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Abstract. Deep knowledge Tracing is a family of deep learning models
that aim to predict students’ future correctness of responses for different
subjects (to indicate whether they have mastered the subjects) based on
their previous histories of interactions with the subjects. Early deep knowl-
edge tracing models mostly rely on recurrent neural networks (RNNs) that
can only learn from a uni-directional context from the response sequences
during the model training. An alternative for learning from the context
in both directions from those sequences is to use the bidirectional deep
learning models. The most recent significant advance in this regard is
BERT, a transformer-style bidirectional model, which has outperformed
numerous RNN models on several NLP tasks. Therefore, we apply and
adapt the BERT model to the deep knowledge tracing task, for which
we propose the model BiDKT. It is trained under a masked correctness
recovery task where the model predicts the correctness of a small percent-
age of randomly masked responses based on their bidirectional context
in the sequences. We conducted experiments on several real-world knowl-
edge tracing datasets and show that BiDKT can outperform some of the
state-of-the-art approaches on predicting the correctness of future student
responses for some of the datasets. We have also discussed the possible
reasons why BiDKT has underperformed in certain scenarios. Finally, we
study the impacts of several key components of BiDKT on its performance.

Keywords: Educational data mining · Knowledge tracing · BERT

1 Introduction

The Intelligent Tutoring System (ITS) aims to provide students with personalised
learning schemes based on their respective proficiency over different teaching con-
cepts/subjects to help them achieve better learning outcomes. Hence, the effi-
cacy of personalisation highly depends on the accurate estimate of students’ profi-
ciency. The ITS usually requires the students to become sufficiently knowledgeable
about one concept before allowing them to proceed to study the next concept [23].
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Alternatively, it has also attempted to place the questions/exercises in an optimal
ordering such that students with increasing levels of proficiency can tackle them
progressively without being discouraged or dropping out from the study [15]. The
estimates of the student proficiency can also help the ITS monitor the skill devel-
opment of the students implicitly and meanwhile, give them explicit feedback on
their performance under different skills/subjects on time [2].

A well-known family of approaches that can effectively estimate the student’s
proficiency is knowledge tracing (KT) [11]. Corbett and Anderson [4] proposed
the first knowledge tracing model based on Bayesian statistics and inference,
referred to as the Bayesian knowledge tracing (BKT). It estimates the student’s
proficiency over different teaching concepts based on a student’s previous history
of performance on interactive exercises [4]. They proposed that if the model
could accurately predict students’ future behaviours based on their performance
history, it can be considered able to capture the students’ proficiency on different
teaching concepts. They achieved this by modelling the historical performance
sequences of each student as a Markov process which tracks the students’ learning
states on each subject as being either mastered or not mastered. The Markov
process is primarily characterised by 1) a transition probability of the subject
from being not mastered to mastered, but not vice versa, and 2) conditional
probabilities of correctness given different states of the mastery. These two sets
of probabilities are estimated using the Bayesian inference method.

After this pioneering work, a plethora of research that aimed to extend the
BKT model had been proposed. For example, Pardos and Heffernan have pro-
posed to introduce the difficulty of the questions into the BKT model by condi-
tioning the probabilities of correctness on the specific questions [21]. Yudelson et
al. proposed to personalise the two sets of probabilities by making them specific
to each student [29]). These extended models have been shown to improve the
prediction accuracy on the correctness of responses of the students compared
to the original BKT model. However, despite the performance improvements,
these traditional knowledge tracing models are developed under the constraints
imposed by the Bayesian methods (e.g., the restricted Bayesian update rules
on the parameters and the difficulty of being scaled up to handle large and
datasets with longer sequences [8]). As a theoretical result, their performance
improvements are limited due to the lack of flexibility.

The advent of deep neural networks granted the ITS a competitive alter-
native for knowledge tracing. In theory, leveraging deep learning techniques for
knowledge tracing can 1) avoid the heavy engineering of the input features that
are required by many classical models and 2) increase the flexibility and efficacy
of the student proficiency and response correctness estimation. The pioneering
work of applying deep learning to knowledge tracing is from [22] where a recur-
rent neural network (RNN) is employed for sequentially predicting the response
correctness of each student on the current questions based on their response cor-
rectness on the previous questions. In their model, the student proficiency and
its transition patterns (e.g. skill mastery transitions) are modelled by the flexible
and sophisticated non-linear recurrent layers instead of some statistical models.
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The authors reported a substantial gain in performance from this “deep” version
of the knowledge tracing, referred to as DKT, compared to BKT models. Follow-
ing the DKT paradigm, many extensions have been proposed which have focused
on using recurrent neural networks for the sequential prediction of the response
correctness [16,19,22,28,30]. Their performance, however, is mostly comparable
to that of the original DKT model. This has cast a question to deep learning for
knowledge tracing; that is whether the former has the potential to contribute
to a further leap in the performance of the latter. In particular, Gervet et al.
[8] has found that the DKT model tends to overfit smaller datasets and are less
effective than a logistic regression model with hand-crafted features. For larger
datasets, DKT tends to perform better than the logistic regression model.

