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Abstract. When coefficients in the objective function cannot be pre-
cisely determined, the optimal solution is fluctuated by the realisation
of coefficients. Therefore, analysing the stability of an optimal solution
becomes essential. Although the robustness analysis of an optimal basic
solution has been developed successfully so far, it becomes complex when
the solution contains degeneracy. This study is devoted to overcoming
the difficulty caused by the degeneracy in a linear programming problem
with interval objective coefficients. We focus on the tangent cone of a
degenerate basic feasible solution since the belongingness of the objec-
tive coefficient vector to its associated normal cone assures the solution’s
optimality. We decompose the normal cone by its associated tangent cone
to a direct union of subspaces. Several propositions related to the pro-
posed approach are given. To demonstrate the significance of the decom-
position, we consider the case where the dimension of the subspace is
one. We examine the obtained propositions by numerical examples with
comparisons to the conventional techniques.

Keywords: Interval linear programming · Degeneracy · Polyhedral
convex cone · Tangent cone · Basic space

1 Introduction

Linear programming addresses enormous real-world problems. The conventional
LP techniques assume that all coefficients are precisely determined. However, this
assumption cannot always be guaranteed. Sometimes the coefficients can only be
imprecisely known with ranges or distributions due to measurement limitation,
noise and insufficient knowledge. Since the imprecise coefficients may fluctuate
the solution’s optimality, a decision-maker is usually interest in analysing its
stability.

Researchers have studied the problem for decades. An approach called sensi-
tivity analysis [1] that utilises shadow price can analyse the maximum variation
on a single coefficient. To treat the case of multiple coefficients, Bradley, Hax, and
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Magnanti [1] solved a convex cone by the 100 Percent Rule, which is also called
the optimality assurance cone in this paper. Then one only needs to check the
belongingness of the imprecise coefficients to this convex cone. To represent the
imprecise coefficients, researchers utilise several methods such as interval [5,16],
fuzzy [7,9], and probability distribution [10,11,14,15]. For example, the neces-
sary optimality [9] is widely utilised in the interval case if a feasible solution
is optimal for all realisations derived by the interval coefficients. The tolerance
approach [2,16,17] can address it straightforwardly if the feasible set is constant.

Despite the usefulness of the optimality assurance cone, we cannot always
solve it directly by the simplex method. When the feasible solution is non-basic or
degenerate, it becomes problematic [6]. To handle it, researchers aim to separate
the non-zero part of the solution instead of focusing on its basis. Some remarkable
techniques have emerged, such as support set invariancy and optimal partition
invariancy [6]. However, they only concentrate on the non-basic situation, which
is called dual degeneracy in this paper. On the other hand, primal degeneracy
is merely considered a particular case and treated by variational analysis [12]
and convex analysis [13] theoretically. The reason is that the optimal solution
and optimal value would not change even the basic index set varies. However,
when solving the optimal assurance cone of a basic feasible solution, the variance
of the basic index set causes troubles. If we list all combinations violently, the
computational burden will become tremendous for a large-scale problem [6].
Hence, the study of the primal degeneracy is vital.

In this paper, we study the optimality assurance cone by its counterpart
tangent cone [12,13] in the view of linear algebra. We start by reviewing the
interval linear programming and introduce the necessary optimality of a feasible
solution in the next section. After identifying the difference between the primal
and dual degeneracy, we focus on the primal one. We consider solving the tangent
cone of a feasible basic solution and decompose the derived optimality assurance
cone into a union of subspaces with equivalence. To simplify our analysis, we
assume that the dimension of the subspace is only 1, i.e. the cardinality of the
non-zero variable set is strictly 1 less than the basic index set. We finally give
numerical examples to show that our approach can treat the problem with no
loop or iteration.

