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Abstract. Clustering for categorical multivariate data is an important
task for summarizing co-occurrence information that consists of mutual
affinity among objects and items. This work focus on two fuzzy cluster-
ing methods for categorical multivariate data. One of the serious limi-
tations for these methods is the local optimality problem. In this work,
an algorithm is proposed to address this issue. The proposed algorithm
incorporates multiple token search generated from the eigen decompo-
sition of the Hessian of the objective function. Numerical experiments
using an artificial dataset shows that the proposed algorithm is valid.

Keywords: Fuzzy clustering · Local optimality problem · Multiple
token search

1 Introduction

The hard c-means (HCM) or k-means clustering algorithm [1] partitions objects
into groups. This method is called “hard clustering” because each object belongs
to only one cluster, whereas Gaussian mixture models and fuzzy clustering are
called “soft clustering” because each object belongs to all or some clusters to
varying degrees.

Clustering for categorical multivariate data is a method for summarizing
co-occurrence information that consists of mutual affinity among objects and
items. A multinomial mixture model (MMM) [2] is a probabilistic model for
clustering tasks for categorical multivariate data, where each component dis-
tribution is defined by multinomial distribution. Honda et al. [3] proposed the
fuzzy clustering for categorical multivariate data induced by MMM (FCCMM).
The FCCMM method is a fuzzy counterpart to MMMs, where the degree of
fuzziness can be controlled by two fuzzification parameters. Kondo et al. [4]
extended FCCMM by introducing q-divergence instead of Kullback-Leibler (KL)
divergence in FCCMM. Furthermore, Kondo et al. [4] showed that QFCCMM
outperforms FCCMM in terms of clustering accuracy.
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One of the most serious limitations for FCCMM and QFCCMM is the local
optimality problem. The problem makes the accuracy of their algorithms depen-
dent on its starting points. Thus, obtaining good starting points has been long
addressed. One easily idea to avoid locally optimal solutions is running their
algorithms multiple times with differently initial setting, and selecting the result
where the optimal objective function value is achieved. However, it is unknown
how many times should their algorithms run to obtain the globally optimal solu-
tion. Arthur and Vassilvitskii [5] proposed k-means++, which is an algorithm
for choosing the initial setting for k-means or HCM, This algorithm not only
yields considerable improvement in the clustering accuracy of k-means, but also
provides a probabilistic upper bound of error. However, this algorithm cannot be
applied directly to the other clustering algorithm such as fuzzy clustering algo-
rithms, nor provides any upper bound of error for those than k-means. Ishikawa
and Nakano [6] proposed the mes-EM algorithm for the Gaussian mixture mod-
els (GMM) incorporating a multiple token search into the EM algorithm for
GMM, employing the primitive initial point (PIP) as its initial point, where
the search tokens are generated along the directions spanned by the eigen vec-
tors with negative eigen values of the Hessian of the objective function. This
idea can be applied to fuzzy clustering algorithms for categorical multivariate
data including FCCMM and QFCCMM, which has a potential to solve the local
optimality problem of FCCMM and QFCCMM.

In this study, we propose an algorithm to address the local optimality problem
of FCCMM and QFCCMM, by modifying the idea of the mes-EM algorithm. The
first modification is considering equality-constraints. The idea of the mes-EM
algorithm, incorporating a multiple token generated along the directions spanned
by the eigen vectors with negative eigen values of the Hessian of the objective
function, cannot be valid as it is for FCCMM or QFCCMM. It is because the
FCCMM and QFCCCMM optimization problems must consider some equality-
constraints for variables. If we apply the idea of the mes-EM algorithm directly to
FCCMM or QFCCMM, the generating tokens often violate such the constraint.
Then, we generate tokens from the intersection of the space spanned by the
eigenvectors with negative eigen values of the Hessian of the objective function
and the null space of the constraints. The other modification is concerning the
length of tokens. Although the generated tokens show the direction to which
the objective function improves, we cannot its length at which the objective
function improves. If we easily determine the length of tokens, such the tokens
may not only make the objective function value worsen but also violate the
inequality-constraints. Then, we reduce the length of tokens if it violates the
inequality-constraints or it make the objective function value worsen.