Recently, transformer-style deep learning models start to become prominent
and lead the performance in many natural language processing and computer
vision tasks. One of the most popular transformer-style models is BERT [5],
which leverages stacks of fully connected transformers (as hidden layers) and
random masked token prediction (as the objective) for capturing the contextual
information of each input token. Unlike the RNN models which endeavour to
capture sequential contexts during the training, BERT focuses on the bidirec-
tional contexts which tend to convey more information about each input token
than the sequential ones. BERT has had many extensions [18,24,27]. Nonethe-
less, it remains to be the most popular and effective deep learning model whose
potential has never been fully exploited in the knowledge tracing domain.

Therefore, in this paper, we strive for filling this research gap by adapting
BERT to the domain of knowledge tracing. To achieve this, we seek to answer
the following research questions:

– RQ1: How can BERT be adapted to 1) take in the knowledge tracing sequen-
tial data, which consists of the (correctness of) students’ responses, the
responded questions and subjects, and 2) perform random masking on the
input data, which needs to be specialised for knowledge tracing?

– RQ2: How does BERT perform compared to the state-of-the-art DKT models
and the classical BKT and logistic regression models in terms of the prediction
accuracy on the response correctness?

– RQ3 Under what conditions does BERT yield better or worse prediction
performance, possibly compared with the aforementioned competing models?

Therefore, in this paper, we first reviewed the research that had been done in
the knowledge tracing domain especially in how recent new deep learning tech-
niques have been applied to the deep knowledge tracing model to improve model
performance. We then proceeded to introduce our proposed deep knowledge trac-
ing with BERT. We introduced how we constructed our model layer by layer and
the training and testing strategies for our model. We also introduced a plethora
of experiments we conducted to evaluate the performance of our proposed model
and discussed in what circumstance our model would perform better and how
the changes of some of the important parameters of the model could affect the
performance of the model. Finally, we concluded the result of our research and
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discussed how some of the improvement and future work could be done to the
research and the deep knowledge tracing domain.

2 Related Work

2.1 Bayesian Knowledge Tracing and Extensions

Corbett and Anderson [4] proposed the Bayesian Knowledge Tracing model (i.e.,
BKT), which attempts to capture the knowledge states of students in an ITS.
It has the following modelling assumptions:

– The knowledge state is binary for a subject, either “mastered” or “non-
mastered”, and the state can only change in one direction: from “non-
mastered” to “mastered”.

– The correctness of response is conditioned on the student’s knowledge state
on the corresponding subject (as a conditional probability table).

The knowledge tracing is then modelled by BKT as a Markov process. As
a student responds to a sequence of questions, each belonging to a subject,
BKT maintains the estimated probability that each subject is in the “mastered”
state; when the student answers a question, this probability will be updated
simultaneously.

Based on the BKT model, there has been further research on proposing
extended models or studying the properties and limitations of BKT. Pardos
and Hefferman [21] proposed to introduce difficulty (level) variables to different
questions. Yudelson et al. proposed to have the probabilities of the knowledge
state P (Lt) and the mastery transition P (T ) specific to each student [29].

Khajah et al. [13] have studied the limitations of the classical BKT model.
They found that the performance of BKT heavily rely on whether the Markov
process modelling assumptions satisfy the particular scenario to which BKT is
applied. Furthermore, they pointed out that due to the modelling limitations,
BKT has failed to fully exploit the recency effects where a student who has
(constantly) underperformed in recent timestamps tends to underperform in the
current one. Correspondingly, Galyardt and Goldin [7] have shown that integrat-
ing features of recent history into their logistic regression model can improve its
predictive performance on response correctness. BKT has also failed to capture
the effects of the ordering patterns (e.g. interleaved ordering) of the subjects on
the response correctness. Moreover, It ignores the inter-subject similarity and
its effects on the response correctness; students are more likely to master more
similar subjects altogether by practising on questions under these subjects [13].