2 Preliminaries

2.1 The Linear Programming

The linear programming (LP) problem in this paper follows the standard form
as

minimize cTx, subject to Ax = b, x ≥ 0, (1)

where x ∈ R
n is the decision variable vector, while A ∈ R

m×n, b ∈ R
m and

c ∈ R
n are the coefficient matrix, right-hand-side coefficient vector and objective

coefficient vector, respectively.
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Since the simplex method needs a basic index set IB with Card(IB) = m, we
have to consider basic feasible solutions. Therefore, let x∗

B ∈ R
m and x∗

N ∈ R
n−m

denote the basic and non-basic sub-vectors of x∗ separated by IB , respectively.
Then we can also separate A with AB ∈ R

m×m and AN ∈ R
m×(n−m), and c

with cB ∈ R
m and bN ∈ R

n−m accordingly.
Since IB is solved by the simplex method, AB should be non-singular. There-

fore, we have the proposition for the optimality of a basic feasible solution:

Proposition 1. A basic feasible solution x∗ is optimal if and only if the follow-
ing conditions are valid:

cN − AT
NA−T

B cB ≥ 0, (2)

A−1
B b ≥ 0, (3)

where the optimal solution is x∗
B = A−1

B b, x∗
N = 0 with the optimal value being

cTBA−1
B b.

2.2 The Interval Linear Programming

Since the coefficients in an LP problem cannot always be guaranteed to be
precise in reality, interval linear programming (ILP) considers utilising intervals
to represent the imprecise coefficients. A typical ILP problem is written as

minimize γTx, subject to Λx = ϕ, x ≥ 0, (4)

where x represents the decision variable vector, but Λ ⊆ R
m×n, ϕ ⊆ R

m and
γ ⊆ R

n are the interval subsets composed of the imprecise A, b and c, respec-
tively. Therefore, an ILP problem can be regarded as a combination of multiple
conventional LP problems, called scenarios [4]. Hence, the robustness analysis
of a solution equals to analysing its all scenarios.

However, Proposition 1 only guarantees the invariance of IB instead of the
optimal solution x∗ due to x∗

B = A−1
B b. Since the imprecision in constraints is

difficult (see [3,4]) to study, we assume the ILP problem always has a constant
feasible set, i.e. Λ and ϕ are singletons containing A and b, respectively. Hence,
the ILP problem becomes

minimize γTx, subject to Ax = b, x ≥ 0, (5)

where γ ∈ Φ := {(c1, . . . , cn)T : cLi ≤ ci ≤ cUi , i = 1, . . . , n} ⊆ R
n. cLi and cUi are

the lower and upper bounds of the interval Φi, i = 1, . . . , n, respectively.
To analyse the optimality of a feasible solution in an ILP problem (5), we

utilise possible and necessary optimality [9]:

Definition 1 (possible and necessary optimality). Let Φ defined in Prob-
lem (5) denote an interval hyper-box composed of γ and let x∗ be a feasible
solution, then x∗ is possibly optimal for Φ if ∃γ ∈ Φ that x∗ is optimal, and x∗

is necessarily optimal for Φ if ∀γ ∈ Φ that x∗ is optimal.



An Analysis to Treat the Deg. of a BF Sol. in ILP 133

To check the necessary optimality of x∗, we use the optimality assurance
cone [8] defined as

Definition 2 (optimality assurance cone). Let x∗ be a feasible solution.
Then the optimality assurance cone, denoted as S O(x∗), is defined by

S O(x∗) :=
{

c ∈ R
n : cTx∗ = min{cTx : Ax = b, x ≥ 0}

}
. (6)

Since a decision-maker usually does not prefer a possibly optimal solution,
we focus on the necessary optimality, which can be checked by the lemma below:

Lemma 1. A feasible solution x∗ is necessarily optimal if and only if Φ ⊆
S O(x∗).

However, Eq. (6) is not applicable for solving the optimality assurance cone.
Fortunately, if x∗ is a non-degenerate basic feasible solution, we can utilise Propo-
sition 1 to get an equivalent result as the 100 Percent Rule [1] did:

Proposition 2. Let x∗ be a non-degenerate basic feasible solution to the ILP
Problem (5). Then a convex cone defined by x∗, denoted as MO(x∗), is equiva-
lent to S O(x∗). Namely,

MO(x∗) :=
{

c ∈ R
n : cN − AT

NA−T
B cB ≥ 0

}
= S O(x∗). (7)

With the condition in Proposition 2, Lemma 1 equals to the following one:

Lemma 2. A non-degenerate basic feasible solution x∗ is necessarily optimal if
and only if Φ ⊆ MO(x∗).

By Lemma 2, the necessary optimality can be checked straightforwardly by
tolerance approach [2,16,17]. Since the only difference between Lemma 1 and 2
is whether x∗ is non-degenerate and basic, the problem becomes difficult when
there exists degeneracy. Hence, the key is how to correctly solve S O(x∗) in an
efficient way, which becomes the main topic in the following content.