The remainder of this paper is organized as follows. Section 2 introduces the
notations used and some conventional algorithms. Section 3 describes the pro-
posed algorithm. Section 4 presents the results of numerical experiments con-
ducted to demonstrate the performance of the proposed algorithm. Finally,
Sect. 5 concludes the paper.
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2 Preliminaries

2.1 Two Fuzzy Clustering Algorithms for Categorical Multivariate
Data

Let X = {xk ∈ IRM |k ∈ {1, ..., N}} be a categorical multivariate dataset of M
dimensional points. The membership of xk that belongs to the i-th cluster is
denoted by ui,k (i ∈ {1, ..., C}, k ∈ {1, ..., N}) and the set of ui,k is denoted by
u, which obeys the following constraint:

C∑

i=1

ui,k = 1, ui,k ∈ [0, 1] (1)

The variable controlling the i-th cluster size is denoted by αi. The i-th element
of vector α is denoted by αi, and α obeys the following constraint:

C∑

i=1

αi = 1, αi ∈ (0, 1) (2)

The cluster center set is denoted by v = {vi|vi ∈ IRM , i ∈ {1, ..., C}}. The �-
th item typicality for i-th cluster is denoted by vi,�, and v obeys the following
constraint:

M∑

�=1

vi,� = 1, vi,� ∈ [0, 1] (3)

The methods FCCMM and QFCCMM are derived by solving the optimization
problems,

minimize
u,v,α

JFCCMM(u, v, α), (4)

minimize
u,v,α

JQFCCMM(u, v, α), (5)

subject to Eqs. (1), (2), and (3), where

JFCCMM(u, v, α) =
C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

ui,k log
(

ui,k

αi

)
, (6)

JQFCCMM(u, v, α) =
C∑

i=1

N∑

k=1

(ui,k)m(αi)1−mdi,k +
λ−1

m − 1

C∑

i=1

N∑

k=1

(ui,k)m(αi)1−m,

(7)

di,k = − 1
t

Q∑

q=1

xk,q

(
(vi,q)

t − 1
)

, (8)

and m > 1, λ > 0 and t < 1 are fuzzification parameters. The FCCMM and
QFCCMM algorithms are summarized as follows.
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Algorithm 1 (FCCMM, QFCCMM).

Step 1. Set the number of clusters as C. Fix λ > 0 and t > 0 for FCCMM, and
m > 1, λ > 0 and t < 1 for QFCCMM. Assume initial item typicality
as v and initial variable controlling cluster sizes as α.

Step 2. Update u as

ui,k =
αi exp(−λdi,k)

∑C
j=1 αj exp(−λdj,k)

(9)

for FCCMM, and

ui,k =
αi (1 − λ (1 − m) di,k)

1
1−m

∑C
j=1 αj (1 − λ (1 − m) dj,k)

1
1−m

(10)

for QFCCMM.
Step 3. Update α as

αi =
∑N

k=1 ui,k

N
(11)

for FCCMM, and

αi =
1

∑C
j=1

( ∑N
k=1(ui,k)

m(1−λ(1−m)di,k)∑N
k=1(uj,k)

m(1−λ(1−m)dj,k)

) 1
m

(12)

for QFCCMM.
Step 4. Update v as

vi,� =

(∑N
k=1 ui,kxk,�

)1/(1−t)

∑M
r=1

(∑N
k=1 ui,kxk,r

)1/(1−t)
(13)

for FCCMM, and

vi,� =

(∑N
k=1(ui,k)mxk,�

)1/(1−t)

∑M
r=1

(∑N
k=1(ui,k)mxk,r

)1/(1−t)
(14)

for QFCCMM.
Step 5. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step 2.
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2.2 Multi-directional in Eigen Space-EM Algorithm for GMM

The mes-EM algorithm was proposed to improve the solution quality of the EM
algorithm. The mes-EM algorithm starts from the primitive initial point (PIP),
which is the solution for extreme values of inverse temperature in the determinis-
tic annealing [7] context. Let the Hessian of the target function to be minimized
have negative eigen values at the PIP. Let W = {wr,−wr}R

r=1 be the orthonor-
mal set of the corresponding eigen vector. Search tokens are generated along the
directions

W ′ =

{
R∑

r=1

(±wr)

}
= {(+w1) + . . . (+wR), . . . , (−w1) + · · · + (−wR)} (15)

in addition to the orthonormal set W. The mes-EM algorithm is the method
of running the EM algorithm 2R + 2R times starting from the same PIP with
W ∪ W ′ as their search directions, and is described below.

