
11Valuing Flexibilities in Power Systems
as Optionalities

The concepts of flexibilities and optionalities in electricity systems have become
increasingly popular over the last two decades. There are two major but distinct
drivers for this development: the first one is related to the financial trading of
electricity products on future and other derivative markets. In that context, it has
apparent merits to consider flexibilities in physical assets, like power plants anal-
ogously to financial contracts with embedded flexibilities. The latter are named
options, and hence, it has become popular to consider power plants, storages and
other assets as “real options”.

The other driver is increasing shares of fluctuating renewables that are expected
to dominate in the future sustainable energy systems. Here, a lack of flexibilities is
perceived as a potential challenge: increasing shares of renewables imply, other
things being equal, higher uncertainties due to growing forecast errors. And at the
same time, they go along with decreasing shares of controllable conventional power
plants.

The two perspectives on flexibilities have somewhat different starting points, and
dealing with them in a common framework is not an easy exercise. The most
striking difference is that the real options perspective takes prices as exogenous to
the decision-maker. In contrast, the second perspective takes a system view, where
prices are necessarily a result of interactions between system elements – as in the
fundamental equilibrium models of Sect. 7.1. A complete synthesis of these two
perspectives is beyond the scope of this textbook. Yet, some elements are put
forward after a concise introduction to the financial perspective on flexibilities, i.e.
real options. We start thereby by modelling prices as stochastic processes (cf.
Sect. 11.1). Then, we introduce the concept of the hourly price forward curve to
link future and spot prices in electricity markets in Sect. 11.2. Section 11.3 uses
these concepts to value simple options, followed by a digression to financial options
and the seminal Black–Scholes model in Sect. 11.4. Section 11.5 discusses the
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merits and limits of the Black–Scholes model for electricity market modelling,
whereas Sect. 11.6 describes an approach to model thermal and hydropower plants
as options in view of valuation. Section 11.7 then applies this approach, and
Sect. 11.8 finally comes back to how to bridge the gap between the asset valuation
and the system perspective.

Key Learning Objectives

After having gone through this chapter, you will be able to

• Describe and apply key stochastic processes that are used to model price
changes in energy and other markets.

• Explain the concept of the hourly price forward curve and how it is used to
price electricity supply contracts.

• Discuss key concepts underlying the valuation of options using methods
from mathematical finance.

• Discuss the concept of real option and apply a simple valuation model for a
thermal power plant.

11.1 Prices as Stochastic Processes

For financial assets like stocks, the price reflects the value attributed to that asset in
the market. This price may change over time. E.g. if a company announces
unexpected losses, the price of its shares on the stock exchange will go down.
Mathematically, the price of an asset may then be described as a stochastic process,
i.e. a sequence of realisations of a stochastic variable. One may wonder: why is the
price considered a stochastic process? This is closely related to the efficient market
hypothesis (see Sect. 7.2.5). If a market is efficient, it uses all available information
at time t (the information set Ωt) to determine the asset price. Any new information
arriving after time t may change the price. But it would not be new information if it
did not come as a surprise, i.e. randomly, from the perspective of time t. Put
differently: with hindsight (ex-post), we may pretend that we knew before, but
ex-ante, we as rational decision-makers will include all available information (even
vague expectations, etc.) in our decisions and valuations.

To describe stochastic processes in general, it is helpful to start with a
straightforward process that may serve as the basis for multiple generalisations,
namely the Wiener process. The Wiener process may be best understood as a kind
of a random walk in continuous time. A random walk consists of a sequence of
steps Dzk that are taken during subsequent time intervals k of length Dt and are
randomly and independently chosen. Additionally, we impose for the mathematical
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description that the steps correspond to stochastic variables e that are normally
distributed with zero mean and standard deviation proportional to

ffiffiffiffiffi
Dt

p
. This leads

to the following mathematical description:

Dzk ¼ e e�Nð0;
ffiffiffiffiffi
Dt

p
Þ: ð11:1Þ

Applying standard rules of calculus for normally distributed random variables, it
can be shown that for any time interval T ¼ K � Dt (i.e. composed of K time steps
Dt), the following relationship holds

ztþ T � zt ¼
XK
k¼1

Dzk �Nð0;
ffiffiffiffiffiffiffiffiffiffiffiffi
K � Dt

p
Þ: ð11:2Þ

That means that for a time interval of arbitrary length T , the change in the
stochastic process variable zk is still normally distributed with mean zero and
standard deviation

ffiffiffiffi
T

p
. The process is hence “self-similar”, independently of the

time granularity considered.
This property may then be generalised to infinitesimal time steps dz, leading to

the formulation:

dz ¼ lim
Dt!0

Dzk: ð11:3Þ

The so defined dz is then the (infinitesimally small) increment of a Wiener process
zðtÞ and using a somewhat loose mathematical notation, we may write
dz�N 0;

ffiffiffiffi
dt

p� �
. Besides being normally distributed, the increments dz are inde-

pendent of each other, again irrespective of the time scale considered. The stochastic
process variable zðtÞ itself is then described as a stochastic integral of the increments

zðtÞ � zð0Þ ¼
Z t

0

dz: ð11:4Þ

One application of this Wiener process in physics is the description of the
random movement of particles in a (non-flowing) gas or liquid. This movement was
first observed by Scottish nineteenth century scientist Robert Brown and is also
known as Brownian motion.

The self-similarity of the Brownian motion becomes apparent in Fig. 11.1, where
one single realisation of the Brownian motion is depicted at different discretisation
levels. The highest discretisation in the top panel includes 2000 time steps of equal
length, whereas the middle panel highlights 100 discrete steps. And the bottom panel
is further zoomed out with just 5 discrete steps over the same overall time period.
Yet, at each discretisation level, the process includes random steps upwards and
downwards of different size. Another property that is also visible is the absence of
any mean-reverting effect. The observed realisation of the random process moves
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away from the starting value of 0. Independently of the level attained, the probability
of going up or down the next step remains unchanged. This property is related
closely to the fact that the resulting time series is “non-stationary”. We will come
back to this point after introducing some generalisations.

A straightforward generalisation of the Wiener process is to introduce a
drift – in physics, the equivalent would be an (average) flow direction – and a
scaling of the stochastic component so that it may be of arbitrary variance. This
leads to the following definition of a generalised Wiener process dx:

dx ¼ a � dtþ b � dz: ð11:5Þ

The (positive or negative) parameter a is called the drift rate – it is an average
rate of change of x over time. The positive parameter b is named variance rate –

although it rather scales the standard deviation (i.e. the square root of the variance)
of the stochastic process x.

The impact of the drift rate becomes obvious in Fig. 11.2. With a positive drift
rate, the stochastic process moves on average upwards – although this does not
preclude that certain increments are negative. As indicated by Eq. (11.5), the
overall change is the sum of the deterministic drift part (first term) and the
stochastic process part (second term) and the sign depends on the sign and mag-
nitude of the stochastic realisation.

