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Abstract. JADE is a method to adaptively select parameters using
probability distribution, and shows good searching accuracy and speed.
However, the search outside the solution group is not considered as well as
other methods. Though it is possible to forcibly increase the search out-
side the solution group by dividing the solution group or adding random
search, the search speed lowers. In this study, referring to the Nelder-
Mead method, the algorithm for improving the accuracy without reduc-
ing the search speed as much as possible by adding the solution group
outside search to JADE is proposed. Concretely, when a fixed condition
is satisfied, one point of the search point carries out the group outside
search. In order to prevent the search speed from decreasing even in
the case of a high dimension, the number of search points for out-of-
group search is set not to increase even when the dimension increases.
The effectiveness of the proposed method is confirmed by numerical
experiments.
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1 Introduction

Difference Evolution [1] is an optimizing algorithm without gradients that has
good search performance and is applicable to a variety of applications. DE is
a relatively simple algorithm with the advantage that it has only three control
parameters: mutation coefficient F , crossover rate CR, and population size N .
However, due to the small number of parameters, the accuracy of the search
is affected by the parameters. Therefore, it is necessary to set the appropriate
parameter value according to the problem to be handled and the search situation.
To solve this problem, SaDE [2], jDE [3], SHADE [4], JADE [5,6] have been
proposed.

JADE is a method for efficiently adapting the parameters of DE to the envi-
ronment by sampling them from a Cauchy or Gaussian distribution adapted to
the environment. Specifically, the mean value in the probability distribution used
to generate the mutation coefficient F and the crossover rate CR is adjusted
according to the success value of each parameter, allowing each parameter to
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be adjusted automatically. This allows the appropriate parameters to be used,
increasing the accuracy of the search.

As with other methods, out-group search is not considered much in JADE,
and performance degrades if a solution is missed outside the group after the
search has progressed. In our basic experiment [7], we confirmed that search-
ing can be improved by adding the probability of selecting F = 1.5, which is
an enhanced parameter of out-group search that is not normally set in DE.
Therefore, we believe that the performance can be further improved by adding
out-group search to JADE.

In this study, referring to Nelder-Mead method [8], we propose an algorithm
to add out-group search to JADE and to improve the accuracy without decreas-
ing the search speed as much as possible. If the distance of the solution with
the best and worst solutions is more than half of the distance from the end of
the search point group, it is judged that there is a large bias in the direction
of the update of the search point group, and the outside of the solution group
is searched. The composition of this paper is as follows. In Sect. 2, JADE and
Nelder-Mead method which are handled in this study are explained. In Sect. 3,
we propose and explain JADE with the addition of out-group search. In Sect. 4,
the results of numerical experiments using the proposed method are discussed,
and in Sect. 5, future problems are summarized.

2 Base Algorithm

2.1 JADE

JADE is one of the improved methods of DE, and the mutation coefficient F and
the crossover rate CR are sampled from the probability distribution and used.
The Cauchy distribution is used for the mutation coefficient, and the Gaussian
distribution is used for the crossover rate, and the adjustment of each distribu-
tion is carried out based on the proportion in which the solution was renewed
in the past. In JADE, parameters are generated for each individual. As a muta-
tion strategy, “DE/current-to-pbest” is used. The generation method of each
parameter is shown below.

For each generation, the mutation factor Fi of each individual xi is generated
according to the Cauchy distribution of the positional parameter μF and the
scaling parameter σF = 0.1 as follows:

Fi ∼ C(μF , σF )

Fi is regenerated if Fi ≤ 0, and truncated to 1 if Fi ≥ 1. The positional parameter
μF is initialized at 0.5 and updated for each generation as follows:

μF = (1 − c) · μF + c ·
∑

F∈SF
F 2

∑
F∈SF

F

c is a constant for (0, 1] and the recommended value is 0.1. SF is the set of muta-
tion coefficients that have successfully updated the solution in that generation.
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Similarly, for each generation, the crossover rate CRi of each individual xi

is generated according to a Gaussian distribution with a mean of μCR and a
standard deviation of σCR = 0.1 as follows:

CRi ∼ N(μCR, σ2
CR)

CRi is truncated to the interval [0, 1]. The average μCR is initialized at 0.5 and
updated for each generation as follows:

CRi ∼ N(μCR, σ2
CR)

SN is the number of times the solution is updated successfully in each gener-
ation, and SCR is the set of crossover rates CR when the solution is updated
successfully.

