
Extending OpenMP for Machine
Learning-Driven Adaptation

Chunhua Liao1(B), Anjia Wang2, Giorgis Georgakoudis1,
Bronis R. de Supinski1, Yonghong Yan2, David Beckingsale1,

and Todd Gamblin1

1 Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA

{liao6,georgakoudis1,bronis,
beckingsale1,gamblin2}@llnl.gov

2 University of North Carolina
at Charlotte, Charlotte, NC 28223, USA

{awang15,yyan7}@uncc.edu

Abstract. OpenMP 5.0 introduced the metadirective directive to
support compile-time selection from a set of directive variants based
on OpenMP context. OpenMP 5.1 extended context information to
include user-defined conditions that enable user-guided runtime adap-
tation. However, defining conditions that capture the complex interac-
tions between applications and hardware platforms to select an optimized
variant is challenging for programmers. This paper explores a novel app-
roach to automate runtime adaptation through machine learning. We
design a new declare adaptation directive to describe semantics for
model-driven adaptation and also develop a prototype implementation.
Using the Smith-Waterman algorithm as a use-case, our experiments
demonstrate that the proposed adaptive OpenMP extension automat-
ically chooses the code variants that deliver the best performance in
heterogeneous platforms that consist of CPU and GPU processing capa-
bilities. Using decision tree models for tuning has an accuracy of up to
93.1% in selecting the optimal variant, with negligible runtime overhead.

Keywords: OpenMP · Machine Learning · Runtime Adaptation

1 Introduction

Variant directives such as metadirective and declare variant are major new features
introduced in OpenMP 5.0 [18] to improve performance portability by adapting
OpenMP pragmas and user code at compile time. The OpenMP context, which
consists of traits from active OpenMP constructs, devices, implementations or
user-defined conditions, can guide adaptation. For example, the metadirective

is conditionally resolved at compile time based on traits that define an OpenMP
condition or context to select one of multiple directive variants. Based on a rec-
ommendation from a prior study [27], OpenMP 5.1 [19] added a new dynamic
© Anjia Wang and Yonghong Yan, and Lawrence Livermore National Security, LLC,
under exclusive license to Springer Nature Switzerland AG, part of Springer Nature 2022
S. Bhalachandra et al. (Eds.): WACCPD 2021, LNCS 13194, pp. 49–69, 2022.
https://doi.org/10.1007/978-3-030-97759-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97759-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-97759-7_3

50 C. Liao et al.

trait set that supports user-defined conditions. As a result, OpenMP program-
mers can now use dynamic conditions to guide the selection of directive variants.
A canonical example is a user-defined loop iteration threshold (in a form of N

>=50000) to decide if a parallel loop should execute on CPUs or GPUs.
While the metadirective enables runtime code adaptation, it falls to the pro-

grammer to determine the conditions upon which to select the best performing
code variant. However, manually determining the appropriate conditions (such
as the loop iteration threshold) is challenging. Meaningful values depend on
complex interactions between applications and hardware platforms, thus by def-
inition programmer choices are not portable. Further, there are many options
and configurations of OpenMP compilation and the supporting runtime software
that contribute to complexity, given the software stack configuration affects per-
formance. Thus, users would benefit from automated mechanisms to select the
best performing variant without manually specifying non-portable and error-
prone runtime conditions.

In this paper, we explore a novel, portable approach of incorporating machine
learning capabilities into OpenMP to automatically derive models used as
dynamic conditions that guide directive variant selection. This paper makes the
following contributions:

– A new directive and associated clauses to express essential semantics to achieve
automated model-driven runtime adaptation of a given OpenMP region;

– Compiler transformations that enable runtime profiling, model building, and
model-guided adaptation of an adaptive OpenMP region; and

– Extensions to a tuning runtime library that provides a small but powerful set of
novel APIs to support the multiple stages needed for model-driven adaptation.

Experimentation shows that our adaptive OpenMP extension is able to select the
best performing variant for the Smith-Waterman algorithm, which is particularly
hard to tune, for a range of input sizes, on heterogeneous platforms with CPU
and GPU processing capabilities.

2 A Motivating Example

We use the Smith-Waterman algorithm [22] to demonstrate the need for auto-
mated OpenMP adaptation. This dynamic algorithm finds the optimal local
alignment of a subsequence within a larger DNA or RNA sequence by calcu-
lating a distance (or similarity) matrix. The scoring process has a wavefront
computation pattern, as Fig. 1 shows, due to data dependencies between points
of the matrix computation. The algorithm has O(M×N) time complexity in
which M and N are the lengths of the two sequences. The space complexity is
also O(M×N) due to matrices used for computing scores and backtracking.

Figure 2 shows a typical OpenMP CPU implementation of the Smith-
Waterman algorithm’s scoring step. It parallelizes the inner loop iterating on
elements of each wavefront line. Similarly, Fig. 3 shows an OpenMP GPU offload
version, which moves the data used on GPU before the outer loop, and copies
back results after processing completes to reduce data transfer overheads.

Extending OpenMP for Machine Learning-Driven Adaptation 51

Fig. 1. Wavefront Computation Pattern of the Smith-Waterman Algorithm

1 long long int nDiag = M + N - 1;

2 for (i = 1; i <= nDiag; ++i) {

3 long long int nEle, si, sj;

4 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

5 #pragma omp parallel for
6 for (j = 0; j < nEle; ++j)

7 similarityScore(si-j, sj+j, H, P, &maxPos);

8 }

Fig. 2. OpenMP CPU Implementation of the Smith-Waterman Algorithm

We compare the performance of three versions (serial CPU, OpenMP CPU
and OpenMP GPU) for two sequences of equal input lengths, by ranging their
length from 32 to 15,000 with a stride of 256. Our comparison uses one compute
node of the Corona cluster of the Livermore Computing Center. It has two AMD
EPYC 7401 processors, each with 24 cores clocked at 2 GHz, 250 GB memory,
and four AMD MI50 GPUs. We compile with Clang 12.0.0 and ROCm v4.1.0,
with the −O3 option. Figure 4 shows the scoring kernel execution time. The serial
version performs the best for input sizes ranging from 32 to 6048. From 6304 to
8864, the OpenMP GPU version is the best choice. Finally, the OpenMP CPU
version performs the best for input problem sizes ranging from 9120 to 15,000.
It would be challenging for programmers to manually determine such conditions
to select the best variants for different software and hardware configurations.