3 Degeneracy and Optimality Assurance Cone

3.1 Difference Between Dual and Primal Degeneracy

Before proposing our approach, we need to illustrate what is the degeneracy that
has been mentioned in previous sections by the following examples.

Example 1. Let us consider the following LP problem:

minimize c1x1 + c2x2,

subject to 3x1 + 4x2 + x3 = 42,

3x1 + x2 + x4 = 24,

x2 + x5 = 9,

xi ≥ 0, i = 1, 2, ..., 5,

where c1 = −3 and c2 = −4. Solve this problem.
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By the simplex method, we obtain the tabular as

Basis x1 x2 x3 x4 x5 RHS

x2 0 1 1/3 −1/3 0 6

x1 1 0 −1/9 4/9 0 6

x5 0 0 −1/3 1/3 1 3

−z 0 0 1 0 0 42

where the optimal solution is x∗ = (6, 6, 0, 0, 3)T. However, since the last row of
x4 position being 0, we can re-pivot the tabular as:

Basis x1 x2 x3 x4 x5 RHS

x2 0 1 0 0 1 9

x1 1 0 1/3 0 −4/3 2

x4 0 0 −1 1 3 9

−z 0 0 1 0 0 42

This time x∗ = (2, 9, 0, 9, 0)T, where the optimal value maintains to be −42.
However, if we modify Example 1 as the following one:

Example 2. Reconsider Example 1, if c1 = −3 and c2 = −2 and there exists an
extra constraint x1 + x2 + x6 = 12, solve this problem.

By the simplex method, we obtain the tabular as

Basis x1 x2 x3 x4 x5 x6 RHS

x2 0 1 1/3 −1/3 0 0 6

x1 1 0 −1/9 4/9 0 0 6

x5 0 0 −1/3 1/3 1 0 3

x6 0 0 −2/9 −1/9 0 1 0

−z 0 0 1/3 2/3 0 0 30

where the optimal solution is x∗ = (6, 6, 0, 0, 3, 0)T. However, since x6 = 0, we
can also pivot the tabular as:

Basis x1 x2 x3 x4 x5 x6 RHS

x2 0 1 0 −1/2 0 3/2 6

x1 1 0 0 1/2 0 −1/2 6

x5 0 0 0 2/3 1 −3/2 3

x3 0 0 1 1/2 0 −9/2 0

−z 0 0 0 1/2 0 3/2 30
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Fig. 1. Primal and dual degeneracy

Unlike Example 1, both optimal solution and optimal value maintain to be
the same even the basis changes, which means the situation of Example 2 is
different even the basis in both examples change.

To explain both examples illustratively, we project them into x1-x2 coordi-
nate in Fig. 1 since ci = 0, i �= 1, 2. M̌O

i (x∗
j ) denotes the ith projection of the

optimality assurance cone of x∗
j .

Subfig. 1a shows the result of Example 1, where we find two optimal basic
solutions. We show that the optimality assurance cones of x∗

1 and x∗
2 are inde-

pendent, and can be solved once the optimal solution is determined. Moreover,
it shows that any vertex on the line of x∗

1 and x∗
2 can be the optimal solution.

However, for the result of Example 2 shown in Subfig. 1b, the situation
becomes different. At first, there exists only one optimal solution x∗ with 3
active constraints on it, where only 2 of them are needed. Consequently, we
have 3 potential optimality assurance cones as M̌O

1 (x∗), M̌O
2 (x∗) and M̌O

3 (x∗),
where the union of them is what we want.

Example 1 and 2 show two different degeneracies. When considering them by
the simplex method, we find that the degeneracy in Example 1 is connected with
the objective coefficients, while in Example 2 is the right-hand-side coefficients.
Hence, we identify them as dual degeneracy (Example 1) and primal degeneracy
(Example 2) by Proposition 1, and state that for a basic feasible solution x∗,

• there exists no dual degeneracy if cN − AT
NA−T

B cB > 0, and
• there exists no primal degeneracy if A−1

B b > 0,

and if x∗ satisfies both, we define it as non-degenerate basic feasible.
Conventionally, dual and primal degeneracy are usually treated as the same

question for both enabling the basic index set to change. Moreover, most of
studies only focused on the dual one when a feasible solution is non-basic.
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However, the rationales of dual and primal degeneracy are completely dif-
ferent. In the view of linear algebra, when the objective coefficient vector c is
not independent from the rows of matrix A, dual degeneracy happens. On the
other hand, primal degeneracy has no relation with the objective function, and is
usually caused by the over-constraints on the solution. Therefore, it is necessary
to do respective discussion.