Suppose a price process is expected to oscillate around some average value. In
that case, an alternative specification is required for a stochastic process since
neither the Wiener process nor a fortiori its generalisation tend to return to some
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Fig. 11.1 One realisation of a Wiener process observed at different scales of time discretisation
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prespecified mean value. Equation (11.6) specifies a so-called mean-reversion
process, also called Ornstein–Uhlenbeck process:

dx ¼ j � ðl� xÞ � dtþ r � dz: ð11:6Þ

The stochastic second term consists again of a Wiener process multiplied by a
standard deviation parameter r. So the difference lies in the deterministic first term,
which includes the factor l� xð Þ, which is positive when x is smaller than l and
negative in the opposite case. With a positive factor j (called mean-reversion rate),
this induces a tendency for x to return to the mean value l. The higher the
mean-reversion rate j, the faster the return to the equilibrium value l – similar to
the pull-back force of a mechanical spring. Yet again, we have a stochastic com-
ponent superposed on this mean-reversion component, and thus, the resulting
incremental changes may go in both directions as illustrated in Fig. 11.3.

As a last relatively simple stochastic process, we introduce the so-called geo-
metric Brownian motion (or GBM for short). It is notably used in standard finance
models to describe the movement of stock prices SðtÞ. The increments dS of this
stochastic process are described by the following stochastic differential equation:

dS ¼ l � S � dtþ r � S � dz: ð11:7Þ

Besides the use of different symbols both for the stochastic process variable and
the parameters, there are two salient differences of this equation compared to the
one describing the generalised Wiener process (Eq. 11.5), namely the multipliers
“�S” in both the deterministic first term and the stochastic second term. Rewriting
the previous equation slightly, we get the following formulation:
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dS
S

¼ l � dtþ r � dz: ð11:8Þ

This highlights that the relative changes in prices SðtÞ are composed of a mean
rate of change l and stochastic deviations around that mean with standard deviation
r. This is considered appropriate for stock prices because it implies that the
expected return on the currently invested capital is independent of the current stock
price. E.g. with t measured in years and l ¼ 0:07, the expected annual return will
be somewhat above 7% (due to compound interest effects), independently of
whether the current share price is 50 or 500 €. So this may be easily connected to
standard asset pricing models like the seminal capital asset pricing model
(CAPM). Closer mathematical scrutiny also reveals that prices under the geometric
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Brownian motion (GBM) model will always remain positive if the starting price is
positive. This property seems very obvious for stock prices. Yet, it is less for
electricity prices, where technical constraints and market regulations have induced
repeatedly negative prices, particularly in market areas with high proportions of
renewables (cf. Sect. 10.1).

This indicates that a pure transposition of approaches developed in the mathe-
matical finance literature to electricity markets may not be adequate. On the other
hand, one must acknowledge that electricity is the clear exception to the rule – neg-
ative prices are almost unthinkable for storable commodities like oil and gas.1 And
even the GBM model may be considered a reasoned choice for these commodities, as
notably the Hotelling model of price formation for exhaustible resources suggests a
constant return on assets (cf. Sect. 2.3), at least at constant interest rates.

Before proceeding further, four observations are essential:

1. Mathematical finance mainly defines stochastic price processes in continuous
time, as sketched above. This enables an elegant analytical treatment using
stochastic calculus. Alternatively, stochastic processes may be defined in dis-
crete time, as is current practice in econometrics. The mathematical treatment,
especially for valuation purposes, is then in general less elegant. Yet when it
comes to numerical estimation and simulation procedures, a discretisation of
continuous time is required, and computational techniques for discrete problems
have rapidly evolved over the last few decades. Hence, both approaches have
their merits, and it is worth considering in applications which approach is more
convenient.

2. There exist many more general and more complicated stochastic process
specifications than those discussed above. Directions that have been explored by
research notably include:

• Time-varying mean: Especially, when it comes to modelling electricity spot
prices, the time-varying scarcity of electricity should be captured by time-
varying parameters, e.g. a time-varying mean in a mean-reversion process.

• Time-changing volatility: In discrete time, so-called GARCH processes (cf.
Bollerslev 1990) have become very popular to describe the volatility-
clustering observable in stock and other asset prices. Several specifications
like the Heston model (Heston 1993) exist in continuous time, which capture
shifts between periods with weak and strong price changes.

• Increments that are not normally distributed, e.g. jumps. An interesting,
general model class in that field are so-called Lévy processes (Bertoin 1996),
which build on independent and identical increments yet drop the normality

1 There was an exemption during the beginning of the Corona crisis in April 2020, as oil demand
suddenly sharply decreased resulting in negative prices for the US standard oil variety WTI (West
Texas Intermediate). In fact, the strong demand shock coincided with a lack of spare physical
storage at the delivery point – and this combination drove prices below zero given that WTI
futures are settled physically, contrarily to the common practice mentioned in Sect. 8.6.
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assumptions. Any Lévy process may be decomposed in a Brownian motion,
a drift term and a pure jump process.

• Multi-factor processes: Prices may be driven by more than one influencing
factor, e.g. electricity prices by fuel prices and scarcity of generation
capacities. Correspondingly, different stochastic processes may also be nee-
ded to describe actual price characteristics, e.g. different time constants for
mean reversion or a combination of mean-reverting and non-stationary
components (cf. below). If some of these price components are not directly
observable, we are in the presence of so-called “latent variables” which pose
additional challenges in identification and estimation.

3. A fundamental property of stochastic processes is stationarity respectively its
absence. This is closely linked to the stationarity of time series in econometrics.
A stochastic process xðtÞ is (strictly) stationary, when the distribution of
x t1 þ sð Þ; x t2 þ sð Þ. . .x tk þ sð Þ½ � is independent of s, i.e. notably, the mean and
the variance of x tð Þ are independent of t. This is the case for the mean-reverting
process described above but neither for the (generalised) Wiener process nor the
geometric Brownian motion. An important implication of stationarity is that the
price uncertainty remains bounded when the time step length is extended (cf.
Fig. 11.4). That means that even for several years ahead, prices under a
mean-reverting process only have a limited range of expected values. Whether
this is an appropriate property has to be checked in each application.

4. There are multiple links between stochastic price models and neighbouring
disciplines like econometrics and control theory worth exploring in more
advanced modelling. As with finance models, one should be thoughtful and
precise when adapting approaches, e.g. from control theory to pricing issues.
Societal and economic systems are made up by persons who make purposeful,
individual decisions. And these may hence be described by relationships similar
to those governing technical systems only under specific assumptions.

11.2 Hourly Price Forward Curves to Link Future and Spot
Prices

As discussed in Sect. 8.5, future contracts are usually written at time t for delivery
at time T . Yet for electricity futures, delivery is generally not specified for one
single point in time but rather over a time interval ~T ¼ T1T2½ �, e.g. a month or a
year. The question then arises how the price ~F t; ~T

� �
for the future contract over the

interval ~T links to the future prices F t; Tð Þ at different points in time T with T 2 ~T .
Theoretically, we may argue that such a future market is not complete, meaning that
not every idiosyncratic risk in each hour of the delivery period may be insured (or
hedged) through a specific trading product. Practically, this goes along with the fact
that there is not one unique rule to derive the single hour prices F t; Tð Þ from the
observed prices ~F t; ~T

� �
. Practitioners have, therefore, designed various approaches
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to overcome the gap and to construct what is known as the hourly price forward
curve (HPFC). The two most important methods are those based on

(a) econometric procedures or
(b) the typical day approach.