In general, the optimal choice among OpenMP variants varies significantly
depending on the application kernels, input sizes, machines and compilers. Man-
ual specifying conditions guiding the optimal choice is neither practical nor
portable. Thus, we propose a new mechanism to automate adaptation without
user intervention.

52 C. Liao et al.

1 long long int nDiag = M + N - 1;

2 #pragma omp target enter data map(to:a[0:m],...) map(to:H[0:asz],...)
3 for (i = 1; i <= nDiag; ++i) {

4 long long int nEle, si, sj;

5 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

6 #pragma omp target teams distribute parallel for map (...)
7 for (j = 0; j < nEle; ++j)

8 similarityScore(si-j, sj+j, H, P, &maxPos);

9 }

10 #pragma omp target exit data map(from:H[0:asz],...)

Fig. 3. OpenMP GPU Implementation

Problem size, M = N: 32 to 15000

Ex
ec

ut
io

n
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

2.5

2500 5000 7500 10000 12500

Serial OMP-CPU-48T OMP-GPU

Fig. 4. Performance of Three Versions of Smith-Waterman Running on Corona

3 A Vision

We envision that future programming models, including OpenMP, will allow
programmers to express rich semantics related to automated adaptation using
machine learning techniques. Seamless integration of programming models and
machine learning has multiple benefits. For one, direct support in a programming
model will make machine learning techniques more accessible. Programmers will
be relieved from manually assembling machine learning pipelines to optimize
each program. Further, the integration will improve performance portability and
productivity of programming systems.

As Fig. 5 shows, we extend OpenMP to enable machine learning-driven adap-
tation. Our extension uses a new directive, declare adaptation, to generate
transformed (or lowered) code variants for each annotated code region. The
lowered code implements an execution pipeline that includes profiling, model
building and adaptation. Common functionality in those steps is supported by
a runtime library to simplify the compiler transformation.

Extending OpenMP for Machine Learning-Driven Adaptation 53

Runtime
Library

OpenMP Code Using
declare adaptation

OpenMP
Compiler

Lowered Code

Profiling Model
Building Adaptation Persistent

Storage

Fig. 5. Machine Learning-Driven Adaptive OpenMP

A generated executable file may run in different modes. The first run trans-
parently collects profiling data for selected adaptive code regions. Once sufficient
data is collected, the executable automatically builds a predictive machine learn-
ing model for each selected code region. Finally, the internally generated machine
learning models guide runtime selection of the best variants for each region. Pro-
filing, model building and model-driven adaptation may finish within the first
run of a program, especially for those that use iterative algorithms, which often
can easily generate sufficient training data.

The extended OpenMP also supports collecting profiling data across multiple
runs, which is essential if a single run does not generate sufficient training data.
Those profiling data accumulate in persistent storage to enable model building
and adaptation in later runs. Also, previously trained models are saved too for
reuse in later runs, avoiding unnecessary profiling and model building. In sum-
mary, the execution of an adaptive OpenMP program checks if previous profiling
data or machine learning models are available in order to initialize adaptive exe-
cution. The following sections elaborate on the design and implementation of
the declare adaptation directive.

4 The declare adaptation Directive

The proposed declare adaptation allows programmers to express semantics
related to machine learning-driven automatic runtime adaptation. In our present
design, declare adaptation works with metadirectives. Code regions annotated
with metadirecive naturally provide multiple directive variants for adaptation.
Future work will explore its composability with other directives.

When a code region enclosed by metadirective immediately follows the
declare adaptation directive, each when and default clause is treated as a
code variant that can be automatically selected. Internally, each code variant
is assigned a unique variant ID, starting from 0.

Using declare adaptation overrides the context-selector-specifications of the
when clauses, using instead user-provided features as part of the adaptation direc-
tive to model the performance of possible variants and select the predicted opti-
mal one. Programmers can also entirely avoid specifying context selectors in the
metadirective. The machine must support a valid execution context to enable
the execution of all variants of the metadirective so the runtime can freely acti-
vate any of them for profiling, modeling and subsequent selection.

54 C. Liao et al.

4.1 Syntax and Semantics of declare adaptation

declare adaptation has the following syntax:
#pragma omp declare adaptation [clause[[,]clause]...] new-line.

Semantically, declare adaptation allows OpenMP programmers to specify
that the associated OpenMP region is transformed into adaptive code using
online performance profiling and model-driven adaptation. The compiler gener-
ates a lowered multi-variant code region, leveraging runtime functions to support
profiling, model building and tuning, as Fig. 5 shows.

The possible associated clauses are the following:

– model(model_type_name),
– feature([modifiers]: list),
– model_name(region_id),
– use_model(region_id), and
– variant_mapping(list-of-mapped-model-region-variant-ids).

The parameter of the optional model clause indicates the type of machine
learning model to use. If this clause is not specified, the model type is imple-
mentation defined. Values of model_type_name are supervised machine learning
models for classification problems, such as logistic_regression, decision_tree,
random_forest, artificial_neural_network and support_vector_machine.

The mandatory feature clause specifies a list of variables that serve as model
features. Any program variable in scope may be used as a feature of the machine
learning model. In addition, we assume that a set of special OpenMP variable
identifiers, including omp_num_threads and omp_num_teams, are available to enable
modeling of the OpenMP context. The clause may be repeated as often as nec-
essary to describe all variables that the model should use as features.

