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To Volker Ulbricht,

the great scientist
in the field of continuum mechanics

—
our colleague, collaborator, and friend.



Preface

Professor Volker Ulbricht (1949-2021)
Picture: Christian Hüller

This volume of the Advanced Structured Materials Series is dedicated to Profes-
sor Volker Ulbricht who sadly passed away on April 9, 2021.

Professor Ulbricht was a dedicated researcher and teacher in the field of Contin-
uum and Engineering Mechanics. He was closely associated with Technische Uni-
versität Dresden, Germany, for more than 50 years – first as student, then as doc-
toral student, and since 1992 as professor. Volker Ulbricht has made contributions
in many fields of mechanics, including theory of shells, micro-polar continua, con-
stitutive models for inelastic material behavior, advanced discretization techniques
and multiscale modelling techniques with applications to the simulation of sheet
metal forming processes and the analysis of composite materials.

vii



viii Preface

Volker Ulbricht was born on July 17, 1949. He grew up in Dresden where he
passed the high school graduation exam in 1968. Simultaneously, he was awarded a
craft certificate in mechanical engineering. Being luckily exempt from military ser-
vice, Volker Ulbricht started his studies of Applied Mechanics at TUD in the same
year. Volker Ulbricht completed the demanding course of study, which, according to
Professor Göldner, study director at that time, meant a sixty-hour week and offered
little free time, in four years. Without the otherwise obligatory diploma thesis, he
was given direct access to doctoral studies in 1972. By the way, the fact of not being
able to present a diploma certificate was to cause confusion during his appointment
process later on.

Cover page of Volker Ulbricht’s doctoral thesis.

With the start as research student,
a period of intensive research on shell
theory began, which led to the dis-
sertation "Berechnung von Rotation-
sschalen bei nichtlinearem Deforma-
tionsverhalten" – English: "Calcula-
tion of rotation shells with non-linear
deformation behavior" presented in
1975. From his doctoral supervisor
and academic mentor Prof. Landgraf,
Volker Ulbricht experienced a last-
ing imprint towards precisely formu-
lated theories to solve challenging
problems in mechanics without, how-
ever, losing sight of the relevance to
applications. Equally important was
the principle of intensive supervision
of the doctoral students combined
with continuous and personal sup-
port. Volker Ulbricht continued his
successful research on shell theory
as a scientific assistant at TU Dres-
den until 1981, combined with a stay
abroad in Kharkov between 1977 and
1978, which had a formative influ-
ence both personally and profession-
ally.

Between 1981 and 1987, Volker Ulbricht worked as development engineer at
VEB Kombinat Robotron in Dresden. Even during his industrial activity, he never
lost his interest in mechanics and continued his research on shell theory with great
commitment in the scarce free time between work and family with two small chil-
dren - an enormous challenge then as now. Volker Ulbricht was able to reap the
fruits of his labor in 1986 with his habilitation "Physikalisch und geometrisch nicht-
lineare Schalentheorie in konvektiver Metrik" – English: "Physically and geometri-
cally nonlinear shell theory in convective metric" in connection with the teaching



Preface ix

qualification "facultas docendi" in mechanics. He then returned to TU Dresden as a
university lecturer.

In 1992 Volker Ulbricht was appointed Professor of Continuum Mechanics -
since 2004 Professor of Nonlinear Solid Mechanics. In the following 24 years, Pro-
fessor Ulbricht initiated and supervised 28 successful PhD projects. Together with
the doctoral students, he set new accents in his field, in particular through the appli-
cation of computational methods such as the finite element method in sophisticated
multi-scale simulations. The available computing power enabled, for example, the
modelling of complex material structures of textile fiber-reinforced plastics and the
prediction of the effective elastic and inelastic deformation behavior.

A highlight of his scientific career was the initiation of the first DFG Research
Training Group “Continuum Mechanics of Inelastic Solids” at TU Dresden together
with Professor Kreißig from TU Chemnitz in 1994. The methods and material mod-
els developed there were later applied in numerous high-profile coordinated research
projects initiated e.g. together with his colleagues Hufenbach and Offermann. With
the DFG Priority Program 1123 "Textile Composite Structures and Manufacturing
Technologies for Lightweight Structures in Mechanical and Automotive Engineer-
ing" (2001-2007), the DFG Collaborative Research Center 639 "Textile Reinforced
Composite Components for Functionally Integrated Hybrid Structures in Complex
Lightweight Applications" (2004-2015) as well as the European Centre for Emerg-
ing Materials and Processes Dresden (ECEMP, 2011-2015), long-standing, success-
ful research collaborations could be established, which continue to have an impact
today. In addition to research, teaching has always had a very special place in his
academic work. With expert knowledge and humor, he was able to inspire students
for mechanics. His didactic skills coupled with practical relevance have nourished
his great popularity among students and thus served as a role model for many col-
leagues. His interaction with doctoral students, which was characterized by intensive
supervision and personal contact, was exemplary. In both SFB 639 and ECEMP he
acted as head of the integrated graduate college and graduate school, respectively.

Professor Ulbricht during a lecture (left), together with Professor Landgraf (middle) and with Pro-
fessors Offermann and Hufenbach (right).



x Preface

The Faculty of Mechanical Science and Engi-
neering of TU Dresden, Holzhau, 2008.

Prof. Ulbricht was a person involved
in both science and academic life with
great intellect. As Dean of the Faculty of
Mechanical Science and Engineering, he
shaped its future development and per-
formed important mediation work with
competence and enthusiasm. His recipe
for success was being well prepared, hav-
ing precise objectives and asserting them
at the decisive moment. He was twice
confirmed in the office between 2003 and
2009. Even after his active period at the
helm of the faculty he remained an im-
portant advisor for his successors Beyer
and Stelzer, partly as Vice Dean. In addi-
tion, he was a member of the Senate from
2003 to 2014 and actively participated in
the Faculty Council from 1997 to 2014.
Professor Ulbricht served as director of
the Institute of Solid Mechanics for many
years. In his work as a DFG review board
member, he was highly regarded as a fair
and mediating expert.

Professor Ulbricht and his team in 2011 (left), walking tour in Moritzburg with colleagues of the
Institute of Solid Mechanics (right).

Since 1996, Professor Ulbricht has been just as committed in actively contribut-
ing his expertise as a member of the Board of Directors to the "Association of Ap-
plied Mathematics and Mechanics" (GAMM), which he shaped as Secretary for
many years between 1997 and 2008. During this time, Volker Ulbricht supported
several presidents, ensured a smooth running of the board meetings, took care of the
interests of GAMM with great experience, concentrated on the essentials and always



Preface xi

Volker Ulbricht together with Holm Altenbach and Konstantin Naumenko at GAMM 2003 in
Abano-Padua (left); Volker Ulbricht and Reiner Kreißig at the colloquium on the occasion of Pro-
fessor Ulbricht’s 70th birthday 2019 in Dresden (right).

looking for balance, including the organization of the annual meeting in Dresden in
2004.

Professor Ulbricht not only impressed us with his technical expertise. It is in
particular his charm – to all of us and most of his colleagues he was known as Ulbi
– that we will miss in the future.

April 2022

Magdeburg, Holm Altenbach
Dresden, Michael Beitelschmidt

Markus Kästner
Konstantin Naumenko

Thomas Wallmersperger
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Chapter 1
The Use of the Homogenization Method in the
Analysis of Anisotropic Creep in Metal-matrix
Composites

Holm Altenbach, Gennady Lvov, Ivan Lvov, and Oleg Morachkovsky

Abstract The primary purpose of this study is the development of a method for
the numerical homogenization of the nonlinear creep properties of unidirectionally
reinforced fiber composites. The constitutive relations for a homogeneous material,
equivalent to composite, are based on the hypothesis of the existence of a potential
for the strain rates of steady-state creep. The generalization of the power-law depen-
dence of the strain rate on stresses for the case of a complex stress state is achieved
by introduction of an equivalent stress using a 4th rank tensor. The structure of this
tensor allows to take into account the required symmetry class for a particular form
of fiber packing. The homogenization procedure is based on micromechanical anal-
ysis of a representative composite volume. A technique for the numerical simulation
of physical experiments necessary for the identification of the material parameters
of the theoretical model is proposed. A series of numerical calculations by the finite
element method in the ANSYS software for a boron-aluminum composite has been
carried out.
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2 Holm Altenbach, Gennady Lvov, Ivan Lvov, and Oleg Morachkovsky

Key words: Unidirectional composite, Nonlinear creep, Micromechanical model-
ing, Numerical homogenization

1.1 Introduction

Composite materials are increasingly used in various fields of modern technology
due to the high ratio of strength and stiffness to weight, the possibility of creat-
ing materials with the required anisotropy of properties, and good manufactura-
bility (Altenbach et al., 2003, 2018). In engineering applications, composite struc-
tures are often subjected to stresses for a long time, which can lead to the develop-
ment of creep deformations. The temperature range at which creep appears is very
wide, from room temperature for composites with a polymer matrix, up to 2000◦C
for carbon-carbon composites. Consideration of creep and stress relaxation in the
design of structures is impossible without the development of rheological models
(Reiner, 1969; Palmov, 1998) of composite materials. The relevance of such studies
has led to a significant amount of recent publications devoted to various aspects of
this problem.

Asyraf et al. (2020) presents a modern overview of the creep analysis of elements
of structures made of composite materials and wood. The focus is on the work ded-
icated to the cantilever construction structures. Theoretical models, in which creep
deformation velocities are determined by power law model dependencies on stress
and time, are considered. Works are noted using various options for Norton’s law.
Temperature effect is taken into account by exponential dependencies like the Ar-
rhenius law (Arrhenius, 1889). Publications, in which the creep is modeled by vis-
coelastic dependencies with various combinations of Kelvin-Voigt and Maxwell el-
ements, are highlighted. The results of experimental work on bending and uniaxial
stretching of rods were analyzed. The problems of the accuracy of the creep model-
ing and the formation of strength criteria for practical use are allocated.

Ornaghi Jr. et al. (2020a) describes the results of the analysis of the creep and re-
laxation of stresses of multilayer carbon fiber-reinforced polymer (CFRP) with dif-
ferent layered orientation of the fibers. Experiments were performed using a three-
point bending clamp of plate samples. Samples were loaded at three stress levels. In
each stress level, three different temperatures are applied: 50◦C, 150◦C and 210◦C,
which ensured the possibility of analysis of three aggregate states in the process of
curing epoxy resin. Two variants of exponential dependence are used to approximate
relaxation curves. Analytical predictions showed good agreement with experimental
results, including temperature dependencies. The models presented in the work can
be extended to other polymer composites.

