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Abstract. Various fuzzy clustering algorithms have been proposed for
vectorial data. However, these methods have not been applied to time-
series data. This paper presents three fuzzy clustering algorithms for
time-series data based on dynamic time warping (DTW). The first algo-
rithm involves Kullback–Leibler divergence regularization of the DTW
k-means objective function. The second algorithm replaces the member-
ship of the DTW k-means objective function with its power. The third
algorithm involves q-divergence regularization of the objective function
of the first algorithm. Theoretical discussion shows that the third algo-
rithm is a generalization of the first and second algorithms, which is
substantiated through numerical experiments.

Keywords: Time-series data · Fuzzy clustering · Dynamic time
warping

1 Introduction

Hard c-means (HCM) is the most commonly used type of clustering algorithm [1].
The fuzzy c-means (FCM) [2] approach is an extension of the HCM that allows
each object to belong to all or some of the clusters to varying degrees. To distin-
guish the general FCM method from other proposed, such as entropy-regularized
FCM (EFCM) [3], it is referred to as the Bezdek-type FCM (BFCM) in this work.
The above mentioned algorithms may misclassify some objects that should be
assigned to a large cluster as belonging to a smaller cluster if the cluster sizes
are not balanced. To overcome this problem, some approaches introduce vari-
ables to control the cluster sizes [4,5]. Such variables have been added to the
BFCM and EFCM algorithms to derive the revised BFCM (RBFCM) and revised
EFCM (REFCM) [6] algorithms, respectively.

In the aforementioned clustering algorithms, the dissimilariies between the
objects and cluster centers are measured as the inner-product-induced squared
distances. This measure cannot be used for time-series data because they vary
over time. Dynamic time warping (DTW) is a representative dissimilarity with
respect to time-series data. Hence, a clustering algorithm using the DTW is
proposed [8] herein and referred to as the DTW k-means algorithm.
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The accuracies that can be achieved with fuzzy clustered results are better
than those using hard clustering. Various kinds of fuzzy clustering algorithms
have been proposed in literature for vectorial data [2,3]. However, this is not
true for time-series data, which is the main motivation for this study.

In this work, we propose three fuzzy clustering algorithms for time-series
data. The first algorithm involves the Kullback–Leibler (KL) divergence regu-
larization of the DTW k-means objective function, which is referred to as the
KL-divergence-regularized fuzzy DTW c-means (KLFDTWCM); this approach
is similar to the REFCM obtained by KL divergence regularization of the HCM
objective function. In the second algorithm, the membership of the DTW k-
means objective function is replaced with its power, which is referred to as the
Bezdek-type fuzzy DTW c-means (BFDTWCM); this method is similar to the
RBFCM, where the membership of the HCM objective function is replaced with
its power. The third algorithm is obtained by q-divergence regularization of the
objective function of the first algorithm (QFDTWCM). The theoretical results
indicate that the QFDTWCM approach reduces to the BFDTWCM under a
specific condition and to the KLFDTWCM under a different condition. Numer-
ical experiments were performed using artificial datasets to substantiate these
observations.

The remainder of this paper is organized as follows. Section 2 introduces the
notations used herein and the background regarding some conventional algo-
rithms. Section 3 describes the three proposed algorithms. Section 4 presents the
procedures and results of the numerical experiments demonstrating the proper-
ties of the proposed algorithms. Finally, Sect. 5 presents the conclusions of this
work.

2 Preliminaries

2.1 Divergence

For two probability distributions P and Q, the KL divergence of Q from P ,
DKL(P ||Q) is defined to be

DKL(P ||Q) =
∑

k

P (k) ln
(

P (k)
Q(k)

)
. (1)

KL divergence has been used to achieve fuzzy clustering [3] of vectorial data.
KL divergence has been extended by using q-logarithmic function

lnq(x) =
1

1 − q
(x1−q − 1) (for x > 0) (2)

as

Dq(P ||Q) =
1

1 − q

(
∑

k

P (k)qQ(k)1−q − 1

)
, (3)

referred to as q-divergence [7]. In the limit q → 1, the KL-divergence is recovered.
q-divergence has been implicitly used to derive fuzzy clustering only for vectorial
data [6] although that is not indicated in the literature.