Further, the feature clause accepts two optional modifiers that specify addi-
tional information for listed items. An example is feature (range[0:30000],

min_sample_points(25): N). The [lower_bound:upper_bound] argument of the
range modifier specifies a range expression for the variables in list. Both bounds
are inclusive values of either integer or floating point types that define a search
space of feature values. The integer argument of the min_sample_points modifier
is a hint on the number of data points to sample for those features. This modifier
guides the implementation in determining if sufficient data have been gathered
for adaptation. A possible formula for an implementation is Min dataset size =
(min f1 × min f2 × · · · × min fn) × code variant count. For example, a code
region with 3 code variants and 2 feature variables of min_sample_points(10) has
a suggested training set size of 10 * 10 * 3 = 300 data points.

The model_name and use_model clauses specify the model for guiding this
region’s adaptation and they form an exclusive clause set. This means that
at most one of them can be used within a declare adaptation directive. If
neither clause is specified, the effect is as if model_name is specified with an
implementation-defined unique region_id. The model_name clause indicates that
the associated region is a primary region for profiling, model building, and model-
driven adaptation. An example primary region is a loop doing intensive compu-
tation. The user must specify a unique identifier for the region in the model_id

Extending OpenMP for Machine Learning-Driven Adaptation 55

argument. The use_model clause indicates that this region is an associated region
to a primary region, so it should use the choices made by that corresponding pri-
mary region’s model. An example associated region is a data transferring region
preparing data for later computation. Its required argument specifies the ID of
its primary region. Multiple regions may use the primary region’s model.

The variant_mapping clause is valid and required only if the use_model clause
is specified. It establishes a code variant mapping between a primary region
and the associated region. The required mapping allows the region to have a
different number of variants from the primary region. It specifies which variant
an implementation should use based on the model decision of the primary region.
The size of the list of mappings is equal to the number of code variants of
the associated region. Each list item is a code variant ID of the corresponding
primary region. For example, variant_mapping(2,3) means that the associated
region has 2 code variants (with IDs 0 and 1) that are mapped to variant IDs 2
and 3 of the corresponding primary region. The associated region must not have
more code variants than the region specified by region_id.

4.2 Examples Using metadirective

We demonstrate the use of declare adaptation within the Smith-Waterman algo-
rithm. Figure 6 shows two nested loops that comprise the similarity score com-
putation kernel. Our version specifies three code variants using a metadirective:
serial, OpenMP CPU threading, and OpenMP GPU offloading (line 7–11). We
use declare adaptation on line 6, right before metadirective, to specify a deci-
sion tree model trained on a single feature (nDiag derived from the lengths of
the two sequences), which is the number of the wavefront lines of the similarity
matrix. For two sequences with size M and N , the following relationship holds:
nDiag = M + N − 1.

The choice of nDiag instead of the inner loop bound nEle is based on exper-
iments of a prior study [27] which reports that nDiag is a good indicator for
tuning. Choosing nDiag means that for a given pair of M and N values, a single
code variant is activated for the entire execution of the program. So adaptation
happens at a coarse granularity across different executions of the entire program.
In comparison, if we choose nEle, adaptation happens at a fine granularity, across
different wavefront lines. This fine-grain adaptation requires data transfers inside
the outer loop, which introduces excessive data copy overhead across wavefront
lines as Fig. 6 shows. Our experiments on Corona confirms that this overhead
results in severe performance degradation compared to its baseline serial version
using input sizes of 2000 by 2000 (56 s for the fine-grain adaptation version vs.
0.04 s for the serial version), hence the motivation for coarse grain adaptation.

A further optimization is using a data region that encloses both the outer
and inner loop. Thus, data is copied between devices only when entering and
exiting that region. We render the data region’s execution adaptive by adding two
more adaptive metadirective definitions (line 2–5 and 25–27 in Fig. 7). Variant
selection for those two regions corresponds to the decision made for the primary
region (line 13–21). When the primary region’s variant ID 2 is active at runtime,

56 C. Liao et al.

1 for (i = 1; i <= nDiag; ++i) {

2 long long int nEle, si, sj;

3 nEle = nElement(i);

4 calcFirstDiagElement(i, &si, &sj);

5

6 #pragma omp declare adaptation model(decision_tree) feature(nDiag)
7 #pragma omp metadirective \
8 when (:) /* variant 0: serial*/ \
9 when (:parallel for) /* variant 1: CPU threading */ \

10 default(target teams distribute parallel for map (to:a[0:m], ...) \
11 map(tofrom: H[0:asz], ...) /* variant 2: GPU offloading */
12 for (j = 0; j < nEle; ++j)

13 similarityScore(si-j, sj+j, H, P, &maxPos);

14 }

Fig. 6. Basic Use of declare adaptation with metadirective

which selects GPU execution, the two associated regions are activated (using
variant_mapping(2)). This example also shows that when an associated region
executes before its primary region, the corresponding feature variables should
be available at the entry point of this associated region for model evaluation.
Also, the values of those variables should not change before entering the primary
region, thus stay invariant. Then it is possible for the runtime to activate the
mapped variants in both regions. Otherwise, a primary region should execute
before its associated regions to forward its model decision.

5 Implementation

We design and implement a compiler-runtime system that translates OpenMP
programs with the declare adaptation directive into adaptive executables.
Figure 8 shows that our source-to-source compiler (based on ROSE [21]) trans-
lates an OpenMP program that uses declare adaptation into lowered adaptive
OpenMP code. We then translate that representation into a final executable
using Clang/LLVM. The lowered adaptive OpenMP code and our runtime
system (based on Apollo [4,26]) implement runtime profiling, model building
and model-guided adaptation. The runtime uses the OpenCV machine learning
library [7] to build machine learning models from profiling data. To support
reuse of profiling data and ML models across executions, the runtime system
loads and stores training data and models between main memory and persistent
storage (e.g., the file system).

5.1 Compiler Support

We use ROSE to prototype our compiler implementation. Developed at LLNL,
ROSE [21] is an open source compiler infrastructure to build source-to-source
program transformation and analysis tools for Fortran and C/C++ applications.

