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4.1  Introduction

An alarming propensity of various psychological and physiological disease states 
are associated with stress and trauma-related illnesses such as PTSD. This under-
scores the necessity to adopt a comprehensive and integrative perspective. Therefore, 
this chapter elucidates an integrative biopsychological view derived from interdisci-
plinary fields of research: clinical psychology, neuroscience, genetics and epi-
genetics, psychoneuroimmunology, mitochondria, and gut microbiota. The first 
section summarises the effect of traumatic stress, traumatic load, the role of the fear/
trauma network linked with PTSD. The next section reviews latest findings on brain 
and cognitive alterations in PTSD and proposes a model that aims to provide a novel 
perspective on different treatment approaches. The third section outlines the pro-
spective role of genetics and epigenetic alterations in PTSD.  The fourth section 
provides pivotal insights from biomolecular studies on the role of altered mitochon-
drial functioning, oxidative stress, and immune regulation in psychological/trau-
matic stress and PTSD. Gut microbiota research is gaining momentum, hence the 
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final section outlines the implications of gut microbiota in stress and PTSD. Overall, 
we have endeavoured to provide a state-of-the-art integrative view on the biopsy-
chology of PTSD and its comorbidities.

4.2  Role of Cumulative Trauma Exposure, Traumatic Stress, 
and Trauma Load in PTSD Risk

4.2.1  Trauma Load and the Dose-Response Effect on PTSD

Traumatic stress refers to experiences which elicit feelings of helplessness, fear, or 
horror, along with an alarm response triggering acute release of stress hormones 
(Kolassa et al. 2010a). The higher the number of different trauma event types expe-
rienced, the higher the traumatic load of an individual (Schneider et  al. 2020). 
Higher traumatic load leads to a higher risk for lifetime PTSD in a dose–response 
relationship (Kolassa et  al. 2010b), which seems to be similarly present in both 
biological sexes (Wilker et al. n.d.). This dose–response relationship is also termed 
as building-block effect (Neuner et al. 2004). And for instance, this effect is reflected 
in individuals with a history of childhood maltreatment (CM) as trauma exposure in 
childhood sensitises individuals to the detrimental consequences of trauma even in 
later stages of their life (i.e. increasing the risk for PTSD, depression, and somatic 
symptoms) (Behnke et al. 2020).

Furthermore, PTSD prevalence can reach 100% due to extreme levels of trauma 
load (see Fig.  4.1) (Kolassa et  al. 2010c), i.e. there is no ultimate resilience for 
PTSD and upon extreme trauma exposure any individual could develop PTSD. A 
study conducted by Kolassa et al. (2010c) among refugees (n = 444) who survived 
the Rwandan genocide (1994) showed that higher traumatic load increases current 
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Fig. 4.1 The increasing 
number of traumatic event 
types experienced (i.e. 
traumatic load) also 
increases the probability to 
fulfil the PTSD criteria at 
least once in a lifetime, P 
(Lifetime PTSD). In the 
case of extreme trauma 
load, the probability of 
lifetime PTSD approaches 
100% (Figure adapted 
from Kolassa et al. 2010c)
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as well as lifetime PTSD risk and severity, along with curtailing gradual spontane-
ous remission from PTSD. This study proposed traumatic load as a root cause of 
both chronicity and symptom severity of PTSD (Kolassa et al. 2010a).

Notably, higher traumatic load is also associated with higher levels of appetitive 
aggression, i.e. an individual’s disposition to perpetrate violence along with deriv-
ing pleasure from inflicting violence. In formerly abducted rebel-war survivors 
(n = 1166) from Northern Uganda, appetitive aggression and the rate of perpetrated 
violence were found to be specifically elevated among those individuals who were 
abducted at a young age and experienced high traumatic load and combat events 
(Zeller et al. 2020).

4.2.2  Fear/Trauma Network Model: Role of “Cold” and “Hot” 
Memories in PTSD

The Fear/trauma network model of PTSD conceptualised by Elbert and colleagues 
postulates that the traumatic stress actuated intense fear/traumatic memories are 
stored in propositional networks, which can be shaped by new experiences through 
principles of associative learning and neuroplasticity (Wilker et al. 2014a; Elbert 
et al. 2015). As a core feature of PTSD includes fragmented memories, this model 
differentiates between “hot” and “cold” memories based on the terminology pro-
posed by Metcalfe and Jacob (Metcalfe and Jacobs 1996). On the one hand, cold 
memories characterise autobiographical contextual information of specific events 
such as time, space, knowledge about period of life, dates, external circumstances, 
verbally accessible memories. On the other hand, “hot” memories encompass the 
stored information such as sensory and perceptual (e.g. hearing screams, smelling 
blood, burning houses); emotional or affective (e.g. fear, horror, disgust, sadness); 
cognitive (e.g. “I can’t do anything”, “I will die”); introspective or physiological 
(feeling of physiological reactions such as strong heartbeat, fast breathing sweating) 
(Elbert et al. 2015; Schauer et al. 2005). Due to its associative nature any trauma- 
related stimulus can trigger the entire fear network (Wilker and Kolassa 2013). 
Therefore, any further exposure to traumatic stress and increased trauma load could 
eventually lead to a loss of the connection between “cold” and “hot” memories, 
whereas “hot” memories connect with increased excitatory power, thus fortifying 
fear/trauma network in PTSD (Neuner et al. 2020).

4.3  Brain and Cognitive Alterations in PTSD

Individuals with PTSD show global brain atrophy and cognitive impairment in con-
trast to healthy controls with and without traumatic experiences (Bromis et al. 2018; 
Scott et  al. 2015). Consistent with these findings, individuals with PTSD show 
approximately a 1.5-fold risk for developing dementia in comparison with healthy 
controls (Günak et al. 2020). In addition to global alterations, specific brain regions 
with pronounced abnormalities have been found. These include regions of the 
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limbic and paralimbic system such as hippocampus, amygdala, and insula, as well 
as regions of the prefrontal cortex such as the anterior cingulate and orbitofrontal 
cortex (Bromis et al. 2018). In the following, we depict how these brain alterations 
are linked with specific PTSD symptoms.

