
InterGridSim: A Broker-Overlay Based
Inter-Grid Simulator

Abdulrahman Azab(B)

Division of Research Computing, University Center for Information Technology,
University of Oslo, Oslo, Norway

azab@uio.no

Abstract. Large scale Grid computing systems are often organized as
an inter-Grid architecture, where multiple Grid domains are intercon-
nected through their local broker. In this context, the main challenge is
to devise appropriate job scheduling policies that can satisfy goals such
as global load balancing together with maintaining the local policies of
the different Grids. This paper presents InterGridSim, a simulator for
scalable resource discovery and job scheduling technique in broker based
interconnected Grid domains. Inter-Grid scheduling decisions are han-
dled jointly by brokers in a broker overlay network. A Broker periodically
exchanges its local domain’s resource information with its neighboring
brokers. InterGridSim offers several network structures and workload
allocation techniques for Tier-1 and Tier-0 networks and large workload
capacity. The paper presents sample simulations for throughput, utilisa-
tion, and load balancing in a network of 512 brokers and 50k nodes.

1 Introduction

Grid computing is based on coordinated resource sharing in a dynamic environ-
ment of multi-institutional virtual organizations, VOs [1]. The target of com-
putational Grid, which is our main focus, is to aggregate many Grid compute
resources as one powerful unit on which computational intensive applications
can run and produce results with low latency. Computational Grid Model is
mainly composed of three components: (i) worker/ executor, to which compu-
tational jobs are submitted and where they are executed, (ii) client/ user, from
which jobs are submitted and by which the Grid is consumed, and (iii) broker/
scheduler, which is responsible of allocating submitted jobs by clients to suitable
workers [2]. The InterGrid concept [3] has been evolved due to the dramatic
increase in the resource demands of Grid application together with the submis-
sion rate. The idea of resource sharing between different domains is already in
use in the network level and known as peering [4–6]. The interconnection of Grid
domains may be implemented in one of three levels:

Client level where the client/user machine can have access to multiple Grid
domains using associated access rights [7,8]. This can be implemented either by
granting multiple access rights to each Grid client [7], or by installing multiple
Grid clients on the same user machine to access multiple domains with different
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Qiu et al. (Eds.): SmartCom 2021, LNCS 13202, pp. 374–383, 2022.
https://doi.org/10.1007/978-3-030-97774-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97774-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-97774-0_34


InterGridSim 375

architectures [8]. This alternative is not scalable, since it is not applicable to
grant access to hundreds of domains to thousands of clients which may result in
a massive number of contentions.

Worker level where worker/executer nodes could have the task executors
of multiple Grid domains installed so that it become available for submission
requests from either of those domains [9]. Based on our experience [10], this
alternative would negatively influence the capacity of the worker machine which
would in turn have a negative result on the resource capacity in each of the
interconnected domains.

Broker level where the interconnection is to be carried out through Local
Resource Brokers, LRB. Two methodologies have been implemented in this direc-
tion: (i) Central meta-scheduler, and (ii) Grid federation. The role of a central
meta-scheduler [11] to manage and control the interGrid submission requests
allocating each to a LRB with matching resource requirements on its domain.
This methodology is implemented by Condor-G [12] where the Condor-G meta-
scheduler can exchange submission requests between Condor pools and Globus
VOs. A similar mechanism is implemented by Nimrod-G [13]. This method-
ology suffers from the centralization problem where the meta-scheduler may
be overloaded with inter-Grid requests, in addition to single point of failure.
Grid federation is to establish the interconnection between LRBs in an overlay,
giving equal rights to all connected brokers to participate in the interconnec-
tion task allocation decision. Such a federation of Grid domains [3] would avoid
the limitations of the central meta-scheduler methodology. This methodology is
implemented in condor-flock-p2p [14] through the establishment of a pastry [15]
based p2p overlay between brokers. A little different mechanism is adopted by
the InterGrid project [3,16] where LRBs are responsible only for local brokering
while the interconnection and management of interGrid submission requests are
carried out by fixing a dedicated gateway in each domain.

