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Chapter 2

General Forms of Limit Surface:
Application for Isotropic Materials

Holm Altenbach and Vladimir A. Kolupaev

Abstract Limit surfaces are a tool used in theory of plasticity and failure analysis
for dividing the safe from the unsafe regions. Their mathematical formulations are
given by yield and strength criteria. The number of suggested criteria is unmanage-
able. By lack of the sufficient conditions only plausibility assumptions can limit this
variety.

Typically, the TRESCA, VON MISES, and SCHMIDT-ISHLINSKY criteria are em-
ployed for the modeling of yielding. The effect of pressure-sensitivity is accounted
for with the criteria of RANKINE and BURZYNSKI-YAGN. Generalizations are ob-
tained with linear combinations of these and further criteria. However, methods for
the selection of efficient criteria for a particular application are still missing.

In this work, a nomenclature for isotropic yield criteria is introduced. Proposed
systematization restricts the number of appropriate yield criteria. Global convexity
limits for the yield criteria of trigonal and hexagonal symmetry are defined.

The basic idea is to find a general form of isotropic yield surface that satisfies the
plausibility assumptions. This surface should contain possible yield surfaces lying
between the lower and the upper bounds of the convexity restrictions. Any known
or new criteria can then be considered as a special cases of the general criterion. The
discussed yield criteria are extended for pressure-sensitive materials. The selection
of the effective criterion for a particular application is simplified.
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2.1 Introduction

Engineering methods relate to macroeffects captured empirically. With the help of
phenomenological criteria one can describe the beginning of yielding, damage or
brittle failure of a certain material in a simplified way. The critical state of the sound
material is represented only by the stresses, strains, and energetic or power conside-
rations, at which the appropriate limit of a material is reached. Their gradients are
not taken into account (Paul, 1968a,b).

In the case of stresses, a limit surface can be suggested in the principal stress
space. A corresponding criterion is the mathematical expression taking into account
of all points on the limit surface (Feodosjev, 1975; Franklin, 1971; Pisarenko and
Lebedev, 1969; Skrzypek, 1993).

In order to formulate such criteria, the equivalent stress concept is typically used
(Timoshenko, 1953). Within the concept, arbitrary stress states can be expressed as
scalar quantities and compared to uniaxial tensile stress (Fromm, 1931) . Informa-
tion about stress components and loading path is neglected (Paul, 1968a,b; Wu and
Scheublein, 1974).

Uniaxial tensile properties can be readily measured in experiments. These data
for different materials are compared in manuals, technical reports, and manufac-
turer’s specifications. Solely, the proper criterion should be selected for design. Be-
cause of its simplicity and clarity, the equivalent stress concept found use in engi-
neering applications.

Several criteria have been proposed over the last 150 years. They are summarized
in numerous textbooks, see Altenbach et al. (1995); Bertram (2012); Pisarenko and
Lebedev (1976); Potapova and Yarzev (2005); Skrzypek (1993); Yagn (1933); Yu
(2004); Zyczkowski (1981) among others. The amount of introduced criteria is re-
markable. Until now, methods for comparison and selection of the most suitable
criterion for a particular application are missing, see, for example, Lebedev (2010).

Further, choosing an appropriate criterion remains challenging because of gene-
rally incomplete data sets and their inevitable scattering. Trying to fit different cri-
teria is intricate and the optimal evaluation cannot be guaranteed. In order to eli-
minate the necessity of a specific criterion selection, a general criterion is needed
(Rosendahl et al., 2019b), cf. Voigt (1901).

In the present work, the geometric properties of isotropic yield criteria are exa-
mined. Global convexity limits of the yield criteria are defined and plausibility as-
sumptions are listed. A general isotropic yield surface should be able to describe
possible yield surfaces lying between the lower and the upper bounds of the conve-
xity restrictions. Any known or new criteria can then be viewed as a special case of
the general criterion and are, thus, secondary. The use of the general criterion with
reasonable restrictions (Kolupaev et al., 2016; Kolupaev, 2018) prevents the risk of
inappropriate extrapolations, cf. Zyczkowski (1981).

In our work, a nomenclature of criteria based on their geometric properties is
introduced. A general schematic for expressing pressure-insensitive yield criteria
is provided. Known and new yield criteria are assigned to these schematic. This
facilitates the selection of criteria for various applications. Critical gaps in the for-
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mulation of criteria are closed. The best known criteria are generalized considering
the plausibility assumptions (Appendix 2.7.8). The parameters of the criteria are
restricted based on the convexity condition in the 7t-plane (deviatoric plane).

A universally applicable yield criteria, which describe a single, convex, and C°-
or C!-continuously surface are proposed. These contain extreme yield figures as
the convexity restrictions. Using a Ij-substitution as a function of the trace of the
stress tensor, the introduced criteria are applicable to pressure-sensitive materials.
They incorporate various conditions to obtain special “theories”. The versatility of
the introduced criteria is sufficiently high, which may help to stop the growth of the
amount of proposed criteria, cf. Habraken (2004).

The present work is organized as follows. Section 2.2 presents methods, require-
ments, and restrictions in the formulation of yield and strength criteria. In Sect. 2.3,
the nomenclature of yield and strength criteria is introduced, which allows their de-
scriptive comparison. In Sect. 2.4, the best known criteria in the authors’ opinion
are discussed and new criteria proposed. Strength criteria with the shape variation
in 7t-plane are discussed in Sect. 2.5. The most important points of our work are
summarized in Sect. 2.6.

2.2 Geometric Properties of Criteria

This section presents methods, requirements, and restrictions in the formulation of
yield and strength criteria for isotropic materials. The geometric properties of the
surfaces are analyzed and systematized, see also Pisarenko and Lebedev (1969,
1976); Lebedev (2010). Linear, quadratic, and cubic I;-substitutions are introduced
in order to obtain the pressure-sensitive generalization of the yield criteria.

2.2.1 Requirements for Yield and Strength Criteria

Yield surfaces for pressure-insensitive isotropic materials are described by a cylin-
der or a prism centred around the hydrostatic axis in principal stress space (Paul,
1968a,b)

01 = Oq1 = o711, (2.1)

where o7, o1, and oy denote the principal stresses (Appendix 2.7.1). Such surfaces
do not involve any restriction of hydrostatic stresses (Fig. 2.1).

Cross sections orthogonal to the hydrostatic axis are called deviatoric planes or 7t-
planes (de Aratjo, 1962; Zyczkowski, 1981). Owing to isotropy, the cross sections
in the 7-plane must be of trigonal, hexagonal or rotational symmetry (Fig. 2.2).

Further, based on the DRUCKER postulate (Altenbach, 2018; Betten, 2001;
Drucker, 1957, 1959), we require convex yield surfaces. Thus, basic cross sections
may be described by a circle or regular polygons of trigonal or hexagonal symmetry
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Fig. 2.1 Yield criteria of
TRESCA (green), VON MISES
(red), and SCHMIDT-
ISHLINSKY (violet) in

the principal stress space
(o1, oy1, o) and with co-
ordinates (&, &,, &3) (Al-
tenbach and Kolupaev, 2014).

a. b.

Fig. 2.2: Yield criteria in the 7t-plane normalized with respect to the appropriate uniaxial tensile
limit loading o‘g: a. Isogonal (black) and isotoxal (blue) hexagons of trigonal symmetry, b. Regular
hexagons of the SCHMIDT-ISHLINSKY (black) and TRESCA (blue) criteria of hexagonal symmetry
and the circle of the VON MISES criterion (red) of rotational symmetry (Rosendahl et al., 2019b).

in the 7t-plane (Rosendahl et al., 2019b, see also Pisarenko and Lebedev (1976);
Lebedev (2010)): e.g. triangles, hexagons, enneagons (nine-sided polygons), dode-
cagons (twelve-sided polygons), among others. Each surface described by a regular
polygon in the 7t-plane has a counterpart, which is obtained by its rotation by 7t/n in
the 7t-plane about the hydrostatic axis, where n is the number of corners (Fig. 2.3).

All materials fail under sufficiently large hydrostatic tensile loading (Gol’denblat
and Kopnov, 1971b; Kolupaev, 2018). In this case, the hydrostatic component of
loading should be introduced in the yield criterion. Hence, the strength criteria re-
strict the hydrostatic tensile stress. With the convexity requirement on the meridian
of the limit surface it follows

T

30717 > 0p-

The surface can be open
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- | - BiLLinGTON, YU CouLomB Ko
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ISHLINSKY-IVLEV KoLuraev SCHMIDT-ISHLINSKY
SHESTERIKOV HiLL, bE ARATIO, YU MARIOTTE

Fig. 2.3: Basic yield figures described by a circle and regular polygons of trigonal or hexagonal
symmetry in the 7t-plane. The symbols of symmetry follow according to Nye (1985).

or closed

%€ = const. < 0

in the direction I} < 0, where I; is the first invariant of the stress tensor (2.107).
The superscripts T and C denote uniaxial tensile and compressive limit loading re-
spectively. Accordingly, TTT denotes equitriaxial (hydrostatic) tensile limit loading
and CCC - equitriaxial (hydrostatic) compressive limit loading (Table 2.7). The sub-
script 0 in O'g refers to the stress angle © =0 (2.112), see Table 2.7. Note that, the
stress angle at the TTT and CCC loadings is indeterminate.

Criteria discussed in the present work are purely phenomenological. No sufficient
conditions for their formulation can be given (Kolupaev, 2018). They are invented
and, as a rule, not verified by multiaxial stress states (Wu and Scheublein, 1974).
However, the quality of a certain yield or strength criterion may be assessed con-
sidering the plausibility assumptions (Appendix 2.7.8). These assumptions are not
mandatory, but they allow to select user-friendly criteria for a wide range of appli-
cations.

2.2.2 Formulation of Yield and Strength Criteria

Yield and strength criteria for isotropic materials are invariant with respect to an
arbitrary rotation of the coordinate system (Malmeisters et al., 1977; Zyczkowski,
1981). Therefore, such criteria are formulated using invariants of the stress tensor
discussed in Appendix 2.7.1.

Functions of invariants are also invariants (Appendices 2.7.2-2.7.3). For the for-
mulation of criteria @ we may also use:
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e the principal stresses (principal invariants) oy, oy, and oy (Altenbach et al.,
1995; Haigh, 1920; Westergaard, 1920; Zyczkowski, 1981)

@ (o1, o1, o1, Oeq) =0, (2.2)

e the trace I; of the stress tensor and the invariants Ié, Ié of the stress devia-
tor (2.107)—(2.109) (Backhaus, 1983; Burzynski, 1928; Ottosen and Ristinmaa,
2005; Reuss, 1933; Sawczuk, 1982; Skrzypek, 1993; Yagn, 1931)

@ (11, 15, T4, 0eq) =0, (2.3)

e the cylindrical invariants &, p,0 (2.110)—(2.112) (Lebedev, 2010; Murzewski,
1957, 1960; Novozhilov, 1951a,b; Ottosen and Ristinmaa, 2005)

D (&, p, 0, 0¢q) =0, (2.4)

and
e the spherical invariants &, 1\, and 0 (2.110), (2.112), (2.113) (Altenbach and
Kolupaeyv, 2014; Kolupaev, 2018; Lagzdin’ and Tamuzh, 1971; Lebedev, 2010)

@ (&,1,6, 0eq) =0. (2.5)

In the formulations (2.4)—(2.5), the invariant & (2.110) is the scaled invariant I;
and describes the coordinate of the loading on the hydrostatic axis, the radius p in
the 7t-plane (2.111) is the scaled root of the second invariant I, and 0 (2.112) is the
corresponding stress angle in the 7t-plane. The radius p may be replaced by the stress
triaxiality factor 1\ (2.113) or (2.114), which yields a description of the surface in
terms of the spherical invariants.

In addition, a big family of criteria include positive first principal stress

1
Omaxt = E (|O-I‘ + O-I), (26)

the hydrostatic stress I}, and the second invariant of stress deviator I} to capture
mixed mode (brittle and ductile) fracture. Examples are presented in Sdobyrev
(1959); Trunin (1965); Hayhurst (1972); Altenbach and Naumenko (1997, 2002)
among others. The (non-linear) functions of the maximum tensile stress, the hy-
drostatic stress and the VON MISES equivalent stress is frequently used in damage
evolution equations for the creep and creep-fatigue analysis. Examples are presented
in Kowalewski et al. (1994); Othman et al. (1994); Dyson and McLean (2001); Al-
tenbach et al. (2000); Naumenko et al. (2011).

All these formulations (2.2)—(2.5) are, from a mathematical point of view, equi-
valent. Formulation (2.2) has a historical origin and is primarily mentioned in text-
books of strength of materials and theory of plasticity in the discussion of the clas-
sical criteria. The YU strength theory (YST) as a generalization of these classical
criteria was firstly expressed in the principal stresses (Yu, 2004) and, later, in the
axiatoric-deviatoric invariants (2.3) for visualizations of the meridional cross sec-
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tions (cross section of the limit surface containing the hydrostatic axis) together
with the line of the plane stress state (Kolupaev, 2018). Formulations according to
(2.3) were intensively elaborated until the beginning of XXI century. Although such
criteria are being developed, they are, as a rule, not user-friendly (Appendix 2.7.8,
violated assumptions PP1, PP3, and PM1).

