already, and each can back up the other
for reliability. However, it requires more sophisticated configuration at the home
gateway, where two upstream default routes have to be maintained at the same
time, one for each group of flows. Open-source routers such as those powered
by OpenWRT and DD-WRT have user-contributed scripts to automatically create
virtual LAN (VLAN) for different upstream ISPs, define rules to split traffic, check
network connectivity periodically, and fail over to the other link when necessary,
under the so-called Dual WAN capability [9]. Most full-blown Linux systems, e.g.,
Ubuntu, have multi-homing capability, and some low-cost SMB routers, such as TP-
Link R470T+, offer multi-WAN capability with very simple and intuitive graphic
user interface (GUI)-based configuration. Table 7.2 lists the delay and throughput
to speedtest servers hosted by Cable and DSL ISP, through Cable and DSL
individually, and jointly as bonded. It shows the great advantage of bonding.

However, there are still some subtle issues with load balancing in terms of
the “bonding” granularity, i.e., whether the packets from the same session can be
distributed over different upstream ISPs. If so, a single application can fully benefit
from both ISPs, in terms of both reliability and capacity, but this capability depends
on specific applications and whether they or the transport-layer protocol they use can
deal with out-of-order packet arrivals through different paths. For most CLM tools,
even free but not open source, we cannot guarantee their behavior. Nevertheless,
they seem to be able to handle when video and audio streams are carried by different
ISPs, similar in concept but different in technology as the call-in feature in most

Table 7.2 Individual and bonded speed test: Cable vs. DSL ISP

Thru To Cable hosted server DSL (ping, down/upload)

Cable 13 ms, 59.18/5.28 Mbps 13 ms, 57.43/5.32 Mbps

DSL 11 ms, 24.55/2.84 Mbps 10 ms, 24.25/2.81 Mbps

Bonded 11 ms, 80.99/8.15 Mbps 10 ms, 83.03/8.14 Mbps

7 Teaching from Home: Computer and Communication Network Perspectives 139

Table 7.3 CLM interruption: host vs. Internet link down vs. up

CLM Ethernet WiFi Cable (t : timer) DSL (down/up)

App 0/0 sec 1/0 sec t /0 sec t /t sec

Web 40/0 sec 40/0 sec 3t /0 sec 2t /3t sec

commercial CLM tools. Table 7.3 compares the interruption due to host interface
and Internet access down and up events for App and Web-based CLM platforms.
With bonding, load balancing, and liveliness checking, CLM only suffers in the
order of the detection timer, which can be as low as 1 sec and much lower than the
down-to-up time of DSL (40 sec) and CM (few minutes).

7.4.3 Recommendations on Teaching from Home

Based on the above summary, comparison, and proposal, and the experience in 2020
and 2021, in this section, we make some recommendations on online teaching in
2021 and beyond. First, use a computer with Ethernet connection to home router
whenever possible, and choose an ISP with reasonable data rates, especially the
uplink one, but more importantly with less delay and variation and fewer packet
losses and service outages. When wired Ethernet is not available, consider NNW
or improved WiFi with wired or wireless interconnection if needed. When feasible
and affordable, consider to have two independent ISPs to guarantee the reliability
for teaching from home, especially when large-scale synchronous lecturing is
anticipated. If there are other active users at home at the same time, consider
allocating them to use a low-priority WiFi channel and ISP when possible to avoid
link congestion.

7.5 Further Discussion

Currently, most colleges and universities planned to have online teaching for
undergrad or large classes, and possibly in-person teaching for grad or small classes.
Teachers may or may not have to teach from home. However, CoViD-19 spikes may
return again later 2021 or early 2022 in north hemisphere when another flu season
starts, and instructors may have to teach from home again, if a vaccine or proven
medicine is not widely available or accepted. Looking beyond the pandemic and
Fall 2021, some further thoughts deserve more discussion:

• Online or offline? Regardless another pandemic looming in the next few years,
the mixed online and offline teaching is likely to stay with us. Online teaching
can help us reach more population to further the education mission.

140 J. Pan

• Synchronous or asynchronous? This book chapter mainly addresses the chal-
lenges due to synchronous lecturing from home. Another option is asynchronous
lecturing where instructors record video lectures in advance. To compensate the
lack of interaction during lectures, additional Q&A sessions can be held, where
synchronous communication is needed. We believe that both synchronous and
asynchronous communications will be a part of our teaching regardless during or
after another pandemic or other events.

• The future of teaching and learning. Unarguably, CoViD-19 has fundamentally
changed the way how education, as well as other sectors of the societies around
the world, conducts their business, once forever. It is unlikely we fully go back
to the traditional classroom teaching—it is not all necessary, nor sufficient.
However, there are still many other pedagogical challenges due to online teaching
and learning, e.g., how to conduct labs and evaluate students against expected
learning outcomes meaningfully and truthfully.

7.6 Conclusions

In this book chapter, based on our experience in 2020 and 2021 during the CoViD-19
pandemic and the input from professional IT support, we examined the challenges
brought by the sudden massive move to online teaching, particularly teaching
from home. By comparing existing technologies and alternatives, we proposed and
validated some approaches to improving the capability and reliability of home
networks and Internet access, specifically for synchronous lecturing from home
to a large student population. The purpose of this book chapter is to create some
much needed discussion on this topic, even after the first few waves of CoViD-19.
Insights obtained can also be applied to other scenarios such as SMB and “broadcast
yourself” from home or even family video calls. After addressing these technical
issues, we hope the community can be better equipped to focus on other more
challenging issues in pedagogy for enriched teaching and learning experience.

References

1. WHO, Coronavirus Disease (CoViD-19) Pandemic, http://who.int/covid-19
2. UNESCO, CoViD-19 Response: Education, http://en.unesco.org/covid19
3. Wiki, http://en.wikipedia.org/wiki/Comparison_of_web_conferencing_software
4. M. Simonson et al., Teaching and Learning at a Distance, 7th edn. (IAP, Charlotte, 2019)
5. C. Reidsema et al. (ed.), The Flipped Classroom (Springer, Berlin, 2017)
6. J. Boettcher et al., The Online Teaching Survival Guide, 2nd ed. (Wiley, San Francisco, 2016)
7. Wiki, WDS, http://en.wikipedia.org/wiki/Wireless_distribution_system
8. IC Team, Multi-path TCP, http://www.multipath-tcp.org/
9. dd-wrt, Dual WAN, http://wiki.dd-wrt.com/wiki/index.php/Category:Dual_WAN

http://who.int/covid-19
http://en.unesco.org/covid19
http://en.wikipedia.org/wiki/Comparison_of_web_conferencing_software
http://en.wikipedia.org/wiki/Wireless_distribution_system
http://www.multipath-tcp.org/
http://wiki.dd-wrt.com/wiki/index.php/Category:Dual_WAN

Part II
Caching, Computing, and Control for

Ubiquitous Intelligence

Chapter 8
State Transition Field: A New
Framework for Mobile Dynamic Caching

Jie Gao, Mushu Li, Xinhua Ling, Lian Zhao, and Xuemin (Sherman) Shen

8.1 Introduction

Due to the upsurge in the number of devices connected to the Internet and the
demand for multimedia services, the role of content caching in wireless networks
becomes prominent [1–3]. The recent trend of pushing contents and services closer
to users as well as the emergence of virtual and augmented reality further underline
the importance of caching. Accordingly, the modeling and analysis of caching have
gained a lot of research attention [4, 5], especially the joint study of communication,
computation, and caching to deploy services close to mobile users [6, 7].

Depending on the considered scenario, the main benefit of caching can be
decreasing the content delivery latency [8], alleviating congestion over the backhaul
[9], reducing energy consumption [10], or a combination of the above [11]. While
the objectives can be different, the caching performance is largely centered around

J. Gao (�)
School of Information Technology, Carleton University, Ottawa, Canada
e-mail: JieGao6@cunet.carleton.ca

M. Li · X. (Sherman) Shen
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON,
Canada
e-mail: m475li@uwaterloo.ca; sshen@uwaterloo.ca

X. Ling
XLNTec Inc., Waterloo, ON, Canada
e-mail: xinhua@xlntec.com

L. Zhao
Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan
University, Toronto, ON, Canada
e-mail: l5zhao@ryerson.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_8

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_8&domain=pdf
mailto:JieGao6@cunet.carleton.ca
mailto:m475li@uwaterloo.ca
mailto:sshen@uwaterloo.ca
mailto:xinhua@xlntec.com
mailto:l5zhao@ryerson.ca
https://doi.org/10.1007/978-3-030-98064-1_8

144 J. Gao et al.

one measurement, i.e., the cache hit ratio. Since a cache can only accommodate a
limited amount of contents, the cache hit ratio is determined by how the cached
contents are selected and how they are updated. The problem of selecting the
contents to be cached is referred to as content placement. In static caching, the
cached contents will not change once the content placement problem is solved. In
contrast, the cached content can be updated, e.g., as content request and download
status changes, in dynamic caching. The problem of selecting new content to cache
while replacing existing content is referred to as content replacement.

Content placement is important in proactive caching, when contents are down-
loaded in advance. For example, an edge node can cache contents in advance during
off-peak hours to reduce peak-hour network traffic load [12]. The key to proactive
caching is adapting to unknown content popularity or network environment, usually
leading to a Markov decision problem [13] or a learning problem [14]. In dynamic
caching, cached content may be evicted and replaced by new content whenever a
cache miss occurs, which leads to a dynamic process that updates cached contents
on the fly [15].

The guiding rule for updating the contents is referred to as a cache replacement
scheme, which has a significant impact on the performance of dynamic caching.
With heuristic principles such as the least-frequently-used (LFU) or least-recently-
used (LRU), the least popular content is replaced when new content is accepted in
classic dynamic caching. Dynamic probabilistic caching originated from computer
networks, and the idea is to cache a user-requested content with a certain probability
[16, 17]. Because of the dynamic cache-and-replace process, dynamic probabilistic
caching may adapt to time-varying content popularity without knowing the pop-
ularity. Moreover, dynamic probabilistic caching could achieve fair and efficient
content placement in a network with low redundancy in a distributed setting [16, 18].
However, it is difficult to establish a bound on the performance of probabilistic
caching, which is typically evaluated numerically.

In this chapter, we introduce the state transition field (STF) theory and the design
of dynamic probabilistic caching based on the average content popularity. The
STF theory can unify the analysis of different replacement schemes, characterize
their features, and intuitively illustrate their differences [19, 20]. The proposed
dynamic probabilistic caching exploits content popularity information while making
content replacement decisions to achieve high cache hit ratio with reduced number
of replacements [21]. In Sects. 8.2 and 8.3, we demonstrate that a replacement
scheme corresponds to a unique state transition matrix, which in turn generates a
unique STF. The STF determines the expected change of the dynamic cache state
distribution just like an electromagnetic field determines the movement of a charged
particle placed in it. We introduce the STF theory in the cases of both time-invariant
and time-varying content popularity and provide examples to illustrate the STF.
Then, in Sect. 8.4, we study caching from another perspective: given the average
content popularity, how to design a replacement scheme through determining the
state transition matrix. We formulate an equivalent problem of designing the state
transition probability matrix of a Markov chain and develop a method to solve the
problem. Section 8.5 demonstrates the STF in various scenarios and the probabilistic

8 State Transition Field: A New Framework for Mobile Dynamic Caching 145

Table 8.1 List of symbols

Nc The number of all contents

Ns The number of all cache states

L The cache size limit

C The set of all contents, i.e., {1, . . . , Nc}
S The set of all cache states, i.e., {1, . . . , Ns}
Sl The set of all cache states that cache content l

sk The kth cache state vector

Ck The set of contents cached in state k

Cs The cache state matrix, i.e., [s1, . . . , sNs]
Hk The set of all neighbors of state k

Hk,l The set of all content-l neighbors of state k

ϕl The request probability of content l

ϕ The content request probability vector, i.e., [ϕ1, . . . , ϕNc]T
φl,q,k The conditional probability that content l replaces content q given that cache is in

state k and content l is requested

� The state transition probability matrix

�l The conditional state transition probability matrix given that content l is requested

�(m, k) The probability of transitioning from state k to state m

�l (m, k) The probability of transitioning from state k to state m given that content l is
requested

η
(n)
k The SCP for state k in the duration from the nth to the (n+ 1)th replacement

η(n) The SCP vector in the duration from the nth to the (n+ 1)th replacement, i.e.,
[η(n)1 , . . . , η

(n)
Ns
]T

λ
(n)
l The CCP for content l in the duration from the nth to the (n+ 1)th replacement

λ(n) The CCP vector in the duration from the nth to the (n+ 1)th replacement, i.e.,
[λ(n)1 , . . . , λ

(n)
Nc
]T

γ (n) The instantaneous cache hit probability at the nth request

u(η) The state transition field at η

ul (η) The content-l state transition field at η

um,l(η) The mth element of the state transition field at η

um,l(η) The mth element of the content-l state transition field at η

content replacement policy using numerical results. The list of symbols used in this
chapter is given in Table 8.1.

8.2 State Transition Field

Consider the scenario ofNc contents and a cache with size L. The set of all contents
is denoted by C. Without loss of generality, we assume that all contents are of
identical unit size. The caching scenario can be generic, such as caching at a cellular

146 J. Gao et al.

base station, a Wi-Fi access point, a road side unit for vehicles, or a mobile device
for device-to-device caching.

The fundamental assumption in this section is that the requested contents repre-
sented by integer random variables are independent and identically distributed. This
follows from the widely used independent reference model (IRM), a simplification
of the actual request process that can be accurate with a large number of requesting
users [22] or within a short time frame [23]. As the requested content follows a
distribution that is time invariant, the probability of content l ∈ C being requested
can be denoted by ϕl . The probabilities {ϕl}∀l are organized into the request
probability vector ϕ and referred to as the content popularity.

8.2.1 Content Request and Replacement

If content l is requested but not in the cache, it will be downloaded and, depending
on the replacement scheme, may replace one cached content. It is assumed that the
download and replacement can be completed before the next content request arrives
at the cache.

The timeline of the considered dynamic caching is illustrated in Fig. 8.1. For
simplicity of notation, we put a replacement point after each request regardless of
whether a replacement actually happens or not. If a replacement occurs following
the nth request, it is completed by the nth replacement point.

8.2.2 Cache State

Cache state is introduced to describe the combination of cached contents. There are
Ns =

(
Nc
L

)
different possible combinations of cached contents, corresponding to Ns

caching states.1 The set of all cache states is denoted by S, and the set of contents

Fig. 8.1 Illustration of the timeline model. D(n) represents the duration between the nth and the
(n+ 1)th replacement points

1 Here we ignore the cases when the cache is not full.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 147

Fig. 8.2 An illustration of states with Nc = 5 and L = 2. Each circle represents a state. The
number above a circle represents the state ID, and the set inside a circle represents the set of
cached contents in that state. For example, contents 2 and 5 are cached in state 7

cached in state k is denoted by Ck . The cache state vector for state k is defined as a
Nc × 1 vector with elements determined as follows:

sk(l) =
{

1, if l ∈ Ck,
0, if l /∈ Ck, ∀l ∈ C,∀k ∈ S, (8.1)

where the lth element of vector sk corresponds to the lth content. An example with
Nc = 5 and L = 2 is illustrated in Fig. 8.2. In this example, there are

(5
2

) = 10
states. Each circle in the figure represents a state, while the number above the circle
represents the state ID. The set given in the circle of state k is the set of cached
contents in state k, i.e., Ck , and the vector beneath state k is sk . For example, state 7
caches contents {2, 5} and is represented by the cache state vector s7 = [0 1 0 0 1]T,
where ·T stands for transpose.

A state is a neighbor of state k if its cached contents differ from those cached in
state k by just one element. The set of neighbors of state k is denoted asHk . For any
content l /∈ Ck , a content-l neighbor of state k is a neighboring state that caches l.
The set of content-l neighboring states of state k is denoted as Hk,l . Using Fig. 8.2
and state 8 as an example, H8 is the set of all colored states, and H8,1 is the two
states with navy blue color.

148 J. Gao et al.

8.2.3 State and Content Caching Probabilities

The cached contents and the cache state remain constant in the duration between
consecutive replacement points (shown in Fig. 8.1). The state caching probability
(SCP) for state k and the nth duration, denoted by η(n)k , is the probability that the
cache is in state k in the nth duration. The content caching probability (CCP) for
content l and the nth duration, denoted by λ(n)l , is the probability that content l is
cached in the nth duration.

Define the SCP vector η(n) and CCP vector λ(n) such that η(n)(k) = η
(n)
k and

λ(n)(l) = λ
(n)
l . Evidently, 1Tη(n) = 1 and 1Tλ(n) = L. Based on the timeline in

Fig. 8.1, the SCP and the CCP vectors at the instant of the (n+ 1)th request are η(n)

and λ(n), respectively.2

The SCP and the CCP are connected through cache states. Using Fig. 8.2 as
an example, the probability that content 5 is cached is equal to the sum of the
probabilities that the states in the dotted box are cached. Define a cache state matrix
Cs = [s1, . . . , sNs]. In general, the relationship between SCP η(n) and CCP λ(n) is
given by:

λ(n) = Csη
(n). (8.2)

Given that content l is being requested at the (n + 1)th request, the conditional
instantaneous cache hit probability is λ(n)l . The instantaneous cache hit probability
at the (n+ 1)th request, denoted by γ (n+1), is given by:

γ (n+1) = ϕTλ(n). (8.3)

If the cache is at state k while content l /∈ Ck is requested, the cache downloads
content l and decides whether to replace a cached content with content l. In the
general model, the probability of replacing content q with content l when the cache
is at state k is denoted by φl,q,k , for any q ∈ Ck and l /∈ Ck . For each state, there are
L(Nc − L) possible replacements.

8.2.4 General Cache State Transition Model

A content replacement triggers a cache state transition. For neighboring states k
and m that satisfy m ∈ Hk,l and k ∈ Hm,q , replacing content q with l triggers a
transition from state k to statem. The conditional cache state transition probabilities
given that content l is requested can be organized into the following matrix �l :

2 We use lower-case bold letters for vectors, upper-case bold letters for matrices, and calligraphic
letters for sets. The superscript (·)(n) is used on letters related to the nth request or replacement.
Greek letters are used to represent various probabilities.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 149

�l (m, k)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if k = m and l ∈ Ck,
1− ∑

m′∈Hk,l
φl,e(k,m′),k, if k = m and l /∈ Ck,

φl,e(k,m),k, if m ∈ Hk,l ,
0, otherwise,

(8.4)

where e(k,m) denotes the unique content that is cached by state k but not state m
given that k ∈ Hm. Accordingly, the overall cache state transition probability matrix
in the general case is given by:

� =
∑

l∈C
ϕl�l . (8.5)

From the definition of the SCP vector η(n) and state transition probability matrix
�, it can be seen that:

η(n) = �η(n−1). (8.6)

The above model can be extended to the scenario in which each content request
(and replacement) involves multiple contents. In such a case, assuming that each
request is for a block of B contents (B < L), there are NB = (

Nc
B

)
different blocks.

Then, Eq. (8.5) can be extended as follows:

�B =
NB∑

b=1

ϕB
b�B

b , (8.7)

where ϕB
b is the probability that the bth block is requested, and �B

b is the conditional
cache state transition probabilities given that block b is requested. The size of �B

b

remains Ns ×Ns. However, for any given state, e.g., state k, the set of its neighbors
Hk will contain more states under block replacement, and the set of its content-
l neighbors Hk,l will be replaced by a set of block-b neighbors. The extension is
straightforward, and the details are omitted here.

8.2.5 State Transition Field

Denote the general SCP without specifying any time instant as η. Consider η as a
point in theNs-dimensional vector space. Driving by the requests and replacements,
η varies in the following domain:

D=
{
(
η1, . . . , ηNs

)
∣∣∣∣0 ≤ ηk ≤ 1,∀k ∈ S;

∑

k

ηk = 1

}

. (8.8)

150 J. Gao et al.

The expected “movement” of η inD after the nth replacement point, assuming a
replacement actually happens, is characterized by η(n) − η(n−1). This difference, in
turn, is determined by three factors:

• The current position of η inD, i.e., the value of η(n−1)

• The content popularity ϕ

• The state transition probability matrix �,

while � is determined by the replacement scheme and generally dependent on ϕ

(such dependence is shown in Eq. (8.5)).
Define the STF at the point η(n−1) using the aforementioned difference:

u(η(n−1)) = η(n) − η(n−1). (8.9)

Substituting Eq. (8.6) into Eq. (8.9), it follows that:

u(η(n−1)) = �η(n−1) − η(n−1). (8.10)

The STF is a vector field defined over the domain D. It can be seen that
understanding the STF can provide insight into the design and performance analysis
of replacement schemes. Similar to a magnetic or electric field, the STF can vary
in direction and strength at different points in the domain (although the STF exists
mathematically but not physically). Under the IRM, the STF does not change over
time, as ϕ and � are both constant.

In the definition Eq. (8.9), the η(n−1) in the parentheses specifies a point in the
domain D. If the STF is known at all points in D, a path can be identified from
any initial point. As illustrated in Fig. 8.3, the end point of a path gives the steady
state of the replacement scheme, while the number of steps reflects the time for the
underlying Markov chain to attain its stationary state from the initial point. Different
replacement schemes yield different STFs, and the impact is conveyed through �.
Therefore, the STF is a complete characterization of replacement schemes.

Fig. 8.3 An illustration of
STF at four points, i.e., η(0) to
η(3). The end point η�

represents the steady state, at
which the STF diminishes to
an all-zero vector

D
η(0)

η(1)

η(2)

η(3)

u(η(0))

u(η(1))

u(η(2))

u(η(3))
η�

8 State Transition Field: A New Framework for Mobile Dynamic Caching 151

The STF can be decomposed. Define:

ul (η(n−1)) = �lη
(n−1) − η(n−1). (8.11)

It follows that:
∑

l∈C
ϕlul (η(n−1))=

∑

l∈C
ϕl�lη

(n−1)−η(n−1)=u(η(n−1)), (8.12)

where the last step uses Eq. (8.5). Accordingly, ul (η(n−1)) can be considered as the
content-specific STF that represents the “movement” of η from the point η(n−1) after
content l is requested. The superposition of all content-specific STFs, weighted by
the corresponding content popularity, yields the overall STF.

It is not difficult to see that the following equalities hold:

1Tul (η(n−1)) = 0, ∀l ∈ C, ∀η(n−1) ∈ D, (8.13)

1Tu(η(n−1)) = 0, ∀η(n−1) ∈ D. (8.14)

8.2.6 Discussions on the Steady State and the Convergence

In this subsection, we discuss the benefits of using the proposed STF to analyze
replacement schemes in practice. First, we use an example to show how the STF
can characterize the property of the stationary states. Then, we use another example
to show how the STF can be used to compare the convergence rates of replacement
schemes.

At the steady state, the overall STF must be equal to 0 regardless of the
replacement scheme. However, this does not mean that no replacement happens
after the steady state is achieved. Instead, contents can still be evicted from or
accepted into the cache, while the probabilities of the two events must be equal
for any content at the steady state. Therefore, it is not difficult to see that there can
be more frequent replacements at the steady state of one replacement scheme than
that of another. This frequency of replacement at a steady state can be analyzed by
decomposing the STF into content-specific STF using Eq. (8.12), as illustrated in
Fig. 8.4. In the illustrated cases, we assume the same content request probabilities,
while the content-specific STFs in Fig. 8.4a have much smaller norms than those
in Fig. 8.4b. Correspondingly, there can be less frequent replacements at the steady
state η� in Fig. 8.4a than at the steady state η̃� in Fig. 8.4b.

In the case when each replacement incurs a cost or when cache wear-out is a
concern, characterizing the frequency of replacement can be of interest. Based on
the above discussion, the weighted sum of the norm of content-specific STF can be
used as a metric for comparing the frequency of content replacement at the steady
state of different replacement schemes. For example, a metric can be calculated as
follows:

152 J. Gao et al.

Fig. 8.4 Illustration of decomposing the STF at the steady state. (a) Small ‖ul (η�)‖. (b) Large
‖ul (η̃�)‖

M(η�) =
∑

l∈C
ϕl‖ul (η�)‖, (8.15)

where the weights are the content request probabilities.
The rate of convergence depends on the second largest eigenvalue of the transi-

tion probability matrix �. Since STF is a derivative of state transition probability
matrix, it does not provide a new characterization of the rate of convergence in
theory. However, we can use STF to develop a metric for comparing the convergence
rate of different replacement schemes in practice.

For example, we can generate sample points in the state transition region, as
illustrated using hollow circles in Fig. 8.5. Hypothetically, if the STF at every
point of the state transition region points toward the steady state η�, then the rate
of convergence is determined by the strength (norm) of the STF. In practice, the
STF at the sample points generally does not point straight toward the steady state.
Nevertheless, we can project the STF at a sample point onto the connection line
between that sample point and the steady state. This is illustrated with two example
sample points, i.e., ηa and ηb, in Fig. 8.5. In this figure, the red solid circle represents
the steady state η�. The black arrows at sample points ηa and ηb represent the STF
u(ηa) and u(ηb), respectively. The two dashed lines connect ηa and ηb with the
steady state η�. The two blue arrows on the dashed lines represent the projection
of u(ηa) and u(ηb), respectively. The norm of the projection, aggregated over all
sample points, can provide a metric for characterizing the convergence rates of
replacement schemes. The accuracy of this approach depends on the number and
locations of the chosen sample points.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 153

Fig. 8.5 Illustration of
sampling the STF for
characterizing the
convergence rate ηa

u(ηa)

η�

u(ηb)
ηb

8.3 State Transition Field with Time-Varying Content
Popularity

As the content popularity becomes time varying, some symbols become dependent
on the request instant. We refer to such symbols as request-dependent symbols,
which include the following three:

Content Request Probabilities The probability of content l being requested at
request instant n, denoted by ϕ(n)l , and the overall content popularity at the nth
content request, denoted by ϕ(n).

Instantaneous Cache Hit Probability The instantaneous cache hit probability at the
(n+ 1)th request, denoted by γ (n+1), is given by:

γ (n+1) =
(
ϕ(n+1)

)T
λ(n), (8.16)

where (·)T represents transpose, and λ(n) is the CCP vector after the nth round of
request and replacement.

Station Transition Matrices The conditional state transition matrix and the state
transition matrix are generally time dependent and thus denoted by �

(n)
l and �(n),

respectively, under time-varying content popularity.
The relation between state and content caching probabilities, i.e., (8.2), from

Sect. 8.2 still applies in the case of time-varying content popularity, where η(n) is
the SCP vector after the nth round of request and replacement. It follows from (8.2)
that:

η(n) = CT
s

(
CsCT

s

)−1
λ(n) + n(n)C , (8.17)

154 J. Gao et al.

where n(n)C can be any vector in the null space of Cs that renders η(n) a valid
probability vector, i.e., η(n) � 0, η(n) � 1, and 1Tη(n) = 1. Therefore, the value
of n(n)C is dependent on the value of λ(n).

8.3.1 General Replacement Model

In the case of time-varying content popularity, the state transition probability matrix
in the general model can be written as:

�(n) =
∑

l∈C
ϕ
(n)
l �

(n)
l , (8.18)

where C is the set of all contents, and the conditional cache state transition
probability matrix given that content l /∈ Ck is requested, �

(n)
l , is given by:

�
(n)
l (m, k)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if k = m and l ∈ Ck,
1 − ∑

m∈Hk,l
φl,e(k,m),k, if k = m and l /∈ Ck,

φl,e(k,m),k, if m ∈ Hk,l,
0, otherwise,

(8.19)

where φl,q,k denotes the probability of replacing content q with content l given that
the cache is at state k and content l is requested. Unlike the case with time-invariant
content popularity, the conditional cache state transition probability matrix �

(n)
l can

be implicitly request dependent as a result of φl,q,k being request dependent.
The relationship between the SCP vector η(n) and state transition probability

matrix � in (8.6) can be rewritten as follows in the case of time-varying content
probabilities:

η(n) = �(n)η(n−1). (8.20)

Based on Eqs. (8.2) and (8.20), the resulting CCP vector after the nth request and
replacement can be given by:

λ(n) = Cs

∑

l∈C
ϕ
(n)
l �

(n)
l η(n−1). (8.21)

Using Eq. (8.17), it follows that:

λ(n) =
(

Cs

∑

l∈C
ϕ
(n)
l �

(n)
l CT

s

(
CsCT

s

)−1
)

λ(n−1) + Cs

∑

l∈C
ϕ
(n)
l �

(n)
l n(n−1)

C .

(8.22)

8 State Transition Field: A New Framework for Mobile Dynamic Caching 155

It can be seen that the mapping from λ(n−1) to λ(n) is complicated. Specifically,
unlike the mapping between two consecutive SCP vectors, which can be simply
written as η(n) = �(n)η(n−1), the mapping between consecutive CCP vectors
cannot be written in a linear form due to the second item in Eq. (8.22), i.e.,
Cs
∑
l∈C ϕ

(n)
l �

(n)
l n(n−1)

C . Moreover, despite that Eq. (8.22) seems to have an affine
form, the mapping from λ(n−1) to λ(n) is not affine. This is implicitly conveyed
through the variable n(n−1)

C since the value of n(n−1)
C depends on λ(n−1) and the

dependence is nonlinear.

8.3.2 Instantaneous STF: The General Case

Under time-varying content popularity, the state transition probability matrix is �(n)

when the SCP is η(n−1). Therefore, the STF at the instant of the nth request and the
point η(n−1) is given by:

u(n)(η(n−1)) = �(n)η(n−1) − η(n−1). (8.23)

The superscript (n) in u(n)(·) reflects the fact that the STF is no longer static but
time varying. The direction and strength of the instantaneous STF depend on both
η, the location in the state transition domain, and n, the request instant. The value
of the instantaneous STF u(n)(η(n−1)) represents the change in the SCP after the
nth round of request and replacement. The effect of a replacement scheme on the
dynamic SCP over a sequence of requests can be decomposed into the summation
over the instantaneous STFs:

η(n+N−1) − η(n−1) =
N−1∑

t=0

(
η(n+t) − η(n+t−1)

)
=
N−1∑

t=0

u(n+t)(η(n+t−1)),

(8.24)

for any n ≥ 1 and N ≥ 1.
Similarly, other metrics can also be studied through instantaneous STFs, e.g., the

average cache hit probability. Using instantaneous STFs from the first till the nth
request, the average cache hit probability over the n requests can be given by:

γavg = 1

n

n∑

t=2

(
ϕ(t)

)T
Cs

(t−2∑

t ′=0

u(t
′+1)

)
+ ϕT

avgCsη
(0), (8.25)

156 J. Gao et al.

where u(t
′+1) is the abbreviation for u(t

′+1)(η(t
′)), and

ϕavg =
1

n

n∑

t=1

ϕ(t) (8.26)

is the average content popularity over the n requests. The above two equations show
that the average cache hit probability over an arbitrary number of requests, starting
from any initial SCP η(0), can be obtained from instantaneous STFs, instantaneous
content request probabilities, and the initial point η(0). The inner summation over
t ′ in Eq. (8.25) represents the effect of historical requests and replacements on
the instantaneous cache hit probability at the t th request. The decomposition in
Eq. (8.24) and the result in Eq. (8.25) demonstrate the importance in analyzing
the instantaneous STF under different replacement schemes. If the instantaneous
content request probabilities ϕ(t), t ∈ {1, . . . , n} can be obtained, the instantaneous
STF of a replacement scheme at any point in the state transition region can be
calculated using Eqs. (8.18), (8.19), and (8.23). For evaluating and comparing
different cache replacement schemes, we can substitute the specific STF of the
replacement schemes for u(1), . . . ,u(t−1) in Eq. (8.25).

The instantaneous STF can also be decomposed into content-specific STF. Define
the lth component of u(n)(η(n−1)) as:

u(n)l = �
(n)
l η(n−1) − η(n−1). (8.27)

It can be seen that:

u(n)(η(n−1)) =�(n)η(n−1) − η(n−1)

=
∑

l∈C
ϕ
(n)
l

(
�lη

(n−1) − η(n−1)
)

=
∑

l∈C
ϕ
(n)
l u(n)l . (8.28)

8.3.3 Impact of STF on Instantaneous Cache Hit Probability

When the content popularity varies over time, a replacement scheme may not lead
to any steady state. As a result, the analysis of steady states and rate of convergence
is not applicable. Instead, the impact of a replacement scheme on the instantaneous
cache hit probability at the next request is investigated.

A replacement after the nth request affects the cache hit probability at the (n +
1)th request. Consider the time instant right after the nth request and replacement
so that u(n)(·) is the current STF and the (n + 1)th request is the next request. The
effect of a replacement scheme can be conveyed through the difference between the

8 State Transition Field: A New Framework for Mobile Dynamic Caching 157

Fig. 8.6 Illustration of the
relation between
instantaneous cache hit
probability, η(n), and ϕ(n+1).
Area S1 is the area that η(n+1)

may fall in, i.e., the
intersection of hyperplane A
and the subspace η(n+1) � 0.
If η(n+1) falls in area S2, then
(z(n+1))T η(n+1) ≥
(z(n+1))T η(n)

B

A

z(n+1)

B : (υ(n+1))TCs(η − η(n−1)) = 0

z(n+1) : CT
s υ(n+1)

A : 1Tη = 1

S2 S1

η(n−1)

cache hit probability at the (n+ 1)th request with and without a replacement (based
on the chosen scheme) after the nth request. This difference is given by:

d(n+1)
γ =

(
ϕ(n+1)

)T
Cs

(
η(n) − η(n−1)

)

=
(
ϕ(n+1)

)T
Csu

(n)(η(n−1)). (8.29)

The above result shows that the cache hit ratio at the (n + 1)th request depends
on the content popularity at the (n + 1)th request, i.e., ϕ(n+1), the STF at the nth
request, i.e., u(n)(·), and the SCP at the (n− 1)th request, i.e., η(n−1). Among these
three factors, η(n−1) reflects the accumulative effect of the previous n− 1 rounds of
request and replacement, u(n)(·) represents the current STF, and ϕ(n+1) represents
the content popularity at the next request. Equation (8.29) shows the complication
due to time-varying content popularity: ϕ(n+1) and u(n)(·) would reduce to ϕ and
u(·), respectively, if the content popularity becomes time invariant.

Some general observations can be made:

1. Define z(n+1) = CT
s ϕ(n+1). Then z(n+1) is the state cache hit probability vector

at the (n + 1)th request. Depending on η(n−1), ϕ(n), and �(n), η(n+1) may fall
at any point in the areas S1 in Fig. 8.6. The replacement after the nth request
improves the instantaneous cache hit probability at the (n + 1)th request if the
replacement drives the SCP into the area S2 in Fig. 8.6.

2. d(n+1)
γ is small, regardless of ϕ(n+1), when η(n−1) is close to the steady state

corresponding to ϕ(n) (i.e., the steady state if the content popularity is constant
and remains equal to ϕ(n)).

3. In the trivial case when ϕ(n+1) approaches 1/Nc · 1, where Nc is the number
of contents, the hyperplane (ϕ(n+1))TCs(η − η(n)) = 0 coincides with the
hyperplane 1Tη = 1. In such a case, d(n+1)

γ becomes zero for any replacement
scheme.

158 J. Gao et al.

8.4 Dynamic Probabilistic Caching with Time-Varying
Content Popularity

In classic dynamic caching such as LRU, replacements are usually determined
solely by the content request statistics. Such replacements provide adaptivity to
time-varying content popularity without any a priori information. However, the
average content popularity {ϕk}k∈F may be available, e.g., through prediction,
and the optimal average content caching probabilities {p�k}∀k could be found
accordingly. In such a case, using classic dynamic caching while neglecting the
average content popularity cannot lead to optimal performance since it ignores
useful information. Therefore, we aim to design dynamic probabilistic caching that
can exploit the average content popularity {ϕk}k∈F to adapt to the content popularity.
A logical requirement is that the resulting caching probability should converge to
the optimal content placement policy η� based on the average content popularity in
the case of time-invariant content popularity. This section addresses two questions
regarding the design of such dynamic caching: (a) what should be the probability of
accepting a new content into the cache? and (b) which existing content should be
replaced, and with what probability, if the new content is accepted.

8.4.1 The Content Replacement Markov Chain

The content replacement process at the target cache can be modeled using a Markov
chain. Our focus here is the design of content replacement that can converge to a
target stationary point in the case when the content popularity is time invariant and
adapt to the variations in the case when the content popularity is time varying.

In the content replacement Markov chain, a state transition may happen when a
requested content is not in the cache. For state m, denote the set of states that state
m can transit into by replacing one cached content with content k and the entire set
of states that state m can transit into by replacing one cached content with any other
content as Hkm and Hm, respectively. It is not difficult to see that state m and any
state inHm must differ in one and only one cached content. Let c be the cache size.
The following results hold:

Hm =
⋃

k∈F\Gm
Hkm, |Hkm| = c, |Hm| = c(Nf − c). (8.30)

Consider a pair of neighbor states m and m′ ∈ Hkm. The question that arises is:
with what probability should the cache transition into statem′ given that content k is
requested while the cache is currently in statem? Denote this conditional probability
as τm′,m. Then, the design of dynamic probabilistic caching boils down to finding
τm′,m for every m and m′ ∈ Hkm where k ∈ F\Gm.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 159

The overall state transition probability matrix of the content replacement Markov
chain is determined by two sets of probabilities: the content request probabilities and
{τm′,m}. Since the instantaneous content request probabilities are unknown, we can
only exploit the average content request probabilities {ϕk}k∈F. Therefore, the design
of dynamic content replacement uses {ϕk}k∈F instead of the instantaneous content
request probabilities. A discussion on the effect of time-varying content popularity
will be given later.

Denote the overall state transition probability matrix by �. The element at
the mth column and the m′th row of � represents the probability that state m
transitions into state m′. Then, � can be written as the summation of content-
specific conditional state transition matrices as follows:

� =
∑

k∈F
ϕk�k, (8.31)

where �k is the conditional state transition probability matrix given that content
k is being requested. It can be seen that � and �k,∀k have many zero elements
because �(m,m′) and �(m′,m) are both zero if m′ /∈ Hm, and �k(m,m

′) and
�k(m

′,m) are both zero if m′ /∈ Hkm. Specifically, based on the conditions in
Eq. (8.30), each column of � only has c(Nf − c)+ 1 nonzero elements with one on
and the rest off the main diagonal. For a column in �k , two cases are possible. If
state m caches content k, then the diagonal element �k(m,m) is the only nonzero
element in the mth column. Otherwise, the mth column has c nonzero elements off
the main diagonal.

In order to highlight the state transition, the content request probability ϕk at
the target cache is alternatively denoted by ϕm′,m if m′ ∈ Hkm, i.e., if content k
must be requested for the cache to transition from state m into state m′. Denote
the mth element on the main diagonal of � by αm,m. Figure 8.7 illustrates the state
transitions. In the illustrated example, Nf = 5 and c = 2, and therefore c(Nf − c)+
1 = 7. As a result, each state can transition into itself and six other states.

Given the above notations, the overall transition probability matrix � corre-
sponding to the content replacement Markov chain for the target cache can be
written as:

�=

⎡

⎢⎢⎢⎢
⎢
⎣

1 ··· m ··· n

1 α1,1 · · ·ϕ1,mτ1,m· · · ϕ1,nτ1,n
...

...
. . .

...
...

m ϕm,1τm,1 αm,m ϕm,nτm,n
...

...
...

. . .
...

n ϕn,1τn,1 · · ·ϕn,mτn,m· · · αn,n

⎤

⎥⎥⎥⎥
⎥
⎦
, (8.32)

160 J. Gao et al.

Fig. 8.7 An illustration of the variables in the state transition using the example of state 2, where
Nf = 5 and c = 2. Each circle represents a state, the bracketed numbers in the center represent the
cached contents in that state, and the italic number at the bottom represents the state ID

where ϕm′,m ∈ [0, 1] and τm′,m ∈ [0, 1],∀m′ ∈ Hm,∀m. The diagonal element
αm,m in (8.32) can be found as follows:

αm,m=
∑

k∈Gm
ϕk+

∑

m′∈Hm
ϕm′,m(1 − τm′,m). (8.33)

The first item in Eq. (8.33) represents the probability that a content currently in the
cache is requested, while the second item represents the probability that a content
not in the cache is requested (and downloaded) but not accepted into the cached
(i.e., no replacement occurs).

Given η�, the design of dynamic probabilistic caching so that the content caching
probabilities converge to the optimal content caching probability vector p� in the
case of time-invariant content popularity is equivalent to finding the transition
matrix � such that

�η� = η�. (8.34)

If the elements of � could be arbitrarily chosen in the range of [0, 1], the problem
can be solved with existing methods, e.g., the Metropolis–Hastings Algorithm [24].
However, as can be seen from Eq. (8.32), there are additional constraints on the
elements of �. First, each off-diagonal element is a product of two items, and the
(m′,m)th element should be bounded by ϕm′,m. Second, the summation of multiple
elements in the same column should also be bounded, i.e.,

∑

∀m′∈Hkm
ϕm′,mτm′,m ≤ ϕk,∀k ∈ Gm,∀m. (8.35)

8 State Transition Field: A New Framework for Mobile Dynamic Caching 161

Consequently, the Metropolis–Hastings Algorithm cannot be applied to the consid-
ered problem. In the next section, an approach is proposed to construct an irreducible
and ergodic Markov chain by designing the matrix � for the target cache so that η�

is the unique steady state.

8.4.2 Generating the State Transition Matrix �

Without loss of generality, it is assumed that the elements of η� are non-zero and
arranged in a non-increasing order, i.e., ηq ≥ ηl if q < l. An extension to the case
when ηj is zero for some j is straightforward.

When a content not in the cache is requested, a replacement may or may not
happen. In order to control this factor in our design, we introduce parameters
{ωk,m′,m} to represent the upper limit on state transition probabilities. Specifically,
for any givenm andm′ ∈ Hkm, parameter ωk,m′,m represents the upper limit that state
m transits into state m′ given that content k is requested. As a result, the following
condition must be satisfied:

∑

m′∈Hkm
ωk,m′,m ≤ 1,∀m,∀k. (8.36)

If strict equality holds in the above condition, then content k is always accepted into
the cache when the cache state is m. Otherwise, content k may not be accepted into
the cache even after it is requested and downloaded.

The next step is to determine which state transitions could happen and with what
probabilities. Recall that the elements of η� are arranged in a non-increasing order.
Note that the adjacent states, e.g., statem and statem+1, may not be neighbor states
using such an order. For any given m, define the functions V (m) for m ∈ {2, . . . , n}
and X(m) for m ∈ {1, . . . , n− 1}, both mapping from a state to one of its neighbor
states as follows:

V (m) = arg min
m̂∈Hm

{ηm̂|ηm̂ ≥ ηm}, (8.37a)

X(m) = arg max
m̌∈Hm

{ηm̌|ηm̌ ≤ ηm}. (8.37b)

An illustration of V (·) and X(·) when Nf = 5 and c = 2 is given in Fig. 8.8a. Using
V (m) and X(m) on state m, two cases are possible:

• X(m) = m + 1 and V (m + 1) = m: states m and m + 1 are both adjacent and
neighbor states (e.g., states 1 and 2 in Fig. 8.8a).

• X(m) �= m + 1 and V (m + 1) �= m: states m and m + 1 are adjacent but not
neighbor states (e.g., states 3 and 4 in Fig. 8.8a).

162 J. Gao et al.

Fig. 8.8 An illustration of
using V (m) and X(m) to
group states into ordered
sequences. The states satisfy
η�1 ≥ η�2 ≥ · · · ≥ η�10. (a)
Step 1: original input
sequence. (b) Step 2:
removing a state from the
original sequence. (c) Step 3:
removing 2nd state from the
original sequence. (d) Step 4:
the final ordered sequences.

To facilitate the design of state transitions, we organize the states into several
sequences so that: (1) η�m in each sequence is sorted in a non-increasing order; and
(2) adjacent states in the same sequence are always neighbors. Denote the original
sequence of all states by S0. Using the procedure in Algorithm 1 repeatedly (by
setting the output L as the input sequence S0 of the next run until the output L is
empty), the above-mentioned ordered sequences can be obtained. The procedure is
illustrated in four steps in Fig. 8.8.

The connection points identified in Step 3 and Step 5 of Algorithm 1 are the
points where the next sequence of states may connect with the current sequence in
the Markov chain. We refer to the points where the first state and the last state
of the next sequence can connect to as branch and merge points, respectively.
Determining one branch point and one merge point for each sequence is not difficult
and neglected here. Denote the lth sequence of states by Sl and the length of Sl by
Kl . Denote the kth state, the branch point, and the merge point of sequence Sl by
Sl (k), B(l), andM(l), respectively. This is illustrated in Fig. 8.9a.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 163

Algorithm 1 Generating ordered sequence of neighbor states
Input: S0
Output: S,L
Initialization: S = S0; L set to an empty sequence.

1: for State m = 2 to n do
2: if X(V (m)) �= m then
3: Mark V (m) as a potential connection point;

Remove m from sequence S;
Add m to the end of sequence L;

4: else if V (X(m)) �= m then
5: Mark X(m) as a potential connection point;
6: end if
7: end for
8: return S,L

Given the ordered sequences, the next step is to determine the state transition
probabilities. An illustration of this procedure is given in Fig. 8.9a, b, while the
details are skipped here. Interested readers are referred to [21] for more information.

The generated Markov chain after the procedure shown in Fig. 8.9a, b satisfies
�η� = η� but most of the off-diagonal elements in � are 0. As a result, the mixing
time can be long. In order to reduce the mixing time, we use a refinement procedure
to connect more states based on the fact that the mixing time of the Markov chain
is determined by the second largest eigenvalue of the transition matrix [25]. The
generated Markov chain after the refinement procedure is illustrated in Fig. 8.9c.
Readers are referred to [21] for details.

8.4.3 Discussion on Scalability

The proposed design involves finding the transition probabilities for each cache
state, and the overall number of cache states, i.e.,

(
Nf
c

)
, can be prohibitively large

in practice. Nevertheless, we can limit the number of states to be considered. Next,
we provide some methods for reducing the number of states when the number of
contents is large.

On the Content Level Although the number of contents can be large, the number
of “popular” contents that are worth caching can be small. The study in [26] shows
that a large portion of YouTube videos (>70%) are requested only once from an
edge network. It follows that a significant portion of contents will be assigned with
a caching probability of zero. Denote the number of all contents that are assigned
with a positive caching probability as Np. Then, the number of cache states to be
considered decreases from

(
Nf
c

)
to
(
Np
c

)
, which is a significant reduction when Np is

much smaller than Nf. Moreover, the “very popular” contents that are assigned with
a caching probability of 1 also reduces the number of cache states to be considered.

164 J. Gao et al.

Fig. 8.9 An illustration on generating and refining the underlying Markov chain by updating �.
(a) Ordered state sequence S1 consists of the seven states in the first row, and S2 consists of
the three states in the second row. The states 2 and 9 are the branch and merge points of S2,
respectively. (b) The dashed transition links are created by the update on � in the state transition
probability generation procedure. (c) The Markov chain created after the refinement procedure. To
reduce the number of connections, bi-directional links are used

If Ne contents are assigned a caching probability in (0, 1), then the number of cache
states decreases to

(
Ne
c

)
.

On the State Level We could limit the considered states to a small number of
states with large overall cached content request probabilities. This will significantly
reduce the number of states to be considered and the resulting dimension of the state
transition matrix. For example, if Ne = 100 and c = 20, there are more than 1020

states. However, we can consider the top 1000 states that cache the most popular
contents only. By setting a proper cut-off threshold, the proposed dynamic caching
can still yield satisfactory performance. Interested readers are referred to [21], in
which there is an example with 10,000 contents but we only consider 30 states.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 165

8.5 Numerical Results

In this section, we demonstrate the numerical results related to the STF and the
dynamic caching introduced in Sects. 8.2–8.4.

8.5.1 State Transition Field with Time-Invariant Content
Popularity

We first demonstrate the STFs obtained from analysis, followed by the STFs
obtained from simulations. In general, STF can have high dimensions. We limit
most of our demonstration to the case of three dimensions, as it is easy to visualize
three-dimensional fields. A three-dimensional subspace in a high-dimensional STF
is also illustrated.

Figure 8.10a demonstrates a three-dimensional STF of random replacement
(RR), in which a randomly selected content is replaced once a new content is
downloaded. In this figure, Nc = 3, L = 2, and therefore there are only three cache
states (i.e., C1 = {1, 2},C2 = {1, 3},C3 = {2, 3}). The x, y, and z axes correspond
to the SCP for the cache states 1, 2, and 3, respectively. The triangular area is the
state transition domain D, the square marker represents the center of the triangle,
and the circle represents the steady-state SCP η� in this example. The STF at a point
in D is represented by an arrow originating from that point, while the strength and
direction of the STF are shown by the length of the arrow and the direction of the
arrowhead, respectively. The straight lines in the x–y plane show the contour of the
cache hit probability for the SCP. Note that, in this example, the content popularity
ϕ and the parameter φ are predetermined, while different ϕ and φ would create
different STFs.

Figure 8.10b demonstrates part of a high-dimensional STF over the surface of
an ellipsoid in a three-dimensional subspace. In this example, Nc = 30, L = 3,
and there are 4060 cache states. Three mutually neighbor cache states are selected,
corresponding to the three-dimensional subspace in the figure. The STF over the
surface of an ellipsoid in this subspace is demonstrated as an example. The x, y,
and z axes correspond to the SCP for the three selected cache states. Unlike the case
in Fig. 8.10a, the SCPs in Fig. 8.10b are small and do not sum up to 1 since there are
many other states. Figure 8.10b serves as an example of high-dimensional STF.

Figure 8.11 shows the STF of RR generated from simulations. The settings on
φ and ϕ in Fig. 8.11 are exactly the same as those in Fig. 8.10a. For each point in
the STF,M realizations of states are generated based on the corresponding SCP. For
each realization, R content requests are generated based on the content popularity.
Each data point (i.e., each arrow) in Fig. 8.11a, b is obtained from averaging the
state transitions following the M × R requests. In Fig. 8.11a, M and R are both
set to 100. It can be seen that the STF is not accurate, especially in the area close
to the steady state, due to insufficient samples. In addition, the arrows point to a

166 J. Gao et al.

Fig. 8.10 Analytical STF of
RR in 3-D. (a) Analytical
STF of RR, φ = 0.45,ϕ =
[0.5, 0.29, 0.21]T. (b)
Analytical STF of RR,
Nc = 30, L = 3, in a 3-D
subspace

steady state slightly deviated from the true steady state in Fig. 8.10a. In Fig. 8.11b,
M and R are both increased to 1000. It can be seen that the resulting STF generated
based on simulation in Fig. 8.11b becomes an exact match for the analytical STF in
Fig. 8.10a.

8.5.2 State Transition Field with Time-Varying Content
Popularity

Figure 8.12 demonstrates the instantaneous STF under time-varying content pop-
ularity using RR as an example. The content popularity at the nth and (n + 1)th
requests is ϕ(n) = [0.46, 0.30, 0.24]T and ϕ(n+1) = [0.4, 0.35, 0.25]T, respectively.
The solid circle with red filling shows where the steady state would be if the

8 State Transition Field: A New Framework for Mobile Dynamic Caching 167

Fig. 8.11 The STF of RR
from simulations. (a) STF of
RR from simulation,
M = 100, R = 100. (b) STF
of RR from simulation,
M = 1000, R = 1000

content popularity were fixed and equal to ϕ(n). The hollow circle shows where the
stationary state would be if the content popularity were fixed and equal to ϕ(n+1).
The black triangular area with solid edges represents the state transition domain.
The black arrows demonstrate the direction and strength of the STF at the instant of
the nth request and the corresponding locations in the state transition domain. The
colored straight lines in the x–y plane show the contour of the cache hit probability
in the state transition domain. The solid straight line from the origin (0, 0, 0) to
the diamond marker in the STF is specified by the vector Csϕ

(n+1). Denote the
SCP vector η at the diamond marker as η̄(n). The dashed triangle in blue represents
the intersection of the plane (ϕ(n+1))TCs(η − η̄(n)) = 0 with the three planes
η1 = 0, η2 = 0, and η3 = 0. The dotted line represents the intersection of the
plane (ϕ(n+1))TCs(η − η̄(n)) = 0 with the state transition domain.

168 J. Gao et al.

Fig. 8.12 An instantaneous
STF of RR and its impact on
the instantaneous cache hit
probability at the next request

From Fig. 8.12, the effect of the nth replacement, given the replacement scheme
of RR and the above change of content popularity from ϕ(n) to ϕ(n+1), can be
observed. Specifically, given any SCP, i.e., a point in the state transition domain,
if the arrow representing the instantaneous STF at that point can be scaled such that
it crosses the dotted line from below to above, the nth replacement yields a smaller
cache hit probability at the (n + 1)th request compared with no replacement. By
contrast, if the arrow can be scaled such that it crosses the dotted line from above
to below, the nth replacement yields a larger cache hit probability at the (n + 1)th
request. If the arrow is in parallel with the dotted line, the nth replacement has no
impact on the cache hit probability at the (n+ 1)th request.

8.5.3 Dynamic Probabilistic Caching with Time-Varying
Content Popularity

We first demonstrate the convergence speed of the underlying Markov chain
corresponding to the designed �. In this illustrative example, 5 contents and a
cache with size 2 is considered. Thus, there are 10 pure strategies and the mixed
caching strategy is a probability vector with 10 elements. The transition probability
matrix � is first generated and then refined as mentioned in Sect. 8.4. For the
purpose of illustrating the convergence performance of the proposed �, a constant
instantaneous content popularity based on Zipf distribution is used in this example.
The convergence speed of the underlying Markov chains of � before and after
the refinement procedure is shown in the top and bottom subplots of Fig. 8.13,
respectively. In each figure, 10,000 tests with randomly generated initial η0 are
conducted.

8 State Transition Field: A New Framework for Mobile Dynamic Caching 169

0.1 0.15 0.2 0.25 0.3 0.35 0.4
100

150

200

250

300

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

15

20

25

Fig. 8.13 Demonstration of the convergence speed of � before and after the refinement procedure
(10,000 random initial states used)

Three observations can be made from Fig. 8.13. First, η always converges (in
distribution) to the target η� with the designed replacement policy represented by �

in the 20,000 tests regardless of the initial caching strategy. Second, the convergence
speed is shorter on average when the η0 is closer to η� and vice versa. Third, the
refinement of � significantly reduces the convergence speed, i.e., by a factor of 10.

Next, we demonstrate the comparison of the convergence (in distribution) of
replacement policies. In this illustrative example, 15 contents and a cache with
size 8 is considered. Thus, there are 6435 cache states, and the state caching
probability vector has 6435 elements. The convergence performance of three
replacement policies under constant content popularity is compared: the proposed
policy corresponding to the designed �, LRU, and LFU. The content requests are
randomly generated and follows a Zipf distribution. The convergence is represented
through the square norm of the difference between the current caching strategy η

and the target caching strategy η� versus the number of content requests since the
beginning of the simulations. The comparison of the convergence performance is
shown in Fig. 8.14. It can be seen from this figure that the proposed replacement
policy can converge to η� in distribution and thereby implement a given set of
caching probabilities when the instantaneous content popularity is a constant. By
contrast, LRU or LFU cannot converge to η� under the same condition.

