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Preface

This volume contains the papers that were presented at the 9th International Symposium
on Integrated Uncertainty in KnowledgeModelling and DecisionMaking (IUKM 2022)
held in Ishikawa, Japan, during March 18–19, 2022.

The IUKM symposia aim to provide a forum for exchanges of research results
and ideas, and experience of application among researchers and practitioners involved
with all aspects of uncertainty modelling and management. Previous editions of the
conference were held in Ishikawa, Japan (IUM 2010), Hangzhou, China (IUKM 2011),
Beijing, China (IUKM 2013), Nha Trang, Vietnam (IUKM 2015), Da Nang, Vietnam
(IUKM 2016), Ha Noi, Vietnam (2018), Nara, Japan (2019), Phuket, Thailand (2020),
and their proceedings were published by Springer in AISC 68, LNAI 7027, LNAI 8032,
LNAI 9376, LNAI 9978, LNAI 10758, LNAI 11471, and LNAI 12482 respectively.

IUKM2022was jointly organized byOsakaUniversity, Osaka PrefectureUniversity,
and the Japan Advanced Institute of Science and Technology.

This year the conference received 46 submissions from authors in 11 different coun-
tries. Each submission was peer reviewed by at least three members of the Program
Committee. After a thorough review process, 36 papers were accepted for presentation
at IUKM 2022, of which 30 papers (65.22%) were accepted for publication in the LNAI
proceedings. In addition to the regular and short presentations, three keynote lectures
by leading researchers on topics ranging from theory and methods to applications in the
fields of IUKM were organized.

We express our sincere thanks to Motohide Umano, Salvatore Greco, and Rudolf
Felix for providing valuable and stimulating lectures. We are very thankful to the local
organizing team from Osaka University, Osaka Prefecture University, and the Japan
Advanced Institute of Science and Technology for their hard working, efficient services,
and wonderful local arrangements.

Wewould like to express our appreciation to themembers of the ProgramCommittee
for their support and cooperation in this publication. We are also thankful to the team
at Springer for providing a meticulous service for the timely production of this volume.
Last, but certainly not the least, our special thanks go to all the authors who submitted
papers and all the attendees for their contributions and fruitful discussions that made
this conference a great success.

March 2022 Katsuhiro Honda
Tomoe Entani
Seiki Ubukata

Van-Nam Huynh
Masahiro Inuiguchi
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Partition of Time Series Using Hierarchical Clustering

Motohide Umano

Osaka Prefecture University and Hitachi Zosen Corporation, Japan

Abstract. We understand a long time-series through features and trends
and their transitions, for example, “Globally it increases a little, but it
starts with a medium value, decreases a little in the beginning and has
big oscillations at end.” It is often the case where the periods of features
and trends are determined by the data themselves. We must, therefore,
partition time-series into several periods of different features and trends.

We propose a method to partition time-series data by clustering adja-
cent data with the total similarity of their values, changes of values and
degrees of oscillations of adjacent periods. First we have the initial clus-
ters of line segments of adjacent data in time. Next we get the adjacent
clusters that have the maximum total similarity and merge them into one.
We repeat this process until the condition of termination. We formulate
the total similarity as the weighted average of three similarities of the
value, change of values and degree of oscillations. The weights are very
important. The fixed weights cannot have the clustering results that fit
our sense. We, therefore, propose variable weights with three similari-
ties and sizes of adjacent clusters with the operation of ordered weighted
average. Furthermore, in order to exclude small clusters of outliers, we
define similarities of two clusters adjacent to the small cluster. We apply
this method to actual time-series data and show results. The method can
improve linguistic expressions of time-series data and retrieval of similar
time-series with linguistic similarity.



The Robust Ordinal Regression: Basic Ideas, Principal
Models, Recent Developments

Salvatore Greco

University of Catania, Italy

Abstract.Multiple Criteria Decision Aiding (MCDA) is constituted by a
set of concepts, techniques and procedure aiming to provide a recommen-
dation in complex decision contexts. MCDA is based on a constructive
approach that aims to build a preference model in cooperation between
the analyst and the DecisionMaker. A typical MCDAmethodology is the
ordinal regression aiming to define a decision model in a given class (an
additive value function, a Choquet integral, an outranking model such
as ELECTRE or PROMETHEE and so on) representing the preference
information provided by the DM. Recently ordinal regression has been
extended and generalized through Robust Ordinal Regression taking into
account the idea that there is a plurality of decision models in a given
class compatible with the preferences expressed by the decision maker.
Originally, the set of compatible decision models was used to define the
necessary and possible preference relations holding when the preference
holds for all value functions or for at least one value function, respec-
tively. After, a probability distribution on the set of compatible decision
model was introduced to define probabilistic preferences. ROR has been
also fruitfully applied to interactive optimization procedures.

In this talk I shall present the basic concepts, the principal models,
the main applications and the recent developments of Robust Ordinal
Regression taking into consideration its advantages in the context of an
MCDA constructive approach.



Decision Making and Optimization in Context
of Inconsistently Interacting Goals and its Relation

to Machine Learning

Rudolf Felix

PSI FLS Fuzzy Logik & Neuro Systeme GmbH, Germany

Abstract.Many traditional optimization models are limited with respect
to the management of inconsistency that frequently appear between deci-
sion and optimization goals. As consequence, such models in many cases
achieve results that may be optimal for the model but are not for the use
case to be managed. In real world use cases both decision and optimiza-
tion goals are usually partly conflicting and therefore partly inconsistent.
Assumptions like independence of goals, additivity or monotonicity as
preconditions usually do not hold. Due to this, traditional concepts like
integration based on weighted sums, for instance, in many cases do not
really help.

In this talk we describe some applications of a decision and optimiza-
tionmodel based on (extended fuzzy) interactions between goals (DMIG)
to some relevant real-world decision and optimization use cases. After
a brief discussion of the basics of the concept of the model, example
use cases are presented and advantages of their solutions are shown. The
use cases are related to real-world decision and optimization problems
in business processes such as management and scheduling of field forces
thatmaintain complex industrial infrastructure, management of resources
based on sequencing of production orders in car producing factories and
automated management of bus and tram depots. Some additional exam-
ples are named. It is also shown how the so-called key performance indi-
cators (KPIs) of such real-world use cases are understood as decision and
optimization goals and how interactions between decision and optimiza-
tion goals build a bridge to the optimization of real-world KPIs. Finally,
it is discussed why DMIG may be used for learning of consistent prefer-
ences between the KPIs and how the concept is connected to the field of
machine learning.
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Measuring Quality of Belief Function
Approximations

Radim Jiroušek1,2 and Václav Kratochv́ıl1,2(B)

1 Faculty of Management, Prague University of Economics and Business,
Jindřich̊uv Hradec, Czechia

{radim,velorex}@utia.cas.cz
2 Institute of Information Theory and Automation, Czech Academy of Sciences,

Prague, Czechia

Abstract. Because of the high computational complexity of the respec-
tive procedures, the application of belief-function theory to problems of
practice is possible only when the considered belief functions are approx-
imated in an efficient way. Not all measures of similarity/dissimilarity
are felicitous to measure the quality of such approximations. The paper
presents results from a pilot study that tries to detect the divergences
suitable for this purpose.

Keywords: Belief functions · Divergence · Approximation ·
Compositional models

1 Introduction

Modeling practical problems usually requires a fair amount of random variables.
Even small and simple applications require tens of variables, which complicates
the application of belief-function models because the corresponding space of
discernment grows super-exponentially with the number of the considered vari-
ables. As we will see, to specify a general belief function just for six binary
variables, we need 2(2

6) = 264 parameters. To avoid problems arising from the
high computational complexity of the respective procedures, one should restrict
their attention to belief functions representable with a limited number of param-
eters. For this purpose, we propose models assembled from a sequence of several
low-dimensional belief functions – so-called compositional models. In connection
with this, the question arises, how to recognize whether a compositional model is
an acceptable approximation of the considered multidimensional belief function.

In [7] and [6], we studied some heuristics proposed to control the model
learning procedures. Inspired by the processes used in probabilistic modeling,
we investigated the employment of entropy of belief functions for this purpose.
Unfortunately, no belief functions entropy has the properties of probabilistic

Financially supported by the Czech National Science Foundation under grant no. 19-
06569S.

c© Springer Nature Switzerland AG 2022
K. Honda et al. (Eds.): IUKM 2022, LNAI 13199, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-030-98018-4_1
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4 R. Jiroušek and V. Kratochv́ıl

Shannon entropy that would enable us to detect the optimal approximation.
Even worse, in belief function theory, there is no generally accepted measure of
similarity (dissimilarity) that could help recognize which of two approximations
is better. And this is the goal of the current paper. We will study which of several
dissimilarity measures (divergences) are suitable for the purpose. In this paper,
we consider only those divergences meeting the following two conditions:

• the values of the divergence are non-negative and equal zero only for identical
belief functions (the divergence is non-degenerative);

• the complexity of the necessary computation is polynomial with the number
of focal elements of the considered basic assignments.

Let us note at the very beginning that the achieved results depend on the
fact that we consider only a specific class of approximations: the approximations
of belief functions by compositional models. We admit that if considering differ-
ent approximating functions, one could detect other measures of divergence as
suitable.

The approximations of complex models by compositional models were
first suggested for multidimensional probability distribution [15]. Similarly, the
authors of some of the considered divergences also took inspiration from proba-
bility theory. And this is why we will at times turn our exposition to probability
theory.

The paper is organized as follows. In the next section, we introduce basic
notation and recall the idea of Perez, from whom we took the inspiration. The
notation from belief function theory is briefly recollected in Sect. 3. Section 4
introduces the considered divergences, and Sect. 5 explains the class of approx-
imations considered, i.e., the class of compositional models. The computational
experiments and the achieved results are described in Sect. 6.

2 Basic Notation and Motivation

In this paper, we consider a finite set N of random variables, which are denoted
by lower-case characters from the end of the Latin alphabet (N = {u, v, w, . . .}).
All the considered variables are assumed to be finite-valued. Xu, Xv, . . . denote
the finite sets of values of variables u, v, . . .. Sets of variables are denoted by
upper-case characters K, L, V, . . .. Thus, K may be, say, {u, v, w}. By a state of
variables K we understand any combination of values of the respective variables,
i.e., in the considered case K = {u,w,w}, a state is an element of a Cartesian
product XK = Xu × Xv × Xw. For a state a ∈ XK and L ⊂ K, a↓L denote a
projection of a ∈ XK into XL, i.e., a↓L is the state from XL that is got from a
by dropping out all the values of variables from K \ L.

The original idea of Perez [15] was to approximate a multidimensional prob-
ability distribution μ(N) (i.e., μ : XN −→ [0, 1], for which

∑
a∈XN

μ(a) = 1)
by a simpler probability distribution κ(N). To measure the quality of such
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approximation he used their relative entropy, which is often called Kullback-
Leibler divergence1

KL(μ ‖ κ) =

⎧
⎨

⎩

∑

c∈XN :κ(c)>0

μ(c) log2
(

μ(c)
κ(c)

)
if μ � κ,

+∞ otherwise,

where symbol μ � κ denotes that κ dominates μ, which means that for all
c ∈ XN , if κ(c) = 0 then also μ(c) = 0.

It is known that the Kullback-Leibler divergence is non-negative and equals
0 if and only if μ = κ [13]. It is also evident that it is not symmetric2, and
therefore some authors measure the non-similarity of two distributions by the
arithmetic mean 1

2 (KL(μ ‖ κ)+KL(κ ‖ μ)). A more sophisticated symmetrized
version of this distance is so called Jensen-Shannon divergence (JS) defined

JS(μ ‖ κ) =
1
2

(

KL

(

μ ‖ μ + κ

2

)

+ KL

(

κ ‖ μ + κ

2

))

,

which is, obviously, symmetric and always finite (namely, both μ and κ are
dominated by μ+κ

2 ). For more properties of this and other distances between
probability measures, the reader is referred to [14], where one can learn that there
is also an alternative way of expressing JS divergence using Shannon entropy

JS(μ ‖ κ) = H

(
μ + κ

2

)

− 1
2
(H(μ) + H(κ)).

Recall that
H(μ) = −

∑

c∈XN

μ(c) log2(μ(c)),

which is known to be non-negative and less or equal to log2(|XN |) [17].

3 Belief Functions

A basic assignment m for variables N is a function3 m : 2XN −→ [0, 1], for which

• ∑
a⊆XN

m(a) = 1,

• m(∅) = 0.

We say that a ⊆ XN is a focal element of m if m(a) 
= 0. We use symbols
Belm, P lm, Qm to denote belief, plausibility and commonality functions, respec-
tively. These functions, which are known to carry the same information as the
corresponding basic assignment m, are defined by the following formulas [16]

Belm(a) =
∑

b⊆a

m(b); Plm(a) =
∑

b⊆XN :a∩b�=∅
m(b); Qm(a) =

∑

b⊆XN :b⊇a

m(b).

1 We take 0 log2(0) = 0.
2 To show asymmetry of the Kullback-Leibler divergence consider μ = ( 1

3
, 1
3
, 1
3
), and

κ = ( 1
2
, 1
2
, 0).

3 2XN denote the set of all subsets of XN .



6 R. Jiroušek and V. Kratochv́ıl

When constructing compositional models, we need marginals of the considered
basic assignments. Let m be defined for arbitrary set of variables L ⊇ K. Symbol
m↓K will denote the marginal of m, which is defined for variables K. Thus,

m↓K(b) =
∑

a⊆XL: a↓K=b

m(a).

for all b ⊆ XK .
When normalizing the plausibility function on singletons, one gets a probabil-

ity distribution on XN called a plausibility transform of basic assignment m [1].
There are several other probabilistic transforms described in literature [2,3].
In this paper we use only the above-mentioned plausibility transform λm and
the so-called pignistic transform πm strongly advocated by Philippe Smets [18],
which are defined for all a ∈ XN

λm(a) =
Plm({a})

∑
c∈XN

Plm({c})
, and πm(a) =

∑

b⊆XN :a∈b

m(b)
|b| .

Up to now, we have recalled a standard notation used in belief function
theory. Rather unusual is that, to make the next exposition as simple as possible,
we will sometimes view the basic assignment m also as a probability distribution
on 2XN . This enables us to speak about Shannon entropy H(m) of m, to say
that m1 dominates m2, and to compute Kullback-Leibler divergence between
two basic assignments.

4 Divergences

Quite a few papers suggesting different tools to measure similarity/dissimilarity
of belief functions were published. The reader can find a good survey in [12].
As indicated in the Introduction, in this paper, we are interested only in those
measures, the computation of which is tractable even for multidimensional belief
functions if the number of focal elements of the considered basic assignments is
not too high. In other words, we are interested in the formulas, the computa-
tional complexity of which depends on the number of focal elements, regard-
less of the number of variables, for which the respective basic assignments are
defined. Given the goal of this paper, we also restrict our attention only to non-
degenerative measures, i.e., the measures which can detect the equality of belief
functions because they equal zero only for identical basic assignments. In this
pilot study, we consider only the six divergences described below.

In this section, we assume that all the considered basic assignments are
defined for the set of variables N .
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Jousselme et al. (2001). In [11], the authors define a distance between basic
assignments meeting all the metric axioms: non-negativity, non-degeneracy, sym-
metry, and the triangle inequality. Recall that the Kullback-Leibler divergence
introduced in Sect. 2 meets only the first two properties; it is not symmetric, nor
the triangle inequality holds for KL.

To be able use the notation of linear algebra, consider a fixed ordering of
elements of 2|XN |. Then, m can be interpreted as a vector m of 2|XN | non-negative
real numbers. Jousselme et al. define their distance

dBPA(m1,m2) =

√
1
2
(m1 − m2)T D(m1 − m2), (1)

where D is 2|XN | × 2|XN | matrix defined as follows: let ai be an element of 2XN

which corresponds the i-th coordinate of the vector m. Then, the elements of
matrix D = (dij) are defined

dij =
|ai ∩ aj |
|ai ∪ aj | .

Note that we allow a situation of ai = ∅. In this case define dii = 1. Knowing
the matrix D, the argument of the square root of Eq. (1) can be rewritten into
the following form

(m1 − m2)T D(m1 − m2)

=
∑

a⊆XN

m1(a)
∑

b⊆XN

m1(b) |a ∩ b|
|a ∪ b| +

∑

a⊆XN

m2(a)
∑

b⊆XN

m2(b) |a ∩ b|
|a ∪ b|

− 2
∑

a⊆XN

∑

b⊆XN

m1(a)m2(b) |a ∩ b|
|a ∪ b| .

Xiao (2019). To define the divergence between two basic assignments m1 and
m2, Xiao [21] makes use of the fact that a basic assignment on XN is a probability
measure on 2XN . Thus, she defines a belief function divergence – she calls it Belief
Jensen-Shannon divergence (BJS) – which is the probabilistic Jensen-Shannon
divergence of the corresponding probability measures, i.e.,

BJS(m1,m2) =
1
2

[

KL

(

m1 ‖ m1 + m2

2

)

+ KL

(

m2 ‖ m1 + m2

2

)]

, (2)

or, equivalently

BJS(m1,m2) = H

(
m1 + m2

2

)

− H(m1) + H(m2)
2

(3)

(recall, H denotes the Shannon entropy).
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Song-Deng (2019a). As the authors say in [20], being inspired by Eq. (2), they
replaced the arithmetic mean in Eq. (2) by the geometric mean, suggesting a
new divergence BRE (perhaps from Belief Relative Entropy) defined by

BRE(m1,m2) =
√

KL (m1 ‖ √
m1 · m2) · KL (m2 ‖ √

m1 · m2). (4)

In contrast to BJS, which is always finite, BRE equals +∞ whenever there
is at least one a ⊆ XN , which is a focal element of only one of the two basic
assignments m1,m2.

Song-Deng (2019b). The same pair of authors suggested also another belief
function divergence related to the relative Deng entropy Dd, which is defined by
the following formula

Dd(m1 ‖ m2) =
∑

a⊆XN :m2(a)>0

1
2|a| − 1

m1(a) log
(

m1(a)
m2(a)

)

. (5)

Assume that Dd(m1 ‖ m2) = +∞ in case that there is a ⊆ XN for which m1(a) >
0 = m2(a). In [19], the authors define the divergence DSDM symmetrizing the
relative Deng entropy

DSDM (m1,m2) =
1
2

(Dd(m1 ‖ m2) + Dd(m2 ‖ m1)) . (6)

Assuming that for m1 � m2, Eq. (5) defines the relative entropy, and that it
equals +∞ in opposite case. Then it is not difficult to show [19] that measure
DSDM is non-negative, non-degenerative, and symmetric.

Simple Divergences. With the goal to test also some computationally cheap
divergences, we, being inspired by the entropy defined in [9], consider also func-
tions

Divλ(m1,m2) = KL(λm1 ‖ λm2) +
∑

a⊆XN

|m1(a) − m2(a)| · log(|a|), (7)

and

Divπ(m1,m2) = KL(πm1 ‖ πm2) +
∑

a⊆XN

|m1(a) − m2(a)| · log(|a|), (8)

where λ and π are plausibility and pignistic transforms introduced in Sect. 2.

Proposition 1. Both divergences Divλ and Divπ are non-negative and non-
degenerative.
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Proof. The non-negativity of the considered divergences follows directly from the
non-negativity of Kullback-Leibler divergence.

To show their non-degenerativity, i.e., Divλ(m1,m2) = 0 ⇐⇒ m1 = m2, and
Divπ(m1,m2) = 0 ⇐⇒ m1 = m2, consider two basic assignments m1 and m2. If
m1 = m2, then, trivially, Divλ(m1,m2) = Divπ(m1,m2) = 0.

To show the other side of the equivalence, assume that m1 
= m2, and
∑

a⊆XN

|m1(a) − m2(a)| · log(|a|) = 0. (9)

This equality holds if and only if m1(a) = m2(a) for all non-singletons a ⊆ XN .
Since,

∑

c∈XN

Plmi
(c) =

∑

c∈XN

mi(c) +
∑

c∈XN

⎛

⎝
∑

a⊆XN : c∈a& |a|>1

mi(a)

⎞

⎠

=

⎛

⎝1 −
∑

a⊆XN :|a|>1

mi(a)

⎞

⎠ +
∑

c∈XN

⎛

⎝
∑

a⊆XN : c∈a& |a|>1

mi(a)

⎞

⎠ ,

we can see that
∑

c∈XN
Plm1(c) =

∑
c∈XN

Plm2(c).
Since we assume that for m1 
= m2 Eq. (9) holds, then there exists c ∈ XN ,

for which m1(c) 
= m2(c), and therefore also

Plm1(c) =
∑

a⊆XN :c∈a

m1(a) 
=
∑

a⊆XN :c∈a

m2(a) = Plm2(c).

Thus,

λm1(c) =
Plm1(c)∑

x∈XN
Plm1(x)


= Plm2(c)∑
x∈XN

Plm2(x)
= λm2(c),

and therefore KL(λm1 ‖ λm2) > 0. This proves that Divλ is non-degenerative
because we have showed that either KL(πm1 ‖ πm2) is positive, or Eq. (9) does
not hold, whenever m1 
= m2.

Similarly, for the considered c ∈ XN , for which m1(c) 
= m2(c),

πm1(c) = m1(c) +
∑

a⊆XN : c∈a&|a|>1

m1(a)
|a|


= m2(c) +
∑

a⊆XN : c∈a&|a|>1

m2(a)
|a| = πm2(c),

and therefore also KL(πm1 ‖ πm2) > 0, which proves that also Divπ is non-
degenerative. �



10 R. Jiroušek and V. Kratochv́ıl

5 Compositional Models

The definition of compositional models for belief functions is analogous to that in
probability theory [4]. A basic assignment of a multidimensional compositional
model is assembled from a system of low-dimensional basic assignments. To do
it, one needs a tool to create a more-dimensional basic assignment from two or
more low-dimensional ones. In this paper, we use an operator of composition
�. By this term, we understand a binary operator meeting the following four
axioms (basic assignments m1,m2,m3 are assumed to be defined for K,L,M ,
respectively):

A1 (Domain): m1 � m2 is a basic assignment for variables K ∪ L.
A2 (Composition preserves first marginal): (m1 � m2)↓K = m1.
A3 (Commutativity under consistency): If m1 and m2 are consistent, i.e.,

m↓K∩L
1 = m↓K∩L

2 , then m1 � m2 = m2 � m1.
A4 (Associativity under special condition): If K ⊃ (L ∩ M), or, L ⊃ (K ∩ M)

then (m1 � m2) � m3 = m1 � (m2 � m3).

Because of space limit we cannot discuss these axioms in details (for this
we refer the reader to [5]), but roughly speaking, axioms A1, A3, A4 guarantee
that the operator of composition uniquely reconstruct basic assignment m↓K∪L

from its marginals m↓K and m↓L, if there exists a lossless decomposition of
m↓K∪L into m↓K and m↓L. Surprisingly, it is axiom A4, which guarantees that
no necessary information from m↓L is lost. Axiom A2 solves the problem aris-
ing when non-consistent basic assignments are composed. Generally, there are
two ways of coping with this problem. Either find a compromise (a mixture of
inconsistent pieces of knowledge) or give preference to one of the sources. The
solution expressed by axiom A2 is superior to the other two possibilities from
the computational point of view.

By a compositional model, we understand a multidimensional belief function,
the basic assignment of which is assembled from a sequence of low-dimensional
basic assignments with the help of the operator of composition: m1�m2�. . .�mn.
Since the operator of composition is not associative, this expression is ambiguous.
To avoid this ambiguity, we omit the parentheses only if the operators are to be
performed from left to right, i.e.,

m1 � m2 � . . . � mn = (. . . ((m1 � m2) � m3) � . . . � mn−1) � mn. (10)

Let m� = m1 � m2 � . . . � mn, and let each mi be defined for variables Ki.
Due to axiom A2, m1 is a marginal of m�. Similarly, m1 �m2 = m�↓K1∪K2 . This,
however, does not mean that m2 is also a marginal of m�. If all mi are marginals
of m�, then we say that m� is defined by a perfect compositional model. The
following assertion summarizes the relevant properties that were proved in [8,10].

Proposition 2. Let m� = m1 �m2 � . . . �mn, and let each mi be defined for the
set of variables Ki.
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• (Compositional models can be perfectized.) There exists a perfect model m� =
m̄1 � m̄2 � . . . � m̄n such that each m̄i is defined for Ki.

• (Uniqueness of compositional models.) Let m� = m1 �m2 � . . . �mn be perfect.
If there is a permutation j1, j2, . . . , jn such that mj1 � mj2 � . . . � mjn is also
perfect, then mj1 � mj2 � . . . � mjn = m�.

• (Consistent decomposable models are perfect.) If all mi are pairwise consis-
tent (i.e., for all 1 ≤ i, j ≤ n, m

↓Ki∩Kj

i = m
↓Ki∩Kj

j ), and the sequence
K1,K2, . . . ,Kn meets the running intersection property4, then m1 �m2 � . . . �
mn is perfect.

Now, let us express the original idea of Perez [15] in the language of compo-
sitional models: He proposed to approximate multidimensional probability dis-
tributions by compositional models and, as said above, to measure the quality
of such approximations using the Kullback-Leibler divergence. He proved that if
a perfect model exists, it minimizes the KL divergence (due to the uniqueness
of compositional models, all perfect models define the identical approximation).
This fact fully corresponds with our intuition. When knowing only a system of
marginals of an approximated distribution, the best approximation is a distri-
bution having all of them for its marginals.

How to employ this idea within the framework of belief functions? Not having
a generally accepted “Kulback-Leibler divergence” for belief functions at our
disposal, we try to solve a problem, which is, in a sense, inverse to that of Perez.
We accept the paradigm that the best approximation of a multidimensional
basic assignment is, if it exists, a perfect compositional model assembled from
the marginals of the approximated basic assignment. Based on this we test, which
belief function divergences detect the optimal approximation. The corresponding
computational experiments, as well as the achieved results, are described in
the next section. First, however, we owe the reader a specification of the used
operator of composition.

In the literature, two operators of composition meeting axioms A1–A4 were
introduced. Historically, the first was defined in [10]. Its disadvantage is that
it does not comply with the Dempster-Shafer interpretation of belief function
theory. The other operator, derived from Dempster’s rule of combination, was
designed by Shenoy in [8]. Nevertheless, because of its high computational com-
plexity, we did not include it in the described pilot computational experiments.
In the experiments described below, we used only the first operator. To present
its definition, we need an additional notion.

Consider two arbitrary sets of variables K and L. By a join of a ⊆ XK and
b ⊆ XL we understand a set

a �� b = {c ∈ XK∪L : c↓K ∈ a & c↓L ∈ b}.

4 K1, K2, . . . , Kn meets the running intersection property if

∀i = 2, 3, . . . , n ∃ j (1 ≤ j < i) Ki ∩ (K1 ∪ . . . ∪ Ki−1) ⊆ Kj .

.
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Realize that if K and L are disjoint, then a �� b = a × b, if K = L, then
a �� b = a ∩ b, and, generally, for c ⊆ XK∪L, c is a subset of c↓K �� c↓L, which
may be proper. Notice that the sets, for which c = c↓K �� c↓L, were called
Z-layered rectangles in [22,23].

Definition 1. Factorizing operator of composition
Consider two arbitrary basic assignments, m1 and m2 defined for sets of variables
K and L, respectively. A factorizing composition m1 � m2 is defined for each
nonempty c ⊆ XK∪L by one of the following expressions:

(i) if m↓K∩L
2 (c↓K∩L) > 0 and c = c↓K �� c↓L, then

(m1 � m2)(c) =
m1(c↓K) · m2(c↓L)

m↓K∩L
2 (c↓K∩L)

;

(ii) if m↓K∩L
2 (c↓K∩L) = 0 and c = c↓K × XL\K , then

(m1 � m2)(c) = m1(c↓K);

(iii) in all other cases, (m1 � m2)(c) = 0.

6 Computational Experiments

As indicated in the Introduction, the goal of the described experiments is to
examine which of the considered divergences can be used to (heuristically) detect
the best approximations of basic assignments. To do it, we take into account only
the approximations by compositional models and accept the intuitively rational
and theoretically well-grounded fact that the perfect model, if it exists, is the
best approximation.

In the experiments, we considered 14 binary variables (|N | = 14), for which
we randomly generated 900 basic assignments5 (denote them m) with 30 focal
elements. For each basic assignment we randomly generated a cover of N , i.e.,
sets K1,K2, . . . ,Kn, and N = K1 ∪ K2 ∪ . . . ∪ Kn (5 ≤ n ≤ 11, 2 ≤ |Ki| ≤ 4).
To assure that we can identify the best approximation, we guaranteed that this
sequence met the running intersection property (RIP). Due to Proposition 2,
we know that m↓K1 � m↓K2 � . . . � m↓Kn is perfect, and therefore it is the best
approximation of m that can be composed of these marginals. To avoid misun-
derstanding, recall that we study the behavior of the considered divergences, and
therefore, we do not mind that most of the considered approximations were much
more complex (in the sense of the number of parameters defining the respective
belief functions) than the approximated basic assignment.

For each perfect model, we set up also non-perfect models by randomly per-
muting the marginals in the sequence. Thus, for each of the 900 randomly gener-
ated 14-dimensional basic assignments, we had one RIP and several (on average
5 We generated basic assignments of three types: 300 of them were nested, 300 were
quasi-bayesian, and the remaining 300 basic assignments had 29 fully randomly
selected focal elements and the thirties one was XN .
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about 6) non-RIP compositional models6. The achieved results are summarized
in Table 1. From this, the reader can see that for the 900 basic assignments, we
considered 6 458 approximating compositional models, 900 of which were perfect,
and the remaining 5 558 were non-perfect. On the right-hand side of Table 1, the
behavior of the considered distances is described. As wrongly detected we con-
sidered those perfect approximations m↓K1 � . . . � m↓Kn , for which there was
generated non-RIP model (defined by a permutation m↓Kj1 � . . . � m↓Kjn ) such
that

Table 1. Numbers of wrongly detected approximations.

Total wrongly detected by

dBPA BJS Divλ Divπ

Number of perfect approximations 900 348 216 97 9

Number of non-perfect approximations 5 558 1 613 1 007 167 15

Div(m, (m↓Kj1 � . . . � m↓Kjn )) < Div(m, (m↓K1 � . . . � m↓Kn)), (11)

where Div stands for the respective divergence from Table 1. Analogously,
wrongly detected non-perfect models are those non-perfect models m↓Kj1 � . . . �
m↓Kjn , for which Eq. (11) holds true. It means that there is a correspondence
between wrongly detected perfect and non-perfect models, however, this cor-
respondence is not a bijection. Each wrongly detected perfect model corre-
sponds with at least one (but often more than one) wrongly detected non-perfect
model. Notice that if a perfect approximation m↓K1 � . . . � m↓Kn and its non-
perfect permutation m↓Kj1 � . . . � m↓Kjn were generated, such that the equality
Div(m, (m↓Kj1 � . . . �m↓Kjn )) = Div(m, (m↓K1 � . . . �m↓Kn)) hold, none of these
two approximations was recognized as wrongly detected.

Though we said in Sect. 4 that we would study six divergences, only four of
them appear in Table 1. It is because the remaining divergences BRE and DSDM

(defined by Eq. (4) and Eq. (6), respectively) equal +∞ whenever there is a
focal element of the approximation, which is not a focal element of the originally
randomly generated basic assignment. This, however, cannot be avoided for any
multidimensional basic assignment and its compositional-model approximation.

So, it is not surprising that all divergences computed for BRE and DSDM

were +∞, which means that they are useless for the purpose of this study.

7 Conclusions

From Table 1 one can deduce that the simple divergences Divλ and mainly Divπ

may be recommended to identify the best approximations of multidimensional
6 Precisely speaking, we know that all RIP models are perfect, but, theoretically, it

may happen that also non-RIP model is perfect. However, this happens very rarely,
and when assessing the results, we took that all non-RIP models were non-perfect.
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basic assignments. However, let us recall that we have achieved this conclusion
when considering only approximations by f-compositional models. We have not
yet, achieved any results in the case of experiments with the operator of compo-
sition derived from Dempster’s rule of combination (d-composition). The main
reason is the computational complexity of the operator of d-composition, the
calculation of which requires conversions of low-dimensional basic assignments,
from which the model is set up, from/to the respective commonality functions.
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7. Jiroušek, R., Kratochv́ıl, V., Shenoy, P.P.: Entropy-based learning of compositional
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Abstract. Based on Lipski’s approach dealing with incomplete informa-
tion tables, we describe lower and upper approximations using coverings
under incomplete information and similarity of values. Lots of coverings,
called possible coverings, on a set of attributes are derived in an incom-
plete information table with similarity of values, although the covering is
unique in a complete information table. The family of possible coverings
has a lattice structure with the minimum and maximum elements. This
is true for the family of maximal descriptions, but is not for the family of
minimal descriptions and the family of sets of close friends. As was shown
by Lipski, what we can obtain from an information table with incom-
plete information is the lower and upper bounds of information granules.
Using only two coverings: the minimum and maximum possible ones, we
obtain the lower and upper bounds of lower and upper approximations.
Therefore, there is no difficulty of the computational complexity in our
approach.

Keywords: Rough sets · Incomplete information · Possible coverings ·
Possibly indiscernible classes · Lower and upper approximations

1 Introduction

Rough sets, constructed by Pawlak [1], are based on equality of values character-
izing objects. The rough sets are used as an effective method for data mining and
so on. The framework is usually used under complete information tables with
no similarity of objects and creates significant results in various fields. How-
ever, value similarity often appears in the real world. Also, incomplete informa-
tion ubiquitously occurs in the real world. By dealing with value similarity and
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incomplete information, we can make better use of information obtained from
the real world. Therefore, rough sets need to be extended to deal with incomplete
information tables with value similarity.

Lipski showed that we can obtain the lower and upper bounds of the answer
set of a query to an information table with incomplete information, although we
cannot obtain the precise answer set [2]. This means that when trying to extract
information granules from an incomplete information table, what is obtained
without information loss is the lower and upper bounds of the information gran-
ules. This is true for lower and upper approximations that are the core of rough
sets. Therefore, what we can obtain is the lower and upper bounds of these
approximations.

It is the process proposed by Kryszkiewicz [3] that most authors use to handle
incomplete information. The process a priori gives indiscernibility between an
object with incomplete information and another object. Using the given indis-
cernibility, unique approximations are derived. Clearly, the process produces
information loss from Lipski’s point of view. As a result, the approach creates
poor results [4–6].

We develop an approach using possible coverings without a priori giving indis-
cernibility between objects. First, we describe a structure of possible coverings.
We will show that the lower and upper bounds of lower and upper approxima-
tions are obtained without the difficulty of computational complexity under the
structure.

Lipski used a possible table as a possible world in possible world semantics.
Unfortunately, we cannot use the possible table in an incomplete information
table with continuous values. So, we showed a way that does not use the possible
table under continuous values [7]. Using a similar way, we deal with categorical
values. This means that we can deal with categorical and numerical values in
the same framework.

2 Coverings in a Complete Information Table

A complete information table is constructed with (U,A, {V (a) | a ∈ A}), where
U is the universe that consists of objects. A is a non-empty finite set of attributes
such that a : U → V (a) for every a ∈ A where V (a) is the set of values that
attribute a takes.

Binary relation Rδ
a
1 expressing indiscernibility of objects on attribute a ∈ A

is called the indiscernibility relation for a under threshold δa.

Rδ
a = {(o, o′) ∈ U × U | SIMa(o, o′) ≥ δa}, (1)

where SIMa(o, o′) is the similarity degree between objects o and o′ for attribute
a and δa is a threshold fixed for attribute a.

SIMa(o, o′) = sim(a(o), a(o′)), (2)

1 Unless confused, symbols without subscripts or superscripts are used.
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where sim(a(o), a(o′)) is the similarity degree between a(o) and a(o′). sim(a(o),
a(o′)) is given whose values are reflexive, symmetric, and not transitive. The
indiscernibility relation is a tolerance relation2.

From indiscernibility relation Rδ
a, the indiscernible class C(o)δ

a of object o on
a is defined:

Cδ
a(o) = {o′ | (o, o′) ∈ Rδ

a}. (3)

Cδ
a(o) is not an equivalence class.

Family Cδ
a of indiscernible classes on attribute a is:

Cδ
a = {C | C = Cδ

a(o) ∧ o ∈ U}. (4)

Clearly, ∪C∈Cδ
a
C = U . Based on Zakowski [9], Cδ

a is a covering, which is unique
for a. Under Cδ

a, minimal description MdCδ
a(o) of object o, formulated by [10],

is:

MdCδ
a(o) = {C ∈ Cδ

a | o ∈ C ∧ ∀C ′ ∈ Cδ
a(o ∈ C ′ ∧ C ′ ⊆ C ⇒ C = C ′)}. (5)

Set CFriendCδ
a
(o) of close friends of o with respect to Cδ

a, proposed by [11], is:

CFriendCδ
a
(o) = ∪C∈MdCδ

a(o)
C. (6)

Also, maximal description MDCδ
a(o) of object o, described by [11,12], is:

MDCδ
a(o) = {C ∈ Cδ

a | o ∈ C ∧ ∀C ′ ∈ Cδ
a(o ∈ C ′ ∧ C ′ ⊇ C ⇒ C = C ′)}. (7)

Using covering Cδ
a, lower approximation aprδ

a
(O) and upper approximation

aprδ
a(O) for a of set O of objects are:

aprδ
a
(O) = {o ∈ U | Cδ

a(o) ⊆ O ∧ Cδ
a(o) ∈ Cδ

a}, (8)

aprδ
a(O) = {o ∈ U | Cδ

a(o) ∩ O �= ∅ ∧ Cδ
a(o) ∈ Cδ

a}. (9)

3 Coverings in an Incomplete Information Table

An incomplete information table has a : U → sa for every a ∈ A where sa is the
family of disjunctive sets of values over V (a). So, value v ∈ a(o) is a possible
value that may be the actual one of attribute a in object o.

A covering on a is unique in a complete information table, but lots of
coverings, called possible coverings, are derived in an incomplete information
table [13,14], although some authors deal with only a covering [15–17]. A pos-
sible covering is derived from a possible indiscernibility relation. Many possible
indiscernibility relations is derived in an incomplete information table. The num-
ber of possible indiscernibility relations may grow exponentially as the number of
values with incomplete information increases. However, this does not cause any
2 See [8] for properties of tolerance relations.
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difficulties due to computational complexity in obtaining the lower and upper
bounds of approximations, as is shown later.

Family FPRδ
a of possible indiscernibility relations, as is shown in [7,18], is

constructed using certain pairs and possible pairs of objects. The certain pair
surely has the same characteristic value, while the possible pair may have the
same characteristic value. Set SRδ

a of certain pairs on attribute a is:

SRδ
a = {(o, o′) ∈ U × U | (o = o′) ∨ (∀u ∈ a(o)∀v ∈ a(o′)sim(u, v) ≥ δa)}.(10)

Set MPRδ
a of possible pairs on attribute a is:

MPRδ
a = {(o, o′) ∈ U × U | ∃u ∈ a(o)∃v ∈ a(o′)sim(u, v) ≥ δa}\SRδ

a. (11)

Using these two sets, family FPRδ
a of possible indiscernibility relations is:

FPRδ
a = {PR | PR = SRδ

a ∪ e ∧ e ∈ P(MPPRδ
a)}, (12)

where each element is a possible indiscernibility relation and P(MPPRδ
a) is the

power set of MPPRδ
a that is:

MPPRδ
a = {{(o′, o), (o, o′)}|(o′, o) ∈ MPRδ

a}. (13)

Clearly, FPRδ
a is a lattice for set inclusion. SRa is the minimum possible indis-

cernibility relation in FPRδ
a, whereas SRδ

a ∪ MPRδ
a is the maximum possible

indiscernibility relation. All the possible indiscernibility relations do not corre-
spond to the indiscernibility relation derived from a possible table where every
attribute value is replaced by a possible value in the original information table.
The possible indiscernibility relation without a corresponding possible table is
artificial. However, the minimum and the maximum possible indiscernibility rela-
tions are equal to the intersection and the union of indiscernibility relations
derived from possible tables, respectively. The minimum possible indiscernibil-
ity relation contains only the pairs of objects that are surely indiscernible with
each other, while the maximum possible indiscernibility relation contains all the
pairs that are possibly indiscernible. Only the two possible indiscernibility rela-
tions are used to derive the lower and upper bounds of approximations, as is
shown later. Artificially possible indiscernibility relations are rather useful to
derive the lower and upper bounds of approximations.

Example 1. Let similarity degree sim(u, v) on V (a1) = {a, b, c, d, e, f} and
incomplete information table IT be as follows:

sim(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.9 0.9 0.6 0.2 0.4
0.9 1 0.8 0.8 0.1 0.5
0.9 0.8 1 0.3 0.2 0.4
0.6 0.8 0.3 1 0.9 0.6
0.2 0.1 0.2 0.9 1 0.7
0.4 0.5 0.4 0.6 0.7 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

IT
U a1 a2

o1 < a > < x >
o2 < b, e > < x, y >
o3 < c > < x >
o4 < d > < y >
o5 < e > < z >
o6 < f > < z >
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In incomplete information table IT with U = {o1, o2, o3, o4, o5, o6}, let threshold
δa1 be 0.75 on attribute a1. Expression < b, e > of a disjunctive set means that
the actual value is b or e. The set of certain pairs of indiscernible objects on a1

under the above sim(u, v) is {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1),
(o4, o4), (o4, o2), (o4, o5), (o5, o5), (o5, o4), (o6, o6)}. The set of possible pairs of
indiscernible objects is {(o1, o2), (o2, o1), (o2, o3), (o3, o2), (o2, o5), (o5, o2)}. Using
formulae (10)–(13), the family of possible indiscernibility relations is obtained:
PR0.75

a1
= {PR1, · · · , PR8}, and 8 possible indiscernibility relations are:

PR1 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6)},
PR2 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1)},
PR3 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o2, o3), (o3, o2)},
PR4 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o2, o5), (o5, o2)},
PR5 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1), (o2, o3), (o3, o2)},
PR6 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1), (o2, o5), (o5, o2)},
PR7 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o2, o3), (o3, o2), (o2, o5), (o5, o2)},
PR8 = {(o1, o1), (o1, o3), (o2, o2), (o2, o4), (o3, o3), (o3, o1), (o4, o4), (o4, o2), (o4, o5),

(o5, o5), (o5, o4), (o6, o6), (o1, o2), (o2, o1), (o2, o3), (o3, o2), (o2, o5), (o5, o2)}.

From each possible indiscernibility relation PRδ
a,j in FPRδ

a, possible indis-
cernible class C(o)δ

a,j on attribute a for object o is:

C(o)δ
a,j = {o′ | (o, o′) ∈ PRδ

a,j ∧ PRδ
a,j ∈ FPRδ

a}. (14)

Proposition 1. If PRδ
a,k ⊆ PRδ

a,l, then C(o)δ
a,k ⊆ C(o)δ

a.l.

From this proposition, the family of possible indiscernible classes for an object
is a lattice for set inclusion.

Example 2. (continuation from Example 1). For object o1, C(o1)0.75
a1,j =

{o1, o3} forj = 1, 3, 4, 7, C(o1)0.75
a1,j = {o1, o2, o3} for j = 2, 5, 6, 8. For object

o2, C(o2)0.75
a1,1 = {o2, o4}, C(o2)0.75

a1,2 = {o1, o2, o4}, C(o2)0.75
a1,3 = {o2, o3, o4},

C(o2)0.75
a1,4 = {o2, o4, o5}, C(o2)0.75

a1,5 = {o1, o2, o3, o4}, C(o2)0.75
a1,6 = {o1, o2, o4, o5},

C(o2)0.75
a1,7 = {o2, o3, o4, o5}, C(o2)0.75

a1,8 = {o1, o2, o3, o4, o5}. For object o3,
C(o3)0.75

a1,j = {o1, o3} for j = 1, 2, 4, 6, C(o3)0.75
a1,j = {o1, o2, o3} for j = 3, 5, 7, 8.
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For object o4, C(o4)0.75
a1,j = {o2, o4, o5} for j = 1, . . . , 8. For object o5, C(o5)0.75

a1,j =
{o4, o5} for j = 1, 2, 3, 5, C(o5)0.75

a1,j = {o2, o4, o5} for j = 4, 6, 7, 8, For object
o6, C(o6)0.75

a1,j = {o6} for j = 1, . . . , 8.

A possible covering is derived from a possible indiscernibility relation. Possible
covering PCδ

a,j obtained from possible indiscernibility relation PRδ
a,j is:

PCδ
a,j = {e | e = C(o)δ

a,j ∧ o ∈ U}. (15)

One of possible coverings is the actual covering, although we cannot know it
without additional information.

Proposition 2. If PRδ
a,k ⊆ PRδ

a,l, then PCδ
a,k � PCδ

a,l
3.

From Proposition 2 family FPCδ
a of possible coverings is a lattice for �.

Proposition 3. If PRδ
a,k ⊆ PRδ

a,l, then ∀o ∈ U MDCδ
a,k(o) ⊆ MDCδ

a,l(o) where
MDCδ

a,k(o) is the maximal description of o with respect to PCδ
a in PRδ

k,a.

From Proposition 3 family FMDCδ
a(o) of maximal descriptions is a lattice for ⊆.

Example 3. Possibly indiscernible classes of objects are obtained in each pos-
sible indiscernibility relation PRi with i = 1, . . . , 8 of Example 1.

In PR1, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o4}, C(o3)a1 = {o1, o3}, C(o4)a1 =
{o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR2, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o4}, C(o3)a1 = {o1, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR3, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o3, o4}, C(o3)a1 = {o1, o2, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR4, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o4, o5}, C(o3)a1 = {o1, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.
In PR5, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o3, o4}, C(o3)a1 =
{o1, o2, o3}, C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o4, o5}, and C(o6)a1 = {o6}.
In PR6, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o4, o5}, C(o3)a1 = {o1, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.
In PR7, C(o1)a1 = {o1, o3}, C(o2)a1 = {o2, o3, o4, o5}, C(o3)a1 = {o1, o2, o3},
C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.
In PR8, C(o1)a1 = {o1, o2, o3}, C(o2)a1 = {o1, o2, o3, o4, o5}, C(o3)a1 =
{o1, o2, o3}, C(o4)a1 = {o2, o4, o5}, C(o5)a1 = {o2, o4, o5}, and C(o6)a1 = {o6}.

3 � is defined as E � E ′ if ∀E ∈ E∃E′ ∈ E ′ ∧ E ⊆ E′.
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Using these possibly indiscernible classes, possible coverings are obtained as
follows:

PC1 = {{o1, o3}, {o2, o4}, {o2, o4, o5}, {o4, o5}, {o6}},

PC2 = {{o1, o2, o3}, {o1, o2, o4}, {o1, o3}, {o2, o4, o5}, {o4, o5}, {o6}},

PC3 = {{o1, o3}, {o2, o3, o4}, {o1, o2, o3}, {o2, o4, o5}, {o4, o5}, {o6}},

PC4 = {{o1, o3}, {o2, o4, o5}, {o6}},

PC5 = {{o1, o2, o3}, {o1, o2, o3, o4}, {o2, o4, o5}, {o4, o5}, {o6}},

PC6 = {{o1, o2, o3}, {o1, o2, o4, o5}, {o1, o3}, {o2, o4, o5}, {o6}},

PC7 = {{o1, o3}, {o2, o3, o4, o5}, {o1, o2, o3}, {o2, o4, o5}, {o6}},

PC8 = {{o1, o2, o3}, {o1, o2, o3, o4, o5}, {o2, o4, o5}, {o6}}.

Minimal descriptions, sets of close friends, and maximal descriptions are as fol-
lows:

For PC1,MdC(o1) = {{o1, o3}},MdC(o2) = {{o2, o4}},MdC(o3) = {{o1, o3}},
MdC(o4) = {{o2, o4}, {o4, o5}},MdC(o5) = {{o4, o5}},
MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o2, o4},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o3}},MDC(o2) = {{o2, o4, o5}},MDC(o3) = {{o1, o3}},
MDC(o4) = {{o2, o4, o5}},MDC(o5) = {{o2, o4, o5}},
MDC(o6) = {{o6}},

For PC2,MdC(o1) = {{o1, o2, o4}, {o1, o3}},
MdC(o2) = {{o1, o2, o3}, {o1, o2, o4}, {o2, o4, o5}},
MdC(o3) = {{o1, o3}},MdC(o4) = {{o1, o2, o4}, {o4, o5}},
MdC(o5) = {{o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o2, o3, o4}}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o1, o2, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o4}, {o1, o2, o3}},
MDC(o2) = {{o1, o2, o3}, {o1, o2, o4}, {o2, o4, o5}},
MDC(o3) = {{o1, o2, o3}},MDC(o4) = {{o1, o2, o4}, {o2, o4, o5}},
MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC3,MdC(o1) = {{o1, o3}},MdC(o2) = {{o2, o3, o4}, {o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o3}, {o2, o3, o4}},MdC(o4) = {{o2, o3, o4}, {o4, o5}},
MdC(o5) = {{o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3, o4}, CFriendC(o4) = {o2, o3, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o3}},MDC(o2) = {{o2, o3, o4}, {o1, o2, o3}, {o2, o4, o5}},
MDC(o3) = {{o2, o3, o4}, {o1, o2, o3}},
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MDC(o4) = {{o2, o3, o4}, {o2, o4, o5}},
MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC4,MdC(o1) = {{o1, o3}},MdC(o2) = {{o2, o4, o5}},MdC(o3) = {{o1, o3}},
MdC(o4) = {{o2, o4, o5}},MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o2, o4, o5},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o3}},MDC(o2) = {{o2, o4, o5}},MDC(o3) = {{o1, o3}},
MDC(o4) = {{o2, o4, o5}},MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC5,MdC(o1) = {{o1, o2, o3}},MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o2, o3}},MdC(o4) = {{o1, o2, o3, o4}, {o4, o5}},
MdC(o5) = {{o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o2, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3}, CFriendC(o4) = {o1, o2, o3, o4, o5},
CFriendC(o5) = {o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o3, o4}},MDC(o2) = {{o1, o2, o3, o4}, {o2, o4, o5}},
MDC(o3) = {{o1, o2, o3, o4}},MDC(o4) = {{o1, o2, o3, o4}, {o2, o4, o5}},
MDC(o5) = {{o2, o4, o5}},MDC(o6) = {{o6}},

For PC6,MdC(o1) = {{o1, o3}, {o1, o2, o4, o5}},
MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},MdC(o3) = {{o1, o3}},
MdC(o4) = {{o2, o4, o5}},MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o2, o3, o4, o5}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {{o6}},

MDC(o1) = {{o1, o2, o3}, {o1, o2, o4, o5}},
MDC(o2) = {{o1, o2, o3}, {o1, o2, o4, o5}},MDC(o3) = {{o1, o2, o3}},
MDC(o4) = {{o1, o2, o4, o5}},MDC(o5) = {{o1, o2, o4, o5}},MDC(o6) = {{o6}},

For PC7,MdC(o1) = {{o1, o3}},MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o3}, {o2, o3, o4, o5}},MdC(o4) = {{o2, o4, o5}},
MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}},

CFriendC(o1) = {o1, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3, o4, o5}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {o6},

MDC(o1) = {{o1, o2, o3}},MDC(o2) = {{o1, o2, o3}, {o2, o3, o4, o5}},
MDC(o3) = {{o1, o2, o3}, {o2, o3, o4, o5}},MDC(o4) = {{o2, o3, o4, o5}},
MDC(o5) = {{o2, o3, o4, o5}},MDC(o6) = {{o6}},

For PC8,MdC(o1) = {{o1, o2, o3}},MdC(o2) = {{o1, o2, o3}, {o2, o4, o5}},
MdC(o3) = {{o1, o2, o3}},MdC(o4) = {{o2, o4, o5}},
MdC(o5) = {{o2, o4, o5}},MdC(o6) = {{o6}}.

CFriendC(o1) = {o1, o2, o3}, CFriendC(o2) = {o1, o2, o3, o4, o5},
CFriendC(o3) = {o1, o2, o3}, CFriendC(o4) = {o2, o4, o5},
CFriendC(o5) = {o2, o4, o5}, CFriendC(o6) = {o6}.
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MDC(o1) = MDC(o2) = MDC(o3) = MDC(o4) = MDC(o5)
= {{o1, o2, o3, o4, o5}},MDC(o6) = {{o6}}.

The family of possible coverings in Example 3 has the lattice structure for �,
which is shown in Fig. 1.

Fig. 1. Lattice structure

PC1 is the minimum element, whereas PC8 is the maximum element. On
the other hand, the family of minimum descriptions is not a lattice for �; for
example, as is clarified for minimum descriptions in PC6 and PC8 in Example 3.
Also, the family of sets of close friends of an object is not so.

By using possible covering PCδ
a,j , lower and upper approximations of set O

of objects in PRδ
a,j are:

aprδ
a,j

(O) = {o ∈ U | Cδ
a,j(o) ⊆ O ∧ Cδ

a,j(o) ∈ PCδ
a,j ∧ PCδ

a,j ∈ FPCδ
a}, (16)

aprδ
a,j(O) = {o ∈ U | Cδ

a,j(o) ∩ O �= ∅ ∧ Cδ
a,j(o) ∈ PCδ

a,j ∧ PCδ
j ∈ FPCδ

a}. (17)

Proposition 4. If PCa,k � PCδ
a,l for possible indiscernibility relations

PCδ
a,k, PCδ

a,l ∈ FPCδ
a, then aprδ

a,k
(O) ⊇ aprδ

a,l
(O), and aprδ

a,k(O) ⊆ aprδ
a,l(O).

This proposition shows that the families of lower and upper approximations
under possible coverings are also lattices for set inclusion, respectively. Unfor-
tunately this does not hold in approximations using minimal descriptions and
sets of close friends, although various types of covering-based approximation are
proposed [11,19–21].

We aggregate the lower and upper approximations under possible coverings.
Certain lower approximation Saprδ

a
(O) of set O of objects, the lower bound of

the lower approximation, is:

Saprδ
a
(O) = {o ∈ U | ∀PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j
(O)}. (18)

Possible lower approximation Paprδ
a
(O), the upper bound of the lower approxi-

mation, is:

Paprδ
a
(O) = {o ∈ U | ∃PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j
(O)}. (19)
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Certain upper approximations Saprδ
a(O), the lower bound of the upper approx-

imation, is:

Saprδ
a(O) = {o ∈ U | ∀PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j(O)}. (20)

Possible upper approximation Paprδ
a(O), the upper bound of the upper approx-

imation, is:

Paprδ
a(O) = {o ∈ U | ∃PCδ

a,j ∈ FPCδ
a o ∈ aprδ

a,j(O)}. (21)

Using Proposition 4, these approximations are transformed into the following
formulae:

Saprδ
a
(O) = aprδ

a,max
(O), Paprδ

a
(O) = aprδ

a,min
(O), (22)

Saprδ
a(O) = aprδ

a,min(O), Paprδ
a(O) = aprδ

a,max(O), (23)

where aprδ
a,max

(O) is the lower approximations under the maximum possible

covering deriving from the maximum indiscernibility relation and aprδ
a,min(O)

is the upper approximations under the minimum possible covering deriving from
the minimum indiscernibility relation. These formulae show that we can obtain
the lower and upper bounds of approximations without computational complex-
ity, no matter how many possible coverings.

Example 4. We go back to Example 3. Let set O of objects be {o1, o3}. Using
formulae (16) and (17), lower and upper approximations are obtained in each
possible covering. For PC1, apr0.75

a1,1
(O) = {o1, o3}, apr0.75

a1,1(O) = {o1, o3}.

For PC2, apr0.75
a1,2

(O) = {o3}, apr0.75
a1,2(O) = {o1, o2, o3}.

For PC3, apr0.75
a1,3

(O) = {o1}, apr0.75
a1,3(O) = {o1, o2, o3}.

For PC4, apr0.75
a1,4

(O) = {o1, o3}, apr0.75
a1,4(O) = {o1, o3}.

For PC5, apr0.75
a1,5

(O) = ∅, apr0.75
a1,5(O) = {o1, o2, o3}.

For PC6, apr0.75
a1,6

(O) = {o3}, apr0.75
a1,6(O) = {o1, o2, o3}.

For PC7, apr0.75
a1,7

(O) = {o1}, apr0.75
a1,7(O) = {o1, o2, o3}.

For PC8, apr0.75
a1,8

(O) = ∅, apr0.75
a1,8(O) = {o1, o2, o3}.

By using formulae (22) and (23), Sapr0.75
a1

(O) = ∅, Papr0.75
a1

(O) = {o1, o3},

Sapr0.75
a1

(O) = {o1, o3}, Papr0.75
a1

(O) = {o1, o2, o3}.

Using the lower and upper bounds of approximations denoted by formu-
lae (22) and (23), lower and upper approximations are expressed in interval sets.
Certain and possible approximations are the lower and upper bounds of the
actual approximation.

Furthermore, the following proposition is valid from formulae (22) and (23).
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Proposition 5.

Saprδ
a
(O) = {o | C(o)δ

a,max ⊆ O}, Paprδ
a
(O) = {o | C(o)δ

a,min ⊆ O},

Saprδ
a(O) = {o | C(o)δ

a,min ∩ O �= ∅}, Paprδ
a(O) = {o | C(o)δ

a,max ∩ O �= ∅},

where C(o)δ
a,min and C(o)δ

a,max are the minimum and the maximum possibly
indiscernible classes of object o on a which are derived from applying for-
mula (14) to minimum and maximum possible indiscernibility relations PRδ

a,min

and PRδ
a,max, respectively.

From this proposition, if the minimum and the maximum possibly indiscernible
classes of each object are derived, then the lower and upper bounds of approxi-
mations can be obtained. And, C(o)δ

a,min and C(o)δ
a,max can be directly derived

from the following formula:

C(o)δ
a,min = {o′ ∈ U | (o = o′) ∨ ∀u ∈ a(o)∀v ∈ a(o′)sim(u, v) ≥ δa},

C(o)δ
a,max = {o′ ∈ U | ∃u ∈ a(o)∃v ∈ a(o′)sim(u, v) ≥ δa}.

As a result, this justifies directly using minimum and maximum possibly indis-
cernible classes from the viewpoint of possible world semantics.4

4 Conclusions

We have described the structure of possible coverings under possible world
semantics in incomplete information tables with similarity of values. Lots of
coverings are derived in an incomplete information table, whereas the covering
that is unique is derived in a complete information table. The number of possi-
ble coverings may grow exponentially as the number of objects with incomplete
information grows. This seems to present some difficulties due to computational
complexity of deriving rough sets, but it is not, because the family of possible
coverings is a lattice with the minimum and maximum elements. This is also true
for the family of maximal descriptions, but is not so for the family of minimal
descriptions and the family of sets of close friends.

As Lipski derived the lower and upper bounds of an answer set of a query,
we have obtained the lower and upper bounds of approximations. Lower and
upper approximations can be derived from only the minimum and maximum
coverings by the lattice structure of the family of possible coverings. Therefore,
there are no difficulties regarding computational complexity due to the number
of incompletely informative objects.

4 This type of justification was first introduced by [22] in extending rough sets to deal
with incomplete information.
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Abstract. Collaborative learning is a useful teaching method in high
education and is used in various study areas in the classroom or online.
For effective collaboration, group formation is one of the critical fac-
tors. It often requires preparation by a teacher. In this study, to help a
teacher selection grouping, we propose the models for group formation
based on the principles: intra- or inter-group homogeneity or heterogene-
ity. It depends on the situations what principle is suitable and preferable.
We use students’ profiles by their inner evaluation to measure the group
status, suitable for representing their tendencies. The inner evaluation is
denoted as a normalized interval vector of criteria where an interval ele-
ment indicates a possible evaluation of a criterion. The first and second
models are from the intra-group viewpoint by maximizing or minimiz-
ing the difference or similarity of members in each group. The students
of similar or different tendencies are assigned to the same group. The
third model is from the inter-group viewpoint by minimizing differences
among groups concerning group tendency. Therefore, balanced groups
are obtained.

Keywords: Normalized interval vector · Group formation · Inner
evaluation

1 Introduction

In high education, collaborative learning has been increasingly used. Collabora-
tive learning benefits students in terms of higher achievement, greater retention,
more positive feelings, and stronger academic self-esteem compared to compet-
itive and individualistic learning [6]. To succeed in the professional world, the
students need to acquire teamwork skills and specific technical skills. In various
study areas in a classroom or online learning, working as a small group to achieve
a common goal is an effective teaching method [9,10]. Group formation is one of
the critical factors, and the adequacy of peers is necessary for effective collabora-
tion. The group composition affects the group performance, i.e., poorly formed
groups can lead to many possible negative peer group influences. However, few
studies have focused on it to improve collaborative learning [2,7].

In practice, there are three kinds of group formation methods used: random
selection, student self-selection, and teacher selection [11]. Each has advantages
c© Springer Nature Switzerland AG 2022
K. Honda et al. (Eds.): IUKM 2022, LNAI 13199, pp. 29–39, 2022.
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and disadvantages. Random selection is simple, though the students’ similarities
and differences are not taken into account and can lead to unbalanced groups.
Student self-selection positively affects student attitudes, though students who
usually prefer to be in their comfort zone learn less from the differences. The
formed groups often consist of either above-average students or below-average
students so that the groups in a classroom are not balanced. Teacher selection,
in other words, criteria-based grouping, is popular in practice, even if it needs
preparation. Teachers make the groups balanced and be suitable for the sit-
uation or purpose, though some students claim the harmful influence of social
loafing [13]. Moreover, the criteria differ in cases, and the availability of students’
profiles such as personality and previous marks is not easy. This study focuses
on teacher selection and proposes the models to help it.

If we made a selected group representative of a classroom, we would pick
up the high-level students according to grades with some communication skills.
Such a team possibly performs better and more productive than teams of the
other members due to positively influencing each other. Differently from such
a selected group, in collaborative learning in a classroom, all the members are
assigned to one of the groups. A mix of superior and inferior groups is sometimes
not unacceptable so that balanced groups are expected.

Concerning knowledge levels diversity, the simple method is to sort the stu-
dents from high to low grades and assign one student to each group sequentially.
Each group has a mix of students with knowledge levels high and low. Having a
high-grade peer in each group is not the only requirement for an adequate group.
It is known that group work enhances deep learning through student engagement.
Besides study success, student engagement leads to positive outcomes such as
persistence and self-esteem.

Although student engagement is essential for group work, there are various
definitions. It includes behavior engagement, which refers to participation based
on knowledge level, and cognitive engagement, which refers to the mental energy
based on communication and human relations [8]. There seem to be two kinds
of criteria for a student profile: knowledge level and social interaction. In group
formation, teachers consider both of them. The students are sorted from high to
low knowledge level by the total grades, and in detail, the specific sub-criteria of
rates can be used. On the other hand, it is challenging to sort students from high
to low according to their social interaction. The sub-criteria of social interaction
include leadership, empathy, and communication skills. Since the sub-criteria
stand on personality characteristics, competitive comparison of one’s character-
istics to the others’ is not appropriate. For a student profile, it is reasonable to
compare the sub-criteria each other rather than to compare him/her to the oth-
ers on a criterion. Based on such an inner evaluation on sub-criteria, we find out
the student profile, such that s/he is better at communication than leadership.

Exams are common ways for teachers to assess the knowledge level of stu-
dents. The rates of exams are used to sort the students in a classroom from
high to low relatively. Instead of exams, to know the characteristics of a stu-
dent, a questionnaire is generally used. As a result, for instance, students are
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scored against criteria such as president, strategist, operative, and finishers [3].
To measure a student’s tendency, we prefer a self-evaluation by each student
to a teachers’ assessment. Similarly to social interaction, the knowledge level
or tendency can be found from a student self-evaluation by questionnaire, for
instance, asking his/her academic interests. Self-evaluation is not a relative eval-
uation among the others but an inner evaluation of a student. Therefore, we
assume that student profile is denoted with inner-evaluation without regard to
knowledge or social interaction.

The ideal formed group status has groups with members who are as simi-
lar among themselves as possible, inter-homogeneous, but also empowering the
students’ individual difference inside such groups, intra-heterogeneous [7]. On
the one hand, diversity in a group increases the integration of different ideas
from multiple perspectives and enhances behavior engagement. On the other
hand, too many challenges to differences in communication styles and feelings
of anxiety hinder cognitive engagement. Research showed heterogeneous groups
of high-level students are more productive than heterogeneous groups of them,
a vice versa in the case of low-level students [13]. It mentions that some count
on the others in a heterogeneous group, which may reduce productivity. The
interaction relationships of members in a group are worth consideration. In the
group formation models in this study, we consider homogeneity or heterogeneity
of each group and homogeneity among groups.

This paper outlines as follows. In the next section, we define a normalized
interval vector to represent a student’s profile of knowledge and social interaction
criteria. They are obtained as students’ inner evaluations by self-evaluations. In
Sect. 3, an individual profile is extended into a group profile. Then, in Sect. 4,
based on such the principles of similarity and difference among group members
and groups, we propose three models for group formation. In Sect. 5, we illustrate
the proposed models with a numerical example and compare the formed groups.
Then, we draw the conclusion in Sect. 6.

2 Normalized Interval Vector

This study uses a student profile by self-evaluation of some criteria on knowledge
and social interaction. Therefore, it represents each student’s inner evaluation
among the criteria. The inner evaluation indicates how excellent or lousy the
student is on a criterion compared to the other criteria.

We denote member j as a normalized interval vector, Xj = (Xj1, . . . , Xjm)t,
where Xjk = [xjk, xjk] denotes his/her evaluation of criterion k relative to the
other criteria ∀k′ �= k. An evaluation of criterion is denoted as an interval to
reflect its uncertainty or possibility. Denoting a student profile with a crisp value
cannot reflect real situations since a student’s act usually depends on tasks,
periods, the other members, etc. Hence, the evaluation of criterion has some
range, and an interval indicates that the evaluation under any specific situation
lies from its lower bound to its upper bound.

Let two members, j1 and j2, and skills, k1 and k2. Even if Xj1k1 is greater
than Xj2k1 , we cannot be sure that member j1 is better than j2 by comparing
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them. It happens that j1 is, so to speak, a lazy student, and the excellent student,
j2, is better than j1 under all criteria. However, if Xj1k1 is greater than Xj1k2

with regard to member j1, we are sure that j1 is better at criterion k1 than k2.
Since group formation in a classroom is not selecting or making a good group,
we use inner evaluations rather than relative evaluations as a student profile in
this study. The inner evaluation is denoted as a normalized interval vector.

First, a normalization of interval vector is defined, and then because of n
members in a classroom, the properties of more than one normalized interval
vector are shown.

Definition 1. An interval vector X = (X1, . . . , Xi) each of whose elements is
Xi = [xi, xi]) is normalized, if and only if X ∈ N , such that

N =
{
X

∣∣∣∑i�=j xi + xj ≥ 1 ∀j ∑
i�=j xi + xj ≤ 1 ∀j, xi ≤ xi ∀i

}
. (1)

The definition is based on interval probability [1,12]. In the case of real values
as xi = xi = xi∀i, two inequalities are replaced into

∑
i xi = 1 as probability.

The redundancy of the intervals to make the sum be one is excluded: the upper
and lower bounds cannot be too large and too small, respectively.

When the evaluations of all criteria are no different, this student’s profile
is denoted as interval vector ([0, 1], . . . , [0, 1]). Moreover, if it is sure that the
evaluations are always precisely equal to each other, it is denoted as crisp vec-
tor (1/n, . . . , 1/n). Both vectors are normalized in the sense of interval vector
normalization by (1).

The normalized interval vector satisfies the following two propositions [5,12].

Proposition 1. Let X = (X1, . . . , Xn) ∈ N be a normalized interval vector.
There exist xi ∈ Xi,∀i, such that

∑
i xi = 1.

For a crisp value of ith element, xi ∈ Xi, there are crisp values in the the other
elements’ intervals, xj ∈ Xj ,∀j �= i, which satisfies xi +

∑
j �=i xj = 1.

Proposition 2. Let Xl = (Xl1, . . . , Xln) ∈ N , l = {1, . . . , n′}, where Xli =
[xli, xli]. Then interval vector X = (X1, . . . , Xn), where Xi = [xi, xi], defined
by xi = minl xli, xi = maxl xli, satisfies X ∈ N , i.e., X is also a normalized
interval vector.

Namely, the compact set of normalized interval vectors is a normalized interval
vector.

Proposition 3. Let Xl = (Xl1, . . . , Xln) ∈ N , l = {1, . . . , n′}, where Xli =
[xli, xli], and w = (w1, . . . , wn′), where

∑
l wl = 1. Then interval vector X =

(X1, . . . , Xn), where Xi = [xi, xi], defined by xi =
∑

l wlxli, xi =
∑

l wlxli,
satisfies X ∈ N , i.e., X is also a normalized interval vector.

Proposition 3 implies that the weighted sum of normalized interval vectors is
normalized.
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3 Student Profile and Group Profile

The problem is to divide n members into t groups based on their inner evaluations
of m criteria, which we call skills in the following. Namely, there are n students
j = 1, . . . , n, who evaluate themselves on m skills, k = 1, . . . ,m, and the students
in a classroom are divided into t groups, i = 1, . . . , t. We denote a set of students
in group i as Gi, which consists of ni elements, and

∑
i ni = n. As shown in

Sect. 2, the profile of student j is explained with a normalized interval vector,
Xj = ([xjk, xjk],∀k) ∈ N ,

As preparation for interval evaluations of a group, Fig. 1 shows three kinds of
relations between two intervals, X1 and X2. The similarity of these two intervals
is measured using S1 and S2 illustrated in the figure. The first S1 shows the
maximum difference of two intervals. Two intervals are more different as the
range of integrated interval S1.

Fig. 1. Similarity and average of two intervals

Then, in general, the difference s1
ik of skill k in group i of ni members is

defined as follows.
s1
ik = min (s1

ik − s1
ik)

s.t. xjk ≤ s1
ik,∀j ∈ Gi,

s1
ik ≤ xjk,∀j ∈ Gi.

(2)

By Proposition 2, the integrated interval vector, ([s1
i1, s

1
i1], . . . , [s1

im, s1
im]) is

a normalized interval vector.
The second S2 corresponds to an intersection of both intervals. Although the

left two S2 in Fig. 1 look the same, there is no common and a common in the left
and cent figures. Hence, we denote the similarity of the left figure is negative,
and that of the right one is positive [4]. Two intervals are similar as greater the
range of intersection S2. The similarity s2

ik of skill k in group i is defined as
follows.

s2
ik = max (s2

ik − s2
ik)

s.t. s2
ik ≤ xjk,∀j ∈ Gi,

xjk ≤ s2
ik,∀j ∈ Gi,

(3)

where s2
ik is less than one if the intervals of all members in group i on skill k

have no intersection.
The third Z corresponds to the group profile. The possible evaluation of

group performance of skill k of group i is denoted as the sum of all members in
the group as follows.
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Zik = [zik, zki] =

⎡
⎣ ∑
j∈Gi

xjk,
∑
j∈Gi

xjk

⎤
⎦, (4)

where group lower and upper bounds are obtained from individual members’
lower and upper bounds, respectively.

Denote an interval vector of group i, Zi = (Zi1, . . . , Zim)t, it is normal-
ized by Proposition 3 with the weights wl = 1/n,∀l. Since the number of
members differs in the groups, we use the group performance per member
Z′

i = (Zi1/ni, . . . , Zim/ni)t if we compare the group performances.

4 Group Formation

4.1 Similarity and Difference

This section proposes the problems of dividing n members into t groups based
on intra- and inter-group similarities or differences. Therefore, we introduce the
variables, yij ,∀i, j, denoting whether member j is assigned to group i or not.

yij =
{

1, j ∈ Gi,
0, else,∑

j yij = ni,∀i,∑
i yij = 1,∀j,

(5)

where ni is the number of members in group i and member j is assigned to one
of the groups.

With these variables, the difference of members in a group (2) is rewritten as
follows.

s1
ik = min (s1ik − s1ik),
s.t. xjkyij ≤ s1

ik,∀j,
s1

ik ≤ (M − (M − 1)yij)xjk,∀j,
(6)

where M is a positive large number, and yij∀i, j, s1
ik, s

1
ik are variables. In the

case of yij = 0, where member j is not in the group i, the first and second
constraints are never active.

In the similar way, the similarity of members in a group (3) is rewritten as
follows.

s2
ik = max (s2

ik − s2
ik)

s.t. s2
ik ≤ (M − (M − 1)yij)xjk,∀j,

yijxjk ≤ s2
ik,∀j.

(7)

The possible evaluation of group performance (4) is rewritten as follows.

Zik = [zik, zki] =

⎡
⎣∑

j

xjkyij ,
∑
j

xjkyij

⎤
⎦. (8)
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4.2 Intra-group and Inter-group

First, we consider intra-group homogeneity or heterogeneity. Excluding social
loafing enhances easiness of each student’s contribution. Therefore, the mem-
bers with similar tendencies are assigned to the same groups. The homogeneous
groups are formed by maximizing or minimizing similarity or difference of mem-
bers in each group. By minimizing difference (6), we obtain an in intra-group
homogeneity groups as follows.

min
∑

ik(s1
ik − s1

ik),
s.t. s1

ik ≤ (M − (M − 1)yij)xjk,∀i, j, k,
xjkyij ≤ s1

ik,∀i, j, k,
yij = {0, 1},∀i, j, ∑

j yij = ni,∀i,
∑

i yij = 1,∀j,
(9)

where the variables are yij ,∀i, j and s1
ik, s

1
ik,∀i, k.

The other model for intra-group homogeneity groups is formulated by max-
imizing similarity (7).

max
∑

ik(s2
ik − s2

ik),
s.t. s2

ik ≤ (M − (M − 1)yij)xjk,∀i.j, k,
yijxjk ≤ s2

ik,∀i, j, k,
yij = {0, 1},∀i, j, ∑

j yij = ni,∀i,
∑

i yij = 1,∀j.
(10)

In this way, there are two methods for intra-group homogeneity by minimizing
difference (9) or maximizing similarity (10). In both models, each criterion and
group’s difference and similarity are measured independently.

On the contrary, to form the groups of intra-group heterogeneity, the similar-
ity or difference is minimized or maximized. However, the problems by replacing
objective functions of (9) and (10) are infeasible. By (10), the similarity of a skill
of members in a group is maximized based on the fact that similar members have
their intervals of each skill evaluation in common. In other words, the different
members do not have their intervals of each skill in common. Each skill’s diver-
sity among members leads to the similarity among all skills’ evaluations in a
group. The following simple example explains this fact.

Assume that two members are denoted with two skills, one of which, named
skill 1, is illustrated in the left figure of Fig. 1. From the figures, member 1
X1 is less than member 2 X2 on skill 1. Since each member’s two intervals
are normalized by Definition 1, on the other skill 2, member 2 is greater than
member 1. Namely, when we compare the first skill of member 1 and the second
one of member 2, they are similar. Maximizing the similarity of skills in the
group tends to assign the members with different tendencies to the same group.

Hence, we maximize the similarity of skills of all members in a group instead
of minimizing the similarity of each skill of members in a group. The problem is
formulated as follows.

max
∑

i(s2
i − s2

i),
s.t. (M − (M − 1)yij)s2

i ≤ xjk,∀i.j, k,
xjk ≤ yijs

2
i,∀i.j, k

yij = {0, 1},∀i, j, ∑
j yij = ni,∀i,

∑
i yij = 1,∀j,

(11)
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where the variables are yij ,∀i, j and s2
i, s

2
i,∀i. In other words, s2

i and s2
i, such

that s2
ik ≤ s2

i,∀k and s2
i ≤ s2

ik,∀k are introduced into (10).
Next, we consider inter-group homogeneity from the viewpoint of group pro-

file. The group performance is denoted with the sums of the members’ evaluations
of all skills by (8). In the case of balanced groups, the evaluations of all groups
are similar. For such a similarity, all group evaluations of each skill should be in
a certain range. The range of group evaluation is minimized as follows.

min
∑

k(zk − zk),
s.t. nizk ≤ zik,∀i, k,

zik ≤ nizk,∀i, k,
yij = {0, 1},∀i, j, ∑

j yij = ni,∀i,
∑

i yij = 1,∀j,
(12)

where in addition to yij∀i, j, the range of group performance per a member
zk, zk,∀k are variables. Corresponding to group performance per member, when
we introduce the maximum z and minimum z, we can replace the objective
function with max (z − z) by adding constraints z ≤ zk, zk ≤ z,∀k.

The number of members in group i, ni in (12), is an integer denoted as
follows.

ni =
∑
j

xij ∈
{⌊n

t

⌋
,
⌈n
t

⌉}
, ∀i, (13)

where
⌊
n
t

⌋
=

⌈
n
t

⌉
= n

t in the case of divisible n by t.
Thus, the first two non-linear constraints in (12) is relaxed and the problem

is reduced into the following linear programming problem.

min
∑

k(zk − zk),
s.t.

⌊
n
t

⌋
zk ≤ zik,∀i, k,

zik ≤ ⌈
n
t

⌉
zk,∀i, k,

yij = {0, 1},∀i, j, ∑
j yij = ni,∀i,

∑
i yij = 1,∀j,

(14)

where the group performance of skill k, Zik = [zik, zik], is in the range from⌊
n
t

⌋
zk to

⌈
n
t

⌉
zk, and those of all skills are in the range from z to z.

Assume a larger group of
⌈
n
t

⌉
members. The first constraint is not always

active because of
⌊
n
t

⌋
zk <

⌈
n
t

⌉
zk and the second one tend to be active because

of
⌊
n
t

⌋
zk <

⌈
n
t

⌉
zk. In this sense of controlled skill, we obtain balanced groups.

5 Numerical Example

In the numerical example, there are 11 students in a classroom, and a teacher
forms three groups so that each group consists of three or four students. The stu-
dents’ profiles denoted with four criteria, named from skill-1 to skill-4, are given
as normalized interval vectors at the left part of Table 1. For instance, student
X1 at the second row is good at skill-4 among four skills but bad at skill-2 with
some possibilities. The interval vector in a row represents a student’s possible
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Table 1. Four kinds of skills of 11 members

Intra-group Inter-group similarity

Student Skill-1 Skill-2 Skill-3 Skill-4 By (9) or (10) By (11) By (14)

X 1 [0.10,0.14] [0.02,0.1] [0.10,0.14] 0.70 1 1 1

X 2 [0.02,0.11] 0.77 [0.02,0.11] [0.09,0.11] 1 3 1

X 3 [0.19,0.23] 0.58 [0.08,0.19] [0.04,0.12] 1 2 2

X 4 0.7 0.14 [0.02,0.13] [0.03,0.14] 1 2 3

X 5 [0.02,0.12] [0.1,0.12] 0.73 [0.02,0.15] 2 1 3

X 6 [0.03,0.21] [0.13,0.21] [0.03,0.13] 0.63 2 3 2

X 7 0.11 [0.02,0.11] 0.77 0.11 2 2 3

X 8 0.65 [0.04,0.11] 0.22 [0.02,0.09] 3 1 3

X 9 0.11 [0.02,0.11] 0.76 [0.02,0.11] 3 1 2

X 10 [0.03,0.14] 0.14 0.69 [0.03,0.14] 3 3 1

X 11 0.8 0.09 [0.02,0.09] [0.02,0.09] 3 3 1

inner-evaluation of criteria, different from the exam scores for students’ compet-
itive comparison. Comparing the intervals in a row is valid, though comparing
those in a column is meaningless.

The groups by the proposed models are shown at the right part of Table 1 for
a comparison. In real situations, a teacher decides a principle for grouping, which
is suitable for the case, beforehand. Then, one of the intra-group homogeneous,
intra-group heterogeneous, and inter-group homogeneous models is applied. To
compare the groups by four models, we obtained adjusted rand index (ARI),
used in k-means clustering to measure the similarity between two clusterings. If
two clusterings are the same, ARI is 1, decreasing as they become less similar.
In this example, those of three pairs of three formed groups are less than 0.1, so
each is unique.

First, we compare the groups by intra-group homogeneity model (9) or (10)
and intra-group heterogeneity model (11). The students assigned to groups 1
and 2 by the former model are assigned to three different groups by the latter
model. For intra-group similarity, the tendencies of three students in each group
are similar, though they are not in the same group for intra-group diversity. Even
though the principles of these two models are opposite, student pairs of (X3,X4)
and (X10,X11) are in the same group by both models. One of the reasons is the
group size constraint.

Next, we compare the groups by intra- and inter-group homogeneity models
(9) and (14). Similar to the former comparison, the students in groups 1 and 3 by
the intra-group model are in three different groups by the inter-group model. It
is reasonable to distribute the students with similar tendencies for group equilib-
rium. The intra-group heterogeneous model or inter-group homogeneity model
maximizes the difference in each group or minimizes differences among groups.
At the same time, both models make groups to reduce the similarity of mem-
bers’ profiles in each group. It is because their principles are opposite from that
of the intra-homogeneity group. This fact is supported by Table 2, where we
calculated the objective function values of (9), (10), (11), and (14), which are
the four models of intra-group difference, intra-group similarity, and inter-group
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similarity, with their optimal solutions. The second and third rows are more
similar to each other than the first row. According to three measurements, the
intra-homogeneity model at the first row deviates from the intra-group hetero-
geneity and inter-group homogeneity models at the bottom two rows.

Table 2. Four measurements in objective functions

Intra-group Inter-group

Difference Similarity Skill-similarity Similarity

Min. diff. (9) or max. sim. (10) 5.78 0.54 −1.77 0.73

Min. sim. by max. skill-sim. (11) 7.90 −0.46 −0.56 0.66

Balanced group by max. group-sim. (14) 8.62 −1.35 −1.35 0.54

6 Conclusion

We have proposed group formation models from intra-group homogeneity and
heterogeneity and inter-group homogeneity. A student profile is denoted as a
normalized interval vector of criteria. A teacher can choose one of them suitable
for the situation and principle. From the intra-group viewpoint, we measure the
similarity of members by a range of integrated intervals or an intersection of
criteria. For members’ homogeneity, the integrated interval of all members is in
a small range, or the intersection is maximized. On the other hand, for mem-
bers’ heterogeneity, the interval evaluations of all criteria are similar by having
more intersections. As a result, the members with similar or different tendencies
are assigned to the same groups. From the inter-group viewpoint, the similarity
of groups is measured as the range of group performance interval by summing
up the members’ intervals, and the range is minimized. As a result, the groups
are balanced concerning group evaluations of criteria. In this study, a member’s
profile is denoted as an interval vector of criteria. The interval indicates a stu-
dent’s possible evaluation, and in any specific case, it lies between its lower and
upper bounds. Hence, in the proposed models, the similarity, the difference, and
the sum of intervals are measured based on the possibilistic viewpoint focusing
on the lower and upper bounds. Depending on the lower or upper bound of an
interval is a limitation of the proposed method. The interval evaluation can be
more precise if a unique case is assumed. Since the members affected each other,
we will specify a crisp value in an interval or reduce the possibility in future
work.
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Abstract. This paper proposes a preference-based approach for opti-
mising the process of organisational risk assessment in complex and
uncertain environments, where significant decision-making factors may
be interconnected. Organisational risks are herein treated from the per-
spective of the work-related stress risk involving psycho-physical factors
crucial for the safety and well-being of human resources. The traditional
Health and Safety Executive (HSE) model commonly used for stress
evaluation in working environments is herein improved by first apply-
ing the Analytic Network Process (ANP) to weight management stan-
dards (MS). This technique has been chosen to avoid neglecting potential
relations bounding MS with each other. Finally, Fuzzy Cognitive Maps
(FCMs) are used to study dependence among significant stress factors.
In such a direction, the support offered by the fuzzy set theory is relevant
to deal with subjective evaluations of preference. The case of an Italian
airport is analysed to demonstrate the applicability of the approach, and
managerial insights are discussed.

Keywords: Organisational risk · Decision-making · Analytic Network
Process · Fuzzy Cognitive Maps · Complexity management

1 Motivation and State of the Art

The occurrence of organisational risks may have a strong impact on human
resources’ safety. This category of risks is related to organisational shortcomings
and includes work-related stress as well as psychological factors as fundamen-
tal elements of analysis. Specifically, not only are psychological factors crucial
for human well-being and professional achievement but also hugely influence
operational performance by contributing to generating company results on the
whole [7]. Increasing attention is devoted nowadays to research on psychologi-
cal factors within entrepreneurial realities. In this context, proper assessments
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of the risk of work-related stress greatly contribute to approaching and better
understanding how to manage these types of factors. The existence of particular
indicators is investigated, as well as work conditions that may cause discomfort
and stress for workers, leading to their poor performance and dissatisfaction.

The risk of work-related stress is commonly assessed by preliminary analysing
such conditions as professional environment, working hours, monotony or frag-
mentation of tasks, uncertainty, excessive or insufficient workload, relationships
among colleagues and superiors, and so on [9]. These factors could potentially
harm the psycho-physical health of workers, especially if they have to act in
synergy with each other. In any case, evidence demonstrates that they coexist
in almost any work environment, reducing organisational effectiveness. This is
the reason why work-related stress risk assessment has to be implemented by
companies, as established by the existing international standards.