Equations (2.4)—(2.5) allow to manipulate the geometric properties of the sur-
face @. Formulation (2.4) seems to be very effective in regard of the applicability
and satisfaction of the plausibility assumptions (Appendix 2.7.8). Equation (2.5) has
hardly found any practical application and is included for the sake of completeness:
it is omitted from our discussions. One or the other of the Egs. (2.2)—(2.5) may
be preferred depending on the didactic targets, modeling concept, consideration the
plausibility assumptions or desired application.

When pressure-insensitivity is assumed, the first invariant I; does not influence
failure / yielding (Malmeisters et al., 1977; Zyczkowski, 1981). For this property,
the Egs. (2.3)—(2.4) can be reduced to

O (15,13, 0eq) =0 or @(p, 6, 0eq) =0. 2.7

Polynomial formulations of @ (I}, 15, 0.q) in terms of series of the deviatoric invari-
ants Ié and Ig are well elaborated (Kolupaev, 2018) but cannot be recommended for
application because of additional outer contours around the physically meaningful
surface in the 7t-plane. As a rule, the equivalent stress 0¢q occurs implicitly in such
equations.

In order to satisfy the assumption PM1 (Appendix 2.7.8), the equivalent stress
Oeq can be specified explicitly:

Oeq = D(p, 0). (2.8)

Such formulations are advantageous for iterative computations, e.g. in FEM codes.
We may further postulate a multiplicative split of yield criteria into a function of
radius W(p) and a function of the stress angle Q(0) (Zyczkowski, 1981)

Oeq =W¥(p)Q(0). (2.9)

To highlight deviations of the shape of the surface in the 7t-plane from the circle of
the VON MISES criterion (Figs. 2.2 b, red circle, and 2.3)

Oeq=1/31, with Q(8)=1, (2.10)

the function of W(p) is often replaced by /31 (Giraldo-Londofio and Paulino,
2020; Kolupaev, 2017; Kolupaev et al., 2018; Lebedev, 2010), which yields

Oeq = /315 Q(6). @2.11)

Normalizing criteria with respect to the appropriate uniaxial tensile limit loading,
e.g., the tensile yield or strength 0'(1; (Table 2.7), leads to the final formulation
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, Q(0)
Oeq = 1/31} oTOL 2.12)

which incorporates several well-known yield criteria and is beneficial for the appli-
cation.

2.2.3 Pressure-sensitive Extension of Yield Criteria

Reintroducing the first invariant of the stress tensor [; in (2.12) using the substitution
(Kolupaev, 2018)

Ocq—Y111 Oeq—7v214 1/2

I—v, I—v2

Ocq with v1 €0, 1] (2.13)

does not violate the assumption PM1 (Appendix 2.7.8). The reciprocal values of
the parameters y; and 7y, describe the intersection of the limit surface with the I;-
axis (scaled space diagonal in the principal stress space). These points are called
the hydrostatic nodes TTT and CCC (Table 2.7). The parameters y; and 'y, do not
interact with other parameters of the criterion (2.12), and thus do not influence the
shape of cross sections in the 7t-plane.

Therefore, the general equation of a second-order surface of revolution about the
hydrostatic axis in the principal stress space can be formulated as a function of the
coordinates of the hydrostatic nodes TTT and CCC (Altenbach, 2018; Altenbach
and Kolupaev, 2014; Kolupaev, 2018)

Ocq— Y111 Oeq—v2 11

3 =
: I—v, I—v2

(2.14)

A possibility of an explicit solution of (2.14) with respect to 0.q was a widespread
application of this criterion, which is known as the BURZYNSKI-YAGN criterion.

The meridional cross sections of the rotationally symmetric criteria are shown in
Fig. 2.4. The surfaces result with rotation of the corresponding line around the I;-
axis. The visualization of the criteria (2.14) in the (I, \/31})-plane (BURZYNSKI-
plane) is then obvious and allows a straightforward comparison with the VON MISES
criterion (2.10) (Fig. 2.4, red line).

For materials, which do not fail under hydrostatic compression (brass, lead, steel,
etc.), the surface @ has a single hydrostatic node TTT. Based on (2.13) three substi-
tutions are possible:

e linear substitution with y; = >, at which the hydrostatic nodes at the point TTT
coincide,

Oeq— Y1 11
=1

provides straight meridian in the BURZYNSKI-plane,

Oeq with v1 €0, 1] (2.15)
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cC c DRUCKER-PRAGER \/3 Ié

BURrzYKsKI-TORRE

VON MISES

SCHLEICHER

-6 -5 -4 -3 2 -1 0 1 2

Fig. 2.4: Rotationally symmetric criteria with the setting y; = 1/3 (point TTT) based on the nor-
mal stress hypothesis: cone of DRUCKER-PRAGER with 'y, = 1/3, paraboloid of BURZYNSKI-
TORRE with v, = 0, ellipsoid of SCHLEICHER with y» = (3 —+/17)/6, and ellipsoid of
BELTRAMI with vy, = —1/3 in the BURZYNSKI-plane (I, \/ﬁ). The VON MISES criterion
(v1 = v2 = 0, red line) is shown for comparison.

e the parabolic meridians follow with y, =0

Oeq — Y1 I1

1/2
O'eq:| with v1 €0, 1], (2.16)
=y,

o |

e and the hyperbolic meridians follow with vy, €]0, y;[. The second node with the
position 1/, on the hydrostatic axis does not belong to the physically mean-
ingful region of the surface @, which is most closed the coordinate origin, cf.
Wu (1973); Yagn (1931). Due to this fact, the hyperbolic surfaces are not recom-
mended for applications, cf. Balandin (1937).

For materials, which fail under hydrostatic compression (aerated concrete and ce-
ramics, hard foams, sintered and granular materials, sandstone, etc.) the second
hydrostatic node CCC is significant. The parameters in (2.14) are then bounded
as follows

v1 €10, 1] and Y2 <O. (2.17)

For the yield criteria (2.12), a pressure-sensitive extension (2.13) provides

1/2

Q(0) [Ueq—Ylll Oeq—Y2 1 (2.18)

31/ =
2.0(0) l—v1 1—v2

Suitable approximations are often obtained with the linear I;-substitution Eq. (2.15)

Q0) oeq—vi L
I/ — 2.1
NI A E—— 19

which leads to conical and pyramidal surfaces in the principal stress space (Lebedev
et al., 1979; Lebedev, 2010; Kolupaev et al., 2018; Paul, 1968a,b; Pisarenko and
Lebedev, 1976; Rosendahl et al., 2019b; Wronski and Pick, 1977). It is to note, that
the linear substitution produces an additional surface beyond of the hydrostatics
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node TTT (Fig. 2.4, DRUCKER-PRAGER cone)
I 1
7T 2 -
0y Y1

without physical meaning and the apex at the hydrostatic tensile limit loading is
CO-continuously, what contradicts our perceptions and aggravates the computation
of gradient of the surface @, see Appendix 2.7.8, assumptions PP3 and PG10. This
quirk can be fixed by the parabolic I;-substitution (2.16) or by “rounding off” with
the C!-transition as multisurface criterion (Kolupaev, 2018).

The cubic I;-substitution in the yield criterion (2.12)

iitem ] [ Oea—Y11 ) Geq—va 1 \ !
Coq — 4+ eq — Y1l eq — Y211 O'eT(‘; (2.20)
1=y l—=v2

with integer and positive powers j, , and m

j+l+m=3, j>0, 1>0, and m>0, 2.21)

which control the curvature of the meridian, leads to additional fitting possibilities
(Kolupaev, 2018). The equation of the criterion can be still resolved analytically
with respect to 0eq. As example, the rotationally symmetric criterion

Gea—Y1 11\ [ Ceq—vaIi \ !
(319(3/2):( «q V1 1) (eq Y2 1) of with yre0,1[ (222)
1—v; 1—v2

can be introduced. The meridian with | = m = 0 is a straight line and with L =0 is
a parabola. For materials, that fail at hydrostatic compression, it follows | > 0 with
Y2 < 0.

Further I;-substitutions, e.g. with integer and positive powers

j+l+m=6 (2.23)

are conceivable but, in general, can only be treated numerically. If the powers of
the I;-substitution (2.20) are chosen real for refined settings (Fahlbusch, 2015;
Fahlbusch et al., 2016), the I;-substitution with absolute values of the terms

j+1+m
Geq —

for numerical stability is recommended. Such substitutions are excluded from our
consideration.

j 1
) 0-f:q_'YZIl

1—vy2

Oeq —Y1 I1
l—v,

o (2.24)
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2.3 Designation and Comparison of Yield Criteria

A clear designation of the yield and strength criteria is proposed, what provides
overview and simplifies their selection for application. The criteria are systematized
in tables and diagrams. A method for comparing of yield criteria is presented, which
allows to identify missing criteria.

2.3.1 Nomenclature of Yield Criteria

The mathematical expressions for the yield and strength criteria can be very different
(Subsect. 2.2.2), which makes their comparison for the best adjustment not directly
possible, cf. Matsuoka and Nakai (1985); Yu (2002); Kolupaev et al. (2009); Zhang
et al. (2011); Lagioia and Panteghini (2016); Giraldo-Londofo and Paulino (2020);
Xu et al. (2021) among others. A unique nomenclature and consequent designation
of the criteria can be performed based on their geometric shapes in the 7t-plane and
meridional cross sections.

Possible shapes of the yield criteria in the 7t-plane are constrained by the re-
quirement of convexity (Subsect. 2.2.1). The upper and lower convexity limits are
referred to as extreme yield figures (Sayir and Ziegler, 1969; Lebedev et al., 1979;
Marti, 1980; Bigoni and Piccolroaz, 2004; Lebedev, 2010; Rosendahl et al., 2019b).
Extreme yield figures may take the shape of isogonal and isotoxal polygons of tri-
gonal or hexagonal symmetry. Regular polygons are limit cases of the extreme yield
figures.

Isogonal polygons are equiangular. An isotoxal polygon is equilateral, that is, all
sides are of the same length (Koca and Koca, 2011; Téth, 1964). In general, isogonal
and isotoxal hexagons are of trigonal symmetry (Fig. 2.2a). The regular hexagons of
the TRESCA and SCHMIDT-ISHLINSKY criteria have an additional symmetry axis
and are of hexagonal symmetry (Figs. 2.2b and 2.3, Table 2.1). Isogonal and iso-
toxal dodecagons (twelve-sided polygons) are of hexagonal symmetry, too.

In this work, the basic (regular) yield figures are labeled according to their shapes
in the 7t-plane (Table 2.1), cf. Rosendahl et al. (2019b):

the designation () reflects the VON MISES criterion,

regular triangles are denoted with 3,

regular hexagons with 6,

regular enneagons with 9,

regular dodecagons with 12,

regular octadecagon with 18,

regular icositetragons with 24,

regular triacontahexagon (Modarres-Motlagh, 1997) with 36, etc.

Further regular polygons with the number of corners divisible by three

e pentadecagons denoted with 15,
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icosihenagons with 21
icosiheptagons with 27,
triacontagons with 30,
triacontatrigons with 33, etc.

are also accepted as yield criteria for isotropic materials, but they has low practical
significance. References of them were not found in the literature. These shapes are
only mentioned for sake of completeness.

Circumflex ~ and macron ~ refer to an upward pointing tip or upward facing flat
base of the criterion in the 7t-plane, respectively (Fig. 2.3). The designation of the
discussed regular polygons is shown in Table 2.1. Further references of the criteria
are given in Kolupaev (2018). The aim of the designation is a visual representation
of the basic yield figures included in the discussed criteria (Tables 2.2-2.5).

Limit surfaces for isotropic materials can be characterized by the regular poly-
gons and the circle in the 7t-plane they include. For example, the MOHR-COULOMB
criterion contains the regular triangle of the RANKINE and regular hexagon of the
TRESCA criteria in border cases (Table 2.4). The criteria involving less than three of
the regular geometries can be considered as special cases of the general formulation
and are excluded from our discussion. The limitation to three regular geometries is
motivated in Subsect. 2.3.3.

Generalized yield criteria involving three or more basic geometries are signifi-
cant for application. The number of their parameters should not exceed two. The
remained criteria are easily manageable (Tables 2.2 and 2.5). However, the assump-
tion, that the criteria should be a single surface in principal stress space, is fulfilled
only for criteria marked as equations in Table 2.2. Such criteria are functions of the
stress angle 6 (2.12).

The ordinary pressure-sensitive generalizations of yield criteria, what are of in-
variable shape in the 7t-plane, are listed in Table 2.3. They are quite simple for real
materials. Typical criteria with brittle-ductile transition, obtained as linear combi-
nations of the non-parametric yield criteria of rotational or hexagonal symmetry
with the maximum normal stress hypothesis (RANKINE criterion, NSH), are listed
in Table 2.4, see also Liipfert (1994). Although such criteria are particular, they
are often used because of the lack of measured data. Their approximation with the
DRUCKER-PRAGER cone (Fig. 2.4) given in some textbooks, is secondary.