2.2 Deep Knowledge Tracing and Its Extensions

To address the problems that BKT had, Piech et al. [22] proposed to apply
recurrent neural networks (RNNs) [10] to exploit more of the complex character-
istics of the sequential student-question interactions in knowledge tracing. They
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further employed a specialised case of RNN, long-short-term memory (LSTM)
networks [12], which is more capable of capturing the long-term non-linear inter-
actions in the sequences.

Ever since the proposal of the DKT model, many extensions with more deep
learning capabilities and modelling of more characteristics of knowledge tracing
have been proposed. Cheung and Yang [3] proposed to incorporate heterogeneous
features, such as the number of hints used and the number of attempts, into the
DKT model. They used the classification and regression tree (CART) to predict
whether a student will answer a question correctly based on the heterogeneous
features. This prediction will be concatenated with the ground-truth value of
the response correctness and the result will be encoded into a four-digit one-hot
vector. This vector will then be concatenated with the original one-hot vector of
the pairwise input as the new input of the model. This model has been shown
to have higher AUCs compared to the DKT model.

Minn et al. [19] proposed to incorporate the dynamic clustering of students
into the DKT model. They achieved this by segmenting the sequences of stu-
dents’ responses into multiple equal-width intervals. The model will dynamically
group the students based on their estimated proficiency in different subjects
using the K-means clustering for each interval. The inputs of their proposed
model then include the resulting group IDs, the subject IDs, and the responses’
correctness. It has been shown to achieve higher AUCs than the DKT and BKT
models. This paper has also investigated the impacts of the different number of
clusters and the width of time intervals on the model performance.

More recently, the self-attention mechanism has attracted attention from the
deep knowledge tracing domain. Pandey and Karypis proposed the first deep
knowledge tracing that applied the self-attention mechanism [20]. Ghosh et al.
proposed an attentive deep knowledge tracing model that applied monotonous
self-attention in the encoder from Transformer to minimise the effect of unrelated
subjects and interaction distant, in terms of time, from the position required to
be predicted [9].

2.3 Transformer and BERT

A major problem of the RNN is that it performs sequential prediction, which
hinders the parallelisation of its training and prediction. To address this issue,
Vaswani et al. [26] proposed the transformer model which completely relies on the
self-attention mechanism for the sequential prediction. A transformer inherits the
classical encoder-decoder architecture. Both the encoder and decoder comprise a
stack of composites of a multi-head self-attention component followed by a feed-
forward network. In the encoder component, each input element will be used as a
query for the self-attention in which the embedding of each of them is attended to
the embeddings of all the others to obtain their final latent representations, which
will be used in the decoder. To handle the problem that there is no convolution
and recurrence in the transformer, a positional embedding specific to each input
element is added/concatenated to their embeddings. The Transformer model
has outperformed many state-of-the-art sequential sequence-to-sequence deep
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learning models at the time in several NLP tasks. More importantly, it has
provided the foundation for many powerful state-of-the-art bidirectional deep
learning models to date.

BERT [5] is one of the most successful bidirectional deep learning mod-
els based on the transformer encoder. It comprises the stack of composites of
the multi-head self-attention component and the feed-forward network from the
encoder part of the transformer model. The output from each layer of the com-
posite serves as the input to the composite at the next layer. Another key feature
of BERT is that it is trained to recover a small percentage of randomly masked
input elements from the sequences. This training phase of BERT is known as the
pre-training, which aims to learn coherent and meaningful latent representations
for the data.

3 Proposed Model Architecture

3.1 Problem Formulation

The knowledge tracing problem can be formulated as a sequential prediction
problem: given a sequence of a student’s interactions x1, . . . , xT , a DKT model
needs to predict the result of the next interaction xT+1, which is the correctness
of the (T + 1)-th response. In this case, the t-th interaction is denoted as xt =
(qt, at) where 1 ≤ t ≤ T . Here, qt refers to the t-th subject the student was
practising on, and at ∈ {0, 1} is the correctness of the student’s response to the
question under the t-th subject with the value 1 standing for being correct [22].

A straightforward architecture for DKT is based on the RNN-type neural
networks which model uni-directional sequential contexts and are trained to use
the results of all the previous interactions to predict the result of the current
interaction. However, we believe that modelling uni-directional sequential con-
texts is not sufficient for learning the complex dynamic patterns underlying the
sequences of interaction results between the students and the subjects. Instead,
we should model the bidirectional contexts surrounding each interaction to let
the model better figure out what patterns underlying the preceding (or sub-
sequent) interactions might have contributed to the current interaction result
(Fig. 1).