On Some Fuzzy Clustering Algorithms for Time-Series Data 171

2.2 Clustering for Vectorial Data

Let X = {xk ∈ R
D | k ∈ {1, . . . , N}} be a dataset of D-dimensional points. The

set of cluster centers is denoted by v = {vi ∈ R
D | i ∈ {1, . . . , C}}. The member-

ship of xk with respect to the i-th cluster is denoted by ui,k (i ∈ {1, . . . , C}k ∈
{1, . . . , N}) and has the following constraint:

C∑

i=1

ui,k = 1. (4)

The variable controlling the i-th cluster size is denoted by αi, and has the con-
straint

C∑

i=1

αi = 1. (5)

The HCM, RBFCM, and REFCM clusters are respectively obtained by solv-
ing the following optimization problems:

minimize
u,v

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22, (6)

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)m‖xk − vi‖22, (7)

minimize
u,v,α

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22 + λ−1
C∑

i=1

N∑

k=1

ui,k log
(

ui,k

αi

)
. (8)

where m > 1 and λ > 0 are the fuzzification parameters. When m = 1, the
RBFCM is reduced to HCM; the larger the value of m, the fuzzier are the
memberships. When λ → +∞, the REFCM is reduced to HCM; the smaller the
value of λ, the fuzzier are the memberships.

2.3 Clustering of Time-Series Data: DTW k-Means

Let X = {xk ∈ R
D | k ∈ {1, . . . , N}} be a time-series dataset and xk,� be its

elements at time �. Let v = {vi ∈ R
D | i ∈ {1, . . . , C}} be the set of cluster

centers set vi,� be its elements at time �. Let DTWi,k be the dissimilarities
between the objects xk and cluster centers vi as below, with DTWi,k being
defined as follows DTW [8]. Denoting Ωi,k ∈ {0, 1}D×D as the warping path
used to calculate DTWi,k, the membership of xk with respect to the i-th cluster
is given by ui,k (i ∈ {1, . . . , C}k ∈ {1, . . . , N}). The DTW k-means is obtained
by solving the following optimization problem

minimize
u,v

C∑

i=1

N∑

k=1

ui,kDTWi,k. (9)
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in accordance with Eq. (4), where

DTWi,k =
√

d(vi,D, xk,D),

d(vi,D, xk,D) = ||xk,D − vi,D||2 (10)
+ min{d(vi,D−1, xk,D−1), d(vi,D, xk,D−1), d(vi,D−1, xk,D)}.

(11)

In addition to DTW, we obtain the warping path that maps the pairs (�,m) for
each element in the series to minimize the distance between them. Hence, the
warping path is a sequence of pairs (�,m). Here, we consider matrices {Ωi,k ∈
{0, 1}D×D}(C,N)

(i,k)=(1,1) whose (�,m)-th element is one if (�,m) is an element of the
corresponding warping path and zero otherwise then, we have the cluster centers

vi =

(
N∑

xk∈Gi

Ωi,kxk

)
�

(
∑

xk∈Gi

Ωi,k1

)
, (12)

where 1 is the D-dimensional vector with all elements equal to one, and �
describes element-wise division. The DTW k-means algorithm can be summa-
rized as follows.

Algorithm 1 (DTW k-means). [8]

Step 1. Set the number of clusters C and initial membership {ui,k}(C,N)
(i,k)=(1,1).

Step 2. Calculate {vi}C
i=1 as

vi =
∑N

k=1 ui,kxk∑N
k=1 ui,k

. (13)

Step 3. Calculate {DTWi,k}(C,N)
(i,k)=(1,1) and update {vi}C

i=1 as
(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (25).
(c) Check the limiting criterion for vi. If the criterion is not satisfied,

go to Step (a).
Step 4. Update {ui,k}(C,N)

(i,k)=(1,1) as

ui,k =

{
1 (i = arg min1≤j≤C{DTWj,k}),
0 (otherwise).