In our consideration, further criteria are not effective for application. For ex-
ample, the LEMAITRE-CHABOCHE yield criterion “intermediary between those of
VON MISES and TRESCA™ as function of I} and I} invariants with one parameter
additionally to 0¢q (Lemaitre and Chaboche, 1985, 1990), see also Altenbach et al.
(1995); Altenbach (2018); Jirasek and Bazant (2002); Koval’chuk (1981); Kroon
and Faleskog (2013); Takeda et al. (1986) describing the transition
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The CP-yield criterion of ALTENBACH-ZOLOCHEVSKY with two parameters (Al-
tenbach et al., 1995; Altenbach, 2001; Altenbach and Kolupaev, 2014)

3-6/0-3

can be replaced with the modified ALTENBACH-ZOLOCHEVSKY CP-yield criterion
with the same number of parameters (Kolupaev, 2017, 2018; Kolupaev et al., 2018;
Rosendahl et al., 2019b)
3-6|12|6—3.

The symbol | is explained in Table 2.2. Here, only one C!-criterion of VON MISES
is replaced with the regular dodecagon 12. The definition range of the modified
formulation is significantly larger.

The LECKIE-HAYHURST strength criterion (Hayhurst, 1972; Leckie and Hay-
hurst, 1977) with two parameters

O+NSH+1I; or, equivalently, (O—3 — I,

where symbol — denotes the linear I;-substitution (2.15) and symbol + denotes
convex combination, can be substituted with the SAYIR pyramid (Kolupaev, 2018)
with also two parameters

é — O -3 L
but with the larger definition range. However, the PODGORSKI pyramid with three
parameters and significantly larger definition range (Table 2.5)

is clearly preferable. Further most important strength criteria are summarized in
Table 2.5.

The strength criteria with the shape variation in 7t-plane are discussed in Sect. 2.5.
They are not part of the designation and systematization.

2.3.2 Comparison of Yield Criteria

Measured data are normalized by the appropriate tensile limit loading

(01 on mn)
T T T |°
0y Oy Oy
so that mechanical properties become unitless. The surfaces @ for different isotropic
materials can be now compared in the same diagrams.
We distinguish pressure-insensitive yield criteria (2.7), which are comprehen-

sively described in the 7t-plane and pressure-sensitive strength criteria (2.3)—(2.4).
Certain types of loading for pressure-insensitive materials coinside in the 7t-plane
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(Fig. 2.5): equal stress angle 0 share the same radius p (2.111) and collapse onto
one point. Introducing the corresponding nomenclature (Table 2.7) these are:

e 0 =0: T (uniaxial tension) and CC (equibiaxial compression),

e 0 =71/6: S (shear), Tt (biaxial tension with I} = 0), and Cc (biaxial compression
with IZ =0), and

e 0 =17/3: TT (equibiaxial tension) and C (uniaxial compression).

The values of radii p at these stress angles 0 are characteristic properties of the yield
surface (Figs. 2.6 and 2.7).

Pressure-sensitive strength criteria have additional characteristic values because
of their I1-dependence (Subsect. 2.2.3). In order to visualize pressure-sensitive cri-
teria,

e certain cross sections 1| = const., e.g. through the particular points T, TT, C, CC,
S, Tt, and Cc of the plane stress states (Table 2.7) and

e the (I, \/31})-plane (Fig. 2.4)

Fig. 2.5 Isogonal (black)
and isotoxal (blue) hexagons
in the 7t-plane normalized
by the appropriate limit ten- T,CC S, Tt, Ce
sile loading O'g (Fig. 2.2a):
Enlarged detail with the
VON MISES criterion (red)
and the stress states (T, CC CTT
on the 0-meridian, S, Tt, Cc .
on the 7t/6-meridian, and C, 0= 3
TT on the 7t/3-meridian) for
comparison (Rosendahl et al.,
2019b).

p(rt/6) p(m/3) p(7t/6)
p(7t/3)

a T3 =Te = 1 b. Te0 € {1/2, 2} c. Teo = 1

Fig. 2.6: Basic surfaces with the same radius p(AO) in the 7t-plane: a. Rotationally symmetric
VON MISES criterion (2.10), b. Regular triangles 3 and 3, and c. Regular hexagons 6 and 6. The
values 130 and 1 (2.26) are given for comparison (Rosendahl et al., 2019b).
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p(0) p(mt/12)  p(7/6) p(0) p(mt/12) p(7/6) ISHLINSKY-
IvLEV

SCHMIDT-
ISHLINSKY

VON MISES
VON MISES

p(7mt/3) p(7mt/3)

TrRESCA SOKOLOVSKY

a. Te0 = 1 b. T30 = Te0 = 1

Fig. 2.7: Basic surfaces of hexagonal symmetry in the 7t-plane: a. Regular hexagons 6 and 6 and
b. Regular dodecagons 12 and 12 with the VON MISES criterion (2.10). Because of hexagonal
symmetry a cut-out of the angle 0 € [0, 7t/3] is representative (Kolupaev, 2018; Rosendahl et al.,
2019b).

with the projection of the meridians © = const. and the lines of the plane stress state
are needed. Some examples of visualization are given in Altenbach et al. (2014);
Kolupaev (2006, 2017, 2018); Kolupaev and Altenbach (2010); Kolupaev et al.
(2013b, 2016, 2018); Rosendahl et al. (2019b).

The plane stress o1 — oy diagram with oy = 0 is not representative for 3D-
modeling of the limit surface. However, measured data gained with conventional ex-
perimental technique are traditionally shown in this diagram. The meridians 6 = 0,
/6, and 71/3 of the surface @ can be projected in this diagram. It helps condition-
ally to check approximations by the fitting to the measured data and to visualize the
points of the hydrostatic limit loading by different extrapolations (Kolupaev, 2018).
The comparison of approximations in the oy} — T, diagram is not recommended.
Here, numerous effects are invisible.

2.3.3 Shapes of Yield Criteria in the Tt-plane

Cross sections of pressure-insensitive criteria (2.7) may be described in the 7t-plane
as functions p(0). Let us introduce geometric properties as relations of radii at the

angles 7T 7T 7T 7T TT Tt
g T T and T 225
24°12°8°6 4 ¢ 3 (2.25)

to the radius p(0) as



38 Holm Altenbach and Vladimir A. Kolupaev

s Pm24) o el/12) _ p(r/8)
e TP (o) T p(0) 226)
p(r/6)  __ plm/4) p(7/3) '

T30 = » Ta4s = > Teo = .
p(0) p(0) p(0)
The subscript of T
7.5, 15, 225, 30, 45, or 60

corresponds to the stress angle 0 of the respective radius in degree. With these values
(2.26), different yield criteria can be easily compared in appropriate diagrams. The
chosen angles 0 are some fractions of the angle 7t/3 between the symmetry axes in
the 7t-plane (Figs. 2.6 and 2.7).

Convexity of the polynomial formulated criteria

(D(Ié’ Ié’ O-Cq) :()5

e.g. CC and BCC (Table 2.2), is most critical at these angles and needs to be checked
firstly for parameter restriction, see (Betten, 1979, 2001; Bolchoun et al., 2011;
Troost and Betten, 1974). In fact, it is impossible to say, at which other angles the
convexity should be checked (Bolchoun et al., 2011). It can be numerically analyzed
with small steps, e.g. with A8 < 7t/360.

All radii of the VON MISES criterion (2.10) are equal (Fig. 2.6a)

T7.5 =T15 =T2.5 =T30 =T45 = Te0 = 1. (2.27)

For direct comparison of the yield criteria of trigonal symmetry (Fig. 2.6b), the
fractions 139 and T are significant. The fractions 115 and 145 can be used in refined
analysis (Rosendahl et al., 2019b).

For the criteria of hexagonal symmetry (Fig. 2.7), the radii at the angles 6 =0
and 7t/3 are equal p(0) = p(7t/3), which yields

Teo = 1, (2.28)
and because p(7t/12) = p(7t/4), we obtain
Ti5 =T45. (2.29)

In this case, the fractions 175 and 175 5 are sometimes required for the refined com-
parison of the shapes and, due to hexagonal symmetry, the fractions at the angles
57t/24 and 7 7t/24 are excluded from consideration.

Figures 2.8 and 2.9 show convexity restrictions for yield criteria of trigonal sym-
metry in the T¢9 — 1309 diagram and for yield criteria of hexagonal symmetry in the
T15 — T30 diagram, respectively. These diagrams allow a comparison of all yield
criteria for isotropic materials. The yield figures

O, 12, 12, 24, and 24
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SCHMIDT-ISHLINSKY MARIOTTE

HAYTHORNTHWAITE

CAPURSO

IvLEV

Fig. 2.8: Diagram r1¢y — 130 for convex yield criteria of trigonal symmetry compared to the
VON MISES criterion with 139 = 1690 = 1 (Kolupaev, 2018). Denotation of criteria follows ac-
cording to Tables 2.1 and 2.2.

Tis5

SCHMIDT-ISHLINSKY
1.05

IsHLINSKY-IVLEV

SOKOLOVSKY

TrEsCA
Fig. 2.9: Diagram 139 — 15 for convex yield criteria of hexagonal symmetry (T¢o = 1) compared

to the VON MISES criterion with 115 = 139 = 1 (Rosendahl et al., 2019b). Denotation of criteria
follows according to Tables 2.1 and 2.2.

coincide in the T¢) — 130 diagram (Fig. 2.8), while the yield figures

O, 24, and 24
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coincide in the 15 — 130 diagram (Fig. 2.9). The diagram 175 — 15 for the crite-
ria of hexagonal symmetry with r¢y = 130 = 1 is conceivable, but not relevant for
engineering application.
Setting
I = const. (2.30)

in a particular cross section, the fractions (2.26) can be computed for pressure-
sensitive criteria, as well. It is required for the criteria with variable cross sections in
the 7-plane as function of I; (Sect. 2.5). Details on the calculation of the discussed
fractions (2.26) for any criterion are given in Appendices 2.7.4 and 2.7.5.

2.3.4 Extreme Yield Figures

Lower and upper bounds of convexity for isotropic criteria in the 1o — 130 diagram
(Fig. 2.8) are obtained with extreme yield figures of isotoxal and isogonal hexagons
(Figs. 2.10 and 2.11). The polynomial formulations (2.7) of these hexagons are
known (Table 2.2)

e the CAPURSO criterion 3 — 6 — 3 and
e the HAYTHORNTHWAITE criterion 3 —6 — 3.

However, their polynomial forms feature plane intersections surrounding the physi-
cally reasonable shape of the surface ®, which makes the application involved.

scaled 3 triangle scaled 3 triangle
factor 1/2 factor 2

'\ L DA

Fig. 2.10: Isogonal (equiangular) hexagons (upper convexity limit, Fig. 2.8) formed by the in-
tersection of two triangles in the 7t-plane: the scaled 3 triangle (blue) and the 3 triangle (black)
(Rosendahl et al., 2019b).

A6 00 ¥

Fig. 2.11: Isotoxal (equilateral, lower convexity limit, blue) and isogonal hexagons (equiangular,
upper convexity limit, black) in the 7t-plane with the 3 (blue) and 3 (black) triangle as limit cases
(Fig. 2.8) (Rosendahl et al., 2019b).
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Isotoxal hexagons (Fig. 2.8, lower bound 3 —6—3) as function of stress angle
(2.12) can be formulated using the PODGORSKI criterion (Table 2.1 and 2.2), which
describes the geometry of the CAPURSO criterion as a single surface among others.
A criterion for isogonal hexagons (Fig. 2.8, upper bound 3 — 6 — 3) as function
of stress angle without case discrimination is missing (Kolupaev, 2018; Rosendahl
et al., 2019b).

Isotoxal and isogonal hexagons degenerate to the same regular triangles 3 and 3
in limit cases (Figs. 2.6b and 2.11) with

1
Teo € |:2, 2:| .

These hexagons 3—6—3 and 3—6—3 in the 7-plane extended with the linear
I;-substitution (2.15) represent pyramids in principal stress space (Subsect. 2.2.3),
which are important strength criteria for practical applications. The transition from
the hexagon 6 t0 6 via (O is designated with the vertical line

61016

according to Fig. 2.8 and can be describe with the modified YU criterion using the
ROSENDAHL criterion (Table 2.2, mYU).

The lower and upper bounds of the convexity restriction for the yield criteria
of hexagonal symmetry in the 13y — ;5 diagram (Fig. 2.9) are obtained with ex-
treme yield figures of isotoxal and isogonal dodecagons. Isotoxal dodecagons (lower
bound 6 — 12 —6) as function of the stress angle can be described with the modi-
fied YU criterion (Table 2.2, mYU). Only a polynomial formulation for isogonal
dodecagons (upper bound 6 — 12 —6) is known (Fig. 2.9, MAC, and Table 2.2).

Isotoxal and isogonal dodecagons degenerate to the same regular hexagons 6 and
6 in limit cases (Figs. 2.6¢ and 2.7a) with

me[x@ 2]
273

Although the I;-substitution (2.15) is possible here (Table 2.3), dodecagons are
typically used as pressure-insensitive criteria. The differences between the regular
dodecagons 12 and 12 (Figs. 2.7b) with 139 = 1690 = 1 (Table 2.1) are

T1s € B 2+x/§,ﬁ(ﬁ—1)].

The deviation between the MAC and YYC including all criteria of hexagonal sym-
metry (Fig. 2.9) is relevant for comparison of the yield criteria.