This paper presents InterGridSim [17], a simulator for Inter-Grid resource
management. Different techniques can be implemented in InterGridSim from
fully centralised to peer-to-peer. The main technique promoted in InterGrid-
Sim is Slick [18–20] which is built on a hybrid peer-to-peer overlay network [21].
Slick aims at reducing the overall complexity of the system, enabling transpar-
ent access to regular participants, while ensuring efficient resource utilization,
load balancing and failure handling. The underlying idea of the architecture is
that each participating node may offer or claim computational resources as neces-
sary for their application. This technique is suitable for interconnected domains,
each with one broker node responsible for local resource management within its
virtual organization. The broker receives requests for resources from participat-
ing nodes, compare the requirements in each request with available resources at
nodes in the network, and forwards the requests to suitable nodes. Each node
interacts only with its attached broker, and both regular node and broker fail-
ures are handled. Brokers associated with the different domains take part in an
overlay network of brokers that are responsible for global resource management
and task deployment throughout the network.



376 A. Azab

InterGridSim has been implemented in the PeerSim simulation environ-
ment [22], and has been evaluated experimentally for various load conditions,
network sizes, and topologies. The results show that the architecture is able
to allocate compute tasks quickly and efficiently for different broker overlay
topologies.

2 The Inter-grid Architecture

The Inter-Grid architecture in InterGridSim is based on global resource shar-
ing and collaboration of Grid domains. Each domain consists of one domain
controller (i.e. Broker), and a collection of regular nodes. Components of the
grid system are:

Job in InterGridSim refers to a computational job. It has five execution param-
eters: 1) Required CPU, the computational power required for running the job.
2) Required Memory, the memory size required for running the job. 3) Expira-
tion Time, the amount of time to wait for allocation. 4) Creation Time, the time
at which the job is created for allocation. 5) Allocation attempts, the maximum
number of attempts to deploy the job before it is expired.
Regular node refers to each non-broker node in the Grid. Each regular node can
be a member of one domain, and can submit and/or run a job. A regular node is
also responsible for periodically sending information about the current available
resource state of the node to its broker. Each regular node has two resource
parameters: 1) Available CPU, which refers to the available computational power
in the node, and 2) Available Memory space. Regular is equivalent to Peer in
HIMAN, which contains two components: Worker (W), which is responsible for
task execution, and Client (C), which is responsible for task submission [23,24].
Broker is a node which works as a domain controller, can also work as a regular
node in case of lack of available regular nodes. It is responsible for: 1) Allocating
jobs to suitable nodes. A suitable node for a job is elected by performing a
matchmaking process between the job requirements and the available resources
of attached Grid nodes [2]. 2) Storing the current resource state for local nodes
(i.e. in the same domain) as well as global nodes (i.e. in other domains).
Grid Domain (Virtual Organization) is an overlay of nodes, which can be allo-
cated in different regions and be members of several organizations. Each domain
is composed of one broker and regular nodes and is structured as a star logical
topology, so that; communication is between the broker and regular nodes. There
is no direct communication between regular nodes within the same domain.
Broker overlay is a network of brokers through which communication and data
exchange between different Grid domains is performed.

InterGridSim simulates resource discovery and global job scheduling for
interconnected Grid domains. InterGridSim supports several architecture of
the broker overlay. One is structured-p2p [15] that each broker has a nodeID and
a routing table, and the routing table of each broker is filled with nodeIDs of
brokers which share different prefixes with the current broker’s nodeID. Another



InterGridSim 377

example is gossip [25] where each broker has a set of neighbors, and resource
information is distributed through periodically exchanging data with a neighbor
broker. Slick, implements the first architecture where each broker must be
holding a routing table in which the addresses of its neighboring brokers are
stored. InterGridSim gateway broker is designed to work on the top of the
local broker of the Grid domain as three layers architecture. The different layers
and components of Slick are described in the main Slick paper [18].