In the last example, we show the benefit of probabilistic content replacement. In
this illustrative example, the benefit of dynamic probabilistic content replacement
with the designed replacement policy {τm,m′ } is demonstrated with 23 contents
and a cache of size 2. A time duration divided into 50 sessions is considered,
and 2 × 106 content requests are generated in total. The 23 contents are equally

170 J. Gao et al.

Fig. 8.14 Comparison of replacement policies: the proposed, LRU, and LFU

10 20 30 40 50

5

10

15

20

Session ID

Popularity of 23 Files in 50 Sessions

Fi
le

ID

0 10 20 30 40 50
0.08

0.1

0.12

0.14

0.16

Session ID

C
ac
he

H
it

R
at
io

0.02

0.04

0.06

0.08

With Probabilistic Replacement
Average Without Probabilistic Replacement

Fig. 8.15 Cache hit ratio with probabilistic replacement when content popularity varies over
time—the case of random fluctuation

popular overall, but the popularity of each content varies in each session. Two
different cases of variations in content popularity (in terms of content request
probability) are considered: random fluctuation and smooth change, as shown in the
top subplots of Figs. 8.15 and 8.16, respectively. The corresponding cache hit ratio
by using dynamic probabilistic content replacement is given in the bottom subplots
of Figs. 8.15 and 8.16, respectively. As the overall popularity is the same for each
content, caching any two contents without replacement would lead to a cache hit
ratio of 2/23, or 0.087 approximately. It can be seen from Figs. 8.15 and 8.16 that

8 State Transition Field: A New Framework for Mobile Dynamic Caching 171

10 20 30 40 50

5

10

15

20

Popularity of 23 Files in 50 Sessions

Session ID

Fi
le

ID

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

Session ID

C
ac
he

H
it

R
at
io

0

0.02

0.04

0.06

0.08

With Probabilistic Replacement
Average Without Probabilistic Replacement

Fig. 8.16 Cache hit ratio with probabilistic replacement when content popularity varies over
time—the case of smooth change

the cache hit ratio is improved by using probabilistic content replacement in either
case. The overall cache hit ratio is 0.1063 and 0.1085, equivalent to an increase
of 22% and 25%, in the cases of Figs. 8.15 and 8.16, respectively. The figures
demonstrate that designed probabilistic content replacement based on the average
content popularity can improve cache hit ratio by adapting to the varying content
popularity when the instantaneous content popularity changes over time.

8.6 Summary

In this chapter, the theory of STF has been introduced as an intuitive yet rigorous
new framework for studying dynamic probabilistic caching in the vector space. The
investigation has been targeted at revealing insights regarding the relations among
content popularity, the knowledge of content popularity, the resulting STFs, and
the performance of caching schemes. It has been shown that the STF can be used
to model and analyze caching schemes in the cases of time-invariant and time-
varying content popularity and that the design of replacement schemes is essentially
the manipulation of the STF. The observation inspires our dynamic probabilistic
caching design, which can improve the cache hit ratio while significantly reducing
the frequency of content replacement. While this chapter has focused on a single
cache to illustrate the basic ideas, both the STF theory and the dynamic probabilistic
caching design can be extended to handle the case of multiple caches, multi-level
caches, and networked caches.

172 J. Gao et al.

References

1. X. Wang, M. Chen, T. Taleb, A. Ksentini, V.C. Leung, Cache in the air: exploiting content
caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–139 (2014)

2. S. Zhang, W. Quan, J. Li, W. Shi, P. Yang, X. Shen, Air-ground integrated vehicular network
slicing with content pushing and caching. IEEE J. Sel. Areas Commun. 36(9), 2114–2127
(2018)

3. J. Gao, L. Zhao, L. Sun, Probabilistic caching as mixed strategies in spatially-coupled edge
caching, in Proc. 29th Biennial Symp. Commun., Toronto (2018)

4. S. Müller, O. Atan, M. van der Schaar, A. Klein, Context-aware proactive content caching with
service differentiation in wireless networks. IEEE Trans. Wireless Commun. 16(2), 1024–1036
(2017)

5. K. Li, C. Yang, Z. Chen, M. Tao, Optimization and analysis of probabilistic caching in N -tier
heterogeneous networks. IEEE Trans. Wireless Commun. 17(2), 1283–1297 (2018)

6. E.K. Markakis, K. Karras, A. Sideris, G. Alexiou, E. Pallis, Computing, caching, and
communication at the edge: The cornerstone for building a versatile 5G ecosystem. IEEE
Commun. Mag. 55(11), 152–157 (2017)

7. M. Tang, L. Gao, J. Huang, Enabling edge cooperation in tactile Internet via 3C resource
sharing. IEEE J. Sel. Areas Commun. 36(11), 2444–2454 (2018)

8. S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, X. Shen, Cooperative edge caching in user-centric
clustered mobile networks. IEEE Trans. Mobile Comput. 17(8), 1791–1805 (2018)

9. M. Emara, H. Elsawy, S. Sorour, S. Al-Ghadhban, M.S. Alouini, T.Y. Al-Naffouri, Optimal
caching in 5G networks with opportunistic spectrum access. IEEE Trans. Wireless Commun.
17(7), 4447–4461 (2018)

10. T.X. Vu, S. Chatzinotas, B. Ottersten, T.Q. Duong, Energy minimization for cache-assisted
content delivery networks with wireless backhaul. IEEE Wireless Commun. Lett. 7(3), 332–
335 (2018)

11. G. Lee, I. Jang, S. Pack, X. Shen, FW-DAS: fast wireless data access scheme in mobile
networks. IEEE Trans. Wireless Commun. 13(8), 4260–4272 (2014)

12. E. Bastug, M. Bennis, M. Debbah, Living on the edge: the role of proactive caching in 5G
wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)

13. J. Qiao, Y. He, X. Shen, Proactive caching for mobile video streaming in millimeter wave 5G
networks. IEEE Trans. Wireless Commun. 15(10), 7187–7198 (2016)

14. S.O. Somuyiwa, A. György, D. Gündüz, A reinforcement-learning approach to proactive
caching in wireless networks. IEEE J. Sel. Areas Commun. 36(6), 1331–1344 (2018)

15. R. Pedarsani, M.A. Maddah-Ali, U. Niesen, Online coded caching. IEEE/ACM Trans. Netw.
24(2), 836–845 (2016)

16. S. Tarnoi, K. Suksomboon, W. Kumwilaisak, Y. Ji, Performance of probabilistic caching and
cache replacement policies for content-centric networks, in Proc. 39th IEEE Conf. Local
Computer Networks, Edmonton (2014), pp. 99–106

17. W. Bao, D. Yuan, K. Shi, W. Ju, A.Y. Zomaya, Ins and outs: optimal caching and re-caching
policies in mobile networks, in Proc. the 18th ACM Mobihoc, New York (2018), pp. 41–50

18. I. Psaras, W.K. Chai, G. Pavlou, In-network cache management and resource allocation for
information-centric networks. IEEE Trans. Parallel Distrib. Syst. 25(11), 2920–2931 (2014)

19. J. Gao, L. Zhao, X. Shen, The study of dynamic caching via state transition field—the case of
time-invariant popularity. IEEE Trans. Wireless Commun. 18(12), 5924–5937

20. J. Gao, L. Zhao, X. Shen, The study of dynamic caching via state transition field—the case of
time-varying popularity. IEEE Trans. Wireless Commun. 18(12), 5938–5951 (2019)

21. J. Gao, S. Zhang, L. Zhao, X. Shen, The design of dynamic probabilistic caching with time-
varying content popularity. IEEE Trans. Mobile Comput. 20(4), 1672–1684 (2021)

22. S. Tarnoi, V. Suppakitpaisarn, W. Kumwilaisak, Y. Ji, Performance analysis of probabilistic
caching scheme using Markov chains, in Proc. 40th IEEE Conf. Local Computer Networks,
Clearwater Beach (2015), pp. 46–54

8 State Transition Field: A New Framework for Mobile Dynamic Caching 173

23. G.S. Paschos, G. Iosifidis, M. Tao, D. Towsley, G. Caire, The role of caching in future
communication systems and networks. IEEE J. Sel. Areas Commun. 36(6), 1111–1125 (2018)

24. C. Robert, G. Casella, Monte Carlo Statistical Methods (Springer Science & Business Media,
New York, 2013)

25. S. Boyd, P. Diaconis, L. Xiao, Fastest mixing Markov chain on a graph. SIAM Rev. 46(4),
667–689 (2004)

26. N. Carlsson, D. Eager, Ephemeral content popularity at the edge and implications for on-
demand caching. IEEE Trans. Parallel Distrib. Syst. 28(6), 1621–1634 (2017)

Chapter 9
Deep Reinforcement Learning for Mobile
Edge Computing Systems

Ming Tang and Vincent W. S. Wong

9.1 Introduction

Recently, humans use mobile devices to accomplish many computational intensive
tasks, such as artificial intelligence, distributed data analysis, virtual reality, and
augmented reality. Despite the fact that mobile devices have become increasingly
powerful, they may not be capable of processing all their tasks locally and meeting
the delay requirements of the tasks. Mobile edge computing (MEC) [1], also
known as multi-access edge computing [2] and fog computing [3], is emerging as a
promising architecture. In MEC systems, edge nodes equipped with processing and
storage resources are deployed close to the mobile devices. Thus, mobile devices can
offload their computational intensive tasks to the edge nodes for processing. When
compared with cloud computing systems [4], MEC systems can provide mobile
devices with a faster response and hence a low task latency. Mao et al. in [1], Qiu et
al. in [5], and Ranaweera et al. in [6] provided comprehensive surveys in the area of
MEC.

The environment in MEC systems may involve time-varying and complex system
dynamics, such as time-varying task arrivals, device mobility, wireless channel
variation, and the interaction among mobile devices. Meanwhile, the operators of
the MEC systems, mobile devices, and edge nodes may not be aware of these
system dynamics a priori. Such unknown system dynamics impose challenges
on addressing the deployment, management, and scheduling problems in MEC
systems. On the other hand, conventional network optimization approaches (e.g.,
online optimization [7], game-theoretic approach [8]) always rely on the modeling

M. Tang · V. W. S. Wong (�)
Department of Electrical and Computer Engineering, The University of British Columbia,
Vancouver, BC, Canada
e-mail: mingt@ece.ubc.ca; vincentw@ece.ubc.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_9&domain=pdf
mailto:mingt@ece.ubc.ca
mailto:vincentw@ece.ubc.ca
https://doi.org/10.1007/978-3-030-98064-1_9

176 M. Tang and V. W. S. Wong

of the environment in MEC systems. When the modeling of the environment does
not match the practical systems, these conventional approaches may fail to provide
a satisfactory performance. In addition, it may be challenging for these approaches
to address time-varying environment in MEC systems.

Deep reinforcement learning (DRL) [9] is a promising technique to address the
unknown and complex system dynamics in MEC systems [10]. With DRL, an agent
(e.g., a mobile device, an edge node, or a network operator in MEC systems)
can learn to make decisions (e.g., in terms of deployment, management, and
scheduling) by interacting with the environment. During the learning process, the
agent continuously gathers its experience from the interaction with the environment
and gradually learns the decision-making policy that optimizes its objective. In
comparison to conventional reinforcement learning (RL) approaches [11], DRL
employs deep learning techniques to tackle the curse of dimensionality issue. Due
to the strong capability of deep learning for analyzing and abstracting data, DRL is
capable of handling complex systems with large state spaces [9].

In this chapter, we aim at providing an overview on how DRL techniques can
benefit the MEC systems. In the rest of this chapter, we first present an overview of
DRL in Sect. 9.2. In Sect. 9.3, we demonstrate the application of DRL techniques
in MEC systems with a case study, which focuses on the task offloading problem.
Finally, in Sect. 9.4, we outline several challenges and future research directions.
For notation, let Z++ denote the set of positive integers.

9.2 Overview of Deep Reinforcement Learning

In this section, we first introduce the general DRL problem formulation. Then,
we present the main idea for obtaining the optimal policy using DRL algorithms.
Finally, we summarize some existing DRL algorithms.

9.2.1 DRL Problem Formulation

In general, a DRL problem can be formulated as a discrete time stochastic control
process [9]. In this problem, an agent interacts with the environment. Suppose there
are a set of time slots T. At the beginning of time slot t ∈ T, given the state of the
environment s(t), the agent gathers an observation o(t). Based on the observation,
the agent chooses an action a(t). After that, the agent obtains a reward r(t). The
environment then transits to the next state s(t + 1), and the agent gathers the next
observation o(t + 1). Through such an interaction with the environment, the agent
aims at learning an optimal policy that maximizes the expected long-term reward.

For the sake of simplicity, let us consider a fully observable system. In this
system, the agent can observe the actual state of the environment, i.e., o(t) = s(t)

for all t ∈ T. Meanwhile, suppose the transition of the state follows Markovian

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 177

stochastic control processes. The scenario with partially observable system and non-
Markovian environment can be found in [9, Section 10]. Let S and A denote the
state and action spaces. We denote π as the policy of the agent. Note that there
are two types of policy: deterministic policy π(s) : S → A and stochastic policy
π(s, a) : S×A→ [0, 1], where π(s, a) is the probability that action a is selected
given current state s. Given any state s ∈ S, let V π(s) : S → R, also called the
value function, denote the expected long-term reward in state s under policy π . For
example, under the scenario with an infinite time horizon T = {1, 2, . . .}, the value
function V π(s) � E[∑∞

i=0 γ
ir(t+ i) | s(t) = s, π]. That is, given any s(t) = s, the

value function V π(s) is equal to the expected cumulative future discounted reward,
where γ ∈ (0, 1] is the discount factor. The value function under various scenarios
can be found in [11, Section 3.5]. The objective of the agent is to find a policy π∗
that maximizes V π(s). On the other hand, as an alternative to the value function,
Q-value function Qπ(s, a) : S × A → R is sometimes considered, which is the
expected long-term reward of choosing action a ∈ A in state s under policy π .

9.2.2 Determine the Optimal Policy with Deep Learning

To find the optimal policy, in conventional RL approaches, the agent estimates one
or multiple of the following components during the learning process [9, Section
3.2]:

(a) Value function V π(s) or Q-value functionQπ(s, a)
(b) Policy π(s) or π(s, a)
(c) The model of the environment, i.e., the transition function (from current state to

the next state) and the reward function (from state and action to the reward)

For the RL approaches requiring the estimation of components (a) and (b), they
are called model-free algorithms. When component (c) is considered, the associated
algorithm is called a model-based algorithm. Furthermore, the algorithms that esti-
mate (a) and (b) are called value-based and policy-based algorithms, respectively.
With the estimation of those components (a), (b), or (c), the agent can obtain the
optimal policy accordingly. For example, in a model-free value-based Q-learning
algorithm, the agent estimates the Q-value function and exploits a policy of choosing
the action with the maximum Q-value given each state. Due to the definition of Q-
value function, such a policy can maximize the expected long-term reward.

On the other hand, most real-world problems are very complex, e.g., the state
and action space can be high-dimensional and continuous. Thus, estimating the
value function, policy, and model can be challenging and requires a huge amount of
computational resource and memory. To address this issue, in DRL algorithms, deep
learning techniques are used for estimating the value function, policy, and model. In
particular, deep learning essentially relies on neural networks to estimate a mapping
from some input to some output, i.e., f : X → Y. The mapping is characterized
by the parameters of the neural network, denoted by θ , and can be represented by

178 M. Tang and V. W. S. Wong

y = f (x | θ). DRL employs neural networks to estimate certain mappings, such
as value function, policy, and model. During the learning process in DRL, based on
the gathered experience (i.e., state, action, next state, reward), the agent gradually
updates the parameters of the neural network (i.e., θ) using deep learning techniques
in order to make the neural network achieve an accurate approximation of the actual
mapping (e.g., the actual value function, policy, and model). Since neural networks
are capable of addressing complicated mappings with large input and output spaces,
they provide DRL the capability of addressing complex real-world environment.

9.2.3 Existing DRL Algorithms

For value-based DRL algorithms, deep Q-learning (DQL) [12] aims at estimating
the Q-value function using neural networks. In addition to DQL, double deep Q-
network (DQN) [13] can handle the issue of overestimation in DQL. Meanwhile,
dueling DQN [14] offers a more accurate estimation of the Q-value function
by separately learning the value resulting from the state and action. Instead of
estimating the expected reward in the value function as in DQL, distributional DQN
[15] aims at estimating the distribution of the cumulative reward under each state.
Such a distribution characterizes the randomness of the reward in the system.

Policy gradient algorithms belong to policy-based DRL algorithms and are
commonly used. These algorithms directly learn an optimal policy that maximizes
the expected long-term reward using gradient ascent. In the area of DRL, deep
deterministic policy gradient (DDPG) [16] learns the representation of a deter-
ministic policy, where this approach is applicable for continuous action space.
Distributed distributional DDPG [17] is a variant of DDPG that can be run in a
distributional fashion. Asynchronous advantage actor-critic (A3C) [18] exploits the
approximation of both policy and value function using neural networks. Built upon
A3C, actor-critic with experience replay [19] exploits the experience replay, which
can decrease the data correlation and increase the sample efficiency. Soft actor-critic
[20] encourages policy exploration by maximizing the entropy of the policy and the
expected long-term reward simultaneously. Twin delayed deep deterministic [21]
exploits double DQN to address the overestimation issue in actor-critic methods. In
addition, trust region optimization [22] introduces the idea of trust region to bound
the change in policy to guarantee monotonic reward improvement. As a variant of
trust region optimization, proximal policy optimization [23] introduces a penalty
term in the objective function to alleviate the change in policy, and it is easy for
implementation. In comparison to those value-based DRL methods, policy gradient
algorithms are capable of handling continuous action space and stochastic policy.

For model-based DRL algorithms, the agent either knows the model of the
environment a priori or uses the gathered experience to predict the model. The
model will be used for planning, i.e., taking the model as an input, the agent finds the
optimal policy for the interaction with the environment. For discrete action space,
lookahead search can be used by building a decision tree and exploring the potential

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 179

trajectories in the tree [9, Section 6.1]. Monte Carlo tree search [24] is a typical
family of approaches to lookahead search. Such methods have been incorporated
with deep learning for addressing real-world complex problem, e.g., the game of
Go [25]. For continuous action space, trajectory optimization can be used. For a
function that is differentiable, the agent can optimize the policy along trajectories
using gradient ascent. Plaat et al. in [26] and Franccois et al. in [9, Section 6]
provided comprehensive surveys for model-based DRL algorithms. In comparison
to model-free DRL algorithms, model-based DRL algorithms are more sample
efficient. That is, with the learned model, model-based algorithms can converge
with fewer samples (or gathered experience) than model-free algorithms.

9.3 Case Study: Deep Q-Learning for Task Offloading in
MEC

Due to the huge potential of addressing complex and dynamics systems, DRL has
been applied in various problems in MEC systems, such as task offloading, mobility
management, and edge maintenance. Luong et al. in [27, Section IV] and Wang et
al. in [10, Section VIII] surveyed the existing works using DRL in MEC systems.

In this section, we present a case study on the task offloading problem in MEC
systems, which is based on our earlier work [28]. In particular, in MEC systems,
edge nodes may have limited amount of processing capacity. The tasks offloaded
by different mobile devices at an edge node will share the processing capacity of
the edge node. Thus, from the perspective of a mobile device, if many other mobile
devices choose to offload to a particular edge node, then this mobile device may
choose not to offload to the same edge node in order to reduce the task delay. We
refer to the number of concurrent mobile devices offloading to an edge node as
the load level of the edge node. Such a load level depends on the task arrivals and
offloading decisions of all mobile devices. Thus, it is time varying and unknown to
the mobile devices a priori. This makes it challenging for a mobile device to make
the task offloading decision (i.e., whether to offload or not, and if yes, which edge
node to choose). On the other hand, although the challenge can be mitigated by
letting a centralized entity make a decision for the mobile device, such a centralized
decision making may require global information of the system and incur a high
signaling overhead.

To address the unknown load level dynamics, we propose a distributed DQL-
based task offloading algorithm. The proposed algorithm is a model-free value-
based approach that enables each mobile device to make its offloading decision
without knowing the task models and offloading decisions of other mobile devices.

In the following subsections, we first present the system model and task
offloading problem, respectively. Then, we propose the DQL-based algorithm for
MEC systems. Finally, we evaluate the performance of our proposed algorithm.

180 M. Tang and V. W. S. Wong

Fig. 9.1 An illustration of an MEC system with edge nodes and mobile devices

9.3.1 System Model

We consider an MEC system that has a set of mobile devicesM = {1, 2, . . . ,M}
and a set of edge nodesN = {1, 2, . . . , N}. We consider a time-slotted system with
a set of time slots T = {1, 2, . . . , T }. Let� (in seconds) denote the duration of each
time slot. An illustration of an MEC system is shown in Fig. 9.1.

In the following, we first present the task model and task offloading decisions.
Then, we discuss the local processing model and edge node offloading model.

9.3.1.1 Task Model

At the beginning of time slot t ∈ T, mobile device m ∈ M either may have a new
computational task to be processed or does not have any new task arrival. As in
some existing works (e.g., [29]), we assume that the mobile device has a new task
arrival at time slot t with a certain probability. If mobile device m has a new task,
then we refer to this task using an index km(t) ∈ Z++. For presentation simplicity,
if mobile device m does not have any new task, we set km(t) = 0.

Let λm(t) (in bits) denote the size of task km(t). For presentation simplicity, we
set λm(t) = 0 if km(t) = 0. We set the size of task km(t) to be from a discrete set
� � {λ1, λ2, . . . , λ|�|}, where |�| denotes the cardinality of set �. We consider a
setting where any task of mobile device m has a deadline τm (in time slots). That
is, task km(t) will be dropped if it has not been completely processed within τm

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 181

time slots. Moreover, as in some existing works (e.g., [30, 31]), we assume that the
number of CPU cycles required for processing a task is proportional to the size of
the task. Some examples satisfying this assumption include file compression, video
segment encoding and decoding, and object detection in video streaming. Let ρm
(in CPU cycles per bit) denote the processing density of any task of mobile device
m. Thus, ρmλm(t) CPU cycles are required for processing a task of mobile device
m with size λm(t).

9.3.1.2 Task Offloading Decision

If mobile device m ∈M has a new task at the beginning of time slot t ∈ T, then it
needs to decide whether to process task km(t) locally or offload it to an edge node.
We use binary variable xm(t) ∈ {0, 1} to denote this decision. We set xm(t) = 1 if
the task is processed locally and set xm(t) = 0 if the task is offloaded to an edge
node.

If mobile device m decides to offload task km(t) to an edge node, then it needs
to decide which edge node to choose. We use binary variable ym,n(t) ∈ {0, 1} to
denote whether mobile device m chooses edge node n ∈ N to offload task km(t) or
not. We set ym,n(t) = 1 if mobile devicem chooses edge node n and set ym,n(t) = 0
otherwise. Note that exactly one edge node can be chosen to offload task km(t), i.e.,

∑

n∈N
ym,n(t) = 1(xm(t) = 0), m ∈M, t ∈ T, (9.1)

where indicator function 1(xm(t) = 0) = 1 if xm(t) = 0, and 1(xm(t) = 0) = 0
otherwise. Let vector ym(t) = (ym,n(t), n ∈ N).

9.3.1.3 Local Processing Model

If mobile device m decides to process task km(t) locally (i.e., xm(t) = 1), then it
will place task km(t) in the computation queue for local processing. The tasks in
the computation queue are processed in a first-in first-out (FIFO) manner. We use
f device
m (in CPU cycles) to denote the processing capacity of mobile device m ∈M.

We assume that f device
m does not change across time slots. Meanwhile, we assume

that if a task has been processed in a time slot, then the processing of the next task
in the computation queue will start at the beginning of the next time slot.

For mobile device m ∈ M, at the beginning of time slot t ∈ T, let wcomp
m (t)

(in time slots) denote the remaining number of time slots until all the tasks placed
in the computation queue before time slot t have been either processed or dropped.
Note that if task km(t) is to be placed in the computation queue, then wcomp

m (t)

corresponds to the number of time slots that task km(t) will wait in the computation
queue for processing, i.e., the queuing delay of task km(t) at the computation queue.

182 M. Tang and V. W. S. Wong

Here, we use notation w for the short form of “wait.” The expression of wcomp
m (t) is

derived as follows. For mobile device m ∈M, wcomp
m (t) = 0 for t = 1, and

w
comp
m (t) = min

{[
w

comp
m (t − 1)+

⌈
λm(t − 1)xm(t − 1)

f device�/ρm

⌉
− 1

]+
, τm − 1

}

,

t ∈ T \ {1}, (9.2)

where �·� is the ceiling function, and operator [z]+ = max{z, 0}. Specifically, for
t ∈ T \ {1}, if task km(t − 1) was placed in the computation queue, then given
w

comp
m (t−1), the first term in the min operator corresponds to the remaining number

of time slots until task km(t − 1) has been processed since the beginning of time
slot t . The second term corresponds to the remaining number of time slots until
task km(t − 1) has been dropped. On the other hand, if either λm(t − 1) = 0 or
xm(t − 1) = 0, then we have wcomp

m (t) = [wcomp
m (t − 1) − 1]+. The second term

in the min operator is canceled out, because wcomp
m (t) < τm holds for t ∈ T. In this

case, no task was placed in the computation queue in time slot t − 1. Thus, from
time slot t − 1 to t , the associated remaining number of time slots is decremented
by one.

Suppose task km(t) is processed locally (i.e., xm(t) = 1). Let d local
m (t) denote the

corresponding delay for local processing, i.e., the number of time slots required to
process task km(t). The expression of d local

m (t) is derived as follows:

d local
m (t) =

⌈
λm(t)

f device�/ρm

⌉
,m ∈M, t ∈ {t ′ | t ′ ∈ T, km(t ′) �= 0, xm(t

′) = 1}.
(9.3)

Let Delaym(t) denote the delay of task km(t). Recall that the tasks in the
computation queue are processed in an FIFO manner. If task km(t) is processed
locally, then the delay of task km(t) can be derived as follows:

Delaym(t) = min
{
w

comp
m (t)+ d local

m (t), τm

}
,

m ∈M, t ∈ {t ′ | t ′ ∈ T, km(t ′) �= 0, xm(t
′) = 1}. (9.4)

Specifically, the delay of task km(t) is equal to its queuing delay at the computation
queue, i.e., wcomp

m (t), plus the processing delay, i.e., d local
m (t). Note that if the delay

exceeds τm time slots, then the task will be dropped immediately. Without loss of
generality, if task km(t) has been dropped, then we set the value of Delaym(t) to
be τm.1

1 This setting is for the simplicity of mathematical presentation. For any task km(t) that has been
dropped, the value of Delaym(t)will not be taken into account in our proposed algorithm according

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 183

9.3.1.4 Edge Node Offloading Model

If mobile devicem ∈M decides to offload task km(t) to an edge node (i.e., xm(t) =
0), then it places task km(t) in the transmission queue. Tasks in the transmission
queue are sent in an FIFO manner. After task km(t) has been sent to the chosen edge
node based on decision ym(t), it will be processed by the edge node.

Transmission to an Edge Node The tasks in the transmission queue will be
forwarded to the chosen edge node using a wireless network interface. We assume
that the mobile devices transmit using orthogonal channels. Thus, there is no
interference between mobile devices. Let |hm,n|2 denote the channel gain from
mobile device m ∈M to edge node n ∈ N. Let P denote the transmission power of
the mobile device. Thus, the transmission rate from mobile device m to edge node
n can be computed as follows:

r tran
m,n = W log2

(
1 + |hm,n|2P

σ 2

)
, m ∈M, n ∈ N, (9.5)

where W denotes the bandwidth allocated to the channel, and σ 2 denotes the
received noise power at the edge node. We assume that the transmission rate r tran

m,n

does not change across time slots. If a task has been sent in a time slot, then the next
task in the transmission queue will be sent at the beginning of the next time slot.

For mobile device m ∈ M, at the beginning of time slot t ∈ T, let wtran
m (t) (in

time slots) denote the remaining number of time slots until all the tasks placed in
the transmission queue before time slot t have been either processed or dropped. If
task km(t) is to be offloaded to an edge node, then wtran

m (t) also corresponds to the
number of time slots that task km(t) will wait in the transmission queue, i.e., the
queuing delay of task km(t) at the transmission queue. The expression of wtran

m (t) is
given as follows. For mobile device m ∈M, wtran

m (t) = 0 for t = 1, and

wtran
m (t) = min

{[

wtran
m (t − 1)+

⌈
∑

n∈N

λm(t − 1)ym,n(t − 1)

r tran
m,n�

⌉

− 1

]+
, τm − 1

}

,

t ∈ T \ {1}. (9.6)

The interpretation of wtran
m (t) is similar to that of wcomp

m (t). If there is no task arrival
in time slot t−1 (i.e., λm(t−1) = 0), thenwtran

m (t) = [wtran
m (t−1)−1]+. Meanwhile,

if task km(t − 1) was placed in the computation queue (i.e., xm(t − 1) = 1), then
ym,n(t − 1) = 0 for all n ∈ N according to (9.1), and hence wtran

m (t) = [wtran
m (t −

1)− 1]+.

to Sects. 9.3.2 and 9.3.3. Meanwhile, the delay of a dropped task is not accounted when we evaluate
the average delay of the tasks with our proposed algorithm and benchmark methods in Sect. 9.3.4.

184 M. Tang and V. W. S. Wong

If task km(t) is offloaded to an edge node, then the number of time slots required
to send task km(t) to the edge node, denoted by d tran

m (t), is computed as follows:

d tran
m (t) =

⌈
∑

n∈N

λm(t)ym,n(t)

r tran
m,n�

⌉

,m ∈M, t ∈ {t ′ | t ′ ∈ T, km(t ′) �= 0, xm(t
′) = 0}.

(9.7)

Processing at an Edge Node At any edge node n ∈ N, the tasks from different
mobile devices are placed in different queues. We refer to the queue that stores the
tasks of mobile device m ∈ M as the queue of mobile device m. We assume that
when a task has been sent to an edge node in a time slot, the edge node places the
task into the associated queue at the beginning of the next time slot.

At edge node n ∈ N, let qedge
m,n (t) (in bits) denote the occupancy of the queue of

mobile device m ∈ N at the end of time slot t ∈ T. Let kedge
m,n (t) denote the index

of the task placed in the queue of mobile device m at the beginning of time slot
t . Specifically, if task km(t ′) is offloaded to edge node n in time slot t − 1 (i.e.,
t ′ + wtran

m (t ′) + d tran
m (t ′) − 1 = t − 1 and ym,n(t ′) = 1), then kedge

m,n (t) = km(t
′).

If there does not exist such a task, then we set kedge
m,n (t) = 0. We denote λedge

m,n (t)

(in bits) as the size of task kedge
m,n (t). If kedge

m,n (t) = 0, then we set λedge
m,n (t) = 0. In

time slot t , we refer to the queue of mobile device m as an active queue if either the
queue is non-empty or there exists a new task arrival at the queue. Thus, the set of
active queues at edge node n in time slot t , denoted by Bn(t), is defined as

Bn(t) =
{
m

∣
∣∣ qedge
m,n (t − 1) > 0 or λedge

m,n (t) > 0,m ∈M
}
. (9.8)

Let Bn(t) denote the number of active queues, i.e., Bn(t) = |Bn(t)|.
Let f edge

n (in CPU cycles per second) denote the processing capacity of edge
node n. Within each time slot t ∈ T, the active queues in set Bn(t) equally share
the processing capacity of edge node n ∈ N. This is the generalized processor
sharing (GPS) model with equal processing capacity sharing [32]. Note that the
number of active queues, i.e., Bn(t), varies across time slots and is unknown to the
mobile devices and edge nodes a priori. This corresponds to the unknown load level
dynamics at the edge nodes and leads to the associated uncertain processing delay.

At the beginning of time slot t , let wedge
m,n (t) (in time slots) denote the remaining

number of time slots until all the tasks placed in the queue of mobile device m at
edge node n before time slot t have been either processed or dropped. Due to the
unknown load level dynamics at the edge nodes, the mobile devices and edge nodes
are unaware of the value ofwedge

m,n (t) before all those tasks have been either processed

or dropped. Let dedge
m,n (t) denote the number of time slots required to process task

k
edge
m,n (t). For presentation simplicity, we set dedge

m,n (t) = 0 if kedge
m,n (t) = 0, and

w
edge
m,n (1) = 0. The values of wedge

m,n (t) and dedge
m,n (t) satisfy the following constraints:

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 185

w
edge
m,n (t) = min

{[
w

edge
m,n (t − 1)+ dedge

m,n (t − 1)− 1
]+
, τm − 1

}
,

m ∈M, n ∈ N, t ∈ T \ {1}, (9.9)

t+wedge
m,n (t)+dedge

m,n (t)−1∑

t ′=t+wedge
m,n (t)

1
(
m ∈ Bn(t ′)

)
f

edge
n �

ρmBn(t ′)
≥ λedge

m,n (t), m ∈M, n ∈ N, t ∈ T,

(9.10)
t+wedge

m,n (t)+dedge
m,n (t)−2∑

t ′=t+wedge
m,n (t)

1
(
m ∈ Bn(t ′)

)
f

edge
n �

ρmBn(t ′)
< λ

edge
m,n (t), m ∈M, n ∈ N, t ∈ T.

(9.11)
The intuition of (9.9) is similar to those for wcomp

m (t) in (9.2) and wtran
m (t) in (9.6).

In inequality (9.10), t + wedge
m,n (t) and t + wedge

m,n (t) + dedge
m,n (t) − 1 correspond to

the time slots when the processing of task kedge
m,n (t) starts and ends, respectively.

Thus, inequalities (9.10) and (9.11) ensure that the processing of task kedge
m,n (t) can

be accomplished by time slot t+wedge
m,n (t)+dedge

m,n (t)−1 and cannot be accomplished

by t + wedge
m,n (t)+ dedge

m,n (t)− 2.
For a task km(t) that was offloaded to edge node n, it is placed in the associated

queue of edge node n at the beginning of time slot φm(t) � t + wtran
m (t)+ d tran

m (t).

Thus, its queuing delay at edge node n is wedge
m,n (φm(t)), and its processing time is

d
edge
m,n (φm(t)). Thus, the delay of task km(t) is derived as follows:

Delaym(t) = min

{
w

comp
m (t)+ d local

m (t)

+
∑

n∈N
ym,n(t)

(
w

edge
m,n (φm(t))+ dedge

m,n (φm(t))
)
, τm

}
,

m ∈M, t ∈ {t ′ | t ′ ∈ T, km(t) �= 0, xm(t) = 0}. (9.12)

Note that the above expressions (9.2)–(9.4), (9.6), (9.7), and (9.9)–(9.12) are
used for presenting our system model. In practical systems, each mobile device can
directly observe the delay of the tasks Delaym(t) after those tasks have either been
processed or dropped.

9.3.2 Task Offloading Problem

We consider a fully observable system, where the mobile devices can observe the
actual values of the state (e.g., queue information, task size). In particular, at the

186 M. Tang and V. W. S. Wong

beginning of time slot t ∈ T, mobile device m ∈ M observes its state. If mobile
device m has a new task to be processed, then it will choose an action for the task,
i.e., whether to offload the task or not, and which edge node to offload the task to.
The state and action will result in a cost. We define the cost as the delay of the task if
the task has been processed, and define it as a penalty if the task has been dropped.
The objective is to find an optimal policy, i.e., a mapping from state to action, that
minimizes the expected long-term cost.

9.3.2.1 State

Let H (t) denote the historical load level dynamics of the edge nodes within the
previous T step time slots. It is a matrix with size T step ×N and contains the number
of active queues of all edge nodes from time slot t − T step to t − 1. In particular,
element (i, j) of matrix H (t) is denoted by {H (t)}i,j , which corresponds to the
number of active queues at edge node j in time slot t − T step + i − 1. That is,
{H (t)}i,j = Bj (t−T step+ i−1). We assume that the edge nodes will broadcast the
number of active queues at the end of each time slot. The number of active queues
can be represented by a maximum of �log2M�+ 1 bits. For example, ifM = 1000,
then a maximum of 10 bits are needed.

At the beginning of time slot t ∈ T, each mobile device m ∈ N observes the task
size λm(t), the number of time slots required to wait for processing and offloading
(i.e., wcomp

m (t) and wtran
m (t)), the queue occupancy at all the edge nodes q

edge
m (t −

1) � (q
edge
m,n (t − 1), n ∈ N), and the historical load level H (t). The state can be

represented as follows:

sm(t) =
(
λm(t), w

comp
m (t), wtran

m (t), q
edge
m (t − 1),H (t)

)
. (9.13)

Mobile devicem can compute q
edge
m (t −1) locally based on the tasks that have been

offloaded to the edge nodes and the number of active queues at the edge nodes. Let
S denote the finite and discrete space of the state. That is, S � �×{0, 1, . . . , T }2×
Q× {0, 1, . . . ,M}T step×N , where Q denotes the set of available queue occupancy at
the edge nodes within T time slots.

9.3.2.2 Action

After mobile device m observes state sm(t) at the beginning of time slot t , if there
is a new task arrival (i.e., λm(t) > 0), then the mobile device will choose an action
for the task, denoted by am(t). We consider an action space A = {0} ∪ N. If the
mobile device chooses to process the task locally, then am(t) = 0. If the mobile
device offloads the task to edge node n ∈ N, then am(t) = n. That is,

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 187

am(t) =
{

0, xm(t) = 1,
n such that ym,n(t) = 1, xm(t) = 0.

(9.14)

Note that we represent the task offloading decisions xm(t) and ym(t) using am(t)
for the presentation simplicity of the algorithm.

9.3.2.3 Cost

Given the state sm(t) and action am(t), mobile device m will observe a cost after
task km(t) has either been processed or being dropped due to the task deadline. If
task km(t) has been processed, then we define the cost as the delay of task km(t),
i.e., Delaym(t). If the task km(t) has been dropped, then we set the cost to be a
constant penalty Cm, where Cm is larger than the maximum delay τm. Specifically,
cost function cm(sm(t), am(t)) is defined as follows:

cm(sm(t), am(t)) =
{

Delaym(t), if task km(t) has been processed,
Cm, if task km(t) has been dropped.

(9.15)

In the rest of this chapter, we will use the short form cm(t) to denote
cm(sm(t), am(t)).

Note that we focus on the unknown load level dynamics at the edge nodes. That
is, a mobile device does not know the number of tasks offloaded by other mobile
devices to an edge node a priori. Thus, when a mobile device makes an offloading
decision for a task, it does not know the cost for choosing that decision. This leads to
the necessity of using DRL to address the unknown and complex system dynamics.

9.3.2.4 Problem Formulation

For each mobile devicem ∈M, the objective is to find an optimal policy π∗m : S→
A that minimizes the expected long-term cost. That is,

π∗m = arg minimizeπm E

[
∑

t∈T
γ t−1cm(t)

∣∣∣∣
∣
πm

]

subject to constraints (9.1)–(9.4), (9.6), (9.7), (9.9)–(9.12),
(9.16)

where the parameter γ ∈ (0, 1] is a discount factor. This discount factor captures
the discounted cost in the future. The expectation E[·] is with respect to the time-
varying parameters, e.g., the task arrivals and the task offloading decisions of other
mobile devices.

188 M. Tang and V. W. S. Wong

9.3.3 Deep Q-Learning-Based Algorithm

In this section, we propose a DQL-based task offloading algorithm, under which
the mobile devices can make their offloading decisions without knowing the system
dynamics a priori. In this algorithm, each mobile device aims at learning a Q-value
for each action given each state. The Q-value reveals the expected long-term cost of
the mobile device given the state by selecting the associated action. The mapping
from the state to the Q-value of each action is characterized by a neural network.
With such a mapping, each mobile device can minimize its expected long-term cost
by selecting the action with the minimum Q-value under its state.

In the following, we first present the neural network. Then, we propose the DQL-
based algorithm.

9.3.3.1 Neural Network

For each mobile device, we use a neural network to characterize the mapping from
each state to the Q-value of each action. The neural network contains six layers, as
shown in Fig. 9.2. For the neural network of mobile device m ∈ M, we use θm to
denote the parameter vector. This vector contains the biases of all neurons and the
weights of all connections from the input layer to A&V layer (see Fig. 9.2).2 In the
following, we present each layer in detail.

Fig. 9.2 The neural network of mobile device m ∈M

2 The weights of the connections between the A&V layer and the output layer as well as the bias of
the neurons in the output layer are given and fixed. Hence, we do not include them in the network
parameter vector θm, as the vector θm includes the parameters that are adjustable through learning
in the DQL-based algorithm.

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 189

Input Layer In the neural network of any mobile device m ∈M, an input layer is
responsible for taking the state (i.e., sm(t)) as input to the neural network.

Long Short-Term Memory (LSTM) Layer After the input layer, the LSTM is
in charge of predicting the load level dynamics at the edge nodes in the short-term
future. In the LSTM layer, there is an LSTM network that has T step LSTM units.
The LSTM units are connected in sequence. Let {Hm(t)}i denote the ith row of the
historical load level dynamics matrix Hm(t). The ith LSTM unit takes {Hm(t)}i as
an input. These LSTM units can record the variations of the load level dynamics
at the edge nodes from {Hm(t)}1 to {Hm(t)}T step . The output of the last LSTM
unit is connected to the next layer in the neural network. This output can reveal the
information indicating the load level dynamics in the short-term future.

Fully Connected (FC) Layer There are two FC layers after the LSTM layer. These
layers are in charge of mapping from the learned load level dynamics and the state
information to the Q-value of each action. Each FC layer has a set of neurons with
rectified linear unit (ReLU). In the first FC layer, each neuron has full connections
to all neurons (except those related to H (t)) in the input layer and the output of the
LSTM network. In the second FC layer, each neuron is connected to all neurons in
the first FC layer.

A&V Layer and Output Layer We include an A&V layer after the FC layers.
This is inspired by dueling DQN technique [14]. The main idea is to separately
estimate the state-value (i.e., the part of Q-value resulting from the state) and the
advantage-value for each action (i.e., the part of Q-value resulting from the action).
The Q-value of each action given a state is the combination of the associated state-
value and the advantage-value of the action.

In particular, in the A&V layer, there are two networks, i.e., network A and
network V. Network A contains |A| neurons, where |A| = 1 + N is the number
of available actions. This network is in charge of estimating the advantage-value for
each action a ∈ A. Recall that θm denotes the biases and weights from the input
layer to the A&V layer. Given parameter vector θm, letAm(sm(t), a; θm) denote the
advantage-value of action a ∈ A under state sm(t) ∈ S. Network V contains one
neuron. It is responsible to estimate the state-value. Given parameter vector θm, we
denote Vm(sm(t); θm) as the state-value of state sm(t). Note that parameter vector
θm needs to be trained during the DQL-based algorithm.

The output layer determines the Q-value of each action a ∈ A given state sm(t) ∈
S. Such a Q-value can be determined as follows [14]:

Qm(sm(t), a; θm) = Vm(sm(t); θm)+
(
Am(sm(t), a; θm)

− 1
|A|
∑
a′∈AAm(sm(t), a′; θm)

)
.

(9.17)

190 M. Tang and V. W. S. Wong

Specifically, the Q-value of an action is equal to the summation of the corresponding
state-value and the additional advantage-value of the action, where the additional
advantage-value is with reference to the average advantage-value among all actions.

9.3.3.2 Algorithm Design

We now present our proposed DQL-based task offloading algorithm. To reduce the
computational loads at the mobile devices, we consider a setting where the edge
nodes help mobile devices to perform training of the neural network. In particular,
let nm ∈ N denote the edge node that helps mobile device m ∈M for training. This
edge node can be the one that has the maximum transmission capacity with mobile
device m. For edge node n ∈ N, letMn ⊂M denote the set of mobile devices for
which the edge node performs training, i.e.,Mn = {m | nm = n,m ∈M}.

Mobile device m ∈ M and edge node n ∈ N execute Algorithms 1
and 2, respectively. In particular, mobile device m collects experience
(sm(t), am(t), cm(t), sm(t + 1)) for t ∈ T through the interaction with the MEC
system. The associated edge node nm maintains an experience replay Dm, which
stores the experience of mobile device m. For presentation simplicity, we use the
experience t of mobile device m to refer to (sm(t), am(t), cm(t), sm(t + 1)). Edge
node nm learns the mapping from each state to the Q-value of each action using the
experience. Specifically, edge node nm keeps two neural networks for mobile device
m, including an evaluation network Netm and a target network Target_Netm. Both
neural networks follow the structure presented in Sect. 9.3.3.1. Nevertheless, they
have different parameter vectors, i.e., θm for Netm and θ−m for Target_Netm, and
different functionalities. Edge node nm aims at training the evaluation network Netm
to characterize the mapping from state to Q-values. During the training process,
edge node nm uses Netm for action selection. It uses the target network Target_Netm
to approximate the expected long-term cost of each action given any state. We call
the output of the target network as target Q-value. Edge node nm will update the
parameter vector of Netm by minimizing the gap between the target Q-value and the
Q-value under Netm.

Algorithm 1 at Mobile Device m ∈M The algorithm iterates for E episodes. At
the beginning of each episode, mobile device m ∈M initializes the state, i.e.,

sm(1) = (λm(1), wcomp
m (1), wtran

m (1), qedge
m (0),H (1)). (9.18)

We set qedge
m,n (0) = 0 for all n ∈ N and setH(1) as a zero matrix with size T step×N .

At the beginning of time slot t ∈ T, if mobile device m has a new task
arrival km(t), then it will request the recent parameter vector of network Netm, i.e.,
θm, through sending a parameter_request to edge node nm. Note that in practical
systems, the mobile device can choose not to request the parameter vector in every
time slot with new task arrivals in order to reduce the signaling overhead. Although
reducing such a frequency may degrade the convergence rate of the proposed

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 191

Algorithm 1 Deep Q-learning-based algorithm at mobile device m ∈M
1: for episode = 1, 2, . . . , E do
2: Initialize state sm(1);
3: for time slot t ∈ T do
4: if mobile device m has a new task arrival km(t) then
5: Send a parameter_request to edge node nm;
6: Receive network parameter vector θm;
7: Select an action am(t) according to (9.19);
8: end if
9: Observe the next state sm(t + 1);

10: Observe a set of costs {cm(t ′), t ′ ∈ T̃m,t };
11: for each task km(t ′) with t ′ ∈ T̃m,t do
12: Send (sm(t ′), am(t ′), cm(t ′), sm(t ′ + 1)) to edge node nm;
13: end for
14: end for
15: end for

algorithm, we have evaluated empirically that the degradation of the convergence
rate is minimal if the frequency is maintained within a certain range. For example,
with the system setting in Sect. 9.3.4, requesting the parameter vector every 100
time slots leads to a similar convergence rate as requesting it every time slot.

With a probability of ε, mobile device m randomly selects an action in set A.
With a probability of 1 − ε, given the recent state sm(t), it selects an action that
leads to the minimum Q-value according to θm. That is,

am(t) =
{

a random action fromA, with a probability of ε,
arg min

a∈AQm(sm(t), a; θm), with a probability of 1 − ε. (9.19)

Then, at the beginning of time slot t + 1, mobile device m can observe the next
state sm(t + 1). Note that in our system setting, the processing of task km(t) does
not need to be accomplished within time slot t . Thus, at the beginning of time slot
t + 1, the cost cm(t) associated with task km(t)may have not been observed. Due to
the same reason, mobile device m may observe a set of costs associated with some
tasks km(t ′) arrived in time slot t ′ ≤ t . Thus, we denote T̃m,t ⊂ T as the set of time
slots such that the tasks associated with those time slots have been either processed
or dropped within time slot t . That is,

T̃m,t = {t ′ | t ′ = 1, 2, . . . , t, λm(t
′) > 0, t ′ + Delaym(t

′)− 1 = t}, (9.20)

where set T̃m,t can be an empty set for somem ∈M and t ∈ T. At the beginning of
time slot t + 1, mobile device m can observe a set of costs {cm(t ′), t ′ ∈ T̃m,t }.
For each task km(t ′) with t ′ ∈ T̃m,t , mobile device m sends the associated
experience (sm(t ′), am(t ′), cm(t ′), sm(t ′ + 1)) to edge node nm. To reduce the
signaling overhead, we consider a setting where mobile device m does not send
matrices H (t ′) and H (t ′+1) in states sm(t

′) and sm(t
′+1). This is feasible because

192 M. Tang and V. W. S. Wong

Algorithm 2 Deep Q-learning-based algorithm at edge node n ∈ N
1: Initialize neural network Netm with random θm for m ∈Mn;
2: Initialize neural network Target_Netm with random θ−m for m ∈Mn;
3: Initialize experience replay Dm for m ∈Mn and Count ← 0;
4: while True do
5: if receive a parameter_request from m ∈Mn then
6: Send the recent parameter vector θm to mobile device m;
7: end if
8: if receive an experience (sm(t), am(t), cm(t), sm(t + 1)) from m ∈Mn then
9: Store (sm(t), am(t), cm(t), sm(t + 1)) in experience replay Dm;

10: Sample a set of experiences (denoted by I) from Dm;
11: for each experience i ∈ I do
12: Obtain experience (sm(i), am(i), cm(i), sm(i + 1));

13: Compute Q̂
Target
m,i according to (9.23);

14: end for

15: Set vector Q̂
Target
m ← (Q̂

Target
m,i , i ∈ I);

16: Update θm to minimize L(θm, Q̂
Target
m) in (9.21);

17: Count ← Count + 1;
18: if mod(Count, Replace_Threshold) = 0 then
19: θ−m ← θm;
20: end if
21: end if
22: end while

we have assumed that the edge nodes broadcast their load level dynamics in each
time slot.

Algorithm 2 at Edge Node n ∈ N Edge node n ∈ N first initializes neural
networks Netm and Target_Netm and experience replay Dm for mobile device
m ∈Mn. Then, it will wait for the messages from the mobile devices.

If edge node n receives a parameter_request from mobile device m ∈ Mn, then
it will forward the recent parameter vector θm to mobile device m. If edge node n
receives an experience from mobile devicem ∈Mn, then it will store the experience
in the experience replay Dm. After that, edge node n will update the parameter
vector θm of network Netm according to steps 10−20 in Algorithm 2. The edge
node first randomly samples I experiences fromDm. LetI denote the set of sampled
experiences. For each experience i ∈ I, edge node n will compute a target Q-value

Q̂
Target
m,i (to be explained in the next paragraph) and update θm by minimizing the

following loss function:

L

(
θm, Q̂

Target
m

)
= 1

I

∑

i∈I

(
Q̂

Target
m,i −Qm(sm(i), am(i); θm)

)2

, (9.21)

where Q̂
Target
m = (Q̂

Target
m,i , i ∈ I). This loss function captures the difference

between the target Q-value and the output of network Netm for each experience i ∈

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 193

I. The edge node minimizes the loss function using backpropagation (see Section 6
in [33]).

Edge node n determines the target Q-value Q̂
Target
m,i for i ∈ I using double DQN

technique [13]. This technique can improve the approximation of the expected long-
term cost when compared with the conventional method (e.g., [12]). To determine
the target Q-value, we denote aNext

i as the action that leads to the minimum Q-value
given the next state sm(i + 1) under network Netm, i.e.,

aNext
i = arg min

a∈AQm(sm(i + 1), a; θm). (9.22)

The target Q-value Q̂
Target
m,i is computed as follows:

Q̂
Target
m,i = cm(i)+ γQm

(
sm(i + 1), aNext

i ; θ−m
)
. (9.23)

Intuitively, the target Q-value is equal to the summation of the cost in experience
i and the discount factor multiplied by the Q-value of action aNext

i given the next
state sm(i+1) under network Target_Netm. This value essentially approximates the
expected long-term cost of action am(i) given state sm(i).

To keep the parameter vector θ−m of Target_Netm up-to-date, edge node n updates
θ−m every several number of training rounds by copying the parameter vector θm of
network Netm. Such updates make the target Q-value (which is derived based on
Target_Netm) a more accurate approximation of the expected long-term cost. We use
Replace_Threshold to denote the corresponding number of training rounds, where
mod(·) is the modulo operator in step 18 in Algorithm 2.

Discussion on Convergence Despite that we are able to prove the convergence of
Q-learning algorithm, the convergence of a DQL-based algorithm is still an open
problem. This is because the neural network is essentially an approximation of the
mapping from state to Q-values. Due to such an approximation, the convergence
may no longer be guaranteed. In this chapter, we empirically evaluate the conver-
gence performance of the proposed algorithm in Sect. 9.3.4.

9.3.4 Performance Evaluation

We consider five edge nodes and 50 mobile devices. Table 9.1 shows the parameter
settings of the MEC system and the hyperparameters of the proposed algorithm. As
shown in Table 9.1, we consider a setting where each task has a deadline τm = 10
time slots regardless of the task size. For example, for a video segment decoding
task in live streaming, a video segment should always be decoded before a certain
deadline to avoid rebuffering, where the deadline is independent of the number of
image frames in the video segment. We set the penalty for dropped tasks Cm to 20

194 M. Tang and V. W. S. Wong

Table 9.1 Parameter settings of the MEC system

Parameter Value Parameter Value

� 0.1 second f device
m ,m ∈M 2.5 GHz [34]

λm(t),m ∈M, t ∈ T Discrete uniform
distribution over set {2.0,
2.1, . . . , 5.0} Mbits [35]

r tran
m,n,m ∈M, n ∈ N 14 Mbps [36]

ρm,m ∈M 0.297 Gigacycles per Mbits
[35]

f
edge
n , n ∈ N 41.8 GHz [34]

τm,m ∈M 10 time slots (i.e., 1 second
[37])

Cm,m ∈M 20

Task arrival probability 0.3 Discount factor 0.9

Learning rate 0.001 Batch size 16

ε Decrement from 1 to 0.01

for m ∈M, where this value is twice as large as the maximum delay of a processed
task (i.e., 10 time slots). Such a penalty setting makes the cost of a dropped task
be always larger than the cost of a processed task, under which the proposed DQL-
based algorithm will avoid tasks being dropped by optimizing the task offloading
decision. In addition, we consider a setting where the task arrival probability is a
constant value [29]. Despite that the task arrival probability is fixed across time,
the number of tasks offloaded to an edge node can be time varying and is unknown
to any particular mobile device, due to the time-varying and unknown offloading
decisions of other mobile devices. This leads to the unknown load level dynamics at
the edge nodes and the necessity of using our proposed DQL-based approach.

In the following, we evaluate the algorithm convergence. Then, we compare the
performance of our proposed algorithm with some existing algorithms.

9.3.4.1 Algorithm Convergence

Figure 9.3 shows the convergence of the average cost among mobile devices of our
proposed algorithm under different hyperparameters. For comparison, we show the
random policy, where mobile devices randomly select their actions.

Figure 9.3(a) shows the algorithm convergence under different values of batch
size, i.e., the number of experience sampled in one training round (i.e., I). When
the batch size is increased from 2 to 8, the average cost converges to a lower value.
Further increasing the batch size to 32 does not make a significant difference. Thus,
a small batch size (e.g., 8) is sufficient for achieving a satisfactory convergence.

Figure 9.3(b) shows the algorithm convergence under different values of learning
rate, which is the step size for updating network Netm. As shown in the figure, when
the learning rate is equal to 0.001, the average cost converges relatively fast and
converges to a smaller value when compared with the other values of learning rate.

