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Abstract. High-performance computing (HPC) is a major driver accel-
erating scientific research and discovery, from quantum simulations to
medical therapeutics. While the increasing availability of HPC resources
is in many cases pivotal to successful science, even the largest collabora-
tions lack the computational expertise required for maximal exploitation
of current hardware capabilities. The need to maintain multiple platform-
specific codebases further complicates matters, potentially adding con-
straints on machines that can be utilized. Fortunately, numerous pro-
gramming models are under development that aim to facilitate portable
codes for heterogeneous computing. One in particular is SYCL, an open
standard, C++-based single-source programming paradigm. Among the
new features available in the most recent specification, SYCL 2020, is
interoperability, a mechanism through which applications and third-
party libraries coordinate sharing data and execute collaboratively. In
this paper, we leverage the SYCL programming model to demonstrate
cross-platform performance portability across heterogeneous resources.
We detail our NVIDIA and AMD random number generator extensions
to the oneMKL open-source interfaces library. Performance portability is
measured relative to platform-specific baseline applications executed on
four major hardware platforms using two different compilers supporting
SYCL. The utility of our extensions are exemplified in a real-world set-
ting via a high-energy physics simulation application. We show the per-
formance of implementations that capitalize on SYCL interoperability
are at par with native implementations, attesting to the cross-platform
performance portability of a SYCL-based approach to scientific codes.
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1 Introduction

The proliferation of heterogeneous platforms in high performance computing
(HPC) is providing scientists and researchers opportunities to solve some of the
world’s most important and complex problems. Coalescing central processing
units (CPU), co-processors, graphics processing units (GPU) and other hardware
accelerators with high-throughput inter-node networking capabilities has driven
science and artificial intelligence through insurmountable computational power.
Industry continues to innovate in the design and development of increasingly
performant architectures and platforms, with each vendor typically commer-
cializing a myriad of proprietary libraries optimized for their specific hardware.
What this means for physicists and other domain scientists is that their codes
need to be translated, or ported, to multiple languages, or adapted to some spe-
cific programming model for best performance. While this could be a useful and
instructive exercise for some, many are often burdened by their limited numbers
of developers that can develop such codes. Fortunately, as a result of the numer-
ous architectures and platforms, collaborative groups within academia, national
laboratories and even industry are developing portability layers atop common
languages that aim to target a variety of vendor hardware. Such examples include
Kokkos [21] (Sandia National Laboratory, USA), RAJA [25] (Lawrence Liver-
more National Laboratory, USA) and SYCL [12] (Khronos Group).

Mathematical libraries are crucial to the development of scientific codes. For
instance, the use of random numbers in scientific applications, in particular high
energy physics (HEP) software, is almost ubiquitous [26]. For example, HEP
experiments typically have a number of steps that are required as part of their
Monte Carlo (MC) production: event generation, simulation, digitization and
reconstruction. In the first step, an MC event generator [17] produces the out-
going particles and their four-vectors given some physical process. Here, random
numbers are used, e.g., to sample initial state kinematics and evaluate cross sec-
tions. Simulation software, e.g., Geant4 [15] and FastCaloSim [20,31] from the
ATLAS Experiment [14], require large quantities of random numbers for sam-
pling particle energies and secondary production kinematics, and digitization
requires detector readout emulation, among others. With the rise of machine
learning, random number production is required even at the analysis level [22].

1.1 Contribution

The focus of this paper is to evaluate the cross-platform performance portabil-
ity of SYCL’s interoperability functionality using various closed-source vendor
random number generation APIs within a single library, and analyze the perfor-
mance of our implementation in both artificial and real-world applications.

To achieve this, we have:

– integrated AMD and NVIDIA random number generators (RNG) within the
oneMKL open-source interfaces library by leveraging existing hipRAND and
cuRAND libraries, to target these HPC hardware from these vendors from a
single API via SYCL interoperability;
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– evaluated the performance portability of the API on Intel and AMD CPUs,
and Intel, AMD and NVIDIA GPUs to investigate the performance overhead
of the abstraction layer introduced by the SYCL API;

– integrated our RNG implementations into FastCaloSim to further investigate
the applicability of the proposed solution on an existing real-world applica-
tion for high-energy physics calorimeter simulations, which currently relies on
separate implementations based on vendor-dependent libraries; and

– analyzed the cross-platform performance portability by comparing the SYCL-
based implementation of FastCaloSim to the original C++-based and CUDA
codes, which use native vendor-dependent RNGs, to investigate possible per-
formance overheads associated with SYCL interoperability.

Our work utilizes Data Parallel C++ (DPC++) [6] and hipSYCL [16], two
different existing LLVM-based SYCL compilers, capable of providing plug-in
interfaces for CUDA and HIP support as part of SYCL 2020 features that enable
developers to target NVIDIA and AMD GPUs, respectively.

The rest of this paper is organized as follows. Section 2 discusses existing
parallel programming models and libraries providing functionalities used in sci-
entific applications, along with our proposed solution to target the cross-platform
portability issue. Section 3 briefly introduces the SYCL programming model used
in this work. In Sect. 4, we discuss more technically the aspects and differences
between the cuRAND and hipRAND APIs, and also detail the implementation
of our work. Benchmark applications are described in Sect. 5 and performance
portability in Sect. 6. The results of our studies are presented in Sect. 7. Lastly,
Sect. 8 summarizes our work and suggests potential extensions and improvements
for future developments.