Extending OpenMP for Machine Learning-Driven Adaptation 57

1 //Copy the data to GPU if the GPU version will be used later.
2 //Primary region's variant #2 is mapped to variant id #0 here.
3 #pragma omp declare adaptation use_model("scoring_loop") variant_mapping(2)
4 #pragma omp metadirective \
5 when(: target enter data map(to:a[0:m],...) map(to:H[0:asz],...))
6

7 for (i = 1; i <= nDiag; ++i) {

8 long long int nEle, si, sj;

9 nEle = nElement(i);

10 calcFirstDiagElement(i, &si, &sj);

11

12 // The primary region with 3 variants
13 #pragma omp declare adaptation model_name("scoring_loop") \
14 model(decision_tree) feature(nDiag)
15 #pragma omp metadirective \
16 when (:) \
17 when (: parallel for private(j)) \
18 default (target teams distribute parallel for ...)
19 for (j = 0; j < nEle; ++j)

20 similarityScore(si-j, sj+j, H, P, &maxPos);

21 }

22

23 //Copy data back to CPU if GPU is used
24 //Primary region's variant #2 is mapped to variant id #0 here.
25 #pragma omp declare adaptation use_model("scoring_loop") variant_mapping(2)
26 #pragma omp metadirective \
27 when(: target exit data map(from: H[0:asz], P[0:asz], maxPos))

Fig. 7. Optimized Use of declare adaption

ROSE supports OpenMP 3.0 [13] and part of 4.0 [15]. More recently, it was used
to prototype the dynamic extension of metadirective [27].

Our prototype compiler includes an extended OpenMP parser and internal
AST to support declare adaptation. It also translates an AST that represents a
metadirective region affected by declare adaptation into one that uses a switch-
case statement to enable machine-learning based adaptation. We lower that AST
into source files that use OpenMP 4.5 directives (using CPU threading and GPU
offloading directives). Finally, Clang/LLVM compiles the lowered code and links
it with the Apollo runtime library to generate the final executable.

The lowered code uses several runtime interface functions to support all
stages in the model-driven adaptation workflow. The workflow first collects exe-
cution time of variants associated with user-specified features of a code region.
It then processes those data into feature vectors suitable for machine learning
and feeds those training data into OpenCV to generate the model. Finally, it
evaluates at runtime the generated model to select code variants.

58 C. Liao et al.

OpenMP
Programs

W/ extension

Persistent
Storage

Apollo
Runtime

R1. Profiling
R2. Model building
R3. Model-guided adaptation

ROSE
Compiler

Machine Learning
Library (OpenCV)

Lowered
Adaptive
OpenMP

LLVM
Compiler

#omp declare adaptation

executable

In-Memory
Profiling Data
& ML Models

Load/Store
Profiling data
& ML models

C1. Parsing
C2. AST Creation
C3. AST lowering
C4. Unparsing

AST

Fig. 8. Design and Implementation of Adaptive OpenMP

Figure 9 shows the lowered code for the input code in Fig. 7. Each code vari-
ant of a metadirective region under declare adaptation control is placed in a
case statement of a switch statement. We synchronize the primary and the asso-
ciated adaptive regions using a region name identifier and variant ID numbers.
In this example, the two corresponding regions that copy data between the CPU
and GPU are only activated when the primary region’s code variant 2 (GPU
offloading version) is activated. The lowering step leverages runtime support to
reuse the same generated code for different stages of the workflow. For example,
we use the getPolicyIndex() function at line 27 to pick a policy to support both
training and production runs. Details of the runtime support are explained in
the next subsection.

5.2 Runtime Support

We extend Apollo [4,26] to serve as our runtime library. Apollo was originally
applied as an auto-tuning extension of RAJA [12] that uses pre-trained, reusable
machine learning models to tune data-dependent kernels at runtime. Neverthe-
less, Apollo’s modular design simplifies support of runtime adaptation for non-
RAJA codes, OpenMP in our case.

For adaptive code regions, an internal C++ Region class tracks the associated
features, manages training data and activates the model. Each code region can
have multiple code variants, such as one for CPU and another for GPU. Apollo
treats each variant as a distinct execution policy of the region to measure its exe-
cution time. The runtime uses these measured times to train a machine learning
model for suggesting the best execution policy, which corresponds to the fastest
code variant.

Apollo exposes a small set of runtime API functions to support data collec-
tion, model building and model-guided adaptation through two concepts: train-
ing models and tuning models. Training models are special models that activate
different code variants to collect data during training runs, while tuning models
are generated machine learning models to select optimal code variants (or equiv-
alently execution policies) to activate during production runs. The active model

Extending OpenMP for Machine Learning-Driven Adaptation 59

1 /* 1. Translation of the first dependent region*/
2 /* Create or obtain the main region*/
3 /* Parameters: unique region id, feature count, and variant count. */
4 Apollo::Region *region1 =

5 Apollo::instance()->getRegion("scoring-loop", 1, 3);

6 /* feature vector of size 1 */
7 region1->begin({(float)nDiag});

8

9 // Get the policy to execute from Apollo
10 int policy = region1->getPolicyIndex();

11 if (policy ==2)

12 {

13 #pragma omp target enter data map(to:a[0:m-1], b[0:n-1]) \
14 map(to: H[0:asz], P[0:asz], maxPos)
15 }

16 region1->end();

17

18 for (i = 1; i <= nDiag; ++i) {

19 /*some code omitted here... */
20

21 /* 2. Translation of main adaptation region*/
22 Apollo::Region *region = Apollo::instance()->getRegion(

23 "scoring-loop", 1, 3, 1);

24 region->begin({ (float)nDiag });

25

26 /* calling a training or real model to select a code variant */
27 int policy = region->getPolicyIndex();

28

29 switch (policy) {

30 case 0: /* variant 0: serial */
31 { /* code omitted here */ }
32 case 1: /* variant 1: CPU threading */
33 {

34 #pragma omp parallel for
35 for (j = 0; j < nEle; ++j)

36 similarityScore(si-j, sj+j, H, P, &maxPos);

37 break;

38 }

39 case 2: /* variant 2: GPU offloading */
40 {

41 #pragma omp target teams distribute parallel for map (...)
42 for (j = 0; j < nEle; ++j)

43 similarityScore(si-j, sj+j, H, P, &maxPos);

44 break;

45 }

46 default:

47 /* .. error handling here... */
48 }

49 region->end();

50 }

51

52 /* 3. Translation of the 2nd dependent region, code omitted here*/

Fig. 9. Lowered Code Enabling Profiling, Model Building and Adaptation

60 C. Liao et al.

field of the Region class can be set to a training or tuning model. Thus, Apollo
re-uses the same API interface function, getPolicyIndex() to return either a
training or optimal code variant, which simplifies the compiler transformation.