On the other hand, in practical systems, the task arrival probability can be non-
stationary. Under such a scenario, once the environment has changed, the proposed

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 195

0 250 500 750 1000
Episode

0.4

0.6

0.8

1
Av

er
ag

e
C

os
t

random
batch size = 2
batch size = 8

batch size = 16
batch size = 32

0 250 500 750 1000
Episode

0.4

0.6

0.8

1

Av
er

ag
e

C
os

t

random
lr=0.0001

lr=0.0005
lr = 0.001

lr=0.01
lr=0.1

)b()a(

Fig. 9.3 Algorithm convergence under different: (a) batch size and (b) learning rate (denoted by
“lr”)

0 500 1000 1500 2000
Episode

0

0.4

0.8

1.2

Av
er

ag
e

C
os

t

Random
DQL

Task arrival
probability
increases
from 0.3 to 0.5

Fig. 9.4 An illustration of the algorithm performance with non-stationary task arrival probability

algorithm can adapt to it by resetting the probability of random exploration to be one
in order to enable the random exploration again. Figure 9.4 shows an example of the
performance of the proposed DQL-based algorithm with non-stationary task arrival
probability. In this simulation, at around 1000 episodes, the task arrival probability
increases from 0.3 to 0.5. Hence, the average cost of both the random policy and our
proposed DQL-based algorithm are changed accordingly. As the episodes proceed,
our proposed algorithm gradually adapts to the change of task arrival probability and
converges again. We will leave it as future work to design an efficient algorithm for
addressing frequent environmental changes. Candidate approaches include concept
drift detection [38] and non-stationary reinforcement learning [39, 40].

9.3.4.2 Method Comparison

We compare our proposed algorithm with several benchmark methods. These
include no offloading (denoted by No Offl.), random offloading (denoted by R.

196 M. Tang and V. W. S. Wong

0.05 0.15 0.25 0.35 0.45
Task Density (Gigacycles per Mbits)

0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f D

ro
pp

ed
 T

as
ks

No Offl.
R. Offl.
PGOA
ULOOF
DQL

0.05 0.15 0.25 0.35 0.45
Task Density (Gigacycles per Mbits)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

D
el

ay
 (S

ec
)

No Offl.
R. Offl.
PGOA
ULOOF
DQL

)b()a(

Fig. 9.5 Performance with different task densities: (a) ratio of dropped tasks and (b) average delay

Offl.), potential game-based offloading algorithm (PGOA) in [31], and user-level
online offloading framework (ULOOF) in [34]. With PGOA and ULOOF, mobile
devices make their offloading decisions based on a best response algorithm for
potential game and the capacity estimation with historical observations, respec-
tively. In the simulation results, we use “DQL” to refer to our proposed DQL-based
algorithm.

In the simulations, we consider two performance metrics. The first is the ratio of
dropped tasks. This is the ratio of the number of dropped tasks to the total number
of tasks. The second is the average delay of the tasks that have been processed.

Task Density In Fig. 9.5, as the task density increases, the ratio of dropped tasks
and the average delay of each method increase. This is because a larger task
density implies a higher computational requirement of each task. As the task
density increases from 0.05 to 0.25 Gigacycles per Mbits, the ratio of dropped tasks
and average delay of our proposed algorithm increase less drastically than those
of the benchmark methods. When the density is 0.25 Gigacycles per Mbits, our
proposed algorithm maintains a ratio of dropped tasks of around 0.01 and an average
delay of 0.47 second. As the task density further increases to 0.5 Gigacycles per
Mbits, although all methods have a similar average delay, our proposed algorithm
can reduce the ratio of dropped tasks by 41.4%–74.1% when compared with the
benchmark methods.

Processing Capacity of Edge Node As shown in Fig. 9.6, under various values of
the processing capacity of each edge node, our proposed algorithm can reduce the
ratio of dropped tasks and the average delay when compared with the benchmark
methods. The reduction of the ratio of dropped tasks is especially significant when
the processing capacity of each edge node is small. When the processing capacity is
15 GHz, the proposed algorithm reduces the ratio of dropped tasks by at least 57.0%
and reduces the average delay by at least 9.4% when compared with the benchmark
methods. As the processing capacity further increases, both performance metrics
converge, because further increasing the capacity does not reduce the delay of those

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 197

15 35 55 75
Processing Capacity of Edge Node (GHz)

0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f D

ro
pp

ed
 T

as
ks

No Offl.
R. Offl.
PGOA

ULOOF
DQL

15 35 55 75
Processing Capacity of Edge Node (GHz)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

D
el

ay
 (S

ec
)

No Offl.
R. Offl.
PGOA
ULOOF
DQL

)b()a(

Fig. 9.6 Performance with different processing capacities of edge nodes: (a) ratio of dropped tasks
and (b) average delay

1 2 3 4 5 6
Processing Capacity of Mobile Device (GHz)

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f D
ro

pp
ed

 T
as

ks

No Offl.
R. Offl.
PGOA
ULOOF
DQL

1 2 3 4 5 6
Processing Capacity of Mobile Device (GHz)

0

0.2

0.4

0.6

0.8

1
Av

er
ag

e
D

el
ay

 (S
ec

)

No Offl.
R. Offl.
PGOA

ULOOF
DQL

)b()a(

Fig. 9.7 Performance with different processing capacities of mobile devices: (a) ratio of dropped
tasks and (b) average delay

tasks offloaded due to the limited transmission capacity. The converged ratio of
dropped tasks and the average delay of our proposed algorithm is at least 84.3% and
17.2% less than those of the benchmark methods, respectively.

Processing Capacity of Mobile Devices In Fig. 9.7, as the processing capacity
of each mobile device increases, our proposed algorithm has a more significant
decrease in terms of the ratio of dropped tasks and average delay when compared
with PGOA and ULOOF. When the processing capacity increases to 3.5 GHz, our
proposed algorithm achieves a ratio of dropped tasks of 0.007, which is 93.9%–
96.5% lower than those of the benchmark methods. Meanwhile, our algorithm
achieves an average delay that is 31.4% and 29.4% lower than those of PGOA
and ULOOF, respectively. As the processing capacity of each mobile device
further increases, processing a task locally becomes optimal. Thus, our proposed
algorithm tends to choose local processing and achieves a similar performance as
no offloading.

198 M. Tang and V. W. S. Wong

9.4 Challenges and Future Directions

Despite the fact that DRL can effectively address the unknown and time-varying
system dynamics, there are still several remaining challenges and future research
directions for the deployment of DRL algorithms in MEC systems.

First, the training process of DRL algorithms may require substantial compu-
tational resource consumption. Meanwhile, under the scenario where the training
process is offloaded to some devices with sufficient computational resources, the
offloading may lead to communication resource consumption for neural network
transmission. As a result, the scalability of DRL algorithms in MEC systems may
be a concern. To address these issues, we may include both offline phase and
online phase for DRL algorithms, where the offline phase is performed offline with
powerful devices (e.g., cloud server). Transfer learning techniques [41] may be
utilized for the online phase to make the neural network quickly adapt to the real-
world environment. Moreover, deep compression techniques [42], such as network
pruning (i.e., reducing the number of weights in neural networks) and quantization
(i.e., reducing the number of bits for representing a weight), may be used to reduce
the communication resource requirement.

Second, the environment in MEC systems may be time varying. Thus, DRL
algorithms should be able to detect the change of the environment and quickly
adapt to the new environment after changing. Methods for concept drift detection
[38] are applicable for detecting the change of the environment. In addition,
techniques for lifelong learning [43] may be applicable for handling the non-
stationary environments. Meanwhile, existing works, e.g., [39, 40], proposed DRL
algorithms for non-stationary reinforcement learning, which may be applicable to
MEC systems.

Third, in MEC systems with a large number of mobile devices and edge nodes,
there are potentials for the mobile devices and edge nodes to cooperate to learn
the optimal policy through their interaction with the environments. In other words,
the mobile devices and edge nodes may cooperatively train the neural networks
in the DRL algorithms. Such a collaboration can alleviate the requirements for
computational resources and improve the resource efficiency. Federated learning
techniques [44] can enable the collaboration among mobile devices and edge nodes
for neural network training and hence may be incorporated in DRL algorithms.

9.5 Conclusion

In this chapter, we provided an overview of the DRL algorithms for MEC systems.
We introduced DRL fundamentals and then presented a case study on task offloading
in MEC systems. In this case study, we focused on the unknown and time-varying
load level dynamics at the edge nodes and proposed a DQL-based algorithm that
enables the mobile devices to make task offloading decisions in a decentralized

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 199

fashion. We conducted simulations and showed that the proposed algorithm can
reduce the task delay and ratio of dropped tasks. Finally, we outlined the challenges
and future research directions for DRL algorithms in MEC systems.

References

1. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: the
communication perspective. IEEE Commun. Surv. Tutorials 19(4), 2322–2358, Fourth quarter
(2017)

2. P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, T. Taleb, Survey on multi-access edge
computing for Internet of things realization. IEEE Commun. Surv. Tutorials 20(4), 2961–2991
(2018)

3. F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of things,
in Proc. ACM SIGCOMM Workshop on Mobile Cloud Computing (MCC), Helsinki, August
2012

4. Z. Sanaei, S. Abolfazli, A. Gani, R. Buyya, Heterogeneity in mobile cloud computing:
taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1), 369–392, First quarter
(2014)

5. T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, D.O. Wu, Edge computing in industrial
Internet of things: architecture, advances and challenges. IEEE Commun. Surv. Tutorials 22(4),
2462–2488, Fourth quarter (2020)

6. P. Ranaweera, A.D. Jurcut, M. Liyanage, Survey on multi-access edge computing security and
privacy. IEEE Commun. Surv. Tutorials 23(2), 1078–1124, Second quarter (2021)

7. T. Chen, Q. Ling, G.B. Giannakis, An online convex optimization approach to proactive
network resource allocation. IEEE Trans. Signal Process. 65(24), 6350–6364 (2017)

8. H. Shah-Mansouri, V.W.S. Wong, Hierarchical fog-cloud computing for IoT systems: a
computation offloading game. IEEE Internet Things J. 5(4), 3246–3257 (2018)

9. V. François-Lavet, P. Henderson, R. Islam, M.G. Bellemare, J. Pineau, An introduction to deep
reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)

10. X. Wang, Y. Han, V.C.M. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge computing
and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904,
Second quarter (2020)

11. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2nd edn. (MIT Press,
Cambridge, MA, 2018)

12. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves,
M. Riedmiller, A.K. Fidjeland, G. Ostrovski, Human-level control through deep reinforcement
learning. Nature 518(7540), 529–533 (2015)

13. H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in
Proc. AAAI Conf. on Artificial Intelligence, Phoenix, AZ, May 2016

14. Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas, Dueling network
architectures for deep reinforcement learning, in Proc. Int’l Conf. on Machine Learning
(ICML), New York City, NY, June 2016

15. M.G. Bellemare, W. Dabney, R. Munos, A distributional perspective on reinforcement learning,
in Proc. Int’l Conf. on Machine Learning (ICML), Sydney, August 2017

16. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,
Continuous control with deep reinforcement learning. Preprint, arXiv:1509.02971, July 2019

17. G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, T.B. Dhruva, A. Muldal,
N. Heess, T. Lillicrap, Distributed distributional deterministic policy gradients, in Proc. Int’l
Conf. on Learning Representations (ICLR), Vancouver, April 2018

18. V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu,
Asynchronous methods for deep reinforcement learning, in Proc. Int’l Conf. on Machine
Learning (ICML), New York City, NY, June 2016

200 M. Tang and V. W. S. Wong

19. Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, N. de Freitas, Sample
efficient actor-critic with experience replay. Preprint, arXiv:1611.01224, July 2017

20. T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: off-policy maximum entropy
deep reinforcement learning with a stochastic actor, in Proc. Int’l Conf. on Machine Learning
(ICML), Stockholm, June 2018

21. S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-critic
methods, in Proc. Int’l Conf. on Machine Learning (ICML), Stockholm, June 2018

22. J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization, in
Proc. Int’l Conf. on Machine Learning (ICML), Lille, June 2015

23. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization
algorithms. Preprint, arXiv:1707.06347, August 2017

24. C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, S. Colton, A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intel. AI 4(1), 1–43 (2012)

25. D. Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature
529(7587), 484–489 (2016)

26. A. Plaat, W. Kosters, M. Preuss, Model-based deep reinforcement learning for high-
dimensional problems, a survey. Preprint, arXiv:2008.05598, December 2020

27. N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, D.I. Kim, Applications
of deep reinforcement learning in communications and networking: a survey. IEEE Commun.
Surv. Tutorials 21(4), 3133–3174, Fourth quarter (2019)

28. M. Tang, V.W.S. Wong, Deep reinforcement learning for task offloading in mobile edge
computing systems. IEEE Trans. Mobile Comput. 21(6), 1985–1997 (2020)

29. J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task scheduling for mobile-
edge computing systems, in Proc. IEEE Int’l Symp. on Information Theory (ISIT), Barcelona,
July 2016

30. X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Distributed online
optimization of fog computing for selfish devices with out-of-date information. IEEE Trans.
Wirel. Commun. 17(11), 7704–7717 (2018)

31. L. Yang, H. Zhang, X. Li, H. Ji, V. Leung, A distributed computation offloading strategy in
small-cell networks integrated with mobile edge computing. IEEE/ACM Trans. Netw. 26(6),
2762–2773 (2018)

32. A.K. Parekh, R.G. Gallager, A generalized processor sharing approach to flow control in
integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344–357
(1993)

33. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
34. J.L.D. Neto, S.-Y. Yu, D.F. Macedo, M.S. Nogueira, R. Langar, S. Secci, ULOOF: a user level

online offloading framework for mobile edge computing. IEEE Trans. Mobile Comput. 17(11),
2660–2674 (2018)

35. C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading and resource allocation
in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8),
4924–4938 (2017)

36. Speedtest Intelligence, Speedtest global index: Canada average mobile upload speed based on
March 2021 data, https://www.speedtest.net/reports/canada/. Accessed 25 June 2021

37. X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, R.P. Liu, Energy-efficient admission of delay-
sensitive tasks for mobile edge computing. IEEE Trans. Commun. 66(6), 2603–2616 (2018)

38. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept drift: a review. IEEE
Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

39. A. Xie, J. Harrison, C. Finn, Deep reinforcement learning amidst lifelong non-stationarity.
Preprint, arXiv:2006.10701, June 2020

40. V. Lomonaco, K. Desai, E. Culurciello, D. Maltoni, Continual reinforcement learning in 3D
non-stationary environments, in Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, June 2020

https://www.speedtest.net/reports/canada/

9 Deep Reinforcement Learning for Mobile Edge Computing Systems 201

41. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey
on transfer learning. Proc. IEEE 109(1), 43–76 (2021)

42. S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding, in Proc. Int’l Conf. on Machine Learning
(ICML), New York City, NY, June 2016

43. Z. Chen, B. Liu, Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12(3),
1–207 (2018)

44. W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao,
Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv.
Tutorials 22(3), 2031–2063, Third quarter (2020)

Chapter 10
Mobile Computation Offloading with
Hard Task Completion Times

Peyvand Teymoori, Arvin Hekmati, Terence D. Todd, Dongmei Zhao,
and George Karakostas

10.1 Introduction

Mobile devices (MDs) are continuing to become more pervasive as personal
computing platforms. This trend is coinciding with significant increases in mobile
application features that benefit from tight interactions with fixed computation
infrastructure. Due to their limited physical size however, mobile devices are inher-
ently resource-constrained, especially from an energy and computational viewpoint.
This has motivated a wide variety of recent research on mobile energy efficiency [1].

Mobile cloud computing has been introduced to help alleviate some of these
shortcomings and to support the ever-increasing computation and storage demands
for MDs [2, 3]. It has been estimated that tens of billions of cloud-based network
edge devices will be deployed in the future to satisfy mobile demands. This will
provide significant resources for performing computation-intensive and latency-
critical mobile-centric tasks. Mobile computation offloading has been proposed as
a way of decreasing MD energy use by dynamically offloading job execution to
infrastructure-based cloud servers [4–8]. Access to the cloud servers is performed
by the MD using wireless transmission.

P. Teymoori · T. D. Todd · D. Zhao (�)
Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON,
Canada
e-mail: teymoorp@mcmaster.ca; todd@mcmaster.ca; dzhao@mcmaster.ca

A. Hekmati
Department of Computer Science, University of Southern California, Los Angeles, CA, USA
e-mail: hekmati@usc.edu

G. Karakostas
Department of Computing and Software, McMaster University, Hamilton, ON, Canada
e-mail: karakos@mcmaster.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_10

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_10&domain=pdf
mailto:teymoorp@mcmaster.ca
mailto:todd@mcmaster.ca
mailto:dzhao@mcmaster.ca
mailto:hekmati@usc.edu
mailto:karakos@mcmaster.ca
https://doi.org/10.1007/978-3-030-98064-1_10

204 P. Teymoori et al.

Various architectures have been proposed for mobile computation offloading.
Reference [9] originally proposed an architecture known as MAUI, which controls
computation offloading for runtime .NET applications by formulating the offloading
problem as a linear program. A similar architecture for Android applications has
also been proposed in [4]. Computation offloading typically reduces execution
energy consumption but usually incurs communication energy costs since the tasks
to be executed (and their inputs/outputs) must be transferred over wireless network
links. This may also incur additional latency. The tradeoff between energy saving
and computing performance for single-device offloading has been studied exten-
sively. For a single user offloading its entire application to the cloud, the tradeoff
between energy saving and computing performance was studied in [1, 10, 11].

References [12–15] considered multi-user scenarios with a single application or
user task, where the entire application is offloaded to the cloud. Unlike whole-
application offloading, [4, 9, 16–18] have considered partitioning applications
into multiple offloaded tasks. This work raises the issues of how to perform
the partitioning, and which tasks should be offloaded given that there may be
data dependencies between the tasks. There is also work that models MCO as a
competitive game. In this type of system there may be resource contention among
the devices, such as the case where they share communication channels and/or cloud
servers [19–21].

In this chapter, we study MCO where job completion times are subjected to
hard deadline constraints, i.e., the deadline constraints should never be violated.
This objective will become increasingly important as mobile applications become
more sophisticated and interact more closely with cloud job execution [22]. Hard
deadlines are often difficult to achieve in mobile networks due to the randomness of
the wireless channels used for the mobile/cloud data interactions. In harsh wireless
conditions, for example, complete channel outage can even occur over extended
time periods. In this chapter, we study the straightforward approach of permitting
concurrent local and cloud offload execution when a job completion deadline must
be respected. This is in contrast to the conventional computation offloading model
where job execution is either local or remote [23, 24]. As is the case in conventional
computation offloading, the objective is to reduce the MD energy needed for
job execution. The chapter studies this problem for Markovian wireless channel
models [25].

Online optimal algorithms are introduced that reduce the remote and local
execution overlap so that energy wastage is minimized. Two job uploading schemes
are introduced, continuous and discrete. In the case of continuous offloading, the
MD will upload the entire job in one piece without interruption, and an OnOpt
algorithm is used for deciding the offloading initiation time. In discrete computation
offloading, the job is partitioned into a known number of parts, each part is uploaded
separately, and a MultiOpt algorithm is used to decide the upload initiation time of
each part during runtime. The optimality of the algorithms is proven by augmenting
the underlying channel model so that it forms a time-dilated absorbing Markov
process. Dynamic programming is then used to establish a test that determines
whether a given job (for continuous uploading) or a part of the job (for discrete

10 Mobile Computation Offloading with Hard Task Completion Times 205

uploading) should be uploaded at the current time, or to wait for some future upload
opportunity. The performance results presented use the Gilbert–Elliott channel
model. Performance results show that the proposed algorithms can significantly
improve MD energy consumption compared to the other approaches, and using
MultiOpt further improves the energy consumption compared to OnOpt.

10.2 Continuous Offloading

10.2.1 System Description and Problem Formulation

We consider the execution of computational tasks (jobs) generated by a MD, either
locally (by the device itself), or by offloading them on a remote cloud server through
a wireless transmission channel. Each job could be a sub-task associated with
multiple local/remote job execution components [2, 3]. We focus on a single task
whose characteristics are known at its release time. Note that time is taken to be
discrete, i.e., quantized into equal length time slots whose duration is normalized to
1. Time values are therefore referred to by their time slot indices. Note that the time
slot duration is defined to accommodate the channel propagation model discussed
in Sect. 10.2.2 and may contain multiple packet transmission times on the channel.
Each job to be executed is characterized by the following:

tR: Release time of the job, i.e., the time when the job is ready to start
execution, either locally or via offloading.

tD: Hard deadline of the job, i.e., the job execution results must be available
at the MD by time tD . TD = tD − tR + 1 is the maximum number of time
slots available for completing the job.

Sup: The number of bits transmitted through the uplink channel when upload-
ing the job to the cloud.

Sdown: The number of bits transmitted through the downlink channel when
downloading job results from the cloud.

10.2.1.1 Local Execution

It is assumed that the energy cost and time needed to execute a job locally are
known at the job release time, tR , and these are defined by EL and TL, respectively.
This assumption is often true and has been made in many computational offloading
studies [1, 13, 21]. If the computation offloading algorithm elects to execute the
job locally without any remote offloading, we must ensure that the job deadline is
always satisfied. Therefore, local execution must start no later than tL = tD−TL+1,
unless remote offload/execution results are available at the mobile device before tL.

206 P. Teymoori et al.

Fig. 10.1 Job computation timing for continuous offloading

10.2.1.2 Remote Execution

In the case of offloading a job, we will assume that, upon its release, the job is
assigned an execution time Texec by the cloud server, which is communicated to
the MD (or is prescribed by, say, the contractual agreement between the user of the
device and the cloud server operator). In addition, we assume that the user has been
allocated capacity (such as recurring time slots) until the offload has completed.
Therefore, if Tup and Tdown are the time periods needed to upload the job to the
cloud server and download its results to the device, respectively, the total offloading
time Toff is given by Toff = Tup + Texec + Tdown. These components are shown in
Fig. 10.1, where to is the remote offload initiation time. It is assumed that the channel
uses bit rate adaptation to accommodate random variations in channel conditions. As
a result, Tup is a random variable, dependent on the evolution of the uplink channel
state as a given upload occurs. In what follows, it is assumed that the channel state
can be modeled as a homogeneous discrete-time Markov process; the same holds
for Tdown.

In order to simplify our exposition, we will initially focus on the randomness
induced by the Markovian uplink channel. In the following development, we
therefore temporarily assume that all offloading deadlines, job sizes (in bits), and
energy costs are related only to job uploading, i.e., Toff ≡ Tup and S ≡ Sup, so that
Texec = Tdown = 0.

Since the job’s hard deadline constraint must always be satisfied, we propose
its simultaneous cloud server offloading (if possible and beneficial) and its local
execution. Given the stochastic nature of the transmission channel, deciding whether
and when to offload (i.e., to in Fig. 10.1) depends on the estimation of offloading
energy consumption and offloading time, in order to both minimize energy costs
for the MD and satisfy the job deadline constraint.1 Depending on these estimates,
there are three possibilities for offloading at time slot to: (1) it certainly finishes
before starting the local execution of the job, and, hence, local execution never starts,
or (2) it finishes after starting the local execution of the job, and, possibly, before
deadline tD; then, the fraction of local execution energy cost incurred is equal to the
fraction of TL overlapping with the offloading (i.e., local execution is terminated if a

1 Note that when offloading occurs, then tR ≤ to ≤ tD , and when to > tD , then there has been no
offloading, i.e., there is only local job execution.

10 Mobile Computation Offloading with Hard Task Completion Times 207

remote offload response is received), or (3) it certainly finishes after deadline tD , so
it does not even start, and the total energy cost is equal to the local execution energy
cost. Note that in the case of a deterministic channel, one can calculate exactly in
which of these three cases the job falls. In this chapter, we analyze the problem of
offloading with hard deadlines over a Markovian stochastic channel.

As in most of the related work references, we assume that the current state of
the channel can be determined prior to making the decision to start an offload. This
information can be learned in a variety of ways, such as via a short handshake with
the base station at the start of the time slot.

Figure 10.1 represents the case of continuous offloading. The offload begins at
to, and execution is completed Tup + Texec + Tdown time slots later. To enforce the
job deadline, local execution must begin at tL if the mobile is still awaiting a remote
response. At time to + Tup + Texec + Tdown, local execution is terminated provided
that a remote offload response arrives before tD .

Note that starting the local job execution at time slot tL ensures the hard delay
constraint of the task, if remote offloading is not received in time. Although this
may result in both local and remote executions of the task, it will always satisfy
the hard deadline, even if there is channel contention or extended channel outages.
However, with the objective of minimizing the mean energy consumption of the
MD, the proposed algorithm will reduce the possibility of both local and remote
executions.

10.2.2 Markovian Channel and the Time-Dilated Absorbing
Markov Model

In many studies, homogeneous Markov chains have been used to model random
wireless channel conditions, and as is often assumed, the Markovian transition
probabilities are taken to be known or have been learned dynamically [26–28].
Accordingly, we assume that the computation offloading occurs over a finite-state
Markovian channel. In this case, the OnOpt (Online Optimal) algorithm proposed in
Sect. 10.2.4 is an online computation offloading algorithm that attains the minimum
expected execution energy for continuous offloading. As is commonly assumed, the
channel data rate is defined by the Markovian channel state, and the receive signal-
to-noise ratio (SNR) is such that errors due to random noise are negligible. When
this is not the case, then the execution time constraint will still be satisfied by the
OnOpt algorithm [28, 29].

In this section, we use the conventional channel state Markov chain (CSMC) to
form a time-dilated absorbing Markov chain (TDAMC) that models the offloading
over the channel. The resulting Markov process is used by OnOpt in order to
compute its energy and offloading time estimates, and by our analysis, in order
to show its optimality. As mentioned above, we focus on Tup, ignoring Texec and
Tdown (cf. Fig. 10.1); hence, Toff and S below refer to Tup and Sup, respectively.

208 P. Teymoori et al.

In the CSMC, and starting from the current time slot ts , the channel conditions
will evolve from one time slot to the next according to a homogeneous finite-state
Markov chain. We denote the set of possible channel states byM, whereM = |M|
is the number of states in the CSMC. As discussed previously, the radio transmit
power is fixed, and bit rate adaptation is used to adjust to varying channel conditions.
Therefore, each state in the CSMC has an associated bit rate that gives the number
of bits per time slot that can be uploaded when offloading occurs in that state. In a
general Markov chain model, the CSMC transition matrix is defined as P = [Pi,j],
where Pij is the probability of transitioning to channel state j in the next time slot,
given that the channel is currently in state i. Unfortunately, CSMC is memoryless
as far as the state of offloading and channel conditions are concerned; in order to
incorporate them into our model, we form a new Markov chain, referred to as a time-
dilated absorbing Markov chain (TDAMC). We are again interested in the evolution
of the system starting at the current time slot ts , and running until the computation
has completed, either locally or via offloading. The state of the channel in each
TDAMC state at time t ≥ ts is represented by Xt , where Xt ∈M. However, unlike
the CSMC, the TDAMC incorporates t and other information into its structure.

The TDAMC models the job offloading progress if the latter is initiated at the
current time slot ts . It is a rooted tree, constructed as follows: The root state is
the channel state Xts at current time slot ts ; since this is the current time slot,
Xts is known. At each subsequent time slot, the Markov chain tree branches
forward, according to the transitions possible from the current state (Xts , initially)
to other CSMC states. At each step along a given tree branch, the number of job
bits transmitted is determined by the bit rate associated with the channel state
in question. This construction continues along each branching tree path until the
number of bits offloaded reaches the job upload size, S = Sup. At that point, the
state reached in the TDAMC is defined as a Markov chain absorbing state, i.e., it
has a self-transition with probability 1. From this construction, it can be seen that
the TDAMC includes all possible paths that lead to a successful job offload and that
all of the states are either transient or absorbing. Eventually, all paths terminate in
an absorbing state, and the energy cost of that path is proportional to its length, i.e.,
the number of time slots needed.

An example of a TDAMC is shown in Fig. 10.2, for ts = 1. It is constructed
from a two-state Gilbert–Elliott channel [26, 30], which is modeled by a CSMC
withM = {G,B} (i.e., with “Good” and “Bad” states, respectively), and transition
probability matrix

[
PGG PGB

PBG PBB

]
,

i.e., P1,1 = PGG, P1,2 = PGB, P2,1 = PBG and P2,2 = PBB . In each time slot, the
TDAMC transitions to a new state in accordance with these transition probabilities.
For clarity, each channel state in the figure is subscripted with its level time and the
index of the subtree it belongs to. For example,G3,2 indicates that the channel state
at level t = 3 and subtree 2 is Good. The TDAMC shows that at t = 3, the channel

10 Mobile Computation Offloading with Hard Task Completion Times 209

Fig. 10.2 Time-dilated absorbing Markov chain example

can remain in the G state, i.e., G4,2 or transition to the B state, i.e., B4,2 with the
given CSMC transition probabilities. Each state of the TDAMC defines the number
of bits that can be offloaded during a time slot while in that state. In the example
of Fig. 10.2, when the channel state is G, the number of payload bits is defined by
the number of bits that can be carried on the channel during a good (i.e., high bit
rate) channel state. In the general case, when the channel is in state Xt at time t ,
the number of child states at t + 1 is given by the number of non-zero values in the
same row of the original CSMC transition matrix. In Fig. 10.2, each state continues
to branch downward until the number of offloaded bits for a given branch reaches
the total number needed for the offload. At that point, the branch ends in a Markov
chain absorbing state discussed previously. In Fig. 10.2, states G3,1, G4,1, and G4,2
are the absorbing states.

The non-absorbing states in the TDAMC are clearly all transient states. We define
A to be the set of absorbing states and T to be the set of transient states in the
TDAMC. For an absorbing Markov chain, by labeling the transient states first, the
resulting transition matrix can be written in the following form [31]:

PTDAMC =
[
Q R

0 I|A|

]
. (10.1)

In PTDAMC, the |T| × |T| sub-matrixQ contains the probabilities of transitioning
between transient states before the job upload is completed. The |T| × |A| sub-
matrix R contains the probabilities of transitioning from a transient state to an
absorbing state, indicating that the job upload is finished. 0 is an |A| × |T| zero
matrix and I|A| is an |A| × |A| identity (i.e., absorbing) matrix.
Q contains the entries of the original CSMC transition matrix that give the

transition probabilities of each state k when it transits to a state in {sk, sk +
1, . . . , fk}, and, for our TDAMC, it has the following form:

210 P. Teymoori et al.

Q =

⎡

⎢
⎢⎢
⎣

0 P1,s1 · · · P1,f1 0 · · · 0 · · · 0
0 0 · · · 0 P2,s2 · · · P2,f2 · · · 0
...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 · · · 0

⎤

⎥
⎥⎥
⎦
.

It can be seen that Q is upper triangular, as expected, since all states are transient
and can be visited at most once. The (possibly) non-zero transition probabilities
shown in row one, for example, give the probability of transitioning to all possible
t = 2 channel states and so on.

With the above construction and using results from the theory of absorbing
Markov chains, various statistics can be computed by first forming the fundamental
matrix

N = (I −Q)−1. (10.2)

For example, entry (i, j) of N gives the expected number of times that the TDAMC
is in transient state j if the system is started in transient state i.

Due to the structure of our TDAMC, the computation needed in Eq. (10.2) can
be greatly simplified. Note that N−1 is still an upper triangular matrix with all the
diagonal entries equal to one and can be decomposed as follows:

N−1 = N|T|N|T|−1N|T|−2 · · ·N1,

where

Nk =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1 0 · · · 0 n1,k · · · 0
0 1 · · · 0 n2,k · · · 0
...
...
. . .
...

...
. . .
...

0 0 · · · 1 nk−1,k · · · 0
0 0 · · · 0 1 · · · 0
...
...
. . .
...

...
. . .
...

0 0 · · · 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

.

Nk is an atomic triangular matrix whose inverse is given by

N−1
k =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1 0 · · · 0 −n1,k · · · 0
0 1 · · · 0 −n2,k · · · 0
...
...
. . .
...

...
. . .
...

0 0 · · · 1 −nk−1,k · · · 0
0 0 · · · 0 1 · · · 0
...
...
. . .
...

...
. . .
...

0 0 · · · 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

10 Mobile Computation Offloading with Hard Task Completion Times 211

Then

N = (N|T|N|T|−1N|T|−2 · · ·N1)
−1 = N−1

1 N−1
2 N−1

3 · · ·N−1
|T| .

Note that each column of the Q matrix has only one non-zero element. Therefore,
N−1 will have only two non-zero elements in each column. Similarly, in Nk only
one of the n1,k, n2,k, . . . , nk−1,k is non-zero. Therefore, the multiplication can be
done efficiently.

The absorption probabilities for all absorbing states can be obtained by

W = NR, (10.3)

where W is a |T| × |A| matrix and W [i, j] gives the probability that a particular
absorbing state j will be reached if the system starts in transient state i. Using this
procedure, we can thus compute the various probabilities of absorption for each
absorbing state, given knowledge of the starting state. Therefore, we can obtain
the probability of finishing the offload for every possible offloading time Toff by
summing all of the absorbing state probabilities that have the same TDAMC path
length. We define Pt(T , x) to be the probability of offloading in exactly T time slots,
when offloading starts at time t with the channel in state Xt = x. Then

Pt(Toff , x) =∑j∈SW [x, j] (10.4)

where S are all of the entries of the matrix where the offloading time is equal to
Toff . Note that Pt(T , x) = 0 when it is impossible to offload in a period of exactly
T time slots when offloading at t with the channel in state Xt = x, i.e., T is shorter
(longer) than the shortest (longest) time needed to offload, under the best (worst)
channel conditions. Pt(T , x) is critical for computing the expected cost of offloading
used by the algorithm OnOpt.

The ability to compute the Pt(T , x) values allows for the computation of the
energy costs for both offloading and local execution. If offloading the job (of bit
size S) starts at time slot t , its expected transmission energy is calculated as follows,
depending on whether:

• Offloading is certainly completed (1 ≤ t < tD − S
Bmin

+ 1), in which case the
energy spent is proportional to Toff .

• Offloading may or may not be completed within the deadline (tD − S
Bmin

+ 1 ≤
t ≤ tD), in which case the energy cost is Toff or tD − t + 1, respectively (clearly
the deadline tD is the last time slot where offloading can be done).

Noting that Pt (Toff , x) = 0 when Toff < S
Bmax

or Toff > S
Bmin

, the expected
offloading energy cost when offloading starts at time slot t with the channel in state
x is given by (10.5).

212 P. Teymoori et al.

Eoff (t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Etr
∑ S

Bmin

Toff= S
Bmax

Pt (Toff , x)Toff , 1 ≤ t < tD − S
Bmin

+ 1

Etr

(
∑tD−t
Toff= S

Bmax

Pt (Toff , x)Toff+
∑ S

Bmin

Toff=tD−t+1 Pt (Toff , x)(tD − t + 1)

)
,

tD − S
Bmin

+ 1 ≤ t ≤ tD

0 t > tD

(10.5)

EL(t, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑ S
Bmin

Toff=tL−t+1 Pt (Toff , x)
(

min{tD+1,t+Toff }−tL
TL

EL

)
, 1 ≤ t < tL

∑ S
Bmin

Toff= S
Bmax

Pt (Toff , x)
(

min{tD+1,t+Toff }−tL
TL

EL

)
, tL ≤ t ≤ tD

EL t > tD.

(10.6)

Recall that local execution is postponed until the very last moment, i.e., time
slot tL = tD − TL + 1, where TL is the number of time slots needed by the
task to execute locally. A central idea is that, although local execution is always
initiated (if offloading has not completed earlier) at time tL, in order to guarantee
completion within the deadline, offloading will be decided in such a way so that it
will (hopefully) terminate before tD , thus saving us the energy cost of the remaining
local execution. The overlap time (when such exists) between offloading at time t
and local execution is min{tD+1, t +Toff }− tL. By recalling that EL is the energy
cost of complete local execution of the task, the local execution energy cost will be
0 if there is no overlap, or a fraction

min{tD+1,t+Toff }−tL
TL

of EL if there is. Hence,
we obtain that the expected local execution cost when offloading starts at time t
with the channel in state x is given by (10.6). In the first case, there will be overlap
only for Toff ≥ tL − t + 1, while in the second, there is always overlap, since
t − tL + Toff > 0.

Note that the above development was presented by taking into account only the
random job uploading process. These results are easily extended to include both
the (deterministic) cloud execution, i.e., Texec, and a Markovian random downlink
channel, i.e., Toff = Tup + Texec + Tdown and S = Sup + Sdown. This is done
as follows. The TDAMC of Fig. 10.2, which models the uploading of Sup bits,
is extended by branching out from each (previously) absorbing state for Texec
transition steps. This is followed by branching out according to a process similar
to the TDAMC of Fig. 10.2, which then models the downloading of Sdown bits.
The resulting Markov process therefore tracks the channel throughout all three
offloading periods, i.e., upload, remote execution, and download, shown in Fig. 10.1.

The number of states in the TDAMC increases with both the number of states
in the CSMC and the job completion deadline. As the number of states in the
TDAMC increases, the complexity of calculating the average offloading time and
energy based on the above analysis also increases. A general analysis about the

10 Mobile Computation Offloading with Hard Task Completion Times 213

complexity is difficult because it depends on the specific structure of the CSMC.
In [32], different approximation methods have been provided that help reduce the
computation complexity by taking advantage of the special structure of the Gilbert–
Elliott channel model without significantly compromising the accuracy.

10.2.3 Offline Bound

In this subsection, an offline lower bound on MD energy is derived. This bound is
used in Sect. 10.4 for performance comparisons with various online computation
offloading algorithms. Since the bound is offline, we assume that the wireless
channel states are known for all future time slots. When a job is released, the bound
then chooses the job offload time so that its deadline is met and the energy needed
is minimized.

Let to be the time to start offloading, given that we know the bit rate Bt (in bits
per time slot) at all times 1 ≤ t ≤ tD (recall that tR is taken to be 1). Let tf (to)
be defined as the offload finishing time when offloading starts at to. Then to can be
found by solving the following IP.

minto
max(to, tL)− tL

TL
EL +∑tf (to)

t=to et (10.7)

s.t.
max(to, tL)− tL

TL
EL +∑tf (to)

t=to et ≤ EL (10.8)

1 ≤ to ≤ tD. (10.9)

Objective (10.7) consists of two terms. The first is the local execution energy cost
incurred before offloading starts. If to < tL, this term is zero, which means that there
has been no local execution to that point; otherwise, to−tL

TL
EL is the energy that has

been expended by local execution energy before to. The second term in (10.7) is
the total energy consumption after offloading starts where et is the energy expended
in time slot t . When to < t < tL, each et includes only the offloading energy;
and when t ≥ tL, both offloading and local execution are performed at time slot t .
Therefore, et is given as

et =
{
Etr , t < tL

Etr + EL
TL
, t ≥ tL,

(10.10)

whereEtr is the energy cost per time slot for transmitting on the channel. Constraint
(10.8) ensures that the energy used in offloading does not exceed that of executing
the job locally. Note that if the IP is infeasible, then there is no feasible offloading
start time to, i.e., it is best to execute locally without offloading.

214 P. Teymoori et al.

10.2.4 OnOpt (Online Optimal) Algorithm

In this section, we define an online offloading algorithm, OnOpt, which is then
shown to be energy optimal. A high-level description of the algorithm is as follows:
At each time slot ts (starting from TR), the algorithm considers the TDAMC model
for starting offloading at current time ts . It computes (based on the TDAMC) the
optimal offloading starting time t∗ ≥ ts , by formulating the problem as a Markovian
optimal stopping problem. If t∗ = ts , then offloading is started immediately at time
ts . Otherwise, the algorithm waits till time slot ts + 1, to repeat the above process.

Suppose that the current time slot is ts , and consider the corresponding TDAMC
rooted at current state Xts = y. In order to compute the optimal time slot for
starting offloading (if offloading turns out to be more beneficial, in expectation,
than executing the task solely locally), we need to compute the offloading starting
time t∗ that satisfies the following optimization problem:

vts (y) = min
t :ts≤t≤tD+1

E[gt (Xt)|Xts = y]

= min
t :ts≤t≤tD+1

∑
z∈M Pr[Xt = z|Xts = y]gt (z), (10.11)

where Xts is the current channel state, and gt (x) is the expected total energy cost if
offloading starts at time slot t with channel state Xt = x. The choice of t = tD + 1
in (10.11) corresponds to no offloading, in which case (10.5) and (10.6) imply a
total cost of EL. Then, for ts ≤ t ≤ tD ,

gt (x) = Eoff (t, x)+ EL(t, x), (10.12)

where Eoff (t, x), EL(t, x) are the expected offloading and local execution costs,
respectively, as defined in (10.5) and (10.6), when offloading starts at time t with
the channel in state Xt = x.

The optimization problem (10.11) is inherently an offline problem, while the
algorithm we would like to use is inherently an online one, in the sense that at every
time slot it has to decide whether to offload or not, given the history of channel states
it has encountered so far. Such an algorithm is defined by the following recursion,
which can be solved using dynamic programming (DP), i.e.,

Vt (x) =
{
EL, t ≥ tD
min{gt (x), E[Vt+1|Xt = x]}, t = ts , . . . , tD − 1.

(10.13)

Note that Vt (x) is the minimum between the expected total cost of offloading at
the current time slot t , and the expected cost of postponing that decision to time
slot t + 1, given that the channel state at time t is x, and E[Vt+1|Xt = x] is the
expectation of Vt+1(Xt+1) over all possible Xt+1, under the condition that Xt = x,
i.e.,

10 Mobile Computation Offloading with Hard Task Completion Times 215

E[Vt+1|Xt = x] =∑y∈M Pr[Xt+1 = y|Xt = x]Vt+1(y).

Note that (10.13) implies an online algorithm, namely, at every time ts we can
compute Vts (Xts), and if its minimum is achieved by gts (Xts), then start offloading
now (at ts); otherwise, wait till the next time slot ts + 1 and repeat. This online
algorithm OnOpt is given in Algorithm 1.

Algorithm 1 OnOpt (online optimal) algorithm
Require: Local execution starting time tL, local execution energy EL, job deadline tD , and job

size S.

1: to := ∞ � Offloading initially disabled (to is offload start
time)

2: for all ts ∈ {1, . . . , tD} do
3: if ts < to then
4: cts := gts (x) � Expected energy cost of offloading at ts .
5: cts+1 := E[Vts+1|Xts = x] � Expected energy cost of waiting until ts + 1.
6: if cts ≤ cts+1 then
7: to := ts � Start offloading.
8: end if
9: else if offloading terminates at ts then

10: Abort local execution (if active). � Remote offload response has been received.
11: return
12: end if
13: if ts = tD − TL + 1 then
14: Start local execution. � Ensure that the job deadline is satisfied.
15: end if
16: if ts = tD then
17: Abort remote offload (if active). � Local execution has completed.
18: return
19: end if
20: end for

We prove the optimality of OnOpt by proving that its online decisions coincide
with the solution of minimization problem (10.11).

Lemma 10.1 Let t∗ be the time OnOpt decides to offload (or tD+1 if no offloading
happens), i.e.,

t∗ = arg mintR≤t≤tD+1{Vt (x) = gt (x)}.

Then vt∗(x) = Vt∗(x), where Xt∗ = x.
Proof In order to prove the lemma, we can first adapt a classic result from Stopping
Theory (e.g., Theorem 1.7 in [33]) in order to prove that

vts (y) = Vts (y), ∀y (10.14)

216 P. Teymoori et al.

for every time slot tR ≤ ts ≤ tD + 1. Equation (10.14) implies that at every time ts ,
the decision to offload or not at ts based on Vts coincides with the optimal action at ts
dictated by the optimal solution of the offline problem (10.11), up to (and including)
time t∗, when OnOpt offloads (or t∗ = tD + 1 if no offloading happens) for every
problem (10.11) defined for every tR ≤ ts ≤ tD .

Lemma 10.1 implies that OnOpt is optimal. Note that this result is true for any
Markovian channel. The algorithm is given the local execution starting time tL,
local execution energy EL, job deadline tD , and job size S. It then arranges for
the job to be executed either locally or by remote offloading (or both, if needed).
Initially, the remote offload is disabled by setting to to a value greater than tD
in Line 1. At each time slot ts with the channel at state Xts = x, we test if
ts < to, i.e., no offload has been initiated for the job. Then both gts (x) and
E[Vts+1|Xts = x] are computed (using (10.12) and using DP to solve (10.13),
respectively). If gts (x) ≤ E[Vts+1|Xts = x], then the offload begins at time ts ,
i.e., to = ts , since in this case t∗ = ts from Lemma 10.1. If offloading finishes
before a local execution finishes, then local execution is terminated (Line 11). At
Line 13, we check to see if local execution should start so that the job’s deadline can
be guaranteed. Similarly, Line 16 tests if the local job has completed. In that case,
any remote offload in progress will be terminated.

10.3 Multi-part Offloading

The OnOpt algorithm makes a single offloading decision. In this section, the task
to be remotely executed is segmented into K parts, with K associated upload
initiation time decisions. We assume that both K and the bit sizes of the K parts are
predetermined. Splitting the uploading data into multiple parts helps further reduce
the energy consumption of the MD when wireless channel conditions change during
the computation offload, and this energy benefit increases with K . Since the task is
uploaded in separate parts, separate offload initiation time decisions are needed for
each, so that MD energy consumption is minimized. These decisions have to be
made using CLE, so that the system always satisfies the given hard task execution
time constraint.

The same Markovian wireless channel model is used as before. Under this
assumption, a new computation offloading algorithm (MultiOpt) is introduced for
multi-part offloading. MultiOpt is shown to be energy optimal, in the sense that
no other CLE online computation offloading algorithm can achieve a lower mean
MD energy consumption. This is shown by creating a new Markov process, which
incorporates time in the given Markovian channel model, and then by using optimal
Markovian Stopping Theory.

10 Mobile Computation Offloading with Hard Task Completion Times 217

Fig. 10.3 Job offloading timing parameters

10.3.1 Problem Formulation

Compared to the continuous offloading case, there are some differences related to
the K-Part offloading scenario that are discussed in what follows. We assume that
each job can be split into K parts for offloading, each with a (known) number of
bits to be transmitted through the uplink channel. Supi is the bit size of the ith piece,
where Sup = Sup1 + Sup2 + · · · + SupK . Splitting the upload in this way can be
advantageous when channel conditions change during the offload. For example, it
may be better, energy-wise, to delay further uploading when channel conditions
worsen, hoping that it will improve in time to complete the computation offload.

The K-part offloading timing sequence is shown in Fig. 10.3. The first job piece
begins uploading at to1 and ends at tf1 , and then there are TW1 time slots before the
second piece begins uploading at to2 , and so on, until the Kth piece is uploaded.
Note that, by definition, if to1 > tD , then there is only local execution. It is assumed
that the uplink channel uses bit rate adaptation to accommodate random variations
in channel conditions. As a result, time intervals Tupi = tfi − toi +1, i = 1, . . . , K ,
are random variables, dependent on the evolution of the uplink channel state as a
given upload occurs. After its uploading is complete, the job is executed on the
server in Texec time slots, and its execution results are downloaded to the MD in
Tdown time slots. We assume that Texec is assigned when the job is released, by
the cloud server, which is communicated to the mobile device (or is prescribed by,
say, the contractual agreement between the user of the device and the cloud server
operator). We assume that Tdown is also communicated to the MD at this time; more
generally, we can treat the downloaded results as the K + 1’th job piece transmitted
over the channel, but we will avoid doing this, in order to simplify our presentation.
We assume that power control is used on the downlink, so that Tdown is known
before the upload. Therefore, the total offloading time Toff is given by

Toff =∑K
i=1 Tupi +

∑K−1
i=1 TWi + Texec + Tdown, (10.15)

where TWi is the number of time slots that elapse after uploading the ith piece and
before uploading the (i + 1)th piece. If the downloaded results are received before
deadline tD , any local execution of the job is automatically terminated.

In what follows, we define

Trest = Texec + Tdown, (10.16)

and we set tR = 1 in order to reduce the symbol clutter of the presentation.

218 P. Teymoori et al.

10.3.2 Offline Bound

In this subsection, an offline lower bound on MD energy use for the K-part
offloading is obtained. We use this lower bound in Sect. 10.4 for performance
comparisons. Since the bound is offline, we have complete knowledge of future
wireless channel states in advance, i.e., we know the bit rate (in bits per time slot)
at all times 1 ≤ t ≤ tD . When a job is released, the bound chooses the job offload
times so that its deadline is satisfied, and the energy needed to offload the job is
minimized. Let tfi (toi), 1 ≤ i ≤ K , be the upload finishing time as a function of the
uploading starting time toi for the ith part, and define tf0(to0) = 0. Etr and Erc are
the energy costs per time slot for channel transmitting and receiving, respectively.
The optimal values for toi are found by solving integer programming (IP) program
(10.17)–(10.19). The first term in (10.17) is the local execution energy cost incurred,
the second term accounts for the energy cost of uploading the K job parts, and the
last term is the cost for downloading the results from the cloud. Constraint (10.18)
ensures that the energy used in offloading does not exceed that of executing the job
locally. Note that if the IP is infeasible, then there are no feasible uploading start
times toi , i.e., it is best to execute the job solely locally without offloading.

min
to1 ,...,toK

max(tfK (toK)+ Trest , tL)− tL
TL

EL + Etr
K∑

i=1

(tfi (toi)− toi + 1)+ ErcTdown
(10.17)

s.t.
max(tfK (toK)+ Trest , tL)− tL

TL
EL + Etr

K∑

i=1

(tfi (toi)− toi + 1)+ ErcTdown ≤ EL
(10.18)

tfi−1(toi−1)+ 1 ≤ toi ≤ tD, i = 1, . . . , K. (10.19)

10.3.3 The Time-Dilated Absorbing Markov Model

In this subsection, we will extend the TDAMC in Sect. 10.2.2 produced by following
the evolution of the channel, starting from an initial state at time t = 1, and
branching out from each state according to the transition probabilities of the CSMC.
We will denote byXt a state in this Markov chain, reached after running the channel
for t time slots. We will consider subtrees of this TDAMC (such as TDAMC1
below), endowed with energy costs and absorbing states.

The part of the TDAMC that models the offloading progress if the uploading
of Sup1 is initiated at a time slot ts will be denoted as TDAMC1. An example of
TDAMC1 is shown in Fig. 10.4. To simplify the exposition, the diagram shows the

10 Mobile Computation Offloading with Hard Task Completion Times 219

Fig. 10.4 TDAMC1 when offloading Sup1 starts at time ts

two-state Gilbert–Elliott channel case, but the procedure is valid for any Markovian
channel. For clarity, each state sat in the figure is subscripted by its time slot t and
superscripted by a unique identifier a that distinguishes it from the other channel
states reachable after t time slots. Hence, the TDAMC1 of Fig. 10.4 models the
offloading process initiated at time slot ts , when the channel state that has been
reached at that time is s19

ts
. The bit rate at each state is also indicated.

In general, TDAMC1 is a rooted subtree of the TDAMC, constructed as follows:
The root state is the (known) channel state Xts at current time slot ts . At each
subsequent time slot, the Markov chain tree branches forward, according to the
transitions possible from the current state (Xts , initially) to other TDAMC states. At
each state, the number of job bits transmitted is determined by the bit rate associated
with that state. The branching continues to create all possible paths of states needed
to upload Sup1 bits, up to some state Xtf1

corresponding to upload finishing time tf1

for each path from the root (such as s37
ts+1, s

75
ts+2, represented by squares in Fig. 10.4).

At time tf1 + 1, the second part Sup2 is released. Continuing the branching of the
TDAMC, and after a possible waiting period, the uploading of Sup2 commences,
followed by the rest of the K pieces, and the job execution in the cloud in time
Texec, and the downloading of the results in time Tdown, ending in an absorbing state
(this part of the offloading for K = 2 is depicted in Fig. 10.4 as subtrees hanging
from states s73

ts+2, s
74
ts+2, s

149
ts+3, s

150
ts+3). The optimal waiting time for each path, i.e.,

the waiting times that optimize the total (over all paths) expected energy cost for
uploading Sup2 , . . . , SupK , is solved in Sect. 10.3.4. Then the energy cost of each
subtree is the optimal expected cost (over all paths) of completing offloading, when
uploading Sup1 finishes in time slot tf1 and state Xtf1

. In fact, TDAMC1 does not
need to extend all the way into these subtrees but can treat statesXtf1+1 as absorbing
states, each with cost equal to the energy cost of its own subtree. This process can
obviously be repeated, in order to build the corresponding TDAMCi for any piece i.

The probability of uploading Supi bits in Tupi time slots, starting at time slot
toi , and a state Xtoi , for i = 1, . . . , K , can be calculated by building a separate

220 P. Teymoori et al.

TDAMCi , with Ai as the set of absorbing states, and |Ti | as the set of transient
states, for i = 1, . . . , K . It encodes the evolution of the channel starting at time slot
toi and state Xtoi , and until Supi bits are uploaded, at which point an absorbing state
is reached. Its transition matrix can be written [31] as

Pi =
[
Qi Ri

0 I|Ai |

]
, (10.20)

where the |Ti | × |Ti | sub-matrix Qi contains the probabilities of transitioning
between transient states, the |Ti | × |Ai | sub-matrix Ri contains the probabilities of
transitioning from a transient state to an absorbing state, and I|Ai | is an |Ai | × |Ai |
identity matrix.

The theory of absorbing Markov chains implies that various statistics can be
computed by forming the fundamental matrix Ni = (I − Qi)−1, where Ni[l, m]
gives the expected number of times that TDAMCi is in transient state m if the
system is started in transient state l. Given the structure of TDAMCi , Ni can be
easily decomposed and calculated as in Sect. 10.2.2, since the particular structure
of matrices Qi,Ni,N

−1
i is the same simple one as in Sect. 10.2.2. The absorption

probabilities matrixWi for all absorbing states are given by

Wi = NiRi, (10.21)

whereWi is a |Ti | × |Ai | matrix, andWi[l, m] gives the probability that absorbing
state m will be reached when starting in transient state l. Therefore, the probability
of uploading the ith part with size Supi in Tupi time slots, starting at time slot toi and
state Xtoi , is

Ptoi (Supi , Tupi , Xtoi) =
∑
j∈Si Wi[Xtoi , j], (10.22)

where Si is the set of absorbing states in TDAMCi reached by a path of length
Tupi + 1 from the root Xtoi .

For i = 1, 2, . . . , K − 1, if the uploading of Supi starts at time slot toi , the
expected offloading energy cost when offloading starts at time slot toi in state Xtoi
and finishes exactly in Tupi time slots or at tD (whichever comes first) is given by
Eq. (10.23), where Etr is the transmission energy of the MD during one time slot,
while the expected energy cost of uploading SupK is given by Eq. (10.24), where
Erc is the energy consumption of the MD during one time slot when receiving from
the server. Then, the expected offloading energy cost Eoffi for i = 1, 2, . . . , K is
computed by Eq. (10.25), where Bmax and Bmin, respectively, are the bit rates at the
best and worst channel states.

Similarly, the local execution energy cost corresponding to the uploading of the
ith job piece, for i = 1, 2, . . . , K−1, is given by (10.26),2 while the local execution

2 We set tf0 = tR − 1.

10 Mobile Computation Offloading with Hard Task Completion Times 221

energy cost due to theKth job piece and the rest of offloading time Trest is given by
(10.27). Then, the expected local execution energy cost ELi for i = 1, 2, . . . , K is
computed by Eq. (10.28).

