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Preface

In today’s high-performance computing (HPC) environment, systems with
heterogeneous node architectures providing multiple levels of parallelism are
omnipresent. Architectures are evolving rapidly as we speak. Nodes in a future exascale
system may also consist of GPU-like accelerators combined with other accelerators
to provide improved performance for a wider variety of application kernels. The
accelerators have become more usable in recent years, often providing high bandwidth
memory with sufficient capacity to fit more of a scientific application’s working set,
hardware-managed caches, and the ability to implicitly access CPU data without the
need for explicit data management. As a result, scientific software developers are being
offered a rich platform to exploit the multiple levels of parallelism in their applications.

With increasing complexity to exploit the maximum available parallelism, the
importance of programming approaches that can provide performance, scalability, and
portability is increasing. Historically, the favored portable approaches, and sole focus of
our earlier workshops, were OpenMP offloading and OpenACC. Today, we recognize
there are other options and have extended the workshop to include use of standard
Fortran/C++, SYCL, DPC++, Kokkos, and Raja among several others that can provide
scalable as well as portable parallel solutions without compromising on performance.
It is highly desirable that programmers are able to keep a single code base to help ease
maintenance and avoid the need to debug multiple versions of the same code.

These proceedings contain the papers accepted for presentation at the 8th Workshop
on Accelerator Programming using Directives (WACCPD 2021)—https://www.wac
cpd.org. WACCPD is one of the major forums for bringing together users, developers,
and the software and tools community to share knowledge and experiences when
programming emerging complex parallel computing systems.

As in previous years, the workshop highlighted improvements to the state of the art
through the accepted papers and prompted discussion through keynotes that drew the
community’s attention to key areas that will facilitate the transition to accelerator-based
HPC. Theworkshop aimed to showcase all aspects of heterogeneous systems, discussing
innovative high-level language features, lessons learnedwhile using directives tomigrate
scientific legacy code to parallel processors, compilation, and runtime scheduling
techniques, among others.

The WACCPD 2021 workshop received 11 submissions out of which seven were
accepted to be presented at the workshop and published in these proceedings. The
Program Committee of the workshop comprised 24 members spanning universities,
national laboratories, and industries. Each paper received a minimum of three single-
blind reviews. A new role of “Proceedings/Reproducibility Chair” was added to
further help with the reproducibility initiative. This role was ably filled by Ronnie
Chatterjee from Lawrence Berkeley National Laboratory. Similar to WACCPD 2020,
we encouraged all authors to add the Artifact Description (AD) to their submissions
and make their code and data publicly available (e.g. on GitHub, Zenodo, Code Ocean)
in support of the reproducibility initiative. As a further push, only papers with AD

https://www.waccpd.org
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were considered for the Best Paper Award. Of the seven accepted papers, two had
reproducibility information and these manuscripts are highlighted with an ‘artifacts
available’ logo in this book.

The program co-chairs invited Barbara Chapman from Hewlett Packard Enterprise
(HPE) to give a keynote address on “New Frontiers for Directives”. Barbara Chapman
was a Professor of Computer Science for over 20 years, performing research on parallel
programming interfaces and their implementation. Currently at HPE, she is defining
future directions for the HPE Cray Programming Environment but remains affiliated
with the Department of Computer Science and the Institute for Advanced Computational
Science at Stony Brook University, where her team is engaged in efforts to develop
community standards for parallel programming, including OpenMP, OpenACC, and
OpenSHMEM.

Mathew Colgrove from NVIDIA Corporation and Sunita Chandrasekarn from the
University of Delaware gave an invited talk titled “Introducing SPEChpc 2021”.Mathew
Colgrove is anNVIDIADevTech engineerworkingwith theNVHPCcompiler team.Mat
is also NVIDIA’s representative on SPEC’s CPU and HPG benchmarking committees.
As well as serving on SPEC’s Board of Directors, Mat holds several officer positions
including Release Manager for SPEC HPG and SPEC’s Vice-President of Operations.
Sunita Chandrasekaran is an Associate Professor with the Department of Computer and
Information Sciences at the University of Delaware, USA. She is also a computational
scientist with Brookhaven National Laboratory. She received her Ph.D. in 2012 on
Tools and Algorithms for High-Level Algorithm Mapping to FPGAs from the School
of Computer Science and Engineering, Nanyang Technological University, Singapore.

The workshop concluded with a panel on “Publicly-available directive test suites for
heterogeneous architectures” moderated by Christopher Daley from Lawrence Berkeley
National Laboratory. The panelists included

– Swaroop Pophale, Oak Ridge National Laboratory, USA
– Michael Kruse, Argonne National Laboratory, USA
– Brandon Cook, Lawrence Berkeley National Laboratory, USA
– Mathew Colgrove, NVIDIA Corporation, USA
– Rahulkumar Gayatri, Lawrence Berkeley National Laboratory, USA

Based on rigorous reviews and ranking scores of all papers reviewed, the following
paper won the Best Paper Award. The authors of the Best Paper Award also included
reproducibility results to their paper, which the WACCPD workshop organizers had
indicated as a criteria to be eligible to compete for the Best Paper Award.

– Miko Stulajter, Ronald Caplan, and Jon Linker from Predictive Science Inc.: “Can
Fortran’s ‘do concurrent’ Replace Directives for Accelerated Computing?”.

An honorable mention for Best Artifact Description/Artifact Evaluation was
presented to

– Kohei Fujita, Yuma Kikuchi, Tsuyoshi Ichimura, Muneo Hori, Lalith Maddegedara,
and Naonori Ueda from the University of Tokyo, Riken, and the Japan Agency for
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Marine-Earth Science and Technology: “GPU porting of scalable implicit solver with
Green’s function-based neural networks by OpenACC”.

These winners received prizes sponsored by NVIDIA Corporation.
Like last year, 2021 was (unfortunately) again a challenging year, as the world is

trying to recover from the devastating effects of the COVID-19 pandemic. Major events
around the world were canceled or scaled-down. Most computer conferences switched
to virtual or hybrid formats. To this end, Supercomputing 2021 was held in a hybrid
format for the first time. Similar to last year, WACCPD 2021 was again a fully virtual
workshop. Thanks to all of you that contributed to its success! Hopefully, we will be
able to meet in person again next time. Stay tuned!

December 2021 Sridutt Bhalachandra
Christopher Daley

Verónica Melesse Vergara
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Can Fortran’s ‘do concurrent’ Replace
Directives for Accelerated Computing?

Miko M. Stulajter(B) , Ronald M. Caplan ,
and Jon A. Linker

Predictive Science Inc.,
9990 Mesa Rim Road Suite 170,

San Diego, CA 92121, USA
{miko,caplanr,linkerj}@predsci.com

http://www.predsci.com

Abstract. Recently, there has been growing interest in using standard
language constructs (e.g. C++’s Parallel Algorithms and Fortran’s do

concurrent) for accelerated computing as an alternative to directive-
based APIs (e.g. OpenMP and OpenACC). These constructs have the
potential to be more portable, and some compilers already (or have
plans to) support such standards. Here, we look at the current capabil-
ities, portability, and performance of replacing directives with Fortran’s
do concurrent using a mini-app that currently implements OpenACC
for GPU-acceleration and OpenMP for multi-core CPU parallelism. We
replace as many directives as possible with do concurrent, testing various
configurations and compiler options within three major compilers: GNU’s
gfortran, NVIDIA’s nvfortran, and Intel’s ifort. We find that with the
right compiler versions and flags, many directives can be replaced without
loss of performance or portability, and, in the case of nvfortran, they can
all be replaced. We discuss limitations that may apply to more complicated
codes and future language additions that may mitigate them. The software
and Singularity/Apptainer containers are publicly provided to allow the
results to be reproduced.

Keywords: accelerated computing · OpenMP · OpenACC · do
concurrent · standard language parallelism

1 Introduction

OpenMP1 [11] and OpenACC2 [5] are popular directive-based APIs for paral-
lelizing code to run on multi-core CPUs and GPUs. For accelerated computing,
1 www.openmp.org.
2 www.openacc.org.

Supported by NSF awards AGS 202815 and ICER 1854790, and NASA grant
80NSSC20K1582. This work used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) Bridges2 at the Pittsburgh Supercomputer Center through alloca-
tion TG-MCA03S014. It also used the DGX A100 system at the Computational Science
Research Center at San Diego State University provided by NSF award OAC 2019194.

© Springer Nature Switzerland AG 2022
S. Bhalachandra et al. (Eds.): WACCPD 2021, LNCS 13194, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-030-97759-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97759-7_1&domain=pdf
http://orcid.org/0000-0003-0939-1055
http://orcid.org/0000-0002-2633-4290
http://orcid.org/0000-0003-1662-3328
www.openmp.org
www.openacc.org
https://doi.org/10.1007/978-3-030-97759-7_1


4 M. M. Stulajter et al.

they provide a higher-level approach to accelerating codes without requiring writ-
ing specialized low-level, often vendor-specific, API code (e.g. CUDA, ROCm,
OpenCL, etc.). Since they mostly consist of specialized comments/pragmas, they
exhibit backward compatibility, allowing a non-supported compiler to simply
ignore them and still compile the code as before. This makes directive-based
approaches very desirable for legacy codes, and helps to allow compartmental-
ized development. However, they also can suffer from incomplete vendor, hard-
ware, and/or compiler support, make codes somewhat harder to read, and, due to
their rapid development, are less future-proof than standard languages, possibly
requiring occasional re-writes.

Due to the widespread adoption of multi-core CPUs and accelerators, stan-
dard languages have begun to add built-in features that may help/enable com-
pilers to parallelize code. This includes C++17’s Standard Parallel Algorithms
and Fortran’s do concurrent (DC) (see Refs. [6,10] for examples using the
NVIDIA HPC SDK3). Standard parallel language features have the potential
to remove the need for directives, making multi-threaded and accelerated codes
fully portable across compiler vendors and hardware. However, this requires
compiler support, and few have been quick to implement these features for GPU
acceleration.

Here, we focus on Fortran’s DC construct. The NVIDIA HPC SDK is the
only compiler at the time of this writing with accelerator support using DC,
while Intel has indicated plans to add such support in an upcoming release of
their ifort compiler included in the OneAPI HPC Toolkit [13]. Other compilers
that support directive-based accelerator offloading in Fortran include GCC’s
gfortran4, LLVM flang5, AOCC’s extended flang6, IBM’s XL7, and HPE’s
Cray Fortran8, but we could not find any announced plans for these to support
DC for accelerated computing in the near future9.

In this paper, we investigate the current capabilities, portability, and per-
formance of replacing directives with DC in a Fortran mini-app that currently
implements directives for GPU-acceleration and multi-core CPU parallelism. We
replace as many directives as possible with DC, testing various run-time con-
figurations and compilers. Our mini-app currently uses OpenACC with either
nvfortran or gfortran for GPU-acceleration on NVIDIA GPUs, and uses
OpenMP with nvfortran. gfortran, or ifort for multi-core CPU parallelism
(as well as OpenACC multi-core with nvfortran). A key portability concern
is if replacing directives with DC for GPU-acceleration will result in a loss of
multi-core CPU parallelism. Therefore, we test if each compiler can parallelize

3 https://developer.nvidia.com/hpc-sdk.
4 https://gcc.gnu.org/.
5 https://flang.llvm.org.
6 https://developer.amd.com/amd-aocc.
7 https://www.ibm.com/products/xl-fortran-linux-compiler-power.
8 https://support.hpe.com/hpesc/public/docDisplay?docId=a00115296en us&

page=index.html.
9 Note that as this paper was going to press, HPE has indicated plans to support DC

on GPUs.

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/
https://flang.llvm.org
https://developer.amd.com/amd-aocc
https://www.ibm.com/products/xl-fortran-linux-compiler-power
https://support.hpe.com/hpesc/public/docDisplay?docId=a00115296en_us&page=index.html
https://support.hpe.com/hpesc/public/docDisplay?docId=a00115296en_us&page=index.html
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the DC loops for multi-core CPUs. We note that for codes using non-hybrid MPI
for CPU parallelism and MPI+OpenMP/ACC for GPU acceleration, this is not
as much of a concern.

The paper is organized as follows: In Sect. 2, we describe our Fortran mini-
app with its current directive-based parallelelization, along with the test case we
use, showing baseline performance results. In Sect. 3, we describe the implemen-
tation of DC into the mini-app, first introducing its capabilities and support, and
then showing examples of replacing OpenMP/ACC directives with DC, includ-
ing a discussion of current limitations. Then the resulting mini-app source code
versions and compiler flag options used for the tests are described. Performance
and compatibility results are reported in Sect. 4 for both multi-core CPU and
GPU runs. Finally, discussion on the current status of DC and its potential to
replace directives is given in Sect. 5. Instructions on how to access and use our
provided Singularity/Apptainer containers and codes to reproduce the results in
the paper are given in the Appendix.

2 Code and Test Description

To investigate the current capabilities, portability, and performance of replacing
directives with DC, we use a Fortran mini-app called diffuse that currently
implements directives for GPU-acceleration and multi-core CPU parallelism.
Here we describe the code, the test case we use, the computational test environ-
ment, and baseline performance results.

2.1 Code Description

NASA and NSF have recently supported a program called “Next Generation
Software for Data-driven Models of Space Weather with Quantified Uncertain-
ties”, whose main objective is to improve predictions of solar wind and coronal
mass ejections to investigate how they might impact Earth. This will be done by
developing a new data-driven time-dependent model of the Sun’s upper atmo-
sphere. One key component of this model is the use of a data-assimilation flux
transport model to generate an ensemble of magnetic field maps of the solar sur-
face to use as boundary conditions. To accomplish this, we have been developing
an Open-source Flux Transport (OFT) software suite, whose key computational
core is the High-Performance Flux Transport code (HipFT). HipFT currently
implements OpenACC for GPU-acceleration and OpenMP for multi-core CPU
parallelism, and we are interested in replacing the directives with DC.

In order to test the use of DC, we use a mini-app called diffuse that imple-
ments the most computationally expensive algorithm (surface diffusion) of the
flux transport in HipFT. diffuse’s source code for the diffusion algorithm is
identical to that of HipFT. The diffusion algorithm integrates a spherical sur-
face heat equation on a logically rectangular non-uniform grid. The operator is
discretized with a second-order central finite-difference scheme in space, while
the time integration uses the second-order Legendre polynomial extended sta-
bility Runge-Kutta scheme (RKL2) [3,8].
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2.2 Test Description

Although diffuse is used here as a mini-app representation of HipFT, it is also
used in production to slightly smooth solar surface magnetic fields to prepare
them for use in models of the corona [2]. As such, we select a real-world exam-
ple of using diffuse, that of smoothing the ‘Native res PSI map‘ described in
Ref. [4]. This large map has a resolution of 3974×2013 in (θ, φ) and takes 40,260
total iterations of applying the diffusion operator to smooth. A detail from the
map before and after running diffuse is shown in Fig. 1.

Fig. 1. Zoomed-in detail of the test case magnetic field map before (left) and after
(right) smoothing with diffuse.

2.3 Computational Environment

In order to best assess the capabilities of the compiler support for DC, we use
the latest available versions of the compilers at the time of testing. These are
shown in Table 1. The CPU tests are run on the Bridges2 system located at
the Pittsburgh Supercomputing Center using our allocation obtained through
NSF’s XSEDE program [12]. The GPU tests are run on an NVIDIA DGX A100
server at San Diego State University. Since diffuse does not have multi-node
or multi-GPU capabilities, the CPU tests are run on a single CPU node, while
the GPU tests are run on a single GPU within the DGX system. The hardware
specifications are shown in Table 2.

Table 1. Compiler versions used in tests.

Compiler Suite Compiler Version

GNU Compiler Collection gfortran 11.2

NVIDIA HPC SDK nvfortran 21.7

Intel OneAPI HPC Toolkit ifort (classic) 21.3

Since systems do not always have the latest compilers available, and setting
up our code’s dependencies can be difficult, we utilize Singularity/Apptainer
containers [7]. These containers are built with the compiler environment and
our dependent libraries pre-installed so they can be easily used to build and
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Table 2. Hardware utilized for all test runs.

CPU GPU

CPU/GPU Model (2x) AMD EPYC 7742 NVIDIA A100

(128 cores) SXM4

Peak Memory Bandwidth 381.4 GB/s 1555 GB/s

Clock Frequency (base/boost) 2.3/3.4 GHz 1.1/1.4 GHz

RAM 256 GB 40 GB

Peak DP FLOPs 7.0 TFLOPs 9.8 TFLOPs

run the code. We use Singularity 3.8.0, and for GPU runs, use the ‘--nv’ flag
to connect to the NVIDIA driver (and CUDA library) on the local system.
The CUDA run-time library used for GPU runs was version 11.4. As shown
in the Appendix, running the codes in the containers yields virtually the same
performance as a bare metal installation. All the test runs performed in this
paper can be reproduced using the containers along with the code, both of which
are publicly released in Ref. [9] and at www.predsci.com/papers/dc.

2.4 Baseline Performance Results

Our goal in this paper is to test replacing directives with DC for accelerated
computing, ensuring we do not lose multi-core CPU parallelism, and that the
performance is comparable to the original directive-based code. It is not our
focus to compare performance between the various compilers and hardware. We
therefore use similar basic compiler optimization flags (shown in Sect.3.2) for
each compiler-hardware combination and do not explore all possible optimiza-
tions. In order to compare the performance of the original code to the modified
versions, we perform baseline timings of the original code. For these, and all tim-
ing results in the paper, we run each test 10 times and take the average of the
full wall clock times (which include all I/O and GPU-CPU data transfer time).
In Fig. 2 we show the baseline timings along with their standard deviations. We
also include CPU runs on a single CPU core (serial) to illustrate the multi-core
CPU parallelism. We see that each compiler obtains comparable performance on
the CPU runs, yielding a speedup of ∼ 7× when using 128 CPU cores compared
to running in serial. While this may seem low, it is common for highly memory-
bound algorithms to exhibit such non-ideal single node multi-threaded scaling
[1]. The performance of the nvfortran CPU run using OpenMP is ∼10% faster
than using OpenACC for multi-core parallelism. On the GPU, the nvfortran
OpenACC GPU run is ∼30% faster than the gfortran run, which is not unex-
pected considering nvfortran has a more mature implementation of OpenACC.

www.predsci.com/papers/dc
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Fig. 2. Baseline CPU and GPU timing results of the original diffuse code run on
the test case. Times shown are averages over 10 runs, and the standard deviations are
shown.

3 Implementation

In this section, we first give a background on Fortran’s do concurrent construct,
and then describe our implementation of it into the diffuse code, and the
resulting code variations. We also describe the compiler flags used for each code
version and compiler combination.

3.1 The Fortran do concurrent construct

In 2008, ISO Standard Fortran introduced the DC construct for loops as an
alternative to the standard do loop (or nested do loops). DC indicates to the
compiler that the loop’s iterations can be computed in any order. This potentially
allows for the expression of parallelism of loops directly in the Fortran language,
making it easier for compilers to parallelize the loops. While any-order execution
is a necessary condition for parallelization, it is not always sufficient (for example,
reduction and atomic operations, as well as others10). Therefore, DC can be
viewed as providing a hint to the compiler that the loop is likely able to be
parallelized. Work in helping make DC fully sufficient for parallelism is on-going,
with Fortran 2018 adding locality statements (allowing specification of private
and shared variables11), and specifying reductions in DC will be included in the
upcoming Fortran 202X release12.

The syntax of non-nested do loops and do concurrent loops are similar. A
do loop has the syntax do index=start,end while a do concurrent loop has
the syntax do concurrent (index=start:end). The only key difference is the
addition of the word concurrent and a small change to the loop parameters
where there is the addition of parentheses and a replacement of the comma with

10 https://releases.llvm.org/12.0.0/tools/flang/docs/DoConcurrent.html.
11 https://j3-fortran.org/doc/year/18/18-007r1.pdf.
12 https://j3-fortran.org/doc/year/21/21-007.pdf.

https://releases.llvm.org/12.0.0/tools/flang/docs/DoConcurrent.html
https://j3-fortran.org/doc/year/18/18-007r1.pdf
https://j3-fortran.org/doc/year/21/21-007.pdf
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ellipses. With nested loops, there is more of a difference in formatting. Code
1 shows nested do loops parallelized with directives. The loop nest is shown
with both OpenMP and OpenACC directives in the manner they are used in
the mini-app. This nested do loop example spans 8 lines with directives, but
can be written in 3 lines with DC as shown in Code 2. With DC loops, nested
loops initialization statements are collapsed into one initialization statement.
The syntax of DC loops is as follows: do concurrent (index1=start1:end1,
index2=start2:end2, ...). As this example shows, DC loops make nested do
loops more compact and easier to read.

Code 1. Nested do loops with OpenMP/ACC directives
!$omp parallel do collapse(2) default(shared)
!$acc parallel loop collapse(2) default(present)

do i=1,N
do j=1,M

Computation
enddo

enddo
!$acc end parallel loop
!$omp end parallel do

Code 2. Nested do loops as a do concurrent loop
do concurrent (i=1:N, j=1:M)

Computation
enddo

Most current compilers support the Fortran 2008 standard, which includes
the basic DC syntax. However, since the specification does not require that the
compiler try to parallelize the loops, they are often treated as serial do loops.
When a compiler does support parallelization of DC, special compiler flags are
needed to activate the feature (see Sect. 3.3 for details).

Although the latest version of the OpenACC (3.1)13 specification adds sup-
port for decorating DC loops with directives, at present, there are no imple-
mentations of this support (with the possible exception of using the kernels
directive). There is also no mention of supporting directives on a DC construct
within the most recent OpenMP (5.1)14 specification. Therefore, replacing do
loops with DC may break the ability to parallelize the loops when using compil-
ers that do not support direct DC parallelization.

The current state of DC support is varied across different compilers and
versions. nvfortran 18.1 added serial support for DC along with locality of
variables, while nvfortran 20.11 added support for parallelization of DC loops
13 https://www.openacc.org/blog/announcing-openacc-31.
14 https://www.openmp.org/spec-html/5.1/openmp.html.

https://www.openacc.org/blog/announcing-openacc-31
https://www.openmp.org/spec-html/5.1/openmp.html
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for both CPUs and GPUs. In gfortran 8, serial support for DC was introduced,
while gfortran 9 added support for parallelization of DC on multi-core CPUs
using gfortran’s auto parallelization feature. ifort started supporting serial
DC loops in version 12. Then, in version 16, parallelization support was added
through ifort’s auto parallelization feature (using the flag -parallel). With
version 19.1, locality of variable support was added, and parallelization became
linked to the OpenMP compiler flags. Table 3 gives a summary of the current
support of parallel DC loops for the compilers used in this paper.

Table 3. Current support of DC loop parallelization for the compilers used in this
paper.

Compiler Version do concurrent parallelization support

gfortran ≥9 Parallelizable on CPU with
-ftree-parallelize-loops=<N>

flag. Locality of variables is not supported.

nvfortran ≥20.11 Parallelizable on CPU and GPU with the -stdpar

flag. Locality of variables is supported.

ifort ≥19.1 Parallelizable on CPU with the -fopenmp flag.
Locality of variables is supported

3.2 Code Versions

Here we list the code variants that we use to test the portability and performance
of replacing directives with DC in diffuse. For versions that use DC, only basic
DC loop syntax was used with no locality of variables, as not all compilers
support this feature in all configurations.

Original : This is the original version of diffuse which uses OpenACC and
OpenMP directives on all parallelizable do loops as well as OpenACC data move-
ment directives. It does not contain any DC loops. It is the code version used
for the performance results of Sect. 2.4, and will be the standard we compare to
for both performance and compatibility.

New : This version is obtained by replacing directive surrounded do loops in
Original with DC loops, with the exception of reduction loops. The directives on
the reduction loops are kept since reductions are not supported in parallelized
DC loops (see discussion in Experimental). We also keep all OpenACC data
directives for explicit GPU data management. This code is expected to perform
as well as the Original code if the DC loops are recognized and implemented
efficiently.

Serial : This version contains no OpenACC or OpenMP directives at all, nor any
DC loops. It is the same as Original with all directives removed. It should run
in serial in all cases, unless an auto-parallelizing feature of a compiler is utilized.
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We include this code as a control and to ensure the multi-core CPU parallel runs
are exhibiting the expected parallelism.

Experimental : This version does not contain any OpenMP or OpenACC direc-
tives at all, replacing all loops (including reduction loops) with DC. A key fea-
ture of this code version is that it represents the ‘ideal’ scenario of using only the
Fortran standard language for accelerated computing without needing any direc-
tives. This version does not technically violate the Fortran standard since a DC
on a reduction loop is valid if not parallelized, as the iterations can be computed
in any order. However, if the compiler does parallelize these DC reduction loops,
it will likely produce wrong results due to race conditions, unless it supports
implicit analysis and implementation of DC reductions. As mentioned above,
Fortran 202X will add reductions to DC, resolving this problem. Removing all
directives also removes explicit GPU-CPU data movement, whose absence will
lead to very poor performance on accelerators (due to repeated data movement
between the CPU and GPU) unless the compiler supports automatic GPU-CPU
memory management. Features such as NVIDIA’s Unified Memory and AMD’s
Smart Access Memory can allow compilers to resolve this issue.

In Table 4 we summarize all versions of the code we use for our tests.

Table 4. Summary of DC and directive implementations for each version of the
diffuse code tested.

do concurrent Directives

Original None all loops & data management

New all loops except reductions reduction loops & data management

Serial None None

Experimental all loops None

3.3 Compiler Flag Options

The gfortran, nvfortran, and ifort compilers each have different flags to
implement code parallelization and optimizations. Here we describe the compiler
flags we use for each code version, compiler, and target hardware configuration.
For all compilers, we use the -O3 flag to activate typical compiler optimiza-
tions, and -march=<ARCH> to tell the compiler to target the specific CPU we run
the tests on. Typically, we use native for <ARCH> to automatically target the
current system, but some configurations (such as using ifort on AMD EPYC
CPUs) required us to specify the option manually (in that case <ARCH> is set to
core-avx2). All Serial code versions use only these default compiler flags.

nvfortran: For GPU parallelization, the Original code uses the flag
-acc=gpu which enables the OpenACC directives. We also include the flag
-gpu=ccXY, cudaX.Y to specify the specific GPU run time and hardware capa-
bilities (similar to -march for CPUs). The ccXY indicates a device with compute
capabilities of X.Y, while cudaX.Y tells the compiler to use the X.Y version of
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the CUDA library. To check if/how the compiler parallelized the loops, we set
-Minfo=accel, which outputs parallelization information.

For the New code (containing DC loops), we add two new flags. The first
is -stdpar=gpu, which enables DC loops to be parallelized and offloaded to the
GPU15. The other is -Minfo=stdpar which outputs the compiler’s parallelization
messages (similar to -Minfo=accel). When using -stdpar=gpu, unified managed
memory is automatically enabled, making all allocatable arrays unified arrays.
This means the runtime is responsible for correct and efficient CPU-GPU data
transfers during the run, and any OpenACC data movement directives on such
arrays are essentially no-ops. Static arrays are not made into unified arrays, so
manual GPU data movement is still needed for good performance (note that
diffuse does not make use of any static arrays). If one wants to continue to
manage the GPU data manually (using OpenACC or OpenMP data movement
directives), the option -gpu=nomanaged can be used.

For the Experimental code, since there are no directives, we simply use the
standard parallelism option of -stdpar=gpu -gpu=ccXY,cudaX.Y, and rely on
the compiler to automatically detect the reductions and implement them cor-
rectly, as well as manage the GPU memory using unified memory.

For CPU parallelization, the Original code has two implementations. One is
to use OpenMP with the -mp flag, and the other is to use OpenACC with the
-acc=multicore flag. Even though the OpenMP compilation produces slightly
better performance (as was shown in Sect. 2.4), we only use the OpenACC multi-
core option. This is because nvfortran currently activates OpenACC when using
-stdpar, so we cannot use both -stdpar for DC and OpenMP (as would be
needed in the New code) since OpenMP and OpenACC are not written to
work together (and in the New code case, causes a compiler error). We note
that when using OpenACC for multi-core CPU, the number of threads is con-
trolled through the runtime variable ACC NUM CORES=<N>, rather than OpenMP’s
OMP NUM THREADS=<N>.

For the Experimental code, since there are no directives, we simply use the
standard parallelism option of -stdpar=multicore, relying on the compiler to
automatically detect the reductions and implement them correctly.

gfortran: For GPU parallelization, the Original code uses the flag
-fopenacc, which enables OpenACC directives. In addition to this flag,
the intended offload GPU must be specified. For NVIDIA GPUs, the flag
-foffload=nvptx-none is used (targeting specific compute capabilities is not
currently implemented). We also use the flag -fopenacc-dim=<DIM> to specify
the parallel topology for the offload kernels. <DIM> is set to three colon-separated
values that map to ‘gang’, ‘worker’ and, ‘vector’ sizes. Since OpenACC supports
acceleration for multiple GPU vendors, the default values for the topology may
not be optimal. Although this level of optimization is outside the scope of this
paper, we observed that the nvfortran compiler was using a vector length of

15 For nvfortran 21.7, it appears that setting the -stdpar=gpu flag implicitly sets the
-acc=gpu option as well. This is an important consideration if one has OpenACC
directives that should be ignored when using -stdpar.
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128 when compiling most OpenACC loops, so as a simple optimization, we use
-fopenacc-dim=::128 for our tests. The New code is not supported on the GPU
with gfortran at this time. This is because there is no current support for DC
GPU offloading.

On the CPU, the Original code uses -fopenmp, which as above, activates
OpenMP directives for multi-core CPU parallelism. gfortran does not sup-
port direct parallelism on DC loops. Therefore, for the New code, we must
use gfortran’s auto parallelization feature using the -ftree-parallelize-
loops=<N> flag, where <N> is the number of threads to run on. This auto paral-
lelization analyzes both do and DC loops and determines if they can be parallelized
and if so, implements the parallelism. Therefore, it can be used in the case of the
New code, as well as the Experimental code. Since the compiler is auto-analyzing
the loops, it may detect the DC reduction loops and parallelize them correctly.

ifort: Since ifort does not currently support GPU-offloading with DC or
OpenACC, we only test it with CPU parallelism to ensure switching from direc-
tives to DC does not lose our CPU parallel capabilities when using ifort. For all
code versions, we add the flags -fp-model precise and -heap-arrays as those
are standard flags we use for runs of diffuse to ensure robustness and precision,
but they are not related to parallelization. For the Original code, we use the flag
-fopenmp in order to enable OpenMP directives to produce parallel code for mul-
ticore CPUs. For the New code, we use the same -fopenmp flag as the Original
code, as it is also used to enable automatic parallelization of DC loops. The Exper-
imental code also uses the same -fopenmp flag. However, as the documentation
states that DC reduction loops are not supported, we do not expect ifort to par-
allelize them, and rather run them in serial (although as will be shown, the current
compiler version parallelizes the loops anyways, resulting in incorrect results).

4 Results

Here we show timing results for all chosen compilers, code versions, and hardware
(where supported). Key questions we address are: 1) do the compilers that sup-
port GPU-acceleration with directives also support it using DC? 2) does replacing
directives with DC lose CPU multicore parallelism? (i.e. do the compilers support
DC for CPU multicore?) 3) for compiler-hardware combinations that support par-
allelizing DC, how does the performance compare to the baseline directive-based
code? We first report results for the New code compared to the Original code for
each compiler and hardware type, and afterwards discuss results for the Experi-
mental code.

For each configuration, we run the test case of Sect. 2.2, and use the Linux
program time to record three times: real, user, and system. The real time is the
wall clock time the code took to run. The user time is the sum of all thread times, or
how much total CPU computation time was spent. Using multiple threads should
result in a lower real time, but a (much) higher user time. The system time is the
operating system overhead, which can include CPU-GPU data transfer, as well as
other overheads. All reported timings are averaged over 10 runs.
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4.1 Results Using nvfortran

The results for the Original and New code run on the GPU with nvfortran are
shown in Table 5. The time difference between theOriginal code and theNew code
is less than 2%, and the standard deviation over the 10 runs is around ±0.1s for
both. The slight increase in run time for the New code is possibly due to its use
of unified memory, which can be less efficient than manually managing the GPU-
CPU memory as is done through OpenACC data directives in the Original code.
This result does not achieve a full replacement of directives with DC since not all
directives were replaced in theNew code. However, the vast majority of them were,
with only a few remaining directives on the reduction loops, showing great progress
in replacing directives.

Table 5. GPU timing results with nvfortran. Both runs used the additional compiler
flag -gpu=cc80,cuda11.4

Code Compiler flags real (s) user (s) system (s)

Original -acc=gpu 35.07 34.46 0.59

New -acc=gpu -stdpar=gpu 35.67 35.01 0.54

To ensure that we did not loose CPU multicore parallelism, we show the CPU
results in Table 6. We see that, like in the GPU case, replacing directives with DC
yields similar runtimes to the original code. Here, the New code with DC runs
around 3% faster than the Original code, but both are within the standard devi-
ation (±15s) of the 10 runs. Therefore, there is no loss of CPU portability when
using DC with nvfortran for our mini-app.