(14)

Step 5. Check the limiting criterion for (u, v). If the criterion is not satisfied,
go to Step 3
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3 Proposed Algorithms

3.1 Concept

In this work, we propose three fuzzy clustering algorithms for time-series data.
The first algorithm is similar to the REFCM obtained by KL divergence

regularization the DTW k-means objective function, which is referred to as
KLFDTWCM. The optimization problem for this is given by

minimize
u,v,α

C∑

i=1

N∑

k=1

ui,kDTWi,k + λ−1
C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

αi

)
(15)

subject to Eqs. (4) and (5).
The second algorithm is similar to the RBFCM obtained by replacing the

membership of the HCM objective function with its power, which is referred to
as BFDTWCM. The optimization problem is then given by

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)mDTWi,k (16)

subject to Eqs. (4) and (5).
The third algorithm is obtained by q-divergence regularization of the

BFDTWCM, which is referred to as QFDTWCM. The optimization problem
in this case is given by

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)mDTWi,k +
λ−1

m − 1

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)m (17)

subject to Eqs. (4) and (5). This optimization problem relates the optimization
problems for BFDTWCM and KLFDTWCM because Eq. (17) with λ → +∞
reduces to the BFDTWCM method and Eq. (17) with m → 1 reduces to the
KLFDTWCM approach. In the next subsection, we present derivation of the
update equations for u, v, and α based on of the minimization problem in Eqs.
(15), (16), and (17).

3.2 KLFDTWCM, BFDTWCM and QFDTWCM

The KLFDTWCM is obtained by solving the optimization problem in Eqs. (15),
(4) and (5), where the Lagrangian L(u, v, α) is defined as

L(u, v, α) =
C∑

i=1

N∑

k=1

ui,kDTWi,k + λ−1
C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

αi

)

+
N∑

k=1

γk

(
1 −

C∑

i=1

ui,k

)
+ β

(
1 −

C∑

i=1

αi

)
(18)
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using Lagrangian multipliers (γ1, · · · , γN+1). The necessary conditions for opti-
mality are given as

∂L(u, v, α)
∂ui,k

= 0, (19)

∂L(u, v, α)
∂αi

= 0, (20)

∂L(u, v, α)
∂γk

= 0, (21)

∂L(u, v, α)
∂β

= 0. (22)

The optimal membership is obtained from Eqs. (19) and (21) in a manner similar
to that of the REFCM as

ui,k =

⎡

⎣
C∑

j=1

αj

αi
exp(−λ(DTWj,k − DTWi,k))

⎤

⎦
−1

. (23)

The optimal variable for controlling the cluster sizes is obtained from Eqs. (20)
and (22) in a manner similar to that of the REFCM as

αi =
∑N

k=1 ui,k

N
. (24)

Recall that in the DTW k-means approach, the cluster centers vi are calculated
using Ωi,k and xk belonging to cluster #i, as shown in Eq. (12), which can be
equivalently written as

vi =

(
N∑

k=1

ui,kΩi,kxk

)
�

(
N∑

k=1

ui,kΩi,k1

)
. (25)

This form can be regarded as the ui,k-weighted mean of Ωi,kxk. Similarly, the
cluster centers for KLFDTWCM are calculated using Eq. (25). KLFDTWCM
can be described as follows:

Algorithm 2 (KLFDTWCM).

Step 1. Set the number of clusters C, fuzzification parameter λ > 0, and initial
membership {ui,k}(C,N)

(i,k)=(1,1).
Step 2. Calculate vi from Eq. (13).
Step 3. Calculate {DTWi,k}(C,N)

(i,k)=(1,1) and update {vi}C
i=1 as

(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (25).
(c) Check the limiting criterion for vi. If the criterion is not satisfied, go to

Step (a).
Step 4. Update u from Eq. (23)
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Step 5. Calculate α from Eq. (24)
Step 6. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step 3.

The BFDTWCM is obtained by solving the optimization problem in
Eqs. (16), (4), and (5). Similar to the derivation of the KLFDTWCM, the opti-
mal membership u, variable for controlling the cluster sizes α, and cluster centers
v are obtained as

ui,k =
1

∑C
j=1

αj

αi

(
DTWj,k

DTWi,k

)1/(1−m)
, (26)

αi =
1

∑C
j=1

(∑N
k=1(uj,k)mDTWj,k∑N
k=1(ui,k)mDTWi,k

)1/m
, (27)

vi =

(
N∑

k=1

(ui,k)mΩi,kxk

)
�

(
N∑

k=1

(ui,k)mΩi,k1

)
, (28)

respectively. The BFDTWCM can be described as follows:

Algorithm 3 (BFDTWCM).