Êoffi (Supi , Tupi , toi) = Etr [min{tD, toi + Tupi − 1} − min{tD, toi − 1}] (10.23)

ÊoffK (SupK , TupK , toK) = Etr [min{tD, toK + TupK − 1} − min{tD, toK − 1}] (10.24)

+Erc[min{tD, toK + Trest − 1} − min{tD, toK + Texec − 1}]

Eoffi (Supi , Xtoi) =
∑

Supi
Bmin

Tupi=
Supi
Bmax

Ptoi (Supi , Tupi , Xtoi)Êoffi (Supi , Tupi , toi) (10.25)

ÊLi (Tupi , tfi−1 , toi) =

⎧
⎪⎪⎨

⎪⎪⎩

0, toi ≤ tL − Tupi or tfi−1 ≥ tD
min{tD,toi+Tupi−1}−max{tL,tfi−1+1}+1

TL
EL,

otherwise

(10.26)

ÊLK (TupK , tfK−1 , toK) =

⎧
⎪⎪⎨

⎪⎪⎩

0, toi ≤ tL − (Tupi + Trest) or tfi−1 ≥ tD
min{tD,toK+TupK+Trest−1}−max{tL,tfK−1+1}+1

TL
EL,

otherwise

(10.27)

ELi (Supi , tfi−1 , Xtoi) =
∑

Supi
Bmin

Tupi=
Supi
Bmax

Ptoi (Supi , Tupi , Xtoi)ÊLi (Tupi , tfi−1 , toi). (10.28)

10.3.4 Optimal Algorithm for K-Part Offloading

In this subsection, we use the TDAMCs constructed in Sect. 10.3.3 and the theory of
optimal stopping for Markov decision processes, in order to define optimal offload-
ing algorithms, and prove their optimality. A high-level description of algorithm
MultiOpt (cf. Algorithm 2) is as follows: Starting from time slot tR = 1 (the release
time of the job), at each time slot ts , the algorithm considers TDAMC1 in order
to determine the expected cost of the whole offloading process if uploading Sup1

commences at the current time ts . If that cost is less than the expected offloading
cost when the algorithm waits one more time slot, then t∗o1

= ts (offloading Sup1

commences); otherwise, the algorithm postpones its decision for time slot ts + 1.
Once the uploading of Sup1 finishes, for the rest of the parts, the algorithm repeats
the same decision process at every time slot (using TDAMCi to compute expected
costs), to determine the time t∗oi of starting uploading Supi for i = 2, 3, . . . , K .

At any time slot ts (and state Xts), and given that pieces 1, 2, . . . , i − 1 have
already been uploaded, MultiOpt decides the uploading starting time t∗oi ≥ ts for
Supi . Its decisions t∗oi for i = 1, 2, . . . , K are optimal iff they are the solutions of
the minimization problems (one for each i) (10.29)–(10.30),

222 P. Teymoori et al.

vi(tfi−1 , Xts) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, ts > tfi−1 ≥ tD
mints≤toi≤tD+1

∑
Xtoi

∈Si P r[Xtoi |Xts](
Eoffi (Supi , Xtoi)+ ELi (Supi , tfi−1 , Xtoi)

+∑
Xtfi

+1∈Ŝi Wi[Xtoi , Xtfi+1]vi+1(tfi , Xtfi+1)
)
, tfi−1 < ts ≤ tD

(10.29)

vK(tfK−1 , Xts) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ts > tfK−1 ≥ tD
mints≤toK≤tD+1

∑
XtoK

∈SK P r[XtoK |Xts](
EoffK (SupK ,XtoK)+ ELK (SupK , tfK−1 , XtoK)

)
, tfK−1 < ts ≤ tD,

(10.30)

where Si is the set of states reachable after running the channel until time slot toi ,
Ŝi is the set of absorbing states of TDAMCi rooted at Xtoi , and vi+1(tfi , Xtfi+1)

is the optimal expected energy cost for the rest of the offloading when Supi finishes
uploading at time tfi , i.e., the cost of the absorbing state Xtfi+1 of TDAMCi . In
(10.29)–(10.30), gi(Supi , tfi−1 , Xtoi) is the expected energy cost of uploading Supi ,
if uploading of Supi−1 finishes at tfi−1 and uploading Supi starts at time slot toi and
state Xtoi , and is given by

gi(Supi , tfi−1 , Xtoi) = Eoffi (Supi , Xtoi)+ ELi (Supi , tfi−1 , Xtoi)

+∑Xtfi
+1∈Si Wi[Xtoi , Xtfi+1]Vi+1(tfi , Xtfi+1), i = 1, . . . , K

(10.31)

and

gK(SupK , tfK−1 , XtoK) = EoffK (SupK ,XtoK)+ ELK (SupK , tfK−1 , XtoK).

(10.32)
Note that we allow the algorithm to decide not to offload or stop offloading if this is
to its benefit, by allowing uploading decisions to take the value tD + 1.3

For every time slot toi and state Xtoi , we define the expected cost Vi(tfi−1, Xtoi)

recursively in (10.33), for i = 1, . . . , K .

Vi(tfi−1 , Xtoi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, toi > tfi−1 ≥ tD
tD−max{tfi−1+1,tL}+1

TL
EL, toi ≥ tD > tfi−1

min{gi(Supi , tfi−1 , Xtoi), E[Vi(tfi−1 , Xtoi+1)|Xtoi]}, tD > toi .

(10.33)

3 Equations (10.23), (10.24), (10.26), and (10.27) have been set up to reflect this.

10 Mobile Computation Offloading with Hard Task Completion Times 223

Vi(tfi−1, Xtoi) can be computed using dynamic programming (DP), and it is the
minimum between the expected total cost of starting uploading Supi at time slot toi
and state Xtoi , and the expected cost of postponing that decision to time slot toi + 1

E[Vi(tfi−1, Xtoi+1)|Xtoi] =
∑
Xtoi+1∈Ti P r[Xtoi+1|Xtoi]Vi(tfi−1, Xtoi+1),

where Ti is the set of states reachable after running the channel for toi + 1 time
slots. Note that (10.33) implies an online algorithm that at any time toi and state
Xtoi decides whether it should start uploading Supi (if the min is attained by gi), or
should otherwise wait.

We prove optimality by (reverse) induction. It is well known (e.g., Theorem 1.7
in [33]) that policy VK is optimal, i.e., solves the original problem (10.30), since

vK(tfK−1 , XtK) = VK(tfK−1 , XtK), ∀tK > tfK−1 , XtK . (10.34)

Hence, the following holds:

Lemma 10.2 ([33]) The optimal time for starting uploading SupK is

t∗oK = arg mintfK−1<toK≤tD {VK(tfK−1 , XtoK) = gK(SupK , tfK−1 , XtoK)}.
(10.35)

Assuming that decisions t∗oK , t∗oK−1
, . . . , t∗oi+1

are optimal, i.e.,

vk(tfk−1 , Xtk) = Vk(tfk−1, Xtk), ∀tk > tfk−1, Xtk (10.36)

holds for k = K,K − 1, . . . , i + 1, we prove that the ith decision t∗oi of MultiOpt is
also optimal. Note that (10.29) becomes (10.37).

vi (tfi−1 , Xts) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ts > tfi−1 ≥ tD
min

ts≤toi≤tD+1

∑

Xtoi
∈Si

P r[Xtoi |Xts]
(
Eoffi (Supi , Xtoi

)+ ELi (Supi , tfi−1 , Xtoi
)

+ ∑

Xtfi
+1∈Ŝi

Wi [Xtoi , Xtfi+1]Vi+1(tfi , Xtfi+1)
)
, tfi−1 < ts ≤ tD.

(10.37)
Theorem 1.7 in [33] can be applied again to show:

Lemma 10.3 ([33]) The optimal time for starting uploading Supi is

t∗oi = arg min1≤toi≤tD {Vi(tfi−1, Xtoi) = gi(Supi , tfi−1 , Xtoi)}. (10.38)

Lemmata 10.2 and 10.3 imply that the online algorithm MultiOpt (Algorithm 2)
is optimal for general Markovian channels.

224 P. Teymoori et al.

Algorithm 2 MultiOpt (multi-decision online optimal)
Require: Local execution starting time tL, local execution energy EL, job deadline tD , and job

sizes Sup1 , Sup2 , . . ., SupK .
1: i = 1
2: for all t = 1, . . . , tD do
3: if job finished uploading then
4: Break
5: end if
6: if currently uploading then
7: Continue
8: end if
9: if min in (10.33) is gi then

10: start uploading part i � part i − 1 has been uploaded
11: i = i + 1 � but i has not started uploading
12: end if
13: end for

The proposed online offloading decision algorithms may be run at either the MD
or the cloud server. In the former case, running the algorithm takes the energy and
time of the MD, which may affect the offloading decisions. In the latter case, the MD
passes the job-related parameters to the server, which runs the algorithm and passes
the decision to the device. In this case, running the algorithms does not consume the
energy of the MD, while additional time is required to communicate with the server
and run the algorithms at the server. The communication time is normally small
in both directions due to the small amount of data that should be transmitted, and
the computation time to run the algorithm is also short due to the high processing
speed at the server. Therefore, this additional time can be ignored when making the
offloading decisions. We consider the latter case in our simulation.

10.4 Numerical Results

In this section, computer simulation is used to study the performance of the
proposed MultiOpt algorithms for K = 1, 2, 3, and 4. The OnOpt algorithm is
a special version of MultiOpt when K = 1. For comparison, we also plot the
offline bound given in Sects. 10.2.3 and 10.3.2 and performance of Local Execution
and two other algorithms, referred to as immediate offloading and multi-threshold.
These algorithms all employ CLE to ensure that job execution time constraints
are satisfied. The local execution algorithm executes the entire job locally without
doing any offloading. For the immediate offloading algorithm, a job is offloaded
immediately at the release time if Sup/Bmax + Trest ≤ TD; otherwise, the job is
executed locally without offloading since offloading cannot be completed before
the job deadline even with contiguous best wireless channel states. For the multi-
threshold algorithm, uploading for the first piece starts at the first time slot when
the channel condition is above a given threshold, if the remaining time before the

10 Mobile Computation Offloading with Hard Task Completion Times 225

job completion deadline is at least Sup/Bmax + Trest ; otherwise no offloading is
performed for the entire job. For the Gilbert–Elliott channel, any threshold between
the good and bad states can be used, i.e., uploading starts at the first time slot with the
good channel state. After the (i−1)th piece is uploaded, uploading for the ith piece
starts as soon as the channel state becomes above the threshold, if the remaining
time before the job completion deadline is no less than

∑K
k=i Supk /Bmax + Trest ;

otherwise, uploading is stopped. When K = 1, the multi-threshold algorithm is
referred to as channel threshold. In both the immediate offloading and the multi-
threshold (channel threshold) algorithms, local execution starts at time slot tL if
offloading (includes uploading to, remote execution at, and downloading from the
server) is not completed at time slot tL − 1, i.e., they ensure that the job deadline is
satisfied.

In this simulation, the job size Sup, i.e., the total amount of data to be uploaded,
is split into K equal parts, i.e., Sup1 = Sup2 = · · · = SupK = Sup/K . The default
parameters used in the simulations are given as follows. Each time slot is 1 ms.
The transmit and receive powers are 1 W and 0.5 W, respectively, which means
that the transmission and receive energies during each time slot are Etr = 1 mJ
and Erc = 0.5 mJ, respectively. In our offloading results, we have used the well-
known Gilbert–Elliott channel model. This model is often used to characterize burst
noise effects in wireless links, where the channel can abruptly transition between
good and bad conditions. We assume that PBB = 1 − PGG for the channel state
transition probabilities. In this case, PGB = PBB , PBG = PGG, the equilibrium
channel state probabilities are given by Pg = PGG and Pb = PBB , and PGG can
be used as a measure of the average channel quality. The data transmission rates are
Bb = 1 Mbps and Bg = 10 Mbps, or Bb = 1 kb per time slot and Bg = 10 kb per
time slot. Note that in the two-state channel model, Bmax = Bg and Bmin = Bb.
In order to produce the results below, each value of average energy consumption is
obtained by the averaging of 1500 random i.i.d. runs of the wireless channel, which
follows the Gilbert–Elliott model described above.

10.4.1 Simulation Set 1

In this section, we consider a job with D = 10 M CPU cycles and TD = 60 time
slots. The local execution energy per CPU cycle is vl = 2 × 10−6 mJ, and the
local computation power is fl = 1 M CPU cycles per time slot. Therefore, the local
execution time is TL = D/fl = 10 time slots, and the local energy consumption
EL = vlD = 20 mJ. We consider that the remote execution time is Texec = 1
time slot, i.e., the remote processing speed is 10 times of the local processing. The
download time Tdown is assumed to be 1 time slot.

Figure 10.5(a) shows the average energy consumption of the MD as the data
size Sup increases. The energy used by local execution is constant for all Sup.
When Sup is smaller, the delay constraint is less stringent, and it is more likely
for offloading (without local execution) to meet the delay constraint due to a shorter

226 P. Teymoori et al.

20 30 40 50 60 70 80 90 100

Job Size (Kb)

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Local Execution
Immediate Offloading
Multi Threshold (K=2)
Multi Threshold (K=3)
Multi Threshold (K=4)
OnOpt (MultiOpt (K=1))
MultiOpt (K=2)
MultiOpt (K=3)
MultiOpt (K=4)
Offline Bound (K=2)
Offline Bound (K=3)
Offline Bound (K=4)

(a)

1 2 3 4 5 6 7 8 9 10

Computation Load D (M CPU cycles)

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Local Execution
Immediate Offloading
Multi Threshold (K=2)
Multi Threshold (K=3)
Multi Threshold (K=4)
OnOpt (MultiOpt (K=1))
MultiOpt (K=2)
MultiOpt (K=3)
MultiOpt (K=4)
Offline Bound (K=2)
Offline Bound (K=3)
Offline Bound (K=4)

(b)

Fig. 10.5 Average energy consumption versus data size Sup and D. (a) PGG = 0.2. (b) PGG =
0.5

channel uploading time. In this case, the multi-threshold and MultiOpt algorithms
have approximately the same average energy consumption, since it is more likely
for the MultiOpt algorithm to decide starting the uploading as soon as the channel
state is good, making it to start the upload at the same time slot with the multi-
threshold algorithm. Compared to OnOpt, the energy consumption of MultiOpt with
K > 1 is lower, indicating that splitting the job uploading into multiple pieces
brings more flexibility that helps the MD to avoid uploading during bad channel
states; on the other hand, since OnOpt uploads the job continuously, its uploading
is more likely to encounter bad channel states and therefore takes a longer time
and consumes more energy. The immediate offloading algorithm consumes higher
energy as compared to the other algorithms because there is a certain probability
to encounter bad channel state at the job release time and the following time slots,
and the probability becomes higher when PGG is lower. As Sup increases, a longer
time is needed for wireless transmissions, and the offline bound and the MultiOpt
algorithms may decide not to offload, resulting in the same energy consumption
as local execution, while the immediate offloading and multi-threshold algorithms
waste energy consumption by offloading unnecessarily and result in much higher
energy consumption.

Comparing the MultiOpt algorithm withK = 1 (i.e., the OnOpt algorithm), 2, 3,
and 4, we can see that splitting the job into multiple pieces helps reduce the energy
consumption of the mobile device, since doing this can avoid uploading during some
bad channel states, provided the job completion deadline can be satisfied.

Figure 10.5(b) shows the average energy consumption of the MD versus the
amount of computation load D. Deadline TD is set to 40 time slots. When D is
small, the MultiOpt algorithm does not offload because the local execution energy is
low and less than the energy needed to upload the data. As D increases, the energy
required for local execution increases, and it becomes more likely that offloading
consumes less MD energy than local execution. The energy consumption for

10 Mobile Computation Offloading with Hard Task Completion Times 227

MultiOpt becomes constant when D is sufficiently large. This is because the delay
constraint is relatively loose in the simulated system, which allows offloading to be
completed before tL. Therefore, whenD is relatively large, the energy consumption
is the same as the energy consumption for wireless transmissions, which does not
depend on D. The figure also shows that MultiOpt can save mobile device energy
by splitting the job into multiple pieces and uploading separately.

10.4.2 Simulation Set 2

In this set of results, we use the application parameters for x264 (H.264) encoding
from [34] and consider a job with Sup = 60 Kb, D = 18 M CPU cycles, and TD =
60 time slots. The local execution energy per CPU cycle is vl = 1.5× 10−6 mJ, and
the local computation power is fl = 600 M CPU cycles per second or fl = 0.6 M
CPU cycles per time slot. Therefore, the local execution time is TL = D/fl = 30
time slots, and the local energy consumption EL = vlD = 27 mJ. The remote
execution time Texec is 3 time slots, and the download time Tdown is 1 time slot.

Figure 10.6(a) shows the average energy consumption of different algorithms
as PGG varies. The offline bound is close to the energy consumption of local
execution only when PGG is close to 0, in which case the channel is almost
always in the bad state and local execution is almost always the optimum choice.
The immediate offloading and multi-threshold algorithms result in much higher
energy consumption when PGG is small. Since the channel is in the bad state in
most time slots, uploading data requires a long time. Therefore, there is a high
probability that offloading cannot meet the delay constraint and/or consumes high
energy; furthermore, due to the long uploading time, there may be a long overlap
time between offloading and local execution. As a result, energy is unnecessarily
wasted in the immediate offloading and multi-threshold algorithms by performing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
GG

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Local Execution
Immediate Offloading
Multi Threshold (K=2)
Multi Threshold (K=3)
Multi Threshold (K=4)
OnOpt (MultiOpt (K=1))
MultiOpt (K=2)
MultiOpt (K=3)
MultiOpt (K=4)
Offline Bound (K=2)
Offline Bound (K=3)
Offline Bound (K=4)

(a)

30 35 40 45 50 55 60 65

Deadline Time (Time Slots)

5

10

15

20

25

30

35

40

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Local Execution
Immediate Offloading
Multi Threshold (K=2)
Multi Threshold (K=3)
Multi Threshold (K=4)
OnOpt (MultiOpt (K=1))
MultiOpt (K=2)
MultiOpt (K=3)
MultiOpt (K=4)
Offline Bound (K=2)
Offline Bound (K=3)
Offline Bound (K=4)

(b)

Fig. 10.6 Average energy consumption versus PGG and TD . (a) PGG = 0.3. (b) PGG = 0.3

228 P. Teymoori et al.

offloading. As PGG increases, the possibility that offloading can meet the deadline
increases, so that less local execution is performed, and the total energy consumption
decreases for all the offloading algorithms. The multi-threshold algorithm consumes
slightly lower energy than immediate offloading. By delaying the uploading (of each
piece of the job) until the channel state becomes good, it reduces the transmission
time and saves energy consumption. The difference is more obvious when PGG is
smaller, since the probability of encountering bad channel states is higher.

When PGG is low, the MultiOpt (including OnOpt) algorithm chooses to not
offload and therefore results in the same energy consumption as local execution;
and when PGG is larger, the algorithm more likely chooses to offload, since channel
conditions become better and a shorter time and less energy are needed to offload.
Figure 10.6(a) also shows that the energy consumption of MultiOpt is lower when
K is larger, if the mobile device decides to offload, since splitting the job into more
pieces brings more flexibility that helps the MD avoid transmissions in bad channel
conditions.

By comparing the MultiOpt and multi-threshold algorithms, we can see that for
givenK , when PGG is relatively large, the two algorithms consume almost the same
energy. This is because the channel condition in general is good, so that the time
required for uploading the data is relatively short, and the time required to complete
offloading is much less than TD . For the MultiOpt algorithm, if the decision is to
offload the next piece of the job, it is most likely the first time slot with a good
channel state, which is the same as the multi-threshold algorithm. The gap between
the MultiOpt algorithm and the offline bound is due to the fact that the MultiOpt
algorithm can only use statistical channel information, while the offline bound has
knowledge of the channel states of all future time slots.

For all the offloading solutions, the MD energy consumption decreases as PGG
increases, since the probability of having the good channel state increases, which
reduces the time needed to upload the data and makes it more likely for offloading
to meet the delay constraint and consume less energy.

Figure 10.6(b) shows the average energy consumption of the algorithms as the
job deadline TD changes. When TD is small, the MultiOpt (including OnOpt)
algorithm decides to not offload most of the time, resulting in the same energy con-
sumption as local execution; the offline bound results in lower energy consumption
than local execution, since it foresees the future channel states and can decide to
offload at a future state; while, immediate offloading and multi-threshold most likely
result in concurrent offloading and local execution, since offloading cannot meet
the delay constraint and therefore result in higher energy consumption than local
execution. The multi-threshold algorithm achieves some lower energy consumption
than the immediate offloading algorithm by delaying the offloading until the first
time slot with the good channel state.

As TD increases, more time is available to offload before triggering local
execution, resulting in even lower energy consumption for all the offloading
algorithms. When TD is sufficiently large, all the offloading algorithms can achieve
lower average energy consumption than using local execution. For given K , the

10 Mobile Computation Offloading with Hard Task Completion Times 229

MultiOpt and the multi-threshold algorithms result in the same average energy
consumption.

10.5 Summary

We have considered the problem of mobile computation offloading over stochastic
wireless transmission channels, where task execution times are subjected to hard
deadline constraints. We have shown that using concurrent local execution, hard
task completion times can always be guaranteed, and the OnOpt and MultiOpt
algorithms achieve the optimum average MD energy consumption when the upload-
ing is performed continuously and using multiple parts, respectively. With higher
computation complexity in deciding the uploading time, the MultiOpt algorithm
achieves lower energy consumption compared to OnOpt.

Acknowledgments © 2020 IEEE. Part of this chapter is reprinted, with permission, from
Optimal Mobile Computation Offloading with Hard Deadline Constraints, by Arvin Hekmati,
Peyvand Teymoori, Terence D. Todd, Dongmei Zhao, and George Karakostas, published in IEEE
Transactions on Mobile Computing, Sept. 2020, pp. 2160–2173.

Part of this chapter is reprinted from Optimal Multi-part Mobile Computation Offloading with
Hard Deadline Constraints, by Arvin Hekmati, Peyvand Teymoori, Terence D. Todd, Dongmei
Zhao, and George Karakostas, published in Computer Communications, 160(2020), pp. 614–622,
Copyright 2020, with permission from Elsevier.

References

1. K. Kumar, Y.-H. Lu, Cloud computing for mobile users: can offloading computation save
energy? IEEE Comput. 43(4), 51–56 (2010)

2. C. You, K. Huang, H. Chae, Energy efficient mobile cloud computing powered by wireless
energy transfer. IEEE J. Selec. Areas Commun. 34, 1757–1771 (2016)

3. M. Chiang, T. Zhang, Fog and IoT: an overview of research opportunities. IEEE Int. Things
J. 3, 854–864 (2016)

4. B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, CloneCloud: elastic execution between
mobile device and cloud, in Proceedings of the Sixth Conference on Computer Systems,
EuroSys’11 (New York, ACM, 2011), pp. 301–314

5. B.-G. Chun, P. Maniatis, Augmented smartphone applications through clone cloud execution,
in Proceedings of the 12th Conference Hot Topics Operating Systems (2009), p. 8

6. M. Satyanarayanan, P. Bahl, R. Cáceres, The case for VM-based cloudlets in mobile comput-
ing. IEEE Pervasive Comput. 8, 14–23 (2009)

7. G. Huerta-Canepa, D. Lee, A virtual cloud computing provider for mobile devices, in
Proceedings of the 1st ACM Workshop on Mobile Cloud Computing Services: Social Networks
and Beyond (2010), p. 6

8. H. Ba, W. Heinzelman, C.-A. Janssen, J. Shi, Mobile computing-A green computing resource,
in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC)
(2013), pp. 4451–4456

230 P. Teymoori et al.

9. E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, MAUI:
Making smartphones last longer with code offload, in Proceedings of ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys) (2010), pp. 49–62

10. Y. Wen, W. Zhang, H. Luo, Energy-optimal mobile application execution: Taming resource-
poor mobile devices with cloud clones, in Proceedings of IEEE International Conference on
Computer Communications (INFOCOM) (2012), pp. 2716–2720

11. O. Muñoz, A. Pascual-Iserte, J. Vidal, Optimization of radio and computational resources for
energy efficiency in latency-constrained application offloading. IEEE Trans. Vehic. Technol.
64, 4738–4755 (2015)

12. R. Kaewpuang, D. Niyato, P. Wang, E. Hossain, A framework for cooperative resource
management in mobile cloud computing. IEEE J. Selec. Areas Commun. 31, 2685–2700
(2013)

13. X. Chen, Decentralized computation offloading game for mobile cloud computing. IEEE Trans.
Parallel Distributed Syst. 26, 974–983 (2015)

14. S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and computational
resources for multicell mobile-edge computing. IEEE Trans. Signal Inf. Process. Over
Netw. 1, 89–103 (2015)

15. X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge
cloud computing. IEEE/ACM Trans. Netw. 24, 2795–2808 (2016)

16. S. Kosta, A. Andrius, P. Hui, R. Mortier, X. Zhang, ThinkAir: Dynamic resource allocation
and parallel execution in the cloud for mobile code offloading, in Proceedings of IEEE
International Conference on Computer Communications (INFOCOM) (2012), pp. 945–953

17. Y.-H. Kao, B. Krishnamachari, M.-R. Ra, F. Bai, Hermes: Latency optimal task assignment for
resource-constrained mobile computing, in Proceedings of IEEE International Conference on
Computer Communications (INFOCOM) (2015), pp. 1894–1902

18. M.-H. Chen, B. Liang, M. Dong, Joint offloading decision and resource allocation for
multi-user multi-task mobile cloud, in Proceedings of IEEE International Conference on
Communications (ICC) (2016), pp. 1–6

19. E. Meskar, T.D. Todd, D. Zhao, G. Karakostas, Energy aware offloading for competing users
on a shared communication channel. IEEE Trans. Mob. Comput. 16, 87–96 (2017)

20. S. Jošilo, G. Dán, A game theoretic analysis of selfish mobile computation offloading, in
Proceedings of IEEE International Conference on Computer Communications (INFOCOM)
(2017), pp. 1–9

21. H. Cao, J. Cai, Distributed multiuser computation offloading for cloudlet-based mobile cloud
computing: a game-theoretic machine learning approach. IEEE Trans. Vehic. Technol. 68, 752–
764 (2018)

22. H. Lagar-Cavilla, N. Tolia, E.D. Lara, M. Satyanarayanan, D. O’Hallaron, Interactive
resource-intensive applications made easy, in ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Distributed Processing (2007), pp. 143–163

23. B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, CloneCloud: Elastic execution between
mobile device and cloud, in Proceedings of the Sixth Conference on Computer Systems (2011),
pp. 301–314

24. E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, MAUI:
Making smartphones last longer with code offload, in Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services (2010), pp. 49–62

25. P. Sadeghi, R.A. Kennedy, P.B. Rapajic, R. Shams, Finite-state Markov modeling of fading
channels - a survey of principles and applications. IEEE Signal Process. Mag. 25(5), 57–80
(2008)

26. E.O. Elliott, Estimates of error rates for codes on burst-noise channels. Bell Syst. Tech.
J. 42, 1977–1997 (1963)

27. W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, D.O. Wu, Energy-optimal mobile cloud
computing under stochastic wireless channel. IEEE Trans. Wirel. Commun. 12, 4569–4581
(2013)

10 Mobile Computation Offloading with Hard Task Completion Times 231

28. L.A. Johnston, V. Krishnamurthy, Opportunistic file transfer over a fading channel: A
POMDP search theory formulation with optimal threshold policies. IEEE Trans. Wirel.
Commun. 5, 394–405 (2006)

29. W. Zhang, Y. Wen, D.O. Wu, Collaborative task execution in mobile cloud computing under a
stochastic wireless channel. IEEE Trans. Wirel. Commun. 14(1), 81–93 (2014)

30. E.N. Gilbert, Capacity of a burst-noise channel. Bell Syst. Techn. J. 39(5), 1253–1265 (1960)
31. C.M. Grinstead, J.L. Snell, Markov chains - Chapter 11, in Grinstead and Snell’s Introduction

to Probability (AMS, Providence, 2006), pp. 405–470
32. P. Teymoori, Efficient Mobile Computation Offloading with Hard Task Deadlines and Concur-

rent Local Execution. PhD Thesis, McMaster University, 2021
33. G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems. Lectures in Mathe-

matics ETH Zurich (Springer, Dordrecht, 2006)
34. A.P. Miettinen, J.K. Nurminen, Energy efficiency of mobile clients in cloud computing.

HotCloud 10(4), 19 (2010)

Chapter 11
Online Incentive Mechanism Design
in Edge Computing

Gang Li and Jun Cai

11.1 Introduction

As a promising technology to further enhance mobile users’ Quality of Experience
(QoE), Edge Computing (EC) aims to shorten the round-trip latency by moving
computational resources closer to mobile users. In reality, from the economical
perspective, edge servers may not always be willing to provide computation services
without reimbursements since they need to consume their own energy, storage, and
computation resources. Thus, incentive mechanisms have to be used to incentivize
edge servers to provide such services. Moreover, any practical EC system has
to face a dynamic environment. For example, the computation tasks in an EC
system are ordinarily generated over time, so that they cannot arrive at the edge
server at the same time. Furthermore, in Collaborative Edge Computing (CEC)
systems, where vacant resourceful mobile users, called collaborators, are involved
in providing computation services, collaborators are not always stationary and can
opt-in and opt-out of the network for their own convenience. Therefore, designing
online incentive mechanisms becomes pivotal and meaningful for practical edge
computing systems. Different from the counterpart of offline incentive mechanisms,
in online incentive mechanisms, the allocation of computation resource, task
offloading decisions, and reimbursements have to be made right upon the arrival
of computation tasks or collaborators. In general, compared with the traditional
offline incentive mechanisms, the design of online incentive mechanisms is more
challenging due to difficulties in the following facts:

G. Li · J. Cai (�)
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC,
Canada
e-mail: Gang.Li@mail.concordia.ca; Jun.Cai@concordia.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_11

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_11&domain=pdf
mailto:Gang.Li@mail.concordia.ca
mailto:Jun.Cai@concordia.ca
https://doi.org/10.1007/978-3-030-98064-1_11

234 G. Li and J. Cai

• Decisions must be made rationally in the online incentive mechanism to improve
performance.

• Since the information arrives on the fly, it is much more difficult to prevent the
current arriving mobile users from misreporting their private information without
knowing later arrivals’ information [1].

The primal–dual theory [2], originally used to solve linear programming problems,
where the dual problem is much more tractable than the primal one, provides a
promising approach to address these challenges. In this chapter, we will present
a comprehensive description of the primal–dual-based online mechanism design
method for both linear and nonlinear systems. Then, example applications of the
primal–dual-based online mechanism design method in EC systems are discussed.

11.2 Mechanism Design and Auction

This section provides basic concepts and properties in mechanism designs and basic
terminologies in auctions. Mechanism design is a subfield of game theory that is
used to define game rules so as to achieve a desired outcome. Formally, a mechanism
should consist of the following ingredients:

• Players i ∈ N with cardinality of |N| = N and preference types bi ∈ Bi
• A strategy space S = S1×· · ·×SN , where player i chooses strategy si(bi) ∈ Si
• Utility ui(si(bi), s−i (b−i)), where s−i (b−i) is the set of strategies excluding

player i

In the following, for notational convenience, we use ui(bi, b−i) to denote
ui(si(bi), s−i (b−i)). Traditionally, the following two important properties must
be satisfied in mechanism design.

Definition 11.1 (Incentive Compatibility (IC)) A mechanism is incentive-
compatible if for any type bi = vi , it is the dominant strategy regardless of other
players’ type, where vi is the true type of player i. Then the incentive compatibility
requires

ui(vi, b−i) ≥ ui(bi, b−i). (11.1)

In real-world scenarios, this property is of great importance as it can force each
player to play with their true type. Note that incentive compatibility is also known
as truthfulness in the literature.

Definition 11.2 (Individual Rationality (IR)) A mechanism is individual-rational
if the utility of each player is non-negative, i.e.,

ui(b) ≥ 0. (11.2)

11 Online Incentive Mechanism Design in Edge Computing 235

The property of individual rationality can guarantee that each player can obtain non-
negative benefit if they are willing to participate.

Since auctions are known as mechanisms, we refer to the mechanism design as
the auction design, and these two concepts are interchangeably used in this chapter.
The history of auction theory in wireless networks dates back to the application
of spectrum license distribution [3]. Commonly, auctions consist of two major
components, which are the allocation rule, i.e., S, and the payment rule (pricing
policy), i.e., P. Moreover, in most auctions, players are required to submit their
types, and the winners and corresponding rewards will be made based on the
designed allocation and payment rules. Some basic terminologies and definitions
on auctions are introduced below:

• Auctioneer: An auctioneer is as an intermediate agent that implements allocation
and payment rules in the auction. In wireless networks, the auctioneer could often
be the Base Station (BS).

• Seller: A seller offers its items for sale. The items could be spectrum, bandwidth,
and computation resources in wireless networks.

• Bidder: A bidder is a buyer that wants to buy the items from the seller.
• Bid: The bid typically consists of the items it wants to buy and the maximal price

the bidder is willing to pay for these items.

Definition 11.3 (Social Welfare (SW)) The social welfare is defined as the sum-
mation of utilities in the auction including all bidders and sellers. After cancelling
the payment term, the social welfare in the auction can be expressed as

∑

i∈N
vixi, (11.3)

where xi is a binary variable, which means if bidder i wins, xi = 1; otherwise,
xi = 0. Note that SW maximization is the most common objective in auctions.

Definition 11.4 (Competitive Ratio (CR)) An online algorithm A for a
minimization problem (or maximization problem) is α-competitive if A(I) ≤
αOPToff line(I) (or A(I) ≥ αOPToff line(I)), where α ≥ 1 is a constant, called
CR, I is a sequence of inputs, and A(I) is the objective value achieved by online
algorithm A, while OPToff line(I) is the optimum value achieved by an optimal
offline algorithm.

Definition 11.5 (Online Auction (OA)) An online auction, i.e., M = (S,P),
should solve S and P along time, and the designed online auction should satisfy
the requirements of IC, IR, and have a theoretic CR.

236 G. Li and J. Cai

11.3 Primal–Dual-Based Online Incentive Mechanism

In this section, we will introduce the primal–dual-based online incentive mechanism
design method, which is one of the most widely used ones in the literature. The wide
study of this design method started when an important theorem was proposed in
2000 and 2003 [4]. In this theorem, the basic requirements for designing an online
truthful mechanism were specified:

• The necessary payment of any bidder is only related to the allocated items and
independent of the bidders’ bids.

• The items that the bidder can obtain depend on whether they maximize the utility
of this bidder.

Obviously, the first condition implies that the payment rule should be a function of
the items only, and the second one defines the allocation rule.

11.3.1 Primal–Dual-Based Method for Linear Systems

In practical systems, such as EC systems, many studied problems with the consider-
ation of economic aspects can usually be formulated as linear optimization problems
[5, 6] where the primal–dual method can work effectively. Besides, by using the
primal–dual technique, two extra benefits can be attained.

• Some hidden information for the online truthful mechanism in the primal
problem can be revealed in the dual problem, which provides a thread for
facilitating mechanism design.

• A theoretical CR analysis is necessary for an online truthful mechanism design.
By solving the dual problem, the solution gap between the primal problem and its
dual problem can be established. Based on the primal–dual theory, the theoretical
CR can be derived.

To better elaborate the idea of this primal–dual-based method for linear system
(referred to as PDLN), let us start with a simple example where a seller, owing M
kinds of items, would like to sell them to N buyers. Assume that each kind of item,
say kind j , has a number of Cj duplicates, each buyer can choose at most one kind
to purchase one item within this kind. Moreover, let vi,j be the valuation of buyer i
to the j -th kind of item, and xi,j be a binary variable, which means buyer i has the
j -th kind of item if xi,j = 1; otherwise, xi,j = 0. By considering the objective to
maximize SW, we can formulate this problem as follows:

max
xi,j

N∑

i=1

M∑

j=1

vi,j xi,j Primal

11 Online Incentive Mechanism Design in Edge Computing 237

s.t. C1 :
M∑

j=1

xi,j ≤ 1, ∀ i,

C2 :
N∑

i=1

xi,j ≤ Cj , ∀ j,

C3 : xi,j ∈ {0, 1}.

Based on the dual theory, the dual problem is

max
ui , pj

N∑

i=1

ui +
M∑

j=1

Cjpj Dual

s.t. C4 : ui + pj ≥ vi,j , ∀ (i, j),
C5 : ui ≥ 0 pj ≥ 0,

where ui and pj are the dual variables of constraints C1 and C2, respectively.
Note that in linear programming, the complementary slackness condition, which
is considered to be equally important as Karush-Kuhn-Tucker (KKT) conditions in
nonlinear programming, plays a vital role in not only linear primal–dual theory, but
also the online truthful auction design. Based on the problems (Primal) and (Dual),
the complementary slackness conditions can be expressed as follows:

⎛

⎝
M∑

j=1

xi,j − 1

⎞

⎠ ui = 0, (11.4)

(
N∑

i=1

xi,j − Cj
)

pj = 0. (11.5)

Based on (11.4) and (11.5), we have the following conclusions:

• CS1: ui = vi,j − pj , whenever xi,j = 1.

• CS2:
N∑

i=1
xi,j = Cj , whenever pj > 0.

• CS3:
M∑

j=1
xi,j = 1, whenever ui > 0.

Note that by observing the dual problem, it can be revealed that one of the dual
variables, i.e., ui , can be interpreted as the utility of the requester as long as the
physical meaning of another dual variable, i.e., pj , is defined as the payment. This
is reasonable because vi,j is the valuation of buyer i to the j -th kind in C4, and ui
should be the utility as long as pj is interpreted to be the payment. Furthermore,

238 G. Li and J. Cai

Fig. 11.1 The procedures for online truthful mechanism with linear constraints

based on the conditions from CS1 to CS3 and the second basic condition in the
aforementioned theorem [4], the allocation rule can be determined by choosing the
item whose maximal utility is larger than zero. As shown in Fig. 11.1, at the arrival
of the current bid, its utility will be calculated based on a predesigned payment,
which will be explained later. This bidder’s demand will then be satisfied, and its
payment will be determined if its utility is larger than zero; otherwise, its demand
will be rejected. This process will continue until a predefined termination rule is
satisfied. Note that this method can only obtain one of the feasible solutions to both
primal and dual problems, so that there may be a gap between these two problems.

After designing the allocation rule, the payment should also be well designed
because it can also directly affect the ultimate optimality. There are three commonly
used payment design methods.

The first form of payment increases the payment exponentially after each
resource allocation [7], which can be mathematically expressed as follows:

pj = A
(
B

A

) y
Cj

, (11.6)

where y represents the accumulated allocated number of j -th kind of items so far.
A and B are the minimal and maximal prices per item, respectively. Note that
at the very beginning of an auction, the payment equals the minimal price, i.e.,
y = 0. Then, the payment increases exponentially with the accumulated allocated
items. When the j -th kind of items is sold out, the payment reaches the maximal
value. Under this payment policy, the theoretical CR can be derived as O(log(B

A
)).

Unfortunately, the actual derivation procedure is quite complex. Moreover, it will
be much harder to sell more items as time goes on because the payment may
become extremely high. However, one of the advantages of using this payment
form is the feasibility, i.e., the designed online truthful mechanism never violates
any constraints of the original problem.

In order to sell more items in the later stage, the second form of payment, as
indicated in (11.7), is a function of its previous payment and iteratively updates the
payment when an item is sold, but with a relatively low increasing rate [8].

11 Online Incentive Mechanism Design in Edge Computing 239

p
(�)
j = p(�−1)

j

(
1 + x

αCj

)
+ x

βCj
, (11.7)

where the superscript � and the variable x represent the number of price updates
and the current allocated number of items in j -th kind, respectively; α and β
are the predetermined system parameters. Note that the payment at the beginning
of auctions, i.e., p(0)j , is set to be very small, and then it is iteratively updated
with each allocated item. Under this payment, the theoretical CR could be a
constant. However, this payment form cannot always guarantee feasibility because
no considerations for potential violation of constraints are contained in the payment
updating. Therefore, a theoretical feasibility analysis has to be provided in the
mechanism design, and a preventative step has to be devised in case of infeasibility.

If the central controller or auctioneer knows some a prior information, such as
the empiric data about the percentage that the seller would like to sell its items, it
is provable that the theoretical performance can be further enhanced [8]. This third
form of payment can be expressed as

p
(�)
j = p(�−1)

j +
(

max{p(�−1)
j , pd} + p

d(1 − η)
η

)
x

Cj
, (11.8)

where the parameter η is the prior information, which can be estimated from historic
observations; pd = f (η) is a function of η, which can be predetermined. Note
that compared to the first and second payment forms, where the payment is always
updated exponentially, the third one updates the payment almost linearly till the
given percentage of items is sold and then exponentially afterward. The rationality
of the third method results from the fact that the first and second payment methods
decrease the selling probability of some items in the future auction campaigns too
fast to accept more buyers so that the total SW could be degraded. The theoretical
CR of the third payment method can reach O(1

βη
). In addition, the feasibility

analysis should also be provided for the second payment form.
We summarize the core spirit of the PDLN as follows. Initially, all kinds of item

have the same price. Then, the prices for different kinds of items increase over time
at different “speeds” depending on the “popularity” of the corresponding kinds.
Whenever a kind is sold, prices of this kind of item are increased in a multiplicative
way. Thus, the algorithm learns the “right” price for the current kind by selling
previous ones.

11.3.2 Primal–Dual-Based Method for Nonlinear Systems

The PDLN can only be applied to the problems with both linear objective and
linear constraints, while in practical systems, it is common that studied problems
include nonlinear constraints. Inspired by the PDLN and the nonlinear primal–

240 G. Li and J. Cai

Fig. 11.2 The procedures for online truthful mechanism with nonlinear constraints

dual theory, we briefly introduce another primal–dual-based method for nonlinear
systems (PDNON). For explanation purposes, consider a scenario where M sellers
are competing to sell their items to one buyer. Each seller has a kind of divisible
item and submits a unit price per quantity for kind j , i.e., cj to this buyer.
Furthermore, the total quantities of purchased items satisfy a nonlinear constraint,

such as
M∑

j=1
g(xj) ≥ K , where xj denotes the quantity of item purchased in j -th

kind. The objective is to minimize the social cost of the buyer, i.e., maximize the
social welfare. Note that in this case, the primal problem, which is a Lagrangian
function with the nonlinear constraints, defines the allocation rule, while the dual
problem is equivalent to maximizing the utility of each seller when the payment
rule is defined as the summation of all dual variables. As shown in Fig. 11.2, at
the beginning, dual variables corresponding to nonlinear constraints are initialized.
After that the constructed Lagrangian function with corresponding dual variables is
optimized, and the dual variables in the dual problem will be updated subsequently.
Note that a loop is needed to iteratively optimize the Lagrangian function upon the
new arrival and learn the right payment to the corresponding seller.

Obviously, compared to the PDLN, PDNON makes it possible to design online
truthful mechanisms with nonlinear constraints, especially when allocation vari-
ables in the mechanism have real values. It is worth noting that the PDNON can
still be applicable for binary allocation variables, but a comprehensive analysis on
the feasibility of allocation results should be carried out. Since PDNON consists
of a loop process, as shown in Fig. 11.2, to iteratively solve Lagrangian function
and update dual variables for each arrival, it has higher complexity and consumes
more time in calculation. Moreover, since a loop is needed to derive allocation and
payment results for each new arrival, a theoretical analysis on the convergence of
this algorithm becomes necessary.

11 Online Incentive Mechanism Design in Edge Computing 241

11.4 Application of Primal–Dual Online Incentive
Mechanism Design in Edge Computing

In this section, we illustrate how the primal–dual-based mechanism design method
can be used to address resource management issue under a dynamic environment
in edge computing systems. Specifically, in our system model, upon the arrival
of a mobile user who requests task offloading, the BS needs to make a decision
right away without knowing any future information. A social welfare maximization
problem is formulated, which integrates collaborator selection, communication and
computation resource allocation, transmission and computation time scheduling,
as well as pricing policy design. Then, an online incentive mechanism integrating
computation and communication resource allocation is presented.

11.4.1 System Model Descriptions

In this section, we describe the system under consideration and model the interaction
between the BS and arrived requesters as an online auction. After that, the
corresponding offline optimization problem is formulated.

11.4.1.1 System Model

We consider a mobile edge computing system as shown in Fig. 11.3. The system
consists of a BS integrating edge servers and several mobile users who can also
provide computation services, called collaborators. These collaborators are recruited
by the BS and are willing to provide computation resources if reimbursements are
given. From time to time, there are mobile users, called requesters, who request
computing services. The requesters randomly arrive in a sequence, and we denote ti
as the arrival time instant of requester i. Note that the BS does not have any a priori
information on requesters’ arrival times.

Consider a time-slotted structure with a slot length of �t . For each arrived
requester i ∈ U, where U denotes the set of all requesters, let Mi be the set
of available collaborators that can provide computation services to it. Note that
the set Mi could be available to requester i by applying the discovery approach
[9]. We further define Ni = Mi ∪ 0, where the index 0 represents the BS.
Obviously, Ni consists of all collaborators and the BS that requester i can offload
its task to. To simplify notation, we will use the term “task executor” to denote
any collaborator or the BS throughout this chapter. We further letM be the set of
all collaborators. Note that since user mobility cannot affect the offloading process
in the coverage of one MEC server, it is ignored in our discussion. In fact, if the
collaborator moves away after the arrival of the requester’s task, the task will fail to
be transmitted to the collaborator, and no rewards can be obtained. Thus, there are no

242 G. Li and J. Cai

Fig. 11.3 The system model
of collaborative task
offloading in mobile edge
computing where there are 5
requesters arriving at the
network in an online fashion
and submitting their requests

incentives for collaborators to move. For the movement of requester, if the requester
moves around the corresponding collaborator, D2D technologies [10] can be applied
to transmit the computational results and the reimbursements between requester
and collaborator. Otherwise, results and reimbursements can also be received and
transmitted through the cellular link.

The task from requester i ∈ U is denoted as Ti = (si, τi), where si is the size
(in bits) of the offloaded task and τi is the maximal tolerance delay. Note that the
task offloading to the collaborator can be done through a D2D link [10]. Each task
i requires Qi CPU cycles for execution and can be calculated by Qi = κisi [11],
where κi is the CPU cycles coefficient. We also define the allocated CPU frequency
at task executor j as fi,j . Then, the required computation time at task executor j for
task i equals

ICi,j =
Qi

fi,j
= di,j − ai,j , (11.9)

where ai,j and di,j denote the starting and ending computation time instants,
respectively. In addition, given that each requester i is allocated an orthogonal
channel with bandwidth φi,j for task offloading to task executor j , the transmission
rate from requester i to task executor j equals

ri,j = φi,j log2(1 + γi,j), (11.10)

11 Online Incentive Mechanism Design in Edge Computing 243

where γi,j = �i,j |hi,j |2
σ 2 is the signal-to-noise ratio (SNR), σ 2 is the average power

of background noise, and �i,j and hi,j are the transmission power and the channel
gain between requester i and task executor j , respectively. Thus, the transmission
time from requester i to task executor j can be calculated as

ITi,j =
si

ri,j
= oi,j − gi,j , (11.11)

where gi,j and oi,j denote the starting and ending transmission time instants, respec-
tively. Note that since the available computation and the transmission resources are
time-varying, both transmission time and computation time should be optimally
determined for each offloading task. Therefore, gi,j , oi,j , ai,j , and di,j are decision
variables. To meet the task delay requirement, we need

di,j − ti ≤ τi . (11.12)

In (11.12), similar to other studies in [12, 13], we ignore the time for the task
executor to send the computation result back to the requester because the data size
of outcomes for many applications is commonly very small. In summary, the whole
operation procedure of this system is described as follows:

Step 1. Upon the arrival of requester i, it submits multiple bids to the BS, denoted
by Bi,j = (Ti, ti , vi,j), j ∈ Ni , where vi,j is the valuation of requester i
to task executor j , which represents its preference to offload the task to
task executor j .1

Step 2. After collecting the bids from requester i, the BS makes a decision,
denoted by a binary variable xi,j , whether to accept this requester such
that xi,j = 1 means requester i is accepted. Otherwise, xi,j = 0. The BS
further determines what are the optimal transmission and computation
time instants for this task.

Step 3. The BS sends the optimal results obtained in Step 2 to requester i and
notifies the selected task executor to prepare for the task execution.

Step 4. After the task is completed, requester i will be charged by pi,j , which
is another decision variable, and the task executor returns computation
results to it.

Obviously, the interactions between task executors and requesters can be mod-
elled as an online auction, where the BS is the auctioneer, requesters are buyers,
and all the task executors are sellers. Requesters may strategically misreport their
private information (i.e., Bi,j) in order to get more benefits. For example, requester
i, who will lose in the auction, may submit false bid B

′
i,j , where T

′
i = Ti, t

′
i = ti ,

1 Since the collaborators are heterogeneous in terms of available computation resources and
geographical locations, which makes the channel conditions between the collaborators and the
requesters different, each requestor values the nearby collaborators differently.

244 G. Li and J. Cai

and v
′
i,j > vi,j . In this case, this requester has a higher chance to win the auction

than if it had reported truthfully. Thus, truthfulness has to be guaranteed through the
designed incentive mechanism. Following the previous discussions, the utilities of
requester i and the task executor j can be, respectively, expressed as

ui = vi,j − pi,j , (11.13)

uj = pi,j − ei,j cj , (11.14)

where ei,j = Qiξjf
2
i,j and cj are the energy consumption for executing task i

and the unit energy cost of task executor j , respectively, and ξj is the energy
consumption coefficient [14].

11.4.1.2 Problem Formulation

Our target is to design an online auction that satisfies the properties of IR, IC, and
has a sound CR. If the information about all tasks is known, we can formulate the
corresponding offline optimization problem (MSW) as

max
X,G,O,A,D,P

∑

i∈U

∑

j∈Ni
wi,j xi,j MSW

s.t. C1 :
∑

j∈Ni
xi,j ≤ 1, ∀ i ∈ U;

C2 :
∑

j∈Ni
(oi,j − ai,j)xi,j ≤ 0, ∀ i ∈ U;

C3 : (11.9), (11.11) and (11.12);
C4 :

∑

i∈U:
ai,j≤t≤di,j

fi,j xi,j ≤ Fj , ∀ t ∈ T, j ∈M ∪ BS;

C5 :
∑

i∈U:
ai,j≤t≤di,j

sixi,j ≤ Sj , ∀ t ∈ T, j ∈M ∪ BS;

C6 :
∑

i∈U:
gi,j≤t≤oi,j

∑

j∈Ni
φi,j xi,j ≤ W, ∀ t ∈ T;

C7 :
∑

j∈Ni
(vi,j − pi,j)xi,j ≥ 0, ∀ i ∈ U;

C8 :
∑

j∈Ni
(vi,j − pi,j)xi,j ≥

∑

j∈Ni
(̃vi,j − p̃i,j)xi,j ,∀ i ∈ U;

11 Online Incentive Mechanism Design in Edge Computing 245

C9 : xi,j ∈ {0, 1}, oi,j ∈ {ti , τi}, gi,j ∈ {ti , τi},
ai,j ∈ {ti , τi}, di,j ∈ {ti , τi}, ∀ i ∈ U, j ∈ Ni ,

where wi,j = vi,j − ei,j cj , Fj , and Sj denote the maximal CPU frequency and
storage capacity of the executor j , respectively, W is the whole bandwidth of the
system, and T is the set of all time slots. Decision variables are X = {xi,j }i∈U,j∈Ni ,
G = {gi,j }i∈U,j∈Ni , O = {oi,j }i∈U,j∈Ni , A = {ai,j }i∈U,j∈Ni , D = {di,j }i∈U,j∈Ni ,
and P = {pi,j }i∈U,j∈Ni . Constraint C1 ensures that each requester can offload its
task to at most one task executor. Constraint C2 means the transmission process
occurs before the computation process for any task. Constraint C3 represents the
time rationality and delay requirement. Constraints C4 and C5 indicate constrains
on the allocated CPU frequencies and storage resources at any task executor,
respectively. Constraint C6 specifies that the allocated bandwidths cannot exceed
W , and constraints C7 and C8 are the requirements of IR and IC, respectively.
Constraint C9 defines decision variables G,O,A,D, and P to be continuous and
X to be binary variables.

Obviously, this formulated offline optimization problem is a mixed integer
problem and is usually NP-hard [15]. In addition, this formulation requires complete
information on system operation in the future. In the following, we will design
Online Mechanism Integrating Allocation Rule and Payment (OMAP) to find
solutions on the fly.

11.4.2 The Design of OMAP

In this section, we design an online mechanism to find solutions to the problem
(MSW). Note that since the payments are not in the objective function in (MSW) but
only in the constraints C7 and C8, we can decouple (MSW) into two subproblems
without losing optimality: an allocation subproblem (including task executor selec-
tion, resource allocation, and time scheduling) and a payment rule subproblem. In
the following, we first reformulate the offline problem and then solve the allocation
problem. After that, a corresponding payment scheme will be designed to not only
satisfy IC, but also maintain IR.

11.4.2.1 Problem Reformulation

Since constraints C4 and C5 in (MSW) have the same structure, we combine them
together as

C10 :
∑

i∈U:
ai,j≤t≤di,j

rki,j xi,j ≤ Rkj , ∀ t ∈ T, ∀ j ∈M, ∀ k ∈ K,

246 G. Li and J. Cai

where

rki,j =
⎧
⎨

⎩

si if j ∈ Ni and k = 1;
fi,j if j ∈ Ni and k = 2,

0 otherwise;
Rkj =

⎧
⎨

⎩

Sj if j ∈M and k = 1;
Fj if j ∈M and k = 2;

0 otherwise;

K = {1, 2}, and li,j = l1i,j ∪ l2i,j denotes all feasible transmission and compu-
tation time scheduling pairs from requester i to task executor j with satisfaction
of constraints C2, C3, and C9. Let l1i,j = {l1i,j (1), l1i,j (2), · · · } and l2i,j =
{l1i,j (1), l2i,j (2), · · · } be sets of all the feasible transmission and computation time

scheduling, respectively, and each entry l1i,j (�) or l2i,j (�) indicates the �-th feasible
scheduling scheme. Let Li,j be the index set of all feasible solutions from requester
i to task executor j . Note that Li,j has a potentially exponential number of feasible
solutions with respect to the decision variables G, O, A, and D.

Then, the allocation problem can be rewritten from the original (MSW) as

max
X̂

∑

i∈U

∑

j∈Ni

∑

�∈Li,j
w�i,j x

�
i,j EQMSW

s.t. C11

∑

j∈Ni

∑

�∈Li,j
x�i,j ≤ 1, ∀ i ∈ U;

C12 :
∑

i∈U

∑

�:t∈l2i,j (�)∈l2i,j
rki,j x

�
i,j ≤ Rkj , ∀ t ∈ T, ∀ j ∈M, k ∈ K;

C13 :
∑

i∈U

∑

j∈Ni

∑

�:t∈l1i,j (�)∈l1i,j
φi,j x

�
i,j ≤ W, ∀ t ∈ T;

C14 : x�i,j ∈ {0, 1}, ∀ i ∈ U, j ∈ Ni , � ∈ Li,j .

Here, X̂ = {x�i,j , i ∈ U, j ∈ Ni , � ∈ Li,j } are new decision variables; w�i,j =
vi,j − cj e�i,j , where e�i,j is the energy consumption at task executor j when the �-th
feasible scheduling scheme is selected. In order to devise an online mechanism with
sound CR, we resort to its dual problem. The dual problem of (EQMSW) can be
formulated as follows by relaxing the constraint C14 to allow any values between 0
and 1.

min
u, p̂

∑

i∈U
ui +

∑

t∈T
Wp̂t +

∑

t∈T

∑

j∈M

∑

k∈K
Rkj p̂

k
j,t EQDP

s.t. C15 : ui+
∑

t∈l2i,j (�)

∑

k∈K
rki,j p̂

k
j,t+

∑

t∈l1i,j (�)
φi,j p̂t ≥wi,j , ∀ i ∈ U, j ∈ Ni , � ∈ Li,j ;

C16 : ui ≥ 0, p̂kj,t ≥ 0, p̂t ≥ 0, ∀ i ∈ U, j ∈Mi , k ∈ K,

11 Online Incentive Mechanism Design in Edge Computing 247

where ui , p̂t , and p̂kj,t are the dual variables corresponding to the constraints C11,

C12, and C13, respectively. Note that the dual variables p̂kj,t can be interpreted
as the marginal price of task executor j ’s available computation frequencies and
storages resources (i.e., k = 1 or 2) at time slot t , while dual variable p̂t can be
regarded as the marginal price of the available bandwidth in the network. Thus,∑

t∈l2i,j (�)

∑

k∈K
rki,j p̂

k
j,t and

∑

t∈l1i,j (�)
φi,j p̂t represent the total computation cost and the

total transmission cost, respectively. Moreover, ui can be considered as the utility
of requester i. In the following sections, we will apply these observations to design
an online mechanism to address problem (MSW).