The following describes the mutation strategy “DE/current-to-pbest” used
in JADE. In this strategy, the mutation vector vi,g for each individual xi,g of
each generation g is generated by:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − xr2,g)

Fi is the mutation coefficient of each individual xi, and xp
best,g is an individual

selected from the top 100p% individuals. Also, xr1,g and xr2,g are two points
randomly selected from the search points other than xi so that they do not
overlap. Here p is a constant in (0, 1), and the recommended value is 0.1. In
addition, there is a way to use an archive in this strategy. In this case, the
mutation vector vi,g is generated by the following equation:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − x̃r2,g)

x̃r2,g is an individual selected at random from the aggregate of past failed indi-
viduals stored in the archive and the aggregate of current solution populations.
The archive is initially empty and adds failed individuals at the end of each
generation update.

The next search point is generated by crossing over this mutation vector with
the individual as follows based on the crossover rate:

xi,g+1,j =

{
vi,g,j(w ≤ CR)
xi,g,j(otherwise)

w is uniform random number between 0 and 1, and xi,g,j means the j-th element
of the i-th individual in generation g.

2.2 Nelder-Mead Method

The Nelder-Mead method is a kind of optimizing algorithm without using gra-
dient information. By giving D + 1 search points in D dimension space and
repeating reflection, expansion and contraction for them, the optimum solution
can be searched. The algorithm of function minimization in the Nelder-Mead
method is shown below.
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Step 0. For D + 1 search points, f(x1) ≤ f(x2) ≤ · · · ≤ f(xD+1) is set in the
order of the values of the objective function f , and if the end condition is
not satisfied, Step1 is assumed, and if the end condition is satisfied, x1 is
assumed as the solution.

Step 1. Using the centroids xc of x1 . . . xn, the reflection point xref of xD+1

is determined by the following equation:

xref = xc + α(xc − xD+1)

Step 2.
case 1 If f(x1) ≤ f(xref ) < f(xD), replace xD+1 with xref and go to

Step0.
case 2 If f(xref ) < f(x1), the expansion point, which is the point where

the reflection point is further extended, is obtained as follows:

xexp = xc + γ(xref − xc)

If f(xexp) ≤ f(xref ), replace xD+1 with xexp and go to Step0, otherwise
replace xD+1 with xref and go to Step0.

case 3 If f(xD) ≤ f(xref )
case 3–1 If f(xref ) < f(xD+1), the contraction point is obtained as

follows:
xcon = xc + β(xref − xc)

Then go to Step3.
case 3–2 Otherwise, the contraction point is obtained as follows:

xcon = xc + β(xD+1 − xc)

Then go to Step3.
Step 3. If f(xcon) < min{f(xref ), f(xD+1)}, replace xD+1 with xcon and go

to Step0, otherwise go to Step4.
Step 4. Shrink all individual i to point x1 as follows:

xi = x1 + δ(xi − x1)

Then go to Step0.

3 Proposed Method

In the proposed method, one of the search points of JADE is made to search
outside the group according to the situation. By this, the search is made so
that the solution is not missed, when the function in which there are multiple
local solutions is searched. In addition, escape from the local solution by the
search outside the group is expected, when it falls into the local solution. And,
the lowering of the search speed by the increase of the outside group search is
prevented by limiting the point of the outside group search to one point.