Among the various methodologies used to purse such a type of evalua-
tion [10,15], we here discuss the integrated management approach developed by
the British agency Health and Safety Executive (HSE). The evaluation model
applies the perspective of Research & Development activities, aiming at scientif-
ically demonstrating the entity of repercussions of work-related stress on general
health conditions of individuals. The HSE model analyses six main areas or man-
agement standards (MS), by proposing a structured interview to workers in the
form of an inquiring questionnaire tool called the MS indicator tool [8]. Each
item of the questionnaire refers to a specific MS. The goal consists in inves-
tigating critical organisational aspects to be improved by contributing to the
creation of a research network system in the field of occupational health and
safety. Specifically, the HSE indicator tool is specially focused on physical and
psychical consequences as well as progressive alterations of lifestyle and behavior
of workers. Given the huge complexity and the uncertainty characterising this
field, the present paper proposes a methodological framework by combining the
Analytic Network Process (ANP), a well-known decision-making technique, with
the ah hoc generation of Fuzzy Cognitive Maps (FCMs), the latter being partic-
ularly suitable for managing uncertainty when subjective preference evaluations
are required [3]. As an artificial intelligence technique capable of effectively sup-
porting decision-making [1], FCM integrates characteristics of fuzzy sets and
neural networks. As reported by López and Ishizaka [6], FCMs have been suc-
cessfully hybridized with several multi-criteria decision-making techniques so
far. In particular, by mentioning a work of research specifically integrating ANP
and FCM [14], the authors underline as FCMs ,ay support in the calculation
of local and/or global weights of a set of decision-making elements. Considering
this evidence, we aim to exploit the strengths derived from such a methodolog-
ical integration. To the best of the authors’ knowledge, it is the first time that
ANP and FCMs are combined for improving the process of organisational risk
management in terms of work-related stress assessment.

With these preliminaries, the six MS considered by the HSE model will be
first analysed and their mutual importance will be established by means of the
ANP. Second, a suitable FCM will be built to study relations of dependence
bounding the main aspects investigated by the HSE indicator tool. This integra-
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tion can positively contribute to the topic of research by effectively highlighting
critical issues so that possibilities of improvement of working conditions in com-
plex environment can be real.

The research is organised as follows. Traditional HSE methodology is dis-
cussed in Sect. 2, where the items of the indicator tool are associated to the cor-
responding MS. Section 3 provides methodological details about the preference-
based approach. An Italian airport has been analysed for the real application
of Sect. 4, airports being extremely complex organisations where many stressful
factors may likely impact on employees conditions. Conclusions of Sect. 5 close
the paper by discussing potential future developments.

2 HSE Management Standards for Organisational Risks

MS may be classified according to three organisational dimensions: 1. content
(cnt), referring to general pressures workers may feel because of work charac-
teristics, 2. context (cxt), referring to work environment, human relations and
cooperation, 3. awareness (aws), referring to the personal perception of workers
about their own contribution and involvement. Within these three main dimen-
sion groups, six MS are identified as key areas that, when not properly managed,
are associated with health problems and lower productivity as well as increasing
probability of injuries and rates of sickness absence.

• MS1, demand: it includes such aspects as workload, tasks and environment;
• MS2, control: it refers to autonomy of people in the way they lead their job;
• MS3, support, it includes encouragement and resources from the company;
• MS4, relationship, it refers to managing conflict and unacceptable behaviour;
• MS5, role, it considers the clear understanding about specific working roles;
• MS6, change, it refers to change management and communication processes.

Specifically, MS1 and MS2 belong to the content dimension, MS3 and MS4

refer to the context dimension, while MS5 and MS6 are related to the awareness
dimension. The interesting idea behind MS-based approach is that companies
have the possibility of benchmarking their current practices of organisational
risk evaluation by designing related measures to enhance stress management
performance. The HSE indicator tool aims to support this process. Thirty-five
items are randomly proposed to workers and the related answers can be provided
according to a linguistic scale. Analysing the questionnaire from a structural
point of view, that is to say, by connecting specific items to MS, is useful to
further elaborate employees’ responses. This classification will help to easily
understand if the standards are achieved or not. In such a direction, Table 1
organises the items of the questionnaire by associating them to the corresponding
MS to ease the evaluation of the most critical area(s).

The HSE model based on the six described MS can be hence considered as
an integrated approach to design and optimise the simultaneous management
of stressful factors, usually interacting with each other in real contexts. Such
an interaction would lead to the amplification of the effects that these factors
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Table 1. Decision-making elements under analysis

ID MS Items of management standard indicator tool

MS1 Demand DE1 I clearly understand the expectations about my work

DE2 I do not experience difficulties when I have to combine job
requests coming from diverse people and/or operational units

DE3 I know how to perform my job and all the related tasks

DE4 I usually have deadlines not extremely difficult to meet

DE5 I do not have to perform particularly hard activities

DE6 I do not neglect private issues because of my work

DE7 I do not feel high pressure due to overtime work

DE8 I do not have to be very quick when leading operations

DE9 I never fail in satisfactorily meeting my deadlines

MS2 Control CO1 I can autonomously decide when to have a break

CO2 I can decide the rhythm at which my tasks are performed

CO3 I can make decisions about the organisation of my work

CO4 I am free to take enough breaks

CO5 I have freedom of choice about the content of my tasks

CO6 I can express my opinions about how to perform my tasks

CO7 I have flexible working hours

MS3 Support SU1 I am supported by my colleagues for difficult work

SU2 I receive effective information that is helpful for my activity

SU3 I can rely on my boss should I experience any problem

SU4 I receive the help and support I need from colleagues

SU5 I can openly discuss with my boss if I am annoyed

SU6 I use to dialogue with my colleagues about my problems

SU7 I am supported in emotionally demanding tasks

SU8 I often receive encouragement by my boss

MS4 Relationship RE1 I do not experience personal harassment in the form of rude
words or bad behavior from other colleagues and/or superiors

RE2 Frictions or conflicts among colleagues are rare

RE3 I am not bullied nor subjected to any restriction

RE4 I have the respect that I deserve from my colleagues

RE5 Relationships in my workplace are not strained

MS5 Role RO1 I have clear my duties and responsibilities

RO2 I have clear the objectives and goals of my department

RO3 I have a clear understanding about the importance of my work in
pursuing the overall goals of the organization

MS6 Change CH1 I have sufficient opportunities to ask managers for explanations
about any change related to my work

CH2 Staff is always consulted about potential changes

CH3 I clearly understand the practical effects of those changes
happening in my work environment

would have if they were isolated. Getting a comprehensive knowledge about
MS is essential to lead the risk assessment process according to the particular
characteristics of the organisation under analysis.
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3 Methodological Approach

In this section we provide methodological details of the techniques we are going
to integrate for supporting procedures of organisational risk assessment. The pur-
pose consists in providing a scientifically sound support for dealing with complex
environments, where elements of evaluation are typically highly interconnected,
and quantitative assessments of variables may be difficult.

The ANP will attribute degrees of importance to MS by taking into account
the existence of complex relations of mutual dependence. FCMs will help to
understand which items - among those belonging to the mainly critical WS - are
the most significant to promote proper management actions.

3.1 ANP to Weight Management Standards

The ANP, first implemented by Thomas Saaty [13] as a development of the
Analytic Hierarchy Process (AHP) [12], is a decision-making tool widely applied
to assess the main elements of a problem (also called nodes). The goal consists
in calculating a vector of weights by considering the possible interdependence
among the nodes. In the present paper, the ANP application is conducted to
evaluate the set of six MS discussed in the previous section. The practical appli-
cation will be led by collecting preference judgments with the help of an expert
in the field. The ANP technique is implemented as described next [4].

• Representing the decision-making problem by means of a hierarchical struc-
ture, clearly characterising nodes. Once the structure has been fixed, relations
of interdependence among the nodes have to be formalised. At this stage, opin-
ions provided by the expert will be important to highlight and characterise
any possible relation.

• Building the influence matrix, in which relations identified during the previous
stage are formalised. The influence matrix is a squared block matrix, whose
size equals the total number of nodes and whose entries aij are equal to 1 if a
relation of dependence between element j over element i exists, 0 otherwise.
The influence matrix acts as a template for the non-zero elements of the
unweighted supermatrix described next.

• Building the unweighted supermatrix (following the non-zero-entry structure
of the influence matrix) by pairwise comparing those nodes for which a rela-
tion of dependence has been identified (aij = 1), and by calculating weights
for the corresponding elements, for example by making use of the AHP, as
we will propose in our application. The calculated weights will be the entries
of the unweighted supermatrix.

• Producing the weighted supermatrix by means of a normalisation procedure.
The sums of the columns of the weighted supermatrix will be equal to one
and, in such a way, the matrix gets stochastic.

• Obtaining the limit matrix by raising to powers the weighted supermatrix.
All the columns of the limit matrix are equal, and each one of them represents
the global priorities, which will have to be eventually normalised to produce
the sought information.
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• Formalising the final vectors of weights, which embody the interdependence
accumulated throughout the successive powering of the weighted supermatrix.
Broadly speaking, elements with associated higher values should have major
prominence in leading the decision-making process.

3.2 FCM for Analysing Dependence Relations

FCMs [5] enables to analyse complex decision-making problems by modelling
and understanding relationships of dependence coexisting within a set of ele-
ments [2]. Relations are represented by means of linguistic variables treated as
fuzzy numbers. Indirect effects and total effects (namely IE and TE) from ele-
ment Ci to element Cj are described by using such linguistic evaluations eij as
much, some and a lot, to be translated to fuzzy numbers. Figure 1 shows as an
example the FCM proposed in [5], whose network is used to formalise the next
equations.

Fig. 1. Example of FCM developed by Kosko [5]

C1 and C5 can be connected with each other by means of three possible
casual paths, which we herein indicate as P1(1 − 2 − 4 − 5), P2(1 − 3 − 5) and
P3(1−3−4−5). Tree indirect effects between C1 and C5 are associated to these
paths (IE1, IE2 and IE3):

IE1(C1, C5) = min{e12, e24, e45} = min{some, a lot, some} = some; (1)

IE2(C1, C5) = min{e13, e15} = min{much, a lot} = much; (2)
IE3(C1, C5) = min{e13, e34, e45} = min{much, some, some} = some. (3)

Furthermore, apart from evaluating indirect effects IE, the total effect TE
of element C1 over element C5 has to be taken into account. The total effect
corresponds to the maximum evaluation associated to the three indirect effects,
which in our case is:

TE(C1, C5) = max{IE1(C1, C5), IE2(C1, C5), IE3(C1, C5)} = much. (4)
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This result means that, on the whole, element C1 imparts much causality to
element C5. Linguistic evaluations are translated to fuzzy numbers, i.e. triangular
or trapezoidal fuzzy numbers, collected into input matrices and represented by
a map graphically showing the entity of the relations among elements.

4 Real Case Study of an Italian Airport

4.1 Context Description

The civil airport sector has gone through deep structural modifications and
developments over the last few decades. International airports no longer oper-
ate as mere providers of infrastructure services, but they can be considered as
actual complex business organisations, offering a wide plurality of services with
the consequent need of designing and implementing suitable cost management
strategies. To such an aim, airport managers dedicate plenty of efforts to the
diversification of income sources with the purpose of generating revenues from
many diverse activities. This aspect also refers to the aggressive competition
among international airports caused by such processes as liberalisation and pri-
vatisation, with consequent management of increasing passengers’ flows as well
as portfolio of routes and affiliated airlines.

Some preliminaries are herein reported to complement the context descrip-
tion according to definitions provided by regulatory sources, is necessary. An
aerodrome is an area with well-defined boundaries, dedicated to the such activ-
ities as landing, take-off and ground movement operations from both civil and
aviation military aircrafts, used for commercial, entertainment or training pur-
poses. An airport is an aerodrome provided with additional infrastructures that
are aimed at offering services for management of aircraft, passengers and goods.
An airport is hence a highly complex environment, where the organic organisa-
tion of multiple and varied activities is required from several companies that have
to simultaneously coexist and operate in the same physical area. The capability
for promptly responding to precise standards and practices aimed at minimis-
ing risks is clearly crucial, something that has to be verified by proper airport
certification processes.

We are herein analysing an Italian airport classified within the small cate-
gory, which registered a yearly flow of around 500.000 passengers in the period
antecedent to the outbreak of the COVID-19 pandemic. The company in charge
of the airport management has been operating for several years by integrating
as much as possible the administration of areas, infrastructures and plants, and
by taking special care of maintenance activities. Furthermore, business processes
are periodically reviewed in order to improve the quality of services, to optimise
costs, operational times and profits. The organisation has the characteristics of a
multi-business company, pushing towards continuous strategic consolidation by
means of two main criteria. First, the clear attribution of responsibility to the
various professional roles promotes a flexible structure, and second, staff activ-
ities have been centralised according to human resources management, mainte-
nance and development, administration, finance and control, environment, safety
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and security, and so on. A total of seventy-eight employees are distributed to the
related areas of competence. In this context, organisational aspects are clearly
fundamental and proper actions of organisational risk assessment need to be
implemented and continuously updated.

4.2 Results and Discussion

The HSE indicator tool previously presented in Sect. 2 has been analysed for the
airport of reference with the support of a safety specialist. The responsible of
the safety and security system in charge at the airport under consideration has
been involved in view of his wide experience on organisational issues. As already
illustrated, the present application implements an in-depth analysis of the HSE
indicator tool making use of the combination between ANP and FCM, prelim-
inary to the stage of employees’ interviews. We specify that interviews will be
led and recorded for producing the journal extension of the present work, where
we also plan to carry out comparisons with other methodological approaches
for organisational risk assessment. For example, methods proposed by Italian
regulation authorities such as the national institute for occupational accident
insurance (Italian acronym: INAIL) and/or the health and safety prevention
service of Verona Province may be object of future evaluation.

Fig. 2. Relationships linking dimensions and management standards



48 S. Carpitella and J. Izquierdo

We now proceed by first applying the ANP technique to calculate the impor-
tance weights of the six MS. This will be done by first building the structure
of interactions (shown in Fig. 2) formalising relations of dependence among MS
with respect to the three main dimensions of reference discussed in Sect. 2.

The unweighted supermatrix (Table 2) has been built by means of the influ-
ence relations and preferences established by the involved expert, who was asked
to pairwise compare the elements with identified relations of dependence.

Table 2. Unweighted supermatrix

Goal Cnt Cxt Aws MS1 MS2 MS3 MS4 MS5 MS6

Goal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cnt 0.500 0.000 0.700 0.250 0.000 0.000 0.400 0.400 0.000 0.000

Cxt 0.250 0.500 0.000 0.750 1.000 1.000 0.000 0.000 1.000 1.000

Aws 0.250 0.500 0.300 0.000 0.000 0.000 0.600 0.600 0.000 0.000

MS1 0.199 0.232 0.185 0.174 0.000 0.000 0.000 0.200 0.000 0.200

MS2 0.199 0.191 0.250 0.200 0.500 0.000 0.300 0.200 0.400 0.200

MS3 0.199 0.114 0.225 0.159 0.200 0.000 0.000 0.600 0.300 0.300

MS4 0.124 0.120 0.177 0.093 0.000 0.000 0.700 0.000 0.300 0.300

MS5 0.148 0.239 0.088 0.185 0.000 1.000 0.000 0.000 0.000 0.000

MS6 0.131 0.104 0.075 0.189 0.300 0.000 0.000 0.000 0.000 0.000

The weights obtained by AHP are reported in Table 2, whose columns have
been normalised for calculating the weighted supermatrix Table 3.

Table 3. Weighted supermatrix

Goal Cnt Cxt Aws MS1 MS2 MS3 MS4 MS5 MS6

Goal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cnt 0.250 0.000 0.350 0.125 0.000 0.000 0.200 0.200 0.000 0.000

Cxt 0.125 0.250 0.000 0.375 0.500 0.500 0.000 0.000 0.500 0.500

Aws 0.125 0.250 0.150 0.000 0.000 0.000 0.300 0.300 0.000 0.000

MS1 0.100 0.116 0.093 0.087 0.000 0.000 0.000 0.100 0.000 0.100

MS2 0.100 0.096 0.125 0.100 0.250 0.000 0.150 0.100 0.200 0.100

MS3 0.100 0.057 0.113 0.080 0.100 0.000 0.000 0.300 0.150 0.150

MS4 0.062 0.060 0.089 0.047 0.000 0.000 0.350 0.000 0.150 0.150

MS5 0.074 0.120 0.044 0.093 0.000 0.500 0.000 0.000 0.000 0.000

MS6 0.066 0.052 0.038 0.095 0.150 0.000 0.000 0.000 0.000 0.000

The limit matrix has been then processed by raising the weighted supermatrix
to successive powers until convergence. Table 4 reports the values of any of the



Preference-Based Assessment of Organisational Risk 49

columns of the limit matrix as well as the weights of MS in percentage. We can
observe that the context dimension (cxt) is, on the whole, the most critical in
terms of organisational risk management, having associated a weight of 47.56%.

Table 4. Dimensions and MS weights

Dim. Limit matrix value % weight WS Limit matrix value % weight

Cnt 2.55E+15 27.27% MS1 1.15E+15 12.28%

MS2 2.19E+15 23.48%

Cxt 4.44E+15 47.56% MS3 1.82E+15 19.52%

MS4 1.67E+15 17.87%

Aws 2.35E+15 25.17% MS5 1.81E+15 19.42%

MS6 6.93E+15 7.43%

However, when we look at the single standards, higher weights correspond to
MS2 (control) and MS3 (support), respectively referring to the content (cnt) and
context (cxt) dimensions. These results indicate that, instead of focusing just on
the most critical dimension and on the related MS of support and relationship,
it would be preferable to dedicate special attention to the control MS (together
with the support MS) for better managing stressful conditions of employees.

The last stage of the application consists in building the FCM for obtaining
the total effects associated to relevant items of evaluation (items from Table 1).
In such a way, specific aspects that can play a key role for promoting the efficient
management of the work-related stress risk can be formally highlighted. Such a
type of analysis offers opportunities for pursuing overall organisational optimisa-
tion. This is herein achieved by collecting fuzzy preference relations translating
evaluations of mutual influence between pairs of elements, again expressed by
the responsible of the safety and security system in charge as follows: VL (Very
Low), L (Low), M (Medium), H (High), VH (Very High). We are herein report-
ing the FCM related to the MS of control and support, that are the standards
with major significance resulting from the previous ANP application and in need
of being managed with priority. The procedure has been initialised by collecting
linguistic preferences from our expert, reported in Table 5.

These evaluations have been translated into trapezoidal fuzzy numbers and
successively defuzzified by following the procedure implemented in [11]. The
last column of Table 5 indicates the total effect of each item, obtained as the
maximum between the two values of indirect effects.

The corresponding defuzzified matrix is not herein reported because of the
limited space allowed. However, defuzzified values constitute the numerical val-
ues of input for building the FCM of Fig. 3, reproduced by iterating the Mental
Modeler software. The map shows 106 connections, identified for 15 items, an
average of 7.07 connections per item. Items CO2 and CO3 have associated eval-
uations of medium total effects for the control MS, while items SU7 and SU8

have associated evaluations of high total effects for the support MS.
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Table 5. Connection matrix

ID CO1 CO2 CO3 CO4 CO5 CO6 CO7 SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 IE TE

CO1 0 VH H VH VL VL L 0 0 0 0 0 0 0 0 VL L

CO2 VH 0 VH VH L L M 0 0 0 0 0 0 0 0 L M

CO3 VH VH 0 H M H M 0 M 0 0 H 0 0 0 M M

CO4 VH H M 0 L L M 0 0 0 0 0 0 0 0 L L

CO5 L M M L 0 VH L 0 0 0 0 VL 0 0 0 VL VL

CO6 L M M L VH 0 L 0 VH VH 0 0 0 0 0 L L

CO7 H H H H L L 0 0 0 0 0 0 0 0 0 L L

SU1 0 0 0 0 0 0 0 0 M H VH H H H H M M

SU2 0 0 L 0 0 VH 0 M 0 L L M L L M L M

SU3 0 0 0 0 0 VH 0 H M 0 H VH M H VH M M

SU4 0 0 0 0 0 0 0 VH M M 0 M VH VH H M M

SU5 0 0 H 0 0 VL 0 H 0 VH H 0 H M VH VL VL

SU6 0 0 0 0 0 0 0 VH 0 M VH H 0 VH M M M

SU7 0 0 0 0 0 0 0 H VH H VH H H 0 H H H

SU8 0 0 0 0 0 0 0 H H VH H VH H VH 0 H H

IE L M L L VL VL L M M L L VL L L M – –

Fig. 3. FCM showing relationships among items of control and support MS

From a practical point of view, these results indicate that stressful conditions
concerning standards of control would be realistically reduced if workers received
less pressures concerning the rhythm and the organisation of their tasks. Further-
more, support standards would benefit if more attention was paid to such aspects
as moral support and encouragement. FCM demonstrates as the discussed fac-
tors are mainly related with all the others, so that their priority management
would imply general enhancement of working conditions. By implementing the
procedure based on ANP and FCM is then clear that specific aspects can be iden-
tified and improved for managing work-related stress and for broadly reducing
organisational risk at the airport herein presented.
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5 Conclusions and Future Research

This research proposes a methodological integration between ANP and FCM as
a novel application to the field of organisational risk management in complex
business environments. First, ANP is helpful to establish priority organisational
standards by analysing relations of dependence among MS. And second, FCM
can highlight specific factors that influence global stressful conditions by effec-
tively managing uncertainty. We designed an improved version of the HSE model
for work-related stress risk evaluation. Our framework is capable of unveiling
those items of the indicator tool that are in need of prominent attention on the
basis of mutual relations of influence. Also, our model is less generic than the
HSE tool, since it can be personalised according to the specific context of ref-
erence by involving inner expert preferences. Our approach was applied to an
Italian airport company with meaningful outcome.

Future lines of work will aim to customise even more the tool of work-related
analysis by referring to specific homogeneous groups of workers who share similar
tasks, being then subjected to risks of similar nature. A decision support system
elaborating answers provided by workers may be implemented to support in
analysing personal perceptions of workers about significant stressful conditions.
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Abstract. The innovation capability evaluation is in fact a multi-criteria
decision-making problem that requires aggregating multiple innovation
management practices into a composite innovation capability index. In
such multi-criteria decision-making, assigning appropriate weights to cri-
teria is a critical and difficult task. However, the literature related to inno-
vation capability evaluation mainly used the weighting methods based on
subjective expert opinions. These conventional methods have problems
when dealing with complex multi-criteria data. This study aims to develop
a method for automatically determining the weights of multiple innova-
tion management practices for evaluating innovation capability in bank-
ing based on data envelopment analysis (DEA) model without input. The
results will show the typical importance weights of innovation manage-
ment practices for each bank which are then used to derive an aggregated
index objectively representing the innovation capability level of each bank.
A case study of three banks in Vietnam was adopted from the prior study
to show the applicability of the proposed method.

Keywords: Data-driven weighting · Data envelopment analysis
(DEA) · Innovation capability · Banking

1 Introduction

The fourth industrial revolution with digitization and the explosion of many new
technologies such as artificial intelligence, big data, and cloud computing brings
great opportunities for the development in the production and business processes.
Organizations across sectors have been putting many efforts into exploiting new
technologies to innovate their products/services in order to survive in the digital
economy. The pivotal role of innovation in the competitive advantage and suc-
cess of a company is firmly confirmed in the literature [1,2]. According to [3], a
company can only effectively innovate if it has innovation capability (IC). IC is a
significant determinant of continuous innovations to respond to the dynamic mar-
ket environment and also firm performance [4,5]. Therefore, the IC evaluation is
a serious problem that organizations must consider to comprehend their IC levels
and find out important areas in the innovation management process that should
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be focused on to improve the IC level for achieving better innovative performance
as well as higher business performance.

Because IC is a multidimensional process [6,7], the IC evaluation can be
considered as a multi-criteria decision-making (MCDM) problem which requires
taking into account multiple criteria (in this study, multiple innovation man-
agement practices (IMPs)). Some of the IMPs used for measuring IC in the
prior studies are strategic planning [8,9], organization [10,11], resource manage-
ment [12,13], technology management [14,15], research and development (R&D)
[16,17], knowledge management [13,18], network and collaboration [8,19]. In
MCDM, weighting and aggregating of criteria are major tasks in developing
composite indicators [20]. Especially, different sets of weights lead to different
ranking outcomes, so the weighting method should be fair. To derive an overall
evaluation on the IC of a company, we first need to determine the weights of
different IMPs for each company that are then used for computing the composite
innovation capability index (CICI) of that company.

In the literature on the IC evaluation, the widely used weighting methods
have been relied on subjective opinions from experts such as the analytic hier-
archy process (AHP) [10], fuzzy measures [17,21]. However, it is difficult, time-
consuming, and even costly to get such information from experts, especially in
case there are complex and changing multiple criteria. One of the common sub-
jective weighting methods is the AHP which requires subjective judgments of
experts to make pairwise comparisons among criteria from which the weights of
criteria are obtained. When the number of criteria is high, the experts may face
difficulties to deal with many comparisons, sometime they may be confused. It
is the reason why the weighting methods that require external or prior infor-
mation was criticized by [22]. Moreover, the prior studies only applied the same
set of weights for different companies. This may cause disagreement among the
companies because each company may have its own business strategies that lead
to different preferences in developing particular IMPs. To overcome the short-
comings of subjective weighting methods, further consideration can be placed on
developing objective weighting methods that can endogenously drive the weights
of criteria based on data without referring to any prior or external information.
Up to now, far too little attention has been paid to applying data-driven weight-
ing methods in the IC evaluation. This indicates a need to develop a weighting
method based on the collected data of IMPs to be applied in evaluating the IC
of companies. Several data-driven weighting methods such as DEA, or Genetic
Algorithm (GA) can be considered.

The purpose of this paper is to develop a data-driven weighting method
based on DEA to determine the typical set of weights of IMPs for each bank
or the IMPs focused/ignored by each bank and thereby compute an overall IC
evaluation (CICI) for each bank based on aggregating multiple IMPs and sub-
IMPs. DEA is one of the popular methods for developing composite indices in
MCDM, it can select the best possible weights of IMPs for each bank by giving
higher weights for better IMPs and therefore give objective evaluations on the
IC of banks. To illustrate the applicability and validity of the proposed method,
the data of IMPs and sub-IMPs on a case study of three banks in Vietnam
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was taken from the literature [23]. The data on sub-IMPs were first averaged to
obtain the scores of IMPs. The data-driven weighting method developed based on
DEA model was then employed to determine the weights of IMPs for each bank
that were finally used to aggregate IMPs into a composite index (CICI). The
research findings could be used as a basis for benchmarking the most innovative
banks and potentially support bank managers in proposing effective strategies
for properly allocating innovation resources in order to upgrade their IC and
achieve better innovative performance.

This study makes two contributions to the innovation literature as well as
the practices of innovation management. First, this study can be considered
as one of the first attempts that apply a data-driven weighting method (DEA
without input) for evaluating IC. Second, this study will contribute to a deeper
understanding of the important IMPs that each bank is focusing on and the
corresponding IC levels of banks, based on which some useful lessons can be
drawn for innovation management in banking.

The remaining part of this paper proceeds as follows: Sect. 2 reviews theories
of IC evaluation and DEA models. Section 3 is concerned with the proposed
method by this study. The empirical results of using the proposed IC evaluation
method in the case study of three banks in Vietnam are displayed in Sect. 4.
Section 5 presents the conclusions of this study.

2 Literature Review

2.1 IC Evaluation

Innovation can be defined as beneficial changes in organizations to create new or
improved products/services and thereby to improve business performance [24–
27]. Successful innovations require a wide combination of many different assets,
resources, and capabilities that facilitate the development of new or improved
products/services to better satisfy market needs (also known as IC) [16,28–31].
According to [32], IC refers to the capability of utilizing innovation strategies,
technological processes, and innovative behaviors. Lawson and Samson proposed
seven constructs in developing IC including strategy, competence, creative idea,
intelligence, culture, organization, and technology [14]. As IC is a complex con-
cept that is multi-dimensional and impossible to be measured by a single dimen-
sion [33], multiple IMPs must be considered to evaluate the IC of a company.

On account of the role of improving IC for successful innovation, IC evalua-
tion has become one of the dominant streams in the innovation research litera-
ture. The common approach for evaluating IC in the previous works was based on
multiple IMPs to comprehensively apprehend all necessary capabilities for orga-
nizations to effectively innovate. However, particular authors may adapt differ-
ent IMPs according to the research contexts and also used different techniques
to aggregate all IMPs into a single index showing the IC level of a firm. Wang
et al. [17] applied a non-additive measure and fuzzy integral method to evalu-
ate the overall performance of technological IC in Taiwanese hi-tech companies.
Five factors including innovation-decision, manufacturing, capital, R&D, and
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marketing capabilities with various qualitative and quantitative criteria were con-
sidered in their research. Cheng and Lin [21] proposed a fuzzy expansion of the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to
measure the technological IC of Taiwanese printed circuit board firms taking into
account seven criteria comprising planning and commitment of the management,
knowledge and skills, R&D, marketing, information and communication, opera-
tion, and external environment. Wang and Chang [10] presented a hierarchical
system to diagnose the innovation value of hi-tech innovation projects considering
five main dimensions (strategy innovation, organization innovation, resource inno-
vation, product innovation, and process innovation) and their fifteen secondary
dimensions. By adopting the AHP, the main dimensions are found in the descend-
ing order of importance to the firm’s innovation performance: process innova-
tion, resources innovation, product innovation, strategic innovation, and organi-
zational innovation. Boly et al. [9] adopted a multi-criteria approach and value test
method to measure the IC of French small and medium-sized manufacturing com-
panies based on 15 IMPs: strategies management, organization, moral support,
process improvement, knowledge management, competence management, creativ-
ity, interactive learning, design, project management, project portfolio manage-
ment, R&D, technology management, customer relationship management, and
network management. The evaluated companies were then categorized into four
innovative groups (proactive, preactive, reactive, passive) based on their IC levels.

The literature review reveals that many attempts have been made to evaluate
IC in manufacturing sectors [9,17,21]. However, there are limited numbers of stud-
ies that focus on IC evaluation in the service sector, particularly in the banking sec-
tor. In fact, banks are also keenly focusing on innovating their services by adopt-
ing new technologies to promptly deliver their services, improve banking experi-
ences for customers, and thereby stay competitive in the market [34]. Innovation
becomes a core business value of banks nowadays, it helps banks to explore new
opportunities for stable development, and long-term success [35,36]. It is widely
approved that innovation in each sector has different unique characteristics [37];
therefore, banks cannot apply the same innovation management policies as man-
ufacturing sectors when developing their new services. Thus, there is an emerging
need for a study dedicated to evaluating the IC of banks. In an effort to fill this gap,
this study will contribute a method for IC evaluation in banking by investigating
the importance weights of IMPs in the banking context as well as determining the
overall IC level of banks to be evaluated.

2.2 DEA Models

DEA, proposed by [38], is used to measure the efficiency of decision-making units
(DMUs) that is obtained as the maximum of a ratio of a weighted sum of outputs
to a weighted sum of inputs. For each particular DMU, the weights are chosen
to maximize its efficiency. For example, to calculate the efficiency of a DMU k
in a set of all DMUs to be measured K:

Maximize: ek =
∑n

i=1 wiyik∑m
j=1 ujxjk

(1)
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subject to

ek′ =
∑n

i=1 wiyik′
∑m

j=1 ujxjk′
≤ 1; ∀k′ ∈ K

wi, uj ≥ 0; i = 1, ..., n; j = 1, ...,m

where ek and ek′ are the efficiency of DMU k and DMU k′, k and k′ ∈ K; n
and m are the number of outputs and the number of inputs, respectively; wi and
uj are the weight of the i-th output (i = 1, ..., n) and the weight of the j-th input
(j = 1, ...,m), respectively; yik′ is the value of the i-th output of DMU k′; xjk′

is the value of the j-th output of DMU k′. The maximization (Eq. (1)) selects
the most favorable set of weights for the DMU k whose score is being optimized
while the constraints allow. To compute the efficiency of the other DMUs, it just
needs to change what to maximize in Eq. (1). The advantage of the DEA model
is that it can endogenously derive the different preference profiles for each DMU
and thus provide a more objective evaluation for DMUs than the approaches
that determine weights based on subjective information from experts.

DEA has become one of the commonly used techniques that can resolve the
subjectivity problem in developing composite indicators. Although the original
DEA requires outputs and inputs to be specified, several authors have proposed
DEA-like models to solve the problems that there is no input. For instance, Zhou
et al. [39] presented the best practice model in which a DEA-like model with-
out input was used to obtain the different weights for each DMU. Their approach
allows each DMU to pick its own most favorable weights to maximize its aggre-
gated score. However, extreme weighting of sub-indicators may occur, so this app-
roach becomes unrealistic and comes with low discriminating power. To alleviate
this shortcoming, Hatefi and Torabi [40] proposed a common weights approach,
the same weights are applied to compute scores for all DMUs, to improve discrim-
inating power. The authors used an optimization model to select the weights that
minimize the largest deviation among the scores’ deviations from 1. This means
the selected weights will maximize the lowest score. Thus, this approach has a
drawback as the worst performing DMU controls the final weights.

3 Data-Driven Weighting Method Based on DEA Model

In this study, a data-driven weighting method based on DEA model is proposed
to compute composite indices representing IC levels of banks (CICI). However,
in our formulation, the proposed DEA model has no input and several revisions
in constraint conditions compared with the original DEA model.

The IC evaluation in banking follows the two-level hierarchy: the upper level
contains IMPs and the lower level comprises the sub-IMPs related to each IMP in
the upper level. The sub-IMPs are assessed using a five-point Likert scale (from
1-very bad to 5-very good) to show how efficiently those practices are achieved at
the evaluated banks. Accordingly, there are two levels of aggregation to calculate
the CICI of these banks. The first level of aggregation (lower level aggregation)
is to aggregate sub-IMPs of an IMP to determine the development degree of this
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IMP at each bank. The second level of aggregation (upper level aggregation)
aims to aggregate IMPs to derive the overall IC of each bank (CICI).

3.1 Lower Level Aggregation

Let B be the set of all banks to be evaluated. Considering a bank b ∈ B, the
development degree of IMP i at bank b is determined as follows:

x̄
(b)
i =

1
Ni

Ni∑

j=1

x
(b)
ij , i ∈ {1, ..., N} (2)

where x̄
(b)
i is the development degree of IMP i at bank b, x̄

(b)
i ∈ [1, 5]; x

(b)
ij is

the score of the j-th sub-IMP of the i-th IMP of bank b, x
(b)
ij ∈ [1, 5]; Ni is the

number of sub-IMPs associated with IMP i; N is the number of IMPs.
According to Eq. (2), the development degree of an IMP is obtained by aver-

aging the scores of all sub-IMPs related to this IMP, in other words, the weights
of sub-IMPs are equal. Equal weighting is applied because the relation between
IMPs and their measurement items (sub-IMPs) is not causal [9]. Moreover, we
prioritize to determine the different weights of IMPs in the upper level of aggre-
gation to specify critical IMPs that much decide the IC of banks.

3.2 Upper Level Aggregation

For the upper level aggregation, we first determine the optimal set of weights
of IMPs for each bank so that it will maximize the CICI of the bank being
evaluated. The optimal weights for each bank is calculated based on the data of
IMPs obtained in the lower level aggregation.

Considering a bank b ∈ B (B is the set of all banks to be evaluated), let
W (b) = {w

(b)
1 , . . . , w

(b)
N } be the optimal set of weights for maximizing the CICI

of bank b, CICI(b) ∈ [1, 5]. The optimal set of weights for bank b is determined
by solving the optimization problem below:

Maximize CICI(b) =
N∑

i=1

x̄
(b)
i × w

(b)
i (3)

subject to

0 ≤ w
(b)
i ≤ 1 and

N∑

i=1

w
(b)
i = 1, i ∈ {1, ..., N} (4)

where x̄
(b)
i is the development degree of IMP i at bank b, x̄

(b)
i ∈ [1, 5]; w

(b)
i

is the weight of IMP i in the optimal set of weights W (b) for bank b; N is the
number of IMPs. The above optimization problem is converted into a linear
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programming problem that can be solved by a linear programming solver (such
as Scipy package for Python).

It is worth noting that the most ideal CICI value that a bank can reach is 5,
but in practice, the CICI values are usually lower than 5. Therefore, we set the
threshold of CICI as 5 − ε, ε ∈ [0, 4]. One more constraint condition is added
to solve the above optimization problem: The CICI values of all banks in the
set B must be equal or lower than 5 − ε when applying the optimal weights for
bank b being optimized.

N∑

i=1

x̄
(b′)
i × w

(b)
i ≤ 5 − ε; ε ∈ [0, 4]; ∀b′ ∈ B (5)

It is clear that, if the value of ε is low, extreme weighting may occur with
higher weights for better IMPs, which leads to a high standard deviation of
weight values. When ε is increased, the standard deviation of weight values will
be reduced. At the standard deviation of weight values equals 0, equal weighting
happens. The selection of ε is optional, depending on the evaluator’s preference. ε
can be chosen so that the corresponding standard deviation of weight values is in
the range between its highest value and its lowest value. If the evaluator prefers
the weights toward extreme weighting to clearly show the best practices of each
bank, ε is selected at the corresponding standard deviation of weight values near
its highest value. In contrast, in case the evaluator prefers the weights toward
equal weighting, ε is chosen so that the corresponding standard deviation of
weight values is close to its lowest value. In this study, we tend to choose the
standard deviation of weight values in the middle area of its possible range to
balance extreme weighting and equal weighting.

The optimal set of weights for a bank can disclose which IMPs that this bank
is focusing on. By comparing with other banks, we can explore the strengths and
weaknesses of each bank on different IMPs.

4 An Illustrated Example

This example is adopted from the research of [23] on evaluating the IC of three
banks in Vietnam. The concept of IC in their research was defined based on the
Pareto analysis - a statistical technique to select the major tasks which the man-
agement should put more effort into. As a result, 11 IMPs were chosen as critical
practices in innovation management process: managing strategy (MS), manag-
ing resource (MR), organizing (OR), managing idea (MI), improving process
(IP), marketing (MA), R&D (RD), interactive learning (IL), managing port-
folio (MP), managing knowledge (MK), and managing technology (MT). The
44 measurement items/sub-IMPs measuring the 11 IMPs were adapted from
[8–13,15,16,19,41–47], which ensures the reliability and validity of the measure-
ment scale as they were verified through peer-reviewed previous research (see
Table 1). In their data collection [23], five experts in banking fields individually
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responded to the questionnaire to rate the development degrees of sub-IMPs in
the three evaluated banks, enormously called Bank a, Bank b, and Bank c, using
a five-point Likert-scale ranging from 1 (very bad) to 5 (very good). The final
scores of 44 sub-IMPs for the three banks (shown in Table 2) were obtained by
averaging the assessment scores of the five experts.

Table 1. IMPs and sub-IMPs

No IMPs Sub-IMPs

1 MS MS1: Set clear innovation goals in business strategies

MS2: Widely disseminate innovation strategies throughout the bank

MS3: Managers dedicatedly encourage innovation practices

MS4: Effective use methods supporting decision making to create business strategies

2 MR MR1: Provide proper resources for innovation

MR2: Manage adaptive and diverse capital sources

MR3: Concentrate on employing talented employees

MR4: Regularly schedule training programs for providing necessary knowledge to develop

new services

3 OR OR1: Organizational culture and atmosphere assist innovative activities

OR2: Reward employees for their innovation achievements

OR3: Tolerate failures in doing something new

OR4: Develop interactive communication systems among employees in the bank

4 MI MI1: Have a validated process to gather ideas from various divisions in the bank

MI2: Collaborate with outside organizations for idea development

MI3: Have a quick procedure to evaluate new ideas

MI4: Use a test markets before launching new services

5 IP IP1: Structure innovation processes

IP2: Assign facilitators supporting innovation activities

IP3: Schedule regular meetings to inspect innovation activities

IP4: Managers usually examine the development of innovation projects

6 MA MA1: Keep great associations with clients

MA2: Have capable sales employees

MA3: Evaluate the levels of customer satisfaction after sales

MA4: Create a positive brand image in clients’ minds

7 RD RD1: Structure R&D programs

RD2: Upgrade funds for R&D activities

RD3: Enhance cooperation across different functional departments

RD4: Hold regular meetings to discuss R&D subjects

8 IL IL1: Boost interactive learning activities

IL2: Assign managers who are responsible for interactive learning activities

IL3: Hole meetings to evaluate the completed innovation projects

IL4: Disseminate experiences obtained from past projects all through the bank

9 MP MP1: Business strategies fit with investment portfolios

MP2: Analyze all proceeding projects based on multiple criteria

MP3: Have periodic reports on the allocation of resources to projects

MP4: Assure the balance between long-term and short-term, and high-risk and low-risk

projects

10 MK MK1: Identify and update employees’ knowledge to satisfy job requirements

MK2: Encourage knowledge sharing at work

MK3: Classify and store knowledge for employees to easily access

MK4: Adapt knowledge dissemination methods

11 MT MT1: Increase the integration of new technologies into banking products as a key success

factor

MT2: Plan scenarios to predict the trend of new technologies

MT3: Capture the technologies competitors are using

MT4: Technologies acquired from the external fit the infrastructures and operations of the

bank
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Table 2. Scores of 44 sub-IMPs for three banks in Vietnam

Bank MS1 MS2 MS3 MS4 MR1 MR2 MR3 MR4 OR1 OR2 OR3 OR4 MI1 MI2 MI3 MI4 IP1 vIP2 IP3 IP4 MA1 MA2

a 4.4 4.2 3.8 4.0 3.4 4.2 4.0 3.4 3.8 4.0 3.6 3.4 3.2 3.4 3.2 3.4 3.4 3.8 3.8 3.6 4.0 3.8

b 4.6 4.4 4.4 4.4 4.0 4.0 4.6 4.2 4.4 4.0 3.6 4.2 3.8 4.0 3.8 4.2 4.2 4.2 4.2 4.2 4.6 4.2

c 4.0 4.0 4.8 4.4 4.0 4.8 4.4 4.2 3.4 4.2 3.4 4.0 4.2 3.6 3.8 3.6 4.2 4.0 4.0 3.8 4.4 3.6

Bank MA3 MA4 RD1 RD2 RD3 RD4 IL1 IL2 IL3 IL4 MP1 MP2 MP3 MP4 MK1 MK2 MK3 MK4 MT1 MT2 MT3 MT4

a 3.6 3.8 3.6 3.8 3.6 3.6 4.0 3.4 3.6 3.2 4.2 3.4 3.8 3.8 4.6 3.8 3.8 4.6 4.4 3.6 3.8 3.4

b 4.2 4.4 4.4 4.0 4.4 4.2 4.0 4.0 4.2 4.0 4.4 4.2 4.2 4.0 4.0 4.2 4.0 4.0 4.2 4.2 4.4 4.2

c 3.8 4.2 4.0 3.8 3.6 3.6 4.2 4.2 4.2 4.0 4.4 4.4 4.0 4.2 4.2 4.2 4.0 3.8 3.8 3.8 3.8 4.2

The IC evaluation for the three banks is composed of two levels of aggrega-
tions as shown in Fig. 1. In the lower level aggregation, the 4 sub-IMPs associated
with each IMP at each bank are aggregated. Eq. (2) with the values of Table 3
gives the average scores of the 11 IMPs for the three banks in the sample.

To aggregate the 11 IMPs in the upper level, we first need to determine the
optimal weights of the 11 IMPs for each of the three banks by solving model (3)
under the constraints (4) and (5). ε in the constraints (5) was run with the initial
value of 0 and the increased step size of 0.05. Figure 2 shows different values
of ε and corresponding standard deviations of weight values. In this study, we
chose ε = 0.85 for Bank a, ε = 0.65 for Bank b, and ε = 0.70 for Bank c so
that the corresponding standard deviations of weight values are in the middle
area of its possible range. Table 4 displays the optimal set of weights for each
bank at the chosen ε. As a final result, the CICI values of Bank a, Bank b,
and Bank c were determined to be 4.15, 4.35, and 4.30, respectively using each
bank’s optimal sets of weights. According to that, Bank b is the most innovative
bank among the three evaluated bank. This results were verified by comparing
with the ranking of the same three banks based on subjective models in [23].

Goal CICI

MS OR MI IP MA RD IL MP MK MT

....

Upper level
aggregation

Lower level
aggregation

MR

MS1 MS3 MS4 MT1 MT2 MT3 MT4MS2 MA1 MA3 MA4MA2 ....

Fig. 1. Hierarchical structure of IMPs and sub-IMPs for evaluating IC in banking

Table 3. Average scores of 11 IMPs for three banks in Vietnam

MS MR OR MI IP MA RD IL MP MK MT

Bank a 4.10 3.75 3.70 3.30 3.65 3.80 3.65 3.55 3.80 4.20 3.80

Bank b 4.45 4.20 4.05 3.95 4.20 4.35 4.25 4.05 4.20 4.05 4.25

Bank c 4.30 4.35 3.75 3.80 4.00 4.00 3.75 4.15 4.25 4.05 3.90
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Fig. 2. Different ε values and corresponding standard deviations of weight values

Table 4. Optimal weights and CICI for each bank

wMS wMR wOR wMI wIP wMA wRD wIL wMP wMK wMT CICI

W (a)(ε = 0.85) 0.051 0.009 0.011 0.006 0.008 0.013 0.009 0.007 0.013 0.859 0.014 CICI(a) = 4.15

W (b)(ε = 0.65) 0.603 0.036 0.029 0.022 0.043 0.073 0.055 0.024 0.038 0.024 0.052 CICI(b) = 4.35

W (c)(ε = 0.70) 0.072 0.771 0.008 0.011 0.016 0.014 0.007 0.028 0.042 0.02 0.011 CICI(c) = 4.30

Fig. 3. Weights of IMPs in three banks in Vietnam
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5 Conclusion

This study proposes a data-driven weighting method based on DEA to solve a
multi-criteria problem that is then applied in evaluating the IC of the three banks
in Vietnam. The proposed method can determine the optimal set of weights for
maximizing each bank’s IC. This way contributes an objective evaluation or
ranking approach on IC without bias toward any banks. Based on the optimal
set of weights of each bank, we can point out which IMPs each bank is focusing
on (strengths) or ignoring (weaknesses). Particularly, by applying the proposed
method in the case of the three banks in Vietnam, we found distinctive IMPs of
each bank as follows:

– Bank a: This bank was found to pay attention to only two IMPs (MK “man-
aging knowledge” and MS “managing strategies”) while almost neglecting
the rest of IMPs. It must be noted that most IMPs in Bank a have the least
implemented levels among the three banks, except for MK. Generally, the IC
level of Bank a is lower than the other two banks.

– Bank b: Except for MI “managing ideas” where its score is a bit lower than
other IMPs, Bank b widely develops other IMPs, especially focuses on manag-
ing strategies, marketing, R&D, managing technologies, and improving pro-
cesses. Most IMPs have the implemented levels generally higher than the
other banks. Globally, this bank may be considered as being most seriously
pursuing innovation activities.

– Bank c: This bank puts more efforts into managing resources, managing
strategies, and managing portfolio while keeping good levels on improving
processes, marketing, interactive learning, and managing knowledge. It is at
low levels in organizing, managing ideas, R&D, and managing technologies.

– It can also be noticed that all of the three banks, specially the most inno-
vative bank (Bank b) give prominence to managing strategies in innovation
management, which proves that strategies management is an important prac-
tice in innovation management in Vietnamese banks. The above-mentioned
points are graphically described in Fig. 3.

The research results also reveal the ranking of the three banks based on
their IC. In details, Bank b is the most innovative bank among the three banks,
the next is Bank c, and Bank a was ranked last. The findings provide a basis
for bank managers to improve their innovation management policies to upgrade
their IC. Specifically, to increase the IC level, a bank can strengthen its IC by
prioritizing to allocate more resources into the most important IMPs that have
the strongest weights such as strategies management, marketing, and R&D as
the most innovative bank (Bank b) does.

This study is limited by the a small sample size with only three banks in
Vietnam. The future study should use a bigger sample size to establish a greater
degree of applicability and validity of the proposed method. In addition, the
discriminating power among the evaluated banks is still low (in case of comparing
the IC levels between Bank b and Bank c). Considerably more work will need
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to be done to develop other methods that can create a more distinguishable
ranking, for example using multi-objective approach.
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Abstract. Intervals and fuzzy numbers have been introduced to the
analytic hierarchy process (AHP) reflecting the vagueness of the deci-
sion maker. In this paper, we propose a fuzzy AHP approach to multi-
ple criteria decision analysis. First we investigate the normalized fuzzy
weight vector estimation problem under a given fuzzy pairwise compar-
ison matrix (PCM). After reviewing a previous approach to the estima-
tion problem, we show the non-uniqueness of the normalized fuzzy weight
vector associated with a consistent fuzzy PCM. Those normalized fuzzy
weight vectors associated with the same consistent fuzzy PCM are at the
same distance from the given PCM. Therefore, we require that all such
fuzzy weight vectors should be the solutions to the estimation problem.
As the previous estimation method does not satisfy this requirement, the
estimation method is modified so that all such normalized fuzzy weight
vectors are estimated. Then a decision analysis with all such normalized
fuzzy weight vectors is proposed. The stability of the best alternative
can be scrutable as the range of alternative orderings is analyzed by the
proposed approach.

Keywords: AHP · Triangular fuzzy number · Non-uniqueness ·
Maximin rule

1 Introduction

The analytic hierarchy process (AHP) [1] is one of the most widely used method
in multiple criteria decision analysis. AHP has also been studied for various
applications. In AHP, the decision maker makes pairwise comparisons between
alternatives/criteria. In a pairwise comparison, the relative importance is given
as the evaluation value. The conventional AHP requires decision-makers to make
precise judgments. However, it is difficult to obtain precise judgments from deci-
sion makers because their judgments often contain vagueness. In order to deal
with this problem, a method of representing relative importance by interval val-
ues [2,8] and fuzzy numbers [3,7] has been considered. In those methods, we
obtain pairwise comparison matrices with intervals and fuzzy numbers.
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In this paper, we focus on the case when the components of pairwise compari-
son matrices are fuzzy numbers, i.e., a fuzzy AHP. In the fuzzy AHP, the method
for estimating priority weights from fuzzy pairwise comparisons are proposed.
An estimation method of crisp weights from a fuzzy pairwise comparison matrix
based on the fuzzy preference programming method has been proposed in [7].
On the other hand, a method for estimating the normalized fuzzy weight vector
from a fuzzy pairwise comparison matrix by solving the linear goal programming
model has been proposed in [3].

In this paper, we investigate the problem estimating the normalized fuzzy
weight vector from a fuzzy pairwise comparison matrix. We consider the case
where all fuzzy components of both the pairwise comparison matrix and the
weight vector are given by triangular fuzzy numbers. Namely, we assume that the
decision maker expresses her/his evaluation of each relative importance of the i-
th criterion/alternative to the j-th one by a triangular fuzzy number. Therefore,
we obtain a triangular fuzzy pairwise comparison matrix (TFPCM). As the
relative importance is given by a triangular fuzzy number, the fuzzy weights are
assumed to be triangular fuzzy numbers so that their ratios can approximate
well the triangular fuzzy number components of TFPCM.

Under this situation, an estimation method of a normalized triangular fuzzy
weight vector has already been proposed. However, we consider that it is not a
unique solution. From the solution, we obtain a consistent TFPCM by calculating
ratios between the obtained fuzzy weights. We show that the solution associated
with the consistent TFPCM is not unique. From this fact, we consider that all
normalized triangular fuzzy weight vectors associated with a consistent TFPCM
should be solutions to the estimated problem, because the appropriateness of
any of those solutions is same because it can be defined by the distance of the
consistent TFPCM from the given one. Then we propose a method obtaining all
solutions to the estimation problem. It is shown that those solutions are usually
represented by a parameter and a normalized fuzzy weight vector. Then the
decision analysis based on those solutions of the normalized fuzzy weight vector
estimation problem is proposed. By this decision analysis, the range of alternative
orderings is analyzed. Through this analysis, the stability of the decision maker’s
preference as well as conceivable best solutions can be scrutable.

This paper is organized as follows. In Sect. 2, we formally define a TFPCM
and explain briefly a conventional method for estimating a normalized trian-
gular fuzzy weight vector from a given TFPCM. In Sect. 3, we describe the
non-uniqueness of the solution of the estimation problem and propose a method
for obtaining all solutions from the normalized triangular fuzzy weight vector
obtained by the conventional method. In Sect. 4, we calculate the total utility
value of each alternative as a fuzzy number. In Sect. 5, a numerical example
is given to demonstrate the usefulness of the proposed method. In Sect. 6, the
concluding remarks are given.
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2 The Previous Fuzzy AHP

In the AHP, multiple criteria decision-making problem is structured in a hier-
archy of criteria and alternatives. Then, the criteria and alternatives are eval-
uated in each level of hierarchy. In this paper, we assume that the evaluation
values of the alternatives for each criterion are given by the decision maker.
The evaluation value for each criterion is given by the decision maker through
pairwise comparisons between the criteria. From these pairwise comparison, we
can obtain pairwise comparison matrices (PCMs). In the AHP, a weight vector
w = (w1, w2, . . . , wn)T for criteria is estimated from a PCM A = (aij)n×n. In the
conventional AHP, (i, j)-th component aij of PCM A shows the relative impor-
tance of the i-th criterion over the j-th criterion. If human judgments are precise,
aij is equal to wi/wj , i, j ∈ N = {1, 2, . . . , n}. However, due to the vagueness
of decision maker’s judgements, we may assume aij ≈ wi/wj , i, j ∈ N . Then,
weights wi, i ∈ N are estimated by minimizing the sum of deviation between aij

and wi/wj , i, j ∈ N .
On the other hand, the method that reflects the vagueness of the decision

maker’s evaluation is to change the evaluation value of each element of the PCM
to a fuzzy number, and to obtain weights from these evaluation values. This
approach is called fuzzy AHP. In the fuzzy AHP, we estimate the fuzzy weight
vector W̃ = (w̃1, w̃2, . . . w̃n)T from the fuzzy PCM Ã. In this paper, we mainly
treat the case of triangular fuzzy numbers in fuzzy AHP.

Firstly, we consider a triangular fuzzy pairwise comparison matrix (TFPCM):

Ã = (ãij)n×n =

⎡
⎢⎣

1 · · · (aL
1n, aM

1n, aR
1n)

... (aL
ij , a

M
ij , aR

ij)
...

(aL
n1, a

M
n1, a

R
n1) · · · 1

⎤
⎥⎦ , (1)

where aL
ij = 1/aR

ji, aM
ij = 1/aM

ji , aR
ij = 1/aL

ji, i, j ∈ N(i �= j). The TFPCM Ã can
be split into three crisp matrices:

AL =

⎡
⎢⎣

1 · · · aL
1n

... aL
ij

...
aL

n1 · · · 1

⎤
⎥⎦ , AM =

⎡
⎢⎣

1 · · · aM
1n

... aM
ij

...
aM

n1 · · · 1

⎤
⎥⎦ , AR =

⎡
⎢⎣

1 · · · aR
1n

... aR
ij

...
aR

n1 · · · 1

⎤
⎥⎦ . (2)

As with the crisp PCM, each element of the TFPCM indicates the relative
importance between criteria. If the TFPCM is precise, then the evaluation value
of the paired comparison and the ratio of the fuzzy weights are equivalent, in
short, ãij = (aL

ij , a
M
ij , aR

ij) = w̃i/w̃j = (wL
i /wR

j , wM
i /wM

j , wR
i /wL

j ), i, j ∈ N but
j �= i, where triangular fuzzy weights w̃i = (wL

i , wM
i , wR

i ), i ∈ N . From these
equations, we can obtain the following equations:

ALWR = WR + (n − 1)WL, (3)
ARWL = WL + (n − 1)WR, (4)

AMWM = nWM, (5)
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where WL = (wL
1 , . . . , wL

n)T, WM = (wM
1 , . . . , wM

n )T, WR = (wR
1 , . . . , wR

n )T. How-
ever, even with fuzzy AHP, it is difficult to obtain a precise fuzzy PCM due to
the vagueness of the decision maker’s evaluation. In other words, Eqs. (3)–(5)
are often not hold. Therefore, the deviation vectors in Eqs. (3)–(5) are defined:

E+ − E− = (AL − I)WR − (n − 1)WL, (6)

Γ+ − Γ− = (AR − I)WL − (n − 1)WR, (7)
Δ = (AM − nI)WM, (8)

where deviation vectors E+ = (ε+1 , . . . , ε+n )T, E− = (ε−
1 , . . . , ε−

n )T, Γ+ = (γ+
1 ,

. . . , γ+
n )T, Γ− = (γ−

1 , . . . , γ−
n )T, Δ = (δ1, . . . , δn)T, I is n × n unit matrix,

ε+i , ε−
i , γ+

i , γ−
i , δi, i ∈ N are deviation variables. These deviation variables are

non-negative. The triangular fuzzy weight vector W̃ is estimated from the
TFPCM Ã by minimizing the sum of the deviation variables in Eqs. (6)–(8).

In addition, the normalization condition is considered as a property that
the fuzzy weight vector should satisfy. The normalization condition [6] of the
triangular fuzzy weight vector W̃ are written as

∑
i∈N\j

wR
i + wL

j ≥ 1,
∑

i∈N\j

wL
i + wR

j ≤ 1, j ∈ N,
∑
i∈N

wM
i = 1. (9)

Under the constraints of Eqs. (6)–(9), the fuzzy weight vector can be esti-
mated by minimizing the sum of deviation variables. Therefore, we can obtain
the following linear goal programming (LGP) model for estimating the fuzzy
weight vector. This model was proposed by Y. -M. Wang et al. [3]

minimize eT(E+ + E− + Γ+ + Γ− + Δ)
subject to (AL − I)WR − (n − 1)WL − E+ + E− = 0,

(AR − I)WL − (n − 1)WR − Γ+ + Γ− = 0,
(AM − nI)WM − Δ = 0,∑
i∈N\j

wR
i + wL

j ≥ 1, j ∈ N,

∑
i∈N\j

wL
i + wR

j ≤ 1, j ∈ N,

∑
i∈N

wM
i = 1,

wR
i ≥ wM

i ≥ wL
i ≥ ε, i ∈ N,

E+, E−, Γ+, Γ−,Δ ≥ 0,

(10)

where eT = (1, 1, . . . , 1). This is the LGP model for obtaining the triangular
fuzzy weight vector W̃ = (WL,WM,WR) from TFPCM Ã = (AL, AM, AR).

3 The Proposed Fuzzy AHP

In the previous section, triangular fuzzy weight vector estimation method from
TFPCM is introduced. Before describing our proposed approach, we show the
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non-uniqueness of normalized fuzzy weight vector associated with a consistent
fuzzy PCM. We consider the following example:

Ã=

⎡
⎣

(1, 1, 1) (7/8, 8/7, 3/2) (7/6, 8/5, 9/4)
(2/3, 7/8, 8/7) (1, 1, 1) (1, 7/5, 2)
(4/9, 5/8, 6/7) (1/2, 5/7, 1) (1, 1, 1)

⎤
⎦ .

Ã is a consistent fuzzy PCM. Then, we can obtain following normalized fuzzy
weight vectors associated with Ã:

W̃ =

⎡
⎣
(0.35, 0.40, 0.45)
(0.30, 0.35, 0.40)
(0.20, 0.25, 0.30)

⎤
⎦ ,

⎡
⎣
(0.3333, 0.40, 0.4286)
(0.2857, 0.35, 0.3810)
(0.1905, 0.25, 0.2857)

⎤
⎦ ,

⎡
⎣
(0.3684, 0.40, 0.4737)
(0.3158, 0.35, 0.4210)
(0.2105, 0.25, 0.3158)

⎤
⎦ .

This example shows that the solution associated with the consistent TFPCM is
not unique. From this result, we consider that all normalized triangular fuzzy
weight vectors associated with a consistent TFPCM should be solutions to the
estimated problem, because the appropriateness of any of those solutions is same
because it can be defined by the distance of the consistent TFPCM from the given
one. Therefore, in this section, we propose a method obtaining all solutions to
estimation problem. In order to obtain all solutions of normalized fuzzy weight
vector estimation problem, we propose the following fractional programming
model, which is modified from the fuzzy weight estimation model proposed by
Wang et al. [3]:

minimize
2eT(E+ + E− + Γ+ + Γ−)

eT(WL + WR)
+ eTΔ

subject to constraints of (10).
(11)

By solving the model (11) with eT(WL + WR) = 2, one of all solutions to the
problem of estimating the normalized fuzzy weight vector W̃ is estimated. Then,
those solutions are represented by a parameter t and estimated normalized fuzzy
weight vector W̃ . In other words, when the normalized triangular fuzzy weight
wL

i , wM
i , wR

i , i ∈ N, is estimated by (11) with eT(WL+WR) = 2, the all solutions
are represented by (twL

i , wM
i , twR

i ), i ∈ N, t ∈ [tL, tR], where tL, tR ∈ R. In the all
solutions described above, wM

i , i ∈ N are not multiplied by t and do not change
because the normalized fuzzy weights must satisfy the normalization condition
(9) and the sum of wM

i , i ∈ N must be equal to 1.
Next, we consider the range of t. The normalization condition (9) must be

satisfied for twL
i , twR

i , i ∈ N where wL
i , wR

i , i ∈ N are multiplied by t. Hence, the
following inequalities need to hold for twL

i , twR
i , i ∈ N :

t · min
j∈N

⎛
⎝ ∑

i∈N\j

wR
i + wL

j

⎞
⎠ ≥ 1, t · max

j∈N

⎛
⎝ ∑

i∈N\j

wL
i + wR

j

⎞
⎠ ≤ 1. (12)

Also, since wL
i , wR

i , i ∈ N are multiplied by t, but wM
i , i ∈ N remain unchanged,

the following inequalities must hold from the properties of triangular fuzzy
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weights, wR
i ≥ wM

i ≥ wL
i , i ∈ N :

t · min
k∈N

(
wR

k

wM
k

)
≥ 1, t · max

k∈N

(
wL

k

wM
k

)
≤ 1. (13)

In the range of t satisfying inequalities (12) and (13), (twL
i , wM

i , twR
i ), i ∈ N

are the solutions of normalized triangular fuzzy weights estimation problem.
Therefore, the lower bound values tL and upper bound values tR for the range
of t satisfying all inequalities (12) and (13) are defined by

tL = max

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
k∈N

wM
k

wR
k

,
1

min
i∈N

⎛
⎝wL

i +
∑

j∈N\i

wR
j

⎞
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (14)

tR = min

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
k∈N

wM
k

wL
k

,
1

max
i∈N

⎛
⎝wR

i +
∑

j∈N\i

wL
j

⎞
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (15)

In summary, (twL
i , wM

i , twR
i ), i ∈ N , t ∈ [tL, tR] are all solutions of normalized

triangular fuzzy weights estimation problem. In Sect. 5, the numerical example
shows the estimation of the triangular fuzzy weights, the calculation of the range
of t, and the variation of the weights with t for the TFPCM given by the decision
maker.

4 The Calculation of Total Utility of Alternatives

In this section, we introduce the method to calculate the total utility values of
alternatives. In this paper, we assume that the utility values of alternatives in
each criterion are given. Then, we estimate the weights of criteria from a given
PCM. In the conventional AHP, the total utility value of an alternative is deter-
mined by the weighted sum of utility values. Then alternatives are ranked by the
total utility values. However, we treat the fuzzy weight of criteria in this paper.
Therefore, the total utility value cannot be determined by a weighted sum of util-
ity values as in the conventional method. On the other hand, in interval AHP,
the method of ranking alternatives when the weights of the criteria are interval
values has been studied [4]. In that study, the alternatives are ranked by the min-
imum total utility values of the alternatives. In other words, the alternatives are
ranked according to the maximin rule. In addition, ranking alternatives based on
the maximum total utility value can be considered (i.e., maximax rule). In the
case where the weights of criteria are fuzzy numbers, we calculate the minimum
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and maximum total utility values for the α-cuts of the fuzzy weights, at each
α ∈ [0, 1].

Let ui(o), i ∈ N be the utility value of alternative o in view of i-th criterion.
Let w̃i, i ∈ N be the estimated fuzzy weight of i-th criterion. In these setting,
we consider the minimum total utility values Umin(o) of an alternative o. The
minimum total utility value [Umin(o)]α for the α-cut of weights [w̃i]α is defined by
the minimum weighted sum of utility values, Accordingly, [Umin(o)]α is defined
by

[Umin(o)]α = min

{∑
i∈N

wiui(o)
∣∣∣ wi ∈ [w̃i]α, i ∈ N,

∑
i∈N

wi = 1

}
. (16)

The larger [Umin(o)]α is, the more preferable alternative o is.
On the other hand, we consider the maximum total utility values Umax(o)

of an alternative o. The maximum total utility value [Umax(o)]α for the α-cut
of weights [w̃i]α is defined by the maximum weighted sum of utility values,
Accordingly, [Umax(o)]α is defined by

[Umax(o)]α = max

{∑
i∈N

wiui(o)
∣∣∣ wi ∈ [w̃i]α, i ∈ N,

∑
i∈N

wi = 1

}
. (17)

The larger [Umax(o)]α is, the more preferable alternative o is.
When the estimated fuzzy weight w̃i, i ∈ N of the i-th criterion is a triangular

fuzzy weight, the total utility value of the alternative o can be expressed as
a triangular fuzzy number Ũ(o) = (U(o)L, U(o)M, U(o)R). U(o)M is obtained
by summing the utility values weighted by the weights wM

i , i ∈ N , because
[w̃i]1 = wM

i , i ∈ N and the sum of wM
i , i ∈ N is 1. U(o)L and U(o)R are obtained

from Umin(o) and Umax(o). In other words, U(o)L = [Umin(o)]0 and U(o)R =
[Umax(o)]0. In order to rank alternatives, following value are used [3]:

U(o)C =
1
3
(U(o)L + U(o)M + U(o)R), (18)

where U(o)C is centroid of fuzzy utility value Ũ(o). The larger U(o)C is, the
more preferable alternative o is.

5 A Numerical Example

In this section, we estimate the triangular fuzzy weight vector from the TFPCM
given by the decision maker and derive the solutions of fuzzy weight vector
estimation problem. It also shows the transitions in the ranking alternatives
within the all solutions.
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Consider a multiple criteria decision problem with five criteria c1, c2, . . . , c5.
Then, 5 × 5 triangular fuzzy comparison matrix given by decision maker below:

Ã =

⎡
⎢⎢⎢⎢⎣

(1, 1, 1) (3/2, 2, 5/2) (5/2, 3, 7/2) (5/2, 3, 7/2) (7/2, 4, 9/2)
(2/5, 1/2, 2/3) (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (5/2, 3, 7/2)
(2/7, 1/3, 2/5) (2/3, 1/2, 2/5) (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2)
(2/7, 1/3, 2/5) (2/3, 1/2, 2/5) (2/3, 1, 3/2) (1, 1, 1) (3/2, 2, 5/2)
(2/9, 1/4, 2/7) (2/5, 1/3, 2/7) (2/3, 1/2, 2/5) (2/3, 1/2, 2/5) (1, 1, 1)

⎤
⎥⎥⎥⎥⎦

.

Each element of A represents relative importance between ci and cj . By solving
triangular fuzzy weight estimation model (11) with eT(WL + WR) = 2 for the
above triangular fuzzy comparison matrix, we obtain the following normalized
triangular fuzzy weight vector:

W̃ =

⎡
⎢⎢⎢⎢⎣

(0.3799, 0.4045, 0.4186)
(0.2179, 0.2450, 0.2700)
(0.1167, 0.1369, 0.1615)
(0.1167, 0.1369, 0.1615)
(0.0694, 0.0767, 0.0878)

⎤
⎥⎥⎥⎥⎦

.

From estimated triangular fuzzy weight vector W̃ , we estimate the all solutions
(twL

i , wM
i , twR

i ), i ∈ N, t ∈ [tL, tR]. tL and tR are calculated by (14) and (15).
Then, tL = 0.9665 and tR = 1.0495. As an example of the solutions of fuzzy
weight vectors estimation problem, the fuzzy weight vectors W̃(tL) at t = tL and
W̃(tR) at t = tR, respectively, are obtained as follows:

W̃(tL) =

⎡
⎢⎢⎢⎢⎣

(0.3672, 0.4045, 0.4045)
(0.2106, 0.2450, 0.2609)
(0.1128, 0.1369, 0.1561)
(0.1128, 0.1369, 0.1561)
(0.0671, 0.0767, 0.0849)

⎤
⎥⎥⎥⎥⎦

, W̃(tR) =

⎡
⎢⎢⎢⎢⎣

(0.3987, 0.4045, 0.4393)
(0.2286, 0.2450, 0.2834)
(0.1225, 0.1369, 0.1695)
(0.1225, 0.1369, 0.1695)
(0.0728, 0.0767, 0.0922)

⎤
⎥⎥⎥⎥⎦

.

The fuzzy weight vector W̃(tL) is also estimated by solving the LGP model (10).
In addition, we assume three alternatives o1, o2, o3 in this multiple criteria

decision problem. In this example, the utility values of those alternatives under
the five criteria are given in Table 1.

Table 1. The utility values of alternatives in each criterion.

c1 c2 c3 c4 c5

o1 0.24 0.23 0.08 0.23 0.22

o2 0.12 0.46 0.21 0.10 0.11

o3 0.22 0.19 0.45 0.06 0.08
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Fig. 1. Total utility values of three alternatives (t = 1)

Fig. 2. Total utility values of three alternatives (t = tL)

Under these settings, the total utility values of the three alternatives Ũ =
(Ũ(o1), Ũ(o2), Ũ(o3))T are calculated by using (16) and (17). As an example of
the total utility value vector Ũ under the all solutions of fuzzy weight vector
estimation problem, the total utility value vectors Ũ(t=1) at t = 1, Ũ(t=tL) at
t = tL and W̃(t=tR) at t = tR, respectively, are obtained. In addition, the vector
of centroid of total utility value UC = [U(o1)C, U(o2)C, U(o3)C]T is obtained by
(18). From UC, we can obtain ranking alternatives.

For t = 1, we obtained the following total utility value vector Ũ(t=1):

Ũ(t=1) =

⎡
⎣

(0.2087, 0.2127, 0.2160)
(0.2005, 0.2121, 0.2233)
(0.2011, 0.2115, 0.2217)

⎤
⎦ .
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Fig. 3. Total utility values of three alternatives (t = tR)

This result is shown in Fig. 1. Then, we obtain UC = [0.2125, 0.2120, 0.2114]T.
Since U(o1)C > U(o2)C > U(o3)C from the result of UC, we can obtain the
ranking alternatives o1 � o2 � o3.

For t = tL, we obtained the following total utility value vector Ũ(t=tL):

Ũ(t=tL) =

⎡
⎣

(0.2094, 0.2127, 0.2164)
(0.2006, 0.2121, 0.2198)
(0.2013, 0.2115, 0.2207)

⎤
⎦ .

This result is shown in Fig. 2. Then, we obtain UC = [0.2129, 0.2108, 0.2111]T.
Since U(o1)C > U(o3)C > U(o2)C from the result of UC, we can obtain the
ranking alternatives o1 � o3 � o2.

For t = tR, we obtained the following total utility value vector Ũ(t=tR):

Ũ(t=tR) =

⎡
⎣

(0.2078, 0.2127, 0.2153)
(0.2046, 0.2121, 0.2242)
(0.2029, 0.2115, 0.2223)

⎤
⎦ .

This result is shown in Fig. 3. Then, we obtain UC = [0.2119, 0.2136, 0.2122]T.
Since U(o2)C > U(o3)C > U(o1)C from the result of UC, we can obtain the
ranking alternatives o2 � o3 � o1.

From these results, it is confirmed that the ranking of alternatives transitions
among the all solutions from fuzzy weight vector estimation problem. Therefore,
we derive all the values of t when the ranking alternatives changes in this numer-
ical example. The result of the transition of the centroids of total utility values
alternatives and the ranking alternatives in [tL, tR] are shown in Figs. 4 and 5.

These result shows the ranking alternatives changes with t = 0.9776, 1.0102
and 1.0430. At t = 0.9776, the ranking of o2 and o3, at t = 1.0102, the ranking
of o1 and o2 and at t = 1.0430, the ranking of o1 and o3 are reversed. Since the
ranking reversal occurred three times in [tL, tR], the ranking alternatives cannot
be uniquely determined in this example.
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Fig. 4. Transition of ranking score of three alternatives

Fig. 5. Transition of ranking alternatives by t

6 Concluding Remarks

In this paper, the non-uniqueness of the solution to the estimation problem of the
normalized triangular fuzzy weight vector is suggested under a given triangular
pairwise comparison matrix. It is shown that all solutions are obtained easily
by a parameter and a solution obtained by the conventional estimation method
with an additional constraint. As all solutions are ordered by a parameter, the
transition of alternative orderings with respect to the parameter change is shown.
This analysis enables us to see the stability of the decision maker’s preference
and the best alternatives. The extension of the proposed approach to the case
of trapezoidal fuzzy pairwise comparison matrices is one of the future topics.

Acknowledgements. This work is supported by JSPS KAKENHI Grant Number
JP18H01658.
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Abstract. In particular, the popularity of computational intelligence has acceler-
ated the study of optimization. Coyote Optimization Algorithm (COA) is a new
meta heuristic optimization. It is pays attention to the social structure and expe-
rience exchange of coyotes. In this paper, the coyote optimization algorithm with
linear convergence (COALC) is proposed. In order to explore a huge search space
in the pre-optimization stage and to avoid premature convergence, the convergence
factor is also involved. Thus, the COALC will explore a huge search space in the
early optimization stage to avoid premature convergence. Also, the small area
is adopted in the later optimization stage to effectively refine the final solution,
while simulating a coyote killed by a hunter in the environment. It can avoid the
influence of bad solutions. In experiments, ten IEEE CEC2019 test functions is
adopted. The results show that the proposed method has rapid convergence, and
a better solution can be obtained in a limited time, so it has advantages compared
with other related methods.

Keywords: Functional optimization · Swarm intelligence · Global optimization
problems · Coyote Optimization Algorithm · Coyote optimization algorithm
with linear convergence

1 Introduction

Optimization cannowsolvemanyproblems in the realworld, including civil engineering,
construction, electromechanical, control, financial, health management, etc. There are
significant results [1–5], whether it is applied to image recognition, feature extraction,
machine learning, and deep learning model training, The optimization algorithm can be
used to adjust [6–8]. The optimization method can make the traditional researcher spend
a lot of time to establish the expert system to adjust and optimize, and greatly reduce
the time required for exploration. With the exploration of intelligence, the complexity
of the problem gradually increases.

In the past three decades, meta-heuristic algorithms that simulate the behavior of
nature have received a lot of attention, for example, Particle Swarm Optimization (PSO)
[9], Differential Evolution (DE) [10], Crow Search algorithm (CSA) [11], Grey Wolf
Optimization (GWO) [12], Coyote Optimization Algorithm (COA) [13], Whale Opti-
mization Algorithm (WOA) [14], Honey Badger Algorithm (HBA) [15] and Red fox

© Springer Nature Switzerland AG 2022
K. Honda et al. (Eds.): IUKM 2022, LNAI 13199, pp. 81–91, 2022.
https://doi.org/10.1007/978-3-030-98018-4_7
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optimization algorithm (RFO) [16]. These meta-heuristic algorithms inspired by nat-
ural behavior are highly efficient in optimization problems. Performance and ease of
application have been improved and applied to various problems.

GWO simulates the class system in the predation process of wolves in nature, and
divides gray wolves into four levels. Through the domination and leadership between
the levels, the gray wolves are driven to find the best solution. This method prevents
GWO from falling into the local optimum solution, and use the convergence factor to
make the algorithm use a longer moving distance to perform a global search in the early
stage, and gradually tends to a local search as time changes. Arora et al. [17] mixed
GWO and CSA use the flight control parameters and modified linear control parameters
in CSA to achieve the balance in the exploration and exploration process, and use it to
solve the problem of function optimization.

The idea of COA comes from the coyotes living in North America. Unlike most meta
heuristic optimization, which focuses on the predator relationship between predators and
prey, COA focuses on the social structure and experience exchange of coyotes. It has a
special algorithm structure. Compared with GWO, although alpha wolf (best value) is
still used to guide, it does not pay attention to the ruling rules of beta wolf (second best
value) and delta wolf (third best value), and balance the global search in the optimization
process and local search. Li et al. [18] changed the COA differential mutation strategy,
designed differential dynamic mutation disturbance strategy and adaptive differential
scaling factor, and used it in the fuzzy multi-level image threshold in order to change
the COA iteration to the local optimum, which is prone to premature convergence. Get
better image segmentation quality.

RFO is a recently proposedmeta-heuristic algorithm that imitates the life and hunting
methods of red foxes. It simulates red foxes traveling through the forest to find and prey
on prey. These two methods correspond to global search and local search, respectively.
The hunting relationship between hunters makes RFO converge to an average in the
search process.

In this paper, the combination of convergence factors allows COA to implement
better exploration, and adds the risk of coyotes being killed by hunters in nature and the
ability to produce young coyote to increase local exploration.

In summary, Sect. 2 is a brief reviewofCOAmethods andSect. 3 describes the project
scope and objectives of the proposed method. Section 4 shows the experimental results
of proposed algorithms and other algorithms on test functions. Finally, the conclusions
are in Sect. 5.

2 Standard Coyote Optimization Algorithm

Coyote Optimization Algorithm (COA) was proposed by Pierezan et al. [13] in 2018,
it has been widely used in many fields due to its unique algorithm structure [19–21].
In COA, the coyote population is divided into Np groups, and each group contains Ni

coyotes, so the total number of coyotes is Np * Ni, at the start of the COA, the number
of coyotes in each group has the same population. Each coyote represents the solution
of the optimization problem, and is updated and eliminated in the iteration.
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COA effectively simulates the social structure of the coyote, that is, the decision
variable −→x of the global optimization problem. Therefore, the social condition soc
(decision variable set) formed at the time when the ith coyote of the pth ethnic group is
an integer t is written as:

socp,ti = −→x = (
x1,x2, . . . , xd

)
(1)

where d is the search space dimension of the optimization problem, the first initialize
the coyote race group. Each coyote is randomly generated in the search space. The ith
coyote in the race group p is expressed in the jth dimension as:

soc(p,t)
(i,j) = LBj + rj × (UBj − LBj), j = 1, 2, . . . d (2)

where LBj and UBj represent the lower and upper bounds of the search space, and rj is
a random number generated in the range of 0 to 1. The current social conditions of the
ith coyote, as can be shown in (3):

fitp,ti = f
(
socp,ti

)
(3)

In nature, the size of a coyote group does not remain the same, and individual coyotes
sometimes leave or be expelled from the group alone, become a single one or join another
group. COA defines the individual coyote outlier probability Pe as:

Pe = 0.005 × N 2
i (4)

When the random number is less than Pe, the wolf will leave one group and enter
another group. COA limits the number of coyotes per group to 14. And COA adopts the
optimal individual (alpha) guidance mechanism:

alphap,t =
{
socp,ti |argi=1,2,...d max fit

(
socp,ti

)}
(5)

In order to communicate with each other among coyotes, the cultural tendency of
coyote is defined as the link of all coyotes’ social information:

cultp,tj =

⎧
⎪⎨

⎪⎩

Op,t
Ni+1
2 ,j

, Ni is odd

Op,t
Ni+1
2 ,j

+Op,t
Ni+1
2 ,j

2 , otherwise

(6)

The cultural tendency of the wolf pack is defined as the median of the social status
of all coyotes in the specific wolf pack, Op,t is the median of all individuals in the
population p in the jth dimension at the tth iteration.

The birth of the pup is a combination of two parents (coyote selected at random) and
environmental influences as:

pupp,tj =

⎧
⎪⎨

⎪⎩

socp,tr1,j
, randj < Ps or j = j1

socp,tr2,j
, randj ≥ Ps + Pa or j = j2
Rj, otherwise

(7)
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Among them, r1 and r2 are the random coyotes of two randomly initialized packages,
j1 and j2 are two random dimensions in the space. Therefore, the newborn coyotes
can be inherited through random selection by parents, or new social condition can be
produced by random, while Ps and Pa influenced by search space dimension are the
scatter probability and the associated probability respectively, as shown in (8) and (9).
Rj is a random number in the search space of the jth dimension, and rand j is a random
number between 0 and 1.

Ps = 1/d (8)

Pa = (1 − Ps)/2 (9)

In order to maintain the same population size, COA uses coyote group that do not
have environmental adaptability ω and the number of coyotes in the same population
ϕ, when ϕ = 1 the only coyote in ω dies and ϕ > 1 the oldest coyote in ω dies, and
pup survives, and when ϕ < 1, pup alone cannot satisfy the survival condition. At the
same time, in order to show the cultural exchange in the population, set influence led
by the alpha wolf (δ1) and the influence by the group (δ2), the δ1 guided by the optimal
individual makes the coyote close to the optimal value, and the δ2 guided by the coyote
population reduces the probability of falling into the local optimal value, where cr1 and
cr2 are Two random coyotes, δ1 and δ2 are written as:

δ1 = alphap,t − socp,tcr1 (10)

δ2 = cultp,t − socp,tcr2 (11)

After calculating the two influencing factors δ1 and δ2, using the pack influence
and the alpha, the new social condition (12) of the coyote is initialized by two random
numbers between 0 and 1, and the new social condition (13) (the position of the coyote)
is evaluated.

new_socp,ti = socp,ti + r1 × δ1 + r2 × δ2 (12)

new_fitp,ti = f
(
new_socp,ti

)
(13)

Finally, according to the greedy algorithm, update the new social condition (the
position of the coyote) as (14), and the optimized solution of the problem is the coyote’s
can best adapt to the social conditions of the environment.

socp,t+1
i =

{
new_socp,ti , new_fitp,ti < fitp,ti

socp,ti , otherwise
(14)
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3 Coyote Optimization Algorithm with Linear Convergence

It is important for optimization algorithms to strike a balance between exploration and
exploration. In the classic COA, the position update distance (12) of the coyote is calcu-
lated by multiplying two random numbers between 0 and 1 and the influencing factors
δ1 and δ2. This method makes the position of the coyote tend to an average. As a result,
the global search capability in the early stage of the algorithm is insufficient, and the
local search cannot be performed in depth in the later stage. At the same time, when
calculating the social culture of coyotes (6), they will be dragged down by the poorly
adapted coyotes, resulting in poor final convergence.

In order to overcome the limitations of the above conventional COA, the linear con-
vergence strategy of GWO is adopted, and the linear control parameter (a) is calculated
by follows.

a = 2 − (2 × t/Maxiter) (15)

And calculate two random moving vectors A to replace two random numbers, so
that the algorithm can move significantly in the early stage to obtain a better global
exploration, and in the later stage can perform a deep local search, so that the algorithm
can converge in a limited time give better results. The value of a is 2 from the beginning
of the iteration, and decreases linearly to 0 with the iteration. Therefore, the movement
vector A is calculated by follows.

A = 2 ∗ a ∗ r1 ∗ a (16)

Among them, r1 is a randomnumber between0 and1.Therefore, the social conditions
of the newcoyotewill be generated by follows (17). The pseudo code of proposedmethod
is presented (see Fig. 1).

new_socp,ti = socp,ti + A1 × δ1 + A2 × δ2 (17)

COA uses the average of coyote information to form social culture, but it is easily
affected by the coyote with the lowest adaptability, making iterative early-stage algo-
rithms unable to quickly converge to a better range. Therefore, referring to the hunting
relationship between the red fox and the hunter in the RFO, and applying it in the COA
to simulate the situation where the coyote strays into the range of human activities and is
hunted, the probability of the coyote being killed by the hunter is H (18), by The linear
control parameter is calculated and rounded. With time, H will gradually decrease to 0.
In the later stage of the algorithm, this mechanism is not used to avoid falling into the
local optimal solution.

H = [Ni ∗ (a ∗ 0.1)] (18)
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1: Initialize  packs with  coyotes each (Eq.2). 

2: Verify the coyote's adaptation (Eq.3). 

3: while stopping criterion is not achieved do 

4: for each p pack do

5: Define the alpha coyote of the pack (Eq.5).

6: Compute the social tendency of the pack (Eq.6).

7: for each c coyotes of the p pack do

8: Calculate a and A(Eq.15 and Eq.16).

9: Update the social condition (Eq. 17).

10: Evaluate the new social condition (Eq.13).

11: Adaptation (Eq.14).

12: end for

13: Calculate the H(Eq.18).

14: if H >= 1 then

15: Replace Coyote(Eq.19).

16: Birth and death (Eq.7).

17: end for

18: Transition between packs (Eq.4).

19: Update the coyotes' ages.

20: end while

21:  Select the best adapted coyote.

Fig. 1. Pseudo code of proposed method.