Step 1. Set the number of clusters C, fuzzification parameter m > 1, and initial
membership {ui,k}(C,N)

(i,k)=(1,1).
Step 2. Calculate vi from Eq. (13).
Step 3. Calculate {DTWi,k}(C,N)

(i,k)=(1,1) and update {vi}C
i=1 as

(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (28).
(c) Check the limiting criterion for vi. If the criterion is not satisfied, go to

Step. (a).
Step 4. Update u from Eq. (26)
Step 5. Calculate α from Eq. (27)
Step 6. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step. 3.

The QFDTWCM is obtained by solving the optimization problem in
Eqs. (17), (4), and (5). Similar to the derivations of BFDTWCM and
KLFDTWCM, the optimal membership u and variable for controlling the cluster
sizes α are obtained as

ui,k =
1

∑C
j=1

αj

αi

(
1−λ(1−m)DTWj,k

1−λ(1−m)DTWi,k

)1/(1−m)
, (29)

αi =
1

∑C
j=1

(∑N
k=1(uj,k)m(1−λ(1−m)DTWj,k)∑N
k=1(ui,k)m(1−λ(1−m)DTWi,k)

)1/m
, (30)

respectively. The optimal cluster centers are defined by Eq. (28). The
QFDTWCM can be described as follows:
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Algorithm 4 (QFDTWCM).

Step 1. Set the number of clusters C, fuzzification parameter m > 1, λ > 0, and
initial membership {ui,k}(C,N)

(i,k)=(1,1).
Step 2. Calculate {vi}C

i=1 from Eq. (13).
Step 3. Calculate {DTWi,k}(C,N)

(i,k)=(1,1) and update {vi}C
i=1 as

(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (28).
(c) Check the limiting criterion for vi. If the criterion is not satisfied, go to

Step (a).
Step 4. Update u from Eq. (29).
Step 5. Calculate α from Eq. (30).
Step 6. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step 4.

In the remainder of this section, we show that the QFDTWCM with m −
1 → +0 reduces to BFDTWCM and QFDTWCM with λ → +∞ reduces to
KLFDTWCM.

The third step in the QFDTWCM approach is exactly equal to that of the
BFDTWCM because Eq. (28) is identical to Eq. (28). In the fourth step of
the QFDTWCM, the u value in Eq. (29) reduces to that in Eq. (26) of the
BFDTWCM as

1
∑C

j=1
αj

αi

(
1−λ(1−m)DTWj,k

1−λ(1−m)DTWi,k

)1/(1−m)

=
αi (1/λ − (1 − m)DTWi,k)1/(1−m)

∑C
j=1 αj (1/λ − (1 − m)DTWj,k)1/(1−m)

→ αi (−(1 − m)DTWi,k)1/(1−m)

∑C
j=1 αj (−(1 − m)DTWj,k)1/(1−m)

(with λ → +∞)

=
(m − 1)αi (DTWi,k)1/(1−m)

(m − 1)
∑C

j=1 αj (DTWj,k)1/(1−m)

=
αi (DTWi,k)1/(1−m)

∑C
j=1 αj (DTWj,k)1/(1−m)

=
1

∑C
j=1

αj

αi

(
DTWj,k

DTWi,k

)1/(1−m)
. (31)

In the fifth step of the QFDTWCM, the α value in Eq. (30) is reduces to that
in Eq. (27) of the BFDTWCM as
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1
∑C

j=1

(∑N
k=1(uj,k)m(1−λ(1−m)DTWj,k)∑N
k=1(ui,k)m(1−λ(1−m)DTWi,k)

)1/m

=

(∑N
k=1(ui,k)m(1/λ − (1 − m)DTWi,k)

)1/m

∑C
j=1

(∑N
k=1(uj,k)m(1/λ − (1 − m)DTWj,k)

