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Abstract. Based on Lipski’s approach dealing with incomplete informa-
tion tables, we describe lower and upper approximations using coverings
under incomplete information and similarity of values. Lots of coverings,
called possible coverings, on a set of attributes are derived in an incom-
plete information table with similarity of values, although the covering is
unique in a complete information table. The family of possible coverings
has a lattice structure with the minimum and maximum elements. This
is true for the family of maximal descriptions, but is not for the family of
minimal descriptions and the family of sets of close friends. As was shown
by Lipski, what we can obtain from an information table with incom-
plete information is the lower and upper bounds of information granules.
Using only two coverings: the minimum and maximum possible ones, we
obtain the lower and upper bounds of lower and upper approximations.
Therefore, there is no difficulty of the computational complexity in our
approach.

Keywords: Rough sets · Incomplete information · Possible coverings ·
Possibly indiscernible classes · Lower and upper approximations

1 Introduction

Rough sets, constructed by Pawlak [1], are based on equality of values character-
izing objects. The rough sets are used as an effective method for data mining and
so on. The framework is usually used under complete information tables with
no similarity of objects and creates significant results in various fields. How-
ever, value similarity often appears in the real world. Also, incomplete informa-
tion ubiquitously occurs in the real world. By dealing with value similarity and
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incomplete information, we can make better use of information obtained from
the real world. Therefore, rough sets need to be extended to deal with incomplete
information tables with value similarity.

Lipski showed that we can obtain the lower and upper bounds of the answer
set of a query to an information table with incomplete information, although we
cannot obtain the precise answer set [2]. This means that when trying to extract
information granules from an incomplete information table, what is obtained
without information loss is the lower and upper bounds of the information gran-
ules. This is true for lower and upper approximations that are the core of rough
sets. Therefore, what we can obtain is the lower and upper bounds of these
approximations.

It is the process proposed by Kryszkiewicz [3] that most authors use to handle
incomplete information. The process a priori gives indiscernibility between an
object with incomplete information and another object. Using the given indis-
cernibility, unique approximations are derived. Clearly, the process produces
information loss from Lipski’s point of view. As a result, the approach creates
poor results [4–6].

We develop an approach using possible coverings without a priori giving indis-
cernibility between objects. First, we describe a structure of possible coverings.
We will show that the lower and upper bounds of lower and upper approxima-
tions are obtained without the difficulty of computational complexity under the
structure.

Lipski used a possible table as a possible world in possible world semantics.
Unfortunately, we cannot use the possible table in an incomplete information
table with continuous values. So, we showed a way that does not use the possible
table under continuous values [7]. Using a similar way, we deal with categorical
values. This means that we can deal with categorical and numerical values in
the same framework.

2 Coverings in a Complete Information Table

A complete information table is constructed with (U,A, {V (a) | a ∈ A}), where
U is the universe that consists of objects. A is a non-empty finite set of attributes
such that a : U → V (a) for every a ∈ A where V (a) is the set of values that
attribute a takes.

Binary relation Rδ
a
1 expressing indiscernibility of objects on attribute a ∈ A

is called the indiscernibility relation for a under threshold δa.

Rδ
a = {(o, o′) ∈ U × U | SIMa(o, o′) ≥ δa}, (1)

where SIMa(o, o′) is the similarity degree between objects o and o′ for attribute
a and δa is a threshold fixed for attribute a.

SIMa(o, o′) = sim(a(o), a(o′)), (2)

1 Unless confused, symbols without subscripts or superscripts are used.
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where sim(a(o), a(o′)) is the similarity degree between a(o) and a(o′). sim(a(o),
a(o′)) is given whose values are reflexive, symmetric, and not transitive. The
indiscernibility relation is a tolerance relation2.

From indiscernibility relation Rδ
a, the indiscernible class C(o)δ

a of object o on
a is defined:

Cδ
a(o) = {o′ | (o, o′) ∈ Rδ

a}. (3)

Cδ
a(o) is not an equivalence class.