Table 6. CPU timing results with nvfortran

Code Compiler flags real (s) user (s) system (s)

Serial 1284.59 1272.45 0.22

Original -acc=multicore 224.18 26214.96 1965.06

New -acc=multicore 219.57 25638.37 1889.20

-stdpar=multicore

4.2 Results Using gfortran

The result for theOriginal code run on theGPUwith gfortran is shown inTable 5.
Unlike nvfortran, gfortran does not support GPU-acceleration using DC, nor
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Table 7. GPU timing results with gfortran.

Code Compiler flags real (s) user (s) system (s)

Original -fopenacc

-foffload=nvptx-none

49.52 48.90 0.54

-fopenacc-dim=::128

New No Support - - -

is there auto parallelization support for GPU offloading. Therefore, replacing the
directives with DC currently breaks support for GPU-acceleration with gfortran.
For NVIDIA GPUs, this is not a prohibitive limitation since the nvfortran com-
piler is freely available. However, for other accelerators (namely AMD GPUs), this
loss of support may rule out using DC at this time.

Unlike for GPU-acceleration, CPU multi-core parallelism with gfortran is not
lost with DC, even though there is no direct support for DC parallelization. In
Table 8, we show the CPU timing results of the Original and New codes. We see
that the performance difference between the codes is ∼10%, within the standard
deviations of the 10 runs (±13s for the Original and ±18s for the New code). The
New code is also able to be parallelized because gfortran treats DC loops as regu-
lar do loops, which are parallelized using the auto parallelization feature. However,
the loops in diffuse are fairly simple. In other codes, the auto parallelization may
not be able to handle more complex loops, that could otherwise be parallelized
using directives. Therefore, the result here should be viewed with caution. Note
also that the auto parallelization feature works the same on our code with regular
do loops as it does with DC loops (i.e. it would even parallelize the Serial code
version).

Table 8. CPU timing results with gfortran

Code Compiler flags real (s) user (s) system (s)

Serial 1308.75 1296.74 0.16

Original -fopenmp 191.90 24117.72 8.02

New -fopenmp 212.64 26588.59 8.65

-ftree-parallelize-loops=128

The thread control for the New code is unique. Since the OpenMP directives
are still on the reduction loops, while the remaining loops use DC with no direc-
tives, the number of CPU threads used for the reductions is set by the standard
OMP NUM THREADS environment variable, while that used by the DC loops is con-
trolled by the compiler flag value -ftree-parallelize-loops=<N>. This compli-
cates the thread control, and also removes run-time thread control.
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4.3 Results Using ifort

As mentioned in the introduction, the Intel OpenAPI Toolkit does not currently
support GPU-acceleration using DC loops, but there are plans for support in the
future. Therefore, here we focus on DC compatibility with multi-core CPU paral-
lelism. In Table 9, we show the timing results for the Original and New codes. We
see that replacing directives with DC still allows for multi-core CPU parallelism,
and surprisingly exhibits a nearly 10% improvement in performance. The standard
deviation of the 10 runs was roughly ±8s, so this performance increase is signif-
icant. It may be attributed to more efficient optimizations being available to the
compiler when using DC compared to OpenMP directives.

Table 9. CPU timing results with ifort.

Code Compiler flags real (s) user (s) system (s)

Serial 1318.60 1306.27 0.18

Original -fopenmp 194.86 24213.11 320.53

New -fopenmp 178.29 21888.21 280.65

Since the implementation of DC parallelism is connected to OpenMP (as indi-
cated by the use of the -fopenmp flag), the number of threads remains controlled
by the standard environment variable OMP NUM THREADS (or optionally at compile
time with -par-num-threads=<N> which overrides OMP NUM THREADS).

4.4 Experimental Results

As mentioned in Sect. 3.2, the current Fortran standard does not have a way to
indicate to the compiler that a DC loop requires reduction or atomic operations.
However some compilers have implemented code analysis methods to automati-
cally detect and implement such operations. Therefore, the Experimental code,
which represents the ideal scenario of replacing all directives with DC loops, may
work with some compilers.

Using nvfortran, we found that the code parallelized and ran correctly on both
the GPU and CPU. It appears nvfortran detects the reductions and implements
them correctly for our code. The run times are shown in Table 10. They are nearly

Table 10. GPU and CPU timing results for the Experimental code with nvfortran.

Code CPU/GPU Compiler flag real (s) user (s) system (s)

Experimental GPU -stdpar=gpu 35.63 35.01 0.53

-gpu=cc80,cuda11.4

Experimental CPU -stdpar=multicore 219.21 25654.35 1906.40
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identical to those of the New code shown in Tables 5 and 6 which is expected since
only a few small loops used directives for reductions in the New code. This means
that for diffuse, we can use DC to fully eliminate all directives and not lose any
CPU or GPU performance with nvfortran. We reiterate that more complicated
codes may not yet work with zero directives for a variety of reasons including not
detecting complicated reduction or atomic operations, not being compatible with
in-lined function calls, and, for GPU-acceleration, not supporting automatic mem-
ory management with static arrays.

For gfortran, we only test the code on the CPU since there is no support for
DC GPU-offloading. In this case, the Experimental code ran correctly, implying
the auto-parallelization done by the compiler was able to detect the reductions
and parallelize them. The run time is shown in Table 11 and is roughly 10% slower
comparable to the run time of the New code in Table 8. However, the times are
nearly within the standard deviation of the 10 runs (±18s).

Table 11. CPU timing results for the Experimental code with gfortran.

Code Compiler flags real (s) user (s) system (s)

Experimental -ftree-parallelize-loops=128 236.28 29565.01 10.08

Using ifort, the Experimental code compiled and ran, but did not give the
correct results. This is because ifort does not support implicit reductions of DC
loops, yet parallelized the loop anyways when we used the -fopenmp flag, There-
fore, the resulting inherent race conditions produced incorrect results.

5 Discussion

In this paper, we have used a mini-app code to explore the current status of replac-
ing do loops using directives with do concurrent (DC) loops for accelerated com-
puting. The original code used OpenACC for GPU-acceleration when compiled
with gfortran or nvfortran, and OpenMP for multi-core CPU parallelism when
compiled with gfortran, nvfortran, or ifort. We modified the code to replace
the directives with DC and used a test case to explore the resulting compati-
bility, portability, and performance, all with the newest available versions of the
compilers.

Compatibility: We found that only nvfortran currently supports GPU acceler-
ation with DC, and therefore replacing the directives removed GPU support when
using gfortran. Since nvfortran is freely available, this is not an insurmountable
problem when running on NVIDIA GPUs. However, gfortran also has AMD (and
possible future Intel) GPU support, making this an important consideration. The
ifort compiler does not currently support GPU-acceleration with DC, but as Intel
has indicated plans to add this support soon, switching from OpenACC directives
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to DC may increase compatibility (as ifort only supports OpenMP GPU offload,
not OpenACC).

We also found that the current Fortran specification for DC lacks features that
are needed to guarantee correct parallelization of all of our mini-app’s paralleliz-
able loops (specifically, loops with reductions). Indeed, when ifort attempted to
parallelize our reduction loops for the CPU, it resulted in incorrect results. In con-
trast, the nvfortran compiler has implicit reduction detection of DC loops, allow-
ing us to replace all directives with DC. The next release of the Fortran standard
(202x) will include an explicit ‘reduce’ clause on DC, which, when implemented,
should alleviate this issue.

Another compatibility concern is that we currently use OpenACC directives
to manually control GPU-CPU memory management, and removing these could
cause extreme loss of performance. In the case of nvfortran, since it automati-
cally activates its unified memory management feature when compiling with DC
GPU-acceleration, this issue is avoided.However, unifiedmemory is limited to allo-
catable arrays, so static arrays may still require data management directives.

Using cutting-edge language and compiler features have a risk of breaking back-
ward compatibility with older compilers. In this paper we used the most recent ver-
sions of the compilers we could for the best support, but on some systems this is not
always available. Container frameworks like Singularity/Apptainer (as used here)
can help mitigate this issue, however the frameworks are also not always available
on all systems, and can sometimes be complicated to use for large scale simulations.

Portability:A key consideration in replacing directives with DC for GPU acceler-
ation was to see if, by doing so, we still maintain CPU multi-core parallelism (that
we originally used OpenMP directives to achieve). We found that nvfortran and
ifort compilers directly support DC for multi-core CPU parallelism, while ifort
requires directives on loops with reductions for correctness. With gfortran, while
there is no direct support for DC parallelism, the loops can still be parallelized
using gfortran’s auto parallelization feature. With this feature, even reduction
DC loops are correctly recognized and parallelized. Thus, all three compilers we
use are able to keep multi-core CPU parallelism when replacing directives with
DC (with ifort still requiring some on reduction loops).

Performance: Replacing directives with DC allows much cleaner looking code
and robustness due to being part of the standard language. However, this is only
worth while if it also results in acceptable performance. Through our timings, we
found that in both the GPU and CPU cases, the performance of the code after
replacing directives with DC was comparable to that of the original directive-
based code, with some configurations improving performance slightly, and in oth-
ers, decreasing slightly. For GPU runs with DC, nvfortran’s unified memory was
used, and the resulting performance was comparable to using manual OpenACC
data directives. However, more complicated codes may not be as compatible with
unified memory and/or may lose some performance using it.

Summary: With nvfortran, we were able to remove and replace all directives
in our code with DC, and achieve efficient CPU and GPU parallelism. However,
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this relied on specific features of nvfortran including implicitly detecting reduc-
tions and the use of unified managed memory. In order to maintain cross compiler
compatibility, we can continue to use OpenACC/OpenMP directives for reduc-
tions and data movement until equivalent standard language features are written
and widely supported. Even with the remaining directives, using DC has a large
benefit, as the number of directives is decreased dramatically.

Can Fortran’s do concurrent replace directives for accelerated computing?
With nvfortran and NVIDIA GPUs, for some codes (such as ours) the answer is
yes, and with no (or minimal) loss of performance. With upcoming language fea-
tures and compiler implementations, more complicated codes may also eventually
be parallelized without directives, and do so with support across multiple compiler
and hardware vendors.

Appendix

Singularity/Apptainer containers: In order to test the latest compilers and to
simplify setup of our library dependencies, we utilized Singularity/Apptainer con-
tainers. These containers allow one to run software in a containerized environment
on any compatible system using only the container file.

Container setup: The containers were straight forward to setup and use for our
timings. Two methods were used to create them. For nvfortran and ifort, a
docker image of NVIDIA HPC SDK or Intel OneAPI HPC Toolkit was used to
create a sandbox. For gfortran, a similar sandbox with Ubuntu 21.04 was created
and then gfortranwas installed with the apt-get command. Once the sandboxes
were created, the dependent libraries were installed. A sandbox is treated like a vir-
tual machine, allowing us to edit and install new software into the container (note
this requires sudoprivileges).Once all the needed software is installed, the sandbox
is converted to a .sif file which can be copied and run (without sudo privileges)
on any other compatible machine with Singularity/Apptainer installed, but it can
no longer be edited. However, the container is able to modify files outside itself,
allowing us to compile and run the test cases. For GPU-accelerated runs, a spe-
cial flag is needed when running the container depending on the vendor of GPU.
For NVIDIA GPUs, the flag is --nv, while for AMD GPUs, the flag is --rocm. For
more details on Singularity/Apptainer containers, see Ref. [7].

Container performance tests: Using containers can sometimes cause perfor-
mance overhead. To ensure that using the Singularity/Apptainer containers does
not cause significant overhead in our case, we ran two test cases on both a bare
metal setup and with a container with the same compiler version (in this case
gfortran 10.2). Table 12 shows timings of the test run using both the Original
and Serial codes described in Sect. 3.2. We see that the runs using the container
perform nearly identical to those run on bare metal, allowing us to confidently use
the containers for the runs in the paper.
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Table 12. Timing results on a Bridges2 CPU compute node using gfortran 10.2 bare
metal and form within a Singularity Container

Code Run method real (s) user (s) system (s)

Serial Bare Metal 1306.10 1294.30 0.154

Singularity 1300.43 1287.50 0.168

Original Bare Metal 164.87 20782.32 5.935

Singularity 165.27 20777.85 7.248

Reproducibility package:The results in this paper can be reproduced using our
reproducibility package hosted publicly at Ref. [9] and on our website16. The pack-
age contains three Singularity/Apptainer containers (for gfortran, nvfortran,
and ifort), as well as all code versions, compiler options, and test cases. The pack-
age requires minimal customization (only specifying hardware-specific compiler
options) of the main script, which can then be used to automatically run either
all, or a subset, of runs from the paper. See the documentation in the package for
more details. A reference solution is also provided for validation. Note that runs
using GPU-acceleration require having an NVIDIA GPU with compatible drivers
installed on the system.

6 Artifact Availability Statement

Summary of the Experiments Reported

Timings were performed on the various mini-app versions on the CPU and GPU
using singularity containers. These versions represented different levels of replac-
ing OpenACC and OpenMP directives with do concurrent loops. Each version was
tested with the compilers gfortran, nvfortran, and ifort. The compilers were loaded
in a singularity container, and the codes were executed through these singularity
containers. For each code and compiler version, 10 runs were carried out in order
to get an average run time and standard deviation.

Artifact Availability

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hardware artifacts.

Data Artifact Availability: All author-created data artifacts are maintained in a
public repository under an OSI-approved license.

16 www.predsci.com/papers/dc.

www.predsci.com/papers/dc
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Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

10.5281/zenodo.5253520
http://www.predsci.com/papers/dc
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Abstract. High-performance computing (HPC) is a major driver accel-
erating scientific research and discovery, from quantum simulations to
medical therapeutics. While the increasing availability of HPC resources
is in many cases pivotal to successful science, even the largest collabora-
tions lack the computational expertise required for maximal exploitation
of current hardware capabilities. The need to maintain multiple platform-
specific codebases further complicates matters, potentially adding con-
straints on machines that can be utilized. Fortunately, numerous pro-
gramming models are under development that aim to facilitate portable
codes for heterogeneous computing. One in particular is SYCL, an open
standard, C++-based single-source programming paradigm. Among the
new features available in the most recent specification, SYCL 2020, is
interoperability, a mechanism through which applications and third-
party libraries coordinate sharing data and execute collaboratively. In
this paper, we leverage the SYCL programming model to demonstrate
cross-platform performance portability across heterogeneous resources.
We detail our NVIDIA and AMD random number generator extensions
to the oneMKL open-source interfaces library. Performance portability is
measured relative to platform-specific baseline applications executed on
four major hardware platforms using two different compilers supporting
SYCL. The utility of our extensions are exemplified in a real-world set-
ting via a high-energy physics simulation application. We show the per-
formance of implementations that capitalize on SYCL interoperability
are at par with native implementations, attesting to the cross-platform
performance portability of a SYCL-based approach to scientific codes.
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1 Introduction

The proliferation of heterogeneous platforms in high performance computing
(HPC) is providing scientists and researchers opportunities to solve some of the
world’s most important and complex problems. Coalescing central processing
units (CPU), co-processors, graphics processing units (GPU) and other hardware
accelerators with high-throughput inter-node networking capabilities has driven
science and artificial intelligence through insurmountable computational power.
Industry continues to innovate in the design and development of increasingly
performant architectures and platforms, with each vendor typically commer-
cializing a myriad of proprietary libraries optimized for their specific hardware.
What this means for physicists and other domain scientists is that their codes
need to be translated, or ported, to multiple languages, or adapted to some spe-
cific programming model for best performance. While this could be a useful and
instructive exercise for some, many are often burdened by their limited numbers
of developers that can develop such codes. Fortunately, as a result of the numer-
ous architectures and platforms, collaborative groups within academia, national
laboratories and even industry are developing portability layers atop common
languages that aim to target a variety of vendor hardware. Such examples include
Kokkos [21] (Sandia National Laboratory, USA), RAJA [25] (Lawrence Liver-
more National Laboratory, USA) and SYCL [12] (Khronos Group).

Mathematical libraries are crucial to the development of scientific codes. For
instance, the use of random numbers in scientific applications, in particular high
energy physics (HEP) software, is almost ubiquitous [26]. For example, HEP
experiments typically have a number of steps that are required as part of their
Monte Carlo (MC) production: event generation, simulation, digitization and
reconstruction. In the first step, an MC event generator [17] produces the out-
going particles and their four-vectors given some physical process. Here, random
numbers are used, e.g., to sample initial state kinematics and evaluate cross sec-
tions. Simulation software, e.g., Geant4 [15] and FastCaloSim [20,31] from the
ATLAS Experiment [14], require large quantities of random numbers for sam-
pling particle energies and secondary production kinematics, and digitization
requires detector readout emulation, among others. With the rise of machine
learning, random number production is required even at the analysis level [22].

1.1 Contribution

The focus of this paper is to evaluate the cross-platform performance portabil-
ity of SYCL’s interoperability functionality using various closed-source vendor
random number generation APIs within a single library, and analyze the perfor-
mance of our implementation in both artificial and real-world applications.

To achieve this, we have:

– integrated AMD and NVIDIA random number generators (RNG) within the
oneMKL open-source interfaces library by leveraging existing hipRAND and
cuRAND libraries, to target these HPC hardware from these vendors from a
single API via SYCL interoperability;
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– evaluated the performance portability of the API on Intel and AMD CPUs,
and Intel, AMD and NVIDIA GPUs to investigate the performance overhead
of the abstraction layer introduced by the SYCL API;

– integrated our RNG implementations into FastCaloSim to further investigate
the applicability of the proposed solution on an existing real-world applica-
tion for high-energy physics calorimeter simulations, which currently relies on
separate implementations based on vendor-dependent libraries; and

– analyzed the cross-platform performance portability by comparing the SYCL-
based implementation of FastCaloSim to the original C++-based and CUDA
codes, which use native vendor-dependent RNGs, to investigate possible per-
formance overheads associated with SYCL interoperability.

Our work utilizes Data Parallel C++ (DPC++) [6] and hipSYCL [16], two
different existing LLVM-based SYCL compilers, capable of providing plug-in
interfaces for CUDA and HIP support as part of SYCL 2020 features that enable
developers to target NVIDIA and AMD GPUs, respectively.

The rest of this paper is organized as follows. Section 2 discusses existing
parallel programming models and libraries providing functionalities used in sci-
entific applications, along with our proposed solution to target the cross-platform
portability issue. Section 3 briefly introduces the SYCL programming model used
in this work. In Sect. 4, we discuss more technically the aspects and differences
between the cuRAND and hipRAND APIs, and also detail the implementation
of our work. Benchmark applications are described in Sect. 5 and performance
portability in Sect. 6. The results of our studies are presented in Sect. 7. Lastly,
Sect. 8 summarizes our work and suggests potential extensions and improvements
for future developments.

2 Related Work

2.1 Parallel Programming Frameworks

Parallelism across a variety of hardware can be provided through a number
different parallel frameworks, each having a different approach and program-
ming style. Typically written in C or C++, each framework provides different
variations on the language, allowing programmers to specify the task parallel
patterns.

Introduced by Intel, Thread Building Blocks (TBB) [30] provides a C++-
based template library supporting parallel programming on multi-core proces-
sors. TBB only support parallelism on CPUs, hence, parallel applications depen-
dent on TBB cannot be directly ported to GPUs or any other accelerator-based
platform.

NVIDIA’s CUDA [9] API is a C/C++-based low-level parallel programming
framework exclusively for NVIDIA GPUs. Its support of C++-based template
meta programming features enables CUDA to provide performance portability
across various NVIDIA devices and architectures, however, its lack of portability
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across other vendor hardware can be a barrier for research groups with access
to non-NVIDIA resources.

OpenCL [33], from the Khronos Group, is an open-standard cross-platform
framework supported by various vendors and hardware platforms However, its
low-level C-based interface and lack of support by some vendors could hinder
the development of performance portability on various hardware. Also from the
Khronos Group is SYCL [12], an open-standard C++-based programming model
that facilitates the parallel programming on heterogeneous platforms. SYCL pro-
vides a single-source abstraction layer enabling developers to write both host-
side and kernel code in the same file. Employing C++-based template program-
ming, developers can leverage higher level programming features when writing
accelerator-enabled applications, having the ability to integrate the native accel-
eration API, when needed, by using the different interoperability interfaces pro-
vided.

The Kokkos [21] and RAJA [25] abstraction layers expose a set of C++-
based parallel patterns to facilitate operations such as parallel loop execution,
reorder, aggregation, tiling, loop partitioning and kernel transformation. They
provide C++-based portable APIs for users to alleviate the difficulty of writ-
ing specialized code for each system. The APIs can be mapped onto a specific
backend—including OpenMP, CUDA, and more recently SYCL—at runtime to
provide portability across various architectures.

2.2 Linear Algebra Libraries

There are several vendor-specific libraries which provide highly optimized linear
algebra routines for specific hardware platforms. The ARM Compute Library [13]
provides a set of optimized functions for linear algebra and machine learning opti-
mized for ARM devices. Intel provides MKL [5] for its linear algebra subroutines
for accelerating BLAS, LAPACK and RNG routines targeting Intel chips, and
NVIDIA provides a wide ecosystem of closed source libraries for linear algebra
operations, including cuBLAS [8] for BLAS routines, cuRAND [10] for RNG and
cuSPARSE [11] for sparse linear algebra. AMD offers a set of hipBLAS [1] and
hipRAND [2] libraries atop the ROCm platform, which provide linear algebra
routines for AMD GPUs. Each of these libraries is optimized specifically for par-
ticular hardware architectures, and therefore do not provide portability across
vendor hardware.

oneMKL [7] is an community-driven open-source interface library developed
using the SYCL programming model, providing linear algebra and RNG func-
tionalities used in various domains such as high-performance computing, artifi-
cial intelligence and other scientific domains. The front-end SYCL-based inter-
face could be mapped to the vendor-optimized backend implementations either
via direct SYCL kernel implementations or SYCL interoperability using built-in
vendor libraries to target various hardware backends. Currently, oneMKL sup-
ports BLAS interfaces with vendor-optimized backend implementations for Intel
GPU and CPU, CUDA GPUs and RNG interfaces which wrap the optimized
Intel routines targeting x86 architectures and Intel GPUs.



26 V. R. Pascuzzi and M. Goli

2.3 The Proposed Approach

There are numerous highly-optimized libraries implemented for different device-
specific parallel frameworks targeting different hardware architectures and plat-
forms. Several parallel frameworks provide parallel models which hide the mem-
ory hierarchies and execution policies on different hardware. This can be due to
a lack of a common language to abstract away the memory and execution models
from various heterogeneous devices, hence, leaving cross-platform performance
portability of high-level applications a challenging issue and an active area of
research. Recent work in adopting SYCL [18,19,32] as the unifying programming
model has shown to be a viable approach for developing cross-platform perfor-
mance portable solutions targeting various hardware architectures while sharing
the same interface. More specifically, SYCL interoperability with built-in kernels
enables vendors to use a common unifying interface, to “glue-in” their optimized
hardware-specific libraries.

In this paper, we leverage the SYCL programming model and interoperability
to enable cross-platform performance portable random number generator target-
ing major HPC hardware, including NVIDIA and AMD GPUs. The proposed
solution has been integrated into the oneMKL open-source interfaces library as
additional backends targeting these vendors, extending the library’s portabil-
ity and offering nearly native performance. The applicability of the proposed
approach was further studied in a high-energy physics calorimeter simulation
software to evaluate the performance of the proposed abstraction method on a
real-world scientific application.

3 SYCL Overview

SYCL is an open-standard C++-based programming model that facilitates par-
allel programming on heterogeneous platforms. It provides a single source pro-
gramming model, enabling developers to write both host-side and kernel code
in the same file. Employing C++-based template programming, developers can
leverage higher-level programming features when developing accelerator-enabled
applications. Developers also have the ability to integrate the native acceleration
API, when needed, by using the different interoperability interfaces provided by
SYCL.

A SYCL application is structured in three code scopes that control the flow,
as well as the construction and lifetimes of the various objects used within it.

– Application scope: all code outside of a command group scope
– Command group scope: specifies a unit of work that is comprised of a kernel

function and data accessors
– Kernel scope: specifies a single kernel function to interface with native objects

and is executed on the device

To execute a SYCL kernel on an accelerator device, command groups containing
the kernel must be submitted to a SYCL queue. When a command group is
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submitted to a queue, the SYCL runtime system tracks data dependencies and
creates (expands) a new (existing) dependency graph—a directed acyclic graph
(DAG)—to orchestrate kernel executions. Once the dependency graph is created,
the correct ordering of kernel execution on any available device is guaranteed by
the SYCL runtime system via a set of rules defined for dependency checking1.

Interoperability is enabled via the aforementioned low-level APIs by facilitat-
ing the SYCL runtime system’s interaction with native objects for the supported
backends [12,23].

SYCL interoperating with existing native objects is supported by either
host task or interop task interfaces inside the command group scope. When
using the interop task interface, the SYCL runtime system injects a task into
the runtime DAG that will execute from the host, but ensures dependencies are
satisfied on the device. This allows code within a kernel scope to be written as
though it were running directly at the low-level API on the host, but produces
side-effects on the device, e.g., external API or library function calls.

There are several implementations of SYCL API available including Com-
puteCpp [3] that currently supports the SYCL 1.2.1 specification, DPC++ and
hipSYCL which incorporate SYCL 2020 features, such as unified shared memory
(USM), and triSYCL [24] which provides SYCL supports for FPGAs.

4 SYCL-Based RNG Implementations of NVIDIA
and AMD GPUs in oneMKL

4.1 Technical Aspects

The integration of third-party RNG backends within oneMKL depends primar-
ily on compiler support for (a) SYCL 2020 interoperability and (b) generating
the specific intermediate representation for a given architecture’s source code.
Hence, to enable RNG on NVIDIA and AMD GPUs, one requires SYCL com-
pilers supporting parallel thread (PTX) and Radeon Open Compute (ROCm)
execution instruction set architectures which are used in the CUDA and AMD
programming environment, respectively. At present, PTX support is available in
Intel’s open-source LLVM project, and the ROCm backend is supported by the
hipSYCL LLVM project.

The oneMKL interface library provides both buffer and USM API imple-
mentations for memory management. Buffers are encapsulating objects which
hide the details of pointer-based memory management. They provide a sim-
ple yet powerful way for the SYCL runtime system to handle data dependencies
between kernels, both on the host and device, when building the data-flow DAG.
The USM API gives a more traditional pointer-based approach, e.g., memory
allocations performed with malloc and malloc device, familiar to those accus-
tomed to C++ and CUDA. However, unlike buffers, the SYCL runtime system
cannot generate the data dependency graph from USM alone, and so it is the
user’s responsibility to ensure dependencies are met. The ability for SYCL to
1 This is not the case when using unified shared memory, as explained later.
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internally satisfy buffer-based data dependencies is beneficial in cases when quick
prototyping is, to first order, more important than optimizing. Figure 1 repre-
sents the architectural view of the cuRAND and hipRAND integration for each
scope in the SYCL programming model for both buffer-based approach and
USM-based approaches.

Fig. 1. Architectural view of device-specific RNG kernels integration in oneMKL for
both cuRAND and hipRAND on different scopes in SYCL programming model using
both buffer and USM approach.

The oneMKL library currently contains implementations for Philox- and
MRG-based generators for ×86 and Intel GPUs. In oneMKL, each engine class
comprises 36 high-level generate function templates—18 per buffer and USM
API—with template parameters to specify a distribution and output types. In
addition to having the ability to specify distribution properties, e.g., mean, stan-
dard deviation for Gaussian distributions, custom ranges on the generated num-
bers can also be specified. This is in sharp contrast to the lower level interfaces
provided by cuRAND or hipRAND; generation of random numbers is performed
using functions with fixed types, and there is no concept of a “range”, and it is
therefore left to the user to post-process the generated numbers. For example,
curandGenerateNormal will output a sequence of normally-distributed pseudo-
random numbers in [0, 1) and there is no API functionality to transform the
range. As such, native cuRAND and hipRAND support generation of strictly
positive-valued numbers.
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Lastly, whereas oneMKL provides copy-constructors and constructors for set-
ting seed initializer lists for multiple sequences, cuRAND and hipRAND do
not. The oneMKL library also supports inverse cumulative distribution function
(ICDF) methods for pseudorandom number generation, while such methods are
available only for quasirandom number generators in the cuRAND and hipRAND
API.

4.2 Native cuRAND and hipRAND flow

Generation of random numbers with cuRAND and hipRAND host APIs in native
applications typically has the following workflow:

1. the creation of a generator of a desired type;
2. setting generator options, e.g., seed, offset, etc.;
3. allocation of memory on the device using {cuda, hip}Malloc;
4. generation of the random numbers using a generation function, e.g.,

{cu, hip}randGenerate; and
5. clean up by calling the generator destructor

{cu, hip}randDestroyGenerator and {cuda, hip}Free.
In addition, a user may wish to use the generated numbers on the host, in which
case host memory must also be allocated and data transferred between devices.

4.3 Implementation of cuRAND and hipRAND in oneMKL

Our implementation of cuRAND and hipRAND libraries within oneMKL follows
closely the procedure outlined in Sect. 4.2. We also include additional range
transformation kernels for specifying the output sequence of random numbers,
a feature not available in the cuRAND and hipRAND APIs.

Each generator class comprises a native xrandGenerator t object, where
xrand could be either of curand or hiprand. Class constructors create the
generator via a native xrandCreateGenerator API call and sets the seed for
generation of the output sequence with xrandSetPseudoRandomGeneratorSeed;
due to limitations of the cuRAND and hipRAND host API, our implementa-
tion does not support copy-construction or seed initializer lists. Of the total 36
generate functions available in oneMKL, 20 are supported by our cuRAND
and hipRAND backends as the remaining 16 use ICDF methods (see Sect. 4.1).
Each generate function in the cuRAND and hipRAND backends have the same
signature as the corresponding ×86 and Intel GPU function to facilitate “pointer-
to-implementation”.

The buffer and USM API generate function implementations are nearly
identical; access to the buffer pointer via a SYCL accessor is needed before
retrieving the native CUDA memory.
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1 virtual inline void generate(
2 const oneapi::mkl::rng::uniform <float , uniform_method :: standard >& distr ,
3 std:: int64_t n, cl::sycl::buffer <float , 1>& r) override {
4 queue_.submit ([&](cl:: sycl:: handler& cgh) {
5 auto acc = r.get_access <cl::sycl :: access::mode::read_write >(cgh);
6 cgh.codeplay_host_task ([=](cl::sycl:: interop_handle ih) {
7 auto r_ptr = reinterpret_cast <float*>(
8 ih.get_native_mem <cl::sycl:: backend ::cuda >(acc));
9 curandStatus_t status;

10 CURAND_CALL(curandGenerateUniform , status , engine_ , r_ptr , n);
11 cudaError_t err;
12 CUDA_CALL(cudaDeviceSynchronize , err);
13 });
14 });
15 range_transform_fp <float >(queue_ , distr.a(), distr.b(), n, r);
16 }

Listing 1.1. Example code calling functions from the cuRAND library within a SYCL
kernel using the buffer API.

1 template <typename T>
2 static inline void range_transform_fp(cl:: sycl::queue& queue , T a, T b,
3 std:: int64_t n,
4 cl::sycl::buffer <T, 1>& r) {
5 queue.submit ([&](cl:: sycl:: handler& cgh) {
6 auto acc =
7 r.template get_access <cl::sycl:: access::mode::read_write >(cgh);
8 cgh.parallel_for(cl:: sycl::range <1>(n), [=](cl::sycl::id <1> id) {
9 acc[id] = acc[id] * (b - a) + a;

10 });
11 });
12 }

Listing 1.2. Example code of transform function for cuRAND using the buffer API.
The function can be used to transform the range of the generated numbers. Its
dependencies are detected via the auto-generated runtime DAG graph from SYCL
accessors.

As shown in Fig. 1, cuRAND and hipRAND backend integration into the
oneMKL open-source interfaces library requires two kernels. The first kernel
makes the corresponding xrandGenerate third-party library function call, as per
the distribution function template parameter type; Listing 1.1 shows an example
kernel for the cuRAND backend using the buffer API. A second kernel is required
to adjust the range of the generated numbers, altering the output sequence as
required. As this is not a native functionality in the cuRAND and hipRAND
APIs, we implemented this it as a SYCL kernel. Listing 1.2 gives an example
of one such transformation kernel for floating-point data types using the buffer
API. It is hardware agnostic: the same code can be compiled for, and executed
on, all platforms for which there exists a SYCL compiler. In the command group
scope, an accessor is required for the buffer API to track the kernel dependency
and memory access within the kernel scope. In this case, the graph dependencies
between the two kernels are automatically detected by the SYCL runtime system
scheduling thread, tracking the data-flow based on the data access type, e.g.,
read, write, read write. The accessor has a read write access type and is
passed as an input with read write for in-situ updates to be made. This forces
the transformation kernel to depend on the SYCL interoperability kernel and
hence the kernels will be scheduled for execution in this order.
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The USM API does not require accessors in the command group scope, but
does take an additional argument for specifying dependent kernels for subsequent
calculations on the data outputted. The dependency is preserved by a direct
injection of the event object returned by the command group handler to the
existing dependency list.