Therefore, we propose to apply and adapt BERT, a transformer-style bidirec-
tional deep learning model, to knowledge tracing. we name the adapted BERT
model BiDKT. Unlike the current DKT models and the self-attentive knowl-
edge tracing model [20] which are uni-directional and thus only make use of the
preceding sequence x1, . . . , xt while predicting at+1, BiDKT also leverages the
subsequent sequence from xt+2 to xT to predict at+1. In the following sections,
we will further introduce the key components of the BiDKT model.

3.2 Input and Embedding Layer

The input layer of BiDKT takes in each interaction in the sequences specific to
each student, which consists of two tokens: the correctness token (i.e., at) and
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Fig. 1. The network architecture of our proposed BiDKT model.

the subject token (i.e., qt). BiDKT inherits the transformer architecture which
naturally ignores the position information of each interaction in the sequences.
However, such information can be useful for revealing the knowledge states of the
students. For example, students’ earlier responses in their respective sequences
are more likely to be erroneous, while their later responses are less likely to be
so. Therefore, it is reasonable for the input layer of BiDKT to incorporate the
positional information of each interaction. Therefore, the final embedding for the
t-th interaction xt is equal to the element-wise summation of three correspond-
ing embeddings: the subject embedding qt, correctness embedding at and the
position embedding pt. Mathematically, this can be formulated as:

xt = at

⊕
qt

⊕
pt (1)

In the following sections, we use X to denote the input matrix for BiDKT where:

X =

⎡

⎢⎢⎢⎣

x1

x2

...
xT

⎤

⎥⎥⎥⎦ (2)

However, the introduction of the position embedding can limit the length
of the sequence for the input layer [25]. When the sequence length exceeds the
maximum length allowed by the model, it needs to be split into shorter sequences
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to fit it into the model [9,25]. More precisely, we denote N as the maximum
length of the sequence input for BiDKT, for a sequence with the length T >
N , we will split it into �T/N� sequences. After the embedding layer, we apply
a dropout layer to the output embeddings of each interaction to prevent the
overfitting problem before feeding them to the core transformer layers.

3.3 Transformer Layers

The transformer layers of BiDKT are stacks of fully connected composites of two
neural network modules: a multi-head self-attention module and a position-wise
fully connected feed-forward neural network [26]. The first module is responsible
for aggregating the contextual information towards each interaction from the
other interactions in the same sequences. The second module takes in the aggre-
gated information and transforms it non-linearly for the inputs of the next layer.
We will elaborate on the details of both the modules in the following sections.

Multi-head Self-attention Layer. Self-attention [26] is a mechanism that
can compute the embedding for each position in a sequence by relating the
embeddings at all the other positions in the same sequence. More specifically,
a multi-head attention mechanism with H heads refers to applying the self-
attention mechanism to H consecutive chunks of the sequence separately with
different sets of trainable parameters, which had been found beneficial to the
performance of the model [26]. More specifically, each “head” is responsible for
projecting the embeddings of the input matrix X ∈ R

T×M into a query matrix
Q ∈ R

T×M ′
, a key matrix K ∈ R

T×M ′
and a value matrix V ∈ R

T×M ′
respec-

tively via the dot product with the corresponding trainable projection matrix,
including WQ ∈ R

M×M ′
, WK ∈ R

M×M ′
and Wv ∈ R

M×M ′
, as follows:

Q = XWQ

K = XWK

V = XWV

(3)

In this case, the intermediate dimension for each head M ′ = M
H . For the i-th

self-attention head where 1 ≤ i ≤ H, its calculation can be formulated as follows:

Ai = Attention(Q,K,V )

= Softmax(
QKT

√
M

)V
(4)

where the result Ai ∈ R
T×M ′

. Afterwards, all the attention results across the H
heads will be concatenated in the output layer of the multi-head self-attention
module as follows:

Z = Concat(A1,A2, . . . ,AH)WO (5)
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where WO ∈ R
M×M is a weight matrix for computing the final output embed-

dings Z ∈ R
T×M from the multi-head attention module. This module allows

BiDKT to capture the bidirectional information from all the positions in each
sequence during the training. Moreover, the attention computation of each head
can be parallelised, which can reduce the computational complexity of the model.