4.3.1  Connection of Brain Alterations with PTSD Symptoms

The phenomenon of fragmented memories in PTSD characterised by impaired epi-
sodic memory (“cold” memories) with overactive implicit memory (“hot” memo-
ries) could be explained by hippocampal and amygdala alterations. Impaired 
episodic memory seems to be reflected by atrophy and hypoactivity of the hippo-
campus (Logue et al. 2018). Reduced inhibition of the limbic system through the 
medial prefrontal cortex may account for intrusion symptoms in PTSD (hot memo-
ries) (Fenster et al. 2018). In response to trauma-related stimuli and imaginations, 
PTSD patients demonstrated hyperactivity of the amygdala (involved in fear regula-
tion) and insula (involved in bodily awareness) along with hypoactivity of the ven-
tromedial prefrontal cortex (involved in top-down inhibition of the limbic system 
(Hayes et al. 2012; Hopper et al. 2007; Rauch et al. 2006).

Symptoms of poor concentration seem to be reflected in impaired working mem-
ory and processing speed (Scott et al. 2015). Altered prefrontal processing could be 
a brain-related correlate of these cognitive impairments (Moores et al. 2008).

Symptoms of persistent negative affect and anhedonia could be explained by a 
downregulated reward system (Nawijn et al. 2015). The striatum depicted reduced 
activation in anticipation of rewards (wanting) and after receiving the reward 
(liking).

Symptoms of altered arousal and reactivity could be connected to an upregula-
tion of the salience network (involved in stimuli-driven, bottom-up attentional pro-
cesses), along with a downregulation of the default mode network (involved in 
self-referential processing) (Koch et al. 2016). This shift could reflect the neuronal 
correlate of increased assignment of salience to external events and impaired inter-
nal thoughts and memories.

4.3.2  Causes of PTSD-Related Cognitive and Brain Alterations

PTSD-related alterations in brain and cognition (1) may be a consequence of the 
disorder itself, (2) may be risk factors that facilitate PTSD symptoms after traumatic 
experiences, (3) may result from a multitude of other factors that lead to both PTSD 
and neurocognitive changes (e.g. childhood maltreatment, genetic and lifestyle fac-
tors), or (4) may be a combination of all these cause–effect relationships. There is 
evidence from animal and human studies that traumatic stress and PTSD itself affect 
brain and cognition (Fenster et al. 2018). These studies indicate an adverse—but to 
some degree reversible—effect of chronic and traumatic stress on brain and cogni-
tion (Lupien et al. 2009).
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However, increasing evidence suggests that in addition to an effect of trauma on 
brain and cognition, brain and cognitive abnormalities may be risk factors for PTSD 
after trauma exposure. For example, longitudinal studies suggest that a major part 
of cognitive abnormalities were present before the onset of PTSD (Parslow and 
Jorm 2007). In this line, a twin study compared hippocampal volume in monozy-
gotic twin pairs, in which one member was exposed to trauma (Vietnam combat 
exposure) and the other member, his brother, was not trauma-exposed (Gilbertson 
et al. 2002). In combat-exposed twin members with PTSD and, notably, in the non- 
combat- exposed co-twin members without PTSD smaller hippocampi were 
observed than in a control group. As genetically identical twin brothers with and 
without PTSD showed hippocampal abnormalities, this marker seems to be a risk 
factor rather than a consequence of PTSD.  In addition, patients with PTSD dis-
played reduced intracranial volume (Bromis et  al. 2018) but this feature usually 
manifests in childhood long before trauma exposure. As intracranial volume is an 
indicator of premorbid brain volume, reduced brain volume seems to be a risk factor 
for PTSD.

Taken together, PTSD may affect brain and cognition, and conversely, premorbid 
brain and cognitive alterations may increase the risk to develop PTSD. In the fol-
lowing, we discuss how additional factors such as childhood maltreatment, lifestyle, 
and genetic factors could affect brain, cognition, and psychopathology, which in 
turn could increase PTSD risk (see Fig. 4.2). In line with this notion, studies inves-
tigating the effect of early-life stress on cognition, psychopathology and the brain 
yielded highly similar findings as in patients with PTSD (Nakayama et al. 2020; 
Teicher et  al. 2016). Studies on childhood maltreatment indicate a link with (1) 
general cognitive impairment, (2) increased general psychopathology, (3) volume 
loss in hippocampus and the medial prefrontal cortex, as well as (4) altered brain 
function such as increased amygdala response to threat and a less responsive reward 
system (see Teicher et  al. 2016 for a review). Similarly, lifestyle factors such as 
physical exercise increase hippocampal volume (Opel et al. 2020), reduce measures 
of psychopathology (Caspi et al. 2014) and improve cognition (Karabatsiakis et al. 
2014). Finally, genetic polymorphisms such as the apolipoprotein E—known to 
reduce hippocampal size and neurocognition—are linked with measures of psycho-
pathology (Picard et al. 2018). That means, childhood maltreatment, lifestyle, and 
genetic factors may affect brain, cognition, and psychological health, thus increas-
ing the risk for PTSD.

In line with the notion that brain, cognitive and general psychopathological alter-
ations are a risk factor for PTSD, a meta-analysis suggests that brain region-specific 
alterations are only found when individuals with PTSD are compared with healthy 
controls but not when compared with depression (Bromis et al. 2018). Similarly, a 
large-scale study showed that a single cross-disorder factor score of brain structure 
explained 42–89% of the observed variance of four major psychological disorders, 
including major depressive disorder (MDD), bipolar disorder, schizophrenia, and 
obsessive-compulsive disorder (Opel et al. 2020). Abnormalities in brain structure 
highly correlated between all four disorder categories (r = 0.4–0.8). Regions that are 
altered in PTSD like the hippocampus, the amygdala, and anterior cingulum mainly 
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drove the two most important factor scores of brain structure abnormalities in these 
four psychological disorders (Opel et al. 2020). This finding indicates that a large 
proportion of brain alterations between different psychological disorder categories 
are overlapping, and this may reflect transdiagnostic or cross-disorder brain altera-
tions that may even be linked with cognitive impairment. Correspondingly, cogni-
tive impairment is not only present in PTSD but also could be revealed in many 
psychological disorders and was linked with general psychopathology (Caspi et al. 
2014). Taken together, findings suggest that brain and cognitive differences between 
PTSD and healthy controls may not be specific to PTSD but might be linked to 
general psychopathology that increase the risk to develop PTSD after trauma 
exposure.