Inside the kernel scope for both buffer and USM APIs, calls to the cuRAND
or hipRAND API are made from the host and, if using buffers, the accessor is
then reinterpreted as native memory—i.e., a raw pointer to be used for cuRAND
and hipRAND API calls. The random numbers are then generated by calling the
appropriate xrandGenerate as per the distribution function template parameter
type.

The application scope remains the same as the one proposed in the oneMKL
SYCL RNG interface for both buffer and USM API, enabling users to seamlessly
execute codes on AMD or NVIDIA GPUs with no code modification whatever.

5 Benchmark Applications

Two benchmark applications were used for performance portability stud-
ies, and are detailed below. The SYCL codes were compiled using the
sycl-nightly-20210330 tag of the Intel LLVM open-source DPC++ compiler
for targeting CUDA devices and hipSYCL v0.9.0 for AMD GPUs. The applica-
tions’ native counterparts were compiled with nvcc 10.2 and hipcc 4.0, respec-
tively, for NVIDIA and AMD targets. Calls to the high-resolution std::chronos
clock were bootstrapped at different points of program execution to measure the
execution time of different routines in the codes.

5.1 Random Number Generation Burner

The first application was designed as an artificial benchmark to stress the hard-
ware used in the experiments by generating a sequence of pseudorandom num-
bers of a given batch size using a specified API—i.e., CUDA, HIP or SYCL—and
platform. We use this simple test as the primary measure of our oneMKL RNG
implementations. Having a single application to benchmark all available plat-
forms has a number of advantages, namely, ensuring ease of consistency among
the separate target platform APIs, e.g., all memory allocations, and data trans-
fers between host and devices are performed analogously for each API.

The workflow of this benchmark application can be outlined as follows:

1. target platform, API and generator type are chosen at compile-time, specified
by ifdef directives;

2. target distribution from which to sample, number of iterations and cardinality
of the output pseudorandom sequence are specified at runtime; for SYCL
targets, buffer or USM API is also specified;
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3. host and device memory are allocated, and the generator is constructed and
initialized; for SYCL targets, a distribution object is also created as per Step
2 above;

4. pseudorandom output sequence is generated and its range is transformed; and
5. the output sequence is copied from device memory to host memory.

5.2 FastCaloSim

Our second benchmark is a real-world application that aims to solve a
real-world problem: rapid production of sufficiently accurate high-energy col-
lider physics simulations2. The parameterized calorimeter simulation software,
FastCaloSim [31], was developed by the ATLAS Experiment [14] for this rea-
son. The primary ATLAS detector comprises three sub-detectors; from inner
radii outward, a silicon-based inner tracking detector; two types of calorimeter
technologies consisting of liquid argon or scintillating tiles for measurements of
traversing particles’ energies; and at the periphery a muon spectrometer. Among
these three sub-detectors, the simulation of the calorimeters are the most CPU-
intensive due to the complex showering—i.e. production of additional particles
in particle-material interactions—and stopping of highly energetic particles, pre-
dominantly in the liquid argon calorimeters.

The original FastCaloSim codes, written in standard C++, were ported to
CUDA and Kokkos [20], and subsequently to SYCL; the three ports were written
to be as similar as possible in their kernels and program flow so as to permit
comparisons between their execution and runtimes. The SYCL port, largely
inspired in its design by the CUDA version, permits execution on AMD, Intel
and NVIDIA hardware, whereas the CUDA port permits execution on NVIDIA
GPUs exclusively.

We briefly describe the core functionality of FastCaloSim here; for more
details on the C++ codes and CUDA port, the reader is referred respectively
to [31] and [20]. The detector geometry includes nearly 190,000 detecting ele-
ments, O(10) MB, each of which can record a fraction of a traversing particle’s
energy. Various parameterization inputs, O(1) GB, are used for different parti-
cles’ energy and shower shapes, derived from Geant4 simulations. The detector
geometry, about 20 MB of data, is loaded onto the GPU; due to the large file size
of the parameterization inputs, only those data required—based on the particle
type and kinematics—are transferred during runtime.

The number of calorimeter hits—i.e. energy deposited by interacting par-
ticles in the sensitive elements—depends largely on the physics process being
simulated. For a given physics event, the number of secondary particles pro-
duced can range from one to O(104), depending on the incident parent particle
type, energy and location in the calorimeter. Three uniformly-distributed pseu-
dorandom numbers are required for each hit to sample from the relevant energy
distribution, with the minimum set to 200,000 (approximately one per calorime-
ter cell).

2 Use of proprietary data that cannot be made publicly available.
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We consider two different simulation scenarios in our performance measure-
ments. The first is an input sample of 103 single-electron events, where each
electron carries a kinetic energy of 65 GeV and traverses a small angular region
of the calorimeters. An average number of hits from this sample is typically
4000–6500, leading to 12000–19500 random numbers per event. Because only a
single particle type is used within a limited region of the detector, this scenario
requires only several energy and shower shape parameterizations to be loaded
onto the GPU during runtime. The second, more realistic, scenario uses an input
of 500 top quark pair (tt̄) events. In this simulation, the number of calorime-
ter hits is roughly 600–800 times greater than the single-electron case, requiring
O(107) random numbers in total be generated during simulation. Also, a range
of secondary particles are produced with various energies that traverse a range of
angular regions of the detector. As such, tt̄ simulations require data from 20–30
separate parameterizations that need to be loaded to the GPU during runtime,
and thus result in a significant increases in time-to-solution on both CPUs and
GPUs.

6 Performance Evaluation

6.1 Performance Portability Metrics

There are numerous definitions of performance portability, e.g., [21,27,28,34].
In this paper, we adopt the definition from [29]: the performance portability P
of an application a that solves a problem p correctly on all platforms in a given
set H is given by,

P(a, p;H) =

⎧
⎨

⎩

|H|
∑

i∈H
1

ei(a,p)

if i is supported ∀i ∈ H

0 otherwise
, (1)

where ei(a, p) is the performance efficiency of a solving p on i ∈ H.
We introduce an application efficiency metric, being the ratio between the time-
to-solution (TTS) measured using our portable, vendor-agnostic (VA) solution
to the native, vendor-specific (VS) performance,

VAVS ≡ TTSportable

TTSnative
. (2)

The VAVS metric is useful to identify if runtime overheads are introduced in
portability layers which otherwise do not exist in a native API optimized for a
specific platform.

6.2 Hardware Specifications

We evaluate performance portability using a variety of AMD, Intel and NVIDIA
platforms, ranging from consumer-grade to high-end hardware. This large set
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of platforms can be subdivided into CPUs and GPUs, as well as the union of
the two, and also helps determine the regime in which the use of GPUs is more
efficient for solving a given problem, if one exists.

The Intel x86-based platform tested was a Core i7-10875, consisting of 8 phys-
ical CPU cores and 16 threads, a base (maximum) clock frequency of 2.30 (5.10)
GHz. To benchmark native oneMKL GPU performance, we use the Intel(R)
UHD Graphics 630, an integrated GPU (iGPU) that shares the same silicon die
as the host CPU described previously. This iGPU has 24 compute units (CU) and
base (maximum) frequency of 350 (1200) MHz. Through Intel’s unified memory
architecture (UMA), the iGPU has a theoretical maximum memory of 24.98 GB,
i.e., the total available RAM on the host. The main advantage of UMA is that
it enables zero-copy buffer transfers; no buffer copy between the host and iGPU
is required since physical memory is shared between them.

We evaluated SYCL interoperability for AMD and NVIDIA GPUs using an
MSI Radeon RX Vega 56 and NVIDIA A100. The Radeon is hosted by an Intel
Xeon Gold 5220 36-core processor with a base (maximum) clock of 2.2 (3.9) GHz.
An AMD CPU and NVIDIA GPU were evaluated using a DGX A100 node,
comprising an AMD Rome 7742 64-core processor with a base (maximum) clock
frequency of 2.25 (3.4) GHz. The A100 is NVIDIA’s latest high-end GPU, with
6912 CUDA cores and peak FP32 (FP64) of 19.5 (9.7) TF. Note that 16 CPU
cores and a single A100 of the DGX were used for these studies.

6.3 Software Specifications

The software used for these studies can be found in Table 1. As our work is
relevant only for Linux operating systems (OS), all test machines run some
flavor of Linux that supports the underlying hardware and software required for
our studies. In this table, DPC++ refers to the Intel LLVM compiler nightly tag
from March 3, 2021; separate builds of the compiler were used for targeting ×86
platforms and NVIDIA GPUs. The HIP compiler and hipSYCL are based on
Clang 12.0.0, and were installed from pre-compiled binaries available from [4].

Our implementations of SYCL-based cuRAND and hipRAND RNGs within
oneMKL were compiled into separate libraries for each platform using the respec-
tive compiler for the targeted vendor.

7 Results

The RNG burner application was run 100 iterations for each batch size for sta-
tistically meaningful measurements. Each test shown in the following was per-
formed with the Philo× 4 × 32 × 10 generator to produce uniformly-distributed
FP32 pseudorandom numbers in batches between 1–108, as per the require-
ments of our FastCaloSim benchmark application. Unless otherwise specified,
all measurements are of the total execution time, which includes generator con-
struction, memory allocation, host-to-device data transfers, generation and post-
processing (i.e., range transformations), synchronisation and finally device-to-
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Table 1. Driver and software versions for each platform considered in these studies.

Platform Driver version OS and Kernel Compiler RNG library

AMD Rome 7742 - OpenSUSE 15.0 GNU 8.2.0 CLHEP 2.3.4.6

4.12 DPC++ oneMKL

Intel Core i7-1080H - Ubuntu 20.04 GNU 8.4.0 CLHEP 2.3.4.6

5.8.18 DPC++ oneMKL

Intel UHD Graphics 21.11.19310 Ubuntu 20.04 DPC++ oneMKL

5.8.18

Radeon RX Vega 56 20.50 CentOS 7 HIP 4.0.0 hipRAND 4.0.0

3.10.0 hipSYCL 0.9.0 oneMKL

NVIDIA A100 450.102.04 OpenSUSE 15.0 CUDA 10.2.89 cuRAND 10.2.89

4.12 DPC++ oneMKL

host data transfer times, as determined by the high-resolution std::chronos
clock.

Shown in Fig. 2 are plots of the total FP32 generation time for the two
x86-based CPUs, as well the integrated GPU, using Philox-based generator for
both buffer and USM APIs. In general, little overhead is introduced when using
the USM API versus buffers. This is a promising result and, to the authors’
knowledge, the first benchmark of the different APIs; it is often more productive
for developers to port existing codes to SYCL using USM as this approach is
often more familiar to C++ programmers who use dynamic memory allocations
in their applications.

Figure 3 shows separately the RNG burner application results between the
buffer and USM APIs, and their native counterparts. Again, we observe statisti-
cally equivalent performance using either buffers or USM, with a slight overhead
at large batch sizes DPC++ USM and the A100 GPU. More importantly, how-
ever, is the level of performance achieved by our cross-platform RNG implemen-
tation; TTS for both the cuRAND and hipRAND SYCL backend implementa-
tions are on par with their native application.

One immediate point of discussion are the differences in TTS between
the Radeon oneMKL-based generator application and native application: the
oneMKL version shows slightly better performance for small batch sizes. This
is understood as being a result of the optimizations within the hipRAND run-
time system for its ROCm back-end. Due to the data dependencies among the
three kernels—seeding, generation and post-processing—in the test application,
call-backs are issued to signal task completion. These call-backs introduce laten-
cies into the application execution that are significant with respect to small-
scale kernels. The nearly callback-free hipRAND runtime system therefore offers
higher task throughput. As the batch sizes increase to 108, the difference in TTS
becomes negligible.

To further investigate this discrepancy, we separate each kernel’s duration for
both the oneMKL and native cuRAND applications; due to technical and soft-
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Fig. 2. Results from the RNG burner test application using the buffer API (a) and
USM API (b) for Philo× 4× 32× 10 generation of uniformly-distributed FP32 pseu-
dorandom numbers.

ware limitations, we were unable to profile the Radeon GPU in the following way.
Three kernels in total are profiled: generator seeding, generation and our trans-
formation kernel that post-processes the output sequence to the defined range.
Figure 4 shows both the time of each kernel executed and relative occupancy in
the RNG burner application using data collected from NVIDIA Nsight Compute
2020.2.1. Comparison between each kernel duration is statistically compatible
over a series of ten runs. It can therefore conclude that the discrepancies in Fig. 3
between the Radeon oneMKL and native applications can be attributed to differ-
ences between the applications themselves, and not fundamentally to the native
library kernel executions. Shown also in Fig. 4(b) are the relative occupancy of
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Fig. 3. Comparisons of the RNG burner test application execution time between SYCL
buffer and USM APIs, and their native counterparts running on the MSI Radeon RX
Vega 56 (a) and NVIDIA A100 (b). The Philo× 4× 32× 10 generator was used to
produce uniformly-distributed FP32 pseudorandom numbers of different batch sizes.

each kernel for the batch sizes generated. Both cuRAND kernels—seeding and
generation—are in all cases statistically equivalent between oneMKL and the
native application. It can be seen that, despite the nearly identical kernel dura-
tion, the buffer and USM API occupancies have a large increase between 102 and
104 in batch size compared to the native occupancy. This is because when not
explicitly specified, the SYCL runtime system optimizes the number of required
block size and threads-per-block, whereas in CUDA these values must be deter-
mined by the developer as per the hardware specifications. While in the native
version the thread-per-block size is fixed to 256, the SYCL kernel runtime chose
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Fig. 4. Per-kernel total execution time (a) and relative occupancy (b) executed on the
NVIDIA A100 with the Philo× 4× 32× 10 generator producing uniformly-distributed
pseudorandom sequences of various batch sizes.

1024 for the NVIDIA A100 GPU. This resulted in the observed differences in
kernel occupancy in the native application, as opposed to the SYCL codes for
the transform kernel which handle such intricacies at the device level.

Table 2 reports the calculated performance portability of our oneMKL RNG
backends using the VAVS metric introduced in Sect. 6. Note that VAVS values
closer to unity are representative of greater performance, while smaller values are
indicative of poor performance. The data used in calculating the various values
of P are taken from Fig. 4.
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Table 2. Calculated performance portability using the VAVS metric.

H P buffer P USM P Mean (buffer+USM)

{Vega 56, A100} 1.070 0.393 0.575

{Vega 56} 0.974 1.076 1.022

{A100} 1.186 0.240 0.400

As reported in Table 2, the performance portability measure in a number
of cases is greater than unity. This result is consistent with the performance
improvement over the native version observed in Fig. 3 for the buffer API on both
AMD and NVIDIA GPUs. Although the interoperability kernel time is the same
in both native and SYCL versions (see Fig. 4(a)), the buffer API leverages the
SYCL runtime system DAG mechanism and hipSYCL optimizations, improving
throughput relative to the native application, particularly for small batch sizes.
On the other hand, the DPC++ runtime system scheduler does not perform the
same with USM as it does when using buffers. Therefore, the performance drop
observed in the USM version in Fig. 3 leads to a reduction in the performance
portability metric by ∼%40. This behaviour is not observed with hipSYCL.

As a demonstration of cross-platform performance portability in a real-world
application, we show in Fig. 5 the average runtime of the FastCaloSim code
implementing the proposed SYCL RNG solution across four platforms. Both
SYCL and native implementations are shown for each platform, with the excep-
tion of the Radeon GPU as no native HIP-based port exists. Ten single-electron
and tt̄ simulations were run on each platform for reliability of measurements.
Where applicable, all measurements made in this study are consistent with those
in [20]. The left plot in the figure pertains to the 10,000 single-electron events
and the right to the 500 tt̄ events (see Sect. 5.2).

In the simpler scenario of single electrons, an approximately 80% reduction
in processing time is required on the Vega or A100 GPUs compared to the
CPUs considered. However, the overall insufficient use of the full compute capa-
bility of the GPUs in this application is made apparent in the more complex
topology of tt̄ events. This inefficiency is due primarily to the initial strategy
in porting FastCaloSim to GPUs; while maximum intra-event parallelism—i.e.
parallel processing of individual hits within a given event—is met, inter-event
parallelism is not implemented in this version of the codes. Future work on the
FastCaloSim ports includes event batching to better utilize GPU compute but
is beyond the scope of this paper. While the contribution of RNG to the overall
runtime of FastCaloSim is small, to investigate SYCL as a portability solution
for these codes nevertheless required a SYCL RNG to do so. With cuRAND and
hipRAND support added to oneMKL, we can run this prototype application
on all major vendors’ platforms with no code modifications whatever, and with
comparable performance to native codes.
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Fig. 5. Total runtimes of FastCaloSim across a range of platforms simulating single-
electron events (a) and tt̄ events (b).

8 Conclusions and Future Work

In this paper, we detailed our implementations of cuRAND and hipRAND back-
ends into oneMKL, and studied their cross-platform performance portability in
two SYCL-based applications using major high performance computing hard-
ware, including x86-based CPUs from AMD and Intel, and AMD, NVIDIA and
Intel GPUs. We have shown that utilizing SYCL interoperability enables perfor-
mance portability of highly-optimized platform-dependent libraries across dif-
ferent hardware architectures. The performance evaluation of our RNG codes
carried out in this paper demonstrates little overhead when exploiting vendor-
optimized native libraries through interoperability methods.
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The applicability of the proposed solution has been evaluated in a param-
eterized calorimeter simulation software, FastCaloSim, a real-world application
consisting of thousands of lines of code and containing custom kernels in different
languages and vendor-dependent libraries. The interfaces provided by oneMKL
enabled the seamless integration of SYCL RNGs into FastCaloSim with no code
modification across the evaluated platforms. The SYCL 2020 interoperability
functionality enabled custom kernels and vendor-dependent library integration
to be abstracted out from the application, improving the maintainability of the
application and reducing the source lines of code. The application yields compa-
rable performance with the native approach on different architectures. Whereas
the ISO C++ version of FastCaloSim had two separate codebases for x86 archi-
tectures and NVIDIA GPUs, the work presented here has enabled event pro-
cessing on a variety of major vendor hardware from a single SYCL entry point.
Hence, the SYCL RNG based integration facilitates the code maintainability by
reducing the FastCaloSim code size without introducing any significant perfor-
mance overhead.

While we have demonstrated that SYCL interoperability leads to reusabil-
ity of existing optimized vendor-dependent libraries and enables cross-platform
portability, devices without vendor libraries cannot be supported. For example,
no RNG kernels exist yet for ARM Mali devices. One possible solution would
be to provide pure SYCL kernel implementations for common RNG engines.
The kernel could then be compiled for any device for which a SYCL-supported
compiler exists. Moreover, in scientific applications and workflows where repro-
ducibility is essential, kernels written entirely in the SYCL programming model
can offer improved reliability across architectures and platforms. Although the
portability of such an RNG kernel would be guaranteed, performance remains
challenging and likely would necessitate mechanisms such as tuning of kernels
for different architectures.

Finally, extending performance portability to include also productivity and
reproducibility in an objective way would general scientific applications and
workflows aiming for architecture and platform independence.
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Data Availability Statement

Summary of the Experiments Reported

We ran two benchmark applications on a variety of hardware:
1. Intel Core i7-1080H, Intel UHD Graphics 630 (Razer Blade Studio Edition

2020) 2. AMD Rome 7742, NVIDIA A100 (DGX node from NERSC) 3. MSI
Radeon RX Vega 56 (Private Intel Xeon Gold 5220 node).

Both applications are freely available (Github link below) but inputs to
FastCaloSim are proprietary data of the ATLAS Experiment that we unfor-
tunately cannot shared publicly (special access may be granted upon request).
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We used Intel LLVM sycl-nightly/20210330, nvcc 10.2 and hipSYCL 0.9.0
for the various targets. oneMKL is used for all RNG but the hipRAND back-
end is not publicly available due to DOE restrictions on software developed by
employees. We are happy to make arrangements for this to be made available.

Artifact Availability

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: All author-created hardware artifacts are main-
tained in a public repository under an OSI-approved license.

Data Artifact Availability: Some author-created data artifacts are NOT main-
tained in a public repository or are NOT available under an OSI-approved
license.

Proprietary Artifacts: There are associated proprietary artifacts that are not
created by the authors. Some author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/oneapi-src/oneMKL
https://github.com/vrpascuzzi/FastCaloSim-GPU/tree/benchmarking
https://github.com/vrpascuzzi/benchprof/tree/sc21

Baseline Experimental Setup, and Modifications Made for the Paper

Relevant hardware details: DGX A100, Intel Core i7-1080H, Intel UHD Graphics
630, MSI Radeon RX Vega 56, NVIDIA A100, Intel Xeon Gold 5220

Operating systems and versions: Ubuntu 20.04 with kernel 5.8.18, OpenSUSE
15.0 with kernel 4.12, CentOS7 with kernel 3.10

Compilers and versions: GNU 8.2, nvcc 10.2, hipSCYL 0.9.0, Clang 12.0.0

Libraries and versions: oneMKL v0.1.0, CUDA 10.2.89, hip 4.0

Key algorithms: Philo × 4 × 32 × 10, MRG32k3a

Input datasets and versions: ATLAS FastCaloSim single-electron and top-
antitop quark n-tuple inputs

Paper Modifications: We added to the oneMKL open-source interfaces library
random number generator (RNG) support for AMD (hipRAND) and NVIDIA
(cuRAND) GPUS through SYCL interoperability. This provides a single entry
point for executing on a wide range of available HPC systems scientific and other
codes which utilize RNGs.
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Output from scripts that gathers execution environment information

A number of systems were used for these studies. As these studies
were performed several months ago, and due to access
privileges and updates, the hardware and software
specifications are no longer valid. For example, the DGX node
was a NERSC Perlmutter early access machine offered to
Pascuzzi, and is no longer online.

↪→

↪→

↪→

↪→

↪→

For the most accurate details, please see "Baseline experimental
setup, and modifications made for the paper" section above.↪→

Artifact Evaluation

Verification and validation studies: Each experiment was run hundreds of times
over the course of several weeks to validate day-to-day and operational fluctua-
tions of the systems used for benchmarking.

Accuracy and precision of timings: Each experiment was run hundreds of times
over the course of several weeks to validate day-to-day and operational fluctua-
tions of the systems used for benchmarking.

Used manufactured solutions or spectral properties: N/A

Quantified the sensitivity of results to initial conditions and/or parameters of the
computational environment: Each experiment was run hundreds of times over
the course of several weeks to validate day-to-day and operational fluctuations
of the systems used for benchmarking.
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Abstract. OpenMP 5.0 introduced the metadirective directive to
support compile-time selection from a set of directive variants based
on OpenMP context. OpenMP 5.1 extended context information to
include user-defined conditions that enable user-guided runtime adap-
tation. However, defining conditions that capture the complex interac-
tions between applications and hardware platforms to select an optimized
variant is challenging for programmers. This paper explores a novel app-
roach to automate runtime adaptation through machine learning. We
design a new declare adaptation directive to describe semantics for
model-driven adaptation and also develop a prototype implementation.
Using the Smith-Waterman algorithm as a use-case, our experiments
demonstrate that the proposed adaptive OpenMP extension automat-
ically chooses the code variants that deliver the best performance in
heterogeneous platforms that consist of CPU and GPU processing capa-
bilities. Using decision tree models for tuning has an accuracy of up to
93.1% in selecting the optimal variant, with negligible runtime overhead.

Keywords: OpenMP · Machine Learning · Runtime Adaptation

1 Introduction

Variant directives such as metadirective and declare variant are major new features
introduced in OpenMP 5.0 [18] to improve performance portability by adapting
OpenMP pragmas and user code at compile time. The OpenMP context, which
consists of traits from active OpenMP constructs, devices, implementations or
user-defined conditions, can guide adaptation. For example, the metadirective

is conditionally resolved at compile time based on traits that define an OpenMP
condition or context to select one of multiple directive variants. Based on a rec-
ommendation from a prior study [27], OpenMP 5.1 [19] added a new dynamic
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trait set that supports user-defined conditions. As a result, OpenMP program-
mers can now use dynamic conditions to guide the selection of directive variants.
A canonical example is a user-defined loop iteration threshold (in a form of N

>=50000) to decide if a parallel loop should execute on CPUs or GPUs.
While the metadirective enables runtime code adaptation, it falls to the pro-

grammer to determine the conditions upon which to select the best performing
code variant. However, manually determining the appropriate conditions (such
as the loop iteration threshold) is challenging. Meaningful values depend on
complex interactions between applications and hardware platforms, thus by def-
inition programmer choices are not portable. Further, there are many options
and configurations of OpenMP compilation and the supporting runtime software
that contribute to complexity, given the software stack configuration affects per-
formance. Thus, users would benefit from automated mechanisms to select the
best performing variant without manually specifying non-portable and error-
prone runtime conditions.

In this paper, we explore a novel, portable approach of incorporating machine
learning capabilities into OpenMP to automatically derive models used as
dynamic conditions that guide directive variant selection. This paper makes the
following contributions:

– A new directive and associated clauses to express essential semantics to achieve
automated model-driven runtime adaptation of a given OpenMP region;

– Compiler transformations that enable runtime profiling, model building, and
model-guided adaptation of an adaptive OpenMP region; and

– Extensions to a tuning runtime library that provides a small but powerful set of
novel APIs to support the multiple stages needed for model-driven adaptation.

Experimentation shows that our adaptive OpenMP extension is able to select the
best performing variant for the Smith-Waterman algorithm, which is particularly
hard to tune, for a range of input sizes, on heterogeneous platforms with CPU
and GPU processing capabilities.

2 A Motivating Example

We use the Smith-Waterman algorithm [22] to demonstrate the need for auto-
mated OpenMP adaptation. This dynamic algorithm finds the optimal local
alignment of a subsequence within a larger DNA or RNA sequence by calcu-
lating a distance (or similarity) matrix. The scoring process has a wavefront
computation pattern, as Fig. 1 shows, due to data dependencies between points
of the matrix computation. The algorithm has O(M×N) time complexity in
which M and N are the lengths of the two sequences. The space complexity is
also O(M×N) due to matrices used for computing scores and backtracking.

Figure 2 shows a typical OpenMP CPU implementation of the Smith-
Waterman algorithm’s scoring step. It parallelizes the inner loop iterating on
elements of each wavefront line. Similarly, Fig. 3 shows an OpenMP GPU offload
version, which moves the data used on GPU before the outer loop, and copies
back results after processing completes to reduce data transfer overheads.
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Fig. 1. Wavefront Computation Pattern of the Smith-Waterman Algorithm

1 long long int nDiag = M + N - 1;

2 for (i = 1; i <= nDiag; ++i) {

3 long long int nEle, si, sj;

4 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

5 #pragma omp parallel for
6 for (j = 0; j < nEle; ++j)

7 similarityScore(si-j, sj+j, H, P, &maxPos);

8 }

Fig. 2. OpenMP CPU Implementation of the Smith-Waterman Algorithm

We compare the performance of three versions (serial CPU, OpenMP CPU
and OpenMP GPU) for two sequences of equal input lengths, by ranging their
length from 32 to 15,000 with a stride of 256. Our comparison uses one compute
node of the Corona cluster of the Livermore Computing Center. It has two AMD
EPYC 7401 processors, each with 24 cores clocked at 2 GHz, 250 GB memory,
and four AMD MI50 GPUs. We compile with Clang 12.0.0 and ROCm v4.1.0,
with the −O3 option. Figure 4 shows the scoring kernel execution time. The serial
version performs the best for input sizes ranging from 32 to 6048. From 6304 to
8864, the OpenMP GPU version is the best choice. Finally, the OpenMP CPU
version performs the best for input problem sizes ranging from 9120 to 15,000.
It would be challenging for programmers to manually determine such conditions
to select the best variants for different software and hardware configurations.

In general, the optimal choice among OpenMP variants varies significantly
depending on the application kernels, input sizes, machines and compilers. Man-
ual specifying conditions guiding the optimal choice is neither practical nor
portable. Thus, we propose a new mechanism to automate adaptation without
user intervention.
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1 long long int nDiag = M + N - 1;

2 #pragma omp target enter data map(to:a[0:m],...) map(to:H[0:asz],...)
3 for (i = 1; i <= nDiag; ++i) {

4 long long int nEle, si, sj;

5 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

6 #pragma omp target teams distribute parallel for map (...)
7 for (j = 0; j < nEle; ++j)

8 similarityScore(si-j, sj+j, H, P, &maxPos);

9 }

10 #pragma omp target exit data map(from:H[0:asz],...)

Fig. 3. OpenMP GPU Implementation
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Fig. 4. Performance of Three Versions of Smith-Waterman Running on Corona

3 A Vision

We envision that future programming models, including OpenMP, will allow
programmers to express rich semantics related to automated adaptation using
machine learning techniques. Seamless integration of programming models and
machine learning has multiple benefits. For one, direct support in a programming
model will make machine learning techniques more accessible. Programmers will
be relieved from manually assembling machine learning pipelines to optimize
each program. Further, the integration will improve performance portability and
productivity of programming systems.

As Fig. 5 shows, we extend OpenMP to enable machine learning-driven adap-
tation. Our extension uses a new directive, declare adaptation, to generate
transformed (or lowered) code variants for each annotated code region. The
lowered code implements an execution pipeline that includes profiling, model
building and adaptation. Common functionality in those steps is supported by
a runtime library to simplify the compiler transformation.
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Fig. 5. Machine Learning-Driven Adaptive OpenMP

A generated executable file may run in different modes. The first run trans-
parently collects profiling data for selected adaptive code regions. Once sufficient
data is collected, the executable automatically builds a predictive machine learn-
ing model for each selected code region. Finally, the internally generated machine
learning models guide runtime selection of the best variants for each region. Pro-
filing, model building and model-driven adaptation may finish within the first
run of a program, especially for those that use iterative algorithms, which often
can easily generate sufficient training data.

The extended OpenMP also supports collecting profiling data across multiple
runs, which is essential if a single run does not generate sufficient training data.
Those profiling data accumulate in persistent storage to enable model building
and adaptation in later runs. Also, previously trained models are saved too for
reuse in later runs, avoiding unnecessary profiling and model building. In sum-
mary, the execution of an adaptive OpenMP program checks if previous profiling
data or machine learning models are available in order to initialize adaptive exe-
cution. The following sections elaborate on the design and implementation of
the declare adaptation directive.

4 The declare adaptation Directive

The proposed declare adaptation allows programmers to express semantics
related to machine learning-driven automatic runtime adaptation. In our present
design, declare adaptation works with metadirectives. Code regions annotated
with metadirecive naturally provide multiple directive variants for adaptation.
Future work will explore its composability with other directives.

When a code region enclosed by metadirective immediately follows the
declare adaptation directive, each when and default clause is treated as a
code variant that can be automatically selected. Internally, each code variant
is assigned a unique variant ID, starting from 0.

Using declare adaptation overrides the context-selector-specifications of the
when clauses, using instead user-provided features as part of the adaptation direc-
tive to model the performance of possible variants and select the predicted opti-
mal one. Programmers can also entirely avoid specifying context selectors in the
metadirective. The machine must support a valid execution context to enable
the execution of all variants of the metadirective so the runtime can freely acti-
vate any of them for profiling, modeling and subsequent selection.
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4.1 Syntax and Semantics of declare adaptation

declare adaptation has the following syntax:
#pragma omp declare adaptation [clause[[,]clause]...] new-line.

Semantically, declare adaptation allows OpenMP programmers to specify
that the associated OpenMP region is transformed into adaptive code using
online performance profiling and model-driven adaptation. The compiler gener-
ates a lowered multi-variant code region, leveraging runtime functions to support
profiling, model building and tuning, as Fig. 5 shows.

The possible associated clauses are the following:

– model(model_type_name),
– feature([modifiers]: list),
– model_name(region_id),
– use_model(region_id), and
– variant_mapping(list-of-mapped-model-region-variant-ids).

The parameter of the optional model clause indicates the type of machine
learning model to use. If this clause is not specified, the model type is imple-
mentation defined. Values of model_type_name are supervised machine learning
models for classification problems, such as logistic_regression, decision_tree,
random_forest, artificial_neural_network and support_vector_machine.

The mandatory feature clause specifies a list of variables that serve as model
features. Any program variable in scope may be used as a feature of the machine
learning model. In addition, we assume that a set of special OpenMP variable
identifiers, including omp_num_threads and omp_num_teams, are available to enable
modeling of the OpenMP context. The clause may be repeated as often as nec-
essary to describe all variables that the model should use as features.