Feed-Forward Neural Network (FNN) Layer. We then feed the output
of the multi-head self-attention module to a position-wise fully-connected feed-
forward neural network, which can be formulated as follows:

FNN(Z) = Max(0,ZΦ1 + b1)Φ2 + b2 (6)

where Φ1 ∈ R
M×L and Φ2 ∈ R

L×M are the trainable weight matrices for the
hidden and output layers of the FNN module, while b1 ∈ R

L and b2 ∈ R
M are

the bias vectors for the two layers respectively. Notice that we set the above
trainable weight matrices and bias vectors to be specific to each layer of the
transformer component.

3.4 Output Layers

The output module of BiDKT starts with a dense layer with GELU (i.e. Gaussian
Error Linear Unit) activation function. It is followed by a normalisation layer,
whose result is passed onto the softmax function to obtain the predicted proba-
bility of response correctness corresponding to each interaction in the sequences.
The output embeddings from the activated dense layer have a dimension of 4,
where the indices 0 and 1 are reserved tokens respectively for the padding and
the masked tokens, the index 2 represents the incorrect response, and index 3
represents the correct response. Finally, the softmax probability outputs for each
interaction in the sequences will be multiplied element-wise with a binary mask-
ing layer. Its positions corresponding to the masked interactions are set to be 1
and the observed interactions are set to be 0, so that only the predictions for
the “to-be-recovered” interactions will be considered in the calculation of the
loss. In this case, BiDKT aims to minimise a sparse categorical cross-entropy
between the correctness of the target (i.e. to-be-recovered) interactions and the
corresponding softmax probability outputs.

3.5 Model Training and Testing

Training. Previous DKT models are primarily based on RNNs. Therefore, their
training strategy focuses on predicting one interaction ahead. More specifically,
with a sequential inputs x1, . . . , xt, 1 ≤ t ≤ T for the training, the correspond-
ing outputs are a2, . . . , at+1 [22]. As for BiDKT, the ground-truth interactions
will be masked at the input layer so that the corresponding predictions in the
output layer will not be able to “see” the ground-truths but rather infer them
using the surrounding bidirectional information from the sequences. Therefore,
a straightforward training strategy for BiDKT is to simply predict the masked
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interactions at the current timestamps (rather than the ones ahead) based on
the corresponding [MASK] tokens in the input layer.

More specifically, during the training, we will randomly substitute a small
percentage of the correctness tokens with a [MASK] token, while the correspond-
ing subject tokens are intact and input into BiDKT as they are. As an example,
given an interaction sequence with the length of 4, i.e. (q1, a1) → (q2, a2) →
(q3, a3) → (q4, a4), for the training, its corresponding random masked sequence
to be input to the model will be in the form of (q1, a1) → (q2, [MASK]) →
(q3, a3) → (q4, [MASK]).

Testing. For testing, we adopted a method similar to the one in [25]. More
specifically, for any sequence in the test data with the length being T ′, we gen-
erate T ′ sequences from it. Take a sequence with the length of 4 as an example.
We will generate the following four sequences:

• Sequence 1: (q1, [MASK])
• Sequence 2: (q1, a1) → (q2, [MASK])
• Sequence 3: (q1, a1) → (q2, a2) → (q3, [MASK])
• Sequence 4: (q1, a1) → (q2, a2) → (q3, a4) → (q4, [MASK]).

In each of the above sequences, we mask only the correctness token in the last
position for the model to predict, given all the previous interactions and the
subject token at the current interaction.

It is worth noticing that the training and testing strategies of our model have
some inconsistency in that the former one aims to predict the tokens masked at
arbitrary positions in the sequences while the latter aims to predict the tokens
masked at the last positions. Such inconsistency could possibly affect the per-
formance of BiDKT adversely.

To address the above issue, during the training, we randomly sample a certain
percentage of the sequences and only have their correctness tokens masked at
the last positions. In other words, their masking strategy is now the same as
that used for the test data. This method can be viewed as a fine-tuning step for
BiDKT and can potentially improve the performance of the model.

4 Experiments

In this section, we evaluate the efficacy of our proposed model by comparing it
with several state-of-the-art BKT and DKT models across 8 real-world datasets.
The datasets are provided by Ghosh et al. (2020)1 and Gervet et al. (2020)2.