The differences between the regular icositetragons 24 and 24 are negligible (see
Table 2.1). These icositetragons are obtained as a result of the generalization of the
yield criteria of hexagonal symmetry (Table 2.1).
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2.3.5 Geometric Properties and Basic Experiments

For comparison of the limit surfaces, test results, approximations, and extrapola-
tions, let us introduce the following limit loading values normalized with respect to
the appropriate uniaxial tensile limit loading O'g:

C Ggo T O
Teo = T and Teo = T (231)
) )

where O'GCO is the uniaxial compressive limit and Ggg is the limit under equibiaxial
tensile loading,

s Ce Tt
1S =320 rcc:ﬁm and T :éﬁ (2.32)
30 o_g ’ 30 2 O_g ’ 30 2 O_g >

where O'go is the shear limit, 0:3% and 0‘% are the limit loadings of thin-walled tube
specimens with closed ends under inner (Tt) and outer pressure (Cc), respectively,
and

(9
r6¢ =5, (2.33)
%9

where ch is the limit loading under equibiaxial compression (Table 2.7). The sub-
scripts of T refer to the stress angles in degree 6 = 0, 30, and 60° (2.112). For the
VON MISES criterion (2.10), it follows

16 =18 =t =155 =B =10 = 1 234
exactly the same as (2.27). It means, all meridians of the cylindrical surface coincide
in the BURZYNSKI-plane and this straight line is parallel to the I;-axis (Fig. 2.4, red
line).

While a hydrostatic tensile and compressive test

oy =oyp=om >0
and
op=opg=om<0

until failure can be realized in special cases only (Balandin, 1937; Drass, 2020; Feo-
dosjev, 1975; Kolupaev et al., 2014; Kolupaev, 2018; Paul, 1968a,b; Torre, 1950b),
the corresponding properties are important for comparison of extrapolations. We
may introduce

TTT cce
1 1
Ny y —= and 1€ = _GiT =——, (2.35)
o, 371 0 3v2
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where 67T and ¢CCC are the limit loading under hydrostatic tension and compres-

sion, respectively. Except for porous and granular media, hydrostatic compressive
failure does typically not occur for relevant loadings and

¢ 5 00

can be assumed (Subsect. 2.2.3). Based on the NSH (Appendix 2.7.6), a reference
value as coordinate TTT on the I;-axis (Fig. 2.4)

1
— =3
Y1
is important for comparison. For porous and granular materials, a reference value as
coordinate CCC on the 1;-axis (Fig. 2.4)

1
— =315
Y2 60
can be used (Kolupaev, 2018).
Now, the values 1¢, T30, and 1¢9 describe the 7t-plane shape at a chosen cross
section (2.30) and

C TT Cc Tt CC CCC

S TTT
Teo> Te0> T30 T30» T3gr To > T , and T

describe corresponding material properties. When y; =y, = 0, pressure-sensitive
criteria degenerate to pressure-insensitive criteria: the meridians are parallel to the
hydrostatic axis. The values on the same meridians (characterized by the angle 0)
coincide:

C TT S C Tt CC
T60 =Tep = T60 » T30 =13 = T35 = T30 and o =1. (2.36)

Pressure-insensitive criteria of hexagonal symmetry do not distinguish between ten-
sile and compressive properties

Teo =Too = Tog =15C = 1. (2.37)

The meridians 6 = 0 and 7t/3 coincide in the BURZYNSKI-plane and together with
other meridians are parallel to the I;-axis.

Classical yield and strength criteria such as VON MISES, TRESCA, SCHMIDT-
ISHLINSKY (Table 2.1), and the normal stress hypothesis (Table 2.3) describe the
material behaviour with the property

Taa =1 (2.38)

and the linear combinations (Table 2.4), e.g. the criteria of MOHR-COULOMB and
PISARENKO-LEBEDEV describe the material behaviour with the properties

o =1 and 15 =15>1, (2.39)
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which can be used for the comparison of approximations or for the formulation of
fitting restrictions. In the case of missing measured data, it can be assumed, that

1
rgge]z,l[.

The low bound follows with the convexity requirement on the meridian 6 = 7t/3 and
the top bound yields as a conservative restriction of the idealized behavior (2.38).
Special attantion is focused to the value (Birger, 1977; Kolupaev, 2018; Sdobyrev,
1959; Yu, 2004)
T6CO =2

for the criteria in Table 2.4 and YST (Table 2.5), which results as the middle of the
restriction 1/ r6CO €10, 1]. We note, if only the value

1
T'(6:0 S |:2, 2:|

is known, it is impossible to distinguish between pressure-insensitive and pressure-
sensitive material behavior, see the statement in Burzynski (1928) and Fig. 2.8. Fur-
ther measured data is mandatory for any statement. Details on fitting procedures and
the parameter identification for pressure-sensitive materials are discussed in Kolu-
paev et al. (2016); Kolupaev (2017, 2018); Kolupaev et al. (2018); Rosendahl et al.
(2019b).

2.4 Yield and Strength Criteria

The phenomenological nature of yield and strength criteria has caused an unmana-
geable number of possible formulations. Selecting a criterion for a particular appli-
cation is usually not based on objective arguments. Having to choose an appropriate
criterion under basically lack of information can leave engineers confused, see also
Lebedev (2010).

Consideration of the plausibility assumptions (Appendix 2.7.8) reduce signifi-
cantly the number of the criteria suitable for application and minimise risk of inap-
propriate computation. The aim of this work is the selection of the most effective
criteria and their rationale (Table 2.5).

2.4.1 Recommended Yield and Strength Criteria

Desired are the C!-continuous differential criteria (Table 2.2)

3—6/016—3
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and
6—1210|12—6

which fulfil the plausibility assumptions. These criteria should be formulated in the
form (2.8) as a functions of two parameters (Figs. 2.8 and 2.9). Such criteria are not
known so far. Some steps in this direction are proposed below.

In the authors’ opinion, the PODGORSKI and the ROSENDAHL yield criteria
(Table 2.2) meet the plausibility assumptions in the best way known and are recom-
mended for application. Unfortunately,

e the PODGORSKI criterion does not include isogonal hexagons (Figs. 2.8 and
2.10) and
e the ROSENDAHL criterion — isogonal dodecagons (Fig. 2.9).

These two criteria are generalized for reliable application (Subsect. 2.4.3). Different
ways are examined in order to satisfy the plausibility assumptions.
The C°-CTS (Table 2.2, criterion of trigonal symmetry)

3-6/12|16—3
and the CO-CHS (Table 2.2, criterion of hexagonal symmetry)
6—12(24|12—6

as functions of two parameters are derived on the basis of the modified ALTEN-
BACH-ZOLOCHEVSKY criterion (Kolupaev, 2017, 2018; Rosendahl et al., 2019b).
Together with the pyramid of PODGORSKI (Table 2.5)

3 — 6| O -3 I
the pressure-sensitive generalization C°-CTS — I,
3-6|1216-3 =1,

is a powerful tool for fitting of the measured data. The linear I;-substitution (2.15)
is used here. The quadratic substitution with the parabolic meridians (2.16) can be
tried alternatively for approximation. If necessary, these I;-substitutions can be used
for the CO-CHS

6—12]24|12—6 — 1,.

The YU strength theory (Table 2.5, YST)
6—12—6 + NSH

will be reformulated as function of the stress angle 0 without plane intersections and
then generalized as the ROSENDAHL + NSH criterion (Table 2.5)

6—12| O —6 + NSH
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for simple applicability. Based on the “rounded off” NSH (Appendix 2.7.6), the
modified YST with the properties of real construction materials

C
Ty = Teo = 1

is suggested (Subsect. 2.4.4.2).

The fundamentally different concept of the criteria with variable cross section
approach is discussed in Sect. 2.5. These criteria have trigonal symmetry in standard
loading region and hexagonal symmetry at high hydrostatic compressive loading,
e.g.

6—0—6 if I, = —o0.
Because of their flexibility, such criteria provide good approximations of experi-
mental data. A general expression is proposed.

With the selected criteria (Tables 2.2 and 2.5), it can be checked, whether an
optimal approximation of the measured data with the convex shape in the 7t-plane
and the convex meridian is possible. The criteria (Tables 2.3 and 2.4) have rather
historical and, especially, didactic significance, see also Brandt et al. (1986). Fur-
ther criteria will be only needed if they fulfil more of the plausibility assumptions
compared with the selected criteria.

2.4.2 PODGORSKI-type Shape Functions

The systematization of the most effective yield criteria (Rosendahl et al., 2019b;
Rosendahl, 2020) leads to the shape function

1
Q31 =cos % (7‘([53k —arccos [ﬂo + 13k cos(3k6)]) , keN (2.40)

which contains with (Table 2.2)

k=1-the3—6| (O —3 criterion of trigonal symmetry,

k =2 — the 6— 12| (O —6 criterion of hexagonal symmetry,

k =3 — the 9— 18| (O —9 criterion of trigonal symmetry,

k =4 — the 12 — 24| O —12 criterion of hexagonal symmetry.

The parameter 1 in (2.40) introduced in Bouvet et al. (2002, 2004); Lexcellent
(2018); Lexcellent et al. (2006), see also the series of the invariants (Appendix
2.7.7), is redundant and will be discarded

Mo =0.

The setting with k = 1 in (2.40) is of crucial importance in the formulation of the
yield and strength criteria. The setting with k = 2 includes many well-known yield
criteria of plasticity theory without tension/compression differences (2.28)
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The setting with k = 3 is the consequence of generalization and only of theoreti-
cal significance (Kolupaev, 2006, 2018; Rosendahl et al., 2019b). The setting with
k =4 will be used to obtain the 12 criterion for a Co-generalization (Sect. 2.4.3.5).
Further settings with n > 5 are possible, but have not found any application.

Note that, in order to avoid numerical issues, the real part function 93 can be
introduced to the shape function Q3 (2.40)

1
Q3 =N {cos {3k (7t B3k —arccos N3k cos(3k 60)] )” ) (2.41)
Replacing the parameter 13 by
i s
M3k = sIn {sz ﬂ (2.42)

yields improved parameter sensitivity and numerical stability. According to Szwed
(2000), the parameter (33, can be replaced with

[33k B aI’CCOS(X3k). (243)

This notion (2.43) will not be pursued here.

2.4.2.1 C!-criterion 3—6| () —3

Normalized with respect to the appropriate uniaxial tensile limit loading 0eq = O‘g,
the PODGORSKI criterion (Table 2.2) reads

; Q3(0,B3,m3)

O =30 2 Q3(0, B3,m3) 24
with the shape function of trigonal symmetry, see (2.40) with k = 1
03(0,3,1) =cos B (7133 —arccos[nzcos30]) (2.45)
and the parameter restrictions
Bz e€0,1], mzel—1,1]. (2.46)

It contains the criteria (Fig. 2.12, Tables 2.1 and 2.2)

e the SAYIR cubic criterion 3 — () — 3 with 83 = {0,1},
e the CAPURSO isotoxal hexagons 3 —6—3 withnz ={—1, 1}, and
e the TRESCA-VON MISES transition 6 — () with B3 =1/2,13 € [0, 1].

The criterion (2.44)—(2.45) results from the solution of the cubic equation in O¢q
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T30 A SAYIR

12+ K3 =403 k3 =105 k3 =407  k3=109 k3==+1

-t B3=0
- Bs=1
1/8 CAPURSO

HAYTHORNTHWAITE

. 7T
n3 :sm(|<3 2)

Fig. 2.12: PODGORSKI criterion (2.44) in the 149 — 139 diagram (Fig. 2.8). The lines (33 = const.,
k3 € [—1, 1] (solid red) and k3 = const., 33 € [0, 1] (dashed blue) are shown (Rosendahl et al.,
2019b), cf. Podgorski (1984); Podgérski (1985), adapted from Kolupaev (2017, 2018).

S5+550eq+S] 05y =0y (2.47)

q

for the rational deviatoric series (Appendix 2.7.7, Eq. (2.147)) with the trigonomet-
ric identity (Bronstein and Semendjajew, 2007). The number of the basic geometries
included in the criterion is sufficient for many applications. The scheme of this C!-
criterion 3—6| () —3 is shown in Fig. 2.13. The PODGORSKI criterion (2.44)—(2.45)
has received great recognition from professional community (Table 2.2, comments).

The parameter restriction (2.46) is convenient for the practice. The parameters of
the criterion (33 and 13 can be determined numerically by known values 1o and 13.

The isogonal hexagons of the HAYTHORNTHWAITE criterion 3—6-3 containing
the regular hexagon 6 (SCHMIDT-ISHLINSKY criterion) cannot be described with
the PODGORSKI criterion limiting the application of the criterion in the general
case. Although a confined field between the criteria 3 —6—3 and 3 — () —3 can be

IvVLEV
TRrEscA
. CAPURSO
Fig. 2.13 Scheme of the
PODGORSKI criterion of MariorTe
trigonal symmetry (2.44)— IVLEV
(2.45). CC - cubic criterion M PODGORSKI
(Table 2.2). Color meaning: VONVISES CC of Savir
black - criteria without any MARIOTTE
parameters, red — criteria with
TrEscA
one parameter, and blue - the
.. . LEMAITRE-CHABOCHE
criterion with two parameters VON MISEs

additionally to Oeq.
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mapped with complex parameters 33 and 13 (Kolupaev, 2017, 2018), such approach
is not user-friendly.
The PODGORSKI pyramid follows with the linear [;-substitution (2.15) in (2.44)

as
M_ 31/%‘53’1’]3)

I—v 2 03(0,B3,m3)

and is recommended for use (Table 2.5).