Algorithm 2 (mes-EM).

Step 1. Calculate all eigen values of the Hessian of the target function at the
PIP.

Step 2. Generate search directions W ∪W ′ by using the negative eigen values.

3 Proposed Methods

In this section, we propose an algorithm to address the local optimality problem
of FCCMM and QFCCMM, by modifying the idea of the mes-EM algorithm.

Consider the FCCMM objective function given in Eq. (4) as the function of
s = (v, α) ∈ R

(C+1)M , i.e., JFCCMM(s) = JFCCMM(v, α), where, u is considered as
the function of (v, α) given as Eq. (9). The PIP for the mes-EM algorithm is the
solution for extreme values of inverse temperature in the deterministic annealing
context, where as the PIP for FCCMM is the solution of their optimization
problem with λ → 0, given by s(0) = (v(0), α(0)) where

v
(0)
i,� =

∑N
k=1 xk,�∑M

r=1

∑N
k=1 xk,r

, (16)

α
(0)
i =

1
C

. (17)

The proposed algorithm starts from the PIP.
Let the Hessian of the objective function given by Eq. (4) have negative

eigen values at the PIP. Let W = {wr,−wr}R
r=1 be the orthonormal set of

the corresponding eigen vector. In the mes-EM algorithm, multiple tokens are
generated using the direction in the space spanned by the corresponding eigen
vectors to the negative eigen values of the Hessian of the target function, whereas
for FCCMM, the generated token s(0)+Δs, where Δs is in the space spanned by
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W, is not always valid. It is because we must consider the equality-constraints
given by Eqs. (2) and (3) for (v, α). These constraints are equivalently written
as

As =1C+1, (18)

A =

⎛

⎜⎜⎝

1T
M 0T

M . . . ,0T
M 0T

C

0T
M 1T

M . . . ,0T
M 0T

C

0T
M 0T

M . . . ,1T
M 0T

C

0T
M 0T

M . . . ,0T
M 1T

C

⎞

⎟⎟⎠ , (19)

where 1C+1, 1M , and 1C are the vector whose all the elements are ones with the
dimension of C+1, M , and C, respectively, and 0M , and 0C are the vector whose
all the elements are zeros with the dimension of M and C, respectively. If we
have AΔs �= 0, then the generated token s + Δs violates the equality-constraint
as

A(s + Δs) = As + AΔs �= 1C+1. (20)

Then, we generate tokens s(0) + Δs where Δs is in the intersection of span(W)
and the null space of A, i.e., null(A). Such the intersection can be obtained as
the righthand singular vectors of AW where W = (w1, . . . , wR).

Although Δs show the direction to which the objective function improves
with keeping the equality-constraints given by Eq. (18), or equivalently Eqs. (2)
and (3), we cannot know its length at which the objective function value
improves. If we easily determine the length of Δs, such the tokens s0 + Δs
may not only make the objective function value JFCCMM(s(0) + Δs) worsen but
also violate the inequality-constraints vi,� ∈ [0, 1] and αi ∈ (0, 1). Then, we
reduce the length of tokens if it violates the inequality-constraints or it make
the objective function value worsen.

The above discussion is not only for FCCMM but also for QFCCMM, and is
summarized into the following algorithm:

Algorithm 3.

Step 1. Let S, S∗, and ΔS be empty sets, add s(0) given by Eqs. (16) and (17)
to S.

Step 2. If S is empty, output the element of S∗ such that its objective function
value is the minimum, and terminate this algorithm. Otherwise, pop s
from S, and run Algorithm1 using the initial setting s, resulting into
ŝ.