Since the dual degeneracy only enables us to choose a non-basic solution,
we can handle such trouble by simply choosing a basic one. Instead, the primal
degeneracy does not diminish. Hence, we concentrate on the primal degeneracy.

3.2 Analysis of Primal Degeneracy

In Example 2, we show what is primal degeneracy by the simplex tabular and
figure. We find that, despite with computational burden, the simplex method
can always find the correct optimality assurance cone. Therefore, by utilising the
support set [6] of a basic feasible solution x∗, which is the index set IP (x∗) :=
{i : x∗

i > 0}, we can treat the problem by the following theorem:

Theorem 1. Let IP (x∗) ⊆ {1, 2, . . . , n} denote the support set of a basic feasible
solution x∗ in Problem (5) with Card(IP (x∗)) ≤ m, where m is the number of
constraints. Then the optimality assurance cone of x∗ is

MO(x∗) =
⋃

IBi ⊇ IP (x∗),
A−1

Bi b ≥ 0

{
c ∈ R

n : cNi − AT
NiA

−T
Bi cBi ≥ 0

}
= S O(x∗), (8)

where IBi with Card(IBi) = m is the index set that determines ABi and cBi .

Proof. By the definition of support set, we have the result as

{x∗} =
⋂

IBi ⊇ IP (x∗)

{
x ∈ R

n : ABixBi + ANixNi = b, xBi ≥ 0, xNi = 0
}

,

=
⋂

IBi ⊇ IP (x∗),
A−1

Bi b ≥ 0

{
x ∈ R

n : xBi = A−1
Bi b, xNi = 0

}
.

For any IBi satisfying IBi ⊇ IP (x∗) and A−1
Bi b ≥ 0, its counterpart normal

cone calculated as {c ∈ R
n : cNi − AT

NiA
−T
Bi cBi ≥ 0} makes x∗ optimal for any

c belonging to it. Hence, we have the result by uniting all of them. 
�
The key of Theorem 1 is to list all situations where a feasible basic solution

maintains to be optimal and unite them. However, since the calculation is linearly
related to the combination of the basis, it becomes enormous when the system
is in large-scale.

To treat the difficulty in Theorem 1, the following lemma is necessary for our
approach:
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Lemma 3. Let x∗ be a basic feasible solution in the ILP Problem (5). Then the
optimality assurance cone is normal to the tangent cone of the feasible set on
x∗.

Lemma 3 states the relation between the optimality assurance cone with its
counterpart, i.e. tangent cone, which is significant since we can simply solve the
tangent cone of a convex set on a point. By utilising the support set, we have
the following proposition:

Proposition 3. The tangent cone of the feasible set on a basic feasible solution
x∗ in the ILP Problem (5) is

T (x∗) =
{

x ∈ R
n : APxP + AZxZ = 0, xZ ≥ 0

}
, (9)

where xP and xZ are separated by the support set IP and its counterpart IZ :=
{1, 2, . . . , n}\IP .

Since T (x∗) in Eq. (9) forms a convex cone, let us review the definition and
some useful properties of it.

Definition 3 (Convex Cone). A subset C of a vector space V over an ordered
field F is a cone if for every vector v ∈ C and any positive scalar α ∈ F ,
αv ∈ C . Moreover, if for every v,w ∈ C and for any positive scalar α, β ∈ F
such that αv + βw ∈ C , then C is a convex cone.

Furthermore, the following lemma indicates that we can utilise convex tech-
niques to analyse the tangent cone.

Lemma 4. The tangent cone of a convex set is convex.

Since it is known that a convex cone is not a vector space due to the non-
negative scalar, we cannot utilise the basic space directly. However, we can still
use the concept, where the convex cone is spanned by a series of vectors. We
call these vectors as the basic vectors of the convex cone and note that, if the
convex cone is polyhedral, e.g. the tangent cone, the number of the basic vectors
is finite. Similar to the linear space, we call the left part as the null space.

The following theorem illustrates the relation between the basic vectors with
the basis of the ILP problem (5).

Theorem 2. Given an ILP problem (5) with a non-degenerate basic feasible
solution x∗, then the null space of the tangent cone T (x∗) corresponds to the
basic index set IB of x∗.