Both methods take observed past spot prices as the basis for constructing a time
profile of electricity prices. This profile is then adjusted to the current level of the
future prices. In such a way, arbitrage-free hourly expected prices are obtained
which may then be used to value both delivery contracts to final customers and
generation profiles. Note that the obtained prices are future prices for short (hourly)
periods and need to be adjusted by the adequate risk premium to obtain expected
spot prices (cf. Sect. 8.5.4).

We subsequently focus on the typical day method, which may be summarised in
the following five steps:

1. Define the typical time segments s 2 S to be used for the analysis.
Example: each hour of the day, differentiated by day of the week, constitutes a
separate time segment. Hence, there are a total of 168 (24 � 7) different time
segments.

2. Select the historical observation period ~TH to be used for the establishment of
the HPFC.
Example: the three preceding calendar years.

3. Define the mapping function mðtÞ linking historical observations ~TH and
future time steps ~T to the typical time segments.

m :
~TH [ ~T 7! S

s ! s
ð11:9Þ

Example: assign to each time step the time segment with the corresponding
weekday and the corresponding time of day.

4. Compute the average historical prices ps for each time segment using the
formula:

ps ¼ 1P
s2~TH 1mðsÞ¼s

X
s2~TH

1mðsÞ¼s � ps: ð11:10Þ

The indicator function 1m sð Þ¼s is thereby equal to one if and only if the mapping
function m sð Þ maps the time step s to the time segment s, otherwise it is zero.
Example: compute the average price in hour 8 on Mondays over the last three
years
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5. Compute the average price pH ~T
� �

for the considered future period ~T based
on historical prices, taking into account the occurrence frequency of the different
time segment in the period ~T:

pHð~TÞ ¼ 1

cardð~TÞ
X
s

X
s2~T

1mðsÞ¼s

 !
� ps: ð11:11Þ

Example: determine the average price for next year based on the frequency of
the days of the week and hours of the day during next year and the previously
computed prices for the time segments.

6. Based on the price pH ~T
� �

and the current future price ~F t; ~T
� �

, the cali-
bration factor for future hourly prices g t; ~T

� �
is determined as follows:

gðt; ~TÞ ¼
~Fðt; ~TÞ
pHð~TÞ

: ð11:12Þ

Example: if the current future price is 30 €/MWh and the average price based on
historical values is 25 €/MWh, the calibration factor is 1.2.

7. The calibration factor g t; ~T
� �

is used together with the mapping function to
determine the hourly price F t;Tð Þ for each hour in the future from the his-
torical average price for the corresponding time segment:

Fðt; TÞ ¼ gðt; ~TÞ �
X
s

1mðtÞ¼s � ps ð11:13Þ

Example: with the factor computed previously, the future price for hour 8 on
Mondays would be 1.2 times higher than the observed historical prices for this
hour.

Note that a more detailed application example for this method is provided in
Sect. 11.7. The adequacy of this method mainly hinges on two prerequisites:

• the appropriate selection of typical time segments and
• the absence of structural breaks between historical price structures and the

expected future price structures.2

The first prerequisite implies a good balance between a sufficient distinction of
different time segments and a sufficient number of observations per time segments
to avoid substantial impacts from single outliers. Typically, one might choose every

2 Yet all statistical and econometric methods rely in one way or another on the assumption of the
absence of structural breaks.
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weekday in each month as a separate typical day. But then, the question arises how
public holidays should be treated: Are the Christmas holidays or Easter or regional
holidays like All Saints to be treated as one single day type, or should there be a
different day type for each of these holidays?

The second prerequisite leads to a preference for short historical periods, but
again this has to be traded off against the limited number of observations in short
periods.

A more fundamental inconvenience of this approach is that it only provides
estimates of the expected hourly future prices but not the possible variability around
that mean value. If this is searched for, the HPFC has to be complemented by a
stochastic process describing the variations around that mean. This issue will be
addressed in the following subsection.

11.3 Valuing Simple Options on a Stochastic Spot Price

Given the preceding discussion, we may now wonder what the value of a flexible
generation (or demand side) option is considering future prices. To answer this
question, we have to combine the elements outlined in the previous two subsec-
tions. Yet, a first terminological disambiguation is necessary: there are (at least) two
meanings of the term “future prices” that we have to distinguish. The first meaning
is “prices in the future”, the second “prices of future contracts”. To be more precise:
when assessing the value of physical flexibility options in the electricity market, the
key question is about “possible spot prices in the future” rather than on “current
prices of future contracts”. The focus is on spot prices since the physical options are
to be used in the actual operation of the system – and spot prices (should) reflect
the value of actual operations (cf. Sect. 7.2.3.2). The loose qualification of “pos-
sible” spot prices emphasises that the value of these physical flexibility options is
related to the uncertainty surrounding operations and prices in the future.

Having this in mind, a standard recipe for valuing simple flexibility options may
consist of five steps:

1. Define the flexibility option under study.
In the simplest case, the flexibility option is fully characterised by its variable
cost cvar in €/MWh at which it supplies additional electricity (or reduces
demand) and its capacity K describing the achievable output rate in MW.
Taking into account operational constraints or energy volume constraints
(storage-type flexibilities) makes the valuation exercise more demanding (cf.
below).

2. Determine the expected spot price(s) for the valuation period.
Here, the method for constructing an HPFC described in Sect. 11.2 may be used.
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3. Describe the distribution of the spot price(s) around its expected value.
Here, stochastic price processes as discussed in Sect. 11.1 may be used. It is then
essential to incorporate the time-varying mean as specified in step 2 into the
formulation of the stochastic processes

4. Determine the expected payoffs of the flexibility option at exercise time
under the spot price distribution.
This requires a set of valuation formulas that are discussed subsequently for the
case of a simple flexibility option.

5. Obtain the current value of the flexibility option through discounting and
aggregation.
The present value of the flexibility option is obtained by discounting the value at
the time of delivery (so-called exercise time in finance slang). Moreover, the
value may be aggregated over the relevant valuation period if it consists of more
than one time step (hour).

Note that in step 2, the future prices obtained through the HPFC need in prin-
ciple to be adjusted by the corresponding market risk premium to obtain expected
spot prices (cf. Sect. 7.2.5.3). Conversely, the discount rate used in step 5 should in
principle include not only the risk-free rate but also the risk premium. Yet practi-
tioners tend to neglect the risk premium given the difficulty to obtain reliable
estimates for it. From a theoretical perspective, one may argue that the effects in
steps 2 and 5 at least partly cancel out each other, so the assumption of a zero risk
premium is generally defendable.