Yang et al. (2021) analyzed the physical mechanisms and methods of mathemat-
ical modeling of metal matrix composites creep. A wide range of compositions is
considered: from hardening by the nano-sized particles to composites reinforced by
short and long fibers. In the second stage various variants of power laws of depen-
dencies of the creep deformation rate were used for creep controlled by diffusion,
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for migration models of vacancies, for creep polycrystalline alloys and for sliding
mechanisms on grain boundaries. The features of the creep of metal matrix com-
posites, reinforced by micro-sized particle and nano-sized particle, are considered
in detail. The most widely used ceramic particles of silicon carbide and aluminum
oxide due to high hardness and thermal stability at high temperatures. Based on
the analysis performed, it was concluded that the addition of ceramic particles and
fibers in metal matrix composites is an effective way to increase the creep resistance
at elevated temperatures.

In Sala et al. (2021) the influence of the stress level and operating conditions
on the creep characteristics of composites reinforced with flax and hemp fibers are
experimentally analyzed. Flax unidirectional ribbon and hemp satin woven fabric
were used for the preparation samples. Biosourced epoxy was used as a matrix.
Creep and recovery experiments were carried out at various temperatures (23◦C
and 70◦C) and relative humidity (50% and 70%C).

The model of an anisotropic viscoelastic body is used for the theoretical descrip-
tion of creep. The creep strain rates were set using the 4th rank compliance tensor,
the structure of which corresponded to an orthotropic body. The flow law took into
account the creep of the matrix and fibers.

The experimental results showed that the level of time-delayed deformation at
the creep stage is higher than at the recovery stage. Dependencies of irreversible
deformations on environmental conditions and stress levels have also been estab-
lished.

Specific manifestations of rheological properties arise in structural elements cre-
ated by 3D printing methods. In Chen et al. (2020), the thixotropy and creep of
a cement composite based on calcium sulfoaluminate are experimentally analyzed.
Empirically, a specific yield point has been established, which is the minimum value
of the shear stress required to obtain flow. The second characteristic is plastic vis-
cosity, which determines the ability to resist deformation when the yield point is
exceeded. These two properties can be the main parameters for 3D printing of con-
crete structures.

Khatkar and Behera (2021) presented the results of an experimental analysis of
the fatigue strength and creep of E-glass/epoxy-based composite leaf springs. Var-
ious types of reinforcement were used to make the samples: chopped fibers, uni-
directional (UD), bidirectional plain woven (2D), and 3D woven solid structures.
The leaf springs were tested for cyclic flexural strength using their own test rig. The
leaf springs were subjected to pulsating flexural loading at a frequency of 1 Hz for
up to 20000 cycles. Short-term analysis of flexural creep initially showed a rapid
increase in compliance, and then the rate of its increase decreased for all composite
leaf springs. It has been found that a leaf spring made of a three-dimensionally re-
inforced composite material has the highest cyclic bending strength. Unidirectional
composites and fabric-reinforced materials showed poor creep resistance compared
to 3D orthogonal composites. A 3D braided composite leaf spring with minimum
binder has proven to be the best material for automotive leaf spring due to its high
cyclic flexural strength and moderate creep.
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The results of experimental research and theoretical modeling of the creep of
multilayer fiberglass specimens are presented in Lv et al. (2020). Uniaxial tension
and compression experiments were carried out on an INSTRON 8802 setup with a
hydraulic loading system. The heating device kept the controlled temperature of the
sample at 70◦C during the tests. Samples were made using 12 prepreg layers with
different stacking sequences. The stress-strain curves show significant non-linearity
as well as differences in tension and compression.

For the theoretical generalization of the experimental results, a nonlinear vis-
coplastic model has been developed that reflects the asymmetry of tension and com-
pression during creep. Putting the hydrostatic pressure into the constitutive rela-
tions made it possible to take into account the tension-compression asymmetry of
anisotropic composites. The proposed model was implemented using finite element
analysis in ABAQUS software through a custom subroutine UMAT. The model was
tested against experimental creep curves for unidirectional and multilayer plastics
in tension and compression.

In Karthik et al. (2020), the effect on the creep characteristics of a polymer com-
posite with an epoxy base and various fillers was experimentally investigated. Sam-
ples for testing were made with organic fillers: agave, cornhusk, jute. Particles of
basalt, carbon, glass and ash are used as inorganic fillers. Dissipative and elastic
characteristics were determined by the dynamic method with flexural vibrations at
frequencies of 1 Hz, 5 Hz and 10 Hz. Short-term creep tests were performed at
40◦C. A static stress of 1.0 MPa was applied for 30 minutes after temperature sta-
bilization, and creep strain was measured as a function of time. It was found that
composites filled with inorganic particles have low creep strain due to the higher
rigidity of inorganic fillers compared to organic fillers. Among organic materials,
the greatest creep deformation was observed in composites filled with corn husk
particles. The smallest creep strain was found in the case of ash particles due to
their better adhesion to the epoxy resin.

The results of an experimental study of the creep of metal matrix composites
SiCp/2024Al are presented in Gong et al. (2020). The experiments were carried out
in an atmospheric environment using a CRIMS RDL100 setup. The choice of test
modes for was carried out in such a way that the stresses did not exceed the yield
point for a given temperature, but the rate of creep deformations was also sufficient
for fixing by sensors in the section of steady creep. Tests were conducted at fixed
temperatures of 250◦C, 300◦C and 350◦C. The temperature maintenance error did
not exceed ± 2◦C. The samples were loaded with constant stresses in the range
of 40 MPa -140 MPa so that at a given temperature three stages of creep appeared:
primary creep, steady-state creep, and accelerated creep. The processing of the creep
curves showed that the dependence of the creep strain rate at the second stage has a
power-law form with an exponent n = 8. To set the temperature dependencies, the
value of the activation energy was determined to be 227.7 kJ/mol.

The creep of a composite pipe has been investigated experimentally and theoret-
ically in Rafiee and Ghorbanhosseini (2020) for the case of loading by compressive
transverse forces. The investigated pipe is made by winding method. The composite
consists of fiberglass and polyester resin. For the tests, a section of a pipe with a
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diameter of 0.5 m, a length of 0.3, and a wall thickness of 0.012 m was used. The
test setup provided the load of a constant force of 981 N distributed over two oppo-
site sections parallel to the generatrix. The deflections of the pipe were recorded for
10000 h at a room temperature of 25±3◦C. Theoretical modeling was carried out
at two levels. Micromechanical modeling of elastic and viscoelastic properties was
carried out using the rule of mixtures. Modeling at the macro level was carried out
by the finite element method using the ABAQUS software package and its own sub-
routine for setting material properties. Comparison of experimental and theoretical
data showed good agreement.

Fliegener and Hohe (2020) developed and investigated viscoelastic models for
unidirectionally and discontinuously long fiber reinforced composites. The model-
ing is based on the three term Kelvin–Voigt formulation. For composites reinforced
with long fibers, the isotropic formulation is generalized to anisotropic form using
scale functions for three spatial directions. Micromechanical composites analysis
uses an isotropic viscoelastic matrix model and a transversely isotropic Hooke’s
law for fibers. To determine the parameters of the composite creep models, experi-
mental studies of a pure thermoplastic polymer, as well as a thermoplastic material
reinforced with discontinuously long and short fibers, have been carried out. As an
example of the analysis of the creep of a structural element, a model (Fliegener
et al., 2019) of a three-layer automobile structure under local loading is considered.
The calculations were performed by the finite element method. Good agreement
between the experimental and numerical results was noted. The discrepancy was
observed only in cases where local damage develops in the experimental samples.

In Hao et al. (2020), the influence of the geometry and orientation of fibers on
the properties of composites based on polyethylene reinforced with short fibers from
natural materials was experimentally analyzed. The geometry of the fibers was in-
vestigated using a stereomicroscope followed by computer image analysis. Creep
tests were performed at a constant temperature of 30◦. The test program provided
for stretching the samples at a stress of 2 MPa for 30 min and measuring the de-
formation after removing the load for 30 min. The anisotropy of elastic properties,
creep, and thermal expansion of specimens was systematically analyzed at various
angles of fiber orientation relative to the direction of extrusion. It has been found
that fillers with a high fiber length to diameter ratio can limit deformation of the
polymer matrix. In addition to the experiments, the stress and strain distributions in
the specimens were simulated by the finite element method.

Jafaripour and Taheri-Behrooz (2020) analyzed the creep of polymer compos-
ites using a nonlinear viscoelastic model of an anisotropic environment. Nonlinear
parameters depending on temperature and stresses are added to integral relations
of unsteady nonlinear viscoelasticity. The creep kernels are approximated using the
Prony kernels. An iterative algorithm of successive approximations has been de-
veloped to solve nonlinear equations. An iterative process is used to minimize lin-
earization errors. This made it possible to set the size of the time steps in a rational
way.

This approach has been used to analyze the creep of isotropic matrix materials
and for unidirectional composites reinforced with elastic fibers. Micromechanical
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analysis of a representative volume was performed by the finite element method
in the ABAQUS software package. The performed micromechanical studies make
it possible to predict the creep parameters in polymer composites and obtain the
required characteristics by varying the viscoelastic properties of the matrix and the
elastic parameters of the fibers.

The results of experimental studies of the creep of composites made of bio-based
epoxy resin, reinforced with flax fibers, are presented in Jia and Fiedler (2020). To
prepare the reinforcement, the fibers were twisted into strands, sewn with textured
polyester and formed into a non-corrugated fabric. The prepregs for the samples
consisted of 4 layers of flax fabric, which was pre-dried at a temperature of 102◦C.
The vacuum curing technology provided for two cycles: 8 hours at a temperature
of 30◦C, then 16 h at a temperature of 60◦C. To determine the tensile strength and
tensile modulus experiments were carried out on specimen tension on a Zwick 100
kN installation. Creep tests were carried out at five stress levels from 66 MPa to 240
MPa. The creep curves have two distinct sections. At the first stage, the creep strain
increases rapidly with a decrease in the creep strain rate. In the second section, the
dependence of deformation on time is almost linear. Pretreatment of linen fibers
with furfuryl alcohol reduces the creep strain rate by up to 30% compared to the
raw analogue.