In order to maintain the total population, new coyotes will be produced. Therefore,
new coyotes will be born from combining information of the best coyote (best1) and
second-best coyote (best2) in the group. The location of the newborn coyotes (19), k is
a random vector in the range [0, 1]. Therefore, the pseudocode of COALC is showed
below after the formula is replaced.

new_socp,ti = k ∗ socp,tbest1
+ socp,tbest2

2
(19)
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4 Experimental Settings and Experimental Results

4.1 Benchmarks Functions and Algorithms Setup

Table 1. Global optimization, dimensions and search range of ten CEC 2019 test functions

No. Function name F∗
i = Fi

(
x∗

)
D Range

f 1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [−8192, 8192]

f 2 Inverse Hilbert Matrix 1 16 [−16384, 16384]

f 3 Lennard-Jones Minimum Energy Cluster 1 18 [−4, 4]

f 4 Rastrigin’s Function 1 10 [−100, 100]

f 5 Griewank’s Function 1 10 [−100, 100]

f 6 Weierstrass Function 1 10 [−100, 100]

f 7 Modified Schwefel’s Function 1 10 [−100, 100]

f 8 Expanded Schaffer’s F6 Function 1 10 [−100, 100]

f 9 Happy Cat Function 1 10 [−100, 100]

f 10 Ackley Function 1 10 [−100, 100]

The proposed COALC method uses the 10 benchmark functions shown in Table
1 in the IEEE CEC2019 test function (CEC2019) [22] to extend our benchmark test,
where F∗

i is the global optimum and D is the dimension of the optimization problem.
These benchmarks vary according to the number, dimensionality, and search space of
the local optimal classifications. In the CEC2019 function, the functions f 1, f 2, and f 3
are completely dependent on the parameters and do not rotate (or shift). Among them,
f 1 and f 2 are error functions that need to rely on highly conditional solutions, and f 3 is
a way to simulate atomic interaction. It is difficult to find the best solution directly in the
function f 9, and the optimization algorithm must perform a deep search in the circular
groove. F4, f 5, f 6, f 7, f 8 and f 10 are classic optimization problems.

In the benchmark test, this paper compared the proposed COALC, standard COA,
ICOA, GWO, and RFO. In the experiment, COALC, standard COA and ICOA defined
the coyote population number parameterNp as 6, and the coyoteNi in each group was set
as 5. The number of gray wolves and foxes for GWO and RFO is set to 30, and the above
optimization algorithms are based on their original settings, only need to mention the
parameters of the method. Therefore, all running comparison heuristics have 30 number
of species. The experiment was run on Python 3.8.8.
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4.2 Comparison and Analysis of Experimental Results

Table 2. Experiment results of five optimizers

No. COALC COA [13] ICOA [18] GWO [12] RFO [16]

f 1 0.00E+00
±4.81E+00

6.42E+05
±4.77E+05

3.97E+06
±2.84E+06

8.93E+04
±1.75E+05

0.00E+00
±0.00E+00

f 2 3.28E+00
±5.66E−02

1.12E+03
±3.62E+02

2.63E+03
±9.09E+02

3.99E+02
±2.83E+02

4.00E+00
±0.00E+00

f 3 1.49E+00
±8.50E−01

2.27E+00
±1.46E+00

5.72E+00
±1.64E+00

1.86E+00
±1.90E+00

5.47E+00
±1.90E+00

f 4 1.26E+01
±4.26E+00

1.34E+01
±5.32E+00

1.78E+01
±5.89E+00

2.00E+01
±1.07E+01

9.64E+01
±1.64E+01

f 5 0.27E+00
±9.33E−02

0.18E+00
±8.31E−02

0.70E+00
±1.63E−01

0.86E+00
±5.45E−01

3.89E+01
±1.46E+01

f 6 1.17E+00
±8.34E−01

1.92E+00
±1.26E+00

3.52E+00
±1.37E+00

1.63E+00
±1.26E+00

9.03E+00
±8.84E−01

f 7 5.86E+02
±2.07E+02

4.93E+02
±2.20E+02

6.39E+02
±2.30E+02

8.20E+02
±3.34E+02

2.00E+03
±2.18E+02

f 8 2.71E+00
±4.14E−01

2.82E+00
±2.85E−01

3.06E+00
±3.21E−01

2.82E+00
±3.87E−01

3.98E+00
±1.87E−01

f 9 0.18E+00
±5.77E−02

0.22E+00
±7.12E−02

0.22E+00
±8.73E−02

0.20E+00
±7.12E−02

1.37E+00
±6.52E−01

f 10 1.83E+01
±5.13E+00

2.01E+01
±5.10E−02

2.01E+01
±5.54E−02

2.05E+01
±1.20E−01

2.07E+01
±1.33E−01

Each optimizer is performed 25 independent runs on the CEC2019, and the stopping
criterion is equal to the number of ethnic groups * 500 iterations. Thus, the maximum
fitness evaluation (FEs) is set as 15,000. The average error obtained from the global
optimum and standard deviation is shown in Table 2, and the best performance is shown
in bold. In Fig. 2 can be seen that for most of the benchmark functions, COALC can
find the best solution compared to other methods. COALC acquires better exploration
capabilities by inheriting the relationship between hunter and prey of RFO, and has more
outstanding capabilities than other methods in f 1 and f 2 functions.
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Fig. 2. Median convergence characteristics of five optimizers.

5 Conclusion and Future Research

In this paper, the main contribution is to propose an improved COA algorithm with
the convergence factor of the GWO algorithm and the elimination of the worst coyote
mechanism, and named it COALC. This method allows COA to acquire better explo-
ration and exploration capabilities in a limited time through the convergence factor, and
at the same time eliminates poor coyotes to improve the convergence speed of COA.
Finally, Results of experimental benchmark tests have shown that the proposed COALC
and recent metaheuristic algorithms such as COA, ICOA, GWO, and RFO, etc., and are
evaluated in the CEC2019 test function. In most cases, a better global solution can be
obtained than other algorithms.



90 H.-J. Lin and S.-T. Hsieh

References

1. Cheng, M., Tran, D.: Two-phase differential evolution for the multiobjective optimization of
time–cost tradeoffs in resource-constrained construction projects. IEEE Trans. Eng. Manage.
61(3), 450–461 (2014)

2. Al-Timimy, A., et al.: Design and losses analysis of a high power density machine for flooded
pump applications. IEEE Trans. Ind. Appl. 54(4), 3260–3270 (2018)

3. Chabane, Y., Ladjici, A.: Differential evolution for optimal tuning of power system stabilizers
to improve power systems small signal stability. In: Proceedings of 2016 5th International
Conference on Systems and Control (ICSC), pp. 84–89 (2016)

4. Münsing, E., Mather, J., Moura, S.: Blockchains for decentralized optimization of energy
resources in microgrid networks. In: Proceedings of 2017 IEEE Conference on Control
Technology and Applications (CCTA), pp. 2164–2171 (2017)

5. Lucidi, S., Maurici, M., Paulon, L., Rinaldi, F., Roma, M.: A simulation-based multiobjective
optimization approach for health care service management. IEEE Trans. Autom. Sci. Eng.
13(4), 1480–1491 (2016)

6. Huang, C., He, Z., Cao, G., Cao,W.: Task-driven progressive part localization for fine-grained
object recognition. IEEE Trans. Multimed. 18(12), 2372–2383 (2016)

7. Mistry, K., Zhang, L., Neoh, S.C., Lim, C.P., Fielding, B.: A micro-GA embedded PSO
feature selection approach to intelligent facial emotion recognition. IEEE Trans. Cybern.
47(6), 1496–1509 (2017)

8. Haque, M.N., Noman, M.N., Berretta, R., Moscato, P.: Optimising weights for heterogeneous
ensemble of classifiers with differential evolution. In: Proceedings of 2016 IEEE Congress
on Evolutionary Computation (CEC), pp. 233–240 (2016)

9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of
Sixth International Symposium on Micro Machine and Human Science (MHS), pp. 39–43
(1995)

10. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

11. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimiza-
tion problems: Crow search algorithm. Comput. Struct. 169, 1–12 (2016)

12. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61
(2014)

13. Pierezan, J., Coelho, L.D.S.: Coyote optimization algorithm: a new metaheuristic for global
optimization problems. In: Proceedings of 2018 IEEECongress onEvolutionaryComputation
(CEC), pp. 1–8 (2018)

14. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
15. Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey Badger

Algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput.
Simul. 192, 84–110 (2021)
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Abstract. Bayesian optimization (BO) with Gaussian processes (GP)
as surrogate models is widely used to optimize analytically unknown and
expensive-to-evaluate functions. In this paper, we propose Prior-mean-
RObust Bayesian Optimization (PROBO) that outperforms classical BO
on specific problems. First, we study the effect of the Gaussian processes’
prior specifications on classical BO’s convergence. We find the prior’s
mean parameters to have the highest influence on convergence among
all prior components. In response to this result, we introduce PROBO
as a generalization of BO that aims at rendering the method more
robust towards prior mean parameter misspecification. This is achieved
by explicitly accounting for GP imprecision via a prior near-ignorance
model. At the heart of this is a novel acquisition function, the generalized
lower confidence bound (GLCB). We test our approach against classical
BO on a real-world problem from material science and observe PROBO
to converge faster. Further experiments on multimodal and wiggly target
functions confirm the superiority of our method.

Keywords: Bayesian optimization · Imprecise Gaussian process ·
Imprecise probabilities · Prior near-ignorance · Model imprecision ·
Robust optimization

1 Introduction

Bayesian optimization (BO) is a popular method for optimizing functions that
are expensive to evaluate and do not have any analytical description (“black-
box-functions”). Its applications range from engineering [8] to drug discovery
[16] and COVID-19 detection [2]. BO’s main popularity, however, stems from
machine learning, where it has become one of the predominant hyperparameter
optimizers [15] after the seminal work of [22].
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BO approximates the target function through a surrogate model. In the case
of all covariates being real-valued, Gaussian Process (GP) regression is the most
popular model, while random forests are usually preferred for categorical and
mixed covariate spaces. BO scalarizes the surrogate model’s mean and standard
error estimates through a so-called acquisition function1, that incorporates the
trade-off between exploration (uncertainty reduction) and exploitation (mean
optimization). The arguments of the acquisition function’s minima are eventually
proposed to be evaluated. Algorithm 1 describes the basic procedure of Bayesian
optimization applied on a problem of the sort: minx∈X Ψ(x), where Ψ : X p →
R, X p a p-dimensional covariate space. Here and henceforth, minimization is
considered without loss of generality.

Algorithm 1. Bayesian Optimization
1: create an initial design D = {(x(i), Ψ (i))}i=1,...,ninit of size ninit

2: while termination criterion is not fulfilled do
3: train a surrogate model (SM) on data D
4: propose xnew that optimizes the acquisition function AF (SM(x))
5: evaluate Ψ on xnew and update D ← D ∪ (xnew, Ψ(xnew))
6: end while
7: return arg minx∈D Ψ(x) and respective Ψ(arg minx∈D Ψ(x))

Notably, line 4 imposes a new optimization problem, sometimes referred to
as “auxiliary optimization”. Compared to Ψ(x), however, AF (SM(x)) is ana-
lytically traceable. It is a deterministic transformation of the surrogate model’s
mean and standard error predictions, which are given by line 3. Thus, evalua-
tions are cheap and optima can be retrieved through naive algorithms, such as
grid search, random search or the slightly more advanced focus search2, all of
which simply evaluate a huge number of points that lie dense in X . Various ter-
mination criteria are conceivable with a pre-specified number of iterations being
one of the most popular choices.3

As stated above, GP regressions are the most common surrogate models in
Bayesian optimization for continuous covariates. The main idea of functional
regression based on GPs is to specify a Gaussian process a priori (a GP prior
distribution), then observe data and eventually receive a posterior distribution
over functions, from which inference is drawn, usually by mean and variance
prediction. In more general terms, a GP is a stochastic process, i.e. a set of
random variables, any finite collection of which has a joint normal distribution.

1 Also referred to as infill criterion.
2 Focus search shrinks the search space and applies random search, see [4, p. 7].
3 BO’s computational complexity depends on the SM. In case of GPs, it is O(n3) due

to the required inversion of the covariance matrix, where n is total number of target
function evaluations.
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Definition 1 (Gaussian Process Regression). A function f(x) is said to
be generated by a Gaussian process GP (m(x), k(x,x′)) if for any finite vec-
tor of data points (x1, ..., xn), the associated vector of function values f =
(f(x1), ..., f(xn)) has a multivariate Gaussian distribution: f ∼ N (μ,Σ) , where
μ is a mean vector and Σ a covariance matrix.

Hence, Gaussian processes are fully specified by a mean function m(x) =
E[f(x)] and a kernel4 kθ(x,x′) = E

[(
f(x) − E[f(x)]

)(
f(x′) − E[f(x′)]

)]
such

that f(x) ∼ GP (m(x), kθ(x,x′)), see e.g. [18, p. 13]. The mean function gives
the trend of the functions drawn from the GP and can be regarded as the best
(constant, linear, quadratic, cubic etc.) approximation of the GP functions. The
kernel gives the covariance between any two function values and thus, broadly
speaking, determines the function’s smoothness and periodicity.

The paper at hand is structured as follows. Section 2 conducts a sensitiv-
ity analysis of classical Bayesian optimization with Gaussian processes. As we
find the prior’s mean parameters to be the most influential prior component,
Sect. 3 introduces PROBO, a method that is robust towards prior mean misspec-
ification. Section 4 describes detailed experimental results from benchmarking
PROBO to classical BO on a problem in material science. We conclude by a
brief discussion of our method in Sect. 5.

2 Sensitivity Analysis

2.1 Experiments

The question arises quite naturally how sensitive Bayesian optimization is
towards the prior specification of the Gaussian process. It is a well-known fact
that classical inference from GPs is sensitive with regard to prior specification
in the case of small n. The less data, the more the inference relies on the prior
information. What is more, there exist detailed empirical studies such as [21]
that analyze the impact of prior mean function and kernel on the posterior
GP for a variety of real-world data sets. We systematically investigate to what
extent this translates to BO’s returned optima and convergence rates.5 Analyz-
ing the effect on optima and convergence rates is closely related, yet different.
Both viewpoints have weaknesses: Focusing on the returned optima means condi-
tioning the analysis on the termination criterion; considering convergence rates
requires the optimizer to converge in computationally feasible time. To avoid
these downsides, we analyze the mean optimizations paths.

Definition 2 (Mean Optimization Path). Given R repetitions of Bayesian
optimization applied on a test function Ψ(x) with T iterations each, let Ψ(x∗)r,t

4 Also called covariance function or kernel function.
5 To the best of our knowledge, this is the very first systematic assessment of GP

prior’s influence on BO.
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be the best incumbent target value at iteration t ∈ {1, ..., T} from repetition
r ∈ {1, ..., R}. The elements

MOPt =
1
R

R∑

r=1

Ψ(x∗)r,t

shall then constitute the T -dimensional vector MOP , which we call mean opti-
mization path (MOP) henceforth.

As follows from Definition 1, specifying a GP prior comes down to choos-
ing a mean function and a kernel. Both kernel and mean function are in turn
determined by a functional form (e.g. linear trend and Gaussian kernel) and
its parameters (e.g. intercept and slope for the linear trend and a smoothness
parameter for the Gaussian kernel). Hence, we vary the GP prior with regard
to the mean functional form m(·), the mean function parameters, the kernel
functional form k(·, ·) and the kernel parameters (see Definition 1). We run the
analysis on 50 well-established synthetic test functions from the R package smoof
[5]. The functions are selected at random, stratified across the covariate space
dimensions 1, 2, 3, 4 and 7. For each of them, a sensitivity analysis is conducted
with regard to each of the four prior components. The initial design (line 1 in
Algorithm 1) of size ninit = 10 is randomly sampled anew for each of the R = 40
BO repetitions with T = 20 iterations each. This way, we make sure the results
do not depend on a specific initial sample. For each test function we obtain an
accumulated difference (AD) of mean optimization paths.

Definition 3 (Accumulated Difference of Mean Optimization Paths).
Consider an experiment comparing S different prior specifications on a test func-
tion with R repetitions per specification and T iterations per repetition. Let the
results be stored in a T × S-matrix of mean optimization paths for iterations t ∈
{1, ..., T} and prior specification s ∈ {1, ..., S} (e.g. constant, linear, quadratic
etc. trend as mean functional form) with entries MOPt,s = 1

R

∑R
r=1 Ψ(x∗)r,t,s.

The accumulated difference (AD) for this experiment shall then be:

AD =
T∑

t=1

(
max

s
MOPt,s − min

s
MOPt,s

)
.

2.2 Results of Sensitivity Analysis

The AD values vary strongly across functions. This can be explained by varying
levels of difficulty of the optimization problem, mainly influenced by modality
and smoothness. Since we are interested in an overall, systematic assessment of
the prior’s influence on Bayesian optimization, we sum the AD values over the
stratified sample of 50 functions. This absolute sum, however, is likely driven by
some hard-to-optimize functions with generally higher AD values or by the scale
of the functions’ target values.6 Thus, we divide each AD value by the mean AD

6 Note that neither accumulated differences (Definition 3) nor mean optimization
paths (Definition 2) are scale-invariant.
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of the respective function. Table 1 shows the sums of these relative AD values.
It becomes evident that the optimization is affected the most by the functional
form of the kernel and the mean parameters, while kernel parameters and the
mean functional form play a minor role.

Table 1. Sum of relative ADs of all 50 MOPs per prior specification. Comparisons
between mean and kernel are more valid than between functional form and parameters.

Mean
functional form

Kernel functional
form

Mean
parameters

Kernel
parameters

42.49 68.20 77.91 11.40

2.3 Discussion of Sensitivity Analysis

Bayesian optimization typically deals with expensive-to-evaluate functions. As
such functions imply the availability of few data, it comes at no surprise that
the GP’s predictions in BO heavily depend on the prior. Our results suggest
this translates to BO’s convergence. It is more sensitive towards the functional
form of the kernel than towards those of the mean function and more sensitive
towards the mean function’s parameters than towards those of the kernel, which
appear to play a negligible role in BO’s convergence.

The kernel functional form determines the flexibility of the GP and thus
has a strong effect on its capacity to model the functional relationship. What
is more interesting, the mean parameters’ effect may not only stem from the
modeling capacity but also from the optimizational nature of the algorithm.
While unintended in statistical modeling, a systematic under- or overestimation
may be beneficial when facing an optimization problem. Further research on
interpreting the effect of the GP prior’s components on BO’s performance is
recommended.

2.4 Limitations of Sensitivity Analysis

Albeit the random sample of 50 test functions was drawn from a wide range
of established benchmark functions, the analysis does by far not comprise all
types of possible target functions, not to mention real-world optimization prob-
lems. Additionally, the presented findings regarding kernel and mean function
parameters are influenced by the degree of variation, the latter being a subjec-
tive choice. Statements comparing the influence of the functional form with the
parameters are thus to be treated with caution. Yet, the comparison between
kernel and mean function parameters is found valid, as both have been altered
by the same factors.

What weighs more, interaction effects between the four prior components
were partly left to further research. The reported AD values for mean parameters
and mean functional forms were computed using a Gaussian kernel. Since other
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kernels may interact differently with the mean function, the analysis was revisited
using a power exponential kernel as well as a Matérn kernel. As we observe only
small changes in AD values, the sensitivity analysis can be seen as relatively
robust in this regard, at least with respect to these three widely-used kernels.

3 Prior-Mean-Robust Bayesian Optimization

While a highly popular hyperparameter optimizer in machine learning [15],
Bayesian optimization itself – not without a dash of irony – heavily depends
on its hyperparameters, namely the Gaussian process prior specification. The
sensitivity analysis in Sect. 2 has shown that the algorithm’s convergence is
especially sensitive towards the mean function’s parameters.

In light of this result, it appears desirable to mitigate BO’s dependence on
the prior by choosing a prior mean function that expresses a state of ignorance.
Recall that Bayesian optimization is typically used for “black-box-functions”,
where very little, if any, prior knowledge exists. The classical approach would be
to specify a so-called non-informative prior over the mean parameters. However,
such a prior is not unique [3] and choosing different priors among the set of all
non-informative priors would lead to different posterior inferences [12]. Thus,
such priors cannot be regarded as fully uninformative and represent indifference
rather than ignorance. Principled approaches would argue that this dilemma
cannot be solved within the framework of classical precise probabilities. Meth-
ods working with sets of priors have thus attracted increasing attention, see
e.g. [1,19]. Truly uninformative priors, however, would entail sets of all possible
probability distributions and thus lead to vacuous posterior inference. That is,
prior beliefs would not change with data, which would make learning impossible.
[3] thus propose prior near -ignorance models as a compromise that conciliates
learning and almost non-informative priors. In the case of Gaussian processes,
so-called imprecise Gaussian processes (IGP) are introduced by [11] as prior near-
ignorance models for GP regression. The general idea of an IGP is to incorporate
the model’s imprecision regarding the choice of the prior’s mean function param-
eter, given a constant mean function and a fully specified kernel. In the case of
univariate regression, given a base kernel kθ (x, x′) and a degree of imprecision
c > 0, [11, Definition 2] defines a constant mean imprecise Gaussian process as
a set of GP priors:

Gc =
{

GP

(
Mh, kθ (x, x′) +

1 + M

c

)
: h = ±1,M ≥ 0

}
(1)

It can be shown that Gc verifies prior near-ignorance [11, p. 194] and that c →
0 yields the precise model [11, p. 189]. Note that the mean functional form
(constant) as well as both kernel functional form and its parameters do not
vary in set Gc, but only the mean parameter Mh ∈ ] − ∞,∞[. For each prior
GP, a posterior GP can be inferred. This results in a set of posteriors and a
corresponding set of mean estimates μ̂(x), of which the upper and lower mean
estimates μ̂(x), μ̂(x) can be derived analytically. To this very end, let kθ(x, x′)
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be a kernel function as defined in [18]. The finitely positive semi-definite matrix
Kn is then formed by applying kθ(x, x′) on the training data vector x ∈ X :

Kn = [kθ(xi, x
′
j)]ij . (2)

Following [11], we call Kn base kernel matrix. Note that Kn is restricted
only to be finitely positive semi-definite and not to have diagonal elements of 1.
In statistical terms, Kn is a covariance matrix and not necessarily a correlation
matrix. Hence, the variance Iσ2 is included. Diverging from [11], we only consider
target functions without explicit noise, thus no “nugget term” Iσ2

nugget needs to
be included in Kn.

Now let x be a scalar input of test data, whose f(x) is to be predicted. Then
kx = [kθ (x, x1), ..., kθ (x, xn)]T is the vector of covariances between x and the
training data. Furthermore, define sk = K−1

n 1n and Sk = 1T
nK−1

n 1n. Then [11]
shows that upper and lower bounds of the posterior predictive mean function
μ̂(x) for f(x) can be derived. If | sky

Sk
| ≤ 1 + c

Sk
, they are:

μ̂(x) = kT
x K−1

n y + (1 − kT
x sk)

sT
k

Sk
y + c

|1 − kT
x sk|

Sk
(3)

μ̂(x) = kT
x K−1

n y + (1 − kT
x sk)

sT
k

Sk
y − c

|1 − kT
x sk|

Sk
(4)

If | sky
Sk

| > 1 + c
Sk

:

μ̂(x) = kT
x K−1

n y + (1 − kT
x sk)

sT
k

Sk
y + c

1 − kT
x sk

Sk
(5)

μ̂(x) = kT
x K−1

n y + (1 − kT
x sk)

sT
k y

c + Sk
(6)

Inspired by multi-objective BO [9], one might think (despite knowing better)
of an IGP and a GP as surrogate models for different target functions. A popular
approach in multi-objective BO to proposing points based on various surrogate
models is to scalarize their predictions by an acquisition function defined a priori.
The herein proposed generalized lower confidence bound (GLCB) is such an
acquisition function, since it combines mean and variance predictions of a precise
GP with upper and lower mean estimates of an IGP. In this way, it generalizes
the popular lower confidence bound LCB(x) = μ̂(x) − τ · √var(μ̂(x)), initially
proposed by [6].7

Definition 4 (Generalized Lower Confidence Bound (GLCB)). Let x ∈
X . As above, let μ̂(x), μ̂(x) be the upper/lower mean estimates of an IGP with
imprecision c. Let μ̂(x) and var(μ̂(x)) be the mean and variance predictions

7 Note that from a decision-theoretic point of view, LCB violates the dominance prin-
ciple. GLCB inherits this property.
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of a precise GP. The prior-mean-robust acquisition function generalized lower
confidence bound (GLCB) shall then be

GLCB(x) = μ̂(x) − τ ·
√

var(μ̂(x)) − ρ · (μ̂(x) − μ̂(x)).

By explicitly accounting for the prior-induced imprecision, GLCB generalizes
the trade-off between exploration and exploitation: τ > 0 controls the classical
“mean vs. data uncertainty” trade-off (degree of risk aversion) and ρ > 0 con-
trols the “mean vs. model imprecision” trade-off (degree of ambiguity aversion).
Notably, μ̂(x) − μ̂(x) simplifies to an expression only dependent on the kernel
vector between x and the training data kx = [kθ (x, x1), ..., kθ (x, xn)]T , the base
kernel matrix Kn (Eq. 2) and the degree of imprecision c, which follows from
Eqs. 5 and 6 in case | sky

Sk
| > 1 + c

Sk
:

μ̂(x) − μ̂(x) = (1 − kT
x sk)

(sT
k

Sk
y +

c

Sk
− sT

k y

c + Sk

)
(7)

As can be seen by comparing Eqs. 3 and 4, in case of | sky
Sk

| ≤ 1 + c
Sk

, the

model imprecision μ̂(x)− μ̂(x) even simplifies further: μ̂(x)− μ̂(x) = 2c |1−kT
x sk|

Sk
.

In this case, the GLCB comes down to GLCB(x) = μ̂(x) − τ · √
var(μ̂(x)) −

2 · ρc
|1−kT

x sk|
Sk

and the two hyperparameters ρ and c collapse to one. In both
cases, the surrogate models μ̂(x) and μ̂(x) do not have to be fully implemented.
Only Kn and kx = [kθ (x, x1), ..., kθ (x, xn)]T need to be computed. GLCB can
thus be plugged into standard BO without much additional computational cost.8

Algorithm 2 describes the procedure.

Algorithm 2. Prior-mean-RObust Bayesian Optimization (PROBO)
1: create an initial design D = {(x(i), Ψ (i))}i=1,...,ninit of size ninit

2: specify c and ρ
3: while termination criterion is not fulfilled do
4: train a precise GP on data D and obtain μ̂(x), var(μ̂(x))
5: compute kx, sk and Sk

6: if | sky
Sk

| > 1 + c
Sk

then

7: μ̂(x) − μ̂(x) = (1 − kT
x sk)

( sT
k

Sk
y + c

Sk
− sT

k y

c+Sk

)

8: else μ̂(x) − μ̂(x) = 2c
|1−kT

x sk|
Sk

9: compute GLCB(x) = −μ̂(x) + τ · √
var(μ̂(x)) + ρ · (μ̂(x) − μ̂(x))

10: propose xnew that optimizes GLCB(x)
11: evaluate Ψ on xnew

12: update D ← D ∪ (xnew, Ψ(xnew))
13: end while
14: return arg minx∈D Ψ(x) and respective Ψ(arg minx∈D Ψ(x))

8 Further note that with expensive target functions to optimize, the computational
costs of surrogate models and acquisition functions in BO can be regarded as negli-
gible. The computational complexity of PROBO is the same as for BO with GP.
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Just like LCB, the generalized LCB balances optimization of μ̂(x) and reduc-
tion of uncertainty with regard to the model’s prediction variation

√
var(μ̂(x))

through τ . What is more, GLCB aims at reducing model imprecision caused
by the prior specification, controllable by ρ. Ideally, this would allow returning
optima that are robust not only towards classical prediction uncertainty but also
towards imprecision of the specified model.

4 Results

We test our method on a univariate target function generated from a data set
that describes the quality of experimentally produced graphene, an allotrope of
carbon with potential use in semiconductors, smartphones and electric batteries
[24]. The data set comprises n = 210 observations of an experimental manufac-
turing process of graphene. A polyimide film, typically Kapton, is irradiated with
laser in a reaction chamber in order to trigger a chemical reaction that results
in graphene. Four covariates influence the manufacturing process, namely power
and time of the laser irradiation as well as gas in and pressure of the reaction
chamber [24]. The target variable (to be maximized) is a measure for the quality
of the induced graphene, ranging from 0.1 to 5.5. In order to construct a univari-
ate target function from the data set, a random forest was trained on a subset
of it (target quality and time, see Fig. 1). The predictions of this random forests
were then used as target function to be optimized.
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Graphene−time target function (Random Forest)

Fig. 1. Univariate target function estimated from graphene data.

We compare GLCB to its classical counterpart LCB as well as to the expected
improvement (EI), which is usually considered the most popular acquisition func-
tion. It was initially proposed by [14, p. 1–2], disguised as a utility function in a
decision problem that captures the expected deviation from the extremum. Let
ψ(x) be the surrogate model, in our case the posterior predictive GP, and Ψmin

the incumbent minimal function value. The expected improvement at point x
then is EI(x) = E(max{Ψmin − ψ(x), 0}). For pairwise comparisons of GLCB
to LCB and EI, we observe n = 60 BO runs with a budget of 90 evaluations
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and an initial design of 10 data points generated by latin hypercube sampling
[13] each. Focus search [4, p. 7] was used as infill optimizer with 1000 evalua-
tions per round and 5 maximal restarts. All experiments were conducted in R
version 4.0.3 [17] on a high performance computing cluster using 20 cores (linux
gnu). Figure 2 depicts mean optimization paths of BO with GLCB compared
to LCB and EI on the graphene-time target function. The paths are shown for
three different GLCB settings: ρ = 1, c = 50 and ρ = 1, c = 100 as well as
ρ = 10, c = 100. Figure 2 shows that GLCB surpasses LCB (all settings) and EI
(ρ = 10, c = 100) in late iterations. We also compare GLCB to other acquisition
functions and retrieve similar results, except for one purely exploratory and thus
degenerated acquisition function, see chapter 6.7.2 in [20].
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Fig. 2. Benchmarking results from graphene data: Generalized lower confidence bound
(GLCB) vs. expected improvement (EI) and lower confidence bound (LCB). Shown are
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each.
Error bars represent 0.95 confidence intervals. GLCB-1-100 means ρ = 1 and c = 100;
τ = 1 for all GLCBs and LCB.

Further benchmark experiments are conducted on meteorological data, heart-
beat time series as well as synthetic functions from [5]. In case of multimodal
and wiggly target functions, the results resemble Fig. 2. When optimizing smooth
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and unimodal functions, however, classical acquisition functions like EI and LCB
are superior to GLCB. We suppose that when faced with such simpler problems,
the model imprecision is not severe enough to justify additional explorations. For
a detailed documentation of these further experiments, we refer the interested
reader to chapters 6.6.2, 6.6.3 and 6.6.4 in [20].

5 Discussion

The promising results should not hide the fact that the proposed modification
makes the optimizer robust only with regard to possible misspecification of the
mean function parameter given a constant trend. Albeit the sensitivity analysis
conducted in Sect. 2 demonstrated its importance, the mean parameter is clearly
not the only influential component of the GP prior in BO. For instance, the func-
tional form of the kernel also plays a major role, see Table 1. The question of
how to specify this prior component is discussed in [7,10]. Apart from this, it
is important to note that PROBO depends on a subjectively specified degree
of imprecision c. It does not account for any imaginable prior mean (the model
would become vacuous, see Sect. 3). What is more, it may be difficult to inter-
pret c and thus specify it in practical applications. However, our method still
offers more generality than a precise choice of the mean parameter. Specifying c
corresponds to a weaker assumption than setting precise mean parameters.

Notwithstanding such deliberations concerning PROBO’s robustness and
generality, the method simply converges faster than BO when faced with multi-
modal and non-smooth target functions. The latter make up an arguably con-
siderable part of problems not only in hyperparameter-tuning, but also in direct
applications of BO such as in engineering [8] or drug discovery [16].

The herein proposed method opens several venues for future work. An exten-
sion to other Bayesian surrogate models seems feasible, since there is a variety of
prior near-ignorance models. What is more, also non-Bayesian surrogate models
like random forest can be altered such that they account for imprecision in their
assumptions, see [23] for instance. Generally speaking, imprecise probability (IP)
models appear very fruitful in the context of optimization based on surrogate
models. They not only offer a vivid framework to represent prior ignorance, as
demonstrated in this very paper, but may also be beneficial in applications where
prior knowledge is abundant. In such situations, in the case of data contradict-
ing the prior, precise probabilities often fail to adequately represent uncertainty,
whereas IP models can handle these prior-data conflicts, see e.g. [25].
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Abstract. JADE is a method to adaptively select parameters using
probability distribution, and shows good searching accuracy and speed.
However, the search outside the solution group is not considered as well as
other methods. Though it is possible to forcibly increase the search out-
side the solution group by dividing the solution group or adding random
search, the search speed lowers. In this study, referring to the Nelder-
Mead method, the algorithm for improving the accuracy without reduc-
ing the search speed as much as possible by adding the solution group
outside search to JADE is proposed. Concretely, when a fixed condition
is satisfied, one point of the search point carries out the group outside
search. In order to prevent the search speed from decreasing even in
the case of a high dimension, the number of search points for out-of-
group search is set not to increase even when the dimension increases.
The effectiveness of the proposed method is confirmed by numerical
experiments.

Keywords: Differential evolution · JADE · Nelder-Mead

1 Introduction

Difference Evolution [1] is an optimizing algorithm without gradients that has
good search performance and is applicable to a variety of applications. DE is
a relatively simple algorithm with the advantage that it has only three control
parameters: mutation coefficient F , crossover rate CR, and population size N .
However, due to the small number of parameters, the accuracy of the search
is affected by the parameters. Therefore, it is necessary to set the appropriate
parameter value according to the problem to be handled and the search situation.
To solve this problem, SaDE [2], jDE [3], SHADE [4], JADE [5,6] have been
proposed.

JADE is a method for efficiently adapting the parameters of DE to the envi-
ronment by sampling them from a Cauchy or Gaussian distribution adapted to
the environment. Specifically, the mean value in the probability distribution used
to generate the mutation coefficient F and the crossover rate CR is adjusted
according to the success value of each parameter, allowing each parameter to
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be adjusted automatically. This allows the appropriate parameters to be used,
increasing the accuracy of the search.

As with other methods, out-group search is not considered much in JADE,
and performance degrades if a solution is missed outside the group after the
search has progressed. In our basic experiment [7], we confirmed that search-
ing can be improved by adding the probability of selecting F = 1.5, which is
an enhanced parameter of out-group search that is not normally set in DE.
Therefore, we believe that the performance can be further improved by adding
out-group search to JADE.

In this study, referring to Nelder-Mead method [8], we propose an algorithm
to add out-group search to JADE and to improve the accuracy without decreas-
ing the search speed as much as possible. If the distance of the solution with
the best and worst solutions is more than half of the distance from the end of
the search point group, it is judged that there is a large bias in the direction
of the update of the search point group, and the outside of the solution group
is searched. The composition of this paper is as follows. In Sect. 2, JADE and
Nelder-Mead method which are handled in this study are explained. In Sect. 3,
we propose and explain JADE with the addition of out-group search. In Sect. 4,
the results of numerical experiments using the proposed method are discussed,
and in Sect. 5, future problems are summarized.

2 Base Algorithm

2.1 JADE

JADE is one of the improved methods of DE, and the mutation coefficient F and
the crossover rate CR are sampled from the probability distribution and used.
The Cauchy distribution is used for the mutation coefficient, and the Gaussian
distribution is used for the crossover rate, and the adjustment of each distribu-
tion is carried out based on the proportion in which the solution was renewed
in the past. In JADE, parameters are generated for each individual. As a muta-
tion strategy, “DE/current-to-pbest” is used. The generation method of each
parameter is shown below.

For each generation, the mutation factor Fi of each individual xi is generated
according to the Cauchy distribution of the positional parameter μF and the
scaling parameter σF = 0.1 as follows:

Fi ∼ C(μF , σF )

Fi is regenerated if Fi ≤ 0, and truncated to 1 if Fi ≥ 1. The positional parameter
μF is initialized at 0.5 and updated for each generation as follows:

μF = (1 − c) · μF + c ·
∑

F∈SF
F 2

∑
F∈SF

F

c is a constant for (0, 1] and the recommended value is 0.1. SF is the set of muta-
tion coefficients that have successfully updated the solution in that generation.
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Similarly, for each generation, the crossover rate CRi of each individual xi

is generated according to a Gaussian distribution with a mean of μCR and a
standard deviation of σCR = 0.1 as follows:

CRi ∼ N(μCR, σ2
CR)

CRi is truncated to the interval [0, 1]. The average μCR is initialized at 0.5 and
updated for each generation as follows:

CRi ∼ N(μCR, σ2
CR)

SN is the number of times the solution is updated successfully in each gener-
ation, and SCR is the set of crossover rates CR when the solution is updated
successfully.

The following describes the mutation strategy “DE/current-to-pbest” used
in JADE. In this strategy, the mutation vector vi,g for each individual xi,g of
each generation g is generated by:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − xr2,g)

Fi is the mutation coefficient of each individual xi, and xp
best,g is an individual

selected from the top 100p% individuals. Also, xr1,g and xr2,g are two points
randomly selected from the search points other than xi so that they do not
overlap. Here p is a constant in (0, 1), and the recommended value is 0.1. In
addition, there is a way to use an archive in this strategy. In this case, the
mutation vector vi,g is generated by the following equation:

vi,g = xi,g + Fi · (xp
best,g − xi,g) + Fi · (xr1,g − x̃r2,g)

x̃r2,g is an individual selected at random from the aggregate of past failed indi-
viduals stored in the archive and the aggregate of current solution populations.
The archive is initially empty and adds failed individuals at the end of each
generation update.

The next search point is generated by crossing over this mutation vector with
the individual as follows based on the crossover rate:

xi,g+1,j =

{
vi,g,j(w ≤ CR)
xi,g,j(otherwise)

w is uniform random number between 0 and 1, and xi,g,j means the j-th element
of the i-th individual in generation g.

2.2 Nelder-Mead Method

The Nelder-Mead method is a kind of optimizing algorithm without using gra-
dient information. By giving D + 1 search points in D dimension space and
repeating reflection, expansion and contraction for them, the optimum solution
can be searched. The algorithm of function minimization in the Nelder-Mead
method is shown below.
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Step 0. For D + 1 search points, f(x1) ≤ f(x2) ≤ · · · ≤ f(xD+1) is set in the
order of the values of the objective function f , and if the end condition is
not satisfied, Step1 is assumed, and if the end condition is satisfied, x1 is
assumed as the solution.

Step 1. Using the centroids xc of x1 . . . xn, the reflection point xref of xD+1

is determined by the following equation:

xref = xc + α(xc − xD+1)

Step 2.
case 1 If f(x1) ≤ f(xref ) < f(xD), replace xD+1 with xref and go to

Step0.
case 2 If f(xref ) < f(x1), the expansion point, which is the point where

the reflection point is further extended, is obtained as follows:

xexp = xc + γ(xref − xc)

If f(xexp) ≤ f(xref ), replace xD+1 with xexp and go to Step0, otherwise
replace xD+1 with xref and go to Step0.

case 3 If f(xD) ≤ f(xref )
case 3–1 If f(xref ) < f(xD+1), the contraction point is obtained as

follows:
xcon = xc + β(xref − xc)

Then go to Step3.
case 3–2 Otherwise, the contraction point is obtained as follows:

xcon = xc + β(xD+1 − xc)

Then go to Step3.
Step 3. If f(xcon) < min{f(xref ), f(xD+1)}, replace xD+1 with xcon and go

to Step0, otherwise go to Step4.
Step 4. Shrink all individual i to point x1 as follows:

xi = x1 + δ(xi − x1)

Then go to Step0.

3 Proposed Method

In the proposed method, one of the search points of JADE is made to search
outside the group according to the situation. By this, the search is made so
that the solution is not missed, when the function in which there are multiple
local solutions is searched. In addition, escape from the local solution by the
search outside the group is expected, when it falls into the local solution. And,
the lowering of the search speed by the increase of the outside group search is
prevented by limiting the point of the outside group search to one point.
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Concretely, if the distance between the search point with the best solution
and the search point with the worst solution is more than half of the distance
from the end to the end of the search point group, one search point searches the
point by extending a 2n vector from the search point with the worst solution
to the search point with the best solution. The value of n is determined by
sampling from a geometric distribution. The success probability of the geometric
distribution p is defined as 1/Gpupdate by the update rate of the solution pupdate
and the generation G. This pupdate is updated in the same way as JADE with
an initial value of 0 (Fig. 1).

if ||xbest − xworst|| > ||xmax − xmin||/2
n = GeometricDistribution(1/Gpupdate)
xlast = xworst + (xbest − xworst) ∗ 2n

Fig. 1. Out-group search

4 Numerical Experiments and Results

JADE and the proposed method (JADE+) are compared for 16 benchmark
functions shown in Table 1. In the comparison experiment, calculation up to
1000 generations was tried 1000 times for each function at a search point of 10.
Figure 2 through 24 show the average of 1000 times of the best solution for each
generation, with the evaluation value on the vertical axis and the generation
number on the horizontal axis. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16 and 17 show the results of the experiment with the dimension of 2, and
Figs. 18, 19, 20, 21, 22, 23 and 24 show the results of the experiment with the
dimension of 10. In order to deal with the minimization problem, we show that
the lower the graph is, the better the solution is. Tables 2 and 3 summarize
the mean ± standard deviation of the final solutions for each function. Table 2
shows the case where the dimension is 2, and Table 3 shows the case where the
dimension is 10. In Tables 2 and 3, the methods which obtained good solutions
and obtained solutions are shown in bold type.
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Table 1. Test functions used in the experiment
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Fig. 2. F1 (D = 2) Fig. 3. F2 (D = 2) Fig. 4. F3 (D = 2)

Fig. 8. F7 (D = 2) Fig. 9. F8 (D = 2) Fig. 10. F9 (D = 2)

Fig. 5. F4 (D = 2) Fig. 6. F5 (D = 2) Fig. 7. F6 (D = 2)



112 Y. Miyahira and A. Notsu

Fig. 11. F10 (D = 2) Fig. 12. F11 (D = 2) Fig. 13. F12 (D = 2)

Fig. 14. F13 (D = 2) Fig. 15. F14 (D = 2) Fig. 16. F15 (D = 2)

Fig. 17. F16 (D = 2) Fig. 18. F1 (D = 10) Fig. 19. F2 (D = 10)
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Fig. 20. F6 (D = 10) Fig. 21. F7 (D = 10) Fig. 22. F14 (D = 10)

Fig. 23. F15 (D = 10) Fig. 24. F16 (D = 10)

We begin with a discussion of the two-dimensional case, Figs. 2 through 17.
The graphs show that the proposed method has a better solution than JADE in
Fig. 7 (Rastrigin function), Fig. 8 (Ackley function), Fig. 9 (Levi N. 13 function),
Fig. 11 (Beale function), Fig. 12 (Goldstein-Price function), Fig. 13 (SchafferN2
function), Fig. 14 (Five-well potential function), Fig. 16 (Xin-She Yang function),
and Fig. 17 (Styblinski-Tang function), and the convergence speed is almost the
same. From this fact, it is proven that the accuracy heightens without lowering
the search speed by carrying out the group outside search in one search point.
In Fig. 9 (Levi N. 13 function) and Fig. 13 (SchafferN2 function), it can be seen
that the proposed method escaped from the point where it almost converged
once, and reached a better solution. This suggests that the search outside the
group works well to escape from the local solution. However, in Fig. 2 (Sphere
function), Fig. 3 (Rosenbrock function) and Fig. 5 (Matyas function), the search
speed of the solution is inferior to JADE, and it can be read that the useless
group outside search leads to the lowering of the search speed in the simple
unimodal function.

We then discuss the 10 dimensional case, Figs. 18 through 24. First, as shown
in Fig. 19, the result of F2 was improved. The results of other functions were not
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Table 2. Comparison of mean and standard deviation (D = 2)

Function Method Mean ± Standard deviation

F1:Sphere JADE 5.7656e–196 ± 0

JADE+ 8.7776e–156 ± 1.9808e–154

F2:Rosenbrock JADE 1.3679e–150 ± 4.3256e–149

JADE+ 2.9785e–87 ± 9.4188e–86

F3:Booth JADE 3.1554e–33 ± 9.9784e–32

JADE+ 0 ± 0

F4:Matyas JADE 1.3784e–160 ± 4.0084e–159

JADE+ 7.5967e–96 ± 2.4023e–94

F5:Easom JADE –0.998 ± 0.044695

JADE+ –1 ± 0

F6:Rastrigin JADE 0.019899 ± 0.1463

JADE+ 0.01194 ± 0.10839

F7:Ackley JADE 0.0077398 ± 0.14117

JADE+ 7.1054e–18 ± 1.588e–16

F8:LeviN13 JADE 0.00087899 ± 0.0097929

JADE+ 0.00010987 ± 0.0034745

F9:BukinN6 JADE 0.019676 ± 0.014354

JADE+ 0.021124 ± 0.026538

F10:Beale JADE 0.057155 ± 0.20082

JADE+ 0.0068586 ± 0.072006

F11:GoldsteinPrice JADE 5.43 ± 12.4936

JADE+ 4.566 ± 10.2735

F12:SchafferN2 JADE 3.1266e–06 ± 9.8872e–05

JADE+ 0 ± 0

F13:FiveWellPotential JADE –0.99589 ± 0.32489

JADE+ –1.0621 ± 0.29633

F14:Griewank JADE 0.99975 ± 2.2327e–14

JADE+ 0.99975 ± 2.2327e–14

F15:XinSheYang JADE 0.023408 ± 0.084715

JADE+ 0.019781 ± 0.078336

F16:StyblinskiTang JADE –77.0742 ± 4.1255

JADE+ –77.3569 ± 3.6402
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Table 3. Comparison of mean and standard deviation (D = 10)

Function Method Mean ± Standard deviation

F1:Sphere JADE 7.3367e–47 ± 1.3492e–45

JADE+ 1.9139e–46 ± 3.7947e–45

F2:Rosenbrock JADE 0.00022373 ± 0.0097558

JADE+ 2.5623e–07 ± 1.1459e–05

F6:Rastrigin JADE 0 ± 0

JADE+ 0 ± 0

F7:Ackley JADE 3.503e–15 ± 4.1751e–16

JADE+ 3.5136e–15 ± 3.7065e–16

F14:Griewank JADE 0.99975 ± 3.6647e–14

JADE+ 0.99975 ± 3.6647e–14

F15:XinSheYang JADE 0.00056607 ± 1.4686e–14

JADE+ 0.00056607 ± 2.2173e–14

F16:StyblinskiTang JADE –391.5415 ± 1.2981

JADE+ –391.5274 ± 1.3717

so different from those of the conventional method. In this experiment, it can be
said that the result as intended was obtained, because the search frequency of
the outside region did not increase, even if the dimension increased, so that the
performance in the high dimension would not be lowered. And, it was proven
that it was good to add outer region search like the proposed method, because
the region near the optimum solution was lined in F2.

Table 2 shows that the proposed method improved the accuracy of the solu-
tion to 11 functions out of 16. For these 11 functions, the proposed method gives
better values for both mean and standard deviation. Since all the functions
whose accuracy is improved are multimodal functions, the proposed method is
more stable and gives better solution in multimodal functions, and it is proven
that the search outside the group is effective for the multimodal function. In the
sphere function, Rosenbrock function and Matyas function which are the uni-
modal function, the reason why the accuracy is inferior to JADE is the lowering
of the search speed by the out-of-group search, and there seems to be a large
room of the improvement on the judging method of whether to carry out the
out-group search or not.

Next, we discuss Table 3. In the proposed method, one of the search points
searches outside the population. Therefore, as the dimension increases, the effect
of out-of-group search decreases and the difference between JADE and JADE+
disappears. In Table 3, we can see that the results are similar between JADE
and JADE+.
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5 Conclusion

In this study, we propose a method to add search outside the group referring
to the Nelder-Mead method to JADE which is adaptive differential evolution.
A comparison experiment between the proposed method and the conventional
method was carried out using 16 benchmark functions, and it succeeded in
improving the accuracy of the solution in many functions. Especially, search
outside the group works effectively in the multimodal function, and escape from
the local solution is also observed. However, since there were some cases in which
the search speed was inferior to JADE in the unimodal function, it is also nec-
essary to examine how to decide whether to search outside the group.
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Abstract. The two-parameter exponential distribution is widely used
for many applications in real life, and the data can include zero obser-
vations. The mean, which represents the center of a population, is one
of the parameters of interest. Herein, we propose confidence intervals
for the mean of a delta two-parameter exponential distribution based on
parametric bootstrapping (PB), standard bootstrapping (SB), the gen-
eralized confidence interval (GCI), and the method of variance estimates
recovery (MOVER). The performances of the proposed confidence inter-
vals were evaluated by using coverage probabilities and average lengths
via Monte Carlo simulations. The results indicate that GCI can be rec-
ommended for small-to-moderate sample sizes whereas PB is appropriate
for large sample sizes.

Keywords: Parametric bootstrap · Standard bootstrap · Generalized
confidence interval · Method of variance estimates recovery · Delta two
parameter exponential distribution

1 Introduction

In applied statistics, the two-parameter exponential distribution has been widely
used for many applications in real life, such as lifetime, survival, and reliability
analyses [1]. Thus, defining confidence intervals for estimating its parameters is
important for statistical inference on this distribution [2]. Confidence intervals
provide better information with respect to the population than point estimation
[3]. Thus, many researchers have constructed confidence intervals for the param-
eters of a two-parameter exponential distribution. For example, Sangnawakij
and Niwitpong [4] proposed confidence intervals for the coefficient of variation
of a two-parameter exponential distribution by using the method of variance of
estimates recovery (MOVER), the generalized confidence interval (GCI), and
the asymptotic confidence interval. Of these, MOVER performs well in terms of
coverage probability when data only consist of positive values. Sangnawakij and
Niwitpong [5] constructed confidence intervals for the ratio of the coefficients of
variation of two-parameter exponential distributions by using MOVER and GCI;
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the latter provided the best performance in terms of acceptable coverage proba-
bility and the shortest length. Thangjai and Niwitpong [2] provided confidence
intervals for the weighted coefficients of variation of two-parameter exponential
distributions by using adjusted MOVER, GCI, and the large sample method
and found that GCI can be recommended for all situations studied. Thang-
jai and Niwitpong [6] created confidence intervals for the difference between
the signal-to-noise ratios of two-parameter exponential distributions by using
GCI, MOVER, LS, and parametric bootstrapping (PB). Here, the PB approach
provided better coverage probabilities than the others for all of the scenarios
studied.

A data series can include zero observations in various situations. Aitchison
[7] focused on the characteristics of a data series including zero observations
and determined that the probability of having zero observation is 0 < δ < 1
whereas the remaining probability 1 − δ is used to describe the positive observa-
tions. Later, Aitchison and Brown [8] introduced the delta-lognormal distribution
where the number of zero observations can be viewed as a random variable with
a binomial distribution and the positive observations comprise a random variable
from a lognormal distribution.

The mean of a random variable is an average value that is weighted according
to the probability distribution. It is a useful parameter employed as a measure
of the center of a population [3]. The aim of the current study is to propose con-
fidence intervals for the mean of a delta two-parameter exponential distribution
based on PB, SB, GCI, and MOVER.

2 Methods

Let Xi be a random variable following two parameters exponential distribution
(λ, β) distribution with scale parameter λ and location parameter β. The prob-
ability density function can be derived as follows:

f(x;λ, β) =

{
1
λexp(− (x−β)

λ ); λ > 0, β ∈ R

0; otherwise.
(1)

The maximum likelihood estimators of β and λ are respectively given by

β̂ = X(1) (2)

λ̂ = X̄ − X(1) (3)

Suppose that the population of interest contains both zero and non-zero
observations denoted by n(0) and n(1), respectively, where n = n(0) + n(1). The
zero observations follow a binomial distribution n(0) ∼ Bin(n, δ) whereas the
non-zero observations follow a two-parameter exponential distribution. Let X =
(X1,X2, ...,Xn) be a random sample from a delta two-parameter exponential
distribution denoted by Δ(δ, λ, β). Its distribution function can be derived as

G(xi; δ, λ, β) =

{
δ; x = 0,

δ + (1 − δ)F (x;λ, β); x > 0
(4)
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F (x;λ, β) is a two-parameter exponential distribution with cumulative distribu-
tion function δ̂ = n(0)/n. The mean of X is

E(X) = θ = (1 − δ) · (λ + β) (5)

The methods for constructing the confidence interval for θ are proposed in
the following section.

2.1 Bootstrap Confidence Intervals

A bootstrap sample denoted by x∗
1, x

∗
2, ..., x

∗
n is of size n and drawn with replace-

ment from the original sample. The corresponding bootstrap for θ̂ is denoted as
θ̂∗. We have assumed that 5,000 bootstrap samples are taken, and thus 5,000
bootstrap θ̂’s will be obtained and can be ordered from the smallest to the
largest, denoted by θ̂∗

(1), θ̂
∗
(2), ..., θ̂

∗
(5,000).

Parametric Bootstrap (PB). In this study, θ is the parameter of interest.
Subsequently, Eq. (5) is transformed by using log function

ϑ = ln(1 − δ) + ln(λ + β) (6)

The bootstrap for the mean of a delta two-parameter exponential distribution
can be written as

θ̂∗ = ln(1 − δ̂∗) + ln(λ̂∗ + β̂∗) (7)

The 100(1 − α)% PB interval is given by

CIPB = [θ̂∗(α/2), θ̂∗(1 − α/2)] (8)

Standard Bootstrap (SB). From the 5,000 bootstrap estimates θ̂∗
i , for i = 1,

2,..., 5,000 calculate the sample average as

θ̄∗ =
1

5, 000

5,000∑
i=1

θ̂i

∗
(9)

and the sample standard deviation as

S∗
θ =

[
1

4, 999

5,000∑
i=1

(θ̂i

∗ − θ̄∗)2
] 1

2

(10)

The 100(1 − α)% SB interval is given by

CISB = [θ̄∗ + S∗
θZα

2
, θ̄∗ + S∗

θZ1− α
2
] (11)

The confidence intervals for the mean (θ) can be obtained by using Algorithm1.
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Algorithm 1. Bootstrapping
1: For a given sample from a delta two-parameters exponential distribution (x), com-

pute x̄, ̂δ, ̂λ and ̂β.
2: Generate x∗ from x.
3: Compute x̄∗, ̂δ∗, ̂λ∗ and ̂β∗.
4: Compute ̂θ∗ from Eq. (7).

5: Repeat Steps 2–4 5,000 times and obtain an array of ̂θ∗.
6: Compute the 95% confidence intervals for ̂θ∗ from Eqs. (8) and (11).
7: Repeat Steps 1–6 15,000 times to compute the coverage probabilities and average

lengths.

2.2 Generalized Confidence Interval (GCI)

The GCI for constructing confidence intervals was first presented by Weerahandi
[9]. This method is based on the generalized pivotal quantity (GPQ) concept.
Recall that the MLEs of the parameters are β̂ = X(1), λ̂ = X̄ − X(1) and
δ̂ = n(0)/n. The GPQ for δ proposed by Anirban [10] and Wu and Hsieh [11] is
given by

Rδ = sin2

[
arcsin

√
δ̂ − Z

2
√

n

]
(12)

where Z = 2
√

n
(
arcsin

√
δ̂ − arcsin

√
δ
)

D−→ N(0, 1) as n → ∞. We known that

β̂ and λ̂ are independent [12] so the respective pivots of β̂ and λ̂ [13] can be
derived as

W1 =
2n(β̂ − β)

λ
∼ χ2

2 (13)

W2 =
2nλ̂

λ
∼ χ2

2n−2 (14)

where χ2
2 and χ2

2n−2 denote Chi-squared distributions with 2 and 2n− 2 degrees
of freedom, respectively.

The GPQ of β is given by:

Rβ = x(1) − W1λ̂

W2
(15)

The GPQ of λ is given by:

Rλ =
2nλ̂

W2
(16)

Thus, the GPQ of θ is given by:

Rθ = ln(1 − Rδ) + ln(Rλ + Rβ) (17)

The 100(1 − α)% GCI interval is given by

CIGCI = [Rθ(α/2), Rθ(1 − α/2)] (18)
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Algorithm 2. GCI
1: For a given sample from a delta two-parameters exponential distribution (x), com-

pute x̄, ̂δ, ̂λ and ̂β.
2: Generate W1 from Chi-square distribution with degrees of freedom 2.
3: Generate W2 from Chi-square distribution with degrees of freedom 2n − 2.
4: Compute Rβ from Eq. (15).
5: Compute Rλ from Eq. (16).
6: Compute Rθ from Eq. (17).
7: Repeat Steps 2–6 5,000 times and obtain an array of Rθ.
8: Compute the 95% confidence intervals for θ from Eq. (18).
9: Repeat Steps 1–8 15,000 times to compute the coverage probabilities and average

lengths.

2.3 Method of Variance Estimates Recovery (MOVER)

The idea behind MOVER based on the central limit theorem was first proposed
by Donner and Zou [14]. In this study, we focus only on the confidence interval
for θ̂1 + θ̂2. The MOVER to construct the confidence interval for θ̂1 + θ̂2 defined
as

CIM = [LM , UM ] (19)

where

LM = (θ̂1 + θ̂2) −
√

(θ̂1 − l1)2 + (θ̂2 − l2)2

UM = (θ̂1 + θ̂2) +
√

(u1 − θ̂1)2 + (u2 − θ̂2)2

Recall that the parameter of interest is ϑ = ln(1 − δ) + ln(λ + β). We set
θ1 = ln(1 − δ) = δ′ and θ2 = ln(λ + β). The CI for δ was examined by Zou et al.
[15]. The 100(1 − α)% CI for ln(1 − δ) as

CIln(1−δ) = [l1, u1] (20)

where

l1 = ln

[(
δ̂′ +

T 2
1− α

2
2n −

√
δ̂′(1−δ̂′)

n +
T 2
1− α

2
4n2

)
/(1 + T 2

1− α
2
/n)

]

u1 = ln

[(
δ̂′ +

T 2
1− α

2
2n +

√
δ̂′(1−δ̂′)

n +
T 2
1− α

2
4n2

)
/(1 + T 2

1− α
2
/n)

]

Note that T = n(1)−nδ′√
nδ′(1−δ′)

d∼ N(0, 1)

Sangnawakij and Niwitpong [4] proposed the 100(1 − α)% CI for λ + β as

CIλ+β = [lλ+β , uλ+β ] (21)

where
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lλ+β = x̄ −
√[

λ̂ − nλ̂
Z α

2

√
n−1+(n−1)

]2

+
[

λ̂
n ln(α

2 )
]2

uλ+β = x̄ +

√[
nλ̂

−Z α
2

√
n−1+(n−1)

− λ̂

]2

+
[

λ̂
n ln(1 − α

2 )
]2

Then the 100(1 − α)% CI for ln(λ + β) is given by

CIln(λ+β) = [l2, u2] (22)

where

l2 = ln

⎛
⎝x̄ −

√[
λ̂ − nλ̂

Z α
2

√
n−1+(n−1)

]2

+
[

λ̂
n ln(α

2 )
]2⎞⎠

u2 = ln

⎛
⎝x̄ +

√[
nλ̂

−Z α
2

√
n−1+(n−1)

− λ̂

]2

+
[

λ̂
n ln(1 − α

2 )
]2⎞⎠

Thus the 100(1 − α)% MOVER interval for ϑ is given by

CIMOV ER = [lMOV ER, uMOV ER] (23)

where

LMOV ER = (θ̂1 + θ̂2) −
√

(θ̂1 − l1)2 + (θ̂2 − l2)2

UMOV ER = (θ̂1 + θ̂2) +
√

(θ̂1 − u1)2 + (θ̂2 − u2)2

Note that Z = μ̂−μ√
σ2/n

d∼ N(0, 1)

T and Z are independent random variables.

3 Simulation Studies and Results

A simulation study with 15,000 replications (M) and 5,000 repetitions (m) for
PB, SB and GCI with a nominal confidence level of 0.95 was conducted. Sample
size n was set as 10, 20, 30, 50, 100 or 200; δ as 0.1, 0.2, 0.5, 0.8 or 0.9; scale
parameter λ as 1 or 2 and location parameter β as 0. The performances of
the confidence intervals were assessed by comparing their coverage probabilities
and average lengths using Monte Carlo simulation. In each scenario, the best-
performing confidence interval had a coverage probability close to or greater
than 0.95 and the shortest average length. The coverage probability and average
length results for the nominal 95% two-sided confidence intervals for the mean
of a delta two-parameter exponential distribution are reported in Table 1.

It can be seen that GCI performed well for small-to-moderate sample sizes
and small δ whereas the PB and SB confidence intervals performed well for
large sample sizes and large δ. However, PB obtained narrower average lengths
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Table 1. The coverage probabilities and (Average lengths) of nominal 95% two-sided
confidence intervals for mean of delta two parameters exponential distribution

n λ δ Coverage probability (Average length)

PB SB GCI MOVER

10 1 0.1 0.8840 0.8740 0.9572 0.6010

(1.0672) (1.0847) (1.4059) (0.5233)

0.2 0.8841 0.8762 0.9487 0.5905

(1.0549) (1.0738) (1.3020) (0.4823)

0.5 0.8926 0.8781 0.9298 0.5977

(0.9099) (0.9350) (0.9706) (0.4026)

0.8 0.8114 0.8088 0.8429 0.6018

(0.4915) (0.5536) (0.5516) (0.3085)

0.9 0.3429 0.7141 0.7487 0.3919

(0.2013) (0.2930) (0.3471) (0.2205)

2 0.1 0.8813 0.8722 0.9506 0.6017

(2.1444) (2.1799) (2.8160) (1.0488)

0.2 0.8867 0.8756 0.9498 0.5853

(2.1076) (2.1444) (2.6079) (0.9687)

0.5 0.8865 0.8712 0.9200 0.5897

(1.8195) (1.8681) (1.9393) (0.8071)

0.8 0.8136 0.8129 0.8461 0.6129

(0.9819) (1.1055) (1.1023) (0.6184)

0.9 0.3559 0.7187 0.7518 0.4035

(0.4044) (0.5890) (0.6975) (0.4430)

20 1 0.1 0.9137 0.9091 0.9507 0.8032

(0.8104) (0.8170) (0.9058) (1.0279)

0.2 0.9253 0.9168 0.9462 0.7859

(0.7976) (0.8044) (0.8460) (0.9102)

0.5 0.9332 0.9211 0.9410 0.7725

(0.6918) (0.7009) (0.6478) (0.5858)

0.8 0.8951 0.8747 0.8919 0.7811

(0.4385) (0.4551) (0.3970) (0.2881)

0.9 0.8173 0.8136 0.8425 0.6482

(0.2497) (0.2847) (0.2709) (0.1832)

2 0.1 0.9158 0.9094 0.9481 0.8031

(1.6216) (1.6348) (1.8106) (2.0545)

0.2 0.9271 0.9217 0.9492 0.7961

(1.6023) (1.6165) (1.6963) (1.8260)

0.5 0.9323 0.9199 0.9364 0.7814

(1.3904) (1.4087) (1.3015) (1.1771)

(continued)
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Table 1. (continued)

n λ δ Coverage probability (Average length)

PB SB GCI MOVER

0.8 0.8972 0.8804 0.8941 0.7833

(0.8731) (0.9075) (0.7892) (0.5737)

0.9 0.8129 0.8119 0.8372 0.6483

(0.5061) (0.5770) (0.5485) (0.3715)

30 1 0.1 0.9302 0.9250 0.9520 0.8363

(0.6730) (0.6767) (0.7143) (0.7633)

0.2 0.9370 0.9305 0.9495 0.8276

(0.6665) (0.6705) (0.6726) (0.6830)

0.5 0.9494 0.9426 0.9446 0.8107

(0.5838) (0.5890) (0.5221) (0.4489)

0.8 0.9229 0.9055 0.9103 0.7916

(0.3803) (0.3894) (0.3225) (0.2259)

0.9 0.8784 0.8544 0.8749 0.7063

(0.2407) (0.2570) (0.2247) (0.1487)

2 0.1 0.9334 0.9274 0.9504 0.8426

(1.3522) (1.3595) (1.4346) (1.5330)

0.2 0.9358 0.9296 0.9474 0.8210

(1.3336) (1.3417) (1.3423) (1.3631)

0.5 0.9497 0.9401 0.9442 0.8023

(1.1652) (1.1757) (1.0442) (0.8978)

0.8 0.9303 0.9129 0.9187 0.8093

(0.7602) (0.7781) (0.6448) (0.4524)

0.9 0.8868 0.8644 0.8809 0.7124

(0.4825) (0.5149) (0.4508) (0.2983)

50 1 0.1 0.9402 0.9371 0.9492 0.8729

(0.5345) (0.5364) (0.5433) (0.5559)

0.2 0.9501 0.9454 0.9512 0.8583

(0.5267) (0.5286) (0.5100) (0.4976)

0.5 0.9631 0.9573 0.9469 0.8449

(0.4632) (0.4658) (0.4006) (0.3327)

0.8 0.9508 0.9373 0.9287 0.8012

(0.3084) (0.3125) (0.2498) (0.1694)

0.9 0.9234 0.9050 0.9045 0.7311

(0.2110) (0.2177) (0.1761) (0.1123)

2 0.1 0.9412 0.9372 0.9503 0.8704

(1.0687) (1.0727) (1.0843) (1.1097)

(continued)
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Table 1. (continued)

n λ δ Coverage probability (Average length)

PB SB GCI MOVER

0.2 0.9472 0.9437 0.9491 0.8571

(1.0515) (1.0555) (1.0199) (0.9948)

0.5 0.9575 0.9525 0.9426 0.8364

(0.9224) (0.9274) (0.7991) (0.6636)

0.8 0.9506 0.9395 0.9297 0.8071

(0.6174) (0.6257) (0.4994) (0.3386)

0.9 0.9187 0.8991 0.8984 0.7241

(0.4173) (0.4301) (0.3488) (0.2221)

100 1 0.1 0.9517 0.9496 0.9503 0.9067

(0.3837) (0.3845) (0.3781) (0.3751)

0.2 0.9542 0.9526 0.9486 0.8896

(0.3774) (0.3782) (0.3552) (0.3368)

0.5 0.9703 0.9662 0.9432 0.8555

(0.3332) (0.3342) (0.2803) (0.2273)

0.8 0.9719 0.9629 0.9381 0.7981

(0.2267) (0.2283) (0.1762) (0.1162)

0.9 0.9512 0.9368 0.9199 0.7323

(0.1586) (0.1607) (0.1239) (0.0756)

2 0.1 0.9484 0.9455 0.9482 0.9003

(0.7673) (0.7690) (0.7559) (0.7498)

0.2 0.9602 0.9586 0.9526 0.8921

(0.7567) (0.7582) (0.7122) (0.6754)

0.5 0.9716 0.9665 0.9466 0.8596

(0.6656) (0.6677) (0.5603) (0.4547)

0.8 0.9704 0.9621 0.9387 0.7980

(0.4517) (0.4548) (0.3513) (0.2315)

0.9 0.9538 0.9397 0.9221 0.7326

(0.3173) (0.3217) (0.2476) (0.1510)

200 1 0.1 0.9541 0.9547 0.9500 0.9199

(0.2733) (0.2737) (0.2650) (0.2590)

0.2 0.9598 0.9593 0.9462 0.9107

(0.2697) (0.2701) (0.2500) (0.2339)

0.5 0.9769 0.9754 0.9499 0.8746

(0.2373) (0.2378) (0.1968) (0.1579)

0.8 0.9803 0.9761 0.9450 0.7890

(0.1628) (0.1634) (0.1243) (0.0807)

(continued)
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Table 1. (continued)

n λ δ Coverage probability (Average length)

PB SB GCI MOVER

0.9 0.9727 0.9647 0.9358 0.7318

(0.1163) (0.1171) (0.0877) (0.0521)

2 0.1 0.9585 0.9577 0.9532 0.9235

(0.5464) (0.5471) (0.5302) (0.5181)

0.2 0.9626 0.9616 0.9480 0.9074

(0.5381) (0.5389) (0.4991) (0.4671)

0.5 0.9766 0.9743 0.9471 0.8675

(0.4750) (0.4759) (0.3939) (0.3161)

0.8 0.9793 0.9758 0.9479 0.7996

(0.3252) (0.3264) (0.2479) (0.1609)

0.9 0.9737 0.9651 0.9365 0.7392

(0.2322) (0.2339) (0.1751) (0.1041)

than SB. The coverage probabilities obtained by MOVER were lower than the
nominal confidence level in all cases, which is probably because the coverage
probability does not depend on the scale parameter (λ) and so is unaffected by
its value. Many researchers have investigated and used GCI and PB methods for
construct confidence intervals for the parameters of various distributions [2,4–
6]. Indeed, GCI provides satisfactory and more accurate confidence intervals for
the weighted coefficients of variation and the ratio of coefficients of variation
of two-parameter exponential distributions than other methods. Moreover, con-
fidence intervals constructed by using the PB approach are recommended for
the difference between the signal-to-noise ratios of two-parameter exponential
distributions.

4 An Empirical Application

In this section, the performances of the confidence intervals were compared by
using real datasets comprising sulfur dioxide emissions reported by the Division
of Air Quality and Noise Management Bureau, Pollution Control Department,
Thailand. The sulfur dioxide data were obtained from 11 August to 11 September
2021 in Phuket province, Thailand, and from 21 August to 21 September 2021
in Songkhla province, Thailand. First, fitting of the data to four distributions
(normal, Cauchy, gamma, and exponential) was compared by using the minimum
Akaike information criterion (AIC) and Bayesian information criterion (BIC).
AIC and BIC are defined as AIC = −2 ln L+2k and BIC = −2 ln L+2k ln (n).
The results in Tables 2 and 3 show that the lowest AIC and BIC values for
Phuket province (146.7457 and 148.2115, respectively) and Songkhla province
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(96.0579 and 97.4252 respectively) were for the exponential model, which is thus
the most suitable distribution.

Table 2. AIC and BIC results of SO2 data from Phuket province

Models Normal Cauchy Gamma Exponential

AIC 197.0046 179.8331 148.7457 146.7457

BIC 199.9361 182.7646 151.6772 148.2115

Table 3. AIC and BIC results of SO2 data from Songkhla province

Models Normal Cauchy Gamma Exponential

AIC 139.1536 134.1444 98.0579 96.0579

BIC 141.8882 136.8790 100.7925 97.4252

The sulfur dioxide data from Phuket province are x̄ = 4.91, x(1) = 1, n =
32, n(1) = 23, n(0) = 9 with the MLEs for δ, β, λ and θ being δ̂ = 0.28, β̂ = 1, λ̂ =
3.91 and θ̂ = 3.53, respectively. The 95% two-sided confidence intervals for θ were
calculated, as reported in Table 4. The summary statistics for the sulfur dioxide
data from Songkhla province are x̄ = 3.37, x(1) = 1, n = 29, n(1) = 16, n(0) = 13
with the MLEs for δ, β, λ and θ being δ̂ = 0.45, β̂ = 1, λ̂ = 2.38 and θ̂ = 1.86,
respectively. The 95% two-sided confidence intervals for θ were calculated, as
reported in Table 5.

Table 4. The 95% two-sided confidence intervals for mean of SO2 data from Phuket
province

Methods Confidence intervals for θ Length of intervals

Lower Upper

PB 2.0313 5.4063 3.3750

SB 1.8178 5.2476 3.4298

GCI 2.4565 5.1151 2.6586

MOVER 1.8018 4.2551 2.4533

According to the simulation in the previous section, in case of n = 30, β =
1, δ = 0.2, the GCI method obtained a coverage probability close to the nominal
confidence level of 0.95. For n = 30, β = 1, δ = 0.5, PB, SB, and GCI provided
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Table 5. The 95% two-sided confidence intervals for mean of SO2 data from Songkhla
province

Methods Confidence intervals for θ Length of intervals

Lower Upper

PB 1.0000 2.7931 1.7931

SB 0.9539 2.7648 1.8109

GCI 1.1893 2.8145 1.6252

MOVER 0.9741 2.2957 1.3216

appropriate confidence intervals for the mean because their coverage probabilities
were close to the nominal confidence level of 0.95. Meanwhile, the average lengths
using MOVER were the shortest but its coverage probabilities were less than the
nominal level. Thus, GCI is the best method for constructing confidence intervals
for the mean of the sulfur dioxide data because it provided coverage probabilities
close to 0.95 and shorter average lengths than PB and SB.

5 Conclusions

The objective of this study was to construct confidence intervals for the mean
of a delta two-parameter exponential distribution by using PB, SB, GCI, and
MOVER. From the coverage probability and average length results obtained
via Monte Carlo simulation and by using real data following an exponential
distribution, GCI can be recommended for small-to-moderate sample size cases
whereas PB is appropriate for large sample size cases. Future researchers may
also be extended to the case of difference between means of delta two-parameter
exponential distributions.
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Abstract. When coefficients in the objective function cannot be pre-
cisely determined, the optimal solution is fluctuated by the realisation
of coefficients. Therefore, analysing the stability of an optimal solution
becomes essential. Although the robustness analysis of an optimal basic
solution has been developed successfully so far, it becomes complex when
the solution contains degeneracy. This study is devoted to overcoming
the difficulty caused by the degeneracy in a linear programming problem
with interval objective coefficients. We focus on the tangent cone of a
degenerate basic feasible solution since the belongingness of the objec-
tive coefficient vector to its associated normal cone assures the solution’s
optimality. We decompose the normal cone by its associated tangent cone
to a direct union of subspaces. Several propositions related to the pro-
posed approach are given. To demonstrate the significance of the decom-
position, we consider the case where the dimension of the subspace is
one. We examine the obtained propositions by numerical examples with
comparisons to the conventional techniques.

Keywords: Interval linear programming · Degeneracy · Polyhedral
convex cone · Tangent cone · Basic space

1 Introduction

Linear programming addresses enormous real-world problems. The conventional
LP techniques assume that all coefficients are precisely determined. However, this
assumption cannot always be guaranteed. Sometimes the coefficients can only be
imprecisely known with ranges or distributions due to measurement limitation,
noise and insufficient knowledge. Since the imprecise coefficients may fluctuate
the solution’s optimality, a decision-maker is usually interest in analysing its
stability.

Researchers have studied the problem for decades. An approach called sensi-
tivity analysis [1] that utilises shadow price can analyse the maximum variation
on a single coefficient. To treat the case of multiple coefficients, Bradley, Hax, and
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Magnanti [1] solved a convex cone by the 100 Percent Rule, which is also called
the optimality assurance cone in this paper. Then one only needs to check the
belongingness of the imprecise coefficients to this convex cone. To represent the
imprecise coefficients, researchers utilise several methods such as interval [5,16],
fuzzy [7,9], and probability distribution [10,11,14,15]. For example, the neces-
sary optimality [9] is widely utilised in the interval case if a feasible solution
is optimal for all realisations derived by the interval coefficients. The tolerance
approach [2,16,17] can address it straightforwardly if the feasible set is constant.

Despite the usefulness of the optimality assurance cone, we cannot always
solve it directly by the simplex method. When the feasible solution is non-basic or
degenerate, it becomes problematic [6]. To handle it, researchers aim to separate
the non-zero part of the solution instead of focusing on its basis. Some remarkable
techniques have emerged, such as support set invariancy and optimal partition
invariancy [6]. However, they only concentrate on the non-basic situation, which
is called dual degeneracy in this paper. On the other hand, primal degeneracy
is merely considered a particular case and treated by variational analysis [12]
and convex analysis [13] theoretically. The reason is that the optimal solution
and optimal value would not change even the basic index set varies. However,
when solving the optimal assurance cone of a basic feasible solution, the variance
of the basic index set causes troubles. If we list all combinations violently, the
computational burden will become tremendous for a large-scale problem [6].
Hence, the study of the primal degeneracy is vital.

In this paper, we study the optimality assurance cone by its counterpart
tangent cone [12,13] in the view of linear algebra. We start by reviewing the
interval linear programming and introduce the necessary optimality of a feasible
solution in the next section. After identifying the difference between the primal
and dual degeneracy, we focus on the primal one. We consider solving the tangent
cone of a feasible basic solution and decompose the derived optimality assurance
cone into a union of subspaces with equivalence. To simplify our analysis, we
assume that the dimension of the subspace is only 1, i.e. the cardinality of the
non-zero variable set is strictly 1 less than the basic index set. We finally give
numerical examples to show that our approach can treat the problem with no
loop or iteration.

2 Preliminaries

2.1 The Linear Programming

The linear programming (LP) problem in this paper follows the standard form
as

minimize cTx, subject to Ax = b, x ≥ 0, (1)

where x ∈ R
n is the decision variable vector, while A ∈ R

m×n, b ∈ R
m and

c ∈ R
n are the coefficient matrix, right-hand-side coefficient vector and objective

coefficient vector, respectively.
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Since the simplex method needs a basic index set IB with Card(IB) = m, we
have to consider basic feasible solutions. Therefore, let x∗

B ∈ R
m and x∗

N ∈ R
n−m

denote the basic and non-basic sub-vectors of x∗ separated by IB , respectively.
Then we can also separate A with AB ∈ R

m×m and AN ∈ R
m×(n−m), and c

with cB ∈ R
m and bN ∈ R

n−m accordingly.
Since IB is solved by the simplex method, AB should be non-singular. There-

fore, we have the proposition for the optimality of a basic feasible solution:

Proposition 1. A basic feasible solution x∗ is optimal if and only if the follow-
ing conditions are valid:

cN − AT
NA−T

B cB ≥ 0, (2)

A−1
B b ≥ 0, (3)

where the optimal solution is x∗
B = A−1

B b, x∗
N = 0 with the optimal value being

cTBA−1
B b.

2.2 The Interval Linear Programming

Since the coefficients in an LP problem cannot always be guaranteed to be
precise in reality, interval linear programming (ILP) considers utilising intervals
to represent the imprecise coefficients. A typical ILP problem is written as

minimize γTx, subject to Λx = ϕ, x ≥ 0, (4)

where x represents the decision variable vector, but Λ ⊆ R
m×n, ϕ ⊆ R

m and
γ ⊆ R

n are the interval subsets composed of the imprecise A, b and c, respec-
tively. Therefore, an ILP problem can be regarded as a combination of multiple
conventional LP problems, called scenarios [4]. Hence, the robustness analysis
of a solution equals to analysing its all scenarios.

However, Proposition 1 only guarantees the invariance of IB instead of the
optimal solution x∗ due to x∗

B = A−1
B b. Since the imprecision in constraints is

difficult (see [3,4]) to study, we assume the ILP problem always has a constant
feasible set, i.e. Λ and ϕ are singletons containing A and b, respectively. Hence,
the ILP problem becomes

minimize γTx, subject to Ax = b, x ≥ 0, (5)

where γ ∈ Φ := {(c1, . . . , cn)T : cLi ≤ ci ≤ cUi , i = 1, . . . , n} ⊆ R
n. cLi and cUi are

the lower and upper bounds of the interval Φi, i = 1, . . . , n, respectively.
To analyse the optimality of a feasible solution in an ILP problem (5), we

utilise possible and necessary optimality [9]:

Definition 1 (possible and necessary optimality). Let Φ defined in Prob-
lem (5) denote an interval hyper-box composed of γ and let x∗ be a feasible
solution, then x∗ is possibly optimal for Φ if ∃γ ∈ Φ that x∗ is optimal, and x∗

is necessarily optimal for Φ if ∀γ ∈ Φ that x∗ is optimal.



An Analysis to Treat the Deg. of a BF Sol. in ILP 133

To check the necessary optimality of x∗, we use the optimality assurance
cone [8] defined as

Definition 2 (optimality assurance cone). Let x∗ be a feasible solution.
Then the optimality assurance cone, denoted as S O(x∗), is defined by

S O(x∗) :=
{

c ∈ R
n : cTx∗ = min{cTx : Ax = b, x ≥ 0}

}
. (6)

Since a decision-maker usually does not prefer a possibly optimal solution,
we focus on the necessary optimality, which can be checked by the lemma below:

Lemma 1. A feasible solution x∗ is necessarily optimal if and only if Φ ⊆
S O(x∗).

However, Eq. (6) is not applicable for solving the optimality assurance cone.
Fortunately, if x∗ is a non-degenerate basic feasible solution, we can utilise Propo-
sition 1 to get an equivalent result as the 100 Percent Rule [1] did:

Proposition 2. Let x∗ be a non-degenerate basic feasible solution to the ILP
Problem (5). Then a convex cone defined by x∗, denoted as MO(x∗), is equiva-
lent to S O(x∗). Namely,

MO(x∗) :=
{

c ∈ R
n : cN − AT

NA−T
B cB ≥ 0

}
= S O(x∗). (7)

With the condition in Proposition 2, Lemma 1 equals to the following one:

Lemma 2. A non-degenerate basic feasible solution x∗ is necessarily optimal if
and only if Φ ⊆ MO(x∗).

By Lemma 2, the necessary optimality can be checked straightforwardly by
tolerance approach [2,16,17]. Since the only difference between Lemma 1 and 2
is whether x∗ is non-degenerate and basic, the problem becomes difficult when
there exists degeneracy. Hence, the key is how to correctly solve S O(x∗) in an
efficient way, which becomes the main topic in the following content.

3 Degeneracy and Optimality Assurance Cone

3.1 Difference Between Dual and Primal Degeneracy

Before proposing our approach, we need to illustrate what is the degeneracy that
has been mentioned in previous sections by the following examples.

Example 1. Let us consider the following LP problem:

minimize c1x1 + c2x2,

subject to 3x1 + 4x2 + x3 = 42,

3x1 + x2 + x4 = 24,

x2 + x5 = 9,

xi ≥ 0, i = 1, 2, ..., 5,

where c1 = −3 and c2 = −4. Solve this problem.
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By the simplex method, we obtain the tabular as

Basis x1 x2 x3 x4 x5 RHS

x2 0 1 1/3 −1/3 0 6

x1 1 0 −1/9 4/9 0 6

x5 0 0 −1/3 1/3 1 3

−z 0 0 1 0 0 42

where the optimal solution is x∗ = (6, 6, 0, 0, 3)T. However, since the last row of
x4 position being 0, we can re-pivot the tabular as:

Basis x1 x2 x3 x4 x5 RHS

x2 0 1 0 0 1 9

x1 1 0 1/3 0 −4/3 2

x4 0 0 −1 1 3 9

−z 0 0 1 0 0 42

This time x∗ = (2, 9, 0, 9, 0)T, where the optimal value maintains to be −42.
However, if we modify Example 1 as the following one:

Example 2. Reconsider Example 1, if c1 = −3 and c2 = −2 and there exists an
extra constraint x1 + x2 + x6 = 12, solve this problem.

By the simplex method, we obtain the tabular as

Basis x1 x2 x3 x4 x5 x6 RHS

x2 0 1 1/3 −1/3 0 0 6

x1 1 0 −1/9 4/9 0 0 6

x5 0 0 −1/3 1/3 1 0 3

x6 0 0 −2/9 −1/9 0 1 0

−z 0 0 1/3 2/3 0 0 30

where the optimal solution is x∗ = (6, 6, 0, 0, 3, 0)T. However, since x6 = 0, we
can also pivot the tabular as:

Basis x1 x2 x3 x4 x5 x6 RHS

x2 0 1 0 −1/2 0 3/2 6

x1 1 0 0 1/2 0 −1/2 6

x5 0 0 0 2/3 1 −3/2 3

x3 0 0 1 1/2 0 −9/2 0

−z 0 0 0 1/2 0 3/2 30
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Fig. 1. Primal and dual degeneracy

Unlike Example 1, both optimal solution and optimal value maintain to be
the same even the basis changes, which means the situation of Example 2 is
different even the basis in both examples change.

To explain both examples illustratively, we project them into x1-x2 coordi-
nate in Fig. 1 since ci = 0, i �= 1, 2. M̌O

i (x∗
j ) denotes the ith projection of the

optimality assurance cone of x∗
j .

Subfig. 1a shows the result of Example 1, where we find two optimal basic
solutions. We show that the optimality assurance cones of x∗

1 and x∗
2 are inde-

pendent, and can be solved once the optimal solution is determined. Moreover,
it shows that any vertex on the line of x∗

1 and x∗
2 can be the optimal solution.

However, for the result of Example 2 shown in Subfig. 1b, the situation
becomes different. At first, there exists only one optimal solution x∗ with 3
active constraints on it, where only 2 of them are needed. Consequently, we
have 3 potential optimality assurance cones as M̌O

1 (x∗), M̌O
2 (x∗) and M̌O

3 (x∗),
where the union of them is what we want.

Example 1 and 2 show two different degeneracies. When considering them by
the simplex method, we find that the degeneracy in Example 1 is connected with
the objective coefficients, while in Example 2 is the right-hand-side coefficients.
Hence, we identify them as dual degeneracy (Example 1) and primal degeneracy
(Example 2) by Proposition 1, and state that for a basic feasible solution x∗,

• there exists no dual degeneracy if cN − AT
NA−T

B cB > 0, and
• there exists no primal degeneracy if A−1

B b > 0,

and if x∗ satisfies both, we define it as non-degenerate basic feasible.
Conventionally, dual and primal degeneracy are usually treated as the same

question for both enabling the basic index set to change. Moreover, most of
studies only focused on the dual one when a feasible solution is non-basic.
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However, the rationales of dual and primal degeneracy are completely dif-
ferent. In the view of linear algebra, when the objective coefficient vector c is
not independent from the rows of matrix A, dual degeneracy happens. On the
other hand, primal degeneracy has no relation with the objective function, and is
usually caused by the over-constraints on the solution. Therefore, it is necessary
to do respective discussion.