Additional Out-Group Search for JADE 109

Concretely, if the distance between the search point with the best solution
and the search point with the worst solution is more than half of the distance
from the end to the end of the search point group, one search point searches the
point by extending a 2n vector from the search point with the worst solution
to the search point with the best solution. The value of n is determined by
sampling from a geometric distribution. The success probability of the geometric
distribution p is defined as 1/Gpupdate by the update rate of the solution pupdate
and the generation G. This pupdate is updated in the same way as JADE with
an initial value of 0 (Fig. 1).

if ||xbest − xworst|| > ||xmax − xmin||/2
n = GeometricDistribution(1/Gpupdate)
xlast = xworst + (xbest − xworst) ∗ 2n

Fig. 1. Out-group search

4 Numerical Experiments and Results

JADE and the proposed method (JADE+) are compared for 16 benchmark
functions shown in Table 1. In the comparison experiment, calculation up to
1000 generations was tried 1000 times for each function at a search point of 10.
Figure 2 through 24 show the average of 1000 times of the best solution for each
generation, with the evaluation value on the vertical axis and the generation
number on the horizontal axis. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16 and 17 show the results of the experiment with the dimension of 2, and
Figs. 18, 19, 20, 21, 22, 23 and 24 show the results of the experiment with the
dimension of 10. In order to deal with the minimization problem, we show that
the lower the graph is, the better the solution is. Tables 2 and 3 summarize
the mean ± standard deviation of the final solutions for each function. Table 2
shows the case where the dimension is 2, and Table 3 shows the case where the
dimension is 10. In Tables 2 and 3, the methods which obtained good solutions
and obtained solutions are shown in bold type.
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Table 1. Test functions used in the experiment
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Fig. 2. F1 (D = 2) Fig. 3. F2 (D = 2) Fig. 4. F3 (D = 2)

Fig. 8. F7 (D = 2) Fig. 9. F8 (D = 2) Fig. 10. F9 (D = 2)

Fig. 5. F4 (D = 2) Fig. 6. F5 (D = 2) Fig. 7. F6 (D = 2)
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Fig. 11. F10 (D = 2) Fig. 12. F11 (D = 2) Fig. 13. F12 (D = 2)

Fig. 14. F13 (D = 2) Fig. 15. F14 (D = 2) Fig. 16. F15 (D = 2)

Fig. 17. F16 (D = 2) Fig. 18. F1 (D = 10) Fig. 19. F2 (D = 10)
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Fig. 20. F6 (D = 10) Fig. 21. F7 (D = 10) Fig. 22. F14 (D = 10)

Fig. 23. F15 (D = 10) Fig. 24. F16 (D = 10)

We begin with a discussion of the two-dimensional case, Figs. 2 through 17.
The graphs show that the proposed method has a better solution than JADE in
Fig. 7 (Rastrigin function), Fig. 8 (Ackley function), Fig. 9 (Levi N. 13 function),
Fig. 11 (Beale function), Fig. 12 (Goldstein-Price function), Fig. 13 (SchafferN2
function), Fig. 14 (Five-well potential function), Fig. 16 (Xin-She Yang function),
and Fig. 17 (Styblinski-Tang function), and the convergence speed is almost the
same. From this fact, it is proven that the accuracy heightens without lowering
the search speed by carrying out the group outside search in one search point.
In Fig. 9 (Levi N. 13 function) and Fig. 13 (SchafferN2 function), it can be seen
that the proposed method escaped from the point where it almost converged
once, and reached a better solution. This suggests that the search outside the
group works well to escape from the local solution. However, in Fig. 2 (Sphere
function), Fig. 3 (Rosenbrock function) and Fig. 5 (Matyas function), the search
speed of the solution is inferior to JADE, and it can be read that the useless
group outside search leads to the lowering of the search speed in the simple
unimodal function.

We then discuss the 10 dimensional case, Figs. 18 through 24. First, as shown
in Fig. 19, the result of F2 was improved. The results of other functions were not
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Table 2. Comparison of mean and standard deviation (D = 2)