Having clarified the preliminaries and prerequisites, we now turn towards the
valuation of a simple flexibility option characterised by its variable cost cvar and
capacity K (step 4). At given spot price ST , the option will be used at full capacity if
ST � cvar; and it will not be used (by a profit-maximising operator) if ST\cVar.
Under uncertain spot prices, the expected payoff of the option at exercise time is
then given by the relationship:

VT jtðTÞ ¼ K �
Zþ1

�1
max x� cvar; 0ð ÞfST jtðxÞdx

¼ K �
Zþ1

cVar

x� cVarð ÞfST jtðxÞdx:
ð11:14Þ

The notation VT jt Tð Þ emphasises that the option is exercised at time T (function
argument T), and the value of the payoffs is also considered at time T (subscript T),
yet based on the information available at time t (subscript jt). Note that this value is
not dependent on the actual price process used for ST , but only on the probability
distribution for the prices at exercise time, here characterised by the probability
density function f STjt and the corresponding cumulative distribution function FST jt .
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Explicit results for the option value may inter alia be obtained, if prices are

normally distributed, i.e. ST jt �N lT jt; rT jt
� �

: This will notably be the case if prices

result from a generalised Wiener process as given in Eq. (11.5) or of a
mean-reversion price process as described in Eq. (11.6). Then, we obtain the fol-
lowing formula for the value:

VT jtðTÞ ¼ K lT jt � cvar
� �

1� FST jt c
varð Þ� �þ rT jt2fST jt c

varð Þ
� �

¼ K � rT jt � ðdUðdÞþ/ðdÞÞ
ð11:15Þ

With d ¼ lTjt�cvar

rT jt
.

Thereby U is the cumulative distribution function and / the probability density
function associated with the standard normal distribution. One may note that this
result corresponds to the one obtained in finance for option values under the
so-called Bachelier model (e.g. Schachermayer and Teichmann 2008). Furthermore,
this total option value exceeds always the so-called intrinsic value, which is
defined as

V Intr
T jt ðTÞ ¼ K �max lT jt � cvar; 0

� �
: ð11:16Þ

This would be the option value if it were executed at the current expected price
lT jt. The difference between the total option value according to Eq. (11.15) and the
intrinsic value is then labelled extrinsic value or time value – time value because it
disappears as the exercise of the option gets closer, i.e. the uncertainty about future
prices is reduced. Similar considerations have been established in finance for the
Black–Scholes model that we discuss in the following section.

A small example may illustrate the point right here: Consider a flexibility option
with variable costs cvar= 50 €/MWh, e.g. a combined cycle plant. With an expected
price in the future lT jt = 60 €/MWh, the intrinsic value of the option is 10 €/MWh
(cf. Eq. 11.16). If we consider a period T in the distant future, the uncertainty
regarding the future price is large, e.g. the standard deviation reaches rT jt = 20 €/
MWh. Using Eq. (11.15), we then obtain the total value of the option as
VT jt Tð Þ = 13.96 €/MWh. This is almost 40% higher than the intrinsic value, and
the extrinsic (or time) value equals 3.96 €/MWh. This value vanishes gradually if
the price level remains constant while the price uncertainty decreases as the exercise
time T approaches.
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11.4 Analytical Approaches for Option Valuation: The
Black–Scholes Model

The previously described valuation approach has the advantage that it combines
rather standard methods and analytical tools of medium complexity. However, both
practitioners and scientists in the field have in the past been more turned towards
another option valuation approach, the famous Black–Scholes model (cf. Black and
Scholes 1973, Merton 1973), respectively, its variant considering options on futures
published by Black (1976).

The Black–Scholes model was originally developed for options on stocks and
correspondingly, it does not consider normally distributed prices but a geometric
Brownian motion as underlying stochastic price process (cf. Sect. 11.1, Eq. 11.7).
Furthermore, its derivation is placed in the context of efficient, arbitrage-free
markets and dynamic hedging and replication strategies (Schachermayer and
Teichmann 2008). The objective of the model is to determine a “fair price” for
so-called European options on stocks or similar financial papers.3 There are two
types of European options (cf. Sect. 8.6):

Call options provide the holder the right (but not the obligation) to buy the
underlying (the stock) at some point of time T in the future (called exercise or strike
time) at a predefined price X, the so-called exercise or strike price.

Put options conversely provide the holder the right (but not the obligation) to
sell the underlying at exercise time T in the future at the predefined price X.

It may be noted that the simple flexibility option discussed in Sect. 11.3 (e.g. a
controllable power plant) with specified variable costs cvar is a real option analogy
to a call option if all technical operation restrictions are disregarded. The (much less
common) equivalent to a put option would be a pure flexible consumer willing to
consume additional electricity below a specific price threshold – one may think of
an electrolyser producing pure hydrogen and selling it at a given market price. But
one has to be aware that electricity spot prices are usually not adequately modelled
based on a geometric Brownian motion (cf. Sect. 11.1). Therefore, the Black–
Scholes analysis is not directly transposable to flexibility options in the electricity
system. Nevertheless, it is worthwhile to discuss the principles of financial option
valuation based on the seminal Black–Scholes analysis.

This analysis focusses on the above-mentioned fair price, which is a price upon
which sellers and buyers may agree. To be acceptable for both sides, such a price
should be derived solely from objective market information and not depend on
individual subjective preferences. By providing such a fair price, the Black–Scholes
model has paved the way for a tremendous increase in financial derivatives trading

3 A broad variety of options is traded on financial markets. The most standard options are labelled
European and American options. European options may only be exercised at the exercise date,
whereas American options may be exercised any time up to the exercise date. So for American
options “early exercise”, i.e. a use before the agreed exercise date is possible whereas it is not for
European options. Real options involve a physical activity and hence obviously may not exercised
in advance—they correspond to European options, or often rather to a sequence of European
options (cf. Sect. 11.6).
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in the four decades after its publication – until the global financial crisis in 2008 led
to a deep questioning of many valuation practices. A major consequence for cor-
porate and regulatory risk management concerning this and other similar models
has been to take “model risk” seriously – and model risk arises notably from
deviations between model assumptions and the real world.

This being said, the assumptions underlying the Black–Scholes model have to be
scrutinised critically. On the other hand, the mathematical elegance and application
simplicity of the Black–Scholes formula strongly hinge on these assumptions,
which may be summarised as follows (cf. Hull 2018):

1. The price of the underlying asset follows a geometric Brownian motion.
2. Short selling of assets is possible, and there are no limitations to the use of

corresponding revenues.
3. Transaction costs and taxes are negligible, and shares are infinitely divisible.
4. No dividend payment on the stock occurs [extension with dividends in Black

(1976)].
5. There are no risk-free arbitrage opportunities.
6. Trading is done continuously.
7. The risk-free interest rate is constant and identical for all expiry dates.

Extensions of the Black–Scholes model aim to deal with less simplifying
assumptions, yet we focus subsequently on the original model since it captures key
features of option pricing. A complete mathematical treatment of the Black–Scholes
model is out of scope for this book. We limit ourselves to sketching the key elements
of the reasoning [for a more detailed but still accessible treatment cf. Hull (2018)].
The derivation of the valuation formula relies mainly on the three following elements:

1. Construction of a risk-free portfolio consisting of the option and the according
underlying4 in an appropriate ratio.

2. No-arbitrage argument: the risk-free portfolio will offer the same return rate as
a risk-free bond.

3. Risk-neutral evaluation: the value of options on stocks is independent of the
risk appetite of investors. Options can, therefore, be evaluated under the sim-
plifying assumption of risk neutrality.