Matrices of polymer composites demonstrate viscoelastic properties and sensi-
tivity to ambient temperature and humidity. Nguyen et al. (2020) analyze the creep
of multilayer composites taking into account the influence of a variable tempera-
ture field and humidity. The governing equations of viscoelasticity are based on the
Boltzmann superposition principle. The integral relations for stresses include the pa-
rameters of thermal and hygroscopic expansion. Anisotropic relaxation moduli also
include time, temperature and humidity dependencies. The relaxation kernels are
approximated by a series of exponential Prony functions. The Laplace transform re-
duces the associated hygrothermo-mechanical problem for viscoelastic laminates to
a linear one with respect to images. Numerical results for stresses and strains are ob-
tained using inverse transformation methods. Tasks for a laminated plate with sinu-
soidal distribution over the upper and lower surfaces of pressures, temperatures and
humidity parameters are considered as examples. The first stage of the analysis was
to determine the temperature and humidity distributions over the plate thickness.
Then the mechanical parameters were determined using the fast Fourier transform.
The effectiveness of the proposed approach has been demonstrated for a number of
particular problems of thermal conductivity, thermoelasticity, and creep.

The purpose of the experiments in Ornaghi Jr. et al. (2020b) was to study the
creep of polymer composites reinforced with glass and carbon fibers. The influ-
ence of percentage ratios of filler types, alternation of layers, test temperature and
porosity was studied. Prior to creep experiments, porosity was determined for each
composite using optical microscopy. Elastic and dissipative characteristics at differ-
ent temperatures in the range of 25-210◦C were determined by a dynamic method.
Creep experiments were carried out at the same temperatures with a constant stress
of 2 MPa for 60 s. When processing the results, the creep curves were approximated
by the power-law dependence of deformation on time. To predict long-term creep
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based on short-term tests, a temperature-time analogy with the Arrhenius depen-
dence was used. The analysis of numerous results allowed obtaining data for the
rational choice of the structure of hybrid composites in relation to creep properties.

Samareh-Mousavi and Taheri-Behrooz (2020) present a new phenomenological
model of decreasing the stiffness of composite materials with a polymer matrix dur-
ing creep. The governing equations are formulated for a uniaxial stress state. These
equations include non-linear relationships between stresses, strains, time, and num-
ber of loading cycles. The presented damage model consists of an elastic component
that depends on the number of cycles. For creep deformations, nonlinear depen-
dences on stresses and time are used, as well as a special parameter reflecting the
effect of the number of loading cycles. The proposed model was tested on experi-
mental data on the creep of short-fiber fiberglass with an epoxy matrix. It has been
established that, on the basis of the proposed relations, it is possible to predict the
form of isochronous curves for various numbers of loading cycles.

In Sun et al. (2020), a study was made of the effect of ambient humidity on the
creep of polymer composites. Three-dimensional constitutive relations for the creep
of an orthotropic body are given in a coordinate system that coincides with the sym-
metry planes of the material. Creep deformations are set by integral dependencies,
which include swelling parameters reflecting the effect of moisture.

The basic orthotropic equation of a composite plate, taking into account the
viscoelastic creep deformation and swelling deformation in the base material, the
coordinates have the following form: obtained by introducing the moisture shear
coefficient into the nonlinear Chapery equation. Hygrothermal-mechanical tests of
adhesion for moisture absorption, as well as tests for static mechanical properties
and short-term creep under tension. Recovery tests were performed with different
moisture contents to obtain hygroscopic parameters and non-linear creep parameters
depending on moisture and stress. A fully coupled numerical prediction model was
developed in ABAQUS using a User Defined Materials Subroutine (UMAT) and a
User Defined Field Variables (USDFLD) subroutine to simulate conjugate diffusion
and nonlinear creep behavior. There is good agreement between the numerical and
experimental results.

At present, before numerical simulations work with a three-dimensional or-
thotropic constitutive model of nonlinear creep, taking into account the effect of
moisture, is derived by introducing the moisture shear coefficient into the nonlin-
ear equation. Then, experimental studies of composite materials were carried out.
laminates for obtaining hygroscopic parameters and non-linear creep parameters
depending on moisture and stress. Based on the measured material data, a three-
dimensional numerical model was then found to predict the fully coupled diffusion-
nonlinear creep of composite laminates.

A feature of detachable joints of structural elements made of composite materi-
als is the relaxation of contact stresses due to creep. Xie et al. (2020) is devoted to
the application of the theory of viscoplasticity and the theory of fractal contact to
study the processes of weakening of strength in bolted joints of structural elements
made of carbon fiber reinforced plastics. The mathematical model of the material
includes an associated flow law for plastic deformations, and the dependence of ef-
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fective creep deformations on time includes the first section and the section of the
steady-state stage. All constitutive relations are written for a transversely isotropic
composite, taking into account the asymmetry of tension and compression. It is
assumed that plastic deformations and creep do not develop in the direction of rein-
forcement.

To identify the parameters in the constitutive relations, experiments were carried
out on samples made of carbon fiber. The samples were cut at different angles with
respect to the direction of the fibers. Compression creep tests were carried out at
70◦C at three stress levels for 50 h.

The proposed constitutive relations were implemented in the ABAQUS software
package with the implementation of custom material models. Finite element analy-
sis of a bolted joint was carried out on a model of two square sheets (40×40×4 mm)
of carbon fiber compressed in the center by an M6 stainless steel bolt. Numerical
modeling has made it possible to investigate the effect of plastic deformations on the
distribution of contact pressures as a result of preliminary tightening of the bolt. The
analysis of creep deformations made it possible to establish the features of the stress
relaxation processes depending on the degree of roughness of the contact surfaces.
Comparison of the numerical results with experimental data showed that the error
of the FEM analysis decreases when the deformation of the microroughness of the
contact surfaces is taken into account.

The given examples of publications indicate a wide variety of approaches to mod-
eling the creep of composites. Structures of heterogeneous materials, in which re-
inforcement with nano- and macroparticles, various types of fiber reinforcement,
and multilayer laminates are used, are of great importance. The rheological prop-
erties of polymer matrices are described by equations of viscoelastic environments,
and nonlinear creep models are used for metal matrices. The methods of taking into
account the influence of plastic deformations, temperatures, humidity, and other fac-
tors on creep are also varied. For the practical use of composites creep models in
modern computational practice, a necessary stage is the homogenization procedure
in the formation of constitutive relations with respect to the averaged characteristics
of continuum mechanics. This article is devoted to the development of a method
for homogenizing the creep properties of unidirectionally reinforced metal-matrix
composite materials.

1.2 Homogenization Method for Determining the Properties of
Composite Materials

It is known that on a micro- and meso-scale all materials are heterogeneous, but
many of their properties can be determined within a continuous model involving
the principle of efficient homogenization. According to this principle, the existence
of representative volume is assumed, within which the properties of the heteroge-
neous material can be averaged. The scale of the representative volume of averaging
should be much larger than the characteristic size of the inhomogeneity and small
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compared to the characteristic size of the body. Under these conditions, the hetero-
geneous material can be idealized by considering it as equivalent to a homogeneous
material with properties averaged over the representative volume. The problem of
deformation of constructions made of composite material is solved using averaged
properties.

We introduce the representative volume of a heterogeneous medium having a
characteristic size equal to the averaging scale. Average stresses and strains are de-
termined as follows: 〈

σij

〉
=

∫

V

σijdv, (1.1)

〈
εij
〉
=

∫

V

εijdv, (1.2)

where εij is the tensor of small deformations, and σij is the Cauchy stress tensor.
The effective stiffness for elastic deformations, denoted by the tensor Cijkl, is de-
termined by the ratio: 〈

σij

〉
= Cijkl 〈εkl〉 . (1.3)

To solve the problem of the effective elastic properties, it is necessary to conduct
a micro-mechanical analysis within the representative element and perform the av-
eraging procedure defined by expressions (1.1) and (1.2). Details of the numerical
method of calculating the components of the tensor Cijkl for unidirectional rein-
forced composites are given in Darya Zadeh and L’vov (2015). The high scatter of
test results complicates the problem of identifying creep parameters.

For homogeneous materials, the creep rates in samples cut from a single rod may
differ by ten percent. In this case, it is difficult to determine that the difference in
creep rate for samples cut from the same material in orthogonal directions is the
result of anisotropy or data scatter. Creep anisotropy is more pronounced in hetero-
geneous materials. For example, in polymer composites reinforced with fibers, the
experimental results show completely different creep rates in the fiber direction and
orthogonal direction. Creep anisotropy also occurs in the weld metal (Naumenko
and Altenbach, 2005) on samples cut in the welding directions and the transverse
direction. For periodic heterogeneous structures, the theoretical method of averag-
ing allows to determine the effective creep properties on the basis of known creep
properties of the constituent components. Theoretical determination of the effective
properties of periodic multiphase materials has many advantages over experimental
research. Analytical or numerical methods of homogenization for periodic media
allow finding effective creep properties for many variants of multiphase structures.

1.3 Creep Theory of Initially Orthotropic Materials

Consider a creep model of a unidirectional reinforced composite material with an
orthogonal fiber packing scheme. Since the equivalent homogeneous material for a
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unidirectional fibrous composite is an orthotropic material, it is possible to use the
creep theory for orthotropic materials. Use the creep law of orthotropic heteroge-
neous materials described in Morachkovskii and Zolochevskii (1980); Naumenko
and Gariboldi (2014); Naumenko and Altenbach (2016) in the matrix form using
Voigt’s notation:

ċ=
ċeq

2σeq
[B]σ, (1.4)

where σ = (σ11,σ22,σ33,2σ12,2σ23,2σ31)
T, ċ = (ċ11, ċ22, ċ33, ċ12, ċ23, ċ31)

T - vec-
tors composed from components of stress and creep rates tensors; σ2

eq =
1
2σ

T [B]σ -
equivalent stress.

Matrix of material constant creep properties, which are introduced to account for
the initial orthotropy of homogeneous material, has the form:

[B] =

∣∣∣∣∣∣∣∣∣∣∣∣

b1111 b1122 b1133 0 0 0
b1122 b2222 b2233 0 0 0
b1133 b2233 b3333 0 0 0

0 0 0 b1212 0 0
0 0 0 0 b2323 0
0 0 0 0 0 b3131

∣∣∣∣∣∣∣∣∣∣∣∣

. (1.5)

From the condition of incompressibility due to creep deformations, the next restric-
tions follow:

b1111 +b1122 +b1133 = 0,
b1122 +b2222 +b2233 = 0,
b1133 +b2233 +b3333 = 0.

(1.6)

In the case of heterogeneous materials, this condition for averaged total deforma-
tions may not be met due to the compressibility of the fibers.

For steady-state creep the constitutive equations (1.4) for orthotropic creep can
be transformed into a form:

ċ= σn−1
eq [B]σ. (1.7)

The component-by-component form of writing these equations takes the form:

ċ11 = σn−1
eq [b1111σ11 +b1122σ22 +b1133σ33] ,

ċ22 = σn−1
eq [b1122σ11 +b2222σ22 +b2233σ33] ,

ċ33 = σn−1
eq [b1133σ11 +b2233σ22 +b3333σ33] ,

ċ12 = 2σn−1
eq b1212σ12,

ċ23 = 2σn−1
eq b2323σ23,

ċ31 = 2σn−1
eq b3131σ31.