1 https://github.com/arghosh/AKT/tree/master/data.
2 https://github.com/theophilee/learner-performance-prediction.

https://github.com/arghosh/AKT/tree/master/data
https://github.com/theophilee/learner-performance-prediction
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4.1 Datasets

The details of these datasets are listed as follows:

– The ASSISTment dataset in 2009, 2012, 2015, 2019. The ASSISTment
(ASSISTing and assessment) datasets are collected from a system utilised
in the United States of America for high school mathematics classes. Each
record in the dataset comprises the student’s mastery status on the concept,
timestamp of the response, the teaching concept associated with the question,
etc. [6]. ASSISTment 2009 has been chosen to be the benchmark dataset for
knowledge tracing problem in the past decade.

– Statics 2012. It is a dataset of the log data of ITS for a college-level engi-
neering subject [14].

– Algebra 2005 and Bridge to Algebra 2006. These datasets are orig-
inally for KDD Cup 2010, a competition of data mining. The task of the
competition was to predict students’ correctness on mathematical exercises
by learning from their log data from the Intelligent Tutoring Systems3. Each
record comprises the hierarchy of curriculum levels containing the exercise,
the identified concepts that are used in an exercise (where available), whether
the student answered it right at the first go, etc.

– Spanish. It is a set of log data of high school students learning Spanish on
an ITS [8,17]

Tables 1 and 2 summarise the key statistics of these datasets.

Table 1. Details of the data provided by Gervet et al. (2020); The average sequence
length is abbreviated in the last row of the table.

Statics Assist09 Assist12 Assist15 Assist17 Spanish Bridge06 Algebra05

Size 189,297 278,336 2,682,211 656,154 934,368 578,726 1,817,393 606,983

# of students 282 3,114 22,589 14,228 1,708 182 1,130 567

# of subjects 1,223 149 265 100 411 221 550 271

Avg seq len 636 32 59 31 440 2,924 1,373 581

Table 2. Information of the data provided by Ghosh et al. (2020); The average sequence
length is abbreviated in the last row of the table.

Statics Assist09 Assist15 Assist17

Size 189,297 325,637 683,801 942,816

# of students 333 4,151 19,840 1,709

# of subjects 1,223 110 100 102

Avg seq len 568 78 34 551

3 https://pslcdatashop.web.cmu.edu/KDDCup/rules.jsp.

https://pslcdatashop.web.cmu.edu/KDDCup/rules.jsp
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4.2 Baselines and Metrics

The area under the receiver operating characteristic curve (AUC) has been
widely used as the benchmark score for the comparison of model performance.
Therefore, we used AUC as the performance score and compared the perfor-
mance of our model with the results from Ghosh et al. (2020) and Gervet et
al. (2020) by respectively testing our model on the pre-processed data they pro-
vided [8,9]. They also respectively re-implemented a plethora of baseline models
by themselves. More specifically, the context-aware knowledge tracing model in
Ghosh et al. (2020) was the state of the art [9]; and Gervet et al. conducted
comprehensive experiments over different existing models and datasets [8]. We
listed the datasets they provided and their chosen baselines in Table 3. Non-KT
baseline models (e.g., models based on Item-Response Theory and Performance
Factor Analysis) evaluated in Gervet et al. (2020) will not be listed, but we kept
their proposed logistic regression model and compared it with our model in the
experiments.

Table 3. Details and baseline models in Ghosh et al. (2020) and Gervet et al. (2020).
Non-KT baseline models are not listed.

Ghosh et al. (2020) Gervet et al. (2020)

Dataset ASSISTment 2009, 2015,
2017 and Statics 2012

ASSISTment 2009,
2015, 2012, 2017,
Statics 2012, Bridge to
Algebra 2006, Algebra
2005 and Spanish

Baseline models BKT+ [29], DKT [22],
DKT+ [28], SAKT [20],
DKVMN [30]

BKT [4], BKT+ [29],
DKT [22], SAKT [20]

4.3 Experiment Settings

As mentioned in Sect. 3.5, if a sequence is longer than a certain length, we will
split it into several smaller sequences to fit in our model. To conduct 5-fold
cross-validation, we have split each dataset into three parts: 60% of the data to
be used as the training set, 20% to be used as the validation set for optimizing
the hyper-parameters and for performing the early stopping, and the remaining
20% to be used as the test set to evaluate the competing models.