Family Cδ
a of indiscernible classes on attribute a is:

Cδ
a = {C | C = Cδ

a(o) ∧ o ∈ U}. (4)

Clearly, ∪C∈Cδ
a
C = U . Based on Zakowski [9], Cδ

a is a covering, which is unique
for a. Under Cδ

a, minimal description MdCδ
a(o) of object o, formulated by [10],

is:

MdCδ
a(o) = {C ∈ Cδ

a | o ∈ C ∧ ∀C ′ ∈ Cδ
a(o ∈ C ′ ∧ C ′ ⊆ C ⇒ C = C ′)}. (5)

Set CFriendCδ
a
(o) of close friends of o with respect to Cδ

a, proposed by [11], is:

CFriendCδ
a
(o) = ∪C∈MdCδ

a(o)
C. (6)

Also, maximal description MDCδ
a(o) of object o, described by [11,12], is:

MDCδ
a(o) = {C ∈ Cδ

a | o ∈ C ∧ ∀C ′ ∈ Cδ
a(o ∈ C ′ ∧ C ′ ⊇ C ⇒ C = C ′)}. (7)

Using covering Cδ
a, lower approximation aprδ

a
(O) and upper approximation

aprδ
a(O) for a of set O of objects are:

aprδ
a
(O) = {o ∈ U | Cδ

a(o) ⊆ O ∧ Cδ
a(o) ∈ Cδ

a}, (8)

aprδ
a(O) = {o ∈ U | Cδ

a(o) ∩ O �= ∅ ∧ Cδ
a(o) ∈ Cδ

a}. (9)

3 Coverings in an Incomplete Information Table

An incomplete information table has a : U → sa for every a ∈ A where sa is the
family of disjunctive sets of values over V (a). So, value v ∈ a(o) is a possible
value that may be the actual one of attribute a in object o.

A covering on a is unique in a complete information table, but lots of
coverings, called possible coverings, are derived in an incomplete information
table [13,14], although some authors deal with only a covering [15–17]. A pos-
sible covering is derived from a possible indiscernibility relation. Many possible
indiscernibility relations is derived in an incomplete information table. The num-
ber of possible indiscernibility relations may grow exponentially as the number of
values with incomplete information increases. However, this does not cause any
2 See [8] for properties of tolerance relations.
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difficulties due to computational complexity in obtaining the lower and upper
bounds of approximations, as is shown later.

Family FPRδ
a of possible indiscernibility relations, as is shown in [7,18], is

constructed using certain pairs and possible pairs of objects. The certain pair
surely has the same characteristic value, while the possible pair may have the
same characteristic value. Set SRδ

a of certain pairs on attribute a is:

SRδ
a = {(o, o′) ∈ U × U | (o = o′) ∨ (∀u ∈ a(o)∀v ∈ a(o′)sim(u, v) ≥ δa)}.(10)

Set MPRδ
a of possible pairs on attribute a is:

MPRδ
a = {(o, o′) ∈ U × U | ∃u ∈ a(o)∃v ∈ a(o′)sim(u, v) ≥ δa}\SRδ

a. (11)

Using these two sets, family FPRδ
a of possible indiscernibility relations is:

FPRδ
a = {PR | PR = SRδ

a ∪ e ∧ e ∈ P(MPPRδ
a)}, (12)

where each element is a possible indiscernibility relation and P(MPPRδ
a) is the

power set of MPPRδ
a that is:

MPPRδ
a = {{(o′, o), (o, o′)}|(o′, o) ∈ MPRδ

a}. (13)

Clearly, FPRδ
a is a lattice for set inclusion. SRa is the minimum possible indis-

cernibility relation in FPRδ
a, whereas SRδ

a ∪ MPRδ
a is the maximum possible

indiscernibility relation. All the possible indiscernibility relations do not corre-
spond to the indiscernibility relation derived from a possible table where every
attribute value is replaced by a possible value in the original information table.
The possible indiscernibility relation without a corresponding possible table is
artificial. However, the minimum and the maximum possible indiscernibility rela-
tions are equal to the intersection and the union of indiscernibility relations
derived from possible tables, respectively. The minimum possible indiscernibil-
ity relation contains only the pairs of objects that are surely indiscernible with
each other, while the maximum possible indiscernibility relation contains all the
pairs that are possibly indiscernible. Only the two possible indiscernibility rela-
tions are used to derive the lower and upper bounds of approximations, as is
shown later. Artificially possible indiscernibility relations are rather useful to
derive the lower and upper bounds of approximations.