(1.8)
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1.4 Method for Determining the Average Creep Properties of
Fiber Composites

The natural way to determine the material parameters of the theoretical model of
the material is to carry out the required number of basic experiments. An alternative
possibility is to numerically simulate basic experiments using the known creep prop-
erties of the matrix and fibers. The constitutive equation (1.4) for averaged stresses
and creep strains take the following form:

〈ċ〉= 〈σ̂〉n−1
eq [B]〈σ〉 , (1.9)

where
〈σ〉= 1

V

∫

V

σdv, 〈ċ〉= 1
V

∫

V

ċdv. (1.10)

Consider uniaxial uniform (on average) tension of the selected composite volume
in the directions of the axes xi, at constant stresses. Then the average rates of creep
deformations in the direction of tension are determined by the relations:

〈ċ11〉 = b1111
〈
σn

11

〉
,

〈ċ22〉 = b2222
〈
σn

22

〉
,

〈ċ33〉 = b3333
〈
σn

33

〉
.

(1.11)

Considering the net shift of the selected volume of the composite in the coordinate
planes at constant values of tangential stresses, we obtain for the average rates of
shear deformation:

〈ċ12〉 = b1212
〈
σn

12

〉
,

〈ċ23〉 = b2323
〈
σn

23

〉
,

〈ċ31〉 = b3131
〈
σn

31

〉
.

(1.12)

Note that the dependencies (1.11)-(1.12) correspond to the curves of the steady
creep of the composite material when tension in the coordinate directions xi,(i =
1,2,3) and shear in the coordinate planes xixj(ij = 12,23,31). If you calculate the
rate of steady creep, for example, in the direction 1 –

〈
ċ1

11

〉
,
〈
ċ2

11

〉
, corresponding to

the steady creep of the representative volume of the composite when it is stretched
by two different levels of stresses

〈
σ1

11

〉
,
〈
σ2

11

〉
respectively, to determine the con-

stants n and b1111 it is possible to use equations:

lg
〈
ċ1

11
〉
= lgb1111 +nlg

〈
σ1

11
〉

, lg
〈
ċ2

11
〉
= lgb1111 +nlg

〈
σ2

11
〉

. (1.13)

From Eqs. (1.13) the creep parameters can be obtained:

n=
lg 〈ċ1

11〉
〈ċ2

11〉
lg 〈σ1

11〉
〈σ2

11〉
, b1111 =

( 〈
ċ1

11

〉
〈
σ1

11

〉n

)
. (1.14)
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Similarly, by calculating the rate of steady creep for the other two directions can
be found:

b2222 =

( 〈
ċ1

22

〉
〈
σ1

22

〉n

)
, b3333 =

( 〈
ċ1

33

〉
〈
σ1

22

〉n

)
. (1.15)

Moreover, according to the calculated data of the rates of steady creep in the shift in
the coordinate planes xixj, determine:

b1212 =

( 〈
γ̇1

12

〉

〈σ1
12〉n

)
, b2323 =

( 〈
γ̇1

23

〉
〈
σ1

23

〉n

)
, b3131 =

( 〈
γ̇1

31

〉
〈
σ1

31

〉n

)
. (1.16)

Described algorithm allows to determine all average creep properties of composite.
The parameters of the constitutive relations can be found as a result of physical
experiments or on the basis of micromechanical analysis.

1.5 Micromechanical Creep Analysis of Unidirectional
Composite

By way of illustration, the calculation of the creep parameters is performed for an
unrestricted orthogonally reinforced fiber composite material (Fig. 1.1). It consists
of an aluminum matrix and boron cylinder inclusions.

Fiber and matrix materials are considered isotropic. Hooke’s law describes the
elastic properties of materials, creep deformations in the fibers do not develop, and
Norton’s law describes the creep properties of the matrix:

ċ=Aσn. (1.17)

The parameters of the fiber and matrix materials are presented in Table 1.1.
Heterogeneous material in the sizes of those, which considerably exceed the size

of the elements, which are periodically repeated, is accepted as homogeneous. The
averaging procedure is allocated a representative volume that is repeated periodi-
cally. However, numerical experiments are performed on a composite model con-
sisting of several minimal representative volumes (Fig. 1.2a). This is done to avoid
problems with the boundary effects that can occur due to the setting of a constant

Fig. 1.1 Three-dimensional
model of the composite.
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Fig. 1.2 Selection of the min-
imum representative volume
(a - composite model, b - min-
imum representative volume).

a) b)

stresses on the boundaries of the model. When processing the data from the numer-
ical experiment, the procedure for obtaining the averaged deformations was per-
formed at the minimum representative volume, which is released near the middle
of the composite model (Fig. 1.2b), where the influence of the boundary effects is
negligible.

For such a heterogeneous material, the equivalent homogeneous material is or-
thotropic. Due to the similarity of the properties of the composite in the directions
x1 and x2, the components of the tensor (1.9) must satisfy the following conditions:

b1111 = b2222,
b1133 = b2233,
b2323 = b3131.

(1.18)

To identify the material constants in (1.9), numerical calculations were performed
using the finite element method for cases of loading in the transverse plane.

Consider a numerical experiment performed on the minimum representative vol-
ume of uniaxial stretching in the direction x1. The average creep rate in the case of
uniaxial stretching is related to the average stress by expression (1.11). The aver-
aging over the volume of stresses and strains can be reduced to averaging over the
cross-sectional area of the representative volume. To reduce the computational costs
when calculating the average deformation, you can use the Green’s equation:

Table 1.1: Properties of composite materials.

Material parameter Matrix Fiber

Modulus of elasticity, Pa 7.1 ·1010 4.2 ·1012

Poisson’s ratio 0.33 0.3

Parameter A of Norton’s law, Pa−n/s 1.8 ·10−33 -

Exponent n 3.4 -



14 Holm Altenbach, Gennady Lvov, Ivan Lvov, and Oleg Morachkovsky

〈ε̇11〉= 1
S

∫

S

ε̇11ds=
1
S

∫

S

∂u̇

∂x
ds=

1
S

∮

L

u̇dy=
1
ab

b∫

0

u̇dy, (1.19)

where S is the cross-sectional area of the representative volume; L is the area con-
tour, x and y are the coordinates in the coordinate system, which coincides with x1
and x2 directions, a and b are the dimensions of the cross-sectional area. Similar
simplifications can be made to obtain stresses

〈σ11〉= 1
S

∫

S

σ11ds=
1
ab

a∫

0

dx

b∫

0

σ11dy=
1
b

b∫

0

σ11dy . (1.20)

First, the time required to achieve a constant rate of creep deformation was de-
termined. A series of creep analyzes on the composite model was performed under
a constant uniform load in direction x1 for different stress levels. Similar numerical
experiments were carried out for the analysis of the steady-state creep during shear
in the plane x1x2. Figure 1.3a shows the picture of stress distribution in the tensile
experiment, and Fig. 1.3b shows the shear stresses σ12 in the experiment for shear.
These pictures correspond to the state of steady-state creep. These results indicate
that the influence of edge effects is insignificant within the minimum representative
volume marked by the dotted line in Fig. 1.2a. The distribution of stresses in this
volume corresponds to a periodically repeating state of an infinite composite massif.

To obtain the degree in the law of creep, using (1.14), a set of numerical experi-
ments at different stress levels

〈
σi

11

〉
, (i = 1, . . . ,M). The result of this series of M

experiments is a set steady state creep strain rates
〈
ċi11

〉
for different stress values.

Statistical processing of the results was performed by the method of least squares.
The value n = 3.21 was obtained as a result of a numerical experiment on tension
along the x1 axis. The values of the parameters of tensor BBB, found from experiments
on loading in the transverse plane, are given in Table 1.2.

Table 1.2: Parameters of the tensor BBB, Pa−n/s.

Parameters Values

b1111 1.42 ·10−34

b1122 6.14 ·10−36

b1212 3.68 ·10−33
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a)

b)

Fig. 1.3: Stress distribution σ11 (a) and σ12 (b) Pa.
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1.6 Conclusions

New technique has been developed for the numerical homogenization of the creep
properties of unidirectionally reinforced fiber composites. The initial information
for micromechanical analysis is the structure of the composite, the characteristics of
the steady-state creep of the matrix and the elastic properties of the fibers. The theo-
retical model of the steady-state creep of the composite assumes the replacement of
its properties with the properties of an equivalent orthotropic body. The constitutive
equations for the creep rate tensor are based on the assumption of the quadratiform
of the creep potential with respect to the stress tensor. The invariant form for the
equivalent stress is introduced using the fourth rank tensor with orthotropic symme-
try class.

To carry out micromechanical analysis, a geometric model was built and load-
ing conditions were set, which ensure full compliance of the distribution of micro
stresses within the minimum representative volume to the state that occurs during
homogeneous macro deformation of the composite. As an example of the applica-
tion of the developed technique, calculations were carried out for a boron-aluminum
composite. A series of numerical calculations was performed by the finite element
method in the ANSYS software package, simulating tension and shear in a plane
perpendicular to the direction of reinforcement. Processing the results of microme-
chanical analysis made it possible to predict the parameters of the constitutive rela-
tions for the steady-state creep of this metal-matrix composite.
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Chapter 2
General Forms of Limit Surface:
Application for Isotropic Materials

Holm Altenbach and Vladimir A. Kolupaev

Abstract Limit surfaces are a tool used in theory of plasticity and failure analysis
for dividing the safe from the unsafe regions. Their mathematical formulations are
given by yield and strength criteria. The number of suggested criteria is unmanage-
able. By lack of the sufficient conditions only plausibility assumptions can limit this
variety.

Typically, the TRESCA, VON MISES, and SCHMIDT-ISHLINSKY criteria are em-
ployed for the modeling of yielding. The effect of pressure-sensitivity is accounted
for with the criteria of RANKINE and BURZYŃSKI-YAGN. Generalizations are ob-
tained with linear combinations of these and further criteria. However, methods for
the selection of efficient criteria for a particular application are still missing.

In this work, a nomenclature for isotropic yield criteria is introduced. Proposed
systematization restricts the number of appropriate yield criteria. Global convexity
limits for the yield criteria of trigonal and hexagonal symmetry are defined.