)1/m

→
(∑N

k=1(ui,k)m(−(1 − m)DTWi,k)
)1/m

∑C
j=1

(∑N
k=1(uj,k)m(−(1 − m)DTWj,k)

)1/m

(with λ → +∞)

=
(m − 1)1/m

(∑N
k=1(ui,k)m(DTWi,k)

)1/m

(m − 1)1/m
∑C

j=1

(∑N
k=1(uj,k)m(DTWj,k)

)1/m

=

(∑N
k=1(ui,k)m(DTWi,k)

)1/m

∑C
j=1

(∑N
k=1(uj,k)m(DTWj,k)

)1/m

=
1

∑C
j=1

(∑N
k=1(uj,k)mDTWj,k∑N
k=1(ui,k)mDTWi,k

)1/m
. (32)

From the above discussion, we can conclude that the QFDTWCM with λ → +∞
reduces to the BFDTWCM.

The third step of the QFDTWCM with m = 1 is obviously equal to the third
step of the KLFDTWCM because Eq. (28) with m = 1 is identical to Eq. (11).
In the fourth step of the QFDTWCM, the u value in Eq. (29) reduces to that
in Eq. (23) of the KLFDTWCM as

(1 − λ(1 − m)DTWi,k)1/(1−m)

→ exp(−λ(DTWi,k)) (with m = 1). (33)

The fifth step of the QFDTWCM reduces to that of the KLFDTWCM because

=
1

∑C
j=1

(∑N
k=1(uj,k)m(1−λ(1−m)DTWj,k)∑N
k=1(ui,k)m(1−λ(1−m)DTWi,k)

)1/m

→ 1
∑C

j=1

∑N
k=1

uj,k

ui,k

(with m = 1)

=
∑N

k=1 ui,k∑C
j=1

∑N
k=1 uj,k

=
∑N

k=1 ui,k

N
. (34)
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Fig. 1. Sample data group1 Fig. 2. Sample data group2

Fig. 3. Sample data group3 Fig. 4. Sample data group4

From the above discussion, we can conclude that the QFDTWCM with m−1 → 0
reduces to the KLFDTWCM.

As shown herein, the proposed QFDTWCM includes both the BFDTWCM
and KLFDTWCM. Thus, the QFDTWCM is a generalization of the BFDTWCM
as well as KLFDTWCM.

4 Numerical Experiments

This section presents some numerical examples based on one artificial dataset.
The example compares the characteristic features of the proposed clustering
algorithm (Algorithm 4) with those of other algorithms (Algorithms 2 and 3) for
an artificial dataset, as shown in Figs. 1, 2, 3 and 4 for four clusters (C = 4),
with each clusters containing five objects (N = 4 × 5 = 20).

The initialization step assigns the initial memberships according to the actual
class labels. All three proposed methods with various fuzzification parameter
values were able to classify the data adequately, and the obtained membership
values are shown in Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9. Tables 1 and 2 show that for
the BFDTWCM, when the fuzzification parameter m is larger, the membership
values are fuzzier. Tables 3 and 4 show that for the KLFDTWCM, when the fuzzi-
fication parameter λ is smaller, the membership values are fuzzier. Tables 5 and 6
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Table 1. Sample data memberships of the
BFDTWCM, m = 1.001

Cluster Group

1 2 3 4

1 1.00 0.00 0.00 0.00

2 0.00 1.00 0.00 0.00

3 0.00 0.00 1.00 0.00

4 0.00 0.00 0.00 1.00

Table 2. Sample data memberships of
the BFDTWCM, m = 1.35

Cluster Group

1 2 3 4

1 0.77 0.01 0.10 0.00

2 0.01 0.66 0.00 0.11

3 0.21 0.01 0.89 0.00

4 0.01 0.32 0.00 0.89

Table 3. Sample data memberships of the
KLFDTWCM, λ = 1.5

Cluster Group

1 2 3 4

1 0.84 0.00 0.06 0.00

2 0.00 0.70 0.00 0.06

3 0.15 0.00 0.94 0.00

4 0.00 0.30 0.00 0.94

Table 4. Sample data memberships of
the KLFDTWCM, λ = 100

Cluster Group

1 2 3 4

1 1.00 0.00 0.00 0.00

2 0.00 1.00 0.00 0.00

3 0.00 0.00 1.00 0.00

4 0.00 0.00 0.00 1.00

Table 5. Sample data memberships of the
QFDTWCM, (m, λ) = (1.2, 3)

