
Chapter 11
Discrete Description of Crack Kinematics in
Regularized Free Discontinuities of Crack Faces

Bo Yin, Johannes Storm, and Michael Kaliske

Abstract The fracture mechanical free discontinuity problem can be associated with
a generalized, variational approach of GRIFFITH’s fracture theory. By introducing a
regularization for the sharp displacement discontinuity at cracks and crack surfaces,
stable computational fracture models are developed, e.g., the phase-field fracture
formulation and the eigenfracture approach. The presented work summarizes recent
findings regarding unrealistic deformation kinematics at cracks predicted by con-
ventional formulations of both models and introduces the variational framework of
Representative Crack Element to overcome these discrepancies. Illustrative exam-
ples for crack propagation and post-fracture behavior at small and finite deforma-
tions, brittle and cohesive failure as well as for rate-dependent materials frictional
crack contact demonstrate the flexibility and the generality of of the introduced Rep-
resentative Crack Element.

Key words: Free discontinuity, Eigenfracture, Phase-field fracture, Representative
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11.1 Introduction

The research on material failure, including strain softening, brittle rupture, cohesive
delamination, and fatigue aging, is becoming an area of increasing interest in engi-
neering application. A number of failure mechanisms is identified and a variety of
criteria are postulated to effectively predict material strength within a safe and con-
trollable application. To provide a reliable prediction, crack initiation, propagation,
kinking, and branching studies are of importance and necessity. Meanwhile, crack
deformation kinematics during fracture evolution plays an equivalent role as afore-
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mentioned features during fracture evolution. Taking a closing crack deformation
as one representative example, material integrity is preserved and loading normal to
the crack surfaces can be fully transferred from one side to the other one through the
crack surfaces. Furthermore, a relative motion of the two contacted crack faces may
yield other mechanical phenomena, e.g., friction, abrasion and corrosion, which are
realistically and physically featured in particular for complex and mixed load pat-
terns. Originally inspired by experimental investigations, Griffith (1921) proposed a
conceptual understanding of brittle crack formation, namely, the energetic balance
between the stored strain potential and the crack forming dissipation. To depict the
amount of strain energy consumed to generate a unit crack surface during fracture
evolution, an important material parameter is defined, Gc, known as the critical en-
ergy release rate or the fracture toughness. The triggering condition of fracture evo-
lution is that the instantaneous energy G reaches or exceeds the critical value, i.e.,
G� Gc. This classical GRIFFITH fracture theory provides a physical understanding
of crack nucleation and propagation criterion, but unfortunately, does not provide
an explicit definition for the crack propagation path during fracture evolution.

In the past decades, a variety of numerical methods has been developed to model
reliably fracture evolution. By categorizing the present models, crack approximation
is numerically described by either a discrete or a continuous, smeared approach.
Regarding the former one, a discrete crack methodology renders, e.g., the crack
boundary as an explicit element edge within the finite element discretization. The
crack-induced displacement discontinuity is, hence, naturally modeled based on the
geometrical boundary. Material separation due to the existence of cracks is straight-
forwardly modeled for an opening or shearing crack deformation. Nevertheless, nu-
merical complexity arises for a closing crack deformation with respect to crack
surface interpenetration. To address crack contact, additional algorithmic efforts
are required. The classical cohesive zone model (Barenblatt, 1962; Dugdale, 1960;
Schellekens and de Borst, 1993; Alfano and Crisfield, 2001; Foulk et al., 2000; Or-
tiz and Pandolfi, 1999) is a representative approach of discrete crack approximation,
which constitutes the traction-separation relationship based on the crack opening
distance. It is intensively applied to pre-known crack path problems, unfortunately,
the prediction of an unknown crack propagation largely increases computational
efforts. Another concept, the configurational force method (Gurtin, 2000; Kien-
zler and Herrmann, 2000; Maugin, 1995; Braun, 1997; Maugin, 2010; Miehe and
Gürses, 2007; Mueller and Maugin, 2002), is frequently applied to discrete crack
approaches, which depicts a non-NEWTONIAN force acting on a crack tip within
a homogeneous domain. The calculated material force allows for a prediction of
crack growth direction and provides a crack evolving criterion. Thereafter, several
approaches adopt a node splitting algorithm and an r-adaptivity re-meshing strategy
to model crack propagation. Nevertheless, these methodologies are restricted by the
fact that an initial notch is required to generate stress concentrations.

De Giorgi and Ambrosio (1988) have provided a general variational description
through the formulation of free discontinuity problems. In general, unknown field
variables are allowed to have jumps, meanwhile, the locations of the discontinuities
are unknown. The existence of minimizers is successfully shown in the space of
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special functions of bounded variation, see Ambrosio et al. (2000) for an overview.
Although used in other contexts, free discontinuity problems can be interpreted as
a generalization of GRIFFITH’s criterion. However, computational solutions of free
discontinuity problems are difficult and have lead to several regularized formula-
tions, e.g., phase-field fracture and eigenfracture to name two representatives in the
context of fracture mechanics. Closed form proofs exist for both methods, where the
regularized models converge to the original free discontinuity problem for decreas-
ing regularization lengths and discretization sizes, see e.g. Ambrosio and Tortorelli
(1990) and Schmidt et al. (2009).

With respect to smeared crack approximation, the phase-field approach for frac-
ture depicts a continuous and diffusive crack representation from the numerical
point of view. Incorporating classical GRIFFITH’s fracture theory, Francfort and
Marigo (1998) formulates a brittle fracture model by thermodynamically minimiz-
ing the internal strain energy potential and the fracture energy, see also Bourdin et al.
(2000, 2008); Hakim and Karma (2009); Miehe et al. (2010b); Pham et al. (2011) for
detailed insights. Thereafter, several publications, e.g., Borden et al. (2014); Linse
et al. (2017); Chambolle et al. (2018), study classical Γ -convergence for phase-field
modeling in the field of fracture evolution. Furthermore, brittle phase-field model-
ing is subsequently extended to different features, e.g., rate-dependent fracture (Yin
et al., 2020b; Yin and Kaliske, 2020c; Shen et al., 2019; Schänzel, 2015; Loew et al.,
2019), ductile fracture (Ambati et al., 2015a; Miehe et al., 2015; Borden et al., 2016;
Yin and Kaliske, 2020b), anisotropic fracture (Gültekin et al., 2018; Teichtmeister
et al., 2017; Yin and Kaliske, 2020a), cohesive fracture (Verhoosel and de Borst,
2013; Vignollet et al., 2014; Nguyen and Wu, 2018; Geelen et al., 2019), and fa-
tigue fracture (Alessi et al., 2018; Carrara et al., 2020; Seiler et al., 2020; Yin et al.,
2020a), to name a few.

The much younger eigenfracture method is developed by Schmidt et al. (2009)
and is applied to problems of linear elasticity and elasto-plasticity, see for instance
Pandolfi and Ortiz (2012); Stochino et al. (2017); Qinami et al. (2020) for some
early applications. Similar to phase-field fracture, a second field is introduced called
eigenstrain in order to relax the sharp displacement jump at the crack. However, the
second field is solved at the material level and equivalently the crack evolution in a
post-processing step after each load step of the mechanical problem. Less degrees of
freedom and a better convergence behavior yield relatively low computational costs
compared to phase-field fracture. Pandolfi et al. (2021) have further demonstrated a
larger Γ -convergence rate for eigenfracture versus phase-field fracture, which allows
to obtain the same solution accuracy like for phase-field fracture on coarser meshes.
On the other side, the eigenfracture method is still in an early development stage
and further studies on the properties of the method are necessary.