Example 1. Let similarity degree sim(u, v) on V (a1) = {a, b, c, d, e, f} and
incomplete information table IT be as follows:

sim(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.9 0.9 0.6 0.2 0.4
0.9 1 0.8 0.8 0.1 0.5
0.9 0.8 1 0.3 0.2 0.4
0.6 0.8 0.3 1 0.9 0.6
0.2 0.1 0.2 0.9 1 0.7
0.4 0.5 0.4 0.6 0.7 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

IT
U a1 a2

o1 < a > < x >
o2 < b, e > < x, y >
o3 < c > < x >
o4 < d > < y >
o5 < e > < z >
o6 < f > < z >
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In incomplete information table IT with U = {o1, o2, o3, o4, o5, o6}, let threshold
δa1 be 0.75 on attribute a1. Expression < b, e > of a disjunctive set means that
the actual value is b or e. The set of certain pairs of indiscernible objects on a1

under the above sim(u, v) is {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1),
(o4, o4), (o4, o2), (o4, o5), (o5, o5), (o5, o4), (o6, o6)}. The set of possible pairs of
indiscernible objects is {(o1, o2), (o2, o1), (o2, o3), (o3, o2), (o2, o5), (o5, o2)}. Using
formulae (10)–(13), the family of possible indiscernibility relations is obtained:
PR0.75

a1
= {PR1, · · · , PR8}, and 8 possible indiscernibility relations are:

PR1 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6)},
PR2 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1)},
PR3 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o2, o3), (o3, o2)},
PR4 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o2, o5), (o5, o2)},
PR5 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1), (o2, o3), (o3, o2)},
PR6 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1), (o2, o5), (o5, o2)},
PR7 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o2, o3), (o3, o2), (o2, o5), (o5, o2)},
PR8 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1), (o2, o3), (o3, o2), (o2, o5), (o5, o2)}.

From each possible indiscernibility relation PRδ
a,j in FPRδ

a, possible indis-
cernible class C(o)δ

a,j on attribute a for object o is:

C(o)δ
a,j = {o′ | (o, o′) ∈ PRδ

a,j ∧ PRδ
a,j ∈ FPRδ

a}. (14)

Proposition 1. If PRδ
a,k ⊆ PRδ

a,l, then C(o)δ
a,k ⊆ C(o)δ

a.l.

From this proposition, the family of possible indiscernible classes for an object
is a lattice for set inclusion.

Example 2. (continuation from Example 1). For object o1, C(o1)0.75
a1,j =

{o1, o3} forj = 1, 3, 4, 7, C(o1)0.75
a1,j = {o1, o2, o3} for j = 2, 5, 6, 8. For object

o2, C(o2)0.75
a1,1 = {o2, o4}, C(o2)0.75

a1,2 = {o1, o2, o4}, C(o2)0.75
a1,3 = {o2, o3, o4},

C(o2)0.75
a1,4 = {o2, o4, o5}, C(o2)0.75

a1,5 = {o1, o2, o3, o4}, C(o2)0.75
a1,6 = {o1, o2, o4, o5},

C(o2)0.75
a1,7 = {o2, o3, o4, o5}, C(o2)0.75

a1,8 = {o1, o2, o3, o4, o5}. For object o3,
C(o3)0.75

a1,j = {o1, o3} for j = 1, 2, 4, 6, C(o3)0.75
a1,j = {o1, o2, o3} for j = 3, 5, 7, 8.
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For object o4, C(o4)0.75
a1,j = {o2, o4, o5} for j = 1, . . . , 8. For object o5, C(o5)0.75

a1,j =
{o4, o5} for j = 1, 2, 3, 5, C(o5)0.75

a1,j = {o2, o4, o5} for j = 4, 6, 7, 8, For object
o6, C(o6)0.75

a1,j = {o6} for j = 1, . . . , 8.

A possible covering is derived from a possible indiscernibility relation. Possible
covering PCδ

a,j obtained from possible indiscernibility relation PRδ
a,j is:

PCδ
a,j = {e | e = C(o)δ

a,j ∧ o ∈ U}. (15)

One of possible coverings is the actual covering, although we cannot know it
without additional information.

Proposition 2. If PRδ
a,k ⊆ PRδ

a,l, then PCδ
a,k � PCδ

a,l
3.

From Proposition 2 family FPCδ
a of possible coverings is a lattice for �.

Proposition 3. If PRδ
a,k ⊆ PRδ

a,l, then ∀o ∈ U MDCδ
a,k(o) ⊆ MDCδ

a,l(o) where
MDCδ

a,k(o) is the maximal description of o with respect to PCδ
a in PRδ

k,a.

From Proposition 3 family FMDCδ
a(o) of maximal descriptions is a lattice for ⊆.

Example 3. Possibly indiscernible classes of objects are obtained in each pos-
sible indiscernibility relation PRi with i = 1, . . . , 8 of Example 1.