The basic idea is to find a general form of isotropic yield surface that satisfies the
plausibility assumptions. This surface should contain possible yield surfaces lying
between the lower and the upper bounds of the convexity restrictions. Any known
or new criteria can then be considered as a special cases of the general criterion. The
discussed yield criteria are extended for pressure-sensitive materials. The selection
of the effective criterion for a particular application is simplified.

Key words: Equivalent stress, Deviatoric plane, Isogonal and isotoxal hexagon,
Multi-axial loading
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2.1 Introduction

Engineering methods relate to macroeffects captured empirically. With the help of
phenomenological criteria one can describe the beginning of yielding, damage or
brittle failure of a certain material in a simplified way. The critical state of the sound
material is represented only by the stresses, strains, and energetic or power conside-
rations, at which the appropriate limit of a material is reached. Their gradients are
not taken into account (Paul, 1968a,b).

In the case of stresses, a limit surface can be suggested in the principal stress
space. A corresponding criterion is the mathematical expression taking into account
of all points on the limit surface (Feodosjev, 1975; Franklin, 1971; Pisarenko and
Lebedev, 1969; Skrzypek, 1993).

In order to formulate such criteria, the equivalent stress concept is typically used
(Timoshenko, 1953). Within the concept, arbitrary stress states can be expressed as
scalar quantities and compared to uniaxial tensile stress (Fromm, 1931) . Informa-
tion about stress components and loading path is neglected (Paul, 1968a,b; Wu and
Scheublein, 1974).

Uniaxial tensile properties can be readily measured in experiments. These data
for different materials are compared in manuals, technical reports, and manufac-
turer’s specifications. Solely, the proper criterion should be selected for design. Be-
cause of its simplicity and clarity, the equivalent stress concept found use in engi-
neering applications.

Several criteria have been proposed over the last 150 years. They are summarized
in numerous textbooks, see Altenbach et al. (1995); Bertram (2012); Pisarenko and
Lebedev (1976); Potapova and Yarzev (2005); Skrzypek (1993); Yagn (1933); Yu
(2004); Życzkowski (1981) among others. The amount of introduced criteria is re-
markable. Until now, methods for comparison and selection of the most suitable
criterion for a particular application are missing, see, for example, Lebedev (2010).

Further, choosing an appropriate criterion remains challenging because of gene-
rally incomplete data sets and their inevitable scattering. Trying to fit different cri-
teria is intricate and the optimal evaluation cannot be guaranteed. In order to eli-
minate the necessity of a specific criterion selection, a general criterion is needed
(Rosendahl et al., 2019b), cf. Voigt (1901).

In the present work, the geometric properties of isotropic yield criteria are exa-
mined. Global convexity limits of the yield criteria are defined and plausibility as-
sumptions are listed. A general isotropic yield surface should be able to describe
possible yield surfaces lying between the lower and the upper bounds of the conve-
xity restrictions. Any known or new criteria can then be viewed as a special case of
the general criterion and are, thus, secondary. The use of the general criterion with
reasonable restrictions (Kolupaev et al., 2016; Kolupaev, 2018) prevents the risk of
inappropriate extrapolations, cf. Życzkowski (1981).

In our work, a nomenclature of criteria based on their geometric properties is
introduced. A general schematic for expressing pressure-insensitive yield criteria
is provided. Known and new yield criteria are assigned to these schematic. This
facilitates the selection of criteria for various applications. Critical gaps in the for-
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mulation of criteria are closed. The best known criteria are generalized considering
the plausibility assumptions (Appendix 2.7.8). The parameters of the criteria are
restricted based on the convexity condition in the π-plane (deviatoric plane).

A universally applicable yield criteria, which describe a single, convex, and C0-
or C1-continuously surface are proposed. These contain extreme yield figures as
the convexity restrictions. Using a I1-substitution as a function of the trace of the
stress tensor, the introduced criteria are applicable to pressure-sensitive materials.
They incorporate various conditions to obtain special “theories”. The versatility of
the introduced criteria is sufficiently high, which may help to stop the growth of the
amount of proposed criteria, cf. Habraken (2004).

The present work is organized as follows. Section 2.2 presents methods, require-
ments, and restrictions in the formulation of yield and strength criteria. In Sect. 2.3,
the nomenclature of yield and strength criteria is introduced, which allows their de-
scriptive comparison. In Sect. 2.4, the best known criteria in the authors’ opinion
are discussed and new criteria proposed. Strength criteria with the shape variation
in π-plane are discussed in Sect. 2.5. The most important points of our work are
summarized in Sect. 2.6.

2.2 Geometric Properties of Criteria

This section presents methods, requirements, and restrictions in the formulation of
yield and strength criteria for isotropic materials. The geometric properties of the
surfaces are analyzed and systematized, see also Pisarenko and Lebedev (1969,
1976); Lebedev (2010). Linear, quadratic, and cubic I1-substitutions are introduced
in order to obtain the pressure-sensitive generalization of the yield criteria.

2.2.1 Requirements for Yield and Strength Criteria

Yield surfaces for pressure-insensitive isotropic materials are described by a cylin-
der or a prism centred around the hydrostatic axis in principal stress space (Paul,
1968a,b)

σI = σII = σIII, (2.1)

where σI, σII, and σIII denote the principal stresses (Appendix 2.7.1). Such surfaces
do not involve any restriction of hydrostatic stresses (Fig. 2.1).

Cross sections orthogonal to the hydrostatic axis are called deviatoric planes or π-
planes (de Araújo, 1962; Życzkowski, 1981). Owing to isotropy, the cross sections
in the π-plane must be of trigonal, hexagonal or rotational symmetry (Fig. 2.2).

Further, based on the DRUCKER postulate (Altenbach, 2018; Betten, 2001;
Drucker, 1957, 1959), we require convex yield surfaces. Thus, basic cross sections
may be described by a circle or regular polygons of trigonal or hexagonal symmetry
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Fig. 2.1 Yield criteria of
TRESCA (green), VON MISES
(red), and SCHMIDT-
ISHLINSKY (violet) in
the principal stress space
(σI, σII, σIII) and with co-
ordinates (ξ1, ξ2, ξ3) (Al-
tenbach and Kolupaev, 2014).

σII

σI

σIII

ξ1

ξ2
ξ3

a. b.

Fig. 2.2: Yield criteria in the π-plane normalized with respect to the appropriate uniaxial tensile
limit loading σT

0 : a. Isogonal (black) and isotoxal (blue) hexagons of trigonal symmetry, b. Regular
hexagons of the SCHMIDT-ISHLINSKY (black) and TRESCA (blue) criteria of hexagonal symmetry
and the circle of the VON MISES criterion (red) of rotational symmetry (Rosendahl et al., 2019b).

in the π-plane (Rosendahl et al., 2019b, see also Pisarenko and Lebedev (1976);
Lebedev (2010)): e.g. triangles, hexagons, enneagons (nine-sided polygons), dode-
cagons (twelve-sided polygons), among others. Each surface described by a regular
polygon in the π-plane has a counterpart, which is obtained by its rotation by π/n in
the π-plane about the hydrostatic axis, where n is the number of corners (Fig. 2.3).

All materials fail under sufficiently large hydrostatic tensile loading (Gol’denblat
and Kopnov, 1971b; Kolupaev, 2018). In this case, the hydrostatic component of
loading should be introduced in the yield criterion. Hence, the strength criteria re-
strict the hydrostatic tensile stress. With the convexity requirement on the meridian
of the limit surface it follows

3σTTT > σT
0 .

The surface can be open
σCCC →−∞
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Ivlev
Ko

Mariotte

Tresca
Coulomb

Schmidt-Ishlinsky
Hill, de Araújo, Yu

Kolupaev

KolupaevSokolovsky
Billington, Yu

Ishlinsky-Ivlev
Shesterikov

Maxwell
Huber
von Mises
Hencky

Fig. 2.3: Basic yield figures described by a circle and regular polygons of trigonal or hexagonal
symmetry in the π-plane. The symbols of symmetry follow according to Nye (1985).

or closed
σCCC = const. < 0

in the direction I1 < 0, where I1 is the first invariant of the stress tensor (2.107).
The superscripts T and C denote uniaxial tensile and compressive limit loading re-
spectively. Accordingly, TTT denotes equitriaxial (hydrostatic) tensile limit loading
and CCC - equitriaxial (hydrostatic) compressive limit loading (Table 2.7). The sub-
script 0 in σT

0 refers to the stress angle θ = 0 (2.112), see Table 2.7. Note that, the
stress angle at the TTT and CCC loadings is indeterminate.

Criteria discussed in the present work are purely phenomenological. No sufficient
conditions for their formulation can be given (Kolupaev, 2018). They are invented
and, as a rule, not verified by multiaxial stress states (Wu and Scheublein, 1974).
However, the quality of a certain yield or strength criterion may be assessed con-
sidering the plausibility assumptions (Appendix 2.7.8). These assumptions are not
mandatory, but they allow to select user-friendly criteria for a wide range of appli-
cations.

2.2.2 Formulation of Yield and Strength Criteria

Yield and strength criteria for isotropic materials are invariant with respect to an
arbitrary rotation of the coordinate system (Mālmeisters et al., 1977; Życzkowski,
1981). Therefore, such criteria are formulated using invariants of the stress tensor
discussed in Appendix 2.7.1.

Functions of invariants are also invariants (Appendices 2.7.2-2.7.3). For the for-
mulation of criteria Φ we may also use:
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• the principal stresses (principal invariants) σI, σII, and σIII (Altenbach et al.,
1995; Haigh, 1920; Westergaard, 1920; Życzkowski, 1981)

Φ
(
σI, σII, σIII, σeq

)
= 0, (2.2)

• the trace I1 of the stress tensor and the invariants I ′2, I ′3 of the stress devia-
tor (2.107) – (2.109) (Backhaus, 1983; Burzyński, 1928; Ottosen and Ristinmaa,
2005; Reuss, 1933; Sawczuk, 1982; Skrzypek, 1993; Yagn, 1931)

Φ
(
I1, I ′2, I ′3, σeq

)
= 0, (2.3)

• the cylindrical invariants ξ, ρ,θ (2.110) – (2.112) (Lebedev, 2010; Murzewski,
1957, 1960; Novozhilov, 1951a,b; Ottosen and Ristinmaa, 2005)

Φ
(
ξ, ρ, θ, σeq

)
= 0, (2.4)

and
• the spherical invariants ξ, ψ, and θ (2.110), (2.112), (2.113) (Altenbach and

Kolupaev, 2014; Kolupaev, 2018; Lagzdin’ and Tamuzh, 1971; Lebedev, 2010)

Φ
(
ξ, ψ, θ, σeq

)
= 0. (2.5)

In the formulations (2.4)–(2.5), the invariant ξ (2.110) is the scaled invariant I1
and describes the coordinate of the loading on the hydrostatic axis, the radius ρ in
the π-plane (2.111) is the scaled root of the second invariant I ′2, and θ (2.112) is the
corresponding stress angle in the π-plane. The radius ρ may be replaced by the stress
triaxiality factor ψ (2.113) or (2.114), which yields a description of the surface in
terms of the spherical invariants.