(2.48)

2.4.2.2 C'-criterion 6—12| O —6

Normalized with respect to the appropriate uniaxial tensile limit loading 0eq = 0‘3,
the ROSENDAHL criterion (Table 2.2) reads

QG(G’ 56’716)

Ocq =1/31} Q60 Pone) (2.49)
with the shape function of hexagonal symmetry
0Q4(0, e, ng) = cos [é (71(36 —arccos[ng cos68}>} , (2.50)
see (2.40) with k = 2, or, equivalently, with (2.118)
Q(0, Bs,M6) = cos {é (7‘[[36 —arccos [ (2 cos?30— 1)] )} , (2.51)
which may be preferred. The parameter restrictions are
Be€[0,1], mee[~1,1] (2.52)

It contains the criteria (Fig. 2.14, Tables 2.1 and 2.2)

e the SZWED bicubic criterion 6 — O- 6 with Bg = {0, 1},
e the isotoxal dodecagons 6 — 12 — 6 of the YU yield criterion with ng ={1,—1},
e the SOKOLOVSKY-VON MISES transition 12— () with B3 =1/2,n¢ € [0, 1].

The criterion (2.49)—(2.50) results from the solution of the bicubic equation
Sg+S4 05, + S5 05, = 0%, (2.53)

for the rational deviatoric series (Appendix 2.7.7, Eq. (2.147)) with the trigonomet-
ric identity, cf. PODGORSKI criterion (2.44)—(2.45).

The number of basic geometries included in the criterion is sufficient for many
applications. The parameter restriction (2.52) is convenient for the practice, cf.
(2.46). This criterion (2.49)—(2.50) is relatively new but suitable for the solutions
of several problems in plasticity theory. The scheme of the criterion 6 — 12| O —6
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Tis A BCC
105 F
=403 ke =405 kg =£0.7 kg = +09 kg = 1

‘‘‘‘‘‘‘ Be=0
B =1
105 Bo = 1/41.10 115 T30
P Bo=3/4
T Be=3/8 Yu
Bs—=5/8

. 7T
Te = SIn (K6 2>

Be =1
Be =

Fig. 2.14: ROSENDAHL criterion (2.50) with 19 = 0 in the 139 — 15 diagram (Fig. 2.9). The lines
B = const., kg € [—1, 1] (solid red) and k¢ = const., B¢ € [0, 1] (dashed blue) are shown, cf.
Fig. 2.12. BCC - bicubic criterion of SZWED, MAC — multiplicative ansatz criterion (Table 2.2).

is shown in Fig. 2.15. The parameters of the criterion (3¢ and 1¢ can be determined
numerically by known values 130 and 5.

The 1sog0nal dodecagons of the multiplicative ansatz criterion of hexagonal sym-
metry 6— 12 —6 containing the ISHLINSKY-IVLEV criterion (regular dodecagon 12)
cannot be described by the ROSENDAHL criterion limiting the application of the cri-
terion in the general case. Although a confined field between the criteria 6 — 12— 6
and 6 — (O — 6 can be mapped with complex parameters (3 and 1, this approach is
not easy-to-use.

The ROSENDAHL pyramid follows with the linear I;-substitution (2.15) in (2.49)

as
Ueq_Yl Il _ / Q6(99 669n6)
I_YI 2Q6(0’ Bﬁan6)

and can be recommended for some applications (Table 2.5).

(2.54)

2.4.3 Inductive Derivation of Criteria

The deductive derived approaches @ are seldom possible, see Gurson (1977). An
attempt is made to provide a criterion inductively in order to approximate the gene-
ral forms. This path is not clear. Several ansitze are conceivable, which are fuzzily
restricted by the plausibility assumptions (Appendix 2.7.8).

In our opinion, the C'-criteria containing the transitions
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Fig. 2.15 Scheme of the

ROSENDAHL criterion of

hexagonal symmetry (2.50):

YYC - YU yield crite- SOKOLOVSKY ave
rion, BCC - bicubic cri-
terion (Table 2.2). The

TrEsCA

SCHMIDT-ISHLINSKY

SOKOLOVSKY-VON MISES TrESsCA

criterion was not specified von Mises ROSENDAHL
until now. Color meaning: BCC of Szwep

black - criteria without any SCHMIDT-ISHLINSKY

parameters, red — criteria with
one parameter, and blue - the
criterion with two parameters VON MISEs
additionally to Oeq.

SoKkOLOVSKY

} extended voN MISEs

and
6—1210O [12—6

should be searched considering the plausibility assumptions. Though these criteria
are provided in polynomial form as functions of two parameters (Table 2.2), their
application is not straightforward.

The major problem in the formulation is that the criteria

e the HAYTHORNTHWAITE 3 — 6 — 3 criterion and
e the multiplicative ansatz criterion (MAC) 6 —12—6

as a function of the stress angle 0 without case discrimination are unknown. But
these criteria can be sufficiently good approximated (Rosendahl et al., 2019b). Two
methods are available:

e convex combination of the known criteria (Subsubsect. 2.4.3.1-2.4.3.5) and
e series developments (Subsubsect. 2.4.3.6).

2.4.3.1 Linear Combination of Yield Criteria
The criteria of PODGORSKI (Sect. 2.4.2.1) and ROSENDAHL (Sect. 2.4.2.2) have a

similar structure. The generalized criterion of trigonal symmetry follows with the
linear combination as

Q3(0, B3,m3) Q46(0, B6:16)
Oeq=1/30 o —F——+(l—a) ————— |, ael0,1]. (2.55)
“ 217 Q3(0,83.m3) Q6(0, Be16)
For a criterion of hexagonal symmetry we obtain in a analog path
Q46(0, Be.6) Qp2(0, 612,n12):|
Ocq =1/3L o —F"——— 4 (l—a) ———————=—1|, a€cl0,1]. (2.56)
“ 2|7 Q6(0,Be.me) Q12(0,B12,M12)
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The advantage of the criteria (2.55) and (2.56) is that the parameter restrictions are
known. The disadvantage is, the criteria with five parameters are difficult to manage.
The shapes 6— (O in (2.55) and 12— (O in (2.56) can be describe with each of both
terms, what is detrimental by parameter fitting.

The amount of the parameter can be reduced to four:

_ [ 2e0.0m3) ) Q6(6.Beme)
Oeq = 1/ 315 (XQ3(0,0,113) +(1—«) 96(0,567%)} , axel0,1]. (2.57)

and

I | Q6(6,0,m6) 012(0,B12,M12)
= K —_— l—o) ————— 1 2.
%ea 3L aﬂé(O,O,ﬂs) +1=e) 0Q12(0,B12,m12) |’ xclo.1 258

but both terms in (2.57) and (2.58) contain the same ()-shape. Such formulations
seem intricate and can not be recommended. The number of parameters should be
further reduced.

2.4.3.2 C!-continuous Differential Yield Criteria

The linear combination SAYIR + SZWED of trigonal symmetry (Table 2.2)
3-0-3+6-0-6
and the linear combination of hexagonal symmetry (C'-LC-Hex)
6-0—6+ 2-0O—12

are the functions of three parameters. The SAYIR + SZWED yield criterion follows
with the shape functions (2.45) and (2.50) and with the setting 33 = 3¢ =0 as

03(6,0,13) Q4(6,0,16)

=4/31} 1 — ) =022 716)
e 2[“QAQQm)+( ) 56(0,0.m6)

}, acl0, 1.  (2.59)

The SAYIR + SZWED pyramid is obtained with the linear I;-substitution (2.15) as

Oeq— Y111 p { 03(6,0,13) 96(970,%)]
— =3 |l a—— (1l —) —— | . 2.60
1—vi 2 7 05(0,0,m3) ( )Qé(O,O,ﬂs) (260

The C'-LC-Hex yield criterion follows with the SZWED shape functions (2.50) and
the PODGORSKI-type shape functions (2.40) with k = 4. The setting 3¢ = 312 =0
yields

06(0,0, Q12(0,0,
6! T16)+(1_(X) 12(6,0,n12)

Oeq =1/ 315 {cx = =
“ 2 17 Q6(0,0,m6) Q12(0,0,112)

} ael0, 1. (2.61)

The C!-LS-Hex — I; pyramid follows with the linear I;-substitution (2.15) as
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Oeq—Y1 11 , { Q4(6,0,16) 012(6,0,m12)
— =3 |l a————F (1 —) ———| . 2.62
1—vi 2 7 Q6(0,0,m6) ( )le(O,O,mz) (2.62)

Both criteria (2.59) and (2.61) can be thought of first as replacement for the missing
criteria CAPURSO + HAYTHORNTHWAITE (Table 2.2)

3—6/016—3
and YYC+MAC (Table 2.2)
6—12] O |12—6.

Disadvantage is that both terms in (2.59) and (2.61) can describe the ()-shape. Due
to an additional parameter, the shapes between the extreme yield criteria are not
uniquely defined.

2.4.3.3 CC-linear Combinations with Three Parameters

Possible modifications (Subsubsect. 2.4.3.1) as the CO-linear combination of SAYIR
and YYC of trigonal symmetry (Table 2.2)

3—0-3+6—12—-6
or

Q3(9,01n3)+( o )Q6(6,B6,1)

R 0,1 2.63
0;(0.0.m5) T Y Q400,86 1) «clo.1] @63

Ocq = /315 [oc

and the linear combination of hexagonal symmetry (C°-LC-Hex)
6-0O—6 + 12—-24—12
or

Q6(6,0,m6) - Q15(6,B12,1)

—_— —, 0,1 2.64
QG(O’O’T]6) QIZ(O’ 612’ 1) xe [ } ( )

Ocq = 4/31§ [oc
are also the functions of three parameters. They can not be recommended for appli-
cation as over-refined for a C%-criterion.

These criteria are C!-criteria with the setting 1 ~ 0.9999, B¢ € [0, 1] in (2.63)
and 112 ~ 0.9999, 315 € [0, 1] in (2.64), but it contradicts our aspiration to consider
a maximal number of extreme yield figures.

2.4.3.4 CO-linear Combination 3—6—3 + 6

A linear combination 3—6—3 + 6
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cos E (7t B3 —arccos [cos39])]

(D3 = 31/ x 1 +
COS |:37[B3:| (265)
1
(1— ) cos 3 arccos [cos60]| | — 0eq
with the parameter restriction
e[0,1] and B3 € [0, 1] (2.66)

provides the CO-criterion 3—6|12|6— 3 of trigonal symmetry. The values are

2
Teo — B (2.67)
2— oc—Hx\ftan[ 33}
2
T30 = B (2.68)
V3 + o tan [ 3}
and
242
Ti5 = \[ 7_([3 . (269)
14+v3—a(1—+/3) tan [33}
We obtain the parameters o and (33 with known values 1¢y and 13 as
23 2
ox= \f—l——, (2.70)
T30 T60
3 3130 —2
By = > arctan | — (V3rn=2) | 2.71)
T (24T760) T30 —2V3T60
The dodecagon 12 with the values T60 = 130 = 1 (Fig. 2.7 b) follows with
1
x=2v3-3~04641 and B3 =5 (2.72)

The criterion @3 (2.65) describes all points in the 19 — 139 diagram (Fig. 2.8). The
parameter setting for the basic geometries are given in Table 2.1. It is comparable
to with the modified ALTENBACH-ZOLOCHEVSKY criterion of trigonal symmetry
(Kolupaev, 2017, 2018; Rosendahl et al., 2019b) and is designated as mAZ3.

The equations and restrictions are easy, so this criterion is advocated for the prac-
tical application. The function cos 60 can be replaced with (2.118) for uniform pre-
sentation of the criterion as function of cos30. A disadvantage is, that the geometry
of the HAYTHORNTHWAITE criterion (Table 2.2) cannot be exactly described with
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the settings

pz=1 for 3—6

and
B3=0 for 6—3

of mAZ3, although both criteria coincide in the Ty — 130 diagram. It is also detri-
mental that the criterion (2.65) does not include the ()-criterion.

The C°-CTS— I; pyramid follows with the linear I;-substitution (2.15) in (2.65)
as

1
Gea—v1 1 cos {3 (7133 —arccos [00539])]
Oeq— V1M1 _ @ X n
I—v cos [1

37 53] (2.73)

(1—«) cos {é arccos [cos66]} ] — Oeq

and is also recommended for application (Table 2.5).

2.4.3.5 CO-linear Combination 6 —12—6 + 12

In analogy to mAZ3 (Sect. 2.4.3.4), a linear combination 6 — 12 —6 + 12

6

COS|:
q)(,:\/SIé 0.8 1
COS|:

1 (7t B — arccos [cos 6 0] )]

+
ik 56} (2.74)
(1—«) cos [112 arccos [cos 126}] } — Ocq
with the parameter restriction
ael0,1] and Be € [0, 1] (2.75)

provides the CO-criterion 6 — 12|24 | 12 — 6 of hexagonal symmetry. The values are

T60 = 1, (2.76)
2
T30 = e R 2.77)
24+« (\/§—2—|—tan [66})

and
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2V2

Tis = Bel (2.78)
V3+14+a(v/3—1)tan [66}
We obtain the parameters o and (3¢ with known values 139 and 75 as
2 3 /
o= V3 <2 2+\6T30—2T15—\/§T15T30>, (2.79)
T15730
6 T30 (ﬁ—\@+ns)
3¢ = — arctan (2.80)
T —2V/24+V3130+ 27115+ V3115730
The icositetragon 24 with the values T15 = 130 = 1 follows with
1
x=5v2—4v3+3vV6—7~04913  and Bo=5- (2.81)

The criterion @¢ (2.74) describes all points in the 139 — 1|5 diagram (Fig. 2.9).
The parameter settings of this modified ALTENBACH-ZOLOCHEVSKY criterion of
hexagonal symmetry (mAZ6) for the basic geometries are given in Table 2.1.