In PR1, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o4}, C(o3)a1 = {o1, o3}, C(o4)a1 =
{o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR2, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o4}, C(o3)a1 = {o1, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR3, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o3, o4}, C(o3)a1 = {o1, o2, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR4, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o4, o5}, C(o3)a1 = {o1, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.
In PR5, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o3, o4}, C(o3)a1 =
{o1, o2, o3}, C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR6, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o4, o5}, C(o3)a1 = {o1, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.
In PR7, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o3, o4, o5}, C(o3)a1 = {o1, o2, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.
In PR8, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o3, o4, o5}, C(o3)a1 =
{o1, o2, o3}, C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.

3 � is defined as E � E ′ if ∀E ∈ E∃E′ ∈ E ′ ∧ E ⊆ E′.
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Using these possibly indiscernible classes, possible coverings are obtained as
follows:

PC1 = {{o1, o3}, {o2, o4}, {o2, o4, o5}, {o4, o5}, {o6}},

PC2 = {{o1, o2, o3}, {o1, o2, o4}, {o1, o3}, {o2, o4, o5}, {o4, o5}, {o6}},

PC3 = {{o1, o3}, {o2, o3, o4}, {o1, o2, o3}, {o2, o4, o5}, {o4, o5}, {o6}},

PC4 = {{o1, o3}, {o2, o4, o5}, {o6}},

PC5 = {{o1, o2, o3}, {o1, o2, o3, o4}, {o2, o4, o5}, {o4, o5}, {o6}},

PC6 = {{o1, o2, o3}, {o1, o2, o4, o5}, {o1, o3}, {o2, o4, o5}, {o6}},

PC7 = {{o1, o3}, {o2, o3, o4, o5}, {o1, o2, o3}, {o2, o4, o5}, {o6}},

PC8 = {{o1, o2, o3}, {o1, o2, o3, o4, o5}, {o2, o4, o5}, {o6}}.

Minimal descriptions, sets of close friends, and maximal descriptions are as fol-
lows:

For PC1,MdC(o1) = {{o1, o3}},MdC(o2) = {{o2, o4}},MdC(o3) = {{o1, o3}},
MdC(o4) = {{o2, o4}, {o4, o5}},MdC(o5) = {{o4, o5}},
MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o2, o4},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o3}},MDC(o2) = {{o2, o4, o5}},MDC(o3) = {{o1, o3}},
MDC(o4) = {{o2, o4, o5}},MDC(o5) = {{o2, o4, o5}},
MDC(o6) = {{o6}},

For PC2,MdC(o1) = {{o1, o2, o4}, {o1, o3}},
MdC(o2) = {{o1, o2, o3}, {o1, o2, o4}, {o2, o4, o5}},
MdC(o3) = {{o1, o3}},MdC(o4) = {{o1, o2, o4}, {o4, o5}},
MdC(o5) = {{o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o2, o3, o4}}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o1, o2, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o4}, {o1, o2, o3}},
MDC(o2) = {{o1, o2, o3}, {o1, o2, o4}, {o2, o4, o5}},
MDC(o3) = {{o1, o2, o3}},MDC(o4) = {{o1, o2, o4}, {o2, o4, o5}},
MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC3,MdC(o1) = {{o1, o3}},MdC(o2) = {{o2, o3, o4}, {o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o3}, {o2, o3, o4}},MdC(o4) = {{o2, o3, o4}, {o4, o5}},
MdC(o5) = {{o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3, o4}, CFriendC(o4) = {o2, o3, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o3}},MDC(o2) = {{o2, o3, o4}, {o1, o2, o3}, {o2, o4, o5}},
MDC(o3) = {{o2, o3, o4}, {o1, o2, o3}},
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MDC(o4) = {{o2, o3, o4}, {o2, o4, o5}},
MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC4,MdC(o1) = {{o1, o3}},MdC(o2) = {{o2, o4, o5}},MdC(o3) = {{o1, o3}},
MdC(o4) = {{o2, o4, o5}},MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o2, o4, o5},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o3}},MDC(o2) = {{o2, o4, o5}},MDC(o3) = {{o1, o3}},
MDC(o4) = {{o2, o4, o5}},MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC5,MdC(o1) = {{o1, o2, o3}},MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o2, o3}},MdC(o4) = {{o1, o2, o3, o4}, {o4, o5}},
MdC(o5) = {{o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o2, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3}, CFriendC(o4) = {o1, o2, o3, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o3, o4}},MDC(o2) = {{o1, o2, o3, o4}, {o2, o4, o5}},
MDC(o3) = {{o1, o2, o3, o4}},MDC(o4) = {{o1, o2, o3, o4}, {o2, o4, o5}},
MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC6,MdC(o1) = {{o1, o3}, {o1, o2, o4, o5}},
MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},MdC(o3) = {{o1, o3}},
MdC(o4) = {{o2, o4, o5}},MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o2, o3, o4, o5}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {{o6}},