Caspi et  al. (2014) validated the concept of “general psychopathology” and 
called it the p factor—a rather stable dimension. The idea is that a general 
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Fig. 4.2 P and g factor model and its relevance for treatment. The p factor reflects general psycho-
pathology and explains high correlations between different psychological symptoms, while the g 
factor represents a dimension of general intelligence that is thought to underlie high correlations 
between different cognitive functions. Thus, these two general factors of psychological and cogni-
tive health describe general characteristics that underlie and contribute to symptoms of specific 
psychological and cognitive disorder categories such as PTSD (e.g. intrusions, altered arousal and 
reactivity, fragmented memories, and poor concentration) or dementia (e.g. depression, impaired 
memory). After accounting for the general factors of psychological and cognitive health, a part of 
symptoms that are specific for disorder categories are likely to remain unexplained (light blue). 
The general factors of p and g need to be accounted, to extract symptom-specific risk factors and 
brain correlates that go beyond and are independent from the general factors. This model has 
implications for PTSD treatment as interventions can be delineated in approaches that are transdi-
agnostic and target general factors of pathology (p and g factor) and treatments that target specific 
symptoms that are not explained by these two general factors
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underlying factor explains the observation that individuals who score high in one 
psychological symptom (e.g. anxiety) usually display more symptoms of another 
disorder (e.g. depression). The p factor can be viewed in parallel with the g factor 
which is the well-known concept of a general intelligence factor.

4.3.3  The p and g Factor Model and Its Relevance 
for PTSD Treatment

We propose a novel p and g factor model of PTSD and depict its implication for 
treatment (see Fig. 4.2). In this model, we assume that genetic and environmental 
risk factors (e.g. poor diet, physical and social inactivity, childhood maltreatment) 
lead to a higher p factor (general psychopathology) and a lower g factor (intelli-
gence). This symptomatology is reflected in brain correlates such as lower global 
brain volume as well as region-specific alterations (e.g. hippocampus, medial pre-
frontal cortex, insula, and amygdala). People with a high p and low g factor (which 
are reflected in a high amount of brain alterations) are believed to be more prone to 
develop PTSD after trauma exposure. This model partly explains why PTSD has a 
high comorbidity with other psychological disorders and is associated with brain 
and cognitive abnormalities.

In addition, this model yields important clinical implications, as it proposes two 
different kinds of therapeutic approaches (see bottom grey boxes in Fig. 4.2). On the 
one hand, so-called general factor, cross-disorder or transdiagnostic treatments 
should aim to improve the p and g factor and their underlying biological mecha-
nisms. Macroscopic mechanisms such as global brain volume, hippocampal and 
medial prefrontal volume but also microscopic mechanisms may be the target. 
Examples for microscopic mechanisms include a dysregulated energy metabolism, 
altered mitochondrial respiration, oxidative stress, and inflammation (for details, 
see the following sections of this chapter). On the other hand, symptoms that go 
beyond the degree that is expected due to the p and g factor should be targeted with 
symptom-specific treatments (see light blue boxes in Fig. 4.2). This means, PTSD in 
a context of high general pathology of p and g might have a different biological 
underpinning than PTSD with low general pathology (e.g. larger hippocampal vol-
ume reduction in high vs. low general pathology). Therefore, it should be differently 
treated [e.g. with additional physical exercise as a potential general factor treatment 
that affects hippocampal volume and measures of p and g (Opel et al. 2020; Caspi 
et al. 2014; Karabatsiakis et al. 2014)]. Importantly, such general factor treatments 
have the potential for generalised, transdiagnostic effects on a wide range of symp-
toms. These general factor treatments should be accompanied by symptom-specific 
treatments if symptoms go beyond what is expected by general pathology (e.g. 
exposure therapy in phobias in a context of normal p and g factors). A novel per-
spective that integrates general factor approaches with symptom-specific treatments 
has not only the potential to reduce the burden of PTSD but also to reduce incidence 
of other psychopathologies, cognitive decline, and dementia in old age.
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4.4  Genetics of PTSD

Worldwide, 70.4% of individuals face a traumatic event at least once in their life-
time, whereas the lifetime prevalence of PTSD is around 4% (Kessler et al. 2017). 
This implies, some individuals might carry certain factors which make them vulner-
able or resilient to develop the disorder. Individual differences such as family envi-
ronment, personality, and biological risk factors can contribute to the vulnerability 
and resilience. Genetic factors can explain some of these individual differences. 
This makes PTSD genetically a complex trait, i.e. its variability must be explained 
by both genetic and environmental factors, and its aetiology is always a gene × 
environment interaction (G × E).

4.4.1  Heritability of PTSD Risk

Heritability estimates of PTSD risk following trauma range from 23.5% (True 1993) 
to 71% (Sartor et  al. 2011). The large range of the heritability estimates can be 
explained by characteristics of the study population, namely ethnicity, sex distribu-
tion, age, and trauma type (Duncan et al. 2018a). Heritability estimates for PTSD 
risk might also comprise the susceptibility to be exposed to certain traumatic events 
such as childhood abuse (Dalvie et al. 2020; Pezzoli et al. 2019), assaults, or war 
traumas, but not non-assaultive traumas such as motor vehicle accidents or natural 
disasters (Ryan et al. 2016; Stein et al. 2002). Personality traits and certain behav-
iours such as risk taking might also be influenced by genetic factors (Ryan et al. 
2016). Therefore, heritability estimates of PTSD risk should be interpreted with 
caution as susceptibility to trauma exposure should not be overlooked.

Association studies that aim to discover the genes that might contribute to a 
genetic trait either test hypothesis-driven candidate genes or assess hypothesis-free 
genetic variations in terms of single nucleotide polymorphisms (SNPs) in genome- 
wide association studies (GWAS) throughout the genomes of cases versus controls. 
Since PTSD can only be triggered by traumatic event exposure, it is reasonable to 
evaluate the effect of different genes while considering the type and frequency of 
experienced traumatic events (Conrad et al. 2017). Due to the difficulty in quantify-
ing the environmental factor “traumatic load”, only few studies model this variable 
as a quantitative covariate in their statistical models.