The equations are easy, so this criterion is recommended for the practical applica-
tion. The function cos 120 can be replaced with (2.118) for uniform presentation of
the criterion as function of cos30 or cos60. The disadvantage is, that the geometry
of the MAC (Table 2.2) cannot be exactly described with the settings

Pe=1 for 6—12
and o
Be=0 for 12—6
of the mAZ6, although both criteria coincide in the 139 — 115 diagram. The criterion
(2.74) does not include the ()-criterion and is C°-continuous, which is detrimental
to the yield criteria.
The C°-CHS— I, pyramid follows with the linear I;-substitution (2.15) in (2.74)

as
Oeq — Y1 I8 _ /31, o
1=y 2

cos {é (71 B — arccos [cos 6 0] )]

+
1
Ccos |:67-[B6:| (2.82)

1
(1—«) cos [12 arccos [cos 126]] } — Oeq

and is recommended for application (Table 2.5).
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2.4.3.6 Series Development

In the next step of the inductive derivations, the series development as sum of cosine
is introduced (Bulla and Kolupaev, 2021)

1
Q= cos T (7t Bm —arccos [ng+m3 cos(30) +1g cos(66) +...]) | (2.83)

m
with

e m = 3 for criteria of trigonal symmetry containing at least one odd term, e.g. 13
and the even terms with 1, 112, etc. and

e m = 0 for criteria of hexagonal symmetry containing only even terms ng, 112,
etc.

The idea originates with the compete series (2.145) or reduced series (2.146) of the
invariants (Appendix 2.7.7).

The problem in (2.83) is the number of parameters which should be reduced for
practical application. The associated issue is the necessary restriction of parameters.
The functions cos 60, cos 126, etc. can be replaced with (2.118)—(2.119) for uniform
presentation. Because of the number of the parameters and related convexity con-
straints, this shape function (2.83) is not user-friendly.

The next possibility to try it out is a sum of arccosine

1 1
Q= cos [H[Sm ~3 arccos[nsz cos30] — 3 arccos[necos 60] +.. } . (2.84)

This formulation also requires further study with the convexity analysis. It can not
be directly recommended.
A formally performed linear combination with two parameters

Q3 = cos [oc; (713 —arccos[cos30]) — (1 — ) é arccos|cos 69]] , (2.85)

x €0, 1] and B3 €0,1] (2.86)

yields non-convex geometries for some setting of the parameters (2.86) and can also
not be recommended.

We are of the opinion, that these series developments are not effective for practi-
cal use because of the number of parameters and the intricate convexity constraints.
Maybe further investigations can show the usefulness of this approach.
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2.4.4 Modified YU Strength Theory

The YU strengh theory (YST) was introduced 2002 and has gained recognition from
the community (Table 1.5). The word "theory" in relation to the criteria is a trib-
ute to tradition. We adopt this denomination in relation to the YST. The YST can
be interpreted as a linear combination of the TRESCA and SCHMIDT-ISHLINSKY
criteria containing the SOKOLOVSKY criterion with the normal stress hypothesis
(Fig. 2.16):

6—-12—6 + NSH

or a convex combination of the equivalent stresses OTresca, 051, and oy of these crite-
ria (TRESCA, SCHMIDT-ISHLINSKY, and the maximum normal stress hypothesis)
with two parameters (&, ():

E- OTresca 1 C Os1+ (1 - E, - C) 01 = Oeq (287)
and with parameter restrictions to ensure convexity
&elo, 11, celo, 1], and E+CL L (2.88)

The parameters in the formulation (2.87) have no direct physical meaning. This
combination (2.87) can be realized in the different ways (Kolupaev, 2017, 2018;
Kolupaeyv et al., 2018; Rosendahl et al., 2019b).

2.4.4.1 C'-continuous Strength Criterion

Based on the normal stress hypothesis (Appendix 2.7.6) and the ROSENDAHL cri-
terion (2.49), we introduce the linear combination, cf. Kolupaev (2017, 2018);
Rosendahl et al. (2019b)

6—12|0O—6 + NSH

Fig. 2.16 Scheme of the YU
strength theory (YST): TST —
twin shear theory of YU, NSH
— normal stress hypothesis,
the SOKOLOVSKY criterion

N 0 ) X TrEsca
is a C"-approximation of the MoR-CouLOMS
VON MISES criterion with a NSH
regular dodecagon 12. Color
P - SOKOLOVSKY
meaning: black - criteria ip . vsT
without any parameters, red NSH oa. FISARENKO-LEBEDEY
— criteria with one parameter,
and blue - the criterion with ScHmIDT-ISHLINSKY
two parameters additionally NSH TST of Yu

to the equivalent stress Oeg.
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or
1 1
Ocq = —¢ ORsn + <1 - C> ONSH (2.89)
T60 T60
with the parameter restrictions
1
— €10, 1], Bscl0, 1], meel-1,1]. (2.90)
T60
This results in a final equation of the modified YU strength criterion (mYU)
1
cos | = (71 B¢ —arccos [yg cos60])
Geq - T 3 Ié
T60 cos | (7t B¢ — arccos [yd)] (2.91)
1 1 ;
+5 (1= ) (n+2y/35 cose),
3 Téo

which contains the criteria shown in Fig.2.17. The modified YU criterion (2.91)
describes the limit surface without plane intersections. The value T§0 of the mYU is

T§’0 = 3Tgo x [V3 (11630* 1)

1 (2.92)
1 1
+ 3 cos 3 (7t B¢ —arccos [—yg]) | sec 3 (716 —arccos [ye])
The value 1T for the hydrostatic tensile limit loading results to
TrEscA
Fig. 2.17 Scheme of the SOKOLOVSKY
mYU criterion: UCC — uni- YYT Yo
fied classical criterion, YYT SCHMIDT-ISHLINSKY
— YU yield theory, mYU-I NSH
and mY U-II — modified YU
criteria, mPL — modified TrESCA
F.‘ISARENKO-]T,EB[?DE\./ cr.ite- vON MIsEs BCC uce
rion, BCC - bicubic criterion S mYu-II
. CHMIDT-ISHLINSKY
of SZWED. Color meaning:
black - criteria without any NSH
parameters, red — criteria with voN MISES
one, blue - with two, and bold s extended voN MISES
black - with three parameters OROLOVSKY mPL
additionally to the equivalent NSH

Stress Oeg.
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1 1
T — = . (2.93)
1—2v1
I-= N
T60

The surface @ of the mYU (2.91) is open in the hydrostatic compression direction
(1) < 0):
€ & 0. (2.94)

The inelastic POISSON’s ratios at tension and compression are (Kolupaev, 2018)
n d  vin=lo0 295
vi=— an v = (2.95)

as for the MOHR-COULOMB and further criteria in Table 2.4.

The TST (Table 2.4) cannot be reproduced exactly by this method (2.89). The
deviation between 6 — () — 6 of the BCC and 6 — 12— 6 of the YYC is rele-
vant for “very ductile materials” (Christensen, 2019; Kolupaev, 2018; Lemaitre and
Chaboche, 1990; von Mises, 1928; Theocaris, 1995)

Vil % (2.96)
The introduced criterion (2.89) is C°-continuously in the 7t-plane. The criterion con-
tains a singular peak at the hydrostatic node TTT for pressure-sensitive materials
with T‘go > 1, which should be treated separately (Table 2.11, PG10). Like the YST,
the mYU criterion can be considered as unified classical criterion (UCC) with the
properties (2.39).

The modified YU strength criterion (2.89) meet the plausibility assumptions in
the best way and is recommended for application as a yield and strength criterion
(Figs. 2.18, 2.19, 2.20, and 2.21 with 3 =1 = 1). Various material properties can
be described using this criterion. The implementation in the FEM code is simple
due to solely surface in the principal stress space.

Generalization of (2.89) based on the C%-linear combinations (2.74)

6—12|24|12—6
or C!-linear combinations (Sect. 2.4.3.2)
6—1210|12—6
and the NSH can be suggested (Table 2.5)
6—12|24|12—6 + NSH

or
6—12|O|12—6 + NSH.
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on Tt
T
NSH \ 0 TT

Tt

o aTST of Yu
Fig. 2.18: Modified YST (2.98) as function of the parameters 13 and n¢g with the setting rgo =2
and 3¢ = 0 in the normalized oy — oy diagram. The points of the approximated TST (aTST)

with 3 = 1n¢ = 1 are highlighted. The ellipse of the VON MISES criterion (red) and the MOHR-
COULOMB criterion (MC) (dashed line) are shown for comparison.

Such criteria are far from the practical relevance. The additional fitting possibilities
with the transition 24[12-NSH or (O)|12-NSH can be only relevant for very ductile
material with T§ — 1 or, equivalently, with (2.96).

2.4.4.2 C'-continuous Strength Criterion

Linear combination (Sect. 2.4.4.1)

6-0O—6 + NSH
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Fig. 2.19 Modified YST oy
(2.98) as function of the
parameters 13 and 1 with the
setting Tgo =2and =0
in the normalized o7 — oyg
diagram. The ellipse of the
VON MISES criterion (red) is
shown for comparison. The
first quadrant is enlarged for
better visualization. 0.6

Tt

0.8

0.4

0.2

0.2 0.4 0.6 08 1.0 o1/ o}

can be reformulated as linear combination with the linear I;-substitution (2.15)

_ A 1
-0-6 + (3=10L), m=3
as function of two parameters. The method searched for is a formulation of the C!-
criterion of the above schema in accordance with the YST (Table 2.5).

With the equivalent stress oc; of the C!-NSH (Appendix 2.7.6) and the ROSEN-
DAHL criterion (2.49) we can write, cf. (2.89)

1 1
O‘quTO‘Rsn+ (1) ocl 2.97)
T60 T60
or inserted
0 cos { (71[36arccos[n6 c0s66}>}
Ocq = < 31 i +
60 cos [6 <7r[56—arccos[n6]>}
(2.98)
1
1 [ 3 — arccos[13 00539]}
(1—) 31’ ] (1=vyi)+vi L
6

{ 3 arccos[m]}

with the substitution (2.138)
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45°

-2
T "/
o/ 0 \ CC/’ /N or/o)
SN i

N ,:// M3 = 0.99

N ce S/ me=09
ceo-==  aTST,13 =16 = | C T A 09
— . PSS,13 =099, M6 =09 | Tvee . SN2
---------- PSS, 13 =09,16 =09  , Me = 0.9

Fig. 2.20: Modified YST (2.98) as function of the parameters 13 and ng with the setting rgo =2
and (3¢ = 0 in the normalized 7t-plane. The cross sections orthogonal to the hydrostatic axis at
I, = O'g/\/g and the lines of the plane stress state (PSS, dashed lines) are shown. The points of
the C%-approximated TST (aTST) with 3 =1 = 1 are highlighted. The circle of the VON MISES
criterion is shown for comparison.

vimz) = 1/{1 + cos [; arccos[m]] sec B arccos[—m]] } (2.99)

as function of four parameters (Figs. 2.18 and 2.19)

1
< € [0, 11, Pe €10, 11, ne € [—1, 1], s € [=1,1].
60

The fourth parameter can first be set 3 € [0.99, 1[ for the “rounding off” NSH
(Table 2.8). We obtain with g €] — 1, 1[ the C I_continuous strength criterion. The
values are

22 1§

w1 3T -1
Vi = 0, (2.100)
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-=O=- alST,n3 =me =1
— — —  PSS,m3 =0.99, 16 = 0.9 g;| o8
________ PSS, 13 = 0.9, 6 = 0.9 o %
30° 15 1
45°
T
60°
45°
150 &
1 Tt

Fig. 2.21: Enlarged cut of the 7t-plane (Fig. 2.20): modified YST (2.98) as function of the parame-
ters 13 and ng with the setting rgo =2 and 3¢ = 0 in the normalized 7t-plane. The circle of the
VON MISES criterion (red) is shown for comparison.

1 C

TTT T60
Pl — 60 (2.101)
3 (=17
and
T.C
I 60 (2.102)

% +3v1—3157
Further values are too large and therefore omitted.

Based on the value rOCC (2.102), the deviation of the real material properties from
the classical assumption with 15€ = 1§ (2.39) can be introduced

cc_.C
Byy = 060 (2.103)
T6o

And vice versa, the parameter 13 dependent on the deviation 8y, of the value T(C)C

from the value rgo (2.102) can be set (Table 2.6).



2 General Forms of Limit Surface: Application for Isotropic Materials 65

Table 2.6: Setting of the parameter 13 dependent on the default deviation dy, = 1 or 2% of the
value r§€ from r5,.

&% Mratdyy=1% msat Sy, =2%

1.1 0.963797 0.848176
1.2 0.991328 0.964532
1.5 0.998651 0.994610
2 0.999666 0.998677

0.999979 0.999919
10 0.999996 0.999984
12 0.999997 0.999990

This criterion (2.98) can be applied as the yield and strength criterion and is
recommended for use. Problems with the derivation become obsolete, but the prop-
erties of the classical criteria (2.39) are lost.