2 Related Work

2.1 Parallel Programming Frameworks

Parallelism across a variety of hardware can be provided through a number
different parallel frameworks, each having a different approach and program-
ming style. Typically written in C or C++, each framework provides different
variations on the language, allowing programmers to specify the task parallel
patterns.

Introduced by Intel, Thread Building Blocks (TBB) [30] provides a C++-
based template library supporting parallel programming on multi-core proces-
sors. TBB only support parallelism on CPUs, hence, parallel applications depen-
dent on TBB cannot be directly ported to GPUs or any other accelerator-based
platform.

NVIDIA’s CUDA [9] API is a C/C++-based low-level parallel programming
framework exclusively for NVIDIA GPUs. Its support of C++-based template
meta programming features enables CUDA to provide performance portability
across various NVIDIA devices and architectures, however, its lack of portability
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across other vendor hardware can be a barrier for research groups with access
to non-NVIDIA resources.

OpenCL [33], from the Khronos Group, is an open-standard cross-platform
framework supported by various vendors and hardware platforms However, its
low-level C-based interface and lack of support by some vendors could hinder
the development of performance portability on various hardware. Also from the
Khronos Group is SYCL [12], an open-standard C++-based programming model
that facilitates the parallel programming on heterogeneous platforms. SYCL pro-
vides a single-source abstraction layer enabling developers to write both host-
side and kernel code in the same file. Employing C++-based template program-
ming, developers can leverage higher level programming features when writing
accelerator-enabled applications, having the ability to integrate the native accel-
eration API, when needed, by using the different interoperability interfaces pro-
vided.

The Kokkos [21] and RAJA [25] abstraction layers expose a set of C++-
based parallel patterns to facilitate operations such as parallel loop execution,
reorder, aggregation, tiling, loop partitioning and kernel transformation. They
provide C++-based portable APIs for users to alleviate the difficulty of writ-
ing specialized code for each system. The APIs can be mapped onto a specific
backend—including OpenMP, CUDA, and more recently SYCL—at runtime to
provide portability across various architectures.

2.2 Linear Algebra Libraries

There are several vendor-specific libraries which provide highly optimized linear
algebra routines for specific hardware platforms. The ARM Compute Library [13]
provides a set of optimized functions for linear algebra and machine learning opti-
mized for ARM devices. Intel provides MKL [5] for its linear algebra subroutines
for accelerating BLAS, LAPACK and RNG routines targeting Intel chips, and
NVIDIA provides a wide ecosystem of closed source libraries for linear algebra
operations, including cuBLAS [8] for BLAS routines, cuRAND [10] for RNG and
cuSPARSE [11] for sparse linear algebra. AMD offers a set of hipBLAS [1] and
hipRAND [2] libraries atop the ROCm platform, which provide linear algebra
routines for AMD GPUs. Each of these libraries is optimized specifically for par-
ticular hardware architectures, and therefore do not provide portability across
vendor hardware.

oneMKL [7] is an community-driven open-source interface library developed
using the SYCL programming model, providing linear algebra and RNG func-
tionalities used in various domains such as high-performance computing, artifi-
cial intelligence and other scientific domains. The front-end SYCL-based inter-
face could be mapped to the vendor-optimized backend implementations either
via direct SYCL kernel implementations or SYCL interoperability using built-in
vendor libraries to target various hardware backends. Currently, oneMKL sup-
ports BLAS interfaces with vendor-optimized backend implementations for Intel
GPU and CPU, CUDA GPUs and RNG interfaces which wrap the optimized
Intel routines targeting x86 architectures and Intel GPUs.
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2.3 The Proposed Approach

There are numerous highly-optimized libraries implemented for different device-
specific parallel frameworks targeting different hardware architectures and plat-
forms. Several parallel frameworks provide parallel models which hide the mem-
ory hierarchies and execution policies on different hardware. This can be due to
a lack of a common language to abstract away the memory and execution models
from various heterogeneous devices, hence, leaving cross-platform performance
portability of high-level applications a challenging issue and an active area of
research. Recent work in adopting SYCL [18,19,32] as the unifying programming
model has shown to be a viable approach for developing cross-platform perfor-
mance portable solutions targeting various hardware architectures while sharing
the same interface. More specifically, SYCL interoperability with built-in kernels
enables vendors to use a common unifying interface, to “glue-in” their optimized
hardware-specific libraries.

In this paper, we leverage the SYCL programming model and interoperability
to enable cross-platform performance portable random number generator target-
ing major HPC hardware, including NVIDIA and AMD GPUs. The proposed
solution has been integrated into the oneMKL open-source interfaces library as
additional backends targeting these vendors, extending the library’s portabil-
ity and offering nearly native performance. The applicability of the proposed
approach was further studied in a high-energy physics calorimeter simulation
software to evaluate the performance of the proposed abstraction method on a
real-world scientific application.

3 SYCL Overview

SYCL is an open-standard C++-based programming model that facilitates par-
allel programming on heterogeneous platforms. It provides a single source pro-
gramming model, enabling developers to write both host-side and kernel code
in the same file. Employing C++-based template programming, developers can
leverage higher-level programming features when developing accelerator-enabled
applications. Developers also have the ability to integrate the native acceleration
API, when needed, by using the different interoperability interfaces provided by
SYCL.

A SYCL application is structured in three code scopes that control the flow,
as well as the construction and lifetimes of the various objects used within it.