4.4.2  Candidate Gene Studies

Hypothesis-driven association studies in PTSD have mainly targeted the genes of 
serotonergic and dopaminergic systems, stress response systems, and inflammatory 
responses. Most genes were selected due to their roles in fear response and memory 
modulation, namely for their involvement in the activation of the amygdala (Smoller 
2016). Here, we will focus on some of the most influential ones.
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A polymorphism (5-HTTLPR) in the regulatory promoter region of the serotonin 
transporter gene was one of the first genetic factors to be associated with anxiety 
(Lesch et al. 1996), and it is also of interest for PTSD research. Compared to the 
long allele (L) of 5-HTTLPR, its short allele (S) is associated with less expression 
of the serotonin transporter gene (SLC6A4), and less production of the serotonin 
transporter protein that leads to a decreased serotonin reuptake from the synaptic 
cleft. 5-HTTLPR S-allele homozygotes (SS genotype) were reported to be at 
increased risk to develop PTSD (Kolassa et  al. 2010b). Other studies report the 
S-allele as a risk factor predicting PTSD symptoms, interacting with traumatic 
events such as blast exposure (Taylor et al. 2019). However, it has been shown that 
upon extremely high trauma exposure, genetic factors lost their importance as all 
genotype groups approached 100% likelihood to develop PTSD. Thus, it is highly 
important to model the covariate trauma load in the statistical models investigating 
the genetics of PTSD in terms of a G × E (Kolassa et al. 2010b; Wilker et al. 2018). 
Research also found L-allele to be a risk factor, as the number of L-alleles increases, 
prevalence of PTSD also increases in individuals with higher traumatic load (Grabe 
et al. 2009). In par with this, a study found that SS homozygosity in the 5-HTTLPR 
was a buffer against acquisition of certain PTSD symptoms among individuals who 
were victims of emotional abuse during childhood (Walsh et  al. 2014), whereas 
other studies found no such effects (Kovacic Petrovic et  al. 2016). Moreover, a 
meta-analysis provided inconclusive evidence on the role of 5-HTTLPR in PTSD 
(Gressier et al. 2013; Navarro-Mateu et al. 2013). A recent meta-analysis investigat-
ing the interaction between 5-HTTLPR and stress in predicting PTSD reported that 
5-HTTLPR is a significant moderator, concluding that the presence of at least one 
S-allele is a risk factor in PTSD aetiology in combination with stress (Zhao et al. 
2017). Notably, none of these meta-analyses considered traumatic load in their 
models. Based on these findings, the actual role of 5-HTTLPR in PTSD aetiology is 
not yet fully understood, although it seems to be a predictor of PTSD in G × E 
context.

As PTSD has been associated with alterations in the regulation of the endocrine 
stress-response system, specifically the hypothalamic-pituitary-adrenal (HPA) axis, 
research has aimed to investigate the relevance of genes coding for proteins involved 
in the HPA axis physiology. Among them, the FKBP5 protein modulates the sensi-
tivity of the glucocorticoid receptor (GR), and more presence of the protein is asso-
ciated with decreased GR sensitivity to cortisol. Thereby, the negative feedback 
loop of the HPA axis is less efficient and, thus, individuals might return to their 
normal endocrine stress response less effectively (Mehta and Binder 2012). There 
are certain polymorphisms that were associated with changing expression of the 
FKBP5 gene. These polymorphisms do not show main effects in predicting PTSD 
symptomatology (but see Watkins et al. 2016), and they are rather studied in G × E 
context. One of the initial G × E studies reported four different FKBP5 SNPs to 
interact with exposure to traumatic events during childhood but not in adulthood in 
regard to predicting PTSD symptomatology (Binder 2008). Carrying at least one 
risk allele (T) of one of these SNPs (rs1360780) was reported to moderate the 
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influence of childhood trauma on PTSD risk in such a way that the T-allele carriers 
had increased PTSD risk, if they had a childhood trauma history compared to the 
ones who did not have. Conversely, in individuals not carrying the T-allele, child-
hood trauma history did not predict their PTSD risk (Klengel et al. 2013).

Two meta-analyses compiled a decade of research on the interplay of 
FKBP5  ×  traumatic life events and confirmed significant interactions between 
FKBP5 SNPs and presence of early-life stress (Wang et al. 2018) as well as pres-
ence of lifetime exposure to traumatic events (Hawn et al. 2019) in predicting PTSD 
risk. The meta-analytic studies concluded that certain combinations of genotype 
and being exposed to adverse environments constitute a particular risk for 
PTSD. Moreover, rs1360780 was also reported to condition the long-term effective-
ness of exposure-based psychotherapy in PTSD (Wilker et al. 2014b). To conclude, 
a combination of FKBP5 and early-life adversity is among the relatively consistent 
genetic factors disposing for PTSD.

Immune system alterations have been associated with PTSD and certain immu-
nomodulatory genes have been studied in PTSD. As for the genetic role of immune 
response elements, Michopoulos et  al. (2015) identified a SNP within the CRP 
gene, which was further associated with increased C-reactive protein (CRP) levels, 
to be directly associated with the PTSD diagnosis as well as with the severity of 
PTSD symptoms. Another study found evidence for correlations of tumour necrosis 
factor alpha (TNF-α) serum levels and the TNF-α polymorphism rs1800629 with 
PTSD severity (Bruenig et  al. 2017). Stress response elements are important in 
modulating immune system activity (Chrousos 1995), and therefore, stress response- 
related genetic factors (e.g. FKBP5) might contribute to immune alterations in 
PTSD and development of PTSD symptoms (i.e. memory formation) following 
immune system alterations (Wilker et al. 2014b; Zannas et al. 2016).

4.4.3  Genome-Wide Association Studies

Candidate genes associated with mental disorders explain small proportions of the 
variability in PTSD. Therefore, to find other genetic factors related to the disease, 
the Psychiatric Genetics Consortium-PTSD Group has conducted various 
hypothesis- free GWAS with large samples. Their first big attempt with 20,070 par-
ticipants could neither identify SNPs relevant for PTSD nor replicate their previous 
results (Duncan et al. 2018b). In a GWAS meta-analysis (Nievergelt et al. 2019), 
they provided additional analyses for a diverse cohort of African and European 
ancestries, as well as for men and women. With a sample of almost 200,000 partici-
pants, they detected some SNPs to be linked to PTSD along with one in a Parkinson’s 
gene (PARK2) that has a role in the dopaminergic system. Moreover, the polygenic 
risk score that was computed to assemble the effects of all SNPs that the GWAS 
detected was shown to be significantly linked to PTSD. It was found to significantly 
predict PTSD symptomatology in yet another sample; however, the size of the 
observed association was small (~1%).
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In large samples compiled from different studies, it is difficult to control the 
effect of traumatic load or previous traumatic event history, which can partially 
explain the difficulties in finding a consistent genetic factor predicting the PTSD 
risk. To overcome this, Wilker and colleagues (Wilker et  al. 2018) performed a 
cases-only PTSD GWAS with Northern Ugandan rebel-war survivors (N  =  924) 
along with Rwandan genocide survivors (N = 370) as the replication sample, and 
included traumatic load in their analyses as a covariate. They reported five signifi-
cant SNPs in their discovery sample and could replicate one of them (rs3852144, A 
> G) in their replication sample. This indicates that as the number of rs3852144 
minor G-alleles increased, the PTSD risk after trauma decreased. They provided 
initial evidence that rs3852144 could be linked to differences in the therapy-related 
decrease of PTSD symptoms. The biological mechanism of this SNP from a non- 
coding region is yet to be discovered.