We have implemented BiDKT with Keras4, and the structure of its trans-
former layers was adapted from Keras-BERT5. Adam optimiser was used for
training the BiDKT model [1]. The implementations of all the baseline models
are provided by Gervet et al. [8] and Ghosh et al. [9]. All the experiments are

4 https://github.com/keras-team/keras.
5 https://github.com/CyberZHG/keras-bert.

https://github.com/keras-team/keras
https://github.com/CyberZHG/keras-bert
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conducted on an NVIDIA V100 GPU with 16 GB memory on the M3 cluster (a
high-performance computing cluster maintained by Monash University)6.

We conducted a grid search across the hyper-parameter candidate sets spec-
ified in Table 4 to find the best one that can optimise the average model perfor-
mance over the 5 validation folds of each dataset. We found the following best
hyper-parameter set with 16 as the batch size, 200 as the maximum sequence
length, 0.1 as the dropout rate, 1 as the number of self-attention heads, 2 as the
number of transformer layers, 16 as the embedding dimension, 64 as the number
of hidden neurons for the feed-forward networks, 0.15 as the masking rate (i.e.
the probability of a correctness token being substituted by a [MASK] token) and
0.25 as the fine-tuning rate (i.e. the probability of a sequence only being masked
at the last position in a training batch). In the later section, we will have a more
detailed discussion about how the masking rate and fine-tuning rate will affect
the model performance.

Table 4. Hyperparameters experimented

Hyperparameter Values experimented

Batch size 8, 16, 24, 32, 64

Maximum sequence length 100, 200, 300

Dropout rate 0.1, 0.25, 0.5

Learning rate 1e−6, 5e−6, 1e−5, 5e−5, 1e−4

Number of self-attention heads 1, 2, 4, 8, 12, 16

Number of Transformer layer 1, 2, 4, 8, 12

Embedding dimension 16, 24, 64, 128, 192, 256

Hidden dimension 64, 96, 256, 512, 768, 1024

Mask rate 0.1, 0.50.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Fine-tune rate 0.1, 0.50.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

4.4 Results and Discussion

In this section, we present the results of the competing models across the different
datasets in Table 5 and 6. Ghosh et al. (2020) reported two AKT models similar
in the core layers but applied different encoding mechanisms for the input (i.e.
one with Rasch encoding and one without) [9]. On the ASSISTment 2009 and
2017 datasets, to which the Rasch encoding can be applied, the AKT model with
such encoding had achieved better performance than the one without. Therefore,
we only reported the results with the Rasch encoding on these two datasets.

It can be observed from Table 5 that BiDKT has outperformed the BKT
model on the Statics 2012, the Algebra 2005 and the Spanish datasets. It has
also outperformed DKT and SAKT on the Spanish dataset. It is also interesting

6 https://www.massive.org.au/about/.

https://www.massive.org.au/about/
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Table 5. Performance (AUC) comparison of BiDKT and the experiment result from
Gervet et al. (2020). NA refers that the data is not provided or the experiment had
not been conducted in the original paper. “LR” stands for “logistic regression”.

Dataset BKT BKT+ LR DKT SAKT BiDKT

Statics 2012 0.73 0.811 0.819 0.829 0.813 0.772

ASSISTment 2009 0.63 0.759 0.772 0.757 0.756 0.700

ASSISTment 2012 NA NA 0.751 0.771 0.732 0.689

ASSISTment 2015 NA 0.701 0.702 0.731 0.730 0.674

ASSISTment 2017 NA 0.710 0.714 0.770 0.722 0.632

Bridge to Algebra 2006 NA NA 0.803 0.790 0.784 0.763

Algebra 2005 0.62 NA 0.83 0.821 0.801 0.777

Spanish 0.83 0.851 0.863 0.832 0.831 0.835

Table 6. Performance (AUC) comparison of BiDKT and the experiment result from
Ghosh et al. (2020). NA refers to that the result is not reported in the original paper

Dataset BKT+ DKT DKT+ DKVMN SAKT AKT BiDKT

Statics 2012 0.75 0.8233 0.8301 0.8195 0.8029 0.8265 0.7785

ASSISTment 2009 0.69 0.817 0.8024 0.8093 0.752 0.8346 0.7651

ASSISTment 2015 NA 0.731 0.7313 0.7276 0.7212 0.7828 0.6766

ASSISTment 2017 NA 0.7263 0.7124 0.7073 0.6569 0.7702 0.5978

to see that BiDKT has outperformed SAKT on the ASSISTment 2009 dataset
provided by Ghosh et al. (2020) but not on the same dataset provided by Gervet
et al. (2020) (Table 6).