In addition, a big family of criteria include positive first principal stress

σmaxt =
1
2
(|σI|+σI), (2.6)

the hydrostatic stress I1, and the second invariant of stress deviator I ′2 to capture
mixed mode (brittle and ductile) fracture. Examples are presented in Sdobyrev
(1959); Trunin (1965); Hayhurst (1972); Altenbach and Naumenko (1997, 2002)
among others. The (non-linear) functions of the maximum tensile stress, the hy-
drostatic stress and the VON MISES equivalent stress is frequently used in damage
evolution equations for the creep and creep-fatigue analysis. Examples are presented
in Kowalewski et al. (1994); Othman et al. (1994); Dyson and McLean (2001); Al-
tenbach et al. (2000); Naumenko et al. (2011).

All these formulations (2.2)–(2.5) are, from a mathematical point of view, equi-
valent. Formulation (2.2) has a historical origin and is primarily mentioned in text-
books of strength of materials and theory of plasticity in the discussion of the clas-
sical criteria. The YU strength theory (YST) as a generalization of these classical
criteria was firstly expressed in the principal stresses (Yu, 2004) and, later, in the
axiatoric-deviatoric invariants (2.3) for visualizations of the meridional cross sec-
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tions (cross section of the limit surface containing the hydrostatic axis) together
with the line of the plane stress state (Kolupaev, 2018). Formulations according to
(2.3) were intensively elaborated until the beginning of XXI century. Although such
criteria are being developed, they are, as a rule, not user-friendly (Appendix 2.7.8,
violated assumptions PP1, PP3, and PM1).

Equations (2.4)–(2.5) allow to manipulate the geometric properties of the sur-
face Φ. Formulation (2.4) seems to be very effective in regard of the applicability
and satisfaction of the plausibility assumptions (Appendix 2.7.8). Equation (2.5) has
hardly found any practical application and is included for the sake of completeness:
it is omitted from our discussions. One or the other of the Eqs. (2.2)–(2.5) may
be preferred depending on the didactic targets, modeling concept, consideration the
plausibility assumptions or desired application.

When pressure-insensitivity is assumed, the first invariant I1 does not influence
failure / yielding (Mālmeisters et al., 1977; Życzkowski, 1981). For this property,
the Eqs. (2.3)–(2.4) can be reduced to

Φ(I ′2, I ′3, σeq) = 0 or Φ(ρ, θ, σeq) = 0. (2.7)

Polynomial formulations of Φ(I ′2, I ′3, σeq) in terms of series of the deviatoric invari-
ants I ′2 and I ′3 are well elaborated (Kolupaev, 2018) but cannot be recommended for
application because of additional outer contours around the physically meaningful
surface in the π-plane. As a rule, the equivalent stress σeq occurs implicitly in such
equations.

In order to satisfy the assumption PM1 (Appendix 2.7.8), the equivalent stress
σeq can be specified explicitly:

σeq =Φ(ρ, θ). (2.8)

Such formulations are advantageous for iterative computations, e.g. in FEM codes.
We may further postulate a multiplicative split of yield criteria into a function of
radius Ψ(ρ) and a function of the stress angle Ω(θ) (Życzkowski, 1981)

σeq = Ψ(ρ)Ω(θ). (2.9)

To highlight deviations of the shape of the surface in the π-plane from the circle of
the VON MISES criterion (Figs. 2.2 b, red circle, and 2.3)

σeq =
√

3I ′2 with Ω(θ) = 1, (2.10)

the function of Ψ(ρ) is often replaced by
√

3I ′2 (Giraldo-Londoño and Paulino,
2020; Kolupaev, 2017; Kolupaev et al., 2018; Lebedev, 2010), which yields

σeq =
√

3I ′2 Ω(θ). (2.11)

Normalizing criteria with respect to the appropriate uniaxial tensile limit loading,
e.g., the tensile yield or strength σT

0 (Table 2.7), leads to the final formulation
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σeq =
√

3I ′2
Ω(θ)

Ω(0)
, (2.12)

which incorporates several well-known yield criteria and is beneficial for the appli-
cation.

2.2.3 Pressure-sensitive Extension of Yield Criteria

Reintroducing the first invariant of the stress tensor I1 in (2.12) using the substitution
(Kolupaev, 2018)

σeq →
[
σeq −γ1 I1

1−γ1

σeq −γ2 I1

1−γ2

]1/2

with γ1 ∈ [0, 1[ (2.13)

does not violate the assumption PM1 (Appendix 2.7.8). The reciprocal values of
the parameters γ1 and γ2 describe the intersection of the limit surface with the I1-
axis (scaled space diagonal in the principal stress space). These points are called
the hydrostatic nodes TTT and CCC (Table 2.7). The parameters γ1 and γ2 do not
interact with other parameters of the criterion (2.12), and thus do not influence the
shape of cross sections in the π-plane.

Therefore, the general equation of a second-order surface of revolution about the
hydrostatic axis in the principal stress space can be formulated as a function of the
coordinates of the hydrostatic nodes TTT and CCC (Altenbach, 2018; Altenbach
and Kolupaev, 2014; Kolupaev, 2018)

3I ′2 =
σeq −γ1 I1

1−γ1

σeq −γ2 I1

1−γ2
. (2.14)

A possibility of an explicit solution of (2.14) with respect to σeq was a widespread
application of this criterion, which is known as the BURZYŃSKI-YAGN criterion.

The meridional cross sections of the rotationally symmetric criteria are shown in
Fig. 2.4. The surfaces result with rotation of the corresponding line around the I1-
axis. The visualization of the criteria (2.14) in the (I1,

√
3I ′2)–plane (BURZYŃSKI-

plane) is then obvious and allows a straightforward comparison with the VON MISES
criterion (2.10) (Fig. 2.4, red line).

For materials, which do not fail under hydrostatic compression (brass, lead, steel,
etc.), the surface Φ has a single hydrostatic node TTT. Based on (2.13) three substi-
tutions are possible:

• linear substitution with γ1 = γ2, at which the hydrostatic nodes at the point TTT
coincide,

σeq → σeq −γ1 I1

1−γ1
with γ1 ∈ [0, 1[ (2.15)

provides straight meridian in the BURZYŃSKI-plane,
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Fig. 2.4: Rotationally symmetric criteria with the setting γ1 = 1/3 (point TTT) based on the nor-
mal stress hypothesis: cone of DRUCKER-PRAGER with γ2 = 1/3, paraboloid of BURZYŃSKI-
TORRE with γ2 = 0, ellipsoid of SCHLEICHER with γ2 = (3 −

√
17)/6, and ellipsoid of

BELTRAMI with γ2 = −1/3 in the BURZYŃSKI-plane (I1,
√

3I ′
2). The VON MISES criterion

(γ1 =γ2 = 0, red line) is shown for comparison.

• the parabolic meridians follow with γ2 = 0

σeq →
[
σeq −γ1 I1

1−γ1
σeq

]1/2

with γ1 ∈ [0, 1[, (2.16)

• and the hyperbolic meridians follow with γ2 ∈]0, γ1[. The second node with the
position 1/γ2 on the hydrostatic axis does not belong to the physically mean-
ingful region of the surface Φ, which is most closed the coordinate origin, cf.
Wu (1973); Yagn (1931). Due to this fact, the hyperbolic surfaces are not recom-
mended for applications, cf. Balandin (1937).

For materials, which fail under hydrostatic compression (aerated concrete and ce-
ramics, hard foams, sintered and granular materials, sandstone, etc.) the second
hydrostatic node CCC is significant. The parameters in (2.14) are then bounded
as follows

γ1 ∈]0, 1[ and γ2 < 0. (2.17)

For the yield criteria (2.12), a pressure-sensitive extension (2.13) provides

√
3I ′2

Ω(θ)

Ω(0)
=

[
σeq −γ1 I1

1−γ1

σeq −γ2 I1

1−γ2

]1/2

. (2.18)

Suitable approximations are often obtained with the linear I1-substitution Eq. (2.15)

√
3I ′2

Ω(θ)

Ω(0)
=

σeq −γ1 I1

1−γ1
, (2.19)

which leads to conical and pyramidal surfaces in the principal stress space (Lebedev
et al., 1979; Lebedev, 2010; Kolupaev et al., 2018; Paul, 1968a,b; Pisarenko and
Lebedev, 1976; Rosendahl et al., 2019b; Wronski and Pick, 1977). It is to note, that
the linear substitution produces an additional surface beyond of the hydrostatics
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node TTT (Fig. 2.4, DRUCKER-PRAGER cone)

I1

σT
0
� 1

γ1

without physical meaning and the apex at the hydrostatic tensile limit loading is
C0-continuously, what contradicts our perceptions and aggravates the computation
of gradient of the surface Φ, see Appendix 2.7.8, assumptions PP3 and PG10. This
quirk can be fixed by the parabolic I1-substitution (2.16) or by “rounding off” with
the C1-transition as multisurface criterion (Kolupaev, 2018).

The cubic I1-substitution in the yield criterion (2.12)

σeq → j+l+m

√(
σeq −γ1 I1

1−γ1

)j (σeq −γ2 I1

1−γ2

)l

σm
eq (2.20)

with integer and positive powers j, l, and m

j+ l+m= 3, j > 0, l� 0, and m� 0, (2.21)

which control the curvature of the meridian, leads to additional fitting possibilities
(Kolupaev, 2018). The equation of the criterion can be still resolved analytically
with respect to σeq. As example, the rotationally symmetric criterion

(
3I ′2
)(3/2)

=

(
σeq −γ1 I1

1−γ1

)j (σeq −γ2 I1

1−γ2

)l

σm
eq with γ1 ∈ [0, 1[ (2.22)

can be introduced. The meridian with l =m = 0 is a straight line and with l = 0 is
a parabola. For materials, that fail at hydrostatic compression, it follows l > 0 with
γ2 < 0.