Considering the value VðS; tÞ of the option as a function of the price of the
underlying stock S and time t, the two first elements allow to derive the following
stochastic partial differential equation, also known as the Black–Scholes–Merton
differential equation:

@V

@t
þ rS

@V

@S
þ 1

2
r2S2

@2V

@S2
¼ rV : ð11:17Þ

4 The term underlying is used in finance to designate the asset, which a derivative is based on, e.g.
the shares of a particular company, cf. also Sect. 8.2.
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A first important point to note on this equation is that it describes the changes in
value V for all financial products5 with the underlying S (e.g. also for forwards or
complex options).6 The differential equation has multiple solutions. These are
obtained by adding specific boundary conditions to the equation. We will come
back to that point later.

To provide some intuition, we take a closer look at the terms of the differential
equation: the right-hand side describes the value change corresponding to interest
payments based on the risk-free interest rate r: For a risk-free derivative, i.e. when

both the first derivative @V
@S and the second derivative @2V

@S2
for S are zero, the interest

payment corresponds to the value change over time @V
@t , as is to be expected in an

arbitrage-free world. Another particular case arises for @V
@S ¼ 1 and @2V

@S2
¼ 0. An

obvious solution satisfying these boundary conditions is V � S, i.e. the considered
product is equal to the underlying (or at least always has the same value). Then,
obviously @V

@t ¼ 0, i.e. the (partial) derivative with respect to time at given asset
price S is zero. While @V

@S describes the direct dependency of the product value on the
value of the underlying, the third term on the left side is less intuitive: its magnitude
is determined by the variance r2 of the stochastic process, i.e. it is related to the
stochasticity of prices. This term is labelled diffusion term. An intuitive under-
standing may be derived from considering the expected value change for a product

with a positive second derivative @2V
@S2

[ 0 in the presence of a discrete uncertainty
for the underlying S (cf. Fig. 11.5).7 If an up-movement þDS and a
down-movement �DS of similar magnitude may occur with similar probability, the
expected change in S is zero. Given the positive curvature of the value function, the
expected change in V will be strictly positive, other things being equal.

With positive S and positive @V
@S (as in Fig. 11.5) and typical magnitudes for these

terms, a solution to the differential equation will then require @V
@t \0, i.e. a product

with positive second derivative with respect to S will lose value over time. This
holds, other things being equal, notably for a given S. This value decrease corre-
sponds to the loss in time value for an option. Explained differently: in the setting of
Fig. 11.5, the likely up and down movements until expiry 	DS decrease in size as
the expiry date approaches. Then also the difference between the ex-ante expected

value V S0�DS;tð ÞþV S0 þDS;tð Þð Þ
2 and the realised value V S; tð Þ shrinks – this is (a dis-

cretised version of) the loss in time value.
At the boundaries of the definition domain for the value function, boundary

conditions have to be added, and these boundaries determine the specific solutions.

5 These products are frequently subsumed under the term “derivatives” (cf. Chap. 8). Yet we
avoid this nomenclature in the following to avoid confusion with the mathematical concept of
derivatives of a function.
6 Note that there are no indices T jt or likewise to the value function V as in the previous
subsection. In fact, we consider here always the value at time t evaluated with information at the
same time t. Therefore, we drop these unnecessary, identical indices.
7 Mathematically, it is a consequence of Ito’s lemma, which is a fundamental theorem in stochastic
calculus.
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For the most common European options, the key boundary conditions are given
by the payoffs at exercise time.

• for a call option (purchase option), this payoff may be written as follows:

VCallðS; TÞ ¼ maxðS� X; 0Þ: ð11:18Þ

This condition summarises the definition of a European call option: the call
option will be exercised at maturity T , if the price of the underlying S exceeds
the strike price X: Then, the payoff will be equal to the positive difference S� X.
At prices below the strike price, the option is not exercised and no payoff occurs.
Additionally, the following boundary conditions are specified: VCallð0; tÞ ¼ 0
and lim

S!þ1
VCall S; tð Þ � S
� � ¼ 0, i.e. the call option value is bounded by zero at

low prices and by S at high prices.
• for a put option (sell option), the payoff at exercise time is

VPutðS; TÞ ¼ maxðX � S; 0Þ: ð11:19Þ

Again, this condition describes mathematically the payoff of a European put
option at maturity: it will provide a positive payoff if and only if the strike price
exceeds the spot price at maturity, i.e. when it is more profitable to sell the
underlying at the strike price to the option writer (seller of the option) than to the
market at the current spot price. The payoff is in that case equal to the difference
X � S.

Fig. 11.5 Illustration of the diffusion term in the Black–Scholes–Merton differential equation
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Further boundary conditions are again imposed—derived from limit case con-
siderations: VPutð0; tÞ ¼ X � e�r T�tð Þ and lim

S!þ1
VPut S; tð Þ ¼ 0. Note that the lim-

iting value for an underlying price of zero considers the discount of the terminal
payoff to the valuation time.

With these boundary conditions and under the assumptions above, Black and
Scholes derive the following value formulas for European put and call options:

VCallðS; tÞ ¼ S � U d1ð Þ � X � e�rðT�tÞU d2ð Þ ð11:20Þ

and

VPutðS; tÞ ¼ X � e�rðT�tÞU �d2ð Þ � S � U �d1ð Þ: ð11:21Þ

Thereby, the cumulative distribution function U of the standard normal distri-
bution and the parameters given in the following formula are used.

d1 ¼
ln S

X

� �þ rþ r2
2

� �
ðT � tÞ

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

d2 ¼
ln S

X

� �þ r � r2
2

� �
ðT � tÞ

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p ¼ d1 � r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
ð11:22Þ

These formulas are best understood by considering various limiting cases, as
summarised in Table 11.1. The first example given there is an option approaching
expiry. As price uncertainty gets smaller and the boundary of the definition set is
reached, the value approaches the final payoff for the option. Similarly, the reader is
invited to consider the other cases listed there and to make use of Eqs. (11.20–
11.22) to validate the results, cf. also Exercise 11.3.

Table 11.1 Limiting cases for option values according to the Black–Scholes formula

Limiting case Implication Value limit

Just before delivery of the option

t ! T S > X d1 ! +/, d2 ! +/ VCall ! S(t) − X, VPut ! 0
S < X d1 ! −/, d2 ! –/ VCall ! 0, VPut ! X − S(t)

Current price far above exercise price

S 
 X d1 ! +/, d2 ! +/ VCall ! S(t) − Xe−r(T−t), VPut ! 0
Current price far below exercise price

S � X d1 ! −/, d2 ! −/ VCall ! 0, VPut ! Xe−r(T−t) − S(t)
Almost risk-free option

r ! 0 S > Xe−r(T−t) d1 ! +/, d2 ! +/ VCall ! S(t) − Xe−r(T−t), VPut ! 0
S < Xe−r(T−t) d1 ! −/, d2 ! −/ VCall ! 0, VPut ! Xe−r(T−t) − S(t)
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11.5 Merits and Limits of the Black–Scholes Model
for Electricity Market Analyses

The Black–Scholes model is generally considered as the reference model for
valuing options in financial markets. Yet, there are multiple off-springs and alter-
natives to that standard model, too numerous to name. However, two are worth
mentioning. Black (1976) discusses options on futures and includes a discussion of
dividend-paying stocks whereas Margrabe (1978) generalises the valuation formula
to options with two underlyings. The former is interesting for electricity markets
(and more generally energy markets) since options therein are usually not written
on the physical underlying but on futures. The latter provides a conceptual frame
that allows dealing with thermal power plants as real options. We will come back to
that in the next section.