Further, the feature clause accepts two optional modifiers that specify addi-
tional information for listed items. An example is feature (range[0:30000],

min_sample_points(25): N). The [lower_bound:upper_bound] argument of the
range modifier specifies a range expression for the variables in list. Both bounds
are inclusive values of either integer or floating point types that define a search
space of feature values. The integer argument of the min_sample_points modifier
is a hint on the number of data points to sample for those features. This modifier
guides the implementation in determining if sufficient data have been gathered
for adaptation. A possible formula for an implementation is Min dataset size =
(min f1 × min f2 × · · · × min fn) × code variant count. For example, a code
region with 3 code variants and 2 feature variables of min_sample_points(10) has
a suggested training set size of 10 * 10 * 3 = 300 data points.

The model_name and use_model clauses specify the model for guiding this
region’s adaptation and they form an exclusive clause set. This means that
at most one of them can be used within a declare adaptation directive. If
neither clause is specified, the effect is as if model_name is specified with an
implementation-defined unique region_id. The model_name clause indicates that
the associated region is a primary region for profiling, model building, and model-
driven adaptation. An example primary region is a loop doing intensive compu-
tation. The user must specify a unique identifier for the region in the model_id
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argument. The use_model clause indicates that this region is an associated region
to a primary region, so it should use the choices made by that corresponding pri-
mary region’s model. An example associated region is a data transferring region
preparing data for later computation. Its required argument specifies the ID of
its primary region. Multiple regions may use the primary region’s model.

The variant_mapping clause is valid and required only if the use_model clause
is specified. It establishes a code variant mapping between a primary region
and the associated region. The required mapping allows the region to have a
different number of variants from the primary region. It specifies which variant
an implementation should use based on the model decision of the primary region.
The size of the list of mappings is equal to the number of code variants of
the associated region. Each list item is a code variant ID of the corresponding
primary region. For example, variant_mapping(2,3) means that the associated
region has 2 code variants (with IDs 0 and 1) that are mapped to variant IDs 2
and 3 of the corresponding primary region. The associated region must not have
more code variants than the region specified by region_id.

4.2 Examples Using metadirective

We demonstrate the use of declare adaptation within the Smith-Waterman algo-
rithm. Figure 6 shows two nested loops that comprise the similarity score com-
putation kernel. Our version specifies three code variants using a metadirective:
serial, OpenMP CPU threading, and OpenMP GPU offloading (line 7–11). We
use declare adaptation on line 6, right before metadirective, to specify a deci-
sion tree model trained on a single feature (nDiag derived from the lengths of
the two sequences), which is the number of the wavefront lines of the similarity
matrix. For two sequences with size M and N , the following relationship holds:
nDiag = M + N − 1.

The choice of nDiag instead of the inner loop bound nEle is based on exper-
iments of a prior study [27] which reports that nDiag is a good indicator for
tuning. Choosing nDiag means that for a given pair of M and N values, a single
code variant is activated for the entire execution of the program. So adaptation
happens at a coarse granularity across different executions of the entire program.
In comparison, if we choose nEle, adaptation happens at a fine granularity, across
different wavefront lines. This fine-grain adaptation requires data transfers inside
the outer loop, which introduces excessive data copy overhead across wavefront
lines as Fig. 6 shows. Our experiments on Corona confirms that this overhead
results in severe performance degradation compared to its baseline serial version
using input sizes of 2000 by 2000 (56 s for the fine-grain adaptation version vs.
0.04 s for the serial version), hence the motivation for coarse grain adaptation.

A further optimization is using a data region that encloses both the outer
and inner loop. Thus, data is copied between devices only when entering and
exiting that region. We render the data region’s execution adaptive by adding two
more adaptive metadirective definitions (line 2–5 and 25–27 in Fig. 7). Variant
selection for those two regions corresponds to the decision made for the primary
region (line 13–21). When the primary region’s variant ID 2 is active at runtime,
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1 for (i = 1; i <= nDiag; ++i) {

2 long long int nEle, si, sj;

3 nEle = nElement(i);

4 calcFirstDiagElement(i, &si, &sj);

5

6 #pragma omp declare adaptation model(decision_tree) feature(nDiag)
7 #pragma omp metadirective \
8 when (:) /* variant 0: serial*/ \
9 when (:parallel for) /* variant 1: CPU threading */ \

10 default(target teams distribute parallel for map (to:a[0:m], ...) \
11 map(tofrom: H[0:asz], ...) /* variant 2: GPU offloading */
12 for (j = 0; j < nEle; ++j)

13 similarityScore(si-j, sj+j, H, P, &maxPos);

14 }

Fig. 6. Basic Use of declare adaptation with metadirective

which selects GPU execution, the two associated regions are activated (using
variant_mapping(2)). This example also shows that when an associated region
executes before its primary region, the corresponding feature variables should
be available at the entry point of this associated region for model evaluation.
Also, the values of those variables should not change before entering the primary
region, thus stay invariant. Then it is possible for the runtime to activate the
mapped variants in both regions. Otherwise, a primary region should execute
before its associated regions to forward its model decision.

5 Implementation

We design and implement a compiler-runtime system that translates OpenMP
programs with the declare adaptation directive into adaptive executables.
Figure 8 shows that our source-to-source compiler (based on ROSE [21]) trans-
lates an OpenMP program that uses declare adaptation into lowered adaptive
OpenMP code. We then translate that representation into a final executable
using Clang/LLVM. The lowered adaptive OpenMP code and our runtime
system (based on Apollo [4,26]) implement runtime profiling, model building
and model-guided adaptation. The runtime uses the OpenCV machine learning
library [7] to build machine learning models from profiling data. To support
reuse of profiling data and ML models across executions, the runtime system
loads and stores training data and models between main memory and persistent
storage (e.g., the file system).

5.1 Compiler Support

We use ROSE to prototype our compiler implementation. Developed at LLNL,
ROSE [21] is an open source compiler infrastructure to build source-to-source
program transformation and analysis tools for Fortran and C/C++ applications.
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1 //Copy the data to GPU if the GPU version will be used later.
2 //Primary region's variant #2 is mapped to variant id #0 here.
3 #pragma omp declare adaptation use_model("scoring_loop") variant_mapping(2)
4 #pragma omp metadirective \
5 when(: target enter data map(to:a[0:m],...) map(to:H[0:asz],...))
6

7 for (i = 1; i <= nDiag; ++i) {

8 long long int nEle, si, sj;

9 nEle = nElement(i);

10 calcFirstDiagElement(i, &si, &sj);

11

12 // The primary region with 3 variants
13 #pragma omp declare adaptation model_name("scoring_loop") \
14 model(decision_tree) feature(nDiag)
15 #pragma omp metadirective \
16 when (: ) \
17 when (: parallel for private(j)) \
18 default (target teams distribute parallel for ...)
19 for (j = 0; j < nEle; ++j)

20 similarityScore(si-j, sj+j, H, P, &maxPos);

21 }

22

23 //Copy data back to CPU if GPU is used
24 //Primary region's variant #2 is mapped to variant id #0 here.
25 #pragma omp declare adaptation use_model("scoring_loop") variant_mapping(2)
26 #pragma omp metadirective \
27 when( : target exit data map(from: H[0:asz], P[0:asz], maxPos))

Fig. 7. Optimized Use of declare adaption

ROSE supports OpenMP 3.0 [13] and part of 4.0 [15]. More recently, it was used
to prototype the dynamic extension of metadirective [27].

Our prototype compiler includes an extended OpenMP parser and internal
AST to support declare adaptation. It also translates an AST that represents a
metadirective region affected by declare adaptation into one that uses a switch-
case statement to enable machine-learning based adaptation. We lower that AST
into source files that use OpenMP 4.5 directives (using CPU threading and GPU
offloading directives). Finally, Clang/LLVM compiles the lowered code and links
it with the Apollo runtime library to generate the final executable.

The lowered code uses several runtime interface functions to support all
stages in the model-driven adaptation workflow. The workflow first collects exe-
cution time of variants associated with user-specified features of a code region.
It then processes those data into feature vectors suitable for machine learning
and feeds those training data into OpenCV to generate the model. Finally, it
evaluates at runtime the generated model to select code variants.
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Figure 9 shows the lowered code for the input code in Fig. 7. Each code vari-
ant of a metadirective region under declare adaptation control is placed in a
case statement of a switch statement. We synchronize the primary and the asso-
ciated adaptive regions using a region name identifier and variant ID numbers.
In this example, the two corresponding regions that copy data between the CPU
and GPU are only activated when the primary region’s code variant 2 (GPU
offloading version) is activated. The lowering step leverages runtime support to
reuse the same generated code for different stages of the workflow. For example,
we use the getPolicyIndex() function at line 27 to pick a policy to support both
training and production runs. Details of the runtime support are explained in
the next subsection.

5.2 Runtime Support

We extend Apollo [4,26] to serve as our runtime library. Apollo was originally
applied as an auto-tuning extension of RAJA [12] that uses pre-trained, reusable
machine learning models to tune data-dependent kernels at runtime. Neverthe-
less, Apollo’s modular design simplifies support of runtime adaptation for non-
RAJA codes, OpenMP in our case.

For adaptive code regions, an internal C++ Region class tracks the associated
features, manages training data and activates the model. Each code region can
have multiple code variants, such as one for CPU and another for GPU. Apollo
treats each variant as a distinct execution policy of the region to measure its exe-
cution time. The runtime uses these measured times to train a machine learning
model for suggesting the best execution policy, which corresponds to the fastest
code variant.

Apollo exposes a small set of runtime API functions to support data collec-
tion, model building and model-guided adaptation through two concepts: train-
ing models and tuning models. Training models are special models that activate
different code variants to collect data during training runs, while tuning models
are generated machine learning models to select optimal code variants (or equiv-
alently execution policies) to activate during production runs. The active model
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1 /* 1. Translation of the first dependent region*/
2 /* Create or obtain the main region*/
3 /* Parameters: unique region id, feature count, and variant count. */
4 Apollo::Region *region1 =

5 Apollo::instance()->getRegion("scoring-loop", 1, 3);

6 /* feature vector of size 1 */
7 region1->begin({(float)nDiag} );

8

9 // Get the policy to execute from Apollo
10 int policy = region1->getPolicyIndex();

11 if (policy ==2)

12 {

13 #pragma omp target enter data map(to:a[0:m-1], b[0:n-1]) \
14 map(to: H[0:asz], P[0:asz], maxPos)
15 }

16 region1->end();

17

18 for (i = 1; i <= nDiag; ++i) {

19 /* ....some code omitted here... */
20

21 /* 2. Translation of main adaptation region*/
22 Apollo::Region *region = Apollo::instance()->getRegion(

23 "scoring-loop", 1, 3, 1);

24 region->begin({ (float)nDiag });

25

26 /* calling a training or real model to select a code variant */
27 int policy = region->getPolicyIndex();

28

29 switch (policy) {

30 case 0: /* variant 0: serial */
31 { /* code omitted here */ }
32 case 1: /* variant 1: CPU threading */
33 {

34 #pragma omp parallel for
35 for (j = 0; j < nEle; ++j)

36 similarityScore(si-j, sj+j, H, P, &maxPos);

37 break;

38 }

39 case 2: /* variant 2: GPU offloading */
40 {

41 #pragma omp target teams distribute parallel for map (...)
42 for (j = 0; j < nEle; ++j)

43 similarityScore(si-j, sj+j, H, P, &maxPos);

44 break;

45 }

46 default:

47 /* .. error handling here... */
48 }

49 region->end();

50 }

51

52 /* 3. Translation of the 2nd dependent region, code omitted here*/

Fig. 9. Lowered Code Enabling Profiling, Model Building and Adaptation



60 C. Liao et al.

field of the Region class can be set to a training or tuning model. Thus, Apollo
re-uses the same API interface function, getPolicyIndex() to return either a
training or optimal code variant, which simplifies the compiler transformation.

Apollo provides two builtin training models (Random and Round-Robin) to
support profiling code variants. A training run with a given input data may
invoke a region multiple times and at every invocation the Random model ran-
domly selects a code variant of the region to measure performance. Similarly,
the Round-Robin model cyclically selects each code variant for performance
profiling. By default, Apollo averages the measured execution times for each
code variant when collecting measurements during training. The tuning models
include the Static model (returns a fixed policy choice) and a set of machine
learning models supported by OpenCV such as Decision Tree, Random Forest
and Support Vector Machine.

We extend Apollo in several ways. Specifically, we add support for collecting
and accumulating profiling data across multiple executions to ensure there is
sufficient training data for model building. Original Apollo requires an explicit
function call to trigger model building. We automatically trigger model build-
ing when sufficient data have been collected based on the semantics of declare

adaptation. Additionally, we apply the Static model as a training model to sup-
port coarse grain adaptation, by using a fixed code variant throughout an entire
program execution for a given input data size. Lastly, we add a new configura-
tion option to use the accumulated total execution time instead of the average
time as the input performance feature for OpenCV-generated models to enable
coarse grain adaptation.

Overall, our implementation uses six runtime functions to support adapta-
tion. Apollo* Apollo::instance() is used to initialize the runtime and obtain a
handle to it.

Apollo::Region* Apollo::getRegion (string& region, int feature_count,

int policy_count, int model_type) obtains a managed code region’s internal
C++ object by its name. If the region object exists, the function directly returns
it. Otherwise, the runtime creates and initializes it, using the specified feature
count, policy count, and machine learning model type. Each code region object’s
active model field is initialized to a tuning or training model. At first, the func-
tion tries to load an existing tuning model file saved on disk for the region.
If the model file does not exist, a default training model (Static, Random or
Round-Robin) is configured for the region. Similarly, if training across multiple
executions is requested, the runtime tries to initialize the region object’s training
data field by loading an existing training dataset for the region from disk.

The Apollo::Region::begin(std::vector<float>) indicates the beginning of
a managed code region. The parameter of this function is a vector of features of
float type. The length of the vector matches the number of features of the code
region. This function starts a timer for the managed code region.

Apollo::Region::getPolicyIndex() calls the active model associated with
the code region to return a preferred policy ID. If the model is a training model,
it picks a variant for profiling. Otherwise, a tuning model (such as a decision
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tree model) selects an optimal code variant by evaluating the model with the set
features associated with the region as inputs.

Apollo::Region::end() stops the timer for the managed code region and adds
information (such as the measured execution time, the executed policy, and the
feature vector) into the region’s training data field. Additionally, if the average
execution time is used as training data, it checks if sufficient profiling data have
been collected for the region, in which case the function triggers data processing
and model building using the collected data. Also, it stores the generated model
for later use.

Apollo::~Apollo(), the destructor of the Apollo runtime object, is implicitly
called when a program ends. If the accumulated total execution time of regions
is used to train models, this function will check if sufficient training data have
been collected and trigger model building for later re-use. It saves any collected
training data and generated models to disk.

6 Evaluation

6.1 Software and Hardware Configurations

We evaluate the effectiveness of the proposed OpenMP extension using the
adaptive Smith-Waterman algorithm shown in Fig. 7. The corresponding serial,
OpenMP CPU threading, and OpenMP GPU offloading versions are used as
baseline, non-adaptive versions. Picking nDiag as the feature requires multiple
runs using different problem sizes to collect training data. The minimal sam-
ple points per feature (specified using min_sample_points(val)) is configured to
have three values: 25, 50, or 100. During the training runs, the input problem
size range is fixed to be between 32 to 15,000. Three different strides (128, 256
and 512) in that range are used to generate sufficient training data for the three
sampling configurations.

For each input problem size, all code variants are measured in the same
batched run for collecting training data. The training run is repeated five times
and median values are used as performance measurements. Decision tree models
are created and stored in yaml files for later reuse. Once the model files are
available, the execution of the program enters the production run mode. Different
input problem sizes (160 to 15,000 with a stride of 256) are picked to evaluate
the generated models in production runs.

Two machines, Corona and Pascal, are used for the experiments, with their
details shown in Table 1. For the OpenMP CPU version, we use the number of
threads matching the number of physical cores on a machine to avoid system
noise caused by oversubscribing CPU cores.

6.2 Performance Results

Figure 10 and 11 show the execution time of different versions of the Smith-
Waterman algorithm on the two machines. The adaptive version uses the decision
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Table 1. Software and Hardware Configurations

LLNL Corona LLNL Pascal

CPU AMD EPYC 7401 2.00GHz Intel Xeon E5-2695 v4 2.10GHz

Cores 2 sockets × 24 physical cores 2 sockets × 18 physical cores

Main Mem 256 GB 256 GB

GPU AMD Radeon Instinct MI50 NVIDIA Tesla P100

Device Mem 16 GB 16 GB

OS TOSS 3 Red Hat Enterprise Linux 7.6

Clang/LLVM 12.0.0 11.0.0

Compiler Options −O3 −O3

GPU Driver AMD ROCm 4.1.0 NVIDIA CUDA toolkit 10.2.89

tree model generated using the minimum sample points per feature set to 50. It
is clear that the performance of the adaptive version, denoted with a green line,
closely matches the best choices, especially for Pascal. On Corona, the adaptive
version does not pick the serial version, which is the fastest, for input size range
between 32 and 5,000. However, the execution time of the predicted variant is
very close to serial, so performance is near-optimal anyway.

Problem size, M = N: 32 to 15000
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Fig. 10. Execution Time of Different Versions of Smith-Waterman on Corona

6.3 Accuracy of Prediction Models

The accuracy of the generated models is evaluated by comparing the predicted
best code variants against the ground truth of optimal variants for a set of
production runs using the selected input problem sizes. Note that we purposely
select a different set of 58 input problem sizes (160 to 15,000 with a stride of
256) in the production run, which are unseen in the training runs. To generate
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Problem size, M = N: 32 to 15000
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Fig. 11. Execution Time of Different Versions of Smith-Waterman on Pascal

the ground truth, we run the baseline versions using the same input problem
sizes selected for the production runs to identify the fastest execution variant.

Table 2 shows the accuracy evaluation results. For the three values of minimal
sample points per feature (25, 50 and 100), the created decision tree models show
the best accuracy of 79.31% for Corona and 93.10% for Pascal (among table’s
columns named Median).

Table 2. Prediction Accuracy of Smith-Waterman under Multiple Configurations

Training samples 25 50 100

Platform MedianMajority

Vote

Majority

Vote

(sklearn)

MedianMajority

Vote

Majority

Vote

(sklearn)

MedianMajority

Vote

Majority

Vote

(sklearn)

Corona 72.41% 77.59% 72.41% 79.31% 82.76% 84.48% 75.86% 77.59% 75.86%

Pascal 93.10% 93.10% 94.83% 93.10% 93.10% 93.10% 93.10% 93.10% 93.10%

We investigated possible causes for the limited accuracy of the models gen-
erated on Corona. It is observed that the serial version’s timing information col-
lected in the training data is not exactly the same as the corresponding baseline
version without code instrumentation. The OpenMP CPU and GPU versions do
not show such a problem. We suspect that code instrumentation (using runtime
API calls) prevents the compiler from applying some optimizations on the serial
version of the code. Both OpenMP versions already use outlining which hurts
optimizations, so additional instrumentation causes much less negative impact.
To test this hypothesis, we re-run the experiments with compiler optimizations
turned off (using the −O0 compilation flag). The adaptive version then made
55 correct choices out of 58 input problem sizes, which leads to an accuracy of
94.83%. Only three sizes have wrong predictions. These three wrong predictions
happen near the crossover points in Fig. 10 where different policies have similar
performance.



64 C. Liao et al.

We also tried another method to process and label the raw data. The original
method has two steps: 1) picking the median execution time of 5 runs for each
variant for a given input size, 2) finding the best variant using the median values.
The new method first finds the best variant within each batched run including
three code variants using a given input size. Then a majority vote is used to
decide the final best variant out of 5 repeated batched runs. The second method
leads to better accuracy for Corona. For example, accuracy increases to 82.76%
when using 50 samples per feature on Corona (Table 2). On Pascal, either of
those methods shows similar accuracy. Therefore, we deem the second method
as more accurate. Out of curiosity, we feed the identical training data in the sec-
ond method into another machine learning package, Python scikit-learn v0.24.2.
The prediction accuracy numbers overall are similar to what Apollo generates
on two machines. Nevertheless, the loss in accuracy is small and our ML app-
roach results in near-optimal execution decisions, evidenced by the performance
measurements.

6.4 Overhead Analysis

There are three kinds of overheads in the adaptive version: the one-off overhead
to perform the training run for data collection, the one-off overhead for model
building, and the instrumentation and model evaluation overhead in production
runs. The observed overheads depend on many factors, including the number of
data points, the input size of a program, and the choice of the machine learning
model, To measure those overheads, we pick the configuration of using 50 sample
points and three input problem sizes from 32 to 15,000, which are 4,128, 8,480,
and 12,576.

Table 3. Execution Time of Baseline, Training and Production Runs on Corona

Baseline Run Training Run Production Run

M == N Serial OMP-CPU OMP-GPU Serial OMP-CPU OMP-GPU Execution Time Predicted Variant

4128 0.214 0.552 0.286 0.309 0.573 0.289 0.304 OMP-GPU

8480 0.967 0.871 0.803 1.094 0.798 0.793 0.757 OMP-GPU

12576 2.164 1.042 1.585 2.562 1.051 1.644 1.077 OMP-CPU

Table 3 shows the measured execution time for different runs using different
configurations on Corona. Results on Pascal are similar, so we omit them. Table 4
shows overhead in percentage numbers for training runs and production runs.
The serial variant’s training runs have significantly high overhead compared to
the corresponding baseline runs. For example, it took 0.309 s while its baseline
version took only 0.214 s for the input size of 4,128, indicating an overhead of
44.74%. Again, the reason is that code instrumentation prevents certain compiler
optimizations being applied, which has a more negative performance impact
on the serial version than the OpenMP versions. We measured the training
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overhead of the serial version using −O0 compilation. The overhead then reduces
significantly to 9.85% for the input size of 4,128.

The time cost of building the models is negligible. It took only 0.00684 s
on average. The corresponding 95% confidence interval is 0.00684± 0.0038 s. It
only happens once for a configuration. The code instrumentation and runtime
adaptation in the production runs have overhead up to 6.28%.

Table 4. Overhead Percentage

Training Run Production Run

M==N Serial OMP-CPU OMP-GPU Predicted Variant

4128 44.74% 3.76% 1.05% 6.28%

8480 13.14% −8.37% −1.22% −5.81%

12576 18.39% 0.84% 3.73% 3.28%

For the input size of 8480, there are three negative overhead numbers for the
two training runs using OMP-CPU and OMP-GPU, and the production run. We
looked into confidence interval values for the relevant measurements. The results
show that the measured execution times of training and production runs do
have significant overlapping with their baseline runs. For example, the baseline
OMP-GPU has a confidence interval of 0.803± 0.0444 s while its production
run’s confidence interval is 0.757± 0.0553 s. As a result, we conclude that there
is no statistically significant overhead.

Overall the implementation has negligible impact on execution time for train-
ing and production runs using CPUs or GPUs.

7 Related Work

Machine-learning based compiler optimization has been studied extensively for
decades. Wang et al. [25] provide a comprehensive survey of machine learning
techniques used to guide compiler optimization. Ashouri et al. [2] summarize
machine learning techniques used to tackle two particular compiler optimization
problems: optimization selection and phase-ordering. A notable project, Milepost
GCC [9], combines production-quality GCC with machine learning to adapt to
different architectures and predict profitable optimizations. Luk et al. [16] profile
execution variants to build linear regression models in order to determine the
optimal splitting ratio between CPU and GPU computation. Grewe et al. [10]
uses decision tree models to decide if it is profitable to run OpenCL kernels on
GPUs. Hayashi et al. [11] used offline, supervised machine-learning techniques
to select preferred computing resources between CPUs and GPUs for individual
Java kernels using a JIT compiler. DeepTune [8] uses raw code to develop a deep
neural network to guide optimal mapping for OpenCL programs.
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Given the flexibility of OpenMP, there is growing interest in autotuning of
OpenMP programs to enable performance portability across different platforms.
Liao et al. [14] apply source code outlining to enable autotuning of OpenMP
loops from large applications. Sreenivasan et al. [23] introduce a lightweight
OpenMP pragma autotuner to optimize scheduling policies, chunk sizes, and
thread counts. In [20], the authors explored the benefits of using two OpenMP 5.0
features, including metadirective and declare variant, for the miniMD benchmark
from the Mantevo suite. The authors concluded that these features enabled their
code to be expressed in a more compact form while maintaining competitive
performance portability across several architectures. However, their work only
explored compile-time constant variables to express conditions.

Autotuning techniques are also well-studied for high performance computing,
but dedicated mostly for loop transformation and for performance optimization,
such as those in earlier works including POET [28] and CHILL [5]. Recent work,
such as OpenTuner [1], provides a general-purpose optimization tool that could
help users find the best configuration to improve the performance over a group
of compilation parameters as search space. CLTune [17], as a generic tuner for
OpenCL kernel, adopts a similar strategy. Active Harmony [24] is a runtime
tuning framework for searching tuning variables for the configuration that deliv-
ers optimal performance. Indicatively, 3D-FFT has shown 1.76× speedup when
using online tuning methods implemented with Active Harmony. Another Active
Harmony-based tool, named ANGEL [6], is developed to tune multiple functions
for balancing the trade-off between computing time and power consumption. Bari
et al. in [3] present ARCS framework for tuning OpenMP program targeting on
optimizing power consumption.

Our work differs from the aforementioned studies in that we define com-
bined language, compiler and runtime support methods to directly incorporate
machine learning into a programming model, which enables automated model-
driven runtime adaptation. Our approach significantly enhances portability and
productivity of OpenMP.

8 Conclusion

In this paper, we have proposed a new OpenMP extension, declare adaptation,
for programmers to express semantics related to machine learning-driven run-
time adaptation. This directive is used with metadirective to guide the selection
of an optimal choice of an OpenMP code region with multiple variants, using a
machine learning model automatically built from user-specified features. Exper-
imentation shows that this new extension improves the performance portability
and productivity of OpenMP by alleviating the problem of manually deciding
adaptation conditions for different software and hardware configurations. Addi-
tionally, this approach makes machine learning techniques more easily accessible
to HPC developers.

In the future, we plan to expand the declare adaptation directive to apply
to more types of OpenMP directives besides metadirective. Leveraging the pro-
totype for the combined compiler and runtime support, we intend to migrate



Extending OpenMP for Machine Learning-Driven Adaptation 67

the implementation to a production quality compiler, such as Clang/LLVM, and
also evaluate our approach on more applications and more diverse platforms.
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Abstract. With the development of diverse computer architectures and
diverse HPC applications, it is desirable to make performance portable
applications that run on multiple architectures with relatively low devel-
opment cost. Directive based programming models such as OpenACC
have been developed for such purpose, and have been used successfully
to port many equation-based HPC applications. As an example of porting
of a class of HPC applications comprising both data-analytics methods
and equation-based methods, we port an implicit solver with a neural
network (NN)-type preconditioner for solving large-scale partial differ-
ential equation (PDE)-based problems. The scalable preconditioner is
based on the Green’s functions reflecting properties of the target PDE,
which improves the accuracy and efficiency of using NNs for solving
PDE-based problems. By kernel algorithm design suitable for the com-
puter architecture and use of OpenACC, we enabled high performance
on recent GPUs with relatively low development cost. Here, 64.4% of
FP64 peak was obtained on NVIDIA A100 GPU-equipped nodes of AI
Bridging Cloud Infrastructure at National Institute of Advanced Indus-
trial Science and Technology, leading to 2.54-fold speedup from a highly-
tuned GPU implementation of a widely used PDE solver algorithm and
38.9-fold speedup from OpenMP-based CPU implementation running on
the same system. Furthermore, 83.4% weak scalability was obtained from
8 to 256 A100 GPUs on the same system, enabling solving large scale
problems of up to 25.7 billion degrees-of-freedom with high performance.

Keywords: Performance portability · OpenACC · GPU
computation · Implicit solver · Neural network-based preconditioning
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1 Introduction

The variety of applications in the HPC field is increasing in recent years, includ-
ing not only applications based on the conventional equation-based method, but
also those based on the data-driven method and those based on the combina-
tion of the equation-based method and the data-driven method. In addition,
the variety of computer architecture is increasing in a wide range of systems
from commodity to supercomputer systems (e.g., x86/Arm/Power CPUs and
NVIDIA/AMD/Intel GPUs). It is a challenge to make applications executable
in multiple computer systems with low development cost and sufficient perfor-
mance for making effective use of various computer architectures in these various
applications.

Aiming to achieve performance portability among multiple architectures
with small development cost, directive-based parallel programming models that
enable porting of code across parallel environments via addition of directives
to CPU code have been developed. Using OpenACC [8], which is a type of
directive-based parallel programming model, many equation-based applications
have been successfully ported to GPU systems (e.g., [10,14,15,17,19]), and some
studies report performance similar to that based on native programming mod-
els (e.g., [20] reported performance similar to that using CUDA on NVIDIA
GPUs). On the other hand, there are only a few examples demonstrating the
effectiveness of the directive-based programming model for a wider variety of
applications combining data-driven and equation-based methods. Therefore, in
this paper, we show that directive based parallel programming is effective even
in recent diverse applications by porting applications that combine data-driven
and equation-based methods to GPU by OpenACC.

In this study, we focus on a neural network (NN)-accelerated implicit solver
[13], which incorporates the data-driven method into the equation-based method
to accelerate a partial differential equation (PDE) solver. In this method, the
problem of insufficient accuracy of the data-driven method, which often arises
when combining the data-driven method with equation-based methods, is solved
by developing a preconditioner that uses NNs via Green’s function (GF) that
reflects the characteristics of the target PDE (GF-based NN preconditioner).
Since the sparse calculation and random data access involved in the PDE solver
was transferred to NNs with compute efficient dense calculation and continuous
data access, the NN-accelerated solver was 4.26 times faster than the conven-
tional PDE-based solver on CPU systems. As the calculations in the precon-
ditioner are spatially localized, high scalability was attained in the massively
parallel environment of Fugaku [2]. This solver algorithm is expected to be effec-
tive in a wide range of recent computer architectures; high-efficiency on GPUs
is expected by development of kernel algorithms and implementations suitable
for recent GPU architecture.

The rest of the paper is organized as below. Section 2 outlines the GF-based
NN preconditioned implicit solver that is the subject of this study. Section 3
explains how to port the solver to the GPU. Here, kernel algorithms suitable for
the target GPU architecture are built based on the scalable solver algorithm,
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and the application is implemented using OpenACC. The performance of the
development method is shown in Sect. 4. Here, kernel performance on GPUs are
measured for kernel algorithms designed for CPUs and that designed for GPUs.
The performance of kernels implemented using CUDA, which has a high imple-
mentation cost but high specializability, is also shown to discuss the performance
portability when using low-implementation cost methods such as OpenACC for
GPU-based acceleration. Section 5 summarizes the paper.

2 Solver with Green’s Function-Based NN Preconditioner

As an example of a neural network (NN)-accelerated implicit solver, we target
a Green’s function-based NN preconditioned implicit solver, which uses NNs via
Green’s function that reflects the characteristics of the target PDE as a predictor
in the preconditioner of an iterative solver [13]. Below, we describe the target
PDE, GF-based NN predictor, the algorithm of utilizing this NN in the implicit
solver.

2.1 Target Problem

As an example of PDE-based physics simulation, we target wave propagation in
a domain with heterogeneous material properties

ρ
∂2ui

∂t2
=

∂

∂xj

(
cijkl

∂uk

∂xl

)
+ fi. (1)

Here, x, t, ρ, u, c, f indicate coordinates, time, density, displacement, elasticity
tensor, and outer force, respectively. For simplicity, voxel finite elements with
Newmark-β (β = 1/4, γ = 1/2) implicit time integration is used for discretization
of Eq. (1). The target problem becomes

Aδu = f , (2)

where

A =
4

dt2
M +

2
dt

Cn + Kn, (3)

f = bn − qn−1 + Cnvn−1 + A
(
an−1 +

4
dt

vn−1

)
. (4)

Here, superscript n indicates the time step number, dt indicates time step incre-
ment, and M,Cn,Kn, indicate mass, damping, and stiffness matrices, respec-
tively. Using the displacement increment δu obtained by solving Eq. (2), dis-
placement, velocity, acceleration, and inner force are updated as

un = un−1 + δu,

vn = −vn−1 +
2
dt

δu,

an = −an−1 − 4
dt

vn−1 +
4

dt2
δu,

qn = qn−1 + Knδu.
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The problems targeted in this study become larger than 109 degrees of freedom
(DOF); thus, accelerating the solver in solving Eq. (2) with 109 DOF becomes
the target problem.