To conclude, the genetic factors which have been associated with PTSD con-
tribute little to explain the variability of the disease and its severity among 
patients. Therefore, genetic research in PTSD has so far not provided substantial 
contribution to the understanding of the disorder’s aetiology or to develop novel 
treatment strategies. A reason for the limited success of genetic studies on PTSD 
might be the heterogeneity of the disease among individuals. Considering vary-
ing symptom profiles among individuals with PTSD, it is reasonable to assume 
that the individuals with diverse PTSD symptomatology might have different 
genetic risk factors, which leads to difficulties in finding a consistent genetic or 
epigenetic risk factor for all PTSD cases in a particular study. Other reasons 
include complex physiological mechanisms underlying PTSD (e.g. inflamma-
tion, oxidative stress) influencing memory formation and p factor which are asso-
ciated with hundreds of different genetic factors, complex environmental 
predictors such as individual trauma history and traumatic load which are diffi-
cult to assess, as well as individual differences related to personality, ethnicity, 
and sociodemographic background. Studies should also analyse individuals with 
similar psychological symptoms, along with similar biological manifestations of 
the disease together.

4.4.4  Epigenetic Alterations in PTSD

Epigenetic alterations are changes in the chemical structure of DNA that do not 
affect the gene sequence. Epigenetic markers influence gene expression, i.e. whether 
a gene is activated or silenced, and how much they are expressed. Epigenetic mech-
anisms are evolution’s shut-down tools for the genetic material; e.g. they silence the 
second X chromosome in human females, switch off the unnecessary genes in spe-
cialised cells, and shut down “outdated” genes from our evolutionary history that 
are redundant for us. Epigenetic alterations are heritable but also prone to change 
based on variety of environmental conditions. Not all epigenetic markers from par-
ents pass onto the later generations.
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Epigenetic changes can be additions or deletions of a chemical group to/from the 
DNA strand or the histone proteins that help pack the DNA in the form of chromo-
somes. The most studied epigenetic marker in stress research is DNA methylation, 
i.e. the addition of a methyl (-CH3) group to (mostly) cytosine bases of DNA. If the 
cytosine is found next to a guanine, a so-called CpG site is formed. When CpG sites 
are common in one region of the gene, this region is called a CpG island. If DNA 
methylation occurs at a regulatory region of a gene (i.e. promoter), where transcrip-
tion factors bind to control gene expression, it can prevent the transcription factor 
from binding and, thus, influence gene transcription and protein production.

Stress presents an important environmental factor that leads to dynamic changes 
in DNA methylation (Zhang and Meaney 2010). Therefore, DNA methylation has 
been a focus for PTSD epigenomics research. As for genetic studies, epigenetic 
studies may be hypothesis-driven and hypothesis-free. As for hypothesis-driven 
approaches, the same genes that were found to interact with adverse environment to 
predict PTSD symptomatology were studied in DNA methylation context. 
Researchers also conducted hypothesis-free epigenome-wide association studies 
(EWAS) to compare the methylation status of thousands of CpG sites in cases versus 
controls.

As for the hypothesis-driven studies, Koenen et al. (2011) found higher PTSD 
risk in individuals exposed to higher number of traumatic events, if they had lower 
serotonin transporter gene (SLC6A4) promoter methylation. However, a study 
assessing the impact of mindfulness intervention in PTSD reported no association 
between PTSD and SLC6A4 promoter methylation before or after the intervention 
(Bishop et al. 2018).

Allele-dependent methylation, i.e. the occurrence of methylation patterns accord-
ing to particular alleles (Meaburn et al. 2010), was commonly observed in FKBP5. 
In childhood-trauma survivors who carry an FKBP5 rs1360780 risk allele (T), 
methylation of a CpG island on an important regulatory region was lower (which 
leads to increased FKBP5 gene expression) than in individuals who do not carry the 
risk allele or who do not have a history of childhood trauma (Klengel et al. 2013). 
In another study, recovery following psychotherapy predicted decreased methyla-
tion in veterans with PTSD when compared to methylation levels before therapy 
(Yehuda et al. 2013). Moreover, higher FKBP5 expression due to epigenetic changes 
related to stress and ageing has been associated with increased inflammatory 
responses that can also partially explain observed immune system alterations in 
PTSD (Zannas et al. 2019).

As for hypothesis-free studies, in different cohorts the PTSD EWAS results 
revealed many differentially methylated CpG sites but did not replicate each other. 
A recent meta-analysis which used data from civilian and veteran samples revealed 
less methylation in a CpG site of aryl-hydrocarbon receptor repressor gene (AHRR) 
in PTSD cases (Smith et  al. 2020). The gene can contribute to immune system 
alterations in PTSD. Another recent EWAS replicated the finding in AHRR in US 
veterans, and reported other significant sites in genes that might be involved in 
pathogen response (Logue et  al. 2020). Longitudinal EWAS concerning PTSD 
development and treatment were performed in military cohorts. Comparing 

S. Varadarajan et al.



77

epigenomic profiles before and after deployment, Rutten et  al. (2018) reported 
PTSD- associated decreases in DNA methylation in three genes ZFP57, RNF39, and 
HIST1H2APS2. Interestingly, increase in ZFP57 methylation was later associated 
with successful treatment of PTSD in another sample (Vinkers et al. 2021). ZFP57 
protein is associated with epigenetic regulation (Li et al. 2008) and susceptibility to 
stress (Jakobsson et al. 2008).