Since the dual degeneracy only enables us to choose a non-basic solution,
we can handle such trouble by simply choosing a basic one. Instead, the primal
degeneracy does not diminish. Hence, we concentrate on the primal degeneracy.

3.2 Analysis of Primal Degeneracy

In Example 2, we show what is primal degeneracy by the simplex tabular and
figure. We find that, despite with computational burden, the simplex method
can always find the correct optimality assurance cone. Therefore, by utilising the
support set [6] of a basic feasible solution x∗, which is the index set IP (x∗) :=
{i : x∗

i > 0}, we can treat the problem by the following theorem:

Theorem 1. Let IP (x∗) ⊆ {1, 2, . . . , n} denote the support set of a basic feasible
solution x∗ in Problem (5) with Card(IP (x∗)) ≤ m, where m is the number of
constraints. Then the optimality assurance cone of x∗ is

MO(x∗) =
⋃

IBi ⊇ IP (x∗),
A−1

Bi b ≥ 0

{
c ∈ R

n : cNi − AT
NiA

−T
Bi cBi ≥ 0

}
= S O(x∗), (8)

where IBi with Card(IBi) = m is the index set that determines ABi and cBi .

Proof. By the definition of support set, we have the result as

{x∗} =
⋂

IBi ⊇ IP (x∗)

{
x ∈ R

n : ABixBi + ANixNi = b, xBi ≥ 0, xNi = 0
}

,

=
⋂

IBi ⊇ IP (x∗),
A−1

Bi b ≥ 0

{
x ∈ R

n : xBi = A−1
Bi b, xNi = 0

}
.

For any IBi satisfying IBi ⊇ IP (x∗) and A−1
Bi b ≥ 0, its counterpart normal

cone calculated as {c ∈ R
n : cNi − AT

NiA
−T
Bi cBi ≥ 0} makes x∗ optimal for any

c belonging to it. Hence, we have the result by uniting all of them. 
�
The key of Theorem 1 is to list all situations where a feasible basic solution

maintains to be optimal and unite them. However, since the calculation is linearly
related to the combination of the basis, it becomes enormous when the system
is in large-scale.

To treat the difficulty in Theorem 1, the following lemma is necessary for our
approach:
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Lemma 3. Let x∗ be a basic feasible solution in the ILP Problem (5). Then the
optimality assurance cone is normal to the tangent cone of the feasible set on
x∗.

Lemma 3 states the relation between the optimality assurance cone with its
counterpart, i.e. tangent cone, which is significant since we can simply solve the
tangent cone of a convex set on a point. By utilising the support set, we have
the following proposition:

Proposition 3. The tangent cone of the feasible set on a basic feasible solution
x∗ in the ILP Problem (5) is

T (x∗) =
{

x ∈ R
n : APxP + AZxZ = 0, xZ ≥ 0

}
, (9)

where xP and xZ are separated by the support set IP and its counterpart IZ :=
{1, 2, . . . , n}\IP .

Since T (x∗) in Eq. (9) forms a convex cone, let us review the definition and
some useful properties of it.

Definition 3 (Convex Cone). A subset C of a vector space V over an ordered
field F is a cone if for every vector v ∈ C and any positive scalar α ∈ F ,
αv ∈ C . Moreover, if for every v,w ∈ C and for any positive scalar α, β ∈ F
such that αv + βw ∈ C , then C is a convex cone.

Furthermore, the following lemma indicates that we can utilise convex tech-
niques to analyse the tangent cone.

Lemma 4. The tangent cone of a convex set is convex.

Since it is known that a convex cone is not a vector space due to the non-
negative scalar, we cannot utilise the basic space directly. However, we can still
use the concept, where the convex cone is spanned by a series of vectors. We
call these vectors as the basic vectors of the convex cone and note that, if the
convex cone is polyhedral, e.g. the tangent cone, the number of the basic vectors
is finite. Similar to the linear space, we call the left part as the null space.

The following theorem illustrates the relation between the basic vectors with
the basis of the ILP problem (5).

Theorem 2. Given an ILP problem (5) with a non-degenerate basic feasible
solution x∗, then the null space of the tangent cone T (x∗) corresponds to the
basic index set IB of x∗.

Proof. Since x∗ is non-degenerate and basic, x∗
B = A−1

B b > 0 is always valid.
Hence the tangent cone becomes

T (x∗) =
{

x ∈ R
n : ABxB + ANxN = 0, xN ≥ 0

}
.

If we ignore xN ≥ 0 and only consider the linear space {x ∈ R
n : Ax = 0},

it can be spanned by (n−m) independent vectors due to A ∈ R
m×n. Since x∗ is
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non-degenerate and basic, Card(xN ) = n − m. Hence, to cover the condition of
xN ≥ 0, we can utilise it directly as the basic vectors. Hence, the basic vectors
of T (x∗) corresponds to the non-basic part of x∗, which is equivalent to the
condition that the null space of T (x∗) corresponds to IB of x∗ 
�

Theorem 2 indicates the fact that, once we determine the basic vectors of
the tangent cone of a basic feasible solution, the corresponding basis is known.
Hence, we can extend this property to the following proposition:

Proposition 4. For the tangent cone T (x∗) defined in Proposition 3, all com-
binations of choosing (n − m) entries from IZ can span the tangent cone.

By Theorem 1 and 2, Proposition 4 is obvious. However, the method in
Proposition 4 has the same computational complexity as Theorem 1, indicating
that our calculation speed would not improve with purely changing to the realm
of convex cone.

To simplify the procedure, we only consider the dimension of the subspace to
be 1, i.e. 1-dimensional degeneracy that Card(IP ) = m−1. Therefore, there exist
an extra entry in IZ , giving an extra constraint in spanning the tangent cone.
It is because we need to choose (n − m) basic vectors from IZ , but there exist
(n − m + 1) entries should be non-negative. Hence, when (n − m) basic vectors
are chosen, there always leaves an entry in IZ that should be non-negatively
spanned by the chosen basic vectors.

However, to treat such problem, we can firstly use the following modification
to make all coefficients in the extra constraint be non-negative:

Proposition 5. Let x∗ be a basic feasible solution with 1-dimensional degener-
acy for the ILP Problem (5) and let IP denote its support set. Then there always
exists an extra constraint that can be written with all coefficients non-negative:

∑

i∈I
k
Z

ki(xZ)i =
∑

j∈I
l
Z

lj(xZ)j , (10)

where I
k
Z ∪I

l
Z = IZ and Card(IkZ) ≤ Card(IlZ). ki and lj are non-negative scalars.

It is easy to understand that when there exists no primal degeneracy, IkZ is
empty by Theorem 2. Moreover, it also hints the following lemma:

Lemma 5. If Card(IkZ) ≤ 1 in Proposition 5, then I
l
Z is the index set that

corresponds to the basic vectors of the tangent cone.

The rationality of Lemma 5 is that, once a variable can be expressed by
other non-negative variables multiplied with non-negative scalars, it becomes
non-negative. So it is no longer necessary to consider the non-negative constraint
any more and hence can be abandoned.

To explain Lemma 5 more illustratively, let us use Example 2 again. In
Example 2, we solve the optimal solution as x∗ = (6, 6, 0, 0, 3, 0)T, which gives
IP = {1, 2, 5} and IZ = {3, 4, 6}. Hence we can write its tangent cone as

T (x∗) =
{

Ax = 0 with x3, x4, x6 ≥ 0
}

.
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Since A ∈ R
4×6, there should only exist 2 entries in the basic space. Therefore,

we need to pick out v1 and v2 from x3, x4 and x6. As Proposition 5 indicates, we
remove x1, x2 and x5 from Ax = 0, which give the following extra constraint:

x4 = 9x6 − 2x3 ⇒ 9x6 = x4 + 2x3

After modification to make all scalars to be non-negative, it shows that x6

should be removed. Hence, the correct basic space should be formed by x3 and
x4, which indicates the correct basic index set IB = {1, 2, 5, 6}. The result cor-
responds to the conventional analysis in Example 2.

However, if Card(IkZ) ≥ 2, we cannot treat the problem simply by Lemma 5.
Instead, we can pick every entry in I

k
Z as the one that should be removed, which

results a series of basic vectors. Then we can form the tangent cone by their
union. Mathematically, we have the following proposition:

Proposition 6. Let the extra constraint of xZ be written in the form of Eq. (10)
with Card(IkZ) ≤ Card(IlZ) and I

k
Z ∪ I

l
Z = IZ , and ki and lj are all non-negative

scalars. Then the index of the basic vectors of the tangent cone is the union of
the following sets:

IZ\{i}, i ∈ I
k
Z . (11)

It is easy to see that if Card(IkZ) ≤ 1, then Proposition 6 is equivalent to
Lemma 5. To illustrate Proposition 6, let us consider a brief example.

Example 3. Let us consider the following LP problem:

minimize c1x1 + c2x2 + c3x3

subject to − 2x1 + x3 + x4 = −4 (i)
2x2 + x3 + x5 = 8 (ii)
2x1 + x3 + x6 = 8 (iii)

− 2x2 + x3 + x7 = −4 (iv)
xi ≥ 0, i = 1, 2, . . . , 7,

where we assume c1 = 2, c2 = 1, c3 = −10. Solve this problem.

By the simplex method with the following tabular, the degenerate optimal
solutions is x∗ = (3, 3, 2, 0, 0, 0, 0)T, indicating that IP = {1, 2, 3}.

Basis x1 x2 x3 x4 x5 x6 x7 RHS

x1 1 0 0 −1/2 1/4 0 1/4 3

x3 0 0 1 0 1/2 0 1/2 2

x6 0 0 0 1 −1 1 −1 0

x2 0 1 0 0 1/4 0 −1/4 3

−z 0 0 0 1 17/4 0 19/4 11
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Fig. 2. Degeneracy in Example 3

Hence, we can list 4 situations and take the union of them by Theorem 1.
Since ci = 0, i = 4, 5, 6, 7, we can simply project the system to R

3 and write the
optimality assurance cone as

MO(x̌∗) =
⋃

i=4,5,6,7

{
č ∈ R

3 : Gič ≥ 0
}
,

where x̌∗ = (x∗
1, x

∗
2, x

∗
3)

T and č = (c1, c2, c3)T, and

G4 =

⎡
⎣

1/4 −1/4 −1/2
−1/2 0 0
1/4 1/4 −1/2

⎤
⎦ , G5 =

⎡
⎣

1/4 −1/4 −1/2
−1/4 −1/4 −1/2

0 1/2 0

⎤
⎦ ,

G6 =

⎡
⎣

1/2 0 0
−1/4 −1/4 −1/2
−1/4 1/4 −1/2

⎤
⎦ , G7 =

⎡
⎣

1/4 1/4 −1/2
0 −1/2 0

−1/4 1/4 −1/2

⎤
⎦ ,

where Gi+3 denote the situation that ignore (ith) constraint. However, in our
approach by Proposition 5, we have the extra constraint as x4 + x6 = x5 + x7,
which indicates that we only need to take the union of G4 and G6, or the union
of G5 and G7, i.e.

MO(x̌∗) =
⋃

i=4,6

{
č ∈ R

3 : Gič ≥ 0
}

=
⋃

i=5,7

{
č ∈ R

3 : Gič ≥ 0
}

(12)

Moreover, if we draw the projection x̌ in x1-x2-x3 coordinate, we have Fig. 2,
where the feasible set is the space in the tetrahedron. Then result shown by
Eq. (12) is obvious.
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4 Conclusion and Future Work

In this paper, we proposed a linear algebraic approach to treating the primal
degeneracy in ILP problem with imprecise objective coefficients, since we always
need to solve the optimality assurance cone explicitly when analysing the robust-
ness of a basic feasible solution in the ILP problem.

In accomplishing our goal, we first consider the tangent cone of the basic
feasible solution instead of listing all bases by the simplex method. Since the
tangent cone is normal to the optimality assurance cone and is always polyhedral
and convex, we modify the concept of basic space in linear subspace and apply
it to the tangent cone. We show that once we can span the tangent cone by
its basic space, we find the correct basis of the corresponding problem, which
would lead to the correct optimality assurance cone. To illustrate and validate
our technique, we give numerical examples.

However, since we assume that there exists only one degeneracy, the analysis
is not complete. Moreover, when degeneracy becomes multiple, it is necessary to
have some algorithms for forming the correct basic space. Another incomplete
section is that we assume the feasible solution is basic even there exists dual
degeneracy. Therefore, we would take dual degeneracy into consideration in our
next step.
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Abstract. A well-designed nurse schedule can improve nurses’ job sat-
isfaction, organizational commitment, and intention to stay. To generate
effective scheduling outcomes, the simultaneous consideration of staffing
costs, workload, individual preferences, and fairness must be made. How-
ever, the integration of these aspects into the scheduling model is still
lacking in practice. This study develops a bi-objective mixed-integer lin-
ear programming approach for nurse scheduling that minimizes the total
staffing cost while maximizing nurses’ preference-based satisfaction. The
proposed model allows the nurses’ shift and day-off preferences to be
fulfilled while ensuring equitable workloads and cost-effectiveness. The
model is validated using actual data collected from a public hospital
emergency department in Thailand with approximately 800 beds capac-
ity. Our results highlight the performance of the proposed model in terms
of cost, job satisfaction, and fairness compared to the manually-made
schedule.

Keywords: Nurse Scheduling Problem · Workload · Individual
preferences · Job satisfaction · Fairness

1 Introduction

Hospitals operate around the clock in rendering medical care to patients. There
is a need for medical personnel, especially nurses, to work under prolonged and
strenuous shifts. Such shift work results in increased risk of excessive fatigue
[1], sleep deprivation [2], and work-life imbalance [3]. These factors are known
to induce job dissatisfaction, and turnover intention among nurses [4], the com-
mon causes of nurse shortage. The positive correlation between job satisfaction
on nurse retention has been addressed by many studies [5–8]. The scheduling of
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nurses without a careful workload consideration can lead to excessive work hours
that may not only have negative effects on the health and well-being of nurses but
also the service quality and patients’ safety [9]. To address all these concerns, the
management has to implement proper scheduling measures that improve nurses’
working conditions and job satisfaction. To achieve a high job satisfaction level
among nurses, hospital management must thoroughly comprehend and consider
the influential attributes contributing to job satisfaction. Many factors have been
investigated by the previous studies, such as work conditions [10], work schedule
[11], job autonomy [12], and fairness [13]. The consideration of these factors dur-
ing the scheduling process can result in positive scheduling outcomes, including
improved workload distribution, and preferred and equitable work schedules.

Significant research efforts have been made to solve Nurse Scheduling Prob-
lem (NSP). Mathematical techniques enable the determination of optimal nurse-
shift assignments that fulfill operational objectives while complying with hospital
regulations and staffing policies. To date, the research that combines cost, work-
load balance, shift-preference fulfillment, and scheduling fairness has not been
well-addressed. To bridge this gap and to promote fairness and job satisfaction
in nurse scheduling, we propose a bi-objective NSP model that minimizes the
staffing cost and maximizes the fulfillment of nurses’ shift and day-off prefer-
ences. The fairness of workload and preferred assignment allocation is also con-
sidered. The proposed model is validated using a case study of a public hospital
emergency room in Thailand.

The rest of this paper is organized as follows. Section 2 provides a review
of related literature. Then, the mathematical model formulation is presented in
Sect. 3. Section 4 describes the details of the illustrative case study used for model
validation. Section 5 presents the experimental results and analysis. Finally, con-
cluding remarks and future works are summarized in Sect. 6.

2 Literature Review

The research on NSP has been well-documented in the literature for its com-
plexity and practical challenges. Many nurse scheduling approaches with multiple
scheduling features are designed to improve the work conditions in actual hos-
pital cases [14,15]. The consideration of job satisfaction in an NSP has received
more attention in recent years. The integration of individual preferences to
improve the job satisfaction of nurses has been extensively addressed accord-
ing to the NSP literature. In general, the scheduling objectives and constraints
are formulated, and the individual preferences of nurses can be accounted for
in terms of preferred shifts and days off [16–18], weekend day-off [19,20], and
co-workers [21]. Aside from individual preferences, fairness is another desirable
scheduling outcome commonly considered by the NSP literature. Michael et al.
[22] developed an NSP that balances the number of preferred days off assigned
to nurses. Youssef and Senbel [23] formulated an NSP that includes nurses’ shift
and day-off preferences as the soft constraints that can be relaxed while minimiz-
ing the soft constraint violation. Lin et al. [24] developed an NSP algorithm to
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balance nurses’ preferred shifts and days off assigned to nurses. Rerkjirattikal et
al. [25] proposed an NSP model that balances the workload, and preferable shift
and day-off assignments among the nurses in a hospital’s intensive care unit.
More examples of scheduling approaches that consider schedule preferences and
fairness for job satisfaction improvement can also be found in the workforce
scheduling literature [26,27].

The previous studies provide fundamental guidelines of how job satisfaction
and fairness can be integrated into an NSP. To further improve their application
value, two significant research gaps are addressed here in this study. Firstly, there
is a need to consider scheduling fairness based on a more comprehensive account-
ing of nurses’ workloads and individual preferences. The fairness consideration
in the current NSP literature is usually built based on a single aspect of fairness
that either offers workload or satisfaction balance [28–31]. The outcomes based
on single-aspect fairness may not be a good representative of schedules that pro-
mote job satisfaction, especially in the long run. Secondly, the perspective of
cost consideration is still lacking in the existing literature. The viewpoint of cost
for practical application of job satisfaction- and fairness-enhanced NSP needs
to be further examined. An example can be found in Hamid et al. [32]. They
developed an NSP that optimizes both staffing cost and nurses’ job satisfaction
under workload balancing constraints.

While job satisfaction is essential, the practical use of NSP relies heavily
on economic aspects. The inclusion of wages and other costs to investigate the
cost tradeoff for improving nurses’ work conditions is still an open research area.
This research aims to fill these gaps by proposing a bi-objective NSP model that
minimizes the total staffing cost and maximizes the minimum total preference
score among all nurses. The preference score is based on individual shift and day-
off preferences. This study expects to produce scheduling outcomes that satisfy
nurses in terms of both preferable assignment and equitable workload. Thus far,
only a few studies consider fairness while satisfying individual preferences. The
practicality of the proposed model is also examined using an actual case study,
bridging the theoretical and practical aspects of NSP research as indicated by
Petrovic [33]. Our model is solved using the ε-constraint method to determine
the optimal cost solution with a maximum preference score. Based on the NSP
literature, the use of the ε-constraint method, so-called pre-emptive optimization
is suitable when the priority of each objective is given as demonstrated in Di
Martinelly and Meskens [34] and Hamid et al. [32].

3 Mathematical Model Formulation

In this study, a bi-objective nurse scheduling model is proposed using the pre-
emptive mixed-integer linear programming (MILP) approach. The two schedul-
ing goals are to minimize the staffing cost and maximize the fulfillment of nurses’
shift and day-off preferences. Without loss of generality, the assumptions and
notations used in the model formulation are summarized below.
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Assumptions

– The planning horizon is 28 days (1 month). Each workday contains multiple
shifts of the same length.

– Nurses are classified into levels based on their experience. In each shift, the
total number of nurses and nurses with a particular skill level must meet the
requirements.

– The number of regular shifts for nurses in a month is known. All shifts worked
in excess of the employee’s regular shifts of work per month will be regarded
as overtime shifts.

– The total amount of shifts assigned to each nurse must not exceed the limit.
– Each nurse must receive at least the minimum allowable day-offs per week.
– Any night shift cannot be followed by a morning shift of the next day.
– There can be no more than three consecutive night shifts.
– In case a double-shift workday is allowed, there can be no more than two

consecutive double-shift workdays.

Indices

N Set of nurses; N = {1, 2, . . . , N}
S Set of shifts in a workday; S = {1, 2,. . . , S}
K Set of nurse skill levels; K = {1, 2, . . . , K}
D Set of days in planning horizon; D = {1, 2, . . . , D}

Input Parameters

Rsd The total number of nurses required in shift s on the day d
RLsk The minimum number of nurse with skill level k required in shift s

Nk A set of nurses that belong to skill level k; N = N1 ∪ N2 ∪ · · · ∪ NK

SKnk A binary parameter equals 1 if nurse n belongs to skill level k; 0 oth-
erwise.

SPns The preference score of nurse n towards working in shift s;
SPns ∈ {1, . . . , Q}

DPnd The preference score of nurse n towards taking a day-off on day d;
DPnd ∈ {1, . . . , Q}

Qnd A binary parameter equals 1 if nurse n requests to take a day-off on
day d; 0 otherwise.

CRegs Cost of assigning a regular shift during shift s to a nurse
COs Cost of assigning an overtime shift during shift s to a nurse
DS The maximum number of shifts can be assigned to a nurse per day.

REG The regulated number of regular shifts per month equals the total days
in a month subtracted by number of weekends and holidays

TS The maximum total shifts can be assigned to a nurse per month
DO The minimum number of days off a nurse must receive per week

GapTPC The allowable gap between the total preference score (TPC) of all
nurses

GapWL The allowable gap between the total shifts assigned (WL) to all nurses
BigM A large positive number used for formulating conditional linear equa-

tions
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Decision Variables

Xnsd = 1 if nurse n is assigned to shift s on day d; 0 otherwise.
Ynd = 1 if nurse n is assigned to take a day-off on day d; 0 otherwise.

Auxiliary Variables

For ease of understanding, auxiliary variables derived from the value of decision
variables used in objective functions and constraints are listed below.

TPCn The total preference score of nurse n calculated by the summation of
the total shift and day off preference scores

TPCn =
S∑

s=1

D∑

d=1

(Xnsd · SPns) +
D∑

d=1

(Ynd · DPnd) ∀n ∈ N (1)

TPCmin The minimum total preference score among all nurses

TPCmin = min
n∈N

{TPCn} (2)

WLn The total shifts assigned to nurse n.

WLn =
S∑

s=1

D∑

d=1

Xnsd ∀n ∈ N (3)

OTn The total overtime shifts assigned to nurse n.

OTn = WLn − REG ∀n ∈ N (4)

The job satisfaction-enhanced NSP model consists of two objectives as follows.

1) Minimize the total staffing cost equals a summation of total regular shift cost
and total overtime shift cost.

min
N∑

n=1

(
S∑

s=1

((WLn − OTn) · CRegs)) +
N∑

n=1

(
S∑

s=1

(OTn · COs)) (5)

2) Maximize the minimum total preference score among all nurses.

max TPCmin (6)

subject to

N∑

n=1

Xnsd = Rsd ∀s ∈ S; d ∈ D (7)

N∑

n=1

(Xnsd · SKnk) ≥ RLsk ∀s ∈ S; d ∈ D; k ∈ K (8)
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S∑

s=1

Xnsd ≤ DS ∀n ∈ N ; d ∈ D (9)

d+6∑

d=d

Ynd ≥ DO ∀n ∈ N ; d ∈ {1, 8, 15, 22} (10)

WLn ≤ TS ∀n ∈ N (11)

S∑

s=1

Xnsd ≤ BigM · (1 − Ynd) ∀n ∈ N ; d ∈ D (12)

S∑

s=1

Xnsd + Ynd ≥ 1 ∀n ∈ N ; d ∈ D (13)

Qnd ≤ Ynd ∀n ∈ N ; d ∈ D (14)

|TPCn − TPCn′ | ≤ GapTPC ∀n ∈ N ;n �= n′ (15)

|WLn − WLn′ | ≤ GapWL ∀n ∈ N ;n �= n′ (16)

Xn,s=S,d + Xn,s=1,d+1 ≤ 1 ∀n ∈ N ; d ∈ {D − 1} (17)

∑

j=Night

d+3∑

d=d

Xnsd ≤ 3 ∀n ∈ N ; d ∈ {D − 3} (18)

J∑

j=1

d+2∑

d=d

Xnsd ≤ 5 ∀n ∈ N ; d ∈ {D − 2} (19)

Constraint (7) regulates the total number of nurses assigned to any shift must
equal the requirements. Constraint (8) ensures the number of nurses in each skill
level assigned to any shift meets minimum requirements. Constraint (9) restricts
the number of daily shifts assigned to nurses. Constraint (10) ensures that nurses
receive at least a certain amount of days off per week. Constraint (11) regulates
that nurses’ total number of shifts must not exceed the limit. Constraints (12)
and (13) enforce that no shift assignment is made on any day-off. Constraint
(14) ensures that the requested day off of nurses is fulfilled. Constraints (15) and
(16) limit the differences between total preference score (TPCn) and total shift
assignments (WLn) between nurse n and any other nurses to maintain scheduling
fairness. Constraint (17) restricts that no morning shift of the following day can
be assigned after any night shift. Constraints (18) and (19) limit the number
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of consecutive night shifts and double-shift workdays, respectively. Note that
Constraint (19) can be excluded if double-shift workdays are not allowed.

An ε-constraint or so-called pre-emptive optimization technique is used to
solve the proposed NSP model. The technique suits for solving multi-objective
models with objectives ranked in the order of importance. In pre-emptive opti-
mization, the model is solved iteratively under each objective function. The
objective value obtained from each iteration becomes the bound in the subse-
quent iterations. In this study, the primary objective is the total staffing cost,
and the nurses’ job satisfaction is secondary. The model is firstly solved under
cost minimization objective (5) subject to Constraints (7)–(19) to obtain the
optimal cost (Cost∗). Then, the model is solved under the maximization of the
minimum total preference score (6) with respect to Constraints (7)–(20), where
(20) is an additional constraint imposed to bound the total staffing cost under
the total preference score objective as follows,

N∑

n=1

(
S∑

s=1

((WLn − OTn) · CRegs)) +
N∑

n=1

(
S∑

s=1

(OTn · COs)) ≤ Cost∗ (20)

4 Illustrative Case Study

The case study used for model validation is the Emergency Department (ED)
at the Thammasat University Hospital (TUH), a large-scale public hospital
located in Pathum Thani, Thailand. The data collection processes, including
field questionnaire survey and interview with the head nurse, were conducted
during March–June 2021. There are 40 nurses, working under a 3-shift rotation
plan: Morning (8 AM–4 PM), Afternoon (4 PM–12 AM), and Night (12 AM–8
AM) shifts. Nurses are divided into five skill levels, with level 5 being the most
experienced. There are 10, 11, 7, 9, and 3 nurses with skill levels 1–5, respectively.

For the current scheduling practices, the head nurse manually creates a shift
assignment schedule subject to the hospital regulations and the requested day-
offs without considering any individual preferences. The scheduling task requires
about 3–5 days to complete depending on the degree of request conflicts. In
terms of fairness, the head nurse tried to distribute the workload as evenly as
possible. The use of a fairness indicator is still lacking. A questionnaire survey
was conducted to obtain nurses’ preferences data regarding the preferred shifts
and days off. The nurses were asked to rank the most to least preferred working
shifts and three most to least days of the week to take days off. The collected
data and parameters derived from hospital regulations summarized in Table 1
are used to validate the proposed model. In this hospital case study, the costs
of assigning nurses to each shift are different. The night shift has the highest
pay rate. The cost of overtime shifts is also the same as that of regular shifts.
The cost of assigning nurses with different experience levels is the same. The
total number of nurses required across the three shifts is different but the same
across days. The right-most column of Table 1 is the minimum requirement of
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the number of nurses with skill levels 1–5, respectively. In this study, the nurses’
shifts (SPns) and day-off preferences (DPnd) scores are given for first, second,
third-most preferred slots as 3, 2, and 1, respectively. In DPnd, 0 point is given
to the day-of-weeks that are not preferred.

Table 1. The regulation-related parameters

Parameters Value Parameters Value Parameters Value

CRegs = COs($) Rnd RLsk

Morning 24.76 Morning 13 Morning 3, 3, 2, 2, 1

Afternoon 33.31 Afternoon 12 Afternoon 3, 3, 2, 2, 0

Night 33.92 Night 9 Night 2, 2, 1, 1, 0

REG 16 DS 2 GapTPC 5

TS 26 DO 1 GapWL 5

5 Result and Discussion

The proposed satisfaction-enhanced NSP is solved using GUROBI optimizer
version 9.1.2 coded in Python and a 2.3 GHz Dual-Core Intel Core i5-8300H
operating system. The model can be solved to optimality of both objectives in
less than a minute. The example of nurse schedule outputs is shown in Table 2.

Table 2. An example of nurse schedule output

Nurses Day 1 Day 2 Day 3 Day 4 Day 5 ... Day 27 Day 28

1 O M M M M ... M O

2 M/A O A/N A A/N ... O O

... ... ... ... ... ... ... ...

40 M/N O M M M/N ... O M

M - Morning shift, A - Afternoon shift, N - Night shift, O - Day-off.

As summarized in Table 3, it can be observed that the obtained results show
a good improvement in solutions, compared to the manual scheduling results
in terms of 1) total staffing cost, 2) workload assignments, and 3) total prefer-
ence score. When using the proposed model, the total staffing cost is reduced
by 10.6% or about $7,000 for the entire scheduling period of one month. In the
current schedule, nurses work on average 27 shifts with the standard deviation
of 4.44 and the range between the maximum and minimum shifts assigned to
nurses of as high as 19. Considering the workload, nurses’ workload decreases to
24 shifts on average in the proposed model. The standard deviation and range
decrease to 1.58 and 5 shifts, indicating fewer and more evenly distributed work-
loads assigned among nurses. Furthermore, the comparison of the use of fairness
constraints is made to demonstrate the improved fairness outcomes when the
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constraints are enforced. It is found that the fairness constraints effectively bal-
ance the workload and preferred assignments. However, the result does not seem
noticeable since the gap value used in the case study is relatively large. Under
tighter gap values, the usefulness of the fairness constraints becomes apparent.

Figure 1 compares the workload distributions between the manual scheduling
and the optimal solution. In terms of the total preference score, the proposed
model can achieve a good result. The range of preference scores among nurses
is from 82 to 83, indicating the fairness in satisfying individual preferred shifts
and days off. On this aspect, the performance of manual scheduling cannot be
assessed because there was no preference consideration. Based on the result,
it can be seen that the proposed model can provide a cost-effective and fair
scheduling solution. With the solving time of less than a minute, the scheduling
can be much more responsive to any last-minute changes to the input parameters.

Table 3. Comparison of KPIs between the proposed NSP and current schedule

KPIs Current

schedule

The proposed model

With fairness

constraints

Without fairness

constraints

Total staffing cost $ 65,835.45 $58,830.94 $58,830.94

Total shifts (WLn)

Average (SD) 27 (4.44) 24 (1.58) 23.8 (1.61)

Min-Max (Range) 17–36 (19) 21–26 (5) 20–26 (6)

Total preference score (TPCn)

Average (SD) N/A 82.1 (0.3) 82.2 (0.46)

Min-Max (Range) N/A 82–83 (1) 82–84 (2)

Fig. 1. A comparison of workload distribution between the current schedule and the
proposed model



152 P. Rerkjirattikal et al.

6 Conclusion

In this paper, for the first time, a nurse scheduling approach that considers
multiple job satisfaction factors and cost-effectiveness has been developed. The
bi-objective nurse scheduling model with cost and job satisfaction objectives is
formulated. The proposed model aims to improve nurses’ fairness perception
about the distribution of workload and preferred shifts and days off. Manage-
ment can also examine the cost of fairness enhancement and make decisions
accordingly. This study also validates the practicality of the proposed model by
providing an analysis of an illustrative case study of an emergency department
(ED) at a large-scale public hospital in Thailand. Based on the result, it can be
seen that the proposed model can provide a more cost-effective and fair schedul-
ing solution compared to manual scheduling. With the solving time of less than
a minute, the scheduling can also be much more responsive to any last-minute
changes to the input parameters. This research is the preliminary step in formu-
lating a nurse scheduling-and-rescheduling framework. The improving direction
is to account for uncertainties related to important scheduling parameters such
as demand and absenteeism of nurses.

Acknowledgement. First, the authors would like to express our gratitude to the
Thammasat University Hospital for granting permission to collect data. Second, we
would like to thank the head nurse and nurses working in the emergency department for
facilitating the data collection and participating in the field survey. Last, this study was
supported by Thammasat University Research Fund, Contract No. TUFT 052/2563.

References

1. Min, A., Hong, H.C., Son, S., Lee, T.: Sleep, fatigue and alertness during work-
ing hours among rotating-shift nurses in Korea: an observational study. J. Nurs.
Manag. 29(8), 2647–2657 (2021)

2. Ferri, P., Guadi, M., Marcheselli, L., Balduzzi, S., Magnani, D., Di Lorenzo, R.:
The impact of shift work on the psychological and physical health of nurses in a
general hospital: a comparison between rotating night shifts and day shifts. Risk
Manag. Healthcare Policy 9, 203–211 (2016)

3. Navajas-Romero, V., Ariza-Montes, A., Hernández-Perlines, F.: Analyzing the job
demands-control-support model in work-life balance: a study among nurses in the
European context. Int. J. Environ. Res. Public Health 17(8), 2847 (2020)

4. Lee, E., Jang, I.: Nurses’ fatigue, job stress, organizational culture, and turnover
intention: a culture-work-health model. West. J. Nurs. Res. 42(2), 108–116 (2020)

5. Gebregziabher, D., Berhanie, E., Berihu, H., Belstie, A., Teklay, G.: The rela-
tionship between job satisfaction and turnover intention among nurses in Axum
comprehensive and specialized hospital Tigray, Ethiopia. BMC Nurs. 19(1), 79
(2020)

6. Shin, Y., Park, S.H., Kim, J.K.: A study on relationship among organizational
fairness, motivation, job satisfaction, intention to stay of nurses. J. Korea Contents
Assoc. 14(10), 596–609 (2014)



Job-Satisfaction Enhancement in Nurse Scheduling 153

7. Dewi, N.M.U.K., Januraga, P.P., Suarjana, K.: The relationship between nurse job
satisfaction and turnover intention: a private hospital case study in Bali, Indonesia.
In: Proceedings of the 4th International Symposium on Health Research (ISHR
2019). Atlantis Press, Paris, France (2020)

8. Fasbender, U., Van der Heijden, B.I.J.M., Grimshaw, S.: Job satisfaction, job stress
and nurses’ turnover intentions: the moderating roles of on-the-job and off-the-job
embeddedness. J. Adv. Nurs. 75(2), 327–337 (2019)

9. Iqbal, S., Iram, M.: Determinants of medication errors among nurses in public
sector. Pak. J. Nurs. Midwifery 2(1), 271–276 (2018)

10. Albashayreh, A., Al Sabei, S.D., Al-Rawajfah, O.M., Al-Awaisi, H.: Healthy work
environments are critical for nurse job satisfaction: implications for Oman. Int.
Nurs. Rev. 66(3), 389–395 (2019)

11. Rizany, I., Hariyati, R.T.S., Afifah, E., Rusdiyansyah: The impact of nurse
scheduling management on nurses’ job satisfaction in army hospital: a cross-
sectional research. SAGE Open 9(2), 1–9 (2019). https://doi.org/10.1177/
2158244019856189

12. Choi, S., Kim, M.: Effects of structural empowerment and professional governance
on autonomy and job satisfaction of the Korean nurses. J. Nurs. Manag. 27(8),
1664–1672 (2019)
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Abstract. The common mean of Gaussian distributions is a parameter
of interest when analyzing medical data. In practice, the population coef-
ficient of variation (CV) is unknown because the population mean and
variance are unknown. In this study, the common mean of Gaussian dis-
tributions with unknown CVs is considered and four new interval estima-
tors for it using generalized confidence interval (GCI), large sample (LS),
adjusted method of variance estimates recovery (adjusted MOVER), and
standard bootstrap (SB) approaches are proposed. Furthermore, the pro-
posed interval estimators are compared with a previously reported one
based on the GCI approach. Monte Carlo simulation was used to evalu-
ate the performances of the interval estimators based on their coverage
probabilities and average lengths, while, medical datasets were used to
illustrate the efficacy of these approaches. Our findings show that the
interval estimator based on the GCI approach for the common mean
of Gaussian distributions with unknown CVs provided the best perfor-
mance in terms of coverage probability for all sample sizes. However, the
adjusted MOVER and SB approaches can be considered as an alternative
when the sample size is large (ni ≥ 100).

Keywords: Adjusted MOVER approach · CV · GCI approach ·
Mean · SB approach

1 Introduction

The population coefficient of variation (CV), which is free from a unit of measure-
ment, is defined as the ratio of the population standard deviation to the popula-
tion mean, τ = σ/μ, and has been widely applied in many fields, e.g., agriculture,
biology, and environmental and physical sciences. Estimating a known CV has
been suggested by many scholars. For example, Gerig and Sen [1] used Canadian
migratory bird survey data from 1969 and 1970 while assuming that the CV for
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each province was known. Meanwhile, estimating the mean of Gaussian distri-
butions with a known CV has also been studied extensively (e.g., Searls [2] and
Niwitpong [3]). However, the CV is unknown when the population mean and
variance have been estimated and thus, needs to be estimated too. Srivastava [4]
and Srivastava [5] proposed an estimator for the normal population mean with
an unknown CV and indicated that it is more efficient than a previously reported
sample mean estimator. He later presented a uniformly minimum variance unbi-
ased estimator of the efficiency ratio and compared its usefulness to estimate
an unknown CV with an existing estimator (Srivastava and Singh [6]). Sahai [7]
provided an estimator for the normal mean with unknown CV and studied it
along the same lines as Srivastava [4] and Srivastava [5] estimators. Meanwhile,
Thangjai et al. [8] presented confidence intervals for the normal mean and the
difference between two normal means with unknown CVs. In addition, Thang-
jai et al. [9] proposed the Bayesian confidence intervals for means of normal
distributions with unknown CVs.

In practice, samples are collected at different time points, and the problem of
estimating common parameters under these circumstances has been widely stud-
ied by several researchers. Krishnamoorthy and Lu [10] proposed the generalized
variable approach for inference on the common mean of normal distributions.
Lin and Lee [11] developed a new generalized pivotal quantity based on the best
linear unbiased estimator for constructing confidence intervals for the common
mean of normal distributions. Tian [12] presented procedures for inference on the
common CV of normal distributions. Tian and Wu [13] provided the generalized
variable approach for inference on the common mean of log-normal distribu-
tions. Thangjai et al. [14] investigated a new confidence interval for the common
mean of normal distributions using the adjusted method of variance estimates
recovery (adjusted MOVER) approach. Finally, the estimator of Srivastava [4]
is well established for constructing confidence intervals for the common mean of
Gaussian distributions with unknown CVs.

Interval estimators for the common mean of Gaussian distributions with
unknown CVs have been proposed in several medical science studies, such as
the common percentage of albumin in human plasma proteins from four sources
(Jordan and Krishnamoorthy [15]) and quality assurance in medical laborato-
ries for the diagnostic determinations of hemoglobin, red blood cells, the mean
corpuscular volume, hematocrit, white blood cells, and platelets in normal and
abnormal blood samples (Tian [12] and Fung and Tsang [16]).

Herein, the concepts in Thangjai et al. [8] and Thangjai and Niwitpong [17]
are extended to k populations to construct new interval estimators for the com-
mon mean of Gaussian distributions with unknown CVs. The approaches to con-
struct these interval estimators: the generalized confidence interval (GCI), large
sample (LS), adjusted MOVER, and standard bootstrap (SB) are compared with
the GCI approach of Lin and Lee [11]. The GCI approach first introduced by
Weerahandi [18] has been used successfully to construct interval estimators (e.g.,
Krishnamoorthy and Lu [10], Lin and Lee [11], Tian [12], Tian and Wu [13], Ye
et al. [19]). The LS approach using the central limit theorem (along with a GCI
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approach) was first proposed by Tian and Wu [13] to construct confidence inter-
vals for the common mean of log-normal distributions. The adjusted MOVER
approach motivated by Zou and Donner [20] and Zou et al. [21] was extended
by Thangjai et al. [14] and Thangjai and Niwitpong [17] to construct an interval
estimator for a common parameter.

2 Preliminaries

In this section, the lemma and theorem are explained to estimate the interval
estimators for common Gaussian mean with unknown CVs.

Let X = (X1,X2, ...,Xn) be a random variable from the Gaussian distribu-
tion with mean μ and variance σ2. The population CV is τ = σ/μ. Let X̄ and
S2 be sample mean and sample variance for X, respectively. The CV estimator
is τ̂ = S/X̄.

Following Srivastava [4] and Thangjai et al. [8], the Gaussian mean estimator
when the CV is unknown, θ̂, is

θ̂ =
nX̄

n + S2

X̄2

. (1)

According to Thangjai et al. [8], the mean and variance of the mean estimator
with unknown CV are
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Consider k independent Gaussian distributions with a common mean with
unknown CVs. Let Xi = (Xi1,Xi2, ...,Xini

) be a random variable from the i-th
Gaussian distribution with the common mean μ and possibly unequal variances
σ2

i as follows: Xij ∼ N(μ, σ2
i ); i = 1, 2, ..., k, j = 1, 2, ..., ni.
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For the i-th sample, let X̄i and x̄i be sample mean and observed sample mean
of Xi, respectively. And let S2

i and s2i be sample variance and observed sample
variance of Xi, respectively. According to Thangjai et al. [8], the estimator of
Srivastava [4] is well established. The estimator is given by

θ̂i =
niX̄i

ni + S2
i

(X̄i)2

; i = 1, 2, ..., k. (4)

This paper is interested in constructing confidence intervals for the common
Gaussian mean with unknown CVs, based on Graybill and Deal [22], defined as
follows:

θ̂ =
k∑

i=1

θ̂i

Ṽ ar
(
θ̂i

)
/

k∑
i=1

1

Ṽ ar
(
θ̂i

) , (5)

where Ṽ ar
(
θ̂i

)
denotes the estimator of V ar

(
θ̂i

)
which is defined in Eq. (3)

with μi and σ2
i replaced by x̄i and s2i , respectively.

2.1 GCI

Definition 1. Let X = (X1,X2, ...,Xn) be a random variable from a distri-
bution F (x|δ), where x = (x1, x2, ..., xn) be an observed sample, δ = (θ, ν) is
a unknown parameter vector, θ is a parameter of interest, and ν is a nuisance
parameters. Let R = R(X;x, δ) be a function of X, x and δ. The random quan-
tity R is called a generalized pivotal quantity if it satisfies the following two
properties; see Weerahandi [18]:

(i) The probability distribution of R is free of unknown parameters.
(ii) The observed value of R does not depend on the vector of nuisance param-

eters.

The 100(α/2)-th and 100(1−α/2)-th percentiles of R are the lower and upper
limits of 100(1 − α)% two-sided GCI.

Following Thangjai et al. [8], the generalized pivotal quantities of σ2
i , μi, and

θi based on the i-th sample are defined as follows:

Rσ2
i

=
(ni − 1) s2i

Vi
. (6)

Rμi
= x̄i − Zi√

Ui

√
(ni − 1) s2i

ni
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and
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niRμi

ni +
R

σ2
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(Rμi
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, (8)
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where Vi denotes a chi-squared distribution with ni − 1 degrees of freedom, Zi

denotes a standard normal distribution, and Ui denotes a chi-squared distribu-
tion with ni − 1 degrees of freedom.

According to Tian and Wu [13], the generalized pivotal quantity for the com-
mon Gaussian mean with unknown CVs is a weighted average of the generalized
pivotal quantity. That is given by

Rθ =
k∑

i=1

Rθi

RV ar(θ̂i)

/
k∑

i=1

1
RV ar(θ̂i)

, (9)

where RV ar(θ̂i)
is defined in Eq. (3) with μi and σ2

i replaced by Rμi
and Rσ2

i
,

respectively.
Hence, the Rθ is the generalized pivotal quantity for θ and is satisfied the

conditions (i) and (ii) in Definition 1. Then the common Gaussian mean with
unknown CVs can be constructed from Rθ.

Therefore, the 100(1 − α)% two-sided confidence interval for the common
Gaussian mean with unknown CVs based on the GCI approach is

CIGCI = [LGCI , UGCI ] = [Rθ (α/2) , Rθ (1 − α/2)], (10)

where Rθ (α/2) and Rθ (1 − α/2) denote the 100(α/2)-th and 100(1 − α/2)-th
percentiles of Rθ, respectively.

2.2 LS Confidence Interval

According to Graybill and Deal [22] and Tian and Wu [13], the LS estimate of
the Gaussian mean with unknown CV is a pooled estimated estimator of the
Gaussian mean with unknown CV defined as in Eq. (5), where θ̂i is defined
in Eq. (4) and Ṽ ar

(
θ̂i

)
denotes the estimator of V ar

(
θ̂i

)
which is defined in

Eq. (3) with μi and σ2
i replaced by x̄i and s2i , respectively.

The distribution of θ̂ is approximately Gaussian distribution when the sam-
ple size is large. Then the quantile of the Gaussian distribution is used to con-
struct confidence interval for θ. Therefore, the 100(1−α)% two-sided confidence
interval for the common Gaussian mean with unknown CVs based on the LS
approach is

CILS = [LLS , ULS ]

= [θ̂ − z1−α/2
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√
√
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/
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/
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Ṽ ar
(

θ̂i

) ], (11)

where z1−α/2 denotes the (1−α/2)-th quantile of the standard normal distribu-
tion.
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2.3 Adjusted MOVER Confidence Interval

Now recall that Z is a standard normal distribution with the mean 0 and variance
1, defined as follows:

Z =
X̄ − μ√
Ṽ ar

(
θ̂
) ∼ N(0, 1). (12)

The confidence interval for mean of Gaussian distribution is

CIμ = [l, u] = [x̄ − z1−α/2

√
Ṽ ar

(
θ̂
)
, x̄ + z1−α/2

√
Ṽ ar

(
θ̂
)
]. (13)

For i = 1, 2, ..., k, the lower limit (li) and upper limit (ui) for the normal
mean μi based on the i-th sample can be defined as

li = x̄i − z1−α/2
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(14)

and

ui = x̄i + z1−α/2
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, (15)

where Ṽ ar
(
θ̂i

)
denotes the estimator of V ar

(
θ̂i

)
which is defined in Eq. (3)

and z1−α/2 denotes the (1−α/2)-th quantile of the standard normal distribution.
According to Thangjai et al. [14] and Thangjai and Niwitpong [17], the com-

mon mean with unknown CVs is weighted average of the mean with unknown
CV θ̂i based on k individual samples. The common mean with unknown CVs
has the following form

θ̂ =
k∑

i=1

θ̂i

V̂ ar
(
θ̂i

)
/

k∑
i=1

1

V̂ ar
(
θ̂i

) , (16)

where θ̂i is defined in Eq. (4), V̂ ar
(
θ̂i

)
= 1

2 ( (θ̂i−li)
2

z2
α/2

+ (ui−θ̂i)
2

z2
α/2

), and li and ui

are defined in Eqs. (14) and (15), respectively.
Therefore, the 100(1 − α)% two-sided confidence interval for the common

Gaussian mean with unknown CVs based on the adjusted MOVER approach is

CIAM = [LAM , UAM ]

= [θ̂ − z1−α/2

√
√
√
√1

/
k∑

i=1

z2
α/2

(θ̂i − li)2
, θ̂ + z1−α/2

√
√
√
√1

/
k∑

i=1

z2
α/2

(ui − θ̂i)2
], (17)

where θ̂ is defined in Eq. (16), and zα/2 and z1−α/2 denote the (α/2)-th and
(1 − α/2)-th quantiles of the standard normal distribution, respectively.
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2.4 SB Confidence Interval

Let X∗
i = (X∗

i1,X
∗
i2, ...,X

∗
ini

) be a bootstrap sample with replacement from Xi =
(Xi1,Xi2, ...,Xini

) and let X̄∗
i and S2∗

i be mean and variance of X∗
i , respectively.

Let x∗
i = (x∗

i1, x
∗
i2, ..., x

∗
ini

) be an observed value of X∗
i = (X∗

i1,X
∗
i2, ...,X

∗
ini

) and
let x̄∗

i and s2∗
i be mean and variance of x∗

i , respectively. The estimates of θ̂∗
i and

V ar(θ̂∗
i ) are

θ̂∗
i =

niX̄
∗
i

ni + S2∗
i

(X̄∗
i )

2

(18)

and

V ar
(

θ̂∗
i

)

=

⎛

⎜
⎜
⎝

μ∗
i

1 +
(

σ2∗
i

ni(μ
∗
i )2+σ2∗

i

) (

1 +
2σ4∗

i +4ni(μ
∗
i )2σ2∗

i

(ni(μ
∗
i )2+σ2∗

i )2

)

⎞

⎟
⎟
⎠

2

∗

⎛

⎜
⎜
⎜
⎝

σ2∗
i

ni(μ∗
i )

2
+

(
niσ2∗

i

ni(μ
∗
i )2+σ2∗

i

)2
(

2
ni

+
2σ4∗

i +4ni(μ
∗
i )2σ2∗

i

(ni(μ
∗
i )2+σ2∗

i )2

)

(

ni +
(

niσ2∗
i

ni(μ
∗
i )2+σ2∗

i

) (

1 +
2σ4∗

i +4ni(μ
∗
i )2σ2∗

i

(ni(μ
∗
i )2+σ2∗

i )2

))2

⎞

⎟
⎟
⎟
⎠

.(19)

According to Graybill and Deal [22], the common Gaussian mean with
unknown CVs is a pooled estimated unbiased estimator of the Gaussian mean
with unknown CVs based on k individual samples. The common Gaussian mean
with unknown CVs is defined by

θ̂∗ =
k∑

i=1

θ̂∗
i

Ṽ ar
(
θ̂∗

i

)
/

k∑
i=1

1

Ṽ ar
(
θ̂∗

i

) , (20)

where θ̂∗
i is defined in Eq. (18) and Ṽ ar

(
θ̂∗

i

)
is the estimator of V ar

(
θ̂∗

i

)
which

is defined in Eq. (19) with μ∗
i and σ2∗

i replaced by x̄∗
i and s2∗

i , respectively.
The B bootstrap statistics are used to construct the sampling distribution for

estimating the confidence interval for the common Gaussian mean with unknown
CVs. Therefore, the 100(1 − α)% two-sided confidence interval for the common
Gaussian mean with unknown CVs based on the SB approach is

CISB = [LSB , USB ] = [ ¯̂
θ∗ − z1−α/2Sθ̂∗ ,

¯̂
θ∗ + z1−α/2Sθ̂∗ ], (21)

where ¯̂
θ∗ and Sθ̂∗ are the mean and standard deviation of θ̂∗ defined in Eq. (20)

and z1−α/2 denotes the 100(1 − α/2)-th percentile of the standard normal dis-
tribution.

Next, we briefly review the GCI of Lin and Lee [11] for the common mean
of Gaussian distributions. The generalized pivotal quantity based on the best
linear un-biased estimator for the common Gaussian mean μ is
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Rμ =

k∑
i=1

nix̄iUi

vi
− Z

√
k∑

i=1

niUi

vi

k∑
i=1

niUi

vi

, (22)

where Z denotes the standard normal distribution, Ui denotes a chi-squared
distribution with ni − 1 degrees of freedom, and vi = (ni − 1)s2i .

Therefore, the 100(1 − α)% two-sided confidence interval for the common
Gaussian mean based on the GCI approach of Lin and Lee [20] is

CLL = [LLL, ULL] = [Rμ(α/2), Rμ(1 − α/2)], (23)

where Rμ(α/2) and Rμ(1 − α/2) denote the 100(α/2)-th and 100(1 − α/2)-th
percentiles of Rμ, respectively.

3 Simulation Studies

Monte Carlo simulation was used to estimate the coverage probabilities (CPs)
and the average lengths (ALs) of all confidence intervals; those constructed via
the GCI, LS, adjusted MOVER, and SB approaches are denoted as CIGCI , CILS ,
CIAM , and CISB , respectively, while the GCI of Lin and Lee [20] is denoted as

CILL. The CP of the 100(1 − α)% confidence level is c ± zα/2

√
c(1−c)

M , where c

is the nominal confidence level and M is the number of simulation runs. At the
95% confidence level, the best performing confidence interval will have a CP in
the range [0.9440,0.9560] with the shortest AL.

Each confidence interval was evaluated at the nominal confidence level of 0.95.
The number of populations k = 2; and the sample sizes within each population
n1 and n2 were given in the following table. Without loss of generality (Thangjai
et al. [8]), the common mean of Gaussian data within each population was μ =
1.0. The population standard deviations were set at σ1 = 0.5, 1.0, 1.5, 2.0 and
σ2 = 1.0. The CVs were computed by τi = σi/μ, where i = 1, 2. Hence, the ratio
of τ1 to τ2 was reduced to σ1/σ2.

The result of simulations with the number of simulation runs M = 5,000 is
reported in Table 1. Only CIGCI obtained CPs greater than 0.95 in all cases
whereas those of CILS , CIAM , CISB , and CILL were under 0.95. However, the
CPs of CILS , CIAM , and CISB increased and became close to 0.95 when the
sample size was increased. For ni ≤ 50, the CPs of CILS , CIAM , and CISB

tended to decrease when σ1/σ2 increased. Moreover, the CPs of CIGCI did not
change when σ1/σ2 was varied. Hence, CIGCI is preferable for most cases, while
CIAM and CISB, which are easy to use in practice, can be used when the sample
size is large (ni ≥ 100).

As the sample case (k) increased, CIGCI is preferable when the sample size
is small. For a large sample size, CIGCI , CIAM , CISB , and CILL performed
similarly in terms of CP but the ALs of the CIAM , CISB, and CILL were
shorter than that of CIGCI .
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Table 1. The CPs and ALs of 95% two-sided confidence intervals for the common
mean of Gaussian distributions with unknown CVs: 2 sample cases.

n1 n2 μ σ1/σ2 CP (AL)

CIGCI CILS CIAM CISB CILL

30 30 1.0 0.5 0.9532 0.9338 0.9432 0.9412 0.9450

(0.3586) (0.3176) (0.3313) (0.3299) (0.3277)

1.0 0.9608 0.9350 0.9506 0.9476 0.9460

(0.6305) (0.5297) (0.5526) (0.5498) (0.5136)

1.5 0.9580 0.9232 0.9456 0.9526 0.9492

(0.7689) (0.6473) (0.6744) (0.7130) (0.6065)

2.0 0.9574 0.8822 0.9140 0.9480 0.9474

(0.8126) (0.6707) (0.6953) (0.8183) (0.6563)

50 50 1.0 0.5 0.9496 0.9388 0.9478 0.9418 0.9460

(0.2706) (0.2474) (0.2536) (0.2501) (0.2515)

1.0 0.9642 0.9480 0.9562 0.9474 0.9480

(0.4506) (0.4075) (0.4177) (0.4061) (0.3962)

1.5 0.9524 0.9426 0.9544 0.9496 0.9430

(0.5505) (0.5020) (0.5145) (0.5110) (0.4658)

2.0 0.9508 0.9116 0.9340 0.9506 0.9428

(0.6042) (0.5269) (0.5388) (0.6109) (0.5024)

100 100 1.0 0.5 0.9540 0.9478 0.9512 0.9490 0.9504

(0.1882) (0.1751) (0.1772) (0.1755) (0.1764)

1.0 0.9588 0.9520 0.9554 0.9498 0.9492

(0.2980) (0.2832) (0.2867) (0.2806) (0.2786)

1.5 0.9506 0.9570 0.9586 0.9496 0.9494

(0.3623) (0.3494) (0.3536) (0.3363) (0.3279)

2.0 0.9568 0.9550 0.9622 0.9580 0.9506

(0.3892) (0.3748) (0.3793) (0.3831) (0.3536)

200 200 1.0 0.5 0.9500 0.9476 0.9500 0.9476 0.9482

(0.1322) (0.1239) (0.1247) (0.1240) (0.1244)

1.0 0.9498 0.9478 0.9498 0.9462 0.9474

(0.2030) (0.1984) (0.1997) (0.1972) (0.1968)

1.5 0.9488 0.9490 0.9514 0.9418 0.9428

(0.2543) (0.2415) (0.2430) (0.2334) (0.2310)

2.0 0.9592 0.9616 0.9638 0.9542 0.9566

(0.2649) (0.2625) (0.2641) (0.2547) (0.2485)
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4 Empirical Application

Empirical application of the proposed confidence intervals to real data were
presented and compared with CILL.

The dataset reported by Fung and Tsang [16] and Tian [12] and used here
comprises hemoglobin, red blood cells, the mean corpuscular volume, hematocrit,
white blood cells, and platelet values in normal and abnormal blood samples
collected by the Hong Kong Medical Technology Association in 1995 and 1996.
The summary statistics for 1995 are x̄1 = 84.1300, s21 = 3.3900, and n1 = 63,
and those for 1996 are x̄2 = 85.6800, s22 = 2.9460, and n2 = 72. The means
of the Gaussian distributions with unknown CVs are θ̂1 = 84.1294 and θ̂2 =
85.6795 for 1995 and 1996, respectively, while the common mean of the Gaussian
distributions with unknown CVs is θ̂ = 85.1962.

The two datasets fit Gaussian distributions. The 95% two-sided confi-
dence intervals for CIGCI , CILS , CIAM , and CISB were [84.1099,85.8884],
[61.4262,108.9661], [60.9972,109.3992], and [84.4604,85.6013] with interval
lengths of 1.7785, 47.5399, 48.4020, and 1.1409. For comparison, CILL provided
[84.6502,85.3635] with an interval length of 0.7133. Thus, CILL had the shortest
interval length, while CISB performed the best out of the proposed approaches
as its interval length was shorter than those of the other three for k = 2.

Therefore, these results confirm our simulation study in the previous section
in term of length. In simulation, the GCI of Lin and Lee [20] is the shortest aver-
age lengths, but the coverage probabilities are less than the nominal confidence
level of 0.95. Furthermore, the coverage probability and length in this example
are computed by using only one sample, whereas the coverage probability and
average length in the simulation are computed by using 5,000 random samples.
Therefore, the GCI of Lin and Lee [20] is not recommended to construct the
confidence intervals for common mean of Gaussian distributions with unknown
CVs.

5 Discussion and Conclusions

Thangjai et al. [8] proposed confidence intervals for the mean and difference of
means of normal distributions with unknown coefficients of variation. In addi-
tion, Thangjai et al. [9] presented the Bayesian approach to construct the con-
fidence intervals for means of normal distributions with unknown coefficients
of variation. In this paper, we extend the work of Thangjai et al. [8,9] to con-
struct confidence intervals for the common mean of k Gaussian distributions
with unknown CVs.

Herein, GCI, LS, adjusted MOVER, and SB approaches to construct interval
estimators for the common mean of Gaussian distributions with unknown CVs
are presented. Their CPs and ALs were evaluated via a Monte Carlo simulation
and compared with the confidence interval based on the GCI approach of Lin
and Lee [11]. The results of the simulation studies indicate that the confidence
intervals performed similarly based on their CPs for large sample sizes (i.e.,
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ni ≥ 100). However, the CP of CIGCI was more satisfactory than those of the
other confidence intervals. Moreover, the CPs of CIAM , CISB , and CILL were
close to 0.95 and their ALs were slightly shorter than CIGCI when the sample
size was large (i.e., ni ≥ 100). Thus, CIAM and CISB can be considered as an
alternative to construct an interval estimator for the common mean of Gaussian
distributions with unknown CVs when the sample size is large whereas CILS is
not recommended for small sample sizes (i.e., ni < 100) as its CP is below 0.95.
Further research will be conducted to find other approaches for comparison.
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for Time-Series Data
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Abstract. Various fuzzy clustering algorithms have been proposed for
vectorial data. However, these methods have not been applied to time-
series data. This paper presents three fuzzy clustering algorithms for
time-series data based on dynamic time warping (DTW). The first algo-
rithm involves Kullback–Leibler divergence regularization of the DTW
k-means objective function. The second algorithm replaces the member-
ship of the DTW k-means objective function with its power. The third
algorithm involves q-divergence regularization of the objective function
of the first algorithm. Theoretical discussion shows that the third algo-
rithm is a generalization of the first and second algorithms, which is
substantiated through numerical experiments.

Keywords: Time-series data · Fuzzy clustering · Dynamic time
warping

1 Introduction

Hard c-means (HCM) is the most commonly used type of clustering algorithm [1].
The fuzzy c-means (FCM) [2] approach is an extension of the HCM that allows
each object to belong to all or some of the clusters to varying degrees. To distin-
guish the general FCM method from other proposed, such as entropy-regularized
FCM (EFCM) [3], it is referred to as the Bezdek-type FCM (BFCM) in this work.
The above mentioned algorithms may misclassify some objects that should be
assigned to a large cluster as belonging to a smaller cluster if the cluster sizes
are not balanced. To overcome this problem, some approaches introduce vari-
ables to control the cluster sizes [4,5]. Such variables have been added to the
BFCM and EFCM algorithms to derive the revised BFCM (RBFCM) and revised
EFCM (REFCM) [6] algorithms, respectively.

In the aforementioned clustering algorithms, the dissimilariies between the
objects and cluster centers are measured as the inner-product-induced squared
distances. This measure cannot be used for time-series data because they vary
over time. Dynamic time warping (DTW) is a representative dissimilarity with
respect to time-series data. Hence, a clustering algorithm using the DTW is
proposed [8] herein and referred to as the DTW k-means algorithm.

c© Springer Nature Switzerland AG 2022
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The accuracies that can be achieved with fuzzy clustered results are better
than those using hard clustering. Various kinds of fuzzy clustering algorithms
have been proposed in literature for vectorial data [2,3]. However, this is not
true for time-series data, which is the main motivation for this study.

In this work, we propose three fuzzy clustering algorithms for time-series
data. The first algorithm involves the Kullback–Leibler (KL) divergence regu-
larization of the DTW k-means objective function, which is referred to as the
KL-divergence-regularized fuzzy DTW c-means (KLFDTWCM); this approach
is similar to the REFCM obtained by KL divergence regularization of the HCM
objective function. In the second algorithm, the membership of the DTW k-
means objective function is replaced with its power, which is referred to as the
Bezdek-type fuzzy DTW c-means (BFDTWCM); this method is similar to the
RBFCM, where the membership of the HCM objective function is replaced with
its power. The third algorithm is obtained by q-divergence regularization of the
objective function of the first algorithm (QFDTWCM). The theoretical results
indicate that the QFDTWCM approach reduces to the BFDTWCM under a
specific condition and to the KLFDTWCM under a different condition. Numer-
ical experiments were performed using artificial datasets to substantiate these
observations.

The remainder of this paper is organized as follows. Section 2 introduces the
notations used herein and the background regarding some conventional algo-
rithms. Section 3 describes the three proposed algorithms. Section 4 presents the
procedures and results of the numerical experiments demonstrating the proper-
ties of the proposed algorithms. Finally, Sect. 5 presents the conclusions of this
work.

2 Preliminaries

2.1 Divergence

For two probability distributions P and Q, the KL divergence of Q from P ,
DKL(P ||Q) is defined to be

DKL(P ||Q) =
∑

k

P (k) ln
(

P (k)
Q(k)

)
. (1)

KL divergence has been used to achieve fuzzy clustering [3] of vectorial data.
KL divergence has been extended by using q-logarithmic function

lnq(x) =
1

1 − q
(x1−q − 1) (for x > 0) (2)

as

Dq(P ||Q) =
1

1 − q

(
∑

k

P (k)qQ(k)1−q − 1

)
, (3)

referred to as q-divergence [7]. In the limit q → 1, the KL-divergence is recovered.
q-divergence has been implicitly used to derive fuzzy clustering only for vectorial
data [6] although that is not indicated in the literature.
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2.2 Clustering for Vectorial Data

Let X = {xk ∈ R
D | k ∈ {1, . . . , N}} be a dataset of D-dimensional points. The

set of cluster centers is denoted by v = {vi ∈ R
D | i ∈ {1, . . . , C}}. The member-

ship of xk with respect to the i-th cluster is denoted by ui,k (i ∈ {1, . . . , C}k ∈
{1, . . . , N}) and has the following constraint:

C∑

i=1

ui,k = 1. (4)

The variable controlling the i-th cluster size is denoted by αi, and has the con-
straint

C∑

i=1

αi = 1. (5)

The HCM, RBFCM, and REFCM clusters are respectively obtained by solv-
ing the following optimization problems:

minimize
u,v

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22, (6)

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)m‖xk − vi‖22, (7)

minimize
u,v,α

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22 + λ−1
C∑

i=1

N∑

k=1

ui,k log
(

ui,k

αi

)
. (8)

where m > 1 and λ > 0 are the fuzzification parameters. When m = 1, the
RBFCM is reduced to HCM; the larger the value of m, the fuzzier are the
memberships. When λ → +∞, the REFCM is reduced to HCM; the smaller the
value of λ, the fuzzier are the memberships.

2.3 Clustering of Time-Series Data: DTW k-Means

Let X = {xk ∈ R
D | k ∈ {1, . . . , N}} be a time-series dataset and xk,� be its

elements at time �. Let v = {vi ∈ R
D | i ∈ {1, . . . , C}} be the set of cluster

centers set vi,� be its elements at time �. Let DTWi,k be the dissimilarities
between the objects xk and cluster centers vi as below, with DTWi,k being
defined as follows DTW [8]. Denoting Ωi,k ∈ {0, 1}D×D as the warping path
used to calculate DTWi,k, the membership of xk with respect to the i-th cluster
is given by ui,k (i ∈ {1, . . . , C}k ∈ {1, . . . , N}). The DTW k-means is obtained
by solving the following optimization problem

minimize
u,v

C∑

i=1

N∑

k=1

ui,kDTWi,k. (9)
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in accordance with Eq. (4), where

DTWi,k =
√

d(vi,D, xk,D),

d(vi,D, xk,D) = ||xk,D − vi,D||2 (10)
+ min{d(vi,D−1, xk,D−1), d(vi,D, xk,D−1), d(vi,D−1, xk,D)}.

(11)

In addition to DTW, we obtain the warping path that maps the pairs (�,m) for
each element in the series to minimize the distance between them. Hence, the
warping path is a sequence of pairs (�,m). Here, we consider matrices {Ωi,k ∈
{0, 1}D×D}(C,N)

(i,k)=(1,1) whose (�,m)-th element is one if (�,m) is an element of the
corresponding warping path and zero otherwise then, we have the cluster centers

vi =

(
N∑

xk∈Gi

Ωi,kxk

)
�

(
∑

xk∈Gi

Ωi,k1

)
, (12)

where 1 is the D-dimensional vector with all elements equal to one, and �
describes element-wise division. The DTW k-means algorithm can be summa-
rized as follows.

Algorithm 1 (DTW k-means). [8]

Step 1. Set the number of clusters C and initial membership {ui,k}(C,N)
(i,k)=(1,1).

Step 2. Calculate {vi}C
i=1 as

vi =
∑N

k=1 ui,kxk∑N
k=1 ui,k

. (13)

Step 3. Calculate {DTWi,k}(C,N)
(i,k)=(1,1) and update {vi}C

i=1 as
(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (25).
(c) Check the limiting criterion for vi. If the criterion is not satisfied,

go to Step (a).
Step 4. Update {ui,k}(C,N)

(i,k)=(1,1) as

ui,k =

{
1 (i = arg min1≤j≤C{DTWj,k}),
0 (otherwise).

(14)

Step 5. Check the limiting criterion for (u, v). If the criterion is not satisfied,
go to Step 3
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3 Proposed Algorithms

3.1 Concept

In this work, we propose three fuzzy clustering algorithms for time-series data.
The first algorithm is similar to the REFCM obtained by KL divergence

regularization the DTW k-means objective function, which is referred to as
KLFDTWCM. The optimization problem for this is given by

minimize
u,v,α

C∑

i=1

N∑

k=1

ui,kDTWi,k + λ−1
C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

αi

)
(15)

subject to Eqs. (4) and (5).
The second algorithm is similar to the RBFCM obtained by replacing the

membership of the HCM objective function with its power, which is referred to
as BFDTWCM. The optimization problem is then given by

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)mDTWi,k (16)

subject to Eqs. (4) and (5).
The third algorithm is obtained by q-divergence regularization of the

BFDTWCM, which is referred to as QFDTWCM. The optimization problem
in this case is given by

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)mDTWi,k +
λ−1

m − 1

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)m (17)

subject to Eqs. (4) and (5). This optimization problem relates the optimization
problems for BFDTWCM and KLFDTWCM because Eq. (17) with λ → +∞
reduces to the BFDTWCM method and Eq. (17) with m → 1 reduces to the
KLFDTWCM approach. In the next subsection, we present derivation of the
update equations for u, v, and α based on of the minimization problem in Eqs.
(15), (16), and (17).

3.2 KLFDTWCM, BFDTWCM and QFDTWCM

The KLFDTWCM is obtained by solving the optimization problem in Eqs. (15),
(4) and (5), where the Lagrangian L(u, v, α) is defined as

L(u, v, α) =
C∑

i=1

N∑

k=1

ui,kDTWi,k + λ−1
C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

αi

)

+
N∑

k=1

γk

(
1 −

C∑

i=1

ui,k

)
+ β

(
1 −

C∑

i=1

αi

)
(18)
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using Lagrangian multipliers (γ1, · · · , γN+1). The necessary conditions for opti-
mality are given as

∂L(u, v, α)
∂ui,k

= 0, (19)

∂L(u, v, α)
∂αi

= 0, (20)

∂L(u, v, α)
∂γk

= 0, (21)

∂L(u, v, α)
∂β

= 0. (22)

The optimal membership is obtained from Eqs. (19) and (21) in a manner similar
to that of the REFCM as

ui,k =

⎡

⎣
C∑

j=1

αj

αi
exp(−λ(DTWj,k − DTWi,k))

⎤

⎦
−1

. (23)

The optimal variable for controlling the cluster sizes is obtained from Eqs. (20)
and (22) in a manner similar to that of the REFCM as

αi =
∑N

k=1 ui,k

N
. (24)

Recall that in the DTW k-means approach, the cluster centers vi are calculated
using Ωi,k and xk belonging to cluster #i, as shown in Eq. (12), which can be
equivalently written as

vi =

(
N∑

k=1

ui,kΩi,kxk

)
�

(
N∑

k=1

ui,kΩi,k1

)
. (25)

This form can be regarded as the ui,k-weighted mean of Ωi,kxk. Similarly, the
cluster centers for KLFDTWCM are calculated using Eq. (25). KLFDTWCM
can be described as follows:

Algorithm 2 (KLFDTWCM).

Step 1. Set the number of clusters C, fuzzification parameter λ > 0, and initial
membership {ui,k}(C,N)

(i,k)=(1,1).
Step 2. Calculate vi from Eq. (13).
Step 3. Calculate {DTWi,k}(C,N)

(i,k)=(1,1) and update {vi}C
i=1 as

(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (25).
(c) Check the limiting criterion for vi. If the criterion is not satisfied, go to

Step (a).
Step 4. Update u from Eq. (23)
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Step 5. Calculate α from Eq. (24)
Step 6. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step 3.

The BFDTWCM is obtained by solving the optimization problem in
Eqs. (16), (4), and (5). Similar to the derivation of the KLFDTWCM, the opti-
mal membership u, variable for controlling the cluster sizes α, and cluster centers
v are obtained as

ui,k =
1

∑C
j=1

αj

αi

(
DTWj,k

DTWi,k

)1/(1−m)
, (26)

αi =
1

∑C
j=1

(∑N
k=1(uj,k)mDTWj,k∑N
k=1(ui,k)mDTWi,k

)1/m
, (27)

vi =

(
N∑

k=1

(ui,k)mΩi,kxk

)
�

(
N∑

k=1

(ui,k)mΩi,k1

)
, (28)

respectively. The BFDTWCM can be described as follows:

Algorithm 3 (BFDTWCM).

Step 1. Set the number of clusters C, fuzzification parameter m > 1, and initial
membership {ui,k}(C,N)

(i,k)=(1,1).
Step 2. Calculate vi from Eq. (13).
Step 3. Calculate {DTWi,k}(C,N)

(i,k)=(1,1) and update {vi}C
i=1 as

(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (28).
(c) Check the limiting criterion for vi. If the criterion is not satisfied, go to

Step. (a).
Step 4. Update u from Eq. (26)
Step 5. Calculate α from Eq. (27)
Step 6. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step. 3.

The QFDTWCM is obtained by solving the optimization problem in
Eqs. (17), (4), and (5). Similar to the derivations of BFDTWCM and
KLFDTWCM, the optimal membership u and variable for controlling the cluster
sizes α are obtained as

ui,k =
1

∑C
j=1

αj

αi

(
1−λ(1−m)DTWj,k

1−λ(1−m)DTWi,k

)1/(1−m)
, (29)

αi =
1

∑C
j=1

(∑N
k=1(uj,k)m(1−λ(1−m)DTWj,k)∑N
k=1(ui,k)m(1−λ(1−m)DTWi,k)

)1/m
, (30)

respectively. The optimal cluster centers are defined by Eq. (28). The
QFDTWCM can be described as follows:
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Algorithm 4 (QFDTWCM).

Step 1. Set the number of clusters C, fuzzification parameter m > 1, λ > 0, and
initial membership {ui,k}(C,N)

(i,k)=(1,1).
Step 2. Calculate {vi}C

i=1 from Eq. (13).
Step 3. Calculate {DTWi,k}(C,N)

(i,k)=(1,1) and update {vi}C
i=1 as

(a) Calculate DTWi,k from Eq. (11).
(b) Update vi from Eq. (28).
(c) Check the limiting criterion for vi. If the criterion is not satisfied, go to

Step (a).
Step 4. Update u from Eq. (29).
Step 5. Calculate α from Eq. (30).
Step 6. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step 4.

In the remainder of this section, we show that the QFDTWCM with m −
1 → +0 reduces to BFDTWCM and QFDTWCM with λ → +∞ reduces to
KLFDTWCM.

The third step in the QFDTWCM approach is exactly equal to that of the
BFDTWCM because Eq. (28) is identical to Eq. (28). In the fourth step of
the QFDTWCM, the u value in Eq. (29) reduces to that in Eq. (26) of the
BFDTWCM as

1
∑C

j=1
αj

αi

(
1−λ(1−m)DTWj,k

1−λ(1−m)DTWi,k

)1/(1−m)

=
αi (1/λ − (1 − m)DTWi,k)1/(1−m)

∑C
j=1 αj (1/λ − (1 − m)DTWj,k)1/(1−m)

→ αi (−(1 − m)DTWi,k)1/(1−m)

∑C
j=1 αj (−(1 − m)DTWj,k)1/(1−m)

(with λ → +∞)

=
(m − 1)αi (DTWi,k)1/(1−m)

(m − 1)
∑C

j=1 αj (DTWj,k)1/(1−m)

=
αi (DTWi,k)1/(1−m)

∑C
j=1 αj (DTWj,k)1/(1−m)

=
1

∑C
j=1

αj

αi

(
DTWj,k

DTWi,k

)1/(1−m)
. (31)

In the fifth step of the QFDTWCM, the α value in Eq. (30) is reduces to that
in Eq. (27) of the BFDTWCM as
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1
∑C

j=1

(∑N
k=1(uj,k)m(1−λ(1−m)DTWj,k)∑N
k=1(ui,k)m(1−λ(1−m)DTWi,k)

)1/m

=

(∑N
k=1(ui,k)m(1/λ − (1 − m)DTWi,k)

)1/m

∑C
j=1

(∑N
k=1(uj,k)m(1/λ − (1 − m)DTWj,k)

)1/m

→
(∑N

k=1(ui,k)m(−(1 − m)DTWi,k)
)1/m

∑C
j=1

(∑N
k=1(uj,k)m(−(1 − m)DTWj,k)

)1/m

(with λ → +∞)

=
(m − 1)1/m

(∑N
k=1(ui,k)m(DTWi,k)

)1/m

(m − 1)1/m
∑C

j=1

(∑N
k=1(uj,k)m(DTWj,k)

)1/m

=

(∑N
k=1(ui,k)m(DTWi,k)

)1/m

∑C
j=1

(∑N
k=1(uj,k)m(DTWj,k)

)1/m

=
1

∑C
j=1

(∑N
k=1(uj,k)mDTWj,k∑N
k=1(ui,k)mDTWi,k

)1/m
. (32)

From the above discussion, we can conclude that the QFDTWCM with λ → +∞
reduces to the BFDTWCM.

The third step of the QFDTWCM with m = 1 is obviously equal to the third
step of the KLFDTWCM because Eq. (28) with m = 1 is identical to Eq. (11).
In the fourth step of the QFDTWCM, the u value in Eq. (29) reduces to that
in Eq. (23) of the KLFDTWCM as

(1 − λ(1 − m)DTWi,k)1/(1−m)

→ exp(−λ(DTWi,k)) (with m = 1). (33)

The fifth step of the QFDTWCM reduces to that of the KLFDTWCM because

=
1

∑C
j=1

(∑N
k=1(uj,k)m(1−λ(1−m)DTWj,k)∑N
k=1(ui,k)m(1−λ(1−m)DTWi,k)

)1/m

→ 1
∑C

j=1

∑N
k=1

uj,k

ui,k

(with m = 1)

=
∑N

k=1 ui,k∑C
j=1

∑N
k=1 uj,k

=
∑N

k=1 ui,k

N
. (34)
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Fig. 1. Sample data group1 Fig. 2. Sample data group2

Fig. 3. Sample data group3 Fig. 4. Sample data group4

From the above discussion, we can conclude that the QFDTWCM with m−1 → 0
reduces to the KLFDTWCM.

As shown herein, the proposed QFDTWCM includes both the BFDTWCM
and KLFDTWCM. Thus, the QFDTWCM is a generalization of the BFDTWCM
as well as KLFDTWCM.

4 Numerical Experiments

This section presents some numerical examples based on one artificial dataset.
The example compares the characteristic features of the proposed clustering
algorithm (Algorithm 4) with those of other algorithms (Algorithms 2 and 3) for
an artificial dataset, as shown in Figs. 1, 2, 3 and 4 for four clusters (C = 4),
with each clusters containing five objects (N = 4 × 5 = 20).

The initialization step assigns the initial memberships according to the actual
class labels. All three proposed methods with various fuzzification parameter
values were able to classify the data adequately, and the obtained membership
values are shown in Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9. Tables 1 and 2 show that for
the BFDTWCM, when the fuzzification parameter m is larger, the membership
values are fuzzier. Tables 3 and 4 show that for the KLFDTWCM, when the fuzzi-
fication parameter λ is smaller, the membership values are fuzzier. Tables 5 and 6
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Table 1. Sample data memberships of the
BFDTWCM, m = 1.001

Cluster Group

1 2 3 4

1 1.00 0.00 0.00 0.00

2 0.00 1.00 0.00 0.00

3 0.00 0.00 1.00 0.00

4 0.00 0.00 0.00 1.00

Table 2. Sample data memberships of
the BFDTWCM, m = 1.35

Cluster Group

1 2 3 4

1 0.77 0.01 0.10 0.00

2 0.01 0.66 0.00 0.11

3 0.21 0.01 0.89 0.00

4 0.01 0.32 0.00 0.89

Table 3. Sample data memberships of the
KLFDTWCM, λ = 1.5

Cluster Group

1 2 3 4

1 0.84 0.00 0.06 0.00

2 0.00 0.70 0.00 0.06

3 0.15 0.00 0.94 0.00

4 0.00 0.30 0.00 0.94

Table 4. Sample data memberships of
the KLFDTWCM, λ = 100

Cluster Group

1 2 3 4

1 1.00 0.00 0.00 0.00

2 0.00 1.00 0.00 0.00

3 0.00 0.00 1.00 0.00

4 0.00 0.00 0.00 1.00

Table 5. Sample data memberships of the
QFDTWCM, (m, λ) = (1.2, 3)

Cluster Group

1 2 3 4

1 0.78 0.00 0.10 0.00

2 0.00 0.61 0.00 0.09

3 0.21 0.00 0.90 0.00

4 0.00 0.39 0.00 0.91

Table 6. Sample data memberships of
the QFDTWCM, (m, λ) = (1.001, 3)

Cluster Group

1 2 3 4

1 0.99 0.00 0.00 0.00

2 0.00 0.98 0.00 0.01

3 0.01 0.00 1.00 0.00

4 0.00 0.02 0.00 0.99

show that for the QFDTWCM, when the fuzzification parameter m is larger, the
membership values are fuzzier. Tables 5 and 7 show that for the QFDTWCM,
when the fuzzification parameter λ is smaller, the membership values are fuzzier.
Furthermore, Tables 6 and 8 show that the QFDTWCM with large values of λ
produces results similar to those of the KLFDTWCM, and Tables 7 and 9 show
that the QFDTWCM with smaller values of m produces results similar to those
of the BFDTWCM. These results indicate that the QFDTWCM combines the
features of both BFDTWCM and KLFDTWCM.
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Table 7. Sample data memberships of the
QFDTWCM, (m, λ) = (1.2, 100)

Cluster Group

1 2 3 4

1 0.95 0.00 0.03 0.00

2 0.00 0.90 0.00 0.04

3 0.05 0.00 0.97 0.00

4 0.00 0.10 0.00 0.96

Table 8. Sample data memberships of
the KLFDTWCM, λ = 3

Cluster Group

1 2 3 4

1 0.99 0.00 0.00 0.00

2 0.00 0.98 0.00 0.01

3 0.01 0.00 1.00 0.00

4 0.00 0.02 0.00 0.99

Table 9. Sample data memberships of the BFDTWCM, m = 1.2

Cluster Group

1 2 3 4

1 0.95 0.00 0.03 0.00

2 0.00 0.90 0.00 0.04

3 0.05 0.00 0.97 0.00

4 0.00 0.10 0.00 0.96

5 Conclusion

This work, propose three fuzzy clustering algorithms for classifying time-series
data. The theoretical results indicate that the QFDTWCM approach reduces
to the BFDTWCM as m − 1 → +0 and to the KLFDTWCM as λ → +∞.
Numerical experiments were performed on an artificial dataset to substantiate
these properties.

In the future work, these proposed algorithms will be applied to real datasets.

References

1. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297 (1967)

2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York (1981)

3. Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a regularization and maximum
entropy approach. In: Proceedings of the 7th International Fuzzy Systems Associa-
tion World Congress (IFSA 1997), vol. 2, pp. 86–92 (1997)

4. Miyamoto, S., Kurosawa, N.: Controlling cluster volume sizes in fuzzy c-means clus-
tering. In: Proceedings of the SCIS&ISIS2004, pp. 1–4 (2004)

5. Ichihashi, H., Honda, K., Tani, N.: Gaussian mixture PDF approximation and fuzzy
c-means clustering with entropy regularization. In: Proceedings of the 4th Asian
Fuzzy System Symposium, pp. 217–221 (2000)



On Some Fuzzy Clustering Algorithms for Time-Series Data 181

6. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer,
Heidelberg (2008)

7. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
a sum of observations. Ann. Math. Statist. 23, 493–507 (1952)

8. Petitjean, F., Ketterlin, A., Gancarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recogn. 44, 678–693 (2011)



On an Multi-directional Searching
Algorithm for Two Fuzzy Clustering
Methods for Categorical Multivariate

Data

Kazune Suzuki(B) and Yuchi Kanzawa

Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan
ma21070@shibaura-it.ac.jp, kanzawa@sic.shibaura-it.ac.jp

Abstract. Clustering for categorical multivariate data is an important
task for summarizing co-occurrence information that consists of mutual
affinity among objects and items. This work focus on two fuzzy cluster-
ing methods for categorical multivariate data. One of the serious limi-
tations for these methods is the local optimality problem. In this work,
an algorithm is proposed to address this issue. The proposed algorithm
incorporates multiple token search generated from the eigen decompo-
sition of the Hessian of the objective function. Numerical experiments
using an artificial dataset shows that the proposed algorithm is valid.

Keywords: Fuzzy clustering · Local optimality problem · Multiple
token search

1 Introduction

The hard c-means (HCM) or k-means clustering algorithm [1] partitions objects
into groups. This method is called “hard clustering” because each object belongs
to only one cluster, whereas Gaussian mixture models and fuzzy clustering are
called “soft clustering” because each object belongs to all or some clusters to
varying degrees.

Clustering for categorical multivariate data is a method for summarizing
co-occurrence information that consists of mutual affinity among objects and
items. A multinomial mixture model (MMM) [2] is a probabilistic model for
clustering tasks for categorical multivariate data, where each component dis-
tribution is defined by multinomial distribution. Honda et al. [3] proposed the
fuzzy clustering for categorical multivariate data induced by MMM (FCCMM).
The FCCMM method is a fuzzy counterpart to MMMs, where the degree of
fuzziness can be controlled by two fuzzification parameters. Kondo et al. [4]
extended FCCMM by introducing q-divergence instead of Kullback-Leibler (KL)
divergence in FCCMM. Furthermore, Kondo et al. [4] showed that QFCCMM
outperforms FCCMM in terms of clustering accuracy.
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One of the most serious limitations for FCCMM and QFCCMM is the local
optimality problem. The problem makes the accuracy of their algorithms depen-
dent on its starting points. Thus, obtaining good starting points has been long
addressed. One easily idea to avoid locally optimal solutions is running their
algorithms multiple times with differently initial setting, and selecting the result
where the optimal objective function value is achieved. However, it is unknown
how many times should their algorithms run to obtain the globally optimal solu-
tion. Arthur and Vassilvitskii [5] proposed k-means++, which is an algorithm
for choosing the initial setting for k-means or HCM, This algorithm not only
yields considerable improvement in the clustering accuracy of k-means, but also
provides a probabilistic upper bound of error. However, this algorithm cannot be
applied directly to the other clustering algorithm such as fuzzy clustering algo-
rithms, nor provides any upper bound of error for those than k-means. Ishikawa
and Nakano [6] proposed the mes-EM algorithm for the Gaussian mixture mod-
els (GMM) incorporating a multiple token search into the EM algorithm for
GMM, employing the primitive initial point (PIP) as its initial point, where
the search tokens are generated along the directions spanned by the eigen vec-
tors with negative eigen values of the Hessian of the objective function. This
idea can be applied to fuzzy clustering algorithms for categorical multivariate
data including FCCMM and QFCCMM, which has a potential to solve the local
optimality problem of FCCMM and QFCCMM.