2.2 GF-Based NN Predictor

Since the accuracy of the results of data-driven methods such as NNs are not
always guaranteed, we use the NNs as a predictor in the preconditioning pro-
cess of the iterative solution method instead of using NN for directly obtaining
the solution of Eq. (2). In order for this solver to be faster than solvers based
on conventional equation-based methods, it is important to gain accuracy more
efficiently (i.e., reduce the cost per accuracy) than the preconditioners in the
equation-based method. The most straight forward way to use a NN as a pre-
dictor is to build a surrogate model that reproduces the behavior of the entire
system using NN, and this approach has been shown to be effective in small-
scale problems [12,16]. On the other hand, in a large-scale problem, not only the
number of modes increases, but also the data representing each mode (i.e., set of
(x,Ax)) becomes large. Thus, using this approach for obtaining high accuracy
behavior of the entire system incurs huge cost for large-scale problems. There-
fore, we obtain highly accurate estimation with low cost by constructing a local
NN via a GF that reflects the characteristics of PDE. Below, we explain the
method of generating GF-based NN.

For a PDE
L(x)(a(x)) = b(x), (5)

the Green’s function of this PDE is defined as g(x, s) that satisfies

L(g(x, s)) = δ(s − x). (6)

Here, L, b, a, δ indicate the linear differential operator, known distribution,
response of system, and the Dirac delta function, respectively. By using this
Green’s function, response of system can be obtained explicitly as

a(x) =
∫

g(x, s)b(s)ds. (7)

In this way, GF reflects the characteristics of PDE, and linear equations can
be solved immediately by convolution calculation. However, the GF approach
is rarely used because the calculation to obtain the discretized distribution of
GFs costs the same as the calculation to solve the linear equations discretized
from PDE. Therefore, in this research, we solve the problem of GF cost and the
problem of accuracy when using NNs by estimating GFs in a short time with
NNs as follows.

Since the target domain comprises heterogeneous materials, the distribution
of GF will also change according to the material property distribution. The
discretized GF has a complicated distribution as shown in Fig. 1; thus, it is
difficult to efficiently estimate its distribution up to higher-order modes with a
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small amount of data. Therefore, GFs in domains with heterogeneous material
properties are calculated via the following two steps assuming that the GFs can
be approximated by using a simple transformation of the distribution of the GF
in a domain with homogeneous material properties.

1. Select one physical property value that represents the heterogeneous material
property, and obtain the discretized GF in the homogeneous region with this
material property. Since the Green’s function of the wave equation decreases
with distance, the GF value in the region of the Nx×Ny×Nz nodes where the
GF has a significant value is obtained (the values outside of this region are
neglected). Here, the wave velocities (Vs, Vp), discretization width (ds, dt),
and cutoff criteria automatically determine the value Nx, Ny, Nz. Here, we
use data sets comprising (x, Ax), x is a random input field, for numerical
optimization for obtaining the distribution of GF at the Nx ×Ny ×Nz nodes.

2. Next, we construct an NN that maps the GF in the homogeneous material
region to the GF in the heterogeneous material property region. Here, we
assume that the nine components of GF Gij(i, j = 1, 2, 3) can be approxi-
mated as

GNN
ii = Gbase

ii (c1 + c2x + c3y + c4z), (8)
GNN

ij = Gbase
ij (c5 + c6x + c7y + c8z) for i �= j, (9)

using eight coefficients ci (i = 1, 2, ..., 8) obtained using NNs. Note that the
nine components of GF are approximated with two sets of four coefficients, as
an isotropic material is targeted. Here, NNs inputting material properties of
(Nx−1)×(Ny−1)×(Nz−1) elements and outputting values of ci(i = 1, 2, ..., 8)
are used. Classifier NNs using fully connected 8-4-4-4-4-4-4-25 feed-forward
networks based on Chainer are used [4].

This makes it possible to construct an NN that estimates GF with high accuracy
with a small amount of data and a small number of parameters, as compared
with the case of directly estimating GF in the heterogeneous material property
domain. Figure 1 shows the distribution of GF estimated using NN constructed
using 16.2 million sets of data for training (Nx = Ny = Nz = 7; the number of
input material property parameters is 63 = 216, and the output value of GF is
73 × 9 components. The upper part of the figure is the accurate GF, and the
lower part is the error of GF estimated by the developed NNs. Here, we plot
the results for the performance measurement problem shown in Sect. 5. From
the figure, we can see that although each component of GF has a complicated
higher-order mode, each component of GF in a region with different material
properties can be obtained with high accuracy.

Using the obtained GNN
ij (i, j = 1, 2, 3), the solution to equation Az = r is

approximated as

zi(ix, iy, iz) =
3∑

j=1

Nz∑
jz=1

Ny∑
jy=1

Nx∑
jx=1

{GNN
ij (jx, jy, jz)

rj(ix + jx − Nx/2, iy + jy − Ny/2, iz + jz − Nz/2)} for i = 1, 2, 3, (10)
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Fig. 1. Accuracy of GFs obtained by NNs. Upper row indicate the true values, while
the lower row indicate the errors of the NN-approximated values.

where zi(ix, iy, iz) denotes the i-th component of z at voxel node at position
ix, iy, iz, and GNN

ij (jx, jy, jz) indicates the i, j component of the approximated
Green’s function at position jx, jy, jz.

2.3 Scalable Solver Algorithm Using GF-Based NN Predictor

We develop a scalable solver algorithm by incorporating the GF-based NN into
the adaptive conjugate gradient method [11]. In the normal preconditioning
method of CG solvers, the search direction z = Mr is calculated using a fixed
matrix M that approximates A−1. However, in the adaptive conjugate gradient
method, z obtained by approximately solving Az = r, is used in the search
direction. This enables using the GF-based NN predictor, which is an inexact
calculation, in the preconditioner of an iterative solver. Below we describe the
algorithm following Algorithm 1.

– Preconditioner: As the distribution of GF changes significantly in the bound-
ary region, the GF-based NN predictor is used to predict z = A−1r in domains
distant from the boundaries (Algorithm 1 line 8), and parts near boundaries
are updated by roughly solving the equation using a standard CG solver
(Algorithm 1 line 9). In addition, in order to avoid communication required
for GF calculation at the domain boundary in MPI process partition bound-
aries, these parts are also updated by the CG method together with the
physical domain boundaries. When updating these boundary areas, we use
the memory-saving and highly scalable 3×3 block Jacobi preconditioned CG
method.
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Algorithm 1. Iterative solver with NN-based preconditioner for solving Eq. (2).
Here, GF-based NNs (Br is the estimation of the solution of equation Az = r
by the NNs) is used in the preconditioner in an adaptive conjugate gradient
method. Matrix vector product of A and Ap are computed by the EBE method.
(¯) and ε indicates single-precision variable and tolerance for relative error. As
the GF-based NNs are highly accurate and capable of resolving high frequency
modes, high refinement rate is expected in the iterative solution refinement.
1: r ⇐ f − Aδu
2: β ⇐ 0
3: i ⇐ 1
4: (* outer loop start *)
5: while ‖r‖2/‖f‖2 ≥ ε do
6: (* preconditioner start *)
7: r̄ ⇐ r
8: z̄ ⇐ B̄r̄ (* apply GF-based NNs inside process domain *)
9: z̄p ⇐ Ā−1

p r̄p (* refine solution near domain boundary and inter-process boundary
using conjugate gradient solver with 3×3 block Jacobi preconditioning up to εp
with Dirichlet boundary conditions with value of z̄ and initial solution z̄p = 0
elsewhere *)

10: z ⇐ z̄ using z̄ updated with z̄p
11: (* preconditioner end *)
12: if i > 1 then
13: β ⇐ (z,q)/ρ
14: end if
15: p ⇐ z + βp
16: q ⇐ Ap
17: ρ ⇐ (z, r)
18: α ⇐ ρ/(p,q)
19: r ⇐ r − αq
20: δu ⇐ δu + αp
21: i ⇐ i + 1
22: end while
23: (* outer loop end *)

– Matrix-free matrix-vector product: In order to conduct large-scale computa-
tion on systems with a limited amount of memory, the matrix-vector product
f = Au is calculated without storing the entire matrix A, which uses a lot
of memory, in memory. Here, using the Element-by-Element method [18], the
product of the element matrix Ae and the element right-side vector ue is cal-
culated and added to the entire left-side vector f each time a matrix-vector
product is calculated. Since it is possible to reduce not only the memory usage
but also the memory transfer amount as compared with the case of storing
the entire matrix, this algorithm is suitable for systems with relatively high
computational performance in comparison with respect the memory band-
width. The EBE method is used for the matrix-vector product at line 16 of
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Fig. 2. Using GF-based NN predictor. White parts are predicted by GF-based NN
while the colored parts near inter-process boundary and physical domain boundaries
are solved roughly using a conjugate gradient solver. nef = 3 is used in this study.

Algorithm 1 and matrix-vector products within the CG method for updating
the boundary part in line 9 of Algorithm 1.

– Mixed precision arithmetic: Although the final output of the calculation
requires double precision, the preconditioning calculation can be inexact;
thus, the computation involved in preconditioning is conducted in single
precision (computation except for the preconditioner is conducted in dou-
ble precision). Not only high-peak performance hardware can be used, but
the amount of intra-process data movement and inter-process communication
can be halved.

3 GPU Porting of Solver with Green’s Function-Based
NN Preconditioner Using OpenACC

The GF-based NN preconditioned solver algorithm, which comprises the data-
driven modeling part (GF-based NN-predictor) and equation-based modeling
part (other solver components), is expected to perform well on a wide range
of architectures, including GPUs, because of its dense NN computation and
structured data access. On the other hand, at the kernel level, there are some
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Fig. 3. Avoiding data recurrence in the matrix-vector product kernel. Left: Using col-
oring of elements, right: using atomic add.

algorithms that perform well on GPUs and others that do not, so appropriate
algorithm selection is necessary at the kernel level. In this study, we developed
a kernel algorithm suitable for GPU architectures by reducing reading from and
writing to GPU memory and coalesced access to make effective use of bandwidth.
In addition, since GPUs tend to have communication bottlenecks due to their
high computing power, we also reduce communication between MPI processes.
Note that all computation is offloaded to the GPU, and the CPU is used only
to manage the GPU1. In the following, we describe the kernel algorithm and
implementation suitable for GPUs for the main kernels.

1 Since implicit data transfer between CPU and GPU is conducted every time in
acc parallel/kernels region by default in OpenACC, all necessary variables are
copied into GPU memory in advance, and only the minimum necessary acc update

host/device is used in the offloaded region.
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!$acc parallel loop collapse(3)
do k=1+nef-1,nez+1-nef+1
do j=1+nef-1,ney+1-nef+1
do i=1+nef-1,nex+1-nef+1

we1=wei(i,j,k,1)
we2=wei(i,j,k,2) 
…
we8=wei(i,j,k,8)

grs1=0.
grs2=0.
grs3=0.

rs1=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,1)
rs2=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,2)
rs3=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,3)
cocs1=cocs(i1,j1,k1,1)
cocs2=cocs(i1,j1,k1,2)
cocs3=cocs(i1,j1,k1,3)
ww1=we1+we2*cocs1+we3*cocs2+we4*cocs3
ww2=we5+we6*cocs1+we7*cocs2+we8*cocs3
grs1=grs1+rs1*ww1*coe1s(i1,j1,k1,1)
grs1=grs1+rs2*ww2*coe1s(i1,j1,k1,2)
grs1=grs1+rs3*ww2*coe1s(i1,j1,k1,3)
grs2=grs2+rs1*ww2*coe2s(i1,j1,k1,1)
grs2=grs2+rs2*ww1*coe2s(i1,j1,k1,2)
grs2=grs2+rs3*ww2*coe2s(i1,j1,k1,3)
grs3=grs3+rs1*ww2*coe3s(i1,j1,k1,1)
grs3=grs3+rs2*ww2*coe3s(i1,j1,k1,2)
grs3=grs3+rs3*ww1*coe3s(i1,j1,k1,3)

do j1=1,nd*2+1

do i1=1,nd*2+1

do k1=1,nd*2+1

SIMT computation 

enddo
enddo
enddo

!$acc loop seq

!$acc loop seq

!$acc loop seq

enddo
enddo
enddo

zs(i,j,k,1)=grs1
zs(i,j,k,2)=grs2
zs(i,j,k,3)=grs3

!$acc parallel loop collapse(3)

Fig. 4. GF-based NN predictor kernel

– Avoiding data recurrence in matrix-vector product kernel: In parallel com-
putation of matrix-vector product kernels, it is necessary to avoid the data
recurrence that occurs when adding to the left-side vector. The simplest way
is coloring the elements into eight different colors as shown in the left part
of Fig. 3. Focusing on a single voxel element, the number of nodes to be
added is eight, so by coloring the region with different eight colors so that
each element doesn’t share nodes with each other, we can avoid race condi-
tion within each color. In the left part of Fig. 3, each code segment represents
each of the eight colors. This method is simple and can be used on GPUs run-
ning many threads, but it results in stride 2 data access. Recent GPUs often
equip hardware-accelerated atomics; in particular, recent NVIDIA GPUs have
high throughput atomic operations capability, so we can expect performance
improvement by avoiding data recurrence using this feature. As shown in the
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right part of Fig. 3, by utilizing atomic add, stride 2 data access in the color-
ing algorithm is replaced by continuous access, which is expected to improve
performance on GPUs with fast atomics.

– Element wise computation in matrix-vector product kernel: Since recent
GPUs have a large number of registers per thread, shorter elapsed time tends
to be achieved by reducing data access even if the amount of computation
on registers is increased. Therefore, the kernel algorithm that previously cal-
culated intermediate variables and stored in memory are changed such that
these variables are recalculated every time on the fly on GPUs. This reduces
the amount of GPU memory read in the matrix-vector product kernel, which
is expected to lead to speedup.

– GF-based NN predictor kernel: This kernel computes the convolution of the
information of the surrounding grid into local nodes, and has a simple loop
structure with a triple loop within a triple loop as shown in Fig. 4. To make
effective use of the large number of threads on the GPU, the outer triple loop
is collapsed to make the loop length long enough for parallelization. Also, the
array dimensions of variables to be read in the kernel are set appropriately, so
that all data accesses become coalesced accesses. Furthermore, by unrolling
the outermost loop for k, the variables loaded in the innermost loop can be
reused for further performance increase.

– Mapping of processes for efficient communication: Recent GPU compute
nodes are often equipped with multiple GPUs and multiple communication
ports; thus, it is important to reduce inter-node communication and effectively
utilize communication bandwidth by allocating processes and communication
ports according to these configurations. In this case, we adopt the process
mapping as shown in Fig. 5, considering an environment where the commu-
nication between GPUs in a node is faster than the communication between
nodes, and where the transfer rate between GPUs and communication ports
in a node is nonuniform. The process mapping is arranged in such a way
that the communication ports close to each GPU are used and the amount
of communication in each port is balanced. The above mapping was created
for the configuration of the compute nodes of the 2D process partitioning
and ABCI supercomputer system used for performance measurement in this
research, but appropriate mappings can be created for other configurations
and 3D process partitioning as well.

4 Performance Measurement

4.1 Problem Used for Measurement

As an example of a large-scale wave propagation analysis in a domain with het-
erogeneous material properties, we measure the performance of the wave propa-
gation analysis in a head model [9] created by a CT scan (Fig. 6), following the
performance measurement problem in [13]. Here, Vs takes a value between 50 m/s
and 120 m/s, and other material properties are fixed at damping h = 0.001, den-
sity ρ = 1000 kg/m3, and Vp = 200 m/s. The problem is discretized in the time
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Fig. 5. Diagram of compute node (A) of ABCI [1] and Mapping of processes for efficient
communication. (top) Each GPU is connected to each other via NVLink and NVSwitch,
allowing them to communicate with each other at high speed in each compute node.
(bottom) Here, this is a mapping of processes for a system comprising compute nodes
each with 8 GPUs and 4 NICs shown in above image. By using b) instead of a),
maximum inter-node communication volume can be reduced by 40% per NIC.
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Fig. 6. Head model used for performance measurement. Young’s modulus and von
Mises stress response of the model under gravity is shown.

with dt = 0.001 s and space is divided into 512 × 512 × 512 in the x, y, and
z directions by voxel elements (513 × 513 × 513 nodes, 3 degrees of freedom
in x, y, z directions per node for a total of 405,017,091 DOF). When measuring
weak scaling, this head model is duplicated in the x, y directions. Since the con-
vergence properties of the iterative solver do not change significantly in the time
direction as a linear problem is solved, we measure the time required to solve
one time step with f with white noise and clamped boundary condition at the
bottom of the model. The cost of constructing NN is small and can be built in
advance, so only the solver part including the inference by NN is measured.

In this study, we compare performance of the developed solver with CGBJ
(conjugate gradient method with 3 × 3-block Jacobi preconditioning), which is a
kind of equation based solver widely used for solving large-scale wave problems in
massively parallel environments. CGBJ has good load balance because it uses the
inverse matrix calculated locally for each node for preconditioning. In addition,
since CGBJ consists only of matrix-vector products, it can be implemented in a
memory-saving manner by combining it with the Element-by-Element method,
making it a suitable method for solving large-scale problems. In this study, the
CGBJ is implemented by substituting the GF-based NN predictor in lines 6–11
in Algorithm 1 with a 3 × 3-block Jacobi preconditioner; thus, the CGBJ solver
is implemented in the same level as in the developed solver.



86 K. Fujita et al.

4.2 Performance Measurement Environment

We conduct performance measurements using AI Bridging Cloud Infrastructure
(ABCI) [3] at National Institute of Advanced Industrial Science and Technology
(AIST). ABCI equips NVIDIA A100 [5] and V100 [7] GPUs, which have been
used in many supercomputer systems in recent years. Table 1 shows the config-
uration of compute nodes of ABCI. The system comprises 120 compute nodes (A)
with A100 GPUs and 1088 compute nodes (V) with V100 GPUs. All compute
nodes (A) are interconnected with full bisection bandwidth and compute nodes
(V) are interconnected with full bisection bandwidth in a rack of 34 nodes. On
compute node (A), the FP64 peak performance ratio between CPU and GPU is
14.0x (memory bandwidth is 30.4x), and on compute node (V), the FP64 peak
performance ratio between CPU and GPU is 10.2x (memory bandwidth is 14.1x).
We can see that the memory bandwidth is particularly enhanced in the A100
nodes. For GPU measurements, nvhpc 21.2, cuda 11.2.2, and openmpi 4.0.5, with
compiler options -fopenmp -fastsse -O3 -Minline=levels:10 -Mcuda=cuda
"11.2",ptxinfo -acc -ta=tesla:cc "80",loadcache:L1,fastmath -Minfo=
accel -mcmodel=medium -Mlarge arrays, runtime options --mca btl openib
want cuda gdr 1 x UCX MEMTYPE CACHE=n -x UCX MAX EAGER RAILS=1 -x UCX
MAX RNDV RAILS=1 -x PGI ACC BUFFERSIZE=50M, is used (CUDA-Aware MPI and
GPU Direct RDMA [6] communication is enabled). For CPU measurements, intel
2020.4.304, intel-mpi 2019.9, with compiler options -O3 -xCORE-AVX512 -qopenmp
-qopt-report -qopt-zmm-usage=high, is used. All CPU cores in a node are used
with OpenMP (9 cores/process in compute node (A), 10 cores/process in compute
node (V)). An implementation tuned with SIMD intrinsics (AVX-512) developed
in [13] is used for measurements on CPUs. In the following measurements, we fix
the problem size to 256 × 256 × 512 elements per process (1 GPU per process).

Table 1. Configuration of ABCI system

Compute node (A) Hardware peak per node

CPU Intel Xeon Platinum 8360Y 5.529 TFLOPS

(2.40GHz, 36 Cores) ×2

Memory 512 GB DDR4 3200MHz RDIMM 408 GB/s

GPU NVIDIA A100 NVLink 77.6 TFLOPS

40 GB HBM2 ×8 12.4 TB/s

Interconnect InfiniBand HDR (200 Gbps) ×4 100 GB/s

Compute node (V) Hardware peak per node

CPU Intel Xeon Gold 6148 3.072 TFLOPS

(2.40GHz, 20 Cores)×2

Memory 384 GB DDR4 2666MHz RDIMM 256 GB/s

GPU NVIDIA V100 SXM2 31.2 TFLOPS

16 GB HBM2 ×4 3.6 TB/s

Interconnect InfiniBand EDR (100 Gbps) ×2 25 GB/s
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4.3 Solver Performance on GPU-Based System

First, we measure the performance of the developed method at the kernel level
(Table 2).

– EBE kernel: Since this kernel has many intermediate variables and data
access, spill/fill occurred on CPUs with a limited number of registers, result-
ing in a peak performance of 11.2% to the FP64 peak. On the other hand, on
GPUs, spill/fill is avoided due to the large number of registers, resulting in a
high peak performance ratio. First, for the coloring algorithm shown in the
left side of Fig. 3, the performance of the EBE kernel is 28.2 ms, 5.33 TFLOPS
(55% of the FP64 peak performance ratio), which is higher than that of the
CPU. Algorithm in the right side of Fig. 3 making effective use of atomics
resulted in 21.5 ms, 6.99 TFLOPS (72% of FP64 peak performance), which is
1.31 times faster than that of coloring. Furthermore, the use of an algorithm
that reduces memory read by recalculation of intermediate variables led to a
93.7-fold speedup compared to the CPU (75.0% of peak performance).

– GF-based NN predictor kernel: Due to the high compute density and small
data access, the CPU implementation has a high performance of 35.3% of
the FP32 peak performance ratio, but the A100 GPU implementation has
an even higher performance (9.63 TFLOPS, equivalent to 49.4% of the FP32
peak performance ratio). This can be attributed to the effective hiding of
data access and arithmetic latency by use of the large number of threads and
registers.

As can be seen, both the EBE kernel and GF-based NN predictor kernel are sig-
nificantly faster than the CPU implementation. With these kernel-level speedups,
the entire solver is 38.9-fold faster than the CPU implementation on the A100
node (Table 2) and 22.4-fold faster than the CPU implementation on the V100
node (Table 3).

Table 2. Performance of proposed solver on compute node (A) × 1 node

On CPU (2 36-core Xeon CPUs) Elapsed time TFLOPS (peak ratio)

GF-based NN predictor (FP32) 4.83 s 1.95 ×2 (35.3% to FP32 peak)

Boundary part EBE (FP32) 3.19 s 0.69 ×2 (12.5% to FP32 peak)

Outer EBE (FP64) 11.62 s 0.31 ×2 (11.2% to FP64 peak)

Total (mixed-precision) 23.96 s 0.64 ×2 (23.1% to FP64 peak)

On GPU (8 A100 GPUs) Elapsed time TFLOPS (peak ratio) Speedup

GF-based NN predictor (FP32) 0.246 s 9.63 ×8 (49.4% to FP32 peak) 19.6

Boundary part EBE (FP32) 0.042 s 13.2 ×8 (67.5% to FP32 peak) 75.9

Outer EBE (FP64) 0.124 s 7.27 ×8 (75.0% to FP64 peak) 93.7

Total (mixed-precision) 0.612 s 6.25 ×8 (64.4% to FP64 peak) 38.9
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Table 3. Performance of proposed solver on compute node (V) × 2 nodes

On CPU (4 20-core Xeon CPUs) Elapsed time TFLOPS (peak ratio)

GF-based NN predictor (FP32) 5.17 s 0.91 ×4 (29.7% to FP32 peak)

Boundary part EBE (FP32) 2.76 s 0.40 ×4 (15.0% to FP32 peak)

Outer EBE (FP64) 9.75 s 0.74 ×4 (18.5% to FP64 peak)

Total (mixed-precision) 20.9 s 0.37 ×4 (23.9% to FP64 peak)

On GPU (8 V100 GPUs) Elapsed time TFLOPS (peak ratio) Speedup

GF-based NN predictor (FP32) 0.332 s 7.12 ×8 (45.4% to FP32 peak) 15.6

Boundary part EBE (FP32) 0.062 s 8.93 ×8 (56.9% to FP32 peak) 44.2

Outer EBE (FP64) 0.173 s 5.23 ×8 (67.0% to FP64 peak) 56.3

Total (mixed-precision) 0.933 s 4.10 ×8 (52.6% to FP64 peak) 22.4

Compared to the CUDA implementation, which is more expensive to imple-
ment but offers greater programming flexibility, the outer EBE kernel and GF-
based NN predictor kernel on the A100 node achieved 93.0% and 85.5% of the
performance implemented by CUDA, respectively. On the V100 node, the perfor-
mance of the Outer EBE kernel and GF-based NN predictor kernel was 91.8%
and 82.7% of the performance implemented by CUDA, respectively. Thus, by
designing an algorithm that is suitable for GPUs, we can see that the perfor-
mance of the OpenACC implementation is comparable to that of the CUDA
implementation in practical use.

Next we compare the performance of the developed solver with the standard
equation-based solver CGBJ (3 × 3 block Jacobi CG method). From Fig. 7, we
can see that while CGBJ required 42 iterations, the developed method required
only 5 iterations to solve the equation up to a relative error |Aδu−b|/|b| < 10−8.
From this, we can see that the accuracy of the predictor is higher than that of
the conventional equation-based preconditioner used in CGBJ. The GF-based
NN predictor can also be used for initial solution estimation as indicated as “NN
initial solution + CGBJ” in Fig. 7. However, the performance improvement is
small in this case; we can see that using GF-based NN for solution refinement
via a preconditioner is important for attaining performance. When this problem
is measured on the A100 node system, one iteration of the GF-based solver
required only about 2.68 times that of one CGBJ iteration, which lead to 2.54-
fold speedup of the entire solver. The reduction in the number of iterations by the
high-accuracy predictor, and the peak performance ratio improved from 41.9%
of CGBJ to 64.4% in the proposed method by NNs, lead to the speedup.



GPU Porting of Implicit Solver with GF-Based NN by OpenACC 89

Fig. 7. Comparison of the performance of solver algorithms. Elapsed time on compute
node (A) system is shown in the horizontal axis.

Table 4. Weak scaling of proposed solver on compute node (A) system.

# of nodes # of GPUs Solver total Point-to-point comm. Others Scalability

elapsed time (s) time (s) time (s)

1 8 0.624 0.007 0.617 -

2 16 0.642 0.021 0.620 97.1%

4 32 0.725 0.054 0.671 86.0%

8 64 0.741 0.061 0.679 84.2%

16 128 0.738 0.058 0.679 84.5%

32 256 0.748 0.062 0.685 83.4%

4.4 Weak Scaling on GPU-Based System

Finally, we measure the scalability of the proposed method on large scale prob-
lems. Here, we fix the problem size to 256 × 256 × 512 elements per process (1
GPU) and scale up the number of processes and the problem size. Table 4 shows
the performance from 1 node (8 GPUs) to 32 nodes (256 GPUs) on the A100
node system. From the table, we can see that the time required for point-to-
point communication increases from 1 to 4 nodes, but remains almost constant
for more than 4 nodes. This is thought to be due to the characteristics of the full
bisection network, which allows for efficient neighbor-node communications. As a
result, high weak scaling efficiency of 83.4% was achieved from 1 node (8 GPUs)
to 32 nodes (256 GPUs). We can see that the well maintained load balancing
and the preconditioner with reduced communication lead to high performance
on a parallel environment comprising a large number of GPUs.
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5 Closing Remarks

As an example of directive-based porting of recently developed HPC applications
that integrates the equation-based method and data-driven method, we use Ope-
nACC to port a Green’s function-based Neural Network solver to GPU systems.
Targeting a scalable solver algorithm that performs preconditioning of iterative
solutions with high accuracy and low cost by using NN via the Green’s function,
kernel algorithms suitable for the computer architecture are constructed and the
application is ported using OpenACC. The developed method obtained a high
performance of 64.4% of the FP64 peak, and obtained a 2.54-fold speedup from
a conventional equation-based solver. We also showed that 85% to 93% of the
performance obtained using the native programming environment CUDA can
be obtained by the OpenACC implementations. In this way, it was shown that
by constructing an appropriate algorithm, high performance can be achieved on
GPUs even when using a low implementation cost programming method such as
OpenACC. The approach presented in this paper is considered to be effective in
other directive-based programming models, and is expected to contribute to low-
cost development of high-performance HPC applications combining data-driven
and equation-based methods currently under development in various fields.
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Abstract. HPC systems employ a growing variety of compute accel-
erators with different architectures and from different vendors. Large
scientific applications are required to run efficiently across these systems
but need to retain a single code-base in order to not stifle development.
Directive-based offloading programming models set out to provide the
required portability, but, to existing codes, they themselves represent
yet another API to port to. Here, we present our approach of port-
ing the GPU-accelerated particle-in-cell code PIConGPU to OpenACC
and OpenMP target by adding two new backends to its existing C++-
template metaprogramming-based offloading abstraction layer alpaka
and avoiding other modifications to the application code. We introduce
our approach in the face of conflicts between requirements and available
features in the standards as well as practical hurdles posed by immature
compiler support.

Keywords: C++ · OpenACC · OpenMP · Offloading

1 Introduction

Contemporary scientific applications are often written with accelerators, like
GPUs, in mind. This approach is required to make use of many modern com-
pute clusters and supercomputers, but it brings a dilemma of choice from a zoo
of proprietary and open offloading APIs coming with varying degrees of sup-
port form hardware vendors. While vendor specific, proprietary APIs usually
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promise best performance and hardware support, their use limits an application
to one vendor’s ecosystem. Open APIs offer portability, but cannot guarantee
support on future hardware. Committing to any particular offloading API may
thus necessitate future rewrites of software when new hardware or architectures
become available or the chosen API looses support, which may be unfeasible
with the limited time-budged for software development available within the sci-
entific community. Porting even between similar offloading APIs has in the past
also proven to be a non-trivial task [22].

With C++ being very prevalent in contemporary HPC, one approach to
mitigate this problem of choice is to use this language’s strength in zero-overhead
abstraction via templates and template metaprogramming (TMP) to create an
abstraction layer which applications can use to formulate parallelism in an API
agnostic way. At first glance this only moves the support problem from the
offloading API to the abstraction layer, however, in relation to a large scientific
application such an abstraction layer is much smaller and thus requires much
less work to port to new parallel APIs. Thus, such an abstraction layer is first
conceived as a part of one or a group of scientific applications rather than a
library for a general audience. Despite this focus, it will lend itself to other
applications, with support being guaranteed as long as the primary applications
fuel its developer’s interest.

Another breed of open-standard APIs for parallelization and offloading are
directive-based approaches which try to minimize changes to an existing, sequen-
tial code base by employing directives for marking code regions which may be
offloaded by the compiler without modifying the code in it base-language to the
eyes of a compiler with support not enabled. Like with any other API, their prac-
tical portability depends on the development afforded by compiler and hardware
vendors, too. Currently two competing directive-based model that target accel-
erator offloading are being developed: OpenMP [12], which has be around since
1997 as a parallel model for multi-core CPUs, has been extended with target
directives in version 4.0 of its standard, while OpenACC [8] was initially created
to provide offloading to accelerators exclusively.

This paper presents our efforts and experiences in porting the computational
radiation physics code PIConGPU [18] to both OpenACC and OpenMP target.
PIConGPU uses alpaka [25], which was first developed to provide portable
between different accelerator architectures, including GPUs and Intel MIC, as
well as multi-core CPUs to PIConGPU. Even though the primary purpose of
OpenMP and OpenACC is to simplify porting of existing codes, porting a code
like PIConGPU, with alpaka, as a C++ abstraction layer, already in place,
the code for two new alpaka back-ends requires much less effort than porting
the whole of PIConGPU directly. Thus, the majority of this paper is dedicated
to documenting our efforts to create alpaka back-ends for both OpenACC and
OpenMP target. Some of the lessons learned here will also apply to using direc-
tives in C++ codes in general and specifically other C++ offloading abstraction
layers.
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PIConGPU is an extremely scalable, heterogeneous, fully relativistic
particlein-cell (PIC) C++ code. This code has been chosen as one of the eight
CAAR codes across the United States by the Oak Ridge National Laboratory.
CAAR stands for Center for Acceleration Application Readiness - a program at
ORNL that is created to ready applications for their next generation computing
system, Frontier, the first exascale system to be in place later this year, 2021.
Work in this paper narrates challenges and potential solutions to prepare such
large scale applications for the ever changing hardware platforms.

This paper discusses the aspects of programmability, portability and perfor-
mance via the following contributions:

– challenges porting PIConGPU to a directive-based programming model,
– creating alpaka back-ends for OpenMP and OpenACC and evaluating the

functionalities of the available compilers, and
– highlighting compiler and runtime issues throughout the PIConGPU code

migration process.

We provide an overview of various offloading APIs and abstraction libraries
in Sect. 2. In Sect. 3 the employed APIs and alpaka are reviewed and compared.
During the porting process, various issues with both standards and compiler
support were encountered which are described in Sect. 4. In Sect. 5 we first discuss
the major obstacles we faced during this effort, then provide a short overview of
which examples already work using our OpenMP target and OpenACC alpaka
backends and current compilers. Finally, Sect. 6 concludes with an outlook on
the developments in the OpenMP and OpenACC ecosystems.