– Application scope: all code outside of a command group scope
– Command group scope: specifies a unit of work that is comprised of a kernel

function and data accessors
– Kernel scope: specifies a single kernel function to interface with native objects

and is executed on the device

To execute a SYCL kernel on an accelerator device, command groups containing
the kernel must be submitted to a SYCL queue. When a command group is
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submitted to a queue, the SYCL runtime system tracks data dependencies and
creates (expands) a new (existing) dependency graph—a directed acyclic graph
(DAG)—to orchestrate kernel executions. Once the dependency graph is created,
the correct ordering of kernel execution on any available device is guaranteed by
the SYCL runtime system via a set of rules defined for dependency checking1.

Interoperability is enabled via the aforementioned low-level APIs by facilitat-
ing the SYCL runtime system’s interaction with native objects for the supported
backends [12,23].

SYCL interoperating with existing native objects is supported by either
host task or interop task interfaces inside the command group scope. When
using the interop task interface, the SYCL runtime system injects a task into
the runtime DAG that will execute from the host, but ensures dependencies are
satisfied on the device. This allows code within a kernel scope to be written as
though it were running directly at the low-level API on the host, but produces
side-effects on the device, e.g., external API or library function calls.

There are several implementations of SYCL API available including Com-
puteCpp [3] that currently supports the SYCL 1.2.1 specification, DPC++ and
hipSYCL which incorporate SYCL 2020 features, such as unified shared memory
(USM), and triSYCL [24] which provides SYCL supports for FPGAs.

4 SYCL-Based RNG Implementations of NVIDIA
and AMD GPUs in oneMKL

4.1 Technical Aspects

The integration of third-party RNG backends within oneMKL depends primar-
ily on compiler support for (a) SYCL 2020 interoperability and (b) generating
the specific intermediate representation for a given architecture’s source code.
Hence, to enable RNG on NVIDIA and AMD GPUs, one requires SYCL com-
pilers supporting parallel thread (PTX) and Radeon Open Compute (ROCm)
execution instruction set architectures which are used in the CUDA and AMD
programming environment, respectively. At present, PTX support is available in
Intel’s open-source LLVM project, and the ROCm backend is supported by the
hipSYCL LLVM project.

The oneMKL interface library provides both buffer and USM API imple-
mentations for memory management. Buffers are encapsulating objects which
hide the details of pointer-based memory management. They provide a sim-
ple yet powerful way for the SYCL runtime system to handle data dependencies
between kernels, both on the host and device, when building the data-flow DAG.
The USM API gives a more traditional pointer-based approach, e.g., memory
allocations performed with malloc and malloc device, familiar to those accus-
tomed to C++ and CUDA. However, unlike buffers, the SYCL runtime system
cannot generate the data dependency graph from USM alone, and so it is the
user’s responsibility to ensure dependencies are met. The ability for SYCL to
1 This is not the case when using unified shared memory, as explained later.
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internally satisfy buffer-based data dependencies is beneficial in cases when quick
prototyping is, to first order, more important than optimizing. Figure 1 repre-
sents the architectural view of the cuRAND and hipRAND integration for each
scope in the SYCL programming model for both buffer-based approach and
USM-based approaches.

Fig. 1. Architectural view of device-specific RNG kernels integration in oneMKL for
both cuRAND and hipRAND on different scopes in SYCL programming model using
both buffer and USM approach.

The oneMKL library currently contains implementations for Philox- and
MRG-based generators for ×86 and Intel GPUs. In oneMKL, each engine class
comprises 36 high-level generate function templates—18 per buffer and USM
API—with template parameters to specify a distribution and output types. In
addition to having the ability to specify distribution properties, e.g., mean, stan-
dard deviation for Gaussian distributions, custom ranges on the generated num-
bers can also be specified. This is in sharp contrast to the lower level interfaces
provided by cuRAND or hipRAND; generation of random numbers is performed
using functions with fixed types, and there is no concept of a “range”, and it is
therefore left to the user to post-process the generated numbers. For example,
curandGenerateNormal will output a sequence of normally-distributed pseudo-
random numbers in [0, 1) and there is no API functionality to transform the
range. As such, native cuRAND and hipRAND support generation of strictly
positive-valued numbers.
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Lastly, whereas oneMKL provides copy-constructors and constructors for set-
ting seed initializer lists for multiple sequences, cuRAND and hipRAND do
not. The oneMKL library also supports inverse cumulative distribution function
(ICDF) methods for pseudorandom number generation, while such methods are
available only for quasirandom number generators in the cuRAND and hipRAND
API.

4.2 Native cuRAND and hipRAND flow

Generation of random numbers with cuRAND and hipRAND host APIs in native
applications typically has the following workflow:

1. the creation of a generator of a desired type;
2. setting generator options, e.g., seed, offset, etc.;
3. allocation of memory on the device using {cuda, hip}Malloc;
4. generation of the random numbers using a generation function, e.g.,

{cu, hip}randGenerate; and
5. clean up by calling the generator destructor

{cu, hip}randDestroyGenerator and {cuda, hip}Free.
In addition, a user may wish to use the generated numbers on the host, in which
case host memory must also be allocated and data transferred between devices.

4.3 Implementation of cuRAND and hipRAND in oneMKL

Our implementation of cuRAND and hipRAND libraries within oneMKL follows
closely the procedure outlined in Sect. 4.2. We also include additional range
transformation kernels for specifying the output sequence of random numbers,
a feature not available in the cuRAND and hipRAND APIs.