Further I1-substitutions, e.g. with integer and positive powers

j+ l+m= 6 (2.23)

are conceivable but, in general, can only be treated numerically. If the powers of
the I1-substitution (2.20) are chosen real for refined settings (Fahlbusch, 2015;
Fahlbusch et al., 2016), the I1-substitution with absolute values of the terms

σeq → j+l+m

√∣∣∣∣
σeq −γ1 I1

1−γ1

∣∣∣∣
j ∣∣∣∣

σeq −γ2 I1

1−γ2

∣∣∣∣
l

σm
eq (2.24)

for numerical stability is recommended. Such substitutions are excluded from our
consideration.
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2.3 Designation and Comparison of Yield Criteria

A clear designation of the yield and strength criteria is proposed, what provides
overview and simplifies their selection for application. The criteria are systematized
in tables and diagrams. A method for comparing of yield criteria is presented, which
allows to identify missing criteria.

2.3.1 Nomenclature of Yield Criteria

The mathematical expressions for the yield and strength criteria can be very different
(Subsect. 2.2.2), which makes their comparison for the best adjustment not directly
possible, cf. Matsuoka and Nakai (1985); Yu (2002); Kolupaev et al. (2009); Zhang
et al. (2011); Lagioia and Panteghini (2016); Giraldo-Londoño and Paulino (2020);
Xu et al. (2021) among others. A unique nomenclature and consequent designation
of the criteria can be performed based on their geometric shapes in the π-plane and
meridional cross sections.

Possible shapes of the yield criteria in the π-plane are constrained by the re-
quirement of convexity (Subsect. 2.2.1). The upper and lower convexity limits are
referred to as extreme yield figures (Sayir and Ziegler, 1969; Lebedev et al., 1979;
Marti, 1980; Bigoni and Piccolroaz, 2004; Lebedev, 2010; Rosendahl et al., 2019b).
Extreme yield figures may take the shape of isogonal and isotoxal polygons of tri-
gonal or hexagonal symmetry. Regular polygons are limit cases of the extreme yield
figures.

Isogonal polygons are equiangular. An isotoxal polygon is equilateral, that is, all
sides are of the same length (Koca and Koca, 2011; Tóth, 1964). In general, isogonal
and isotoxal hexagons are of trigonal symmetry (Fig. 2.2a). The regular hexagons of
the TRESCA and SCHMIDT-ISHLINSKY criteria have an additional symmetry axis
and are of hexagonal symmetry (Figs. 2.2b and 2.3, Table 2.1). Isogonal and iso-
toxal dodecagons (twelve-sided polygons) are of hexagonal symmetry, too.

In this work, the basic (regular) yield figures are labeled according to their shapes
in the π-plane (Table 2.1), cf. Rosendahl et al. (2019b):

• the designation © reflects the VON MISES criterion,
• regular triangles are denoted with 3,
• regular hexagons with 6,
• regular enneagons with 9,
• regular dodecagons with 12,
• regular octadecagon with 18,
• regular icositetragons with 24,
• regular triacontahexagon (Modarres-Motlagh, 1997) with 36, etc.

Further regular polygons with the number of corners divisible by three

• pentadecagons denoted with 15,
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• icosihenagons with 21
• icosiheptagons with 27,
• triacontagons with 30,
• triacontatrigons with 33, etc.

are also accepted as yield criteria for isotropic materials, but they has low practical
significance. References of them were not found in the literature. These shapes are
only mentioned for sake of completeness.

Circumflex ˆ and macron ¯ refer to an upward pointing tip or upward facing flat
base of the criterion in the π-plane, respectively (Fig. 2.3). The designation of the
discussed regular polygons is shown in Table 2.1. Further references of the criteria
are given in Kolupaev (2018). The aim of the designation is a visual representation
of the basic yield figures included in the discussed criteria (Tables 2.2–2.5).

Limit surfaces for isotropic materials can be characterized by the regular poly-
gons and the circle in the π-plane they include. For example, the MOHR-COULOMB
criterion contains the regular triangle of the RANKINE and regular hexagon of the
TRESCA criteria in border cases (Table 2.4). The criteria involving less than three of
the regular geometries can be considered as special cases of the general formulation
and are excluded from our discussion. The limitation to three regular geometries is
motivated in Subsect. 2.3.3.

Generalized yield criteria involving three or more basic geometries are signifi-
cant for application. The number of their parameters should not exceed two. The
remained criteria are easily manageable (Tables 2.2 and 2.5). However, the assump-
tion, that the criteria should be a single surface in principal stress space, is fulfilled
only for criteria marked as equations in Table 2.2. Such criteria are functions of the
stress angle θ (2.12).

The ordinary pressure-sensitive generalizations of yield criteria, what are of in-
variable shape in the π-plane, are listed in Table 2.3. They are quite simple for real
materials. Typical criteria with brittle-ductile transition, obtained as linear combi-
nations of the non-parametric yield criteria of rotational or hexagonal symmetry
with the maximum normal stress hypothesis (RANKINE criterion, NSH), are listed
in Table 2.4, see also Lüpfert (1994). Although such criteria are particular, they
are often used because of the lack of measured data. Their approximation with the
DRUCKER-PRAGER cone (Fig. 2.4) given in some textbooks, is secondary.

In our consideration, further criteria are not effective for application. For ex-
ample, the LEMAITRE-CHABOCHE yield criterion “intermediary between those of
VON MISES and TRESCA” as function of I ′2 and I ′3 invariants with one parameter
additionally to σeq (Lemaitre and Chaboche, 1985, 1990), see also Altenbach et al.
(1995); Altenbach (2018); Jirásek and Bažant (2002); Koval’chuk (1981); Kroon
and Faleskog (2013); Takeda et al. (1986) describing the transition

6̂−©

can be replaced with the SZWED criterion with also one parameter (Table 2.2)

6̂−©− 6̄.
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The C0-yield criterion of ALTENBACH-ZOLOCHEVSKY with two parameters (Al-
tenbach et al., 1995; Altenbach, 2001; Altenbach and Kolupaev, 2014)

3̂− 6̂ |©−3̄

can be replaced with the modified ALTENBACH-ZOLOCHEVSKY C0-yield criterion
with the same number of parameters (Kolupaev, 2017, 2018; Kolupaev et al., 2018;
Rosendahl et al., 2019b)

3̂− 6̂ | 1̂2 | 6̄− 3̄.

The symbol | is explained in Table 2.2. Here, only one C1-criterion of VON MISES
is replaced with the regular dodecagon 1̂2. The definition range of the modified
formulation is significantly larger.

The LECKIE-HAYHURST strength criterion (Hayhurst, 1972; Leckie and Hay-
hurst, 1977) with two parameters

©+NSH + I1 or, equivalently, ©− 3̄ → I1,

where symbol → denotes the linear I1-substitution (2.15) and symbol + denotes
convex combination, can be substituted with the SAYIR pyramid (Kolupaev, 2018)
with also two parameters

3̂−©− 3̄ → I1

but with the larger definition range. However, the PODGÓRSKI pyramid with three
parameters and significantly larger definition range (Table 2.5)

3̂− 6̂ |©−3̄ → I1

is clearly preferable. Further most important strength criteria are summarized in
Table 2.5.

The strength criteria with the shape variation in π-plane are discussed in Sect. 2.5.
They are not part of the designation and systematization.

2.3.2 Comparison of Yield Criteria

Measured data are normalized by the appropriate tensile limit loading
(

σI

σT
0

,
σII

σT
0

,
σIII

σT
0

)
,

so that mechanical properties become unitless. The surfaces Φ for different isotropic
materials can be now compared in the same diagrams.

We distinguish pressure-insensitive yield criteria (2.7), which are comprehen-
sively described in the π-plane and pressure-sensitive strength criteria (2.3)–(2.4).
Certain types of loading for pressure-insensitive materials coinside in the π-plane
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(Fig. 2.5): equal stress angle θ share the same radius ρ (2.111) and collapse onto
one point. Introducing the corresponding nomenclature (Table 2.7) these are:

• θ= 0: T (uniaxial tension) and CC (equibiaxial compression),
• θ= π/6: S (shear), Tt (biaxial tension with I ′3 = 0), and Cc (biaxial compression

with I ′3 = 0), and
• θ= π/3: TT (equibiaxial tension) and C (uniaxial compression).

The values of radii ρ at these stress angles θ are characteristic properties of the yield
surface (Figs. 2.6 and 2.7).

Pressure-sensitive strength criteria have additional characteristic values because
of their I1-dependence (Subsect. 2.2.3). In order to visualize pressure-sensitive cri-
teria,

• certain cross sections I1 = const., e.g. through the particular points T, TT, C, CC,
S, Tt, and Cc of the plane stress states (Table 2.7) and

• the (I1,
√

3I ′2)-plane (Fig. 2.4)

Fig. 2.5 Isogonal (black)
and isotoxal (blue) hexagons
in the π-plane normalized
by the appropriate limit ten-
sile loading σT

0 (Fig. 2.2a):
Enlarged detail with the
VON MISES criterion (red)
and the stress states (T, CC
on the 0-meridian, S, Tt, Cc
on the π/6-meridian, and C,
TT on the π/3-meridian) for
comparison (Rosendahl et al.,
2019b).

θ =
π

3

π

6

T, CC

C, TT

S, Tt, Cc

ρ(0)
ρ(π/6)

ρ(π/6) ρ(π/6)

ρ(π/3)

ρ(π/3)

ρ(π/3)π

6

r30 = r60 = 1 r60 ∈ {1/2, 2} r60 = 1a. b. c.

Fig. 2.6: Basic surfaces with the same radius ρ(0) in the π-plane: a. Rotationally symmetric
VON MISES criterion (2.10), b. Regular triangles 3̂ and 3̄, and c. Regular hexagons 6̂ and 6̄. The
values r30 and r60 (2.26) are given for comparison (Rosendahl et al., 2019b).
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Ishlinsky-
Ivlev

π

6
π

6

π

12
π

12
von Mises

von Mises

Tresca Sokolovsky

Schmidt-
Ishlinsky

ρ(0) ρ(0)ρ(π/12) ρ(π/12)ρ(π/6) ρ(π/6)

ρ(π/3) ρ(π/3)

a. b.r60 = 1 r30 = r60 = 1

Fig. 2.7: Basic surfaces of hexagonal symmetry in the π-plane: a. Regular hexagons 6̂ and 6̄ and
b. Regular dodecagons 1̂2 and 1̄2 with the VON MISES criterion (2.10). Because of hexagonal
symmetry a cut-out of the angle θ∈ [0, π/3] is representative (Kolupaev, 2018; Rosendahl et al.,
2019b).

with the projection of the meridians θ= const. and the lines of the plane stress state
are needed. Some examples of visualization are given in Altenbach et al. (2014);
Kolupaev (2006, 2017, 2018); Kolupaev and Altenbach (2010); Kolupaev et al.
(2013b, 2016, 2018); Rosendahl et al. (2019b).