MDC(o1) = {{o1, o2, o3}, {o1, o2, o4, o5}},
MDC(o2) = {{o1, o2, o3}, {o1, o2, o4, o5}},MDC(o3) = {{o1, o2, o3}},
MDC(o4) = {{o1, o2, o4, o5}},MDC(o5) = {{o1, o2, o4, o5}},MDC(o6) = {{o6}},

For PC7,MdC(o1) = {{o1, o3}},MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o3}, {o2, o3, o4, o5}},MdC(o4) = {{o2, o4, o5}},
MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3, o4, o5}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o3}},MDC(o2) = {{o1, o2, o3}, {o2, o3, o4, o5}},
MDC(o3) = {{o1, o2, o3}, {o2, o3, o4, o5}},MDC(o4) = {{o2, o3, o4, o5}},
MDC(o5) = {{o2, o3, o4, o5}},MDC(o6) = {{o6}},

For PC8,MdC(o1) = {{o1, o2, o3}},MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o2, o3}},MdC(o4) = {{o2, o4, o5}},
MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}}.

CFriendC(o1) = {o1, o2, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {o6}.
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MDC(o1) = MDC(o2) = MDC(o3) = MDC(o4) = MDC(o5)
= {{o1, o2, o3, o4, o5}},MDC(o6) = {{o6}}.

The family of possible coverings in Example 3 has the lattice structure for �,
which is shown in Fig. 1.

Fig. 1. Lattice structure

PC1 is the minimum element, whereas PC8 is the maximum element. On
the other hand, the family of minimum descriptions is not a lattice for �; for
example, as is clarified for minimum descriptions in PC6 and PC8 in Example 3.
Also, the family of sets of close friends of an object is not so.

By using possible covering PCδ
a,j , lower and upper approximations of set O

of objects in PRδ
a,j are:

aprδ
a,j

(O) = {o ∈ U | Cδ
a,j(o) ⊆ O ∧ Cδ

a,j(o) ∈ PCδ
a,j ∧ PCδ

a,j ∈ FPCδ
a}, (16)

aprδ
a,j(O) = {o ∈ U | Cδ

a,j(o) ∩ O �= ∅ ∧ Cδ
a,j(o) ∈ PCδ

a,j ∧ PCδ
j ∈ FPCδ

a}. (17)

Proposition 4. If PCa,k � PCδ
a,l for possible indiscernibility relations

PCδ
a,k, PCδ

a,l ∈ FPCδ
a, then aprδ

a,k
(O) ⊇ aprδ

a,l
(O), and aprδ

a,k(O) ⊆ aprδ
a,l(O).

This proposition shows that the families of lower and upper approximations
under possible coverings are also lattices for set inclusion, respectively. Unfor-
tunately this does not hold in approximations using minimal descriptions and
sets of close friends, although various types of covering-based approximation are
proposed [11,19–21].

We aggregate the lower and upper approximations under possible coverings.
Certain lower approximation Saprδ

a
(O) of set O of objects, the lower bound of

the lower approximation, is:

Saprδ
a
(O) = {o ∈ U | ∀PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j
(O)}. (18)

Possible lower approximation Paprδ
a
(O), the upper bound of the lower approxi-

mation, is:

Paprδ
a
(O) = {o ∈ U | ∃PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j
(O)}. (19)
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Certain upper approximations Saprδ
a(O), the lower bound of the upper approx-

imation, is:

Saprδ
a(O) = {o ∈ U | ∀PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j(O)}. (20)

Possible upper approximation Paprδ
a(O), the upper bound of the upper approx-

imation, is:

Paprδ
a(O) = {o ∈ U | ∃PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j(O)}. (21)

Using Proposition 4, these approximations are transformed into the following
formulae:

Saprδ
a
(O) = aprδ

a,max
(O), Paprδ

a
(O) = aprδ

a,min
(O), (22)

Saprδ
a(O) = aprδ

a,min(O), Paprδ
a(O) = aprδ

a,max(O), (23)

where aprδ
a,max

(O) is the lower approximations under the maximum possible

covering deriving from the maximum indiscernibility relation and aprδ
a,min(O)

is the upper approximations under the minimum possible covering deriving from
the minimum indiscernibility relation. These formulae show that we can obtain
the lower and upper bounds of approximations without computational complex-
ity, no matter how many possible coverings.