Each generator class comprises a native xrandGenerator t object, where
xrand could be either of curand or hiprand. Class constructors create the
generator via a native xrandCreateGenerator API call and sets the seed for
generation of the output sequence with xrandSetPseudoRandomGeneratorSeed;
due to limitations of the cuRAND and hipRAND host API, our implementa-
tion does not support copy-construction or seed initializer lists. Of the total 36
generate functions available in oneMKL, 20 are supported by our cuRAND
and hipRAND backends as the remaining 16 use ICDF methods (see Sect. 4.1).
Each generate function in the cuRAND and hipRAND backends have the same
signature as the corresponding ×86 and Intel GPU function to facilitate “pointer-
to-implementation”.

The buffer and USM API generate function implementations are nearly
identical; access to the buffer pointer via a SYCL accessor is needed before
retrieving the native CUDA memory.
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1 virtual inline void generate(
2 const oneapi::mkl::rng::uniform <float , uniform_method :: standard >& distr ,
3 std:: int64_t n, cl::sycl::buffer <float , 1>& r) override {
4 queue_.submit ([&](cl:: sycl:: handler& cgh) {
5 auto acc = r.get_access <cl::sycl :: access::mode::read_write >(cgh);
6 cgh.codeplay_host_task ([=](cl::sycl:: interop_handle ih) {
7 auto r_ptr = reinterpret_cast <float*>(
8 ih.get_native_mem <cl::sycl:: backend ::cuda >(acc));
9 curandStatus_t status;

10 CURAND_CALL(curandGenerateUniform , status , engine_ , r_ptr , n);
11 cudaError_t err;
12 CUDA_CALL(cudaDeviceSynchronize , err);
13 });
14 });
15 range_transform_fp <float >(queue_ , distr.a(), distr.b(), n, r);
16 }

Listing 1.1. Example code calling functions from the cuRAND library within a SYCL
kernel using the buffer API.

1 template <typename T>
2 static inline void range_transform_fp(cl:: sycl::queue& queue , T a, T b,
3 std:: int64_t n,
4 cl::sycl::buffer <T, 1>& r) {
5 queue.submit ([&](cl:: sycl:: handler& cgh) {
6 auto acc =
7 r.template get_access <cl::sycl:: access::mode::read_write >(cgh);
8 cgh.parallel_for(cl:: sycl::range <1>(n), [=](cl::sycl::id <1> id) {
9 acc[id] = acc[id] * (b - a) + a;

10 });
11 });
12 }

Listing 1.2. Example code of transform function for cuRAND using the buffer API.
The function can be used to transform the range of the generated numbers. Its
dependencies are detected via the auto-generated runtime DAG graph from SYCL
accessors.

As shown in Fig. 1, cuRAND and hipRAND backend integration into the
oneMKL open-source interfaces library requires two kernels. The first kernel
makes the corresponding xrandGenerate third-party library function call, as per
the distribution function template parameter type; Listing 1.1 shows an example
kernel for the cuRAND backend using the buffer API. A second kernel is required
to adjust the range of the generated numbers, altering the output sequence as
required. As this is not a native functionality in the cuRAND and hipRAND
APIs, we implemented this it as a SYCL kernel. Listing 1.2 gives an example
of one such transformation kernel for floating-point data types using the buffer
API. It is hardware agnostic: the same code can be compiled for, and executed
on, all platforms for which there exists a SYCL compiler. In the command group
scope, an accessor is required for the buffer API to track the kernel dependency
and memory access within the kernel scope. In this case, the graph dependencies
between the two kernels are automatically detected by the SYCL runtime system
scheduling thread, tracking the data-flow based on the data access type, e.g.,
read, write, read write. The accessor has a read write access type and is
passed as an input with read write for in-situ updates to be made. This forces
the transformation kernel to depend on the SYCL interoperability kernel and
hence the kernels will be scheduled for execution in this order.
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The USM API does not require accessors in the command group scope, but
does take an additional argument for specifying dependent kernels for subsequent
calculations on the data outputted. The dependency is preserved by a direct
injection of the event object returned by the command group handler to the
existing dependency list.

Inside the kernel scope for both buffer and USM APIs, calls to the cuRAND
or hipRAND API are made from the host and, if using buffers, the accessor is
then reinterpreted as native memory—i.e., a raw pointer to be used for cuRAND
and hipRAND API calls. The random numbers are then generated by calling the
appropriate xrandGenerate as per the distribution function template parameter
type.

The application scope remains the same as the one proposed in the oneMKL
SYCL RNG interface for both buffer and USM API, enabling users to seamlessly
execute codes on AMD or NVIDIA GPUs with no code modification whatever.

5 Benchmark Applications

Two benchmark applications were used for performance portability stud-
ies, and are detailed below. The SYCL codes were compiled using the
sycl-nightly-20210330 tag of the Intel LLVM open-source DPC++ compiler
for targeting CUDA devices and hipSYCL v0.9.0 for AMD GPUs. The applica-
tions’ native counterparts were compiled with nvcc 10.2 and hipcc 4.0, respec-
tively, for NVIDIA and AMD targets. Calls to the high-resolution std::chronos
clock were bootstrapped at different points of program execution to measure the
execution time of different routines in the codes.

5.1 Random Number Generation Burner

The first application was designed as an artificial benchmark to stress the hard-
ware used in the experiments by generating a sequence of pseudorandom num-
bers of a given batch size using a specified API—i.e., CUDA, HIP or SYCL—and
platform. We use this simple test as the primary measure of our oneMKL RNG
implementations. Having a single application to benchmark all available plat-
forms has a number of advantages, namely, ensuring ease of consistency among
the separate target platform APIs, e.g., all memory allocations, and data trans-
fers between host and devices are performed analogously for each API.