Function Method Mean ± Standard deviation

F1:Sphere JADE 5.7656e–196 ± 0

JADE+ 8.7776e–156 ± 1.9808e–154

F2:Rosenbrock JADE 1.3679e–150 ± 4.3256e–149

JADE+ 2.9785e–87 ± 9.4188e–86

F3:Booth JADE 3.1554e–33 ± 9.9784e–32

JADE+ 0 ± 0

F4:Matyas JADE 1.3784e–160 ± 4.0084e–159

JADE+ 7.5967e–96 ± 2.4023e–94

F5:Easom JADE –0.998 ± 0.044695

JADE+ –1 ± 0

F6:Rastrigin JADE 0.019899 ± 0.1463

JADE+ 0.01194 ± 0.10839

F7:Ackley JADE 0.0077398 ± 0.14117

JADE+ 7.1054e–18 ± 1.588e–16

F8:LeviN13 JADE 0.00087899 ± 0.0097929

JADE+ 0.00010987 ± 0.0034745

F9:BukinN6 JADE 0.019676 ± 0.014354

JADE+ 0.021124 ± 0.026538

F10:Beale JADE 0.057155 ± 0.20082

JADE+ 0.0068586 ± 0.072006

F11:GoldsteinPrice JADE 5.43 ± 12.4936

JADE+ 4.566 ± 10.2735

F12:SchafferN2 JADE 3.1266e–06 ± 9.8872e–05

JADE+ 0 ± 0

F13:FiveWellPotential JADE –0.99589 ± 0.32489

JADE+ –1.0621 ± 0.29633

F14:Griewank JADE 0.99975 ± 2.2327e–14

JADE+ 0.99975 ± 2.2327e–14

F15:XinSheYang JADE 0.023408 ± 0.084715

JADE+ 0.019781 ± 0.078336

F16:StyblinskiTang JADE –77.0742 ± 4.1255

JADE+ –77.3569 ± 3.6402
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Table 3. Comparison of mean and standard deviation (D = 10)

Function Method Mean ± Standard deviation

F1:Sphere JADE 7.3367e–47 ± 1.3492e–45

JADE+ 1.9139e–46 ± 3.7947e–45

F2:Rosenbrock JADE 0.00022373 ± 0.0097558

JADE+ 2.5623e–07 ± 1.1459e–05

F6:Rastrigin JADE 0 ± 0

JADE+ 0 ± 0

F7:Ackley JADE 3.503e–15 ± 4.1751e–16

JADE+ 3.5136e–15 ± 3.7065e–16

F14:Griewank JADE 0.99975 ± 3.6647e–14

JADE+ 0.99975 ± 3.6647e–14

F15:XinSheYang JADE 0.00056607 ± 1.4686e–14

JADE+ 0.00056607 ± 2.2173e–14

F16:StyblinskiTang JADE –391.5415 ± 1.2981

JADE+ –391.5274 ± 1.3717

so different from those of the conventional method. In this experiment, it can be
said that the result as intended was obtained, because the search frequency of
the outside region did not increase, even if the dimension increased, so that the
performance in the high dimension would not be lowered. And, it was proven
that it was good to add outer region search like the proposed method, because
the region near the optimum solution was lined in F2.

Table 2 shows that the proposed method improved the accuracy of the solu-
tion to 11 functions out of 16. For these 11 functions, the proposed method gives
better values for both mean and standard deviation. Since all the functions
whose accuracy is improved are multimodal functions, the proposed method is
more stable and gives better solution in multimodal functions, and it is proven
that the search outside the group is effective for the multimodal function. In the
sphere function, Rosenbrock function and Matyas function which are the uni-
modal function, the reason why the accuracy is inferior to JADE is the lowering
of the search speed by the out-of-group search, and there seems to be a large
room of the improvement on the judging method of whether to carry out the
out-group search or not.

Next, we discuss Table 3. In the proposed method, one of the search points
searches outside the population. Therefore, as the dimension increases, the effect
of out-of-group search decreases and the difference between JADE and JADE+
disappears. In Table 3, we can see that the results are similar between JADE
and JADE+.
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5 Conclusion

In this study, we propose a method to add search outside the group referring
to the Nelder-Mead method to JADE which is adaptive differential evolution.
A comparison experiment between the proposed method and the conventional
method was carried out using 16 benchmark functions, and it succeeded in
improving the accuracy of the solution in many functions. Especially, search
outside the group works effectively in the multimodal function, and escape from
the local solution is also observed. However, since there were some cases in which
the search speed was inferior to JADE in the unimodal function, it is also nec-
essary to examine how to decide whether to search outside the group.
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