Fault Tolerance: InterGridSim mainly manages Broker failures, where worker
and client failures are managed internally by the broker in each Grid domain.
Each regular node has direct communication with its broker. Periodically, each
node sends its resource information to the broker to update its associated
resource-information record to the current state. Each node holds a list of infor-
mation about all existing brokers in the broker overlay. This information is
retrieved and updated periodically from its local broker. A regular detects its
local broker failure when it attempts to send its resource information to the
broker. In case of broker failure, all regular nodes in the domain are detached
from the Grid, and each node sends a membership request to the first broker in
the list. If the request is granted, the regular node sets the new broker as the
attached broker; otherwise the request is repeated to the next broker in the list.

3 Simulation Model

InterGridSim is designed using PeerSim [22]; a Java-based simulation-engine
designed to help protocol designers in simulating their P2P protocols. The simu-
lation model is based on cycle-based simulation. Input parameters for the simula-
tion engine are read from a configuration text file. In cycle-based simulation, each
simulation cycle is considered as one time unit. Four main Interfaces are used:
Node, Linkable, CDProtocol, and Control. The overlay network is a collection
of Node objects. Before starting simulation, a collection of Initializer objects,
specified in the configuration file, are created and execute initialization functions.
All Initializer objects must implement Control Interface This initialization
process includes constructing the network by connecting Node objects together
based on the specified topology. Pointers to all neighboring nodes are stored in
a Linkable Protocol object attached to each Node object. Any other initial-
izations can be included. The default Linkable Protocol is the IdleProtocol.
Each node object is attached to a collection of CDProtocol (i.e. cycle driven pro-
tocol) objects. Each CDProtocol object is responsible for simulating one commu-
nication protocol in the attached node with identical objects in other nodes. This
is carried out by calling a nextCycle() method in each CDProtocol object by the
simulation engine each simulation cycle. Each simulation cycle, the simulation
engine calls a collection of execute() methods in Control objects. Control
objects are created to carry out all control operations needed for the simula-
tion, including modification of simulation parameters. Another role of Control



378 A. Azab

objects is the observation and recording of data related to simulation environ-
ment state each simulation cycle. All Control objects must implement Control
Interface.

In this model, a GridNode class implements the Node Interface is built.
GridDeployer, and GridFailureControl class objects are included as a
Control object for performing job deployment and failure handling. Three CD
Protocols as CDProtocol classes are built:

Grid CD Protocol. This protocol is included in each regular node and responsible
for communicating with the attached broker and sends the resource information
each simulation cycle.

Deployment Protocol. This protocol is included in each regular node. It is respon-
sible for responding to the deployment requests from the broker by one of two
responses: Deployed, if the job deployment is successful, and Failed, if the local
resources are not enough for deploying the job.

Grid Broker Protocol. This protocol is included in broker nodes and responsible
for: 1) Receiving jobs from the job deployer and append them to the job queue.
2) Receiving resource information from attached regular nodes and replaces the
current stored blocks in the resource information data set with the new ones. 3)
Picking one job each cycle from the job queue and invoking the job deployment
algorithm. 4) Exchanging resource information with one neighbor broker each
cycle by invoking the resource information exchange algorithm.

Figure 1 describes the Grid simulation model and the communication
between different protocols. GridNode class is a reference for node objects.
GridAllocator and GridFailureControl classes are included as references for
Control objects which simulate job allocation and failure handling. Three cycle-
driven Protocol classes are also built: 1) Grid CD Protocol, included in each

Fig. 1. Simulation model



InterGridSim 379

regular node and is responsible for communicating with the attached broker
and sends the resource information in each simulation cycle. 2) Allocation
Protocol, included in each regular node and is responsible for responding to
the Allocation requests from the broker. 3) Grid Broker Protocol, included in
each broker node for performing the tasks associated with the broker (described
in the previous sections). The Idle Protocol is in the main PeerSim package
and is included in each node to be responsible for establishing communication
with neighboring nodes.