The workflow of this benchmark application can be outlined as follows:

1. target platform, API and generator type are chosen at compile-time, specified
by ifdef directives;

2. target distribution from which to sample, number of iterations and cardinality
of the output pseudorandom sequence are specified at runtime; for SYCL
targets, buffer or USM API is also specified;
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3. host and device memory are allocated, and the generator is constructed and
initialized; for SYCL targets, a distribution object is also created as per Step
2 above;

4. pseudorandom output sequence is generated and its range is transformed; and
5. the output sequence is copied from device memory to host memory.

5.2 FastCaloSim

Our second benchmark is a real-world application that aims to solve a
real-world problem: rapid production of sufficiently accurate high-energy col-
lider physics simulations2. The parameterized calorimeter simulation software,
FastCaloSim [31], was developed by the ATLAS Experiment [14] for this rea-
son. The primary ATLAS detector comprises three sub-detectors; from inner
radii outward, a silicon-based inner tracking detector; two types of calorimeter
technologies consisting of liquid argon or scintillating tiles for measurements of
traversing particles’ energies; and at the periphery a muon spectrometer. Among
these three sub-detectors, the simulation of the calorimeters are the most CPU-
intensive due to the complex showering—i.e. production of additional particles
in particle-material interactions—and stopping of highly energetic particles, pre-
dominantly in the liquid argon calorimeters.

The original FastCaloSim codes, written in standard C++, were ported to
CUDA and Kokkos [20], and subsequently to SYCL; the three ports were written
to be as similar as possible in their kernels and program flow so as to permit
comparisons between their execution and runtimes. The SYCL port, largely
inspired in its design by the CUDA version, permits execution on AMD, Intel
and NVIDIA hardware, whereas the CUDA port permits execution on NVIDIA
GPUs exclusively.

We briefly describe the core functionality of FastCaloSim here; for more
details on the C++ codes and CUDA port, the reader is referred respectively
to [31] and [20]. The detector geometry includes nearly 190,000 detecting ele-
ments, O(10) MB, each of which can record a fraction of a traversing particle’s
energy. Various parameterization inputs, O(1) GB, are used for different parti-
cles’ energy and shower shapes, derived from Geant4 simulations. The detector
geometry, about 20 MB of data, is loaded onto the GPU; due to the large file size
of the parameterization inputs, only those data required—based on the particle
type and kinematics—are transferred during runtime.

The number of calorimeter hits—i.e. energy deposited by interacting par-
ticles in the sensitive elements—depends largely on the physics process being
simulated. For a given physics event, the number of secondary particles pro-
duced can range from one to O(104), depending on the incident parent particle
type, energy and location in the calorimeter. Three uniformly-distributed pseu-
dorandom numbers are required for each hit to sample from the relevant energy
distribution, with the minimum set to 200,000 (approximately one per calorime-
ter cell).

2 Use of proprietary data that cannot be made publicly available.
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We consider two different simulation scenarios in our performance measure-
ments. The first is an input sample of 103 single-electron events, where each
electron carries a kinetic energy of 65 GeV and traverses a small angular region
of the calorimeters. An average number of hits from this sample is typically
4000–6500, leading to 12000–19500 random numbers per event. Because only a
single particle type is used within a limited region of the detector, this scenario
requires only several energy and shower shape parameterizations to be loaded
onto the GPU during runtime. The second, more realistic, scenario uses an input
of 500 top quark pair (tt̄) events. In this simulation, the number of calorime-
ter hits is roughly 600–800 times greater than the single-electron case, requiring
O(107) random numbers in total be generated during simulation. Also, a range
of secondary particles are produced with various energies that traverse a range of
angular regions of the detector. As such, tt̄ simulations require data from 20–30
separate parameterizations that need to be loaded to the GPU during runtime,
and thus result in a significant increases in time-to-solution on both CPUs and
GPUs.

6 Performance Evaluation

6.1 Performance Portability Metrics

There are numerous definitions of performance portability, e.g., [21,27,28,34].
In this paper, we adopt the definition from [29]: the performance portability P
of an application a that solves a problem p correctly on all platforms in a given
set H is given by,

P(a, p;H) =

⎧
⎨

⎩

|H|
∑

i∈H
1

ei(a,p)

if i is supported ∀i ∈ H

0 otherwise
, (1)

where ei(a, p) is the performance efficiency of a solving p on i ∈ H.
We introduce an application efficiency metric, being the ratio between the time-
to-solution (TTS) measured using our portable, vendor-agnostic (VA) solution
to the native, vendor-specific (VS) performance,

VAVS ≡ TTSportable

TTSnative
. (2)

The VAVS metric is useful to identify if runtime overheads are introduced in
portability layers which otherwise do not exist in a native API optimized for a
specific platform.

6.2 Hardware Specifications

We evaluate performance portability using a variety of AMD, Intel and NVIDIA
platforms, ranging from consumer-grade to high-end hardware. This large set
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of platforms can be subdivided into CPUs and GPUs, as well as the union of
the two, and also helps determine the regime in which the use of GPUs is more
efficient for solving a given problem, if one exists.