11.4.2.2 OMAP

In our formulated online mechanism, we need to decide whether to accept a new
task upon its arrival and which task executor should be assigned as well as how
much the requester should be charged. Our basic idea is that if the BS decides to
assign the current requester i’s task to task executor j , we increase the unit price of
task executor j ’s resource based on the fact that it will have less resources and then
apply these updated prices to decide the acceptance of future arrived requesters.

(1) Allocation Rule Under the consideration of IC and IR, ui in constraint C13 has
to be maximized and greater than zero. In addition, according to the KKT condition
[2] in the primal–dual framework, if requester i is accepted (i.e., x�i,j = 1), we have

ui = wi,j −
⎛

⎜
⎝
∑

t∈l2i,j (�)

∑

k∈K
rki,j p̂

k
j,t +

∑

t∈l1i,j (�)
φi,j p̂t

⎞

⎟
⎠ . (11.15)

Combining these two requirements together, ui can be written as

ui=max

⎧
⎪⎨

⎪⎩
0, max

j∈Ni ,
�∈Li,j

⎧
⎪⎨

⎪⎩
wi,j −

⎛

⎜
⎝
∑

t∈l2i,j (�)

∑

k∈K
rki,j p̂

k
j,t+

∑

t∈l1i,j (�)
φi,j p̂t

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
.

(11.16)

From (11.16), we can design the following allocation rule. Upon the arrival of
requester i, we choose a task executor in the set Ni and a scheduling scheme in set
li,j so that ui is maximized. We denote such best task executor and the scheduling
scheme as j∗ and li,j (�∗), respectively. Note that the scheduling scheme li,j (�∗),
which maximizes the utility of requester i, is referred to as the optimal scheduling
scheme at the collaborator j . If at the optimum, ui in (11.15) is larger than zero,
requester i’s task is accepted; otherwise, it is rejected. Note that we also refer to the
above allocation rule as the acceptance condition in this chapter.

248 G. Li and J. Cai

(2) Payment Design As indicated before, the marginal prices increase with the
acceptance of requesters, and the designed updating rule is vital to the achievable
competitive ratio of our online auction that will be discussed later. The designed
marginal price updating rule should follow the following three requirements: (1)
at the beginning of the auction, the price should be set sufficiently low in order
to allow the acceptance of coming requesters; (2) after allocating resources for
each accepted requester, prices should be increased rapidly to save resources for
the future requesters with high valuations; and (3) if some resources of any task
executor are run out at certain time slot, the prices should be set high enough so that
no requesters’ tasks can be accepted. By considering all these requirements, for any
task executor j , we design the marginal prices updating rule as follows:

p̂kj,t = p̂kj,t
(

1 + r
k
i,j

Rkj

)

+ rki,j

�i,jR
k
j

, ∀ t ∈ [gi,j , oi,j], ∀ k ∈ K, (11.17)

p̂t = p̂t
(

1 + φi,j
W

)
+ φi,j

�i,jW
, ∀ t ∈ [ai,j , di,j], (11.18)

where �i,j =
∑

k∈K
rki,j I

C
i,j

wmin
, �i,j = ITi,j φi,j

wmin
, and wmin is the minimal valuable of wi,j ,

which can be estimated from the historical data, and both �i,j and �i,j can be
calculated based on the outputs of the allocation rule. Thus, the price for a requester
i to pay can be determined by

⎧
⎪⎪⎨

⎪⎪⎩

pi,j =p1
i,j+p2

i,j =
∑

t∈l2i,j(�)

∑

k∈K
rki,j p̂

k
j,t+

∑

t∈l1i,j(�)
φi,j p̂t+ei,j cj ,

if i is accepted;
pi,j = 0, if i is rejected.

(3) Scheduling Design To implement Algorithm 2, the maximization problem in
(11.16) needs to be solved. Since we may confront exponential numbers of feasible
solutions, it is inefficient to find the best solution through exclusive searching. To
address this issue, we propose a new polynomial time method as follows.

From (11.16), the original optimization problem can be equivalently converted
into one that minimizes the summation of p1

i,j , p2
i,j , and ei,j cj . Note that since

we try to arrange a certain number of time slots to complete the transmission and
computation processes for a task, the newly formulated problem for requester i
offloading task to the task executor j becomes

βi,j = min
yj (t),zj (t),

Nφj
,Nfi,j

∑

t∈[ti ,ti+τi]

{
h(t)

Nφj
yj (t)+

(
c1(t)

Nfi,j
+ c2(t)

)

zj (t)

}

+ c3

N2
fi,j

11 Online Incentive Mechanism Design in Edge Computing 249

s.t. C15 : yj (t) < zj (t), ∀ t ∈ [ti , ti + τi]; (TSP)

C16 :
∑

t∈[ti ,ti+τi]
yj (t) = Nφj ;

C17 :
∑

t∈[ti ,ti+τi]
zj (t) = Nfi,j ;

C18 : yj (t) ∈ {0, 1}, zj (t) ∈ {0, 1}, t ∈ [ti , ti + τi],

where h(t) = si p̂t
�t log 2(1+γi,j) , c1(t) = Qip̂

1
j,t

�t
, c2(t) = si p̂

2
j,t , and c3 = cjQ

3
i ξj

�t2
for

any pair i and j ; yj (t) and zj (t) are two new binary scheduling decision variables.
If yj (t) or zj (t) equals 1, it means requester i transmits the task to task executor
j or task executor j executes the task at time slot t , respectively; Nφj and Nfi,j
denote the total required transmission and computation time slots at task executor
j , respectively. Due to the integral decision variables and the nonlinear objective,
it is nontrivial to solve problem (TSP) directly. Instead, we decouple it by letting
the optimal dividing time slot between transmission period and computation period
be t i,j ∈ [ti , ti + τi]. Then, the scheduling problem (TSP) can be equivalently
transformed into two subproblems as

β1
i,j = min

yj (t),Nφj

∑

t∈[ti ,t i,j]

h(t)

Nφj
yj (t) SubP1

s.t. C16, and yj (t) ∈ {0, 1}

β2
i,j = min

zj (t),Nfi,j

∑

t∈(t i,j ,ti+τi]

(
c1(t)

Nfi,j
+ c2(t)

)

zj (t)+ c3

N2
fi,j

SubP2

s.t. C17, and zj (t) ∈ {0, 1}.

Lemma 11.1 The optimal solution of subproblem (SubP1) is obtained whenNφj =
1, t∗ = arg min

t∈[ti ,t i,j]
h(t).

Proof The proof by contradiction method is applied to prove our statement. We
first sort h(t) during the period of [t i,j , ti + τi] in a non-decreasing order into
h(t1) ≤ h(t2) ≤ h(t3) ≤ · · · . According to Lemma 11.1, we choose h(t1)
as the optimal solution of (SubP1). On the other hand, if there exist Nφj = N

continuous transmission time slots, for example h(tn1), h(tn2), · · · , h(tnN), whose
β1
i,j is smaller than h(t1), then, we have

h(tn1)+ h(tn2)+ · · · h(tnN)
N

< h(t1). (11.19)

250 G. Li and J. Cai

However, this contradicts the fact that h(t1) ≤ h(tnv), v = 1, 2, . . . , N . Thus, our
conclusion holds for (SubP1). This completes the proof. "
Lemma 11.2 Let β2,1

i,j (N) =
∑

t∈[1,+∞]
(
c1(t)
N

+ c2(t))zj (t) be the value under the

optimal scheduling when Nfi,j = N , and let β2,2
i,j (N) = c3

N2 . Then, β
2,1
i,j (N) is an

increasing function with respective to N , and there exists at most one intersection
point between β2,1

i,j (N) and β
2,2
i,j (N).

Proof This statement is obtained by using an analytical approach. We first com-
pare objective values of β2,1

i,j (N) and β2,1
i,j (N + 1). Let tn1, tn2 , · · · tnN be the

best N numbers of continuous time slots, which means when Nfi,j = N , the
objective of (SubP1) is minimized by selecting these time slots. Likewise, denote
tm1, tm2 , · · · tm(N+1) as the optimal continuous time slots whenNfi,j = N+1. Then,
we have

β
2,1
i,j (N)− β2,1

i,j (N + 1) =

N∑

v=1
c1(t

nv)

N
+

N∑

v=1

c2(t
nv)−

⎛

⎜⎜⎜
⎝

N+1∑

v=1
c1(t

mv)

N + 1
+
N+1∑

v=1

c2(t
mv)

⎞

⎟⎟⎟
⎠

⇒ (N + 1)
(
β

2,1
i,j (N)− β2,1

i,j (N + 1)
)

= (N + 1)

⎛

⎜⎜
⎜
⎝

N∑

v=1
c1(t

nv)

N
+

N∑

v=1

c2(t
nv)

⎞

⎟⎟
⎟
⎠
−
(
N+1∑

v=1

c1(t
mv)+ (N + 1)

N+1∑

v=1

c2(t
mv)

)

= (N + 1)

⎛

⎜⎜⎜
⎝

N∑

v=1
c1(t

nv)

N
+

N∑

v=1

c2(t
nv)

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
1

−N

⎛

⎜⎜⎜
⎝

N∑

v=1
c1(t

mv)

N
+

N∑

v=1

c2(t
mv)

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
2

−

(
Nc1(t

mN+1)

N
+

N∑

v=1

c2(t
mv)

)

︸ ︷︷ ︸
3

−(N + 1)c2(t
mN+1).

(11.20)

Since 1 is the optimal objective value when Nfi,j = N , we have (N + 1)× 1 <

N × 2 + 3 . Thus, we have β2,1
i,j (N) < β

2,1
i,j (N + 1), which means β2,1

i,j (N) is

11 Online Incentive Mechanism Design in Edge Computing 251

an increasing function with respective to N . Moreover, β2,2
i,j (N) is a decreasing

function with respective to N and β2,2
i,j (+∞) = 0 < β2,1

i,j (+∞). Thus, β2,1
i,j (N) and

β
2,2
i,j (N) have one intersection point only when β2,1

i,j (N) = β2,2
i,j (N). This completes

the proof. "
Based on Lemma 11.1, the allocated transmission bandwidth for requester i is

always φi,j = si
�t log2(1+γi,j) . According to Lemma 11.2, there must exist a N ,

which can minimize the value of β2,1
i,j (N)+ β2,2

i,j (N). Note that β2,1
i,j (N)+ β2,2

i,j (N)

decreases when N < N but increases when N > N . If there are M2 available
time slots during (t i,j , ti + τi], we apply the following strategies to get the optimal
solution of subproblem (SubP2):

• If β2
i,j (1) > β

2
i,j (M2−1) > β2

i,j (M2), we choose β2
i,j (M2) and the corresponding

scheduling scheme, denoted as the set π∗, as the optimal solution.
• Otherwise, we apply sequential search to compare the values of β2

i,j (N + 1)

and β2
i,j (N) till β2

i,j (N + 1) > β2
i,j (N). We then choose β2

i,j (N) and the
corresponding scheduling scheme, denoted as the set π∗, as the optimal solution.

Obviously, for the worst case, we only need (N+1)(2M2−N)
2 +N comparisons to reach

the optimal solution, which is much more computationally efficient compared to the
brute force approach. The detailed procedures for solving the scheduling problem
are summarized in Algorithm 1. Obviously, Algorithm 1 can find the globally
optimal solution for the scheduling problem (TSP).

Algorithm 1 Online auction for scheduling problem

Require: si , �t , p̂t , p̂kj,t , ti , τi , and γi,j
Ensure: Optimal schedule li,j (�) and minimum βi,j for requester i offloading task to requester j

or BS
l1i,j (�) = ∅, l2i,j (�) = ∅, and βi,j = +∞
while t i,j ∈ [ti , ti + τi] do
t∗ = arg min

t∈[ti ,t i,j]
h(t) and get β1

i,j � Solve (SubP1)

Apply the above strategies for (SubP2) in [t i,j , ti + τi] and get β2
i,j as well as π∗

if βi,j > β1
i,j + β2

i,j then

βi,j = β1
i,j + β2

i,j

l1i,j (�) = l1i,j (�) ∪ t∗ and l2i,j (�) = l2i,j (�) ∪ π∗
li,j (�) = l1i,j (�) ∪ l2i,j (�)

end if
Move t i,j to the next time slot in [ti , ti + τi]

end while
return li,j (�) and βi,j

252 G. Li and J. Cai

We summarize the OMAP in Algorithm 2.

Algorithm 2 The OMAP for MEC
Require: wi,j , si , �t , p̂t , p̂kj,t , ti , and τi
Ensure: Optimal schedule li,j (�∗), j∗ and payment pi,j
x�i,j = 0, ∀i ∈ U, ∀j ∈ Ni , � ∈ Li,j
ui = 0; �the utility of requester i
j∗ = ∅ and li,j (�∗) = ∅
while the arrival of requester i’s task do

for j ∈ Ni do
Run Algorithm 1 to get the best scheduling scheme li,j (�) and minimum βi,j
if wi,j − βi,j > ui then
ui = wi,j − βi,j
j∗ = j
li,j (�

∗) = li,j (�)
end if

end for
if ui > 0 then

Accept requester i and set x�
∗
i,j∗ = 1

Allocate the collaborator or BS and implement schedule scheme according to j∗ and
li,j (�

∗)
Charge requester i at price pi,j
Update p̂kj,t and p̂t based on (11.17) and (11.18)

else
Reject requester i and set x�i,j = 0 and pi,j = 0

end if
end while

11.4.3 Performance Analyses

In this section, we will theoretically analyze the OMAP in terms of competitive
ratio, feasibility of primal and dual solutions, CE, IC, and IR.

Lemma 11.3 The competitive ratio of OMAP is 3.

Proof Assume that the requester i offloads its task to task executor j , and we
define �P(i) and �D(i) as the increment of objective values in primal and its dual
problems after requester i has been served, respectively. Then, we have

�D(i) = ui +
∑

t∈T
W�p̂t +

∑

t∈T

∑

k∈K
Rkj�p̂

k
j,t

= wi,j−
∑

ai,j≤t≤di,j
φi,j p̂t−

∑

ai,j≤t≤di,j

∑

k∈K
rki,j p̂

k
j,t +

∑

t∈T
W�p̂t +

∑

t∈T

∑

k∈K
Rkj�p̂

k
j,t

11 Online Incentive Mechanism Design in Edge Computing 253

= wi,j −
∑

ai,j≤t≤di,j
φi,j p̂t −

∑

ai,j≤t≤di,j

∑

k∈K
rki,j p̂

k
j,t +

∑

ai,j≤t≤di,j

(
φi,j p̂t + φi,j

�i,j

)

+
∑

ai,j≤t≤di,j

∑

k∈K

(
rki,j p̂

k
j,t +

rki,j

�i,j

)

= wi,j +
∑

ai,j≤t≤di,j

φi,j

�i,j
+

∑

ai,j≤t≤di,j

∑

k∈K

rki,j

�i,j
≤ 3wi,j = 3�P(i).

Let U∗ be the set of the offloaded requesters, and P and D be solutions of primal
and its dual problems by OMAP, respectively. Then, we must have

P =
∑

i∈U∗
�P(i) = 3

∑

i∈U∗
�D(i) = 3D.

From the linear dual theory, we have

P ∗

P
≤ D

P
= 3,

where P ∗ is the optimal solution to the primal problem (EQMSW). This completes
the proof. "
Lemma 11.4 OMAP produces almost feasible solutions to offline problem
(EQMSW) ifW % 1; Rkj % 1,∀j ; rki,j � Rkj , and φi,j � W,∀i, j .
Proof Let �max , �max , and wmax be the maximum values of �i,j , �i,j , and wi,j ,
respectively, and rmin and φmin be the minimum values of rki,j and φi,j , respectively.

We first show that p̂kj,t can be bounded by the following expression:

p̂kj,t ≥

(
1 + 1

Rkj

)
∑

i∈U′
∑

�:t∈l2
i,j
(�)∈l2

i,j

rki,j x
�
i,j

− 1

�max
, (11.21)

whereU′
denotes the set of all accepted requesters before requester i. We prove the

above inequality through mathematical deduction.
Define p̂kj,t (i) as the value of p̂kj,t before the arrival of requester i. At beginning,

we have x�i,j = 0 ∀ j, � and p̂kj,t (1) = 0, so that inequality (11.21) holds. We then
consider the following two cases:

• Case 1: Requester i is rejected by the BS. In this case, we have x�i,j = 0 and
p(i + 1) = p(i). Obviously, the inequality (11.21) still holds, which does not
affect the validation of pkj,t (i + 1).

• Case 2: Requester i is accepted by the BS. In this case, we have

254 G. Li and J. Cai

p̂kj,t (i + 1) = p̂kj,t (i)
(

1 + r
k
i,j

Rkj

)

+ rki,j

�i,jR
k
j

≥ p̂kj,t (i)
(

1 + r
k
i,j

Rkj

)

+ rki,j

�maxR
k
j

≥

(
1+ 1

Rkj

)
∑

i∈U′
∑

�:t∈l2
i,j
(�)∈l2

i,j

rki,j x
�
i,j

−1

�max

(

1+ r
k
i,j

Rkj

)

+ rki,j

�maxR
k
j

=

(
1 + 1

Rkj

)
∑

i∈U′
∑

�:t∈l2
i,j
(�)∈l2

i,j

rki,j x
�
i,j (

1 + rki,j

Rkj

)

�max
− 1

�max

≈

(
1 + 1

Rkj

)
∑

i∈U′
∑

�:t∈l2
i,j
(�)∈l2

i,j

rki,j x
�
i,j (

1 + 1
Rkj

)rki,j

�max

=

(
1 + 1

Rkj

)
∑

i∈U′′
∑

�:t∈l2
i,j
(�)∈l2

i,j

rki,j x
�
i,j

�max
, (11.22)

whereU′′ = U′ ∪i and the approximation holds because Rkj % 1 and rki,j � Rkj ,
and (1 + a)x ≈ 1 + ax when a and x are small enough.

Therefore, inequality (11.21) holds no matter whether requester i is accepted or not.
However, p̂kj,t (+∞) < wmax

rmin
(1 + 1) + 1 = 2wmax

rmin
+ 1 because of the conditions

wi,j > βi,j and rki,j � Rkj . By reconsidering the inequality (11.21), we have

∑

i∈U′

∑

�:t∈l2i,j (�)∈l2i,j
rki,j x

�
i,j

Rkj

≤
log

(
�max

(
2wmax
rmin

+1

)
+1

)

Rkj log

(
1+ 1

Rkj

) ≈ log

(
�max

(
2
wmax

rmin
+1

)
+1

)
,

(11.23)

where the last approximation holds when Rkj % 1. Inequality (11.23) indi-
cates that the constraint C10 in problem (EQMSW) may be violated by at most
log(�max(2

wmax
rmin

+ 1)+ 1).
To verify that the solution meets constraint C13 in problem (EQMSW), we can

follow the similar procedure to demonstrate that before the arrival of requester i, the
value of p̂t can be bounded as

p̂t (i) ≥
(1 + 1

W
)

∑

i∈U′
∑

j∈Ni

∑

�:t∈l1
i,j
(�)∈l1

i,j

φi,j x
�
i,j

− 1

�max
. (11.24)

11 Online Incentive Mechanism Design in Edge Computing 255

However, we have p̂t (+∞) < wmax
φmin

(1+1)+1 = 2wmax
φmin

+1 because of the conditions
wi,j > βi,j and φi,j � W . Combining similar inequalities as (11.22)–(11.24), we
have

∑

i∈U′

∑

j∈Ni

∑

�:t∈l1i,j (�)∈l1i,j
φi,j x

�
i,j

W
≤ log(�max(2

wmax
φmin

+ 1)+ 1)

W log(1 + 1
W
)

≈ log
(
�max

(
2
wmax

φmin
+ 1

)
+ 1

)
, (11.25)

where the last approximation holds whenW % 1. It indicates that the constraint C6
in problem (EQMSW) may be violated by at most log(�max(2

wmax
φmin

+ 1)+ 1). This
completes the proof. "
Lemma 11.5 OMAP produces a feasible solution to dual problem (EQDP).

Proof We consider the following two cases:

• Case 1: Requester i is rejected, which means wi,j∗ − βi,j∗ ≤ 0 for the best
selected task executor j∗ and ui = 0 according to the acceptance condition
(11.16). Thus, constraint C15 holds in this case.

• Case 2: Requester i is accepted, which means ui = wi,j∗ −βi,j∗ > 0 for the best
selected task executor j∗. Thus, constraint C15 still holds in this case.

Therefore, constraint C15 in problem (EQDP) always holds no matter whether
requester i is accepted or not. This completes the proof. "
Lemma 11.6 OMAP runs in polynomial time.

Proof The computational complexity of OMAP is evaluated in terms of compu-
tation times with respect to the number of requesters and collaborators. Recall
that OMAP consists of Algorithms 2 and 1. For Algorithm 1, given that there
are a total of M time slots during the period of [ti , ti + τi], the computational
complexity of Algorithm 1 can be calculated as O(M(M − M + 1 + M(M−1)

2 +
M − 1)) = O(M2 (M+1)

2). Therefore, the computational complexity of Algorithm 2

is O(|U| × |Nmax | × M2 (M+1)
2). Note that this is the worst case computational

complexity. Obviously, Algorithm 2 runs in polynomial time, which completes the
proof. "
Lemma 11.7 OMAP can guarantee truthfulness (IC) and individual rationality
(IR).

Proof We first prove the truthfulness in the requesters’ bidding values. Note that
the marginal prices p̂kj,t and p̂t depend only on the past accepted requesters and
are independent of the bidding values of current requester i. Furthermore, OMAP
always assigns the requested resource to that requester only when the utility of that
requester is maximized among all its bidding values and is greater than zero given

256 G. Li and J. Cai

the current marginal prices. Therefore, OMAP can be treated as a sequential posted
price mechanism [16] or iterative auction [17], where the auctioneer posts the price
and the bidders choose the best bidding values to maximize their utilities. In this
way, the bidders cannot gain more utilities by misreporting their bidding values.

Next, we demonstrate the truthfulness in arrival time ti . If a requester reports
the arrival time t

′
i earlier than the actual value (i.e., t

′
i < ti), this requester cannot

increase its utility or even suffers from the failure to complete its task when t
′
i < ti−1

or the transmission time is scheduled within the period of [t ′i , ti]. When the requester

declares its arrival time later than ti (i.e., t
′
i > ti), the mechanism will find the

optimal transmission and computation times after t
′
i , while in fact, such optimal

times may happen in [ti , t ′i], which results in an increased payment and a decreased
utility. Thus, the requesters will not misreport their arrival time.

Third, it is obvious that the requesters will not misreport their offloaded tasks
(i.e., Ti) due to the fact that this can result in the failure in completing their tasks.

Finally, we verify the individual rationality. According to the acceptance condi-
tion (11.16), a requester can be accepted only if one of its maximum biddings can
lead to a positive utility; otherwise, that requester is rejected and its utility is zero.
Hence, OMAP satisfies individual rationality. This completes the whole proof. "

In summary, based on Lemmas 11.3, 11.6, and 11.7, we can make the following
conclusion.

Theorem 11.1 OMAP has a competitive ratio of 3, runs polynomially, and guar-
antees truthfulness and individual rationality.

11.4.4 Numerical Simulations

In this section, numerical simulations are conducted to verify the effectiveness
of OMAP. Since the total social welfare, revenue, and utility of requester are
the most important economical metrics and the competitive ratio is a vital metric
to measure an online mechanism, in this section, we will focus on evaluating
these two performance metrics with respect to different numbers of requesters
and collaborators. In the simulation, the wireless channels between requesters and
task executors (i.e., collaborators or the BS) experience Rayleigh fading and all
the channel coefficients are zero-mean, circularly symmetric complex Gaussian
(CSCG) random variables with variances d−v , where d is the distance between
the transmitter and the receiver and v = 4. Table 11.1 lists the main simulation
parameters, some of which have also been employed in [11, 18, 19]. For comparison
purpose, the following three online strategies are also simulated as comparison
benchmarks:

• Random online mechanism: For each requester, the BS randomly selects the task
executor and randomly schedules the transmission and computation times.

11 Online Incentive Mechanism Design in Edge Computing 257

Table 11.1 Main simulation parameters

Parameter Value

Cell radius 500 m

Total bandwidth 40 MHz

Transmission power at requesters 1.5 W

Background noise average power −60 dBm

Total running time 30 minutes

Time slot length 1 second

Task size Randomly from 10 to 30 MB

CPU cycles coefficient 330 cycles/Byte

Energy consumption coefficient 10−26

Unit energy cost $0.1

Valuation Randomly from [$0.1, $10]
The maximum delay Randomly from [5, 15] seconds

Computation capacity of BS 10 GHz

Storage capacity of BS 10 GB

Computation capacity of collaborators 2 GHz

Storage capacity of collaborators 5 GB

• Greedy online mechanism: Upon the arrival of a requester, the BS chooses the
task executor with the maximal valuation as the winner and schedules one time
slot for transmission and �τ� − 1 time slots for computation.

• First-in first-out (FIFO) online mechanism [20]: Arriving tasks are always
accepted with a fixed transmission and computation time schedule till the
resources are run out.

Figure 11.4 shows the total social welfare achieved by different online mech-
anisms with respect to different numbers of arrived requesters when there are 30
collaborators, i.e., |M| = 30. From this figure, we can see that the achievable total
social welfare increases with the number of requesters. This trend is obvious since
with the arrival of more requesters, the BS will admit more before resources are
exhausted, which results in the increment on the total social welfare. It is worthwhile
to note that OMAP outperforms both the random and FIFO online mechanisms
but underperforms the greedy one. This is because OMAP tries to minimize the
scheduling problem (TSP) so as to maximize the utility of each requester, while
the greedy one only attempts to maximize the total social welfare and ignores the
maximality of the individual utility. In addition, according to [21], the simple greedy
online mechanism cannot guarantee truthfulness and individual rationality.

Figure 11.5 reevaluates the total social welfare under various numbers of
collaborators. In the simulation, the total number of arrived requesters is fixed at
75, i.e., |U| = 75. It can be seen from the figure that the total social welfare
increases with the number of collaborators till reaching a saturation when the
number of collaborators is large enough (e.g., 55 in our simulation). This is because
with the excessive amount of collaborators, each requester is always served by

258 G. Li and J. Cai

30 50 70 90 110
0

100

200

300

400

Proposed online scheme
Greedy online scheme
FIFO online scheme
Random online scheme

Fig. 11.4 TSW versus the numbers of requesters

10 20 30 40 50 60 70
0

100

200

Proposed online scheme
Greedy online scheme
FIFO online scheme
Random online scheme

Fig. 11.5 TSW versus the numbers of collaborators

its most effective collaborator, while other collaborators have no effects on the
achievable total social welfare. In addition, the total social welfare of random
online mechanism is almost a constant. This is because this mechanism selects the
collaborator in random so that it treats all collaborators equally regardless of how
many collaborators exist. Similar to Fig. 11.4, OMAP outperforms both the random
and FIFO online mechanisms but is still inferior to the greedy one. In summary,
from both Figs. 11.4 and 11.5, we can conclude that although it is not difficult to
design an online algorithm with a sound competitive ratio (or larger social welfare),

11 Online Incentive Mechanism Design in Edge Computing 259

600 800 1000 1200 1400 1600 1800
1

1.5

2

2.5

3

3.5

4

4.5

5

Proposed online scheme
Greedy online scheme
FIFO online scheme
Random online scheme

Fig. 11.6 CR versus the total system running time

it is difficult to devise an online mechanism that possesses sound competitive ratio,
truthfulness, and individual rationality at the same time. In fact, OMAP sacrifices a
little bit of competitive ratio to achieve other economical properties.

Figure 11.6 presents the comparison among different online mechanisms in terms
of the competitive ratio by varying the system running time when the number of
collaborators is 25. Note that the optimal offline solution is obtained by Yalmip
optimizer, and the payments are based on the VCG mechanism [22]. From Fig. 11.6,
we can observe that the CR of OMAP is less than 3, which matches our theoretical
analyses. Besides, the competitive ratio almost stays unchanged with different
system running times, which demonstrates that OMAP is stable.

Figure 11.7 evaluates the performance of different online mechanisms in terms
of competitive ratio with respective to different numbers of collaborators when the
number of requesters is 40. For OMAP, FIFO, and greedy online mechanisms, their
competitive ratios stay less than 3 and slightly decrease until they stabilize when the
number of collaborators becomes large enough. This is because more collaborators
can increase the available resources in the system and increase the number of
potential alternative collaborators around requesters. In contrast, the competitive
ratio of the random online mechanism increases (i.e., the worse performance) with
the number of collaborators. According to Fig. 11.5, as the increase of |M|, the
social welfare of random online mechanism stays unchanged, while the offline
optimal solution increases because more resources are available for allocation. Thus,
the competitive ratio of random online mechanism increases.

260 G. Li and J. Cai

15 25 35 45 55
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Proposed online scheme
Greedy online scheme
FIFO online scheme
Random online scheme

Fig. 11.7 CR versus the numbers of collaborators

11.5 Summary

In this chapter, we introduce the primal–dual-based online mechanism design
method and its application in edge computing systems. First, we provide some basic
concepts, definitions, and properties that are commonly used in mechanism design.
Second, we present the design method for linear online incentive mechanisms based
on the primal–dual theory and briefly introduce the design method for nonlinear
cases based on the Lagrangian dual method. Finally, we discuss how task offloading
in an edge computing system could be modelled as a market and then apply
the introduced primal–dual-based online design method to address the formulated
mechanism design problem.

References

1. N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani, Algorithmic Game Theory (Cambridge
University Press, Cambridge, 2007)

2. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

3. D. Niyato, N.C. Luong, P. Wang, Z. Han, Auction Theory for Computer Networks (Cambridge
University Press, Cambridge, 2020)

4. R. Lavi, N. Nisan, Competitive analysis of incentive compatible on-line auctions, in Proceed-
ings of the 2nd ACM Conference on Electronic Commerce (EC) (2000), pp. 233–241

5. G. Li, J. Cai, An online incentive mechanism for collaborative task offloading in mobile edge
computing. IEEE Trans. Wirl. Commun. 19(1), 624–636 (2020)

11 Online Incentive Mechanism Design in Edge Computing 261

6. H. Li, C. Wu, Z. Li, Socially-optimal online spectrum auctions for secondary wireless
communication, in Proceedings of the 2015 IEEE Conference on Computer Communications
(INFOCOM), Kowloon (2015), pp. 2047–2055

7. X. Zhang, et al., Online auctions in IaaS Clouds: welfare and profit maximization with server
costs. IEEE/ACM Trans. Netw. 25(2), 1034–1047 (2017)

8. G. Li, J. Cai, An online incentive mechanism for crowdsensing with random task arrivals. IEEE
Int. Things J. 7(4), 1–14 (2020)

9. B. Fan, H. Tian, L. Jiang, A.V. Vasilakos, A social-aware virtual MAC protocol for energy-
efficient D2D communications underlying heterogeneous cellular networks. IEEE Trans. Veh.
Technol. 67(9), 8372–8385 (2018)

10. K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, K. Hugl, Device-to device communication as an
underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)

11. T. Thinh, J. Tang, Q. La, T. Quek, Offloading in mobile edge computing: task allocation and
computational frequency scaling. IEEE Trans. Commun. 65, 3571–3584 (2017)

12. X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge
cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016)

13. D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile computing. IEEE
Trans. Wirel. Commun. 11(6), 1991–1995 (2012)

14. Y. Wen, W. Zhang, H. Luo, Energy-optimal mobile application execution: Taming resource-
poor mobile devices with cloud clones, in Proceedings of the IEEE INFOCOM (2012), pp.
2716–2720

15. J. Borghoff, L.R. Knudsen, M. Stolpe, Bivium as a mixed-integer linear programming problem,
in IMA Cryptography and Coding. Lecture Notes in Computer Science, vol. 5921 (Springer,
Berlin, 2009), pp. 133–152

16. S. Chawla, J. Hartline, D. Malec, B. Sivan, Multi-parameter mechanism design and sequential
posted pricing, in Proceedings of the forty-second ACM symposium on Theory of computing
(2010), pp. 311–320

17. G. Iosifidis, L. Gao, J. Huang, L. Tassiulas, A double-auction mechanism for mobile data-
offloading markets. IEEE/ACM Trans. Netw. 23(5), 1634–1647 (2015)

18. M.H. Chen, B. Liang, M. Dong, Joint offloading and resource allocation for computation and
communication in mobile cloud with computing access point, in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications (2017), pp. 1–9

19. F. Guo, et al., Joint load management and resource allocation in the energy harvesting powered
small cell networks with mobile edge computing, in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS) (2018), pp. 299–304

20. D.E. Irwin, L.E. Grit, J.S. Chase, Balancing risk and reward in a market-based task service, in
Proceedings. 13th IEEE International Symposium on High performance Distributed Comput-
ing (2004)

21. R. Lavi, N. Nisan, Competitive analysis of incentive compatible on-line auctions. Theor.
Comput. Sci. 310(1–3), 159–180 (2004)

22. W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1),
8–37 (1961)

Chapter 12
Collaborative Deep Neural Network
Inference via Mobile Edge Computing

Wen Wu, Yujie Tang, Peng Yang, Weiting Zhang, and Ning Zhang

12.1 Introduction

Advanced neural network techniques and ubiquitous Internet of Things (IoT)
devices enable deep neural network (DNN) inference as a key technology in
next generation wireless networks. In recent years, DNNs have been applied in
many intelligent applications, ranging from facility monitoring, fault diagnosis, to
object detection [1, 2]. For example, IoT devices in industrial applications, such
as vibration sensors, can sense the industrial operating environment. Then, the
sensing data is sent to a pre-trained DNN via wireless communication links, and
the DNN processes the sensing data and renders inference results. Such a process

W. Wu (�)
Pengcheng Laboratory, Shenzhen, P.R. China
e-mail: wuw02@pcl.ac.cn

Y. Tang
School of Computer Science and Technology, Algoma University, Sault Ste. Marie, ON, Canada
e-mail: yujie.tang@algomau.ca

P. Yang
School of Electronic Information and Communications, Huazhong University of Science and
Technology, Wuhan, P.R. China
e-mail: yangpeng@hust.edu.cn

W. Zhang
School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, P.R.
China
e-mail: 17111018@bjtu.edu.cn

N. Zhang
Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON,
Canada
e-mail: ning.zhang@uwindsor.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_12

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_12&domain=pdf
mailto:wuw02@pcl.ac.cn
mailto:yujie.tang@algomau.ca
mailto:yangpeng@hust.edu.cn
mailto:17111018@bjtu.edu.cn
mailto:ning.zhang@uwindsor.ca
https://doi.org/10.1007/978-3-030-98064-1_12

264 W. Wu et al.

is referred to as DNN inference [3]. A large number of experimental results indicate
that DNN inference can achieve high inference accuracy as compared to traditional
alternatives, such as decision trees in classification tasks.

Executing DNN inference tasks is computation intensive. Tremendous num-
bers of multiply-and-accumulation operations are conducted in a DNN inference
task [4]. A device-only solution that purely executes DNN inference tasks at
resource-constrained mobile devices becomes intractable, due to prohibitive energy
consumption and a high service delay. For instance, processing an image using
AlexNet incurs up to 0.45 W energy consumption even in a tailored energy-efficient
chip [5]. An edge-only solution that purely offloads large-volume sensing data to
resource-rich edge nodes, e.g., access point (AP), suffers from an unpredictable
service delay due to time-varying wireless channels [6]. Therefore, neither a device-
only nor an edge-only solution can effectively support low-delay DNN inference
services.

Collaborative DNN inference, which coordinates resource-constrained mobile
devices and the resource-rich AP, is a potential framework to provide low-delay and
high-accuracy inference services [7]. Within the collaborative inference framework,
sensing data from mobile devices can be either processed locally or offloaded to the
AP. At mobile devices, light-weight compressed DNNs, i.e., neural networks are
compressed without significantly decreasing their performance, are deployed due to
constrained on-board computing capability, which saves computing resources at the
cost of inference accuracy [8, 9]. At the AP, uncompressed DNNs are deployed to
provide high-accuracy inference services at the cost of network resources including
computing and communication resources. The overall service performance can be
enhanced through the task offloading between mobile devices and the AP.

However, the sampling rate adaption technique that dynamically configures the
sampling rates of mobile devices, is seldom investigated in the collaborative DNN
inference framework. The sampling rates of mobile devices can be dynamically
adjusted based on mobile devices’ real-time channel conditions and the AP’s
computation workloads. As such, the sensing data from mobile devices can be
compressed, thereby reducing not only the offloaded data volume but also the
task computation workload. On the one hand, when the mobile device’s channel
condition is poor or the AP’s computation workload is heavy, the sampling rate
is decreased to reduce the offloaded data volume and the requested computation
workload. As a result, the service delay is reduced at the cost of limited inference
accuracy. Our experimental results show that the reduction of inference accuracy is
acceptable in harsh network environments. On the other hand, when the mobile
device’s channel condition is good and the edge computation workload is light,
the sampling rate can be increased to help deliver a high-accuracy service with an
acceptable service delay. Therefore, sampling rate adaption can effectively reduce
the service delay, which should be considered as an important component in the
collaborative DNN inference framework.

In this chapter, we present the collaborative DNN inference technology in
wireless networks. Firstly, we give a comprehensive overview of DNN inference,
mobile edge computing (MEC), and machine learning. Secondly, we study a detailed
case on collaborative DNN inference via device-edge orchestration. The problem

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 265

is formulated as a constrained Markov decision process (CMDP) taking time-
varying channel conditions and random task arrivals into account. Specifically,
three decisions, i.e., sampling rates of mobile devices, task offloading, and edge
computation resource allocation, are jointly optimized to achieve the minimum
average service delay while guaranteeing the long-term accuracy requirements of
multiple DNN inference services. Thirdly, since traditional RL algorithms target at
optimizing a long-term reward without considering policy constraints, it is difficult
to directly apply them to solve the formulated CMDP with long-term constraints. To
address the issue, we propose a three-step solution: (1) the Lyapunov optimization
technique is leveraged to transform the CMDP into an MDP; (2) to solve the MDP,
a learning-based algorithm is developed based on the deep deterministic policy
gradient (DDPG) algorithm; and (3) the edge computing resource allocation can be
directly solved via an optimization subroutine, and then the optimization subroutine
is incorporated in the learning-based algorithm to reduce the training complexity.
Extensive simulations are conducted to validate the effectiveness of the proposed
algorithm in reducing the average service delay while preserving the long-term
accuracy requirements.

The remainder of this chapter is organized as follows. Section 12.2 presents a
comprehensive overview of three key technologies, including DNN inference, MEC,
and machine learning. The considered scenario, the system model, the formulated
problem, and the proposed learning-based solution are presented in Sect. 12.3.
Simulation results are given in Sect. 12.4. Finally, Sect. 12.5 concludes this chapter.

12.2 Background

12.2.1 DNN Inference

Recently, DNN inference for mobile devices has attracted much attention from
academia. A device-only solution resorts to on-board computing resources to
facilitate DNN inference services. DNN compression techniques are applied to
reduce the computational complexity at the mobile devices. Typical techniques
include weight pruning [8] and knowledge distillation [10]. The authors in [4]
designed a light-weight DNN inference model, which can dynamically compress
the model size in order to balance inference accuracy and energy efficiency, taking
the widely equipped energy-harvesting functionality in IoT devices into account.
In another line of research, by utilizing powerful edge computing servers, edge-
assisted DNN inference solutions can provide high-accuracy inference services. The
authors in [11] proposed an online video quality and computing resource allocation
strategy to maximize video analytic accuracy, thereby facilitating low-delay and
accurate DNN-based video analytics. Another important work proposed a novel
device-edge collaborative inference scheme [7]. In this work, the DNN model is
partitioned and deployed at both the device and the edge, and intermediate results
are transferred via wireless links. The above works can offer potential resource

266 W. Wu et al.

allocation solutions to enhance DNN inference performance. In comparison with
the existing works, the following case study in this chapter takes the sampling
rate adaption of IoT devices into account, aiming at providing accuracy-guaranteed
inference services in dynamic network environments.

12.2.2 Mobile Edge Computing

In the current wireless networks, a large volume of computing demands are gen-
erated by mobile devices to support emerging applications, such as intelligent path
planning, safety applications, and on-board entertainments. Taking the autonomous
driving service as an example, when an autonomous vehicle is on the road, a
large number of computation-intensive tasks are required to be processed [12].
Processing such computation-intensive tasks by mobile devices requires expensive
on-device computing facilities and degrades energy efficiency. As a remedy to
these limitations, a potential solution is to explore the MEC paradigm. In the MEC
paradigm, mobile devices can offload these computation tasks to nearby radio access
networks (RANs) with computation-powerful edge servers for prompt processing.
Extensive experiments show that the task processing delay can be significantly
reduced by leveraging the MEC paradigm.

Recently, MEC problems have been widely investigated from many perspectives
in wireless networks. In high-mobility vehicular networks, the roadside MEC
servers judiciously collaborate with each other to provide low-latency services for
autonomous vehicles [13]. Also, in the context of vehicular networks, a dynamic
RAN slicing framework taking roadside MEC servers into account is proposed to
guarantee the quality of service requirements of autonomous driving services [14].
In recent emerging unmanned aerial vehicle (UAV) networks, a UAV endowed with
an MEC server is dispatched to collect and then process tasks from a large number
of IoT devices in the remote area [15]. In this chapter, the MEC server at the AP is
applied to handle the computation-intensive DNN inference task.

12.2.3 Machine Learning

Recently, machine learning (ML) has achieved great success in a number of
research fields, ranging from computer vision, gaming, natural language processing,
object detection, and traffic prediction [16]. The machine learning methods can
be classified into three categories: (1) supervised learning, in which the training
data structure includes both feature and label. For example, the support vector
machine algorithm is supervised learning; (2) unsupervised learning, in which the
training structure only includes feature without label, e.g., K-means algorithm; and
(3) RL, in which the data structure is defined by state, action, and reward. As
shown in Fig. 12.1, the action can be the control decisions, the state can be the

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 267

Fig. 12.1 An illustrative example of RL algorithms

environment conditions, and the observed reward from the environment can be
system performance. The objective of RL is to learn a good policy in a sequential
decision-making problem, such that the learning agent can take appropriate actions
based on the current state. A typical example of RL algorithm is the deep Q
learning algorithm. Seeing the great benefits of different machine learning methods,
it is expected that ML will be widely applied in future wireless networks. The
potential ML applications in next generation wireless networks, i.e., 6G networks,
are investigated in [17–19], ranging from network slicing, traffic prediction, to
digital twin management.

The main benefits of ML methods can be summarized as follows: (1) model-
free, which makes ML methods different from traditional model-based approaches.
It learns from the data and does not suffer from complicated modelling and strong
assumptions; and (2) flexible, which means that ML methods can adaptively adjust
the decision based on the current network environment. By training the learning
modules properly offline, ML methods can make quick online decisions in highly
complex scenarios.

Among different categories of ML algorithms, RL has attracted great attention
from both academia and industry in the field of wireless communications. RL
algorithms have been widely applied in network resource allocation, such as service
migration in vehicular networks [20], network slicing in cellular networks [17],
content caching in edge networks [21, 22], and beam alignment in mmWave
networks [23, 24]. Hence, RL algorithms can be considered as potential solutions to
manage network resources for DNN inference services. In this chapter, we propose
a deep RL-based algorithm to deal with resource allocation and sampling rate
selection issues in the collaborative DNN inference problem.

12.3 Collaborative DNN Inference via Device-Edge
Orchestration

In this section, we introduce a case study on collaborative DNN inference, in which
mobile devices and the network edge are orchestrated to provide DNN inference
services. The collaborative DNN inference framework is presented in Sect. 12.3.1,

268 W. Wu et al.

AP

Edge Server
Uncompressed DNN

Compressed DNN

Sensing data

Sampling rate

Mobile devices

Service 1

Service 2

Service M

Fig. 12.2 An illustrative example of the collaborative DNN inference framework

and the corresponding detailed performance analysis on service delay and accuracy
is provided in Sect. 12.3.2. Based on the system model, the problem is presented in
Sect. 12.3.3, which is solved via a learning-based algorithm in Sect. 12.3.4.

12.3.1 Collaborative DNN Inference Framework

We consider a wireless network with one AP to serve multiple types of mobile
devices, as illustrated in Fig. 12.2. In the network, the AP collects network
information and then conducts resource orchestration decisions. Let M denote a
set of M types of supported inference services, e.g., facility fault diagnosis and
facility monitoring services [25]. The set of mobile devices subscribed to service m
is denoted by Nm, and the set of all mobile devices is denoted by N = ∪m∈MNm.

Consider industrial facility monitoring services as an example. In a smart factory,
wireless sensors are equipped to measure the status of the industrial facility.
Vibration sensors can sense the operation condition of a facility with a certain
sampling rate, e.g., 24 KHz. Mobile devices send the sensing data to a DNN for
a specific inference service, and then DNN processes the sensing data and conducts
inference, e.g., fault diagnosis.

In the collaborative inference framework, two kinds of DNNs are deployed:

• Compressed DNN, which is deployed on mobile devices. The compressed
DNN can be implemented via the weight pruning technique, which prunes less-
important weights to reduce computational complexity while maintaining similar
inference accuracy [8].

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 269

• Uncompressed DNN, which is deployed at the AP. As such, M types of
uncompressed DNNs share the edge computing resource to serve different kinds
of inference requests.

The collaborative DNN inference framework operates in a time-slotted manner.
The procedure consists of the following two steps:

• Step 1: Sampling rate selection. Mobile devices select their sampling rates
based on channel conditions and computation workloads. The set of candidate
sampling rates is denoted by K = {θ1, θ2, ..., θK }, where θK denotes the raw
sampling rate. We assume the sampling rate in K increases linearly with the
index, i.e., θk = kθK/K . Let t denote the time index, where t ∈ T =
{1, 2, . . . , T }. Let Xt denote the sampling rate decision matrix in time slot t ,
whose element xtn,k = 1 indicates the mobile device n ∈ N selects the k-th
sampling rate.

• Step 2: Task processing. The sensing data from mobile devices within a time
slot is deemed as a computation task, which can be either offloaded to the AP or
executed locally. Let ot ∈ R

|N|×1 denote the offloading decision vector in time
slot t , whose element otn = 0 indicates offloading the computation task from
mobile device n. Otherwise, otn = 1 indicates executing the computation task
locally.

12.3.2 Service Delay and Accuracy Analysis of Collaborative
DNN Inference

In this subsection, we analyze the inference delay and accuracy performance in the
considered collaborative DNN inference framework.

12.3.2.1 Inference Delay Analysis

In the considered framework, a computation task can be either processed locally
or offloaded to the AP. In the following, we analyze the service delay in these two
cases, i.e., executing tasks locally or offloading tasks to AP.

Case 1: Executing Tasks Locally The task arrival rate of the n-th mobile device
in time slot t is denoted by λtn. We assume that the task arrival follows a general
random distribution. Let ξ tn = λtnνm,∀n ∈ Nm denote the raw data size of the
generated tasks at the n-th device. Here, νm denotes the raw data size of a task for
service m. When the sampling rate is selected, we can represent the data size of the
generated task by:

270 W. Wu et al.

ζ
(
xtn
) =

K∑

k=1

xtn,kξ
t
nk

K
. (12.1)

Here, xtn = {xtn,k}k∈K is the n-th device’s sampling rate selection decision vector. If
the inference task is processed via a compressed DNN in the local mobile device, the
service delay should consist of two parts: the queuing delay in the local computing
queue and the task processing delay. The detailed calculation of the two parts is
given by:

dtn,l =
otnηm,c

(
Btn + ζ

(
xtn
))

fn
,∀n ∈ Nm. (12.2)

Here, fn denotes the n-th mobile device’s central processing unit (CPU) frequency,
and ηm,c represents the computation intensity of the compressed DNN for the m-
th service. Let Btn denote the backlogged computation tasks (in bits) in the local
computing queue, which is updated via

Bt+1
n = min

{[
Btn + otnζ

(
xtn
)− fnτ

ηm,c

]+
, Bmaxn

}

, (12.3)

where [x]+ = max{x, 0}. Here, Bmaxn represents the local computing queue
capacity, and τ denotes a time slot duration. It is worth noting that tasks have to
be dropped if the local computing queue is full. The amount of the dropped tasks in
the local computing queue of device n can be represented by:

Ψ tb,n = max

{
Btn + otnζ

(
xtn
)− fnτ

ηm,c
− Bmaxn , 0

}
. (12.4)

Here, Ψ tn,b > 0 indicates that a local computing queue overflow event occurs at the
n-th device. Then, a corresponding penalty will be incurred to avoid queue overflow.

Case 2: Offloading Tasks to AP If a task is offloaded to the AP, the task
will be processed by an uncompressed DNN. The service delay consists of three
components: task offloading delay, queuing delay in the edge computing queue, and
task processing delay, which are analyzed respectively as follows.1

Task Offloading Delay Component The offloading delay of the n-th mobile device
is given by:

dtn,o =
(
1 − otn

)
ζ
(
xtn
)

Rtn
. (12.5)

1 Note that we assume free transmission backlog in this chapter.

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 271

Here, the transmission rate between the n-th mobile device and the AP, Rtn is
represented by:

Rtn =
W

N
log2

(
1 + PTG(H

t
n)

Nf σ 2

)
. (12.6)

In the above equation, W , PT , G(Htn), and Nf represent the system bandwidth,
transmit power, channel gain, and noise figure, respectively. Here, the background
noise is denoted by σ 2 = NoW/N , where No is thermal noise spectrum density.
In this chapter, we assume that channel gain G(Htn) varies in terms of channel state
Htn. Based on extensive real-time measurements, a finite set of channel statesH can
be used to model channel state Htn [26]. A discrete-time and ergodic Markov chain
model can be used to characterize the evolution of channel states. The evolution is
given by a transition matrix P ∈ R

|H|×|H|.

Task Processing Delay Component The tasks from all mobile devices subscribed to
the m-th service are placed in the edge computing queue for the m-th service. Here,∑
n∈Nm

(
1 − otn

)
ζ
(
xtn
)

represents the amount of aggregated tasks. The computing
resource is dynamically allocated among multiple services at the AP based on
service task arrivals. The dynamic resource allocation can be implemented via
a number of existing containerization techniques, such as Dockers and Kuber-
netes [27]. The computing resource allocation decision vector in time slot t is
denoted by ct ∈ R

M×1, whose each element 0 ≤ ctm ≤ 1 represents the portion
of the allocated computing resource to the m-th service. As such, the processing
delay can be calculated by:

dtn,p =
ηm,u

(
1 − otn

)
ζ
(
xtn
)

ctmfb
,∀n ∈ Nm. (12.7)

Here, fb represents the computing server’s CPU frequency at the AP. The compu-
tation intensity of processing the m-th service task by the uncompressed DNN is
represented by ηm,u. It is worth noting that ηm,u > ηm,c. The underlying reason is
that the uncompressed DNN consumes more computing resource.

Queuing Delay Component The queuing delay consists of the following two
parts:

• The first part is the time taken to process backlogged tasks in the edge computing
queue, which is given as follows:

dtn,q =
Qtmηm,u

ctmfb
,∀n ∈ Nm. (12.8)

In the above equation, Qtm represents the edge computing queue backlog for
the m-th service in time slot t . The task arrival can be represented by atm =∑
n∈Nm

(
1 − otn

)
ζ
(
xtn
)
, and hence the edge computing queue backlog is updated

272 W. Wu et al.

according to

Qt+1
m = min

{[
Qtm + atm −

ctmfbτ

ηm,u

]+
,Qmaxm

}

. (12.9)

Similar to that in local computing queues, tasks have to be dropped once the edge
computing queue is full, As such, the amount of dropped tasks for the m-th edge
computing queue is given as follows:

Ψ tq,m = max

{
Qtm + atm −

ctmfbτ

ηm,u
−Qmaxm , 0

}
. (12.10)

In the above equation,Ψ tq,m > 0 indicates that an edge computing queue overflow
event occurs.

• The second part is the average waiting time among all newly arrived tasks until
all the tasks of mobile device n are processed, which is given as follows:

dtn,w =
ηm,u

∑
i �=n,i∈Nm

(
1 − oti

)
ζ
(
xti
)

2ctmfb
, (12.11)

where
∑
i �=n,i∈Nm

(
1 − oti

)
ζ
(
xtn
)

represents the amount of the aggregated tasks
excluding the task of mobile device n.

Overall, taking both local execution and task offloading into consideration, the
inference delay of the collaborative DNN in time slot t is calculated as follows:

Dt =
∑

n∈N

(
dtn,l + dtn,o + dtn,p + dtn,q + dtn,w

)

+ wp
(
∑

n∈N
1{Ψ tb,n>0} +

∑

m∈M
1{Ψ tq,m>0}

)

.

(12.12)

Here, 1{x} the indicator function, which takes a value of 1 when the event x is
true, and wp > 0 is the positive unit penalty cost for queue overflow. In the
above equation, the first term indicates the required delay of completing all the
tasks in time slot t , and the second term indicates the penalty for the local and edge
computing queues overflow events.

12.3.2.2 Inference Accuracy Analysis

The achieved DNN inference accuracy is determined by two factors: the sampling
rate of a task and the type of DNN that executes a task. To obtain the inference
accuracy, the following two steps are conducted:

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 273

Fig. 12.3 Inference accuracy in terms of different sampling rates on the bearing vibration
dataset [29]

• Firstly, we characterize the relationship between the inference accuracy and the
sampling rate. The relationship is specified by accuracy function g(θk),∀θk ∈ K.
To obtain the function, we first implement a DNN inference algorithm, i.e.,
AlexNet [28]. Then, we use the AlexNet to diagnose facility fault type according
to the collected bearing vibration signal [29]. This adopted bearing vibration
dataset in the experiment collects the vibration signal of drive end bearings at
a sampling rate of 48 KHz, and there are 10 types of possible faults. As shown
in Fig. 12.3, inference accuracy grows sub-linearly with the sampling rate. For
example, when the sampling rate increases from 18 to 24 KHz, the accuracy
increases from 95 to 98.7%. Finally, we measure the accuracy function values
in terms of the sampling rates, and the accuracy function is plotted in Fig. 12.3.
We can see that the inference accuracy increases with the sampling rate, while
the accuracy performance gain decreases at a high sampling rate.

• Secondly, we characterize the relationship between the inference accuracy and
the type of DNN via experiments. Here, for the m-th service, the inference
accuracy of the compressed DNN is represented by hm,c, and that of the
uncompressed DNN is represented by hm,u. It is worth noting that we have
hm,c < hm,u. The underlying reason is that an uncompressed DNN achieves
higher fault diagnosis accuracy than a compressed DNN.

As the sampling rate selection and the DNN model selection (i.e., task offloading
decision) are independent, DNN inference accuracy can be calculated via the
product of the accuracy value in terms of the selected sampling rate and the accuracy
value in terms of the selected DNN type, i.e.,

274 W. Wu et al.

g

(
∑

k∈K
xtn,kθk

)
(
otnhm,c +

(
1 − otn

)
hm,u

)
.