Altogether, epigenomics results on PTSD aetiology point towards the role of 
stress axes, inflammation, and neuromodulatory processes. However, most of the 
reported methylation changes have not yet been replicated and offer limited 
explanation of individual variability in PTSD severity and prevalence. This could 
be explained with the heterogeneity of the disease, individual differences in per-
sonality and physiology, and the varying degrees of exposure to traumatic events 
and lifetime trauma history (Morrison et  al. 2019). Supporting the idea of the 
possible effect of heterogeneity of PTSD symptomatology and differences in 
physiological manifestation of the disease on PTSD (epi-)genetics, researchers 
recently identified two PTSD epigenetic biotypes with EWAS data from samples 
of veteran male cohorts, and their 3-year follow-up (Yang et al. 2021). The two 
epigenetic biotypes show different methylation patterns, oppositely dysregulated 
in certain signalling pathways, and have distinct PTSD symptom manifestations. 
Furthermore, most epigenetic analyses are performed on blood samples which 
contain many different types of immune cells, whose composition might be asso-
ciated with the disease, and likely have different methylation profiles. Methylation 
profiles differ across tissues (e.g. blood vs. saliva), and possibly contribute to 
nonreplicable results.

Future research should attempt to adequately model traumatic load and reduce 
the symptom heterogeneity in participants through creating symptom clusters or 
recruiting individuals with similar psychological and physiological manifestations. 
These measures may help to identify clinical and biological subtypes of PTSD and 
might contribute to novel classifications or treatments of PTSD.

4.5  Trauma-Related Alteration in Mitochondrial 
Functioning Leads to Energy Deficiency 
and Inflammation

Persistent alterations in the regulation of the immune system are arising as a decid-
ing factor of mental health. The immune system consists of two major branches: 
innate and adaptive immune response. The innate immune response presents the 
body’s fast-acting, pathogen-unspecific defence against infectious threats and 
injury. It is mainly mediated by leukocytes, including macrophages/glia cells, mono-
cytes, neutrophils, basophils, and eosinophils. The adaptive immune response pres-
ents a delayed, but prolonged and threat-specific defence against pathogens. It 
mainly constitutes lymphocytes, including T cells which ought to destroy pathogen- 
infected cells. Besides, B cells produce and release antibodies to destroy recognised 
pathogens (Murphy and Weaver 2018).
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4.5.1  Immune Cell Composition and PTSD

Regarding the cellular immune response, PTSD has been linked to altered numbers 
of leukocytes and lymphocytes (Lindqvist et al. 2017a) although there is conflicting 
evidence of the precise nature of these alterations. To address this inconsistency, 
Sommershof et al. (2009) distinguished between functionally differing T cell sub-
populations, and found lowered naïve cytotoxic CD3+ and CD8+ T lymphocyte 
counts, elevated memory CD3+ and CD8+ T lymphocyte counts, as well as lower 
counts of CD4+ regulatory T cells in PTSD patients as compared to trauma-exposed 
individuals and non-traumatised controls. A reduction in naïve T cells can imply a 
higher susceptibility to infectious diseases. A shortage of regulatory T cells is criti-
cal for immune-regulatory imbalances. Importantly, there is preliminary evidence 
that the altered proportion of CD4+ regulatory T cells could be partially reversible 
by trauma-focused psychotherapy (Morath et al. 2014a).

4.5.2  Low-Grade Inflammation and Cytokine Levels in PTSD

Immune cells communicate by releasing signalling proteins, e.g. cytokines, which 
also present major communicators between the immune and nervous systems. There 
are various types of cytokines which can exert pro-inflammatory effects (i.e. increas-
ing immune activity) as well as anti-inflammatory effects (i.e. decreasing immune 
activity) (Murphy and Weaver 2018). Research frequently investigated pro- 
inflammatory cytokines like interleukin (IL-) 1β, IL-6, the tumour necrosis factors 
(TNF-) α and β, and interferon (IFN-) α, β, and γ, as well as anti-inflammatory 
cytokines like IL-4 and IL-10. Elevating levels of IL-6 and TNF-α trigger the liver 
to produce C-reactive protein (CRP) presenting a biomarker of acute-phase inflam-
mation (Murphy and Weaver 2018).

Higher levels of pro-inflammatory cytokines have also been found in blood of 
individuals with stress-related mental health problems, indicating a chronic low- 
grade activity of their immune system. In PTSD, meta-analyses and systematic 
reviews provided evidence for elevated blood levels of IL-1β, IL-6, TNF-α, CRP, 
IL-4, and IL-10 as compared to healthy controls (Hori and Kim 2019; Speer et al. 
2018; Yuan et al. 2019). However, there is inconclusive evidence on elevated IFN-γ 
levels in blood serum of PTSD patients (Lindqvist et al. 2017b).

To date, it is ambiguous whether inflammation is a (potential) vulnerability 
marker for PTSD onset after traumatic stress or whether it manifests because of 
trauma exposure and/or due to PTSD itself. Notably, elevated inflammatory markers 
are no specific biomarker of PTSD. Instead, various mental and physical conditions 
involve elevated cytokine levels. In fact, research found elevated inflammatory 
activity in a variety of mental health problems (e.g. depression, bipolar disorder) or 
after stress exposure (e.g. chronic caregiving stress, early-life stress, intimate part-
ner violence) but could not identify disorder-specific markers of inflammation 
(Yuan et  al. 2019; Tursich et  al. 2014). At the same time, chronically elevated, 
unspecific inflammatory activity applies to almost all ageing-related 
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non- communicable diseases such as cardiovascular diseases, diabetes, and even 
cancer (Duan et al. 2019; Franceschi and Campisi 2014; Grivennikov et al. 2010). 
Likewise, individuals with stress-related mental health problems such as PTSD 
exhibit an elevated vulnerability for the premature onset of such non-communicable 
physical health problems (Pacella et al. 2013). Investigating the shared immuno-
logical correlates of PTSD will enable advanced understanding of the multiple 
adverse consequences of PTSD and will open new perspectives on effective treat-
ment approaches.