Example 4. We go back to Example 3. Let set O of objects be {o1, o3}. Using
formulae (16) and (17), lower and upper approximations are obtained in each
possible covering. For PC1, apr0.75

a1,1
(O) = {o1, o3}, apr0.75

a1,1(O) = {o1, o3}.

For PC2, apr0.75
a1,2

(O) = {o3}, apr0.75
a1,2(O) = {o1, o2, o3}.

For PC3, apr0.75
a1,3

(O) = {o1}, apr0.75
a1,3(O) = {o1, o2, o3}.

For PC4, apr0.75
a1,4

(O) = {o1, o3}, apr0.75
a1,4(O) = {o1, o3}.

For PC5, apr0.75
a1,5

(O) = ∅, apr0.75
a1,5(O) = {o1, o2, o3}.

For PC6, apr0.75
a1,6

(O) = {o3}, apr0.75
a1,6(O) = {o1, o2, o3}.

For PC7, apr0.75
a1,7

(O) = {o1}, apr0.75
a1,7(O) = {o1, o2, o3}.

For PC8, apr0.75
a1,8

(O) = ∅, apr0.75
a1,8(O) = {o1, o2, o3}.

By using formulae (22) and (23), Sapr0.75
a1

(O) = ∅, Papr0.75
a1

(O) = {o1, o3},

Sapr0.75
a1

(O) = {o1, o3}, Papr0.75
a1

(O) = {o1, o2, o3}.

Using the lower and upper bounds of approximations denoted by formu-
lae (22) and (23), lower and upper approximations are expressed in interval sets.
Certain and possible approximations are the lower and upper bounds of the
actual approximation.

Furthermore, the following proposition is valid from formulae (22) and (23).
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Proposition 5.

Saprδ
a
(O) = {o | C(o)δ

a,max ⊆ O}, Paprδ
a
(O) = {o | C(o)δ

a,min ⊆ O},

Saprδ
a(O) = {o | C(o)δ

a,min ∩ O �= ∅}, Paprδ
a(O) = {o | C(o)δ

a,max ∩ O �= ∅},

where C(o)δ
a,min and C(o)δ

a,max are the minimum and the maximum possibly
indiscernible classes of object o on a which are derived from applying for-
mula (14) to minimum and maximum possible indiscernibility relations PRδ

a,min

and PRδ
a,max, respectively.

From this proposition, if the minimum and the maximum possibly indiscernible
classes of each object are derived, then the lower and upper bounds of approxi-
mations can be obtained. And, C(o)δ

a,min and C(o)δ
a,max can be directly derived

from the following formula:

C(o)δ
a,min = {o′ ∈ U | (o = o′) ∨ ∀u ∈ a(o)∀v ∈ a(o′)sim(u, v) ≥ δa},

C(o)δ
a,max = {o′ ∈ U | ∃u ∈ a(o)∃v ∈ a(o′)sim(u, v) ≥ δa}.

As a result, this justifies directly using minimum and maximum possibly indis-
cernible classes from the viewpoint of possible world semantics.4

4 Conclusions

We have described the structure of possible coverings under possible world
semantics in incomplete information tables with similarity of values. Lots of
coverings are derived in an incomplete information table, whereas the covering
that is unique is derived in a complete information table. The number of possi-
ble coverings may grow exponentially as the number of objects with incomplete
information grows. This seems to present some difficulties due to computational
complexity of deriving rough sets, but it is not, because the family of possible
coverings is a lattice with the minimum and maximum elements. This is also true
for the family of maximal descriptions, but is not so for the family of minimal
descriptions and the family of sets of close friends.

As Lipski derived the lower and upper bounds of an answer set of a query,
we have obtained the lower and upper bounds of approximations. Lower and
upper approximations can be derived from only the minimum and maximum
coverings by the lattice structure of the family of possible coverings. Therefore,
there are no difficulties regarding computational complexity due to the number
of incompletely informative objects.

4 This type of justification was first introduced by [22] in extending rough sets to deal
with incomplete information.
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