As such, in time slot t , the average inference accuracy for the m-th service can
be calculated as follows:

Atm =
∑

n∈Nm

1

|Nm|g
(
∑

k∈K
xtn,kθk

)

· (otnhm,c +
(
1 − otn

)
hm,u

)
. (12.13)

The above calculation takes both executing locally and offloading to the AP cases
into consideration.

The above DNN inference model can be easily extended and applied to cases
when other inference methods are adopted. The reason is that the accuracy
values in terms of sampling rates and DNN types can be acquired via practical
experiments rather than theoretical models.

12.3.3 Joint Sampling Rate Selection and Resource Allocation
Problem

12.3.3.1 Constrained Markov Decision Process

In the DNN inference services, not only the service delay is required to be
minimized, but also their long-term accuracy requirements should be guaranteed.
The CMDP is a class of problems that target at maximizing the long-term reward
while satisfying the constraints on the long-term cost [30]. Hence, such problem is
suitable to be modeled as a CMDP. We define the action, state, reward, and state
transition matrix of the CMDP as follows:

Action The action of the CMDP includes the sampling rate selection, task offload-
ing, and edge computing resource allocation decisions, i.e.,

ât = {Xt , ot , ct }.

It is worth noting that the action’s components should satisfy following con-
straints:

• The sampling rate selection decision is constrained by xtn,k ∈ {0, 1}.
• The binary task offloading decision is required, i.e., otn ∈ {0, 1}.

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 275

• The continuous computing resource allocation decision is constrained by∑
m∈M ctm ≤ 1 and 0 ≤ ctm ≤ 1.

The constraint of each action component is satisfied via projecting it into a feasible
action set.

State The state of the CMDP includes four components: local computing queues
backlog of mobile devices Btn, edge computing queues backlog Qtm, channel
conditions of mobile devices Htn, and the raw data size of the generated tasks at
mobile devices ξ tn. Hence, we have

ŝt ={{Btn}n∈N, {Qtm}m∈M, {Htn}n∈N, {ξ tn}n∈N}. (12.14)

In the above state, both queue backlogs, including {Btn}n∈N and {Qtm}m∈M, adopt a
unit in bits. As such, it results in a large state space, especially when the number of
mobile devices is large.

Reward The reward of the CMDP is designed to achieve the service delay
minimization, as shown in (12.12) in time slot t . In this way, the reward is defined
as

r̂ t
(
ŝt , ât

) = −Dt .

State Transition Probability State transition probability of the CMDP is given as
follows:

Pr
(
ŝt+1|ŝt , ât

)
=
∏

n∈N
Pr
(
Bt+1
n |Btn, xtn,k, otn

)
·

∏

m∈M
Pr
(
Qt+1
m |Qtm,Xt , ot

)
·
∏

n∈N
Pr
(
Ht+1
n |Htn

)
·

∏

n∈N
Pr
(
ξ t+1
n |ξ tn

)
.

(12.15)

The above equality holds since different state terms are independent. Specifically,
the first two terms are controlled by the evolution of both local computing queues
and edge computing queues, as detailed in (12.3) and (12.9), respectively. The third
term is evolved based on the discrete-time Markov chain of channel conditions
as mentioned above. The last term is determined by the memoryless task arrival
pattern. It is worth noting that each of those state terms only depends on its previous
state terms. Such behavior indicates the state transition is Markovian.

In our case, we aim to find a stationary policy π ∈ Π that can dynamically con-
figure sampling rates selection Xt , task offloading ot , and edge computing resource
allocation ct based on state ŝt . The policy can minimize the service delay and
guarantee long-term inference accuracy requirements {Athm }m∈M simultaneously. To
acquire the policy, the optimization problem is formulated as follows:

276 W. Wu et al.

P0 : min
π∈Π lim

T→∞
1

T

T∑

t=1

Eπ

[
Dt
]

(12.16a)

s.t. lim
T→∞

1

T

T∑

t=1

Atm ≥ Athm ,∀m ∈M. (12.16b)

The above problem can be deemed as a CMDP.

It is challenging to directly solve the above CMDP via dynamic programming
solutions [30]. The reasons are two-fold:

• Firstly, the state transition probability is unknown due to the lack of
statistical information on the channel condition variation and task arrival
patterns of all mobile devices.

• Secondly, even if the state transition probabilities are known, large action
space and state space that grow with respect to the number of mobile
devices incur an extremely high computational complexity, which makes
dynamic programming solutions intractable.

To solve the CMDP in dynamic environments, we aim to adopt a deep RL-based
algorithm. The benefit is that RL-based algorithm can be applied in large-scale
networks without requiring statistical information of network dynamics.

However, the existing RL algorithms, such as DDPG, are designed to solve
MDP problems without considering policy constraints. Due to the underlying
differences between CMDP and MDP, CDMP cannot be solved via traditional
RL algorithms.

To solve the problem, we propose a novel learning-based solution for CMDP in
the following.

12.3.4 Deep RL-Based Solution

The proposed deep RL-based solution consists of the following three steps:

• Step 1: We leverage the Lyapunov optimization technique to deal with the long-
term constraints and transform the problem into an MDP, which is suitable to be
solved by RL algorithms.

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 277

• Step 2: We develop a deep RL-based algorithm to solve the MDP.
• Step 3: We embed an optimization subroutine in the proposed RL algorithm to

directly obtain the optimal edge computation resource allocation.

These three steps are detailed in the following.

12.3.4.1 Markov Decision Process Transformation (Step 1)

To solve problem P0, the major challenge is to handle the long-term constraints. To
address this challenge, we leverage the Lyapunov technique [31, 32].

The basic idea of the step is to construct accuracy deficit queues to charac-
terize the satisfaction status of the long-term accuracy constraints, thereby
guiding the learning agent to meet the long-term accuracy constraints.

As such, the problem is transformed in the following way:

• Firstly, inference accuracy deficit queues are constructed for all services. The
dynamics of the queue evolve as follows:

Zt+1
m =

[
Athm − Atm + Ztm

]+
,∀m ∈M. (12.17)

Here, the deviation of the achieved instantaneous accuracy from the long-term
accuracy requirement is represented by Ztm. Its initial state is set to Z0

m = 0.
Next, we introduce a Lyapunov function to characterize the satisfaction status of
the long-term accuracy constraint. The Lyapunov function is defined as [31–33]

L
(
Ztm
) =

(
Ztm
)2

2
.

In the above equation, a smaller value ofL
(
Ztm
)

means better long-term accuracy
constraint satisfaction.

• Secondly, to guarantee the long-term accuracy constraints, the Lyapunov function
should be consistently pushed to a relatively low value. Therefore, a one-shot
Lyapunov drift is introduced to capture the Lyapunov function’s variation across
two subsequent time slots [31]. When Ztm is given, we define the one-shot
Lyapunov drift as follows: �

(
Ztm
) = L

(
Zt+1
m

) − L (Ztm
)
. We can obtain an

upper bound as follows:

278 W. Wu et al.

Δ
(
Ztm
) = 1

2

((
Zt+1
m

)2 − (Ztm
)2
)

≤ 1

2

((
Ztm + Athm − Atm

)2 − (Ztm
)2
)

= 1

2

(
Athm − Atm

)2 + Ztm
(
Athm − Atm

)

≤ Cm + Ztm
(
Athm − Atm

)
.

(12.18)

In the above equation, Cm = (
Athm − Aminm

)2
/2 is a constant. Here, Aminm is

the lowest inference accuracy, which can be required for service m. Due to the
substitution of (12.17), the first inequality holds. The second inequality can be
derived due to Am

(
Xt , ot

) ≥ Aminm .
• Thirdly, leveraging the Lyapunov optimization theory, the original CMDP to

minimize the service delay and guarantee the long-term accuracy requirements
can be transformed to a problem of minimizing a drift-plus-cost. The transformed
problem is given as follows:

∑

m∈M
Δ
(
Ztm
)+V ·Dt ≤

∑

m∈M
Cm+

∑

m∈M
Ztm

(
Athm − Atm

)
+V ·Dt . (12.19)

In the above equation, the inequality holds due to the upper bound in (12.18).
Here V represents a positive parameter, which can adjust the tradeoff between
the satisfaction status of the long-term accuracy constraints and the service delay
minimization. The rationale behind this is that when the long-term accuracy
constraint is violated, i.e., Ztm > 0, it is more urgent to stratify the long-term
constraints via improving the instantaneous inference accuracy than to reduce
the service delay.

Through this transformation, we reformulate the CMDP problem as a regular
MDP problem. The objective of the MDP is to minimize the upper bound of drift-
plus-cost as shown in (12.19). In such a reformulated MDP, we should modify the
action, state, reward, and state transition matrix since the accuracy deficit queues
are incorporated. The modified elements of the MDP are given as follows:

Modified Action The action is the same as that in the CMDP, i.e.,

at = ât = {Xt , ot , ct }.

Modified State The accuracy deficit queue backlog of services {Ztm}m∈M should
be incorporated in the state space, as compared to the state of the CMDP. The
modified state is given by:

st = {ŝt , {Ztm}m∈M}. (12.20)

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 279

Modified Reward To minimize the drift-plus-cost in (12.19), the reward is modi-
fied as follows:

rt = −V ·Dt −
∑

m∈M
Ztm

(
Athm − Atm

)
. (12.21)

It is worth noting that we ignore the constant term
∑
m∈M Cm in (12.19) in the

reward for simplicity.

Modified State Transition Probability The evolution of state transition probabil-
ity changes due to the incorporation of accuracy deficit queue backlogs in the state,
which is detailed as follows:

Pr
(
st+1|st , at

)
= Pr

(
ŝt+1|ŝt , ât

)
·
∏

m∈M
Pr
(
Zt+1
m |Ztm,Xt , ot

)
. (12.22)

In the above equation, the second term represents the evolution of the accuracy
deficit queue backlog based on (12.17). It is clear that the Markovian property holds
for the overall state transition.

Based on the above reformulation and modification, we transform problem P0
into an MDP problem as follows:

P1 : min
π∈Π lim

T→∞
1

T

T∑

t=1

Eπ

[
∑

m∈M
Ztm

(
Athm − Atm

)
+ V ·Dt

]

. (12.23)

Similar to solving CMDP as mentioned above, using dynamic programming
solutions to solve an MDP faces the curse of dimensionality issue since the state
space is large. Therefore, we propose a deep RL-based algorithm to deal with the
MDP in the following.

12.3.4.2 Optimization Subroutine for Resource Allocation (Step 3)

For better understanding, we first introduce the third step in the optimization
subroutine and then introduce the second step in the RL algorithm design.

As mentioned above, problem P1 can be solved by RL algorithms. However,
we can leverage an inherent property of edge computing resource allocation to
reduce the training complexity of RL algorithms. Based on theoretical analysis
on (12.23), we find that the edge computing resource allocation and the inference
accuracy performance are independent. Specifically, the edge computing resource
allocation only impacts the one-shot service delay performance. Therefore, in time
slot t , when task offloading and sampling rate selection decisions are given, we can
obtain the optimal computing resource allocation decision via solving the following
optimization problem:

280 W. Wu et al.

P2 : min
ct

Dt

s.t.
∑

m∈M
ctm ≤ 1 (12.24a)

0 ≤ ctm ≤ 1. (12.24b)

Furthermore, an analysis of (12.12) demonstrates that the edge computing
resource allocation only impacts the task processing delay and queuing delay at

the AP, i.e.,
∑
n∈N

(
dtn,p + dtn,q + dtn,w

)
. In addition, we find that the aggregated

delay from the perspective of all devices is equivalent to the aggregated delay from
the perspective of all services. As such, we can rewrite the objective function in P2
as
∑
m∈M dtm. As such, we have

dtm =
∑

n∈Nm

(
ηm,u

(
1 − otn

)
ζ
(
xtn
)

ctmfb
+ Qtmηm,u

ctmfb
+ ηm,u

∑
i �=n,i∈Nm

(
1 − oti

)
ζ
(
xti
)

2ctmfb

)

.

(12.25)
The above equation represents the experienced delay of the m-th service. Through
analysis, we show the convexity property of the problem. Then, the following
theorem can be used to obtain the optimal edge computation resource allocation
in each time slot.

Theorem 12.1 The optimal edge computing resource allocation for problem P2 is
given by:

ct,�m =
√
�tm∑

m∈M
√
�tm

,∀m ∈M, (12.26)

where

�tm =
∑

n∈Nm

⎛

⎝ηm,u
(
1 − otn

)
ζ
(
xtn
)+Qtmηm,u +

ηm,u

2

∑

i �=n,i∈Nm

(
1 − oti

)
ζ
(
xti
)
⎞

⎠ .

(12.27)

Proof The theorem is proved via the following two steps:

• Firstly, we prove the problem to be a convex optimization problem. For simplic-
ity, t is omitted in the proof. By the definition of �m in (12.27), we can rewrite
the objective function as

∑
m∈M�m/(cmfb). The second-order derivative of the

objective function can be derived as 2�m/
(
fbc

3
m

)
> 0. In addition, we know that

the inequality constraint is linear. Hence, the problem is a convex optimization
problem.

• Secondly, we construct a Lagrange function for the problem by ignoring the
inequality constraints, which is given as follows:

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 281

L (c, a) =
∑

m∈M

�m

cmfb
+ a

(
∑

m∈M
cm − 1

)

. (12.28)

Here, a represents the Lagrange multiplier. According to Karush–Kuhn–Tucker
conditions for convex optimization [34], the following equation is obtained:

∂L (c, a)
∂cm

= − �m

fbc2
m

+ a = 0,∀m ∈M. (12.29)

Here, c�m = √
�m/afb,∀m ∈ M, can be obtained by solving the above

equation. Then, we substitute the above result into the complementary slackness
condition

∑
m∈M c�m − 1 = 0. Then, the optimal value of a can be given by

a� = (∑
m∈M

√
�m
)2
/fb. Based on the above equation, a� takes a positive

value, and hence {c�m}m∈M are positive values, which shows that constraint
(12.24b), i.e., ctm ≥ 0,∀m ∈ M, is automatically satisfied. We can then prove
Theorem 12.1 by substituting a� into the complementary slackness condition.

 "

This optimization subroutine for the edge computing resource allocation is
embedded in the following proposed deep RL-based algorithm. As such, we
can reduce the training complexity of the proposed RL algorithm. The reason
is that it is no longer necessary to train the neural networks to obtain an
optimal edge computing resource allocation policy.

12.3.4.3 Deep RL-Based Algorithm (Step 2)

In the following, we propose a deep RL-based algorithm to solve problem P1.
The proposed algorithm is extended from the well-known DDPG algorithm [35].
However, the DDPG algorithm and the proposed algorithm are different. The main
difference is that we embed the above optimization subroutine for computing
resource allocation into the RL algorithm to reduce the training complexity. The
proposed algorithm can be deployed at the AP that is in charge of collecting the
network state information and enforcing the policy to all connected mobile devices.

In the proposed algorithm, the learning agent consists of an actor network that
determines the action based on the current state and a critic network that evaluates
the determined action based on the reward feedback from the environment. The
actor network and the critic network are denoted by μ(s|φμ) and Q(s, a|φQ),
respectively. The corresponding neural network weights are represented by φμ

and φQ, respectively. The details of the deep RL-based algorithm are shown in
Algorithm 1.

282 W. Wu et al.

Algorithm 1 Deep RL-based algorithm for sampling rate adaption and resource
allocation

Initialize all neural networks and the experience replay memory;
for each episode do

Reset the environment and obtain initial state s0;
for time slot t ∈ T do

Determine sampling rate selection and task offloading actions {Xt , ot } according to st ;
Determine edge computing resource allocation action ct by (12.26);
Send joint action at = {Xt , ot , ct } to all mobile devices by the AP;
Execute the joint action at mobile devices;
Observe reward rt and new state st+1;
Store transition {st , at , rt , st+1} in the experience replay memory;
Sample a random minibatch transitions from the experience replay memory;
Train the critic and actor network by (12.30) and (12.31), respectively;
Update target networks by (12.32).

end for
end for

The proposed algorithm operates in a time-slotted manner, which consists of the
following three stages:

• Stage 1: Obtain experience by interacting with the environment. The actor
network generates the task offloading and sampling rate selection decisions
based on the current network state st . The decisions are generated with an
additive policy exploration noise that follows a Gaussian distribution N

(
0, σ 2

)
.

Additionally, the edge computation resource allocation action is generated by the
optimization subroutine. Next, the joint action is executed at all mobile devices,
and the corresponding reward rt is obtained. In addition, we can observe the
next state st+1 from the environment. The state transition tuple {st , at , rt , st+1}
is stored in the experience replay memory for actor and critic network training.

• Stage 2: Train the actor and critic network based on the stored experience.
A minibatch of transitions are randomly sampled from the experience replay
memory to break experience correlation, thereby avoiding the divergence issue
caused by DNN. By minimizing the following loss function, the critic network is
trained:

Loss
(
φQ
)
= 1

Nb

Nb∑

i=1

(
yi −Q(si, ai |φQ)

)2
, (12.30)

where

yi = ri + γQ′(si+1, μ
′(si+1|φμ′)|φQ′

).

Here, Nb represents the minibatch size μ′(s|φμ′) andQ′(s, a|φQ′
) indicate actor

and critic target networks with weights φμ
′

and φQ
′
, respectively. The actor

network is trained via the following policy gradient:

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 283

∇φμ ≈ 1

Nb

Nb∑

i=1

∇aQ(si, a|φQ)|s=si ,a=μ(si)∇θμμ(si |φμ)|si . (12.31)

• Stage 3: Update target networks. The actor and critic target networks are softly
updated according to the following equations to ensure network training stability,
i.e.,

φQ
′ = δφQ + (1 − δ)φQ′

φμ
′ = δφμ + (1 − δ)φμ′ .

(12.32)

In the above equations, 0 < δ � 1 is the target network update ratio.

Remark Traditional RL algorithms, e.g., DDPG, can be applied to solve MDP
problems, in which learning agents seek to optimize a long-term reward
without policy constraints, while they cannot deal with constrained long-term
optimization problems [30, 36]. Our proposed deep RL-based algorithm can
address long-term constraints within the RL framework by the modification
of reward based on the Lyapunov optimization technique. In addition, an
optimization subroutine is embedded in our algorithm to further reduce the
training complexity.

12.4 Performance Evaluation

12.4.1 Experiment Setup

We consider a smart factory in which mobile devices such as vibration sensors
are randomly scattered. Those devices mounted on industrial facilities (e.g., robot
arms) capture the operating information. Those sensing data are then either locally
processed or offloaded to an AP in the factory.

DNN Inference Services We consider two kinds of DNN inference services:

• Type I Service: A facility fault diagnosis service that identifies the type of fault
according to the collected bearing vibration signal dataset [29]. Because the
period of a time slot is one second, we configure the task data size to be the
data volume of a one-second signal, given by the multiplication of the raw
sampling rate and the signal quantization parameter. The bearing vibration signal
is captured at 48 KHz sampling rate and 16 bit quantization. The resulting task
data size is 768 Kb. For this type of service, we set the long-term accuracy
threshold to be 0.8.

284 W. Wu et al.

• Type II Service: An extended service from the Type I that diagnoses facility
fault based on a low-grade bearing vibration dataset at higher inference accuracy
requirement, 0.9. The low-grade dataset senses the vibration at a lower sampling
rate of 32 KHz, and the resulting task data size is 512 Kb.

We assume the task arrival rates of both services at each device in each time slot
form a uniform distribution. Four potential sampling rates for each device are
considered in the simulation, which are 25%, 50%, 75%, and 100% of the raw
sampling rate. Accordingly, based on extensive experiments on the dataset [29],
the required accuracy to those sampling rates are 0.59, 0.884, 0.950, and 0.987, and
the balance parameter, V , is set to be 0.05.

Neural Network Structure To train the proposed deep RL-based algorithm, we
set the learning rate of the actor and the critic to be 10−4 and 10−3, respectively.
The hidden units of both the actor and the critic are set to be (64, 32), while the
ReLU function is employed for hidden activation. Note that the Tanh function is
used for actor output activation. The training process lasts for 1000 episodes, each
of which consists of 200 time slots.

Benchmark We consider the following two benchmark algorithms for perfor-
mance comparison:

• Delay myopic: Each device dynamically determines the sampling rate and task
offloading decisions, to maximize the one-step reward in (12.21) based on the
network state.

• Static configuration: Each device follows a fixed configuration on the sampling
rate and the task offloading, which satisfy the services’ accuracy requirements.

12.4.2 Convergence Performance

Figure 12.4 shows the performance comparison of service delay in the training
stage. The average service delay drops as the training continues, which suggests the
convergence of the proposed RL-based algorithm. In addition, Fig. 12.5 illustrates
the accuracy performance for both services with training episodes. The accuracy
performance fluctuates at the beginning of the training. But after around 1000
episodes of training, the average accuracy converges to the required level.

12.4.3 Impact of Task Arrival Rate

After the algorithm is well-trained offline, the performance of the proposed infer-
ence algorithm is evaluated in an online scenario. Figure 12.6 gives the comparison
on the average service delay with respect to different task arrival rates for W =

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 285

0 200 400 600 800

Training Episodes

0.25

0.3

0.35

0.4

0.45

0.5

S
er

vi
ce

 D
el

ay
 (

s)

Fig. 12.4 Average delay performance of the proposed algorithm with respect to training episodes
in the training stage

20 MHz. Each arrival rate is added up with a 95% confidence interval. It is
shown that the service delay grows with the task arrival rate of the constrained
communication and computing resources. Meanwhile, the proposed RL-based
algorithm gives significantly lower service delay than the benchmark schemes. This
is because the proposed algorithm can capture network dynamics, including the
pattern of task arrival and channel condition variation, by continuously interacting
with the environment. Such knowledge is learnt and utilized by the algorithm to
make online decisions that improves long-term performance. In contrast, benchmark
schemes only focus on performance in the short term, and they cannot adapt to
network dynamics either. In particular, the proposed algorithm reduces the average
service delay by 19% and 25%, respectively, as compared with delay myopic and
static configuration schemes.

We also give the boxplot accuracy distribution of both services with respect
to different task arrival rates in Fig. 12.7. In this figure, the long-term accuracy
requirements for both services are 0.8 and 0.9, respectively. The proposed algorithm
is able to guarantee the long-term accuracy requirements of both services, with the
maximum error probability less than 0.5%.

286 W. Wu et al.

0 200 400 600 800

Training Episodes

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y
Type I Service
Type II Service

Fig. 12.5 Inference accuracy performance of the proposed learning algorithm with respect to
training episodes in the training stage

12.4.4 Impact of Optimization Subroutine

We further evaluate the performance of the proposed algorithm with a fixed
computing resource allocation strategy (referred to as proposed-fixed). This strategy
allocates edge computing resource based on the average computing demand of
two services. As shown in Fig. 12.8, the proposed algorithm provides significant
performance gain in case of limited edge computing resource. Specifically, the
performance gain in reducing the service delay decreases from 1.98× at 1 GHz
CPU frequency to only 1.02× at 1.2 GHz CPU frequency. The underlying reason
is that efficient resource allocation weighs higher in resource-constrained scenarios.
The simulation curves confirm the effectiveness of the optimization subroutine of
computing resource allocation. In light of this optimization subroutine, reducing the
training complexity of the proposed RL algorithms can also be considered.

12.5 Conclusion

In this chapter, we have jointly investigated the collaborative DNN inference with
sampling rate adaption and resource allocation problem in wireless networks. A
deep RL-based algorithm has been devised to capture the pattern of the channel
variation and the task arrival, which is then employed to deliver accuracy-guaranteed

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 287

Fig. 12.6 Performance comparison of the service delay in terms of different task arrival rates

Fig. 12.7 Inference accuracy performance comparison in terms of different task arrival rates

DNN inference services. The proposed algorithm can dynamically reduce the
service delay, without requiring prior information of network dynamics.

For DNN inference, further research is required in the following aspects:
(1) DNN inference performance should be investigated in the mobile scenarios
considering device mobility; and (2) instead of task offloading, the DNN model can
be partitioned into a device-side model and a server-side model for collaborative
inference. As such, the partition point and resource (computing and spectrum)
allocation should be judiciously considered, especially in dynamic network envi-
ronments.

288 W. Wu et al.

Fig. 12.8 Service delay in terms of CPU frequency of the edge server

References

1. W. Wu, P. Yang, W. Zhang, C. Zhou, X. Shen, Accuracy-guaranteed collaborative DNN
inference in industrial IoT via deep reinforcement learning. IEEE Trans. Ind. Inf. 17(7), 4988–
4998 (2021)

2. H. Hu, B. Tang, X. Gong, W. Wei, H. Wang, Intelligent fault diagnosis of the high-speed train
with big data based on deep neural networks. IEEE Trans. Ind. Inf. 13(4), 2106–2116 (2017)

3. W. Zhang, D. Yang, H. Peng, W. Wu, W. Quan, H. Zhang, X. Shen, Deep reinforcement
learning based resource management for DNN inference in industrial IoT. IEEE Trans. Veh.
Technol. 70(8), 7605–7618 (2021)

4. G. Gobieski, B. Lucia, N. Beckmann, Intelligence beyond the edge: Inference on intermittent
embedded systems, in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (2019), pp. 199–213

5. Y. Chen, T. Krishna, J. S. Emer, V. Sze, Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–138 (2017)

6. D.A. Chekired, L. Khoukhi, H.T. Mouftah, Industrial IoT data scheduling based on hierarchical
fog computing: a key for enabling smart factory. IEEE Trans. Ind. Inf. 14(10), 4590–4602
(2018)

7. E. Li, L. Zeng, Z. Zhou, X. Chen, EdgeAI: On-demand accelerating deep neural network
inference via edge computing. IEEE Trans. Wirel. Commun. 19(1), 447–457 (2020)

8. S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding (2015). Preprint arXiv:1510.00149

9. S. Teerapittayanon, B. McDanel, H. Kung, Branchynet: Fast inference via early exiting
from deep neural networks, in Proceedings of the IEEE International Conference on Pattern
Recognition (2016), pp. 2464–2469

12 Collaborative Deep Neural Network Inference via Mobile Edge Computing 289

10. G. Chen, W. Choi, X. Yu, T. Han, M. Chandraker, Learning efficient object detection
models with knowledge distillation, in Proceedings of the Conference on Neural Information
Processing Systems (2017), pp. 742–751

11. P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, X. Shen, Edge coordinated query configuration for
low-latency and accurate video analytics. IEEE Trans. Ind. Inf. 16(7), 4855–4864 (2020).

12. W. Zhuang, Q. Ye, F. Lyu, N. Cheng, J. Ren, SDN/NFV-empowered future IoV with enhanced
communication, computing, and caching. Proc. IEEE 108(2), 274–291 (2019)

13. M. Li, J. Gao, L. Zhao, X. Shen, Deep reinforcement learning for collaborative edge computing
in vehicular networks. IEEE Trans. Cogn. Commun. Netw. 6(4), 1122–1135 (2020)

14. W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, X. Li, Dynamic RAN slicing for
service-oriented vehicular networks via constrained learning. IEEE J. Sel. Areas Commun.
39(7), 2076–2089 (2021)

15. C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, X. Shen, Deep reinforcement learning for
delay-oriented IoT task scheduling in space-air-ground integrated network. IEEE Trans. Wirel.
Commun. 20(2), 911–925 (2021).

16. Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, X. Shen, Delay-minimization routing for
heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh.
Technol. 68(4), 3967–3979 (2019)

17. X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, J. Rao, AI-assisted network-slicing
based next-generation wireless networks. IEEE Open J. Veh. Technol. 1, 45–66 (2020)

18. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, W. Zhuang, Holistic network virtualization and
pervasive network intelligence for 6G. IEEE Commun. Surveys Tuts. 24(1), 1–30 (2022)

19. W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, W. Zhuang, X. Shen, AI-native network
slicing for 6G networks. IEEE Wirel. Commun. 29(1), 96–103 (2022)

20. S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, X. Shen, Delay-aware microservice coordination
in mobile edge computing: a reinforcement learning approach. IEEE Trans. Mobile Comput.
20(3), 939–951 (2021)

21. P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, X. Shen, Content popularity prediction towards
location-aware mobile edge caching. IEEE Trans. Multimedia 21(4), 915–929 (2019)

22. W. Wu, N. Zhang, N. Cheng, Y. Tang, Aldubaikhy, K.X. Shen, Beef up mmWave dense
cellular networks with D2D-assisted cooperative edge caching. IEEE Trans. Veh. Technol.
68(4), 3890–3904 (2019)

23. W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, X. Shen, Fast mmwave beam alignment via
correlated bandit learning. IEEE Trans. Wirel. Commun. 18(12), 5894–5908 (2019)

24. W. Wu, N. Cheng, N. Zhang, P. Yang, K. Aldubaikhy, X. Shen Performance analysis and
enhancement of beamforming training in 802.11ad. IEEE Trans. Veh. Technol. 69(5), 5293–
5306 (2020)

25. W. Zhang, D. Yang, Y. Xu, X. Huang, J. Zhang, M. Gidlund, DeepHealth: a self-attention
based method for instant intelligent predictive maintenance in industrial Internet of things.
IEEE Trans. Ind. Inf. 17(8), 5461–5473 (2021)

26. L. Lei, Y. Kuang, X. Shen, K. Yang, J. Qiao, Z. Zhong, Optimal reliability in energy harvesting
industrial wireless sensor networks. IEEE Trans. Wirel. Commun. 15(8), 5399–5413 (2016)

27. D. Bernstein, Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput.
1(3), 81–84 (2014)

28. A. Krizhevsky, I. Sutskever, E. Hinton, ImageNet classification with deep convolutional neural
networks, in Proceedings of the Conference on Neural Information Processing Systems (2012),
pp. 1097–1105

29. International Data Corporation. [Online]. Available: https://csegroups.case.edu/
bearingdatacenter/pages/download-data-file. Accessed: Jun. 2021

30. E. Altman, Constrained Markov Decision Processes (CRC Press, Boca Raton, 1999) Available
via DIALOG

31. M.J. Neely, Stochastic network optimization with application to communication and queueing
systems. Synth. Lect. Commun. Netw. 3(1), 1–211 (2010)

https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
https://csegroups.case.edu/bearingdatacenter/pages/download-data-file

290 W. Wu et al.

32. J. Luo, F. Yu, Q. Chen, L. Tang, Adaptive video streaming with edge caching and video
transcoding over software-defined mobile networks: A deep reinforcement learning approach.
IEEE Trans. Wirel. Commun. 19(3), 1577–1592 (2020)

33. J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for mobile edge computing
in dense networks, in Proceedings of the IEEE International Conference on Computer
Communications (2018), pp. 207–215

34. S. Boyd, S.P. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press,
Cambridge, Vandenberghe). Available via DIALOG

35. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,
Continuous control with deep reinforcement learning, in Proceedings of the International
Conference on Learning Representations (2016)

36. Q. Liang, F. Que, E. Modiano, Accelerated primal-dual policy optimization for safe reinforce-
ment learning (2021). Available via DIALOG, https://arxiv.org/abs/1802.06480

https://arxiv.org/abs/1802.06480

Chapter 13
Automated Data-Driven System for
Compliance Monitoring

Humphrey Rutagemwa and François Patenaude

13.1 Introduction

The wireless applications that are becoming an increasing part of our every day
lives are based on the electromagnetic spectrum that has been studied since the
nineteenth century. While the electromagnetic spectrum spans a very wide range
for frequencies, up to the optical domain, only a part has been historically in use
for radiocommunication purposes. The traditional radio spectrum band is usually
defined between 9 kHz and 30 GHz; however, with new applications emerging, the
upper limit could soon be around 300 GHz [1, 2]. As illustrated in Fig. 13.1, the radio
spectrum band is itself divided into bands [3] depending on the field of applications.
The most common sub-bands are the decade’s bands starting with the VLF up to the
EHF. Additionally, these sub-bands are divided into sub-sub-bands like in satellite
communications (SHF), where they take the letters L, S, C, X, Ku, K, and Ka. The
same idea applies to the other sub-bands, where the sub-divisions are often based
on the country in which the radio spectrum is used. This makes the spectrum a
multi-dimensional natural resource that is finite, however, non-exhaustive.

The electromagnetic spectrum is being used for many communication applica-
tions. In general, its use can provide tremendous opportunities for social and eco-
nomical development. The economic value of commercial spectrum has exploded
over the last decades and is now seen as a national resource that requires dedicated
management [4].

H. Rutagemwa (�) · F. Patenaude
Communications Research Centre, Ottawa, ON, Canada
e-mail: humphrey.rutagemwa@ised-isde.gc.ca; francois.patenaude@ised-isde.gc.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_13

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_13&domain=pdf
mailto:humphrey.rutagemwa@ised-isde.gc.ca
mailto:francois.patenaude@ised-isde.gc.ca
https://doi.org/10.1007/978-3-030-98064-1_13

292 H. Rutagemwa and F. Patenaude

Maritime
Navigation
Fixe
Mobile

Navigation
Aids

AM Maritime
Radio
AM Broadcasting

Shortwave
Radio
Radiotelephony

VHF TV
FM radio
Navigation
aids

Cell phones
UHF TV
Unlicensed

Satellite/Microwave
telecommunication

Radio Astronomy radar
landing systems

VLF LF MF HF VHF UHF SHF EHF

100 km 10 km 1 km 100 m 10 m 1 m 10 cm 1 cm 1 mm
Increasing wavelength Increasing frequency

3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

1-40 GHz

SATELLITE FREQUENCY

1 2 4 8 12 18 26 GHz 40

L S C X Ku K Ka

Fig. 13.1 Spectrum overview. Source [3]

13.1.1 Radio Spectrum Management

Radio spectrum management (later referred to as spectrum management) is the
overall process of regulating and administering use of the radio spectrum [5].
Spectrum management is predominantly a national responsibility exercised by an
organization casually referred to as the regulator. The national spectrum regulators
work to enable the conditions for orderly deployment of radiocommunication
system within the national territory. The spectrum is made available by consid-
ering the stakeholders that include the end-users, the equipment manufacturers,
the providers of commercial services, and the providers of public services. The
master plans for managing the spectrum are administratively reflected in high-
level policies that reflect economic, technical, and social objectives. The economic
and social objectives often target the development of a national or continental
industry and the promotion of competition to serve various groups in society.
The technical objectives are implemented with three key spectrum management
functions: spectrum planning, spectrum authorization (assigning, licensing), and
spectrum monitoring.

Spectrum planning provides long-term direction and cohesion of policies. The
most tangible output of this function is a national radio spectrum allocation chart
that defines the different services in the various spectrum sub-bands. Spectrum
authorization is the process by which users are granted spectrum resources and
permitted to use these resources within specific regulatory conditions, which
impose limits on parameters such as geographic coverage, frequency range, and
transmission power. Spectrum monitoring serves as the eyes and ears of the

13 Automated Data-Driven System for Compliance Monitoring 293

spectrum management process [5]. For example, it provides valuable data to
facilitate compliance verification and interference investigation.

13.1.2 Spectrum Monitoring for Compliance

Spectrum monitoring to ensure compliance with regulatory requirements is one
of the key spectrum management activities that contribute to preventing harmful
interference and improving the overall quality of the spectrum. It ensures the
integrity of spectrum and radio environments, enabling the orderly operations
of spectrum awareness, planning, and licensing activities within the regulatory
framework.

The growth of the digital economy, along with the evolution of advanced tech-
nology, has led to increasing spectrum demands for more wireless service coverage
and dense deployments of intelligent radio devices. As a result, spectrum regulators
worldwide are experiencing an increased workload on management activities,
including spectrum monitoring activities to verify compliance with license terms
and conditions, to detect unlicensed operations and to check unpaid license fees.
One of the key challenges faced by the spectrum regulators is how to efficiently and
scalably carry compliance activities in a wide range of frequency bands over large
geographical areas using limited equipment and human resources.

On the other hand, new advanced technologies for spectrum monitoring, data
processing, and data analytics are emerging. A few examples include networked
heterogeneous sensors with advanced signal processing, cloud computing and
infrastructure, and advanced machine learning algorithms and artificial intelligence.
With recent advanced technologies, spectrum regulators have great opportunities to
improve their spectrum management approaches and processes.

13.1.3 Chapter Contributions and Organization

This chapter presents an automated data-driven testbed system that leverages
advanced technologies to facilitate efficient and scalable spectrum monitoring and
compliance activities. It aims to reduce the manual workload on spectrum managers
by automatically collecting spectrum data from different sources, identifying
compliance issues, and performing analytics to provide actionable insights. The
goal of such automated data-driven system is not to replace the judgment and
expertise of spectrum managers but to assist in making better evidence-based
decisions. It could be beneficial by providing information and insights that will help
preventing interference and protecting spectrum integrity, speeding up resolution
of the compliance issues, identifying and localizing a wider range of compliance
violations, and generating data (evidence) to support potential enforcements.

It should be noted that the objective of this chapter is not to provide a detailed
design of operational systems. Rather, it is to present high-level concepts and
functions of such systems. Some parts of the research work and live experimental

294 H. Rutagemwa and F. Patenaude

testbed1 developed at the Communications Research Centre Canada (CRC) are
presented through the chapter. The intent is to help explaining and illustrating key
concepts of data-driven systems and possible solutions for monitoring spectrum to
ensure compliance with regulatory requirements.

The remainder of this chapter is structured as follows: Sect. 13.2 presents an
automated data-driven system for supporting compliance monitoring. Section 13.3
describes data sources for spectrum measurements, spectrum management records,
and relevant auxiliary data. Section 13.4 presents functions for preprocessing data.
Functions for the detection, characterization, and prioritization of violations are
discussed in Sect. 13.5. Finally, summary and concluding remarks are provided in
Sect. 13.6.

13.2 Automated Data-driven System

This section presents an automated data-driven system for supporting spectrum
monitoring and compliance activities in spectrum sharing environments where
licensed radio systems may use overlapping frequency channels in the sub-6 GHz
bands and operate over large geographical areas. The main functional requirements
for the system are to collect spectrum data from various sensors, identify compliance
violations, and perform compliance analytics to provide actionable insights.

Figure 13.2 shows a block diagram of the proposed automated data-driven
system. It is composed of five functional blocks: data source, signal identification,
violation identification, compliance analytics, and user interface. These blocks are
described as below.

• The Data Source Block provides access to spectrum measurements, spectrum
management records, and relevant auxiliary data, which can be obtained from
internal or third-party monitoring services. Spectrum measurements include data
collected directly from RF sensors or network sniffers. Spectrum management
records include data from license/certificate databases and device/equipment
databases. Relevant auxiliary data includes historical records of data for weather,
events (political, social, economical, environmental), and satellite maps.

• The Signal Identification Block preprocesses various data sources to provide
more accurate measurements that give a better picture of what is going on.
Specifically, it performs the following tasks: decomposing sensed signals into
components (modes) from the different emitters, mapping identified signal
components to emitters and licenses, and associating measurements and emitters
in the databases.

1 CRC live experimental testbed incorporates spectrum measurements from various sensors located
across Canada. However, it is not deployed operationally.

13 Automated Data-Driven System for Compliance Monitoring 295

Violation Identification

• Detection

• Characterization

• Prioritization

Scores

Indicators

CasesFused Information

Licence Records +

Measurements +

Signal Identification

• Decomposition

• Matching

• Association

Data Analytics

Enhanced Data Compliance Issues User Interface

Spectrum Measurements

Spectrum License Records

Relevant Auxiliary Data

Data Source

Fig. 13.2 Block diagram of an automated data-driven system for supporting spectrum monitoring
and compliance activities

• The Violation Identification Block performs the detection, characterization, and
prioritization functions. The detection function filters channels with anomalous
or unexpected emission characteristics and classifies the type of violations. The
characterization function computes confidence, behavior, extent, and impact
indicators, which provide a complete and holistic view of compliance violations.
The prioritization function considers various factors and computes priority scores
that rank the relative importance of compliance violations.

• The Compliance Analytics Block analyzes historical data of compliance vio-
lations (types of violations, base indicators, and priority scores) and provides
actionable insights and foresight to support evidence-based compliance audits
and investigations. The functions performed by this block include computing
summary statistics, recognizing patterns and trends, predicting the extent of
potential and actual impacts, generating prioritized compliance violation alerts,
and recommending cause of actions for interference diagnosis and resolutions.

• The User Interface Block presents results to the end-users (e.g., spectrum
managers) in various ways: graphical user interface (GUI) with dynamic, interac-
tive, and responsive dashboards and drill-down graphs, application programming
interface (API) to support remote access and applications on numerous platforms,
and data sets and reports in multiple standard file formats.

The rest of this chapter presents detailed descriptions of the data source, signal
identification, and violation identification functional blocks.

296 H. Rutagemwa and F. Patenaude

13.3 Data Sources

The spectrum monitoring process can take very different forms depending on the
spectrum management goal. The goal can be specific to a communication system
type or more general toward an ensemble view of a band with very different
communication infrastructures. In the first case, deep system-level data could
be extracted to estimate the performance metrics. In the second case, external
signal parameters are often more indicative and easier to gather. For a spectrum
regulator, the ensemble view is often more beneficial for the stakeholders and
the mandate of a public organization. The information collected to generate an
ensemble view can also take a different form. In this chapter, the elementary data
is a measurement representing a meaningful system-level quantity defined in time,
space, and frequency. In the commercial broadband bands, such measurements are
often associated with the key performance indicators (KPIs) used to characterize
the system performance. For the land mobile radio (LMR) bands, the traditional
measurement is the channels’ power.

13.3.1 Spectrum Measurements

For CRC testbed spectrum measurements, signal-to-noise ratio, signal bandwidth,
and signal carrier frequencies are also collected using a wideband channel software-
defined scanner with probability of false alarm detection [6]. These added dimen-
sions increase the degrees of freedom in several of the analyses presented in the
following sections. Note that the instantaneous angle-of-arrival at the sensor could
be added if the sensor capability was present. These instantaneous measurements are
performed several thousand times per hour per channel, according to a predefined
table that contains several thousand channel definitions consisting of channel center
frequency, channel bandwidth, and a channel ID. These measurements are done
with equipment located at a fixed location for a certain timeframe that can go
from a few hours to weeks or months or on the move following roadways. Some
examples of spectrum monitoring are [7, 8], where power only is collected to derive
radiofrequency occupancy.

The extent of time–frequency–space in the work performed within the CRC
testbed is also different than many of these studies. The data collection happened
for approximately four years in major cities across Canada in the frequency range
from 117 to 960 MHz. The space coverage is defined by the sensor locations
and the sensor sensitivity. The sensors’ locations are mainly in major Canadian
cities, as depicted in Fig. 13.3. The sensors’ sensitivity depends primarily on the
antenna height and noise figure of the equipment. Because of the larger number of
sensors, heterogeneous sensors were used with typical specifications exemplified in
Table 13.1.

Such large-scale data collection can only be accomplished with cloud infras-
tructure to automate the data retrieving, data storage, and data management [9].

13 Automated Data-Driven System for Compliance Monitoring 297

Fig. 13.3 Sensor locations map

Table 13.1 Typical specifications of software-defined heterogeneous wideband scanner

Parameters Values range

Frequency range 20 MHz to 3 GHz

Tuning resolution 1 Hz

IP3 16–20 dBm

Noise figure 88–20 dB

Instantaneous bandwidth 14–24 MHz

Resolution bandwidth 1–2 kHz

Measurement period 2–4 ms

Instantaneous dynamic range Greater than 60 dB

Dynamic range Greater than 100 dB

Revisit period (400 MHz scan) 0.33–4 s

Detection method Energy detection with constant probability of
false alarm or fixed signal-to-noise ratio

The basic data schemas to support the analytics of the use cases are composed of
several tables. In that respect, the data is organized in three layers that express the
level of aggregation in time. Level 1 (L1) data contains the individual measurements
where the time, frequency, and location are attached to the quadruple power, SNR,
bandwidth, and carrier estimations measurements. The L1 measurements are then
used to build Level 2 (L2) histograms of power, SNR, bandwidth, and carrier
estimation measurements over an hour. The L2 histograms also include the burst-
on and burst-off distributions in dB-millisecond to characterize the nature of the
bursts over the channels. Finally, the Level 3 (L3) statistics parameterized the L2
distributions again over an hour to increase the level of aggregation. Note that
measurements are still time–space–frequency organized and not linked to an actual
assignee in general.

298 H. Rutagemwa and F. Patenaude

13.3.2 Spectrum Management Records

The measurement records are the observations that reflect the spectrum activity
over a given area, frequency range, and time period. They correspond, in theory,
to the licensing/assignment information that the regulator manages and is available
as input data for the spectrum monitoring process. For example, see [10]. With the
availability of low-cost frequency scanners and Internet access, radio enthusiasts
have also collected information on radio frequency use. An example of such a site is
the Radio Reference database [11]. RadioReference.com is a communications data
source featuring a frequency database containing user-provided spectrum labels,
including emission class information corresponding to each frequency detected.
It is especially useful to analyze networks of radio systems. As with all crowd-
sourcing information, some of the content provided needs to be verified for the level
of accuracy.

13.4 Signal Identification

The traditional approach to identify user signals is to analyze the power L2
measurements and identify modes in the histogram structure of fixed sensors of
a given channel over a given hour, for example. This approach tends to work well
in non-congested areas or when the channel assignment is guided by conservative
interference levels with the sensor close to the location of interest. The L2 power
histograms approach is suitable for clearly separated power modes. It typically
gives a lower bound on the true number of modes. However, it has shortcomings,
notably:

• Overlapping powers at the sensors are difficult to distinguish.
• The power samples do not link to the bandwidth and carrier offset information

measurements.
• It can be difficult to identify the same signal in space, especially when more than

one signal is present.

The overall concept of the proposed signal identification is presented in Fig. 13.4.
The components are organized into three categories: the field components represent-
ing the sensors (hardware, processing software, and control), the cloud storage to
hold all of the spectrum management records and the inferred information, and the
cloud analysis where the different use cases get their processing implemented. For
the signal identification cloud analysis use case, three main steps are needed. The
first step is the mode analysis to decompose the measurements into groups that have
similar quantities. This is done on a sensor basis in the cloud but could also happen
on the sensor itself. Once each mode is identified on the sensors, the cross-mode,
cross-sensor correlation attempts to detect the same signal mode in space (among a
group of regional sensors). Signal modes matching in space are concluded to come

13 Automated Data-Driven System for Compliance Monitoring 299

from the same emitter. Finally, the license-measurement association step is deciding
on which signal modes matching in space are associated with which candidate
licensee. Note that for each of these steps, information tables are generated to
augment the spectrum management information. The final information obtained is
the emitter table that holds the actual licensee measurement information aggregated
from matching signal modes in space.

13.4.1 Mode Analysis

To better link the measurements to the actual radio environment, the use of L1 data
is advantageous. It offers more dimensions to try to separate the spectrum users and
ultimately provides the data to build the L2 and L3 data set on a mode basis instead
of the channel approach. This section will now look at the classification approach
taken to label the L1 samples. The data with a mode label associated with each
sample will be denoted L1+ (or augmented data in Fig. 13.4).

In the general field of classification, two main approaches have been used:
supervised and unsupervised methods. Supervised classification requires a label
for the samples that is not available here. Additionally, supervised classification is
useful in the context of classifying new samples in a channel. Since the interest here
is more in characterizing the spectrum than predicting it, an unsupervised clustering
method is preferred and used to separate the users of a given channel at a given
sensor over a defined time period.

Several clustering methods have been developed over the last decades. A good
review of these methods can be found in [12]. The constraint in the present context
and many other practical situations is that the number of users in a measurement sets

Fig. 13.4 Block diagram of the signal identification steps

300 H. Rutagemwa and F. Patenaude

is unknown, i.e., the cluster size. Another practical issue here is that the number of
channels is large, the number of time periods is large, and the number of sensors is
significant. The combination of these makes it impractical to have a manual analysis
to set the cluster size. This also implies that the hyper-parameters used at the input
of the algorithm need to be fixed or estimated from the measurements itself. With
the amount of data to process, it is unlikely that a fixed hyper-parameter value will
provide good performance. Practically, some of the measurement points are likely
to be outliers or noisy. The algorithm should have a provision to classify samples as
outliers so that the statistics of the emitters are not drastically affected. The clusters
expected from the measurements are also non-convex as they are generated from
a variety of modulated signals and interference patterns. Non-convex clusters are
clusters where it is not possible to draw a line between two cluster points without
going outside of the cluster. A simplification here is that the number of dimensions
is relatively small (on the order of 3–4) and the maximum number of clusters in the
measurement set is also small (less than about 5). The time period of interest can
be of any value. However, to avoid having to deal with large clustering matrices,
the value of one hour is a logical start. The objectives of the clustering on an hourly
basis are then to (1) minimize the number of false clusters, (2) minimize the number
of missed clusters, and (3) minimize the size of the outlier cluster.

To achieve the above objectives, the selection of the algorithm is based on
scalability or suitability for large-scale data sets, the arbitrary shape of data sets,
sensitivity to the sequence of input data, and sensitivity to noise/outlier. From [12],
the choice reduces to a few algorithms, CURE [13], Moment Method [14],
DBCLASD [15], DBSCAN [16], OPTICS [17], STING [18], and GMM [19].
After accounting for the different practical considerations like the number of
hyper-parameters, type of hyper-parameters, and availability of code in R [20] and
Python [21], it was decided to use DBSCAN. The DBSCAN can deal with border
points. Furthermore, only two hyper-parameters need to be provided.

The use of the Density Based Spatial Clustering of Applications with Noise
(DBSCAN) is of the form:Object ← DBSCAN(data, eps,minP ts). The hyper-
parameters for DBSCAN are eps and minP ts. The main idea behind the divisive
hierarchical algorithm is that two points belong to the same cluster if you can walk
from the first point to the second one by a “sufficiently small" step (eps) with the
constraint that one of the points has sufficient density (minP ts). The rule of thumb
for minP ts is to use at least the number of dimensions of the data set plus one [20].
Here it would be 4 as we have three dimensions in our data set. The eps is the
most critical hyper-parameter to estimate. In [20], an approach is presented where
the estimate can be associated with the ordinal value of the knee of an ordered
minP ts nearest neighbor distances of all the points in the input set. When dealing
with numerous data sets, the approach needs to be automated and validated for the
current application. There seems to be a very limited set of published automated
approaches to find the knee or a value around the knee, forcing us to develop one.
The approach taken is to find the maximum k Nearest Neighbor (kNN) distance of
a line perpendicular to a line going from the first to the last point of the sorted kNN
distances.

13 Automated Data-Driven System for Compliance Monitoring 301

13.4.2 Mode-Sensor Matching

Once the signals at a sensor are identified, it is then necessary to determine if other
sensors have also seen the same signal in space. To decide on such cases correlations
between all the modes of sensor pairs are performed. The correlation function in a
given hour for a given channel between a sensor mode power and another sensor
mode power is performed at 1 sample per second, thus with vectors of 3600 samples.
The L1+ power needs to be resampled since it is not sample synchronized and not
at the same sampling rate. The resampling is done by keeping the max power value
for a second or set to a default value if no sample exists within a given second.
Once the cross-correlation is performed, the peak value and the lag value of the
peak are collected. These values are used to determine which sequences have some
commonality. The lag between the sensors should be constant for all signals seen
by a sensor pair. Next, the signals are shifted by the lag values to align the power
waveform to compute a third parameter called mutual occupancy as a measure of
similarity of the waveform. These three parameters (peak level, peak lag, and mutual
occupancy) are then analyzed to decide on the commonality. Figures 13.5 and 13.6
show examples of the outputs.

It is to be noted that the lower power modes are incomplete sequences because
some of their measurements are hidden by the strongest mode (energy detection).
This will have the impact of reducing the correlation peak value. Once the
correlation parameters are available, a decision on the commonality or not of a
signal mode at two sensors is needed. For an ensemble of channels, the data looks
as in Fig. 13.7 for the correlation peak and the mutual occupancy with the blue dots
representing the same signals and the green dots different signals at the two sensors.
The mutual occupancyMo is defined as

Correlation lag [s]

Co
rr

el
at

io
n

pe
ak

600-600
-1

1

0

0

Peak of 0.618 at lag 355 SpectrumExplorer1_1 & SpectrumExplorer2_1

Peak of 0.946 at lag 38 SpectrumExplorer1_1 & SpectrumExplorer3_1
Peak of 0.852 at lag -318 SpectrumExplorer2_1 & SpectrumExplorer3_1

Fig. 13.5 All cross-modes cross-sensors correlation functions

302 H. Rutagemwa and F. Patenaude

Time [s]

Po
w

er
[d

Bm
]

-110

-50

00:10:3254:00:32

SpectrumExplorer1_1

SpectrumExplorer1_2

SpectrumExplorer2_1

SpectrumExplorer2_2

SpectrumExplorer3_1

Fig. 13.6 Time-aligned L1 measurements at one sample/sec for three sensors and all modes

Fig. 13.7 Signal mode matching decisions for one pair of three sensor pairs

Mo = max

(
Mc

N1
,
Mc

N2

)
, (13.1)

where N1 and N2 are the number of detection from sensor 1 and sensor 2,
respectively, during a one hour time period.Mc is the mutual count computed as

13 Automated Data-Driven System for Compliance Monitoring 303

Mc =
3600∑

i=1

1I
[(
S1
i > T1

)
&
(
S2
i > T2

)]
, (13.2)

where S1
i and S2

i are time-aligned within one second resolution of the sensors
measured signal power. T1 and T2 are the respective sensor power thresholds
computed using [6]. 1I [·] is the indicator function, that is, 1I [True] = 1 and
1I [False] = 0. Figure 13.7 was obtained with a Kmeans classifier with a cluster
count of two as an input for the hyper-parameter.

13.4.3 License-Measurements Association

The knowledge of the signals in space provided by the above function enables the
association of licenses with the measurements in space. The decision rule adopted
here is

Associate T x := arg min
T x j

{
L∑

i=1

∣
∣∣P
predictedj
sensori − Pmeasuresensori

∣
∣∣

}

, (13.3)

for j = 1, 2, ..., C, whereC is the number of candidate transmitters,L is the number

of identified signals in space, P
predictedj
sensori is the predicted power scalar values of

transmitter j at sensor I , and Pmeasuresensori
is the measured power scale value at sensor

i. The threshold T ensures that some level of coherency is preserved in terms of
power and space.

The value of T depends on factors like sensor calibration and prediction model
accuracy. There are many scenarios involved here. In the simplest case, there is
one signal mode in space, one licensee, and the summation is less than T . The
case where no measurements can be associated with a licensee transmitter results
in detecting an illegal transmitter. In that case, a subsequent step is to estimate
the location of the illegal transmitter (not represented in Fig. 13.4). The case of
no signal mode and licensee may indicate that the location and the sensitivity
of the sensors is not adequate to monitor the licensee. This is often the case for
low-power emitter licensees. The outcome of the present association is an explicit
link between the licenses and the measurements. The resulting table would contain
information such as occupancy, estimated bandwidth, carrier offset of the licensees,
and other information like potential interference on the channel. In future work,
other approaches to consider are using the distribution of power measures (the L2
power measurements) to compare probabilities instead of a sum of absolute power
differences.

304 H. Rutagemwa and F. Patenaude

13.5 Violation Identification

Consider large-scale compliance monitoring operations that require the identifica-
tion of various types of compliance violations that occur in large geographical areas
over long periods of time in many frequency channels. In such situations, the viola-
tion identification block shown in Fig. 13.2 can utilize preprocessed data to identify
potential violations and generate information to support compliance analytics. The
core functions of the violation identification block are detecting, characterizing, and
prioritizing compliance violations. The following sections present frameworks and
guidelines for developing and implementing these functions.