4 Simulation Results

We present the results of simulating a large number of domains with Inter-
GridSim inter-Grid simulator using Slick workload management technique. We
simulate a system of 50,000 nodes in 512 interconnected domains. The domains
are connected through local brokers in a HyperCube logical topology, i.e. in case
of a network size of N , each broker will have k neighbours in its routing table
where k = lnN

ln 2 . In case of 512 brokers, each broker will have 9 neighbors. Slick
is tested against the centralised meta-scheduling technique where we implement
logical star topology between an orchestrator and the brokers in the broker over-
lay. Compute node specifications are of two groups which are different in four
static attributes: [group1: 2 CPU slots, 4 GB Memory, Windows OS, No java sup-
port] and [group2: 4 CPU slots, 8 GB Memory, Linux OS, Java support] Nodes
are divided equally between the two groups, 25,000 each, but scattered among
the domains. We create a load of total 80,000 synthetic jobs divided into 100
sequences. Each sequence is assigned to one broker. Using a random frequency
50 < f < 100 time instance, a random number of jobs 50 < j < 100 is submitted
periodically by each sequence. Job resource requirements are randomly set. The
process continues until all the 80,000 jobs are submitted. The total simulation
time of the experiment is set to 2000 time instances. Each time instance, the
local scheduler processes one job from the local queue, and the gateway sched-
uler processes one job from the gateway queue. Each time instance each broker
synchronizes the resource information database with one neighbor broker.

We use three benchmarks: Job allocation throughput, resource utilisation,
and Load balancing. Job allocation throughput is measured by reading the total
number of waiting jobs in the system/time, Fig. 2(a), and number of job allo-
cations/time Fig. 2(b). It is clear that Slick is achieving higher throughput.
Slick manages to reach a steady state were all jobs are allocated, within 1344
time instances, while in other systems, a bottleneck case happens. This can be
described that in case of centralized allocation, there is only the central meta-
scheduler to carryout the interconnections, which in case of cross-domain sub-
missions allocates only one job per time instance. The breakdown both cases is
after ≈ 800 time instances is because all job sequences complete their submis-
sions by that time. We made this in purpose in order to validate the system
performance when job allocation is carried out only inter-domain and not intra-
domain. Resource utilisation is measured by reading the number of saturated



380 A. Azab

0 500 1,000 1,500 2,000

0

2

4

·104

time

w
ai
ti
ng

jo
bs

Centralised
Slick

(a) Total waiting jobs

0 500 1,000 1,500 2,000

0

20

40

60

80

100

time

al
lo
ca
te
d
jo
bs

Centralised
Slick

(b) Allocated jobs per time in-
stance

Fig. 2. System throughput: overall job allocation ratio

domains/time, e.g. those domains which workers are fully saturated with jobs.
Figure 3(a) shows that Slick in the time of high load ≈ 500 time instances,
is achieving larger utilisation. Load balancing is measured by calculating for
brokers, throughout the simulation: How long did it take to allocate all jobs
owned by the domain of each broker, and what is the average waiting time. In
Fig. 3(b), it is clear that for Slick, the total allocation time never exceeded 1500
time instances and the maximum average waiting time is below 800. For cen-
tralized allocation, none of the domains got all of its jobs allocated during the
2000 time. The value of 2000 for both total allocation time and average waiting
time indicates that this broker’s jobs were not totally allocated.

0 500 1,000 1,500 2,000

0

5

10

15

20

25

time

sa
tu
ra
te
d
do

m
ai
ns

(a) System utilisation: Number
of saturated domains per unit
time

0 100 200 300 400 500

0

500

1,000

1,500

2,000

domain

ti
m
e

Avg. waiting time
total allocation time

(b) Load balancing: Average
waiting time and total alloca-
tion time of jobs submitted to
each of 100 domains

Fig. 3. Broker overlay coordination with 100 domains

Fault Tolerance: This experiment demonstrates how the broker overlay based
architecture is tolerant to broker failures. Broker failures are injected during the
simulation. With the existence of broker failures, it is expected that the deviation
of the reading time values of the stored resource information from the current



InterGridSim 381

cycle will increase due to failure. The reason is that resource information of the
regular nodes which have been attached to the failed broker, will remain old and
not updated until they are attached to other brokers and start sending resource
information blocks. In the following experiments, a new parameter is taken into
account: Data Age, which is the maximum age in cycles of resource information
in a broker resource data set. In each simulation cycle, the broker protocol checks
the reading time of each block in the resource information data set. If the reading
time of a block is ≤ (Currenttime−DataAge), then, this block is removed from
the data set. If a new block for the same node is received later, in an exchange
operation, it is added to the data set. The following experiments are performed
by varying the value of Data Age.