Apollo provides two builtin training models (Random and Round-Robin) to
support profiling code variants. A training run with a given input data may
invoke a region multiple times and at every invocation the Random model ran-
domly selects a code variant of the region to measure performance. Similarly,
the Round-Robin model cyclically selects each code variant for performance
profiling. By default, Apollo averages the measured execution times for each
code variant when collecting measurements during training. The tuning models
include the Static model (returns a fixed policy choice) and a set of machine
learning models supported by OpenCV such as Decision Tree, Random Forest
and Support Vector Machine.

We extend Apollo in several ways. Specifically, we add support for collecting
and accumulating profiling data across multiple executions to ensure there is
sufficient training data for model building. Original Apollo requires an explicit
function call to trigger model building. We automatically trigger model build-
ing when sufficient data have been collected based on the semantics of declare

adaptation. Additionally, we apply the Static model as a training model to sup-
port coarse grain adaptation, by using a fixed code variant throughout an entire
program execution for a given input data size. Lastly, we add a new configura-
tion option to use the accumulated total execution time instead of the average
time as the input performance feature for OpenCV-generated models to enable
coarse grain adaptation.

Overall, our implementation uses six runtime functions to support adapta-
tion. Apollo* Apollo::instance() is used to initialize the runtime and obtain a
handle to it.

Apollo::Region* Apollo::getRegion (string& region, int feature_count,

int policy_count, int model_type) obtains a managed code region’s internal
C++ object by its name. If the region object exists, the function directly returns
it. Otherwise, the runtime creates and initializes it, using the specified feature
count, policy count, and machine learning model type. Each code region object’s
active model field is initialized to a tuning or training model. At first, the func-
tion tries to load an existing tuning model file saved on disk for the region.
If the model file does not exist, a default training model (Static, Random or
Round-Robin) is configured for the region. Similarly, if training across multiple
executions is requested, the runtime tries to initialize the region object’s training
data field by loading an existing training dataset for the region from disk.

The Apollo::Region::begin(std::vector<float>) indicates the beginning of
a managed code region. The parameter of this function is a vector of features of
float type. The length of the vector matches the number of features of the code
region. This function starts a timer for the managed code region.

Apollo::Region::getPolicyIndex() calls the active model associated with
the code region to return a preferred policy ID. If the model is a training model,
it picks a variant for profiling. Otherwise, a tuning model (such as a decision

Extending OpenMP for Machine Learning-Driven Adaptation 61

tree model) selects an optimal code variant by evaluating the model with the set
features associated with the region as inputs.

Apollo::Region::end() stops the timer for the managed code region and adds
information (such as the measured execution time, the executed policy, and the
feature vector) into the region’s training data field. Additionally, if the average
execution time is used as training data, it checks if sufficient profiling data have
been collected for the region, in which case the function triggers data processing
and model building using the collected data. Also, it stores the generated model
for later use.

Apollo::~Apollo(), the destructor of the Apollo runtime object, is implicitly
called when a program ends. If the accumulated total execution time of regions
is used to train models, this function will check if sufficient training data have
been collected and trigger model building for later re-use. It saves any collected
training data and generated models to disk.

6 Evaluation

6.1 Software and Hardware Configurations

We evaluate the effectiveness of the proposed OpenMP extension using the
adaptive Smith-Waterman algorithm shown in Fig. 7. The corresponding serial,
OpenMP CPU threading, and OpenMP GPU offloading versions are used as
baseline, non-adaptive versions. Picking nDiag as the feature requires multiple
runs using different problem sizes to collect training data. The minimal sam-
ple points per feature (specified using min_sample_points(val)) is configured to
have three values: 25, 50, or 100. During the training runs, the input problem
size range is fixed to be between 32 to 15,000. Three different strides (128, 256
and 512) in that range are used to generate sufficient training data for the three
sampling configurations.

For each input problem size, all code variants are measured in the same
batched run for collecting training data. The training run is repeated five times
and median values are used as performance measurements. Decision tree models
are created and stored in yaml files for later reuse. Once the model files are
available, the execution of the program enters the production run mode. Different
input problem sizes (160 to 15,000 with a stride of 256) are picked to evaluate
the generated models in production runs.

Two machines, Corona and Pascal, are used for the experiments, with their
details shown in Table 1. For the OpenMP CPU version, we use the number of
threads matching the number of physical cores on a machine to avoid system
noise caused by oversubscribing CPU cores.

6.2 Performance Results

Figure 10 and 11 show the execution time of different versions of the Smith-
Waterman algorithm on the two machines. The adaptive version uses the decision

62 C. Liao et al.

Table 1. Software and Hardware Configurations

LLNL Corona LLNL Pascal

CPU AMD EPYC 7401 2.00GHz Intel Xeon E5-2695 v4 2.10GHz

Cores 2 sockets × 24 physical cores 2 sockets × 18 physical cores

Main Mem 256 GB 256 GB

GPU AMD Radeon Instinct MI50 NVIDIA Tesla P100

Device Mem 16 GB 16 GB

OS TOSS 3 Red Hat Enterprise Linux 7.6

Clang/LLVM 12.0.0 11.0.0

Compiler Options −O3 −O3

GPU Driver AMD ROCm 4.1.0 NVIDIA CUDA toolkit 10.2.89

tree model generated using the minimum sample points per feature set to 50. It
is clear that the performance of the adaptive version, denoted with a green line,
closely matches the best choices, especially for Pascal. On Corona, the adaptive
version does not pick the serial version, which is the fastest, for input size range
between 32 and 5,000. However, the execution time of the predicted variant is
very close to serial, so performance is near-optimal anyway.