In general, option valuation approaches derived from finance have found the
following applications in the electricity industry and more generally the energy
sector:

1. Valuation of financial options and similar products traded on the energy
markets.

2. Valuation of optionalities embedded in contracts or complex products.
3. Support for hedging decisions for real options such as power plants.
4. Valuation of real options in medium to long-term perspective.

The first application field is rather straightforward yet it suffers in the case of
electricity from a lack of liquidly traded options in most market places. For oil
markets, this is, however, a typical usage of option price models. The second field
encompasses a broad range of concrete applications – including, e.g. the evaluation
of flexibility clauses in gas supply contracts. The third and fourth applications are
most directly linked to the physical and system perspective on electricity markets:
the applied model’s assumptions must fit the actual market conditions to obtain
reliable results. For the use of the Black–Scholes or similar formulas, two aspects
are thereby critical:

• Given the non-storability of electricity, each spot delivery period corresponds to
a separate product. For this product, price distribution parameters have to be
assessed, and the corresponding real option is to be evaluated.

• Furthermore, it is questionable whether a geometric Brownian motion may
adequately describe the price process for electricity spot prices. Notably, neg-
ative prices and prices of zero are not compatible with the assumption of a
geometric Brownian motion process. Therefore, any application of Black–
Scholes, Black (1976) or Margrabe formulas in the context of hedging or val-
uation of real options should be aware of the necessarily approximate nature of
the results. In the following, we, therefore, follow a somewhat different route.
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11.6 Thermal and Hydropower Plants as Real Options

From what we have discussed in the previous sections, five key elements may be
distilled when it comes to conceptualising power plants as real options:

1. Power plants do not correspond to a single option on one underlying. Rather
they correspond to a series of options – also called a “strip of options”: a power
plant provides production options for every delivery period of the spot market.
A similar reasoning holds for demand-side flexibilities.

2. Technical constraints such as minimum operation times or start-up costs limit
the usage of these options. They also prevent using simple analytical option
formulas such as the ones discussed in Sects. 11.3 and 11.4.

3. If a power plant burns commercially traded fuels such as hard coal or natural
gas, then it should be considered as an option dependent on two underlyings.
Both the output electricity price and the input fuel price are time-varying and
may be described by stochastic processes. If additionally emission certificates
are to be used, then the option depends on three underlyings.8

4. Storages are a type of real option that does not have a common equivalent in
financial options. They are usually assimilated to so-called swing options.
Swing options describe the right to take more or less of a specified commodity
over a time period.9

5. To value all these real options, an adequate modelling of the price process is
vital. Assessing the value of flexibility options in the future electricity systems is
particularly challenging since this requires an anticipation of the future prices,
including their stochasticity.

These are key takeaways for anyone trying to link the challenging issue of
valuing generation flexibilities in electricity systems to the broad literature stream of
financial option valuation. By and large they are also applicable when it comes to
valuing demand-side flexibilities. A few additional remarks may, however, be
useful:

First, one should be aware that our treatment so far has focussed on analytical
approaches to financial option valuation. Yet research in finance has also developed
a broad range of numerical methods, cf. Hull (2018) for an overview. The most
important classes are Monte Carlo simulations, (binomial) tree approaches, finite
difference methods and the so-called least-squares Monte Carlo approach, cf.
Longstaff and Schwartz (2001). Notably, the latter has emerged as a very flexible
and computationally feasible method for evaluating path-dependent options such as
storages or thermal power plants with operation restrictions.

8 Pushing even further, a CHP plant with heat as second output besides electricity is dependent on
four underlyings.
9 Swing options have been introduced in the finance literature mostly to describe the characteristics
of common gas contracts, which include minimum and maximum delivery quantities, cf. e.g.
Jaillet et al. (2004).
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Especially for storage valuation, numerical methods are crucial since there are no
analytical valuation formulas readily available neither for swing options nor in
general for storage plants. For thermal power plants, it may be quite useful to
disregard operation restrictions and use analytical formula to obtain an upper bound
to the flexibility value.

When the dependency of thermal power plant valuation on input factor prices is
to be taken into account, then considering the spread between input factor costs and
output prices is advantageous. For the Black–Scholes model, a corresponding
generalisation has been developed by Margrabe (1978). He develops an analytical
formula for an option dependent on the spread between two underlyings. Thereby,
the option value is driven by the volatility of the price ratio of the two underlyings.
There is then also not a specific strike price. Rather the exercise of the option
depends on the ratio of the two commodity prices. The corresponding spread is
called “spark spread” for gas-fired power plants, which corresponds to the gross
margin at given commodity prices. For coal-fired power plants, the term “dark
spread” is used. For an application to European power plants, an extension is
required to include besides fuel also CO2 certificates as input factor with separate
price risks. This is then a “clean spark spread”, respectively, a “clean dark spread”.
Yet such models are still based on several questionable assumptions, and therefore,
we subsequently rather pursue a different approach – namely the application of the
previously developed simple models to an actual flexibility valuation for a power
plant.

11.7 Application: HPFC and Parsimonious Real Option
Valuation for Thermal Power Plants

To assess the future value for a power plant, we have to first link the available
market quotes for derivative products (in occurrence for quarter 3 of 2016) to
hourly expected spot prices. This is done by establishing first an hourly price
forward curve (cf. Sect. 11.2). Then, the flexibility value of an (idealised) CCGT
plant for the considered period, here from July to September 2016, is determined
based on historical data, in occurrence those available by the end of 2015. Thereby,
the simple valuation approach described in Sect. 11.3 is used. The data used for the
study as well as the corresponding spreadsheet HPFC_Optvalue.xlsx contained in
the electronic appendix to this chapter.

For the construction of the HPFC, we apply the typical day method, with one
typical day for each weekday. Yet as consumption and price patterns on Tuesdays
to Thursdays are rather similar, they are aggregated to one typical day. For reasons
of simplicity, we use only 2015 data to construct the HPFC. Following the pro-
cedure described in Sect. 11.2 above, we get for the corresponding steps (cf. also
Table 11.2):
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1. Definition of the typical time segments:

S ¼ ‘Mon h1’; ‘Mon h2’; . . .; ‘Mon h24’; ‘Tue�Thu h1’;f
‘Tue�Thu h2’; . . .; ‘Fri h1’; . . .; ‘Sun h24’g

Hence, there are 5 typical days and 120 different typical time segments.