13.5.1 Detecting Violations

A compliance violation occurs if a spectrum user does not conform to requirements
because the transmission is unlicensed or the transmission does not comply with
rules and regulations. Typical compliance violations include [5] illegal or unlicensed
operation of transmitters or use of frequencies, unauthorized operating periods or
locations, illegal emission classes, excessive frequency offset, excessive bandwidth,
and excessive power. These violations can occur for various reasons or motives.
They can be inadvertent (e.g., equipment failure), reckless (e.g., system miscon-
figuration), or deliberate (e.g., illegal jamming). In general, compliance violations
can be detected or confirmed by comparing parameters derived from spectrum mea-
surements and the corresponding parameters derived from spectrum management
databases. In that case, the measurements provide ground-truth data with technical
parameters such as center frequency, frequency offset, occupancy, field strength and
power-flux density, occupancy bandwidth, direction, polarization, and modulation.
The databases provide reference data for licensees, equipment, and stations with
technical parameters such as assigned frequency, predicted field strength, emission
class, and assigned bandwidth. Detecting compliance violations involves processing
spectrum data with various levels, granularities, and abstractions (e.g., measurement
traces, statistical distributions, and summary statistics). For large-scale compliance
monitoring operations, two key challenges that arise in processing spectrum data are
efficiency and scalability problems. A two-stage processing approach is proposed to
address these challenges.

• The first stage: In this stage, the key function is to detect channels with
suspicious compliance issues using methods that are relatively fast or computa-
tionally inexpensive. Detecting compliance issues may require analyzing a large
number of frequency channels. However, in real-world scenarios, the proportion
of channels with actual compliance issues is relatively small. Therefore, the goal
in this stage is to perform rapid tests on various technical parameters and reduce
the number of frequency channels that will be selected for further analysis.
Two general approaches can be applied to achieve this goal. The first approach
compares actual measurements themselves and selects frequency channels that

13 Automated Data-Driven System for Compliance Monitoring 305

show anomalies or unusual patterns. With such an approach, unsupervised
machine learning methods (e.g., clustering) or supervised machine learning
methods (e.g., binary classification) can be applied to detect anomalous channels.
The second approach is to compare parameters derived from measurements
with the predicted parameters derived from the spectrum management records.
By considering link budget, propagation models or machine learning methods
(regression) can be applied to generate predicted parameters. The primary
challenge for both approaches is finding fast ways to select suspicious channels
while maintaining high precision and accuracy.

• The second stage: In this stage, the key function is to confirm and classify
types of compliance issues that may exist in the suspicious channels. Note that
some suspicious channels may be false positive detections, meaning they do
not have compliance issues. This is especially true in congested environments.
For example, channels with adjacent channel interference could be falsely
detected with excessive bandwidth issues, whereas the ones with co-channel
interference could be mistakenly detected with excessive carrier offset issues.
Furthermore, even for detections that are true positive, some compliance issues
may not be easily classified. For example, excessive field strength derived from
measurements may be due to excessive effective radiated power and/or higher
antenna height above ground level. Therefore, the goal in this stage is to perform
a thorough analysis to determine the most likely cause of observed anomalies
or discrepancies and identify types of compliance issues. The most likely causes
can be determined by examining several technical parameters across multiple
sensors and analyzing the presence of adjacent and co-channel interference. The
underlying compliance issues can be identified by applying supervised machine
methods such as multi-class or multi-label classifications. In this case, an instance
represents suspicious channels. Labels, which may be assigned to instances,
represent possible compliance issues. The key challenges here are to model
and develop a classifier with a high probability of detection and classification
accuracy.

The data processing in the first stage uses a relatively large set of high-level data
with coarse granularity. Comparatively, the processing in the second stage uses a
relatively small set of low-level data with fine granularity. In general, processing
high-level data is less expensive in terms of time and computation compared to
processing low-level data. Since the number of channels with actual compliance
issues is relatively small, filtering channels in the first stage and then classifying
types of compliance issues in the second stage can significantly improve the overall
computation efficiency and processing time.

13.5.2 Characterizing Violations

This section identifies and discusses various indicators that show the level of
confidence in applied detection and classification methods and quantifies the
behavior, extent, and impact of the compliance violations. The indicators can

306 H. Rutagemwa and F. Patenaude

Table 13.2 List of indicators for characterizing compliance violations

Confidence Behavioral Extent Impact

Reliability Case rate Spectral extent Criticality factor

Sensitivity Excess margin Spatial extent Blocking ratio

Precision Measurement count Temporal extent Capacity loss

provide historical information critical for further analysis and actions. Patterns and
trends of indicators can help to diagnose and profile long-term violations. Several
indicators can be used to characterize compliance violations. For convenience, these
indicators are grouped into four broad categories: confidence indicators, behavioral
indicators, extent indicators, and impact indicators. Table 13.2 shows the list of
indicators in each category.

13.5.2.1 Confidence Indicators

The process of identifying compliance violations is subjected to random and sys-
tematic errors. This is partly due to the randomness of radio environments, errors in
sensing spectrum, and uncertainties in detecting compliance violations. Therefore, it
is imperative to characterize and evaluate the confidence of the underlying methods
or their outputs. Recommended confidence indicators are discussed as follows.

• Reliability is the degree to which the results of detected compliance violations
can be depended on to be accurate. It indicates the consistency of detection
methods.

• Sensitivity is the proportion of real compliance violations that are correctly
identified. Furthermore, it can be seen as the probability that an emitter is
identified as non-compliant, given that the emitter is indeed non-compliant. In
general, sensitivity indicates how well an underlying detection or classification
method can find all compliance violations. It is computed as (true positive) /(true
positive + false negative). In various fields of study, sensitivity is also known as
recall, hit rate, true positive rate, or probability of detection.

• Precision is the proportion of compliance violation identifications that are
correct. In general, precision indicates how accurate the underlying detection
or classification methods are in finding non-compliant emitters. It is computed
as (true positive)/(true positive + false positive). In various fields of studies,
precision is also known as confidence or positive predictive value.

13.5.2.2 Behavioral Indicators

The compliance violations patterns are not always the same in terms of their
magnitude and rate. Consequently, different sets of compliance issues may require
different levels of attention and urgency. Thus, it is important to characterize and

13 Automated Data-Driven System for Compliance Monitoring 307

assess the behaviors of compliance violations identified from a set of periodic (e.g.,
hourly) measurements. Proposed behavioral indicators are described as follows.

• Case Rate is the number of periodic measurements with detected compliance
issues divided by the number of all periodic measurements.

• Excess Margin is the average of the compliance violation margins derived
from the periodic measurements. A margin is defined as a degree or amount of
which the decision parameter (e.g., bandwidth, power, and carrier offset) exceeds
the corresponding decision threshold (e.g., maximum acceptable parameter
deviation).

• Measurement Count is the number of available periodic measurements
observed in a specified time window (e.g., a day). Note that some measurements
may not be available for some periods of time due to various reasons, including
hardware failures or sensor saturation (i.e., when a sensor measures a value that
is larger than its dynamic range). The measurement count provides additional
information that shows the validity and practical significance of the overall
results.

13.5.2.3 Extent Indicators

Some compliance violations may not immediately interfere with existing spectrum
users. Consequently, spectrum managers may not be aware of ongoing violations.
However, such unnoticed violations break spectrum integrity and can cause harmful
interference to spectrum users assigned in the immediate future. Therefore, it
is imperative to characterize and evaluate the extent of the potential impact of
violations on spectral, spatial, and temporal dimensions.

• Spectral Extent is the average amount of bandwidth that is affected due to
compliance violations for a given time period and location area.

• Spatial Extent is the average size of the area that is affected due to compliance
violations for a given time period and bandwidth.

• Temporal Extent is the average of duration of time that is affected due to
compliance violations for a given bandwidth and location area.

The three extent indicators could also be combined to produce a spectrum resources
indicator, computed as an average of the products of affected bandwidth, affected
time, and affected area.

13.5.2.4 Impact Indicators

Compliance violations can cause various levels of interference to radio systems and
reduce the radio system capacity in terms of usable bandwidth and coverage. Fur-
thermore, license holders who use radio systems either to support their operations
needs or to provide wireless services serve the public interest with various levels of

308 H. Rutagemwa and F. Patenaude

relative importance. Therefore, consequences of failure of their radio systems due
to compliance violations can affect the public with various degrees of severity. The
proposed impact indicators are described as follows.

• Criticality Factor is a relative score that ranks expected consequences of a radio
system due to a given type of compliance violation. It is found by multiplying
the consequences of failure and the probability of failure of the radio system due
to the violation.

• Blocking Ratio is the proportion of radio devices affected or interrupted by a
compliance violation in a given radio system. It can be found as a ratio of the
number of affected receivers and the number of all receivers in the same radio
system.

• Capacity Loss is the amount of reduced radio capacity due to a given type of
compliance violation. It is computed as the product of the amount of reduced
bandwidth and the size of overlap coverage (i.e., intersection of service area and
affected area).

Criticality factor can be seen as a numeric representation of radio system ranking
based on user-defined factors, such as consequences of failure and probability
of failure, that identify the relative importance of a particular radio system.
Consequences of the failure of a radio system can be established by examining
economic, health, safety, security, or social issues arising from the interruption of
system services. The probability of failure for a radio system can be estimated by
examining the underlying architecture and technologies of the system.

13.5.3 Prioritizing Violations

Numerous non-compliance cases may require directed investigations that involve
site inspections or street scans. However, in reality, only a limited number of
non-compliance cases can be investigated at one time. This is because of various
constraints such as limited budget, monitoring equipment, and human resources.
Since not all non-compliance cases are equally urgent or important, prioritizing
identified cases becomes a crucial step toward achieving effective compliance
monitoring.

Numerous prioritization methods have been proposed and applied in many fields
of studies including healthcare (prioritize health problems), software development
(prioritize requirements), network security (rank security threats), and project
management (prioritize tasks). Across many fields, common methods include [22–
24] Sorting, Cumulative Voting, Priority Score, Numerical Assignment (Grouping),
and Analytic Hierarchy Process (AHP). These existing methods could potentially be
applied to prioritize non-compliance cases; however, produced prioritization results
may not be sufficiently robust to support efficient compliance activities. To address
the limitations of the existing methods, four aspects that are crucial in prioritizing

13 Automated Data-Driven System for Compliance Monitoring 309

compliance investigations are identified and incorporated in a proposed framework
as follows.

• V: Value (or Impact). This aspect estimates the value or impact of resolving
a non-compliance case with respect to achieving overall compliance objectives.
In general, the value can be estimated by examining the benefit of resolving,
and/or penalty of not solving, a compliance issue. For instance, in the spectrum
sharing environments, the benefit of resolution could be removing radiofrequency
interference and improving spectrum quality, whereas the penalty could be
degrading the integrity of the spectrum and depriving the public of potential
economic return. The key inputs for quantifying the value aspect are the impact
and extent indicators.

• R: Risk (or Likelihood). This aspect estimates the probability or likelihood
that the identified type of compliance violation is wrong and/or if its associated
characteristics are incorrect. It also shows the risk of not being able to resolve
identified compliance issues because of erroneous information. The source
of errors can be due to various reasons ranging from difficulty in sensing
radiofrequency signals to identifying underlying compliance violations. Hence,
key indicators that can be used to quantify the risk aspect are confidence
indicators and the excess margin indicator.

• E: Effort (or Cost). This aspect estimates the effort or cost (in terms of time
and resources) that is required to resolve a compliance violation. In general, the
amount of time can be estimated by examining the complexity of the issues,
whereas the number of resources can be estimated by examining the required
human resources, equipment, and finance. The key factors that influence time and
resources include type and rate of compliance violation. For instance, compliance
violations that occur intermittently tend to take longer to resolve compared to the
same type of violation that occurs continuously. Therefore, the key indicators for
quantifying effort are type and rate of compliance violations.

• D: Dependency (or Relationship). This aspect quantifies the dependency or
relationship of the identified compliance violation with the other violations in
terms of the actual impact and the extent of the potential impact. The goal is
to improve the long-run efficiency in investigations by prioritizing compliance
cases that have a higher degree of dependency or relationship. For instance, in
spectrum sharing environments, emissions from multiple emitters may impact
receivers in different networks. Therefore, prioritizing compliance cases with
a higher degree of overlap in impact and extent increases the number of cases
that will potentially be examined in a single directed investigation. As a result,
the efficiency in resolving compliance issues is increased. The key inputs for
quantifying the dependency aspect are the impact and extent overlap degrees.

Figure 13.8 shows the structure of the prioritization framework. For convenience,
this framework is referred to as the V-RED framework. The priority score is
computed in two steps. In the first step, appropriate values are applied at the
input aspect functions, which generate the corresponding values of the aspect score
(dotted red box). The goal is to quantify the significance of each aspect to enable

310 H. Rutagemwa and F. Patenaude

Fig. 13.8 The structure of the prioritization framework

rationale and justification of the prioritization process. In the second step, the aspect
scores are multiplied by the aspect weights and applied to a priority function,
generating a priority score (dotted blue box). The goal is to generate a priority score
that shows the order of importance of the non-compliance cases.

To develop and implement a prioritization solution using the V-RED framework,
suitable aspect functions, aspect weights, and a priority function must be defined to
reflect a specific use case. In general, aspect weights define the relative importance
of each aspect. Therefore, they can be developed by using a pairwise compari-
son method [25]. Furthermore, the normalized utility functions (output bounded
between 0 and 1) can be used to generate aspect scores. Conversely, a linear function
can be applied to compute priority scores.

13.6 Summary

Radio spectrum is a finite but non-exhaustive natural resource. It is the foundation
for wireless technologies that are increasingly impacting our everyday lives.
Spectrum monitoring to ensure compliance with regulatory requirements is a
crucial spectrum management function that contributes to the prevention of harmful

13 Automated Data-Driven System for Compliance Monitoring 311

interference and the protection of the radio environment. The recent advancements
of wireless technologies pose a scalability challenge to spectrum regulators. One
of the principal issues is how to monitor spectrum compliance in a wide range of
frequency bands and over large geographical areas using limited equipment and
human resources.

This chapter has presented an automated data-driven system, which leverages
newly advanced technologies to facilitate efficient and scalable monitoring of spec-
trum compliance. The goal is to reduce the manual workload on spectrum managers
by automatically collecting spectrum data from different sources, identifying com-
pliance issues, and performing analytics to provide actionable insights. To achieve
this, the system performs several functions organized in five functional blocks: data
source, signal identification, violation identification, compliance analytics, and user
interface.

The data source block provides access to spectrum measurements, spectrum
management records, and relevant auxiliary data. The signal identification block
decomposes sensed signals into components (modes), maps identified modes to
emitters and licenses, and associates measurements and emitters in the databases.
The violation identification block detects, characterizes, and prioritizes compliance
violations. The compliance analytics block analyzes historical data of compliance
violations and provides actionable insights and foresights. The user interface
presents results to end-users (e.g., spectrum managers) in various ways, including
GUI, APIs, data sets, and reports.

The goal of an automated data-driven system for monitoring spectrum and
compliance is not to replace the judgment and expertise of spectrum managers.
Rather, it is intended to assist spectrum managers in making better decisions. It
could be beneficial as follows:

• Improve spectrum quality: Prevent interference and protect spectrum integrity.
• Increase work throughput: Allow faster resolution of compliance issues.
• Increase work outputs: Identify and localize a wider range of compliance

violations.
• Support enforcement: Generate data (evidence) to support potential enforce-

ments.

Acknowledgments The authors would like to thank Adrian Florea, Thomas Boyle, David Lu, and
Jean-François Roy for their contribution and feedback on the draft version of this chapter.

References

1. Nomenclature of the frequency and wavelengh bands used in telecommunications, Recommen-
dation ITU-R V.431–8 (2015)

2. T.S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, G.C.
Trichopoulos, Wireless communications and applications above 100 GHz: opportunities and
challenges for 6G and beyond. Special section on millimeter-wave and terahertz propagation,
channel modeling and applications. IEEE Access 7, 78729–78757 (2019)

312 H. Rutagemwa and F. Patenaude

3. ESA: Satellite frequency bands. https://www.esa.int/applications/telecommunications_
integrated_applications/satellite_frequency_bands

4. Economic aspects of spectrum management, Report ITU-R SM.2012-6 (2018)
5. Handbook on Spectrum Monitoring. International Telecommunication Union, Geneva,

Switzerland, 2011 (2011) https://www.itu.int/dms_pub/itu-r/opb/hdb/R-HDB-23-2011-PDF-
E.pdf

6. S. Wang, R. Inkol, S. Rajan, F. Patenaude, Detection of narrow-band signals through the FFT
and polyphase FFT filter banks: noncoherent versus Coherent integration. IEEE Tran. Inst.
Meas. 59(5), 1424–1438 (2010)

7. P. Baltiiski, I. Iliev, B. Kehaiov, V. Poulkov, T. Cooklev, Long-Term Spectrum Monitoring with
Big Data Analysis and Machine Learning for Cloud-Based Radio Access Networks (Springer
Science+Business Media, New York, 2015)

8. E. Wiles, K. Negus, Long-term spectrum monitoring and occupancy from 174 to 1000 MHz in
Rural Western Montana, in 12th European Conference on Antennas and Propagation, EuCAP
2018 (2018)

9. S. Campbell, MMCA Sharing Session: Cloud Infrastructure Support. CRC 2020. Available on
demand (2020)

10. Spectrum Management System Data, Innovation Science and Economic Development Canada.
https://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010

11. Radio Reference. https://www.radioreference.com
12. D. Xu, Y. Tian, A comprehensive survey of clustering algorithms. Ann. Data Sci. 2, 165–193

(2015)
13. S. Guha, R. Rastogi, K. Shim, CURE: An Efficient Clustering Algorithm for Large Databases.

ACM SIGMOD Rec 27, 73–84 (1998)
14. R. Yager, D. Filev, Approximate clustering via the mountain method. IEEE Trans. Syst. Man.

Cyber. 24, 1279–1284 (1994)
15. X. Xu, M. Ester, H. Kriegel, J. Sander, A distribution-based clustering algorithm for mining

in large spatial databases, in Proceedings of the Fourteenth International Conference on Data
Engineering, ICDE’98 (1998), pp. 324–331

16. M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters
in large spatial databases with noise, in Proceedings of 2nd International Conference on
Knowledge Discovery and Data Mining, KDD-96 (1996), pp. 226–231

17. M. Ankerst, M. Breunig, H. Kriegel, J. Sander, OPTICS: Ordering points to identify the clus-
tering structure, in Proceedings on ACM SIGMOD International Conference on Management
of Data, SIGMOD’99, vol. 28 (1999), pp. 49–60

18. W. Wang, J. Yang, R. Muntz, STING: A statistical information grid approach to spatial data
mining, in Proceedings of the 23rd International Conference on Very Large Data Bases,
VLDB’97 (1997), pp. 1866–195

19. C. Rasmussen, The infinite Gaussian mixture model, in Advances in Neural Information
Processing Systems, vol.12 (MIT Press, Cambridge, 1999), pp. 554–560

20. M. Hahsler, M. Piekenbrock, D. Doran, DBSCAN: Fast Density-based Clustering with R.
https://rdrr.io/cran/dbscan/f/inst/doc/dbscan.pdf

21. DBSCAN https://pypi.org/project/dbscan
22. M. Yousuf, M.U. Bokhari, M. Zeyauddin, An analysis of software requirements prioritization

techniques — A detailed survey, in 3rd International Conference on Computing for Sustainable
Global Development (INDIACom) (2016), pp. 3966–3970

23. P. Berander, P. Andrews, Requirements prioritization, in ed. by A. Aurum, C. Wohlin,
Engineering and Managing Software Requirements (Springer, Heidelberg, 2005), pp. 69–91

24. J.C.B. Somohano-Murrieta, J.O. Ocharán-Hernández, A.J. Sánchez-García, M. de los Ángeles
Arenas-Valdés, Requirements prioritization techniques in the last decade: A systematic
literature review, in 2020 8th International Conference in Software Engineering Research and
Innovation (CONISOFT) (2020), pp. 11–20

25. M.A.A. Elsood, H.A. Hefny, E.S. Nasr, A goal-based technique for requirements prioritization,
in International Conference on Informatics and Systems (2014), pp. 18–24

https://www.esa.int/applications/telecommunications_integrated_applications/satellite_frequency_bands
https://www.esa.int/applications/telecommunications_integrated_applications/satellite_frequency_bands
https://www.itu.int/dms_pub/itu-r/opb/hdb/R-HDB-23-2011-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/hdb/R-HDB-23-2011-PDF-E.pdf
https://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010
https://www.radioreference.com
https://rdrr.io/cran/dbscan/f/inst/doc/dbscan.pdf
https://pypi.org/project/dbscan

Chapter 14
AI Driven User Authentication

Hien Nguyen

14.1 Introduction

User authentication is a key aspect of any financial service or security system. The
old legacy system of password authentication is deemed insufficient as the user’s
ID and password can often be compromised by a keylogger virus software or a bad
actor’s hidden webcam that records all their login information.

AI driven authentication is a framework whereby the system would detect and
respond to threats continuously throughout the user’s session and not just at login
time. If the system detects any abnormal attribute to the user’s identity, e.g.,
changes of mobile device, or location, or changes to biometric data (a person’s face,
fingerprints, ear features, etc.), then it would prompt the user to verify their identity
again.

To promote ease of use for the end users, the new authentication system
implements what is called a “frictionless login,” wherein password authentication is
eliminated. A key component of frictionless authentication is the use of behavioral
and physical biometric information for authentication. Behavioral biometric identity
is related to the tracking of a user’s daily activities as measured by their locality and
places they frequent. Physical biometric identity is related to the physical aspects of
the human body like facial and fingerprint identity. The combination of behavioral
and physical biometric identification is extremely hard to spoof or fake. This has
resulted in a highly secure identification system.

It is found that behavioral biometric data provides a more accurate means to
determine and even predict identity and identity-linked behaviors such as credit risk

H. Nguyen (�)
Distilled Identity, Boston, MA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_14

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-98064-1_14

314 H. Nguyen

or fraud. This data can be used to obtain a better credit model for financial inclusion
and to understand localized economic activity [1].

This chapter describes a general framework for AI driven authentication that
has been used in practice. It also focuses on one of the physical biometrics, facial
biometric, which is an important part of the authentication system. The remainder
of the chapter is organized as follows. Section 14.2 discusses facial recognition
techniques, in particular, eigenface detection and a method involving a convolutional
neural network. Section 14.3 addresses implementation issues. The chapter is
concluded in Sect. 14.4.

14.2 Facial Recognition

Facial recognition is the art of identifying an unknown image to that of a known
person. It is achieved by extracting certain facial information and comparing this
information to those in the database of facial data in order to determine the identity
of a person.

14.2.1 Overview

Facial recognition has the advantage of being highly accurate, with a minimal
amount of “friction” to the user. Thus, it is one of the most desirable authentication
methods. Before diving deep into facial recognition algorithms, let us look at a high-
level view of the overall facial recognition process (see Fig. 14.1).

Facial recognition begins with an input image. The image is processed to detect
if there is a face or not. This very first phase of image processing is called “facial
detection.” There are several facial detection algorithms available, as can be seen
in Fig. 14.2. They are different in terms of speed and accuracy. The Haar cascade
method was an early method suggested by Voila and Jones [2]. It is still an effective
method and in use today. Better face detection algorithms that employ deep learning,
which are less affected by changing lighting conditions or partial occlusion of the
face, include OpenCV DNN and Multi-Task Cascaded Convolutional Networks
(MTCNN) [3]. The choice is really dependent on the application. For example, if
the application is to identify an individual at an airport entrance where lighting is
good and there is no occlusion of the face, then the Haar cascade will work just fine.

Once a face is detected, it is extracted from the input image. Then the extracted
face image goes through a process of facial normalization. The purpose of facial
normalization is to minimize the variances in the spatial contrast of the face
image. This results in much higher predictive confidence in subsequent recognition
processing. Facial normalization often involves face alignment, cropping, contrast
normalization, and finally resizing the image to a predefined width and height [4, 5].

14 AI Driven User Authentication 315

Fig. 14.1 Face recognition flowchart

Facial feature extraction takes a normalized image and produces a feature vector
that represents the face. How to construct a feature vector so that all faces of the
same person have similar vectors within a small Euclidean distance of each other,
and a large distance if the vectors are from two different persons is the key to a
successful face recognition algorithm.

Finally, once the facial feature vector is obtained, a database matching process
takes place. The facial feature vector is compared to all the known feature vectors
in a database of all the known individuals. If the distance between it and another
feature vector in the database is less than a threshold, then a match is declared.
Otherwise, it is declared a mismatch.

316 H. Nguyen

Fig. 14.2 The wonder of image processing. On the left is a very hard to recognize image. On the
right is a completely discernible image after histogram equalization

In the past, the majority of classical facial recognition approaches used some
methods in subspace modeling with emphasis on dimensionality reduction [6]. The
leading method among these is known as eigenface and shall be discussed in the next
section. Today, however, the more successful facial recognition methods are those
that involve neural networks and deep learning. The new method shall be discussed
subsequently.

14.2.2 Facial Recognition Using EigenFace Algorithm

Facial recognition is a computer vision problem. In 1991, Turk and Pentland
published a popular paper on face recognition using the eigenface method [7].
The method is actually based on a previous work by Pearson in 1901, which is
called Principal Component Analysis (PCA) [8]. PCA is a dimensionality reduction
technique that uses eigenvalues and eigenvectors to reduce dimensionality and
project a set of training data onto a small feature space.

The eigenface detection method can be separated into two phases: training phase
and detection phase.

Training Phase
1. Given a set ofM images of a person of dimensionN×N , called training images.
2. Convert these images intoM vectors of size N2 × 1 : x1, x2, x3, . . . , xM .
3. Normalize these vectors by subtracting the average image �.

14 AI Driven User Authentication 317

� = 1

M

M∑

i=1

xi

�i = xi −�.

4. Let A be a matrix [�1�2�3 . . . �M] of dimension N2 ×M .
5. Let C = AAT be the covariance matrix for A. Solve for the eigenvalues and

eigenvectors of C. However, since C has dimension N2 × N2, the computation
became expensive.

6. This problem is overcome by taking advantage of the fact that M is much less
than N2. One can compute the eigenvalues and eigenvectors of C′ = ATA,
whose dimension isM×M . Then, the eigenvectors and eigenvalues of the matrix
C can be indirectly computed from that ofC′. Let λi and vi , i = 1, . . . ,M denote
the eigenvalues and eigenvectors of C′. We then have

C′vi = ATAvi = λivi . (14.1)

Multiplying (14.1) by A gives

AC′vi = AATAvi = λiAvi. (14.2)

Replacing C = AAT gives

CAvi = λiAvi. (14.3)

From (14.3), it is recognized that the eigenvalue for C and C′ are the same, and
the eigenvector for C, ui , is related to that of C′ by the relation

ui = Avi.

7. To reduce the computation further, one can choose a set of K eigenvectors, {ui},
corresponding to the largest K eigenvalues to form the basis for the linear space
spanned by the training images.

8. Compute a set of M vectors, { i}, i = 1, . . . ,M , from the training images
by projecting �i onto the linear space formed by the K eigenvectors. The
components of i = {ω1, ω2, . . . , ωK } are the weights of the K eigenvectors
in representing each training image.
Note: In order to appreciate how much of a computation reduction this is, let

us take a typical example where the image is 512 × 512 (i.e., N = 512) and the
number of training images is 10 (i.e., M = 10). The dimension of matrix C would
be 262144 × 262144, whereas the dimension of matrix C′ is tiny by contrast, i.e.,
10 × 10.

318 H. Nguyen

Detection Phase
1. Given an unknown image y, normalize it by subtracting the average image �

� = y −�.

2. Project the normalized vector� onto theK eigenvectors to get the weight vector
 .

3. Calculate the distance, εk = || − k||2, from to each of the k vectors in
the training set. Then, a face is detected if the minimum distance is smaller than
a threshold value !e.

The eigenface algorithm established the first positive step in image recognition,
but it is far from ideal. In practice, the images have to be captured in a well-defined
area of the face and with proper lighting. Even then the success rate is still far from
100%. In fact, our experiment showed a 60–70% accuracy. This is not good enough,
since many authentication applications in banking and high security entry require
virtually 100% accuracy.

Then came deep learning face recognition. . .
Many years ago, as a young undergraduate research assistant, image processing

gave me the first shock of seeing how a few math operations can be used to
transform an unreadable image into a completely legible image (see Fig. 14.2).
Many years later, the second shock that I got was to see how well deep learning
image recognition performs in the real world. The success rate is always in the very
high 99%, if not 100%. Deep learning for face recognition came about in 2012 with
the breakthrough of the AlexNet model [9] by Alex Krizhevsky, Ilya Sutskever, and
Hinton. Within a few years, research in deep learning had pushed the success rate
from 90 to 99.80% with the FaceNet model.

Figure 14.3 shows the main modules of the face recognition library software
that we were using. All of these modules are important in the pipeline of the face
recognition process, but we shall focus a bit on the third module “Face feature
extraction” using convolutional neural networks (CNN). It is probably not wrong to
say that the monumental progress in deep learning face recognition has been largely
contributed by one particular algorithm—the Convolutional Neural Network.

14.2.3 Facial Recognition Using CNN

CNN is an architecture that imitates the work of the visual cortex of the human brain.
In the 1960s and 1970s, the sensory research work by Dr. Hubel and Dr. Weisel [1]
showed that image information is passed through different visual areas of the brain
where more primitive information like lines, curves, light, and dark are detected and
sent to another layer of the brain that can associate them with a higher-level object
like a human face.

CNN network (Fig. 14.4) is generally made up of four layers:

14 AI Driven User Authentication 319

Fig. 14.3 An image recognition software module

Fig. 14.4 CNN networks

1. Convolutional layer with an activation function: This layer uses filters that
perform convolution operations on the input image. A nonlinear activation
function is normally applied at the output of the convolution layer to provide
an output known as a feature map or activation map.

2. Pooling layer: This layer implements a down sampling operation that is applied
after a convolution layer. In particular, max and average pooling are special
kinds of pooling operations where the maximum and average value is taken,
respectively.

3. Flattening layer: This layer prepares the data for classical neural network
operation in the fully connected layer.

4. Fully connected layer: This layer operates on a flattened input where each input
is connected to all neurons. Its output is passed through a softmax function to
compute the recognition probabilities of all the possible classes.

A CNN network can be viewed as a series of convolutional layers, followed by
an activation function, followed by a pooling layer, repeated several times with the
flattening and fully connected layer at the end. It was found that the CNN networks
are very good at recognizing patterns in an image. As more and more convolutional

320 H. Nguyen

layers are added to the networks, the later layers can be trained to recognize more
and more complex shapes. In practice, it is found that a CNN with four convolutional
layers is able to recognize handwritten digits, and with 25 layers it is possible to
distinguish human faces with excellent accuracy. The Google FaceNet CNN uses
22 layers.

14.3 Implementation

The AI approach to authentication requires two components working together.
The first component is a mobile authenticator application running on the user’s
smartphone that tracks and acquires metric data for authentication purposes. The
second component is the supporting cloud backend that continuously processes the
metric data to check for its integrity and alert the mobile authenticator if the user
should be re-authenticated.

14.3.1 Mobile Authenticator

With the popularity of today’s smartphones and tablets, face verification software is
often found on the mobile device to authenticate the user. The authentication process
generally involves two phases:

1. Registration phase: In this phase, the application takes several pictures of the user
to extract a set of feature vectors.

2. Authentication phase: User authentication is successful when the user is pro-
cessed to obtain a feature vector that is within an acceptable distance from the
registered feature vectors in the database.

In order to make it really hard to break the face recognition system, the phone
also collects several metrics from the users that serve as means for cross-checking
the user’s identity. This data is continuously sent back to the cloud backend for
assessing the security of a user. Some of these metrics are:

1. Device profile metric: Each user has a unique mobile device identified by its
MAC address, make, and model that can be used to cross check the user’s
identity.

2. GPS location metric: Each user has a unique daily approximate location between
work and home.

3. Cellular location metric: Similar to GPS location, each user has a unique cell
tower connection that can be used to authenticate the user.

4. Bluetooth device metric: Each user may have a set of connecting Bluetooth
devices. The user may switch phones but the Bluetooth devices may remain the
same and can help to establish their identity.

14 AI Driven User Authentication 321

Table 14.1 Device profile metric

Field Type Notes

lDeviceID Long User device identification

szDeviceModel Unsigned char[] Device model name, e.g., Galaxy S7

szBrand Unsigned char[] Brand name, e.g., Android, Apple

szOsVersion Unsigned char[] Operating system version name, e.g., Android v9

szSerial Unsigned char[] Device’s serial number, e.g., 604f8c48

szBoard Unsigned char[] Device’s board name, e.g., msm8996

szManufacturer Unsigned char[] Name of manufacturer, e.g., Samsung, LG

iScreenWidth Integer Screen width in pixels

iScreenHeight Integer Screen height in pixels

fScreenDensityX Float Screen x pixel density (dpi)

fScreenDensityY Float Screen y pixel density (dpi)

szCollectionTimeUtc Unsigned char[] Time at which the metric was collected

fTimezoneUtcOffset Float Device’s timezone offset in hours from GMU

szTimezoneName Unsigned char[] Device’s timezone name, e.g., America/New York

szMAC Unsigned char[] Device’s MAC address, e.g., 00:1B:44:11:3A:B7

szIP Unsigned char[] Device’s IP address, e.g., 192.168.10.2

5. WiFi network metric: Each user is normally associated with a fixed set of WiFi
networks where they live or work. This information is part of his identity and can
be used to strengthen the authentication check.

6. Touch motion metric: Each user has a unique finger swiping pattern that can be
used to identify the user. The swiping pattern includes swiping speed and touch
pressure.

Table 14.1 shows an example of a mobile device metric.
These metrics are collected, with the consent of the users, at regular intervals and

help to establish the locality of each user. This is done so that if the authentication
software detected that the user was trying to log in to the system from a very foreign
place compared to his normal routine, then stricter authentication measures would
have to be applied.

Figure 14.5 shows the authentication software application running on a user’s
phone for tracking and verifying the user’s identity.

14.3.2 Supporting Cloud Backend

In order to support all the mobile application data collection and authentication, a
substantial backend for data storage and computing backend had to be developed.
As an example, if the system is to support a bank with a few million users, then the
amount of data gathered could be in terms of terabytes per day and processing this
data would take a large computing power. In the last several years, one of the most

322 H. Nguyen

Fig. 14.5 Mobile software application for authenticating the user

impacting developments of large-scale computing is the development of cluster
computing. Cluster computing allows computers of various processing power to
share work and perform as a single high performing, highly reliable system.

The most well-known of these clusters is the open source project known as
Kubernetes, which was started by Google. Kubernetes, also known as k8s, is what
Google uses to run billions of the software applications every week. It is the engine,
for automating deployment, scaling, and management of software applications.

The development of cluster computing not only allows one to have a highly
reliable system, it also allows for the scaling of the computing need according to
the ongoing demand.

Figure 14.6 shows an implementation of the authentication backend that works
in conjunction with the mobile authenticator to collect data and continuously
authenticate the user.

Important software components:

1. Kafka: This is a software framework for storing, reading, and analyzing real-time
streaming data. It provides a high-throughput/low-latency messaging framework.
Kafka is the real-time streaming service that allows data to be continuously

14 AI Driven User Authentication 323

Fig. 14.6 Backend cloud software that stores authenticating data and manages the mobile
application

processed and analyzed. This is the subsystem where mobile data is stored for
further analysis.

2. DB Farm: Streaming data from Kafka are filtered and moved to SQL databases,
where powerful queries can be used to process the data.

3. GlusterFS Service: GlusterFS (GNU Cluster File System) is a distributed
scalable file system that aggregates storage components from several servers into
one uniform file system. Its special feature is tremendous scalability and the data
reliability is guaranteed through redundancy.

4. FIDO Authentication Service: FIDO (Fast ID Online) is a standard, developed
by an open industry association—the FIDO Alliance. It is a set of technology-
agnostic security specifications for strong authentication using standard public
cryptography. It replaces password-only logins with more secure and fast login
using facial recognition, fingerprint, and other biometric data. FIDO stores
personally identifying information, locally on the user’s device to protect it.

5. Management Service: This service allows one to remotely configure the mobile
authentication application. It can modify, delete, or add new authentication
metrics. If the user is no longer with the organization, then it can disable the
authentication service on the mobile device.

324 H. Nguyen

6. Risk-based Authentication Service: This service processes incoming behavioral
biometric data to learn about a user’s habit. Advanced machine learning algo-
rithms detect deviations from a user’s normal activity. It evaluates various factors
that make up a normal routine for a user (e.g., user’s location, device used for
authentication, the connecting wireless network, time of logging in, etc.). If any
of these factors is deemed abnormal, then the system would revoke the user’s
access and they would be prompted to re-authenticate themselves.

With this type of user authentication system, the problem of identity fraud can
be minimized. It can help to give an identity to everyone, especially the poor and
the disadvantaged who may not be part of any credit or banking system [10]. Given
an identity, one can start applying for loan and assistance and get better access to
goods and services.

14.4 Conclusion

This book chapter gives an overview of an implementation of a modern user authen-
tication system that eliminates the use of password as a means for authentication.
Some of the classical methods of facial recognition were reviewed and some of the
more recent algorithms in facial recognition that use convolutional neural networks
were highlighted. Even though newer deep learning methods achieve up to 99%
of accuracy, they are still far from foolproof. For example, a bad actor can still
spoof the system with the replay of his photo, video, or using a 3D mask, just to
name a few. More sophisticated recognition systems must implement additional
countermeasures to combat such spoofing methods [11]. To further enhance the
security of the authentication system, several behavioral biometrics are collected
to help establish the user’s profile and to cross check the user’s identity. As humans
are creatures of habit, a user’s behavioral biometrics data is an effective tool that
can be used to minimize the chance that a hacker can break into the system
by faking the user’s facial identity or fingerprint. The main advantage of an AI
based authentication is that it can learn and adapt over time to the user’s changing
environment and stay ahead of a hacker’s attempt at identity theft.

References

1. D.A. Lienhard, David H. Hubel and Torsten N. Wiesel’s research on optical development in
kittens, in Embryo Project Encyclopedia, Oct 2017

2. P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)
3. K. Zhang, Z. Zhang, Z. Li, Y. Qiao, Joint face detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
4. S.T. Chaudhari, A. Kale, Face normalization: enhancing face recognition, in 3rd International

Conference on Emerging Trends in Engineering and Technology, Goa (2010), pp. 520–525

14 AI Driven User Authentication 325

5. Y. Qian, W. Deng, J. Hu, Unsupervised face normalization with extreme pose and expression
in the wild, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA (2019), pp. 9843–9850

6. W. Wójcik, K. Gromaszek, M. Junisbekov, Face recognition: issues, methods and alternative
applications, in Face Recognition - Semi Supervised Classification, Subspace Projection and
Evaluation Methods, Chap. 2, ed. by S. Ramakrishnan (InTech, London, 2016)

7. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cogn. Neurosc. 3(1), 71–86 (1991)
8. K. Pearson, On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(11),

559–572 (1901)
9. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional

neural networks, in NIPS’12: Proceedings of the 25th International Conference on Neural
Information Processing Systems, vol. 1, Dec 2012, pp. 1097–1105

10. D. Shrier, http://distilledidentity.com/#video. Last-accessed 10 Nov 2021
11. S. Chakraborty, D. Das, An overview of face liveness detection. Int. J. Inf. Theory (2014).

https://doi.org/10.5121/ijit.2014.3202

http://distilledidentity.com/#video
https://doi.org/10.5121/ijit.2014.3202

Chapter 15
Control and Communication
Coordination for Industrial Digital Twins
of Sintering Process

Cailian Chen, Xiaojing Wen, Xuehan Bai, Lei Xu, Cheng Ren, Jiale Ye,
Yehan Ma, and Xinping Guan

15.1 Introduction

The emergence of artificial intelligence and big data technology has greatly
accelerated the process of intelligent manufacturing in factories and promoted the
industrial production processes toward digitization, networking, and intelligence.
However, due to the coupling of each industrial process, big data analysis without
the inherent model is not suitable for the complex environment of the factory.
Digital twins (DTs) can facilitate the data interaction between physical space and
cyberspace by establishing the twin models mapping physical space and adjusting
manufacturing parameters timely according to the simulation and prediction of
cyberspace, so as to improve production quality [1]. DTs closely integrate model-
driven automation with data-driven artificial intelligence technology, providing a
new paradigm for the development of intelligent manufacturing.

Establishing digital twin models of industrial processes requires vast amounts
of field data, which are generated by various sensors and actuators and need to
be transmitted to the edge data center through the field-level industrial network.
The coordination of control and communication depends on the timeliness and

C. Chen (�) · X. Wen · X. Bai · L. Xu · C. Ren · J. Ye · X. Guan
Department of Automation, Shanghai Jiao Tong University, Shanghai, China
e-mail: cailianchen@sjtu.edu.cn; xiaojingwen@sjtu.edu.cn; xuehan_bai@sjtu.edu.cn;
xulei1@sjtu.edu.cn; rencheng@sjtu.edu.cn; yejiale@sjtu.edu.cn; xpguan@sjtu.edu.cn

Y. Ma
John Hopcroft Center, Shanghai Jiao Tong University, Shanghai, China
e-mail: yehanma@sjtu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1_15

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98064-1_15&domain=pdf
mailto:cailianchen@sjtu.edu.cn
mailto:xiaojingwen@sjtu.edu.cn
mailto:xuehan_bai@sjtu.edu.cn
mailto:xulei1@sjtu.edu.cn
mailto:rencheng@sjtu.edu.cn
mailto:yejiale@sjtu.edu.cn
mailto:xpguan@sjtu.edu.cn
mailto:yehanma@sjtu.edu.cn
https://doi.org/10.1007/978-3-030-98064-1_15

328 C. Chen et al.

reliability of industrial networks. However, traditional protocols such as Fieldbus
and industrial Ethernet cannot guarantee deterministic transmissions for time-
sensitive data. Besides, these industrial network protocols are rather sealed and work
for specific hardware devices. Therefore, the first key issue is how to improve the
interconnection among devices and collect industrial field-level data efficiently by
exploring deterministic communication technologies.

In order to guarantee the highly real-time transmission for large amounts of time-
critical streams between cyber and physical systems, Time-Sensitive Networking
(TSN) developed by IEEE 802.1 TSN Task Group[2], extending Ethernet for
safety-critical and real-time applications, is the critical technology to guarantee
the determinacy. Notably, IEEE 802.1Qbv [3] defines a programmable gating
mechanism, i.e., the time-aware shaper (TAS), which employs the time transmission
gate and gate control list (GCL) to determine which queues of flows are selected for
transmission. Meanwhile, the time of all devices should be synchronized based on
IEEE 802.1AS-Rev [4] to guarantee the successful TAS deployment.

However, the characteristics of industrial processes result in new challenges of
TSN configurations. Firstly, there are large amounts of tasks in the industrial field
that have high requirements of real-time transmissions, such as time-sensitive safety
control data flows. Secondly, on-site sensors and actuators are diverse, audio and
video data are frequently generated, leading to heterogeneous data streams, which
are low time-sensitive (LTS) flows, audio–video bridge (AVB) flows, and so on.
Besides, safety data is not time triggered, which should be scheduled with the
highest priority. The co-existence of time-triggered (TT) and sporadic flows should
be considered for scheduling.

The real-time control and communication coordination depends on schedul-
ing for different flows. The scheduling problem for different priorities is very
challenging, even with the specification of the time gating mechanism. For the
schedule synthesis problem of TT flows in the TSN network, there are several
existing modeling methods, such as integer linear programming (ILP) [5] or
mapping the scheduling problem to Satisfiability Modulo Theories (SMT) [6, 7]
problem and No-wait Job-shop Scheduling Problem (NW-JSP) [8]. However, the
common assumption in these works is the fixed routing paths, which prevents spatial
isolations for TT flows. Therefore, it is necessary to improve the schedulability of
TT flows through the co-designing of transmission scheduling and route planning.
Moreover, in order to improve the scalability (computational efficiency of schedul-
ing method) of the scheduling approaches, the iterated scheduling methods were
proposed in [9, 10]. Nonetheless, the stream relevance of these works was based on
the intuitive correlations between streams, which lacked data analysis. Therefore,
a more objective and precise stream relevance metric needs to be constructed for
iterated scheduling in TSN. Except for TT flows, there are other heterogeneous
data flows such as AVB flows with bounded end-to-end latency requirements. Gate
control list (GCL) schedule synthesis approaches of TT flows taking AVB flows into
account were proposed in [11–13].

15 Control and Communication Coordination for Industrial Digital Twins of. . . 329

Because the production process has the characteristics of numerous process
parameters, complex mechanisms, significant nonlinearity, and dynamic changes,
it is difficult to accurately model the process only by data collection. Therefore,
after collecting a large amount of heterogeneous field data, how to build digital twin
models in combination with the process mechanism to improve production quality
is the second key issue. Some successful DT-based applications can predict various
physical and chemical components [14–17], as well as predict the performance
indicators [18–21], etc. However, existing works ignore the production process and
equipment limitations in the actual production process. It is necessary to combine
domain knowledge with data-driven intelligent modeling technology to achieve
accurate modeling of physical systems and then achieve the prediction of key
production indicators.

In addition, there may be thousands of models in the production process. How to
achieve on-demand interaction and resource allocation between digital twin models
to improve the performance of the product/process in the physical space is the
third key issue. At present, there have been some results in related research on
industrial digital twins. Lu et al. [22] applied the federated learning scheme to build
a digital twin edge network. Through the asynchronous model updating scheme, the
network not only reduces data transmission overhead but also protects data privacy.
In [23], a digital twin model construction method based on federated learning is
proposed, and the global model loss function optimization algorithm is given under
limited resources. In [24], the construction of the digital twin model is abstracted
as a computing task, and a communication and computing resource allocation
scheme based on reinforcement learning is proposed to maximize the utilization
of network resources. Dong et al. [25] established the digital twin of 5G mobile
edge computing network, which applied the twin to train the resource allocation
optimization and normalized energy-saving algorithm based on reinforcement
learning offline and then updated the scheme to mobile edge computing network.
However, the existing research is still at the preliminary stage. How to realize the
quality prediction, control decision-making, and network resource optimization of
the industrial process based on the constructed digital twin model and then realize
the coordination of control and communication still needs in-depth research.

In the rest of this chapter, we propose a scheme of control–communication
coordination for industrial digital twins as well as the key technologies of TSN
and digital twin modeling. Section 15.2 introduces the network architecture to
enhance the real-time control and communication coordination in the environment
of the smart factory. For a sintering process described in Sect. 15.3, Sect. 15.4
presents the deterministic and real-time communication protocol based on TSN.
Sections 15.5 and 15.6 describe the intelligent modeling of the sintering process
and the construction of the corresponding digital twins with the assistance of TSN
techniques. Section 15.7 concludes the chapter.

330 C. Chen et al.

15.2 Control–Communication Coordination Architecture for
Industrial Digital Twins

In order to meet stringent production requirements in intelligent manufacturing,
various resources in industrial networks need to be efficiently scheduled and
managed to achieve production-oriented control and communication coordination.
By constructing the digital twin models of process and network, it can provide a
new way of resource management for network systems and improve the efficiency
of resource utilization. Besides, it can realize the monitoring and management of
all factors in the industrial production process and real-time closed-loop control of
the whole process and then significantly improve the intelligent level of manufac-
turing. To this end, we propose a digital twin-assisted control and communication
coordination architecture as shown in Fig. 15.1, including Field Industrial Internet
of Thing (IIoT), Edge Data Middle Platform, and Industrial Cloud Platform. The
whole architecture is optimized in a closed loop through bottom-up information
flow and top-down control flow.

In the field IIoT, we deployed a large number of sensing devices (tempera-
ture sensors, pressure sensors, infrared thermal imagers, vibration sensors, etc.),
transmission nodes (TSN switches), and control devices (PLCs) to monitor the
production status of the sintering process. The modeling of the digital twin requires
the real-time acquisition of a large number of production data. Therefore, we adopt
TSN as the backbone of the architecture to ensure the reliable transmission of field

Edge Data Middle Platform

Field Industrial Internet of Things

Industrial Cloud Platform

Server

Digital Twin Modeling

TSN Switch Edge Device

OPC UA
MQTT
AMQP

RESTful APIs
WebSocket
TCP/UDP

Visual
Configuration

Digital Twin Model
Coordination

Requirements Data

Data Fusion Resource Adaptation

Cloud-Edge Collaboration Network Schedule Collaborative Optimization

Customization
Requirements

Schedule
Optimization

Network
Configuration

Global
Cooperation

Network
Interconnection

Data
Collection

Function Network Configuration Reliable TransmissionPath Planning

Feature Low Jitter DeterministicLow Delay

TSN Switch
Humidit
Sensor Gas Flowmeter

Pressure Sensor

Temperature
Sensor

Proportioning Sintering Circular Cooling

Instruction Data

Physical
Control
Process

Edge Data Middle Platfoff rm

d Industrial Internet of Things

Industrial Cloud Platfoff rm

Server

Digital Twin Modeling

TSN Switch Edge Device

OPC UA
MMQQTTTT
AAMMQPQP

RESTfuff l APIs
WebSocket
TCP/UDP

Visual
Configuration

Digital Twin Model
Coordination

Requiremments DDataa

Data Fusion Resource Adaptation

Cloud-Edge Collaboration Network Schedule Collaborative Optimization

C
R

O

C

Function Network Configuration Reliable TransmissionPath Planning

Feature Low Jitter DeterministicLow Delay

TSN Switch
Humidittt
Sensor Gas Flowmeter

Pressure Sensorrr

Temperature
Sensor

Proportioning Sintering Circular Cooling

Instructtion DDataa

Infrared
Thermal Imager

Fig. 15.1 A digital twin-assisted control and communication coordination architecture

15 Control and Communication Coordination for Industrial Digital Twins of. . . 331

perception data, which can meet the network transmission quality requirements
of 1-ms delay and 1-μs jitter. At the same time, to ensure the performance of
heterogeneous data transmission, some multi-priority data scheduling mechanisms
are proposed. After receiving the path planning instruction from the TSN switch at
the edge layer, the field layer TSN switch configures the network to achieve reliable
transmission on demand. This layer ensures the data penetration of the whole
sintering process and the acquisition of high-quality data (low data packet loss rate,
accurate data time label, etc.), thus reducing the difficulty of data pretreatment and
improving the reliability of algorithms.

The edge data middle platform is deployed with TSN switches for communi-
cation and edge devices for control and computing. The management and virtual
mapping of production factors such as network, process, and equipment are all
completed at this layer. In order to realize the integration and unification of massive
scattered and chaotic multi-source data, edge equipment analyzes and processes
the data according to the obtained multi-dimensional information and constructs
digital twin models of different units based on process mechanism and expert
experience to achieve accurate characterization of the production process. At the
same time, the quality prediction, quality optimization, and quality traceability
models are constructed. The path and network resources are dynamically adjusted
according to the requirements of the upper layer. The configuration instructions
are issued through the TSN switch to achieve cloud–edge collaboration. Network
adaptation reduces the energy consumption of node communication, improves the
utilization rate of network resources, and lays a foundation for control performance
under dynamic resource conditions. With the support of digital twin technology, the
edge data middle platform not only supports more intelligent and flexible system
decisions of the top layer but also supports broader and more agile perceptual control
of the bottom layer.

In the industrial cloud platform, based on the built digital twin models, a
digital twin network for key processes is constructed. Physical entities and various
service applications are connected through standardized north–south interfaces.
When facing different production needs, the industrial cloud platform can schedule
multiple digital twin models on-demand to build a virtual testbed, which can be
used to dynamically optimize production resources and adjust and match network
optimization schemes. The virtual testbed can efficiently simulate complete process
for optimization and then deploy to the industrial site after full verification with the
help of optimization algorithms, management methods, and experts’ knowledge.
Finally, it realizes the re-optimization of process flow, improving production
efficiency, and achieves intelligent decision-making and efficient innovation. This
layer pays more attention to the comprehensive utilization of field information. With
the help of the flexible scheduling of the digital twin model, the resource demand can
be predicted accurately, and the communication and control cooperation mechanism
between the edge layer and the field layer can be designed. Then, the device
states and resource arrangement can be adjusted timely through the feedback of
the network operation state to improve and optimize the overall performance. In the
bidirectional action, the potential factors of production are connected with the task

332 C. Chen et al.

requirements of the upper layer to meet the demands of intelligent production of the
sintering process.

15.3 Sintering Production Line

The process of sintering production is a method of heating powdery materials
at a high temperature and sintering them into blocks under incomplete melting
conditions. In this process, under the action of a certain high temperature, the surface
of iron ore particles softens and melts to produce a certain amount of liquid phase,
and they act with other unmelted ore particles. After cooling, the raw materials in
the liquid phase solidify and bind into blocks. This process is called sintering.

Obviously, the sintering process is a blocking process in high temperature with
complex physical and chemical reactions. The obtained product is called sinter
ore and they present irregular pores. The heat energy required for sintering is
provided by burning the carbon introduced by material proportioning and the
excess air introduced by the exhaust bellows. During this whole process, a series
of procedures should be considered such as the materials proportioning, mixing,
sintering, crushing, cooling, sifting, and waste gas treatment. Taking the 3 #360
sinter plant of Guangxi Liuzhou Iron & Steel (Group) Company as an example
(Fig. 15.2), the sintering production process is briefly introduced.

The first procedure of sintering is mineral proportioning. In order to ensure
physical properties, chemical composition stability, and proper permeability of the
sintering process, it is necessary to accurately mix multiple iron-containing raw
materials and add flux and fuels, according to the quality requirements of sintering
product. A well-performed proportioning enables high productivity of blast furnace
ironmaking. Generally, the linear programming method can be adopted in sintering
proportioning optimization. The optimization output is usually the optimal ratio of
chemical composition, such as the TFe, MgO, and R of sinter ore under certain
objectives. There are other algorithms for sintering proportioning, such as the Monte
Carlo method and genetic algorithm.

The second procedure is the sintering process. Firstly, the sintering feed is carried
out, that is, the hearth layer and the sinter mixture are evenly placed on the sintering
strand in turn (the hearth layer for sinter is at the bottom of the sinter mixture).
Then, ignition and thermal insulation are carried out by coal gas. As the sintering
pallet travels toward the end of sinter machine, the sintering is performed from top to
bottom under the action of air suction by the sinter bellows. Generally, the materials
in the sinter strand can be divided into sinter layer (product), combustion layer,
preheating and drying layer, over wet layer, and original sinter ore layer (sinter
mixture) from top to bottom. After ignition, five layers appear one after another
and move downward. Finally, when the sintering strand moves to the end of the
sintering machine, the combustion belt just reaches the bottom of the material layer
in the vertical direction of the pallet.

15 Control and Communication Coordination for Industrial Digital Twins of. . . 333

Return

fines
Quicklime

Light

cook

dolomite

Lime-

stone
Fuel Dust

Blending

material

Propor
tioning

First Mix

Second Mix

Water

Sintering Machine

Exhaust Fan

Coal gas

Sintering

Hot exhaust gas

Spare-heat Generating
Dust

BlowerCircular Cooler

First SiftingSecond Sifting

Inspection

To Blast

Furnace

Dust removal

desulfurization

denitrification

< 6mm

> 16mm

6 ~ 16mm Return finesHearth layer for sinter

Fig. 15.2 The illustration of the sintering process

At the end of the sintering pallet, the sinter ore falls and is crushed by single roll
crusher. After that, considering the high temperature of the sinter ore, it is firstly
cooled before being discharged to the belt conveyor. The cooling is undertaken by
the circular cooler. After cooling, the sinter ore is transferred to the screening system
by belt conveyor. In addition, for the sinter ore as the product of sintering, it is also
necessary to collect samples and conduct physical and chemical inspection before
they are sent to the blast furnace.