The number of parameters seems excessive at first, but can be easily reduced
based on the modeling concept:

e Setting s = 0,16 € [—1, 1] for the C'-transition 6— () —6 or_
e Setting B € [0, 1], ng ={—1, 1} for the C°-transition 6 — 12 —6 of the YYC,

with formal or computed setting 13 (Table 2.6). The setting 13 = 1 provides the
extended C-criterion according to YU with the classical properties (Sect. 2.4.4.1).
Now, only two parameters remain for definition: (rgo, T¢) or (T‘go, Be).

If the amount of measured data is sufficiently large, the parameter nz € [—1, 1]
in (2.134) can be used as an extra parameter. The physical background behind the
YST is then lost, but fitting quality increases.

2.5 Criterion with Shape Variation in 7t-plane

Instead of generalizing possible shapes in the 7-plane, Pisarenko and Lebedev
(1969); Ottosen (1975, 1977, 1980); Ottosen and Ristinmaa (2005); Xiaoping et al.
(1989) allowed for shape variation in the 7t-plane along the hydrostatic axis. Using
the PODGORSKI shape function Q3 (2.45) and the POSENDAHL shape function Qg
(2.50), the OTTOSEN idea can be extended as (Rosendahl et al., 2019b)

2
3(1—x) 1} (0'6(6’[56’116)> +X Oeq [(1_5) /3IQM+EII :Ggq

Q6(0, Bs, M6) 3(0, B3,M3)
(2.104)
with the parameters of the convex combinations
x € [0, 1] and &elo, 1]. (2.105)

With & €]0, 1[, we obtain a surface with cross sections of hexagonal symmetry in
the 7t-plane for I} — —oo. Compared with (2.48), this effect is controlled with an
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additional parameter x. Some approximations are obtained for data measured by
KUPFER for three types of concrete with x € [0.9845, 1] and & € [0.3037, 0.3523]
(Rosendahl et al., 2019b).

The criterion (2.104) can be considered as a generalization of

e the PODGORSKI pyramid (2.48) or its corresponding CTS-formulation (2.55)
withx =1,

e the ROSENDAHL criterion (2.49)—(2.50), which can be replaced with one of the
CHS-formulations (2.56) with x =0,

e the formulation in accordance with OTTOSEN if $3 = ¢ =n¢ =0, 13 € [—1, 1],

e the strain criterion (Table 2.3) with x = 1 and the regular triangle 3 with 33 =
{0,1} and n3 ={1,—1}. The NSH follows then with the setting & = 1/3,

e an alternative formulation of the PISARENKO-LEBEDEV criterion (Table 2.4)
with x €]0, 1[, B3 = B¢ =n3 =m6 =0, and £ =1/3,

e the DRUCKER-PRAGER criterion (Table 2.3, rotationally symmetric cone) with
x=1and 335 =P¢ =m¢ =0, and

e the BURZYNSKI-TORRE criterion (rotationally symmetric paraboloid) (Balandin,
1937; Burzynski, 1928; Torre, 1947; Yagn, 1931) with 33 = ¢ =13 =n¢ =0,
x €]0, 1[and & = 1.

The criterion (2.104) fulfils some plausibility assumptions (Appendix 2.7.8) quite
well and can be recommended for application. The variable cross section approach
according OTTOSEN is different from the fixed cross section approach. Because of
the greater flexibility, the criterion (2.104) provides very good approximations of
experimental data but such criteria require increased numerical effort in the appli-
cation.

Some measurements regarding the change of the cross section as function of
I; are given in Launay et al. (1970); Launay and Gachon (1971, 1972). Appro-
ximations are shown in Gol’dman (1994); Fahlbusch (2015); Kolupaev (2018);
Rosendahl et al. (2019b), among others.

2.6 Summary

In this work, a nomenclature of the yield criteria @ is introduced. The regular poly-
gons of trigonal and hexagonal symmetry in the 7t-plane are represented schemat-
ically based on the number of their edges and the orientation in the 7t-plane. The
rotationally symmetric VON MISES criterion is denoted as a circle (Subsect. 2.3.1).

Known plausibility assumptions of the yield and strength criteria are summarized
(Appendix 2.7.8). They limit the variety of the criteria on the basis of applicability.
The relevant assumptions in the authors’ opinion are highlighted, which are used for
selection of the recommended criteria (Table 2.2 and 2.5, criteria with the equation
number). It is posited, that only the yield criteria involving three or more regular
(basic) geometries (Table 2.1) are significant for application. This viewing reduces
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the number of the suitable criteria. Further criteria are particular and can be easily
approximated with these specified criteria.

The earlier strength criteria are presented in Tables 2.3 and 2.4. Some missing
criteria are introduced according to the pattern. These criteria are too simple for
design with current requirements but the introduced schematics can be primary used
as support in didactic.

Nowadays the most effective yield criteria are the criteria of PODGORSKI-type
with k =1 and 2 (Subsect. 2.4.2). They meet the plausibility assumptions in the best
way known. However, they do not include all relevant yield criteria at once. Thus,
their application is associated with restrictions. Two ways for the formulation of the
generalized yield criteria are discussed (Subsect. 2.4.3):

e convex combination of the known criteria (Subsects. 2.4.3.1-2.4.3.5) and
e series development as “arccosine of the sum* and “sum of arccosines* (Subsect.
2.4.3.6).

The first schema has proven for practical use. The second way is still being investi-
gated.

Several ways can be envisaged for the linear combinations (Subsect. 2.4.3.1)
with the PODGORSKI-type shape functions (2.40). The disadvantage of the proposed
formulations is that the number of the parameters increases. Both terms in the line-
ar combinations (Subsect. 2.4.3.1) can describe the same geometries: TRESCA and
VON MISES criteria in (2.55) and SOKOLOVSKY and VON MISES criteria in (2.56).
These criteria are modified according to ALTENBACH-ZOLOCHEVSKY in order to
reduce the number of parameters (Subsects. 2.4.3.4 and 2.4.3.5). The resulting C°-
criteria extended with I;-substitution can be easily applied for fitting of measured
data.

Open question remains the formulation of the HAYTHORNTHWAITE and MAC
criteria as a function of the stress angles without case discrimination (Table 2.2).
If such criteria will be derived, the formulations (Subsect. 2.4.3) are no longer re-
quired.

The YU strength theory (Subsect. 2.4.4) is of crucial importance for practice.
The CP-generalization without plane intersections (Subsect. 2.4.4.1) provides deci-
sive advantages compared to the original YU’s formulation. The C'-generalization
(Subsect. 2.4.4.2) is a powerful tool that includes the YST and is recommended for
use.

The yield and strength criteria can be easily compared based on the introduced re-
lations (Subsects. 2.3.2 and 2.3.5). Different approximations can be visualized in the
diagrams g9 — 130 (Fig. 2.8) or 139 — 115 (Fig. 2.9), 7t-plane, and the BURZYNSKI-
plane. Additional requirements can be set for the parameters to reduce their number,
e.g. the classical properties (2.39) or, based on the NSH, the position of the node
TTT with y; = 1/3 in order to obtain the special “theories*.

The study of the yield and strength criteria remains in focus of professional com-
munity (Altenbach, 2010). Further development of the equivalent stress concept can
be seen in consideration of the adjusted plausibility assumptions, which should be
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accompanied with restriction of the parameters. The number of parameters should
be kept to a minimum.
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reading of the manuscript, suggestions for improvement, and discussions. Dr. rer. nat. Alexandre
Bolchoun, ISG Industrielle Steuerungstechnik GmbH, Stuttgart, is sincerely thanked for plausibi-
lity check, numerous comments, and discussions.

2.7 Appendix

2.7.1 Invariants of Stress Tensor

Stress based criteria @ for isotropic materials should be invariant with respect to the
symmetric second-rank stress tensor o (Zyczkowski, 1981). Therefore, the criteria
are built up using the invariants of this tensor. As a result of the eigenvalue problem,
the principal values (principal stresses) are obtained and denoted by oy, oy, and
o (Altenbach et al., 1995; Altenbach and Kolupaev, 2014). The following order is
assumed

o1 = Oq1 2 o711 (2.106)

The invariants of the stress tensor play an important role in the formulation of the
equivalent stress expressions (Sect. 2.2). Three stress invariants: the trace (axiator)
I; of the stress tensor and the invariants 15, Ig of the stress deviator as functions
of the principal stresses (Zyczkowski, 1981; Altenbach et al., 1995; Altenbach and
Kolupaev, 2014)

Iy = o1+ o+ om, (2.107)

and

1
[ =— {(01 011)2+(011—0111)2+(UHI—01)2]=

1 3 L e (2.108)
=3 (0'1 31 > <0'll—311> + (0'111—311) 1 )
1 1
() )(GH 44 (w1
1 L L (2.109)
=3 [ GI_*II +(GH—3I1) +(GHI—311> ]

are often used in modeling, see (2.3).
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2.7.2 Scalar Functions of Invariants

Scalar functions of the invariants (2.107) - (2.109) are also invariants (Malmeisters
etal, 1977),e.g.

e the scaled axiator I; of the stress tensor (De Boer, 2000; Kolupaev, 2018)
L=0L/V3 (2.110)

describes the coordinate of loading on the hydrostatic axis (Fig. 2.1, axis &3),
e the root of the scaled second invariant of the stress deviator

prw = /21 2.111)

as radius in the HAIGH-WESTERGAARD coordinates (De Boer, 2000; Kolupaev,
2018),

e the stress angle O in the 7t-plane (plane with the cross section I} =const.)
(Novozhilov, 1951b; Zyczkowski, 1981; Chen and Zhang, 1991; Ottosen and
Ristinmaa, 2005)

33 I i
COS?’O_TW, GRS |:0, §j|, (2112)
2
and
e the elevation { (Hencky, 1943; Zyczkowski, 1981; Altenbach and Kolupaev,
2014)
V3L
tan = T VP € [0, ] (2.113)
1

or a stress triaxiality factor (Yagn and Vinogradov, 1954; Davis and Connelly,
1959; Lebedev et al., 1979; Kolupaev, 2006; Lebedev, 2010; Kolupaev, 2018)

1
" tan’

n (2.114)

These invariants (2.110) - (2.113) are sometimes preferred because of the geomet-
ric interpretation of the loading in the stress space. Other invariants are given in
Altenbach et al. (1995); Altenbach and Kolupaev (2014); Yagn and Vinogradov
(1954); Zyczkowski (1981) for instance.

2.7.3 Modified Invariants

The radius (2.111) can be also introduced based on the VON MISES hypothesis (von
Mises, 1913, 1928) as
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— /31 (2.115)

for normalization of the measured data with respect to the appropriate uniaxial ten-
sile limit loading
o1 = o, o1 = o =0 (2.116)

and uniform visualization (Subsects. 2.3.2 and 2.3.5).
The deviatoric invariant 13’ (2.108) can be expressed as a function of p and cos 360
(Szwed, 2000, 2013)

T
3v3

what is used in Appendix 2.7.7 for deployment of the series of invariants.

With a double-angle function (Bronstein and Semendjajew, 2007) we obtain fur-
ther invariants (Jemioto and Szwed, 1999; Szwed, 2000, 2013), see also Zyczkowski
(1981)

2
(I ) cos30 = 5P 308360, (2.117)

3(1/ 2
cos60 = 2cos”30 — 17237( ) (2.118)
2 ()’
and
2
3(1/ 2
00512922005266—122(2005236—1)2—1:2 32< ) —1,
2 ()’
(2.119)

which are used as “building blocks” in the formulation of the phenomenological
criteria @ (p, 0) (Appendix 2.7.7).

2.7.4 Particular Points on Limit Surface

Particular points on the limit surface ® can be obtained with the setting of the cor-
responding elevation 1 (2.113) and the stress angle 0 (2.112)

V3L I
2 V3 L cos30 (2.120)

Il :tanll) and TW =

Vo

Typical settings follows, among others, with

normalized with

tan = 0o, +v/3 + 1, j:\% il i(Z ﬁ),i(\/@—\@+\f2—2),...
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for the angle

moom T T T
=—,+t—,+—,+—,4+04636,+—,+—, ...
e 23 4 6 127 24
and the meridians (Subsect. 2.3.3), e.g.
T T T
e:O’ TAY £ a0 A
1276 4 3
For example, we obtain with I} =0 and
s 2 Tce T 1
meridian 0 =0: 01:§ro 0p, crH:crIH:—EGI,
. s I s 1
meridian 0 = 3 : o;=—01 = ﬁrw 0y, o =0,
2 1
meridian 0 = g : o1 = —grgg og, o1 = 0111 =~ 1.

The meridians of VON MISES criterion coincide in the BURZYNSKI-plane and it

follows

i == = 1.
The seven points of the plane stress states and the points of the hydrostatic loading
are chosen for the analysis and comparison of the limit surfaces (Table 2.7). These
loading cases have established definition and can be considered as the basic tests

(Bulla and Kolupaev, 2021; Kolupaev, 2006, 2018).