Proof. Since x∗ is non-degenerate and basic, x∗
B = A−1

B b > 0 is always valid.
Hence the tangent cone becomes

T (x∗) =
{

x ∈ R
n : ABxB + ANxN = 0, xN ≥ 0

}
.

If we ignore xN ≥ 0 and only consider the linear space {x ∈ R
n : Ax = 0},

it can be spanned by (n−m) independent vectors due to A ∈ R
m×n. Since x∗ is
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non-degenerate and basic, Card(xN ) = n − m. Hence, to cover the condition of
xN ≥ 0, we can utilise it directly as the basic vectors. Hence, the basic vectors
of T (x∗) corresponds to the non-basic part of x∗, which is equivalent to the
condition that the null space of T (x∗) corresponds to IB of x∗ 
�

Theorem 2 indicates the fact that, once we determine the basic vectors of
the tangent cone of a basic feasible solution, the corresponding basis is known.
Hence, we can extend this property to the following proposition:

Proposition 4. For the tangent cone T (x∗) defined in Proposition 3, all com-
binations of choosing (n − m) entries from IZ can span the tangent cone.

By Theorem 1 and 2, Proposition 4 is obvious. However, the method in
Proposition 4 has the same computational complexity as Theorem 1, indicating
that our calculation speed would not improve with purely changing to the realm
of convex cone.

To simplify the procedure, we only consider the dimension of the subspace to
be 1, i.e. 1-dimensional degeneracy that Card(IP ) = m−1. Therefore, there exist
an extra entry in IZ , giving an extra constraint in spanning the tangent cone.
It is because we need to choose (n − m) basic vectors from IZ , but there exist
(n − m + 1) entries should be non-negative. Hence, when (n − m) basic vectors
are chosen, there always leaves an entry in IZ that should be non-negatively
spanned by the chosen basic vectors.

However, to treat such problem, we can firstly use the following modification
to make all coefficients in the extra constraint be non-negative:

Proposition 5. Let x∗ be a basic feasible solution with 1-dimensional degener-
acy for the ILP Problem (5) and let IP denote its support set. Then there always
exists an extra constraint that can be written with all coefficients non-negative:

∑

i∈I
k
Z

ki(xZ)i =
∑

j∈I
l
Z

lj(xZ)j , (10)

where I
k
Z ∪I

l
Z = IZ and Card(IkZ) ≤ Card(IlZ). ki and lj are non-negative scalars.

It is easy to understand that when there exists no primal degeneracy, IkZ is
empty by Theorem 2. Moreover, it also hints the following lemma:

Lemma 5. If Card(IkZ) ≤ 1 in Proposition 5, then I
l
Z is the index set that

corresponds to the basic vectors of the tangent cone.

The rationality of Lemma 5 is that, once a variable can be expressed by
other non-negative variables multiplied with non-negative scalars, it becomes
non-negative. So it is no longer necessary to consider the non-negative constraint
any more and hence can be abandoned.

To explain Lemma 5 more illustratively, let us use Example 2 again. In
Example 2, we solve the optimal solution as x∗ = (6, 6, 0, 0, 3, 0)T, which gives
IP = {1, 2, 5} and IZ = {3, 4, 6}. Hence we can write its tangent cone as

T (x∗) =
{

Ax = 0 with x3, x4, x6 ≥ 0
}

.



An Analysis to Treat the Deg. of a BF Sol. in ILP 139

Since A ∈ R
4×6, there should only exist 2 entries in the basic space. Therefore,

we need to pick out v1 and v2 from x3, x4 and x6. As Proposition 5 indicates, we
remove x1, x2 and x5 from Ax = 0, which give the following extra constraint:

x4 = 9x6 − 2x3 ⇒ 9x6 = x4 + 2x3

After modification to make all scalars to be non-negative, it shows that x6

should be removed. Hence, the correct basic space should be formed by x3 and
x4, which indicates the correct basic index set IB = {1, 2, 5, 6}. The result cor-
responds to the conventional analysis in Example 2.