In this study, we propose an algorithm to address the local optimality problem
of FCCMM and QFCCMM, by modifying the idea of the mes-EM algorithm. The
first modification is considering equality-constraints. The idea of the mes-EM
algorithm, incorporating a multiple token generated along the directions spanned
by the eigen vectors with negative eigen values of the Hessian of the objective
function, cannot be valid as it is for FCCMM or QFCCMM. It is because the
FCCMM and QFCCCMM optimization problems must consider some equality-
constraints for variables. If we apply the idea of the mes-EM algorithm directly to
FCCMM or QFCCMM, the generating tokens often violate such the constraint.
Then, we generate tokens from the intersection of the space spanned by the
eigenvectors with negative eigen values of the Hessian of the objective function
and the null space of the constraints. The other modification is concerning the
length of tokens. Although the generated tokens show the direction to which
the objective function improves, we cannot its length at which the objective
function improves. If we easily determine the length of tokens, such the tokens
may not only make the objective function value worsen but also violate the
inequality-constraints. Then, we reduce the length of tokens if it violates the
inequality-constraints or it make the objective function value worsen.

The remainder of this paper is organized as follows. Section 2 introduces the
notations used and some conventional algorithms. Section 3 describes the pro-
posed algorithm. Section 4 presents the results of numerical experiments con-
ducted to demonstrate the performance of the proposed algorithm. Finally,
Sect. 5 concludes the paper.
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2 Preliminaries

2.1 Two Fuzzy Clustering Algorithms for Categorical Multivariate
Data

Let X = {xk ∈ IRM |k ∈ {1, ..., N}} be a categorical multivariate dataset of M
dimensional points. The membership of xk that belongs to the i-th cluster is
denoted by ui,k (i ∈ {1, ..., C}, k ∈ {1, ..., N}) and the set of ui,k is denoted by
u, which obeys the following constraint:

C∑

i=1

ui,k = 1, ui,k ∈ [0, 1] (1)

The variable controlling the i-th cluster size is denoted by αi. The i-th element
of vector α is denoted by αi, and α obeys the following constraint:

C∑

i=1

αi = 1, αi ∈ (0, 1) (2)

The cluster center set is denoted by v = {vi|vi ∈ IRM , i ∈ {1, ..., C}}. The �-
th item typicality for i-th cluster is denoted by vi,�, and v obeys the following
constraint:

M∑

�=1

vi,� = 1, vi,� ∈ [0, 1] (3)

The methods FCCMM and QFCCMM are derived by solving the optimization
problems,

minimize
u,v,α

JFCCMM(u, v, α), (4)

minimize
u,v,α

JQFCCMM(u, v, α), (5)

subject to Eqs. (1), (2), and (3), where

JFCCMM(u, v, α) =
C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

ui,k log
(

ui,k

αi

)
, (6)

JQFCCMM(u, v, α) =
C∑

i=1

N∑

k=1

(ui,k)m(αi)1−mdi,k +
λ−1

m − 1

C∑

i=1

N∑

k=1

(ui,k)m(αi)1−m,

(7)

di,k = − 1
t

Q∑

q=1

xk,q

(
(vi,q)

t − 1
)

, (8)

and m > 1, λ > 0 and t < 1 are fuzzification parameters. The FCCMM and
QFCCMM algorithms are summarized as follows.
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Algorithm 1 (FCCMM, QFCCMM).

Step 1. Set the number of clusters as C. Fix λ > 0 and t > 0 for FCCMM, and
m > 1, λ > 0 and t < 1 for QFCCMM. Assume initial item typicality
as v and initial variable controlling cluster sizes as α.

Step 2. Update u as

ui,k =
αi exp(−λdi,k)

∑C
j=1 αj exp(−λdj,k)

(9)

for FCCMM, and

ui,k =
αi (1 − λ (1 − m) di,k)

1
1−m

∑C
j=1 αj (1 − λ (1 − m) dj,k)

1
1−m

(10)

for QFCCMM.
Step 3. Update α as

αi =
∑N

k=1 ui,k

N
(11)

for FCCMM, and

αi =
1

∑C
j=1

( ∑N
k=1(ui,k)

m(1−λ(1−m)di,k)∑N
k=1(uj,k)

m(1−λ(1−m)dj,k)

) 1
m

(12)

for QFCCMM.
Step 4. Update v as

vi,� =

(∑N
k=1 ui,kxk,�

)1/(1−t)

∑M
r=1

(∑N
k=1 ui,kxk,r

)1/(1−t)
(13)

for FCCMM, and

vi,� =

(∑N
k=1(ui,k)mxk,�

)1/(1−t)

∑M
r=1

(∑N
k=1(ui,k)mxk,r

)1/(1−t)
(14)

for QFCCMM.
Step 5. Check the limiting criterion for (u, v, α). If the criterion is not satisfied,

go to Step 2.
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2.2 Multi-directional in Eigen Space-EM Algorithm for GMM

The mes-EM algorithm was proposed to improve the solution quality of the EM
algorithm. The mes-EM algorithm starts from the primitive initial point (PIP),
which is the solution for extreme values of inverse temperature in the determinis-
tic annealing [7] context. Let the Hessian of the target function to be minimized
have negative eigen values at the PIP. Let W = {wr,−wr}R

r=1 be the orthonor-
mal set of the corresponding eigen vector. Search tokens are generated along the
directions

W ′ =

{
R∑

r=1

(±wr)

}
= {(+w1) + . . . (+wR), . . . , (−w1) + · · · + (−wR)} (15)

in addition to the orthonormal set W. The mes-EM algorithm is the method
of running the EM algorithm 2R + 2R times starting from the same PIP with
W ∪ W ′ as their search directions, and is described below.

Algorithm 2 (mes-EM).

Step 1. Calculate all eigen values of the Hessian of the target function at the
PIP.

Step 2. Generate search directions W ∪W ′ by using the negative eigen values.

3 Proposed Methods

In this section, we propose an algorithm to address the local optimality problem
of FCCMM and QFCCMM, by modifying the idea of the mes-EM algorithm.

Consider the FCCMM objective function given in Eq. (4) as the function of
s = (v, α) ∈ R

(C+1)M , i.e., JFCCMM(s) = JFCCMM(v, α), where, u is considered as
the function of (v, α) given as Eq. (9). The PIP for the mes-EM algorithm is the
solution for extreme values of inverse temperature in the deterministic annealing
context, where as the PIP for FCCMM is the solution of their optimization
problem with λ → 0, given by s(0) = (v(0), α(0)) where

v
(0)
i,� =

∑N
k=1 xk,�∑M

r=1

∑N
k=1 xk,r

, (16)

α
(0)
i =

1
C

. (17)

The proposed algorithm starts from the PIP.
Let the Hessian of the objective function given by Eq. (4) have negative

eigen values at the PIP. Let W = {wr,−wr}R
r=1 be the orthonormal set of

the corresponding eigen vector. In the mes-EM algorithm, multiple tokens are
generated using the direction in the space spanned by the corresponding eigen
vectors to the negative eigen values of the Hessian of the target function, whereas
for FCCMM, the generated token s(0)+Δs, where Δs is in the space spanned by
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W, is not always valid. It is because we must consider the equality-constraints
given by Eqs. (2) and (3) for (v, α). These constraints are equivalently written
as

As =1C+1, (18)

A =

⎛

⎜⎜⎝

1T
M 0T

M . . . ,0T
M 0T

C

0T
M 1T

M . . . ,0T
M 0T

C

0T
M 0T

M . . . ,1T
M 0T

C

0T
M 0T

M . . . ,0T
M 1T

C

⎞

⎟⎟⎠ , (19)

where 1C+1, 1M , and 1C are the vector whose all the elements are ones with the
dimension of C+1, M , and C, respectively, and 0M , and 0C are the vector whose
all the elements are zeros with the dimension of M and C, respectively. If we
have AΔs �= 0, then the generated token s + Δs violates the equality-constraint
as

A(s + Δs) = As + AΔs �= 1C+1. (20)

Then, we generate tokens s(0) + Δs where Δs is in the intersection of span(W)
and the null space of A, i.e., null(A). Such the intersection can be obtained as
the righthand singular vectors of AW where W = (w1, . . . , wR).

Although Δs show the direction to which the objective function improves
with keeping the equality-constraints given by Eq. (18), or equivalently Eqs. (2)
and (3), we cannot know its length at which the objective function value
improves. If we easily determine the length of Δs, such the tokens s0 + Δs
may not only make the objective function value JFCCMM(s(0) + Δs) worsen but
also violate the inequality-constraints vi,� ∈ [0, 1] and αi ∈ (0, 1). Then, we
reduce the length of tokens if it violates the inequality-constraints or it make
the objective function value worsen.

The above discussion is not only for FCCMM but also for QFCCMM, and is
summarized into the following algorithm:

Algorithm 3.

Step 1. Let S, S∗, and ΔS be empty sets, add s(0) given by Eqs. (16) and (17)
to S.

Step 2. If S is empty, output the element of S∗ such that its objective function
value is the minimum, and terminate this algorithm. Otherwise, pop s
from S, and run Algorithm1 using the initial setting s, resulting into
ŝ.

Step 3. Calculate all eigen pairs of ∇2JFCCMM(ŝ) for FCCMM or ∇2JQFCCMM(ŝ)
for QFCCMM. If all the eigen values are positive, ŝ is a locally or glob-
ally optimal solution. Then, add ŝ to S∗, and return to Step 2. If all
the eigen values are negative, ŝ is not a locally or globally optimal solu-
tion. Then, ignore ŝ, and return to Step 2. If at least one eigen value
is negative, ŝ is a saddle point. Let the corresponding eigen vectors be
W = {wr ∈ R

(C+1)M}R
r=1.
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Step 4. Obtain the orthonormal basis vectors

W̌ = {w̌r,−w̌r}Ř
r=1 (21)

of span(W) ∩ null(A) and their combinations

W̌ ′ =

⎧
⎨

⎩

Ř∑

r=1

(±w̌r)

⎫
⎬

⎭
= {(+w̌1) + . . . (+w̌Ř), . . . , (−w̌1) + · · · + (−w̌Ř)}. (22)

Add all the elements of W̌ ∪ W̌ ′ to ΔS.
Step 5. If ΔS is empty, return to Step 2. Otherwise, pop Δs from ΔS.
Step 6. Find 0 < β ≤ 1 such as 0 < ŝ + βΔs < 1 and JFCCMM(ŝ + βΔs) <

JFCCMM(ŝ) for FCCMM or JQFCCMM(ŝ + βΔs) < JQFCCMM(ŝ) for QFC-
CMM, add ŝ+βΔs to S, and return to Step 5. If there does not exist
such the value β, ignore Δs and return to Step 5.

4 Numerical Experiments

This section provides numerical experiments to illustrate Algorithm 3 based on
one artificial dataset as shown in Fig. 1. with four clusters (C = 4) in the two
dimensional unit-simplex. First cluster is composed of 100 objects generated from
multinomial distribution with v1 = (0.1, 0.1, 0.8). Second cluster is composed
of 200 objects generated from multinomial distribution with v2 = (0.8, 0.1, 0.1).
Third cluster is composed of 400 objects generated from multinomial distribution
with v3 = (0.1, 0.8, 0.1). Fourth cluster is composed of 400 objects generated from
multinomial distribution with v4 = (13 , 1

3 , 1
3 ).

The fuzzification parameter λ and t for FCCMM was set as λ ∈ {10, 40}
and t = 0.5. The fuzzification parameter m,λ and t for QFCCMM was set as
m = {1.0001, 1.2},λ = 40 and t = 0.5.

For FCCMM with (λ, t) = (10, 0.5), after the only output of Algorithm1
from the PIP was judged as a saddle point at Step 3. of Algorithm 3, 76 tokens
were generated through Step 4. and Step 6. of Algorithm 3, all the outputs
of Algorithm 1 from these tokens were judged as locally or globally optimal
solutions at Step 3. of Algorithm 3, and Algorithm 3 terminated. Among 76
locally or globally optimal solutions,

10 points are strictly local optimum with ARI = 0.82, and 66 points achieve
the minimum objective function value with ARI = 1.0. This result is summa-
rized in Table 1 along with the other cases. These results show that the proposed
algorithm produce the globally optimal solution through multiple tokens gener-
ated from the PIP. However, many generated tokens are the same convergence
point. For example, in the case with FCCMM with (λ, t) = (10, 0.5), among
66 solutions with minimal objective function value, here exists only 1 distinct
one which means that the algorithm has redundancy. More efficient generating
tokens is a future work.
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Fig. 1. Artificial dataset

Table 1. Number of saddle points, tokens, and locally/globally optimal solutions along
with actual number obtained from Algorithm 3.

Method Fuzzification

parameter

Number

of saddle

points

Number

of tokens

Number of

strictly local

optimum

Number of

solutions with

minimal objective

function value

(Actual number)

ARI of the

solution minimal

objective

function value

m λ t

EFCCMM 10 0.5 1 76 10 66(1) 1.0

30 0.5 1 76 5 71(1) 1.0

40 0.5 1 76 6 70(1) 1.0

QFCCMM 1.2 40 0.5 1 76 10 66(1) 1.0

1.2 30 0.5 1 76 20 56(1) 1.0

1.0001 40 0.5 1 76 6 70(1) 1.0

1.0001 30 0.5 1 76 8 68(1) 1.0

5 Conclusion

In this work, we proposed an algorithm to address the local optimality problem
of FCCMM and QFCCMM. Numerical experiments using an artificial dataset
shows that the proposed algorithm is valid, though it has a redundancy.

In the future, through improving the proposed algorithm efficiently, the pro-
posed algorithms will be applied to a large number of real datasets. Furthermore,
the technique generating multiple tokens will be applied to clustering algorithms
for the other types of data, such as spherical data, e.g., in [8].
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with Cluster-Wise Covariance
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Abstract. In many fuzzy clustering algorithms, the KL-divergence-
regularized method based on the Gaussian mixture model, fuzzy classifi-
cation maximum likelihood, and a fuzzy mixture of Student’s-t distribu-
tions have been proposed for cluster-wise anisotropic data, whereas more
other types of fuzzification technique have been applied to fuzzy cluster-
ing for cluster-wise isotropic data. In this study, some fuzzy clustering
algorithms are proposed based on the combinations between four types of
fuzzification—namely, the Bezdek-type fuzzification, KL-divergence reg-
ularization, fuzzy classification maximum likelihood, and q-divergence-
basis—and two types of mixture model—namely, the Gaussian mixture
model and t-mixture model. Numerical experiments are conducted to
demonstrate the features of the proposed methods.

Keywords: Fuzzy clustering · Cluster-wise anisotropic data ·
t distribution · q-divergence

1 Introduction

Clustering is a technique for partitioning a set of objects into subsets, where
objects in the same cluster are more similar to other objects in other clusters.
Fuzzy c-Means (FCM) [1] is the most popular fuzzy clustering algorithm. To
differentiate this algorithm from other alternatives that have been proposed,
such as q-divergence-based FCM (QFCM), this algorithm is referred to as the
Bezdek-type FCM (BFCM) in this paper. Furthermore, a variable controlling
the cluster size was introduced into the BFCM, which is referred to as modified
BFCM (mBFCM) [2]. The QFCM objective function is obtained by introducing
a fuzzification parameter to the q-divergence that appears at the lower bound
of the q-log-likelihood of Gaussian mixture model (GMM) with the identity
covariance. Thus, the fuzzification is referred to as Q-type fuzzification in this
paper. It is noteworthy that the mBFCM objective function can be regarded as
diverging the fuzzification parameter of the QFCM objective function. Thus, the
fuzzification is referred to as B-type fuzzification in this paper.

One disadvantage of the above mentioned algorithms is that they tend to
produce isotropic spherical clusters. Consequently, if the cluster shapes are
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anisotropic, some objects that should be assigned to a cluster may be mis-
classified into another cluster. To overcome this issue, some approaches intro-
duce the Mahalanobis distance between objects to capture covariance structures
of clusters [3–6]. Yang [3] proposed the fuzzy classification maximum likeli-
hood (FCML) by replacing the membership in the Classification Maximum Like-
lihood (CML) of GMM with its power. This fuzzification is referred to as F-type
fuzzification in this paper, and the method in [3] is referred to as F-type fuzzi-
fied GMM (FFGMM). Ichihashi et al. [4] proposed the Kullback-Leibler (KL)
divergence-regularized FCM (KFCM) by introducing a fuzzification parameter
to the KL divergence appearing at the lower bound of the log-likelihood of GMM.
This fuzzification is referred to as KL-type fuzzification in this paper, and this
method is referred to as KL-type fuzzified GMM (KLFGMM). Furthermore, F-
type fuzzification was applied to the Student’s-t mixture models (TMM) [5,6],
where the t-distribution is considered as a Gaussian scale mixture model and
is evaluated using the expectation of the latent scale based on the EM algo-
rithm. This method is referred to as F-type fuzzified TMM using the EM algo-
rithm (FFTMM-EM). However, the above types of fuzzification are not always
applied to GMM or TMM. There is a potential to increase clustering accuracy
by combining fuzzification and the base distribution of mixture models.

In this study, we propose seven fuzzy clustering algorithms for classifying
data using the anisotropic covariance structures of clusters. The first two pro-
posed methods are referred to as the KL-type fuzzified TMM using the EM
algorithm (KLFTMM-EM) and the KL-type fuzzified TMM using the MM
algorithm (KLFTMM-MM), whose objective functions are constructed by KL-
divergence-regularization of a lower bound of TMM log-likelihood. This is sim-
ilar to the fact that the KLFGMM objective function is constructed by KL-
divergence-regularization of a lower bound of the GMM log-likelihood. Here,
for KLFTMM-EM, the t-distribution is considered as the Gaussian scale mix-
ture model and is evaluated using the expectation of the latent scale, whereas
for KLFTMM-MM, the t-distribution is evaluated using the hyperplane sup-
porting the logarithmic function in the framework of the MM algorithm. The
third proposed method is referred to as the F-type fuzzified TMM using the
MM algorithm (FFTMM-MM), which is an alternative of FFTMM-EM. The
FFTMM-EM [5,6] objective function is a realization of the FCML framework
with the t-distribution as the component, where the t-distribution is considered
as the Gaussian scale mixture model and is evaluated using the expectation of
the latent scale. In the FFTMM-MM, however, the t-distribution is evaluated
using the hyperplane supporting the logarithmic function in the framework of
the MM algorithm. The fourth and fifth proposed methods are referred to as Q-
type fuzzified GMM (QFGMM) and Q-type fuzzified TMM (QFTMM), respec-
tively, whose objective functions are constructed by q-divergence-regularizing a
lower bound of the q-log-likelihood for mixture models, where the component
distributions are the Gaussian and t-distribution for QFGMM and QFTMM,
respectively. This is similar to the fact that the QFCM objective function can
be regarded as q-divergence-regularizing a lower bound of the q-log-likelihood
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for GMM with the identity covariances. The sixth and seventh proposed meth-
ods are referred to as B-type fuzzified GMM (BFGMM) and B-type fuzzified
TMM (BFTMM), whose objective functions are constructed from the QFGMM
and QFTMM objective functions as λ approaches infinity. This is similar to the
fact that the mBFCM objective function can be regarded as diverging the fuzzi-
fication parameter λ of the QFCM objective function to infinity. The properties
of the proposed methods were analyzed using an artificial dataset along with
conventional methods.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
notations and conventional methods. The proposed methods are presented in
Sect. 3, and the numerical experiments are described in Sect. 4. Our concluding
remarks are made in Sect. 5.

2 Preliminaries

Let X = {xk ∈ R
M |k ∈ {1, ..., N}} be a dataset of M dimensional points.

The membership of xk to the i-th cluster is denoted by ui,k(i ∈ {1, ..., C}, k ∈
{1, ..., N}), and the set of ui,k is denoted by u, which satisfies the following
constraint:

C∑

i=1

ui,k = 1, ui,k ∈ [0, 1]. (1)

The cluster center set is denoted by v = {vi | vi ∈ R
M , i ∈ {1, ..., C}}. The

variable controlling the i-th cluster size is denoted by πi. The i-th element of
vector π is denoted by πi, and π satisfies the following constraint:

C∑

i=1

πi = 1, πi ∈ (0, 1). (2)

The methods mBFCM and QFCM are derived by solving the optimization prob-
lems,

minimize
u,v,π

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m||xk − vi||22, (3)

minimize
u,v,π

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m||xk − vi||22 +
λ−1

m − 1

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m,

(4)

respectively, subject to Eqs. (1) and (2), where m > 1 and λ > 0 are fuzzifica-
tion parameters. The QFCM objective function is a Q-type fuzzification, which
is obtained by introducing a fuzzification parameter to the q-divergence that
appears at the lower bound of the q-log-likelihood of GMM with the identity
covariances. The mBFCM objective function is a B-type fuzzification, which is
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obtained by diverging the fuzzification parameter of the QFCM objective func-
tion. It is noteworthy that mBFCM and QFCM cannot capture the covariance
structure of clusters because their basis is GMM with identity covariances. The
algorithms of mBFCM and QFCM are omitted.

The cluster-wise covariance is denoted by A = {Ai | Ai ∈ R
M×M , i ∈

{1, ..., C}}, and the degree of freedom is denoted by γ = {γi | γi ∈ R, i ∈
{1, ..., C}}. The KLFGMM (KFCM) [4], FFGMM (FCML) [3], and FFTMM-
EM (FSMM) [6] methods were derived by solving the optimization problems

minimize
u,v,π,A

C∑

i=1

N∑

k=1

ui,kd
(1)
i,k + λ−1

C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

πi

)
, (5)

minimize
u,v,π,A

C∑

i=1

N∑

k=1

(ui,k)md
(1)
i,k + λ−1

C∑

i=1

N∑

k=1

(ui,k)m ln
(

1
πi

)
, (6)

minimize
u,v,π,A,γ

C∑

i=1

N∑

k=1

(ui,k)md
(2)
i,k + λ−1

C∑

i=1

N∑

k=1

(ui,k)m ln
(

1
πi

)
, (7)

respectively, where δi,k, d
(1)
i,k , d

(2)
i,k , μ̂i,k, and μ̌i,k are

δi,k = (xk − vi)TA−1
i (xk − vi), (8)

d
(1)
i,k = δi,k + ln |Ai|, (9)

d
(2)
i,k = 2 ln Γ

(γi

2

)
− γi ln

(γi

2

)
− γi (μ̌i,k − μ̂i,k) + 2μ̌i,k

+ μ̂i,kδi,k + M ln(2π) + ln(|Ai|) − Mμ̌i,k, (10)

μ̂i,k =
γi + M

γi + δi,k
, (11)

μ̌i,k = ln(μ̂i,k) − ln
(

γi + M

2

)
+ �

(
γi + M

2

)
, (12)

and Γ (x) and �(x) are the Gamma and digamma function. The KLFGMM
objective function is a KL-type fuzzification, which is obtained by introducing a
fuzzification parameter to the KL divergence appearing at the lower bound of the
log-likelihood of the Gaussian mixture models. The FFGMM objective function
is an F-type fuzzification, which is obtained by replacing the membership in the
CML of the GMM with its power. The FFTMM-EM objective function is also
an F-type fuzzification, which is obtained by replacing the membership in the
CML of the TMM with its power. KLFGMM and FFGMM are based on GMM.
FFTMM-EM is based on TMM. The KLFGMM, FFGMM, and FFTMM-EM
algorithms are summarized as follows.
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Algorithm 1 (KLFGMM, FFGMM, FFTMM-EM)

1. Set the number of clusters C. Set the fuzzification parameter m for FFGMM
and FFTMM-EM. Set the fuzzification parameter λ for KLFGMM. Set the
initial cluster center v, initial variable controlling cluster size π, initial cluster-
wise covariate A, and initial degree of freedom γ.

2. Calculate μ̂i,k using Eq. (11), and μ̌i,k, as shown in Eq. (12) for FFTMM-EM
3. Calculate d using di,k = d

(1)
i,k for KLFGMM and FFGMM, and di,k = d

(2)
i,k for

FFTMM-EM.
4. Calculate u as

ui,k =
πi exp (−λdi,k)

∑C
j=1 πj exp (−λdj,k)

(13)

for KLFGMM, and

ui,k =

(
di,k − λ−1 ln πi

) 1
1−m

∑C
j=1 (dj,k − λ−1 ln πj)

1
1−m

(14)

for FFGMM and FFTMM-EM.
5. Calculate π using

πi =
∑N

k=1 ui,k

N
(15)

for KLFGMM, and

πi =
∑N

k=1(ui,k)m

∑C
j=1

∑N
k=1(uj,k)m

(16)

for FFGMM and FFTMM-EM.
6. Calculate v using

vi =
∑N

k=1 ui,kxk∑N
k=1 ui,k

(17)

for KLFGMM-EM,

vi =
∑N

k=1(ui,k)mxk∑N
k=1(ui,k)m

(18)

for FFGMM, and

vi =
∑N

k=1(ui,k)mμ̂i,kxk∑N
k=1(ui,k)mμ̂i,k

(19)

for FFTMM-EM.
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7. Obtain γ by solving the following equation

−�

(γi

2

)
+ ln

(γi

2

)
+ �

(
γi + M

2

)
− ln

(
γi + M

2

)
+ 1

+
1

∑N
k=1(ui,k)m

N∑

k=1

(ui,k)m (ln(μ̂i,k) − μ̂i,k) = 0 (20)

for FFTMM-EM.
8. Calculate A using

Ai =
∑N

k=1 ui,k(xk − vi)(xk − vi)T∑N
k=1 ui,k

(21)

for KLFGMM,

Ai =
∑N

k=1(ui,k)m(xk − vi)(xk − vi)T∑N
k=1(ui,k)m

(22)

for FFGMM, and

Ai =
∑N

k=1(ui,k)mμ̂i,k(xk − vi)(xk − vi)T∑N
k=1(ui,k)mμ̂i,k

(23)

for FFTMM-EM.
9. Check the limiting criterion for (u, v, π, γ,A). If the criterion is not satisfied,

then go to 2.

3 Proposed Methods

3.1 Concept

This study proposes clustering methods with cluster-wise covariance based on
the GMM or TMM.

The first two proposed methods are referred to as the KL-type fuzzified TMM
using the EM algorithm (KLFTMM-EM) and the KL-type fuzzified TMM using
the MM algorithm (KLFTMM-MM). Their objective functions are constructed
via KL-divergence-regularization of a lower bound of the TMM log-likelihood.
This is similar to the construction of the KLFGMM objective function via KL-
divergence-regularization of a lower bound of the GMM log-likelihood. Here, for
KLFTMM-EM, the t-distribution is considered as the Gaussian scale mixture
model and is evaluated using the expectation of the latent scale, whereas for
KLFTMM-MM, the t-distribution is evaluated using the hyperplane supporting
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the logarithmic function in the framework of the MM algorithm. The KLFTMM-
EM and KLFTMM-MM objective functions are therefore given as

minimize
u,v,π,A,γ

C∑

i=1

N∑

k=1

ui,kd
(2)
i,k + λ−1

C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

πi

)
, (24)

minimize
u,v,π,A,γ

C∑

i=1

N∑

k=1

ui,kd
(3)
i,k + λ−1

C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

πi

)
, (25)

respectively, where

d
(3)
i,k = −2 ln Γ

(
γi + M

2

)
+ 2 ln Γ

(γi

2

)
+ M ln (γiπ) + ln (|Ai|)

+ μ̂i,k (γi + δi,k) − (γi + M)
(

ln (γi) − ln
(

(γi + M)
μ̂i,k

)
+ 1

)
. (26)

The third proposed method is referred to as the F-type fuzzified TMM using the
MM algorithm (FFTMM-MM), which is an alternative to FFTMM-EM. The
FFTMM-EM objective function is a realization of the FCML framework with
the t-distribution as the component, where the t-distribution is considered as
the Gaussian scale mixture model and is evaluated using the expectation of the
latent scale, whereas, in FFTMM-MM, the t-distribution is evaluated using the
hyperplane supporting the logarithmic function in the framework of the MM
algorithm. The FFTMM-MM objective function is then given as

minimize
u,v,π,A,γ

C∑

i=1

N∑

k=1

(ui,k)md
(3)
i,k + λ−1

C∑

i=1

N∑

k=1

(ui,k)m ln
(

1
πi

)
. (27)

The fourth and fifth proposed methods are referred to as the Q-type fuzzi-
fied GMM (QFGMM) and the Q-type fuzzified TMM (QFTMM), respectively,
which are constructed by q-divergence-regularizing a lower bound of the q-log-
likelihood for mixture models, where the component distributions are the Gaus-
sian and t-distribution for QFGMM and QFTMM, respectively. This is similar to
the QFCM objective function constructed by q-divergence-regularizing a lower
bound of the q-log-likelihood for GMM with identity covariances. The QFGMM
and QFTMM objective functions are therefore given as

minimize
u,v,π,A

C∑

i=1

N∑

k=1

(πi)
1−m (ui,k)m

d
(4)
i,k +

λ−1

m − 1

C∑

i=1

N∑

k=1

(πi)
1−m (ui,k)m

, (28)

minimize
u,v,π,A,γ

C∑

i=1

N∑

k=1

(πi)
1−m (ui,k)m

d
(5)
i,k +

λ−1

m − 1

C∑

i=1

N∑

k=1

(πi)
1−m (ui,k)m

, (29)
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respectively, where

d
(4)
i,k =

1
m − 1

((
(2π)

M
2 |Ai| 1

2 exp
(

1
2
δi,k

))m−1

− 1

)
, (30)

d
(5)
i,k =

1
m − 1

⎛

⎜⎝

⎛

⎝ Γ
(

γi

2

) |Ai| 1
2

(πγi)
− M

2 Γ
(

γi+M
2

)
(

1 +
1
γi

δi,k

) γi+M

2

⎞

⎠
m−1

− 1

⎞

⎟⎠ . (31)

The sixth and seventh proposed methods are referred to as B-type fuzzified
GMM (BFGMM) and B-type fuzzified TMM (BFTMM) because their objective
functions are constructed from the QFGMM and QFTMM objective functions,
respectively, by making λ approach infinity. This is similar to the fact that the
mBFCM objective function is constructed by diverging the fuzzification param-
eter λ of the QFCM objective function to infinity. The BFGMM and BFTMM
objective functions are then given as

minimize
u,v,π,A

C∑

i=1

N∑

k=1

(πi)
1−m (ui,k)m

d
(4)
i,k , (32)

minimize
u,v,π,A,γ

C∑

i=1

N∑

k=1

(πi)
1−m (ui,k)m

d
(5)
i,k . (33)

3.2 Algorithm

The proposed clustering algorithms are obtained by solving the optimization
problems given in Eqs. (24), (25), (27), (28), (29), (32), and (33) subject to
the constraints in Eqs. (1) and (2), respectively. The analysis of the necessary
conditions of optimality, although the detail is omitted for brevity, is summarized
by the following algorithm:

Algorithm 2 (KLFTMM-EM, KLFTMM-MM, FFTMM-MM,
QFGMM, QFTMM, BFGMM, BFTMM)

1. Set the number of clusters C. Set the fuzzification parameter m for FFTMM-
MM, QFGMM, QFTMM, BFGMM, and BFTMM. Set the fuzzification
parameter λ for KLFTMM-EM, KLFTMM-MM, QFGMM, and QFTMM.
Set the initial cluster center v, initial variable controlling cluster size π, ini-
tial cluster-wise covariate A, and initial degree of freedom γ.

2. Calculate μ̂i,k using Eq. (11), and μ̌i,k as Eq. (12) for KLFTMM-EM,
KLFTMM-MM, FFTMM-MM, QFTMM, and BFTMM.

3. Calculate d as di,k = d
(2)
i,k for KLFTMM-EM, di,k = d

(3)
i,k for KLFTMM-MM

and FFTMM-MM, di,k = d
(4)
i,k for QFGMM and BFGMM, and di,k = d

(5)
i,k

QFTMM and BFTMM.
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4. Calculate u as

ui,k =
πi exp (−λdi,k)

∑C
j=1 πj exp (−λdj,k)

(34)

for KLFTMM-EM and KLFTMM-MM,

ui,k =

(
di,k − λ−1 ln πi

) 1
1−m

∑C
j=1 (dj,k − λ−1 ln πj)

1
1−m

(35)

for FFTMM-MM,

ui,k =
πi (1 − λ (1 − m) di,k)

1
1−m

∑C
j=1 πj (1 − λ (1 − m) dj,k)

1
1−m

(36)

for QFGMM and QFTMM, and

ui,k =
πi (di,k)

1
1−m

∑C
j=1 πj (dj,k)

1
1−m

(37)

for BFGMM and BFTMM.
5. Calculate π using

πi =
∑N

k=1 ui,k

N
(38)

for KLFTMM-EM and KLFTMM-MM,

πi =
∑N

k=1 (ui,k)m

∑C
j=1

∑N
k=1 (uj,k)m

(39)

for FFTMM-MM,

πi =

(∑N
k=1 (ui,k)m (1 − λ (1 − m) di,k)

) 1
m

∑C
j=1

(∑N
k=1 (uj,k)m (1 − λ (1 − m) dj,k)

) 1
m

(40)

for QFGMM and QFTMM, and

πi =

(∑N
k=1 (ui,k)m

di,k

) 1
m

∑C
j=1

(∑N
k=1 (uj,k)m

dj,k

) 1
m

(41)

for BFGMM and BFTMM.
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6. Calculate v using

vi =
∑N

k=1 ui,kμ̂i,kxk∑N
k=1 ui,kμ̂i,k

(42)

for KLFTMM-EM and KLFTMM-MM,

vi =
∑N

k=1(ui,k)mμ̂i,kxk∑N
k=1(ui,k)mμ̂i,k

(43)

for FFTMM-MM,

vi =
∑N

k=1(ui,k)m exp
(− 1

2δi,k (1 − m)
)
xk

∑N
k=1(ui,k)m exp

(− 1
2δi,k (1 − m)

) (44)

for QFGMM and BFGMM, and

vi =
∑N

k=1(ui,k)mŵi,kxk∑N
k=1(ui,k)mŵi,k

, (45)

ŵi,k =
γi + M

(γi + δi,k)1+
(1−m)(γi+M)

2

(46)

for QFTMM and BFTMM.
7. Obtain γ by solving the equation

−�

(γi

2

)
+ ln

(γi

2

)
+ �

(
γi + M

2

)
− ln

(
γi + M

2

)

+1 +
1

∑N
k=1 ui,k

N∑

k=1

ui,k (ln(μ̂i,k) − μ̂i,k) = 0 (47)

for KLFTMM-EM,

�

(
γi + M

2

)
− �

(γi

2

)
+ ln (γi) − ln (γi + M) + 1

+
1

∑N
k=1 ui,k

N∑

k=1

ui,k (ln (μ̂i,k) − μ̂i,k) = 0 (48)

for KLFTMM-MM,

�

(
γi + M

2

)
− �

(γi

2

)
+ ln (γi) − ln (γi + M) + 1

+
1

∑N
k=1 (ui,k)m

N∑

k=1

(ui,k)m (ln (μ̂i,k) − μ̂i,k) = 0 (49)
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for FFTMM-MM, and

ln
(γi

2

)
− �

(γi

2

)
+ 1

+
1

∑N
k=1 (ui,k)m

fi (xk)1−m

N∑

k=1

(ui,k)m
fi (xk)1−m (μ̌i,k − μ̂i,k) = 0, (50)

fi (xk) =

⎛

⎝
Γ

(
γi+M

2

)
|Ai|− 1

2

(πγi)
M
2 Γ

(
γi

2

)
(

1 +
1
γi

δi,k

)⎞

⎠ (51)

for QFTMM and BFTMM.
8. Calculate A using

Ai =
∑N

k=1 ui,kμ̂i,k(xk − vi)(xk − vi)T∑N
k=1 ui,k

(52)

for KLFTMM-EM and KLFTMM-MM,

Ai =
∑N

k=1 (ui,k)m
μ̂i,k(xk − vi)(xk − vi)T∑N
k=1 (ui,k)m

(53)

for FFTMM-MM,

Ai =
∑N

k=1(ui,k)m exp
(− 1

2δi,k (1 − m)
)
(xk − vi)(xk − vi)T

∑N
k=1(ui,k)m exp

(− 1
2δi,k (1 − m)

) (54)

for QFGMM and BFGMM, and

Ai =
∑N

k=1 (ui,k)m
ŵi,k(xk − vi)(xk − vi)T∑N

k=1 (ui,k)m
v̂i,k

, (55)

v̂i,k =
1

(γi + δi,k)
(1−m)(γi+M)

2

(56)

for QFTMM and BFTMM.
9. Check the limiting criterion for (u, v, π, γ,A). If the criterion is not satisfied,

then go to 2.

4 Numerical Experiments

This section provides an experiment based on an artificial dataset. We consider a
random sample consisting of 300 simulated points from a two-component bivari-
ate GMM, to which 150 noise points (outliers) were added from a uniform distri-
bution over the range [−10, 10] for each variable. The means of the mixture com-
ponent densities are v1 = (5.0, 5.0)T, v2 = (−5.0,−5.0)T, and their covariances
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are A1 =
(

2.0 −0.5
−0.5 0.5

)
, A2 =

(
1.0 0.5
0.5 0.1

)
, and their mixing proportions are π1 =

π2 = 0.5. The experimental results were evaluated using the sum of the absolute
deviances between the obtained values from each algorithm and the correspond-
ing correct values for mixing proportions, means of the mixture component den-
sities, and covariances of the mixture component densities; here, the smaller the
values, the higher the accuracy. The fuzzification parameters m and λ vary as
follows: m ∈ {1 + 10−3, 1 + 10−2, 1 + 10−1, 1.2, 1.25, 1.5, 2.0, 2.5, 5.0, 10.0, 100.0},
λ ∈ {10−3, 10−2, 10−1, 0.25, 0.5, 1.0, 1.25, 1.5, 2.0, 5.0, 10.0, 100.0}. In Table 1, we
provide a summary of the obtained results with the highest accuracy for each
method. As can be noticed, the methods based on TMM offer enhanced data
classification capabilities compared to those based on GMM. It is because t-
distribution is robust to outliers. Among the methods based on GMM, conven-
tional methods are more accurate than the proposed methods. All the proposed
methods based on TMM are more accurate than conventional methods with
FFTMM-MM being the most accurate on all methods. Its theoretical reason
will be investigated in future research (Fig. 1).
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Fig. 1. Artificial dataset

Table 1. Experimental results

KL-type F-type Q-type B-type

GMM 25.298 25.303 25.346 25.423

TMM EM 1.423 1.248 1.409 1.619

MM 1.404 1.238
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5 Conclusion

In this study, we proposed seven fuzzy clustering algorithms for classifying data
using the anisotropic covariance structures of clusters. The experimental results
showed that the methods based on TMM are more accurate than those based
on GMM; moreover, they are less sensitive to outliers. In future research, the
relation between each fuzzification type and its clustering accuracy will be inves-
tigated. Furthermore, real datasets will be applied to the proposed methods, and
the clustering accuracy will be compared with that of the conventional methods.
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Abstract. The common methods for dealing with classification prob-
lems include data-driven models and knowledge-driven models. Recently,
some methods were proposed to combine the data-driven model with the
knowledge-driven model to construct a hybrid model, which improves the
classification performance by complementing each other. However, most
of the existing methods just assume that the expert knowledge is known
in advance, and do not indicate how to obtain it. To this end, this paper
proposes a way to obtain knowledge from experts represented by rules
through active learning. Then, a hybrid rule-based classification model
is developed by integrating the knowledge-driven rule base and the rule
base learned from the training data using genetic algorithm. Experiments
based on real datasets demonstrate the superiority of the proposed clas-
sification model.

Keywords: Expert knowledge acquisition · Hybrid classification ·
Active learning

1 Introduction

According to the types of information used in the classification problem, classi-
fication models are mainly divided into knowledge-driven ones and data-driven
ones. The knowledge-driven classification models rely on experts with certain
professional knowledge who understand a specific field. The most common exam-
ple is the expert system. For example, in [18], the authors develop an expert
system for knee problems diagnosis, and in [1], an expert system is designed
to provide appropriate solutions for human gingival problems. The knowledge-
driven model provides a comprehensible way to understand the classification
process. However, because the representation of knowledge in the classification
model is fixed, it has poor characterization for the specifics of the data distribu-
tion and the dynamics of system behavior. The data-driven classification models
learn classifiers from the available training data directly. Common data-driven
classification models include support vector machines [13], k nearest neighbors
[8], artificial neural networks [21] and fuzzy rule-based systems [20], etc. The
c© Springer Nature Switzerland AG 2022
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training data trends to provide a relatively fine estimates for the real class-
conditional distributions, but they may be unreliable in some specific regions of
feature space, due to limited training patterns and the potential measurement
noise.

In order to inherit the advantages of data-driven and knowledge-driven mod-
els, some scholars have proposed to integrate them to solve the classification
problem [14]. According to how to combine expert knowledge and data, these
hybrid models can be divided into the following three categories:

– The experts first gives an initial model, and then the parameters of the model
are optimized by the data. In [5], Bayesian networks are first constructed by
experts, and then some parameters in the networks are learned from the data.
In [19], the expert knowledge is first transformed into the form of rules, and
then the fuzzy membership functions are learned from the data. In [22], the
if-then rule base is first constructed by experts, and then the modification
of rule parameters is determined by the data. In [9], fuzzy partition is first
designed by experts to ensure high interpretability, and then data is used to
update system parameters.

– The experts give corresponding suggestions on the models learned from the
data. In [23], expert knowledge is transformed into the corresponding con-
straints, under which the model is learned from the data. In [6], expert knowl-
edge is introduced when data is scarce by being asked to determine whether
to revise the boundaries of the data-driven network or not. In [16], a method
for human pose classification is proposed first to learn the decision tree from
the data and then to prune the decision tree by experts.

– The expert knowledge and data information are transformed into the same
model for fusion. In [10], the form of fuzzy rules is taken as a common model
to characterize the two types of information. In fuzzy partition level, expert
knowledge and data are first fused, and then the second fusion is carried out
at the rule level. In [3], the model proposed in [10] was improved on the whole
and verified on UCI data. In [2] and [4], an overall summary of the previous
work is made and some improvement measures are put forward. In [15], a
hybrid intelligent system for medical diagnosis is proposed. First, it learns
incremental neural networks from data, and then transforms the network into
rules. If expert knowledge is available, it allows expert knowledge to modify
the rules, and then maps rules back to the network, and finally merges the
rules at the decision-making layer. In [12], the method of evidential reasoning
is adopted and the expert rule base and data rule base are integrated under
the belief function framework.

In the above papers, some feasible schemes to solve classification problems
by combining expert knowledge with data have been proposed. However, in the
existing methods, all of them assume that the hybrid classification is carried out
under the condition that the expert knowledge already exists, and do not point
out how to obtain it. In fact, when dealing with classification problems, peo-
ple often make decisions based on their subconscious mind, so it is not easy to
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express and model human knowledge. To solve this problem, an expert knowl-
edge acquisition method based on active learning is proposed in this paper.
Through active learning, unlabeled samples that contribute most to the current
model are selected, and these samples are given to experts to mark, which are
further transformed into rules. In this way, the acquired expert knowledge can
well complement the initial training data. On this basis, a Hybrid rule-based
Classification model by Integrating Expert knowledge and Data (HCIED) is
proposed to improve the classification performance. The learned expert rule base
is combined with the rule base learned from training data by genetic algorithm,
which selects the most important rules for classification.

The remaining paper will be arranged as follows. Section 2 describes details of
the proposed hybrid rule-based classification model by integrating expert knowl-
edge and data. The experiments is carried out in Sect. 3, and the paper is sum-
marized in Sect. 4.

2 HCIED: Hybrid Rule-Based Classification
by Integrating Expert Knowledge and Data

The original data

Unlabeled data

Train
network

Convert the
network
into rules

Parameters

Active learning 
strategy is adopted to 

select the most 
uncertain samples

Experts annotate 
unlabeled data and 

transform them
into rules

Genetic algorithm is used 
to fuse rule base

Labeled data
Unlabeled data

Learn from the data
Learn  from the expertsInitial

expert rule 
base

Generate
unlabeled

data

Data rule 
base

Expert
rule base

Fig. 1. The structure of the proposed HCIED model

The structure of the proposed HCIED model is shown in Fig. 1. It can be seen
that the proposed hybrid classification model is composed of three modules:
learning rule base from data (top-left part), learning rule base from experts
(bottom-left part), and combining them through genetic algorithm (right part).
The process of each module is described in detail as follows. First, learn a network
model from the data and record the parameters of the network, and then convert
the network into rules. After the conversion is completed, the rules with the
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highest confidence in each category are selected from the rule base to form the
initial expert rule base. At the same time, a group of the unlabeled samples
are generated from the initial data, and those samples that minimize the overall
information entropy are selected and handed over to experts for annotation. The
rule base are updated accordingly with the annotations of experts. When the
expert rule base and the data-driven rule base are all learned, genetic algorithm
is used to fuse these two rule bases by selecting the antecedent attribute of the
rule and selecting the rule itself at the same time.

2.1 Rule Base Learning from the Data

As reviewed in the introduction, there are several proposals for rule base learning
from the data in literatures. Here, we adopt the two-step rule extraction strategy
in [15] for its well performance. First, a classification network is learned from
data, which can be regarded as the process of extracting information from data.
Once the network is ready, it is then converted into the form of rules. In the
following part, we summarize the main processes of these two steps.

The classification network learning process is carried out as follows. At the
beginning, the first training sample is read in to construct the first node, the
mean value of the Gaussian membership function associated with this node is
set as the attribute value of the first sample, and the standard deviation of the
Gaussian membership function is set as the initial value. The parameters of the
first node and the label of the first sample are stored in matrices Wp and Wt,
respectively. Then, the next training sample is read in and its distance to the
learned node is measured. If the current training sample is considered to belong
to a certain node, the parameters of this node are updated, and if the current
training sample is different from the existing node, a new node is constructed
using it. All training samples perform this process until the end of training.

When all the nodes of the network have been learned, the network will be
transformed into the form of rules. On the one hand, the form of rules has a
good interpretability. On the other hand, the knowledge of experts is generally
presented in the form of rules. The form of the rules can make it easy for experts
to understand and facilitate the integration of the rules afterwards.

In network learning, the main parameters include the mean matrix Wp, the
label matrix Wt, the standard deviation matrix, and the number of samples
contained in each node. In the process of transforming network into rules, the
number of linguistic variables is first set, for example, using three linguistic vari-
ables: small, medium, and large. Then, the maximum and minimum values of
each attribute in the matrix Wp are selected, based on which the fuzzy parti-
tion of each attribute are designed (this fuzzy partition will be used again when
acquiring expert knowledge). After the fuzzy partition is obtained, each attribute
value in the matrix Wp is converted into the corresponding rule antecedent vari-
ables. The conclusion of the rule is the value stored in the matrix Wt, and the
weight of the rule is calculated by the number of samples contained in the node.
In this way, each node in the network will be converted into a rule.
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2.2 Knowledge Acquiring from Experts with Active Learning

In many learning tasks, one of the biggest challenges is to obtain enough labeled
data for modeling. However, the acquisition of labeled data is expensive and
usually requires a lot of human resources. In many fields, unlabeled data is easy
to obtain. For these unlabeled samples, their contributions to the classification
model are different. The principle of the active learning strategy is to select the
sample that contributes the most to the classification model for labeling [11].
In this paper, we design a way to obtain knowledge from experts using active
learning strategy. The main idea is that to find out those unlabeled samples that
minimize the overall information entropy of the current classification model, and
then give this sample to experts for labeling. These labeled samples are used to
construct the knowledge rule base, which will be further combined with the rule
base learned from the initial training sample. The generated knowledge rule base
is considered to compensate for the weakness of the data-driven model effectively.
In the following part, we will outline the main steps of the proposed method for
acquiring knowledge from experts.

Step 1: Calculate the mean and standard deviation of each attribute for each
class of training samples, and generate NU unlabeled samples (100 as default
value) for each class using Gaussian distribution with the corresponding mean
and standard deviation.

Step 2: From the data-driven rule base, the rules with the highest confidence
in each category are selected to form the initial expert rule base.

Step 3: The expert rule base is used to predict the labels of all unlabeled
samples, and the pseudo labels of the current unlabeled samples are obtained
as

y∗
i = arg max

y
P (y | xi, R) , i = 1, 2, . . . , NU , (1)

where xi is an unlabeled samples and R represents the current expert rule
base.

Step 4: Each pseudo-labeled sample is used to train a rule, which is then added
to the current expert rule base in turn to get a temporary expert rule base
Ri as

Ri = R ∪ ri, i = 1, 2, . . . , NU , (2)

where R represents the current expert rule base and ri represents the rule
learned from the pseudo-labeled sample xi.

Step 5: Each temporary expert rule base Ri is used to measure the information
entropy of the remaining pseudo-labeled samples as

H (Y | xj , Ri) = −
∑

y∈Y

P (y | xj , Ri) logP (y | xj , Ri) ,

j = 1, 2, . . . , NU , j �= i, and i = 1, 2, . . . , NU , (3)

where Y is the set of class labels.
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Step 6: Calculate the sum of the information entropy associated with each
temporary expert rule base Ri, and select the sample xi that minimizes the
overall information entropy as

i∗ = arg min
i

∑

j

H(Y | xj , Ri),

j = 1, 2, . . . , NU , j �= i, and i = 1, 2, . . . , NU . (4)

Step 7: The selected sample xi∗ is given to experts to label, and the obtained
real label is compared with the pseudo label. If the pseudo label is the same
as the real label, the expert rule base will be updated as Ri∗ . If the real label
is different from the pseudo label, then learn a rule from the expert-labeled
sample and add it to the expert rule base. Besides, it is also needed to search
for the most uncertain sample under the updated expert rule base for expert
querying, and add the corresponding learned rule to the expert rule base.

Step 8: Execute Step 3 to Step 8 iteratively to get the updated expert rule
base until a number of βNU samples (the dafault value of β is set as 0.2) are
labeled by experts.

Step 9: Remove the initial rules from the updated rule base to get the final
expert rule base.

Using this expert knowledge extraction strategy, those samples in the
attribute space uncovered by training samples have priorities to be labeled by
experts. Therefore, it is possible to obtain expert knowledge that is most com-
plementary to the current data-driven model. In next section, we will develop a
hybrid model which provides complementary features from both the data-driven
rule base and expert rule base.

2.3 Fusion of Rule Bases with Genetic Algorithm

After the knowledge acquiring procedure, an expert rule base different from the
data rule base is obtained. During the integration of two rule bases from different
sources, there may be rule conflicts and rule redundancy. Genetic algorithm is
a random search strategy designed for optimization problems. Thus, genetic
algorithm is able to solve problems that may arise during the integration of rule
bases. Through binary encoding, the antecedent attribute of the rule and the
rule itself are selected at the same time. In this way, the legibility of the rules
can be increased, and the size of the rule base can be reduced at the same time.
An illustration of the fusion process with genetic algorithm is shown in Example
1.

Example 1. Let Rh =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 2 1, 2
2 3 2, 3
2 2 3, 1
2 3 1, 3
2 2 1, 2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

represents a hybrid rule base containing 5

rules with 3 categories determined by 3 attributes. Using three linguistic labels



210 L. Jiao et al.

{1 : small, 2 : medium, 3 : large} on each attribute. It is assumed that the first
3 rules are learned from data, and the last 2 rules are learned from experts. The
first three columns represent the antecedent of the rule, and the last column
represents the consequent of the rule. The first line of Rh indicates the rule “If
Att1 is small and Att2 is medium and Att3 is small, Then class 2”. Then this
rule base is encoded. Take the first rule as an example again. Suppose its coding
form is {1, 1, 1, 1}, and then the first three “1” represent that all three attributes
of the rule are selected, and the last “1” represents that this rule is selected (If
this is 0, it means that the rule is not selected). After the rule in Rh are fused by

genetic algorithm, the code of the fused rule base is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1 1 1
0 0 0 0
0 0 1 1
1 1 0 1
0 0 0 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. Decode it, and

the fused rule base will be obtained as R
′
h =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 2 1, 2
0 0 0, 0
0 0 3, 1
2 3 0, 3
0 0 0, 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. It can be seen from

the rule base that only two rules learned from the data are retained, and one
rule learned from experts is retained. In addition, the legibility of the rule base
is improved by reducing unimportant attributes.

After the rule base is fused and optimized by genetic algorithm, multiple rule
bases with different performances on the training set will be obtained. Note that
some rule bases that perform well on the training set may perform poorly on
the test set, while some rule bases that perform poorly on the training set may
perform well on the test set. Therefore, multiple rule bases are used for fusion at
the decision level, in which the weight of each rule base is set as the classification
accuracy of each rule base in the training set.

3 Experiments

The experiment in this paper is divided into two parts: first, the model before
fusion is compared with the model after fusion; second, the model in this paper
is compared with other methods. The experiment used 5-fold cross validation.
The main characteristics of the data sets are summarized in Table 1.

3.1 Comparison Before and After Fusion

This section will show a comparison experiment between the fusion model and
the model before fusion. The specific parameter settings in the experiment are as
follows: the initial standard deviation is set to 5, the population size and number
of iterations of the genetic algorithm are set to 200, the crossover probability is
0.8, and the mutation probability is 0.01 (parameter settings refer to [15]).
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Table 1. Statistics of the benchmark data sets used in the experiment

Dataset #instances #classes #attributes

Wine 178 3 13

Ionosphere 351 2 34

New-thyroid 215 3 5

Sonar 208 2 60

Car 406 4 6

Iris 150 3 4

Wisconsin 699 2 9

Figure 2 shows the performance of the hybrid model on the training set
and the test set after fusing multiple rule bases for different data sets. The x-
axis represents the number of fused rule bases. Lines trH and teH represent the
performance of the hybrid model on the training set and test set, respectively.
Lines trD and teD represent the performance of the data-driven model on the
training set and test set. Lines trE and teE indicate the performance of the
expert-driven model on the training set and test set.

It can be seen from the results that the performance of the proposed hybrid
model performs better than both of the data-driven model and the expert-driven
model. In addition when multiple rule bases are fused, the performance of the
hybrid model on the test set is basically the same as that on the training set,
so the optimal number of fusions can be determined by the performance on
the training set. In most cases, the best performance can be obtained by fusing
a number of rule bases less than six. It should be noted that since the expert
knowledge obtained in this paper is for the sample with the greatest contribution
to the current model, the classification effect of these expert rules is not good
for the entire sample, and its advantages can only be exerted after fusion.

3.2 Compared with Other Methods

In this section, the classification accuracy of the proposed HCIED is compared
with HIS [15] (a representative hybrid classification model), CHI [7] (a classical
fuzzy rule-based model) and C4.5 [17] (a classical decision tree model).

In Table 2, the algorithm with the highest classification accuracy for each
data set is marked in bold. It can be seen from the table that the model pro-
posed in this paper performs better than other methods in most cases. In the
case that the training set does not cover all possible situations, the acquired
expert knowledge can well complement the initial training set, and so HCIED
performs best in this case. When the coverage of the training set itself is com-
plete, HCIED may be slightly inferior to some data-driven models, for example,
it performs poorly on cars data sets and ionosphere data sets than C4.5. How-
ever, in most practical application scenarios, the training set cannot cover all
possible situations, so it is a wise choice to introduce expert knowledge.
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Fig. 2. Performance on different data sets
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Table 2. The accuracy of each method on the test set

Iris Wine Ionosphere Wisconsin New-thyroid Sonar Cars

Data-driven model 90.66 78.68 69.97 95.99 87.90 68.81 70.23

Knowledge-driven model 83.11 74.42 75.41 93.60 82.58 59.33 52.58

HCIED 96.22 92.83 82.53 96.42 93.64 74.91 73.06

HIS 94.26 88.5 80.98 90.38 91.72 72.65 74.87

CHI 92.27 92.77 66.4 90.2 84.18 74.61 68.97

C4.5 94.25 91.22 88.72 94.51 92.09 72.09 82.15

4 Conclusions

In this paper, a hybrid rule-based classification model by integrating expert
knowledge and data is proposed to overcome the inability to obtain expert
knowledge in traditional fusion methods. The main contribution of this paper is
to propose a method to acquire expert knowledge, which is not found in other
hybrid classification models. Secondly, this paper proposes a method to fuse two
rule bases using genetic algorithm, and fuse them at the rule layer and decision
layer, respectively. The experiment based on real data sets have shown that the
proposed model is competitive compared with the classical methods, especially
when the training set cannot completely cover all possible situations. In practi-
cal application, the training set usually cannot cover all situations completely,
so this also reflects the research value of this paper. For the future work, in order
to make the participation of experts more efficient, experts will be directly asked
to label the most needed rule premises rather than single data samples, which
will greatly reduce the workload of expert labeling and improve the performance
of the model.
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Abstract. Fuzzy co-clustering is a technique for extracting co-clusters
of mutually familiar pairs of objects and items from co-occurrence infor-
mation among them, and has been utilized in document analysis on
document-keyword relations and market analysis on purchase prefer-
ences of customers with products. Recently, multi-view data cluster-
ing attracts much attentions with the goal of revealing the intrinsic
features among multi-source data stored over different organizations.
In this paper, three-mode document data analysis is considered under
multi-view analysis of document-keyword relations in conjunction with
semantic information among keywords, where the results of two different
approaches are compared. Fuzzy Bag-of-Words (Fuzzy BoW) introduces
semantic information among keywords such that co-occurrence degrees
are counted supported by fuzzy mapping of semantically similar key-
words. On the other hand, three-mode fuzzy co-clustering simultaneously
considers the cluster-wise aggregation degree among documents, key-
words and semantic similarities. Numerical results with a Japanese novel
document demonstrate the different features of these two approaches.

Keywords: Fuzzy co-clustering · Fuzzy Bag-of-Words · Semantic
similarity

1 Introduction

Fuzzy co-clustering is a technique for extracting co-clusters of mutually familiar
pairs of objects and items from co-occurrence information among them, and has
been utilized in document analysis on document-keyword relations and market
analysis on purchase preferences of customers with products. Fuzzy clustering for
categorical multivariate data (FCCM) [1] and fuzzy co-clustering for document
and keywords (Fuzzy CoDoK) [2] performed fuzzy c-means (FCM)-type cluster-
ing [3,4] with the aggregation measure of object and item memberships. Fuzzy
co-clustering induced by multinomial mixture models (FCCMM) [5] improved
the applicability of FCCM by introducing a modified log-likelihood-type measure
of multinomial mixture models (MMMs), which is more useful in real applica-
tions with a statistical guideline for fuzziness tuning.
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Recently, multi-view data clustering [6] attracts much attentions with the
goal of revealing the intrinsic features among multi-source data stored over differ-
ent organizations. Besides k-means-type multi-view clustering, several models for
multi-view co-clustering has been proposed [7,8], where multiple co-occurrence
information matrices are jointly utilized.

In this paper, three-mode document data analysis is considered under multi-
view analysis of document-keyword relations in conjunction with semantic infor-
mation among keywords, where the results of two different approaches are com-
pared. Bag-of-Words (BoW) [9] is a basic approach for transforming unstruc-
tured document data into multi-dimensional numerical features by counting
appearances of each keyword. However, each document usually uses only a small
portion of many keywords and BoW matrices are often very sparse. Fuzzy Bag-
of-Words (Fuzzy BoW) [10] improves such sparse BoW matrices by imputing
their elements under consideration of semantic similarities among keywords.
For example, semantic information among keywords are introduced such that
co-occurrence degrees are counted supported by fuzzy mapping of semantically
similar keywords. By applying fuzzy co-clustering to fuzzy BoW matrices, we can
expect that document-keyword co-clusters are extracted under consideration of
the additional semantic information.

Three-mode fuzzy co-clustering is another type of multi-view co-clustering,
where co-occurrences among three-mode elements are jointly analyzed by cal-
culating three-types of fuzzy memberships. Besides FCM-type models [11], a
probabilistic concept-induced model [12] was demonstrated to be efficient in
parameter tuning supported by a statistical guideline. If we regard document ×
keyword co-occurrence and semantic similarity among keywords as three-mode
data of document × keyword × keyword, we can simultaneously consider the
cluster-wise aggregation degree among documents, keywords and semantic sim-
ilarities.

In this paper, the above two approaches are empirically compared under the
context of document × keyword relational analysis utilizing semantic informa-
tion. Numerical results with a Japanese novel document demonstrate the dif-
ferent features of these two approaches. The remaining parts of this paper are
organized as follows: Sect. 2 briefly reviews fuzzy co-clustering, fuzzy BoW and
three-mode fuzzy co-clustering. The experimental result is presented in Sect. 3
and the summary conclusion is given in Sect. 4.

2 Fuzzy Co-clustering, Fuzzy BoW and Three-Mode
Fuzzy Co-clustering

2.1 Fuzzy Co-clustering

Assume that we have n × m co-occurrence information data matrix R = {rij}
among n documents and m keywords, where rij can be the count of appearance
of keyword j in document i based on the BoW concept [9] or its extension to the
term frequency-inverse document frequency (TF-IDF) weight [13]. The goal of
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fuzzy co-clustering is to simultaneously partition documents and keywords into
C co-clusters of familiar pairs by estimating two types of fuzzy memberships of
uci for document i and wcj for keyword j in cluster c.

In FCCMM [5], uci is identified with the probability of i belonging to model c

such that
∑C

c=1 uci = 1 while wcj is the probability of j appearing in each model
c such that

∑m
j=1 wcj = 1. By introducing the adjustable weight λu for fuzziness

degree of document partition, FCCMM extended the conventional MMMs into
a fuzzy co-clustering with the following objective function to be maximized:

Jfccmm =
C∑

c=1

n∑

i=1

m∑

j=1

ucirij log wcj

+λu

C∑

c=1

n∑

i=1

uci log
αc

uci
, (1)

where αc represents the volume of cluster c such that
∑C

c=1 αc = 1. When λu = 1,
the objective function is reduced to the pseudo-log-likelihood to be maximized
in MMMs. Document partition becomes fuzzier than MMMs with λu > 1 while
crisper with λu < 1. That is, if a decision maker wants to make cluster boundaries
clearer, he/she can choose λu < 1 while λu > 1 can be alternatively selected if
he/she prefers smooth boundaries for avoiding noise influences. Starting from
random initialization, the FCCMM algorithm iterates two phases of document
partitioning uci and keyword probability estimation wcj until convergence.

Unfortunately, in general document analysis tasks, the BoW matrix R can
be very sparse because each document includes only a small portion of all key-
words and most elements rij are remained rij = 0. Then, we often fail to derive
satisfactory results by suffering from data sparseness.

In the following parts of this paper, two approaches for enriching the doc-
ument clustering are considered by utilizing additional semantic information
among keywords. That is, it is also assumed that we have additional m × m
semantic information matrix S = {sjk} among m keywords, where sjk repre-
sents the similarity degree among two keywords j and k. This type of semantic
information can be constructed by utilizing such word embedding techniques as
word2vec [14], which constructs a neural network model to learn word associa-
tions from a text corpus.

2.2 Fuzzy BoW

Fuzzy BoW [10] is a technique for enriching a sparse BoW matrix by utilizing
fuzzy mapping of semantically similar keywords in counting the appearance of
each keyword.

Assume that Ati(w) is a mapping function and the frequency of a basis
keyword ti is calculated by summing up Ati(w) for all words w in a sentence.
Usually, the BoW model adopts the frequency of each representative keyword
by counting the number of exact word matching by employing the following
membership function:



A Comparative Study on Utilization of Semantic Information 219

Ati(w) =
{

1, if w is ti
0, otherwise (2)

Then, each keyword occurrence can activate only a single keyword frequency
and causes a very sparse nature in the BoW matrix.

On the other hand, the FBoW model adopts semantic matching or fuzzy
mapping to project the words occurred in documents to the basis keywords.
To implement semantic matching, a fuzzy membership function is considered as
follows:

Ati(w) =
{

cos(W [ti],W [w]), if cos(W [ti],W [w]) > γ
0, otherwise (3)

where W [w] denote word embeddings for word w such that they represent mutual
semantic similarities among words. γ is a parameter for thresholding the cosine
similarity among keywords. In [10], γ was set as γ = 0 and word2vec [14] was
adopted in word embeddings. In this paper, we consider to thresholding the
influences of semantically similar words by setting γ > 0 because γ = 0 can
cause inappropriate influences of unfamiliar words with small cos(W [ti],W [w]).

Here, the fuzzy membership function of Eq. (3) can be used for constructing
the m × m semantic information matrix S = {sjk} such that sjk = Atj (wk).
Then, the numerical vector representation z of a document under fuzzy BoW
model is given by

z = xS, (4)

where x is a vector composed of the number of occurrence of words, whose
dimension is equivalent to the number of the basis keywords.

By applying the fuzzy co-clustering algorithm to Fuzzy BoW matrices, we can
expect to extract fuzzy co-clusters of documents and keywords by considering not
only the direct appearance of keywords in each document but also the intrinsic
semantic connection with potential keywords, which are not appeared in the
document.

2.3 Three-Mode Fuzzy Co-clustering

When we have a three-mode co-occurrence information among three elements,
their intrinsic co-cluster structures can be extracted by three-mode fuzzy co-
clustering [11], where mutual connection among the three elements were assumed
to be jointly represented by two different types of co-occurrence information
matrices. In this paper, the goal of document clustering is to extract co-clusters
of familiar document-keyword pairs by considering not only the direct co-
occurrence information of R = {rij} but also the intrinsic semantic information
matrix S = {sjk} such that each intra-cluster document i has not only direct
connection rij with keyword j but also intrinsic connection rij ·sjk with keyword
k.

Three-mode fuzzy co-clustering for categorical multidimensional data based
on probabilistic concept (3FCCMP) [12] is a three-mode fuzzy co-clustering
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model, which improved the parameter tuning cost under the support of a sta-
tistical concept. 3FCCMP tries to estimate three types of fuzzy memberships
by combining two multinomial distributions. The first two memberships of uci

and wcj are designed to have similar roles to those of FCCMM such that uci

and wcj represent the degree of belongingness of document i and keyword j to
cluster c, respectively. On the other hand, the third membership zck is designed
to represent the degree of belongingness of the third element k, which is to be
estimated by considering virtual co-occurrence degree among documents and the
third element buried in the matrix product R × S. When the dimension of the
third element is p, zck has a similar constraint with wcj as

∑p
k=1 zck = 1.

In this paper, the intrinsic semantic information matrix S = {sjk} is iden-
tified with the co-occurrence degree among the second and third elements such
that sjk represents the similarity degree among direct keyword j and intrinsic
keyword k. Then, the dimension of the third element is the same with that of
the second one as p = m. The objective function to be maximized is given as:

J3fccmp =
C∑

c=1

n∑

i=1

m∑

j=1

m∑

k=1

ucirij log
(
(wcj)1/m(zck)sjk

)

+λu

C∑

c=1

n∑

i=1

uci log
αc

uci
, (5)

where αc represents the volume of cluster c such that
∑C

c=1 αc = 1. The
adjustable weight λu has a similar role to that of FCCMM for fuzziness degree
of document partition such that a larger λu implies a fuzzier object partition.

Starting from random initialization, the 3FCCMP algorithm iterates four
phases of document partitioning uci, cluster volume calculation αc, direct key-
word probability estimation wcj and intrinsic keyword probability estimation zck
until convergence.

3 Numerical Experiment

3.1 Data Set

The data set used in [5,15] was constructed from the text document of a Japanese
novel “Kokoro” written by Soseki Natsume, which can be downloaded from
Aozora Bunko (http://www.aozora.gr.jp).1 The novel is composed of 3 chapters,
each of which includes 36, 18, 56 sections, respectively. In this experiment, the
goal is to partition the 110 documents drawn from each section (n = 110) into C
document clusters, where the co-occurrence frequencies with 83 most frequently
used substantives and verbs (the number of keywords is m = 83) were used for
constructing a 110× 83 co-occurrence matrix R. Its elements were preprocessed
1 English translation is also available in Eldritch Press (http://www.ibiblio.org/

eldritch/).

http://www.aozora.gr.jp
http://www.ibiblio.org/eldritch/
http://www.ibiblio.org/eldritch/
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Fig. 1. 83 × 83 semantic information matrix S.

into their normalized TF-IDF weights [13] such that each of column elements
has unit-variance and zero-minimum.

Additionally, the second semantic information matrix among the 83 key-
words were constructed by utilizing the word embedding vectors estimated
by word2vec [14]. In this experiment, the public word embedding vectors of
Wikipedia Entity Vectors [16] was used, which were trained with skip-gram
algorithm using Japanese Wikipedia texts as the corpus. In order to empha-
size the mutual similarity among the 83 keywords, their embedding vectors were
preprocessed to have zero-mean. By using the 100 dimensional embedding vec-
tors drawn from jawiki.word vectors.100d.txt [17], the fuzzy membership
function of Eq. (3) was adopted for constructing the 83 × 83 semantic informa-
tion matrix S = {sjk} such that sjk = Atj (wk) with γ = 0.5. Figure 1 depicts
the matrix S in grayscale presentation such that black and white cells indicates
sjk = 1 and sjk = 0, respectively.

The goal of fuzzy co-clustering is to partition the 110 text documents into C
co-clusters for revealing the original chapter structure withholding the chapter
information of each document in conjunction with selecting chapter-wise typical
keywords from 83 candidates.

3.2 Results of Document Clustering

In this section, the experimental results given by the two multi-view co-clustering
approaches, i.e., FCCMM with Fuzzy BoW and 3FCCMP, are compared with
the result of FCCMM, which were reported in Ref. [5] under the conventional
two-mode fuzzy co-clustering context with co-occurrence matrix R only. The
fuzzification penalty was set as λu = 1.0 in all algorithms, which implies that
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Table 1. Contingency tables given by FCCMM, FCCMM with Fuzzy BoW and
3FCCMP with C = 3 and λu = 1.0.

Cluster FCCMM Fuzzy BoW 3FCCMP

1 2 3 1 2 3 1 2 3

Chapter 1 25 11 0 30 5 1 31 5 0

2 0 18 0 0 18 0 0 18 0

3 17 1 38 14 9 33 14 6 36

Table 2. Extracted keywords by FCCMM and its modification with Fuzzy BoW:
cluster-wise typical keywords having top 10 largest memberships, where English trans-
lations are given in ( ).

Rank FCCMM Fuzzy BoW

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

1 私 する 私 これ できる できる

(I) (do) (I) (this) (can) (can)

2 する それ する ある それ それ

(do) (it) (do) (be) (it) (it)

3 なる なる なる それ これ ある

(become) (become) (become) (it) (this) (be)

4 それ 父 それ する する 向う

(it) (father) (it) (do) (do) (go)

5 ある いう 思う いる ある これ

(be) (say) (think) (be) (be) (this)

6 思う 思う ある なる いる する

(think) (think) (be) (become) (be) (do)

7 いう 私 見る できる なる いる

(say) (I) (see) (can) (become) (be)

8 いる 聞く K 私 叔父 自分

(be) (listen) (a name) (I) (uncle) (myself)

9 人 ある いう あなた 位置 なる

(person) (be) (say) (you) (location) (become)

10 先生 いる お嬢さん いう 思う 私

(master) (be) (lady) (say) (think) (I)

they correspond to their probabilistic counterparts. By the way, for avoiding
overflow in membership calculation, 3FCCMP was implemented with a degraded
version of S matrix by dividing each element sjk by 2.

For comparing the characteristics of keyword typicalities among the three
algorithms, the clustering results of two multi-view models were selected so as
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Table 3. Extracted keywords by 3FCCMP: cluster-wise typical direct keywords and
intrinsic keywords having top 10 largest memberships, where English translations are
given in ( ).

Rank Direct keywords Intrinsic keywords

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

1 私 する 私 する する する

(I) (do) (I) (do) (do) (do)

2 それ それ する これ これ これ

(it) (it) (do) (this) (this) (this)

3 する 思う なる ある ある ある

(do) (think) (become) (be) (be) (be)

4 なる 父 それ なる なる なる

(become) (father) (it) (become) (become) (become)

5 先生 私 ある いる いる いる

(master) (I) (be) (be) (be) (be)

6 ある なる 思う それ 父 それ

(be) (become) (think) (it) (father) (it)

7 いう 母 自分 私 叔父 私

(say) (mother) (I) (I) (uncle) (I)

8 思う いう いう あなた 母 できる

(think) (say) (say) (you) (mother) (can)

9 聞く ある K 来る 兄 自分

(listen) (be) (a name) (come) (brother) (myself)

10 人 いる 見る できる それ あなた

(person) (be) (see) (can) (it) (you)

to be most similar to that of FCCMM from multiple results with many random
initializations. Then, the contingency tables on chapter vs. cluster matching
after maximum membership assignment were given as Table 1. As mentioned in
Ref. [5], Chap. 3 is composed of two sub-stories, one of which is inseparable with
Chap. 1, and was partially assigned not only to Cluster 3 but also to Cluster 1.
Additionally, a part of Chap. 1 was inseparable with Chap. 2.

3.3 Comparison of Typical Keyword Extraction

First, cluster-wise typical keywords having the 10 largest memberships wcj

are compared between FCCMM and its modification with Fuzzy BoW in
Table 2. Although the two models derived similar document clusters as shown in
Table 1, the selected typical keywords were slightly different. The conventional
FCCMM extracted some cluster-wise unique keywords as “先生 ”, “父 ”, “K”
and “お嬢さん ”, which were used only in a certain chapter. On the other hand,
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FCCMM with Fuzzy BoW extracted only general keywords, which were used in
multiple chapters, because Fuzzy BoW emphasized their influences by imputing
semantic similarities among them even if they were not appeared in the doc-
ument. This result implies that Fuzzy BoW may conceal cluster-wise unique
keywords from the viewpoint of document cluster characterization.

Next, cluster-wise typical keywords extracted by 3FCCMP are shown in
Table 3, where direct keywords drawn by wcj and intrinsic keywords drawn by zck
are compared. In direct keyword extraction, some cluster-wise unique keywords
as “先生 ”, “父 ”, “母 ” and “K” were successfully extracted. Additionally, in
intrinsic keyword extraction, such semantically familiar keywords as “叔父 ” and
“兄 ” were also emphasized supported by “父 ” and “母 ” although they were
buried in the FCCMM result. Because 3FCCMP is a hybrid of direct connection
analysis and intrinsic connection analysis, it seems to be useful for characterizing
each document cluster supported by two-view analysis.

4 Conclusions

In this paper, characterization of document clusters were empirically studied
with two multi-view fuzzy co-clustering approaches. The comparative results
demonstrated that the three-mode fuzzy co-clustering model of 3FCCMP seems
to be useful for characterizing document clusters supported by semantical sim-
ilarity information among keywords while Fuzzy BoW may conceal cluster-wise
unique keywords when FCCMM is implemented with it.

Possible future works include application to other document datasets and
comparative study on parameter sensitivity.

Acknowledgment. This work was supported in part by JSPS KAKENHI Grant
Number JP18K11474.
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Abstract. This paper analyses the effects of masking mechanism for
privacy preservation in data-driven models (regression) with respect to
database integration. Especially two data masking methods (microaggre-
gation and rank swapping) are applied on two public datasets to evaluate
the linear regression model in terms of privacy protection and predic-
tion performance. Our preliminary experimental results show that both
methods achieve a good trade-off of privacy protection and information
loss. We also show that for some experiments although data integration
produces some incorrect links, the linear regression model is still com-
parable, with respect to prediction error, to the one inferred from the
original data.

Keywords: Data protection · Masking methods · Reidentification ·
Microaggregation · Rank swapping · Multidatabase integration

1 Introduction

Data protection mechanisms for databases are usually implemented by means of
applying a distortion into the database. Masking methods are the mechanisms
to produce such distortion. In short, given a database X, a masking method ρ
produces X ′ = ρ(X) that is a sanitized version of X. This X ′ corresponds to a
distorted version of X so that the sensitive information in X cannot be inferred,
and at the same time the analysis we obtain from X ′ are similar to those we
obtain from X.

Privacy models are computational definitions of privacy. Different privacy
models exist taking into account the type of object being released, the type of
disclosure under consideration, etc. Differential privacy [3], k-anonymity [10,11],
privacy from reidentification [6,14] are some of these privacy models. When we
are considering a database release (database publishing, database sanitization),
k-anonymity and privacy from reidentification are two of the main models. They
focus on identity disclosure. That is, we intend to avoid that intruders find a
particular person in a database. Then, a database is safe against reidentification
when it is not possible (or only possible to some extent) to identify a person
in the published database. k-Anonymity has a similar purpose. That is, avoid
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reidentification and finding particular individual’s data in a database. Neverthe-
less, the definition is different. k-Anonymity [10] requires that for each record in
the database there are at least k-1 other records that are indistinguishable to it.
In this way, there will be always confusion on which was the right link. Then,
the goal of a masking method ρ is to produce X ′ = ρ(X) that is compliant with
one of these definitions.

Differential privacy is an alternative privacy model that focuses on the infer-
ences from queries or functions when applied to a database. Then, we have
y = f(X) and we have that y satisfies differential privacy when an addition or a
deletion of a record from X will not change much the result y. Local differential
privacy is a variation of differential privacy that applies to individual records.
Differential privacy can tackle some vulnerabilities from k-Anonymity when sen-
sitive values in an equivalence class lack diversity or the intruder has background
knowledge.

Since 2000, a significant amount of research has been done in the field of data
privacy [5,13] about methods for databases. Some methods exist that provide a
good trade-off between privacy and information loss. That is, research has been
done to find methods that distort the database enough to avoid disclosure in
some extent and at the same time keeping some of the interesting properties of
the data for potential future usage. Interesting properties includes some statistics
but also building models through machine and statistical learning.

Nowadays, there is increasing interest in database integration in order to
build data-driven models. That is, for applying machine and statistical learning
to large datasets in terms of both number of records and number of variables. Fur-
ther virtual data integration (data federation) [17,18] have been explored, where
data is accessed and virtually integrated in real-time across distributed data
sources without copying or otherwise moving data from its system of records.
The effects of masking into data integration is not well known. It is understood
that masking will modify a database in a way that linkage between databases
will not be possible. In contrast, masking has been proven not to be always a big
obstacle for the correct application of machine learning algorithms. There are
results that show that for some databases, masked data is still useful to build
data-driven models.

In this paper we present a preliminary work on the analysis of the effects
of masking with respect to database integration. We analyse the effects of two
data masking strategies on databases. We show that while the number of correct
linkages between two masked databases drop very quickly with respect to the
amount of protection, the quality of data-driven models does not degrade so
quickly.

The structure of this paper is as follows. In Sect. 2 we review some concepts
that are needed in the rest of this work. In Sect. 3 we introduce our approach
and in Sect. 4 we present our results. The paper finishes with some conclusions
and directions for future research.
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2 Preliminaries

In this paper we will consider two data protection mechanisms: microaggregation
and rank swapping. They both permit to transform a database X into a database
X ′ with some level of protection. Here, protection is against reidentification. We
have selected these two masking methods because microaggregation and rank
swapping have been proved to be two of the most effective masking methods
against reidentification. See e.g. [1,2].

Microaggregation consists of building small clusters with the original datafile,
compute the centroids of these clusters, and then replace the original data by the
corresponding centroids. The clusters are all enforced to have at least k clusters.
The number of records k is the privacy level. Small clusters represent a small
perturbation, while large k imply large privacy guarantees.

When a database contains several attributes, and all these attributes are
microaggregated together, the final file satisfies k-anonymity. Recall that a file
satisfies k-anonymity when for each record there are k − 1 other records with
the same value. This will be the case of a microaggregated file when masking all
the files at the same time.

There is a polynomial algorithm for microaggregation when we consider a
single attribute [4]. Nevertheless, when more attributes are microaggregated
together heuristic algorithms are used, as the problem is NP. See [9]. In this
work we have used MDAV, one of these heuristic algorithms, and, more partic-
ularly, the implementation provided by the sdcMicro package in R. See [12] for
details.

Rank swapping is a masking method that is applied attribute wise. For a
given attribute, a value is swapped by another one also present in the file that
is within a range. For example, consider that for an attribute V1 we have in the
file to be masked the following values (1, 2, 4, 7, 9, 11, 22, 23, 34, 37). Then, if we
consider a parameter s = 2 we can swap a value for another value situated either
to two positions in the right or two on the left. For example, we can swap 9 with
4, 7, 11, or 22. Only one swap is allowed for each value.

Instead of giving an absolute number of positions (as s = 2 above) we may
consider giving a percentage of positions in the file (say p).

The larger the p, the larger the distortion, and, thus, the larger the protection.
In contrast, the smaller the p, the smaller the distortion, and, thus, the better
the quality of the data, but also the larger the risk. Here risk is understood as a
identity disclosure risk. In other words, we use the risk of reidentification.

In this paper we will not go into the details of computing disclosure risk for
the files protected. See e.g. [7,8], for discussions on risk for microaggregation and
rank swapping.

3 Evaluating Data-Driven Models with Data-Integration

Our approach to evaluate the effects of data protection for data-driven models
when they are applied to data-integration consists of the following steps.
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– Partition a database DB0 horizontally in test and training. Let DB be the
training part. Let DBt be the testing part.

– Take the database DB and partition it vertically into two databases DB1

and DB2 sharing some attributes. Let nC be the number of attributes that
both databases share.

– Mask independently using a masking method ρ the two databases DB1 and
DB2 producing DB′

1 = ρ(DB1) and DB′
2 = ρ(DB2).

– Integrate DB′
1 and DB′

2 using the nC common attributes. Let DB′ be the
resulting database. That is, DB′ = integrate(DB′

1,DB′
2) where integrate is

an integration mechanism for databases.
– Compute a data-driven model for DB and the same data-driven model for

DB′. Let us call them m(DB) and m(DB′).
– Evaluate the models m(DB) and m(DB′) using the test database DBt.

In order to make this process concrete, some steps need further explanation.
We will describe them below.

Database integration has been done applying distance-based record linkage.
That is, for each record r1 in DB′

1 we compute the distance to each record r2 in
DB′

2 and we select the most similar one. That is r′(r1) = arg minr2∈DB′
2
d(r1, r2).

We use an Euclidean distance for d that compares the common attributes in both
databases DB′

1 and DB′
2.

As DB′
1 and DB′

2 both proceed from the same database DB through its
partition and the process of masking the two parts, we can evaluate in what
extent the database is correctly integrated. That is, we can count how many
times r′(r1) is the correct link in DB′

2 for r1. As we will discuss in Sect. 4 the
number of correct links drops very quickly with respect to the data protection
level. That is, most of the links are incorrect even with a low protection.

The other steps that need to be described are the masking methods, and the
computation of the model. In relation to masking, we apply the same method to
both DB1 and DB2, and the methods are microaggregation (using MDAV) and
rank swapping. We have explained these methods in Sect. 2. Then, in order to
build the data-driven model we use a simple linear regression model. Comparison
of the model is based on their prediction quality. More particularly, we compute
the sum of squared errors of both m(DB) and m(DB′) and compare them.
The comparison is possible because we have saved some records of the original
database for testing. DBt has been kept unused from the original database DB0.

4 Experiments and Results

In this section we first present the experiments performed, describing the
datasets and giving details so that the experiments can be reproduced by those
interested. Therefore, the description includes attributes used in each step, as
well as the parameters of the masking methods. Then, we describe the results
obtained.
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4.1 Setting

We have applied our approach to two different datasets. They are

– CASC: This dataset consists of 1080 records and 13 numerical attributes. It
has been extensively used to evaluate masking methods in data privacy. It
was created in the EU project CASC, and it is provided by the sdcMicro
package in R. We have used the version supplied by this sdcMicro package.
See e.g. [5] for a description and for other uses of this dataset.

– Concrete Compressive Strength. This is a dataset consisting of 1030 records
and 9 numerical attributes. It is provided by the UCI repository. We have
selected this dataset because it is of small size, all data is numerical and
it has been used in several works to study and compare several regression
models, including linear regression. See e.g. [15,16].

The first step consists of partitioning the database into test and training sets.
We have used 80% records for training and 20% for testing.

The second step is about the vertical partitioning of the databases. This is
about selecting some attributes for building the first database DB1 and some
attributes for building the second one DB2.

The attributes in the CASC file are AFNLWGT, AGI, EMCONTRB, FED-
TAX, PTOTVAL, STATETAX, TAXINC, POTHVAL, INTVAL, PEARNVAL,
FICA, WSALVAL, ERNVAL. We have splitted them in two databases consider-
ing nC = 1, 2, 3, 4, 5, 6, 7, 8 different sets of common variables. This corresponds
to eight different pairs of databases. For the first pair, DB1 includes attributes
1–7 in the list above, and DB2 includes attributes 7–13 in the list above. The
following pairs have been built as follows. The first databases include attributes
1—7, 1–8, 1–8, 1–9, 1–9, 1–10, 1–10, respectively. The second databases include,
respectively, attributes 6–13, 6–13, 5–13, 5–13, 4–13, 4–13, 3–13.