2. Selection of the historical observation period ~TH: As proposed above, we
only use 2015 data as historical observations, i.e., limiting ourselves to the
summer months, we get

~TH ¼ ‘Jul 1 2015; h1’; ‘Jul 1 2015; h2’; . . .; ‘Sep 30 2015; h24’f g

3. Definition of the mapping function s ¼ mðtÞ: we map each observation in the
historical period ~TH onto the typical time segment with the corresponding
weekday (respectively, the weekday aggregation Tue–Thu) and the same hour.
The same is done for the future time period ~T .
There is no concise mathematical description of the mapping function, yet it
may be easily implemented in software code (cf. electronic supplement).

Table 11.2 Key elements for an HPFC for Q3 2016 based on price data of 2015

Row
no.

Typical days s Historical values
Average prices

ps

Future frequencies in Q3
2016

Base Peak Number of days
(1) Monday 35.28 40.10 13

(2) Tuesday–Thursday 35.74 39.07 39

(3) Friday 35.92 38.31 14

(4) Saturday 28.83 13

(5) Sunday 22.33 13

Future values for Q3 2016
Base Peak Off-peak

(6) Number of hours 2208 792 1416

(7) Weighted historical average
pH ~T
� � 32.83 39.11 29.32

(8) Futures ~F t; ~T
� �

on Dec 30, 2015
27.94 33.80 24.69 (computed)

(9) Calibration factor g t; ~T
� �

0.851 0.863 0.842
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4. Computation of the average historical prices ps for each time segment:
The average price in hour 8 on Mondays over Q3 2015 is found to be 44.86 €/
MWh. Prices averaged over base and peak periods and typical days are also
indicated in Table 11.2, rows labelled (1) to (5).

5. Computation of the average price pH ~T
� �

for the considered future period ~T
based on historical prices:
The results are given in row (7) of Table 11.2, using the frequencies indicated in
rows (1)–(5) in the right-hand column. Besides the average base and peak price,
also an off-peak price is computed.

6. Determination of the calibration factor g t; ~T
� �

:
Based on the prices pH ~T

� �
(row (7)) and the current future price ~F t; ~T

� �
(row

(8)), the calibration factors g t; ~T
� �

are determined as indicated in row (9) of
Table 11.2.

7. Use of the calibration factors g t; ~T
� �

: to have a unique calibration factor for
each time segment, we use the calibration factor obtained for peak hours for
hours h9 to h20 on Mondays to Fridays. For all other time segments, the
off-peak calibration factor is used. The base calibration factor is hence only
given for information purposes.

The resulting prices for the typical time segments are shown graphically in
Fig. 11.6. It is thereby evident that prices on Saturdays and especially Sundays are
on average lower than during the week. In addition, the early Monday morning
hours are more similar to weekend hours than to other weekdays.

With the hourly price forward curve, we may compute the intrinsic value for a
thermal power plant. To determine the total option value along the approach
developed in Sect. 11.3, including the time value, we have to estimate the standard
deviation for the spot prices. A straightforward way to do so is to use the same data
as for the estimation of the price forward curve.

We, therefore, compute for each hour of each typical day the standard deviation
of the prices around the observed mean. They are then calibrated using the same
factors as for the HPFC. The resulting standard deviations and expected prices
(HPFC) are plotted for the typical day Tuesday–Thursday in Fig. 11.7.

In the same graph, we show the results from applying the option valuation
formula derived in Sect. 11.3, namely Eq. (11.15). It becomes evident that the
option value of the stylized power plant is close to zero during night hours when
expected prices are far below variable cost and that the value increases to about
10 €/MWh during morning and evening hours. The option is said to be “deep in the
money”, i.e. it is very unlikely that it is not used, and the value is close to
the (positive) difference between expected price and variable cost, which is the
intrinsic value. Comparing the option value for hours 9 and 20, the impact of
time-varying volatility becomes obvious. Although the expected price (and corre-
spondingly the intrinsic value) is slightly higher in hour 20, the option value is

11.7 Application: HPFC and Parsimonious Real Option Valuation … 379



higher in hour 9 due to the higher price uncertainty. The highest difference between
the total option value and the intrinsic value, i.e. the highest extrinsic value, occurs
when the expected price is close to the variable cost, i.e. in hours 13–17.

The obtained values may be compared to the actual realisations of spot prices
and option values during the period Q3 2016. For single hours, stochastic devia-
tions may strongly influence the result. Therefore, we focus on the average values
over the 2216 h of the period under question. The results are summarised in
Table 11.3. It turns out that the ex-ante option value (left column) exceeds the
realised option value if the variable cost as of the end of 2015 (30.29 €/MWh) is
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used (middle column), cf. Fig. 11.7. In that comparison, the realised option value is
lower by roughly one third. On the other hand, when taking the actual gas and CO2

spot prices as a basis for the variable cost, the realised value (right column) exceeds
the option value by roughly 50%. Hence, the model provides a first rough
approximation, yet it needs to be enhanced to cope with fuel and CO2 prices
uncertainties for more accurate results.

11.8 Challenge: From Asset to System Perspective

We now come back to the question that served as a starting point of our discussion
of flexibilities in the electricity system: What is the value of flexible assets in a
future sustainable electricity system? One key issue has to be tackled: the endo-
geneity of market prices in bottom-up electricity system models. Put differently: the
methods described in the previous sections, be it the Black–Scholes model or the
Bachelier model, treat prices as exogenous (stochastic) input factors. From a system
perspective, prices result from the interplay between supply and demand, including
their respective rigidities and flexibilities. Therefore, prices and quantities are
determined simultaneously in a stochastic equilibrium. And whenever some kind of
storage is part of the flexibilities under consideration, this stochastic equilibrium
will be one interlinking multiple periods in the year. Solving such an equilibrium in
a detailed system modelling approach is challenging.

If we want to evaluate a single flexibility in the context of a prespecified elec-
tricity system, there is yet a possible way out: we can start with a stochastic process
describing the fluctuations in residual load and then make use of a simple
supply-stack model as described in Sect. 7.1.1 to transform the demand fluctuations
into price variations.10 Then, the flexibility may be valued against these prices using
standard numerical approaches for option valuation, notably the least-squares
Monte Carlo approach (cf. Longstaff and Schwartz 2001; Nadarajah et al. 2017,
see also Sect. 8.6). Yet one must be aware that this approach breaks down as soon
as larger quantities of this flexibility are introduced in the market – because then,
the flexibility will start to influence prices in the market. And also the valuation of
one flexibility (e.g. batteries) in the presence of another (e.g. pumped hydro storage)
is only possible if the latter’s operation and pricing strategy are approximated.

Table 11.3 Backtesting of option values for a gas plant in summer (Q3) 2016

Ex-ante value
end 2015

Ex-post value at constant
variable cost

Ex-post value at actual
variable cost

3.08 €/MW/h 2.09 €/MW/h 4.70 €/MW/h

10 The so-called ParFuM-model used by Kallabis et al. (2016) and Beran et al. (2019) is a
somewhat more sophisticated version of a merit-order type model that may be applied in that
context, cf. Pape (2018) for an application with more long-term focus.
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Even more challenging would such an undertaking become if investments into
the technologies are to be treated endogenously. In the context of fuel price
uncertainty, a corresponding approach has been proposed in Weber (2005), yet this
does not cover the full challenge of uncertain renewable power infeed. Hence,
important research challenges are still ahead in that field.