2 Related Work

Since the dawn of general purpose computing on GPUs (GPGPU), quite a few
offloading APIs have come and gone. One notable open, cross vendor entry is the
Khronos Group’s OpenCL [9] which is barely used anymore in HPC mostly due
veining vendor support in this space and partly due to its choice of having device
code separate from the host source. Other APIs use a single-source approach,
where offloaded code is integrated into the host language. NVIDIA’s proprietary
compute unified device architecture (CUDA) [4], which is older than the OpenCL
standard, is a C/C++ dialect which offers single-source offloading. It is the most
widely used API for scientific codes today, having evolved into the go-to API for
many scientific application developers. In response to CUDA’s popularity, AMD
created Heterogeneous-compute Interface for Portability (HIP), which mimics
the CUDA API to simplify porting CUDA codes. Later single-source approaches
aimed at integrating offloading into standard C++ without creating a dialect.
This was first attempted by Microsoft introducing C++ AMP [3], which inspired
Khronos’ SYCL [15]. The do concurrent construct introduced to Fortran in
version 2008, which can also be offloaded to GPUs by some compilers [24], is
a more mature example of the drive to include offloading support directly into
base languages.
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With these and more offloading APIs, including OpenMP target and Open-
ACC, available to chose from obsolescence is always looming and can not only
be caused by a vendor dropping support for an API, but also by technical devel-
opments: With the prevalence NVIDIA GPUs in supercomputers, CUDA looked
like a safe choice not long ago. A switch to an AMD-based machine could be
addressed by an, in theory, not too demanding port to HIP. However, both of
these APIs can only target GPUs not the host CPUs which are the primary
compute resource installed on the currently fastest supercomputer Fugaku [17],
meaning a code based on these APIs would not be able to run in such a system.
Therefore, C++ abstraction layers do not only aim to be a bridge between accel-
erator architectures and APIs, but also include sequential and parallel execution
on the host.

Sandia National Laboratories started the development of Kokkos [21] to
achieve performance portability for scientific codes written in C++. It cur-
rently supports CUDA, OpenMP (host), native POSIX threads and HPX.
Another library is RAJA [13], developed at Lawrence Livermore National Labo-
ratory, which offers support of CUDA, HIP, Thread Building Blocks (TBB) and
OpenMP (including target). RAJA also specifically aims to provide parallel
algorithms like Thrust [16]. These libraries, just like alpaka, are single-source,
passing user code as a predicate to templates which encapsulate the underlying
back-end APIs. In contrast to these examples, alpaka aims to be lightweight
low-level abstraction, providing generic access to the basic parallel hierarchies
of accelerators without shaping user code prescribing memory layout or algo-
rithms [23].

Another approach that should be mentioned is that of a template expression
library, where user code is not directly passed to a back-end but written in TMP-
based domain specific language which then generates backend-compatible code.
VexCL [19] used this approach to generate code for just-in-time compilation
(JIT) to support OpenCL, next to CUDA and OpenMP.

3 Methods and APIs

3.1 Alpaka and PIConGPU

PIConGPU is a plasma physics code that simulates the dynamics of fast charged
particles in electromagnetic fields taking into account relativistic effects and
fields generated by moving particles. The employed particle-in-cell approach does
store electric and magnetic fields on a regular grid but also must keep track of
quickly moving particles. Particles are stored on a per-supercell basis using a
dynamic collection of fixed-sized particle vectors. Kernels implementing particle-
grid operations on GPUs collectively copy nearby field values between device
memory and on-chip scratch memory (e.g. __shared__ in CUDA) to facilitate
efficient parallel processing of particles. This approach takes the hierarchical
architecture of GPUs into account and was initially implemented using CUDA
directly.
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PIConGPU uses templates and TMP to provide a domain-specific language
(DSL) for the user to describe the types of particles, interactions and external
fields present in the simulation. Some numerical parameters of these are also
fixed at compile time. This incurs a large number of constexpr variables of
static lifetime, either as static class members or global inside namespaces, to be
defined as part of the simulation definition.

Alpaka was introduced to make PIConGPU portable without duplicating
code for different target architectures while retaining the present performance on
GPUs. To this end, alpaka provides abstract forms of all major concepts present
in CUDA, including the execution hierarchy, atomics, block-level synchroniza-
tion primitives and shared memory as well as a generalize device and memory
management API. To generalize these concepts alpaka provides a rather ver-
bose API. To simplify porting codes from CUDA to alpaka the wrapper library
cupla [5] was created which provides a simplified API which is more similar to
CUDA. Other applications also adopted alpaka as their abstraction for offload-
ing, such as a ptychography code and a high-level trigger software in a large-scale
particle detector.

Alpaka currently provides a backend targeting sequential execution, backends
for parallel execution on the host via OpenMP and TBB, as well as on GPUs
using CUDA and HIP. A SYCL backend is also under development [2]. Alpaka’s
codebase [1] contains some examples, ranging from a parallel “Hello World” to
Euler integration. All backends are also covered by a suite of tests, each of which
tests a different aspect of offloading. One test focuses on transferring memory
between buffers on host and device, including multiple cases covering different
source and device locations and buffer sizes. Other tests cover aspects of kernel
execution on the device, like trivial kernels, variables in block-shared memory,
synchronization between threads or atomic operations.

3.2 Review of OpenACC and OpenMP Target

Both OpenACC and OpenMP target have been designed with GPUs or similar
accelerators as offload target devices in mind. Both expose the same two main
layers of parallelization on target devices as known from GPUs: A work grid
is first decomposed into loosely coupled blocks executing independently, which
in turn decompose into threads which execute in at least such a way that data
sharing may be exclusively between threads of the same block. Both models can
also target CPUs, where implementations tend to limit the number of threads
per block, often to one, in order to effectively map blocks to CPU threads. An
overview on the names the different models assign to these layers is provided in
Table 1. We will stick to the CUDA/Alpaka naming scheme.

OpenACC adds a third innermost layer called vector as a straight contin-
uation of this concept, which could conceivably be translated in the same way
as OpenMP’s simd loop on some architectures. While alpaka does provide an
element layer inside threads, no abstraction is provided beyond offering a work-
partitioning concept to support canonical for loops, ideally with compile-time
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Table 1. Rosetta-stone for the names of parallel execution layers. The element/simd
layer is only listed for completeness. Each model using a different set of terms pollutes
the name space, which is why we stick to the CUDA/Alpaka terminology in the text.
Where the word “worker” is used it refers to a scheduled unit executing some work on
any parallel level, not to the OpenACC worker.

CUDA Alpaka OpenMP 5.0 OpenACC 3.0

grid grid (target) (parallel)

block block team gang

thread thread thread worker

— element simd (vector)

length which a compiler can automatically vectorize.1 As this layer is not going
to be mapped explicitly we are not covering it further.

Both models provide directives to control parallel execution and data move-
ment between host and device. Directives start with

#pragma acc ... in OpenACC and
#pragma omp ... in OpenMP.

Here, we shall briefly review the basic primitives of the OpenACC 3.0 [7] and
OpenMP 5.0 [10] APIs to highlight their primary design aspects that affect our
porting efforts.

Execution of code on the device is initiated using the directives acc parallel
and omp target. OpenMP provides the directives teams and parallel which
cause regions of code to be executed by multiple blocks or threads, but do not
imply any distribution of work. Loops can be distributed in these regions using
the distribute (blocks) and for (threads) directives. In OpenACC parallel exe-
cution and work distribution constructs are inseparably linked with work distri-
bution provided by the loop gang and loop worker constructs. Herein lies the
main conceptual difference between the OpenMP and OpenACC programming
models: While OpenMP aims to support all types of parallelism, OpenACC is
exclusively designed to describe data parallelism in device code.

On GPUs no assumptions about the execution order of blocks should be
made, which is reflected in OpenMP not allowing synchronization and locks
across blocks, it does, however, support them between threads of the same block,
using barrier and critical, respectively. Following its exclusively data-parallel
paradigm, OpenACC does not make any assumptions on execution order on any
level and thus does not support explicit synchronization and locks. Because a
loop gang region may contain multiple loops in sequence marked with loop
worker and loop vector synchronization can be achieved implicitly within
blocks.

1 Alpaka is following the approach of very long instruction word (VLIW) architectures
in OpenCL in this aspect.
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Table 2. Overview of OpenMP and OpenACC manual memory management routines
with CUDA versions listed as reference.

CUDA OpenMP 5.0 OpenACC 3.0

cudaMalloc omp target alloc acc malloc

cudaMemcpy omp target memcpy acc memcpy to device

acc memcpy from device

acc memcpy device

cudaFree omp target free acc free

Both APIs support atomic operations through an atomic directive. OpenMP
defines atomics as binding to the target device, OpenACC is less clear on this
aspect, only stating that operations are atomic between gangs.

OpenMP provides the runtime API functions omp get team num() to deter-
mine the id of a block in device code and omp get thread num() determine the
id of a thread within a block. OpenACC does not provide this functionality
because in its strict map-reduce picture only the work items must be identified,
the workers may remain anonymous to the application code.

Data Management and Declarations. The canonical way of moving data
between host and device in these models is by declaring host storage locations
to be associated to locations in device memory and later, or in the same con-
struct, instructing the runtime to copy data between the host and associated
device locations. We will not elaborate on the omp target data and acc data
directives because in our port we are using runtime API functions which allow
for explicit memory management instead. These are listed in Table 2.

Clauses related to data movement may also be present in omp target and
acc parallel constructs where they declare how the listed variables should be
handled before the start and after the end of the attached region. On the Open-
ACC side these include copy, copyin, copyout, create and others. OpenMP
uses the map clause, which handles details through a map-type attribute.

Global variables, including compile-time constants, must be declared for pres-
ence on the device. In OpenACC this is done through the construct acc declare
copyin( varList ), where varList is a list variables that are declared for the
device. With OpenMP global variables can be made available to device code
either, in a similar way, using the omp declare target( varList ) construct
or by declaring them inside a declare target region. Implementations relax
this requirement and only require declaration of compile time constants if they
are not optimized out and the compiler places the value in run-time memory.
Violations of this relaxed requirement get expressed as linker errors.

Similar constructs are also used to declare functions to be compiled for the
device, so they can be called from offloaded code in other compilation units.
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Functions defined in the same compilation unit can be called without having
been declared for the device.

3.3 Experimental Setup

Initially, we started out testing various compilers. For the OpenMP we tried
Clang, AMD’s Clang-based development compiler AOMP version 0.7, AMD’s
ROC variant of Clang version 4.3.0 (based on Clang 13) [14], GCC version 9,
and IBM XL version 16.1.1-5. For OpenACC NVIDIA’s NVHPC toolkit versions
from 20.3 to 21.7 and GCC versions 9 through 11 were used. We stopped testing
with GCC and IBM XL due to fixes to reported bugs not becoming available
timely enough to fit the scope of this work. In the case of IBM XL, debugging
runtime errors also turned out to be infeasible due to prohibitively long compile
times. We dropped AOMP due repeated difficulty building new releases and
also most fixes to bugs AOMP inherited from upstream clang being available
upstream first.

Extensive testing was done only for OpenMP using Clang version 10 and
above, primarily tracking the main branch, targeting host (×862) and AMD
GPUs (HSA3) and for OpenACC using the latest NVHPC release, currently
21.7, targeting host (×86 see Footnote 2) and NVIDIA GPUs4. We only used
ROC Clang for a few tests prior to this paper. Our testing was strictly focussed
on functionality and therefore performance was not measured.

4 Porting Alpaka

With PIConGPU using alpaka to abstract parallel execution models, the only
viable way of porting it to OpenMP and OpenACC is to create two alpaka
backends and, ideally, not touch PIConGPU itself at all. This severely reduces
the amount of code required for the port because each alpaka feature only needs
to be mapped to the respective target model once, resulting in most relevant
OpenMP and OpenACC construct being used only once in the code.

Alpaka breaks down any offloading backend into a set of basic concepts which
are separately implemented and tied together. Table 3 lists the most relevant of
these.

Executing User Code on Device. For each backend, alpaka provides a type
TaskKernelBackendName which wraps a user-provided functor containing the
payload code as well as the arguments that should be passed to the functor
on-device for execution in a Queue. This is where alpaka’s parallel levels get
mapped onto the levels provided by the backend. The listing in Fig. 1 illustrates

2 Intel i7-4930K, Ubuntu 18.04.
3 Radeon Vega 64, Ubuntu 18.04.
4 GTX Titan Black, Ubuntu 18.04.



100 J. Kelling et al.

1 template<class Functor , class . . . Args>
2 void TaskKernel OpenMP5 OpenACC (
3 WorkDiv workDiv , // g r i d s i z e
4 Functor functor , // user f unc tor
5 Args . . . args ) // user arguments
6 {
7
8 // OpenMP
9 # pragma omp ta rg e t

10 {
11 # pragma omp teams d i s t r i b u t e
12 for ( int blockIdx = 0 ;
13 b lockIdx < workDiv . b lock s ;
14 ++blockIdx )
15 {
16 AccOmp5 ctx ( workDiv , b lockIdx ) ; // OpenMP backend handle
17 # pragma omp p a r a l l e l
18 {
19 functor ( ctx , args . . . ) ;
20 }
21 }
22 }
23
24 // OpenACC
25 # pragma acc p a r a l l e l
26 {
27 # pragma acc loop gang
28 for ( int blockIdx = 0 ;
29 b lockIdx < workDiv . b lock s ;
30 ++blockIdx )
31 {
32 CtxBlockOacc ctxBlock ( workDiv , b lockIdx ) ; // OpenACC backend handle
33 # pragma acc loop worker
34 for ( int threadIdx = 0 ;
35 threadIdx < workDiv . threads ;
36 ++threadIdx )
37 {
38 // need to add threadIdx to the contex t i n f o
39 AccOacc ctx ( ctxBlock , threadIdx ) ;
40 functor ( ctx , args . . . ) ;
41 }
42 }
43 }
44 }

Fig. 1. Sketch of the structure of a TaskKernel template which calls a user-provided
functor with user-provided argument in a parallel context using OpenMP or OpenACC,
also providing a handle ctx to enable the user to generically access abstracted backend
features. Note, that in the actual implementation TaskKernel is a class template which
stores the functor and the arguments as members and provides a call operator to provide
the functionality sketched above.
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Table 3. List of selected primary concepts which need to be implemented by any
alpaka backend.

Acc A type that acts as a handle for a backend. It can be used at
compile time to select implementations of traits related to the
backend and thus ties all parts of a backend together.

AtomicGrids

AtomicBlocks

AtomicThreads

Atomic operations which can be implemented differently for
atomicity at each level of parallelization: on the whole target
device, between block of a kernel, between threads of a block.

BlockSharedDyn A block-shared memory buffer of a size that is set at run time.

BlockSharedSt A strategy to declare block-shared variable akin to CUDA’s
__shared__.

BlockSync A strategy by which to synchronize threads within a block.

Buf A RAII class managing a memory buffer in a target device.

Dev A handle for a target device.

IdxBt A strategy by which a thread can determine its id within a
block.

IdxGb A strategy by which a block can determine its id within a kernel.

Queue A type that implements an execution queue on a target device.

TaskKernel A class that wraps user code for execution on a target device.

WorkDiv A type holding information about the requested sizes of the
grid, blocks and threads (number of elements) for kernel
execution.

the basic structure of what the alpaka TaskKernel invocation could look like for
both OpenMP and OpenACC.

A block-shared variable ctx is declared inside the teams, respectively loop
gang, region, but outside of the omp parallel, respectively loop worker region, to
represent a block-context handle to the thread. This context information includes
the current block id. More details about this are provided in the following.

Memory. Alpaka’s implementation adheres to the resource acquisition is initial-
ization (RAII) principle and provides a buffer type for memory on each device,
including the host. Therefore, alpaka does not have a concept of fixed associa-
tions between host and device memory, but rather allows copying data between
(sections of) any pair of buffers. One implication of this is, that the buffer types
for OpenMP and OpenACC must be implemented using the manual manage-
ment routines listed in Table 2, but more importantly, that any pointer to data
used in device code, will be a device pointer with no associated host memory.
This leads to different complications with each of the models.

By default both models map local variables, including function parameters
to the device automatically if they are required in the device code. OpenMP
assumes that any pointer it maps hence contains a host address and tries to
replace it by the associated device address. If no associated address exists the
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value copied to the device is 0x0, which also applies to original device point-
ers. The OpenMP runtime can be instructed to copy a device pointer verbatim
using the is device ptr( varName ) clause on the target directive in line 9
or on additional omp target data directives, which alpaka cannot use directly
because any pointers are elements of a parameter pack and thus have no name.
OpenMP will not perform this replacement on pointers which are enclosed in
other data types. Thus, we can get around this problem by wrapping any kernel
parameters, which are provided by the user in a C++ parameter pack, in an
std::tuple or similar structure.

OpenACC performs a similar replacement of address values also for pointers
found inside structures which are mapped, taking the wrapping-workaround off
the table. Like in OpenMP, a variable can be explicitly declared as a device
pointer using the deviceptr( varName ) clause on the parallel directive in
line 25, which is not possible because there is no way to know which parameters
contain pointers without access to static reflection. The only other option is
to add the clause default(present) telling the runtime to assume, that all
variables referenced in the offloaded code are already present on the device and
do not need to be mapped. Unfortunately this also disables automatic mapping
of local variables, necessitating that all local host variables used in the parallel
region occur in a copyin clause, which is feasible because they are named.

Block and Thread Index. Each worker needs access to information about
its position in the global execution grid in order for work distribution to work.
The OpenACC variant below line 25 does basically show the canonical way of
distributing work over blocks and threads verbatim. In alpaka, the indices of
these two nested loops are passed to the user code in ctx. Because OpenMP
provides a build-in way to retrieve the thread index via omp get thread num()
we use a parallel region without loop to avoid the overhead passing another
loop counter to the user code, while the compiler may use hardware intrinsics
to supply the user code with this information.

Atomic Operations. The set of atomic operations supported by alpaka fol-
lows the set provided by CUDA. This includes operations like atomic compare
and swap (CAS), min and max next to binary operations. Both OpenMP and
OpenACC support atomic load and store as well as binary operations with both
a pure update and a capture semantic, i.e. atomically retrieving the stored
value before applying the operation to the memory location. Only OpenMP 5.1
adds an atomic compare clause [11], which permits the ternary operator which
is required to implement CAS, min and max.

As a work-around these ternary operations can be implemented using a
critical region, which, however, does not exist in OpenACC. Not supporting
these operations is not an option as PIConGPU’s on-device dynamic memory
allocator mallocMC [6] requires them. Therefore we had to implement critical
region in violation of the OpenACC standard using device-global, grid-level and
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block-level locks based on more basic atomics to cover all levels at which atomic
operations may be required.

Block-Shared Memory. Alpaka provides block-shared variables in the same
way CUDA does, i.e. declaration of them is allowed at any point inside ker-
nel/thread code. This is not supported by our targeted models. This capability is
implemented by providing a block-shared small-object allocator BlockSharedSt
as part of the ctx object, which contains a fixed-size member array as underlying
buffer. The size of this array can only be set at compile time. Allocations of such
shared variables are carried out by a master thread, requiring synchronization
between threads of a block, after which a reference to the allocated memory is
returned to all threads. A part of aforementioned buffer can be reserved as a
shared buffer of run time-size (BlockSharedDyn), analogous to CUDA dynamic
shared memory.

Our expectation is, that implementations will in time be optimized to actually
store block-shared variables which fit into on-chip memory there when targeting
GPUs. As long as these variables are stored in global device memory our strategy
will at least allow these variables to reside compactly in a cache close to executing
block.

OpenMP 5.0 added the omp allocate directive which allows explicit alloca-
tion of memory through the OpenMP runtime, including an implementation-
defined allocator omp pteam mem alloc which may allow the declaration of
block-shared memory akin to using CUDA’s __shared__ attribute. We did not
test this option yet, because functionally, albeit conceivably with lower perfor-
mance, we can make due with the implementation described above, which is
required for OpenACC either way, and using this feature could open another
angle where incomplete OpenMP 5.0 compiler support may hit us.

Block-Level Barrier. Alpaka provides a block-level barrier akin to CUDA’s
__syncthreads() which can be implemented in OpenMP using the omp
barrier directive.

OpenACC does not support any explicit synchronization, so we again violated
the OpenACC standard by implementing a barrier using atomic operations and
spin loops on counters stored in the block-shared context variable ctx. This
implementation works on GPUs in practice as long as the OpenACC runtime
executes exactly the number of threads per block the code expects it to.

4.1 Final Touches: PIConGPU

PIConGPU uses one global variable on the target device which is not abstracted
by alpaka and thus must be declared by an acc declare device resident(
varName ), respectively omp declare target( varName ), directive in the PIC-
onGPU code.

Global constexpr variables, used primarily as part of the simulation defi-
nition, for the most part only exist at compile time and influence what code is
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generated for offloading. Constants whose value the compiler cannot optimize
out do require explicit mapping to the device. This is the case for arrays which
are dynamically indexed at run time and any other constant the address of which
taken in any context, e.g. if it is used as this argument of a member function
call. We chose to not map constants without run time storage explicitly to limit
our changes to the application code outside of alpaka to a minimum.

5 Major Hurdles and Discussion

5.1 Standards Issues

OpenACC/OpenMP: Static constexpr Mapping. Both OpenACC and
OpenMP require global variables to be marked explicitly for availability in
device code, making no exception for compile-time constants, so formally all
compile time constants have to be declared for the target.5 In a code like PIC-
onGPU this would effectively lead to each simulation definition file starting with
omp declare target and ending with omp end declare target or, worse, acc
declare copyin( listOfAllConstexpr ). While the OpenMP version of this
only makes the declare construct devoid of meaning, the OpenACC version actu-
ally hurts the code maintainability because each addition or removal of a constant
has to be mirrored in a second place.

Most available implementations only raise warnings when a constexpr vari-
able is referenced in a target region without having been mapped because there is
no problem unless the compiler determines, that a constexpr must be addressed
at run time. In this case a reference to a symbol is generated, but no definition,
eventually leading to errors during dynamic linking at run time.

For compile time constants, the standards should require symbols to be gen-
erated for constexpr variables that are defined inline if needed, as it is easier for
the compiler to determine if a given constexpr require a run time representation
then for the programmer. This would be more consistent with inline functions,
or functions defined within the same translation unit in general, not requiring
a declare to be callable from an offloaded region. It would also better fit the
C++-notion, that the compiler decides how to handle constexpr.

OpenMP: static constexpr Members. We started this work with only
OpenMP 4.5 being supported by compilers which required types to not con-
tain any static data members for them to be considered mappable to target,
with no exception for compile time constants. Most compilers would only warn
if mapped types contained static compile time constants. However, GCC did
throw an error here, which prevented us from performing any testing of GCC’s
OpenMP or OpenACC6 implementations with PIConGPU where, as in any TMP
code, static constexpr data members are too commonplace to be removed as
a workaround. OpenMP 5.0 solves this problem by removing the restriction on
static data members altogether.
5 In [10]: Sect. 2.10.4, Restrictions, bullet 5.
6 OpenACC does not actually have this restriction, but GCC’s implementation is

based on the OpenMP implementation and thus inherited this check.
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OpenACC: Lack of Explicit Block-Level Synchronization. The lack of
an explicit block-level thread barrier is the most prominent issue our OpenACC
port faces in terms of production-readiness. Although we do have a functioning
workaround for it, based on the standard not allowing any assumption on thread
scheduling, it is correct in stating, that our solution using atomics and spin
loops is not save. In practice this issue is exacerbated by the standard API
not providing any way to ascertain the actual number of threads being run per
block nor to force a certain number to be run, leaving it to the user to find
the maximum number of threads the runtime will actually run per block on a
given platform and instruct alpaka to not request more than this. If the number
actually running threads is smaller than expected, our barrier implementation
will dead-lock.

Any need for synchronization between threads could in theory be served using
only the implicit barrier after a loop worker region, but this is not feasible in
practice. On the surface this would require changing all kernels in PIConGPU
which employ barriers to employ loops to describe block-level parallelism, cir-
cumventing the existing abstractions and introducing a second implementation
incompatible with, e.g., the CUDA backend. Even deeper structural changes
would be required where PIConGPU uses other libraries based on alpaka: Mal-
locMC provides an alpaka device function which returns information about the
allocator to all threads of a block using collective operations which require syn-
chronization inside the function.

When targeting any hardware which does actually not allow any assumptions
about threat execution but somehow still supports the implicit barrier after a
loop worker region, a compiler could still implement an explicit barrier by first
inlining the code surrounding the barrier and then reordering it to split it into one
region before the barrier and one after. Some transformations required to achieve
this may require assertions about the code to be made which the base language
does not allow in general, e.g. swapping of inner and outer loops. Considering,
that any code where data dependencies block the required transformations would
be using the barrier in an invalid way, often leading to a dead-lock at run time,
the compiler could raise an error when it fails to transform the code to make the
barrier implicit.

C++: std:tuple Trivial Copy. When it comes to offloading, it is very
important, that types can be copied bit-wise in order to transfer instances to
the target. The C++ standard template library (STL) defines the type trait
std::is trivially copyable which, if true, guarantees that a bit-wise copy is
safe for the given type. Composite types of trivially copyable types are trivially
copyable if the move and copy constructors and assignment operators are trivial.
For any type which is mapped to target, clang checks this condition and issues
a warning when it is not met.

The C++ STL provides the type std::tuple which is very useful, among
other things, when storing parameter packs for later use, or to sneak device point-
ers past the address mapping of the OpenMP runtime. Unfortunately, the C++
standard does not require implementations of std::tuple to be trivially copy-
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able if all component types are. Both the GNU libstdc++ and LLVM’s libc++
implement std::tuple in a way that removes the std::is trivially copyable
trait. While they can still be copied bit-wise in practice as long as all component
types can be, this makes std::tuple effectively unusable for offloading, because
its use turns an otherwise useful warning into noise. An active defect report
against the C++ standard on this issue exists [20].

5.2 Compiler and Runtime Issues

PIConGPU is a rather large application, combing through almost all of the
C++ core language and, while alpaka only requires a subset of OpenMP or
OpenACC to implement its API, it probably happens to lean on aspects which
are usually not a focus when porting legacy applications, such as a wide range of
atomic operations, data sharing at block level and manual memory management.
Hence, the main roadblock to this work was, and remains, an immaturity of
the compilers around OpenMP target and OpenACC as the specifications are
rather new. Previously ported applications may use a common set of patterns,
predominantly straight parallel unrolling of loops over arrays, which is what
current compilers support best. When straying off the trodden path we find a
number of compiler bugs. With respect to C++ features especially, existing test
suites appear to contain mainly small examples each only using a very limited
set.

The compiler/runtime bugs can be grouped roughly into three categories:
First internal compiler errors (ICEs) triggered in the compilers by the occurrence
of, usually, more complex C++ constructs, e.g. lambdas or parameter packs,
occurring in or around target regions. The second are ICEs in the backend, where
either intermediate representations from host and target appear to get mixed up
or plain missing features, like missing code generation for some atomics. If a code
gets past these two, there are run time errors triggered by faulty code generation
or runtime behavior.

The largest issue arising from all of these is that further development of
triggering code is blocked until the compiler gets fixed; unless a simple work
around is available, which turned out to be rare. Encountering a run time error is
especially tricky, as, chances are, there is only one compiler successfully compiling
an example for a specific target and thus there is no way to independently test
whether the example code itself it correct.

Having only one large application, PIConGPU, that has to iterate with the
compiler development and gets stuck at each encountered compiler bug would be
too slow. In our work, we were able to take advantage of alpaka’s example codes
and test suite. With each small application only using a subset of the backend’s
features, some of which may trigger different errors first, we were able to report
or debug those in parallel.

Close communication with compiler vendors also helps to alleviate the issue
of code not being testable due a lack of reliable compilers. With the very fresh
support of offloading, error messages raised by the compiler can often be mislead-
ing and fail to point at the actual issue. In some cases an ICE can be triggered
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by faulty user code, which is just handled badly inside the compiler. It is likely,
that invalid code is not often part of compiler test suites.

ICEs are rather simple to report and caused either by incomplete implemen-
tations or some compiler internals which we cannot comment on. Run time errors
caused by compiler bugs require debugging on our part. Issues we encountered
that lead to wrong run time behavior of our program include an atomic cap-
ture which falsely did not change the addressed value and variables declared at
block-level being shared between all blocks instead of being private to a single
block. Bugs leading to the runtime actively raising an error are simpler to pin
down, such as, e.g., a case where accessing an element of a struct member array
which is above a certain size in bytes would cause the runtime to report a “GPU
memory error”.

Compiler Error Messages. Another problem encountered when debugging
issues in C++ codes in general, specifically when using vendor compilers backed
by smaller development teams, is unspecific error reporting. The minor part of
this can be unspecific messages of the form “invalid something”, which is almost
useless information in the absence of a very verbose context description. The
major problem is a lack of context information provided by non-mainstream
compilers. There appears to be a strong focus on a procedural style of pro-
gramming, leading to the assumption, that pointing to the line in the source
code where an error occurs provides sufficient information—in C++ it does not:
When a code instantiates a template, e.g., ten times, four of which contain some-
thing invalid, printing the same line number four times is not helpful. The fact,
that g++ and clang++ compilers sometimes produce screens upon screens of a
single error message in some template instantiation is a source of much ridicule of
C++, but it is very important to have this information in any non-trivial appli-
cation. Template instantiation generates code at compile time. Consequently,
that one line may have four different meanings when the error occurs and six
more different meanings where the template is instantiated without causing a
compiler error. Thus, it is important for the programmer to know which instance
of the template causes the error, otherwise they are left guessing.

We also observed bugs in the error reporting of compilers. For example, a
compiler may print an error message pointing to the correct line number, but
name the wrong file, specifically complaining about a line in a header, while
giving the name of the main source file.

5.3 Preliminary Results

Despite complete alpaka backends for OpenMP target and OpenACC and
explicit mappings of some bits of PIConGPU’s code which circumvented the
abstraction layer, PIConGPU still cannot be successfully ported to GPUs using
OpenMP or OpenACC due to a number of open issues in compilers and run-
times as highlighted in the previous section. With Clang, we were able to use
host as offload target for OpenMP. We had the same option with NVHPC and



108 J. Kelling et al.

OpenACC. We successfully ran PIConGPU via alpaka’s OpenMP or OpenACC
backend using recent versions of the respective compiler on the host.

HelloWorld is the most basic example for an alpaka application in that is only
runs one kernel which does nothing but print the thread and block index of each
thread. Successful execution shows, that the block-shared variables in Fig. 1,
lines 16 or 32 could be created and that that they contain the correct block
index for each block. This works on GPU with OpenACC using NVHPC. There
is one major bit of complexity in this example though, in that it requires the
runtime to provide printf() on target. Clang’s offloading runtime for AMD
GPUs does not provide this yet.

VectorAdd performs a simple addition of two vectors filled with random values
on the device and checks the result on the host. This example includes copying
data between host and device in both directions, next to executing a kernel
containing a grid-strided loop. It is, however more portable than helloWorld in
that is does not require any c-lib functions in offloaded code. This example
works successfully on GPU both with OpenACC using NVHPC. With OpenMP
targeting AMD GPUs this example works only with AMD’s ROC Clang version
4.3.0, while with clang’s main branch we see an issue where having large arrays
as members in structs causes a memory error, which makes starting any alpaka
kernel fail.

Alpaka Test Suite. Targeting the host, all tests pass with OpenMP and Open-
ACC using clang 11+ and NVHPC 21.7, respectively.

Using the most current upstream clang7, most tests compile targeting AMD
GPUs, some fail with ICEs, two due to missing cmath symbols for device code.
All tests fail at run time when using clang main because of the aforementioned
issue crashing any alpaka kernel. Using ROC clang, the linker hangs with most
of the tests.

With OpenACC, targeting NVIDIA GPUs, the majority of tests compile and
succeed at run time. Most notably, tests of the block-level thread synchronization
and block-shared memory succeed on GPU.

6 Conclusions and Outlook

This work attempted to map the feature set of the C++ template metapro-
gramming (TMP)-based accelerator abstraction layer alpaka to the directive-
based APIs OpenMP target and OpenACC. The main conceptual difficulty
is that alpaka’s API set is heavily inspired by CUDA and thus requires some
very specific capabilities to be implemented, such as the possibility for user code
to declare block-shared variables anywhere instead of only up-front, which no
existing API other than CUDA and it’s look-alikes supports. Here, alpaka could

7 Git commit c20cb5547ddd.
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achieve better performance portability by relaxing its adherence to CUDA and
instead providing a more general abstraction.