Problem size, M = N: 32 to 15000

Ex
ec

ut
io

n
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

2.5

2500 5000 7500 10000 12500

Serial OMP-CPU-48T OMP-GPU Adaptive

Fig. 10. Execution Time of Different Versions of Smith-Waterman on Corona

6.3 Accuracy of Prediction Models

The accuracy of the generated models is evaluated by comparing the predicted
best code variants against the ground truth of optimal variants for a set of
production runs using the selected input problem sizes. Note that we purposely
select a different set of 58 input problem sizes (160 to 15,000 with a stride of
256) in the production run, which are unseen in the training runs. To generate

Extending OpenMP for Machine Learning-Driven Adaptation 63

Problem size, M = N: 32 to 15000

Ex
ec

ut
io

n
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

2.5

2500 5000 7500 10000 12500

Serial OMP-CPU-36T OMP-GPU Adaptive

Fig. 11. Execution Time of Different Versions of Smith-Waterman on Pascal

the ground truth, we run the baseline versions using the same input problem
sizes selected for the production runs to identify the fastest execution variant.

Table 2 shows the accuracy evaluation results. For the three values of minimal
sample points per feature (25, 50 and 100), the created decision tree models show
the best accuracy of 79.31% for Corona and 93.10% for Pascal (among table’s
columns named Median).

Table 2. Prediction Accuracy of Smith-Waterman under Multiple Configurations

Training samples 25 50 100

Platform MedianMajority

Vote

Majority

Vote

(sklearn)

MedianMajority

Vote

Majority

Vote

(sklearn)

MedianMajority

Vote

Majority

Vote

(sklearn)

Corona 72.41% 77.59% 72.41% 79.31% 82.76% 84.48% 75.86% 77.59% 75.86%

Pascal 93.10% 93.10% 94.83% 93.10% 93.10% 93.10% 93.10% 93.10% 93.10%

We investigated possible causes for the limited accuracy of the models gen-
erated on Corona. It is observed that the serial version’s timing information col-
lected in the training data is not exactly the same as the corresponding baseline
version without code instrumentation. The OpenMP CPU and GPU versions do
not show such a problem. We suspect that code instrumentation (using runtime
API calls) prevents the compiler from applying some optimizations on the serial
version of the code. Both OpenMP versions already use outlining which hurts
optimizations, so additional instrumentation causes much less negative impact.
To test this hypothesis, we re-run the experiments with compiler optimizations
turned off (using the −O0 compilation flag). The adaptive version then made
55 correct choices out of 58 input problem sizes, which leads to an accuracy of
94.83%. Only three sizes have wrong predictions. These three wrong predictions
happen near the crossover points in Fig. 10 where different policies have similar
performance.

64 C. Liao et al.

We also tried another method to process and label the raw data. The original
method has two steps: 1) picking the median execution time of 5 runs for each
variant for a given input size, 2) finding the best variant using the median values.
The new method first finds the best variant within each batched run including
three code variants using a given input size. Then a majority vote is used to
decide the final best variant out of 5 repeated batched runs. The second method
leads to better accuracy for Corona. For example, accuracy increases to 82.76%
when using 50 samples per feature on Corona (Table 2). On Pascal, either of
those methods shows similar accuracy. Therefore, we deem the second method
as more accurate. Out of curiosity, we feed the identical training data in the sec-
ond method into another machine learning package, Python scikit-learn v0.24.2.
The prediction accuracy numbers overall are similar to what Apollo generates
on two machines. Nevertheless, the loss in accuracy is small and our ML app-
roach results in near-optimal execution decisions, evidenced by the performance
measurements.

6.4 Overhead Analysis

There are three kinds of overheads in the adaptive version: the one-off overhead
to perform the training run for data collection, the one-off overhead for model
building, and the instrumentation and model evaluation overhead in production
runs. The observed overheads depend on many factors, including the number of
data points, the input size of a program, and the choice of the machine learning
model, To measure those overheads, we pick the configuration of using 50 sample
points and three input problem sizes from 32 to 15,000, which are 4,128, 8,480,
and 12,576.

Table 3. Execution Time of Baseline, Training and Production Runs on Corona

Baseline Run Training Run Production Run

M == N Serial OMP-CPU OMP-GPU Serial OMP-CPU OMP-GPU Execution Time Predicted Variant

4128 0.214 0.552 0.286 0.309 0.573 0.289 0.304 OMP-GPU

8480 0.967 0.871 0.803 1.094 0.798 0.793 0.757 OMP-GPU

12576 2.164 1.042 1.585 2.562 1.051 1.644 1.077 OMP-CPU

Table 3 shows the measured execution time for different runs using different
configurations on Corona. Results on Pascal are similar, so we omit them. Table 4
shows overhead in percentage numbers for training runs and production runs.
The serial variant’s training runs have significantly high overhead compared to
the corresponding baseline runs. For example, it took 0.309 s while its baseline
version took only 0.214 s for the input size of 4,128, indicating an overhead of
44.74%. Again, the reason is that code instrumentation prevents certain compiler
optimizations being applied, which has a more negative performance impact
on the serial version than the OpenMP versions. We measured the training

Extending OpenMP for Machine Learning-Driven Adaptation 65

overhead of the serial version using −O0 compilation. The overhead then reduces
significantly to 9.85% for the input size of 4,128.