The Intel x86-based platform tested was a Core i7-10875, consisting of 8 phys-
ical CPU cores and 16 threads, a base (maximum) clock frequency of 2.30 (5.10)
GHz. To benchmark native oneMKL GPU performance, we use the Intel(R)
UHD Graphics 630, an integrated GPU (iGPU) that shares the same silicon die
as the host CPU described previously. This iGPU has 24 compute units (CU) and
base (maximum) frequency of 350 (1200) MHz. Through Intel’s unified memory
architecture (UMA), the iGPU has a theoretical maximum memory of 24.98 GB,
i.e., the total available RAM on the host. The main advantage of UMA is that
it enables zero-copy buffer transfers; no buffer copy between the host and iGPU
is required since physical memory is shared between them.

We evaluated SYCL interoperability for AMD and NVIDIA GPUs using an
MSI Radeon RX Vega 56 and NVIDIA A100. The Radeon is hosted by an Intel
Xeon Gold 5220 36-core processor with a base (maximum) clock of 2.2 (3.9) GHz.
An AMD CPU and NVIDIA GPU were evaluated using a DGX A100 node,
comprising an AMD Rome 7742 64-core processor with a base (maximum) clock
frequency of 2.25 (3.4) GHz. The A100 is NVIDIA’s latest high-end GPU, with
6912 CUDA cores and peak FP32 (FP64) of 19.5 (9.7) TF. Note that 16 CPU
cores and a single A100 of the DGX were used for these studies.

6.3 Software Specifications

The software used for these studies can be found in Table 1. As our work is
relevant only for Linux operating systems (OS), all test machines run some
flavor of Linux that supports the underlying hardware and software required for
our studies. In this table, DPC++ refers to the Intel LLVM compiler nightly tag
from March 3, 2021; separate builds of the compiler were used for targeting ×86
platforms and NVIDIA GPUs. The HIP compiler and hipSYCL are based on
Clang 12.0.0, and were installed from pre-compiled binaries available from [4].

Our implementations of SYCL-based cuRAND and hipRAND RNGs within
oneMKL were compiled into separate libraries for each platform using the respec-
tive compiler for the targeted vendor.

7 Results

The RNG burner application was run 100 iterations for each batch size for sta-
tistically meaningful measurements. Each test shown in the following was per-
formed with the Philo× 4 × 32 × 10 generator to produce uniformly-distributed
FP32 pseudorandom numbers in batches between 1–108, as per the require-
ments of our FastCaloSim benchmark application. Unless otherwise specified,
all measurements are of the total execution time, which includes generator con-
struction, memory allocation, host-to-device data transfers, generation and post-
processing (i.e., range transformations), synchronisation and finally device-to-
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Table 1. Driver and software versions for each platform considered in these studies.

Platform Driver version OS and Kernel Compiler RNG library

AMD Rome 7742 - OpenSUSE 15.0 GNU 8.2.0 CLHEP 2.3.4.6

4.12 DPC++ oneMKL

Intel Core i7-1080H - Ubuntu 20.04 GNU 8.4.0 CLHEP 2.3.4.6

5.8.18 DPC++ oneMKL

Intel UHD Graphics 21.11.19310 Ubuntu 20.04 DPC++ oneMKL

5.8.18

Radeon RX Vega 56 20.50 CentOS 7 HIP 4.0.0 hipRAND 4.0.0

3.10.0 hipSYCL 0.9.0 oneMKL

NVIDIA A100 450.102.04 OpenSUSE 15.0 CUDA 10.2.89 cuRAND 10.2.89

4.12 DPC++ oneMKL

host data transfer times, as determined by the high-resolution std::chronos
clock.

Shown in Fig. 2 are plots of the total FP32 generation time for the two
x86-based CPUs, as well the integrated GPU, using Philox-based generator for
both buffer and USM APIs. In general, little overhead is introduced when using
the USM API versus buffers. This is a promising result and, to the authors’
knowledge, the first benchmark of the different APIs; it is often more productive
for developers to port existing codes to SYCL using USM as this approach is
often more familiar to C++ programmers who use dynamic memory allocations
in their applications.

Figure 3 shows separately the RNG burner application results between the
buffer and USM APIs, and their native counterparts. Again, we observe statisti-
cally equivalent performance using either buffers or USM, with a slight overhead
at large batch sizes DPC++ USM and the A100 GPU. More importantly, how-
ever, is the level of performance achieved by our cross-platform RNG implemen-
tation; TTS for both the cuRAND and hipRAND SYCL backend implementa-
tions are on par with their native application.

One immediate point of discussion are the differences in TTS between
the Radeon oneMKL-based generator application and native application: the
oneMKL version shows slightly better performance for small batch sizes. This
is understood as being a result of the optimizations within the hipRAND run-
time system for its ROCm back-end. Due to the data dependencies among the
three kernels—seeding, generation and post-processing—in the test application,
call-backs are issued to signal task completion. These call-backs introduce laten-
cies into the application execution that are significant with respect to small-
scale kernels. The nearly callback-free hipRAND runtime system therefore offers
higher task throughput. As the batch sizes increase to 108, the difference in TTS
becomes negligible.