We described a number of problems with the present ecosystem encountered
introducing directive-based models into a TMP-based and heavily abstracted
C++ code, which any other abstraction layer, such as Kokkos of RAJA, aiming
to support these models would have to face, too. These issues highlight, that
the main for OpenMP and OpenACC use-case for these programming models
is to add accelerator-offloading to legacy code, which are usually large Fortran
or C code-bases. These programming languages mostly support a procedural
programming paradigm and only offer a limited options for abstraction beyond
this. C++ allows very high levels of abstraction using templates, which provides
a quite rigorous formalism for code generation and meta-programming. This lack
of consideration for C++ TMP makes the standards treat compile time constants
like any other (global) variable. This seems reasonable in C or Fortran, where
a compile time constant is little more than a variable that is known to the
compiler to not change a runtime and that has a static life time. In C++, they
can affect code generation itself, leading to the expectation, that handling them
is the responsibility of the compiler. They may sometimes become a variable at
runtime which does not change, but mostly their storage is optimized out. A
distinction should be made between static life time and compile-time life time,
where in the latter case the compiler should be responsible for mapping any data
still needed at run time.

OpenACC aims to distinguish itself from OpenMP by offering a less explicit
way describe parallelism in code. As in this work it was our goal map a very
explicit model onto it, we could not appreciate this. From our perspective, the
main distinction is OpenACC’s strict adherence to data parallel principles. This
is interesting from an academic perspective in that it might enforce a cleaner
description of parallel code if fully embraced. When porting originally sequential
code to OpenACC it may not be much of a problem to follow this path. We are,
however, not aware of any hardware architecture in common use exhibiting the
restrictions enforced by OpenACC. Likewise, no other offloading API enforces
strict data parallelism, which causes existing parallel codes to be build around
established features such as explicit barriers and accessible worker ids. Porting a
code that relies on certain patterns to a programming model that does not offer
them results in substantial changes to the code and may end up being more
of a rewrite than a port, such as in the case of PIConGPU. In our view, this
makes OpenACC not a viable general-purpose parallel programming model in
its current form.

The primary issue we encountered was the immaturity of compilers both with
respect to the support for OpenMP target and OpenACC as well the interac-
tion of that support with C++ code. This forced us to follow a, nowadays, quite
unusual development approach, were we had write our code without the possi-
bility to validate it by compiling, because the compiler would fail at an internal
compiler error (ICE). In order to progress we shifted our focus to compilers
and targets where we saw the fastest development with respect to the issues we
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encountered. For this reason, we followed the clang mainline development on the
OpenMP side. With OpenACC, we were only able to make significant progress
due to active support from the NVHPC developers with finding and fixing bugs
in their compiler and also testing our code with their development compilers in
between releases.

We continue to follow the compiler development on both the OpenMP and
OpenACC side to push towards improved compiler support and to address poten-
tial issues in the backends presented here.
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Abstract. Many-Fermion Dynamics—nuclear, or MFDn, is a config-
uration interaction (CI) code for nuclear structure calculations. It is
a platform-independent Fortran 90 code using a hybrid MPI+X pro-
gramming model. For CPU platforms the application has a robust and
optimized OpenMP implementation for shared memory parallelism. As
part of the NESAP application readiness program for NERSC’s latest
Perlmutter system, MFDn has been updated to take advantage of accel-
erators. The current mainline GPU port is based on OpenACC. In this
work we describe some of the key challenges of creating an efficient GPU
implementation. Additionally, we compare the support of OpenMP and
OpenACC on AMD and NVIDIA GPUs.

Keywords: Fortran · GPUs · OpenACC · OpenMP · Accelerators ·
Nuclear Configuration Interaction

1 Introduction

Many-Fermion Dynamics—nuclear, or MFDn, is a configuration interaction (CI)
code for ab initio nuclear physics calculations. It calculates the approximate many-
body wave function of self-bound atomic nuclei, starting from two- and three-
nucleon interactions. In these calculations, the nuclear many-body Hamiltonian
is represented as a large sparse symmetric matrix in configuration space. The low-
est eigenvalues of this matrix correspond to the energy levels of the low-lying spec-
trum, and the eigenvectors represent the corresponding many-body wave function.
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Table 1. Test platforms

Cori GPU Cori DGX Spock
GPU NVIDIA V100 NVIDIA A100 AMD MI100
CPU Intel Skylake AMD Rome AMD Rome
GPUs per node 8 8 4
CPUs per node 2 2 1
Bus PCIe 3.0 PCIe 4.0 PCIe 4.0
per GPU Memory 16 GB 40 GB 32 GB

Table 2. Compilers. Cray Fortran compiler version 12.0.1 claims full OpenACC 2.0 and
partial OpenACC 2.6 support for Fortran.

Vendor Version _OPENACC _OPENMP V100 A100 MI100
NVIDIA 21.7 201711 (2.6) 202011 (5.1) � �
HPE/Cray 12.0.1 201306 (2.0) 201511 (4.5) � �

MFDn is a platform-independent Fortran 90 code using a hybrid MPI+X pro-
gramming model. Over the past decade, it has been successfully deployed on multi-
core supercomputers such as Jaguar at the Oak Ridge Leadership Class Facility
(OLCF), Mira at the Argonne Leadership Class Facility (ALCF), and Edison at
theNational EnergyResearch ScientificComputingCenter (NERSC) usingMPI+
OpenMP [2,10,11,13]. Currently it is in production on many-core systems [4,5,7]
such as Cori at NERSC and Theta at ALCF, as well as other supercomputers
worldwide.

As part of the NESAP application readiness program for NERSC’s latest Perl-
mutter system, MFDn is being updated to take advantage of accelerators. The
current mainline GPU port uses OpenACC. In this work we consider several ker-
nels that are representative for some of the most time-consuming parts of MFDn
[5,12,16]. We describe some of the challenges and limitations of running them
efficiently on GPUs with OpenMP and/or OpenACC directives, using both the
NVIDIA and Cray Fortran compilers. We test their performance on NVIDIA V100
“Volta”, NVIDIA A100 “Ampere”, and AMD MI100 GPUs, as well as on Intel multi-
core CPUs; see Table 1 for more details of the test systems.

We performed tests on Cori GPU (NVIDIA V100 GPUs) and Cori DGX
(NVIDIA A100) with the NVIDIA compiler only, whereas our tests on Spock
(AMD MI100) are performed with the Cray compiler only (see Table 2). The Cray
compiler version 12.0 was not available for the Cori GPU system at the time of
writing and it does not support NVIDIA A100 GPUs. All tests were done on
exclusively-allocated nodes. In order to minimize any NUMA effects, tests on
GPUs used a single GPU, while tests on CPUs used a single socket.

In our implementations we have primarily explored three models: OpenACC
with parallel and loop directives, i. e., no kernels directives; OpenMP tar-
get offload with prescriptive style directives (teams distribute parallel do);
and OpenMP target with the new loop construct introduced in OpenMP 5.0.
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In all cases maintaining performance on CPUs and code maintainability was also
a priority. The NVIDIA compiler claims support for OpenACC 2.6 with “many
features” from 2.7 and for a subset of OpenMP 5.1, while the Cray Fortran com-
piler claims support for OpenACC 2.0 with “partial support” for 2.6 and full sup-
port OpenMP 4.5 with partial support for 5.0. We highlight where we encountered
missing features or shortcomings throughout and in particular in architectural spe-
cialization in Sect. 2.3 and reductions on arrays in Sect. 2.4.

2 ComputationalMotifs in Configuration Interaction Code
MFDn

The key computational challenges for MFDn are (1) efficient localization of the
nonzero Hamiltonian matrix elements and evaluation of the corresponding matrix
elements, and (2) efficient sparse matrix–vector and matrix–matrix products used
in the solution of the eigenvalue problem, both while effectively using the available
aggregate memory [5,12,16]. Figure 1 shows the overall structure of MFDn. The
GPU port of the LOBPCG eigensolver [15] using OpenACC is described in [14].
In this work we concentrate on the matrix construction phase and the evaluation
of observables, which each take up about one-quarter to one-third of the total run-
time, while iterative eigensolving takes about one-third to one-half of the total run-
time. In CI calculations, the many-body wave functions are approximated by an
expansion in many-body basis states; in MFDn we use antisymmetrized products
of single-particle states with quantum numbers (n, �, j,m) (see, e.g., Ref. [17] for
the meaning of these quantum numbers). The many-body basis states can then be
characterized by the set of single-particle quantum numbers for each nucleon. It
is convenient to group together many-body states with the same sets of values for
the quantum numbers (n, �, j), but different sets of values for the magnetic pro-
jection quantum numbers m. This grouping leads to a natural hierarchy in the
sparsity structure of the Hamiltonian matrix, which in turn allows for efficient
localization and evaluation of nonzero matrix elements. In addition, this group-
ing also facilitates an efficient block-diagonal preconditioner for the LOBPCG
algorithm [15]. We refer to these groups of many-body states as many-body basis
orbitals. To describe the sparsity structure, we furthermore define tiles as pairs of
row and column many-body basis orbitals.

In order to efficiently locate the nonzero matrix elements we exploit this hierar-
chical structure, by first determining which tiles can contain nonzero matrix ele-
ments (lines 2 through 5 of Fig. 1) and next counting how many nonzero matrix
elements there are (lines 6 through 8) in each tile. The actual construction of the
sparse matrix starts in line 11, with the nonzero matrix elements and their location
evaluated and stored in line 14 of Fig. 1. Note that the structure of the double loops
starting in lines 2 and in line 7 is essentially the same; the corresponding motif is
discussed in Sect. 2.1 below. Also the double loops starting in line 12 have a similar
structure, except that in this case, the obtained results in the innermost loop are
stored in an array; this motif is discussed in Sect. 2.3 below. (Note that this motif
is also used implicitly in line 5 of Fig. 1).
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Fig. 1. Schematic outline of the structure of MFDn during the matrix construction phase
(lines 2 through 14) and evaluation of physical observables (lines 16 through 20), for a
d-body Hamiltonian and d-body operators for observables.
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Once the nonzero matrix elements are evaluated and stored, we can obtain the
lowest n eigenvalues and eigenvectors c using an iterative eigensolver. In MFDn we
use either LOBPCG or a Lanczos algorithm with reorthogonalization, as indicated
in line 15 of Fig. 1. Details of the GPU port of our LOBPCG eigensolver using
OpenACC are described in Ref. [14].

Finally, in lines 16 through 20 of Fig. 1 we calculate m different physical observ-
ables using the coefficients ci of the lowest n eigenvectors and m two-body oper-
ators. Typically, we use 8 or 16 eigenvectors, and up to m ∼ 16 different opera-
tors corresponding to different observables. Note that lines 16 to 18 have the same
structure as lines 11 to 13, but instead of storing the nonzero matrix elements of
the operators, we contract them with the n eigenvectors. The corresponding motif
for these loops is discussed in Sect. 2.4 below.

2.1 Matrix Sparsity Determination

A typical loop structure in the matrix construction phase, as well as in the evalua-
tion of observables, is shown in Fig. 2. The (i, j)th entry of the many-body Hamil-
tonian with a d-body interaction, Hij = 〈Φi|H|Φj〉, can only be nonzero if the
many-body states Φi and Φj differ by at most 2d single-particle states. Thus, the
first step in the matrix construction (and in the evaluation of observables given
by the expectation value of a d-body operator) is to determine which matrix ele-
ments can be nonzero. This is done in line 3 of the loop; subsequently, lines 4 and
5 indicate the actual evaluation of the nonzero matrix entry, which can be stored
in memory (see line 14 of Fig. 1), or directly used in a matrix–vector multiply or
vector–matrix–vector contraction for the calculation of expectation values (see line
20 of Fig. 1). These are more complicated operations which are accomplished by
separate (sequential) subroutine calls, the details of which are beyond the scope of
this work.

Fig. 2. A typical loop structure in the matrix construction phase and during the evalu-
ation of physical observables.

The localization of nonzero matrix elements involves determining which
many-body basis states may be connected by the given particle rank (e. g.,
two-body) Hamiltonian. Given a single-particle basis with ns.p. single-particle
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states, a many-body basis state Φi for fermionic systems can be represented by
a binary string of length ns.p., denoted by BIN(Φi), where each binary bit of
BIN(Φi) indicates whether the corresponding single-particle state is occupied.
The total number of particles in the many-body state Φi is the number of 1’s
in BIN(Φi), i. e., the population count popcount(BIN(Φi)). Information regard-
ing all differently-occupied single-particle states between two bit-representations
BIN(Φi) and BIN(Φj) is encoded by BIN(Φi)⊕BIN(Φj), where⊕denotes the bit-wise
exclusive-or operation. The number of differently-occupied single-particle states
is then popcount(BIN(Φi) ⊕ BIN(Φj)). If both bit-representations describe states
with the same number of particles, then the number of differently-occupied single-
particle states is always even; with a two-body potential, only many-body matrix
elements with 0, 2, or 4 differently-occupied single-particle states can be nonzero.
If there are more than four differently-occupied single-particle states the matrix
element must be zero.

The storage requirements of such a bit representation is proportional to the
number of single-particle states, but independent of the number of particles in the
system. Alternatively, one can represent an N -body basis state Φi by an array or
tuple of N short integers MBS(a1:aN ) with a1 < a2 < · · · < aN , where each ele-
ment ai indicates which single-particle state is occupied. The storage requirement
of this method is proportional to N , the number of particles, but independent of
the number of single-particle states ns.p.. For a relatively small number of particles
(N ∼ 10 − 20 in MFDn), but a large (ns.p. � 1, 000) number of single-particle
states, the MBS representation is more advantageous in terms of memory than
storing the states as a bit representation. However, determining the differently-
occupied single-particle states is significantly more complex when Φi and Φj are in
the MBS representation (see Listing 1). Note the factor of two to ensure consistent
counts with the population count on the bit representation.

In MFDn the low-lying single-particle states are most likely to be occupied. For
this reason we use a bit representation for the 64 lowest single-particle states, in
combination with an array of N 16-bit integers MBS(a1:aN ) to store the full many-
body state. This allows for efficient filtering of pairs of states with bit arithmetic
on the most likely to be occupied states while incurring minimal additional stor-
age overhead. Our OpenACC implementation of the algorithm used to count the
number of different single-particle states by first performing a population count on
the 64 lowest single-particle states, followed by a detailed comparison of the MBS
representation if the population count is at most 2d, is given in code Listings 1 and
2.

OpenMP prescriptive, OpenMP loop and OpenMP loop with bind hints direc-
tives for the first and second level of parallelism in Listing 2 are shown in Listings 3
and 4 respectively. The first level is typically mapped to cores on CPUs, thread
blocks on NVIDIA GPUs and workgroups on AMD GPUs while the second level
is typicallymapped to SIMD lane(s) onCPUs, threads onNVIDIAGPUs andwork
items on AMD GPUs. Note that the comparison of the two complete many-body
states is performed in a function (see Listing 1), which needs a !$acc routine seq
directive so that the OpenACC loops in Listing 2 do indeed get parallelized; with
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1 integer function count_difference(s1, n1, s2, n2)
2 integer, intent(in) :: n1, n2, s1(n1), s2(n2)
3 integer :: i1, i2, d, diffs1, diffs2
4 !$acc routine seq
5 i1 = 1
6 i2 = 1
7 diffs1 = 0
8 diffs2 = 0
9 do

10 if ( (i1 > n1) .or. (i2 > n2) ) exit
11 d = s1(i1) - s2(i2)
12 if (d < 0) then
13 diffs1 = diffs1 + 1
14 i1 = i1 + 1
15 else if (d > 0) then
16 diffs2 = diffs2 + 1
17 i2 = i2 + 1
18 else
19 i1 = i1 + 1
20 i2 = i2 + 1
21 end if
22 end do
23 count_difference = 2*max(diffs1, diffs2)
24 end function count_difference

Listing 1: Sequential function for detailed comparison of two many-body states.

1 !$acc parallel loop
2 do i = 1, n
3 c = 0
4 !$acc loop reduction(+:c)
5 do j = 1, n
6 d = popcnt(ieor(bitrep1(i), bitrep2(j)))
7 if (d > 4) cycle
8 d = count_difference(mbstate1(:,i), np, mbstate2(:,j), np)
9 if (d <= 4) c = c + 1

10 end do
11 !$acc end loop
12 counts(i) = c
13 end do
14 !$acc end parallel loop
15 numnnz = sum(counts)

Listing 2: Counting nonzero matrix elements with OpenACC, using both a bit rep-
resentation for the first 64 single-particle states of Φi and Φj and a detailed compar-
ison for the MBS representation if needed. The highlighted lines show the directives
used for the two levels of parallelism.
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1 !$acc parallel loop
2 !$omp target teams distribute private(d)
3 !$omp target teams loop private(d)
4 !$omp target teams loop bind(teams) private(d)

Listing 3:OpenACC,OpenMPprescriptive,OpenMP loop andOpenMP loopwith
hints directives to express the first level of parallelismhighlighted in line 1 of Listing
2.

1 !$acc loop reduction(+:c)
2 !$omp parallel do reduction(+:c) private(d)
3 !$omp loop reduction(+:c) private(d)
4 !$omp loop bind(parallel) reduction(+:c) private(d)

Listing 4:OpenACC,OpenMPprescriptive,OpenMP loop andOpenMP loopwith
hints directives to express the second level of parallelism highlighted in line 4 of
Listing 2.

OpenMP there is no need for a similar directive when the routine is defined in the
same compilation unit, though !$omp declare target may be used when this is
not the case.

For our performance tests we used many-body states with 4, 8, 12, 16 and 20
particles, 128 single-particle states, and a bit representation based on only the
lowest 64 single-particle states. We randomly generated many-body states biased
towards the lowest states, and counted the number of nonzero matrix elements for
a two-body interaction. We present in Figs. 3 and 4 results with 8 particles as the
density of nonzeros (median density was 6 × 10−6) most closely represents the
regime of interest for MFDn. Note that fewer particles with the state generation
scheme correspond to more nonzero elements and more particles result in fewer
nonzero elements. For comparison and correctness, we also ran two additional ver-
sions: a version without the popcount on the bit representation, as well as a version
with a complete bit representation of all 128 single-particle states and using exclu-
sively the popcount on this extended bit representation.

Figure 4 shows the performance of the bit representation and combined ver-
sions of the counting routines on MI100 and A100 GPUs implemented with Ope-
nACC and OpenMP. On NVIDIA and AMD GPUs the OpenACC directives pro-
vide the best performance in most cases. In several instances there were perfor-
mance issues when a function or subroutine call was introduced: particularly with
OpenMP, usually manifest as a failure to generate parallel code for the second level
of parallelism. In the case of !$omp loop directives we found that it was necessary
to include bind annotations to recover the performance obtained by the OpenACC
implementations on NVIDIA GPUs. The performance difference between all ver-
sions and implementations is shown in Fig. 3. On NVIDIA platforms we found
there is overhead associated with OpenMP with prescriptive !$omp target teams
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Fig. 3. Performance of interacting state counting routines on A100 with 8 particles
(median density of nonzero elements is ∼6 × 10−6). The vertical axis shows the number
of state comparisons made per second, rate = n2/time (higher is better).

Fig. 4. Performance of bit representation only and combined interacting state counting
routines on A100 and MI100 with 8 particles (median density of nonzero elements is
0.000006). The vertical axis shows the number of state comparisons made per second,
rate = n2/time (higher is better).
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distribute and !$omp parallel do directives compared to the !$omp loop direc-
tives. The compiler parallelizes on both teams and threads, but shows reduced per-
formance. This is likely due to the additional semantic constraints for the !$omp
parallel directive introducing some overhead in code generated by the compiler.

2.2 Parallel Prefix Sum

On multi-core CPUs, it is often convenient to use private arrays – and as long as
there is sufficient memory, there is no intrinsic limitation on the private array size.
In practice, it is limited by the OMP_STACKSIZE which the user can increase from
its default value if necessary. Further, the use of thread-private arrays can often
result in good performance as it helps ensure cache locality on CPUs. However,
the situation on GPUs is different. Although private arrays can be used in both
OpenACC and with OpenMP offload, there are more limitations on the size of such
private arrays and/or on the number of gangs/teams or vector length one can use,
due to the order of magnitude more parallelism available in GPUs. In particular in
inner loops, private arrays should be avoided or limited to small arrays with only
a handful of array elements; and even at the gang/team level, large arrays with
(tens of) thousands of array elements severely limits the number of gangs/teams
one can use.

In order to reduce (or better, completely avoid) the need for private arrays,
it can be useful to convert counts, such as the counts of nonzero matrix elements
discussed in Sect. 2.1, into offsets, so that one can use a single large shared array
with appropriate offsets, instead of many allocatable private arrays. Specifically,
converting counts xi into offsets yi can be implemented as

yi+1 =
i∑

j=0

xj = yi + xi (1)

with y1 = 0, and is often referred to as a prefix sum or cumulative sum or scan. Here
we focus on addition of integers, but in general only a binary associative operator
is required.

On CPUs this operation is fast, and furthermore OpenMP 5.0 introduced a
scan directive that extends reductions. However, this feature is not currently sup-
ported forGPUs by the compilers tested in this work.OpenACCprovides no equiv-
alent directive. We note that production quality implementations of this operation

1 !$acc serial present(x,y)
2 y(1) = 0
3 do i = 1, n-1
4 y(i+1) = y(i) + x(i)
5 end do
6 !$acc end serial

Listing 5: Serial prefix sum with OpenACC.
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Algorithm 1. Work-efficient parallel prefix sum (Algos. 3 and 4 of Ref. [8])
1: for p ← 0, log2 n − 1 do � sweep up (or reduce)
2: for j ← 0, n − 1 by 2p+1 do � parallel
3: y

(
j + 2p+1

) ← y (j + 2p) + y
(
j + 2p+1

)

4: end for
5: end for
6: x(n) ← 0
7: for p ← log2 n,0 do � sweep down
8: for j ← 0, n − 1 by 2p+1 do � parallel
9: tmp ← y (j + 2p)

10: y (j + 2p) ← y
(
j + 2p+1

)

11: y
(
j + 2p+1

) ← tmp + y
(
j + 2p+1

)

12: end for
13: end for

may be available in C++ libraries such as Thrust [6] or Kokkos [1], but that includ-
ing C++ or vendor specific frameworks in a Fortran code with a goal of portability
introduces significant maintenance costs. In many cases it is preferable to avoid
data transfers between the host and accelerator, even at the cost of inefficient use
of the device. With OpenACC’s !$acc serial directive a potentially expensive
data transfer can be avoided as shown in Listing 5. Generally one should consider
a performance model that includes bandwidth between host and device, perfor-
mance on either host and device and the potential for any latency/blocking effects
introduced by the data motion when considering an implementation.

For prefix sums over large sequences, a parallel implementation can realize sig-
nificant speedups. We note that in MFDn the offsets can be reused many times
so that the overall impact for the application run time is small, but this common
primitive can be found in many applications [3]. A work-efficient algorithm for a
parallel scan is shown in Algorithm 1 - the work-efficient algorithm consists of an
up and down sweep [3,8]. The main idea is to sweep up and down a binary tree of
the input data. The “up” or “reduce” sweep proceeds from the leaves to the root,
computing partial sums in place. In the “down” sweep phase the binary tree is tra-
versed from the last element down (root) to the leaves.

An implementation of Algorithm1 in OpenACC is shown in Listing 6. As writ-
ten it assumes power of two arrays; non-power of two arrays can be padded with
zeros. We note that there are many possible further optimizations and refer inter-
ested readers to Refs. [3,8]. In OpenACC, each parallel region will result in a new
kernel launch, but with the async clause we can queue them all in non-blocking
manner and rely that they will be executed in order. A similar approach can be
implemented in OpenMP with nowait and depend clauses. Figure 5 shows the per-
formance of serial and parallel prefix sum with OpenACC on A100, V100, and Sky-
lake. Unfortunately the Cray compiler’s partial support for OpenACC 2.6 does not
include the serial directive so we do not include MI100 results for these imple-
mentations. For large arrays on A100 GPUs the parallel implementation can be
over 500× faster than a serial implementation. This demonstrates the importance
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1 !$acc data present(x,y)
2 !$acc parallel loop async
3 do j = 1, n
4 y(j) = x(j)
5 end do
6 !$acc end parallel
7 offset = 1
8 ! sweep up, reduction in place
9 do while (offset < n)

10 !$acc parallel loop firstprivate(offset) present(y) async
11 do concurrent (j=0:n-1:2*offset)
12 y(j + 2*offset) = y(j + offset) + y(j + 2*offset)
13 end do
14 !$acc end parallel
15 offset = 2*offset
16 end do
17 ! sweep down, complete the scan
18 !$acc serial async
19 y(n) = 0
20 !$acc end serial
21 offset = rshift(offset, 1)
22 do while(offset > 0)
23 !$acc parallel loop firstprivate(offset, tmp) present(y) async
24 do concurrent(j=0:n-1:2*offset) local(tmp)
25 tmp = y(j + offset)
26 y(j + offset) = y(j + 2*offset)
27 y(j + 2*offset) = tmp + y(j + 2*offset)
28 end do
29 !$acc end parallel
30 offset = rshift(offset, 1)
31 end do
32 !$acc wait
33 !$acc end data

Listing 6: Parallel scan with OpenACC corresponding to Algorithm 1

of support for serial work on accelerators (and corresponding constructs) for pro-
ductivity, support for asynchronous work for performance and the desirability of
a good language/library support for parallel primitives such as prefix sums.

2.3 Filling Shared Arrays

After an initial pass to obtain the nonzero counts and offsets as described in
Sects. 2.1 and 2.2 a second pass is often performed to store relevant information
such as a row or column index, or the nonzero value, into a global (shared) array,
see e.g. line 14 of Fig. 1. Since we are using a multilevel hierarchical structure for
the sparse matrix, this motif appears in several situations, not only for the matrix
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Fig. 5. Performance of prefix sum implemented with OpenACC on different architec-
tures in parallel and serial (lower is better).

elements themselves. Generally there are two levels of parallelism: an outer loop,
with no data dependencies, and an inner loop, where order does not matter but
there is a dependency. The outer loop alone typically has enough parallelism to
saturate a CPU but not a GPU.

On GPUs, OpenACC directives can be used to efficiently implement such a
motif as shown in Listing 7. Equivalent directives are available in OpenMP. The
!$acc atomic capture directive ensures that the value of the shared array ele-
ment indx(i) gets incremented by one and assigned to the local (private) variable
k, which can then be used as an index for filling the desired array with the appro-
priate value. On GPUs the performance penalty attributed to atomic operation
in the inner loop is rather modest, and the exposed parallelism of the inner loop
overwhelms this penalty, resulting in significant speedup over CPUs as shown in
Fig. 6.

The same source code can also be compiled for and run on CPUs. On CPUs,
when the parallelism available in the outermost level is sufficient, we can indi-
cate that the inner loop should be sequential with the addition of the !$acc
device_type(host) seq clauses. Unfortunately, the OpenACC specification does
not support the !$acc device_type clause on !$acc atomic constructs. The
performance of Listing 7 on multiple architectures is shown in Fig. 6. With the
atomic operation explicitly in the inner loop, this implementation performs worse
on CPUs than necessary despite there being no contention between threads on
the atomic operations due to the overhead of atomic semantics. In OpenMP 5.0
metadirective was introduced to support this use case, but compiler support is
not available at the time of writing. In principle, declare variant in OpenMP
or runtime calls in OpenACC to selectively choose between multiple subroutine
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1 !$acc parallel loop
2 do i = 1, n
3 indx(i) = offset(i)
4 !$acc loop device_type(host) seq
5 do j = 1, m
6 if (mod(j,p) == 0) then
7 !$acc atomic capture
8 indx(i) = indx(i) + 1
9 k = indx(i)

10 !$acc end atomic
11 arr(k) = j
12 end if
13 end do
14 end do
15 !$acc end parallel

Listing 7: Filling shared arrays on GPUs using OpenACC.

versions could be used to enable performance on CPUs and GPUs with a single
source at the expense of code duplication. Otherwise use of the preprocessor would
be required.

2.4 Array Reductions

Finally, to compute physical observables one needs to calculate the expectation
values of the corresponding operators Ok (see line 20 of Fig. 1):

ak =
∑

ij

xi (Ok)ij yj . (2)

In practice this requires a reduction of an array with a small number of elements.
In the context of the MFDn application the array is typically of dimension m ∈
[8, 256]. Here we consider a simplified version of the motif (shown in Listing 8) that
omits the check if two many-body states interact and any computation of addi-
tional physical matrix elements in order to explore programming model support
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Fig. 6. Performance of filling a shared array with OpenACC (Listing 7) with m = 512
and p = 1 on MI100, A100, V100 and Skylake (lower is better).

for the motif. In this application trading memory for performance as in [9] is unde-
sirable since it will limit scaling to large problems on full systems. We consider 3
implementations for “small” array reductions:

– reduction clauses with array arguments;
– atomic updates to individual array elements;
– generating a scalar reduction for each element of the array with fypp.

Direct Array Reduction Support. Both the OpenACC 2.7+ and OpenMP
4.5+ specifications support arrays as arguments to reduction clauses in directives.
However, compiler support for these features varies. With OpenACC, the Cray
compiler only provides partial OpenACC 2.6 support and array reductions were
not introduced until 2.7. The NVIDIA compiler also does not support arrays in
reduction clauses with OpenACC. With OpenMP both Cray and NVIDIA com-
pilers support array reductions. However, this feature was only introduced in
NVIDIA’s 21.7 release. With Cray the compiler warns, “An OpenMP teams con-
struct with an array reduction is limited to a single team.” With OpenMP, the
NVIDIA compiler encounters a run time error as the array size is increased, or
fails to compile when managed memory is used. Figure 7 shows the performance of
array reduction on A100, MI100 and Skylake CPUs respectively where supported.
Performance of array reductions was only competitive with other solutions on Sky-
lake.
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1 !$acc parallel loop collapse(2) reduction(+:a)
2 do i = 1, n
3 do j = 1, n
4 do k = 1, m
5 a(k) = a(k) + x(k,i) * y(k,j)
6 end do
7 end do
8 end do
9 !$acc end parallel

Listing 8: Array reduction: array variable in a reduction clause.

1 !$acc parallel loop collapse(3)
2 do i = 1, n
3 do j = 1, n
4 do k = 1, m
5 !$acc atomic
6 a(k) = a(k) + x(k,i) * y(k,j)
7 !$acc end atomic
8 end do
9 end do

10 end do
11 !$acc end parallel

Listing 9: Array reduction: atomic updates

Array Reduction with Atomics. With atomic constructs we are able to com-
pile a single version for all architectures. Compared to the case in Sect. 2.3 where
there is no contention, when n � m, the contention is quite high which results
in a significant performance penalty compared to an optimized reduction algo-
rithm on the Skylake CPU as seen in the top panel of Fig. 7. Our results indicate
that the implementation shown in Listing 9 can achieve reasonable performance
on GPUs but not CPUs. We also note that there is an additional danger with the
use of collapse with many loops, the combined iteration space may manifest a
integer overflow for realistic array sizes if 32 bit integers are used as loop indices
even though no individual loop overflows in a serial implementation.