The strength of the phase-field fracture and the eigenfracture method is the ca-
pability to capture crack initiation and propagation with complex patterns indepen-
dent of any specific criterion. Nevertheless, one of the challenging tasks is predic-
tion of the deformation kinematics of crack surfaces under complex loading states,
e.g., opening, closing, shearing and mixed mode. A realistic determination of the
material stiffness degradation considering complex crack deformation kinematics
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is significantly important. In many publications, sophisticated approaches are pro-
posed to approximate the correct crack kinematics by decompositions of the strain
energy potential. A comprehensive review of existing split models can be found
in Ambati et al. (2015b); Storm et al. (2020). As one common choice based upon
a straightforward volumetric and deviatoric energetic decomposition, Amor et al.
(2009) and Freddi and Royer-Carfagni (2009) propose the fracture driving force for
volume shrinkage by excluding the volumetric energy contribution. Another com-
monly used split, postulated by Miehe et al. (2010a), is depending upon a spectral
decomposition scheme. The strain tensor is decomposed into the eigenvalues and the
elastic strain energy density is redefined by using the tensile and compressive strain
components. For other representative split models, it is referred to e.g. Henry and
Levine (2004); Lancioni and Royer-Carfagni (2009); Freddi and Royer-Carfagni
(2010); Hesch and Weinberg (2014). Nevertheless, these models cannot yield phys-
ical crack deformations under complex loading conditions. Thereafter, several at-
tempts are proposed to address this issue. A conceptual Directional Decomposition
is considered by Strobl and Seelig (2016); Steinke and Kaliske (2019); Luo et al.
(2021) to reformulate the strain or stress quantity by taking the local crack orienta-
tion into consideration. As a result, these models successfully address the issue of
crack kinematics compared to the aforementioned V-D split and spectral split ap-
proaches. Nevertheless, the approaches are unfortunately restricted to an isotropic,
linear elastic solid at small strain. The basis of the Directional Decomposition is
formed by the local crack orientation. Applying the concept of maximum dissipa-
tion, the crack orientation can be formulated as a variational problem (Bryant and
Sun, 2018). However, this minimization is non-convex and computationally hard
to solve without further restrictions. Therefore, several approximation are proposed
to capture crack orientation, e.g. the gradient of the phase-field (Strobl and Seelig,
2016) and the maximum principal stress direction (Steinke and Kaliske, 2019).

With the intention to generalize the Directional Decomposition model and to
overcome its limitations, the framework of Representative Crack Elements (RCE)
is developed. On the basis of variational homogenization theory (Blanco et al.,
2016), Storm et al. (2020) introduce the fundamental theory which allows to con-
sistently derive realistic crack kinematics from representative discrete crack models
and to transfer the overall behavior to the regularized crack models. The RCE con-
cept is first applied to bulk materials considering anisotropic elasticity and thermo-
elasticity in the context of phase-field fracture. Subsequently, applications to visco-
elasticity (Yin et al., 2021), crack face friction, inelastic materials and finite defor-
mations, fully coupled thermo-mechanics (Storm et al., 2021b), cohesive fracture
and eigenfracture (Storm et al., 2021a) are developed. Within the work at hand, a
review of the RCE framework applied to phase-field fracture and to eigenfracture
in the context of the regularized free discontinuity problem is presented. In par-
ticular, a fundamental theoretical background of the RCE framework is provided,
which includes the strain kinematics for both the continuous and the RCE descrip-
tion. A virtual power principle is employed within the RCE to solve the unknown
crack deformations within the RCE. In the sequel, the phase-field fracture and the
eigenfracture modeling within an RCE framework are briefly summarized. Several
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representative numerical examples have been presented to show the general appli-
cability of the conceptual RCE modeling.

11.2 Representative Crack Elements

11.2.1 Structure and Notation

The classical Representative Volume Element concept bases upon the theory of ho-
mogenization. It is referred to Blanco et al. (2016) for a general summary. The
principle of multi-scale virtual power, which is based on the first thermodynamical
theorem, provides the theoretical foundation of homogenization theory. Meanwhile,
this principle is a generalization of the HILL-MANDEL condition of stress work con-
servation (Hill, 1963). The work at hand adopts a similar methodology to formulate
the so-called Representative Crack Element (RCE) framework, which on purpose
incorporates a regularized approach to resolve the issues of accurate deformations
kinematics in free discontinuity problems, see phase-field fracture modeling (Storm
et al., 2020) and eigenfracture modeling (Storm et al., 2021a).

The fundamental derivation and illustration start from a definition of the basic
notational description. Two classes of mathematical fonts, namely, a standard one
and a fraktur one, are used to depict the quantities of the regularized fracture model
and of the RCE model, respectively. Explicitly, the symbols

GGG
∣∣
XXX
=∇XXXuuu and GGG

∣∣
xxx
=∇xxxuuu (11.1)

are the general spatial gradient terms of uuu and uuu with respect to the RCE and the
continuous descriptions, respectively. A schematic depiction of an RCE motion is
shown in Fig. 11.1 including the reference and deformed RCE blocks. The crack

(a) discrete crack in RCE (b) crack opening in RCE

Fig. 11.1: Schematic description of crack kinematics of the RCE approach.
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displacement in the RCE is denoted as

uuuΓ =

3∑

I=1

uIΓ nnn
I, (11.2)

where the normal and tangential unit vectors with respect to the crack surface are
expressed by nnn1 and nnn2,3, respectively. Two important conditions

• linear boundary constraints of upper and lower block surfaces in respective B1

and B2,
• identical and homogeneous deformations of upper and lower blocks in respective

B1 and B2, and also homogeneous crack deformation in BΓ

provide basic assumptions for the understanding and the derivation of the kinematics
in an RCE. The dimensional length of the RCE is given as lc and the two identical
solid blocks (B1 for the upper one and B2 for the lower one) have the volumes
V1 =V2 = l3

c/2. In addition to the two solid subdomains B1,B2, another subdomain
is characterized by the crack space BΓ , where the infinitesimal thickness of the crack
space is assumed to be lΓ → 0. Hence, the cross-sectional area and the volume
of the crack subdomain are approximated by AΓ = l2

c and VΓ = AΓ lΓ = l2
c lΓ ,

respectively. The total domain is expressed as B = B1 ∪B2 ∪BΓ , and the entire
volume of an RCE is V= V1 +V2 +VΓ .

11.2.2 Kinematic Coupling

The fundamental coupling relation of the regularized fracture model and the RCE
reads

uuu = uuu+GGG
∣∣
xxx
·
(
XXX−X̂XX

ref
)
+ũuu. (11.3)

Considering the homogeneous deformation fields at the RCE, the displacement
fields at the three subdomains are given by

uuu =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ûuu1 +GGGb

∣∣
XXX
·
(
XXX−X̂XX

ref
)
= ûuu1 +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B1,

ûuu2 +GGGb

∣∣
XXX
·
(
XXX−X̂XX

ref
)
= ûuu2 +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B2,

ûuuΓ +GGGΓ

∣∣
XXX
·
(
XXX−X̂XX

ref
)
= ûuuΓ +

(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈BΓ ,
(11.4)

where the quantities ûuu1, ûuu2 and ûuuΓ are the rigid body translations of the three sub-
domains. The reference coordinate is

X̂XX
ref

=
1
V

∫

B

XXXdV. (11.5)
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Thereafter, decomposing the RCE into three subdomains, the RCE displacements
and gradients vary with respect to each other. The second assumption aforemen-
tioned characterizes the identical RCE displacement gradient GGGb

∣∣
XXX

for the upper
and lower block, reading

GGGb

∣∣
XXX
=GGG

∣∣
xxx
+G̃GGb

∣∣
XXX

∀XXX ∈ (B1 ∪B2) , (11.6)

where the gradient fluctuation in the subdomains of solid blocks is described by
G̃GGb

∣∣
XXX

. Similarly, the RCE gradient in the crack subdomain GGGΓ

∣∣
XXX

reads

GGGΓ

∣∣
XXX
=GGG

∣∣
xxx
+G̃GGΓ

∣∣
XXX

∀XXX ∈BΓ , (11.7)

where the gradient fluctuation in the crack subdomain is denoted by G̃GGΓ

∣∣
XXX

. Hence,
a general relation in the RCE is defined as

GGG
∣∣
XXX
=GGG
∣∣
xxx
+G̃GG
∣∣
XXX

, where G̃GG
∣∣
XXX
=

{
G̃GGb

∣∣
XXX

, ∀XXX ∈ (B1 ∪B2
)

,

G̃GGΓ

∣∣
XXX

, ∀XXX ∈BΓ .
(11.8)

According to the evaluation of the compatibility condition for kinematically ad-
missible displacement fluctuations, the relations

uuu=
1
V

∫

B

uuudV and 000 =
1
V

∫

B

ũuudV (11.9)

and
GGG
∣∣
xxx
=

1
V

∫

B

GGG
∣∣
XXX

dV and 000 =
1
V

∫

B

G̃GG
∣∣
XXX

dV (11.10)

exist, where the terms ũuu and G̃GG
∣∣
XXX

represent the displacement and the gradient fluc-
tuations with respect to the RCE description in a general case. Furthermore, one
obtains a symmetric rigid body translations of both, the upper and lower block, with
respect to the crack center displacement at continuous level uuu, reading

ûuu1 = uuu+
1
2
uuuΓ , ûuu2 = uuu−

1
2
uuuΓ , ûuuΓ = uuu. (11.11)

As a result, the displacement fluctuations eventually are obtained as

ũuu =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
uuuΓ +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B1,

−
1
2
uuuΓ +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B2,
(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈BΓ .

(11.12)

The projection of the crack deformation normal to the crack surface in the RCE is
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G̃GGΓ

∣∣
XXX
·nnn1 =

uuuΓ
lΓ

=

3∑

I=1

uIΓ
lΓ

nnnI ∀XXX ∈BΓ , (11.13)

which further leads to the crack deformation gradient as

G̃GGΓ

∣∣
XXX
=

uuuΓ
lΓ

⊗nnn1 =

3∑

I=1

uIΓ
lΓ

nnnI⊗nnn1 ∀XXX ∈BΓ . (11.14)

Considering kinematic coupling of gradient terms in Eq. (11.10)1, the relation

GGG
∣∣
xxx
=

1
V

⎛
⎜⎝

∫

B1∪B2

GGGb

∣∣
XXX

dV+

∫

BΓ

GGGΓ

∣∣
XXX

dV

⎞
⎟⎠

=
1
V

⎛
⎜⎝

∫

B1∪B2

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

)
dV+

∫

BΓ

(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

)
dV

⎞
⎟⎠

=
1
V

((
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

)(
V1 +V2)+

(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

)
VΓ
)

=
1
V

(
GGG
∣∣
xxx
V+G̃GGb

∣∣
XXX

(
V1 +V2)+G̃GGΓ

∣∣
XXX
VΓ
)

=GGG
∣∣
xxx
+
G̃GGb

∣∣
XXX

(
V1 +V2

)
+G̃GGΓ

∣∣
XXX
VΓ

V

(11.15)

exists, which forces the condition

G̃GGb

∣∣
XXX

(
V1 +V2

)
+G̃GGΓ

∣∣
XXX
VΓ

V
= 000. (11.16)

As a consequence, it subsequently leads to

G̃GGb

∣∣
XXX
=−

VΓ

V1 +V2 G̃GGΓ

∣∣
XXX
=−

l2
c lΓ
l3
c

G̃GGΓ

∣∣
XXX
=−

lΓ
lc

3∑

I=1

uI

lΓ
nnnI⊗nnn1 =−

3∑

I=1

uI

lc
nnnI⊗nnn1.

(11.17)
Meanwhile, the condition in Eq. (11.16) fulfills the second condition of the kinemat-
ically admissible displacement fluctuations in Eq. (11.10)2, which can be interpreted
as

000 =
1
V

∫

B

G̃GG
∣∣
XXX

dV=
1
V

⎛
⎜⎝

∫

B1∪B2

G̃GGb

∣∣
XXX

dV+

∫

BΓ

G̃GGΓ

∣∣
XXX

dV

⎞
⎟⎠

=
G̃GGb

∣∣
XXX

(
V1 +V2

)
+G̃GGΓ

∣∣
XXX
VΓ

V
.

(11.18)
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Substituting the gradient fluctuation in Eq. (11.17) into Eq. (11.6), the RCE gradient
of the block material of RCE reads

GGGb

∣∣
XXX
=GGG

∣∣
xxx
−

3∑

I=1

uI

l
nnnI⊗nnn1 ∀XXX ∈ (B1 ∪B2) . (11.19)

By further making use of the gradient terms, the second order strain tensors for both
the continuous description and the RCE blocks are defined as

εεε=
1
2

(
GGG
∣∣
xxx
+
(
GGG
∣∣
xxx

)T) (11.20)

and
eee =

1
2

(
GGGb

∣∣
XXX
+
(
GGGb

∣∣
XXX

)T) , (11.21)

respectively. Substituting Eqs. (11.19) and (11.20) into Eq. (11.21), the relationship
of the strain quantities between the continuous and the RCE description eventually
yields

eee = εεε−

3∑

I=1

ΓIPPPI, (11.22)

where

ΓI =
uI

lc
and PPPI =

1
2

(
nnnI⊗nnn1 +nnn1 ⊗nnnI

)
. (11.23)

Therefore, two important aspects, namely, the unknown crack orientation nnnI and the
unknown crack deformation ΓI with I= 1,2,3, need to be appropriately resolved to
yield the consequent constitutive description of the RCE. The former one, the ori-
entation of the orthogonal local RCE system EΓ ∼

{
nnn1,nnn2,nnn3

}
with respect to the

global coordinate system Ee ∼
{
eee1,eee2,eee3

}
is determined by an accurate crack ori-

entation criterion, which is, nevertheless, still challenging for a robust definition of
crack orientation. Herein, several simplified criteria or a predefined crack orienta-
tion can be considered with regard to this issue. Therefore, the only remaining issue
is the solution for the crack deformation in the RCE framework.

11.2.3 Solution for the Crack Deformation in the RCE

The RCE block material is assumed to be characterized by the same constitutive
law as the intact bulk material, whereas the local strain fields e and εεε are different.
To describe the constitutive laws of the RCE and the intact material by a straight-
forward understanding, the HELMHOLTZ free energy functional is adopted to derive
the stress and the consistent material tangent, reading
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s =
∂ϕ(e)

∂e
, C =

∂2 ϕ(e)

∂e2 , and σσσ0 =
∂ϕ(εεε)

∂εεε
, C0 =

∂2 ϕ(εεε)

∂εεε2 ,
(11.24)

respectively. The general form for the principle of total virtual power of the RCE
reads

δP=

∫

B1∪B2

{
s : δė

}
dV

︸ ︷︷ ︸
internal power

−

(∫

AΓ

{
t ·δu̇Γ

}
dA+

∫

∂VRCE

{
T ·δu̇

}
dA+

∫

VRCE

{
(fp−fa) ·δu̇

}
dV

)

︸ ︷︷ ︸
external power

= 0.

(11.25)

It is noteworthy that the internal power is defined by the stress power in the block
subdomains B1 ∪B2. The external power consists of the traction power T ·δu̇ at the
external surface of the RCE domain ∂VRCE. Besides, it may include some other
constitutive characteristics, e.g. crack surface friction or cohesive traction. Hence,
a virtual power term t · δu̇Γ within the crack surfaces AΓ is necessarily included
to depict the aforementioned considerations. Furthermore, the passive and active
volume force power (fp−fa) · δu̇ within the RCE volume ∂VRCE is presented as
well. For simplicities, the work at hand does not take the RCE surface traction power
and the volume force power quantities into account, which simplifies Eq. (11.25) to

δP=

∫

B1∪B2

{
s : δė

}
dV−

∫

AΓ

{
t ·δu̇Γ

}
dA= 0. (11.26)

Another notable point is that the constitutive behavior of the RCE blocks and the
intact bulk material is not restricted to simple linear elasticity. In contrast, it can also
be associated with nonlinear elasticity as well as inelasticity, even at finite strains.

The virtual power principle of the RCE always exists for an arbitrary rate of
virtual crack deformation, i.e. δΓ̇I with I= 1,2,3. As a result, the relation

δΓP=

∫

B1∪B2

{
−s :

3∑

I=1

δΓ̇IPI

}
dV−

∫

AΓ

{
t ·

3∑

I=1

δΓ̇I lc n
I

}
dA= 0 (11.27)

exists, and the crack deformation ΓI with I = 1,2,3 can be consistently solved by
a straightforward minimization method. Nevertheless, even a correct mathematical
solution of ΓI may possibly conflict with the physically correct crack deformation
for a closing crack, i.e. a negative Γ1 indicates crack surfaces penetrated instead of a
stiff contact. In this regard, an additional constraint needs to be imposed to prevent
penetrated crack surfaces, and to obtain a realistic crack deformation. The crack
state is determined by a predictor-corrector procedure, which means prediction of
an opening crack deformation and correction for a closing crack deformation.
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11.2.3.1 Crack Opening

The initial guess is based on an opening crack deformation, the minimization prob-
lem leads to

ΓI = arg

{
min

Γ 1,2,3∈R
P
(
εεε,Γ 1,Γ 2,Γ 3)

}
. (11.28)

Thereafter, the unique solution of ΓI fulfills the equilibrium
∫

B1∪B2

{
s : PI

}
dV+

∫

AΓ

{
lc t ·nI

}
dA= 0, where I= 1,2,3. (11.29)

For a general nonlinear constitutive law with respect to the RCE blocks and bulk
materials or a nonlinear definition of t with respect to uΓ , this equilibrium is char-
acterized as nonlinear as well. Therefore, analytical solutions of the unknown ΓI

are not straightforward, and even sometimes not possible to obtain. As a result, an
internal NEWTON-RAPHSON algorithm is postulated to solve the equilibrium in Eq.
(11.29). The local residual RΓI is, thus, defined as

RΓI =

∫

B1∪B2

{
s : PI

}
dV+

∫

AΓ

{
lc t ·nI

}
dA

=

(
V1 +V2

)
s : PI+AΓ lc t ·nI

= l3
c

(
s : PI+t ·nI

)
(11.30)

and the internal consistent tangent is derived as

KΓIΓJ =−
∂RΓI

∂ΓJ
=−l3

c

(
∂s

∂ΓJ
: PI+

∂ t

∂ΓJ
·nI
)

=−l3
c

(
PI :

∂s

∂e
:
∂e

∂ΓJ
+nI · ∂ t

∂uΓ
· ∂uΓ
∂ΓJ

)

= l3
c

(
PI : C : PJ− lc n

I · k ·nJ
)

,

(11.31)

where k = ∂ t/∂uΓ is defined. The internal iteration algorithm is illustratively shown
in Table 11.1. It is noteworthy that the trial state of the crack deformation ΓI,tr

k=0 in
Table 11.1 can be numerically implemented as a history variable, which consists of
values of the previous loading step. This algorithmic treatment yields a relatively
fast local convergence to a certain extent.
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Table 11.1: Internal NEWTON-RAPHSON iteration to obtain the RCE crack deformation quanti-
ties ΓI.