The quality of sinter ore directly affects the quality of iron. Among the evaluation
indices of sinter quality, tumble strength (TS), ferrous iron content, total iron, and
alkalinity are the most critical. TS reflects the physical strength performance of the
sinter, which is used to evaluate the abrasion resistance, collision resistance, and
low-temperature reduction pulverization rate of sinter [26]. And the content of FeO
of sinter ore reflects the chemical properties, which can be used to evaluate the
reducibility of sinter. Higher TS is always accompanied by a high content of FeO,
which will reduce the reducibility of the sinter ore and prolong the smelting cycle
of sinter ore in the blast furnace. On the contrary, lower TS can increase the powder
content of sinter ore and have a negative impact on the blast furnace smelting. Both
of them will cause a lot of economic losses.

334 C. Chen et al.

15.4 Deterministic Communication Based on Time-Sensitive
Networking

For digital twin models, the synchronization performance of virtual–real interac-
tions is critical due to frequent data interaction between digital twins and physical
systems. Thus, the deterministic and real-time transmission of large amount of
time-sensitive data is the key to ensure the performance of the digital twin model.
Traditional Ethernet cannot provide deterministic and real-time guarantees due to
the best-effort (BE) services, and several real-time Ethernet variants are proposed
by corresponding organizations to enhance the real-time property of Ethernet.
However, these standards are mostly close to each other and require special
hardware support, which causes poor interoperability. TSN, an Ethernet extension
breaking these limitations, aims to provide deterministic delay and low jitter for
time-sensitive industrial applications.

There are vast types of flows, which include low time-sensitive (LTS) flows with
bounded end-to-end delay requirements like audio–video bridging (AVB) flows,
and BE flows with no time guarantees. For example, in the sintering process,
there are mixture moisture data obtained by the infrared moisture analyzer between
two mixing cylinders, high-resolution camera data, sintering machine temperature,
Trolley speed data, waste gas temperature, and concentration of the components
data, which have different priorities. Although the TSN standard specifies the
behavior of the time gating mechanism, the schedule synthesis to achieve the
differentiated transmission in the same physical medium under the TSN network
for multiple types of flows with different priorities is still challenging.

To improve the schedulability of scheduling instances for TT flows, we propose a
co-design approach of transmission scheduling and route planning for TT flows with
considering queue assignment [27]. Specifically, the complete co-design constraints
of multi-queue scheduling and route planning with deterministic and low delay
guarantees are constructed for TT flows, which include queue assignment, conflict
avoidance, stream sequence, and real-time and routing constraints. The queue
assignment constraint describes the mapping relationships between queues and TT
flows on egress port of TSN switches. The conflict avoidance constraint guarantees
the deterministic forwarding behavior of TT flows on the egress port, which consists
of windows-domain non-overlapping and frame isolation constraints. An illustrative
example of conflict avoidance constraint is depicted in Fig. 15.3. The real-time
constraint is constructed to ensure that the end-to-end delay of TT flows is lower
than the corresponding deadline. The stream sequence constraint describes the
transmission sequence of TT flows from talker to listener, i.e., the transmission of
TT flows must follow the sequential order on the transmission routing path. The
routing no-loop constraint is constructed to avoid the closed loop of the transmission
path. Then, the constraint satisfaction problem (CSP) is mapped into SMT problem
by an improved mapping method based on Listeners, which solves the indefinite
routing problem caused by the introduction of route planning.

15 Control and Communication Coordination for Industrial Digital Twins of. . . 335

Sx SySx Sy
(Vx,Va)

(Vy,Va)

(Va,Vb)

Sx

Sy

SxSx
(Vx,Va)

(Vy,Va)

(Va,Vb)

Sx

Sy

Va

Va

Sy

(Vx,Va)

(Vy,Va)

Sy

Sx

(Va,Vb)

Sy Sx

Non-overlapping

Frame isolation

...

...

Flow_x

Flow_y

Fig. 15.3 The illustration of conflict avoidance on a shared link

Due to the high computational complexity of TT flows scheduling problems in
TSN (i.e., NP-Complete), the above approaches are time consuming and thus are
suitable for small and medium scheduling instances. The iterated scheduling meth-
ods are proposed for improving scalability (computational efficiency of scheduling
method). To construct a more objective and precise stream relevance metric for
iterated scheduling in TSN, a semi-supervised learning approach [28] on stream
partitioning for iterated scheduling is proposed. Specifically, a large-scale TT stream
unlabeled dataset and a small labeled dataset of all possible stream attributes that
may influence each flow set’s final schedulability are first constructed. The labels are
the schedulability under different stream partitioning settings. The stream attributes
include a period, a size, a deadline, the number of frames, packets, queues, a
sender, a receiver, and a link speed. The scopes of TT stream attributes are selected
according to the typical industrial automation applications in the white paper [29]
to cover realistic scenarios.

Based on the large-scale TT flow unlabeled dataset, a sparse autoencoder (SAE)
is proposed to obtain a sparse and low-rank representation of stream attributes,
representing the original input signal to the greatest extent. However, this low-rank
representation can only reconstruct the input signal now without any capability of
signifying the stream relevance or conflict degrees. Thus, a classifier is added at
the SAE top encoding layer and fine-tunes the learned SAE with labeled samples
provided in the TT flow labeled dataset. Then, an objective and pervasive evaluation
metric on TT flow relevance is constructed based on the low-rank representation of
each TT flow without any prior domain knowledge requirements. The evaluation
metric on stream relevance provides a data-driven measurement for subsequent
stream partitioning. Moreover, the metric can be an additional term on stream
relevance or conflicts to guide stream partitioning method such as graph-based
approaches and clustering approaches, if accurate domain knowledge is available.

336 C. Chen et al.

Fig. 15.4 The illustration of the semi-supervised co-training method

To explore a large amount of unlabeled data, a semi-supervised co-training
method is proposed to exploit the multi-view relationship of time-triggered stream
partitioning, as shown in Fig. 15.4. Each labeled flow set is separated into two views,
in particular, divide the streams into two groups on average. To start with, a small
portion of labeled training samples is used for learning and stored as the original
models. Then the LLR of unlabeled samples is extracted and the pseudo labels are
generated by the original models. Next, the original learning models are fine-tuned
using an updated training set, which contains labeled training samples and unlabeled
training samples with pseudo labels. At last, the second and third steps are iterated
until the updated training set becomes stable. The extensive experiments on the TT
flow dataset are constructed to demonstrate the effectiveness and performance of the
proposed SSL-SP approach, which includes the schedulability comparison, effect
of classifiers, dataset size, and parameter setting. The proposed SSL-SP approach
obtains the highest schedulability on the TT flow dataset compared to existing
iterated scheduling methods.

Nevertheless, the above works focus on the scheduling problem of TT flows
from different aspects without considering the impact of TT flow schedule on other
flows like AVB flows with bounded end-to-end latency requirements. To achieve
the transmission in the same physical medium under TSN network for TT flows,
LTS flows, and BE flows, the work [30] proposes a transmission framework by
coordinating TAS and cyclic queuing and forwarding (CQF) simultaneously. Under
this framework, TT flows are scheduled on the premise of reducing the impact on
periodic and aperiodic LTS flows. The flows transmission architecture on the egress
port of TSN switch is depicted in Fig. 15.5. The TT flows (i.e., HTS flows), LTS
flows, and BE flows are buffered in the egress queue based on the priority mapping
table (i.e., assigned internal priority value) and forwarded to the next TSN switch or
the nearest edge computing (EC) device based on the predefined GCL schedule.

15 Control and Communication Coordination for Industrial Digital Twins of. . . 337

Queue for

HTS flows

Queue for

LTS flows

Queue for

LTS flows

Queue for

BE flows

...

...

Strict Priority

Algorithm

Transmission

Gate = o

...

Strict Priority

Algorithm

Transmission

Gate = C

...

Strict Priority

Algorithm

Transmission

Gate = C

...

Strict Priority

Algorithm

Transmission

Gate = C

Transmission Selection

...

...

Gate Control List

T0:Occccccc

T1:Coooooo

…
C =closed

o = open

Egress Port

Fig. 15.5 Mixed flows transmission at the egress port of TSN switch

Specifically, the network designer provides the flow sets, including the crucial
parameters such as the lower bound and upper bound of the sampling period, the
class measurement interval of LTS flows, length of the frames, etc. The network
designer then chooses the cycle time and scheduling unit if the flow sets are
schedulable. Otherwise, the network designer needs to tune the flows sets by
changing the network topography or adding other TSN switches. The network
manager then formulates and solves a constrained optimization problem, whereby
the objective function is the estimated average delay of LTS flows on the premise
of ensuring the constraints of the LTS flows. The decision variable represents the
packet injection time of HTS flows. If there exist feasible solutions to the scheduling
problem, then the schedules of HTS flows can be generated by the feasible solutions
otherwise tune the flows sets. Finally, by merging the schedules of HTS flows and
LTS flows, the configurations of the specific egress port on the TSN switch are
finished.

To make the coordinated transmission framework practical and achieve fine-
grained scheduling of HTS flows, a parameter selection approach is developed by
choosing the proper cycle time and the minimum scheduling unit. Moreover, to
further reduce the average delay of LTS flows under the coordinated transmission
framework, a scheduling problem by planning the packet injection time of each
HTS flow is formulated. And then, an injection time grouping algorithm (ITG)
is designed by grouping flows of the same period to reduce the computation
complexity. Simulation results show the effectiveness of the ITG algorithm.

338 C. Chen et al.

15.5 Intelligent Modeling for Sintering Process

As described in Sect. 15.3, the prediction of key indicators is crucial to the quality
control of sinter. Taking TS as an example, high TS reduces the reducibility of the
sinter ore, while low TS results in low strength. Both cases will cause dramatic
economic losses. Therefore, designing the prediction model of key indicators to
maintain them within an appropriate range in practical production not only has
positive impacts on the production of the blast furnace in the aspect of quality and
quantity but also helps reduce cost.

However, the sintering process is usually non-linear in view of its industrial
chemistry, physical, and mechanical components. Besides, the invisibility of the
process and the various time lags make the prediction of the content of TS
and FeO nontrivial. In order to achieve accurate quality prediction, the mapping
relationship between key indicators and process parameters should be explored,
and the mechanism model of the process should be established. At the same time,
inspired by machine learning and big data technology, data-driven methods become
effective for establishing quality prediction models, which can handle nonlinear
approximation problems well. More and more studies begin to focus on data-driven
quality prediction in industrial applications.

In terms of TS prediction, some scholars integrated artificial intelligence methods
for TS prediction [14–17]. The idea of these hybrid ensemble prediction methods
were mainly divided into two types. One is to establish a TS prediction model and
then optimize the parameters in the model [14, 15]. The other is to process the data
first to weaken some characteristics and then use the processed data to establish
prediction models [16, 17]. The data-driven modeling method is not restricted
by strict mathematical assumptions and constraints and can reflect the complex
relationship between sintering data, which makes the data-driven TS prediction
more accurate.

However, the current research work on TS prediction has the following three
restrictions. First, the previous works ignore the non-uniform distribution of sinter-
ing materials along the width of sintering bed in the practical production process,
which makes the low prediction accuracy and cannot satisfy the actual requirements
for sub-regional parameters control in sintering production. Second, limited by the
capabilities of sensors, the data and features obtained from sintering site are limited.
It is difficult for data-driven methods to use data with limited features to establish
accurate prediction models. Third, the previous works ignore the inherent time delay
in the sintering process and the TS detection process, which means that the data of
the same time tag cannot represent the production process of the same batch of sinter
materials. Furthermore, the TS prediction model established by the mismatching
input and output data will lead to low prediction accuracy. In general, the previous
work deviated from the actual production to a certain extent.

To solve the above problems, we proposed a novel TS prediction scheme and
a data-driven TS prediction model in [31]. The TS prediction scheme is shown
in Fig. 15.6. First, considering the non-uniform distribution of materials in the

15 Control and Communication Coordination for Industrial Digital Twins of. . . 339

LSSVM

Fitting formula

Tumble Strength Index

input

LSSVM

input

Submodel 1 Submodel N

output output

Regression based on sinter pot test

Fitting formula

input input

1 2 NN-1

400

200

0

T
h
e

th
ic

k
n
es

s
o

f

re
d
 l

ay
er

 (
m

m
) z

x

XΔ

1Q
1pΔ

1 nM M 1 nM MpΔ
N

Q
N1hΔ NhΔ

Fig. 15.6 TS prediction scheme

sintering bed and the inherent time delay in the sintering and TS measuring process,
we combined local thermal non-equilibrium (LTNE) to establish the TS model
(15.1):

T S(t + tf + tc) =
∫ Xf

0

∫ Yf
Ys

∫ h(t,tc;x,y)
0 g(�h,Q,�p,M1, ...,Mn; x, t)dxdydz

∫ Xf
0

∫ Yf
Ys

∫ h(t,tc;x,y)
0 dxdydz

,

(15.1)

where tc is the cooling time, tf the time gap between the head and the tail,Q the air
volume, �h the height of the mixed materials, �p the pressure of bellows, and
M1, ...,Mn the composition of sintering mixed materials. The model was more
in line with the actual sinter production. Based on the TS model, Q, �h, �p,
M1, ...,Mn were selected as the inputs of TS prediction model. Based on the TS
model, a more practical data-driven TS prediction scheme for on-site application
is proposed. To satisfy the requirements of sub-regional parameters control, the
sintering bed is divided into several segments along the width direction, and the
TS value in each segment is predicted. This scheme made the TS prediction value
worthier for practical sinter production.

To solve the problem of inaccurate modeling caused by limited data features,
the thickness of the red layer of the sintering bed tail section was introduced as an
intermediate variable, and the sinter pot test data was used to expand the limited
feature. By setting up an infrared thermal imaging camera at the tail of the sintering
bed, the red layer information was obtained and processed in time, so as to obtain

340 C. Chen et al.

0 300 600 900

Time (s)

1200 1500 1800
0

600

1200(b)

(a)

T
em

p
er

at
u
re

 (
°C

)

Thermocouple 1

Thermocouple 2

Thermocouple 3

Thermocouple 4

Thermocouple 5

Thermocouples

Gas burner

y

1000mm

300mm

200mm 1

2

3

4

5

Fig. 15.7 Temperature test in the sinter pot. (a) Thermocouple distribution in the sinter pot. (b)
Temperatures fluctuations in the test

the thickness of the red layer in each segment of the sintering bed tail section. In
addition, sinter pot tests were conducted to obtain the fitting formula between the
thickness of the red layer and TS. The sinter pot test is designed as a simulation
of the industrial sinter process with a standard laboratory process. It overcomes the
challenge of exploring the relationship between sintering parameters and the quality
of sinter ore under complex and uncertain conditions. The demonstration of the
sinter pot is quite simple. The pot is cylindrical with a depth of 1000 mm and a
diameter of 300 mm. As shown in Fig. 15.7a, five thermocouples are inserted in the
pot at depths of 200 mm, 400 mm, 600 mm, 800 mm, and 1000 mm, respectively.
In 8 sinter pot tests, we obtained the TS and temperatures of 5 thermocouples.
Figure 15.7b shows the temperature fluctuations in a test.

In order to determine the thickness of the red layer, an interpolation method
was adopted to reconstruct the temperature field. Based on the BTP model and
practical control strategy in the sintering process, there was 5.9% of the time gap
between the beginning and thermocouple 5 appearing maximum temperature for
cooling down at the end of the sintering bed. This means that in the sinter pot
test, the time to calculate the thickness of the red layer is 5.9% of the time gap
after the thermocouple reaches the maximum temperature. Figure 15.8 shows the
temperature field changing in the sinter pot and the demonstration of the red layer.

15 Control and Communication Coordination for Industrial Digital Twins of. . . 341

Fig. 15.8 Temperature distribution in the sinter pot

180 200 220 240 260 280 300

The thickness of red layer / (mm)

70

75

80

T
u
m

b
le

 s
tr

en
g
th

 /
 (

%
)

Original data

 Fitting curve

y = 16.8891ln (x) -17.6491

R
2
 = 0.9012

Fig. 15.9 Fitting curve of the thickness of red layer and TS

The fitting curves of the thickness of the red layer and TS are shown in Fig. 15.9. So
far, the fitting formula between the thickness of the red layer and TS is expressed
as:

θ = 16.8891 ln(ϑ)− 17.6491, (15.2)

where θ is TS value (%) and ϑ the thickness of red layer (mm).
Further, to solve the problem of time-tag mismatching of input and output data,

the LSSVM predictive sub-models were trained by time-matched data of input and
red layer thickness. The expanded data features and the time-matched input and
output data lead to more accurate predictions. Finally, through the input data and the
trained LSSVM prediction sub-models, the prediction value of red layer thickness
in each segment was obtained, and then the TS prediction value was calculated by
the fitting formula.

The proposed TS prediction scheme was applied to a 3#360 sinter plant of
Guangxi Liuzhou Iron & Steel (Group) Company, and the experiments obtained
higher prediction accuracy and verified the effectiveness of the proposed method.
What’s more, it is worth mentioning that the lack of data features and the time-tag
mismatching of input and output data are common problems in complex industrial
systems. Our proposed scheme provides novel ideas for solving these problems.

342 C. Chen et al.

Image Information

Patameter Information

Corresponding

Reference-FeO

Image Preprocessing Features Extraction

Outliers Removal Parameters Selection

LSTM Network

Predicted FeO

Data Preprocessing Features Construction

Sinter

Machine

Input Data

Algorithm

Output Data
Validation

Fig. 15.10 Flow chart of the research scheme routine

In terms of FeO prediction, the LSTM network is widely used in the field of
the industry considering its superiority in processing information of time series in
recent years. This model is used by Elsaid et al. [18] to predict the aircraft engine
vibrations and by Chen et al. [19] to make predictions of mechanical state. In the
field of sinter quality prediction, Liu et al. [20] based on the operating parameters
carry out research for forecasting the sinter composition by introducing the LSTM.
Jiang et al. [21] introduce the heat transfer function to predict the content of FeO
using a LSTM-based data-driven model.

Besides, though the overall sintering process is invisible due to the cover of the
sintering pallets, we can observe the sintering state at the end of the sintering pallets
and capture this information with the camera. These render it accessible to make
predictions taking the information from images into consideration. Moreover, the
parameters of the sintering process are also used as the features together with the
features extracted from images to construct the multi-source feature vector, which
can serve to eliminate the errors. They are then as the input of the LSTM network.
Furthermore, in order to eliminate the errors caused by the complex large time delay
[32], the reference-FeO at the end of the sintering pallets is obtained and it is used
as the target output of the LSTM network. Finally, the deep learning model, LSTM
network, is utilized to predict the content of FeO with the input of multi-source
information and the target output of corresponding reference-FeO.

As shown in Fig. 15.10, we propose a data-driven prediction method for sinter
composition FeO based on multi-source information and LSTM network in [33].
The image information, the parameter information of vibration, and temperature
are introduced as multi-source features to reflect the content of FeO of sinter ore.
Besides, the values of reference-FeO at the end sintering strand are obtained as
the target output of the LSTM network. Then, the multi-source information is
input to the LSTM network to learn the non-linear relationship between multi-
source features and target output. The experimental results show that the data-driven
prediction scheme based on multi-source features has better prediction performance,
and the absolute error is less than 0.5 compared with reference-FeO, which meets
the practical needs of engineering.

15 Control and Communication Coordination for Industrial Digital Twins of. . . 343

Table 15.1 Digital twin models

Category of models Number of models

Proportioning model Automatic/manual 24

Mechanism model Mapping relation 4

Quality prediction Sintering 9

Pelletizing 28

Blast furnace 28

Quality backtracking Abnormal position 13

Based on the data-driven method, 106 models, such as proportioning opti-
mization, process mechanism, quality prediction, and quality backtracking, were
established in Guangxi Liuzhou Iron & Steel (Group) Company, as shown in
Table 15.1. The simultaneous evolution of cyberspace and physical space provides
decision support for improving quality and efficiency.

15.6 Digital Twins Coordination of the Sintering Process

Based on the coordination architecture in Sect. 15.2, TSN technology, and various
data-driven models, control and communication coordination can be realized on the
industrial cloud platform. In order to optimize the production process, distributed
digital twin models need to be coordinated. In the rest of this chapter, we will
introduce control–communication coordination for industrial digital twins of the
sintering process, mainly based on TSN and digital twin technology. The devel-
opment of the digital twin accelerates the intelligent reform of the manufacturing
process.

Facing various production demands, a whole process coordination and optimiza-
tion digital twin network of multiple twins is constructed. Digital twin models are
extracted on-demand to simulate the production process in a virtual way, which can
gain more efficient network resource allocation. In addition, they predict key process
indicators and adjust production process parameters to achieve better production
performance.

The network configurations of TSN can be generated by simulating the on-
demand interaction of each twin through a digital twin network. If these configura-
tions are directly distributed to the physical network, the normal production process
may be affected. In case of production failure, the impact cannot be estimated. Based
on the service mapping model of the digital twin network of production collab-
orative optimization, virtual testing is carried out before parameters arrangement.
After network resource allocation and process parameters optimization on the cloud
platform, configuration parameters are arranged to the industrial site with less trial
and error costs. In this way, the utilization efficiency of production resources is
improved.

344 C. Chen et al.

Edge Data Center
…

Subnetwork 1

…

Cloud Server

Global Model

Visualization

1

1
+1

2
+1 +1

2 00 0

Edgge Data Center
…

…

Cloud Server

Global Model

Visualization

1

1
+1

2
+1 +

2 00 0

Subnetwork 2 Subnetwork 3

Fig. 15.11 Coordination framework for distributed digital twins

Since the industrial field covers a wide range, different edge devices serve
individual regions, and the digital twin models built on each edge device are
various. In order to coordinate the local model and the global model, we iteratively
update model parameters between each edge device and cloud server through
distributed learning technology. Specifically, after each edge device collects massive
heterogeneous data, it extracts, converts, loads, cleans, and processes the data
to construct digital twin datasets for training various functions in the production
process. Then various industrial production functional models, i.e., various forms
of deep neural networks, are trained distributed based on these datasets. The digital
twins trained on each edge device of the whole production process interact with
the industrial cloud platform to serve various production demands as shown in
Fig. 15.11. The local model at device i is shown as follows:

F(ωti) =
1

Di
#xi,yi∈Dif (ωti , xi, yi), (15.3)

where ωti is the network parameter of device i after t iterations, Di is the dataset on
the edge device i, xi, yi is the data sample, and f (ωti) is the difference between the
value output by the network and the true value of the data. F(ωti) is the loss function
obtained by averaging the value for the whole dataset. The network parameter
update process is shown in Fig. 15.11 and following formulas:

ω̄ti = ωt−1
i − lr∇ωF(ωt−1

i), (15.4)

ωt0 = β1ω̄
t
1 + β2ω̄

t
2 + · · · + βnω̄tn, (15.5)

where ω̄ti is the local updated network parameters of device i, and lr denotes the
learning rate. In formula (15.5), ωt0 indicates the global network parameter, and the

15 Control and Communication Coordination for Industrial Digital Twins of. . . 345

Fig. 15.12 Digital twin platform for sintering quality prediction

update process is a weighted learning process. After T local training iterations, the
edge device will upload the model to the cloud server. The industrial cloud platform
will integrate all collected models and get a global loss function recorded as F(ωk)
after k iterations. At the same time, this parameter will be broadcasted to each edge
device for update. This process will be repeated until the preset accuracy is met.

Up to now, this technical scheme has been applied in Guangxi Liuzhou Iron &
Steel (Group) Company. The quality prediction, quality retrospective, and quality
optimization services are provided. In terms of quality prediction service, high-
quality and stable production data are obtained through real-time state detection.
Then, quality prediction services can be provided based on reliable data. We have
built more than 100 prediction models to achieve the prediction of key indicators
such as chemical composition and physical properties, as shown in Table 15.1.
Based on this, a digital twin platform for sintering quality prediction is formed,
as shown in Fig. 15.12, which can provide an important reference for the production
site. Figure 15.13 shows the quality prediction curves of TS and FeO drawn based
on platform data from November 17 to November 25, 2021. The prediction accuracy
is more than 93.75% and over 90.00%, respectively.

At the same time, the forecast service provides early warning. That is, when the
forecast value is abnormal, the quality retrospective service is activated to locate
the production processes where the abnormality occurs. After that, the occurrence
of abnormality is reported to the quality optimization service in time, and the

346 C. Chen et al.

81
(a)

(b)

80

79

78

77

76

75

74

T
u
m

b
le

 S
tr

en
g
th

 (
%

)

2
0
2
1
/1

1
/1

8
 0

0
:2

5

2
0
2
1
/1

1
/1

7
 1

6
:1

2

2
0
2
1
/1

1
/1

8
 0

8
:4

2

2
0
2
1
/1

1
/1

8
 1

6
:4

7

2
0
2
1
/1

1
/1

9
 0

0
:1

2

2
0
2
1
/1

1
/1

9
 0

8
:0

2

2
0
2
1
/1

1
/1

9
 1

6
:2

4

2
0
2
1
/1

1
/2

0
 0

0
:4

1

2
0
2
1
/1

1
/2

0
 0

8
:2

1

2
0
2
1
/1

1
/2

0
 1

6
:4

0

2
0
2
1
/1

1
/2

1
 0

0
:0

9

2
0
2
1
/1

1
/2

1
 0

8
:3

7

2
0
2
1
/1

1
/2

1
 1

6
:1

8

2
0
2
1
/1

1
/2

2
 0

0
:2

7

2
0
2
1
/1

1
/2

2
 0

9
:0

9

2
0
2
1
/1

1
/2

2
 1

6
:4

5

2
0
2
1
/1

1
/2

3
 0

0
:2

7

2
0
2
1
/1

1
/2

4
 1

0
:4

8

2
0
2
1
/1

1
/2

4
 1

6
:4

3

2
0
2
1
/1

1
/2

5
 0

0
:0

5

Time

Prediction

Measurement

1% error range

11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0F
er

ro
u

s
Ir

o
n

 C
o

n
te

n
t

(%
)

2
0
2
1
/1

1
/2

0
 1

6
:4

0

2
0
2
1
/1

1
/2

0
 1

2
:2

1

2
0
2
1
/1

1
/2

0
 2

0
:4

0

2
0
2
1
/1

1
/2

1
 0

0
:0

9

2
0
2
1
/1

1
/2

1
 0

8
:3

7

2
0
2
1
/1

1
/2

1
 1

6
:1

8

2
0
2
1
/1

1
/2

1
 2

0
:1

8

2
0
2
1
/1

1
/2

2
 0

0
:2

7

2
0
2
1
/1

1
/2

2
 0

4
:2

7

2
0
2
1
/1

1
/2

2
 1

2
:0

9

2
0
2
1
/1

1
/2

2
 1

6
:4

5

2
0
2
1
/1

1
/2

2
 2

0
:4

5

2
0
2
1
/1

1
/2

3
 0

0
:2

7

2
0
2
1
/1

1
/2

3
 0

4
:2

7

2
0
2
1
/1

1
/2

4
 1

2
:4

8

2
0
2
1
/1

1
/2

4
 1

6
:4

3

2
0
2
1
/1

1
/2

4
 2

0
:4

3

2
0
2
1
/1

1
/2

5
 0

0
:0

5

2
0
2
1
/1

1
/2

5
 0

4
:0

5

2
0
2
1
/1

1
/2

5
 1

6
:4

6

Time

Prediction

Measurement

0.5% error range

Fig. 15.13 Quality prediction of sintering process. (a) Results of TS prediction. (b) Results of
FeO prediction

optimization suggestions given by the optimization model are used to provide
important guidance to the on-site operators.

In terms of quality forecasting services, through real-time analysis of production
data such as raw material ratio, operating status (machine speed, valve opening,
etc.), observation status (exhaust gas temperature, wind box negative pressure, etc.),
the quality prediction of sinter ore is achieved. Accurate prediction of quality
indicators provides an important reference for the production site. As shown in
Table 15.2, we predict the key indicators 20 minutes in advance, and the prediction
accuracy of key indicators is more than 90%.

As for quality optimization, we first analyze the entire pre-iron process and
establish a batching optimization model for a single process. Based on this, the

15 Control and Communication Coordination for Industrial Digital Twins of. . . 347

Table 15.2 Quality prediction accuracy and time in advance

Prediction
Category Number in advance Prediction
of models of models Time scale Spatial scale (hour) accuracy

Sintering 9 Minute (forecast
period) Hour
(forecast advance
time)

Equipment/process/
production line

2 >90%

Pelletizing 28 Minute (forecast
period) Hour
(forecast advance
time)

Equipment/process/
production line

2 >90%

Blast
furnace

28 Minute scale
(changes with the
updating frequency
of molten iron
quality)

Blast furnace/process/
production line

1/3 >92.00%

analysis of the quality correlation between multiple processes is conducted and a
proportioning optimization model is established. For the sinter mixture and sinter
ore, the corresponding total iron or cost is the optimization target. Constraints are
quality conservation constraints, ingredient constraints, inventory constraints, and
harmful element constraints of the corresponding process, etc. As for the opti-
mization algorithm, the simple method, gray wolf method, or whale optimization
algorithm are utilized to optimize the quality for single process. After that, multi-
processes joint batching optimization (mixing material and sinter) is performed. By
analyzing the quality relationship between each process and introducing nonlinear
convergence factors, Levy flight strategies, etc., joint optimization is achieved under
these analyses and constraints. Finally, the proposed proportioning plan satisfies
both the requirements of the sinter mixture and the sinter ore.

Furthermore, combined with production cost, process flow, iron grade quality,
and other constraints, an economical ore procurement plan was given to substan-
tially save production costs through sintering proportioning optimization. As for
quality backtracking, the intelligent fault diagnosis of the production process has
been realized by studying the safe intervals and correlation weights of various
performance indicators of key processes.

15.7 Summary

To improve the production quality of the sintering process, this chapter firstly
introduced a new multi-tier coordination architecture to cooperate control and
communication for industrial digital twins, which addressed the field network for
smart manufacturing and facilitated the integration of CT, OT, and IT. TSN and
its scheduling algorithms were introduced to improve the synchronization and end-
to-end performances of communication between cyber and physical systems, such

348 C. Chen et al.

as digital twins and sintering plants. To guarantee the transmission performance
of heterogeneous data in the sintering process, some cooperative design methods
and mixed transmission framework of route planning considering queue allocation
are discussed. This chapter also presented several mechanism and data-driven
modeling methods, which laid a solid foundation for more than 100 digital twin
functional models. The proposed digital twins’ coordination was applied through
the on-demand interaction on the industrial cloud platform. The technical scheme
is verified over a 3#360 sinter plant of Guangxi Liuzhou Iron & Steel Company
and could predict key indicators 20 minutes in advance. The prediction accuracy of
TS and FeO is more than 93.75% and 90.00% under normal operating conditions,
respectively, which provide important references for improving the quality of the
sinter.

Acknowledgments This work was partially supported by the National Key R&D Program of
China under the grant 2018YFB1702100, the National Natural Science Foundation of China under
the grants 62025305, 61933009, and 62103268, and the Ministry of Industry and Information
Technology of China under the grant ZX20200064. Special thanks to Mr. Chugang Shi, the
technical director of Sintering Plant, Liuzhou Steel Group, Guangxi, P. R. China, and other
technicians for their unreserved supports and constructive comments on the digital modeling for
sintering process.

References

1. F. Tao, H. Zhang, A. Liu, A.Y. Nee, Digital twin in industry: state-of-the-art. IEEE Trans. Ind.
Inf. 15(4), 2405–2415 (2018)

2. Time-sensitive networking task group (2017). https://1.ieee802.org/tsn
3. IEEE, 802.1Qbv-2015-IEEE standard for local and metropolitan area networks–bridges and

bridged networks-amendment 25: enhancements for scheduled traffic (2015). https://standards.
ieee.org/standard/8021Qbv-2015.html

4. 802.1AS-Rev-Timing and synchronization for time-sensitive applications (2017). http://1.
ieee802.org/tsn/802.1AS-rev

5. P. Pop, M.L. Raagaard, S.S. Craciunas, W. Steiner, Design optimisation of cyber-physical
distributed systems using IEEE time-sensitive networks. IET Cyber-Phys. Syst. Theory Appl.
1(1), 86–94 (2016)

6. S.S. Craciunas, R.S. Oliver, M. Chmelík, W. Steiner, Scheduling real-time communication in
IEEE 802.1Qbv time sensitive networks, in Proceedings of the 24th International Conference
on Real-Time Networks and Systems, ser. RTNS ’16 (2016), pp. 183–192

7. R.S. Oliver, S.S. Craciunas, W. Steiner, IEEE 802.1Qbv gate control list synthesis using
array theory encoding, in 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) (2018), pp. 13–24

8. F. Dürr, N.G. Nayak, No-wait packet scheduling for IEEE time-sensitive networks (TSN), in
Proceedings of the 24th International Conference on Real-Time Networks and Systems, ser.
RTNS ’16 (2016), pp. 203–212

9. R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, Z. Peng, Stability-aware integrated
routing and scheduling for control applications in Ethernet networks, in Proc. Des., Autom.
Test Eur. Conf. Exhib. (2018), pp. 682–687

10. A.A. Atallah, G.B. Hamad, O.A. Mohamed, Routing and scheduling of time-triggered traffic
in time-sensitive networks. IEEE Trans. Ind. Inf. 16(7), 4525–4534 (2020)

https://1.ieee802.org/tsn
https://standards.ieee.org/standard/8021Qbv-2015.html
https://standards.ieee.org/standard/8021Qbv-2015.html
http://1.ieee802.org/tsn/802.1AS-rev
http://1.ieee802.org/tsn/802.1AS-rev

15 Control and Communication Coordination for Industrial Digital Twins of. . . 349

11. L. Zhao, P. Pop, Z. Zheng, Q. Li, Timing analysis of AVB traffic in TSN networks using
network calculus, in 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) (2018), pp. 25–36

12. V. Gavriluţ, P. Pop, Scheduling in time sensitive networks (TSN) for mixed-criticality industrial
applications, in 2018 14th IEEE International Workshop on Factory Communication Systems
(WFCS) (2018), pp. 1–4

13. Y. Huang, S. Wang, B. Wu, T. Huang, Y. Liu, TACQ: enabling zero-jitter for cyclic-queuing
and forwarding in time-sensitive networks, in ICC 2021 - IEEE International Conference on
Communications (2021), pp. 1–6

14. M. Wu, C. Xu, J. She, R. Yokoyama, Intelligent integrated optimization and control system for
lead–zinc sintering process. Control Eng. Pract. 17(2), 280–290 (2009)

15. S. Wang, H. Li, Y. Zhang, Z. Zou, A hybrid ensemble model based on ELM and improved
AdaBoost. RT algorithm for predicting the iron ore sintering characters. Comput. Intell.
Neurosci. 2019 (2019). https://doi.org/10.1155/2019/4164296

16. Y. Li, C. Yang, Y. Sun, Dynamic time features expanding and extracting method for prediction
model of sintering process quality index. IEEE Trans. Ind. Inf. 18(3), 1737–1745 (2021)

17. X. Fan, J. Feng, X. Chen, Y. Wang, Prediction model and control-guidance expert system of
sinter chemical composition. Min. Metall. Eng. 31(4), 5 (2011)

18. A. ElSaid, B. Wild, J. Higgins, T. Desell, Using LSTM recurrent neural networks to predict
excess vibration events in aircraft engines, in 2016 IEEE 12th International Conference on
e-Science (e-Science) (2016), pp. 260–269

19. Z. Chen, Y. Liu, S. Liu, Mechanical state prediction based on LSTM neural network, in 2017
36th Chinese Control Conference (CCC) (2017), pp. 3876–3881

20. S. Liu, X. Liu, Q. Lyu, F. Li, Comprehensive system based on a DNN and LSTM for predicting
sinter composition. Appl. Soft Comput. 95, 106574 (2020)

21. Z. Jiang, L. Huang, K. Jiang, Y. Xie, Prediction of FeO content in sintering process based on
heat transfer mechanism and data-driven model, in 2020 Chinese Automation Congress (CAC)
(2020), pp. 4846–4851

22. Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Communication-efficient federated
learning for digital twin edge networks in industrial IoT. IEEE Trans. Ind. Inf. 17(8), 5709–
5718 (2020)

23. W. Sun, S. Lei, L. Wang, Z. Liu, Y. Zhang, Adaptive federated learning and digital twin for
industrial internet of things. IEEE Trans. Ind. Inf. 17(8), 5605–5614 (2020)

24. Y. Dai, K. Zhang, S. Maharjan, Y. Zhang, Deep reinforcement learning for stochastic
computation offloading in digital twin networks. IEEE Trans. Ind. Inf. 17(7), 4968–4977
(2020)

25. R. Dong, C. She, W. Hardjawana, Y. Li, B. Vucetic, Deep learning for hybrid 5G services
in mobile edge computing systems: learn from a digital twin. IEEE Trans. Wirel. Commun.
18(10), 4692–4707 (2019)

26. J. An, J. Yang, M. Wu, J. She, T. Terano, Decoupling control method with fuzzy theory for top
pressure of blast furnace. IEEE Trans. Control Syst. Technol. 27(6), 2735–2742 (2018)

27. L. Xu, Q. Xu, Y. Zhang, J. Zhang, C. Chen, Co-design approach of scheduling and routing
in time sensitive networking, in 2020 IEEE Conference on Industrial Cyberphysical Systems
(ICPS), vol. 1 (2020), pp. 111–116

28. J. Tu, Q. Xu, L. Xu, C. Chen, SSL-SP: a semi-supervised-learning-based stream partitioning
method for iterated scheduling in large-scale time-sensitive networking, in 2021 22nd IEEE
International Conference on Industrial Technology (ICIT) (2021), pp. 1182–1187

29. Integration of 5G with time-sensitive networking for industrial communications, in 5G Alliance
for Connected Industries and Automation (2021), pp. 13–16

30. J. Zhang, Q. Xu, X. Lu, Y. Zhang, C. Chen, Coordinated data transmission in time-sensitive
networking for mixed time-sensitive applications, in IECON 2020 The 46th Annual Conference
of the IEEE Industrial Electronics Society (2020), pp. 3805–3810

https://doi.org/10.1155/2019/4164296

350 C. Chen et al.

31. J. Ye, X. Ding, C. Chen, X. Guan, X. Cao, Tumble strength prediction for sintering: data-driven
modeling and scheme design, in 2020 Chinese Automation Congress (CAC) (IEEE, Piscataway,
2020), pp. 5500–5505

32. S. Zhu, C. Chen, J. Xu, X. Guan, L. Xie, K.H. Johansson, Mitigating quantization effects on
distributed sensor fusion: a least squares approach. IEEE Trans. Signal Process. 66(13), 3459–
3474 (2018)

33. X. Bai, C. Chen, W. Liu, H. Zhang, Data-driven prediction of sinter composition based on
multi-source information and LSTM network, in 2021 40th Chinese Control Conference (CCC)
(2021), pp. 3311–3316

Index

A
Adaptive rate sampling, 264, 266, 282, 286
AI-assisted network slicing, 25–29, 32

B
Beyond 5G (B5G) networks, 20, 25–29, 32

C
Cache replacement policy, 144, 156
Cache state transition, 148–149, 154, 163
Clustering, 83, 299, 300, 305, 335
CNN face authentication, 318–320
Collaborative Edge Computing (CEC), 233
Competitive ratio (CR), 235, 236, 238, 239,

244, 246, 248, 252, 256, 258–260
Compliance, 291–311
Computer network support, 128, 129
Computing and transmission resource slicing,

24–25, 31, 32, 243
Constrained Markov decision process (CMDP),

264, 265, 274–276, 278, 279
Control and communication coordination,

327–348
Convolutional neural network (CNN), 83, 84,

314, 318–320, 324
Core network (CN), 17–20, 23–25, 31, 32, 81,

82

D
Data-driven approach, 291–311, 338, 342, 343,

348

Deep learning face authentication, 318
Deep Q-learning (DQL), 37, 42, 84, 88–94, 99,

102, 178–198, 267
Deep reinforcement learning, 35–60, 84,

175–199
Deterministic communication, 328, 329,

334–337
DNN inference, 263–288
Dynamic probabilistic caching, 144, 158–164,

168–171
Dynamic user spatial distribution, 37, 49–52,

56, 59

E
End-to-end (E2E) delay, 25, 26, 328, 334
Energy saving, 204, 212, 329

F
Face detection, 314
Facial recognition, 314–320, 323,

324
Frictionless authentication, 313

G
5G communication networks, 17–32
Genetic algorithm (GA), 65–79, 96, 98,

100–102, 332

H
Hard delay constrain, 207

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Cai et al. (eds.), Broadband Communications, Computing, and Control
for Ubiquitous Intelligence, Wireless Networks,
https://doi.org/10.1007/978-3-030-98064-1

351

https://doi.org/10.1007/978-3-030-98064-1

352 Index

I
IEEE 802.11ax, 65–79
Incentive mechanism, 233–260
Industrial digital twins, 327–348
Internet of Vehicle (IoV), 105–110, 121

L
Land mobile radio (LMR), 296
Liveness detection, 313
Lyapunov optimization, 265, 276, 278, 283

M
Machine learning (ML), 36, 83, 88, 109–115,

264–267, 293, 305, 324, 338
Markov channel model, 204, 206–213, 216
Mobile cloud computing, 203
Mobile computation offloading, 203–229
Mobile edge caching, 35
Mobile edge computing (MEC), 35, 175–199,

241, 252, 263–288, 329
Mobility prediction, 27, 106, 107, 109–115,

120, 121

N
Network configuration, 135, 343
Network slicing, 17–32, 267
Nonhomogeneous Poisson process (NHPP),

109–113, 115, 121

O
Online algorithm, 215, 223, 235, 258
Online teaching, 125–129, 131, 134, 139, 140
Orthogonal frequency division multiple access

(OFDMA), 65–68, 70, 75, 79, 111

P
Power allocation (PA), 81–102
Primal-dual method, 236–240

Q
Quality-of-service (QoS), ix, 17–20, 22,

24–27, 31, 32, 58, 126, 136, 266
Quality prediction, 329, 331, 338, 342, 343,

345–347

R
Radio access network (RAN), 18, 81–102,

266
Radio resource slicing, 20–22, 30, 31
Reinforcement learning (RL), 29, 36, 52, 84,

176, 195, 198, 329
Resource allocation (RA), ix, 36, 37, 66–68,

70–74, 78, 79, 238, 241, 245, 265,
267, 271, 274–277, 279–282, 286, 329,
343

Risk-based AI authentication, 324
Routing algorithm, 19, 105–121

S
Sintering process, 327–348
Spectrum management, 292–294, 296, 298,

299, 304, 305, 310, 311
Spectrum monitoring, 292–296, 298, 310

T
Task offloading, 176, 179–198, 241, 242, 260,

264, 265, 270, 272–275, 279, 282, 284,
287

Teaching from home, 125–140
Time sensitive network (TSN), 328–331,

334–337, 343, 347
Time-varying content popularity, 144, 154–171

U
UAV-based communication networks, 36
UAV trajectory design, 36–38, 49
Unmanned aerial vehicle (UAV), 26, 27,

35–60, 266
User association, 22, 37, 81–102
User authentication, 313–324
User authentication metrics, 320, 321, 323
Utility maximization, 66, 70, 79

W
Wireless local area networks (WLANs), 65–67,

69
Wireless networks, 4, 18–22, 25, 27, 29–31,

79, 83, 84, 143, 183, 204, 235, 263,
264, 266–268, 286, 324

	Preface
	Contents
	Contributors
	1 Tribute to Professor Jon W. Mark
	Personal Stories
	Greeting Messages from Alumni

	Part I Broadband Communications for Ubiquitous Connectivity
	2 Network Slicing for 5G Networks and Beyond
	2.1 Introduction to 5G Communication Networks
	2.2 Network Slicing
	2.2.1 Network Slicing in 5G Wireless Networks
	2.2.1.1 Dynamic Radio Resource Slicing Framework

	2.2.2 Network Slicing in 5G Core Networks
	2.2.2.1 Joint Computing and Transmission Resource Slicing

	2.2.3 AI-Assisted Network Slicing in Beyond 5G Networks
	2.2.3.1 Beyond 5G Networks
	2.2.3.2 AI-Assisted Network Slicing

	2.3 Case Study
	2.4 Conclusion
	References

	3 Responsive Regulation of Dynamic UAV Communication Networks Based on Deep Reinforcement Learning
	3.1 Introduction
	3.2 Related Works
	3.3 System Model and Problem Formulation
	3.3.1 Network Environment
	3.3.2 Spectrum Access
	3.3.3 Energy-Related Considerations
	3.3.4 Problem Formulation

	3.4 Preliminaries
	3.5 Learning Algorithm Design for Proactive Self-Regulation Strategy
	3.5.1 State Space
	3.5.1.1 Case of UAV Quit
	3.5.1.2 Case of UAV Join-In

	3.5.2 Action Definition
	3.5.3 Reward Function Design
	3.5.4 State Transition Definition
	3.5.4.1 Case of UAV Quit
	3.5.4.2 Case of UAV Join-In

	3.5.5 Training Tune-Ups
	3.5.5.1 Tune-Ups for Neural Network Training
	3.5.5.2 Tune-Ups for RL Training

	3.5.6 Parallel Computing

	3.6 Proactive Self-Regulation with Dynamic User Distribution
	3.7 Numerical Results
	3.7.1 Simulation Setup
	3.7.2 Simulation Results
	3.7.2.1 Case Without UAV or User Dynamics
	3.7.2.2 Case of UAV Quit
	3.7.2.3 Case of UAV Join-In
	3.7.2.4 Case of UAV and User Dynamics

	3.8 Conclusions
	References

	4 Utility-Based Dynamic Resource Allocation in IEEE 802.11ax Networks: A Genetic Algorithm Approach
	4.1 Introduction
	4.2 Related Works
	4.3 Background on OFDMA and RU Allocation in IEEE 802.11ax
	4.4 System Model
	4.5 Utility-Based Dynamic Resource Allocation Scheme
	4.5.1 Optimal Resource Allocation Problem Formulation
	4.5.2 Genetic Algorithm

	4.6 Simulation Results
	4.6.1 UDRA vs. Exhaustive Search
	4.6.2 Network-Wise Throughputs and Fairness Indexes

	4.7 Conclusion
	References

	5 Intelligentized Radio Access Network for Joint Optimization of User Association and Power Allocation
	5.1 Introduction
	5.2 Related Work
	5.3 Main Contribution
	5.4 System Model
	5.5 Problem Formulation
	5.6 DQL Framework
	5.6.1 DQN
	5.6.2 Design the DQN
	5.6.2.1 Actions
	5.6.2.2 Reward

	5.7 Results and Discussions
	5.7.1 Training and Testing Results
	5.7.2 UE Performance
	5.7.3 Robustness
	5.7.4 Scalability
	5.7.5 Closer Look at DQN

	5.8 Summary
	References

	6 Routing Algorithms for Heterogeneous Vehicular Networks
	6.1 Introduction
	6.2 Background
	6.2.1 Unicast Routing Algorithms
	6.2.2 Broadcast Routing Algorithms
	6.2.3 Geocast Routing Algorithms
	6.2.4 Related Work in Routing Algorithms

	6.3 Machine Learning-Based Routing Algorithm for IoV with Mobility Prediction
	6.3.1 Network Model
	6.3.2 Statistical Mobility Model
	6.3.2.1 Inter-Arrival Time Distribution
	6.3.2.2 Inter-Vehicle Spacing Distribution

	6.3.3 Channel Model
	6.3.4 ANN Model

	6.4 Performance Evaluation
	6.5 Conclusion
	References

	7 Teaching from Home: Computer and Communication Network Perspectives
	7.1 Introduction
	7.2 Related Work
	7.3 Network Technologies Involved
	7.3.1 Host Computers
	7.3.1.1 Desktop, Laptop, or Tablet?
	7.3.1.2 Windows, Mac OS, or Linux?
	7.3.1.3 Other Necessary Peripherals

	7.3.2 Home Networks
	7.3.2.1 Ethernet Structured Wiring
	7.3.2.2 No-New-Wires Home Backbone
	7.3.2.3 Wireless Home Network

	7.3.3 Internet Access
	7.3.3.1 Fiber, Cellular, or Satellite?
	7.3.3.2 Telephone Service Providers
	7.3.3.3 Television Service Providers

	7.4 Improvement for Online Teaching
	7.4.1 WiFi Interference Avoidance
	7.4.1.1 A Better (Al)located WiFi AP
	7.4.1.2 Wired Interconnected WiFi APs
	7.4.1.3 Wireless Interconnected WiFi APs

	7.4.2 WAN Reliability Augmentation
	7.4.2.1 DSL vs. Cable Modem
	7.4.2.2 Primary vs. Backup
	7.4.2.3 Load Balancing

	7.4.3 Recommendations on Teaching from Home

	7.5 Further Discussion
	7.6 Conclusions
	References

	Part II Caching, Computing, and Control for Ubiquitous Intelligence
	8 State Transition Field: A New Framework for Mobile Dynamic Caching
	8.1 Introduction
	8.2 State Transition Field
	8.2.1 Content Request and Replacement
	8.2.2 Cache State
	8.2.3 State and Content Caching Probabilities
	8.2.4 General Cache State Transition Model
	8.2.5 State Transition Field
	8.2.6 Discussions on the Steady State and the Convergence

	8.3 State Transition Field with Time-Varying Content Popularity
	8.3.1 General Replacement Model
	8.3.2 Instantaneous STF: The General Case
	8.3.3 Impact of STF on Instantaneous Cache Hit Probability

	8.4 Dynamic Probabilistic Caching with Time-Varying Content Popularity
	8.4.1 The Content Replacement Markov Chain
	8.4.2 Generating the State Transition Matrix
	8.4.3 Discussion on Scalability

	8.5 Numerical Results
	8.5.1 State Transition Field with Time-Invariant Content Popularity
	8.5.2 State Transition Field with Time-Varying Content Popularity
	8.5.3 Dynamic Probabilistic Caching with Time-Varying Content Popularity

	8.6 Summary
	References

	9 Deep Reinforcement Learning for Mobile EdgeComputing Systems
	9.1 Introduction
	9.2 Overview of Deep Reinforcement Learning
	9.2.1 DRL Problem Formulation
	9.2.2 Determine the Optimal Policy with Deep Learning
	9.2.3 Existing DRL Algorithms

	9.3 Case Study: Deep Q-Learning for Task Offloading in MEC
	9.3.1 System Model
	9.3.1.1 Task Model
	9.3.1.2 Task Offloading Decision
	9.3.1.3 Local Processing Model
	9.3.1.4 Edge Node Offloading Model

	9.3.2 Task Offloading Problem
	9.3.2.1 State
	9.3.2.2 Action
	9.3.2.3 Cost
	9.3.2.4 Problem Formulation

	9.3.3 Deep Q-Learning-Based Algorithm
	9.3.3.1 Neural Network
	9.3.3.2 Algorithm Design

	9.3.4 Performance Evaluation
	9.3.4.1 Algorithm Convergence
	9.3.4.2 Method Comparison

	9.4 Challenges and Future Directions
	9.5 Conclusion
	References

	10 Mobile Computation Offloading with Hard TaskCompletion Times
	10.1 Introduction
	10.2 Continuous Offloading
	10.2.1 System Description and Problem Formulation
	10.2.1.1 Local Execution
	10.2.1.2 Remote Execution

	10.2.2 Markovian Channel and the Time-Dilated Absorbing Markov Model
	10.2.3 Offline Bound
	10.2.4 OnOpt (Online Optimal) Algorithm

	10.3 Multi-part Offloading
	10.3.1 Problem Formulation
	10.3.2 Offline Bound
	10.3.3 The Time-Dilated Absorbing Markov Model
	10.3.4 Optimal Algorithm for K-Part Offloading

	10.4 Numerical Results
	10.4.1 Simulation Set 1
	10.4.2 Simulation Set 2

	10.5 Summary
	References

	11 Online Incentive Mechanism Design in Edge Computing
	11.1 Introduction
	11.2 Mechanism Design and Auction
	11.3 Primal–Dual-Based Online Incentive Mechanism
	11.3.1 Primal–Dual-Based Method for Linear Systems
	11.3.2 Primal–Dual-Based Method for Nonlinear Systems

	11.4 Application of Primal–Dual Online Incentive Mechanism Design in Edge Computing
	11.4.1 System Model Descriptions
	11.4.1.1 System Model
	11.4.1.2 Problem Formulation

	11.4.2 The Design of OMAP
	11.4.2.1 Problem Reformulation
	11.4.2.2 OMAP

	11.4.3 Performance Analyses
	11.4.4 Numerical Simulations

	11.5 Summary
	References

	12 Collaborative Deep Neural Network Inference via Mobile Edge Computing
	12.1 Introduction
	12.2 Background
	12.2.1 DNN Inference
	12.2.2 Mobile Edge Computing
	12.2.3 Machine Learning

	12.3 Collaborative DNN Inference via Device-Edge Orchestration
	12.3.1 Collaborative DNN Inference Framework
	12.3.2 Service Delay and Accuracy Analysis of Collaborative DNN Inference
	12.3.2.1 Inference Delay Analysis
	12.3.2.2 Inference Accuracy Analysis

	12.3.3 Joint Sampling Rate Selection and Resource Allocation Problem
	12.3.3.1 Constrained Markov Decision Process

	12.3.4 Deep RL-Based Solution
	12.3.4.1 Markov Decision Process Transformation (Step 1)
	12.3.4.2 Optimization Subroutine for Resource Allocation (Step 3)
	12.3.4.3 Deep RL-Based Algorithm (Step 2)

	12.4 Performance Evaluation
	12.4.1 Experiment Setup
	12.4.2 Convergence Performance
	12.4.3 Impact of Task Arrival Rate
	12.4.4 Impact of Optimization Subroutine

	12.5 Conclusion
	References

	13 Automated Data-Driven System for Compliance Monitoring
	13.1 Introduction
	13.1.1 Radio Spectrum Management
	13.1.2 Spectrum Monitoring for Compliance
	13.1.3 Chapter Contributions and Organization

	13.2 Automated Data-driven System
	13.3 Data Sources
	13.3.1 Spectrum Measurements
	13.3.2 Spectrum Management Records

	13.4 Signal Identification
	13.4.1 Mode Analysis
	13.4.2 Mode-Sensor Matching
	13.4.3 License-Measurements Association

	13.5 Violation Identification
	13.5.1 Detecting Violations
	13.5.2 Characterizing Violations
	13.5.2.1 Confidence Indicators
	13.5.2.2 Behavioral Indicators
	13.5.2.3 Extent Indicators
	13.5.2.4 Impact Indicators

	13.5.3 Prioritizing Violations

	13.6 Summary
	References

	14 AI Driven User Authentication
	14.1 Introduction
	14.2 Facial Recognition
	14.2.1 Overview
	14.2.2 Facial Recognition Using EigenFace Algorithm
	14.2.3 Facial Recognition Using CNN

	14.3 Implementation
	14.3.1 Mobile Authenticator
	14.3.2 Supporting Cloud Backend

	14.4 Conclusion
	References

	15 Control and Communication Coordination for Industrial Digital Twins of Sintering Process
	15.1 Introduction
	15.2 Control–Communication Coordination Architecture for Industrial Digital Twins
	15.3 Sintering Production Line
	15.4 Deterministic Communication Based on Time-Sensitive Networking
	15.5 Intelligent Modeling for Sintering Process
	15.6 Digital Twins Coordination of the Sintering Process
	15.7 Summary
	References

	Index