Step 3. Calculate all eigen pairs of ∇2JFCCMM(ŝ) for FCCMM or ∇2JQFCCMM(ŝ)
for QFCCMM. If all the eigen values are positive, ŝ is a locally or glob-
ally optimal solution. Then, add ŝ to S∗, and return to Step 2. If all
the eigen values are negative, ŝ is not a locally or globally optimal solu-
tion. Then, ignore ŝ, and return to Step 2. If at least one eigen value
is negative, ŝ is a saddle point. Let the corresponding eigen vectors be
W = {wr ∈ R

(C+1)M}R
r=1.
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Step 4. Obtain the orthonormal basis vectors

W̌ = {w̌r,−w̌r}Ř
r=1 (21)

of span(W) ∩ null(A) and their combinations

W̌ ′ =

⎧
⎨

⎩

Ř∑

r=1

(±w̌r)

⎫
⎬

⎭
= {(+w̌1) + . . . (+w̌Ř), . . . , (−w̌1) + · · · + (−w̌Ř)}. (22)

Add all the elements of W̌ ∪ W̌ ′ to ΔS.
Step 5. If ΔS is empty, return to Step 2. Otherwise, pop Δs from ΔS.
Step 6. Find 0 < β ≤ 1 such as 0 < ŝ + βΔs < 1 and JFCCMM(ŝ + βΔs) <

JFCCMM(ŝ) for FCCMM or JQFCCMM(ŝ + βΔs) < JQFCCMM(ŝ) for QFC-
CMM, add ŝ+βΔs to S, and return to Step 5. If there does not exist
such the value β, ignore Δs and return to Step 5.

4 Numerical Experiments

This section provides numerical experiments to illustrate Algorithm 3 based on
one artificial dataset as shown in Fig. 1. with four clusters (C = 4) in the two
dimensional unit-simplex. First cluster is composed of 100 objects generated from
multinomial distribution with v1 = (0.1, 0.1, 0.8). Second cluster is composed
of 200 objects generated from multinomial distribution with v2 = (0.8, 0.1, 0.1).
Third cluster is composed of 400 objects generated from multinomial distribution
with v3 = (0.1, 0.8, 0.1). Fourth cluster is composed of 400 objects generated from
multinomial distribution with v4 = (13 , 1

3 , 1
3 ).

The fuzzification parameter λ and t for FCCMM was set as λ ∈ {10, 40}
and t = 0.5. The fuzzification parameter m,λ and t for QFCCMM was set as
m = {1.0001, 1.2},λ = 40 and t = 0.5.

For FCCMM with (λ, t) = (10, 0.5), after the only output of Algorithm1
from the PIP was judged as a saddle point at Step 3. of Algorithm 3, 76 tokens
were generated through Step 4. and Step 6. of Algorithm 3, all the outputs
of Algorithm 1 from these tokens were judged as locally or globally optimal
solutions at Step 3. of Algorithm 3, and Algorithm 3 terminated. Among 76
locally or globally optimal solutions,

10 points are strictly local optimum with ARI = 0.82, and 66 points achieve
the minimum objective function value with ARI = 1.0. This result is summa-
rized in Table 1 along with the other cases. These results show that the proposed
algorithm produce the globally optimal solution through multiple tokens gener-
ated from the PIP. However, many generated tokens are the same convergence
point. For example, in the case with FCCMM with (λ, t) = (10, 0.5), among
66 solutions with minimal objective function value, here exists only 1 distinct
one which means that the algorithm has redundancy. More efficient generating
tokens is a future work.
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Fig. 1. Artificial dataset

Table 1. Number of saddle points, tokens, and locally/globally optimal solutions along
with actual number obtained from Algorithm 3.

Method Fuzzification

parameter

Number

of saddle

points

Number

of tokens

Number of

strictly local

optimum

Number of

solutions with

minimal objective

function value

(Actual number)

ARI of the

solution minimal

objective

function value

m λ t

EFCCMM 10 0.5 1 76 10 66(1) 1.0

30 0.5 1 76 5 71(1) 1.0

40 0.5 1 76 6 70(1) 1.0

QFCCMM 1.2 40 0.5 1 76 10 66(1) 1.0

1.2 30 0.5 1 76 20 56(1) 1.0

1.0001 40 0.5 1 76 6 70(1) 1.0

1.0001 30 0.5 1 76 8 68(1) 1.0

5 Conclusion

In this work, we proposed an algorithm to address the local optimality problem
of FCCMM and QFCCMM. Numerical experiments using an artificial dataset
shows that the proposed algorithm is valid, though it has a redundancy.

In the future, through improving the proposed algorithm efficiently, the pro-
posed algorithms will be applied to a large number of real datasets. Furthermore,
the technique generating multiple tokens will be applied to clustering algorithms
for the other types of data, such as spherical data, e.g., in [8].
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