Initiation k= 0, ΓI
k = ΓI,tr

k

Do Loop

Residual RΓI = l3
c

(
s : PI+t ·nI

)

Linearization LinRΓI = RΓI

∣∣∣∣
ΓI
k

+
∂RΓI

∂ΓJ

∣∣∣∣
ΓI
k

ΔΓJ
k

Tangent KΓIΓJ =−
∂RΓI

∂ΓJ

∣∣∣∣
ΓI
k

Solving ΔΓJ
k = (K)−1

ΓJΓI RΓI

Update ΓJ
k+1 = ΓJ

k+ΔΓJ
k, k= k+1

While Tol� ‖RΓI‖

11.2.3.2 Crack Closing

After the initial guess of crack opening prediction, the realistic crack deformation
can be identified, i.e. opening or closing. Once the condition Γ1 < 0 is fulfilled,
the correction of a closing crack deformation is triggered. Thereafter, a mathemat-
ical constraint is artificially imposed to the new equilibrium and the relation in Eq.
(11.27) is substituted by

Γ 2,3 = arg

{
min

Γ 2,3∈R
P
(
εεε,Γ 2,Γ 3)

∣∣∣∣∣
Γ 1=0

}
for Γ1 < 0,

Γ1 = 0.

(11.32)

From the numerical point of view, the implementation of such a constraint condi-
tion may potentially lead to oscillations between opening and closing cracks. That
phenomenon is investigated when Γ1 is within an interval around the contact point,
where the interval size is in the order of the numerical precision for the calculation
of Γ1. To obtain a relatively stable contact condition, a numerical assumption by set-
ting a contact tolerance Tol is employed in order to detect the change of a contact
state. In this regard, the contact triggering condition is redefined as

Γ 1 � Tol, (11.33)

where the tolerance Tol can be a sufficiently small and positive number, e.g., Tol=
10−12. Introducing the constraint Γ 1 = 0, the block strain in Eq. (11.22) needs to be
rewritten as
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e = εεε− Γ 1P1 − Γ2P2. (11.34)

The RCE stress s and tangent C as well as the crack surface tractions t and its
tangent k = ∂ t/∂uΓ in Eq. (11.31) are necessarily rederived based on the constraint
condition. Reperforming the NEWTON-RAPHSON iteration in Table 11.1 using the
updated quantities, the crack deformations ΓI with I = 2,3 for the closing state are
eventually obtained. The solution procedure is given in Fig. 11.2.

11.3 Regularization of the Free Discontinuity Problem

11.3.1 Governing Equations

The free discontinuity problem for brittle fracture with conservative external forces
reads

E
(
uuu,BΓ

)
=

∫

B\BΓ

ϕ(∇uuu) dV+GcH
2
(
BΓ
)

−→ min
uuu,BΓ

E
(
uuu,BΓ

)
, (11.35)

where the strain energy density ϕ is defined on the domain of the bulk material
B\BΓ . The fracture energy is given by the fracture toughness Gc and the area of
crack surfaces H2

(
BΓ
)
. Different regularization methodologies are proposed for

this variational problem. The regularization in eigenfracture yields

Fig. 11.2 Solution procedure
for the RCE with homoge-
neous block deformations
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E(uuu,εεε∗) =
∫

B

ϕ(εεε−εεε∗)dV+
Gc

2ε
|Bε| −→ min

uuu,εεε∗
E(uuu,εεε∗) (11.36)

with the approximated crack surfaces

Bε :=
{
XXX ∈B

∣∣∣∃ aaa ∈ supp(εεε∗) ;ε� |aaa−XXX|
}

, (11.37)

and the regularization in phase-field fracture reads

E(uuu,d,∇d) =

∫

B

ϕ(εεε)dV+Gc

∫

B

γl (d,∇d) dV −→ min
uuu,d

E(uuu,d,∇d) . (11.38)

Herein, new variables are added to the energy formulation, namely the phase-field
variable d and the eigenstrain εεε∗. For regularized eigenfracture, the ε-neighborhood
Bε of the support of the eigenstrain can be determined a posteriori to the mechan-
ical equilibrium, and allows to introduce the eigenstrain εεε∗ as an internal variable.
Nevertheless, the phase-field regularization of the crack area by means of γl(d,∇d)
involves spacial gradients of the phase-field. Thus, it requires the phase-field vari-
able d to be introduced as global state variable. A common crack surface density for
the multi-dimensional problem is defined as

γl =
1
2l
(
d2 + l2|∇XXXd|2

)
, (11.39)

where the internal length scale l is employed to govern the width of the transition
zone between fractured (d = 1) and sound state (d= 0) of the material. For several
intensive studies of the length scale l with respect to discretization, it is referred
to Miehe et al. (2010b); Zhang et al. (2017); Mandal et al. (2019). The crack sur-
face density function in Eq. (11.39) is also known as the AT2 model, which yields
an exponentially shaped crack profile. Furthermore, another common alternative to
approximate the crack surface density function is the classical AT1 model (Pham
et al., 2011), which is not main scope of the discussion in this work.

The strain energy in the eigenfracture and the phase-field regularization can be
related to the two material states ϕ0 and ϕc, which are expressed by

ϕ(εεε−εεε∗) =

{
ϕc, for XXX ∈ supp(εεε∗) ,
ϕ0, else,

and ϕ=ϕc
(
εεε,ΓI

)
+g(d)

(
ϕ0 (εεε)−ϕc

(
εεε,ΓI

))
,

(11.40)

respectively. Thus, the regularizations of the strain energy in eigenfracture and
phase-field fracture are based on the behavior of intact material ϕ0, i.e. in absence
of a crack, and of fully broken material ϕc, i.e. in presence of a crack. While the
intact material is described by classical constitutive models, the material behavior
in the presence of a crack can be derived from an RCE.
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Neglecting the derivation process based on a straightforward variational princi-
ple, the governing equations for the RCE problem read

ρüuu−∇XXX ·σσσ−bbb= 000 in B and σσσ ·nnn= ttt at ∂B (11.41)

and
∫

B1∪B2

{
sss : PPPI

}
dV+

∫

AΓ

{
lcttt ·nnnI

}
dA= 0 in VRCE with I= 1,2,3

(11.42)
for the continuous deformation equilibrium and the RCE response, respectively. The
notation ∇XXX · (∗) represents a divergence operator. The evolution equilibrium in
Eq. (11.42) exactly coincides with the virtual power principle of Eq. (11.26) and
the solution of crack deformation is according to the minimization problem Eq.
(11.27). For eigenfracture modeling, the eigenstrain εεε∗ is regarded as an internal
quantity, and the fracture evolution process is mainly based on a post-processing
technique according to an ε-neighborhood algorithm. Nevertheless, in particular for
phase-field fracture modeling, a degree of freedom is necessary to model fracture
evolution, and the governing equation eventually reads

∂dg(d)
(
ϕ0 −ϕc

)
+

Gc

l

(
d− l2∇XXX ·d

)
= 0 in B and ∇XXXd ·nnn= 0 at ∂B.

(11.43)
The phase-field driving force term

(
ϕ0 −ϕc

)
is based on two types of definitions,

i.e. a damage-like approximation (Miehe et al., 2010a) or a fracture-like approxima-
tion (Kuhn and Müller, 2010).