The time cost of building the models is negligible. It took only 0.00684 s
on average. The corresponding 95% confidence interval is 0.00684± 0.0038 s. It
only happens once for a configuration. The code instrumentation and runtime
adaptation in the production runs have overhead up to 6.28%.

Table 4. Overhead Percentage

Training Run Production Run

M==N Serial OMP-CPU OMP-GPU Predicted Variant

4128 44.74% 3.76% 1.05% 6.28%

8480 13.14% −8.37% −1.22% −5.81%

12576 18.39% 0.84% 3.73% 3.28%

For the input size of 8480, there are three negative overhead numbers for the
two training runs using OMP-CPU and OMP-GPU, and the production run. We
looked into confidence interval values for the relevant measurements. The results
show that the measured execution times of training and production runs do
have significant overlapping with their baseline runs. For example, the baseline
OMP-GPU has a confidence interval of 0.803± 0.0444 s while its production
run’s confidence interval is 0.757± 0.0553 s. As a result, we conclude that there
is no statistically significant overhead.

Overall the implementation has negligible impact on execution time for train-
ing and production runs using CPUs or GPUs.

7 Related Work

Machine-learning based compiler optimization has been studied extensively for
decades. Wang et al. [25] provide a comprehensive survey of machine learning
techniques used to guide compiler optimization. Ashouri et al. [2] summarize
machine learning techniques used to tackle two particular compiler optimization
problems: optimization selection and phase-ordering. A notable project, Milepost
GCC [9], combines production-quality GCC with machine learning to adapt to
different architectures and predict profitable optimizations. Luk et al. [16] profile
execution variants to build linear regression models in order to determine the
optimal splitting ratio between CPU and GPU computation. Grewe et al. [10]
uses decision tree models to decide if it is profitable to run OpenCL kernels on
GPUs. Hayashi et al. [11] used offline, supervised machine-learning techniques
to select preferred computing resources between CPUs and GPUs for individual
Java kernels using a JIT compiler. DeepTune [8] uses raw code to develop a deep
neural network to guide optimal mapping for OpenCL programs.

66 C. Liao et al.

Given the flexibility of OpenMP, there is growing interest in autotuning of
OpenMP programs to enable performance portability across different platforms.
Liao et al. [14] apply source code outlining to enable autotuning of OpenMP
loops from large applications. Sreenivasan et al. [23] introduce a lightweight
OpenMP pragma autotuner to optimize scheduling policies, chunk sizes, and
thread counts. In [20], the authors explored the benefits of using two OpenMP 5.0
features, including metadirective and declare variant, for the miniMD benchmark
from the Mantevo suite. The authors concluded that these features enabled their
code to be expressed in a more compact form while maintaining competitive
performance portability across several architectures. However, their work only
explored compile-time constant variables to express conditions.

Autotuning techniques are also well-studied for high performance computing,
but dedicated mostly for loop transformation and for performance optimization,
such as those in earlier works including POET [28] and CHILL [5]. Recent work,
such as OpenTuner [1], provides a general-purpose optimization tool that could
help users find the best configuration to improve the performance over a group
of compilation parameters as search space. CLTune [17], as a generic tuner for
OpenCL kernel, adopts a similar strategy. Active Harmony [24] is a runtime
tuning framework for searching tuning variables for the configuration that deliv-
ers optimal performance. Indicatively, 3D-FFT has shown 1.76× speedup when
using online tuning methods implemented with Active Harmony. Another Active
Harmony-based tool, named ANGEL [6], is developed to tune multiple functions
for balancing the trade-off between computing time and power consumption. Bari
et al. in [3] present ARCS framework for tuning OpenMP program targeting on
optimizing power consumption.

Our work differs from the aforementioned studies in that we define com-
bined language, compiler and runtime support methods to directly incorporate
machine learning into a programming model, which enables automated model-
driven runtime adaptation. Our approach significantly enhances portability and
productivity of OpenMP.

8 Conclusion

In this paper, we have proposed a new OpenMP extension, declare adaptation,
for programmers to express semantics related to machine learning-driven run-
time adaptation. This directive is used with metadirective to guide the selection
of an optimal choice of an OpenMP code region with multiple variants, using a
machine learning model automatically built from user-specified features. Exper-
imentation shows that this new extension improves the performance portability
and productivity of OpenMP by alleviating the problem of manually deciding
adaptation conditions for different software and hardware configurations. Addi-
tionally, this approach makes machine learning techniques more easily accessible
to HPC developers.

In the future, we plan to expand the declare adaptation directive to apply
to more types of OpenMP directives besides metadirective. Leveraging the pro-
totype for the combined compiler and runtime support, we intend to migrate

Extending OpenMP for Machine Learning-Driven Adaptation 67

the implementation to a production quality compiler, such as Clang/LLVM, and
also evaluate our approach on more applications and more diverse platforms.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-826432). The OpenMP language extension work was sup-
ported by the U.S. Dept. of Energy, Office of Science, Advanced Scientific Computing
Research. The compiler and runtime work were supported by LLNL-LDRD 21-ERD-
018.

Artifact Availability Statement

Summary of the Experiments Reported: We ran Smith Waterman algorithm on
LLNL’s Corona and Pascal supercomputer. The detailed software configurations
are given in the experiment section of the paper.

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hardware artifacts.