The file related to the concrete problem has been used to generate 4 pairs of
databases. The process of partitioning is similar to the case of the CASC file. In
this case, we have nC = 1, 2, 3, 4 common attributes. The first databases consist
of attributes 1–5, 1–6, 1–6, 1–7, respectively. The second databases consist of
attributes 5–9, 5–9, 5–9, 5–9. For example, the first pair of databases DB1 and
DB2 will be defined as follows: DB1 contains the first 5 attributes, and DB2

contains from attribute 5 to attribute 9.
Once data is partitioned, we have protected the two resulting databases using

two different masking methods, each one with different parameterizations. We
have used microaggregation (using MDAV as the microaggregation algorithm)
and considering k = 3, 4, 5, 6, 8, 10, 12, 15, and rank swapping considering p =
0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1. In both cases, the larger the parameter, the
larger the distortion. We have used the R package sdcMicro to protect the
datasets.

As we have explained above, we have applied distance-based record linkage
for database integration. We have used the Euclidean distance using the com-
mon attributes. We have used our own implementation of distance-based record
linkage.
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Finally, we have computed a model for both the original training dataset DB
and the masked and integrated database DB′. We have used a linear model for
one of the attributes. All other attributes were used as independent variables of
the model. For the CASC dataset we have used the first variable as the dependent
variable. For the Concrete dataset, we have used the last variable in the file as
the dependent variable. In this second dataset, this variable is the one used as
dependent in previous research. We have used the function lm in R for building
the models.

In order to analyse the results of the models, we compute the sum of squared
errors between the prediction of the linear model and the true values. To compute
this error we use the test set that, as we have explained above, consists of 20%
of the records of the original files.

In addition, in order to evaluate in what extent the database integration is
good, once databases DB1 and DB2 have been masked into DB′

1 and DB′
2, we

count the number of records that are correctly linked when we build DB′ from
them.

It is relevant to note that our approach contains some steps based on ran-
domization. In particular, the partition of the original databases into training
and testing is based on a uniform distribution. Then, rank swapping also uses
a random element to determine how elements are swapped. Because of that, for
each combination (partition, masking method, parameter) we have applied our
approach 5 times and study the averages of these executions.

4.2 Results

On important element to take into account in our setting is the integration
of the two databases DB′

1 and DB′
2 and whether the records in one database

are correctly linked with the other database. Our experiments show that the
number of correct links drops when the protection increases. More particularly,
the number of correct links becomes very small very quickly except for the case of
CASC dataset masked using rank swapping, where a larger distortion is needed
for the same effect when the number of attributes is relatively large (when we
are using more than 4 attributes in the linkage). This reduction on the number
of correct links depends on the number of common attributes nC. The larger
the number of common attributes, the larger the reidentifications. In Fig. 1, we
display the number of correct links for the Concrete dataset (top figures) and
CASC dataset (bottom figures), when the number of common attributes nC
range from 1 to 6 and protection increases for both microaggregation and rank
swapping (k or p, respectively, as above). The figures also include the number
of correct links in the case of no protection at all. This is the first point on the
left of each figure.

We can observe in the figures that the number of correct links when data is
masked using rank swapping is always larger than the number of correct links
when data is masked using microaggregation. This is so because in microag-
gregation we are masking all attributes at the same time. This produces a file
that satisfies k-anonymity for a given k, and, thus, probability of correct linkage
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Fig. 1. Number of correct links for the Concrete dataset (top) and the CASC dataset
(bottom) when data is protected using microaggregation (left) and rank swapping
(right). Number of correct links decrease when protection is increased (i.e., k in
microaggregation or p in rank swapping increase). Different curves correspond to dif-
ferent number of attributes in the reidentification (circles mean only one variable in
reidentification). Number of links increase when the number of attributes increase (from
1 to 6 or 8).

becomes 1/k. In contrast, in rank swapping each attribute is masked indepen-
dently. When several attributes are considered in the linkage, noise of different
attributes are independent, and then some records may have a larger probability
of being correctly linked.

Figure 2 represents the mean squared error for the concrete dataset for the
last attribute. Figures represent mean values after 10 runs. Top figures corre-
spond to data protected using rank swapping and bottom figures correspond
to data protected using microaggregation. From right to left (and then top to
bottom) we have different number of attributes (from one to six). We can see
that there is a trend of increasing error when we increase protection, and that
the error is somehow smaller when the number of attributes used in the linkage
increase.

Nevertheless if we compare these results about the error with the ones related
to the number of correct links, we see that even the number of correct links can
be very low, the error is not increasing so fast. We observe that there is still
some quality in the models even when the files are not linked correctly.
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Fig. 2. Error of the models (mean squared error) for the Concrete dataset when data
has been masked using rank swapping and microaggregation with different levels of
protection (parameters p and k described in the text). From left to right and top
to bottom number of common attributes in the integration process equal to nC =
1, 2, 3, 4, 5, and 6.
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Fig. 3. Error of the models (mean squared error) for the CASC dataset when data
has been masked using rank swapping and microaggregation with different levels of
protection (parameters p and k). First attribute used as the dependent attribute. From
left to right and top to bottom number of common attributes in the integration process
equal to nC = 1, 2, 3, 4, 5, 6, 7, and 8.

Figure 3 provides the results for the CASC dataset. They are the results of
mean squared error for the linear model of the first attribute. Figures on top
refer to data masked using rank swapping and the figures in the bottom refer to
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Fig. 4. Error of the models (mean squared error) for the CASC dataset when data
has been masked using rank swapping and microaggregation with different levels of
protection. Attribute 13th used as the dependent attribute. From left to right and top
to bottom number of common attributes in the integration process equal to nC =
1, 2, 3, 4, 5, 6, 7, and 8.
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data masked using microaggregation. Then, figures correspond to different sets
of common attributes. More particularly, from left to right and top to bottom
we have nC = 1, 2, 3, 4, 5, 6, 7, 8.

Figure 4 also correspond to the CASC dataset for the last attribute (13th
attribute).

These figures for the CASC dataset show in some cases this same trend of
larger error for stronger protection, but this trend is not so clear in most of the
figures. The clearer cases correspond to microaggregated files for models built
with the first variable. Note that the results are the average of 5 runs for the
CASC dataset.

5 Conclusions and Future Work

In this paper, we presented experimental results on how masking methods
(microaggregation and rank swapping) protect privacy in respect of data integra-
tion. We applied both masking methods on two datasets and further evaluated
how a data-driven model (a linear regression data model) behaves in respect
of database integration with different privacy protection extents. Especially we
have experimented with different number of common attributes between these
two databases in terms of prediction performance on record linkage in data inte-
gration. We concluded, based on our preliminary results, that while the number
of correct linkages between two masked databases drop very quickly with respect
to the amount of protection, the quality of data-driven models does not degrade
so quickly.

These results are in line of previous research in data privacy which shows
that some data masking and, thus, data protection, can be achieved with low
or even no cost for machine and statistical learning applications. See e.g. the
discussion in [13]. The reason for this behavior need additional research.

The results in this paper suggested several additional interesting directions
for future work. Firstly, we plan to extend the data integration scenario with
privacy protection for more than two databases, which is critically important in
big data era. Secondly, we intend to investigate semantic based data integration
for privacy protection, which will have a hybrid consideration of string match
and semantic match common attributes. Thirdly, we will further evaluate the
privacy protection mechanisms in more machine learning prediction models (e.g.,
random forest, support vector machine, deep neural networks).
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Abstract. Open-Set Recognition (OSR) has been actively studied
recently. It attempts to address a closed-set paradigm of conventional
object recognition. Most OSR approaches are quite analytic and ret-
rospective, associable to human’s system-2 decision. A novel bayesian-
based approach Latent Cognizance (LC), derived from a new probabilis-
tic interpretation of softmax output, is more similar to natural impulse
response and more associable to system-1 decision. As both decision sys-
tems are crucial for human survival, both OSR approaches may play
their roles in development of machine intelligence.

Although the new softmax interpretation is theoretically sound and
has been experimentally verified, many progressive assumptions under-
lying LC have not been directly examined. Our study clarifies those
assumptions and directly examines them. The assumptions are laid out
and tested in a refining manner. The investigation employs AlexNet and
VGG as well as ImageNet and Cifar-100 datasets.

Our findings support the existence of the common cognizance func-
tion, but the evidence is against generality of a common cognizance func-
tion across base models or application domains.

Keywords: Latence cognizane · Penultimate information · Open-set
recognition · Pattern recognition · Neural network

1 Introduction

Deep learning has excellent capabilities for learning high-dimensional features
of complex data and assigning decision-making boundaries between the classes.
Deep Neural Networks (DNNs) can learn high-level features that allow them to
achieve outstanding performance on identifying the number of categories and
overcoming many of the challenges associated with recognition/classification
tasks [1,2]. The high-dimensional features extracted from these networks are
widely used in various challenges, including computer vision recognition [3],
autonomous driving [4], language transcription [5], sign recognition [6], and
biomedical applications [7].
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Although acceptable efficiency in DNNs requires robustness from turbulence
input, even small perturbations could alter the classification results. The “adver-
sarial image” problem, where it is possible to disguise an image with a fake
label, has recently been demonstrated [8,9]. Moreover, the phenomenon of “fool-
ing image”, where DNNs miss-classify images unrecognizable by humans with a
high level of confidence, has recently been reported [10]. These aforementioned
problems have come about because traditional DNNs usually use the Softmax
function that forces them to choose one of the seen classes for all input. Thus,
the DNNs consider only a finite set (seen classes). It will make a strongly wrong
prediction when the input samples come from a set of out-interesting (unseen
classes).

Moreover, most studies on recognition have been based on Closed-Set Recog-
nition in which the training set is assumed to be included in the environment
[3,6,11]. However, in the real world, an unseen class could appear in the testing
phase, which leads to the Open-Set Recognition (OSR) situation. In this sce-
nario, the classifier model not only effectively classifies the seen classes but also
detects an unseen ones when they appear. For example, a company should be
able to recognize both employees and non-employees from its security camera
footage.

Researchers have recently proposed the Latent Cognizance (LC) mechanism
that provides a new probability interpreter of Softmax inference based on Bayes’
theorem [12]. LC interpretation has been employed for a sign language recogni-
tion task and is believed to have a potential for the OSR applications.

Our goal in this study is to investigate the Latent Cognizance mechanism that
can classify seen and unseen classes. We made the three following assumptions:

1. For a well-trained classification using a neural network—multilayer
perceptron—, there exist differentiable functions hk such that

∑K
k=1 hk(a)

is proportional to the probability of seen classes p(s|x), when a is a vector
output from a neural network. Note that notion hk(·) is a cognizance function
for k = 1, . . . , K.

2. For rather well-trained classification, there exists a common function h(·) that
indicates the probability of seen classes p(s|x).

3. Cross identification—testing
∑K

k=1 h(ak) on one dataset where h(·) is
obtained by fitting to another dataset—attains an area under curve (AUC)
score over 0.5. The AUC > 0.5 mean that the classifier can distinguish
between seen and unseen class. This implies that a common function h(·)
is common across all datasets and models.

These assumptions are derived from a level of progressiveness in LC devel-
opment. Assumption 1 (there exists cognizance functions) is the starting point.
It is the easiest to satisfy, but perhaps the most difficult to use in practice, since
it means that for K categories in the worst case we may need to determine K
different function one for each category. This assumption is the core to LC and
disproving it would virtually disproving LC itself. Assumption 2 (there exists a
common cognizance function among all categories) is a tighter assumption and
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more progressive. Disproving it may not jeopardize the entire idea of LC, but
it will render LC impractical or at least very difficult to apply. If assumption
2 is proved, it will simplify a task so that we can find only one function that
is appropriate for a cognizance function for the given task. Assumption 3 (The
common cognizance function is general across different domains) is the tight-
est assumption we examine. If it is proved true, the application of LC will be
generally simple. We can just find one good cognizance function and then we
can apply it to any domain. This will promote the utilization of LC with great
convenience.

2 Related Work

Whereas closed-set classification has been accepted for quite some time [6,13].
OSR is not regarded as a classification task. Nevertheless, the OSR challenge
has been explored by many researchers.

The centroid of the seen classes is considered by applying the Distance
Center-Based Space model [14,15], in which the distance-based assumption is
that the seen classes cluster closer to the positive data—training data—than the
unseen classes.

Thus, data that is distant from the positive data might belong to an unseen
class. Mendes-Junior et al. [16] proposed the Nearest Neighbor Distance Ratio
(NNDR) multiclass open-set classifier to overcome the open-set problem. This
is based on the Nearest Neighbor (NN) classifier modified to cope with unseen
classes by considering the distance ratio; a class is classified as unseen when the
distance ratio is over 1.

Another approach, the Nearest Non-Outlier (NNO) classifier, was proposed
by [17]. It was developed based on a classic pattern recognition algorithm, the
Nearest Class Mean (NCM) classifier [9,18]. In NCM classification, the Maha-
lanobis distance of each sample is calculated and transformed to represent its
class with a mean feature vector [19]. However, NNDR and NNO consider the
thresholding value without using the distribution information and in general,
distance center-based methods consider little or no distribution information of
the data and lack a strong theoretical background.

To deal with this, Rudd et al. [20] proposed the Extreme Value Machine
(EVM), which was adapted from the statistical Extreme Value Theory (EVT)
[21] with the concept of margin distributions. The Ψ -model of EVM defines a
radial inclusion function that is an EVT rejection model where the probability
of inclusion corresponds to the probability that the sample does not align in
the margin. The EVM was tested on the OLETTER dataset [22] and compared
with the state-of-the-art Weibull-calibrated SVM (W-SVM) [22]. Although both
EVM and W-SVM had favorable performances, EVM had a lower training cost.
The ImageNet dataset was used as a source of computer vision data to test EVM
and compare its performance with the NNO algorithm; EVM outperformed NNO
in terms of the F1 Measure for accuracy. In addition, the OSR problem can be
handled by applying the DNN approach.
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There have been several studies on classifier rejection of unseen classes, one of
the most well-known approaches being OpenMax [23]. An extreme value distri-
bution is used in this algorithm to re-calculate the probability scores of multiple
classes, including unseen ones, the assumption being that images from unseen
classes will have a lower probability value in the classification results.

The Open-max presents a new layer called “Open-max” that can efficiently
handle unseen classes by using the score from the last fully connected layer before
the Softmax activation function penultimate layer to predict the input. If the
input is far from the training data, it will be rejected and marked as belong-
ing to an unseen class. The Open-max relaxes a restriction of the classification
task, by setting the probabilities of the seen classes to 1 and recalculating new
probabilities for both seen and unseen classes using the intra-distance aggrega-
tion calibrated score for the known classes and a Weibull distribution to estimate
new probabilities for the unseen classes. The Open-max also uses the penultimate
layer score to estimate a parameter of the Weibull distribution. The rationale
is that Open-max normalizes or rescales the output values to follow a logistic
distribution to retrieve the information lost during the Softmax processing.

A new interpretation of the Softmax function called Latent Cognizance (LC)
was investigated by Nakjai et al. [24]. Their work employs the LC technique to
distinguish non-sign postures in hand-sign recognition tasks for sign language
interpretation. Their LC approach was shown to be effective at identifying sign
postures for which categories have not been assigned during the training process.
Moreover, its potential and implications could reach far beyond this specific
application and move object recognition toward scalable OSR.

In the interests of exploring the potential of LC, we investigated whether
(1) the LC function exists, (2) it can be a common function, and (3) it can be
applied in the model training phase for different environments. Its performance
was evaluated by applying it to the ImageNet and CIFAR-100 datasets. Section 3
provides background on LC, while the study assumptions are provided in Sect. 4.
The final section offers conclusions on this study.

3 LC Background

Artificial neural networks a deep network often employ a softmax function in
the final layer for multi-class classification task. Softmax takes an output vector
of the previous layer and converts each of them into K classes probabilities that
sum to one. The softmax formula is as follows,

y = softmax(a) =
exp(ak)

∑K
i=1 exp(ai)

, (1)

where a is a previous layer output vector that is called penultimate output
vector. The penultimate vector a = [a1, . . . , aK ]T = f ′(x,w), where f ′ is a
computational output of neural network before the softmax, with input x and
weight parameter w of the neural network.
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Softmax is such a powerful mechanism and allows numerous impressive clas-
sification performance. However, when it comes to an unseen input—an input of
a class out of a set of classes in the training process—, softmax output is known
to be virtually meaningless. This observation contradicts the conventional inter-
pretation: yk ≡ p(y = k|x). Nakjai et al. [24] have reinterpreted the softmax
output as a conditional probability that the given seen input x belongs to class
k,

yk ≡ p(y = k|x, s), (2)

where s indicates that x belongs to one of the seen class or 1, . . . , K ∈ s. This
interpretation emphasizes the condition s, which has been faint and inattention.

Based on that, given Bayes’ theorem, the softmax output

yk = p(y = k|x, s) =
p(y = k, s|x)

∑K
i=1 p(y = i, s|x)

. (3)

The term p(y = k, s|x) can be of great benefit. Supposed that p(y = k, s|x) is
known, seen and unseen patterns can be differentiated through marginal proba-
bility

p(s|x) =
K∑

k=1

p(y = k, s|x). (4)

A low value of p(s|x) indicates a high chance that x is of an unseen class and vice
versa. Therefore, obtaining a value of p(y = k, s|x) can solve the open-set prob-
lem. Determining a value of p(y = k, s|x) can be very difficult in practice, but
under an objective to identify the unseen a good estimation should be sufficient.

Conferring Eq. 1 to Eq. 3, the following relation is found:

exp(ak)∑
i exp(ai)

=
p(y = k, s|x)

∑
i p(y = i, s|x)

. (5)

Consider similar patterns on both sides of Eq. 5. The similar patterns indicate
some kind of relation between penultimate values on the left side and the proba-
bilities on the right side. In order to investigate approaches for good estimation
of p(y = k, s|x), the following is deduced. Given a well-trained softmax inference
f : x �→ y that f is internally composed of f ′ : x �→ a and softmax : a �→ y,
the penultimate vector a relates to posterior probability p(y = k, s|x) through
function h̃k(a) = p(y = k, s|x). As it is sufficient under a task of identifying an
unseen and as to lessen a burden on enforcing probabilistic properties, it is more
convenient to work with a function whose value just correlates to the probability.
[12] denote cognizance function g(·) such that g(ak(x))) ∝ p(y = k, s|x), where
ak(x) represents the kth penultimate value corresponding to input x. Thus, an
unseen input x can be identified by a low value of

K∑

k=1

g(ak(x)) ∝ p(s|x). (6)
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[12] called this Latent Cognizance (LC) approach. LC approach follows a new
softmax interpretation based on [12], i.e., yk = p(y = k|x, s), where s represents
a state of being a seen class. Investigation of all major assumptions underlying
LC development is discussed in Sect. 4.

4 Latent Cognizance Assumptions

Since LC is recently discovered, its full potential is yet to be realized. We con-
template that a progressive examination where its key assumptions are examined
from the most rudimentary to more refiner ones will give a better insight. In this
progressive manner, hopefully LC nature will be revealed in depth for what it
is and what it is not so that we do not rush to a conclusion and perhaps these
findings can later be better utilized.

4.1 Assumption 1: There Exists Cognizance Functions

Definition. Assumption 1 assume that there exists differentiable functions hk’s
for k = 1, . . . , K such that, given a = f ′(x) and f ′ is well-tuned, each hk(a)
correlates to p(y = k, s|x). Therefore, p(s|x) can be deduced from

∑K
k=1 hk(a),

noted as p(s|x) correlates to
∑K

k=1 hk(a). Another word, a value of
∑K

k=1 hk(a)
indicates a degree of input being of a seen class. This assumption poses the most
rudimentary premise that there exists the cognizance function hk(a) correlates
to p(y = k, s|x). Noted that this notion of cognizance function hk : RK �→ R

is broader than [24]’s g : R �→ R. [24]’s cognizance is examined here under
Assumption 2. Figure 1a illustrates the logical view based on Assumption 1.

(a) Logical view of Assumption 1. (b) Logical view of Assumption 2.

Fig. 1. An our logical view of Assumtion1 and Assumtion2.

Assumption 1 Experiment. To prove the existence of hk(a), a 2-hidden-layer
Multi-layer percepton (MLP) was learned with a dedicated set of data. This
learning process was to tune a 2-hidden-layer MLP to approximate hk(a), and
this process is called “learning” to distinguish it from “training”, which is used to



Toward Latent Cognizance on Open-Set Recognition 247

refer to a fine-tuning process of the base classifier, e.g., Alexnet. To assure the LC
premise, i.e., the model is well trained, the base classifier Alexnet was trained on
only 100 classes, previously found to be the top 100 performing classes(with each
class having over 70% accuracy). Specifically, AlexNet with pretrained weights
was trained with samples from the chosen 100 classes from ILSVRC 2012 training
dataset. AlexNet was trained to achieved the accuracy of 0.889 (on validation
data, randomly chosen 10% from the training data). To learn hk(a), both “seen”
and “unseen” samples were used. The “seen” samples were samples from the
chosen 100 classes, which also used in training. The seen learning set made up of
129,264 samples. The “unseen” sample were samples from the other 900 classes.
The total number of unseen samples was 1,150,802 samples. To balance the seen
and unseen data sizes, only 143 samples per class were chosen for the unseen
learning set, which totally made up to 128,700 samples. Noted that, 10% of
these datasets was used for validation. Since ILSVRC 2012 test set did not have
the class labels, ILSVRC 2010 training set was used for testing the seen/unseen
identification capability. The ILSVRC 2010 training dataset contained 74,488
samples of the seen classes and 1,186,873 samples of the unseen classes. The
classes in both ILSVRC 2010 and ILSVRC 2012 were inspected for class integrity.

The MLP used in this experiment had 2 hidden layers. Each layer had 2048
nodes and used hyperbolic tengent as its activation function. The output layer
had sigmoid function as its activation function. Specifically, given input x ∈ R

100,
the output y ∈ R

100 has computed from: z(1) = h(1) · (w(1) · x + b(1)), z(2) =
h(2) · (w(2) · z(1) + b(2)), y = h(3) · (w(3) · z(2) + b(3)), where w(1) ∈ R

2048×100,
w(2) ∈ R

2048×2048 and w(3) ∈ R
100×2048 are model weights; b(1),b(2) ∈ R

2048

and b(3) ∈ R
100 are model biases; h(1),h(2), and h(3) are element-wise activation

functions of 2 hidden layers and the output layer, respectively. The weights and
biases are learned to minimize the separation loss—inspired by Tripet Loss [25]—
,

L =

[
1
M

∑

m∈U

z(u)m − 1
N

∑

n∈S

log z(s)n + α

]+

, (7)

where S is a set of seen examples, U is a set of unseen examples, z
(u)
m is the mth

unseen example, z
(s)
n is the nth seen example, and M,N > 0. User specific value

α is a constant to set the separation margin, which is set to 1 in our experiment.
The learning process employed ADAM optimization with learning rate of 10−4,
went through 1,000 epochs and took the best performing set of weights and
biases (with loss <10−4).

Results. Table 1 shows the evaluation results (on the 1st row of Table 1). The
table emphasizes Assumption 1 approximation function

∑
k hk(a) whose penul-

timate vector a obtained from the base classifier—AlexNet as indicated. The
approximation hk(·) is learned using ImageNet data (ILSVRC 2012). The Area
Under Curve (AUC) indicates how well the LC with the approximation hk(·) dis-
tinguishes between seen and unseen samples, tested on ImageNet data (ILSVRC
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2010). Significance test—Kruskal-Wallis Test—also confirms the separation with
p-value <2.2 × 10−16. This result supports Assumption 1.

Figure 2 shows boxplots and Precision-Recall curve (P-R curve) using LC
with

∑
k hk(a). Figure 2a has the y-axis representing LC values. The boxplot,

P-R curve, and the AUC (shown in Table 1) all strongly support Assumption 1.

Fig. 2. Assumption 1: LC with
∑

k hk(a),a ∈ R
K .

Fig. 3. Assumption 2: LC with
∑

k h(ak), ak ∈ R. The cognizance h learns from
AlexNet model and ImageNet dataset.

Given that each hk maps penultimate vector to the corresponding seen class
probability, to have K seen class probabilities is to have K functions. This
requires quite resources and it would be much more pragmatic if there is only
one common cognizance function, like what originally proposed by [24].

4.2 Assumption 2: There Exists a Common Cognizance Function

Definition. Assume that given [a1, . . . , aK ] = a = f ′(x) and f ′ is well-tuned,
there exists a differentiable function g such that, g(ak) correlates to p(y = k, s|x).
Thus, p(s|x) correlates to

∑K
k=1 g(ak).
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Table 1. Evaluation of Assumptions 1 and 2.

Assumption Base
Classifier

Learning
Seen/Unseen

AUC on
ImageNet

Kruskal-Wallis
Test (p-value)

Assumption 1:
∑

k hk(a) Alexnet ImageNet 0.890 <2.2× 10−16

Assumption 2:
∑

k h(ak) Alexnet ImageNet 0.849 <2.2× 10−16

This experiment followed Assumption 1, but replacing functions hk(a)’s with
a common function h(ak) for k = 1, . . . , K. Figure 1b illustrates a logical view
of Assumption 2 conferring to Fig. 1a. The function h(ak) was approximated
with an MLP. The MLP had 2,000 hidden nodes. Specifically, given input x =
[x1, . . . , x100] ∈ R

100, output y = [y1, . . . , y100] ∈ R
100 was computed from z

(1)
i =

h(1)(w(1) ·xi + b(1)) and yi = h(2)(w(2) ·z(1)i + b(2)), where w(1) ∈ R
2000×1, w(2) ∈

R
1×2000, b(1) ∈ R

2000, b(2) ∈ R, h(1)(·) = tanh(·) and h(2)(·) = sigmoid(·). The
model was learned in a similar manner described in Assumption 1 experiment.
The best performing set of weights and biases were found at loss <0.5.

Results. The second row of Table 1 shows the evaluation results of this assump-
tion. Boxplots and P-R curve are shown in Fig. 3. The results show strong sup-
port for Assumption 2.

Assumption 1 and 2 Comparison. Boxplot of the seen group is very well
separated from the unseen group. The separation margin of Fig. 2 is wider than
one of Fig. 3, but both show strong supports for their respective assumptions. It
should be noted that assumption 1 is somewhat more general than assumption
2 as in assumption 1: cognizance function hk of different category k can be
different, while assumption 2: the cognizance function h has to be the same for all
categories. While assumption is more general, the application of assumption 2 is
more manageable since the task of finding an appropriate cognizance function is
to find only one cognizance function for all categories (c.f., finding K cognizance
functions each for each category).

To simplify the experiment, instead of finding the common cognizance func-
tion g, we find an approximate cognizance based on the model and domain and
check if the found cognizance works with relatively consistent performance across
environments (models and domains).

4.3 Assumption 3: The Common Cognizance Function is General
Across Different Domains

Definition. Given the models are well-trained, there exists a common cog-
nizance function g, i.e., it is general across models and domains. Specifically,
given there exists g(a(1)

k ) correlates to p(1
′)(y = k, s|x) when g is a well-

established cognizance function for a well-tuned model (1) under domain (1′),
a
(1)
k is a penultimate value obtained from a well-tuned model (1), and p(1

′) is
a probability regarding domain (1′), then g(a(2)

k ) correlates to p(2
′)(y = k, s|x)
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when a
(2)
k is a penultimate value obtained from a well-tuned model (2) under

domain (2′), and p(2
′) is a probability regarding domain (2′). The consequence

of this assumption is that if holds, cognizance g once found can be used on any
occasion and its implication and application can be profound and wide. However,
if this assumption is disproved, it means that for every scenario (domain, task, or
model), there has to be a learning process to determine this cognizance function.
Another word, if disproved, the applicability of cognizance is quite limited.

To simplify the experiment, instead of finding the common cognizance func-
tion g, we find an approximate cognizance based on the model and domain and
check if the found cognizance works with relatively consistent performance across
environments (models and domains).

Assumption 3 Experiment. To verify Assumption 3, two cognizance func-
tions h(·) and ĥ(·) are obtained using two different environments (using different
models and learning from different data). Then, each cognizance function is put
to the test both on its native environment and on its foreign context.

Our experiment employs AlexNet model and ImageNet dataset as the first
environment (Model 1: AlexNet, Domain 1′: ImageNet). The first cognizance
h(·) then is obtained using the first environment as described in Assumption 2
Experiment.

A modified version of Visual Geometry Group version 16 layers (VGG16,
[26]) is chosen as our model of the second environment (Model 2: Our VGG,
Domain 2′: Cifar-100). Our VGG model is shown in Fig. 4. Cifar-100 dataset
[27] is chosen as our domain of the second environment. Ten classes out of total
100 classes are randomly chosen to be seen classes. To train our VGG model,
5000 images of seen classes (500 images each class) from Cifar-100 training set
are used. To learn the second cognizance ĥ(·), 5000 images of seen classes along
with 5000 (unseen) images randomly chosen from the remaining of the Cifar-100
training set are used. The second cognizance ĥ(·) is obtained using the second
environment.

To test each cognizance function, the first environment uses AlexNet model
to produce penultimate vectors corresponding to data from ImageNet ILVSRC
2010 as described in Assumption 1 Experiment. The second environment uses
VGG16 model to produce penultimate vectors corresponding to data from Cifar-
100: 1000 images of the seen classes (100 images each class) and 1000 (unseen)
images randomly chosen from the remaining of Cifar-100 test set are used.

Fig. 4. Our modified VGG Architecture
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Results. Table 2 shows evaluation results. The first row represents the first
cognizance function (learned from the first environment: AlexNet model and
ImageNet dataset). Its AUC and p-value of Kruskal-Wallis Test on the first envi-
ronment reveal its performance on its native ground, while ones on the second
environment reveal its performance on a foreign context. The second row repre-
sents the second cognizance function (learned from the second environment: our
VGG model and Cifar-100 dataset). Its AUC and p-value of Kruskal-Wallis Test
on the first environment reveal its performance on its foreign environment, while
ones on the second environment reveal its performance on its native ground.

Table 2. Evaluation of Assumption 3. Function 1 learns from Environment 1. Func-
tion 2 learns from Environment 2. Environment 1 uses AlexNet model and ImageNet
dataset. Environment 2 uses our VGG16 model and Cifar-100 dataset.

Cognizance Tested on

Environment 1 Environment 2

AUC Kruskal-Wallis
Test (p-value)

AUC Kruskal-Wallis
Test (p-value)

Function 1: h 0.849 <2.2 × 10−16 0.647 <2.2 × 10−16

Function 2: ĥ 0.385 <2.2 × 10−16 0.661 <2.2 × 10−16

Figure 3 and 5 show boxplots and P-R curves of both cognizance functions
on their native environments. Figure 6 and 7 show boxplots and P-R curves of
both cognizance functions on their foreign environments.

Given results from Table 2 along with Fig. 7, evidence found here is against
the generality of both cognizance functions.

To interpret results shown in Table 2, recall that h (function 1) is derived
from environment 1 and ĥ (function 2) is derived from environment 2, therefore,
native performances (h on environment 1 and ĥ on environment 2) are seen along
the diagonal entries (AUCs of 0.849 and 0.661). The foreign performance shows
how robust the cognizance function is when it is applied to a different setting
and this is shown as AUCs of 0.647 and 0.385 (h on environment 2 and ĥ on
environment 1, respectively).

Fig. 5. The second cognizance function ĥ (learned from Environment 2: our VGG
model and Cifar-100 dataset) tested on its native environment (Environment 2).
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Fig. 6. The first cognizance function h (learned from Environment 1) tested on its
foreign ground (Environment 2).

Fig. 7. The second cognizance function ĥ (learned from Environment 2) tested on its
foreign ground (Environment 1).

Both cognizance functions show significantly drop in their performances when
used in the foreign domains. For example, the cognizance function ĥ is obtained
with our VGG16 model and trained on the Cifar-100 dataset. The cognizance
function ĥ achieved AUC 0.661 on the Cifar testing dataset, but it cannot keep
their performance and has AUC drop to 0.385 when testing on another environ-
ment. Therefore, cognizance functions obtained as in our experiments are shown
not to be general across domains.

Surprisingly, despite poor AUC (0.385) of ĥ on foreign ground, the boxplot in
Fig. 7a and a low p-value on Kruskal-Wallis Test however show well separation
between seen and unseen samples. It is only that the logic is reverse: a low value
of cognizance associates with seen samples rather than the other way around.
This observation is strongly against Assumption 3—a common cognizance func-
tion whose value (positively) correlates to seen probability p(s|x)—, but regard
to seen/unseen identification this cognizance function still shows some poten-
tial. Another point worth noting is that although our evidence here is appar-
ently against Assumption 3, the evidence is acquired based on the cognizance
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functions obtained through a process as described in our experiments. A proper
investigation on this issue may deserve another dedicated study.

The ramification of disapproval of Assumption 3 is that the cognizance func-
tion is not general across environments. Changing model or changing domain
requires an extra process to figure out a proper cognizance function or at least
to test if the commonly used function is still suitable. This limits the convenience
of applying LC in a significant way, otherwise one good general cognizance func-
tion could be examined and once found it can be readily available. However, as
our result has shown, some cognizance function, e.g., h (Table 2), seems to be
robust to some degree. A criteria for good cognizance function and the criticality
when it is used beyond its native environment may deserve further study.

5 Conclusion

Latent Cognizance (LC) has been shown a great potential for an open-set capac-
ity. Its development is based on a new interpretation of a softmax inference along
with progressive assumptions. The new interpretation of a softmax inference has
been verified in [24]. Our work thoroughly examines those three progressive
assumptions underlying LC. Assumptions 1 and 2, i.e., there exists the cog-
nizance function and a cognizance function is common across class labels, are
supported by the experimental results, respectively. Assumptions 1 and 2 are
supported by that both hk(·) and h(·) can differentiate the samples of seen and
unseen classes with p-value <2.2 × 10−6 on Kruskal-Wallis test. However, our
experimental evidence shows contradiction to Assumption 3 and implies that
(1) a cognizance function h(·) learned from one model cannot be generalized to
another model and (2) a cognizance function h(·) learned for one task cannot be
generalized to another task.

LC has been shown effective. Its cognizance function is shown to exist and
be common across class label, but its generality across models and domains may
come naturally.
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Abstract. Non-negative Matrix Factorization (NMF) is a technique for
factorizing a non-negative matrix into the products of non-negative com-
ponent matrices and has been used in such applications as air pollution
analysis. In order to make NMF robust against noise, noise clustering-
based approach was proposed with least square criterion, where NMF
model estimation was performed in conjunction with noise rejection
under the iterative optimization principle. In this paper, another robust
NMF model was proposed supported by I-divergence criterion, which
considers asymmetric distance measures rather than symmetric ones in
the least square model. The updating formula of fuzzy memberships for
non-noise degrees of objects are also constructed based on I-divergence
criterion. The characteristic features of the proposed method are com-
pared with the conventional one through numerical experiments using
an artificial dataset.

Keywords: Non-negative matrix factorization · Noise fuzzy
clustering · I-divergence

1 Introduction

Non-negative Matrix Factorization (NMF) [1] is a technique for factorizing a
non-negative matrix into the products of non-negative component matrices and
has been used in such applications as air pollution analysis and audio source
separation. In order to evaluate the deviation between the original observations
and their lower-rank reconstructions, NMF models adopt not only the symmetric
least square criterion but also other asymmetric measures such as I-divergence [2]
and Itakura-Saito divergence [3].

When datasets include noise, we should estimate NMF models by reject-
ing their influences. Besides element-wise noise rejection [4,5], object-wise noise
rejection was proposed, where the non-noise degree of each object was estimated
supported by noise fuzzy clustering concept [6]. Fuzzy c-means (FCM) [7,8] is
a basic unsupervised classification method, which partitions objects into several
fuzzy clusters with prototypical centroids. Noise fuzzy clustering [9,10] tried
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to make FCM robust against noise by introducing an additional noise cluster,
where fuzzy membership degrees of each object are simultaneously estimated not
only for normal clusters but also for the noise cluster. From the robust model
estimation viewpoint, noise fuzzy clustering can be identified with iteratively
reweighted least square method [11], and then, the noise rejection approach has
been utilized in robust data analysis such as robust PCA-based k-means [12].

Considering the algorithmic similarity among NMF and fuzzy c-varieties
(FCV) with least square criteria [13], a noise fuzzy clustering-based robust
NMF [6] was proposed, which iteratively performs NMF modeling and non-noise
degree estimation until convergence. Because the least square-type criterion of
NMF has a similar feature with the FCV criterion, it was easily reused in fuzzy
membership estimation with noise fuzzy membership updating formula.

In this paper, another robust NMF model was proposed supported by I-
divergence criterion, which considers asymmetric distance measures rather than
symmetric ones in the least square model. The updating formula of fuzzy
memberships for non-noise degrees of objects are also constructed based on
I-divergence criterion. The characteristic features of the proposed method are
compared with the conventional one through numerical experiments using an
artificial dataset. The remaining parts of this paper are organized as follows:
Sect. 2 briefly reviews NMF and noise fuzzy clustering-induced robust model-
ing and Sect. 3 proposes a novel robust NMF model with I-divergence criterion.
The experimental results are presented in Sect. 4 and the summary conclusion
is given in Sect. 5.

2 Brief Review on NMF and Noise Fuzzy Clustering

2.1 NMF

NMF [1] is a technique for decomposing an n × m matrix X = {xij} composed
of only non-negative elements into the product of two lower-order non-negative
matrices of n × p matrix W = {wik} and p × m matrix H = {hkj} as follows:

X ≈ WH, (1)

where intrinsic dimension p is constrained to n > p and m > p, respectively.
In order to achieve minimum error reconstruction, NMF adopts some kinds

of error measures in building the objective function to be minimized. When we
adopt the least square criterion, the NMF objective function is given as:

Jnmf1 =
n∑

i=1

m∑

j=1

(
xij −

p∑

k=1

wikhkj

)2

. (2)

The lower-dimensional factors are available for making it easier for humans to
understand the intrinsic features of multi-dimensional data.
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The algorithm is based on the alternating optimization of the elements of
matrices W and H, where their updating formulas are derives as [2]:

hkj = hkj
(W�X)kj

(W�WH)kj
, (3)

wik = wik
(XH�)ik

(WHH�)ik
. (4)

Besides the above symmetric least square criterion, other asymmetric mea-
sures have been also proved to be useful in many application fields. For example,
when we adopt I-divergence measure, i.e., Kullback-Leibler (KL) divergence, the
NMF objective function is modified as:

Jnmf2 =
n∑

i=1

m∑

j=1

(
xij log

xij∑p
k=1 wikhkj

− xij +
p∑

k=1

wikhkj

)
. (5)

Then, the updating formulas are revised as [2]:

hkj = hkj

∑n
i=1

xijwik∑p
k=1 wikhkj∑n

i=1 wik
, (6)

wik = wik

∑m
j=1

xijhkj∑p
k=1 wikhkj∑m

j=1 hkj
. (7)

Here, these NMF models have non-uniqueness features by transforming the
two factorization matrices by a monomial matrix T as:

WH = WTT−1H = (WT )(T−1H) = W ′H ′, (8)

where a simple example can be constructed with a scaling and/or a permutation.

2.2 Noise Fuzzy Clustering

FCM [7,8] is a fuzzy extension of k-means clustering [14], whose goal is to par-
tition n objects with m-dimensional observation xi, i = 1, . . . , n into C fuzzy
clusters represented by their prototypical centroids bc, c = 1, . . . , C. The FCM
objective function to be minimized is given as the following weighted within-
cluster errors:

Jfcm =
C∑

c=1

n∑

i=1

uθ
ci||xi − bc||2, (9)

where uci (uci ∈ [0, 1]) is the fuzzy membership of object i to cluster c and
represents the degree of belongingness under the probabilistic context with∑C

c=1 uci = 1. θ (θ > 1) is the fuzzification penalty such that a large θ brings
fuzzier cluster boundaries while θ → 1 reduces to the crisp k-means. Starting
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from a random initial partition, cluster prototypes bc and fuzzy memberships
uci are iteratively updated under the alternating optimization scheme.

In order to improve the noise sensitive feature of FCM-type least square cri-
terion, Davé proposed noise fuzzy clustering [9], which introduces an additional
noise cluster to dump all noise objects into it. Considering C normal clusters
and C + 1-th noise cluster, the objective function of noise FCM was defined as:

Jnfcm =
C∑

c=1

n∑

i=1

uθ
ci||xi − bc||2 + γ

n∑

i=1

uθ
C+1,i, (10)

where uC+1,i is the fuzzy membership to the noise cluster and the probabilistic
constraint is modified as

∑C+1
c=1 uci = 1. γ is the distance between each object

and the noise cluster, and is constant for all objects. If an object is distant from
all C normal clusters more than γ, it is dumped into the noise cluster and the
remaining C memberships are

∑C
c=1 uci < 1.

The updating formulas are derived as:

uci =
||xi − bc|| 2

1−θ

γ
1

1−θ +
∑C

�=1 ||xi − b�|| 2
1−θ

(if c ≤ C), (11)

uC+1,i = 1 −
C∑

�=1

u�i, (12)

bc =
∑n

i=1 uθ
cixi∑n

i=1 uθ
ci

. (13)

Here, when C = 1, the above model is reduced to a robust average estimator,
where the average value is calculated in the boundary of γ radius [10]. This noise
rejection scheme was also utilized in robust least square-type data analysis, where
the FCM clustering criterion is replaced with other least square criteria. For
example, if it is introduced into principal component analysis (PCA)-induced
k-means, robust k-means clustering is achieved through robust PCA considering
non-noise membership degrees [12]. In the followings, the noise clustering concept
is introduced into the robust NMF context.

3 Noise Fuzzy Clustering-Induced Robust NMF

In this paper, two approaches for robustifying NMF are considered induced by
noise fuzzy clustering concept. After a brief review of least square-type model,
a novel model of I-divergence-based robust NMF is proposed.

3.1 Robust NMF with Least Square Criterion

In a previous research [6], a robust extension of least square criterion-based NMF
was proposed by introducing non-noise fuzzy memberships with a noise cluster,
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whose objective function was defined by replacing the FCM criterion with the
reconstruction error as:

Jrnmf1 =
n∑

i=1

uθ
i

m∑

j=1

(
xij −

p∑

k=1

wikhkj

)2

+ γ
n∑

i=1

(1 − ui)θ, (14)

where ui (0 ≤ ui ≤ 1) is the fuzzy membership representing the non-noisiness
degree of individual i and θ (θ > 1) is the fuzzification weight. γ is a constant rep-
resenting the noise sensitivity, which can be identified with the distance between
the individual and the noise cluster. An individual is rejected as noise if the sum
of squared errors in lower-rank approximation is larger than γ.

Under the alternating optimization principle, the updating rules for ui and
hkj are derived as:

ui =

(
1 +

(
di

γ

) 1
θ−1

)−1

, (15)

di =
m∑

j=1

(
xij −

p∑

k=1

wikhkj

)2

, (16)

and

hkj = hkj
(W�UX)kj

(W�UWH)kj
, (17)

where U is the diagonal matrix, whose ith diagonal element is uθ
i . On the other

hand, wik is still updated by Eq. (4).

3.2 Robust NMF with I-divergence Criterion

In this section, a novel robust NMF model is proposed by introducing the noise
clustering concept into NMF with I-divergence criterion. Besides the symmetric
measure of Eq. (16), the I-divergence NMF criterion

d̂i =
m∑

j=1

(
xij log

xij∑p
k=1 wikhkj

− xij +
p∑

k=1

wikhkj

)
, (18)

is utilized with an asymmetric measure in some application areas, whose feature
is compared with a symmetric one as in Fig. 1.

Then, the proposed objective function for robust NMF with I-divergence is
defined as:

Jrnmf2 =
n∑

i=1

uθ
i

m∑

j=1

(
xij log

xij∑p
k=1 wikhkj

− xij +
p∑

k=1

wikhkj

)
+γ

n∑

i=1

(1−ui)θ,

(19)
where ui, θ and γ play the same roles with those in Eq. (14).
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Fig. 1. Comparison of symmetric/asymmetric error measures with goal value = 1.

Considering fuzzy memberships ui, the updating formula for hkj is modified
as:

hkj = hkj

∑n
i=1

uθ
i xijwik∑p

k=1 wikhkj∑n
i=1 uθ

i wik
, (20)

while that for wik is still Eq. (7).
Next, the updating formula for ui is given as:

ui =

⎛

⎝1 +

(
d̂i

γ

) 1
θ−1

⎞

⎠
−1

. (21)

A sample procedure of the proposed algorithm is written as follows:

Algorithm: Noise Fuzzy Clustering-based Robust Non-negative
Matrix Factorization with I-divergence Criterion

Step 1. Initialize elements of matrices W and H with random non-negative
values.

Step 2. Initialize memberships ui by Eq. (21).
Step 3. Update elements of matrix H by Eq. (20).
Step 4. Update elements of matrix W by Eq. (7).
Step 5. Update memberships ui by Eq. (21).
Step 6. If memberships ui converge, stop. Otherwise, return to Step 3.

4 Numerical Experiments

In order to compare the characteristic of two robust NMF models, this section
presents some experimental results.
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Fig. 2. 60× 50 artificial observation matrix X depicted in grayscale.

4.1 Data Set

The artificially generated 60×50 observation matrix X shown in Fig. 2 was used,
which is the mixture of four sub-groups. Group 1 composed of 30 individuals
completely follows a generative model W̃ and H̃ such that X = W̃ H̃. Group 2
and Group 3 composed of 10 individuals each follow the same generative model
with light or heavy noise as X = W̃ H̃ + E, where E = {εij} is a random noise
matrix like εij ∈ [0, 5) for Group 2 and εij ∈ [0, 10) for Group 3, respectively.
Group 4 composed of 10 individuals has just random observation as X = E with
εij ∈ [0, 30). The detailed generation process can be found in [15].

4.2 Comparison of Noise Rejection Features

In order to compare the matrix decomposition ability of the two robust NMF
models, they were applied with various noise sensitivity weights γ (γ ∈ {0.1, 0.2,
0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000 }) with a fixed
fuzziness penalty θ = 2, which is a standard setting in FCM [7].

Figure 3 compares the average non-noise fuzzy memberships ui derived with
various γ in 100 different random initialization. The right end with γ = 10000
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(a) Least square criterion (b) I-divergence criterion

Fig. 3. Comparison of fuzzy memberships ui with various noise sensitivity γ.

is almost equivalent to the conventional NMF without noise rejection, where
almost all memberships are ui ≈ 1, while the models become sensitive to noise
by rejecting many noise individuals as γ becomes smaller.

Looking from the right end to left, both models first rejected Group 4 of
complete random observation, and then, Group 3 of heavy noisy data and Group
2 of light noisy data are secondly and thirdly rejected. That is, both models could
successfully achieve gradual noise rejection by tuning the sensitivity weight γ.

Here, the proposed robust NMF with I-divergence had a slightly different
feature for some individuals as emphasized in red rectangles such that they were
rejected even when γ was very large, e.g., γ = 1000. Especially, individual 14
was first rejected although it belongs to Group 1, i.e., completely non-noise. By
carefully checking their observation, they were found to have one or more zero
elements xij = 0.
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Fig. 4. Comparison of approximation errors with various noise sensitivity γ.

Be noted that I-divergence is an asymmetric measure that is much more
sensitive to negative errors against positive one as shown in Fig. 1. Then, NMF
decomposition tends to achieve slightly higher approximation values while a
very small element like xij = 0 cannot be exactly reconstructed for avoiding
negative errors for other positive attributes. By the way, in some applications,
zero observation may be caused by error and should be rejected as noise. In this
sense, the proposed robust NMF with I-divergence seems to be useful.

4.3 Comparison of Approximation Errors

Next, the approximation ability of the two robust NMF models is compared.
Figure 4 compares the trajectories of the 100 trials averages of mean square
errors in NMF approximation for each group such that

1
ng

∑

i∈Gg

m∑

j=1

(
xij −

p∑

k=1

wikhkj

)2

, (22)

where ng is the number of individuals of each group Gg (g = 1, . . . , 4).
Looking from the right end to left, in both models, Group 4 was first rejected

at around γ = 1000 and other groups’ errors were decreased by ignoring Group
4, i.e., the approximation ability was improved by rejecting complete random
noise. Then, Group 3 and Group 2 were secondly and thirdly ignored and the
models fairly fitted to the non-noise Group 1 around γ = 100 in Fig. 4(a) and
γ = 5 in Fig. 4(b), respectively. Although the two models had slightly different
membership features as shown in Fig. 3, both models successfully improved their
approximation ability by focusing on the non-noise groups. Finally, errors for
Group 1 also became larger when γ is very small like γ = 1 or smaller because
the models focused only on a few individuals by rejecting almost all other ones.

On the other hand, Fig. 5 compares the trajectories of the 100 trials averages
of I-divergence distances in the I-divergence-based NMF approximation for each
group such that
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1
ng

∑

i∈Gg

m∑

j=1

(
xij log

xij∑p
k=1 wikhkj

− xij +
p∑

k=1

wikhkj

)
. (23)

In contrast to Fig. 4(b) with squared errors, Fig. 5 emphasizes the errors of Group
4 composed of random observations only and Group 1 composed of non-noise
individuals only because the two groups include one or several individuals having
zero values. So, the second measure of I-divergence can contribute to distinguish-
ing such small noise observations.

From the above results, we can see that the two robust NMF models are
useful in matrix decomposition with noise rejection and the adjustable weight
γ works for effectively tuning their noise sensitivity while I-divergence-induced
model is additional feature of rejecting very small elements.

5 Conclusions

In this paper, a novel robust NMF model was proposed by adopting I-divergence
criterion, which is an asymmetric distance measure, and its characteristics were
demonstrated through a comparison with the conventional least square criterion-
induced model. Besides a similar approximation ability, the proposed model has
additional feature of rejecting very small elements, which may be caused by error
in some applications.

Possible future works include development of automatic selection mechanism
for noise sensitivity weight γ.
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Abstract. Topic modeling with community detection can be used to
explore the latent semantic structure of documents, we can utilize a net-
work, i.e., a graph to depict the semantic relation between words. In some
network based topic models, in order to obtain a network with obvious
community structure, the similarity between words (vertices) is essential.
Word embeddings trained from a large corpus empirically perform as well
as in rich semantic representation, thus this research is intended to con-
struct a novel similarity in a network based topic model (NAM). In this
paper, we first intuitively propose a similarity measure based on shifted
cosine similarity between word embeddings. This similarity is exploited
to replace the similarity based on typical point-wise mutual informa-
tion (PMI). Secondly, based on different similarity measures, topics of
corpus in a global period are induced by NAM. Finally, we use NAM to
capture the dynamic changes of political topics in China and interpret
the dynamic processes using historical background. Although our simi-
larity measure introduces semantic differences caused by the difference
between data sets and has one more parameter, the experimental results
show the effectiveness of our new proposed measure.

Keywords: Topic model · Network analysis · Word embeddings

1 Introduction

Topic models can conveniently discover latent semantic structure from textual
data, for which they play an important role in many fields that involve Natural
Language Processing. Conventional topic models, such as Probabilistic Latent
Semantic Analysis (PLSA) [7] and Latent Dirichlet Allocation (LDA) [2], have
been widely applied. Based on the bag-of-words model, LDA [2] represents each
given document as a multinomial distribution over topics and represents each
topic as a multinomial distribution over words. However, in LDA [2], the number
of topics is set manually.
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Network analysis based topic models are also developed. Li et al. [9] introduce
community and dynamic into topic models. Rule et al. [14] apply a network
analysis based method in exploring the topics and the changes of them in State
of the Union discourse. Cointet et al. [5] utilize the same method to analyze
the research topics in gene expression profiling. The method and technique used
by Rule et al. and Cointet et al. mentioned above can actually be provided
by CorTexT platform1, which is abbreviated as NAM (network analysis based
model) in this paper. More specifically, they first project the semantic relation
between frequent words into a graph (network) and filter the network until it
presents a community structure [12]. Communities detected by a community
detection algorithm are regarded as topics, thus the number of topics doesn’t
need to be set manually. Moreover, based on a measure to quantify the proximity
between topics in different period, the dynamic topic model (DTM) can also be
induced.

Word embeddings have proven to be powerful semantic representa-
tions in practice. Effective neural network models like Continuous Bag-of-
Words (CBOW) and Skip-gram models [10], learn word embeddings from con-
textual information and project words into a continuous linear space. Therefore,
it should be useful to combine word embeddings with NAM. When other con-
ditions remain unchanged, the final network of NAM is only determined by
similarity between words. We note that since Rule et al. [14] only use the word
pair with the Pointwise Mutual Information (PMI) value above zero to calcu-
late the distributional similarity, it’s possible to use cosine values between word
embeddings after subtracting a threshold to execute the same calculation, which
can introduce word embeddings into NAM and make full advantages of their
ability to capture semantics.

We aim to apply NAM in analyzing the political topics and their changes
in the political reports from government and party in China (RGPC). Mean-
while, to make use of word embeddings, we prepare reports from The People’s
Daily (RPD), which may be semantically similar to RGPC, because RPD usually
reflect the official political tendency.

In this paper, we first overview NAM by some more rigorous definitions. Sec-
ond, we propose a distributional similarity based on shifted cosine values (cosine
values subtracting a constant) between word embeddings. Thirdly, measured by
coherence values [4,11,13] on RGPC in a global period, we observe that shifted
cosine values can achieve comparable performance with PMI, which prove the
effectiveness of new similarity in terms of the disadvantage that word embed-
dings are learned from RPD rather than RGPC. Finally, based on coherence
values, the dynamic political topics in China determined by two kinds of simi-
larity are visualized and interpreted in terms of social and history background.
The experimental results show that although our similarity introduces semantic
bias caused by data set differences and adds a parameter to be adjusted, it can
still capture the changes of political themes of historical significance.

1 https://www.cortext.net/.

https://www.cortext.net/
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2 Related Works

Over the past decade, various network analysis based approaches have been pro-
posed to generate topics from corpus. Li et al. [9] elaborately combine community
detection with topic analysis to help to understand social networks. Cointet et
al. [5] showed a semantic network to interpret the research topics of gene expres-
sion profiling. This network shows an obvious community structure [12], and is
intuitive and easy to interpret. This network analysis based topic model is also
utilized by rule et al.[14] to interpret the political theme shifts of State of the
Union discourses. The method used by rule et al. and cointet et al. [5,14] is sup-
ported by CorTexT platform. However, the platformcan not directly meet our
experimental needs, such as calculating new similarity and preprocessing Chi-
nese corpus. Therefore, instead of using this platform, we wrote our own scripts
to execute our experiments.

Word embeddings improved by mikolov et al. [10] have proven to be power-
ful to capture semantics from corpus. The advantage of word embeddings over
semantics is also made use of to improve the performance of topic models. Das
et al. [6] combine multivariate Gaussian distributions with word embeddings. Li
et al. [8] apply auxiliary word embeddings in a topic model for short texts.

We introduce word embeddings into NAM, exploiting not only the rich
semantic from word embeddings, but also the intuitive and clear network struc-
tures to interpret the produced topics.

3 Methods

3.1 Preliminaries

Two definitions are given as follows:

Definition 1: Given a directed (or undirected) graph G, if a simple graph g
satisfies the following requirements: 1, g has the same vertices as G;

2, For any given vertices i and j(i �= j) of G, if there is at least one edge
between these two vertices, then there is only one undirected edge between ver-
tices i and j of graph g;

3, For any given vertices i and j(i �= j) of G, if there is no edge between these
two vertices, then there is also no edge between vertices i and j of graph g;

Then we call the simple graph g as a simplified graph of graph G. Notably,
if G is an undirected graph, then G is a simplified graph of itself.

Definition 2: If for any given pair i and j, similarity s(i, j) is equal to s(j, i),
we call that s(i, j) is symmetrical, else we call s(i, j) asymmetrical.

Notations: In this paper, the simplified graph of a graph G is typically denoted
as lower case g, e.g., g

′
and G

′
, gT

p and GT
p , etc. For simplicity, we use i or j to

refer to terms of Wp, although they are the indexes of terms.
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3.2 Network Analysis Model

In this subsection, we describe the network analysis based model (NAM) [14]
with graph theory knowledge and supplementary definitions in Subsect. 3.1. Our
settings may not be exactly the same as those actually used by Rule et al.

Linguistic Processing and Similarity Calculation. N most frequent noun
terms are extracted from corpus produced during the period p, and the set
consists of these terms is denoted as Wp. Similarity s(i, j) between any term
pair i and j can be calculated by various methods (see Subsect. 3.3). Here, terms
i and j are from Wp. In this paper, the similarity will be projected into range [0, 1]
to be compatible with the filtering process.

Construction and Filtering of Network. If s(i, j) is asymmetrical, then a
directed graph Gp is built according to the following procedure: First, N terms
in the set Wp are used as vertices. Second, for any vertex pair i and j (i �= j),
a edge from i to j is built, with its weight being s(i, j). Notably, loops will not
be introduced into Gp, so the number of edges of directed graph Gp is actually
N(N − 1). Else if s(i, j) is symmetrical, then an undirected graph Gp is built
using similar process. But in this situation, there are only N(N−1)

2 edges of Gp.
After Gp is constructed, its filtering process begins. At the beginning, a

threshold v is initialized as 0, and we remove all edges below v from Gp, thus
we obtain a temporary graph G

′
p. We then explore the connectedness of graph

gv
p (the simplified graph of graph G

′
p). All vertices of components except those

of the main connected component of graph gv
p are removed from G

′
p, along with

the edges connecting these vertices, from which we obtain graph Gv
p. Then v is

added by a incremental Δv. Similar to the process above, we can obtain Gv
p from

Gv−Δv
p and update v until the termination condition.

We approximatively follow the termination condition of filtering algorithm as
in reference [14], that is, when a component larger than 2 vertices is separated
from the principle component of simplified graph gv

p , the filtering process is
stopped. The termination condition is ignored only when the threshold v is 0.
The final threshold v is denoted as T . Basing on the filtering process above,
the final semantic network GT

p can be built from corpus produced in any given
period p. The set of the vertices of GT

p is denoted as WT
p .

Note that the edge between any given vertex pair i and j may be
removed (even if i and j belong to the same community), so we define e(i, j)
to replace s(i, j). The definition of e(i, j) is as followings: if there exist an edge
from vertex i to vertex j in GT

p , then e(i, j) = s(i, j); otherwise e(i, j) = 0.

Community Detection and Topic Representation. The vertices connected
with each other closely in the filtered networks GT

p are thought to belong to
the same community, i.e., cluster. Louvain algorithm [3] is applied to identify
communities of GT

p . The communities are denoted as φl
p, where l ∈ {1, 2, 3...L},
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and L is the number of communities of GT
p . The communities detected above

are actually not intersect, and their union is WT
p . Every community is made of

vertices, i.e., noun terms. Due to the asymmetry of e(i, j), we practically use
v(w, φl

p) given as follows to measure the importance of vertex w to φl
p:

v(w, φl
p) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

∑

c∈φl
p

(e(w,c)+e(c,w))

∑

(c1,c2)∈φl
p
2

e(c1,c2) , w ∈ φl
p

0, w /∈ φl
p

(1)

In fact, a community is regarded as a topic. Intuitively, for a given community
φl

p, a large v(w, φl
p) means the great importance of word w to φl

p.

3.3 Distributional Similarity

We show a distributional similarity in a more general form as follows:

s(i, j) =

∑

c ∈ Wp/ {i, j}
w(i, c) > 0
w(j, c) > 0

min {w(i, c), w(j, c)}

∑

c ∈ Wp/ {i, j}
w(i, c) > 0

w(i, c)
(2)

The formula above was actually proposed by weeds et al. [16] earlier. Here,
w(i, j) is just a weighting function, and different functions can be used to act as
w(i, j), such as PMI. If w(i, j) > 0 means that j is a feature word of i, then for-
mula 2 measure the similarity between different words by comparing their feature
words and w(i, j) serves as weight. s(i, j) is asymmetric and lines in range [0, 1].
When there is no term j such that w(i, j) > 0, the denominator of formula 2 is
set as a small constant, i.e. 10−6 in practice to avoid denominator becoming 0.
In the next three sub sections, three kinds of similarity are introduced.

PMI Based Distributional Similarity. Point-wise mutual information I(i, j)
between term i and j is defined as follows:

I(i, j) = log2
p(i, j)

p(i) · p(j)
(3)

Probability p(i, j) and p(i) can be derived from a co-occurrence matrix2.
When w(i, j) in formula 2 is pointwise mutual information (PMI) I(i, j), s(i, j)
is actually the similarity utilized by rule et al. [14]. PMI based distributional
similarity in the form of formula 2 is denoted as sPMI in this paper.

Shifted Cosine Based Distributional Similarity. Note that in sPMI , the
weight can actually be thought as the difference between PMI and a special
threshold, i.e., zero. The zero PMI threshold corresponds to a situation that two
2 https://docs.cortext.net/metrics-definitions/.

https://docs.cortext.net/metrics-definitions/
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terms occur independently in the sense of probability. Similarly, for introducing
word embeddings into distributional similarity and making use of their effective
semantic representation ability, we propose to use the difference between cosine
similarity and a threshold to be adjusted as weight to calculate the distributional
similarity. We call the weight function proposed above as shifted cosine (SCS),
exactly the formula is given by follows:

SCS(i, j) = cos(i, j) − θ (4)

where cos(i, j) is the cosine value between word embeddings of term i and
j and θ is a constant. However, unlike the unique zero PMI value based on
probabilistic theory, θ will be decided by experiments. SCS based distributional
similarity in the form of formula 2 is denoted as sSCS in this paper.

Translated and Rescaled Cosine Similarity. Translated and rescaled cosine
similarity is also utilized as a distributional similarity. For compatibility with
filtering process, cosine similarity are projected into range [0, 1] by an affine
transformation as follows:

TRc(i, j) = (cos(i, j) + 1)/2 (5)

where TRc is the translated and rescaled cosine similarity.

3.4 Dynamic Topic Over Time

Basing on the contribution score v(w, φl
p), proximity measure of topics can also

be defined. Rule et al. [14] only consider the proximity between any pair of topics
in two successive period. Similar with the Bhattacharyya distance, proximity
measure of topics is defined as follows [14]:

ρ(φ
i
p, φ

j
p−1)=1−

1
√

2

√
√
√
√
√
√
√

∑

w∈
(

φi
p∪φ

j
p−1

)

(
√

v(w, φi
p)−

√

v(w, φ
j
p−1)

)2

(6)

4 Experimental Setup

4.1 Data-sets and Pre-processing

We collect data-sets RGPC and RPD produced in period 1950-2003, which is
called as global period in this paper. Relatively, any sub period of global period
are called local period. Three local periods are set as follows: [1950 : 1976],
[1969 : 1992] and [1988 : 2002], which correspond to the periods led by three dif-
ferent leaders in China. These local periods are overlapping, which is designed to
maintain the strength of similarity (formula 6) between topics in two successive
local periods.

RPD contains news and reports in newspaper every year, whereas RGPC only
contains reports in particular dates, and is a small data-set, so word embeddings
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are trained from RPD. RGPC is used to estimate joint probability distribution
of frequent noun terms, which is made use of to calculate PMI and coherence of
models on RGPC. Note that besides corpus from the global period, corpus from
three local periods are also pre-processed and used to learn word embeddings
respectively.

We use python tool Jieba [15] to implement Chinese word segmentation,
meanwhile a stopword list is used to avoid meaningless terms and a new words
list is used to update new terms for term library of Jieba [15]. The stopword list
is provided by human experts in social science area. Following NAM mentioned
in Sect. 3.2, we choose 1000 most frequent noun terms of RGPC (1950-2003),
utilize the similarity mentioned in Sect. 3.3 to build and visualize the global
semantic networks and use louvain algorithm [3] to induce topics. In detail,
we rely open source tools Gensim3 to train word embeddings and Networkx4

to implement filtering algorithm. Visualization and community detection are
finished by Gephi [1]. Following reference [14], the threshold increment of edge
strength, i.e., Δv is set as a fixed constant equal to 0.01.

5 Experimental Results

5.1 Global Semantic Networks

Three global networks are shown in Fig. 1 and 2. We can observe that vertices
representing “cities and provinces” are away from the main component in sub-
picture (b) and Fig. 2, whereas related vertices in sub-picture (a) are not. Because
networks in sub-picture (b) and Fig. 2 are based on the same word embeddings
learned from RPD, whereas the network in sub-picture (a) is based on RGPC,
the difference of the degree that “cities and provinces” group is away from the
whole network actually reflects the semantic difference between different data-
sets. Notably, the layout algorithm only serves for visualization and the spatial
distance in these visual pictures doesn’t strictly reflect the real semantic differ-
ences.

We can also observe that except the sub components corresponding to “cities
and provinces”, the structures of the rest graph are also similar, which indicates
that the substitution of sSCS for sPMI should be feasible, although some seman-
tic bias may also be introduced.

5.2 Topic Coherence

Reference [13] concludes various coherence metrics by a unified framework. We
choose four metrics to measure coherence of topics induced by three different
similarity. They are CUMass [11], CV [13], CUCI and CNPMI [4].

3 https://radimrehurek.com/gensim/.
4 https://networkx.org/.

https://radimrehurek.com/gensim/
https://networkx.org/
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Fig. 1. The networks based on three different similarity, visualized by Gephi [1], with
their communities detected by louvain algorithm [3]. Vertices of different communities
are dyed in different colors and the size of vertices is positively correlated with term’s
frequency in corpus. Every vertices is labeled by corresponding Chinese terms. Built-in
“Force Atlas” layout algorithm is used. Components in three red square frames are
noun terms of “cities and provinces”, meanwhile a small component in the small red
ellipsoidal frame in picture (b) only contains three semantically similar terms.

We choose 10 top words to represent topics, and words are sorted by contri-
bution score v(w, φl

p) (see Sect. 3.2). Top words are used to calculate coherence
scores. Topics produced by NAM may contain a few even only two words, and
these small topics can bring about the fluctuation in coherence scores, therefore
if the number of words in a topic is less than 10, we don’t take this topic into
the calculation of coherence scores. It needs to be pointed out that once the fre-
quent noun term set Wp, the similarity s(i, j), and the parameters θ and Δv are
given, basing on filtering process, the structure of final network GT

p is uniquely
determined. However, louvain algorithm [3] built in Gephi [1] has certain degrees
of randomness and this algorithm is used to recognize communities. Therefore,
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Fig. 2. Undirected graph GT
p based on TRc, with 977 vertices and only 6314 edges.

For visualization, this graph is not shown in Fig. 1.

communities detected after different runs of louvain algorithm [3] are slightly
different, and it may also lead to the fluctuation in coherence scores.

We exam coherence of topics on RGPC, which is also used to induce sPMI .
Coherence results of networks shown in Fig. 1 are shown in Table 1. And a higher
value of coherence means a better performance. As we can see in Table 1, the
scores of TRc in all four metrics are lower than those of the other two similarity,
which proves the compatibility between formula 2 and NAM. More importantly,
sSCS (θ = 0.2) is slightly inferior to sPMI in CUMass and CV , but outperforms
sPMI in CUCI and CNPMI . Notably, shared the same frequent noun term set Wp

extracted from RGPC, measured by topic coherence on RGPC, sSCS (θ = 0.2)
induced by word embeddings learned from RPD can achieve comparable per-
formance with sPMI induced by PMI based on RGPC. The results of coherence
can quantitatively prove the effectiveness of sSCS depending on an appropriate
parameter θ.

5.3 Dynamic Topic Model

The processes of inducing topic models on the corpus produced in global
period are also implemented on the corpus produced in three local periods,
i.e., [1950 : 1976], [1969 : 1992] and [1988 : 2002]. Corresponding parameter θ is
also adjusted respectively based on the topic coherence on RGPC in these local
periods. Moreover, similarity (formula 6) between topics in successive periods is
calculated and used as edge weights.
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Table 1. Coherence table: four coherence scores on RGPC (1950–2003) of three net-
works shown in Fig. 1.

Similarity CUMass CV CUCI CNPMI

sPMI −2.44117 0.77497 −2.53045 0.01203

sSCS (θ = 0.2) −3.64082 0.61669 −1.87727 0.02881

TRc −5.72246 0.48859 −4.52341 −0.08177

Dynamic topics are shown in Fig. 3. For visualization, top three words ordered
by contribution score v(w, φl

p) are applied to represent the topic. Tiny topics
only containing two words are also shown, such as “Russia and the October
Revolution” in 1950–1976 and “Library and Museum” in 1969–1992.

As we can see, some flows in both sub-figures are still similar, although the
representative words are different. For example, the flows at the top of Fig. 3a and
3b are the stable flows of topics involving diplomacy, i.e., there are no confluence
of topics involving diplomacy and other topics. Semantic difference introduced
by word embeddings learned from different corpus source (see Sect. 5.1), e.g., the
stable flow representing “cities and provinces” in the middle of Sub-Fig. 3b can
also be observed.

However, notably, in Fig. 3b, the change from “State-owned enterprise” in
1950–1976 to “Enterprise” in 1969–1992, captures the change in the economic
system in China to some extent, reflecting the different political concepts and
attitudes about economic between two successive leaders. And “Macro-control”
in 1988-2002 should correspond to the financial policy adjustment and control
implemented by the government in 1998 in response to the Southeast Asian
financial crisis since 1997.

The second flow from top to bottom in the Fig. 3b contains “socialism” and
“party” in all three periods, which are the themes of “invariability” of national
governance discourse. These two themes mean the consolidation of the ruling
party and China’s stable social system and ideology, showing strong stability
and continuity. This flow contains “revolution”, “party” and “socialism” in the
first period 1959–1976, of which “revolution” shows the revolutionary spirit of the
first leader and may be related to individual historical events. In next second time
period 1969–1992, “constitution” replaces “revolution” in the flow, which shows
China gradually attaches importance to the construction of the rule of law. In
1988-2002, the flow divides into two new branches, one of which contains “Laws
and regulations”, “administrative supervision”, etc., showing the refinement of
the law and the determination to promote the rule of law, the other one still
contains “party” and “socialism”, inheriting the political theme of flow.

These results also show the ability of sSCS to capture key semantics, even
in the dynamic topic model. Dynamic topic determined by sSCS can actually
capture the evolution of political themes of China.
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Fig. 3. The dynamic evolution of topics are shown in this figure. Picture (a) and (b)
are dynamic topics corresponding to sPMI and sSCS respectively. Blocks in the same
column are the communities, i.e., topics in the same local period. The further to the
right, the later the corresponding period. The belts connecting different blocks are in
fact the proximity measures of topics. A wider belt represents a stronger connection
between two topics, meaning the main direction of topic evolution. The English in the
figure is added later to facilitate readers’ understanding.

6 Conclusions

In this paper, we propose to use shifted cosine values between word embeddings
to replace point-wise mutual information (PMI) as the weight function to cal-
culate distributional similarity between words. A shift parameter θ is crucial
for performance of the topic model and needs to be adjusted by experiments.
The experiments qualitatively show that in terms of the final semantic network
and the dynamic evolution of topics, our proposed similarity sSCS is able to
capture semantic between words. And given topic coherence on RGPC and the
difference between data-sets RGPC and RPD, the effectiveness of sSCS is also
quantitatively proven.
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Abstract. Production rescheduling plays an essential role in endors-
ing the effectiveness of a dynamic manufacturing environment. When
the significant disruptive changes invalidate the original schedules, the
rescheduling system should be adopted by responding quickly to lessen
the effects on the performance of the production. Among the fourth
industrial revolution, digital technologies (e.g., Internet of Things or
IoT) and machine learning are creating new opportunities to execute
production rescheduling. This paper presents a rescheduling approach
based on a genetic algorithm (GA) and artificial neural network (ANN)
to address the problem of flow shop scheduling with machine disruption.
The objective is to find a new sequence or schedule of jobs that minimize
makespan in satisfactorily computational time. This study first generates
simulated scenarios of the interruptions. Then, we propose GA for solv-
ing each scenario. Secondly, we apply ANN to store the knowledge from
simulated scenarios that can provide initial solutions for novel GA. It is
found that the GA-based knowledge from ANN renders the new sched-
ule 35.8% faster than the standard GA. Through observing the results,
the proposed rescheduling methodology for flexible manufacturing not
only has a productive performance in handling machine disruption in a
scheduling problem but also contributes a faster new schedule to fill the
gaps in state-of-the-art heuristic approaches whose computational time
is inapplicable in implementation.

Keywords: Flow shop scheduling · Rescheduling · Machine
disruption · Genetic algorithm · Artificial neural network

1 Introduction

Production scheduling is an essential process in manufacturing systems, where
all production complex activities are controlled on a timescale, including the
allocation of resources in the performance with maximum productivity.
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In a dynamic manufacturing environment, the significant disruptions convey
previous schedules to unacceptable performance, which enforces the rescheduling
process to moderate the effect of such disturbances while obtaining optimum
performance [1]. Many types of significant disturbances in performance can lead
to rescheduling as the previous schedules are no longer feasible. Therefore, these
disruptive events are called rescheduling factors [2], such as machine failure,
rush order arrival, and order cancellation. Rescheduling is also known as real-
time scheduling, relates to adjusting pre-decided schedules. It needs to generate
high-quality and react in a reasonable amount of time to respond the disruptive
events or other changes.

Intelligent industries coordinate different manufacturing resources (e.g., the
machine’s capacity for production and raw materials) based on the industry
4.0 technologies (e.g., Internet of Things or IoT), and integrate these resources
by scheduling and rescheduling approaches. The internet and sensors provide
the statuses of resources in real-time. The advent of the industry 4.0 revolution
has brought great opportunities to improve the manufacturing industries. For
this reason, tremendous perspectives and challenges for production rescheduling
arise from two directions, including competency redesign and nearly optimal
scheduling [3].

This research proposes a methodology for implementing production
rescheduling knowledge, which can be integrated into the current schedule when
unplanned situations have appeared. The methodology framework consists of
four phases: Firstly, before the operation is actually performed, various simu-
lated machine disruption scenarios are generated. Then, the conventional genetic
algorithm (GA) is implemented for rescheduling in each scenario to generate
rescheduling results. Secondly, an artificial neural network (ANN) is trained to
capture the knowledge in the rescheduling results from GA. When the operation
is performing, the trained ANN can make real-time predictions for a new sched-
ule according to a given machine disruption scenario. In case that the predicted
schedule from ANN is infeasible, the GA is applied by using the predicted sched-
ule from ANN as the initial solution to determine a feasible schedule. Finally,
the results from our proposed methodology are compared to the conventional
GA.

The rest of this paper is structured as follows. Section 2 presents the con-
tributions in the literature that is relevant to the production scheduling and
rescheduling area. Section 3 offers the model development that aims to generate
rapid rescheduling to minimize the effect of disruptions in the performance under
a dynamic manufacturing system. Then, the results from the proposed method-
ology are compared with the results from the traditional approach, and presented
in Sect. 4. The last section, Sect. 5, offers our final remarks about directions of
future advances.

2 Literature Review

This section focuses on reviewing former researches of scientific literature related
to production rescheduling problems to determine the research gaps. It is



A Genetic Algorithm Based ANN for Production Rescheduling Problem 281

appropriate to confirm that the previous reviews specify the need for content
deliberation and positions issues.

2.1 Production Flow Shop Scheduling

Scheduling is defined as the problem of arranging, managing, and optimizing a
production process. The jobs have received a series of operations and sequence
processes on several machines in an optimal objective function [4]. Scheduling
procedure also depends on a well-studied machine environment which is the
single machine, the parallel machine, the flow shop, and the job shop [5].

The production system proposed in this study belongs to the flow shop
scheduling. The manufacturing process of the flow shop follows a fixed linear
structure that the operations have to be completed on all jobs in the same
sequence, and the jobs must pass through all the machines in the same order.
The previous literature review has reported that sufficient and appropriate
approaches for flow shop operation require further investigations in the field
of rescheduling problems [6]. The flow shop scheduling has been an active area
since Johnson [7] proposed a simple algorithm for flow shop production with
two machines and unique three machines problem. Then many researchers have
been exhaustively explored algorithms for developing the production sequencing
problem. Stafford and Tseng [8–10] widely presented the permutation flow shop
problem using Mixed Integer Linear Programming (MILP) models. However, a
major problem with this application is that the mathematical model does not
formulate the NP-hard problem [11]. The complexness of production scheduling
problems renders exact solver algorithms incapable of high-quality solutions for
large-size problems in a suitable amount of time. Consequently, many researchers
have turned to heuristics that search for near-optimal solutions in a shorter com-
putational time to solve scheduling problems [12].

A heuristic is designed to search large spaces of candidate solutions to find
optimal or near-optimal solutions in a more potent fashion than traditional
methods [13]. Heuristic algorithms are developed by Palmer [14] that estab-
lished approaches for solving the scheduling with minimum total time. It has
been widely used in solving flexible scheduling problems with makespan as the
criterion. Solimanpur et al. [15] presented EXTS, which is the algorithm from
neural networks and tabu search method, proposed for the flow shop schedul-
ing. The EXTS gets an initial permutation from constructive algorithms and
exploits a neuro-dynamical system to enhance the initial permutation. Etiler
et al. [16] developed a GA-based heuristic, which is easily implementable and
performs efficiently, for the flow shop scheduling problem with the objective
as minimum makespan. Nevertheless, heuristic algorithms for solving NP-hard
problems still take remarkably long computational time [17] depending on the
number of generations. For this reason, common heuristics are still unable to
contain the requirement of rapid rescheduling.

The algorithm introduced in this paper involves GA based on ANN for the
rapid production rescheduling problem. The basic concept of GA is a method
based on Charles Darwin’s theory of biological evolution and natural selection.
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GA is commonly used to generate search problems by representing them in bio-
logically inspired operators: crossover, mutation, and selection. GA is a class
of heuristic methods that are effective and popular in solving scheduling prob-
lems such as examination and course timetabling [18], maintenance scheduling
[19], and diver scheduling [20]. Moreover, GA is also developed to address the
production scheduling problem [21,22], and usually obtain satisfying results.

2.2 Production Rescheduling

Real-world scheduling problems are dynamic industrial environments with var-
ious unforeseen events that may invalidate the original schedules [23]. The pro-
cedure of modifying the production schedule is called production rescheduling.
The conventional scheduling approaches take extra time to reform the primal
schedules and reschedule the unprocessed work orders to achieve a new optimal
solution [24]. The rapid updating of the previous schedule should be analyzed
to mitigate the effects of unexpected situations. Mason et al. [25] presented
rescheduling outperforms that used modified shifting bottleneck method to min-
imize total weighted tardiness. Proactive scheduling was proposed by Sabun-
cuoglu and Goren [26]. It focused on generating schedules that are capable
of absorbing disturbance with rescheduling policies. Knowledge-based methods
such as expert systems [27], a primitive form of artificial intelligence (AI), are pre-
sented to solve fuzzy and random disturbances in production problems. Dong and
Jang [28] developed two heuristic algorithms based on a generation procedure
of an active schedule and the well-known algorithm, Wilkerson-Irwin, for min-
imizing mean tardiness of production rescheduling due to machine breakdown.
Kundakci and Kulak [29] built hybrid GA approaches for fluctuating job shop
scheduling problems with machine breakdown, new order arrival, and change
in processing time. Li et al. [30] introduced the artificial bee colony algorithms
and Tabu Search algorithm for solving the flexible job-shop scheduling problems
and addressed dynamic events with three rescheduling strategies. Nonetheless,
solving production rescheduling problems in stochastic environments published
in journal papers is challenging to implement in real-world industries [3].

Along with the fourth industrial revolution (Industry 4.0), different appli-
ances from optimization, data analytics, IoT, and AI are stimulating opportu-
nities in production systems. In the early years, research on AI has received
more attention. Li et al. [31] modeled flexible job shop scheduling and solved
it through a hybrid metaheuristic algorithm. Then, they train the classification
model, which integrates machine learning (ML) for identifying rescheduling pat-
terns. Zhou et al. [32] presented intelligent factories using novel cyber-physical
integration for online scheduling low-volume-high-mix orders. They used IoT
technologies to interconnect multi-agent systems and proposed an AI scheduler
to schedule dynamic production with real-time sensor data. However, state of
the art from Cadavid et al. [33] inform that 75% of the possible research domain
in ML with production planning and control in industry 4.0 are hardly ana-
lyzed or not addressed. Although, the field of most cited research published in
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prominent journals [33,34] suggests that AI is used to determine to overcome
the limitations of dynamic manufacturing environments.

ANN, which is suited for time series forecast [35], is used in this paper. Their
process can be trained to allow computer programs to recognize patterns between
input and target. In order to encourage to the literature, this study presents a
dynamic flow shop scheduling problem in which machine disruption occurs and
also proposes GA-based knowledge from ANN to generate rapid rescheduling.

3 Methodology

This section explains the proposed methodology for the rapid rescheduling pro-
cesses to relieve the impact of unexpected events that able to occur anytime
in the flexible manufacturing system. Fig. 1 demonstrates the proposed general
methodology in a workflow diagram. It contains two main parts:

1. The knowledge of the rescheduling process is generated before starting the
production. The optimal sequence of flow shop scheduling with disruptive
events (DEt) is stored in the ANN using simulated scenarios. The considering
disruptive events that are implemented in this paper is machine disruption.
In the simulation environment, schedule scenarios are modified by GA, which
executes the sequence with minimizing idle time of the last machine operation,
also known as minimizing tardiness.

2. The rescheduling process is performed when IoT sensors derive real-time dis-
turbing machine data, the applying knowledge from the ANN as the initial
solutions are placed into our proposed GA. Therefore, the novel GA-based
rescheduling knowledge is able to provide a rapid new sequence.

3.1 Problem Description

The rescheduling problem addressed in this paper is the flow shop produc-
tion with disruptive situations by considering the following assumptions. The
manufacturer has n jobs that have to be scheduled on a queue of produc-
tion with m machines, denoted by Jobs = {J1, J2, ..., Jn} and Machines =
{M1,M2, ...,Mm}. All the jobs and machines are available at time zero. Each
machine has exactly the same sequence of jobs and can process one opera-
tion at a time. Each job requires pij that represents a processing time on a
specific machine, where (i, j) refers to the operation of job j on machine i
(i ∈ 1, ...,m; j ∈ 1, ..., n). Setup times for the operations are included in pro-
cessing times, and each operation cannot be interrupted.

The problem is to decide an optimal sequence S = {s1, s2, ..., sn} of the n
jobs. Let Iiq indicates the idle time on machine i between the operation of the
jobs in the qth position and (q + 1)th position. The objective of the problem is
to minimize the makespan that is equitable to minimizing the total idle time on
the last machine, machine m [11]:
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Fig. 1. Workflow diagram of proposed rescheduling methodology

min(
m−1∑

i=1

pi,1 +
n−1∑

j=1

Imj),

which is summation between the idle time before starting the first job on the
last machine and the idle time between the jobs on the last machine.

Moreover, unexpected situations frequently occur during production in the
present factory. For adaptation to the changes, the operation needs to promptly
reschedule production sequences to engender new optimal sequences into the
schedules to maintain the quality of production performance.

3.2 Proposed Rescheduling Methodology

We proposed the methodology for the rescheduling problem by improving GA
with initial solutions from ANN. The ANN is trained with optimal or near-
optimal solutions of known cases to return excellent solutions for new cases,
which are then given to GA. Accordingly, the GA is applied in two parts of
the rescheduling process. First, before launch production, it is developed for
searching a near-optimal sequence of each scenario. Then, after receiving the
initial solutions from ANN, when actual disruptive events occur, GA is again
used to generate a new sequence by using the knowledge from the simulation
designs to execute in real-time or near real-time.

Genetic Algorithm. To get a suitable sequence in the ordering problem, GA
first needs to create feasible solutions produced by binary code or actual code.
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Our solutions are coded by the characteristics of a random permutation sequence
of jobs. The individual characteristics are called chromosomes and represent
the initial population. Thereupon, GA operators are established to create new
solutions - crossover, mutation, and selection.

This work uses the crossover operator as a two-point crossover, randomly
picking two crossover points from the parent chromosomes and swapping these
points. A mutation procedure is applied by altering a gene in a chromosome to
maintain genetic diversity for better solutions. Hence, offspring individuals are
produced, and the populations are expanded. Afterward, the fitness value of the
chromosomes, including parents and offspring, is calculated by minimizing the
idle time at the last machine as criteria. The selection operator is the process of
the chosen individual chromosome that has the best fitness values.

Artificial Neural Network. The ANN for rescheduling progress in this paper
is presented to store knowledge and effectively provide initial solutions. The
networks are trained by simulated scenarios consisting of inputs as the cases
of changing processing time because of machine disruption and the targets as
an optimal production sequence for each case that results from GA. Moreover,
to facilitation the procedure of the ANN, all inputs are assigned into actual
processing time (pij) of job i on machine j and targets are normalized into [0,
1]. After going through the learning process, the ANN is able to deliver the
output as the new optimal sequence when real disruption appears. Note that
the ANN will provide an excellent solution if the training instances demonstrate
the disturbed production well. The proposed ANN is illustrated in Fig. 2.