Four topologies are used: ring, fully connected, and Wire-k-Out (k = 60), and
hyper-cube. The network size is fixed to N = 500, and M = 100. The number of
simulation cycles is 300. The experiment is performed with varying the number
of broker failures: The data age is fixed to 10 cycles with 4 and 8 injected broker
failures, depicted in Fig. 4.

0 50 100 150 200 250 300

0

1

2

3

4

Cycles

D
ev
ia
ti
on

4 failures
8 failures

(a) Ring broker overlay topol-
ogy

0 50 100 150 200 250 300

0

2

4

6

8

Cycles

D
ev
ia
ti
on

4 failures
8 failures

(b) Fully Connected broker
overlay topology

0 50 100 150 200 250 300

0

2

4

6

8

Cycles

D
ev
ia
ti
on

4 failures
8 failures

(c) Wire-k-Out broker overlay
topology, k = 60

0 50 100 150 200 250 300

0

2

4

6

8

Cycles

D
ev
ia
ti
on

4 failures
8 failures

(d) Hyper-cube broker overlay
topology

Fig. 4. Impact of failures on the deviation of the resource information for: data age of
10 cycles with 4 and 8 injected broker failures



382 A. Azab

In Fig. 4, it is clear that for fully connected, wire-k-out, and hyper-cube
topologies, the system can recover from failures and return to stable state. But
When Data Age = 30, the system stability is not settled because of the exis-
tence of old data. In case of ring topology, the deviation has terrible and unstable
variation with failures. This can be described that, because of the lack of possible
direct communications between brokers, it takes time for a broker to reach data
stored in non-neighbor brokers.

5 Conclusions and Acknowledgments

This paper presented InterGridSim, a simulator for interconnected Grid
domains. The key feature of InterGridSim is that both resource state and hard-
ware specifications of each domain are stored in small datasets which enables
the exchange of resource information among brokers. Using this information
in matchmaking, cross-scheduling decisions are made accurate in most cases.
InterGridSim offers several network structures and workload allocation tech-
niques and large workload capacity. The paper presented sample simulations for
throughput, utilisation, and load balancing in a network of 512 brokers and 50k
nodes.

InterGridSim development has been partially funded by NeIC (Nordic e-
Infrastructure Collaboration) [26] for supporting the development of Nordic Tier-
1 activity [27]. InterGridSim has also been developed as part of WP5 in the
EOSC-Nordic project [28]. EOSC-Nordic has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant
agreement No 857652.

References

1. Joseph, J., Fellenstein, C.: Grid Computing, vol. 1. Prentice Hall Professional,
Upper saddle River (2004)

2. Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource man-
agement for high throughput computing. In: Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing (HPDC7),
Chicago, IL, July 1998 (1998)

3. Assuno, M.D.D., Buyya, R., Venugopal, S.: Intergrid: a case for internetwork-
ing islands of grids. In: Concurrency and Computation: Practice and Experience
(CCPE), pp. 997–1024 (2007)

4. Baake, P., Wichmann, T.: On the economics of internet peering. NETNOMICS 1,
89–105 (1999). https://doi.org/10.1023/A:1011449721395

5. Chakrabarti, S., Badasyan, N.: Private peering, transit and traffic diversion. NET-
NOMICS 7(2), 115–124 (2005). https://doi.org/10.1007/s11066-006-9007-x

6. Huston, G.: Interconnection, peering and settlements-part I. Internet Protocol.
2(1) (1999)

7. Evers, X., de Jongh, J.F.C.M., Boontje, R., Epema, D.H.J., van Dantzig, R.: Con-
dor flocking: load sharing between pools of workstations. Technical report, Delft,
The Netherlands (1993)

https://doi.org/10.1023/A:1011449721395
https://doi.org/10.1007/s11066-006-9007-x