Data Artifact Availability: All author-created data artifacts are maintained in a
public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-created or other-
wise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://doi.org/10.5281/zenodo.5706501

References

1. Ansel, J., et al.: OpenTuner: an extensible framework for program autotuning. In:
Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, pp. 303–316 (2014)

2. Ashouri, A.H., Killian, W., Cavazos, J., Palermo, G., Silvano, C.: A survey on
compiler autotuning using machine learning. ACM Comput. Surv. (CSUR) 51(5),
1–42 (2018)

3. Bari, M.A.S., et al.: ARCS: adaptive runtime configuration selection for power-
constrained OpenMP applications. In: 2016 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 461–470, September 2016. https://doi.org/
10.1109/CLUSTER.2016.39

4. Beckingsale, D., Pearce, O., Laguna, I., Gamblin, T.: Apollo: reusable models for
fast, dynamic tuning of input-dependent code. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 307–316. IEEE (2017)

5. Chen, C., Chame, J., Hall, M.: CHiLL: a framework for composing high-level loop
transformations. Technical report, Citeseer (2008)

https://doi.org/10.5281/zenodo.5706501
https://doi.org/10.1109/CLUSTER.2016.39
https://doi.org/10.1109/CLUSTER.2016.39

68 C. Liao et al.

6. Chen, R.S., Hollingsworth, J.K.: ANGEL: a hierarchical approach to multi-
objective online auto-tuning. In: Proceedings of the 5th International Workshop
on Runtime and Operating Systems for Supercomputers, pp. 1–8 (2015)

7. Culjak, I., Abram, D., Pribanic, T., Dzapo, H., Cifrek, M.: A brief introduction to
OpenCV. In: 2012 Proceedings of the 35th International Convention MIPRO, pp.
1725–1730. IEEE (2012)

8. Cummins, C., Petoumenos, P., Wang, Z., Leather, H.: End-to-end deep learning of
optimization heuristics. In: 2017 26th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pp. 219–232. IEEE (2017)

9. Fursin, G., et al.: Milepost GCC: machine learning enabled self-tuning compiler.
Int. J. Parallel Prog. 39(3), 296–327 (2011)

10. Grewe, D., Wang, Z., O’Boyle, M.F.: Portable mapping of data parallel programs
to OpenCL for heterogeneous systems. In: Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pp. 1–
10. IEEE (2013)

11. Hayashi, A., Ishizaki, K., Koblents, G., Sarkar, V.: Machine-learning-based perfor-
mance heuristics for runtime CPU/GPU selection. In: Proceedings of the Principles
and Practices of Programming on the Java Platform, pp. 27–36 (2015)

12. Hornung, R.D., Keasler, J.A.: The RAJA portability layer: overview and status
(2014)

13. Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-based OpenMP 3.0
research compiler supporting multiple runtime libraries. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol.
6132, pp. 15–28. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13217-9 2

14. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-source outlining
to support whole program empirical optimization. In: Gao, G.R., Pollock, L.L.,
Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 308–322. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13374-9 21

15. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early experiences
with the OpenMP accelerator model. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 7

16. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 45–55. IEEE (2009)

17. Nugteren, C., Codreanu, V.: CLTune: a generic auto-tuner for OpenCL kernels.
In: 2015 IEEE 9th International Symposium on Embedded Multicore/Many-Core
Systems-on-Chip, pp. 195–202. IEEE (2015)

18. OpenMP Architecture Review Board: OpenMP Application Programming
Interface 5.0, November 2018. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

19. OpenMP Architecture Review Board: OpenMP Application Programming
Interface 5.1, November 2020. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf

20. Pennycook, S.J., Sewall, J.D., Hammond, J.R.: Evaluating the impact of pro-
posed OpenMP 5.0 features on performance, portability and productivity. In: 2018
IEEE/ACM International Workshop on Performance, Portability and Productiv-
ity in HPC (P3HPC), pp. 37–46, November 2018. https://doi.org/10.1109/P3HPC.
2018.00007

https://doi.org/10.1007/978-3-642-13217-9_2
https://doi.org/10.1007/978-3-642-13217-9_2
https://doi.org/10.1007/978-3-642-13374-9_21
https://doi.org/10.1007/978-3-642-40698-0_7
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1109/P3HPC.2018.00007
https://doi.org/10.1109/P3HPC.2018.00007

Extending OpenMP for Machine Learning-Driven Adaptation 69

21. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In:
Cetus Users and Compiler Infrastructure Workshop, in Conjunction with PACT,
vol. 2011, p. 1. Citeseer (2011)

22. Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subse-
quences. J. Mol. Biol. 147(1), 195–197 (1981)

23. Sreenivasan, V., Javali, R., Hall, M., Balaprakash, P., Scogland, T.R.W., de Supin-
ski, B.R.: A framework for enabling OpenMP autotuning. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 50–60.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 4

24. Tapus, C., Chung, I.H., Hollingsworth, J.K.: Active harmony: towards automated
performance tuning. In: Proceedings of the 2002 ACM/IEEE Conference on Super-
computing, SC 2002, pp. 1–11. IEEE Computer Society Press, Washington, DC
(2002)

25. Wang, Z., O’Boyle, M.: Machine learning in compiler optimization. Proc. IEEE
106(11), 1879–1901 (2018)

26. Wood, C., et al.: Artemis: automatic runtime tuning of parallel execution parame-
ters using machine learning. In: Chamberlain, B.L., Varbanescu, A.-L., Ltaief, H.,
Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12728, pp. 453–472.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78713-4 24

27. Yan, Y., Wang, A., Liao, C., Scogland, T.R.W., de Supinski, B.R.: Extending
OpenMP Metadirective semantics for runtime adaptation. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 201–
214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8 14

28. Yi, Q., Seymour, K., You, H., Vuduc, R., Quinlan, D.: POET: parameterized
optimizations for empirical tuning. In: 2007 IEEE International Parallel and Dis-
tributed Processing Symposium, pp. 1–8. IEEE (2007)

https://doi.org/10.1007/978-3-030-28596-8_4
https://doi.org/10.1007/978-3-030-78713-4_24
https://doi.org/10.1007/978-3-030-28596-8_14

	Extending OpenMP for Machine Learning-Driven Adaptation
	1 Introduction
	2 A Motivating Example
	3 A Vision
	4 The declare adaptation Directive
	4.1 Syntax and Semantics of declare adaptation
	4.2 Examples Using metadirective

	5 Implementation
	5.1 Compiler Support
	5.2 Runtime Support

	6 Evaluation
	6.1 Software and Hardware Configurations
	6.2 Performance Results
	6.3 Accuracy of Prediction Models
	6.4 Overhead Analysis

	7 Related Work
	8 Conclusion
	References