GA Based Knowledge from ANN. The relevant paper publication men-
tioned that the computational time of optimization and heuristic approaches
are unaffordable in practice. Thus, to conquer the limitation of previous publi-
cations in the literature, GA-based knowledge from ANN is being used. When
disruptive situations arise, the population of GA in the first phase is expanded
by the initial sequences, which might be the new optimal sequence provided by
the ANN above. By doing this, improved GA contributes the faster searching
the best solution with the guideline from the knowledge.

4 Experiments

To demonstrate the rescheduling process in dynamic production, we present the
procedure for generating the instance of schedule scenarios, the implementation
details, and then elucidate the results from our experiments.

4.1 Generating Simulated Scenarios

The scenarios were composed by using a general way to build. An industrial case
study has been considered to illustrate the proposed methodology for receiving
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Fig. 2. The architecture of the ANN for the proposed rescheduling methodology

rescheduling knowledge. The manufactory possesses large-size flow shop produc-
tion of 20 jobs and 10 machines. Each machine’s setup time of a particular job
is not determined since setup time depends solely on the job to be processed,
regardless of its preceding job.

The proposed unexpected situation in this experiment is machine disruption.
Consequently, in the scenarios, we begin with a base instance that the processing
time of all jobs is randomly varied from 10 to 50 time units. Then, we create
ten scenarios of increasing double the job’s processing time on the disordered
machine due to machine interruption.

4.2 Implementation Details

For our numerical parameters used in the proposed GA-based knowledge on
the ANN are shown in Table 1. The GA and ANN are programmed on Python
language in Jupiter notebook 6.3. Moreover, the experiments are performed on
2.40 GHz Intel Core(TM) i5 with 16 GB of RAM.

4.3 Numerical Results and Discussions

The experiments aim to alleviate the consequence of machine disruption that
leads the primary sequence to intolerable execution. The proposed methodology
attempts to acquire the new sequence in rapid computational time. Furthermore,
the criteria for maximizing production scheduling and rescheduling performance
are minimizing idle time at the last machine.

To evaluate the capability of the proposed methodology for solving the
rescheduling problem, we test the performance by comparing the results between
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Table 1. The parameters used in GA and ANN

Models Parameters Values

GA Population size 300

Crossover rate 0.8

Mutation rate 0.1

Number of iterations 250

ANN Input layer ReLU activation

Hidden layers 7 layers, 15 units, and ReLU activation

Output layer Sigmoid activation

Learning rate 0.001

Epochs 1000

our rescheduling methodology and the ordinary GA, as demonstrated in Fig. 3.
After the above scenarios train the ANN, we compose a new instance that dif-
fers from our scenarios into the ANN. The new instance represents a disruptive
event that possibility emerges while performing the production. The trained
ANN takes the new instance as a new input. Then, the solution from the output
of ANN is applied as an initial population in GA. We also set the same instance
into standard GA to observe the different results from both methodologies.

Iterations
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Fig. 3. Comparison between standard GA and proposed GA-based knowledge form
ANN

We attempt the number of iterations into 100, 200, 500, and 1000 iterations.
Then, we ascertained that the iterations after 200th are invariable. Therefore, we
set 250 iterations for our final experiment. As Fig. 3 illustrates, the GA-based
knowledge on ANN obtains the solution faster than the standard GA. At 1st

iteration, our suggested GA that has the initial solution from ANN grants better
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fitness value (minimize makespan). Moreover, the proposed GA is able to reach
minimum idle time (615 time units) since 9th iteration. On the other hand, the
GA without the knowledge from the ANN reaches the fittest at 188th iteration.
In summary, the GA based on the initial solution from the ANN completes for
the best sequence with 35.8% faster than the ordinary GA.

5 Conclusions and Future Work

Most publications in the rescheduling area are computationally arduous for opti-
mization solvers, and heuristics also generally take tens of minutes to hours to
obtain a gratifying solution. For this reason, our proposed methodology, GA-
based improvement from ANN, is presented to contribute fast and effective
reschedules for large-size dynamic flow shop scheduling with machine disruption
problems. In this way, our proposed methodology delivers preeminent solutions
for the dynamic flow shop scheduling problem with permissible computational
time for rescheduling faster than the conventional approach.

We propose that ANN provide the initial rescheduling production with faster
computational time. We acknowledge that the potentiality of ANN can be built
from the training data, which are inputs and targets. A lack of extrapolation
property or destitute prior knowledge to train the networks may be cemented
in a local minimum solution. The ANN may never be constituted to enhance its
preciseness over a certain threshold. Therefore, the critical limitation of ANN is
that the trained networks should have been well-variant instances.

In our study, the limitations are that the new instance needs to be similar to
the provided scenarios, otherwise, the ANN cannot grant the well-initial solutions
to GA. Consequently, using ANN based on reinforcement learning [36] is an
appealing architecture to collect a plenty amount of knowledge and then store
it in Q-learning for the instances that were never found in the simulations.

Moreover, further research will focus on more experiments with different
types of disruptive events, such as rush orders and the arrival of new orders,
scale up the simulated scenarios that represent unexpected real-world situations.
Additionally, the results from our proposed methodology should be compared
with the results from other approaches to ensure the precision of our experi-
ments. However, the limitations of this work are that the new instance needs to
be similar to the provided scenarios. Consequently, using ANN based on rein-
forcement learning [36] is an appealing architecture to collect a plenty amount
of knowledge and then store it in Q-learning for the instances that were never
found in the simulations.
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Abstract. Transductive learning is a problem to predict labels of unla-
beled data exploiting both of labeled and unlabeled data. There are var-
ious methods for transductive learning, which are often variants of exist-
ing machine learning methods. In this paper, we use one of the existing
unsupervised methods, row-rank representation (LRR), for transductive
learning. The proposed method consists of two phases: clustering and
classification. In the clustering phase, we apply a revised LRR to the
data set including both of labeled and unlabeled data. Then, we obtain
a modification of the data set, which reflects cluster structure behind
the data set. In the classification phase, we classify unlabeled data by
using the modified data set obtained in the clustering phase. We use a
classification method which is inspired by LRR. That is, for each class,
we approximate each unlabeled data point by the labeled data set of the
class, then classify the point to the class with the smallest approxima-
tion error. Finally, we examine performance of the proposed method by
numerical experiments.

Keywords: Transductive learning · Low-rank representation ·
Subspace clustering

1 Introduction

One of the tasks of the machine learning is to classify given data into a num-
ber of groups. Learning problems related to classification task are divided into
two kinds. One is supervised learning, in which a data set with class labels is
given, and a classifier is learned by exploiting the labeled data set. The other is
unsupervised learning, in which a data set without class labels is given, and a
cluster structure is learned which intrinsically exists in the data set. Moreover,
semi-supervised learning is a combination of problems, in which a classifier is
learned by exploiting not only labeled data but also unlabeled data. In general,
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we can easily obtain a large amount of data, but assigning labels to data is
expensive. Hence, it is useful that performance of a classifier can be improved
by using unlabeled data.

Semi-supervised learning problems are divided into inductive and transduc-
tive. Inductive learning is a task to build a classifier which works for unseen data.
On the other hand, transductive learning is a task to assign labels to unlabeled
data which are provided before learning. In other words, in the transductive
learning, classification of unseen data is not required. Hence, transductive learn-
ing is a easier problem than inductive learning.

In this paper, we propose a transductive learning method based on low-rank
representation (LRR) [4], which is an unsupervised method. LRR is a method to
induce a low-rank model from data and divide the data into multiple subspaces.
Such a subspace clustering method is useful for image classification problems.
Additionally, LRR robustly estimates intrinsic subspaces despite noise in data.
By using LRR, we expect that cluster structure of data is detected, which is
useful for classification task.

The proposed method consists of clustering and classification phases. In the
clustering phase, we apply a revised LRR to the data set including both of
labeled and unlabeled data. In the original LRR, each data point is represented
(approximated) by a linear combination of a (selected) data set. Additionally,
the representation is regularized by minimizing the nuclear norm of the matrix
of coefficients. On the other hand, the LRR of the proposed method uses con-
vex combinations instead of linear combinations. In the classification phase, we
classify unlabeled data by using the data set approximated by the process of the
clustering phase. We use a classification method which is inspired by LRR. That
is, for each class, we approximate each unlabeled data point by the labeled data
set of the class, then classify the point to the class with the smallest approxima-
tion error. Finally, we examine performance of the proposed method by numerical
experiments.

2 Low-Rank Representation

We introduce Low-Rank Representation (LRR) [4] which forms the basis of our
proposed method. LRR is a clustering method in which an ideal data set is
assumed to be distributed in a union of subspaces S1, . . . ,Sq. Additionally, we
assume that these subspaces are independent, that is each subspace is a com-
plement of the subspace spanned by the other subspaces. For example, Fig. 1(a)
shows a data set consisting of 3-dimensional vectors distributed in the union of
a plane (2-dimensional subspace) and a line (1-dimensional subspace). LRR can
divide the data points into two groups corresponding to the subspaces.

Let x1, x2, . . . , xm ∈ Rn be given data points (n-dimensional vectors). We
define X = [x1 x2 · · · xm], i.e., the matrix whose columns corresponding to
the data points. Additionally, we prepare “dictionary” a1, a2, . . . , ak ∈ Rn, and
define A = [a1 a2 · · · ak]. LRR achieves clustering using the following optimiza-
tion problem.
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Fig. 1. An example of low-rank representation

minimize
Z,E

‖Z‖∗ + μ‖E‖� (1)

subject to X = AZ + E.

The decision variables are Z ∈ Rk×m and E ∈ Rn×m. Symbol ‖ · ‖∗ means the
nuclear norm, i.e., ‖Z‖∗ is the sum of the singular values of Z. Symbol ‖ · ‖�

means an arbitrary matrix norm. In the original paper [4], the �2,1 norm ‖ · ‖2,1

is used, i.e., ‖E‖2,1 is the sum of the �2 norms of the columns of E. The weight
μ > 0 is a hyperparameter to control the minimizations of ‖Z‖∗ and ‖E‖�.

This optimization problem tries to represent each data point xi by a linear
combination of the column vectors of the dictionary A. The i-th column zi =
[z1i z2i · · · zki]� of Z is the coefficients of this linear combination. The i-
th column ei = [e1i e2i · · · eni]� is the residual for the linear combination.
Therefore, we minimize the norm of ei to obtain a good approximation.

On the other hand, minimization of the nuclear norm ‖Z‖∗ aims to obtain
a low-rank representation of X. By low-rank representation and appropriately
selecting a dictionary A, we can find simple clustered structure in the data X,
that reflects the union of subspaces where the data intrinsically locate. That is,
we expect that data points in the same subspace form a cluster and the clusters
are found by LRR.

Figure 1(b) shows the result of LRR for the data X of the left figure. We
use X as the dictionary, i.e., A = X. This figure shows the absolute values of
elements of the solution Z. The horizontal and vertical axes are the column and
row indices of Z. The elements of Z are shown in gray scale, and white regions
indicate elements are zero. We can find the clusters of the plane and the line by
using the two blocks in the diagonal of Z.

We mention the analytic solution of LRR when the column space of A con-
tains x1, . . . , xm and E is fixed to 0. In that case, the optimum Z for LRR is
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Z = A†X, where A† is the pseudoinverse of A. Furthermore, when A = X, we
obtain Z = Ṽ Ṽ �, where V is the matrix comes from the “skinny” singular value
decomposition (SVD) X = ŨΣ̃Ṽ �. The skinny SVD is the reduced form of SVD
X = UΣV �, where zero singular values and the corresponding column vectors
of U and V are removed.

We explain why the solution Z of (1) becomes block diagonal. As mentioned
above, in the special case, we have Z = A†X. We assume AA� is nonsingular.
Hence, A† = A�(AA�)−1. Let x be a column of X and z = A†x. Moreover,
the columns of A are divided into two groups A1 and A2, namely A = [A1 A2].
The columns A1 and A2 are included in subspaces S1 and S2, respectively. The
vector z is also divided into z = [z�

1 z�
2 ]�, according to the column indices of A1

and A2. Here, we show that z2 = 0 when x is included in S1. Let y = (AA�)−1x,
and z = A�y. Then, we have A1A

�
1 y + A2A

�
2 y = x and z1 = A�

1 y, z2 = A�
2 y.

Since x is included in only S1, we have A2A
�
2 y = 0. Therefore, z2 = A�

2 y is
included in the image of A�

2 and the kernel of A2. Since these two subspaces are
orthogonal, we obtain z2 = 0.

3 Transductive Learning Based on Low-rank
Representation with Convex Constraints

3.1 Framework

In this paper, we propose a transductive learning method by using LRR. First,
we introduce transductive learning. Let C = {1, 2, . . . , c} be a set of class label.
Let (x1, y1), . . . , (xm, ym) be a given data set, where xi ∈ Rn is an input vector
and yi ∈ C ∪{0} is a class label for xi. A vector xi or an index i is called labeled
if yi �= 0 (yi ∈ C), and it is called unlabeled if yi = 0. The task of transductive
learning is to assign labels to unlabeled data by exploiting both of the labeled
and unlabeled data.

The proposed method consists of two phases. First, we apply a modified
version of LRR to the data set X = [x1 x2 · · · xm]. We expect that the modified
LRR induces clustered structure of X by the solution Z, and we can remove noise
and/or data-point-specific information from the data set by replacing X with
X̃ = XZ. We call this phase “clustering phase”.

The second is “classification phase”. There are many classification algorithms
or supervised learning methods, however in this paper, we use a reconstruction
classifier (RC), which is a classifier based on the same idea of LRR. RC classifies
an unlabeled data point by approximating them by linear combinations (or con-
vex combinations) of labeled data set. For each data point x and each class k,
we compute the error of the best approximation of x by the data in the class k.
Then, we classify x to the class k∗ that its reconstruction error is the smallest.



Transductive Learning Based on Low-Rank Representation 295

Fig. 2. A data set with nonlinearity.

Fig. 3. Solutions Z for Fig. 2.

3.2 LRR with Convex Constraints

First, we mention a motivation to use the modified LRR in our method. Figure 2
shows a data set consisting of points generated from two curves. The first 100
data points form the lower curve, and the next 100 data points form the upper
curve. Applying LRR (1) (setting ‖E‖� by the �2,1 norm and μ = 103) to this data
set, we obtain the solution Z that is shown in Fig. 3(a). We can see that there
exist many nonzero elements in the off-diagonal part, namely the part consisting
of pairs of indices (data points) in the different curves. This is because that
the data set includes nonlinearity, but LRR is intended to group data by using
subspaces (lines).
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Hence, we modify LRR to successfully induce clusters from data sets such as
Fig. 2. The optimization problem of the modified LRR is given as follows:

minimize
Z,E

‖Z‖∗ + μ‖E‖�

subject to X = AZ + E,

zij ≥ 0, i = 1, . . . , k, j = 1, . . . , m, (2)
k∑

i=1

zij = 1, j = 1, . . . , m.

The additional constraints ensure that each xi is approximated by a convex
combination of the dictionary a1, . . . , ak. By using convex combination, we intend
that each xi is reconstructed by a local line segment, and the global nonlinear
structure is preserved. We call the modified LRR, LRR with convex constraints
(LRRCC). The result of LRRCC for the data set of Fig. 2 is shown in Fig. 3(b).
We can see that almost the elements in the off-diagonal part are zero.

3.3 Clustering Phase

In this subsection, we explain the clustering phase of our proposed method. We
use LRRCC in the clustering phase. Additionally, we combine LRRCC with the
label information of the give data set. We define the following set L of index
paris.

L = {(i, j) | yi = yj or yi = 0 or yj = 0, i, j = 1, . . . , m}. (3)

Then, we consider the following optimization problem:

minimize
Z

1
2
‖Z‖2∗ +

μ

2

m∑

i=1

‖xi − Xzi‖2

subject to zij ≥ 0, (i, j) ∈ L,

zij = 0, (i, j) �∈ L, (4)
m∑

i=1

zij = 1, j = 1, . . . , m.

We use the data set X as the dictionary: A = X. Moreover, we note that ‖E‖�

is replaced with the square of the Frobenius norm.

Remark 1. To simplify the notation of this paper, we use the same symbol Z for
the solutions of (2) and (4).

If xi is a labeled data point, then the labeled data points in the classes other
than yi are not used for the reconstruction of xi. On the other hand, if xi is
unlabeled, then no restriction is performed.

Another difference between (2) and (4) is ‖Z‖∗ and ‖Z‖2∗. We square the
nuclear norm to make the solution less sensitive to the hyperparameter μ. It
is because the clustering method requires fine tuning of the hyperparameter to
distinguish noise and cluster structure.
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3.4 Algorithm

The optimization problem (4) is solved by the alternating direction method of
multipliers (ADMM). We introduce an additional variable W ∈ Rm×m, and
reformulate (4) as follows.

minimize
Z,W

f(W ) + g(Z)

subject to Z − W = 0, (5)

where
f(W ) =

1
2
‖W‖2∗, (6)

and

g(Z) =

⎧
⎪⎨

⎪⎩

μ

2

m∑

i=1

‖xi − Xzi‖2 if Z satisfies the constraint of (4),

∞ otherwise.
(7)

We apply ADMM to (5). ADMM is an iterative method. Let (Zk,W k) be
the k-th solution in iteration. Additionally, we consider a Lagrange multiplier
Λk in each computation of iteration. The variables Zk, W k and Λk are updated
by the following computation.

Zk+1 = argmin
Z

{g(Z) +
β

2
‖Z − (W k − β−1Λk)‖2},

W k+1 = argmin
W

{f(W ) +
β

2
‖W − (Zk+1 + β−1Λk)‖},

Λk+1 = Λk + β(Zk+1 − W k+1).

(8)

Positive value β is a parameter of ADMM, which affects speed of convergence.
The iteration is terminated if ‖Zk − W k‖ is sufficiently small. It is ensured that
the sequence of solutions {(Zk,W k)} converge to the optimum of (5) [1].

We explain how to compute Zk+1 and W k+1 of (8). The optimization prob-
lem to obtain Zk+1 is expressed as follows:

minimize
Z

μ

2

m∑

i=1

‖Xzi − xi‖2 +
β

2

m∑

i=1

‖zi − (wk
i − β−1λk

i )‖2

subject to zij ≥ 0, (i, j) ∈ L, (9)
zij = 0, (i, j) �∈ L,
m∑

i=1

zij = 1, j = 1, . . . , m,

where zi, wk
i and λk

i are the k-th column vectors of Z, W k and Λk, respectively.
This is a convex quadratic optimization problem. Let zi This problem can be
divided into the subproblems corresponding to z1, . . . , zm, respectively.
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The optimization problem to obtain W k+1 is expressed as follows:

minimize
s,W

1
2
s2 +

β

2
‖W − (Zk+1 + β−1Λk)‖2

‖W‖∗ = s

(10)

Consider the Lagrange function:

L(s,W, ν) =
1
2
s2 +

β

2
‖W − (Zk+1 + β−1Λ)‖2 + ν(‖W‖∗ − s), (11)

where ν be the multiplier. By the method of Lagrange multipliers, the optimal-
ity condition of this problem is given as follows: (W, s) is the optimum iff the
following conditions hold.

W = argmin
W ′

{
ν‖W ′‖∗ +

β

2
‖W − (Zk+1 + β−1Λ)‖2

}
= SVTν/β(Z + β−1Λ),

(12)
and s = ν, ‖W‖∗ = s. The function SVT, which is called singular value thresh-
olding [2], is defined as follows: for a matrix A and a positive α,

SVTα(A) = Udiag({max{0, σi − α}})V �, (13)

where σ1, . . . , σm are the singular values of A and U and V are the left
and right orthogonal matrices of the singular value decomposition, namely
A = Udiag({σi})V �.

Let Z + β−1Λ = Udiag({σi})V � be the singular value decomposition. From
the optimality condition, variable s is uniquely determined by the following
equation:

m∑

i=1

max{0, σi − s/β} = s. (14)

Note that the nuclear norm is the sum of the singular values of a given matrix.
Then, W is computed as follows:

W = Udiag({max{0, σi − s/β}})V �. (15)

3.5 Classification Phase

By the clustering phase, we obtain Z by the optimization problem (4). Then,
the data set X (both of labeled and unlabeled) is replaced with XZ. Using the
replaced X, we classify the unlabeled data points.

Following the idea of LRR, we use RC (reconstruction classifier). For each
class label, each unlabeled data point is approximated by a convex combination
of the data set in the class. Then, the unlabeled data point is classified by the
class with the smallest approximation error.
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Let Xk be the matrix of the labeled data points of class label k. Additionally,
let Mk be the index set of class label k. The optimization problem to reconstruct
a data point x is defined as follows.

minimize
z

‖x − Xkz‖2

subject to zi ≥ 0, i ∈ Mk,
∑

i∈Mk

zi = 1.

(16)

After solving the optimization problem of class k and obtaining the optimum
z∗, we compute the function Fk(x) whose value is the approximation error for
data point x.

Fk(x) = ‖x − Xkz∗‖. (17)

Finally, we classify x to the class k with the smallest error.

y(x) = argmin
k

Fk(x). (18)

4 Numerical Experiments

By numerical experiments, we examine performance and characteristic of the
proposed method. We use optdigits data set obtained from UCI machine learn-
ing repository [3], which is a collection of images of hand-written digits 0, 1 ,...,
9, i.e., 10 class labels.

First, we evaluate classification errors of the proposed method. We com-
pare results of classification with and without the clustering phase. Moreover,
we compare those with the reconstruction classifier and the nearest neighbor
classifier. Table 1 shows the results. The columns of NN (resp. NNC) and RC
(resp. RCC) in the table are the results of the nearest neighbor classifier and
the reconstruction classifier without (resp. with) clustering phase, respectively.
The first column shows the sizes of labeled and unlabeled data, which are ran-
domly drawn from the optdigits data set. Additionally, each class has the same
size. The values of the table for each method and each size are the average and
the standard deviation of 10 misclassification rates for unlabeled data sets. The
parameter of the clustering phase μ is set to 0.1.

From the table, we can see that RC has better classification performance
than NN. It may implies that classification by reconstruction is better than
that by distance for image classification task. On the other hand, RCC is better
than RC, in particular data sets with the smaller sizes of labeled data (100/400
and 100/900). That is, the clustering phase effectively works to induce cluster
structure consistent with class separation.

Figures 4, 5 and 6 show the effect of the parameter μ. We compare the results
of the clustering phase for μ = 0.1 and μ = 1. Moreover, we use a random sample
from the optdigits data set, whose sizes of labeled and unlabeled data are 100
and 100.
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Table 1. Comparison of classification errors.

Labeled/Unlabeled NN NNC RC RCC

100/400 9.10 ± 1.85 8.15 ± 1.51 7.33 ± 1.55 6.78 ± 1.79

200/300 5.77 ± 1.79 5.50 ± 1.68 4.57 ± 1.20 4.40 ± 1.31

100/900 9.74 ± 1.33 8.30 ± 1.20 8.18 ± 1.61 7.32 ± 1.33

200/800 7.06 ± 0.75 6.08 ± 0.73 5.40 ± 0.72 4.95 ± 0.81

Fig. 4. Effect of µ for the approximation error E.

Fig. 5. Effect of µ for the values of Z.

Figure 4 shows approximation errors ‖xi −Xzi‖/
√

n for data points xi. They
are sorted in descending order. As expected, the errors are decreasing when μ is
increasing.

Figure 5 shows values of the solution Z (200 × 200 matrix) of the problem (4).
The first 100 indices are labeled data, and the following 100 indices are unlabeled
data. We can see that the block diagonal, which a reflection of cluster structure
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Fig. 6. Effect of µ for the singular values of Z.

that is consistent with the class labels. The upper-right and lower-left block lines
express associations between labeled and unlabeled data in the same classes.

Figure 6 shows the singular values of Z. In contrast to approximation errors,
they are decreasing when μ is decreasing.

5 Conclusion

In this paper, we have proposed a transductive learning method based on the
low-rank representation (LRR). The numerical experiments confirm that the
clustering phase of the proposed method can improve classification accuracy,
especially for data sets with small sizes of labeled data. In the future work,
we will apply the proposed method to other image data sets and examine its
performance. Additionally, detailed investigation on the advantage of the convex
constraint and/or the nonnegative constraint in the LRR model is also a task
that should be addressed.
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Abstract. This paper aims to suggest the optimal hedge ratio for agri-
culture commodities using copula based GJR-GARCH models, including
the conventional static and dynamic conditional copulas. High frequency
data are also considered as the information for constructing the hedge
ratio. To find the best fit hedging model, we use the AIC and BIC to
compare the performance of the models. In order to obtain the reliable
frequency data, we use the hedging effectiveness for evaluating the vari-
ance reduction of the portfolio. Our results show that dynamic Student-t,
static Student-t, and static Gumbel copulas are utilized to capture the
dependence structure between spot and futures of wheat. We also find
that 1-h frequency provide the best information for reducing the risk of
the portfolio.

Keywords: Hedging strategy · Histogram data · GJR-GARCH
model · Time varying · Copula

1 Introduction

Future contract is a tool for assisting investors and risk managers to reduce the
risk of the agricultural spot. For example, farmers can prevent the risk of agri-
culture prices by using the agriculture futures, investors can use it to minimize
or offset the chance that their assets will lose value in the future. Although, this
hedging strategy is working well in practice, it is quite difficult to obtain the
optimal hedging strategy. This issue has become an important issue in the field
of risk management. In this study, we thus consider the most recent method,
namely copula based GARCH approach.

In a hedging strategy and a safe haven have been investigated in the litera-
ture and most of them consider to use the close price data as the information
for obtaining the optimal hedging strategy which may lead to unreliable risk
management and might not reflect the real behavior of data set (See [1,11]).
Arroyo and Maté [2] mentioned that this traditional data type does not faith-
fully describe the whole phenomena where a set of realizations of the observed
c© Springer Nature Switzerland AG 2022
K. Honda et al. (Eds.): IUKM 2022, LNAI 13199, pp. 305–316, 2022.
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variable is available for each time point. They suggested a Symbolic data like
histogram-value data in order to gain more information of the prices. This type
of data is new and has been receiving more and more attention because they are
able to summarize huge sets of data [7]. Therefore, in this study, we will apply the
histogram data,e.g. with a hourly, 30-min frequency and 5-min frequency data.
In the methodology literature, the hedge ratio can be constructed form the vari-
ance and covariance of the spot and future. In the variance part, Engle [5] and
Bollerslev [3] proposed conditional volatility model namely, GARCH, which is
taking into account the conditional heteroscedasticity inherent in time series.
GARCH model has become popular econometric tools to study the volatility of
time series. However, Li [8] presented the main problem of GARCH model. They
stated that the GARCH process is a symmetric variance process and it ignores
the sign of the disturbance. This is to say, it assumes that the positive or nega-
tive information have the same impact on the volatility. This may not be true in
the financial time series as negative impact is more valuable than positive in the
reality. To deal with this problem of paper, we consider GJR-GARCH model.
Li [8] confirm that GJR-GARCH with skewed-t distribution provide the best fit
specification for modelling the volatility of the financial assets.

In the covariance part, the most recent and acceptable method for capturing
the correlation is Copulas approach which was introduced by Sklar [12]. This
method is widely used in joining random variables and it does not require the
assumption of multivariate normal. This model can join all the possible distribu-
tion of the random variables [8]. However, this traditional copula is assumed to
be constant overtime and it fails to exhibit the sensitivity of price changes and
neglect the time factor in the correlation patterns. Patton [10] proposed that
the interdependence of financial asset returns is time-varying, and asset prices
in different financial markets also tend to have dynamic tail dependence. Thus,
this lead us to consider time-varying copula function of this study. We make the
empirical contribution to the hedging strategy literature by further applying our
model to forecast hedge ratio in the agriculture commodity portfolio which con-
sists of spot and futures. We use Time-varying copula based on GJR-GARCH
model to capture time-varying dependence. Four classes of copula, i.e., Gaussian
copula, Student-t copula, Clayton copula and Gumbel copula are employed in
this study. Furthermore, we also contribute the literature by using a high fre-
quency of spot and futures data to build the hedging models. We believe that our
proposed method will become more realistic and flexible reflecting the variety
of agriculture commodities characteristics. Besides, this innovation provides an
ideal alternative model for the construction of hedging portfolios.

The remainder of the paper is organized as follows. In Sect. 2 we briefly
describe GJR-GARCH(1,1) and Time-varying copula function consisting four
classes of copula, i.e., Gaussian copula, Student-t copula, Clayton copula and
Gumbel copula. We also present the hedging portfolios and hedging effectiveness
analysis under the histogram value data context. In Sect. 3 the data and the
descriptive statistics are presented. Section 4 analyses the empirical estimation
results, and Sect. 5 presents the conclusions.
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2 Methodology

2.1 Histogram Value

Let we briefly review the histogram-valued data concept. Note that, high-
frequency data, i.e. 5 min, 30 min and 1 h are considered. Let Yt =
{y(1), . . . , y(T )} be a histogram-valued variable at time t, the histogram-valued
variables can be expressed as follows:

Hy(t) =
{[

Iy(t)1,, Iy(t)1

]
, ωt1;

[
Iy(t)2,Iy(t)2

]
, ωt2; ...

[
Iy(t)nt,, Iy(t)nt

]
, ωtnt

}
,

(1)
where Iy(t)i and Iy(t)i denote the lower and upper boundary of the interval
i ∈ {1, 2, . . . nt} in the histogram. nt is the number of subintervals for the in
the histogram t. Note that Iy(t)i ≤ Iy(t)i and Iy(t)i+1 ≥ Iy(t)i. ωit is a nonnega-

tive frequency associated to the subinterval
[
Iy(t)i,Iy(t)i

]
and

nt∑
i=1

ωit = 1. Then,

according to Dias and Brito [4] we can transform the histogram y(t) using the
empirical quantile function, Ω−1

y(t)

Ω−1
y(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Iy(j)1 + k
wt1

ay(t)1 if 0 ≤ k < wt1

Iy(t)2 + k−wt1
wt2−wt1

ay(t)2 if wt1 ≤ k < wt2)
...

Iy(t)nt
+

k−wtnt−1
1−wtnt−1

ay(t)nt
if wtnj−1 ≤ k ≤ 1

(2)

where ay(t)i = Iy(t)i − Iy(t)i with i ∈ {1, 2, . . . , nt} and wt,0 = 0 and wtl =
nt∑

h=1

ωth. Note that when we work with histogram-valued variables, the frequency

associated to the subinterval ωih and the number of subintervals in the his-
tograms ηt may be different, the subintervals of histograms.

2.2 GJR-GARCH (p, q) Model

In this paper, we choose GJR-GARCH model of Glosten et al. [6] to model the
volatility of the spot and futures. The model is defined as

εt = σtzt, (3)

σ2
t = ω +

p∑
i=1

(αi + γiIt−i)ε2t−i +
q∑

j=1

βjσ
2
t−j , (4)

where

1t−i =
{

0 if εt−i ≥ 0,
1 if εt−i < 0.

(5)

γ is leverage effect, εit = σitηit and ηit i.i.d. of standard innovation. ω, α, β, γ ≥
0,, stationary condition are α + γ ≤ 0 and zt ∼ F (·) is sequence of independent
random variable or innovation.
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2.3 Copula and Dependence

Copula is defined as functions that join more than two random variables through
the multivariate distribution functions [12]. Sklar’s theorem states that any mul-
tivariate distribution can be factored into the marginal cumulative distribu-
tions. Let C (u1, . . . , ud) is a cumulative distribution function (cdf) with uniform
marginals on the unit interval. If Fi(yi) is the CDF of a univariate continuous
random variable yi. Then C(F1(y1), . . . , Fd(yd)) is a d-variate distribution for
Y = (y1, . . . , yd) with marginal distributions Fi; i = 1, . . . , d. Conversely, if H is
a continuous d-variate cdf with univariate marginal cdfs F1, . . . , Fd, then there
exists a unique d-variate copula C such that:

F (Y ) = C(F1(y1)), . . . , Fd(yd)),∀Y = (y1, . . . , yd) . (6)

The corresponding density is:

c(F1, (y1), ..., Fd(yd)) =
h(F (−1)

1 (u1), ..., F
(−1)
d (ud))∏d

i=1 fi(F
(−1)
i (ui))

, (7)

where h is the density function associated to H, fi is the density function of each
marginal distribution and C is the copula density.

2.4 Time-Varying Copulas

In applying the conditional copula with a time-varying dependence structure,
we assume that the dependence parameter is determined by past information
and follows GARCH(p,q) process.

Time-Varying Gaussian Copula. The first considered is the time-varying in
Gaussian copula, which can be following;

ρt = A

⎛
⎝ωρ + βρ1 · ρt−1 + . . . + βρp · ρt−p + αρ · 1

q

q∑
j=1

|ut−j − vt−j |
⎞
⎠ , (8)

where A(x) is the logistic transformation which defined as A(x) = (1 −
e−x)(1 − e−x)−1

, ρt is the correlation coefficient at time t which is the modi-
fied logistic transformation needed to keep as ρt ∈ (−1, 1).

Time-Varying Student-t Copula. The second is time-varying in the student-
t copula, which can be following;

ρt = A

⎛
⎝ωρ + βρ1 · ρt−1 + . . . + βρp · ρt−p + αρ · 1

q

q∑
j=1

|ut−j − vt−j ; υt|
⎞
⎠ , (9)
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where A (x) is the logistic transformation, ρt and υt are the Pearson correlation
coefficient and the degree of freedom, respectively. In addition, it is not only the
degree of freedom but also the correlation can change by the time.

Time-Varying Clayton Copula. The third is time-varying in the conditional
Clayton copula, which can be following;

δt = ωU + βU1 · δt−1 + . . . + βUp · δt−p + αU · 1
q

q∑
j=1

|ut−j − υt−j | , (10)

where δt ∈ [0,∞) is the degree of dependence between ut and υt. δt is the rank
correlation Kendall’s tau. it is similar with the correlation parameter in the
time-varying Gaussian copula.

Time-Varying Gumbel Copula. The finally is time-varying in the conditional
Gumbel copula, which can be following;

θt = ωL + βL1 · θt−1 + . . . + βLp · θt−p + αL · 1
q

q∑
j=1

|ut−j − υt−j | . (11)

where θt ∈ [1,∞) is the degree of dependence between ut and υt.

2.5 The Hedging Ratio

The optimal hedge ratio is defined as the holdings of futures which minimize the
risk of the hedging portfolio and number of futures contracts (Ψ−1

yFutures,t
) held to

hedge against spot position (Ψ−1
ySpot,t

). Malliaris and Urrutia [9] determined the
risk as the variance between the returns in the portfolio. If the joint distribution
of the spot and futures returns remains the same over time, the conventional
risk-minimizing hedge ratio δ∗ will be

δ∗ =
Cov

(
ΔΨ−1

ySpot,t
,ΔΨ−1

yFutures,t

)

V ar
(
ΔΨ−1

yFutures,t

) =
Cov

(
rΨ−1

ySpot,t
, rΨ−1

yFutures,t

)

V ar
(
ΔrΨ−1

yFutures,t

) . (12)

Let ΔΨ−1
ySpot,t

and ΔΨ−1
yFutures,t

be the respective changes in the spot and futures
prices, δ∗serves to estimate the number of futures contracts used to mitigate the
risk of changes in the price of spot.

δ∗ =
Cov

(
rΨ−1

ySpot,t
, rΨ−1

yFutures,t

)

V ar
(
rΨ−1

yFutures,t

) =
ρΨ−1

ySpot,t
,Ψ−1

yFutures,t
∗ hΨ−1

ySpot,t
∗ hΨ−1

yFutures,t

h2
Ψ−1

yFutures,t

,

(13)

= ρΨ−1
ySpot,t

,Ψ−1
yFutures,t

⎡
⎣ hΨ−1

ySpot,t

hΨ−1
yFutures,t

=
ρΨ−1

ySpot,t
,Ψ−1

yFutures,t

√
hΨ−1

ySpot,t√
hΨ−1

yFutures,t

⎤
⎦ . (14)
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2.6 Hedging Effectiveness

In order to test the efficiency of which models and different frequency ranges
that are able to prevent the most risks. Calculation of variances in the case of
unhedged (U) and hedged (δ∗)

V ar(U) = h2
Ψ−1

ySpot,t

(15)

V ar(δ∗) = h2
Ψ−1

ySpot,t

+ δ∗2h2
Ψ−1

yFuture,t

− 2δ∗h
Ψ−1

ySpot,t
Ψ−1

y
Future,t

(16)

Measuring hedging effectiveness is measured in terms of percentages. Reduc-
tion of the variance of hedged ports compared to ports that are not hedged is
given by

E =
V ar (U) − V ar(δ∗)

V ar(δ∗)
× 100. (17)

3 Data Description

Table 1. Descriptive statistics

Wheat-s Wheat-f

Mean −5.21E−07 −5.20E−07

Median 0.0000 0.0000

Maximum 0.0155 0.0782

Minimum −0.0214 −0.0734

Std. Dev. 0.001084 0.0011

Skewness 0.069527 1.7713

Kurtosis 27.51 629.9

Jarque-Bera 1519482 9.94E+08

MBF of Jarque-Bera 0.0000 0.0000

MBF of Unit root test 0.0000 0.0000

Note: MBF is Minimum Bayes factor.

In this study, we illustrate our model using wheat spot (wheat-s) and wheat
futures (wheat-f). The data are high frequency 5-min, 30-min, 1-h and daily
time series for the period from July 2017 to July 2018. All data for this study
are collected from Bloomberg database. Additionally, we transform these time
series variables into return rate before estimation. Table 1 shows the summary
statistics for the wheat spot and futures returns, the Jarque-Bera normality test
and Augmented Dickey-Fuller test (ADF) unit root test. The two data series
exhibit a negative average return rate. The skewness of these series shows a
positive value and the kurtosis values are all higher than 3, indicating a non-
normal characteristic of the series. The Jarque-Bera normality test also confirms
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this non-normality pattern. The result shows that the Minimum Bayes factor
of Jarque-Bera are equal to zero, indicating the decisive evidence for the Null
hypothesis, that all returns are not normally distributed. In addition, the sta-
tionary test (Augmented Dickey-Fuller) is provided and we observe a MBF of
our series are zero, indicating the decisive evidence for the Null hypothesis, that
all returns are stationary.

4 Empirical Results

4.1 Model Selection

Table 2. AIC and BIC for model selection

Time Family Static Copula-GJR-GARCH Conditional Copula-GJR-GARCH

AIC BIC AIC BIC

5-min Gaussian −140.67 −137.15 −141.75 −123.82

Student-t −156.39 −149.35 −148.59 −127.46

Clayton −121.9 −118.38 −136.2 −125.64

Gumbel −125.18 −121.66 −99.42 −88.86

30-min Gaussian −274.74 −271.22 −310.51 −299.94

Student-t −304.98 −297.93 −303.85 −282.73

Clayton −191.64 −188.12 −196.84 −186.28

Gumbel −303.18 −299.66 −76.23 −65.67

1-h Gaussian −265.54 −262.02 −300.17 −289.6

Student-t −293.71 −286.66 −298.74 −277.61

Clayton −172 −168.47 −176.16 −165.6

Gumbel −307.74 −304.22 −75.92 −65.36

Daily Gaussian −351.84 −348.32 −356.2 −345.63

Student-t −386.82 −379.78 −382.97 −361.84

Clayton −261.7 −258.18 −263.97 −253.4

Gumbel −375.7 −372.18 −82.69 −72.13

In this study, we used static copula and Time-varying copula for four classes of
copula, i.e., Gaussian copula, Student-t copula, Clayton copula and Gumbel cop-
ula based on GJR-GARCH(1,1) under the histogram value data context, used
5-min, 30-min, 1-h and daily data, are considered here for modeling the depen-
dency or relationship between wheat spot (wheat-s) and wheat futures (wheat-f).
The information criteria, namely AIC and BIC statistics are adopted to select the
most suitable models. The estimated values of models are presented in Table 2.
The results find that the Time-varying student-t copula is the best-fit for 30-min
histogram data as AIC(−303.85) and BIC(−282.73), static Student-t copula is
the best-fit for 5-min histogram data as AIC(−156.39) and BIC(−149.35) and
daily data as AIC(−386.82) and BIC(−386.82) and the static Gumbel copula is
the best-fit for 1-h histogram data as AIC(−307.74) and BIC(304.22). Note that
we look at minimum AIC and BIC.
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4.2 Estimates for the Copula Function of Wheat Return

This section discusses the result of copula function under the histogram value
data context, used 5-min, 30-min, 1-h and daily data. The results of the esti-
mated parameters are shown in Table 3, that each period gives different results.
Therefore, investors should focus on the frequency of trading. Fig. 1. presents
the comparison of the static copulas and the correlation of the time-varying
student-t copula. The correlation of the time-varying student-t copula with 30-
min data (black dotted lines) found that the lowest time vary correlation value
of Kendall tau is close to 0.5 while the highest value is approximately 0.87. This
indicates a time varying correlation of spot and futures along our sample. The
correlations of the static student-t copulas of 5-min data (red line) and the static
student-t copulas with daily data (green line) are 0.4 and 0.68 respectively. The
correlations of the static Gumbel copula with 1-h (blue line) the value equal
0.61.

Table 3. Estimates for the copula models

Time Parameter Coef. S.E. Stat MBF

Student-t copula

5-min ρ 0.5894 0.0373 15.8195 0.0000

ν 6.2595 1.8876 3.3161 0.0041

Daily ρ 0.8795 0.0138 63.9516 0.0000

ν 4.5084 1.1846 3.8059 0.0007

Gumbel copula

1-h δ 2.5637 0.131 19.5681 0.0000

Time varying student-t copula

30-min ωU 2.3155 8.4825 0.273 0.7849

ρU 0.6583 9.1017 0.0723 0.9423

νU −0.5896 1.1325 −0.5206 0.6026

ωL −0.5308 0.0145 −36.707 0.0000

ρL −0.9394 0.0145 −64.6057 0.0000

νL −0.5158 0.0011 −462.5397 0.0000

Note: MBF is Minimum Bayes factor.

4.3 Hedge Ratios

Hedging application, the results of hedge ratio and portfolio weight are plotted
in Figs. 2, 3, respectively. The time-varying hedge ratios clearly change when
new information arrives in the market. We find that the time-varying hedging
ratio seem to response to the change of real economic situation. The hedging
ratio is volatile over time.
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Fig. 1. The comparison of the conditional correlations of copulas and the correlation
of the time-varying student-t copula (Color figure online)

We observe that the highest average hedge ratio of 5-min data is 0.47 meaning
that, if investors buy spot 100 contract, they will long (buy) futures 47 contracts
to prevent the risk. In part of 30-min data of the highest average hedge ratio
is 0.87 meaning that, if investors buy spot 100 contract, they will long (buy)
futures 87 contracts to prevent the risk. In part of 1-h data of the highest aver-
age hedge ratio is 0.65 meaning that, if investors buy spot 100 contract, they
will long (buy) futures 65 contracts to prevent the risk. Finally, daily data, the
highest average hedge ratio is 0.72 meaning that, if investors buy spot 100 con-
tract, they will long (buy) futures 72 contracts to prevent the risk. As we can
observe, the time varying hedge ratios obtained from different frequencies show a
different pattern, the question is which frequency provide the best suggestion for
the investors making the hedging strategy? Therefore, we further examine the
impact of frequency specification to fit the model using the hedging effectiveness
approach.

4.4 Hedging Effectiveness

The hedging effectiveness is used to check the efficiency of each frequency data.
The results is shown in be Figs. 4, 5. The results suggest that the hedging effec-
tiveness are quite different compared to the spot and futures prices for different
frequencies.

It is observed that the hedging effectiveness obtained form 1-h and daily
frequencies data illustrate a similar pattern. However, we compare the values of
hedging effectiveness, we can find that 1-h frequency hedging model is better
than daily frequency hedging model and other two frequency models (5-min
and 30 min). This indicates that 1-h frequency data is the best information for
constructing the hedging model as it could substantially reduce the risk of the
portfolio. Thus, the investor may consider 1-h data to find the hedging strategy
in spot-futures portfolio.
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Fig. 2. Hedge ratio of 5-min and 30-min

Fig. 3. Hedge ratio of 1-h and daily

Fig. 4. Hedging effectiveness of 5-min and 30-min

Fig. 5. Hedging effectiveness of 1-h and daily

5 Conclusion

One of the main functions of the future market is to provide a hedging mecha-
nism. It is also a well-documented claim in the future market literature that the
optimal hedge ratio should be time-varying and not constant. An optimal hedge
ratio is the proportion of a cash position that should be covered with an opposite
position on a future market to estimate the time-varying hedge ratio. To do this,
we consider various dynamic conditional copula families to find the time-varying
hedge ratio. We note that both static and dynamic copulas are employed in this
study. In addition, we also use the histogram value data which contains a tone
of information to build our models. Therefore, 5-min, 30-min, 1-h and daily data
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are considered in this study. This paper applies our models to examine the wheat
market (spot and futures prices). We model the volatility of the spot and futures
prices using the GJR-GARCH(1,1) model. In addition, we apply our method to
quantify the hedge ratios and hedging effectiveness of wheat. The empirical evi-
dence shows that the time-varying student-t copula is the best-fit for 30-min
histogram data, static Student-t copula is the best-fit for 5-min histogram data
and daily data. Gumbel copula is the best-fit for 1-h histogram data. We find
that the time-varying hedging ratios seem to response to the change over time
and response to the change of economy. Our findings are important for portfo-
lio managers, especially during periods of market stress, since they can use this
information to further improve their hedging performance.

However, this study focused on minute, hourly, and daily data, which required
a significant amount of time and resources to collect. As a result, this study
was only captured one variable as wheat. In future studies, it should take into
account other financial variables, such as commodities such as oil and gold, as
well as cryptocurrency assets, which are very popular today. They are traded
throughout the day and have a wide range of frequency trading data, which is a
very interesting topic.
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Abstract. This paper aims at analyzing the energy price volatility fore-
casts for crude oil, ethanol, and natural gas. Several hybrid Artificial
Neural Networks (ANN)-GARCH models consisting of ANN-GARCH,
ANN-EGARCH, and ANN-GJR-GARCH models are introduced. How-
ever, a challenge in the ANN design is the selection of activation function.
Thus, various forms of activation function, namely logistic, Gompertz,
tanh, ReLU and leakyReLU are also considered to analyze the increase
in the hybrid models’ predictive power. In our investigation, both in-
sample and out-of-sample analysis are used and the results provide the
strong evidence of the higher performance of the hybrid-ANN-GARCH
compared to the single GARCH-type models. However, when five acti-
vation functions are applied over the parameters, the results tend to be
similar, indicating the robustness of our forecasting results.

Keywords: ANN-GARCH-type models · Activation functions ·
Predicting volatility · Energy

1 Introduction

With the important role of energy in the world economy, the increase in energy
price volatility has caused a great concern among investors and businesses.
Volatility refers to the spread of unlikely outcomes which results in the uncer-
tainty in the world economy. Hence, market participants utilize different meth-
ods for forecasting the volatility of energy prices to manage their financial risks.
The methods and models for analyzing and predicting energy market and price
volatility have been discussed and investigated in many studies ([3,12,14]). The
most widely used are the generalized autoregressive conditional heteroskedastic-
ity (GARCH) model of Bollerslev [1] and its variants. However, the literature
has suggested that energy price volatility may exhibit the asymmetric nature,
thus, the original GARCH may fail to capture this feature and result in an
incorrect inference [4]. To deal with this problem, Nelson [10] and Glosten et

c© Springer Nature Switzerland AG 2022
K. Honda et al. (Eds.): IUKM 2022, LNAI 13199, pp. 317–328, 2022.
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al. [5] proposed the EGARCH and GJR-GARCH models, respectively. These
models are able to capture asymmetry, which refers to the negative unexpected
returns affecting future volatility more than the positive unexpected returns, and
leverage, which refers to the negative correlation between the shocks and the sub-
sequent shocks to volatility [9]. The review related to the volatility forecasting
of energy prices can be found in Wei et al. [14].

Despite the higher performance of the GARCH-type models in forecasting the
volatility of energy prices, the errors in the prediction using these approaches are
often quite high [13]. The recent studies of Kristjanpoller and Minutolo [13], Lu
et al. [7], and Liao et al. [6] revealed that the forecasting accuracy of the GARCH-
type models can be improved by applying the Artificial Intelligence techniques,
in particular, the Artificial Neural Networks (ANN). The ANN model is one
of the most popular methods in machine learning (ML) as it has an ability to
learn and model non-linear and complex structure of the volatility. Moreover,
Donaldson and Kamstra [4], Kristjanpoller and Minutolo [13], Lu et al. [7] and
Liao et al. [6] have shown that ANN can model better heteroskedasticity, i.e.,
volatility clustering, nonlinear behavior and non-constant variance, as it is able
to learn the hidden relationships between the input and output without imposing
any fixed relationships.

Given lessons learned from the existing literature, the purpose of this study is
twofold. Our first objective is to improve the hybrid ANN-GARCH type models
for the conditional energy price volatility which can capture important asymmet-
ric and nonlinear effects that the existing models do not capture. In particular,
we extend the research streams that forecast energy price volatility using various
ANN-GARCH-type models to demonstrate improvements in precision over the
hybrid classical-forecasting models and the conventional GARCH-type models.
Specifically, this study aims at forecasting the volatility of energy prices consist-
ing of crude oil, natural gas, and ethanol by applying the ANN approach to the
GARCH-type models consisting of GARCH, EGARCH, and GJR GARCH. We
extend previous research in the hybrid modeling domain to the area of crude
oil, natural gas, and ethanol volatility. Our second objective is a response to the
observation that the appropriate activation function for the ANN-GARCH-type
models has not been investigated in the literature yet. To this end, we introduce
several activation functions to the ANN- GARCH-type models and compare the
forecasting performance of each activation function. Specifically, we introduce
several activation functions namely logistic, tanh, Gompertz, Rectified Linear
Unit (RLU) and Rectified Exponential Linear Unit (ReLU). It is necessary to
know which activation function performs the best fit for the ANN-GARCH-type
models. To the best of our knowledge, this is the first attempt to investigate the
activation function selection for the ANN-GARCH-type models. Selecting an
appropriate activation function is a challenging pursuit, as it affects the accu-
racy and the complexity of the given ANN-GARCH-type models.

The rest of this paper is organized as follows. Section 2 presents our methodol-
ogy and discusses the hybridization of the ANN approach with the GARCH-type
models (GARCH, EGARCH, and GJR GARCH). Section 3 presents descrip-
tive data. Section 4 shows the empirical results of in-sample and out-of-sample
volatility forecasting. Finally, the conclusions are made in Section 5.



Predicting Energy Price Volatility Using Hybrid 319

2 Methodology

To forecast the energy price volatility, various hybrid ANNs-GARCH-type mod-
els are employed. In this section, we briefly present the conventional GARCH-
type models, namely GARCH, EGARCH and GJR-GARCH, and ANN model.
In the last sub-section, we introduce our hybrid-ANN-GARCH type models.

2.1 GARCH-Type Models

GARCH Model. The GARCH model was proposed by Bollerslev [1] and it is
used to forecast the conditional variance as well as capture the time-dependent
heteroskedasticity of financial data. In this study, GARCH(1,1) is considered
and can be expressed as follows:

yt = μ + εt

εt = σtνt (1)

σ2
t = ω + αε2t−1 + βσ2

t−1

where ω, α, β ≥ 0 are unknown parameters with parameter restrictions α +
β ≤ 1. εt is the uncorrelated random variable with mean zero and variance σ2

t .
νt is a standardized residual which is assumed to have the skewed student-t
distribution.

EGARCH Model. EGARCH is a nonlinear GARCH model which was pro-
posed by Nelson [10] to capture the long-memory and short-memory volatility
effects, and asymmetric leverage effects of financial variables. The specification
for the conditional variance of the EGARCH(1,1) model is

ln(σ2
t ) = ω + γ

∣
∣
∣
∣
∣
∣

εt−1
√

σ2
t−1

∣
∣
∣
∣
∣
∣

+ α

(

εt−1
√

ht−1

)

+ β ln
(

σ2
t−1

)

, (2)

where γ is the asymmetric leverage coefficient to describe the volatility leverage
effect.

GJR-GARCH Model. Another popular nonlinear GARCH model is GJR-
GARCH of Glosten et al. [5]. It is introduced to capture the potential larger
impact of negative shocks on volatility of the data (asymmetric leverage volatility
effect). The GJR-GARCH(p,q) model is defined as

σ2
t = ω + (α + γIt−1) ε2t−1 + βσ2

t−1 (3)

where

It−1 =

{

0, if εt−1 ≥ 0
1, if εt−1 < 1

(4)

and again γ is an asymmetric leverage effect.
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2.2 Artificial Neural Network (ANN)

ANN is a network of artificial neurons which presents the connection between
input and output signals similar to the human brain. In this study, we consider
the multilayer perceptron, with only 1 input layer, 1 hidden layer, and 1 output
layer, in order to simplify the estimation. The input layer is represented by
vector d = (x1, x2, . . . , xd)

′ and the output layer is a vector c = (y1, y2, . . . yc)
′.

The ANN model can be presented by

c = φ̃(
�

φ(dwI + bI)wO + bO), (5)

where φ̃ and
�

φ are the input and output activation functions, respectively. bI

and bO are the bias term of input and output, respectively. wI and wO are the
weight vector between the hidden layer and the output layer, respectively.

2.3 Hybrid Models

In this section, we extend the ANN model to the GARCH-type models. In
this respect, the conditional variance processes of ANN-GARCH(1,1), ANN-
EGARCH(1,1), and ANN-GJR-GARCH(1,1) augmented with ANN are defined
as follows:

ANN-GARCH Model

σ2
t = ω + αε2t−1 + βσ2

t−1 + θ (ψ (ztδ)) (6)

ANN-EGARCH Model

ln(σ2
t ) = ω + γ

∣
∣
∣
∣
∣
∣

εt−1
√

σ2
t−1

∣
∣
∣
∣
∣
∣

+ α

(

εt−1
√

ht−1

)

+ β ln
(

σ2
t−1

)

+ θ (ψ (ztδ)) , (7)

ANN-GJR-GARCH Model

σ2
t = ω + (α + γIt−1) ε2t−1 + βσ2

t−1 + θ (ψ (ztδ)) (8)

where θ is the additional output weight of the neural network part. ψ (ztδ) is
the sigmoid activation function of the output layer of the ANN part which can
be written as

ψ (ztδ) =
(

1+exp
(

δzt−1

))−1 (9)

where zt−1 = (εt−1 − E (εt)) /
√

E (ε2t ) is the standardized residual in the log-
sigmoid activation function. We follow the computationally simple approach of
first choosing the with a uniform random number generated between −1 and 1.
In the estimation point of view, the maximum likelihood estimation is employed
to estimate all unknown parameters.
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2.4 Activation Function

The selection of activation function for linking the input, hidden, and output
layers is important. In this study, five activation functions are considered and
presented as follows

Logistic. The logistic function is known as the sigmoid function and can map
the input signal between 0 and 1. This function is defined as

f(x) =
1

1 + e−x
(10)

Gompertz. The Gompertz curve or Gompertz function is similar to the logistic
function but it exhibits a slower growth at the initial cultivation stage and at
the end of stage. The function can be written as

N(t) = N(0) exp(−c(exp(−at))) (11)

where N(0) is the initial number of cells/organisms at time zero.

Tanh. Tanh or the hyperbolic tangent activation function is also similar to
the logistic function, but it maps the resulting values in between 0 and 1. The
formula is written as

f(x) = tanh(x) =
(ex − e−x)
(ex + e−x)

(12)

Rectified Linear Unit (ReLU). ReLU is a nonlinear activation function [2].
This function has been found to provide a better result in many different set-
tings. This is due to the sparseness property which is useful in many contexts.
Specifically, this function can map the negative argument values to zero

f(x) =

{

0, if x ≤ 0
1, if x > 1

(13)

Leaky ReLU. Leaky ReLU function is an improved version of the ReLU acti-
vation function. As the gradient of ReLU is 0 for all the values of inputs that are
less than zero, which would deactivate the neurons in the ANN. This activation
function can be presented as

f(x) =

{

0.01x, for x < 0
x, for x ≥ 1

(14)
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2.5 Forecasting Comparison Criteria

In this study, the Root Mean Square Error (RMSE) is used as a prediction error
for our forecasting models. It measures how far it is the distance between the
true and the forecasted volatilities. The formula is:

RMSE =

√
∑N

t=1 (
�

σ
2

t − σ2
t )

2

N
(15)

where
�

σ
2

t represent the forecasted and experimental values of energy price volatil-
ity, respectively and N is the number of forecasting data test data points. Note
that the actual volatility σ2

t can be computed as the sample variance log returns
in a 21 days’ window to the future (approximately one month of transactions),

σ2
t =

1
21

t+21∑

i=t+1

(ri − r̄t)
2 (16)

where n is the number of day, ri is the return of energy price and r̄t is the average
energy price.

3 Data Description

This paper collects Brent crude oil, ethanol, and natural gas prices from the
Bloomberg database, covering the period from January 2005 to December
2019. Table 1 presents some descriptive statistics for energy price returns (log-
difference). For all cases, the mean is close to 0 and the standard deviation
is around 0.03. These values are typical for stationary series as their averages
are close to 0 with small variations. Thus, the Augmented Dickey Fuller test
(ADF) is further conducted to examine the stationarity. The Minimum Bayes
Factor(MBF) of ADF test is reported in the last row. We note that the MBF
is the p-value calibration and the closer to zero, the higher chance to reject
the non-stationarity [8]. The result shows that the MBF of ADF values are 0,
indicating the returns are stationary

The skewness of crude oil and natural gas are positive indicating that the
upper tails of the empirical distributions of returns are longer that the lower tails.
All returns have kurtosis greater than 3, indicating that the return series have
fat-tailed distributions. Moreover, the MBF-Jarque-Bera test results strongly
reject the null hypothesis of normality in all returns series. Figure 1 presents the
energy price returns. We can observe that the variance of energy returns is not
stable and there exists the volatility clustering along the sample period.
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Table 1. Data statistics

Crude oil Ethanol Natural gas

Mean 5.65E−06 4.84E−05 −0.000309

Median 0.000677 0.000000 −0.00067

Maximum 0.164097 0.160343 0.267712

Minimum −0.130654 −0.309978 −0.180545

Std. Dev. 0.023388 0.020834 0.031398

Skewness 0.125840 −2.43719 0.529386

Kurtosis 7.598936 34.03754 7.965910

Jarque-Bera 3223.577 149996.4 3917.677

MBF-Jarque-Bera 0.000000 0.000000 0.000000

Unit root test −64.28157 −63.70705 −56.75844

MBF-Unit root 0.000000 0.000000 0.000000
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Fig. 1. The daily return of the baseload price for each series

4 Results

4.1 Estimation Results for Different Volatility Models

To find the best model for forecasting the energy price volatility, we conduct
the in-sample and out-of-sample forecasts. The in-sample data covers a 13-year
period from January 2005 to December 2017, and the out-of-sample data for
model evaluation covers the period from January 2018 to December 2019. In this
section, we present the in-sample estimation results of the hybrid ANN-GARCH-
type models namely the ANN-GARCH(1,1), ANN-EGARCH(1,1), and ANN-
GJR-GARCH(1,1) in Table 2. We note that the conventional hybrid GARCH
models with logistic activation function is presented here as the example.
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Table 2. Estimation results of the hybrid ANN-GARCH-type models

ANN-GARCH(1,1)

Crude oil Ethanol Natural gas

Parameter Estimate MBF Estimate MBF Estimate MBF

ω 0.0357 0.0082 0.2247 0.0232 0.1155 0.0002

α 0.0601 0.0000 0.1703 0.0000 0.0777 0.0000

β 0.9341 0.0000 0.7943 0.0000 0.9136 0.0000

θ 0.0866 0.0000 0.0554 0.0000 0.0013 0.0000

ARCH-LM lag[10] 0.6823 0.4631 0.3979

Log-Likelihood −7743.54 −7406.557 −9027.253

ANN-EGARCH(1,1)

Crude oil Ethanol Natural gas

Parameter Estimate MBF Estimate MBF Estimate MBF

ω 0.0147 0.0055 0.0410 0.0000 0.0337 0.0000

α 0.0095 0.0297 0.0539 0.0000 0.0004 0.0099

β 0.9912 0.0000 0.9812 0.0000 0.9868 0.0000

γ 0.0925 0.0000 0.2018 0.0000 0.1717 0.0000

θ 0.0038 0.0000 0.0028 0.0000 0.0425 0.0000

ARCH-LM lag[10] 0.1017 0.5143 0.2154

Log-Likelihood −7702.935 −7364.264 −9027.701

ANN-GJR-GARCH(1,1)

Crude oil Ethanol Natural gas

Parameter estimate MBF estimate MBF estimate MBF

ω 3.2258 0.0055 0.0277 0.0055 0.1152 0.0002

α 0.5515 0.0297 0.0147 0.0297 0.0749 0.0000

β 0.4893 0.0000 0.9446 0.0000 0.9131 0.0000

γ 6.9752 0.0000 0.0711 0.0000 0.0071 0.0083

θ 0.0013 0.0000 0.0037 0.0000 0.0037 0.0000

ARCH-LM lag[10] 0.3362 0.9556 0.4278

Log-Likelihood −7713.823 −7724.872 −9027.023

First, the results reported in Table 2 show that the degree of volatility persis-
tence of the hybrid GARCH-type models, which can be measured by the sum of
ARCH and GARCH estimates, (α+β), is close to 1 with decisive evidence. This
indicates a high degree of volatility in oil, ethanol, and natural gas returns. Sec-
ond, the asymmetric leverage parameters γ of ANN-EGARCH (1,1) and ANN-
GJR-GARCH(1,1) are significantly different from 0, implying the occurrence
of leverage effects in all energy returns and the nonlinear EGARCH and GJR-
GARCH may be the preferred specifications to model asymmetric effects in the
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oil, ethanol, and natural gas returns. Third, we find the output weight of neu-
ral network θ for all GARCH-type models to be significant, thereby confirming
that the ANN term can be used to predict the conditional volatility. Finally,
the ARCH-LM test is used to investigate the existence of ARCH effects in the
models. We find no significant ARCH effect (ARCH-LM [8]) in the variance
equations with decisive evidence for all the ANN-GARCH-type models.

4.2 Performance Results for the Forecasting Models

In this section, we investigate the model performance based on RMSE. Tables 3
and 4 present in-sample and out-of-sample forecasts comparison results.

Table 3. In-sample performance results for the conventional and hybrid GARCH-type
models using different activation functions

Activation Crude oil

GARCH EGARCH GJR-GARCH

0.14092 0.1499 0.14083

ANN-GARCH ANN-EGARCH ANN-GJR-GARCH

Logistic 0.12765 0.14847 0.1268

Gompertz 0.12765 0.14844 0.1268

Tanh 0.12682 0.14811 0.12666

ReLU 0.12765 0.14815 0.1268

LeakyReLU 0.1275 0.14803 0.12659

Activation Natural gas

GARCH EGARCH GJR-GARCH

0.26639 0.26639 0.26639

ANN-GARCH ANN-EGARCH ANN-GJR-GARCH

Logistic 0.25391 0.24814 0.23011

Gompertz 0.2539 0.24824 0.23038

Tanh 0.25392 0.24877 0.23099

ReLU 0.25394 0.24834 0.2309

LeakyReLU 0.25392 0.24883 0.23078

Activation Ethanol

GARCH EGARCH GJR-GARCH

0.25936 0.25946 0.2599

ANN-GARCH ANN-EGARCH ANN-GJR-GARCH

Logistic 0.25314 0.24399 0.252

Gompertz 0.25306 0.24380 0.2521

Tanh 0.25251 0.24381 0.25199

ReLU 0.25066 0.24392 0.25203

LeakyReLU 0.25065 0.24393 0.25202

Note: Bold number indicates the best forecasting model
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Table 4. Out-of-sample performance results for the conventional and hybrid GARCH-
type models using different activation functions

Activation Crude oil

GARCH EGARCH GJR-GARCH

0.16242 0.1614 0.16246

ANN-GARCH ANN-EGARCH ANN-GJR-GARCH

Logistic 0.15941 0.16666 0.157

Gompertz 0.16081 0.16675 0.1569

Tanh 0.16094 0.16649 0.15706

ReLU 0.16028 0.16693 0.157

LeakyReLU 0.16053 0.16613 0.15683

Activation Natural gas

GARCH EGARCH GJR-GARCH

0.24651 0.24651 0.24651

ANN-GARCH ANN-EGARCH ANN-GJR-GARCH

Logistic 0.25262 0.24833 0.23202

Gompertz 0.2521 0.24832 0.2421

Tanh 0.25208 0.24834 0.23208

ReLU 0.25462 0.24835 0.23462

LeakyReLU 0.25397 0.24889 0.23397

Activation Ethanol

GARCH EGARCH GJR-GARCH

0.06989 0.06989 0.06989

ANN-GARCH ANN-EGARCH ANN-GJR-GARCH

Logistic 0.26989 0.25343 0.25402

Gompertz 0.26736 0.25330 0.25403

Tanh 0.26748 0.25344 0.25409

ReLU 0.26744 0.25344 0.25404

LeakyReLU 0.2673 0.25343 0.25404

Note: Bold number indicates the best forecasting model

Considering the in-sample-forecast in Table 3, we find that the volatility
forecasting of the GARCH-type models can be improved when the ANN is aug-
mented because the RMSEs of the hybrid-models are lower than the traditional
GARCH models. For example, the GARCH, EGARCH, and GJR-GARH models
applied to forecast the crude oil price volatility have the RMSE equal to 0.14092,
0.14990, and 0.14083, respectively, while the estimation by the three hybrid mod-
els with the logistic activation function has the RMSE equal to 0.12765, 0.14847,
and 0.12680, respectively. Similar results are obtained from using other activa-
tion functions.
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We then further analyze the model performance for different activation func-
tions, we find that (i) the ANN-GJR-GARCH with LeakyReLU is superior to
other models in forecasting oil price volatility, while the ANN-GJR-GARCH
and ANN-EGARCH achieve the lowest RMSE in the cases of natural gas and
ethanol, respectively. These results confirm the higher performance of the non-
linear ANN-GARCH-types models. In other words, the GARCH-types models
applied to predict the energy price volatility produced an error in the forecasting
which could potentially be reduced using the hybrid ANN-GARCH [13].

Regarding the out-of-sample forecast, which is reported in Table 4, we find
that the proposed ANN-GARCH-type models still perform better than the con-
ventional ones. In addition, the LeakyReLU, Logistic, and Gompertz functions
remain the best fit activation to forecast through the hybrid ANN-GARCH-type
models for oil, natural gas, and ethanol price volatilities, respectively.

5 Conclustions

Accurately estimating and forecasting volatility in energy returns is a crucial
issue. To achieve this goal, this study proposed three hybrid GARCH-type mod-
els, namely the ANN-GARCH, ANN-EGARCH, and ANN-GJR-GARCH mod-
els. In addition, four activation functions, namely Gompertz, Tanh, ReLU and
LeakyReLU, are also investigated in order to find the best transfer function for
ANN structure. In this forecasting investigation, we compare the forecasting abil-
ity of each model using in and out-of-sample volatility forecasts. In this regard,
we can obtain the best model for forecasting energy price volatility (Crude oil,
Natural gas, Ethanol). In this comparison, the RMSE is used as the loss function
and criterion. The results show that the hybrid models perform better than the
conventional GARCH-type models in all cases. This indicates that the augmen-
tation of ANN can potentially improve the forecasting precision of the GARCH-
type models. Furthermore, we investigate the effect of activation function in
our hybrid models. In this regard, our findings demonstrate the mixed results.
As discussed by Yamaka et al. [15], it is not obvious which activation function
is more appropriate for linking with the ANN, and different activation func-
tions may play different roles in the practical applications In essence, our results
suggest that we should not arbitrarily select a volatility forecasting model by
referring to the literature. The reliable and accurate model depends on not only
the given data but also the correspondence of the particular forecasting purpose
with the GARCH specification and activation function considered. In the further
research, the hybrid GARCH model can be extended the fuzzy-based approach
to gain more accurate volatility forecast (see, [11]).
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Abstract. Low wind speed encourages PM2.5 (fine particular matter
≤ 2.5 µm) accumulation primarily caused by agricultural burning dur-
ing the transition from the winter to the summer season in northern
Thailand. How to improve the accuracy of wind speed estimation is our
motivation behind this study. Herein, the wind speed is estimated by
using confidence intervals for the median of a three-parameter lognormal
model based on bootstrap-t, percentile bootstrap, normal approximation,
and the generalized pivotal quantity (GPQ). Monte Carlo simulation is
used to compare our proposed methods in terms of their coverage prob-
abilities and expected lengths. A numerical evaluation shows that the
GPQ method performed quite well, even with small sample sizes. The
efficacies of our proposed methods are illustrated by using daily wind
speed data from Chiang Mai, northern Thailand.

Keywords: Daily wind speed data · Generalized pivotal quantity ·
Median · Three-parameter lognormal model.

1 Introduction

In meteorology, wind is a fundamental atmospheric characteristic caused by air
moving from an area of high pressure toward an area of low pressure in any direc-
tion, and the difference between the air pressures and the temperature, among
other factors, determines the wind speed [22]. Wind speed is usually affected by
season temperature changes while wind direction is in response to the Earth’s
rotation [4]. Importantly, wind, along with temperature and humidity, are meteo-
rological factors contributing to long-distance air pollutants in northern Thailand
[2]. Low wind speed has an important impact on PM2.5 (fine particular matter
c© Springer Nature Switzerland AG 2022
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≤ 2.5 µm) accumulation, which markedly increases during the transition from
the winter to the summer season. Since the wind speed is primarily determined
by the difference between the air pressures of two areas, a low pressure difference
results in a low wind speed.

In early 2021, Thais became knowledgeable about the existence of PM2.5,
which can easily enter the human body and cause several health problems includ-
ing respiratory illness, allergic symptoms affecting the eyes and nasal passage,
etc. High PM2.5 levels occur in most regions in Thailand but are especially
prevalent in the northern region [23] and, unfortunately, are increasing each
year. Using results from Teerasuphaset and Culp [24], it can be seen that the
upper region of Thailand has lower temperatures making cold in some areas in
the end of winter, which this has been influenced the northeast monsoon sea-
son reducing to a clam wind. Temperature changes under the atmosphere could
double the volume of dust floating which provides the gathering of dust, smog
and smoke in the atmosphere. At the same time, the PM2.5 level progressively
occurs during winter to summer seasons as well. Evidence for in support of this
position, can be found in Liu et al. [18]. These reasons lead to our motivation
to estimate wind speed as it might provide important information on the cur-
rent trend of PM2.5 levels by assessing historical data. Importantly, daily wind
speed data from Chiang Mai (the largest city in northern Thailand) follow a
three-parameter lognormal (TPLN) model.

A TPLN distribution is a statistical model suitable for highly right-skewed
data that cannot specifically be fitted to a lognormal distribution [1]. Its three
parameters (scale, shape, and threshold) include the threshold parameter defined
as the lower bound of the data, which is not in the lognormal model. Thus, the
TPLN and lognormal models are the same when the threshold parameter value
equals zero. Furthermore, the median of the TPLN model used to determine the
central tendency of highly skewed data is a parameter of interest for probability
and statistical inference.

Statistical inference includes point and interval estimations (the latter is also
known as the confidence interval (CI)). Both point and interval estimates for
the parameters of a TPLN model have been developed and discussed by a few
researchers. Cohen et al. [9] modified moment estimates by replacing the func-
tion of the first-order statistic in the third moment. Singh et al. [21] conducted
a performance evaluation of several methods: the method of moments (MMs),
modified MMs, maximum likelihood estimation (MLE), modified MLE, and the
entropy for the parameter and quantity of a TPLN model. Royston [20] con-
structed CIs for the reference range of random samples from a three-parameter
lognormal distribution. Pang et al. [19] used a simulation-based approach to
assess Bayesian CIs for the coefficient of variation of a TPLN distribution as one
of their studied distributions of interest. Finally, Chen and Miao [7] presented
exact CIs and upper CIs for the threshold parameter of a TPLN model.

However, interval estimates for the median of a TPLN model have not yet
been formulated. Herein, we propose bootstrap-t, percentile bootstrap, nor-
mal approximation (NA), and generalized pivotal quantity (GPQ) methods for
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constructing CIs for the median of a TPLN model. Furthermore, their effica-
cies are illustrated by estimating the wind speed during the transition from the
winter to the summer season in Chiang Mai, northern Thailand. The outline
of the article is as follows. The TPLN model and our proposed methods for
constructing interval estimates for the TPLN median are elaborated in Sect. 2.
The accuracies of the CI estimation methods numerically assessed via Monte
Carlo simulation are discussed in Section 3. Later, the efficacies of the proposed
method are illustrated by using real wind speed data from Chiang Mai, northern
Thailand, in Sect. 4. Some concluding remarks are provided in Sect. 5.

2 Model and Methods

2.1 Model

Assume that W = (W1,W2, ...,Wn) be identically and independent random vari-
able from a three-parameter lognormal (TPLN) distribution (model) with scale
parameter μW , shape parameter σ2

W and threshold parameter θ. The relation-
ship between the random variables W and X = ln(W −θ) is the random variable
W has a TPLN model, denoted by W ∼ TLN(θ, μW , σ2

W ) if X has a normal
model, denoted by X = ln(W − θ) ∼ N(μX , σ2

X). The probability distribution
function of W is given by

f(w; θ, μW , σ2
W ) =

[
(x − θ)

√
2πσ2

W

]−1

exp
{

− [ln(w − θ) − μX ]2 /(2σ2
X)

}
(1)

where μX = E(X) and σ2
X = V ar(X). Thus, the median of W is

MW = θ + exp(μX) (2)

which is the parameter of interest in the present study. Accordance with Griffiths
[12], the idea is skewness as a point for consideration, while the random variable
X = ln(W − θ) is a normal distribution (the skewness of X is equal to zero) if
θ is known. Thus, the zero-skewness estimate of θ is the value that satisfying

(n)−1
∑n

i=1[ln(Wi − θ̂) − (n)−1
∑n

i=1 ln(Wi − θ̂)]3{
(n)−1

∑n
i=1[ln(Wi − θ̂) − (n)−1

∑n
i=1 ln(Wi − θ̂)]2

}3/2
= 0 (3)

Also, this leads to obtain the zero-skewness estimates of (μX , σ2
X) is

(μ̂X , σ̂2
X) =

(
(n)−1

n∑
i=1

ln(Wi − θ̂), (n − 1)−1
n∑

i=1

[ln(Wi − θ̂) − μ̂X ]2
)

(4)

The interval estimations for MW are established based on the different concepts,
detailed in the Sect. 2.2.
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2.2 Methods

To estimate the median of a TPLN model, the methods are constructed the CIs
based on different concepts as follows: bootstrap, normal approximation and
generalized pivotal quantity methods.

Bootstrap Method. It is well-known that bootstrap method is one of the
resampling techniques to estimate parameters on a distribution or statistics on
a population by sampling with replacement. Efron and Tibshirani [11] was firstly
introduced the bootstrap method, and after that it was recovered by Hall [13]
It can be used to construct an asymmetric CI which does not depend on normal
theory assumptions. There are the bootstrap intervals: bootstrap-t and per-
centile bootstrap based on calculating the probability distribution of the boot-
strap replications. Then, both of bootstrap intervals are considered. First, let
W = (W1,W2, ...,Wn) be a random sample from a TPLN distribution function
F (W ; θ, μX , σ2

X), while the median MW = θ + exp(μX) be a parameter of inter-
est and σ2

X be a nuisance parameter. Given observed values w = (w1, w2, ..., wn),
let M̂X be the estimate of MW . In the boostrap world, the empirical distribution
F̂ (W ; θ, μX , σ2

X) provides bootstrap samples with sample size n, that are

w∗
1 = (w11, w12, ..., w1n) (5)

w∗
2 = (w21, w22, ..., w2n)

...

w∗
b = (wb1, wb2, ..., wbn)

...

w∗
B = (wB1, wB2, ..., wBn)

where b = 1, 2, 3, ..., B. A random variable is

t∗b = ŝe−1(M̂∗
X,b − M̂∗

W ) ∼ tdf (6)

which has a Student’s t-distribution with df = b − 1 degree of freedom where

M̂∗
W,b = n−1

n∑
i=1

w∗
bi (7)

ŝe =

{
(B − 1)−1

B∑
i=1

[M̂∗
W,b − M̂∗

W ]2
}1/2

(8)

which are the estimated median for the bth bootstrap replication and the stan-
dard error of M̂∗

W,b, respectively, where M̂∗
W = B−1

∑B
b=1 M̂∗

W,b be the estimated
TPLN median based on bootstrap samples. Define the γth quantile (qγ) as

# {t∗b ≤ qγ}
B

= γ (9)
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The coverage probability is considered as

1 − γ = P (qγ/2 < t∗b < q1−γ/2) (10)
≈ P (qγ/2 < t < q1−γ/2)

= P
(
qγ/2 < ŝe−1(M̂∗

X − MW ) < q1−γ/2

)

= P
(
M̂∗

X − q1−γ/2ŝe < MW < M̂∗
X − qγ/2ŝe

)

The 100(1 − γ)% bootstrap-t (BT) interval for MW is

[LBT , UBT ] =
[
M̂∗

W − q1−γ/2ŝeB , M̂∗
W − qγ/2ŝeB

]
(11)

Furthermore, the percentile bootstrap (PB) interval for MW is

[LPB , UPB ] =
[
M̂∗

W (γ/2), M̂∗
W (1 − γ/2)

]
(12)

where M̂∗
W (γ) be the γth percentile of M̂∗

W .

Normal Approximation Method. In the present study, we are also inter-
ested in constructing a CI using a normal model to approximate the TPLN
median MW . The central limit theorem (CLT) is statistical tools that allows us to
attempt an asymptomatic distribution of a random variable when a sample size
was large. Using the normal approximation method, let W = (W1,W2, ...,Wn)
be an independent random variable of a TPLN distribution with the param-
eters (θ, μW , σ2

W ). Using the logarithm transformation, a random variable
X = ln(W − θ) is a normal distribution with the parameter (μX , σ2

X). Here
MW = θ + exp(μX) is a parameter of interest, more importantly it needs for
statistical estimations. The target parameter is suggested plug-in its estimate as

M̂W = θ̂ + exp(μ̂X) (13)

where (θ̂, μ̂X) are the zero-skewness estimate. According to Hollander and Wolfe
[16], the asymptotic variance of M̂W is defined a distribution-free of V ar(M̂X)
as

V arH(M̂W ) =
[

n3/10

max {1, A}
]

(14)

where A =
∑n

i=1 ai;

ai =

{
1, if

{
Xi|

[
M̂W − n−1/5 < Xi < M̂W + n−1/5

]}
0, if otherwise

(15)

From (14) and (15), the random variable G = [V arH(M̂W )]−1/2(M̂W − MW )
has a standard normal distribution using CLT, then the coverage probability is
considered as
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1 − γ = P (gγ/2 < G < g1−γ/2) (16)

= P
(
gγ/2 < [V arH(M̂W )]−1/2(M̂W − MW ) < g1−γ/2

)

= P
(
M̂W − g1−γ/2[V arH(M̂W )]1/2 < MW < M̂W − gγ/2[V arH(M̂W )]1/2

)

Then, the normal approximation interval-based the zero-skewness estimate is

[LN , UN ] =
[
M̂ − g1−γ/2[V arH(M̂W )]1/2, M̂X − gγ/2[V arH(M̂W )]1/2

]
(17)

where gγ denotes the γth percentile of a standard normal distribution.

Generalized Pivotal Quantity Method. A pivotal quantity is defined as a
random variable whose distribution does not depend on the parameter of interest,
and it can be expressed in terms of a quantity. This quantity is also called
as “pivots”. Barnard [5] used a pivotal quantity for constructing a confidence
interval, called as “pivotal inference”. A pivotal quantity is defined by Casella
and Berger [6] in Definition 1.

Definition 1. A random variable Q(X, τ) = Q(X1,X2, ...,Xn, τ) is a pivot
quantity (or pivot) if the distribution of Q(X, τ) is independent of all param-
eters. That is, if X ∼ F (x|τ), then Q(X, τ) has the same distribution for all
values of τ .

Later, the pivotal quantity was generalized by Weerahandi [25] based on a pivot
inference and defined in Definition 2. This was proven to be an important tools
in many practical problems, and importantly its simulation studies could provide
the coverage probability of such intervals close to a target values as well, evidence
in Hannig [14].

Definition 2. Let S ∈ Rk denote an observable random vector whose dis-
tribution is indexed by a (possibly vector) parameter ξ ∈ Rp. Suppose that
τ = π(ξ) ∈ Rq be a parameter of interest in making inference; q ≥ 1. Let
S∗ represent an independent copy of S. Also, let s and s∗ denote realized values
of S and S∗. A GPQ for τ , denoted by Rτ (S,S∗, ξ) (or simply Rτ or R when
there is no ambiguity) is a function of (S,S∗, ξ) with the following properties:

(Property 1) Conditional on S = s, the conditional distribution Rτ (S,S∗, ξ)
is free of ξ.

(Property 2) For every allowable s ∈ Rk, Rτ (s, s∗, ξ) depends on ξ only
through τ .

If a GPQ satisfies the properties (1) and (2), then the CI-based GPQ is
[L,U ] = [Rτ,γ/2(S,S∗, ξ), Rτ,1−γ/2(S,S∗, ξ)] where Rτ,γ(S,S∗, ξ) denotes the γth

percentile of Rτ (S,S∗, ξ). Here MW = θ + exp(μX) is interested in constructing
CI-based GPQ. It can be seen that there are two unknown parameters: θ and
μX , thus their GPQs are considered. Cohen and Whitten [8] produced the point
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estimates of (θ, μX , σ2
X) using the modified method of moments, denoted by

(θ̂(C), μ̂
(C)
X , σ̂

2(C)
X ). The asymptotic variance of θ̂(C) is given by

V ar(θ̂(C)) = (σ2
X/n)

[
exp(σ2

X)(1 + σ2
X) − (1 + 2σ2

X)
]−1 [

exp(μX + σ2
X/2)

]
(18)

where θ̂(C) has a property of random variable, while μ̂
(C)
X = (n)−1

∑n
i=1 ln(Wi −

θ̂(C)) and σ̂
2(C)
X = (n−1)−1

∑n
i=1[ln(Wi − θ̂(C))− μ̂

(C)
X ]2 are obtained. Replacing

(θ̂(C), μ̂
(C)
X , σ̂

2(C)
X ) from the sample, the V̂ ar(θ̂(C)) is obtained. Using the CLT,

the random variable is V (C) = [V̂ ar(θ̂(C))]−1/2(θ̂(C) − θ) ∼ N(0, 1) leading to
obtain the GPQ of θ is

Rθ(W,W∗, μX , σ2
X) = θ̂(C) − V (C)[V̂ ar(θ̂(C))]1/2 (19)

Next, the GPQ of μX is obtained from the random variable T =
√

n(μ̂(C)
X −

μX)/σX ∼ N(0, 1) using the CLT, then

RμX
(W,W∗, θ, σ2

X) = μ̂
(C)
X − T (σX/

√
n) (20)

where σX = [(n − 1)σ̂2(C)
X /U ]1/2; U = [(n − 1)σ̂2(C)

X /σ2] is a chi-square distribu-
tion with n−1 degrees of freedom. From the two pivots (19) and (20), the quan-
tity of MW in term of GPQ is RMW

(W,W∗, θ, μX , σ2
X) = Rθ(W,W∗, μX , σ2

X)+
exp[RμX

(W,W∗, θ, σ2
X)], and then

[LG, UG] =
[
RMW ,γ/2(W,W∗, θ, μX , σ2

X), RMW ,1−γ/2(W,W∗, θ, μX , σ2
X)

]
(21)

which is the 100(1 − γ)% CI-based GPQ for MW ; the RMW ,γ(W,W∗, θ, μX

stands for the γth percentile of RMW
(W,W∗, θ, μX).

3 Details and Results of the Monte Carlo Simulation
Study

To measure the performance of the proposed methods derived in the previous
section, their coverage probabilities (CPs) and expected lengths (ELs) are cal-
culated for several realistic values of the parameters: threshold (θ = 3, 6, 10);
mean (μX = 1, 2); variance (σ2

X = 0.5, 1, 2); and and small-to-large sample size
(n = 30, 60, 100, 200). In practical applications, the values of σ2

X are usually
small, and so realistically small values were used in the simulation study. Note
that σ2

X is a statistical measure of the dispersion of the data.
In the Monte Carlo simulation, repeated random sampling fixed at 5000

iterative simulations was used to estimate the CPs and ELs of the four CI esti-
mation methods. In addition, the number of bootstrap samples was set as 1000
(B = 1000), while the GPQs were set at as 2500 (m = 2500). For each parameter
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combination in Tables 1 and 2, the best-performing method is the one that pro-
vided a CP close or greater than the nominal confidence level 100(1 − γ) = 0.95
with the narrowest EL.