To further investigate this discrepancy, we separate each kernel’s duration for
both the oneMKL and native cuRAND applications; due to technical and soft-
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Fig. 2. Results from the RNG burner test application using the buffer API (a) and
USM API (b) for Philo× 4× 32× 10 generation of uniformly-distributed FP32 pseu-
dorandom numbers.

ware limitations, we were unable to profile the Radeon GPU in the following way.
Three kernels in total are profiled: generator seeding, generation and our trans-
formation kernel that post-processes the output sequence to the defined range.
Figure 4 shows both the time of each kernel executed and relative occupancy in
the RNG burner application using data collected from NVIDIA Nsight Compute
2020.2.1. Comparison between each kernel duration is statistically compatible
over a series of ten runs. It can therefore conclude that the discrepancies in Fig. 3
between the Radeon oneMKL and native applications can be attributed to differ-
ences between the applications themselves, and not fundamentally to the native
library kernel executions. Shown also in Fig. 4(b) are the relative occupancy of
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Fig. 3. Comparisons of the RNG burner test application execution time between SYCL
buffer and USM APIs, and their native counterparts running on the MSI Radeon RX
Vega 56 (a) and NVIDIA A100 (b). The Philo× 4× 32× 10 generator was used to
produce uniformly-distributed FP32 pseudorandom numbers of different batch sizes.

each kernel for the batch sizes generated. Both cuRAND kernels—seeding and
generation—are in all cases statistically equivalent between oneMKL and the
native application. It can be seen that, despite the nearly identical kernel dura-
tion, the buffer and USM API occupancies have a large increase between 102 and
104 in batch size compared to the native occupancy. This is because when not
explicitly specified, the SYCL runtime system optimizes the number of required
block size and threads-per-block, whereas in CUDA these values must be deter-
mined by the developer as per the hardware specifications. While in the native
version the thread-per-block size is fixed to 256, the SYCL kernel runtime chose



38 V. R. Pascuzzi and M. Goli

Fig. 4. Per-kernel total execution time (a) and relative occupancy (b) executed on the
NVIDIA A100 with the Philo× 4× 32× 10 generator producing uniformly-distributed
pseudorandom sequences of various batch sizes.

1024 for the NVIDIA A100 GPU. This resulted in the observed differences in
kernel occupancy in the native application, as opposed to the SYCL codes for
the transform kernel which handle such intricacies at the device level.

Table 2 reports the calculated performance portability of our oneMKL RNG
backends using the VAVS metric introduced in Sect. 6. Note that VAVS values
closer to unity are representative of greater performance, while smaller values are
indicative of poor performance. The data used in calculating the various values
of P are taken from Fig. 4.



Performance Portable RNG with SYCL Interoperability 39

Table 2. Calculated performance portability using the VAVS metric.

H P buffer P USM P Mean (buffer+USM)

{Vega 56, A100} 1.070 0.393 0.575

{Vega 56} 0.974 1.076 1.022

{A100} 1.186 0.240 0.400

As reported in Table 2, the performance portability measure in a number
of cases is greater than unity. This result is consistent with the performance
improvement over the native version observed in Fig. 3 for the buffer API on both
AMD and NVIDIA GPUs. Although the interoperability kernel time is the same
in both native and SYCL versions (see Fig. 4(a)), the buffer API leverages the
SYCL runtime system DAG mechanism and hipSYCL optimizations, improving
throughput relative to the native application, particularly for small batch sizes.
On the other hand, the DPC++ runtime system scheduler does not perform the
same with USM as it does when using buffers. Therefore, the performance drop
observed in the USM version in Fig. 3 leads to a reduction in the performance
portability metric by ∼%40. This behaviour is not observed with hipSYCL.

As a demonstration of cross-platform performance portability in a real-world
application, we show in Fig. 5 the average runtime of the FastCaloSim code
implementing the proposed SYCL RNG solution across four platforms. Both
SYCL and native implementations are shown for each platform, with the excep-
tion of the Radeon GPU as no native HIP-based port exists. Ten single-electron
and tt̄ simulations were run on each platform for reliability of measurements.
Where applicable, all measurements made in this study are consistent with those
in [20]. The left plot in the figure pertains to the 10,000 single-electron events
and the right to the 500 tt̄ events (see Sect. 5.2).

In the simpler scenario of single electrons, an approximately 80% reduction
in processing time is required on the Vega or A100 GPUs compared to the
CPUs considered. However, the overall insufficient use of the full compute capa-
bility of the GPUs in this application is made apparent in the more complex
topology of tt̄ events. This inefficiency is due primarily to the initial strategy
in porting FastCaloSim to GPUs; while maximum intra-event parallelism—i.e.
parallel processing of individual hits within a given event—is met, inter-event
parallelism is not implemented in this version of the codes. Future work on the
FastCaloSim ports includes event batching to better utilize GPU compute but
is beyond the scope of this paper. While the contribution of RNG to the overall
runtime of FastCaloSim is small, to investigate SYCL as a portability solution
for these codes nevertheless required a SYCL RNG to do so. With cuRAND and
hipRAND support added to oneMKL, we can run this prototype application
on all major vendors’ platforms with no code modifications whatever, and with
comparable performance to native codes.
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Fig. 5. Total runtimes of FastCaloSim across a range of platforms simulating single-
electron events (a) and tt̄ events (b).