2.7.5 Values for Comparison

In the following, details on the stress computation for comparison of geometric
properties of the yield criteria @ are given (Subsects. 2.3.2 and 2.3.5). These norma-
lized stresses of the plane stress state are obtained with the setting

3j=1 and oy =0. (2.121)

The value 115 is obtained setting

005{31]_£
1217 2
with
2 11
—4/2 -+ 2.122
o1 3 o1 ﬁJr\/g, ( )
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Table 2.7: Basic stress states with the corresponding stress angle 0 and the dimensionless invari-
ants 1, cos 30, cos60, cos90, and cos 120 (Kolupaev, 2018).

Label CCC CC Cc C S T Tt TT TIT
o1 2 1 2
s —rcC e — /3 N - NG 3 1 7 T T TT
0
on cce cC I e I s L w1 _rrr
—= -1 —T ——=T 0 ——=T 0 — T T
Ug 0 \/§ 30 \/§ 30 \/§ 30 60
Sm_jcee 0 0 o 0 0o 0 LT
0o
7T i i i i
0 - 0 = = = 0o = = -
6 3 6 6 3
n —0 2 -3 -1 0 1 V3 2
cos30 - 1 0 -1 0 1 0 -1 -
cos60 - 1 -1 1 -1 1 -1 1 -
c0s90 - 1 0 -1 0 1 0 -1 -
cos 120 - 1 1 1 1 1 1 1 -

Comments: C - uniaxial compression, Cc - biaxial compression in the stress relation 1:2, CC -
equibiaxial compression, CCC - hydrostatic compression, S or TC - shear, T - uniaxial tension, Tt
- biaxial tension in the stress relation 1:2, TT - equibiaxial tension, TTT - hydrostatic tension.

or

2 2 1
=—\/= =—y/ -+ — 2.123
o1 \/;, o1 3 + \/§ ( )

1 2 1
+—, on=4p/s———. 2.124
V3 V3 s (2124)

o] =

SSII

The value 13 is obtained setting

with

cos {3 g} =0 and o] = —O0T71

The value 145 is obtained setting

with

1
o= = (2.125)
T V2
cos[37] =5
2 1 1
oy =1/ -, opg=—=+4+—&= 2.126
1 3 i NN ( )
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G_i\f o= 1] 2t
1= 3’ I = 3 \/g.

The value 1¢ is obtained setting

or

cos {3 ;j} =—1 and op=0

with
o] = —1.

The value 175 is obtained setting (Weisstein, 2021)

cos {32—2} :%\/2+\f2

with

O'I:i\/%(z—F\/i), O'II:i\/; (ﬁ@)

or

=3 -V E). anm 3 (242 v5)

And the value 155 5 is obtained setting (Weisstein, 2021)

cos {Sg} :%\/2—\@

with

i =+ é (2-v2). O'H\/; (21\/?@)

or

¢ (24v24v3), ¢ (2-v2-v3).

Further values of the plane stress state (Sect. 2.3.5)

S Tt TT C C
T30 T30» Teo» Teo» T30» and T
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(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

for pressure-sensitive criteria are given in Rosendahl et al. (2019b). The values for

hydrostatic tensile limit loading (Subsect. 2.3.5) is
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TTT
mr_ 0 1
oy 3vi

and hydrostatic compressive limit loading is

cce
ccc 9 _ 1
T =—=—7
0, 3v2

which follow with 31 = 0. Accordingly, cos30 (2.112) is indeterminate in these
two points.

2.7.6 Modified Normal Stress Hypothesis

Based on the PODGORSKI criterion (2.44) with (2.45), we obtain a conical (pyrami-
dal at the border of the parameter 13) criterion with the linear I;-substitution (2.15)

,Q3(0,0,m3) _ Oeq—vi i
2 Q3(07 0’113) 1_Y1

with vy €[0,1[,  mzel-1L1]

(2.133)
or resolved with respect of the equivalent stress Oeq

1
cos {—3 arccos[13 cos3 6]}
31 (1=v1)+7v11;. (2.134)

Oeq =
CcoS

—3 arccos[ng]}

This criterion is named the SAYIR cone 3 — () — 3 — I; (Kolupaev, 2018). The
maximum normal stress hypothesis (NSH) follows with the setting

1
leg and n3 =1

or after substitution (Chen and Zhang, 1991; Kolupaev, 2018; Rosendahl et al.,
2019b)

1
onst = 5 (11 +21/31] coso) (2.135)
which results in the most important properties of the NSH (Fig. 2.22, Table 2.8)
100, V=0, 3=V3 rg=rTT=1

Restrictive is that the derivation at the corners of the surface @ is discontinuous
(Lagioia and Panteghini, 2016). These corners in the 7t-plane can be “rounded off”
with the parameter 13 € [0.99, 1[ depending on the required computation accuracy
(Fig. 2.22, Table 2.8).
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ns =0 O'H/O'g
Tt
—— L T T
n3=—1 3 =09 S
C T
8 6 -4 2 o]
Cc o}
CC
Il
2 £

Fig. 2.22: Modified normal stress hypothesis (2.134) as function of the parameter 13 (2.138) in
the normalized o1 — oy diagram. The ellipse of the VON MISES criterion (red line) and the NSH
(thick black line) are shown for comparison.

Table 2.8: Settings of the parameter 13 € [—1, 1] and corresponding values for the modified
normal stress hypothesis (2.134) with the property Tgo — 00 (2.138).

n3 Y1 vin T‘go rg(‘) rid T 7r-plane
1 1/3 0 V3 V32 1 1 3

0.999999 0.3335 -0.0003 1.7325 0.8659 0.9995 0.9995 -
0.99999  0.3339 -0.0009 1.7335 0.8657 0.9982 0.9982 -
0.9999  0.3351 -0.0027 1.7368 0.8648 0.9946 0.9946 -
0.999 03390 -0.0085 1.7468 0.8623 0.9832 0.9832 -
099 03510 -0.0265 17773 0.8542 0.9496 0.9496 -
0.9 0.3870 -0.0804 1.8623 0.8284 0.8614 0.8614 -
0 1/2 -1/4 2 V31 23 2/3 O
-1 2/3 -12 V313 1R 12 3

The value rgo for the criterion (2.134) can be computed as
C 1 1
Teo =1 (1—7y1)cos 3 arccos[—m3]| sec 3 arccos[nz]| —vi (2.136)
and the property rgo — oo follows with the denominator

(1—7y1)cos B arccos[—m]} sec B arccos[ng}] —v1=0. (2.137)

The parameter 'y (n3) results in
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1 1
vi(n3) =1 1+ cos 3 arccos[nsz]| sec 3 arccos[—m3]| | . (2.138)

This means that the 7t/3-meridian is parallel to the straight line I} = —,/31/ in the
BURZzYNsKI-plane (Kolupaev, 2018). Inserted Eq. (2.138) in Eq. (2.134) results in
the values of the modified normal stress hypothesis (C'-NSH):

2 1
S
™y = ———— COS | = arccos[m]} (2.139)
P VE(-v1) [3
o 2 1 1
r§0 = % [cos [3 arccos[—m]] +cos [3 arccos[ng]” , (2.140)
2
S 1 (2.141)
V3 [2}/1 + (1—"y1) sec [3 arccos[m]} }
or
1 1
cos 3 arccos[—m3]| + cos 3 arccos[ns]
=23 ; , (2.142)
346 cos {3 arccos[—ng]}
Tk = L, (2.143)
371
and the inelastic POISSON’s ratio at tension follows with
: 1
Vi =2 (1-3v1). (2.144)

This formulation (2.134) with (2.138) is used to derive a C'-continuous strength
criterion according to YST (Subsect. 2.4.4).

The C'-continuous normal stress hypothesis (C!-NSH) can be applied in the
whole range of the parameter 13 € [—1, 1] for better approximation of measured
data (Table 2.8). Although the property Tgo — oo is retained (Fig. 2.22), physical
background of the normal stress hypothesis is then lost.

2.7.7 Series of Invariants

The general structure of the yield criterion @ is unknown and can not be deduce
based on theoretical considerations (Subsect. 2.4.3). It is known that the criteria ®
are functions of the stress invariants (Subsect. 2.2.2), which can be grouped into the
number of series. One of possibilities is to construct the deviatoric series of the same
powers of the radius p (2.115) and increasing powers of cos36.

The complete deviatoric series S/
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S; =p" (bn+cn1 c0s30+cpp cos?30+...), neN (2.145)

contains several parameters b, and c,j, which should be restricted based on the
theoretical considerations and later fitted to the test data. The terms with fractional
exponents (Chen and Han, 1993)

(I§)1/3’ (I§)2/3, (I§)4/3, etc.
or, what is the same,
p(cos30)'/3, p? (cos30)%/3, p* (cos30)/3, etc.

are excluded from these series because they lead to non-convex surfaces, see Al-
tenbach et al. (1995); Gol’denblat and Kopnov (1968, 1971b); Spitzig et al. (1975);
Spitzig and Richmond (1979) and cf. Desai (1980); Desai and Faruque (1984b,a);
Jemioto (1992); Wojewddzki et al. (1995).

The applicability of the complete series (2.145) in a criterion is controversial
because of the large number of parameters. The method is sought for restriction of
this number in order to formulate the effective criteria according to the plausibility
assumptions (Appendix 2.7.8).

We obtain the reduced deviatoric series if only the invariants p (2.115), I} in the
form p® cos30 (2.117), and their products of the same power 1 of p are taken:

S{=bip,

S)=byp?,

S4 = (bs+c3cos30) p°,

S, = (bs+dy3 cos30) p*,

S! = (bs+ dp3c0s30) p°,

S¢ = (b + d33c0830 + cgcos? 30) p°,

S/ = (b7 + d43c0830 + d ;6 cos>30) p’, (2.146)
S§ = (bg + ds3c0s 30 + dag cos>30) p8,

S§ = (by + de3 cos 30 + dzg cos® 30 + co cos* 30) p°,

S1o = (b1 +dos cos30 + dug cos? 30 + d g cos® 30) p'°,
S, = (b1 + dg3 cos30 + dsg cos? 30 + dg cos® 30) p'!,

S1, = (bia+ do3cos36 + des c0s230 + d3g cos? 30 42 cos*30) p'2,
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The parameters b, weight the invariant p and the parameters c,, weight the invariant
p3 cos 30 of the appropriate powers n.. The parameter dy; weights the product of the
invariants (p)* and (p cos30)! of the powers n =k +1.

The terms b, p™ with odd powers and the terms with the parameters dy for odd
k are often neglected in the modeling. The reason for this lies in the structure of the
polynomial criteria formulated as the intersection of three, six, nine, or twelve planes
in the principal stress space. Such formulations contain only terms with p?, p* cos 30
or, what the same, positive integer powers of the invariants I and I (2.117) and
their products (Kolupaev, 2018). The rational deviatoric series follows with

S, =byp%

S; =c;3cos30p3,

Sy =bap?,

S! = dj3 cos30p,

S = (be +c6 cos?30) pS,
S/ = dy3 cos30p’,

(2.147)
Sé = (bg + dog COSZ39) p8,

S§ = dg3z cos30+co cos>30) p?,
Sio = (b1o+ dag cos?30) p'°,
S{, = (dg3 cos30 + dag cos>30)p'l,

S{, = (bi2+ dgs cos?30 + 15 cos?30) p'2,

The highest art in the formulation of the phenomenological yield criteria @ is to
select the appropriate terms S/, which are relevant for the considered material be-
havior. As this is hardly possible, various formulations are tried out and tested for
the fulfillment of the plausibility assumptions (Appendix 2.7.8). The relevant for-
mulations are obtained with:

e cosine ansatz criterion (Altenbach and Kolupaev, 2009; Kolupaev, 2018; Kolu-
paev and Altenbach, 2010)

e quadratic, bi-, tri-, and sextaquadratic equations (Kolupaev, 2018), and

e cubic (2.47), bicubic (2.53), tri-, and quadracubic equations (Sect. 2.4.2),

which are the explicit functions of 0¢q (2.12). Further formulation possibilities are
shown in Subsect. 2.4.3.6.



2 General Forms of Limit Surface: Application for Isotropic Materials 79

2.7.8 Plausibility Assumptions

Several requirements on the yield and strength criteria @ (Sect.2.2) were pro-
nounced in the past, which can be interpreted as plausibility assumptions. These
requirements are not mandatory but the quality of the criteria may be assessed
considering the plausibility assumptions, which are formally separated in physical,
mathematical, geometric, and ”subjective’ assumptions (Tables 2.9-2.12). Their re-
levance is shown in the authors’ opinion.

Two assumptions PM 14 and PS1 are in contradiction with the known statements.
PM14 is immediately justified when an elasticity theory of higher order is consi-
dered and the number of parameters increases. Contradiction to PS1 comes from
the past as lack of tools was vindicated by lack of necessity.

The desires PS14 and PS15 disagree with the idea of the phenomenology. In en-
gineering methods the microstricture is homogenized. There are no physical princi-
ples, e.g. balance equations in Continuum Mechanics (Altenbach, 2018), underlying
such a formulation. The criteria should only not contradict the physical principles.

PS18 is problematic because the term “failure mode of isotropic material” is in
progress, see (Cuntze and Freund, 2004; Cuntze, 2006, 2013, 2021). If the poly-
nomial criteria O (2.3) of power three or greater in the stress are considered, differ-
ent failure modes can be set in the “global fitting” and the additional parameters can
be interpreted as “interaction parameters”. Furthermore, the mastery of convexity in
the criteria of the failure mode concept is not clear.
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