11.3.2 Stress and Consistent Tangent

According to a straightforward derivation, the stress response and the consistent
material tangent can be derived from the total effective HELMHOLTZ energy density
function for both eigenfracture and phase-field fracture. In the intact material, the
stress σσσ0 and the consistent tangent C0 can be straightforwardly derived based on
the constitutive law, see Eqs. (11.24)1 and (11.24)3, respectively. However, with
respect to the RCE description, the stress and material tangent tensors are obtained
indirectly. Basically, the stress for the fully cracked state is characterized to be the
RCE stress, i.e., σσσc =sss. The consistent tangent Cc yields
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Cc =
dσσσc

dεεε
=

dsss
dεεε

=
∂sss

∂εεε
+

3∑

J=1

∂sss

∂ΓJ
⊗ ∂ΓJ

∂εεε

=
∂sss

∂εεε
+

3∑

J=1

(
∂sss

∂eee
:
∂eee

∂ΓJ

)
⊗ ∂ΓJ

∂εεε

=CCC+

3∑

J=1

(
−CCC :PPPJ

)
⊗ ∂ΓJ

∂εεε
,

(11.44)

where the partial derivative ∂ΓJ/∂εεε cannot be derived in a straightforward manner.
Therefore, by making use of the unconditional equilibrium of the minimization, one
obtains the term ∂ΓJ/∂εεε indirectly, reading

RΓI = 0 ⇒ dRΓI

dεεε
= 000

⇒ ∂RΓI

∂εεε
+

3∑

J=1

(
∂RΓI

∂ΓJ
∂ΓJ

∂εεε

)
= 000

⇒ ∂RΓI

∂sss
:
∂sss

∂eee
:
∂eee

∂εεε
=

3∑

J=1

(
−

∂RΓI

∂ΓJ
∂ΓJ

∂εεε

)

⇒ −PPPI : CCC : I=
3∑

J=1

(
KΓIΓJ

∂ΓJ

∂εεε

)

⇒ ∂ΓJ

∂εεε
=−

3∑

I=1

((
K−1)

ΓJΓICCC :PPPI
)

.

(11.45)

As a result, substituting Eq. (11.45) into Eq. (11.44), the consistent tangent tensor
for the fully cracked material yields

Cc =CCC+

3∑

J=1

3∑

I=1

(
−CCC :PPPJ

)
⊗
(
−
(
K−1)

ΓJΓICCC :PPPI
)

=CCC+

3∑

J=1

3∑

I=1

(
K−1)

ΓJΓI

(
CCC :PPPJ

)
⊗
(
CCC :PPPI

)
,

(11.46)

Thus, based on Eq. (11.40)1, the deformation response can be straightforwardly
formulated within an eigenfracture framework, since
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σσσ=

{
σσσc, for XXX ∈ supp(εεε∗) ,
σσσ0, else,

and C=

{
Cc, for XXX ∈ supp(εεε∗) ,
C0, else.

(11.47)
Nonetheless, for a variational phase-field fracture modeling, a further manipula-
tion needs to be accounted for according to the similar relationship in Eq. (11.40)2,
namely

σσσ= σσσc+g(d)
(
σσσ0 −σσσc

)
and C= Cc+g(d)

(
C0 −Cc

)
. (11.48)

11.4 Numerical Applications

This section introduces a comprehensive application of eigenfracture and phase-
field fracture modeling within an RCE framework with respect to different model
problems. Each constitutive approach is consistently derived and implemented into
an in-house simulation platform.

11.4.1 Self-consistent Test

Phenomenologically, without considering cohesive traction and friction at crack
surfaces, an open-crack leads to a stress-free boundary. A closed and friction-free
crack at a compressive state is supposed to fully transfer the normal compressive
stress, which is characterized as an equivalent contact mechanism. Furthermore, a
pure shear deformation along the friction-free crack surface should not transfer any
force neither. The aforementioned characteristics have been studied in Steinke and
Kaliske (2019); Strobl and Seelig (2016); Storm et al. (2020) to evaluate the correct
phase-field crack kinematics for realistic applications. The first numerical example,
herein, attempts to examine the crack kinematics to demonstrate the advantages of
the presented eigenfracture and phase-field modeling in an RCE description com-
pared to the classical spectral split and the V-D split approaches with respect to
tension, compression and shearing deformation.

The two-dimensional boundary value problem is depicted in Fig. 11.3, which
consists of a contact model, an eigenfracture model, and a phase-field model with
the same dimensions. The contact model consists of two blocks and a contact pair.
The eigenfracture model depicts the crack using a row of fully eroded elements,
and the phase-field model describes the straight crack by prescribing the phase-field
value d = 1 at the nodes attached to the middle row of elements. All models are
discretized by 2500 four-node elements uniformly with the element size he = 2mm.
The upper and lower edges are fully bounded and a displacement load is subjected
to the upper edge with a loading function given in Fig. 11.4 for tension, compression
and shear deformation in a linear elastic body as well as compressive relaxation for
linear viscoelasticity.
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Fig. 11.3: Geometric setup for contact surface and phase-field crack.

11.4.1.1 Linear Elasticity

The simulations are based on the spectral split, V-D split as well as the RCE descrip-
tion of both eigenfracture and RCE phase-field modeling. The material parameters
are given as λ= 19.6MPa, μ= 2.06MPa for linear elasticity. Based on the loading in
Fig. 11.4 (a), the RCE eigenfracture results are shown in Fig. 11.5 (with ε= 14mm),
and the RCE phase-field solutions are shown in Fig. 11.6 (with l = 4mm). Appar-
ently, the three simulations, the spectral split, the V-D split and the RCE approach,
have obtained realistic crack opening deformations compared to the reference dis-
crete crack simulation, i.e. non residual material deformations exist in the upper
and lower block at the maximum separation t = 1 s. In the sequel, the material is
compressed and both the spectral and the V-D split simulations are not capable to
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Fig. 11.4: Displacement loading function at (a) tension, compression and shear deformation for
linear elasticity and only at (b) compression and relaxation for linear viscoelasticity.
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capture the realistic crack closing deformations at t= 3 s. A slight unphysical lateral
expansion by the spectral split is obtained. Unfortunately, this lateral expansion is
significantly increased by the V-D split result. Nevertheless, this unphysical behav-
ior does not appear at all for the proposed RCE modeling. Furthermore, the spectral
split result fails to capture a realistic shear deformation at the crack, see Figs. 11.5
(b) and 11.6 (a).

11.4.1.2 Linear Viscoelasticity

It is noteworthy that the constitutive laws in Steinke and Kaliske (2019); Strobl and
Seelig (2016); Storm et al. (2020) are restricted to linear elasticity. Nevertheless, the
RCE phase-field approach provides a general framework, which may be applied to
any constitutive material model. For the total derivation, it is particularly referred
to Yin et al. (2021). Furthermore, the RCE eigenfracture does not restrict the con-
stitutive law as well. This work does not present the linear viscoelasticity model
for an RCE eigenfracture description, but it is one of the next priorities for future
publications. Due to linearity of the material, the RCE phase-field formulation afore-
mentioned eventually returns to a relatively simple problem. The material tangent
tensors for both bulk material and RCE blocks, i.e. C0 and CCC are always constant.
Meanwhile, ttt and kkk vanish due to traction-free and friction-free considerations. As
a result, the crack deformations Γ 1,2,3 (opening) or Γ2,3 (closing) can be resolved by
a closed form solution, which largely simplify the model problems.

It is necessary to point out that the standard spectral split (Miehe et al., 2010a)
is not included for linear viscoelasticity due to some difficulties. The coupled con-
stitutive equations of the spectral split model in Miehe et al. (2010a) are straightfor-
wardly and consistently derived out of a predefined strain energy density functional
involving the spectral decomposition of the strain tensor. However, the present linear
viscoelastic model is governed by internal stress-type quantities, which cannot be
obtained by a straightforward variational algorithm of strain based energy density
function. Furthermore, the elastic energy for the non-equilibrium branches is ob-
tained based on the non-equilibrium stress and the conjugate elastic tensor due to the
constitutive linear characteristics. Therefore, the spectral split of the internal stress
governed viscoelastic model has shown significant complexities. As a result, several
existing phase-field models regarding fracture of viscoelastic material, see e.g. Shen
et al. (2019); Schänzel (2015); Loew et al. (2019); Yin and Kaliske (2020c), are de-
veloped depending on the framework of the V-D split. Instead of the spectral split, a
classical contact model is additionally considered for a representative reference for
the crack kinematics demonstration in viscoelastic materials.