InterGridSim 383

8. Aiftimiei, C., et al.: Design and implementation of the gLite CREAM job manage-
ment service. Future Gener. Comput. Syst. 26(4), 654–667 (2010)

9. NorduGrid: Nordic Testbed for Wide Area Computing and Data Handling. http://
www.nordugrid.org/

10. Azab, A., Meling, H.: Stroll: a universal filesystem-based interface for seamless
task deployment in grid computing. In: Göschka, K.M., Haridi, S. (eds.) DAIS
2012. LNCS, vol. 7272, pp. 162–176. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30823-9 14

11. Schopf, J.: Ten actions when superscheduling. In: Global Grid Forum (2001)
12. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-G: a computa-

tion management agent for multi-institutional grids. Clust. Comput. 5(3), 237–246
(2002). https://doi.org/10.1023/A:1015617019423

13. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: an architecture for a resource
management and scheduling system in a global computational grid. In: Proceedings
of HPC ASIA 2000, pp. 283–289 (2000)

14. Butt, A.R., Zhang, R., Hu, Y.C.: A self-organizing flock of condors. J. Parallel
Distrib. Comput. 66(1), 145–161 (2006)

15. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45518-3 18

16. Assuncao, M.: Provisioning techniques and policies for resource sharing between
grids. Ph.D. dissertation, The University of Melbourne, Australia (2009)

17. Azab, A.: Intergridsim: inter-grid simulator based on peersim. https://github.com/
abdulrahmanazab/intergridsim

18. Azab, A., Meling, H.: Slick: a coordinated job allocation technique for inter-grid
architectures. In: 7th European Modelling Symposium (EMS) (2013)

19. Azab, A., Meling, H., Davidrajuh, R.: A fuzzy-logic based coordinated scheduling
technique for inter-grid architectures. In: Magoutis, K., Pietzuch, P. (eds.) DAIS
2014. LNCS, vol. 8460, pp. 171–185. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43352-2 14

20. Azab, A.: Binary matchmaking for inter-grid job scheduling. In: Silhavy, R.,
Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends
and Techniques in Computer Science. AISC, vol. 285, pp. 433–443. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06740-7 36

21. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)

22. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of
the 9th International Conference on Peer-to-Peer (P2P’09), Seattle, WA, Sep 2009,
pp. 99–100 (2009)

23. Condor project. http://www.cs.wisc.edu/condor/
24. El-Desoky, A.E., Ali, H.A., Azab, A.A.: A pure peer-to-peer desktop grid frame-

work with efficient fault tolerance. In: ICCES’07, Cairo, Egypt, pp. 346–352 (2007)
25. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership

protocol. In: Aguilera, M.K., Aspnes, J. (eds.) PODC, ACM, pp. 292–301 (2005)
26. Neic: Nordic e-infrastructure collaboration. https://neic.no/
27. Nordic wlcg tier-1 facility. https://neic.no/nt1/
28. Eosc-nordic project. https://eosc-nordic.eu/

http://www.nordugrid.org/
http://www.nordugrid.org/
https://doi.org/10.1007/978-3-642-30823-9_14
https://doi.org/10.1007/978-3-642-30823-9_14
https://doi.org/10.1023/A:1015617019423
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18
https://github.com/abdulrahmanazab/intergridsim
https://github.com/abdulrahmanazab/intergridsim
https://doi.org/10.1007/978-3-662-43352-2_14
https://doi.org/10.1007/978-3-662-43352-2_14
https://doi.org/10.1007/978-3-319-06740-7_36
http://www.cs.wisc.edu/condor/
https://neic.no/
https://neic.no/nt1/
https://eosc-nordic.eu/

	InterGridSim: A Broker-Overlay Based Inter-Grid Simulator
	1 Introduction
	2 The Inter-grid Architecture
	3 Simulation Model
	4 Simulation Results
	5 Conclusions and Acknowledgments
	References