8 Conclusions and Future Work

In this paper, we detailed our implementations of cuRAND and hipRAND back-
ends into oneMKL, and studied their cross-platform performance portability in
two SYCL-based applications using major high performance computing hard-
ware, including x86-based CPUs from AMD and Intel, and AMD, NVIDIA and
Intel GPUs. We have shown that utilizing SYCL interoperability enables perfor-
mance portability of highly-optimized platform-dependent libraries across dif-
ferent hardware architectures. The performance evaluation of our RNG codes
carried out in this paper demonstrates little overhead when exploiting vendor-
optimized native libraries through interoperability methods.
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The applicability of the proposed solution has been evaluated in a param-
eterized calorimeter simulation software, FastCaloSim, a real-world application
consisting of thousands of lines of code and containing custom kernels in different
languages and vendor-dependent libraries. The interfaces provided by oneMKL
enabled the seamless integration of SYCL RNGs into FastCaloSim with no code
modification across the evaluated platforms. The SYCL 2020 interoperability
functionality enabled custom kernels and vendor-dependent library integration
to be abstracted out from the application, improving the maintainability of the
application and reducing the source lines of code. The application yields compa-
rable performance with the native approach on different architectures. Whereas
the ISO C++ version of FastCaloSim had two separate codebases for x86 archi-
tectures and NVIDIA GPUs, the work presented here has enabled event pro-
cessing on a variety of major vendor hardware from a single SYCL entry point.
Hence, the SYCL RNG based integration facilitates the code maintainability by
reducing the FastCaloSim code size without introducing any significant perfor-
mance overhead.

While we have demonstrated that SYCL interoperability leads to reusabil-
ity of existing optimized vendor-dependent libraries and enables cross-platform
portability, devices without vendor libraries cannot be supported. For example,
no RNG kernels exist yet for ARM Mali devices. One possible solution would
be to provide pure SYCL kernel implementations for common RNG engines.
The kernel could then be compiled for any device for which a SYCL-supported
compiler exists. Moreover, in scientific applications and workflows where repro-
ducibility is essential, kernels written entirely in the SYCL programming model
can offer improved reliability across architectures and platforms. Although the
portability of such an RNG kernel would be guaranteed, performance remains
challenging and likely would necessitate mechanisms such as tuning of kernels
for different architectures.

Finally, extending performance portability to include also productivity and
reproducibility in an objective way would general scientific applications and
workflows aiming for architecture and platform independence.
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Data Availability Statement

Summary of the Experiments Reported

We ran two benchmark applications on a variety of hardware:
1. Intel Core i7-1080H, Intel UHD Graphics 630 (Razer Blade Studio Edition

2020) 2. AMD Rome 7742, NVIDIA A100 (DGX node from NERSC) 3. MSI
Radeon RX Vega 56 (Private Intel Xeon Gold 5220 node).

Both applications are freely available (Github link below) but inputs to
FastCaloSim are proprietary data of the ATLAS Experiment that we unfor-
tunately cannot shared publicly (special access may be granted upon request).
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We used Intel LLVM sycl-nightly/20210330, nvcc 10.2 and hipSYCL 0.9.0
for the various targets. oneMKL is used for all RNG but the hipRAND back-
end is not publicly available due to DOE restrictions on software developed by
employees. We are happy to make arrangements for this to be made available.

Artifact Availability

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: All author-created hardware artifacts are main-
tained in a public repository under an OSI-approved license.

Data Artifact Availability: Some author-created data artifacts are NOT main-
tained in a public repository or are NOT available under an OSI-approved
license.

Proprietary Artifacts: There are associated proprietary artifacts that are not
created by the authors. Some author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/oneapi-src/oneMKL
https://github.com/vrpascuzzi/FastCaloSim-GPU/tree/benchmarking
https://github.com/vrpascuzzi/benchprof/tree/sc21

Baseline Experimental Setup, and Modifications Made for the Paper

Relevant hardware details: DGX A100, Intel Core i7-1080H, Intel UHD Graphics
630, MSI Radeon RX Vega 56, NVIDIA A100, Intel Xeon Gold 5220

Operating systems and versions: Ubuntu 20.04 with kernel 5.8.18, OpenSUSE
15.0 with kernel 4.12, CentOS7 with kernel 3.10

Compilers and versions: GNU 8.2, nvcc 10.2, hipSCYL 0.9.0, Clang 12.0.0

Libraries and versions: oneMKL v0.1.0, CUDA 10.2.89, hip 4.0

Key algorithms: Philo × 4 × 32 × 10, MRG32k3a

Input datasets and versions: ATLAS FastCaloSim single-electron and top-
antitop quark n-tuple inputs

Paper Modifications: We added to the oneMKL open-source interfaces library
random number generator (RNG) support for AMD (hipRAND) and NVIDIA
(cuRAND) GPUS through SYCL interoperability. This provides a single entry
point for executing on a wide range of available HPC systems scientific and other
codes which utilize RNGs.
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Output from scripts that gathers execution environment information

A number of systems were used for these studies. As these studies
were performed several months ago, and due to access
privileges and updates, the hardware and software
specifications are no longer valid. For example, the DGX node
was a NERSC Perlmutter early access machine offered to
Pascuzzi, and is no longer online.

↪→

↪→

↪→

↪→

↪→

For the most accurate details, please see "Baseline experimental
setup, and modifications made for the paper" section above.↪→

Artifact Evaluation

Verification and validation studies: Each experiment was run hundreds of times
over the course of several weeks to validate day-to-day and operational fluctua-
tions of the systems used for benchmarking.

Accuracy and precision of timings: Each experiment was run hundreds of times
over the course of several weeks to validate day-to-day and operational fluctua-
tions of the systems used for benchmarking.

Used manufactured solutions or spectral properties: N/A

Quantified the sensitivity of results to initial conditions and/or parameters of the
computational environment: Each experiment was run hundreds of times over
the course of several weeks to validate day-to-day and operational fluctuations
of the systems used for benchmarking.
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