Another loading function in Fig. 11.4 (b) describes pure compression and sub-
sequent relaxation for the viscoelastic solid. The spectral split simulation is consid-
ered. Instead, classical contact modeling is performed. In a detailed description, the
viscoelastic response of the material is supposed to relax from t = 1s to t = 6s at
compressive state and from t= 7s to t= 10s at a non-external load state. Regarding
viscoelasticity, only one PRONY term is considered and the parameters are given as
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(a) deformation by discrete crack

(b) deformation by spectral split

(c) deformation by V-D split

(d) deformation by RCE

Fig. 11.5: Crack deformation at t= 1s, t= 3s and t= 5s regarding the loading function in Fig.
11.4 (a) for spectral split, V-D split and RCE approach using the eigenfracture approach.
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(a) deformation by spectral split

(b) deformation by V-D split

(c) deformation by RCE approach

Fig. 11.6: Crack deformation at t= 1s, t= 3s and t= 5s regarding the loading function in Fig.
11.4 (a) for spectral split, V-D split and RCE approach using phase-field modeling.

τ = 0.98s and χ = 0.6. As aforementioned, the V-D split model is not capable of
capturing an appropriate compressive deformation in a viscoelastic body neither due
to an unrealistic lateral stretch. Nevertheless, the RCE simulation properly addresses
this issue and shows similar behavior compared to the contact model. Meanwhile,
the contour distributions of the vertical stress σy for three approaches are compared
at t= 1s and t= 6s in Fig. 11.7, where the RCE modeling successfully predicts the
results that the contact model shows.

Furthermore, the effective strain energy ϕmech, the viscous dissipation Wvis as
well as their summation ϕ̂ = ϕmech +Wvis for the three models are evaluated. The
V-D split model uses the standard form of ϕmech =ϕ−+g(d)ϕ+, where for the de-
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(a) σy at t = 1 s by contact simulation (b) σy at t = 1 s by RCE simulation (c) σy at t = 1 s by V-D simulation

(d) σy at t = 6 s by contact simulation (e) σy at t = 6 s by RCE simulation (f) σy at t = 6 s by V-D simulation

Fig. 11.7: Comparison of the distribution of the vertical stress σy for contact modeling, RCE
simulation and V-D split simulation at t= 1 s (a)-(c) and t= 6 s (d)-(f), respectively.

tailed algorithmic setup, it is referred to Schänzel (2015); Yin and Kaliske (2020c).
In the sequel, by a post-processing technique of volume integration of these two
quantities, the total elastic strain energy and dissipation energy are obtained. Then,
the quantity ϕ̂ = ϕmech +Wvis is also evaluated, since it straightforward indicates
the external work induced into the closed system. Observing the energy components
evolution in Figs. 11.8 (a)-(c), ϕmech and Wvis increase initially along with the ex-
ternal load application. Subsequently, the constant load leads to a slight decrease of
ϕmech and a gradual increase of Wvis up to the situation that the specimen is fully re-
laxed. The summation ϕ̂ stays almost constant during the relaxation. It is explained
that the external work does not change as long as the external load is kept constant.
After the displacement returns to u = 0 mm and the material is fully relaxed, e.g.
t = 10 s, ϕmech returns to 0 kJ and the total external work is fully dissipated due
to viscous effects. Comparing these three approaches, the RCE formulation suffi-
ciently agrees to the results of the contact modeling. However, the V-D split always
underestimates the results, also see the reaction forces given in Fig. 11.8 (d). Based
on the aforementioned comments, the RCE approach is demonstrated to capture
realistic crack kinematics for a closing crack within linear elastic and viscoelastic
materials.
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0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

en
er

gy
E

[k
J]

time t [s]

ϕmech Wvis ϕ̂

(c) energy analysis of V-D split approach
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Fig. 11.8: Investigation of energy components: elastic strain energy ϕmech, viscous dissipation
energy Wvis and their summation ϕ̂=ϕmech+Wvis for (a) contact modeling, (b) RCE sim-
ulation and (c) V-D split simulation, (d) reaction force f for the three approaches.

11.4.2 A Single Edge Notch Plate (SENP) at Shear Load

Using the similar geometric setup as in Miehe et al. (2010a), an elastic plate of
length 100 mm, which is cracked half by an initial notch, is studied in this example.
The plate edges parallel to the crack are clamped, and one edge is displaced parallel
to the crack, leading to shear failure. The elastic parameters are λ = 121.15 GPa,
μ = 80.77 GPa, the fracture toughness is Gc = 2.7 N/mm2 and the length scale for
phase-field is l = 0.2 mm. The displacement application is linearly increasing with
time. For the numerical discretization of the two-dimensional boundary value prob-
lem, a total of 27225 uniform quadrilateral elements for plane strain with linear
shape functions are used. In particular, in the used eigenfracture implementation, a
new mechanical equilibrium state is determined before the next most critical ele-
ment may fracture. The simulations are performed using the eigenfracture approach
based on well known spectral split (Miehe et al., 2010a) and the V-D split (Amor
et al., 2009), as well as for the eigenfracture model based on the RCE framework.
A noteworthy point for the RCE framework is that the crack orientation for each
element is calculated at the GAUSS point applying a reduced integration scheme.
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Regarding the simulation results of the SENP test, the crack evolution and the
crack neighborhood (ε= 30.1he) are shown in Figs. 11.9 (a) and (b). In particular,
the crack paths of the models with the spectral split, V-D split, and based on the
RCE framework are compared. In principle, considering frictionless features, the
crack surfaces along the initial crack should slide on each other without force trans-
fer through the crack. Using the spectral split, the result based on a discrete crack
description significantly differs from the model with pre-eroded elements. There-
fore, the spectral split approach cannot be equivalently used for a discrete and a
numerical crack due to the unphysical force transfer through a sliding crack surface.
The crack paths predicted by the V-D and the RCE model differ in the propagation
angle. Furthermore, both models yield a crack broadening in the region of the initial
crack tip. The broadening is possibly caused by the regularized formulation of the
increment of the crack surface area. As a consequence, crack surface increments for
crack propagation perpendicular to the crack ligament are systematically smaller
than in the direction of the crack ligament. Moreover, crack surface increments be-
hind the crack tip are systematically smaller than at the crack tip. Thus, the elastic
energy required to propagate a crack is largest at the crack tip for cracks propagating
towards the crack ligament.

In addition to the eigenfracture simulation, the phase-field approach is also em-
ployed to simulate the SENP cracking as a comparison, see Figs. 11.9 (c) and (d).
Based on the same reason, the spectral split crack is not capable of predicting the
realistic crack evolution by prescribing a phase-field crack as the initial notch. Since
the whole process of SENP shear does not introduce any compressive deformation,
the V-D split and the RCE framework yield good agreement to each other regarding
the crack path prediction. Nevertheless, as long as compressive deformation exists,
the V-D split immediately fails to predict the correct crack path as aforementioned
in Sect. 11.4.1.

Furthermore, the influence of the ε-neighborhood size is studied in Fig. 11.10.
The simulation is performed for different values of ε on the same mesh. The load
at which the crack begins to propagate in the simulation is evaluated for different
value of ε. Apparently, Fig. 11.10 shows that the maximum force converges asymp-
totically with increasing neighborhood size. Convergence of the results can be ac-
cepted for the presented study when the neighborhood size parameter ε is about
15 times the element size he. However, crack propagation is disturbed when the
ε-neighborhood reaches the geometry boundary of the model, e.g., crack kinking.

11.4.3 Structural Fracture at Finite Strain

The presented example is performed to demonstrate the capability of the phase-
field model applied to hyper-elastic material by studying a promising benchmark of
polymer fracture. The experimental tests are conducted by Hocine et al. (2002) to
estimate the critical fracture energy. In the sequel, this example is studied by several
different numerical approaches, e.g. the material force method Özenç and Kaliske
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(a) eigenfracture with discrete crack for spectral split, V-D split and RCE, respectively

(b) eigenfracture with element erosion crack for spectral split, V-D split and RCE, respec-
tively

(c) phase-field with discrete crack for spectral split, V-D split and RCE, respectively

(d) phase-field with smeared phase-field crack for spectral split, V-D split and RCE, respec-
tively

Fig. 11.9: Eigenfracture and phase-field simulation of crack evolution for both discrete crack and
numerical crack (pre-eroded elements or phase-field crack) with respect to spectral split, V-D split
and the RCE framework, respectively.
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Fig. 11.10 Dependency of
the maximum reaction force
norm on the neighborhood
size parameter ε.
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(2014) and the phase-field model (Miehe and Schänzel, 2014), which show good
agreement compared to the evaluations of Hocine et al. (2002).