Cluster Group

1 2 3 4

1 0.78 0.00 0.10 0.00

2 0.00 0.61 0.00 0.09

3 0.21 0.00 0.90 0.00

4 0.00 0.39 0.00 0.91

Table 6. Sample data memberships of
the QFDTWCM, (m, λ) = (1.001, 3)

Cluster Group

1 2 3 4

1 0.99 0.00 0.00 0.00

2 0.00 0.98 0.00 0.01

3 0.01 0.00 1.00 0.00

4 0.00 0.02 0.00 0.99

show that for the QFDTWCM, when the fuzzification parameter m is larger, the
membership values are fuzzier. Tables 5 and 7 show that for the QFDTWCM,
when the fuzzification parameter λ is smaller, the membership values are fuzzier.
Furthermore, Tables 6 and 8 show that the QFDTWCM with large values of λ
produces results similar to those of the KLFDTWCM, and Tables 7 and 9 show
that the QFDTWCM with smaller values of m produces results similar to those
of the BFDTWCM. These results indicate that the QFDTWCM combines the
features of both BFDTWCM and KLFDTWCM.
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Table 7. Sample data memberships of the
QFDTWCM, (m, λ) = (1.2, 100)

Cluster Group

1 2 3 4

1 0.95 0.00 0.03 0.00

2 0.00 0.90 0.00 0.04

3 0.05 0.00 0.97 0.00

4 0.00 0.10 0.00 0.96

Table 8. Sample data memberships of
the KLFDTWCM, λ = 3

Cluster Group

1 2 3 4

1 0.99 0.00 0.00 0.00

2 0.00 0.98 0.00 0.01

3 0.01 0.00 1.00 0.00

4 0.00 0.02 0.00 0.99

Table 9. Sample data memberships of the BFDTWCM, m = 1.2

Cluster Group

1 2 3 4

1 0.95 0.00 0.03 0.00

2 0.00 0.90 0.00 0.04

3 0.05 0.00 0.97 0.00

4 0.00 0.10 0.00 0.96

5 Conclusion

This work, propose three fuzzy clustering algorithms for classifying time-series
data. The theoretical results indicate that the QFDTWCM approach reduces
to the BFDTWCM as m − 1 → +0 and to the KLFDTWCM as λ → +∞.
Numerical experiments were performed on an artificial dataset to substantiate
these properties.

In the future work, these proposed algorithms will be applied to real datasets.

References

1. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297 (1967)

2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York (1981)

3. Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a regularization and maximum
entropy approach. In: Proceedings of the 7th International Fuzzy Systems Associa-
tion World Congress (IFSA 1997), vol. 2, pp. 86–92 (1997)

4. Miyamoto, S., Kurosawa, N.: Controlling cluster volume sizes in fuzzy c-means clus-
tering. In: Proceedings of the SCIS&ISIS2004, pp. 1–4 (2004)

5. Ichihashi, H., Honda, K., Tani, N.: Gaussian mixture PDF approximation and fuzzy
c-means clustering with entropy regularization. In: Proceedings of the 4th Asian
Fuzzy System Symposium, pp. 217–221 (2000)



On Some Fuzzy Clustering Algorithms for Time-Series Data 181

6. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer,
Heidelberg (2008)

7. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
a sum of observations. Ann. Math. Statist. 23, 493–507 (1952)

8. Petitjean, F., Ketterlin, A., Gancarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recogn. 44, 678–693 (2011)


	On Some Fuzzy Clustering Algorithms for Time-Series Data
	1 Introduction
	2 Preliminaries
	2.1 Divergence
	2.2 Clustering for Vectorial Data
	2.3 Clustering of Time-Series Data: DTW k-Means

	3 Proposed Algorithms
	3.1 Concept
	3.2 KLFDTWCM, BFDTWCM and QFDTWCM

	4 Numerical Experiments
	5 Conclusion
	References