4.5.3  Cellular Energy Metabolism and Oxidative Stress in PTSD

Chronic inflammatory activity manifested as elevated levels of pro-inflammatory 
cytokines exerts wide-spread alterations in the metabolism of cells, disturbs their 
oxidative balance, and can impair the cellular energy production by mitochondria. 
These alterations emerge as key mechanisms underlying the development of a vari-
ety of chronic diseases and also apply to several mental health problems such as 
PTSD and depression (Hitzler et al. 2019; Karabatsiakis and Schönfeldt-Lecuona 
2020). Mitochondria, the powerhouses of our cells, are intracellular organelles, 
which have their own mitochondrial DNA (mtDNA), and are the main producers of 
biochemical energy in humans. Moreover, immune cells release various molecules 
to regulate the inflammation reaction and fight pathogens, including reactive oxy-
gen/nitrogen species (ROS/RNS), i.e. highly reactive oxygen and nitrogen mole-
cules (Lugrin et  al. 2014). Normally, ROS and RNS are rapidly neutralised by 
antioxidants or detoxification mechanisms of cells. Upon imbalance between levels 
of ROS and antioxidants—a state called oxidative stress—, ROS/RNS cause con-
siderable damage to essential cell compartments, including mitochondria, DNA, 
cell membranes, and essential enzymes (Turrens 2003). ROS are physiological by- 
products of oxidative phosphorylation (OXPHOS), a process to produce biochemi-
cal energy in the form of adenosine triphosphate (ATP), which takes place in 
mitochondria.

Few studies have so far investigated markers of oxidative stress in PTSD. There 
is initial evidence of elevated levels of lipid peroxidation and lowered antioxidant 
enzymes in blood serum of earthquake-survivors with PTSD as compared to 
earthquake- exposed healthy controls (Atli et al. 2016). Using a combined metabo-
lomics and lipidomics approach, Karabatsiakis et  al. (2015) identified several 
metabolites in blood serum that allowed to discriminate between PTSD patients and 
healthy controls, including lowered levels of two metabolites with antioxidant prop-
erties, i.e. a bilirubin isomer and pantothenic acid (vitamin B5). Besides, studies 
also characterised possible consequences of oxidative stress in PTSD: Morath and 
colleagues (2014b) observed a higher level of DNA double-strand breaks in leuko-
cytes of PTSD patients and traumatised adults as compared to non-traumatised 
healthy controls. Importantly, successful trauma-focused psychotherapy was able to 
normalise DNA strand breaks among PTSD patients. Further research is needed to 
draw firm conclusions regarding the associations of PTSD with oxidative stress.
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Mitochondria themselves are of pivotal relevance in initiating, regulating, and 
resolving immune responses and inflammatory processes (Mills et al. 2017). As for 
their immunomodulatory role, altered (and possibly impaired) mitochondrial func-
tioning is gaining attention in the explanation of various psychopathologies such as 
depression (Karabatsiakis and Schönfeldt-Lecuona 2020). Mitochondria are essen-
tially involved in several physiological processes that are disrupted in PTSD; i.e. 
mitochondria were linked to abnormal fear learning, brain circuit activities, synap-
tic plasticity, the production of steroid hormones, as well as the regulation of central 
and peripheral inflammation (Mills et al. 2017; Miller 2013). Chronic and traumatic 
stress are not only important triggers of PTSD and related mental health problems, 
but were also linked to altered mitochondrial functioning (Boeck et al. 2016; Gumpp 
et al. 2020; Picard and McEwen 2018).

To date, direct studies of mitochondrial functioning in PTSD have not yet been 
conducted in humans. By now, metabolomics studies identified several metabolites 
involved in pathways related to mitochondrial activity which enabled to discrimi-
nate between PTSD patients and healthy controls: Karabatsiakis et al. (2015) identi-
fied 13 metabolites including glycerophospholipids, fatty acid metabolites, 
nucleosides, bile acids and derivates, monosaccharides, and antioxidants, which 
displayed significant changes in PTSD.  In another metabolomics study, Mellon 
et al. (2019) found differences between PTSD subjects and controls in pathways 
related to glycolysis and fatty acid uptake and metabolism as well as in pathways 
related to urea cycle and amino acid metabolism. These data indicate changes in the 
metabolic profile of individuals with PTSD with an involvement of mitochondrial 
alterations.

Furthermore, there is initial evidence that mitochondrial alterations may contrib-
ute to PTSD symptomatology and increase susceptibility to PTSD (Preston et al. 
2018). One preliminary study showed altered gene expression of mitochondria- 
related genes, including six genes of the OXPHOS pathway, in the prefrontal cortex 
of post-mortem brains from six PTSD patients and six controls (Su et al. 2008). 
Another study identified genes associated with mitochondrial function that were 
differentially methylated in PTSD compared to trauma-exposed control subjects 
(Hammamieh et al. 2017). Moreover, lower mtDNA copy number as a marker for 
the cellular mitochondrial density was found in male combat veterans with PTSD 
(Bersani et al. 2016). Another study analysed SNPs in the mtDNA and showed sig-
nificant correlation between PTSD severity and the heteroplasmy levels of two 
mtDNA SNPs in genes coding for proteins in the respiratory chain (Flaquer 
et al. 2015).

These findings altogether suggest that mitochondrial alterations play a role in the 
aetiology of PTSD.  Longitudinal studies are needed to determine whether mito-
chondrial dysregulation precedes or follows PTSD onset and if a causal relationship 
exists between PTSD and mitochondrial alterations (Bersani et al. 2020). Further 
research also needs to measure mitochondrial function and mitochondrial oxygen 
consumption related to ATP production in cells of individuals with and with-
out PTSD.
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4.6  Implication of Gut Microbiota in Stress and PTSD

Perturbations in the microbiota-gut-brain axis (MGBA) have been linked to ill-
nesses both physical (e.g. gastrointestinal disorders) and psychological (e.g. depres-
sion, anxiety) (Smith et  al. 2019). The MGBA is a complex, bidirectional, and 
interactive network that connects gut and brain. The underlying mechanism of 
MGBA involves gut microbiota, central nervous system (CNS), enteric nervous sys-
tem (ENS), immune system, hypothalamic-pituitary axis (HPA), etc. (Dinan and 
Cryan 2012). Gut microbiota refers to the approximately 100 trillion diverse micro-
organisms inhabiting the human gastrointestinal (GI) tract such as archaea, fungi, 
eukaryotes, protozoa, bacteriophages, viruses, and predominantly bacteria (benefi-
cial and pathogenic bacteria) (Thursby and Juge 2017). Gut microbiota along with 
their genes and metabolites are termed as the human gut microbiome (Berg et al. 
2020). Indeed, vastly present microbial communities in the GI tract play a crucial 
role in modulating the immune system, the metabolomic responses, stress regula-
tion, and our health homeostasis (Cryan et  al. 2019; Danneskiold-Samsøe 
et al. 2019).