Regarding the constitutive law, Özenç and Kaliske (2014) simulates polymer
fracture using the ARRUDA-BOYCE model, whose HELMHOLTZ energy density
function generally reads

ϕ0 = κ(J− ln J−1)+μN

(
λrL

−1 (λr)+ ln
L−1 (λr)

sinhL−1 (λr)

)
. (11.49)

The segmentation N is a material parameter in addition to the bulk and shear moduli

κ and μ. The stretch quantity λr is obtained by λr =
√

tr
(
C̄CC
)
/3N, where C̄CC is the

isochoric part of the right CAUCHY-GREEN tensor, and the inverse LANGEVIN func-
tion is defined by L−1. By applying the phase-field approach, Miehe and Schänzel
(2014) describes the polymer based on the compressible NEO-HOOKEAN formula-
tion, whose energy density function is defined as

ϕ0 =
μ

β

(
J−β−1

)
+

μ

2
(tr(CCC)−3) , (11.50)

where β and μ are two governing parameters. For the purpose of simplicity and gen-
erality, this work chooses a nearly incompressible NEO-HOOKEAN model, which
depends on the energy density function

ϕ0 = κ(J− ln(J)−1)+
μ

2
(
tr
(
C̄CC
)
−3
)

. (11.51)

As a result of a consistent and straightforward derivation, the intact KIRCHHOFF
stress and the corresponding material tangent tensors yield

τττ0 = p111+μ

(
b̄bb−

1
3

tr
(
C̄CC
)

111
)

︸ ︷︷ ︸
τττiso

(11.52)

and
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C0 =
(
p+ s

)
111⊗111−2pI+

2
3

(
μ tr
(
C̄CC
)
P−τττiso⊗111−111⊗τττiso

)
, (11.53)

respectively. The definition of the isochoric right and left CAUCHY-GREEN tensors
are C̄CC = J

2
3 CCC and b̄bb = J

2
3 bbb. The hydrostatic scalar p and its corresponding mod-

ulus are obtained based on the first and the second order partial derivative of the
volumetric energy density with respect to J, i.e. p= J∂JU(J) and s= J2 ∂2

JJU(J).
According to the material description aforementioned, a two-dimensional bound-

ary value problem is taken into account. The geometry and boundary condition
setup are depicted in Fig. 11.11. The bottom edge is fully fixed and the top one
is fixed by a vertical upward displacement, which leads to monotonic tensile fail-
ure. Three symmetrical notch widths a0 = [12,20,28] mm are evaluated. Due to the
symmetric geometry, loading as well as boundary conditions, a simplification can be
employed by only considering half of the original specimen with appropriate sym-
metry conditions. The finite element discretizations consist of approximately 1200
4-node quadratic elements, where the potential damage paths are meshed by the
uniform element size he = 1mm. The model parameters are given as κ= 5.49MPa,
μ = 0.57MPa, G0

c = 6.16J/mm2 and the length-scale parameter for the phase-field
evolution is l= 2mm. The initial crack normal coincides with the loading direction.

The visualization of the phase-field crack evolution of the specimen with a0 = 20
mm is shown in Fig. 11.12. With the help of a post-processing blanking technique,
i.e. the phase-field value d � 0.95 is not visible, a vivid crack initiation and propa-
gation before the complete separation can be effectively investigated. Furthermore,
the load-displacement relations obtained by the present phase-field modeling are
compared to the experimental results in Fig. 11.13 for all the three specimen ge-
ometries. The fact of a smaller initial notch leading to larger overall strength is
validated. Meanwhile, both the peak and the fracture displacements for the three
cases can be approximately predicted. The force-displacement characteristics and
the structural deformations are in good agreement with the experimental findings.
Before structural rupture, a sudden drop of the reaction force along with unstable

Fig. 11.11 (a) Geometrical
setup of two-dimensional
notched specimen and (b) its
simplified half model due to
symmetry.
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Fig. 11.12: Fracture evolution of the two-dimensional model by blanking the phase-field d� 0.95.

Fig. 11.13 Comparison of the
load-displacement relations
of styrene butadiene rubber
obtained by experimental
results (Hocine et al., 2002) to
the present phase-field model.
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crack growth is obtained. The numerical convergence of the model in this final part
of the simulation is hard to achieve due to large distortions of the elements at the
crack tip. Therefore, full rupture is not reached.
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11.4.4 Cohesive Failure Modeling

The example at hand studies cohesive failure within an RCE phase-field framework.
The mechanism is mainly governed by the classical traction-separation law, which
is commonly taken into consideration by the interface element approach.

The cohesive traction at the crack surface denoted by ttt in Eq. (11.25) usually
cannot be neglected. This term is defined to be oriented outwards at the crack sur-
face and the direction opposite the crack surface deformation uuuΓ . Herein, a classical
traction-separation law (van den Bosch et al., 2008) is considered, and the pseudo
potential functional is defined as

ϕTS = φ−
(‖uuuΓ‖+Δ) φ

Δ
exp
(
−
‖uuuΓ‖
Δ

)
, (11.54)

where φ is a model parameter to represent the work or energy of separation and Δ
is another parameter for the characteristic opening length. The maximum tractions
Tmax can be indirectly calculated by means of Tmax = φ/(exp(1) Δ). According to
variational derivation, the surface traction is derived as

ttt = −
∂ϕTS

∂uuuΓ
=−

φ

Δ2 exp
(
−
‖uuuΓ‖
Δ

)
uuuΓ , where uuuΓ =

3∑

I=1

lc Γ
InnnI (11.55)

and the consistent tangent reads

kkk =
∂2 ϕTS

∂uuu 2
Γ

=−
∂ttt

∂uuuΓ
=

φ

Δ2 exp
(
−
‖uuuΓ‖
Δ

)(
111−

uuuΓ ⊗uuuΓ
Δ ‖uuuΓ‖

)
. (11.56)

The aforementioned traction and tangent quantities characterize the path indepen-
dent traction-separation formulation, which describe crack healing phenomena of
the unloading and reloading processes. In order to achieve a general damage-like
formulation, an algorithmic manipulation is proposed that distinguishes between
loading and unloading paths. A representative approach is based on the compari-
son between the current separation and the maximum history separation (during the
whole loading history from first load step till current one). The loading case is as-
sumed when the current separation is the maximum one. In contrast, an unloading
or reloading procedure is identified as long as the current separation is smaller than
the maximum one, where the linear traction law is substituted. The maximum sep-
aration needs to be updated and saved as an internal variable at each loading step.
Thereafter, the surface traction and the tangent quantities are rewritten as

ttt = −
φ

Δ2 exp
(
−
umax
Γ

Δ

)
uuuΓ (11.57)

and
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kkk =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

φ

Δ2 exp
(
−
umax
Γ

Δ

)
111 if umax

Γ > ‖uuuΓ‖ ,

φ

Δ2 exp
(
−
umax
Γ

Δ

)(
111−

uuuΓ ⊗uuuΓ
Δumax

Γ

)
if umax

Γ = ‖uuuΓ‖ ,
(11.58)

respectively, by introducing the maximum separation

umax
Γ = Max

τ�tn+1
‖uuuΓ (τ)‖= Max

τ�tn+1

√√√√
3∑

I=1

(lc ΓI)
2. (11.59)

Returning the quantities ttt and kkk to the RCE description, a consistent cohesive RCE
phase-field modeling is obtained.

It is noteworthy that, in this example, the cohesive adhesion failure mechanism
is formulated within a predefined phase-field crack path by setting the DIRICHLET
boundary condition, which indicates that the crack orientation is also predefined in
advance. As a result, the cohesive failure only occurs with respect to the existing
phase-field crack path. Simultaneous evolution of crack propagation and cohesive
adhesion failure at the evolved crack surfaces is not the scope of this work.

Inspired by Kim and Aragao (2013); Aragao (2011), which study a three-point
bending test of a semi-circular specimen, the presented cohesive RCE phase-field
approach is adopted for a numerical investigation. The experiment is shown in Fig.
11.14 (a) and it is referred to Kim and Aragao (2013) for detailed insights. The spec-
imen is a pre-notched semi-circular structure and it is characterized as bituminous
mixture material. Two symmetrical points at the bottom edge are constrained along
with the vertical direction and a downward displacement is applied at the top center
of the curved boundary. Due to the symmetric properties of the geometry, the con-
straint and the loading condition, only half of the structure is taken into account for
the numerical simulation, see Fig. 11.14 (b). Since the cohesive crack path is known

(a) experimental setup in Kim and Aragao (2013) (b) simplified numerical model

Fig. 11.14: (a) Experimental setup according to Kim and Aragao (2013) and (b) corresponding
geometrical setup for cohesive failure simulation for the SCB test.
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as a fact according to the experimental validations in Kim and Aragao (2013); Ara-
gao (2011), the present model is applied to study the cohesive behavior during the
crack opening. The loading governed by displacement control is applied to a single
node next to the crack path, see Fig. 11.14 (b) for the numerical setup in detail.