The median CI estimates were evaluated to determine which gave suitable
CPs with the most efficient (narrowest) interval width. The results of the sim-
ulation study provide insight into the sampling behavior of the CIs as follows.
Although the median CI estimates based on GPQ and NA fulfilled the CP cri-
teria, the GPQ-based CI method produced the shortest interval estimates for a
small variance and small-to-moderate sample sizes (Table 1). When the sample
size was increased (Table 2), the NA-based median CI estimate gave suitable CPs
with the narrowest ELs. On the other hand, both the bootstrap-t and percentile
bootstrap intervals revealed poor CPs.

Table 1. Performance measures of the CIs for MW : n = 30, 60

(σ2
X , μX) θ CPs ELs

GPQ NA BT BP GPQ NA BT BP

30 (1,1) 3 0.956 0.940 0.359 0.374 2.611 3.122 0.569 0.598

6 0.965 0.941 0.355 0.366 2.598 3.070 0.564 0.573

10 0.958 0.932 0.357 0.363 2.640 3.091 0.550 0.565

(1,2) 3 0.966 0.914 0.361 0.382 7.099 7.606 1.604 1.923

6 0.966 0.920 0.356 0.375 7.070 7.580 1.611 1.919

10 0.963 0.920 0.353 0.364 7.164 7.572 1.599 1.907

(2,1) 3 0.743 0.927 0.373 0.392 3.456 4.560 0.770 0.809

6 0.758 0.931 0.370 0.386 3.428 4.521 0.768 0.806

10 0.751 0.933 0.372 0.389 3.465 4.564 0.772 0.811

(2,2) 3 0.758 0.888 0.387 0.411 9.313 8.581 2.075 2.179

6 0.755 0.895 0.377 0.397 9.331 8.635 2.086 2.191

10 0.758 0.888 0.379 0.399 9.328 8.655 2.076 2.180

60 (1,1) 3 0.935 0.949 0.495 0.511 1.639 1.975 0.518 0.536

6 0.938 0.952 0.503 0.519 1.648 1.988 0.523 0.542

10 0.939 0.952 0.509 0.522 1.643 1.978 0.519 0.538

(1,2) 3 0.940 0.936 0.510 0.526 4.469 6.322 1.408 1.458

6 0.941 0.940 0.512 0.527 4.455 6.260 1.410 1.461

10 0.941 0.933 0.514 0.528 4.467 6.312 1.418 1.469

(2,1) 3 0.652 0.949 0.509 0.531 2.264 3.110 0.737 0.773

6 0.664 0.952 0.511 0.515 2.272 3.077 0.734 0.768

10 0.651 0.947 0.513 0.527 2.265 3.053 0.729 0.759

(2,2) 3 0.656 0.937 0.510 0.534 6.170 8.349 2.006 2.105

6 0.658 0.920 0.513 0.537 6.140 8.299 2.002 2.096

10 0.660 0.928 0.515 0.540 6.128 8.285 1.990 2.050

Remark: Bold denotes the best-performing method.
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Table 2. Performance measures of the CIs for MW : n = 100, 200

n (σ2
X , μX) θ CPs ELs

GPQ NA BT BP GPQ NA BT BP

100 (0.5,1) 3 0.988 0.969 0.631 0.643 1.251 0.994 0.364 0.373

6 0.986 0.965 0.619 0.627 1.256 0.994 0.363 0.372

10 0.987 0.967 0.607 0.620 1.259 0.993 0.364 0.373

(0.5,2) 3 0.987 0.954 0.621 0.631 3.383 3.159 0.986 1.011

6 0.988 0.953 0.621 0.633 3.401 3.150 0.990 1.014

10 0.986 0.956 0.610 0.622 3.432 3.159 0.986 1.010

(1,1) 3 0.902 0.962 0.608 0.624 1.225 1.461 0.514 0.532

6 0.904 0.956 0.619 0.634 1.221 1.448 0.512 0.530

10 0.913 0.962 0.624 0.639 1.224 1.460 0.514 0.532

(1,2) 3 0.916 0.944 0.621 0.637 3.326 4.800 1.395 1.444

6 0.902 0.946 0.618 0.634 3.317 4.901 1.393 1.442

10 0.916 0.945 0.618 0.635 3.322 4.730 1.394 1.443

(2,1) 3 0.594 0.958 0.603 0.639 1.691 2.182 0.709 0.745

6 0.604 0.959 0.615 0.643 1.686 2.212 0.711 0.743

10 0.582 0.961 0.628 0.649 1.694 2.197 0.708 0.742

(2,2) 3 0.604 0.939 0.610 0.633 4.599 7.040 1.969 2.064

6 0.593 0.943 0.608 0.635 4.598 7.111 1.966 2.062

10 0.593 0.938 0.605 0.638 4.606 6.996 1.963 2.060

200 (0.5,1) 3 0.982 0.974 0.778 0.791 0.842 0.688 0.360 0.369

6 0.984 0.973 0.778 0.788 0.849 0.687 0.361 0.370

10 0.984 0.969 0.784 0.796 0.842 0.684 0.360 0.369

(0.5,2) 3 0.981 0.959 0.786 0.798 2.298 2.011 0.981 1.005

6 0.982 0.963 0.791 0.804 2.295 2.001 0.981 1.005

10 0.981 0.962 0.782 0.792 2.287 2.001 0.978 1.002

(1,1) 3 0.868 0.969 0.781 0.795 0.837 0.991 0.507 0.525

6 0.873 0.967 0.776 0.795 0.837 0.990 0.507 0.524

10 0.875 0.969 0.789 0.805 0.837 0.988 0.507 0.525

(1,2) 3 0.864 0.960 0.788 0.804 2.274 3.017 1.379 1.427

6 0.875 0.962 0.783 0.802 2.278 3.026 1.382 1.430

10 0.871 0.958 0.787 0.802 2.271 3.038 1.378 1.426

(2,1) 3 0.500 0.966 0.785 0.797 1.156 1.433 0.712 0.747

6 0.510 0.967 0.787 0.802 1.155 1.426 0.711 0.745

10 0.503 0.969 0.781 0.813 1.159 1.443 0.708 0.741

(2,2) 3 0.512 0.954 0.770 0.798 3.138 4.795 1.937 2.031

6 0.513 0.953 0.782 0.806 3.137 4.743 1.930 2.026

10 0.508 0.957 0.787 0.803 3.146 4.718 1.929 2.024

Remark: Bold denotes the best-performing method.
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4 Application of the Methods to Wind Speed Data

PM2.5 is the most common air pollutant in northern Thailand that significantly
affects human health. Wind speed is an important determinant of PM2.5 level
along with rainfall and relative humidity in the winter and the summer season
[15]. Amnuaylojaroen et al. [3] argued that monsoons characterize the climate
of northern Thailand, and air pollutants are transported by wind from the sur-
rounding area into northern Thailand during the transition period between the
Northeast and Southwest monsoons.

Chiang Mai, the second-largest city in Thailand, is in the upper northern
region in which PM2.5 emitted from agriculture burning in the early year is
particularly high. Hence, estimating wind speed data together with PM2.5 con-
centration measurements is needed to aid decision-making by the Thai authori-
ties. The daily wind speed data in Chiang Mai used in the study were recorded
during January–March 2021 [10]. It can be concluded that the wind speed data
fit a TPLN model, as evidenced by the probability density plot in Fig. 1 and
the minimum Akaike and Bayesian information criteria (AIC and BIC) data in
Table 3. Note that the wind speed data can be lognormally distributed if they
are subtracted by θ̂, the evidence for which is provided in Sect. 2.

The basic statistics calculated for the daily wind speed data log-transformed
measurements are n = 93, θ̂ = 3.057, μ̂X = 2.567. Thus, the zero-skewness esti-
mate in terms of the median is 16.0867 km/hr, and the 95% CIs for this based
on the bootstrap-t, percentile bootstrap, NA, and GPQ methods were computed
via Eqs. (11), (12), (17) and (21), respectively (Table 4). It can be interpreted
that the daily wind speed was quite low in Chiang Mai during January–March
2021, which resulted in very high PM2.5 concentrations. This was due to agri-
cultural burning being carried out earlier than usual because farmers wanted to
plant their crops earlier to avoid drought conditions as a result of climate change
[17]. Notably, these results follow the outcomes of the simulation study in the
preceding section.
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Fig. 1. Probability density plot between true (a three-parameter lognormal) and wind
speed densities.

Table 3. Results of AIC and BIC for the wind speed data subtracted by θ̂.

Criteria Models

Exponential Weibull Lognormal Logistic Normal Cauchy

AIC 691.4882 575.0861 549.5256 558.7382 575.1305 560.3573

BIC 694.0208 580.1513 554.5908 563.8034 580.1957 565.4225

Note: a bold indicates an suitable model for the data.

Table 4. The 95% CIs for the speed wind data during January–March 2021 in Chiang
Mai, northern Thailand.

CIs CI-based GPQ Normal
approximation

Percentile
bootstrap

Bootstrap-t

Lower 6.402 8.452 15.729 15.717

Upper 25.803 23.721 16.462 16.462

Lengths 19.401 15.269 0.733 0.745

5 Concluding Remarks

Four methods for CI estimation for the median of a TPLN model are proposed in
this article. Two are based on bootstrap sampling (the bootstrap-t and percentile
boostrap CIs), one is an approximation of the normal model, and the last one is
the GPQ proposed by Weerahandi [25]. The bootstrap methods failed to produce
accurate results, and so the NA and GPQ methods should be used to estimate
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the median of a TPLN model. In conclusion, the results indicate that the CI
based on GPQ is the best-performing method for a small variance and small-
to-moderate sample sizes. For a large sample size, the best-performing CI was
based on NA for estimating the TPLN median. The latter also has the advantage
that it can be computed in a straightforward manner using the R programming
language.

Finally, it should be noted that none of the methods can handle extreme
situations such as a large variance, as evidenced by the simulation results. In
future research, we might explore new interval estimates of the median in a
TPLN model that provides good performance for a population with a large
variation.
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Abstract. In agri-food logistics, group decision-makers are faced with high risk
and uncertainty involving many criteria. They must have a good level of trust with
an amount of risk consistent with their level of risk acceptance. In this study, we
propose a new model of trust uncertainty built from the trust component based on
the principles of uncertainty theory.We developed a trust level scale by calculating
each trust component to calculate the trust level. A new method was developed
by advancing ME-MCDM by measuring the trust of experts as decision-makers
to measure the reliability of group decision results. We adopt a non-numeric app-
roach and propose four alternative logistics routes with five conflicting criteria,
i.e., distance, utilization, logistic cost, transportation condition, and traffic. The
results showed that this new method obtained the most optimal route with a high
aggregation value. The trust uncertaintymodeling proposedwas successfully used
to measure the trust level of group decision-makers with a trust value of 1.7, which
indicates reliability. Finally, by comparing this new model with commonly used
approaches, it is shown that this new model has advantages over AHP.

Keywords: Agri-food logistic · Decision making · Trust uncertainty modeling

1 Introduction

Anessential element of agri-food logistics is the trust between allmembers and behaviors
in all fields of business [1]. Trust is an essential element for agri-food logistics because it
provides a necessary basis for work distribution activities and the establishment of new
methods for directing the work of organizational members. Trust is an essential aspect of
any relationship that can improve the quality of a connection [2]. Reducing transaction
costs, reducing the need to write complicated and difficult to enforce contracts between
organizations, and increase agri-food logistics performance [3].

The definition of trust, in general, is a condition related to vulnerability and risk
which consist of an invention to accept exposure based on the desires and expectations
of the behaviors of others [4, 5]. Consumer trust needs to be made, and it has become an
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important goal. They have efforts to protect trust in agri-food logistics and regard trust
as a problem in informing risk. Agri-food logistics should verify the trustworthiness of
a particular identity and decide how much trust it will place on the verification. Trust in
agr0-food logistics is the willingness of one party to be vulnerable to the behaviors and
activities of other parties.

Trust and trustworthiness in agri-food logistics are divided into two levels [6]. First,
studies related to horizontal collaboration are reviewed and discussed, focusing on the
objectives to be achieved and the existing trust model. Agri-food logistics performance
may be unique and usually differ for each organization, reflecting the objectives and
surrounding environment [7]. Second, the organizational theory that investigates inter-
actions between companies is analyzed to determine how the key can contribute to the
topic of choice. The agri-food logistics model consists of many layers. Agri-food logis-
tics obtain raw materials from farmers or collectors. The agri-food logistics demand at
the Distribution Center (DC) node usually follows a normal distribution [8]. In agri-
food logistics, farmers will send goods to the agroindustry nearer, where farmers have
agro-industrial preferences or interests. The trust model measured expert reliability to
increase trust in expert decisions. The trust concept has received significant attention in
the technical research community because trust is the basis for decision-making in many
contexts. The trust model is used to measure the trust level of the experts who make
uncertainty decisions. In logistics, the decision-makers’ trust plays an essential role [9].
Decision results will be a reference if the decision-maker can be trusted [10].

Previous studies have discussed themulti-expertmulti-criteria decisionmaking (ME-
MCDM)method and fuzzy logic. In making multi-criteria decisions regarding agri-food
logistics, they have used the non-numeric preferences of many experts. However, they
did not measure experts’ trust as group decision-makers, so they could not measure
the reliability of their decision results. In this study, we propose a new model of trust
uncertainty built from the trust component and based on the principles of uncertainty
theory by measuring the level of expert trust as decision-makers. To calculate the trust
level, we developed a trust level scale by calculating each trust component. We can
measure the reliability of the results of group decisions. We synergize the experts as
group decision-makers using the non-numeric ME-MCDM.Many previous studies used
thismethod, but they did not discuss the uncertainty trust level, so they could notmeasure
the reliability level of the decision. We develop uncertainty trust levels by categorizing
them into trust, moderate, and distrust.

2 Background

This section provides an overview of the related concepts of the multi-criteria, trust
model, and uncertainty theory.

2.1 Definition 1: Multi-criteria

ME-MCDM can determine the best alternative results that are relatively complex and
uncertainty. MCDM is a part of operations research that refers to decision-making for
several uncertainty and conflicting criteria. Zadeh introduced fuzzy sets that paved the
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way for new models to solve challenges with standard MCDM techniques [7]. Corre-
spondingly, group decision-making for many alternatives with many criteria is solved
using a non-numeric approach. Experts independently evaluated each option on each
standard. Therefore, ME-MCDM can be used [11, 12]. A non-numeric approach can
evaluate using multi-criteria preferences. Each decision-maker (Ej) (j = 1, 2, …, m) can
assess each alternative (Ai) (I = 1, 2, …, n) in each criterion (Ck) (k = 1, 2, …, j) freely.

Assessments are determined using qualitative labels and can be clarified by assuming
that V represents the value of a set of X = {X1, X2, …, Xn} where Xn is the score in the
qualitative symbol. The aggregation of multiple criteria and multiple experts determines
the weight value of each expert (Qk) and alternative values such as Eq. (1)

Vji = f(Vi) = max[Qj ∧ bj] (1)

Vji, aggregation on multiple experts; Qj, weight values of each expert; bj, rank order
of the most significant expert rank; j, number of experts.

The Aggregation result for Alternative 1 (A1) is V1 = Max [Q1
∧

b1], for A2
is V2 = Max [Q2

∧
b2], for Az-1 is Vz-1 = Max[Q(Z-1)

∧
b(Z-1)], and for AZ is

Vz = Max[Q(z)
∧

b(z)].

2.2 Definition 2: Trust Model

The trust model measured expert reliability to increase trust in expert decisions. The
trust concept has received significant attention in the technical research community
because trust is the basis for decision-making in many contexts. In agri-food logistics,
the trust of decision-makers plays an important role. Decision results will be a reference
if the decision-maker can be trusted [13]. Reliability and trust in the expert’s ability to
determine the best alternative to many criteria is important.

Therefore, in this study, expert reliability was measured using a trust model. Hossain
and Ouzrout (2012) introduced the trust model; they defined multiple criteria consisting
of honesty, credibility, competence, goodwill, predictability, transparency, commitment,
respect, and communication skills [14]. Uncertainty trust behavior (UC) is based on trust
criteria such as in Eq. (2).

UC = (CT1 + CT2 + · · · + CTj)

j
(2)

UC, uncertainty trust behavior; CT, criteria of trust; j, number of trust criteria.
Trust is the weighted average of all the trust behavior criteria components

(UC1, UC2, …, UCr). The UCavg is entered on the trust scale to obtain the expert’s
trust level. The expert’s decision results are declared to be reliable if the average value
(CTavg) is above 1.5. We state the results are trusted or reliable if the mean is equal to
or above 2.0, moderate if the average value is 0.5–1.5, and distrust if the average value
is 0– 0.5.

2.3 Definition 3: Uncertainty Theory

The uncertainty model was developed based on the model structure and model parame-
terization. Uncertainty is fundamentally propagated in data models that represent real-
world phenomena. If X denotes a non-empty set and Y represents the subset of X, then
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(X, Y) is named a measurable space. Every element R in Y is called an uncertain event.
The uncertain measure M is defined over Y. M{R} is the representation of the trust level
that R is going to occur. At the same time, the distance between two uncertain variables
V1 and V2 was calculated based on Eq. (3).

d(V1,V2) = E[|V1 − V2|] (3)

Many studies have addressed the uncertainties that arise through the various compo-
nents of the system. Uncertainty is inherent in data, where users can quickly ascertain
the uncertainty of a data set, especially in terms of metadata.

3 The Propose Trust Uncertainty Model

The proposed trust uncertainty model contains a trust calculation function and a trust
decision-making function. In this function, trust is not considered a single concept.
Instead, it is viewed as an uncertain vector containing nine uncertain variables. These
variables are as follows: (1) honesty, (2) credibility, (3) competence, (4) goodwill, (5)
predictability, (6) transparency, (7) commitment, (8) resections, and (9) communication
skills. These parameterswere selected by reviewing the existing literature on the essential
factors viewed as the primary trustworthiness constructs.

The decision-making in the proposed model depends not only on the trust level but
also on the risk level of trusting the experts. Thus, an expert is selected to have the
maximum trust level and the minimum associated risk level. The primary mechanism
for selecting the best expert is uncertain using ME-MCDM. This approach allows us to
consider the target levels corresponding to the trustworthiness variables.

3.1 Trust Calculation Function

Developing complex and uncertain decision-making trends integrates competence from
various disciplines. Reliability and trust in the expert’s ability to determine the best alter-
native to many criteria is essential. Therefore, in this study, expert reliability was mea-
sured using a trust model. Trust is the average trust behavior of all predefined uncertainty
criteria such as in Eq. (4).

UC = (α1CT1 + α2CT2 + α3CT3 + α4CT4 + α5CT5 + α6CT6 + α7CT7 + α8CT8 + α9CT9)

(α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8 + α9)
(4)

UC, uncertainty trust behavior; CT1, honesty; CT2, credibility; CT3, compe-
tence; CT4, goodwill; CT5, predictability; CT6, transparency; CT7, commitment; CT8,
respections; CT9, communication skills; α, constant.

Trust is a condition that psychologically consists of finding and logically accepting a
vulnerability based on the expectations and desires of others. We explain the criteria for
trust. Next, we formulate uncertainty trust behavior (UC) based on trust criteria. Trust is
the weighted average of all the trust behavior criteria components (UC1, UC2, …, UCr),
as shown in Eq. (5):

UCavg = (UC1 + UC2 + · · · + UCr)

r
(5)
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UCavg, average of uncertainty trust behavior; r, number of experts.
The UCavg is entered on the trust scale to obtain the expert’s trust level (Eq. (6)).

TR = 0 < distrust ≤ 0.5 < moderate ≤ 1.5 < trust ≤ 2.0 (6)

The expert’s decision results are declared to be reliable if the average value (CTavg)
is above 1.5.

3.2 Trust Decision Making

In complex and uncertain decision-making, many experts’ participation is required.
Decision-making involving many experts is a class of important and uncertain problems.
Usually, there are conflicting criteria. Yager developed a multi-criteria ME-MCDM, and
Kumar et al. (2017) expanded their research. They state that a non-numeric approach
can evaluate multi-criteria preferences.

Marimin et al. stated that each decision maker (Ej) (j = 1, 2, …, m) can assess each
alternative (Ai) (I = 1, 2, …, n) in each criterion (Ck) (k = 1, 2, …, j). Assessments are
determined using qualitative labels and can be clarified by assuming that V represents
the value of a set of X = {X1, X2, …, Xn} where Xn is the score in the qualitative
symbol [15]. Aggregation conflict in ME-MCDM is an important task for experts to
make effective decisions [16–18].

In this study, ME-MCDM steps start identifying experts (Ej) (j = 1, 2, …, r). Then,
some criteria and selection criteria related to the transportation route (Ck) (k= 1, 2,…, j).
The alternative (Ar) (r = 1, 2, …, i) chosen was determined based on the current condi-
tions. Next, we aggregated the multi-expert and multi-criteria. Multi-expert aggregation
is used to obtain alternative values, whereas multi-criteria aggregation determines the
evaluation of each criterion. After obtaining the multi-criteria aggregation, Alternatif 1
(A1) based on criteria is X1 = (V11, V21, …, Vr1), for A2 is X2 = (V12, V22, …, Vr2),
for Az-1 is Xz-1 = (V1(z-1), V2(z-1), …, Vr(z-1)), and Az is Xz = (V1(z), V2(z), …, Vr(z));
then, we weighted the values for each expert (Qk) (k = 1, 2, …, m) using Eq. (7).

Qk = Int[1 +
(

k ∗ q − 1

r

)

] (7)

Qk: weight values of each expert; k: index; q: rating scale number; r: number of
experts.

After aggregating on multi-criteria (Vij) and determining the weight value of each
expert (Qk), we aggregate on multiple experts (Vi) to obtain alternative values. The
Aggregation result for Alternative 1 (A1) is V1 = Max [Q1

∧
b1], for A2 is V2

= Max [Q2
∧

b2], for Az-1 is Vz-1 = Max [Q(Z-1)
∧

b(Z-1)], and for AZ is Vz =
Max [Q(z)

∧
b(z)]. The final decision-making result from transportation route selection

is the most optimal alternative with the highest aggregation (Vmax) as follows:

Vmax = f(Vi,Vi+1, . . . .,Vp) (8)

Vmax: the most optimal alternative with the highest aggregation; V: aggregation
result; i: number of alternatives.
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3.3 Trust Uncertainty Model Stages

The process begins with identifying experts and determining the criteria and alternatives.
We extend the AHP by adding the unique characteristics of agri-food logistics, and
propose four alternative logistics routes with five conflicting criteria. The following
process negates the level of criteria importance andmatrix to themost optimal alternative
results. We advance the ME-MCDM by measuring the trust level (Fig. 1).

Fig. 1. The stages in the trust uncertainty model.

We propose a newmethod that combines the non-numericME-MCDMbymeasuring
the expert’s trust level using the uncertainty trust model by knowing the expert’s trust
level. We propose that if more than 50% of the average expert’s trust level is trust (scale
1.5–2.0), one expert has a moderate level of trust. In contrast, the general average is
trust; then, the decision category is reliable.

4 Illustrative Example

Food security has become a global issue in various scientific discussions.However,world
food needs are expected to increase by 60% by 2030. Potatoes have been recommended
as agri-food that supports food security by the United Nations. Potatoes have perishable
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characteristics that risk a post-harvest loss of up to 40% [19]. Thus, this study discusses
potato logistics as an interesting agri-food logistics example. In this section, the starting
point used is the DC in Kejajar, Indonesia to the Boyolali, Indonesia. We considered all
route, and there were four alternatives (Table 1).

Table 1. Alternatives routes in agri-food logistic.

Alternative Routes Distance (KM)

A1 Kejajar-Magelang-Boyolali 108

A2 Kejajar-Salatiga-Boyolali 140

A3 Kejajar-Kab. Magelang-Boyolali 140

A4 Kejajar-Kab. Semarang-Salatiga-Boyolali 123

4.1 Criteria Importance Level

We considered five conflicting criteria. The criteria used were as follows: distance,
utilization, logistics cost, transportation conditions, and traffic (Table 2).

Table 2. The criteria importance level.

Code Criteria Importance level Conversion value

C1 Distance Very High (VH) 1

C2 Utilization Very High (VH) 1

C3 Logistic cost Low (L) 4

C4 Transportation Low (L) 4

C5 Traffic High (H) 2

The experts (E1, E2, …, E5) consisted of an expert from the Wonosobo Horticulture
Department (E1), an expert from Adhiguna Laboratory, Wonosobo with more than ten
years of experience (E2), an expert from IPB University, Bogor (E3), an expert from the
Wonosobo Transportation Agency (E4), and expert from potato farmers in Garung with
more than 15 years of experience (E5).

4.2 The Aggregation Process

Five experts in groups assessed alternative 1 (A1), so the results of the expert assessment
of Ej for A1 were as follows (Table 3):

The following process is an expert aggregation: Expert aggregation starts from
weighting using Eq. (7) as follows:
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Table 3. Expert assessment for alternative 1 (A1)

Expert Alternative Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5

E1 A1 VH H L L H

E2 A1 H VH L M H

E3 A1 VH H M L H

E4 A1 H H M VL M

E5 A1 H H M VL M

Q1 = Int
[
1 +

(
1∗ 5−1

5

)]
= Int[1.8] = 2 = L

Q2 = Int
[
1 +

(
2∗ 5−1

5

)]
= Int[2.6] = 3 = M

Q3 = Int
[
1 +

(
3∗ 5−1

5

)]
= Int[3.4] = 3 = M

Q4 = Int
[
1 +

(
4∗ 5−1

5

)]
= Int[4.2] = 4 = H

Q5 = Int
[
1 +

(
5∗ 5−1

5

)]
= Int[5] = 5 = VH

Values of Q = (Q1,Q2,Q3,Q4,Q5) = L,M,M,H,VH.
After weighting, to obtain an alternative value of A1 (X1), the expert aggregation

results are collected with the criteria aggregation results using Eq. (8):
X1 = H,H,H,M,M; So that b1 = H,H,H,M,M
V1 = Max[L ∧ H,M ∧ H,M ∧ H,H ∧ M,VH ∧ M]
V1 = Max [L,M,M,M,M]
V1 = M
The final result of Alternative1(A1) is M(Medium).
The final results for A2, A3, and A4 are as shown in Table 4.

Table 4. The final result of agri-food logistic route alternatives.

Alternative Aggregation result Final result Alternative ranking

A4 H, H, H, H, M H 1

A1 H, H, H, M, M M 2

A2 VL, L, L, M, M M 2

A3 L, M, L, L, L L 3

The results showed that alternative 4 (A4) had a high (H) aggregation value by
considering distance, utilization, logistics cost, transportation conditions, and traffic.
Thus, by selecting alternative 4, the transportation route is optimal. The proposedmethod
can choose the optimal transportation route.
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4.3 The Average Uncertainty Trust Value

Using the uncertainty trust scale, wemeasure the expert’s trust level, as shown in Eq. (6).
In this study, we used only nine criteria. The UCavg is entered on the uncertainty trust
scale to obtain the expert’s trust level. The expert’s decision results are declared to be
reliable if the average value (CTavg) is above 1.5.

We used only nine trust criteria. Five transportation entrepreneurs assessed each
expert. The assessment process was completed by filling out the. Table 5 presents the
results of the questionnaire tabulation.

Table 5. The average of uncertainty trust value

Code Criteria of uncertainty trust E1 E2 E3 E4 E5

C1 Honesty 2 2 1.7 1.7 1.3

C2 Credibility 2 1.5 2 1.5 2

C3 Competence 2 1.5 1.5 2 1.3

C4 Goodwill 1.5 2 2 1.5 1.5

C5 Predictability 2 1.5 2 2 1.5

C6 Transparency 1.5 2 1.5 1.5 1.2

C7 Commitment 2 2 1.5 2 1.3

C8 Respect 2 2 1.5 1.7 1.5

C9 Communication skills 1.8 1.2 2 2 1.4

Of all the experts, only Expert 5 (E5) had a score below 1.5. This means that, in
general, the average value of trust behavior (CTavg) is 1.7, so that the decisions of the
group of experts can be trusted at a moderate level, which means that statistically, these
results can still be used for measurement (Fig. 2).

0
0.5
1

1.5
2

E1 E2 E3 E4 E5

Trust Level

Fig. 2. The average uncertainty trust level

Using a trust scale, the decision results were reliable. It showed that the uncertainty
trust model proposed was successfully used to measure the trust level given to decision-
makers. The trust value was 1.7, indicating reliability in agri-food logistic decision
making.
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5 Evaluation and Comparison

Decision-making results show that alternative 4 (A4) has a high (H) aggregation value.
Therefore, A4 is the optimal alternative. We will review the alternative route 4 (A4)
discussion results-based criteria weights given by the expert. To measure the uncertainty
trust level of all experts, we used the uncertainty trust scale so that the results would be
more reliable.

Kanuganti et al. (2017) and Dubey et al. (2014) state that one of the popular methods
for selecting alternatives with various criteria is the AHP method [12, 20]. In this study,
we compared our proposedmethodwith the AHP. Of the five criteria we suggest, namely
distance, utilization, logistic cost, transportation condition, and traffic, the AHP method
also determines the importance of criteria (Table 6).

Table 6. Matrix of eigenvalues from alternatives with the weighting criteria

Alternative Distance Utilization Logistic cost Conditiona Traffic

A1 0.1267 0.1817 0.3410 0.5339 0.1430

A2 0.1929 0.1365 0.1430 0.1459 0.1267

A3 0.6140 0.6103 0.4403 0.2544 0.4403

A4 0.0664 0.0715 0.0757 0.0658 0.0757

Eigenvalue 0.1812 0.1943 0.2619 0.0773 0.2851
a Transportation Condition

5.1 Comparison with AHP

The AHP also calculates the comparison and weighing of the decision criteria and sub-
criteria. Now it is time to compare all decision alternatives concerning each decision
sub-criterion. After evaluating all the decision alternatives concerning the decision sub-
criteria, the calculation of the weights for each decision element in the AHP is complete.
Based on the priority weights of each alternative (Table 7), we can rank each alternative.

Table 7. The combined weight of criteria for each alternative using AHP.

Distance Utilization Logistic cost Conditiona Traffic Criteria weights

A1 0.0872 0.0809 0.1294 0.0638 0.0664 0.4277

A2 0.0230 0.0155 0.0693 0.0233 0.0548 0.1859

A3 0.2314 0.1401 0.1901 0.0824 0.1063 0.7503

A4 0.0051 0.0036 0.0253 0.0079 0.0212 0.0632
a Transportation Condition
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The composite weights for A1, A2, A3 and A4 were 0.4277, 0.1859, 0.7503 and
0.0632 respectively. According to theAHP, the best alternativewasA3. This is in contrast
to the new method proposed in this study. The AHP did not perform expert aggregation.
Our proposed method aggregates criteria and aggregates the experts. Thus, the result of
the optimal alternative route has the highest aggregation value (H). AHP also does not
measure the level of expert trust as a group decision-maker. In this study, we extend the
AHP method by adding the unique characteristics of agri-food logistics, and propose
four alternative logistics routes with five conflicting criteria.

In our new method, we measure the expert trust level and reliability of the results of
their decisions. The advantage of our newmethod is thatwe can infer the uncertainty trust
level of the experts. In our proposed model, the uncertainty trust model was successfully
used to measure the uncertainty trust level of group decision-makers with a trust value of
1.7, indicates reliability. The results of expert decisions using our method can measure
the trust level, where the AHP cannot do this.

5.2 Research Limitation

This new model was developed to measure the level of uncertainty in the confidence of
many experts after making agri-food logistics decisions.

6 Conclusions and Recommendations

The complexity and uncertainty in determining routes require the participation of mul-
tiple experts. Based on the assessments of the five experts, we propose four alternatives
with five criteria. The conflicting criteria suggested were distance, utilization, logistic
costs, transportation conditions, and traffic. The study concluded that alternative 4 (A4)
with a high (H) aggregation value was the best route. In addition, model validation shows
that this newmethod has advantages over the AHP. The uncertainty trust model proposed
was successfully used to measure the level of trust given to decision-makers in the most
optimal transportation route selection for potato commodities. The trust value was 1.7,
indicating that the inference results were reliable in agri-food logistic.

There are several methods, and each method will conclude one optimal solution.
In the proposed model, the optimality is determined by aggregating the value. Other
models may use a different definition of optimality. Therefore, further research needs
to better measure the validity of the new method, especially regarding the concept of
optimality. This study only measures the level of expert trust for a particular decision.
Therefore, for further research, it is necessary to consider calculating the average trust
level of many experts in the process of obtaining results before making decisions.
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Abstract. The goal of this study is to examine the predictive power of real price
indexes and Google Trend in forecasting the inflation volatility in three nations
(the USA, Japan, and the UK). The AIC, BIC, and RMSE are used to select
the best GARCH-type models with the most appropriate predictors. The overall
result shows that the GARCHmodel with the skew-student distribution is themost
effectivemodel in capturing the inflation volatility. Furthermore, this study reveals
that the commodity price index is the strongest predictor variable of the inflation
volatility. We also find that the financial crisis and health crisis decisively affect
the inflation volatility in the United States of America and Japan.

Keywords: GARCH-type models · Inflation · Predictive power · Volatility
forecasting

1 Introduction

Inflation is the increased rate in prices over the period. It might be one of the most
familiar words in economics and it has plunged entire countries into long periods of
insecurity. As a result, the costs of inflation include unfriendly changes in an adverse
effect on the level of economic activity including income distribution and resource
allocation [1, 2]. Inflation influences a wide range of financial and economic activities;
thus, it motivates economists to develop strategies for effectively forecasting inflation.
Inflation practically affects everyone in the economy, including banking institutions,
stockbrokers, and corporate finance officials. Additionally, the Chief Financial Officer
of the company will make the right decisions on a project, or a banker will make exactly
financial decisions on a loan and asset management, preventing their financial problem
(bankruptcy) and enhancing their profit [3]. If these different economic stakeholders
can accurately forecast inflation rates, they will have well preparation of their financial
and economic plans. In short, increasing the forecasting accuracy of inflation will help
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economic agents in dealing better with the numerous interactive economic components
in a business environment in which inflation matters [4, 5].

Generally, the inflation rate is measured by the growth of the consumer price index
(CPI). We note that the CPI represents the change in the goods and service’s price that
can alter the financial burden of consumers. For example, when the CPI increases, the
consumers’ purchasing power will be decreased [6–8]. The CPI has been focused by
numerous economic sectors including investors, private firms, consumers, commercial
and central banks as it is a significant index for tracking costs of living and it also affects
a country’s interest rate, which directly affects investment returns and borrowing costs.

According to Fig. 1, the global inflation has exhibited a high fluctuation along 1960–
2020. We can observe that the inflation rate has exhibited a large swing during 1980,
1990, 2000, and 2009 which corresponded to the global financial crisis (i, ii, iii, and iv).
However, we observe a large drop of inflation rate in 1984, 2001, and 2020 coinciding
with the time of the health crisis. The periods of a–d correspond to the pandemic period
whenhealth crisis spread across a large region andworldwide and affected a large number
of people. It is well known, and the recent COVID-19 outbreak contributing to a great
volatility in many aspects and consumer behavior is not an exception [9]. Observably,
both the financial and health crises have had a significant impact on inflationmovements.
Moreover, crisis is not the only factor causing the high fluctuation of inflation. The
literature has revealed that there are several factors for instance, conventional cost push,
demand pull, monetary policies, interest rate, etc. causing the volatility of inflation.
However, our research mainly focusses on commodity prices, house prices, oil prices
impact on inflation volatility.

In this study, we consider two types of informative predictors consisting of real
price indexes and Google Trend (GT) to forecast the inflation volatility. According to
previous studies, the inflation fluctuations are caused by many real price indexes as
an index is derived from the weighted average of the consumer goods and services
basket prices [10]. Various real price indexes are confirmed to affect the volatility of the
CPI, for example the house prices [11], commodity prices [12], and oil prices [13]. In

Fig. 1. The global inflation during 1960–2020 and global financial crisis (i–iv) and pandemic
crisis (a–d).
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addition, Google Trend is now being used as a predictor in various models to improve
forecasting accuracy in response to changes in people’s behavior in society [14, 15],
like forecasting the stock price movements based on stock market interest behavior [16–
18]. Furthermore, Guzman [19] confirmed that Google Trend was one of the predictors
employed for lowering inflation predictions error.

In the methodological perspective, the Generalized autoregressive conditional het-
eroskedasticity (GARCH) model [20] has been normally applied for capturing the time
series volatility of data. There were many studies using the GARCH model to predict
the CPI [21–25]. However, Risteski, Sadoghi and Davcev [26], Yao and Zhang [27]; and
Tarkhamtham, Yamaka, andManeejuk [28] mentioned that the volatility forecasting per-
formance of the GARCHmodel can be improved by adding additional information from
exogenous variables. They revealed that the GARCH model with informative predictor
provides better volatility forecast compared to the original GARCH models for both
in-sample and out-of-sample investigations.

Note: (1) Global financial crisis: the (i) the oil crisis during 1970–1980, the periods
(ii) and (iii) are the dotcom crisis and the Asian financial crisis, respectively
and (iv) the Hamburger crisis during 2010.

(2) Pandemic crisis: (a) is presented with the HIV/AIDS pandemic mainly
during 1981–1990. (b) the SAR pandemic in 2003, (c) Influenza pandemic
during 2009-2010 and (d) the Covid-19 pandemic from 2020 until now.

Source: World Bank, 2021.

The goal of this study is to examine the predictive ability of real price indexes
and Google Trend for the CPI of the United States of America, Japan, and the United
Kingdom which are the top three developed economies. The Covid-19 crisis is also
concerned as another predictor variable of the model. Several different GARCHmodels
(GARCH, GJR-GARCH, and EGARCH) are considered to forecast the volatility of the
CPI. Our paper differs from the existing studies in that it assesses the predictive power
of real price indexes and Google Trend as well as COVID-19. This is the first attempt
ever to investigate the forecasting power of these variables.

The rest of this paper is outlined as follows. Sections 2 and 3 detail the methodol-
ogy and data used in this paper. Section 4 describes the empirical results and analysis.
Section 5 concludes this paper.

2 Methodology

2.1 Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

Time series analysis often assumes that the variance of the data is constant (Homoscedas-
ticity). In fact, the variance of the data depends on the historical error (Heteroscedas-
ticity). Most research works estimated the mean and variance of the serial data by the
GARCHmodel, proposed by Bollerslev [29]. Generally, the GARCH result has the abil-
ity to capture the volatility of the serial variable. This study thus applies the GARCH
(1, 1) model to identify the volatility. The GARCH formula has the following equation.

Yi,t = μi,t + εi,t, (1)
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εi,t = ηi,t
√

σi,t, (2)

σ 2
i,t = ω + αi,tε

2
i,t−i + βi,tσ

2
t−1 + θXt, (3)

At time t and for country i, where εi,t is the error of CPI, μt is the constant term, εt
is the error term, ηi,t is white noise (an i.i.d. of standard innovation), σ 2

i,t is the volatility
of CPI, and αi,t, βi,t are the coefficient parameters representing the ARCH and GARCH
effect, respectively. As the predictor (Xi) is considered for volatility forecasing, we
include it in the variance Eq. (3).

2.2 Glosten, Jagannathan and Runkle (GJR)-GARCH

TheGJR-GARCHmodel of Glosten et al. [30] is also employed in this study. This model
uses indicators function I to capture the positive and negative shocks on the conditional
variance asymmetrically. The GJR-GARCH (1, 1) model is defined as.

σ 2
i,t = ω + (

αi,t + γi,t It−1
)
ε2i,t−1 + βi,tσ

2
i,t−1 + θXi (4)

where

1i,t−i =
{
0 if εi,t−i ≥ 0,
1 if εi,t−i < 0.

where γi,i is the leverage effect, εi,t = ηi,t
√

σi,t and γi,t, ωi,t, αi,t, β i,t≥0, the sta-
tionary condition is when γ + α ≤ 0 and σt ∼ F(·) is sequence of independent random
variable or innovation. Hence, the εi,t−j is the error term of CPI in lag j.

2.3 Exponential GARCH (EGARCH)

The exponential GARCH (EGACH) model was provided by Nelson [31]. It uses the
natural logarithmic value of conditional variance to estimate the exponential function of
GARCH. This is one of the models able to capture the asymmetric effects referred to as
the leverage effects in time series data. The illustration of this model can capture both
negative and positive shocks of the same magnitude having an unequal destabilizing
effect and remove restrictions on parameters [32]. The EGARCH (1, 1) model can be
written as:

log
(
σ 2
i,t

)
= ω + αi,tεi,t−1 + γi,t

(∣∣εi,t−1
∣∣ − E

∣∣εi,t−1
∣∣) + βi,t log

(
σ 2
i,t−1

)
+ θXi, (5)

where the conditional variance (σ 2
i,t) represents the inflation volatility. the coefficient

αi captures the sign effect and γi,t the size effect of the asymmetry. Positive estimates of
the volatility are guaranteed due to working on the log variance. There are no restrictions
on γi,t, ωi,t, αi,t and βi,t but to maintain stability βi,t must be positive and less than one.
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3 Data Description

Based on the literature review, several predictors of INF volatility are considered in
this investigation. These predictors include the house price index (HOU), the oil price
index (OIL), the commodity price index (COM), and a Google Trend (GT) on three
keywords: “House prices (G_HOU)”, “Oil prices (G_OIL)”, and “Commodity prices
(G_COM)” (the index data from Google Trends will be de-normalized). The monthly
data is collected covering January 2004 to September 2021. We also consider the two
dummies representing health and financial crises as another two control variables in our
forecasting analysis. The financial crisis (FIC) is represented by the subprime mortgage
crisis and the European sovereign debt crisis, while the health crisis (HEC) is represented
by H1N1 pandemic in 2009, Ebola outbreak in 2014, and the COVID-19 pandemic in
2020–2021. All data are obtained from https://www.ceicdata.com and https://trends.goo
gle.com/trends. The data have been transformed into growth formulas.

Table 1. Descriptive statistics of the USA dataset

Description USA

INF HOU COM G_HOU G_COM G_OIL OIL FIC HEC

Mean 1.976 0.002 0.001 –0.002 –0.005 0.005 0.004 0.340 0.491

Median 2.000 0.002 0.002 0.014 –0.026 0.000 0.018 0.000 0.000

Maximum 4.453 0.009 0.028 0.615 1.459 1.996 0.469 1.000 1.000

Minimum 0.603 –0.005 –0.044 –0.556 –1.355 –1.592 –0.555 0.000 0.000

Std. Dev 0.515 0.002 0.009 0.169 0.367 0.425 0.110 0.475 0.501

Skewness 0.913 –0.150 –0.845 –0.010 0.392 0.865 –1.232 0.677 0.038

Kurtosis 7.934 4.850 6.560 4.806 5.207 8.057 9.966 1.459 1.001

Jarque-Bera 244.445 31.038 137.204 28.829 48.459 252.338 482.257 37.192 35.333

Probability 0 0 0 0 0 0 0 0 0

MBF Unit-root
test

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Thedescriptive statistics of all series are provided inTables 1, 2 and3.Themeanvalue
of CPI is approximately 2.00 except only for Japanese CPI which is close to zero. For the
predictor variables, their means and skewness are close to zero while their kurtosis are
mostly greater than 3, indicating that the distribution of these predictors are leptokurtosis
and fat-tailed. This is to say, the predictor variables not normally distributed. Lastly, the
unit root test is conducted to investigate the stationarity of the data, and the result shows
that the data are strongly stationary. We note the statistic inference of the unit root test
is based on Minimum Bayes factor (MBF) [33].

This study considers 14 patterns of predictor sets to forecast the inflation volatility.
The specifications of the GARCH-type models are presented as follows:

Model 1: GARCH type-models with house price index
Model 2: GARCH type-models with commodity price index

https://www.ceicdata.com
https://trends.google.com/trends
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Table 2. Descriptive statistics of the Japan dataset

Description Japan

INF HOU COM G_HOU G_COM G_OIL OIL FIC HEC

Mean –0.023 0.000 0.003 –0.001 –0.004 –0.009 0.004 0.340 0.491

Median –0.196 0.000 0.005 0.000 -0.006 0.000 0.018 0.000 0.000

Maximum 2.748 0.005 0.044 1.656 3.932 3.284 0.469 1.000 1.000

Minimum –1.683 –0.002 –0.098 –1.913 –4.710 –3.516 –0.555 0.000 0.000

Std. Dev 0.898 0.001 0.019 0.385 0.766 0.729 0.110 0.475 0.501

Skewness 1.307 2.508 –1.734 –0.243 –0.033 0.156 –1.232 0.677 0.038

Kurtosis 5.144 18.135 9.495 7.784 17.937 8.421 9.966 1.459 1.001

Jarque-Bera 100.948 2245.821 478.779 204.234 1970.847 260.467 482.257 37.192 35.333

Probability 0 0 0 0 0 0 0 0 0

MBF
Unit-root
test

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3. Descriptive statistics of the UK dataset

Description UK

INF HOU COM G_HOU G_COM G_OIL OIL FIC HEC

Mean 1.965 0.003 0.003 0.008 0.007 0.013 0.004 0.340 0.491

Median 1.885 0.001 0.003 –0.020 0.000 0.000 0.018 0.000 0.000

Maximum 4.056 0.043 0.078 1.036 4.710 1.552 0.469 1.000 1.000

Minimum 0.563 –0.015 –0.125 –0.288 –4.710 –1.232 –0.555 0.000 0.000

Std. Dev 0.740 0.007 0.029 0.172 1.250 0.383 0.110 0.475 0.501

Skewness 0.595 2.501 –0.514 1.888 0.009 0.510 –1.232 0.677 0.038

Kurtosis 2.900 13.290 5.265 9.881 6.625 5.371 9.966 1.459 1.001

Jarque-Bera 12.580 1156.324 54.642 544.176 116.097 58.857 482.257 37.192 35.333

Probability 0 0 0 0 0 0 0 0 0

MBF
Unit-root test

0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Model 3: GARCH type-models with oil price index
Model 4: GARCH type-models with house price index and commodity price index
Model 5: GARCH type-models with house price index and oil price index
Model 6: GARCH type-models with commodity price index and oil price index
Model 7: GARCH type-models with house price index, commodity price index and oil
price index
Model 8: GARCH type-models with GT “House prices”
Model 9: GARCH type-models with GT “Commodity prices”
Model 10: GARCH type-models with GT “Oil prices”
Model 11: GARCH type-models with GT “Oil prices” and “Commodity prices”
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Model 12: GARCH type-models with GT “House prices” and “Commodity prices”
Model 13: GARCH type-models with GT “House prices” and “Oil prices”
Model 14: GARCH type-models with GT “House prices”, “Oil prices” and “Commodity
prices”

To evaluate the performance of the various GARCH-type models with different
sets of predictors, we use three loss functions to measure the forecasting error: Akaike
information criterion (AIC),Bayesian information criterion (BIC) andRootMeanSquare
Error (RMSE).

4 Results

4.1 Model Selection

This study estimates the inflation volatility equation using three different GARCH (1,1)
models (GARCH, EGARCH and GJR-GARCH) under different innovation distribu-
tions, namely normal (NORM), student-t (STD) and skewed-student-t (SSTD) distribu-
tions. To compare the performance of these GARCH-type models, RMSE, AIC and BIC
are used.

Firstly, we have investigated the suitable model that precisely describes inflation
volatility only for each country relying on the lowest value of AIC and BIC. The result is
reported in Table 4, and it shows that the GJR-GARCHmodel with SSTD-distribution is
the best model for capturing the inflation volatility for the USA, whereas the EGARCH
model with SSTD-distribution is selected for Japan and the United Kingdom.

Table 4. Model selection.

Type NORM STD SSTD

AIC BIC AIC BIC AIC BIC

USA

sGARCH 0.50678 0.57011 0.51767 0.59683 0.35912 0.45411

eGARCH 0.49734 0.54484 0.50823 0.57156 0.34937 0.42853

gjrGARCH 0.51483 0.59399 0.52624 0.62124 0.30312 0.41395

Japan

sGARCH 1.51667 1.58000 1.53272 1.61188 1.26830 1.36330

eGARCH 1.50724 1.55474 1.52328 1.58661 1.25873 1.33789

gjrGARCH 1.52551 1.60468 1.54179 1.63679 1.58389 1.69473

UK

sGARCH 1.58163 1.64496 1.58917 1.66833 1.50194 1.59693

eGARCH 1.57213 1.61963 1.57965 1.64299 1.48232 1.57149

gjrGARCH 1.59078 1.66994 1.59827 1.69327 1.49423 1.59506

Note: The bold number indicates the best fit GARCH-type model
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Table 5. Evaluation of predictive power of various set of predictors.

Type Model USA Japan UK

NORM STD SSTD NORM STD SSTD NORM STD SSTD

sGARCH 1 4.46819 4.46727 4.42738 1.53564 1.53561 1.53329 4.96627 4.96821 4.96511

eGARCH 4.46805 4.46713 4.42723 1.53557 1.53557 1.53327 4.96596 4.96794 4.96481

gjrGARCH 4.47117 4.46983 4.39585 1.53606 1.53594 1.66373 4.96985 4.97208 4.99355

sGARCH 2 4.46769 4.46669 4.42577 1.52761 1.52758 1.52547 4.96636 4.96831 4.96581

eGARCH 4.46755 4.46656 4.42561 1.52754 1.52753 1.52545 4.96605 4.96805 4.96551

gjrGARCH 4.47086 4.46942 4.39226 1.52803 1.52792 1.67919 4.96995 4.97220 4.99435

sGARCH 3 4.47080 4.46985 4.42950 1.52603 1.52599 1.52375 4.96674 4.96869 4.96586

eGARCH 4.47066 4.46972 4.42934 1.52595 1.52595 1.52372 4.96643 4.96843 4.96556

gjrGARCH 4.47386 4.47249 4.39665 1.52643 1.52632 1.66920 4.97032 4.97257 4.99432

sGARCH 4 4.46716 4.46623 4.42627 1.52809 1.52806 1.52559 4.96567 4.96760 4.96495

eGARCH 4.46702 4.46609 4.42611 1.52802 1.52802 1.52557 4.96536 4.96734 4.96465

gjrGARCH 4.47016 4.46881 4.39468 1.52849 1.52837 1.68206 4.96926 4.97149 4.99352

sGARCH 5 4.46984 4.46898 4.42999 1.52682 1.52678 1.52421 4.96615 4.96809 4.96506

eGARCH 4.46970 4.46885 4.42984 1.52674 1.52674 1.52418 4.96584 4.96782 4.96476

gjrGARCH 4.47266 4.47142 4.39978 1.52719 1.52708 1.67142 4.96974 4.97197 4.99353

sGARCH 6 4.46797 4.46704 4.42698 1.52561 1.52558 1.52360 4.96636 4.96831 4.96581

eGARCH 4.46783 4.46690 4.42682 1.52554 1.52554 1.52357 4.96605 4.96805 4.96550

gjrGARCH 4.47101 4.46965 4.39478 1.52605 1.52592 1.67746 4.96995 4.97220 4.99434

sGARCH 7 4.46744 4.46660 4.42779 1.52616 1.52613 1.52379 4.96567 4.96760 4.96494

eGARCH 4.46730 4.46646 4.42764 1.52609 1.52609 1.52377 4.96536 4.96734 4.96464

gjrGARCH 4.47026 4.46902 4.39801 1.52656 1.52645 1.68029 4.96927 4.97149 4.99351

sGARCH 8 4.46986 4.46888 4.42810 1.53508 1.53504 1.53310 4.96685 4.96881 4.96602

eGARCH 4.46973 4.46875 4.42794 1.53501 1.53500 1.53308 4.96655 4.96855 4.96571

gjrGARCH 4.47301 4.47159 4.39458 1.53552 1.53540 1.66124 4.97044 4.97269 4.99448

sGARCH 9 4.46976 4.46877 4.42796 1.53496 1.53493 1.53296 4.96683 4.96879 4.96589

eGARCH 4.46962 4.46864 4.42781 1.53489 1.53489 1.53294 4.96653 4.96853 4.96559

gjrGARCH 4.47290 4.47148 4.39447 1.53541 1.53528 1.66132 4.97042 4.97267 4.99432

sGARCH 10 4.46975 4.46877 4.42795 1.53499 1.53496 1.53296 4.96724 4.96919 4.96625

eGARCH 4.46962 4.46864 4.42780 1.53492 1.53492 1.53295 4.96693 4.96893 4.96595

gjrGARCH 4.47290 4.47147 4.39448 1.53544 1.53531 1.66130 4.97082 4.97307 4.99466

sGARCH 11 4.46975 4.46877 4.42795 1.53499 1.53495 1.53296 4.96734 4.96930 4.96634

eGARCH 4.46962 4.46863 4.42780 1.53492 1.53491 1.53295 4.96703 4.96904 4.96604

gjrGARCH 4.47290 4.47147 4.39448 1.53543 1.53531 1.66135 4.97092 4.97317 4.99474

sGARCH 12 4.46991 4.46893 4.42812 1.53517 1.53514 1.53315 4.96737 4.96933 4.96650

eGARCH 4.46977 4.46879 4.42796 1.53510 1.53510 1.53313 4.96707 4.96907 4.96620

gjrGARCH 4.47306 4.47163 4.39461 1.53562 1.53549 1.66125 4.97096 4.97321 4.99494

sGARCH 13 4.46988 4.46890 4.42812 1.53507 1.53503 1.53309 4.96685 4.96880 4.96600

(continued)
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Table 5. (continued)

Type Model USA Japan UK

NORM STD SSTD NORM STD SSTD NORM STD SSTD

eGARCH 4.46975 4.46877 4.42796 1.53500 1.53499 1.53307 4.96654 4.96854 4.96570

gjrGARCH 4.47303 4.47161 4.39460 1.53551 1.53539 1.66128 4.97044 4.97268 4.99446

sGARCH 14 4.46991 4.46893 4.42813 1.53516 1.53512 1.53313 4.96747 4.96943 4.96658

eGARCH 4.46978 4.46880 4.42797 1.53509 1.53508 1.53311 4.96717 4.96917 4.96628

gjrGARCH 4.47306 4.47164 4.39461 1.53560 1.53548 1.66129 4.97106 4.97331 4.99502

Then, we use the best GARCH-type models obtained from the previous step to
forecast the inflation volatility with include regressors as different model. The RMSE
criterion is applied to evaluate the predictive power of each set of predictors. This RMSE
is used as a high-standard statistical metric to measure prediction model’s performance
[34]. According to Table 5,Model 2 presents the lowest value of RMSE (4.39226) for the
USA. This indicates that the commodity price index has the highest power to forecast
the inflation volatility of the USA. For Japan and the United Kingdom, model 9 and
model 7 present the highest forecasting performance, implying that Google Trend on
“Commodity prices” and the combination of house price index, commodity price index
and oil price index have the highest power for inflation volatility prediction for Japan
and the United Kingdom, respectively.

4.2 The Impact of Predictor on the Inflation Volatility

After selecting the most suitable volatility forecasting model in Sect. 4.1, we provide
the estimation results of the estimated coefficients of the best forecasting models. In
this section, we show the best forecasting models predicted in 2 cases: 1. the real price
indexes (Table 6) and 2. the best forecastingmodels predicted byGoogle trends (Table 7).
According to Table 5, we can conclude that Model 2, Model 6, and Model 7 are the best
specification model for USA, Japan, and UK.

Model 2 reveals that the commodity price index has a positive effect on inflation
volatility. We also find that the occurrence of a health crisis appears to raise higher
inflation volatility when compared to financial crisis. In contrast to the USA, the study
in Japan confirms that commodity price index, oil price index, and financial crisis have
a negative effect on the inflation volatility, while the presence of a health crisis has a
positive impact on the inflation volatility.

Table 7 reports the estimation results of the best model incorporating the Google
Trend variables. It can be seen that Model 9 performs the best prediction model for
all countries, indicating that Google Trend on “Commodity prices” performs the best
in predicting the inflation volatility. Although the Google Trend shows weak evidence
supporting the inflation volatility of the USA, Japan, and the UK, we find that financial
and health crises remain a strong predictor of the inflation volatility of the USA and
Japan.

To illustrate the prediction accuracy of our best fit models presented in this section,
we plot the 1-day ahead forecasts of inflation volatility and realized volatility in Figs. 2
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Table 6. Estimation result of the best predictive model for each country

Coefficient USA Japan UK

gjrGARCH_SSTD eGARCH_SSTD eGARCH_SSTD

Model 2 Model 6 Model 7

(Intercept) 0.26153*** 0.67345*** 0.69036***

[0.04222] [0.06630] [0.04806]

House price index 4.69417

[4.02965]

Commodity price index 6.66753** –6.24877** –0.22836

[2.89636] [2.63084] [0.98259]

Oil price index –0.35566 –0.01803

[0.45095] [0.25507]

Financial crisis 0.21600*** –0.33658*** –0.02251

[0.05371] [0.08381] [0.05618]

Health crisis 0.30136*** 0.54060*** 0.00191

[0.05084] [0.07878] [0.05644]

Note: *** denote significance level of MBF, by 0.0001–0.01MBF is decisive evidence. [] denotes
the standard error

Table 7. Estimation results of the best predictivemodel for each country in Google Trend variable
group.

Coefficient USA Japan UK

GJR-GARCH_SSTD EGARCH_SSTD EGARCH_SSTD

Model 9 Model 9 Model 9

(Intercept) 0.26914*** 0.64174*** 0.71278***

[0.04263] [0.06723] [0.04399]

House prices (Google
Trend)

Commodity prices (Google
Trend)

0.02578 0.01116 –0.00077

[0.06844] [0.05174] [0.02074]

Oil prices (Google Trend) –0.35566

Financial crisis 0.22104*** –0.31633*** –0.02163

[0.05433] [0.08570] [0.05608]

Health crisis 0.30168*** 0.54977*** –0.01870

[0.05150] [0.08119] [0.05313]

Note: *** denote significance level of MBF, by 0.0001–0.01MBF is decisive evidence. [] denotes
the standard error
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and 3, respectively, for the best GARCH-type models in Tables 6 and 7. The black line
represents the realized volatility, the colored line represents the forecasting line.

According to Fig. 2, it is found that the forecast value is moving in the same direction
as the realized volatility. However, it has a high difference in some periods, especially
during the global financial crisis (2009), for the USA and Japan. On the other hand, our
forecasting model is not well predicting the inflation volatility of the UK. The possible
reason is that the real commodity price index has probably no effect on the UK’s inflation
volatility forecasts (see Table 6). Considering the predictive power of Google Trend in
predicting the volatility in Fig. 3. We find that the models with Google Trend are not
well predicting the inflation volatility for all countries.

Fig. 2. The forecast inflation volatility based on real price indexes for three countries. (a) the
United States of America (b) Japan (c) the United Kingdom. (Color figure online)

Fig. 3. The forecast inflation volatility based on Google Trend for three countries. (a) the United
States of America (b) Japan (c) the United Kingdom (Color figure online)

5 Conclusion

This study focuses on investigating the predictive power of real price indexes andGoogle
Trend keywords in forecasting the inflation volatility for three developed countries (the
USA, Japan, and the UK). Several GARCH-typemodels are also considered in this study
as a volatility forecasting model. Overall, our findings show that the Google Trend is not
a good predictor of the inflation volatility. However, we find that the real price index, in
particular the commodity price index, is the best predictor for all countries. The different
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models suitable for different countries may arise from the different economic structures
that affect the price and cost of goods. In all three countries, commodity prices remain
the main factor affecting inflation in all countries, while in Japan and the UK, the cost
structure of energy, especially oil prices, is an additional influence on inflation. However,
the study results have an interesting part. In addition to energy costs and commodity
prices, home prices reflect inflation in the UK. This section is still an interesting point
and should be studied in the future. Moreover, we find that financial and health crises
have a significant impact on the inflation volatility. Consequently, this study suggests
that commodity price index, financial and health crises are the three factors responsible
for the inflation volatility. This result is consistent with the literature. Webb [35], Alan
Garner [36] and Furlong and Ingenito [37] revealed that there exists a strong relationship
between commodity price and the inflation.

References

1. Morag, A.: For an inflation-proof economy. Am. Econ. Rev. 52(1), 177–185 (1962)
2. Öner, C.: Inflation: prices on the rise. International Monetary Fund (2012)
3. Aiken, M.: Using a neural network to forecast inflation. Ind. Manag. Data Syst. 99, 296–301

(1999)
4. Mishkin, F.S.: Inflation dynamics. Int. Financ. 10(3), 317–334 (2007)
5. Fisher, J.D., Liu, C.T., Zhou, R.: When can we forecast inflation? Econ. Perspect.-Federal

Reserve Bank of Chic. 26(1), 32–44 (2002)
6. Stock, J.H., Watson, M.W.: A probability model of the coincident economic indicators (1988)
7. Bryan, M.F., Cecchetti, S.G.: The consumer price index as a measure of inflation (1993)
8. Svensson, L.E.: Open-economy inflation targeting. J. Int. Econ. 50(1), 155–183 (2000)
9. Reinsdorf, M.: COVID-19 and the CPI: is inflation underestimated? (2020)
10. Bureau of Labor Statistics (BLS). Consumer Price Index (2021). https://www.bls.gov/cpi/que

stions-and-answers.htm. Accessed 15 Oct 2021
11. Zou, G.L., Chau, K.W.: Determinants and sustainability of house prices: the case of Shanghai

China. Sustainability 7(4), 4524–4548 (2015)
12. Browne, F., Cronin, D.: Commodity prices, money and inflation. J. Econ. Bus. 62(4), 331–345

(2010)
13. Naurin, A., Qayyum, A.: Impact of Oil Price and Its Volatility on CPI of Pakistan: Bivariate

EGARCH Model (2016)
14. Jun, S.P., Yoo, H.S., Choi, S.: Ten years of research change using Google Trends: from the

perspective of big data utilizations and applications. Technol. Forecast. Soc. Chang. 130,
69–87 (2018)

15. Medeiros, M.C., Pires, H.F.: The proper use of Google Trends in forecasting models (2021).
arXiv preprint arXiv:2104.03065

16. Loughlin, C., Harnisch, E.: The viability of StockTwits and Google Trends to predict the
stock market (2013). StockTwits.com

17. Hu, H., Tang, L., Zhang, S., Wang, H.: Predicting the direction of stock markets using
optimized neural networks with Google Trends. Neurocomputing 285, 188–195 (2018)

18. Huang, M.Y., Rojas, R.R., Convery, P.D.: Forecasting stock market movements using Google
Trend searches. Empir. Econ. 59(6), 2821–2839 (2020)

19. Guzman, G.: Internet search behavior as an economic forecasting tool: the case of inflation
expectations. J. Econ. Soc. Meas. 36(3), 119–167 (2011)

20. Bollerslev, T.:Generalized autoregressive conditional heteroskedasticity. J. Econ.31, 307–327
(1986)

https://www.bls.gov/cpi/questions-and-answers.htm
http://arxiv.org/abs/2104.03065
https://stocktwits.com/


Investigating the Predictive Power of Google Trend and Real Price Indexes 367

21. Lee, J.: Food and energy prices in core inflation. Econ. Bull. 29, 847–860 (2009)
22. Omotosho, B.S., Doguwa, S.I.: Understanding the dynamics of inflation volatility in Nigeria:

a GARCH perspective (2012), working paper
23. Waziri,O.I.O.E.I.:Modelingmonthly inflation rate volatility, usinggeneralized autoregressive

conditionally heteroscedastic (GARCH) models: evidence from Nigeria. Aust. J. Basic Appl.
Sci. 7(7), 991–998 (2013)

24. Molebatsi, K., Raboloko, M.: Time series modelling of inflation in Botswana using monthly
consumer price indices. Int. J. Econ. Financ. 8(3), 15 (2016)

25. Abbas Rizvi, S.K., Naqvi, B., Bordes, C., Mirza, N.: Inflation volatility: an Asian perspective.
Economic research-Ekonomska istraživanja 27(1), 280–303 (2014)

26. Nyoni, T.: Predicting CPI in Panama., University of Zimbabwe – Munich Personal RePEc
Archive (MPRA), Paper No. 92419 (2019)

27. Risteski, D., Sadoghi, A., Davcev, D.: Improving predicting power of EGARCH models for
financial time series volatility by using google trend. In: Proceedings of 2013 International
Conference on Frontiers of Energy, Environmental Materials and Civil Engineering. Shangai,
China (2013)

28. Yao, T., Zhang, Y.J.: Forecasting crude oil prices with the Google index. Energy Procedia
105, 3772–3776 (2017)

29. Tarkhamtham, P., Yamaka, W., Maneejuk, P.: Forecasting volatility of oil prices via Google
Trend: LASSOapproach. In: Ngoc Thach, N., Kreinovich, V., Trung,N.D. (eds.) Data Science
for Financial Econometrics. SCI, vol. 898, pp. 459–471. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-48853-6_32

30. Bollerslev, T.: Modelling the coherence in short-run nominal exchange rates: a multivariate
generalized ARCH model. Rev. Econ. Stat. 72, 498–505 (1990)

31. Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and
the volatility of the nominal excess return on stocks. J. Financ. 48(5), 1779–1801 (1993)

32. Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica:
J. Econom. Soc. 59, 347–370 (1991)

33. Duan, J., Gauthier, G., Simonato, J., Sasseville, C.: Approximating the GJR-GARCH and
EGARCH option pricing models analytically. J. Comput. Financ. 9(3), 41 (2006)

34. Maneejuk, P., Yamaka, W.: Significance test for linear regression: how to test without P-
values? J. Appl. Stat. 48(5), 827–845 (2021)

35. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82
(2005)

36. Webb, R.H.: Commodity prices as predictors of aggregate price change. FRB Richmond
Econ. Rev. 74(6), 3–11 (1988)

37. Furlong, F., Ingenito, R.: Commodity prices and inflation. Economic Review-Federal Reserve
Bank of San Francisco, pp. 27–47 (1996)

38. Garner, C.A.: Policy options to improve the US standard of living. Econ. Rev. 73(Nov), 3–17
(1988)

https://doi.org/10.1007/978-3-030-48853-6_32


Price Volatility Dependence Structure Change
Among Agricultural Commodity Futures Due
to Extreme Event: An Analysis with the Vine

Copula

Konnika Palason1, Tanapol Rattanasamakarn1, and Roengchai Tansuchat2(B)

1 Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand
2 Center of Excellence in Econometrics, Faculty of Economics,

Chiang Mai University, Chiang Mai, Thailand
roengchai.tan@cmu.ac.th

Abstract. Since the COVID-19 spreads, global food prices have continued to
rise and become more volatile because of food security panic, global food supply
chain disruption, and unfavorable weather conditions for cultivation. This paper
aims to study and compare the dependence structure in price volatility among
agricultural commodity futures before and during the COVID-19 pandemic, with
different vine copulas, namely the R-vine, C-vine, and D-vine. The daily closing
prices of the agricultural commodity futures are used in the investigation, includ-
ing Corn, Wheat, Oat, Soybean, Rice, Sugar, Coffee, Cocoa, and Orange, traded
in the Chicago Board of Trade (CBOT) from January 2016 to July 2021. The
conditional volatilities were estimated using the best fit GARCH model with the
student-t distribution. The empirical results highlight the dependence structures
captured by the C-vine, D-vine, and R-vine copula-based models before and dur-
ing the COVID-19 pandemic. Although the C-vine copula structures of the two
different periods are unchanged, the details of the copula family in such a struc-
ture differ. In the case of D-vine and R-vine copulas, the details of the copula
families and their vine structures of two different periods are significantly dif-
ferent, meaning that COVID-19 impacts the price volatility dependence structure
among the agricultural commodity futures examined. Based on the AIC, the most
appropriate dependence structure for pre-COVID-19 period is the C-vine copula,
while the during-COVID-19 period is the D-vine copula. The dependence struc-
ture of agricultural commodity futures prices can be used in other risk analysis
and management methods such as value at risk (VaR), portfolio optimization, and
hedging.

Keywords: Dependence structures · Agricultural commodity futures · Vine
copula · COVID-19

1 Introduction

Agricultural commodities are agricultural products, of which more than half are used
for producing food for both humans, animals, and bioenergy. The common agricultural
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commodities are corn, wheat, oat, soybean, rice, sugar, coffee, cocoa, and orange. There
are two kinds of agricultural commodity trading: spot (or cash) and futures trade. The
spot trade is a trade that takes place immediately or within a few days at the current
market price. The futures trade is a trade that is not an actual exchange of goods but
by an agricultural futures contract, which is an agreement to buy or sell a particular
commodity at a future date, at a specific price and amount of the commodity at the time
of the agreement.

The agricultural commodity trading price depends on many internal factors such as
demand-supply from the producers and the buyers, outstanding position, pre-delivery
period, current market price [1–9]. In addition, the uncontrollable external factors are
seasonality, climate-changing, and natural disasters. Other external factors are political
turmoil or severe epidemic such as COVID-19, which contribute to agriculture and
food supply disruptions. These factors also contribute to agricultural commodity price
volatility.

Volatility in agricultural prices, known as commodity risk, is the risk of fluctuations
in commodity prices. The commodity risk is the main reason for having the commodity
futures exchange for hedging against price fluctuations [10]. The futuresmarket also pro-
vides an opportunity for investors and speculators to make profits. Although the linear
regression analysis of commodity prices can explain the correlation, it is inappropri-
ate to explain the unbalanced dependencies. To date, numerous empirical studies have
shown the importance of using several econometric methods to examine the dependence
between commodity prices. For example, studies were undertaken on the dependence
structure in the agricultural commodity prices [11–13], and interdependence structure
between agricultural commodity and oil prices by using the copula model [14–18]. In
particular, the copula can be extended to higher dimensions and provide flexible mea-
surements to capture the asymmetric dependence between commodities. Just and Łuczak
evaluated the conditional dependency structure in commodity futures markets using the
copula-GARCH model [19]. The Vine copula offers better flexibility than the standard
copula models. It allows the creation of a model of complex dependency structures that
may be analyzed as a tree structure [20]. In addition, from literature review found that
Copula-GARCH could be applied to the co-movement or dependence of agricultural
commodity. For example, Xinyu Yuan studied Co-Movement among Different Agri-
cultural Commodity Markets of agricultural products using Copula-GARCH [21]. Giot
employs stochastic volatility models to analyze the spillover of speculation and volatility
between agricultural commodity and crude oil markets [22]. The copula-GARCH app-
roach is useful in investigating the dependence or the co-movement of different series
[23, 24].

Currently, the world is facing the COVID-19 pandemic. COVID-19 affects all eco-
nomic sectors through supply and demand, especially the agricultural sector [25, 26].
According to the Food and Agriculture Organization (FAO), there has been downward
pressure on agricultural prices since the early stage of the pandemic [27]. However, as
the epidemic continues, the government of each country has set preventive measures
to control the spread of COVID-19, including a curfew, border suspension, lockdowns,
movement restriction, and social distancing, resulting in labor shortages in the agricul-
tural sector, which indirectly cause the reduction of agricultural production [28–34]. In
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addition, the measures lead to a degree of food security panic among consumers even
in a short-term period. Consequently, agricultural commodities are more expensive [35,
36]. According to a study by Varshney, the coronavirus situation affects the prices of dif-
ferent agricultural commodities differently [37]. Moreover, the news-based COVID-19
sentiment has also affected agricultural prices and price volatility [38].

The literature review revealed that the agricultural commodity markets have differ-
ent dependence structures; for example, a study by Yamaka et al. [12] in 2018 found
that the dependence between commodity futures has different structures. Agricultural
commodities appear to move together, with joint movements varying over time [19].
Consequently, the research questions are how the dependence structures of the agricul-
tural commodities volatility look like and how they differ in the pre-COVID-19 time and
during the COVID-19 pandemic episode. Therefore, our study used the most famous
volatility model, GARCH model, and the different vine-copula models to examine the
dependency structure of agricultural commodities composed of nine agricultural com-
modities (corn, oat, soybean, rice, sugar, coffee, cocoa, orange, and wheat). The rest of
the paper is organized as follows: Sect. 2 describes the method, while Sect. 3 presents
the information. Section 4 shows the empirical results. Finally, Sect. 5 is the conclusion
and discussion.

2 Methods

2.1 GARCH

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is a
conditionally heteroskedastic model proposed by Bollerslev (1986) [19]. It has been
widely used in financial econometric modeling and analysis since the 1980s because
of its ability to capture dynamic volatility and volatility clustering. The ARMA (p,q)
GARCH (1, 1) is defined as follows:

rt = μ +
p∑

i=1

φirt−i +
q∑

i=1

ψiεt−i + εt (1)

εt = σtzt (2)

σ 2
t = � + α1ε

2
t−1 + β1σ

2
t−1 (3)

where εt is the innovation at time t. zt is a sequence of i.i.d. random variables with mean
0 and variance 1. The restrictions are� > 0, αi, βi > 0 and α1+β1 ≤ 1. The α1 and β1
are known as ARCH andGARCH parameters, respectively. However, many studies have
indicated that many financial data are non-normally distributed. Instead of the normal
distribution, the student’s t-distribution is the most popular financial data representation.

2.2 Vine Copula

In 1959, Sklar (1959) [20] introduced The Sklar’s theorem. This theorem states that any
multivariate joint distribution can be decomposed into two parts: univariate marginal dis-
tribution functions and copula. This copula illustrates the dependence structure between
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thevariables. For randomvariable vectorX = (X1, ...,Xn)
′ with themarginal distribution

F1, ...,Fn, the Sklar’s theorem states that.

F(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)) (4)

for some appropriate n-dimensional copula. The copula from (4) has the expression

C(u1, . . . , un) =
{
F−1
1 (u1), . . . ,F

−1
n (un)

}
(5)

where F−1
i (ui) is the inverse distribution function of the marginal derived from the

ARMA(p,q)-GARCH process. The copula joint density function (f ) uses the chain rule
with a continuous F with strictly increasing, continuous marginal densities F1, . . . ,Fn.

f (x1, . . . , xn) = c1···n{F1(x1), . . . ,Fn(xn)} · f1(x1) . . . fn(xn) (6)

For conditional density follows that

f (xn−1|xn ) = c(n−1)n{Fn−1(xn−1),Fn(xn)} · fn−1(xn−1) (7)

Consequently, the pair-copula with a conditional marginal density in the general
formula can be written as;

f (x|v ) = cxuj|v−j

{
F(x|v−j),F(uj|v−j)

} · f (x|v−j) (8)

Joe (1996) showed that the pair-copula construction involves marginal conditional
distributions of the form F(x|v ) for every j,

F(x|v ) = ∂Cx,uj |v−j

{
F(x|v−j),F(uj|v−j)

}

∂F(uj|v−j)
(9)

where Cij|k is a bivariate copula distribution function [34].
The Vine copula is a graphical tool for high dimensional data modeling complex

dependency patterns from bivariate copulas as building blocks. Bedford and Cooke
introduced the vine copula (2001, 2002), denoting it as a regular vine (R-vine), and it
can be classified into two cases: C-vine and D-vine. Each model gives a specific way of
decomposing the density [39, 40].

For n-dimensional, vine structure can be expressed with n − 1 trees, and the tree
Tj has n + 1 − j nodes and n − j edges which indicate n − j copula density functions.
Therefore, the complete decomposition is defined by n(n − 1)/2 edges.

The density function of D-vine can be written as

n∏

k=1

f (xk)
n−1∏

j=1

n−j∏

i=1

ci,i+j|i+1,...,i+j−1
{
F(xi|xi+1, . . . , xi+j−1),F(xi+j|xi+1, . . . , xi+j−1)

}

(10)

where index j identifies the trees while i runs over the edges in each tree. The density
function of C-vine can be written as

n∏

k=1

f (xk)
n−1∏

j=1

n−j∏

i=1

cj,j+i|1,...,j−1
{
F(xj|x1, . . . , xj−1),F(xj+i|x1, . . . , xj−1)

}
(11)
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For R-vine, the structure of R-vine has no uniform like C-vine and D-vine. However,
R-vine structure can be the same structure with C-vine and D-vine. R-vine density
function is the following

f1...n(x) =
n∏

k=1

fk(xk)
n−1∏

i=1

∏

e∈Ei
CCe,a,Ce,a|De

(
FCe,a|De(XCe,a |XDe),FCe,b|De (XCe,a |XDe)

)

(12)

where x = (x1, . . . , xn), e = {a, b}, xxk = ∑k
t=1 (xt − x), yyk = ∑k

t=1 (yt − y), k =
1, 2, . . . , N , and De, fi is the inverse function of Fi.

3 Data

This paper used the futures prices of the agricultural commodities traded in the Chicago
Board of Trade (CBOT), including wheat, corn, soybean, rice, oat, sugar, coffee, cocoa,
and orange, obtained from Thomson Reuters, for the period running from 1 January
2016 to 31 July 2021. The threshold date of the COVID-19 situation is 30 January 2020.
Then, we calculated the agricultural commodities’ futures returns from their closing
prices based on the continuous compound basis as ri, t = ln(Pi,t/Pi,t−1), where Pi,t and
Pi,t−1 is the futures price of agricultural commodity i at time t and t–1, respectively
(Fig. 1).

Fig. 1. The daily returns of each agricultural commodity

4 Empirical Results

4.1 Descriptive Statistic

Table 1 shows the descriptive statistics of the agricultural commodity return before
COVID-19 and during COVID-19 for wheat, corn, soybean, rice, oat, sugar, coffee,
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cocoa, and orange futures. The results of the ADF test for the unit root in Table 2 show
that all agricultural commodity futures returns for pre-COVID-19 and during COVID-19
periods are stationary.

Table 1. Descriptive statistics of agricultural return

Before COVID-19 During COVID-19

Max. Min. Std. Skew. Kurt. JB. Max. Min. Std. Skew. Kurt. JB.

Wheat 0.062 –0.060 0.017 0.271 3.850 42.40 0.054 –0.041 0.017 0.434 3.426 16.4

Corn 0.051 –0.063 0.014 –0.170 5.118 191.90 0.062 –0.191 0.020 –2.102 23.96 7,999

Soybean 0.055 –0.048 0.011 0.039 5.127 189.04 0.064 –0.086 0.013 –0.672 10.25 951.7

Rice 0.072 –0.067 0.014 0.285 5.341 242.18 0.098 –0.300 0.024 –4.584 59.76 57,862

Oat 0.098 –0.140 0.021 –0.105 7.989 1,040 0.055 –0.211 0.019 –3.220 35.54 19,264

Sugar 0.108 –0.053 0.018 0.487 5.717 347.27 0.063 –0.078 0.019 –0.147 3.893 15.5

Coffee 0.067 –0.064 0.017 0.114 3.740 24.98 0.096 –0.076 0.023 0.394 4.467 48.5

Cocoa 0.064 –0.065 0.018 0.011 3.318 4.25 0.115 –0.089 0.020 –0.078 7.017 282.8

Orange 0.131 –0.109 0.020 0.280 6.165 430.88 0.064 –0.074 0.020 –0.199 3.712 11.7

Table 2. ADF unit root test

Variable Before COVID-19 During COVID-19

None Intercept Intercept &
Trend

None Intercept Intercept &
Trend

Wheat –30.868*** –30.856*** –30.848*** –22.307*** –22.303*** –22.283***

Corn –30.725*** –30.710*** –30.695*** –19.252*** –19.267*** –19.252***

Soybean –32.988*** –32.972*** –32.976*** –21.029*** –21.177*** –21.154***

Rice –29.593*** –29.580*** –29.578*** –16.260*** –16.242*** –16.223***

Oat –31.638*** –31.635*** –31.623*** –19.934*** –19.948*** –20.050***

Sugar –30.298*** –30.285*** –30.270*** –20.338*** –20.355*** –20.360***

Coffee –32.342*** –32.326*** –32.310*** –19.787*** –19.814*** –19.953***

Cocoa –32.843*** –32.830*** –32.859*** –20.646*** –20.624*** –20.599***

Orange –31.039*** –31.034*** –31.048*** –19.467*** –19.486*** –19.465***

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively

4.2 Vine Copula

This paper considers all types of vine copula, namely R-vine, C-vine, and D-vine. The
technique of Dißmann et al. (2013) is applied to construct and estimate the Vine copula
structure. The study is divided into two periods: (1) the pre-COVID-19 crisis and (2)
during the COVID-19 crisis to determine whether there is a change in the price volatility
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dependence structure. In the first step, we estimate the best fit of ARMA-GARCH with
student’s t distribution model for each of the agriculture commodities. In the second
step, we transform the estimated conditional volatility to Uniform (0.1) distribution as
input data for vine copula estimates. The estimation results of the C-vine, D-vine, and
R-vine Copulamodels are shown in Figs. 2, 3 and 4, respectively. FromFig. 2, the C-vine
copula results reveal that corn is a link between the relationships of other commodities
in the dependence structure before the COVID-19 crisis and during the COVID-19
crisis. The correlation analysis using the D-vine model (Fig. 3) reveals that the volatility
dependence structures in the pre-COVID-19 and during COVID-19 periods are different
for virtually all pairs of commodities except for the pairs of rice and orange and the
corn and soybean. Meanwhile, the results R-vine model (Fig. 4) show that dependence
structures in the pre-COVID-19 time have changed dramatically after the arrival of the
COVID-19 epidemic.

CornB

WheatB

SoybeanB

RiceB

OatB

SugarB

CoffeeB

CocoaB

OrangeB

CornD

WheatD

SoybeanD

RiceD

OatD
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CoffeeD

CocoaD

OrangeD

Fig. 2. C-vine Copula tree 1 for Before COVID-19 and During COVID-19
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Fig. 3. D-vine Copula tree 1 for Before COVID-19 and During COVID-19

Table 3 presents the Log-Likelihood, AIC, and BIC values from different Vine cop-
ulas. For the pre-COVID-19 data, the C-vine model can characterize the relationship
between different agricultural commodities better than the D-vine and R-vine types.
However, for data during the COVID-19 crisis, the D-vine structure can capture the
relationships better than the C-vine and R-vine models.
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Fig. 4. R-vine Copula tree 1 for Before COVID-19 and During COVID-19

Table 3. Log-likelihood, AIC, and BIC of the vine copulas

Before COVID-19 During COVID-19

Log likelihood AIC BIC Log likelihood AIC BIC

C-Vine 3,198.34 –6,284.68 –6,009.79 1,328.96 –2,547.92 –2,325.71

D-Vine 3,074.32 –6,038.63 –5,768.65 1,352.05 –2,598.10 –2,383.96

R-Vine 3,157.86 –6,203.73 –5,928.84 1,339.61 –2,573.23 –2,359.10

Table 4 shows the estimation results of the C-vine copula-based model. In the pre-
COVID-19 period, the orders of C-vine structure are corn, wheat, oat, soybean, rice,
sugar, coffee, cocoa, and orange, respectively. All pairs of variables have significant
co-movement and tail dependence, especially the corn and wheat pair, which possesses
the most remarkable dependence.

Table 4. Estimation results using the C-vine copula for pre-COVID-19

Variable Copula Parameters 1 Parameters 2 Kendall’s tau

Corn & Oat BB8 2.12* 0.92** 0.30

Corn & Rice Survival BB1 0.27** 1.00*** 0.12

Corn & Cocoa Survival Joe 1.00*** - 0.00

Corn & Sugar Survival BB1 0.13* 1.01*** 0.07

Corn & Soybean Survival BB1 1.17* 1.01*** 0.38

Corn & Wheat Survival BB1 1.32* 1.02*** 0.41

Corn & Coffee Survival BB1 0.12* 1.00*** 0.06

Orange & Corn T 0.01** 30.0*** 0.01
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Table 5 shows that, during COVID-19, the orders of D-vine structure are corn, wheat,
oat, soybean, rice, sugar, coffee, cocoa, and orange, respectively. The estimation results
of the D-vine copula-based model in Table 5 show that almost all pairs of variables have
significant co-movement and tail dependence, especially the corn and soybean pair,
which exhibits the most significant dependence. The orange and rice pair is an exception
as these two commodities were independent in their price volatility.

Table 5. Estimation results using the D-vine copula during COVID-19

Variable Copula Parameters 1 Parameters 2 Kendall’s tau

Orange & Rice Independent - - 0.00

Sugar & Orange Survival BB7 1.00*** 0.19* 0.09

Oat & Sugar Survival BB1 0.23* 1.01*** 0.11

Wheat & Oat Survival BB7 1.01*** 0.62** 0.24

Soybean & Wheat Survival BB1 0.77** 1.03*** 0.30

Corn & Soybean Survival BB1 1.79*** 1.02*** 0.48

Coffee & Corn Survival BB1 0.47* 1.00*** 0.19

Cocoa & Coffee Survival BB7 1.00*** 0.21* 0.10

5 Conclusion

This study examines the dependence structures of agricultural commodity futures with
copulas in the vine class, namely the R-vine, C-vine, and D-vine, in two periods: the
pre-COVID-19 and during the COVID-19 pandemic. The empirical results show that
the dependence structure or vine structure changed significantly. These findings are
consistent with the studies byYamaka [31] andYuan that found the dependence structure
in agricultural commodities to vary over time [30, 31]. Besides, Sriboonchitta studied
the contagion effects of agricultural commodity markets during the 2007–8 food crisis
and found that the dependence structure of agricultural commodities changed when
the crisis occurred [29], which is consistent with the results of this study that COVID-
19 has changed the volatility dependence structure of agricultural commodity futures.
The present findings on the change in price volatility dependence structure between
different agricultural commodity futures due to such extreme events as COVID-19 can
be applied in other risk analysis and management methods such as the Value-at-Risk
(VaR), portfolio optimization, and hedging.
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