However, if Card(IkZ) ≥ 2, we cannot treat the problem simply by Lemma 5.
Instead, we can pick every entry in I

k
Z as the one that should be removed, which

results a series of basic vectors. Then we can form the tangent cone by their
union. Mathematically, we have the following proposition:

Proposition 6. Let the extra constraint of xZ be written in the form of Eq. (10)
with Card(IkZ) ≤ Card(IlZ) and I

k
Z ∪ I

l
Z = IZ , and ki and lj are all non-negative

scalars. Then the index of the basic vectors of the tangent cone is the union of
the following sets:

IZ\{i}, i ∈ I
k
Z . (11)

It is easy to see that if Card(IkZ) ≤ 1, then Proposition 6 is equivalent to
Lemma 5. To illustrate Proposition 6, let us consider a brief example.

Example 3. Let us consider the following LP problem:

minimize c1x1 + c2x2 + c3x3

subject to − 2x1 + x3 + x4 = −4 (i)
2x2 + x3 + x5 = 8 (ii)
2x1 + x3 + x6 = 8 (iii)

− 2x2 + x3 + x7 = −4 (iv)
xi ≥ 0, i = 1, 2, . . . , 7,

where we assume c1 = 2, c2 = 1, c3 = −10. Solve this problem.

By the simplex method with the following tabular, the degenerate optimal
solutions is x∗ = (3, 3, 2, 0, 0, 0, 0)T, indicating that IP = {1, 2, 3}.

Basis x1 x2 x3 x4 x5 x6 x7 RHS

x1 1 0 0 −1/2 1/4 0 1/4 3

x3 0 0 1 0 1/2 0 1/2 2

x6 0 0 0 1 −1 1 −1 0

x2 0 1 0 0 1/4 0 −1/4 3

−z 0 0 0 1 17/4 0 19/4 11
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Fig. 2. Degeneracy in Example 3

Hence, we can list 4 situations and take the union of them by Theorem 1.
Since ci = 0, i = 4, 5, 6, 7, we can simply project the system to R

3 and write the
optimality assurance cone as

MO(x̌∗) =
⋃

i=4,5,6,7

{
č ∈ R

3 : Gič ≥ 0
}
,

where x̌∗ = (x∗
1, x

∗
2, x

∗
3)

T and č = (c1, c2, c3)T, and

G4 =

⎡
⎣

1/4 −1/4 −1/2
−1/2 0 0
1/4 1/4 −1/2

⎤
⎦ , G5 =

⎡
⎣

1/4 −1/4 −1/2
−1/4 −1/4 −1/2

0 1/2 0

⎤
⎦ ,

G6 =

⎡
⎣

1/2 0 0
−1/4 −1/4 −1/2
−1/4 1/4 −1/2

⎤
⎦ , G7 =

⎡
⎣

1/4 1/4 −1/2
0 −1/2 0

−1/4 1/4 −1/2

⎤
⎦ ,

where Gi+3 denote the situation that ignore (ith) constraint. However, in our
approach by Proposition 5, we have the extra constraint as x4 + x6 = x5 + x7,
which indicates that we only need to take the union of G4 and G6, or the union
of G5 and G7, i.e.

MO(x̌∗) =
⋃

i=4,6

{
č ∈ R

3 : Gič ≥ 0
}

=
⋃

i=5,7

{
č ∈ R

3 : Gič ≥ 0
}

(12)

Moreover, if we draw the projection x̌ in x1-x2-x3 coordinate, we have Fig. 2,
where the feasible set is the space in the tetrahedron. Then result shown by
Eq. (12) is obvious.



An Analysis to Treat the Deg. of a BF Sol. in ILP 141

4 Conclusion and Future Work

In this paper, we proposed a linear algebraic approach to treating the primal
degeneracy in ILP problem with imprecise objective coefficients, since we always
need to solve the optimality assurance cone explicitly when analysing the robust-
ness of a basic feasible solution in the ILP problem.

In accomplishing our goal, we first consider the tangent cone of the basic
feasible solution instead of listing all bases by the simplex method. Since the
tangent cone is normal to the optimality assurance cone and is always polyhedral
and convex, we modify the concept of basic space in linear subspace and apply
it to the tangent cone. We show that once we can span the tangent cone by
its basic space, we find the correct basis of the corresponding problem, which
would lead to the correct optimality assurance cone. To illustrate and validate
our technique, we give numerical examples.

However, since we assume that there exists only one degeneracy, the analysis
is not complete. Moreover, when degeneracy becomes multiple, it is necessary to
have some algorithms for forming the correct basic space. Another incomplete
section is that we assume the feasible solution is basic even there exists dual
degeneracy. Therefore, we would take dual degeneracy into consideration in our
next step.
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