According to a parametric calibration study, the material parameters are identi-
fied as λ=11.3 GPa, μ=26.5 GPa, Tmax=19.2 kPa, φ=110 kN/m2, lc=1 mm and
l=0.85 mm based on the experimental result in Aragao (2011). The relationship of
the resultant load with respect to the crack mouth opening displacement (CMOD)
shows good agreement with the data in Aragao (2011). As can be observed, the
simulation successfully captures the gradual increase of reaction force at the initial
loading phase (Phase I). After reaching the peak load (Phase II), the traction starts
to decrease and the expected softening behavior (Phase III) is investigated. A slight
difference exists for the final failure status (Phase IV), where the experimental result
completely reduces the reaction force but the simulation does not yet.

Furthermore, Fig. 11.15 shows the deformed shapes of the specimen at four rep-
resentative phases, which are in accordance with Fig. 11.16. It is noteworthy that
the rotation of the symmetric specimen results in a combination of a stiff contact in
the vicinity top region of the cohesive zone and a tensile separation in the rest part.
The aforementioned constrained minimization algorithm can appropriately address
the issue and guarantee numerical robustness in such loading conditions. Another
interesting investigation is the norm of the cohesive traction ‖ttt‖ in the cracked re-
gion, see Figs. 11.17 (a)-(d) for Phase I-IV, respectively. For a straightforward un-

(a) Phase I: CMOD= 0 mm (b) Phase II: CMOD= 3.82 mm

(c) Phase III: CMOD= 10 mm (d) Phase IV: CMOD= 30 mm

Fig. 11.15: Deformation of SCB specimen with a prescribed phase-field crack path using a mirror-
ing post-processing technique.
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Fig. 11.16 Comparion of the
load-CMOD relationships for
the present simulation and
the experimental prediction in
Aragao (2011).
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derstanding, the traction norm is plotted as outwards norm to the geometry plane
and the height represents the magnitude of the traction norm. It can be easily seen
that the traction norm evolves initially at the notch tip and ’propagates like a wave’
from the notch tip towards the top of the specimen along the prescribed phase-field
crack path. Eventually, Fig. 11.17 (d) still shows a portion of cohesive tractions at
the top region, which explains the reason why the reaction force in Fig. 11.16 does
not decrease to 0 at Phase IV. Using the same setup for the SCB test and model
parameters, a further investigation with respect to different initial notch lengths is
also included in this example. Three different initial lengths, i.e. a = [20,25,30]
mm, are simulated, where the loading-CMOD relations are shown in Fig. 11.18. It
can be found that the peak loads and the subsequent softening behavior are strongly
affected by the initial notch length.

11.4.5 Contact Friction Modeling

Friction between crack faces is a well known property which influences crack prop-
agation and the deformation of a fully evolved crack. However, friction is frequently
neglected in models of phase-field fracture even in investigations on Mode II, Mode
III and mixed mode deformations at the crack front. The influence of friction on
brittle fracture is demonstrated in the following examples. Results are compared to
the frictional phase-field approaches of Fei and Choo (2020a,b) and to discrete crack
models considering friction.

Considering the present RCE framework, the traction term ttt is reformulated
based on a classical COULOMB friction law. The friction force components for
I= 2,3 are written as
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(a) Phase I: CMOD= 0 mm (b) Phase II: CMOD= 3.82 mm

(c) Phase III: CMOD= 10 mm (d) Phase IV: CMOD= 30 mm

Fig. 11.17: Visualization of the cohesive traction norm ‖ttt‖ along with the prescribed phase-field
crack path by an out-plane description.

tttI =−
1
AΓ

{
fIstat, for ‖fffIstat‖� ‖fffIdyna‖,
fIdyna, else,

kkkIJ =
1
AΓ

{
EΓδIJ, for ‖fffIstat‖� ‖fffIdyna‖,

0, else,

(11.60)

where ⎧
⎪⎨
⎪⎩

fIstat =−EΓ
(
ΓI− ΓIpl

)
,

fIdyna = μAΓsss : PPPI
fIstat

‖fffIstat‖
.

The parameters μ and AΓ are the friction coefficient and the crack surface area.
Static friction (without surface sliding) is modeled via the penalty parameter EΓ .
The dynamic friction force fffIdyna is proportional to the normal compression force,
obtained from current stresses and the crack normal. Dynamic friction causes per-
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Fig. 11.18 Load-CMOD
relationships evaluated at
different lengths of the initial
notch.
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manent sliding deformation ΓIpl between the crack surfaces. The crack state is con-
sidered for the evolution equation as

• opened crack, ΓIpl,tn+1
= ΓItn ,

• closed crack and static friction, ΓIpl,tn+1
= ΓIpl,tn ,

• closed crack and dynamic friction, ΓIpl,tn+1
= ΓItn +

fIdyna

EΓ
.

It is notable that COULOMB’s assumption of area independent friction forces is pre-
served in this model.

A long strip at compressive and shear loading is presented by Palmer et al.
(1973), compare Fig. 11.19. The experiment is applied to over-consolidated clay
observing significant cohesive fracture and crack surface friction. However, the ex-
perimental setup is adopted for the subsequent example and applied to brittle ma-
terial behavior (Gc = 30 J/mm) with COULOMB friction at the crack surfaces. The
bulk material is considered as linear elastic (E= 1 GPa, ν= 0.3) at small deforma-
tions. A fully constrained support is applied at the lower edge of the strip. The upper
edge first undergoes a compressive displacement of uy =−0.01 mm, followed by a
tangential displacement of ux = 0.25 mm applied in increments of Δux = 0.25e−2
mm. The model is uniformly discretized by 48400 linear elements.

The evolution of the phase-field is given in Fig. 11.20 for different time steps and
a friction coefficient of μ= 0.3. The relations of the normal and tangential reaction

Fig. 11.19: Sketch of the long shear apparatus with initial phase-field crack and load history of
normal and tangential displacement boundary conditions.
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Fig. 11.20: Deformed shear strip with scaling factor 25 for different loading states, phase-field
crack distribution during crack propagation.

forces versus tangential displacements are presented in Fig. 11.21 for friction coef-
ficients between μ = 0 and μ = 1. The comparison of the normal to the tangential
reaction forces shows that the COULOMB law, which is applied at material level to
the RCE model, is fulfilled at the component level, too. Furthermore, the initiation
of crack propagation is significantly influenced by the frictional reaction force at the
crack surface. The realistic relation between compression and friction force is also
obtained by the cohesive phase-field model of Fei and Choo (2020b) considering
crack friction. However, the approach presented there uses a directional decompo-
sition of the stress based on the crack orientation but without considering lateral
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Fig. 11.21: Characteristics of normal force Fn versus tangential displacement and tangential fric-
tional forces Ff for coefficients varied between μ= 0 and μ= 1.
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contractions caused by POISSON’s ratio ν. Additional criteria are introduced in or-
der to distinguish frictional sticking and sliding. Crack surface contact is identified
based on the sign of the normal strain which also misses lateral contractions at the
crack surface. In contrast, the RCE framework allows for a realistic frictional crack
model without the introduction of additional assumptions in order to approximate
crack contact and frictional sticking.

11.5 Conclusions

Regularized formulations of the free discontinuity problem have been successfully
applied to many classical and advanced problems of fracture mechanics in the past
decade. A rapid development of phase-field fracture models could be observed,
for instance, towards inelastic and anisotropic materials, fatigue behavior, multi-
physical, multi-scale problems, frictional contact, and pore pressure models etc.
Moreover, some fundamental challenges of classical fracture mechanical models,
e.g., crack nucleation, crack branching, and proper discretizations, are solved by
phase-field fracture and eigenfracture models. However, those models are recently
shown to lack of reliable predictions for the crack contact state and the deformation
kinematics at cracks. These intrinsic features of a fracture mechanical model are fur-
ther related to the prediction of crack nucleation, propagation and branching. The
recently introduced concept of representative crack elements provides a variational
framework to couple physical crack models to regularized fracture formulations.

In this contribution, the fundamentals of representative crack elements are de-
rived and the framework is presented in the context of phase-field fracture and
eigenfracture. Discrepancies in previous models are demonstrated by consistency
tests through a comparison to contact mechanical simulations. Same examples are
further studied to verify deformation kinematics for cracks predicted by the mod-
els based on representative crack elements. The flexibility of the approach is finally
proven by some applications to rate-dependent material, finite deformations, cohe-
sive failure and crack surface friction.
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