On the other datasets from the two sources, we can see that there is a notable
performance gap between BiDKT and some of the state-of-the-art DKT models
(e.g. AKT and SAKT). However, it is also worth noticing that in the original
paper of SAKT [20], the authors reported an AUC of 0.848 on the ASSIST-
ment 2009 dataset and 0.857 on the ASSISTment 2015 dataset. In comparison,
both Ghosh et al. (2020) and Gervet et al. (2020) cannot reproduce the original
performance.

Despite the performance gap on some of the datasets, we believe that BiDKT
still bears the potential to further improve its performance. BERT has demon-
strated its efficacy in the sequential recommendation, a similar domain to knowl-
edge tracing [25]. The only difference is that the datasets used in this case contain
hundreds of millions of responses and millions of users and items, which are much
larger than popular knowledge tracing benchmark datasets. Both Gervet et al.
(2020) and Ghosh et al. (2020) have pointed out that self-attentive models might
require a large amount of data to be trained properly [8,9]. In comparison, the
datasets used in our experiments are relatively small.
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Furthermore, we hypothesise that the gap performance exists because the
students’ future performance is only dictated by their performance in the recent
past but not by any longer one. Another possible reason is that the dynamic
patterns underlying the interaction sequences are not sufficiently complex for
our model to fully exploit to allow it to outperform simpler models.

4.5 The Impact of Masking Rate

The mask rate refers to the probability of whether a correctness token will be
substituted by a [MASK] token. The mask rate will decide how many tokens
in a training sequence the model should predict. On one hand, if it were too
large, it would impose extra difficulty for the model to capture the pattern of
the sequence; on the other hand, if it were too small, the robustness of the model
would be impaired [25]. In this experiment, we kept fine-tune rate at 0.25 and
changed the value of the mask rate to investigate how it affects the performance
of the model.

Fig. 2. The performance (AUC) of BiDKT with different masking rates across the
different datasets.

As we can tell from Fig. 2, generally, the performance of BiDKT does not
monotonously grow or decline within the domain of [0.1, 0.9], which can lead us
to the same conclusion that the change of mask rate does not always result in
performance improvement or decline, as per [25]. When the mask rate is larger
than 0.3, generally speaking, the performance of BiDKT declines when the mask
rate continues to grow.
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4.6 The Impact of Fine-Tuning Rate

The fine-tune rate refers to the probability in which a sequence will have the
correctness token masked only in the last position. Similar to the mask rate,
we conjectured that it can either be too small or too large. On one hand, if it
were too small, the discrepancy between the training task and the testing task
would be large; on the other hand, if it were too large, we cannot fully leverage
the power of BERT to capture the learning characteristics of the students by
predicting correctness tokens from their upstream and downstream context.

Fig. 3. The performance of BiDKT with different fine-tuning rates across the different
datasets.

As we can tell from Fig. 3, when we changed the fine-tune rate from 0.1 to
0.9, the performance of the model did not monotonously grow or decline. This
proved our aforementioned hypothesis.

4.7 Limitations of Our Study

Due to the time and resource limitation of this paper, we can only improve and
evaluate our work within a certain scope. One of the limitations of this paper
is that we did not investigate the root cause of the performance gap. We only
empirically analysed why the gap exists. Another limitation of our research is
that the granularity of the grid search for optimal hyperparameters was very
high.
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5 Conclusion and Future Work

In this paper, we proposed BiDKT, a deep knowledge tracing model based on
BERT. We introduced the structure of BiDKT in details and how we imple-
mented the model. We conducted a series of experiments to evaluate the overall
performance of our model and analyse how some of the important parameters
affect the performance of the model. Our model outperformed some of the cur-
rent deep knowledge tracing models in certain scenarios. To our knowledge, even
though a plethora of extensive BERT models have been proposed and have shown
excellent performance in their respective settings, most of them are still mod-
els for natural language processing tasks. Our work extended the usage of the
BERT model to the knowledge tracing domain, and more broadly, the non-NLP
sequential prediction domain.

There are many possibilities for future research in the deep knowledge tracing
domain. Currently, many DKT models have tried to incorporate more features
of a student’s response (e.g. the text of the exercise as side information [19]) or a
more sophisticated method to encode the input (e.g. the Rasch encoding) [9]) We
consider these research directions probable to be integrated with BERT models
for higher performance. Another possible research direction could be training
and testing the model on the EdNet dataset, which is larger in size and has a
larger number of students but has not been widely used as a benchmark dataset.
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