11.9 Further Reading

Hull, J. (2021). Options, Futures and other Derivatives. 11th edition. Harlow
et al.: Pearson.

This seminal textbook discusses the derivative markets and the various
methods to value options on financial markets. It provides an introduction to the
world of stochastic calculus applied in finance. Beyond that, it also includes a
small chapter on energy and other commodity derivatives.

Burger, M., Schindlmayr, G., & Graeber, B. (2014). Managing Energy Risk.
A Practical Guide for Risk Management in Power, Gas and other Energy
Markets. 2nd edition. Chichester: Wiley.

The book provides an accessible mathematical treatment of energy trading
and the corresponding risks, including the valuation of optionalities.

11.10 Self-check of Knowledge and Exercises

Self-check of Knowledge

1. What is the simple stochastic process in continuous time that serves as the basis
for defining other, more complex stochastic processes? What are the key
properties of this process?

2. Give the formulas of the following stochastic processes: generalised Wiener
process, geometric Brownian motion and mean-reversion process. Indicate also
key application areas for these processes.

3. What is an hourly price forward curve and what is it used for?
4. Why are power plants called real options?
5. Explain the basic principles that are used to derive the Black–Scholes option

pricing formulas.
6. When is the time value of an option highest? What are the implications for the

value of a flexible power plant – especially, when the difference between the
expected price (from an hourly forward curve) and variable costs changes?
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Exercise 11.1: Mean-Reversion Process
A mean-reversion process according to Eq. (11.6) applied to electricity spot prices
p leads to the equation:

dp ¼ j � ðl� pÞ � dtþ r � dz: ð11:23Þ

It can be shown that with given price p t0ð Þ, a solution of the stochastic differ-
ential equation may be written as

pðtÞ ¼ 1� e�j t�t0ð Þ
� �

� lþ e�j t�t0ð Þ � p t0ð Þþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2j t�t0ð Þ

2j

r
e ð11:24Þ

with e distributed according to a standard normal distribution, i.e. e�Nð0,1Þ.
This may also be rewritten using the notation Dp ¼ p tð Þ � p t0ð Þ and Dt ¼ t � t0:

Dp ¼ 1� e�jDt
� � � l� 1� e�jDt

� � � p t0ð Þþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2jDt

2jDt

r
e: ð11:25Þ

1. Use the time series of daily average spot prices given below to estimate the
parameters of the linear regression:

Dpt ¼ aþ b � pt�1 þ~e: ð11:26Þ

2. Compare the terms in Eqs. (11.25) and (11.26) to derive formulas to compute
the parameters j, l and r of the mean-reversion process from the regression
results.

3. Compute the estimated values ĵ, l̂ and r̂ from the regression parameters â, b̂
and r̂~e, where r̂~e corresponds to the estimated standard deviation of ~e.
In case, you have not solved part (2) of the exercise, you may use the
relationships:

ĵ ¼ � 1
Dt

lnð1þ b̂Þ l̂ ¼ � â

b̂
r̂ ¼ r̂~e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1þ b̂Þ
ð1þ b̂Þ2 � 1

s
: ð11:27Þ

4. Compare the terms in Eq. (11.24) to those of a naïve discretisation of
Eq. (11.23) obtained by simply replacing the infinitesimal differences d by
discrete differences and using the property given in Eq. (11.3). Using a Taylor
series expansion, you may demonstrate that the two converge when Dt tends
towards zero.

Exercise 11.2: Hourly Price Forward Curve
The objective is to compute an hourly price forward curve for spot prices on
Mondays in February 2021 based on historical observations from preceding years.
Collect the historical data for all days in Februarys between, e.g., 2011 and 2020.
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The computation is to be based on the information available on November 19, 2020.
On that day, the price quote for Germany at the EEX was 40.39 €/MWh for the
product base Feb 2021 and the quote for the product peak Feb 2021 49.86 €/MWh.

1. You may perform the necessary computations using Excel and insert the
intermediate results step-by-step into Table 11.4 (cf. also the similar
Table 11.2).

2. Make a diagram showing both the average hourly historical prices for Mondays
in February and the obtained HPFC for 2021. What are your key observations?

3. February 2021 is still amidst the COVID-19 pandemics that started to swipe
over Europe in March 2020. What adjustments, if any, are advisable on the
HPFC to reflect the ongoing pandemic situation?

4. Do you expect a lignite power plant with variable costs of 21 €/MWh will be in
the money during all hours in February 2021? Why?

Exercise 11.3: Valuation of Financial Options
Evaluate a European call option on a financial stock using the Black–Scholes option
pricing model.

The current underlying price is 41.72 €, and the annual volatility r is estimated
at 50%. The risk-free rate is assumed to be 3%. There are 262 trading days per year.

1. Evaluate the option with a time to maturity of 53 (trading) days and a strike
price of 44 €. Thereby, you may use Excel and implement the Black–Scholes
formulas for option pricing given in Eqs. (11.20–11.22).

Table 11.4 Computation scheme for an HPFC for Feb 2021 based on information available on
Nov. 19, 2020

Line no. Typical days s Historical
values
Average
prices ps

Future frequencies
in Feb 2021

Base Peak Number of days
1. Monday

2. Tuesday–Thursday

3. Friday

4. Saturday

5. Sunday

Future values for February 2021
Base Peak Off-peak

6. Number of hours

7. Weighted historical average pH ~T
� �

8. Futures ~F t; ~T
� �

on Nov. 19, 2020

9. Calibration factor g t; ~T
� �
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2. Now evaluate the value of the corresponding put option with the same expiry
date and same strike price. You may use the formulas again from above or make
use of the so-called put-call parity:

VCallðS; tÞ � VPutðS; tÞ ¼ St � Xe�rT ð11:28Þ

3. What happens to the option values when you double the time to maturity? And
what if the volatility is doubled?

4. Why is this valuation approach not appropriate when assessing the flexibility
value of a power plant?

Exercise 11.4: Valuation of a Power Plant as a Real Option
We aim to determine the hourly value of a power plant with variable costs of
44 €/MWh for a Monday in February 2021 based on the information available on
Nov. 19, 2020.

1. Use the HPFC determined in Exercise 11.2 and compute the intrinsic value of
the power plant for each hour of this Monday in February.

2. Assume the price volatility for all Monday hours in February is 9.38 €/MWh.
What is then the total option value in each hour based on the Bachelier model?
You may use Eq. (11.15) to compute this value.

3. Compare the total option values obtained for the different hours of the day –

both among themselves and with the corresponding intrinsic values computed in
the previous step.

4. Compare the average of the hourly option values with the option value obtained
for a financial option with rather similar parameters in Exercise 11.3. What
drives the difference? You may also compute the option value using the
Bachelier model for the average daily price to support your analysis.
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