Generated Scalar Reductions. In the case of small arrays another approach
is to use a preprocessor that enables templating and metaprogramming such as
fypp to generate routines that implement a scalar reduction for each element of
the array as in Listings 10 and 11. As shown in Fig. 7 this approach achieves good
performance on all architectures. However, this approach works for small arrays,
but as array size is increased runs into several issues either with directive line length
(NVIDIA) or compiler register allocation routines (HPE/Cray). Further it can
result in significant undesirable cognitive and compilation time overhead. In sum-
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Fig. 7. Performance of array reduction with array size of 64 (higher is better). Top: On
Skylake CPUs; Middle: On A100, where we encountered run time errors for n > 25

with OpenMP array reduction and a compile error with OpenMP with loops; Bottom:
On MI100, where for mn2 ≥ 232 there appears to be a correctness error due to integer
overflow on the collapsed loops with the Cray compiler.
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1 #:def CSV(x,n)
2 ${",".join(f"{x}{i}" for i in range(1, n+1))}$
3 #:enddef CSV
4 #:for num_elements in range(2, max_elements+1)
5 subroutine reduction${num_elements}$(x, y, a, n, dt)
6 integer, parameter :: m = ${num_elements}$
7 integer, intent(in) :: n
8 real(sp), dimension(m, n), intent(in) :: x, y
9 real(sp), intent(out) :: a(m)

10 integer :: i,j
11 real(dp) :: t0
12 real(dp), intent(out) :: dt
13 #:for i in range(1, num_elements+1)
14 real(sp) :: a${i}$
15 #:endfor
16 !$acc data present(x,y)
17 t0 = wtime()
18 #:for i in range(1, num_elements+1)
19 a${i}$ = a(${i}$)
20 #:endfor
21 !$acc parallel loop collapse(2) &
22 !$acc reduction(+:${CSV("a",num_elements}$)
23 do i = 1, n
24 do j = 1, n
25 #:for i in range(1, num_elements+1)
26 a${i}$ = a${i}$ + x(${i}$,i) * y(${i}$,j)
27 #:endfor
28 end do
29 end do
30 !$acc end parallel
31 #:for i in range(1, num_elements+1)
32 a(${i}$) = a${i}$
33 #:endfor
34 dt = wtime() - t0
35 !$acc end data
36 end subroutine reduction${num_elements}$
37

38 #:endfor

Listing 10: Template code for generating reductions with fypp. Listing 11 shows a
routine generated for m = 3.

mary no one method for array reductions is best in all situations, but in this case
the manually generated reductions on scalars with OpenACC give the best overall
cross-platform performance.
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1 subroutine reduction3(x, y, a, n, dt)
2 integer, parameter :: m = 3
3 integer, intent(in) :: n
4 real(sp), dimension(m, n), intent(in) :: x, y
5 real(sp), intent(out) :: a(m)
6 integer :: i,j
7 real(dp) :: t0
8 real(dp), intent(out) :: dt
9 real(sp) :: a1

10 real(sp) :: a2
11 real(sp) :: a3
12 !$acc data present(x,y)
13 t0 = wtime()
14 a1 = a(1)
15 a2 = a(2)
16 a3 = a(3)
17 !$acc parallel loop collapse(2) &
18 !$acc reduction(+:a1,a2,a3)
19 do i = 1, n
20 do j = 1, n
21 a1 = a1 + x(1,i) * y(1,j)
22 a2 = a2 + x(2,i) * y(2,j)
23 a3 = a3 + x(3,i) * y(3,j)
24 end do
25 end do
26 !$acc end parallel
27 a(1) = a1
28 a(2) = a2
29 a(3) = a3
30 dt = wtime() - t0
31 !$acc end data
32 end subroutine reduction3

Listing 11: Routine for m = 3 case generated by fypp code in Listing 10.

3 Conclusion andOutlook

We highlighted several important features of programming for accelerators with
directives that were key for an efficient GPU accelerated port of MFDn. Further
we explored the performance implications of these modifications with CPUs and
with multiple GPU and compiler vendors.

Avoiding use of private arrays in a production application that has undergone
several years of optimization for multicore CPU platforms was a key challenge. The
conversion of counts to offsets followed by indexing of shared array in a way that
preserves CPU performance while enabling GPU offload was a key pattern that
involved restructuring of many key data structures and routines in the application.
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Our key points for application developers can be summarized as: avoid private
arrays; check compiler diagnostic output to ensure parallel code is in fact gener-
ated; carefully check correctness along with performance; and be mindful of atomic
operations when developing single source code for CPU and GPU architectures.

Our findings have shown several shortcomings of both the OpenACC and
OpenMP specification/implementation with respect to specialization of code for
different architectures that can hopefully be addressed in future editions of those
specifications and compilers. Finally, we have identified several areas and motifs
that compiler vendors may use to improve their products.
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Abstract. GPU offloading of a large-scale gyrokinetic particle-in-cell
Fortran code is converted from using OpenACC to using OpenMP. Par-
ticle pushing and deposition are completely offloaded to GPU. Perfor-
mance is compared between CPU and GPU, and between OpenACC and
OpenMP. Good weak scaling (increasing particle number with fixed grid
number) is obtained. Issues encountered when porting OpenMP GPU
offloading are discussed.

Keywords: OpenMP GPU offloading · OpenACC GPU offloading ·
particle-in-cell

1 Introduction

We report the performance of a gyrokinetic Particle-in-Cell (PIC) code on GPUs
using OpenMP offloading. PIC simulations are widely used to simulate plasma
kinetic phenomena. In a PIC simulation, the trajectories of a large number of
charged particles (ions and electrons) are followed numerically by integrating the
equation of motion of charged particles in electromagnetic fields. The fields are
determined by the plasma density and current via Maxwell’s equations. Fields
are usually represented on a set of spatial grids, and evaluated at the particle
location via interpolation. A PIC simulation consists of three main components:
the pushers, deposition and the field solvers. The pushers advance the particle
phase-space coordinates in a time step. Deposition refers to the procedure by
which the plasma density and current on the grids are obtained from the par-
ticles. The field solvers solve the Poisson equation and the Ampere equation
to yield the electromagnetic fields. In a conventional PIC simulation the phase-
space of particles is six-dimensional, three in space and three in velocity. In a
strongly magnetized plasma such as that in a tokamak, charged particles gyrate
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around the magnetic field due to the Lorentz force. The Larmor radius of an ion
is typically orders of magnitude smaller than the device size. This feature makes
it possible to describe the plasma as consisting of gyro-rings, thereby reducing
the dimensionality of the phase-space from six to five. Small scale turbulent fluc-
tuations, on the ion Larmor radius scale, can be accounted for by gyro-averaging
their effects on the gyro-ring. This leads to the gyrokinetic model of a plasma,
and gyrokinetic simulation has become a widely used tool in magnetic confine-
ment fusion research.

In a PIC simulation particles interact with each other mainly through the
electromagnetic (EM) fields, and there is no explicit dependence among particles
at the pusher step. This makes the pushers in a PIC simulation an ideal candidate
for efficient parallelization and GPU offloading.

GEM is a gyrokinetic PIC code, written in FORTRAN, for tokamak plasma
simulations. Multiple ion species (e.g. deuterium and tritium in a D-T reactor)
and an electron species are followed in GEM. The electrons move along the field
line much faster than the ions, which usually causes numerical difficulties in a
PIC code. To overcome these difficulties a split-weight scheme [1,6] is used for the
electrons. An additional field equation, which is the time derivative of the Poisson
equation, is solved in the split-weight scheme. GEM uses the field-line-following
coordinates [2] for both particle pushing and field solving. The primary domain
decomposition is along the magnetic field line. The field equation is first Fourier
transformed in the toroidal direction, then solved for each Fourier component.
At present, the field equations for all the toroidal components are parallelized
with OpenMP threading on CPU, and particles are also distributed among all
the threads. In this work we report GPU offloading of the particle pushing and
deposition. Offloading the field solvers to GPU is more challenging and will be
undertaken in future.

Currently, the two most commonly used directive-based Application Pro-
gramming Interfaces (APIs) are OpenACC and OpenMP. OpenACC provided
many application developers a preview for directive-based programming for
accelerators. This was followed by the development of the OpenMP specification
Versions 4.0 and 4.5 in 2013 and 2015, respectively, which includes different types
of parallelism such as SIMD, tasks, offloading, worksharing, etc. The difference
between these two APIs are described in Larrea et al. [7]. Generally, OpenACC
tends to be more descriptive, which means that compilers determine how a code
for a particular target is parallelized. Alternatively, OpenMP 4.5 is developed
as a prescriptive programming model and requires programmers to specifically
determine the way to parallelize the code. Since performance-portability might
be decreased by this prescriptive approach, OpenMP 5.0 introduced the loop
directive to guarantee that concurrent execution of a loop is safe and to enable
the compiler to apply more architecture-specific optimizations.

The Whole Device Model Application (WDMAPP) project launched by the
Department of Energy’s (DOE) Exascale Computing Program (ECP) aims to
develop a first-principles-based computational tool for simulating both the core
and the edge of a tokamak. Ku et al. [4,5] used OpenMP and OpenACC to develop
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the edge gyrokinetic code XGC. Recently, Cheng et al. [3] coupled the two PIC
gyrokinetic codes GEM and XGC, GEM for the core region and XGC for the edge
region. OpenACC is used for GPU-acceleration of GEM. It is desirable to assess
performance gains from using GPUs and also to compare GEM GPU performance
using OpenACC and OpenMP. This is the work undertaken in this paper.

This paper is organized as follows. The details of the experimental setup and
conversion from OpenACC to OpenMP is presented in Sect. 2. The structure of
the GEM code and related PIC procedures are presented in Sect. 3. In Sect. 4,
the results comparing GPU vs CPU, OpenMP vs OpenACC for a single node,
a multi-node scaling study, and sensitivity to CPU hardware threads are pre-
sented and analyzed. Discussion on remaining problems and possible solutions
are provided in Sect. 5. Finally, a summary is given in Sect. 6.

2 Software and Experimental Setup

2.1 Experimental Setup

The performance of GEM is studied on Summit at OLCF. The hardware details
of this supercomputer are illustrated in Table 1. As an IBM system available at
OLCF, Summit contains 4608 compute nodes. Each node uses two IBM POWER9
CPUs with 22 cores running at 3.07 GHz and six NVIDIA Tesla V100 GPUs.
Additionally, 512 GB of DDR4 memory are accessed by the POWER9 proces-
sors while 96 GB of High Bandwidth Memory (HBM2) are utilized by the V100
accelerators. The theoretical peak performance is 200,795 TFlop/s, and its Lin-
pack performance is 148,600 TFlop/s. In addition, the NVIDIA compilers (e.g.,
NVFORTRAN, NVC++, and NVC) support not only directive-based program-
ming of NVIDIA GPUs using OpenACC but also a subset of the OpenMP APIs
for CPUs and GPUs. If an OpenMP application is properly structured for GPUs,
which means that massive parallelism is exposed and no or little synchronization
in segments of GPU-side code is implemented, the application should compile and
execute with performance almost equivalent to that of OpenACC. Herein, on Sum-
mit, we use the latest version of the NVIDIA compilers, named NVIDIA HPC SDK
21.7, to compile OpenACC and OpenMP versions of the GEM code.

Table 1. Hardware details of a Summit’s compute node.

Summit

GPUs 6 × 16 GB NVIDIA Tesla V100

CPUs 2 × IBM POWER9 (AC922)

Cores 2 × 22 @ 3.07 GHz

CPU-GPU interconnect NVlink 2.0
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2.2 OpenMP GPU Offloading

Offloading code to accelerators is a significant capability introduced in OpenMP
4.0. Since then, heterogeneous computation has been under intensive develop-
ment. As a directive-based programming model, OpenMP provides important
target and target teams constructs to indicate the code regions to be offloaded
to accelerator devices. Additionally, directives related to data allocation and
deletion, data copy back and forth between CPU and GPU are provided by
OpenMP. In this section, the details of the porting and optimization strategy
and the baseline OpenMP GPU offloading implementation of GEM is described.

Porting and Optimization Strategy. GEM consists of four main parts: par-
ticle pushers, shift, deposition and field solvers. The primary domain decom-
position is along the z-direction in the field-line-following coordinates. The z-
direction is divided into equally spaced grids, and MPI tasks are assigned to
each z-grid. An MPI process only holds those particles with a z-coordinate inside
its z-grid. After particles are pushed, they are sorted into corresponding MPI
processes (shifting). The pushers and the deposition subroutines mainly con-
sist of loops over all the particles. The starting point for OpenMP offloading is
the version of GPU offloading using OpenACC [3]. OpenMP GPU offloading is
accomplished by converting the OpenACC directives to corresponding OpenMP
directives with correct data movement. A general guideline for offloading a PIC
code is to perform as much individual particle operation as possible on the GPU,
such as pushing and deposition. For this purpose, all particle data and field data
should be kept on GPU.

At present the MPI communication in the shifting step is performed on the
CPU. This requires data movement between GPU and CPU. To reduce data
movement, information of those particles that need to be moved across MPI
processes is gathered on GPU, and only the data for these particles are updated
between CPU and GPU [3]. Shifting consists of the initialization step and the
actual data movement. The initialization step, which is called only once per
shifting operation, constructs sorted pointers to particle holes and buffers for
the sending and receiving processes. The actual data movement consists of non-
blocking MPI communication, removal of holes, and reconstruction of particle
arrays. This procedure is called for each particle array. In the shifting proce-
dure, searching for nonhole indices from the end of the array in sequential order
is more efficient than constructing the pointers to particle holes in a strictly
increasing order. We have modified the initialization step to enable as many
loops as possible to run on GPU.

Baseline OpenMP GPU Offloading Implementation in GEM. In order
to execute a combination of parallel and serial work in multiple loops of the
particle pushers, we used the OpenMP loop construct with appropriate thread-
set binding. Considering the scenario that a loop should run sequentially using
just one thread, we use omp loop bind(thread) to make sure a single thread
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runs this loop on GPU. Listing 1.1 is an example in which a nested loop runs
sequentially while the outer loop is parallelized across teams and threads in the
particle pushers. In line 1, the target data construct includes a map clause with
the specifier to to copy data to the GPU target device and the specifier tofrom
to copy data to the GPU and then back from the GPU at the end of the target
data region. In line 2, target teams loop with thread limit will parallelize
the loop over teams and threads. The thread limit clause was only used as a
workaround for a NVIDIA compiler bug, explained later, because without that,
each team would use only 1 thread. The variables rhox and rhoy are specified
as private to provide an uninitialized variable to each thread. In line 5, omp
loop bind(thread) causes the loop from line 6 to 8 to run sequentially by each
thread in the team. Finally, the omp atomic update directive is used to enable
multiple threads to safely update certain shared variables.

Listing 1.1. Example OpenMP GPU offloading code with a combination of parallel
and serial work in the particle pushers.

1 ! $omp ta rg e t data map( to : p s i ( : ) ) map( tofrom : mypf l e s ( : ) ,
mypfl em ( : ) , . . . )

2 ! $omp ta rg e t teams loop p r i va t e ( rhox , rhoy ) t h r e ad l im i t
(128)

3 do m=1,mm of ns
4 . . . // c a l c u l a t i o n o f parameters
5 ! $omp loop bind ( thread )
6 do l =1, l r (1 )
7 . . . // c a l c u l a t i o n o f parameters
8 enddo
9 . . . // c a l c u l a t i o n o f parameters
10 ! $omp atomic update
11 mypf l e s ( k ) = . . .
12 ! $omp end atomic
13 ! omp atomic update
14 mypfl em (k ) = . . .
15 ! $omp end atomic
16 . . . // c a l c u l a t i o n o f parameters
17 enddo
18 ! $omp end ta r g e t teams loop
19 ! $omp end ta r g e t data

Additionally, an example code related to the reduction clause in the shift
is presented in Listing 1.2.

Listing 1.2. Example OpenMP GPU offloading code with reduction in the shift.

1 ! $omp ta rg e t data map( to : s count s )
2 s bu f l e n g t h=0
3 ! $omp ta rg e t teams loop reduct ion (+: s bu f l e n g t h )
4 do i =0,nvp−1
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5 s bu f l e n g t h=s bu f l e n g t h+s count s ( i )
6 enddo
7 ! $omp end ta r g e t teams loop
8 ! $omp end ta r g e t data

As mentioned previously, we have optimized the GEM code using OpenACC
GPU offloading. We briefly discuss OpenMP and OpenACC similarities and our
approach to ensure consistent OpenMP and OpenACC ports.

We have found that the NVIDIA compiler parallelizes code in the same
way whether using omp target teams loop or acc loop gang vector. Sim-
ilarly omp loop bind(thread) has the same functionality as acc loop seq,
and omp atomic update corresponds to acc atomic update. Additionally, the
reduction clause in OpenMP and OpenACC provides the same functionality.
Note that in the initialization and shift of the GEM code, data movement direc-
tives are frequently used. Moreover, in order to ensure correct data movement
by which the OpenMP results are consistent with OpenACC ones, the follow-
ing two methods are utilized. The first is to compare the NVIDIA compiler
-Minfo diagnostic reports for OpenMP and OpenACC, respectively, and find
out whether there is any variable improperly specified or even not specified by
data movement directives. The second is to compare the program output of each
MPI rank at the end of each loop in OpenACC and OpenMP ports after calling
MPI Barrier. If there is a problem, modify the data movement or loop direc-
tives until the compiler diagnostics and runtime output are consistent between
OpenMP and OpenACC.

3 The Structure of GEM

GEM uses a second-order Runge-Kutta method to advance the particle trajecto-
ries. In the prediction step, particles coordinates are evolved for a half time-step
to tn+1/2 = tn + �t/2, using the field values at the end of the previous time
step. The field equations are solved at tn+1/2. In the correction step, particle
coordinates are advanced from tn to tn+1 using the field values at the half time-
step. The corresponding FORTRAN subroutines are ppush and cpush. Each of
these subroutines consists of a loop over all the particles that performs the time
advance, followed by calls to subroutines (pp init and pmove) that sort particles
into the correct domains after their z-coordinates are updated (z is the direc-
tion along the magnetic field line, and is the dimension for the primary domain
decomposition). A deposition is invoked after each pusher step to deposit par-
ticle charges onto the grids. The subroutine for this deposition is grid1, which
consists of loops over particles and atomic data writing to the grids. Field solving
is done after each deposition, and is done in the subroutine poisson. At present
field solving is performed on CPU only.
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4 Results and Analysis

4.1 Speedup Performance and Roofline Analysis for Single Node

In order to illustrate the speedup performance of OpenMP GPU offloading,
we used a single node and compared against the baseline OpenMP CPU and
OpenACC GPU implementations. The grid size is chosen to be 258 × 16 × 6,
where 6 corresponds to 6 GPUs per node on Summit, and the total particle
number is 512 times the number of grid points. At present poisson kernel has
not been ported to GPUs. We plan to use cuBLAS to offload this kernel to GPU
in the future. Thus, poisson is excluded from Figs. 1 and 2. From Fig. 1, we found
that the maximum speedup of ∼280.3X is achieved by ppush, which corresponds
to the wallclock time decreasing from 17.9414 s for OpenMP CPU to 0.0640 s for
OpenMP GPU offloading. Following ppush, cpush has a decrease of wallclock
time from 18.4293 s to 0.0686 s, achieving a ∼268.6X speedup. Then, for grid1,
the wallclock time decreases from 19.4655 s to 0.0787 s, corresponding to a
∼247.3X speedup. Note that ppush, cpush and grid1 have the same large loop
structure parallelized by the loop construct and are using atomic operations.
As it can be seen, the speedup for pmove is relatively small. The wallclock time
for pmove decreases from 16.5079 s to 3.7956 s, a ∼4.3X speedup. Moreover,
the speedup for total time is ∼19.6X, with the wallclock time decreasing from
81.2744 s to 4.2084 s.

280.3 X
268.6 X

4.3 X

247.3 X

19.6 X

Fig. 1. OpenMP GPU offloading speedup versus baseline OpenMP CPU on single
node.

Figure 2 shows the comparison between OpenMP GPU offloading and Ope-
nACC GPU offloading. We note that OpenACC is slightly faster than OpenMP.
ppush, cpush, and grid1 achieve almost the same acceleration performance
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for OpenMP and OpenACC while ∼0.7X speedup is obtained by pmove for
OpenMP. Moreover, the total time for OpenACC GPU offloading is 3.2368 s,
corresponding to ∼0.8X speedup for OpenMP. For pmove, in OpenMP GPU
offloading, an additional data update between CPU and GPU can, so far, not
be avoided, leading to an ∼0.7X slower runtime compared with OpenACC. This
could be due to a compiler bug or due to some data management that is done
automatically in OpenACC GPU offloading but needs to be explicitly prescribed
in OpenMP GPU offloading, the oversight of which would make this an OpenMP
programming bug we have to correct. This will be investigated in the future.

1.0 X 1.0 X

0.7 X

1.0 X

0.8 X

Fig. 2. OpenMP GPU offloading speedup versus baseline OpenACC GPU on single
node.

The results in Fig. 1 show impressive triple-digit GPU speedups for ppush,
cpush and grid1 code sections and only a single-digit speedup for pmove. pmove
corresponds to the sorting step that puts particles in their corresponding MPI
domains. This step consists of two substeps, the first is to determine which parti-
cles are to be moved and if so, to which MPI rank. This substep is accelerated by
GPUs. The second step is to exchange the coordinates of all the particles to be
moved and restructure the particle arrays. This is done among all the MPI ranks
along the z-direction. At present, the MPI communication uses data buffers in
CPU memory, which must be updated from the GPU data buffers. The message
sizes are proportional to the total number of particles per MPI rank, and are
constant in a weak scaling study. This leads to the poor performance of pmove in
Fig. 1. It is challenging to accelerate the second substep on GPU and our algo-
rithm needs to be rethought to avoid many small GPU kernel launches, excessive
data movement between CPU and GPU, and to take advantage of GPUDirect
communication capabilities. This will be the focus of future work. At the current
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time, it is instructive to look at a Roofline Model plot [8] to understand how the
GPU has significantly accelerated certain GEM code sections.

Figure 3 shows a Roofline Model plot of the three kernels within ppush, cpush
and grid1 code sections. The plot shows that all 3 kernels have high enough
arithmetic intensity to put them in the compute-bound region of the Roofline
Model. The kernels are therefore limited by compute throughput, which is not
typical of many scientific codes. The characteristics of our kernels are very high
register usage per thread: cpush (244), ppush (244), and grid1 (128). This
limits the number of concurrent thread blocks per Streaming Multiprocessor
(SM) to 2 for cpush and ppush kernels and 4 for grid1 kernel on an NVIDIA
V100 GPU. This is likely an impediment to our performance because our kernels
contain hundreds of lines of code consisting of many high latency instructions
and Fortran intrinsics, e.g. divide, exp, sqrt, modulus, min, max, sign and anint.
It is possible we can improve performance by making the computations more
concise in order to reduce the register count, enabling higher occupancy. If this
is not possible we may be able to modify the computation to avoid the use of
certain Fortran intrinsics that we find lead to most stalls on the GPU. The other
impediment to performance is a large fraction of uncoalesced memory accesses.
This is not a huge performance penalty for us because many memory requests
are serviced by L2 cache rather than device memory. However, it indicates that
there is room to further optimize performance on GPUs if we can improve the
memory access pattern.

4.2 Scalability Analysis

In this section we show results from a weak scaling study with a fixed grid size
and increased particle number. This shows the multi-node scalability of the GEM
code. Herein, we used Summit and a grid size of 258 × 64 × 48, where 48 is a
multiple of 6. The particle number per grid cell is increased from 256 to 2048 in
proportion to the node count being increased from 64 to 512. Figure 4 illustrates
wallclock time for the different kernels with increasing number of nodes for GEM
for OpenMP GPU offloading with NVIDIA HPC SDK 21.7. We found that the
total time for different number of nodes is in the range of 2.0703 s for 64 nodes
to 2.2583 s for 512 nodes. In general, pmove accounts for the largest proportion
of the total time. others, which includes initiation of variables, is the second.
Then, grid1, ppush and cpush occupy relatively small proportion.

In order to investigate the acceleration performance difference between GPU
and CPU, Fig. 5 presents the results of OpenMP CPU. It is found that OpenMP
GPU offloading is significantly faster than OpenMP CPU. The average OpenMP
GPU offloading wallclock time for ppush is approximately 0.0221 s, which indi-
cates ∼189.1X speedup compared with the CPU version. Additionally, cpush
achieves ∼180.4X speedup while ∼208.9X speedup is obtained for grid1. Note
that the extent of speedup closely corresponds to Fig. 1. The average OpenMP
GPU offloading wallclock time for pmove is 1.6687 s, corresponding to ∼5.2X
speedup compared with OpenMP CPU. In addition, the speedup for the average
total time is ∼13.9X by comparing 2.1417 s for OpenMP GPU offloading with



142 Q. Cai et al.

Fig. 3. A Roofline Model plot of three kernels on an NVIDIA V100 GPU. The plot
shows that all kernels are in the compute-bound region and are limited by compute
throughput. The kernels are given the same name as the GEM code section to improve
readability. The plot was generated using a modified version of the script at [9] using
data generated on Summit.
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Fig. 4. Wallclock time for ppush, cpush, pmove, grid1, and others as a function
of number of nodes for OpenMP GPU offloading with NVIDIA HPC SDK 21.7 on
Summit.

29.8464 s for OpenMP CPU. Figure 6 illustrates the speedup of OpenMP GPU
offloading as a function of number of nodes. It is found that with the increase of
number of nodes, the speedup initially increases from ∼13.7X for 64 nodes to
the maximum of ∼14.6X for 128 nodes, then decreases to ∼14.0X for 256 nodes
and ∼13.4X for 512 nodes.
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Fig. 5. Wallclock time for ppush, cpush, pmove, grid1, and others as a function of
number of nodes for OpenMP CPU with NVIDIA HPC SDK 21.7 on Summit.

4.3 Investigation of Hardware Threads

Hardware Threads are supported by the IBM POWER9 processor on Summit
and each of the POWER9’s physical cores consists of 4 “slices”. Knowing that 7
rows of cores are assigned for the compute node, in order to investigate different
Simultaneous Multi Threading (SMT) modes, we set the number of threads in
batch script as 7 × 4 for SMT4, 7 × 2 for SMT2 and 7 × 1 for SMT1, separately.

64 128 256 512
Number of Nodes

13.7 X
14.6 X

14.0 X
13.4 X

Fig. 6. OpenMP GPU offloading speedup versus baseline OpenMP CPU as a function
of number of nodes with NVIDIA HPC SDK 21.7 on Summit.
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Note that OpenMP CPU results in Fig. 6 were obtained by setting the number
of threads as 14, corresponding to SMT2. The SMT sensitivity study is shown
in Table 2.

From Table 2, we found that SMT2 takes the least time for ppush, cpush,
pmove, grid1, but for poisson, SMT2 takes the most time while SMT1 takes
the least time. In general, SMT2 outperforms SMT1 and SMT4 since the SMT2
achieves ∼1.1X and ∼1.2X total time speedup compared with SMT1 and SMT4,
separately. Thus, we conclude that running the GEM code by using pairs of
slices is the most efficient. This analysis provides evidence that we executed the
OpenMP CPU implementation in the most efficient way in the Fig. 6 results. It
helps add credibility to the performance gains obtained in our GPU ports.

Table 2. Wallclock time of different kernels and total time for SMT1, SMT2 and SMT4

SMT1 (s) SMT2 (s) SMT4 (s)

ppush 4.5835 4.1844 4.9165

cpush 4.6725 4.3387 5.1464

pmove 10.3401 8.746 9.9178

grid1 4.9236 4.6528 6.018

poisson 0.6487 0.7149 0.6736

total 33.5194 30.5613 35.7715

5 Discussion

In this section, we discuss the issues we encountered, how we collected informa-
tion to understand these issues, and how we overcame these issues. At the end
of the section we provide our best practices to help other programmers migrat-
ing large Fortran applications to OpenMP target offload. We encountered the
following issues:

The Test Problem was Too Small to Take Advantage of GPUs. Our
initial benchmark problem performed poorly on the GPU because the particle
loop that was offloaded to the GPU in several subroutines had a very short
trip count. This was diagnosed using the Nsight Compute profiler. The profiler
showed that the GPU compute utilization and memory throughput utilization
was only a few percent of the peak performance and that the reason was a lack
of parallelism. We modified the benchmark problem by increasing the particle
count from 60,928 to 1,946,070. This was a change that made the benchmark
problem more representative of our production science runs.

The Fortran Modulo Intrinsic Impeded Compiler Parallelization. Our
initial offloaded version of ppush subroutine performed very poorly on the GPU.
The Nsight Compute profiler showed that the kernel launch configuration used
only 1 thread per thread block, i.e. 1 OpenMP thread per team. There should be
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no reason for a compiler or runtime to choose 1 OpenMP thread per thread block
given that the loop trip count was 1,946,070. We found that we could increase the
threads per teamusing the thread limit clause.However, this is not a satisfactory
way to write the code. We only found the underlying cause of the issue by closely
looking at the output of the NVIDIA compiler -Minfo diagnostic. The diagnos-
tic showed that the compiler was only parallelizing the loop over teams: ‘‘Loop
parallelized across teams ! blockidx%x’’. We commented out code from the
target region until the message changed to: ‘‘Loop parallelized across teams,
threads(128) ! blockidx%x threadidx%x’’. We found that the Fortran modulo
intrinsic was the culprit. This is a intrinsic that is not often used in Fortran codes
and was never properly supported on the GPU by NVIDIA. This has been reported
to NVIDIA. Our temporary workaround is to use the more often used mod intrinsic
with slightly modified arguments in order to obtain correct results.

The Fortran Save Attribute Caused a Compiler Segfault. The initial
version of our code used the target teams distribute parallel do combined
directive. This caused the NVIDIA HPC SDK 21.7 compiler to segfault. We
replaced the target teams distribute parallel do combined directive with
the target teams loop combined directive and the compiler correctly compiled
the code. We have reported this issue to NVIDIA. We have since found that the
save attribute on module level variables caused the issue. This was hard to track
down because GEM subroutines use many variables defined in modules. Once
again our approach was to comment out code until the compiler segfault went
away.

Improper Use of the map Clause Greatly Diminished Performance.
The initial version of several of our offloaded code regions mapped a loop upper
bound variable to the GPU. The Nsight Compute profiler showed that these
kernels were launched on the GPU with 8 thread blocks despite the loop trip
count being 1,946,070. We removed the map clause so that the variables were
given an implicit data sharing attribute of firstprivate in the target region.
This enabled the OpenMP runtime to use a more optimal launch configuration
based on the value of the loop upper bound. When the variable was mapped,
the OpenMP runtime correctly assumed that the host value could be different
to the device value and fell back to using the default launch configuration for
when loop bounds are unknown. We have since discussed this with NVIDIA. The
NVIDIA compiler engineers said this was expected behavior but plan to tweak
the default launch configuration from 8 thread blocks to 1024 thread blocks when
loop bounds are unknown.

We have explained four issues that we encountered in the GEM code when
using OpenMP target offload with the NVIDIA HPC SDK 21.7 compiler. These
issues never appeared to us as standalone issues as our explanation above implies.
This made it harder for us to understand the reasons for the poor kernel launch
configurations until we understood each individual issue. Therefore, the best
piece of advice to give programmers is to do experimentation with mini-apps
rather than the full application. It would have made things easier if there was a
mini-app that could run in a short amount of time, without MPI parallelization,
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without FFT library and ADIOS library dependencies, and just included the
important subroutines without a large number of module-scoped variables that
OpenMP compilers must appropriately handle in OpenMP target regions. This is
important especially when using Fortran OpenMP target offload because Fortran
support is less mature than C/C++ support in compilers. A mini-app would have
enabled us to more quickly debug the issues and do more experimentation to
understand performance.

We recommend that programmers become familiar with the tools that differ-
ent compilers provide. For example, the NVIDIA compiler provides the -Minfo
diagnostic which gives information about how OpenMP loops are parallelized
over thread blocks and threads on an NVIDIA GPU. Similarly, there is an envi-
ronment variable named NVCOMPILER ACC NOTIFY=1 which gives terse informa-
tion about kernel launch configurations. This was important for us because it
saved us having to repeat the expensive Nsight Compute profiles while we were
experimenting with different ideas to improve the kernel launch configuration.
Finally, it is helpful if programmers have a basic understanding of GPU hard-
ware and lower-level GPU programming approaches. Programmers need to be
aware that GPUs are only useful when executing sufficient parallel work. Famil-
iarity with CUDA is also helpful to understand the hierarchy of thread blocks
and threads on an NVIDIA GPU. Our familiarity with CUDA enabled us to
understand why mapping loop bounds greatly diminished performance. CUDA
programmers know that kernels can access variables that were copied to global
memory using cudaMemcpy and can also access variables that were passed by
value as kernel arguments. These correspond to mapping a variable and making
a variable firstprivate, respectively. An understanding of these lower-level
concepts enabled us to successfully use a higher-level approach, in this case
OpenMP, to achieve high performance on a GPU. We anticipate that other pro-
grammers can achieve success in the same way as us.

6 Summary

The principal contributions in this paper can be summarized as follows:

1. We have ported the GEM code, written in FORTRAN, by converting Ope-
nACC GPU offloading to OpenMP GPU offloading. Additionally, we have
kept all the particle and field data in GPU memory and minimized the data
transfers between CPU and GPU.

2. We have compared OpenMP GPU with OpenMP CPU on Summit using a
single node. Speedups as large as ∼280.3X (i.e., ppush) can be achieved by
using OpenMP GPU offloading compared with OpenMP CPU.

3. We have used weak scaling to compare OpenMP GPU with OpenMP CPU.
The speedup for different kernels are very similar to that of a single node,
and the speedup for total time could reach ∼13.9X.
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4. We have investigated the hardware threads for IBM POWER9 processors on
Summit, and indicated that SMT2 is the most efficient to run the OpenMP
CPU cases.

5. We have discussed the issues we confronted when porting GEM on Summit
using OpenMP GPU offloading, and explained explicitly the solutions.

In the future, the second substep of pmove would be optimized by avoiding
excessive small GPU kernel launches, minimizing data movement between CPU
and GPU, and utilizing GPUDirect communication capabilities. Additionally,
cuBLAS would be coupled with poisson for calculating matrix operations on
GPUs. Considering that DGX system consists of the latest generation of NVIDIA
Tesla GPU A100, the comparison of the acceleration performance between A100
and V100 is of significant interest. Finally, we plan to explore whether converting
GEM to C++ could improve performance and portability on future exascale
platforms.
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