Alterations and imbalance in the composition as well as metabolic capacity of 
gut microbiota is known as gut dysbiosis (Zeng et al. 2017) and it is a major factor 
linked to MGBA perturbation. Exposure to  stress as well as  other  factors such 
as antibiotics, dietary changes, changes in pH levels in gut, etc. are attributed to 
cause gut dysbiosis (Zeng et al. 2017; Fröhlich et al. 2016; Ilhan et al. 2017; Madison 
and Kiecolt-Glaser 2019). Animal model studies show alterations in the composi-
tion of gut microbiota due to exposure to different types of psychological stress like 
maternal separation, chronic social defeat, restraint conditions, etc. (Rea et  al. 
2020). On the one hand, increased inflammation associated with stress could trigger 
“blooms” of pathogenic bacteria which promotes dysbiosis (Madison and Kiecolt- 
Glaser 2019). On the other hand, gut dysbiosis could affect the regulation of the 
stress response by intensifying HPA activity, and causing variations in neurotrans-
mitters  and    inflammation (Johnson 2020). Gut dysbiosis is especially linked to 
abnormal immune responses and resultant abnormal production of inflammatory 
cytokines (Lin et al. 2019). Both these are observed in PTSD (Toft et al. 2018).

A better health status is associated with a higher diversity of bacterial composi-
tion; however, gut dysbiosis is commonly associated with loss of microbiota diver-
sity (LOMD) (Mosca et al. 2016), and congruently, an increased level of anxiety 
and depression is associated with LOMD (Johnson 2020). This is further reflected 
in an exploratory study which found no substantial difference in overall microbial 
community diversity between trauma-exposed and PTSD participants; but, in par-
ticipants with PTSD, a decrease in the relative abundance of certain bacterial phyla 
(i.e. Actinobacteria, Lentisphaerae, and Verrucomicrobia) were found (Hemmings 
et al. 2017). PTSD is associated with liver cirrhosis in veterans, and a study observed, 
gut dysbiosis characterised with reduced microbial diversity in cirrhotic veterans 
with PTSD when compared with non-PTSD veterans (Bajaj et al. 2019). The intes-
tinal mucosal barrier prevents microbes, toxins, food antigens to leave the gut lumen 
and enter other body systems (Ghosh et  al. 2020). However, stress can impact 
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intestinal mucosal barrier and may trigger a state of “leaky gut” characterised with 
severe dysfunctions of the intestinal mucosal barrier and increased intestinal perme-
ability, this can potentially permit entry of pathogenic bacteria and bacterial toxins 
into systemic circulation (Kelly et  al. 2015). For instance, systemic presence of 
lipopolysaccharides (LPS; which are a major constituent of the outer membrane of 
gram-negative bacteria) can elevate inflammation as well as oxidative stress, and a 
slight increase in systemic LPS itself could trigger depressive symptoms (Selhub 
et al. 2014).

Stress, alterations in the gut microbial composition (gut dysbiosis), a state of 
leaky gut (gut permeability), and associated inflammation may potentially contrib-
ute to the development and exacerbations of PTSD symptomatology and comorbidi-
ties. Therefore, future studies on PTSD should consider the pathophysiological role 
of MGBA in their respective research framework. Importantly, emerging knowl-
edge on the role of gut microbiota in stress-related disorders can tremendously con-
tribute to innovative treatment and disease prevention approaches (see: Cryan 
et al. 2019).

4.7  Conclusion and Future Perspectives

The most well-replicated finding is the dose-response effect of traumatic stress load 
on PTSD risk, which seems to be similarly present in both biological sexes. 
Traumatic stress load not only affects the aetiology of PTSD or other psychological 
disorders but also the risk for adverse physical health outcomes often associated 
with PTSD. Genetic studies indicate that the contribution of single SNPs to overall 
PTSD risk is small, and research is yet to yield conclusive evidence. G × E interac-
tion studies clearly demonstrate the need to consider lifetime traumatic load in 
genetic studies on PTSD, because genetic risk factors might lose their importance 
with exposure to traumatic stress, and anyone could develop PTSD with sufficient 
trauma load.

PTSD is consistently associated with chronic low-grade inflammation and altered 
immune regulation, and this may further contribute to the overall health decline. 
Therefore, we consider the biomolecular process modulating inflammation and its 
systemic consequences as a promising research focus for PTSD.  An important 
hinge factor related to the regulation of inflammation may be alterations in mito-
chondrial bioenergetics and related oxidative stress in cells. Indeed, inflammation, 
oxidative stress, and mitochondrial functioning might be a biological correlate of a 
general psychopathological dimension, the so-called p factor, or in other words, the 
common variance between a diverse set of psychological symptoms. Hence, mito-
chondrial and immune system functioning might represent a common underlying 
mechanism of the aetiology of a wide range of psychological disorders including 
PTSD. This potential cross-disorder mechanism might explain why brain and cog-
nitive alterations (e.g. volume reduction in hippocampus and anterior cingulum as 
well as deficits in executive function and episodic memory) found in PTSD are also 
found in several other psychological disorders and in people who experienced risk 
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factors of psychopathology such as childhood maltreatment (CM). New therapeutic 
interventions that target these common mechanisms between disorders have the 
beneficial potential not only for patients with PTSD but also for other psychological 
and neurocognitive disorders.

Stress-induced elevation in inflammation and resultant higher levels of oxidative 
stress could alter the gut microbiota (gut dysbiosis) and a subsequent state of “leaky 
gut”. This may induce perturbations in MGBA which is implicated in the develop-
ment or exacerbation of several diseases such as anxiety, MDD, PTSD, gastrointes-
tinal disorders, cancer, etc. Further, microbiota alterations may increase inflammation 
and can potentially contribute to a compromised regulation of the immune system 
and metabolic processes. Endeavours are required to develop an integrative knowl-
edge on the interplay of brain activity, immune regulation, cellular energy homeo-
stasis, mitochondrial metabolism, and gut microbiota as hinge factors to investigate 
the biological effects of chronic and traumatic stress exposure in diseases like PTSD 
and its comorbidities. In the long run, this integrative perspective may result in 
developing innovative evidence-based psychobiological interventions that will 
serve as effective add-ons to existing evidence-based trauma-focused psychothera-
pies with the aim to ensure sustainable health outcomes for individuals with a his-
tory of CM or severe stress and trauma exposure.
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