The plane stress σI − σII diagram with σIII = 0 is not representative for 3D-
modeling of the limit surface. However, measured data gained with conventional ex-
perimental technique are traditionally shown in this diagram. The meridians θ = 0,
π/6, and π/3 of the surface Φ can be projected in this diagram. It helps condition-
ally to check approximations by the fitting to the measured data and to visualize the
points of the hydrostatic limit loading by different extrapolations (Kolupaev, 2018).
The comparison of approximations in the σ11 − τ12 diagram is not recommended.
Here, numerous effects are invisible.

2.3.3 Shapes of Yield Criteria in the π-plane

Cross sections of pressure-insensitive criteria (2.7) may be described in the π-plane
as functions ρ(θ). Let us introduce geometric properties as relations of radii at the
angles

θ=
π

24
,
π

12
,
π

8
,
π

6
,
π

4
, and

π

3
(2.25)

to the radius ρ(0) as
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r7.5 =
ρ(π/24)
ρ(0)

, r15 =
ρ(π/12)
ρ(0)

, r22.5 =
ρ(π/8)
ρ(0)

,

r30 =
ρ(π/6)
ρ(0)

, r45 =
ρ(π/4)
ρ(0)

, r60 =
ρ(π/3)
ρ(0)

.
(2.26)

The subscript of r

7.5, 15, 22.5, 30, 45, or 60

corresponds to the stress angle θ of the respective radius in degree. With these values
(2.26), different yield criteria can be easily compared in appropriate diagrams. The
chosen angles θ are some fractions of the angle π/3 between the symmetry axes in
the π-plane (Figs. 2.6 and 2.7).

Convexity of the polynomial formulated criteria

Φ(I ′2, I ′3, σeq) = 0,

e.g. CC and BCC (Table 2.2), is most critical at these angles and needs to be checked
firstly for parameter restriction, see (Betten, 1979, 2001; Bolchoun et al., 2011;
Troost and Betten, 1974). In fact, it is impossible to say, at which other angles the
convexity should be checked (Bolchoun et al., 2011). It can be numerically analyzed
with small steps, e.g. with Δθ� π/360.

All radii of the VON MISES criterion (2.10) are equal (Fig. 2.6a)

r7.5 = r15 = r22.5 = r30 = r45 = r60 = 1. (2.27)

For direct comparison of the yield criteria of trigonal symmetry (Fig. 2.6b), the
fractions r30 and r60 are significant. The fractions r15 and r45 can be used in refined
analysis (Rosendahl et al., 2019b).

For the criteria of hexagonal symmetry (Fig. 2.7), the radii at the angles θ = 0
and π/3 are equal ρ(0) = ρ(π/3), which yields

r60 = 1, (2.28)

and because ρ(π/12) = ρ(π/4), we obtain

r15 = r45. (2.29)

In this case, the fractions r7.5 and r22.5 are sometimes required for the refined com-
parison of the shapes and, due to hexagonal symmetry, the fractions at the angles
5π/24 and 7π/24 are excluded from consideration.

Figures 2.8 and 2.9 show convexity restrictions for yield criteria of trigonal sym-
metry in the r60 − r30 diagram and for yield criteria of hexagonal symmetry in the
r15 − r30 diagram, respectively. These diagrams allow a comparison of all yield
criteria for isotropic materials. The yield figures

©, 1̂2, 1̄2, 2̂4, and 2̄4
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Sayir

Capurso

Haythornthwaite

r30

r60

Schmidt-Ishlinsky Mariotte

Ivlev
3̂

3̄

6̂

6̄

0.6

0.6 0.8

0.8

1.2

1.2 1.4 1.6 1.8 2

Fig. 2.8: Diagram r60 − r30 for convex yield criteria of trigonal symmetry compared to the
VON MISES criterion with r30 = r60 = 1 (Kolupaev, 2018). Denotation of criteria follows ac-
cording to Tables 2.1 and 2.2.

r30

r15

MAC

Tresca

Schmidt-Ishlinsky

YYC

Sokolovsky

BCC

Ishlinsky-Ivlev

1̂2

1̄2 6̄

6̂ 0.90

0.90

0.95

0.95

1.05

1.05 1.10 1.15

Fig. 2.9: Diagram r30 −r15 for convex yield criteria of hexagonal symmetry (r60 = 1) compared
to the VON MISES criterion with r15 = r30 = 1 (Rosendahl et al., 2019b). Denotation of criteria
follows according to Tables 2.1 and 2.2.

coincide in the r60 − r30 diagram (Fig. 2.8), while the yield figures

©, 2̂4, and 2̄4
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coincide in the r15 − r30 diagram (Fig. 2.9). The diagram r7.5 − r15 for the crite-
ria of hexagonal symmetry with r60 = r30 = 1 is conceivable, but not relevant for
engineering application.

Setting
I1 = const. (2.30)

in a particular cross section, the fractions (2.26) can be computed for pressure-
sensitive criteria, as well. It is required for the criteria with variable cross sections in
the π-plane as function of I1 (Sect. 2.5). Details on the calculation of the discussed
fractions (2.26) for any criterion are given in Appendices 2.7.4 and 2.7.5.

2.3.4 Extreme Yield Figures

Lower and upper bounds of convexity for isotropic criteria in the r60 − r30 diagram
(Fig. 2.8) are obtained with extreme yield figures of isotoxal and isogonal hexagons
(Figs. 2.10 and 2.11). The polynomial formulations (2.7) of these hexagons are
known (Table 2.2)

• the CAPURSO criterion 3̂− 6̂− 3̄ and
• the HAYTHORNTHWAITE criterion 3̂− 6̄− 3̄.

However, their polynomial forms feature plane intersections surrounding the physi-
cally reasonable shape of the surface Φ, which makes the application involved.

3̂3̄

scaled 3̂ triangle scaled 3̂ triangle
factor 2factor 1/2

Fig. 2.10: Isogonal (equiangular) hexagons (upper convexity limit, Fig. 2.8) formed by the in-
tersection of two triangles in the π-plane: the scaled 3̂ triangle (blue) and the 3̄ triangle (black)
(Rosendahl et al., 2019b).

3̂ 3̄

Fig. 2.11: Isotoxal (equilateral, lower convexity limit, blue) and isogonal hexagons (equiangular,
upper convexity limit, black) in the π-plane with the 3̂ (blue) and 3̄ (black) triangle as limit cases
(Fig. 2.8) (Rosendahl et al., 2019b).
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Isotoxal hexagons (Fig. 2.8, lower bound 3̂− 6̂− 3̄) as function of stress angle
(2.12) can be formulated using the PODGÓRSKI criterion (Table 2.1 and 2.2), which
describes the geometry of the CAPURSO criterion as a single surface among others.
A criterion for isogonal hexagons (Fig. 2.8, upper bound 3̂ − 6̄ − 3̄) as function
of stress angle without case discrimination is missing (Kolupaev, 2018; Rosendahl
et al., 2019b).

Isotoxal and isogonal hexagons degenerate to the same regular triangles 3̂ and 3̄
in limit cases (Figs. 2.6b and 2.11) with

r60 ∈
[

1
2

, 2
]

.

These hexagons 3̂− 6̂− 3̄ and 3̂− 6̄− 3̄ in the π-plane extended with the linear
I1-substitution (2.15) represent pyramids in principal stress space (Subsect. 2.2.3),
which are important strength criteria for practical applications. The transition from
the hexagon 6̂ to 6̄ via © is designated with the vertical line

6̂ |© | 6̄

according to Fig. 2.8 and can be describe with the modified YU criterion using the
ROSENDAHL criterion (Table 2.2, mYU).

The lower and upper bounds of the convexity restriction for the yield criteria
of hexagonal symmetry in the r30 − r15 diagram (Fig. 2.9) are obtained with ex-
treme yield figures of isotoxal and isogonal dodecagons. Isotoxal dodecagons (lower
bound 6̂− 1̂2− 6̄) as function of the stress angle can be described with the modi-
fied YU criterion (Table 2.2, mYU). Only a polynomial formulation for isogonal
dodecagons (upper bound 6̂− 1̄2− 6̄) is known (Fig. 2.9, MAC, and Table 2.2).

Isotoxal and isogonal dodecagons degenerate to the same regular hexagons 6̂ and
6̄ in limit cases (Figs. 2.6c and 2.7a) with

r30 ∈
[√

3
2

,
2√
3

]
.

Although the I1-substitution (2.15) is possible here (Table 2.3), dodecagons are
typically used as pressure-insensitive criteria. The differences between the regular
dodecagons 1̂2 and 1̄2 (Figs. 2.7b) with r30 = r60 = 1 (Table 2.1) are

r15 ∈
[

1
2

√
2+

√
3,
√

2
(√

3−1
)]

.

The deviation between the MAC and YYC including all criteria of hexagonal sym-
metry (Fig. 2.9) is relevant for comparison of the yield criteria.

The differences between the regular icositetragons 2̂4 and 2̄4 are negligible (see
Table 2.1). These icositetragons are obtained as a result of the generalization of the
yield criteria of hexagonal symmetry (Table 2.1).
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2.3.5 Geometric Properties and Basic Experiments

For comparison of the limit surfaces, test results, approximations, and extrapola-
tions, let us introduce the following limit loading values normalized with respect to
the appropriate uniaxial tensile limit loading σT

0 :

rC
60 =

σC
60

σT
0

and rTT
60 =

σTT
60

σT
0

, (2.31)

where σC
60 is the uniaxial compressive limit and σTT

60 is the limit under equibiaxial
tensile loading,

rS
30 =

√
3
σS

30

σT
0

, rCc
30 =

√
3

2
σCc

30

σT
0

, and rTt
30 =

√
3

2
σTt

30

σT
0

, (2.32)

where σS
30 is the shear limit, σTt

30 and σCc
30 are the limit loadings of thin-walled tube

specimens with closed ends under inner (Tt) and outer pressure (Cc), respectively,
and

rCC
0 =

σCC
0

σT
0

, (2.33)

where σCC
0 is the limit loading under equibiaxial compression (Table 2.7). The sub-

scripts of r refer to the stress angles in degree θ = 0, 30, and 60◦ (2.112). For the
VON MISES criterion (2.10), it follows

rC
60 = rTT

60 = rS
30 = rCc

30 = rTt
30 = rCC

0 = 1, (2.34)

exactly the same as (2.27). It means, all meridians of the cylindrical surface coincide
in the BURZYŃSKI-plane and this straight line is parallel to the I1-axis (Fig. 2.4, red
line).

While a hydrostatic tensile and compressive test

σI = σII = σIII > 0

and
σI = σII = σIII < 0

until failure can be realized in special cases only (Balandin, 1937; Drass, 2020; Feo-
dosjev, 1975; Kolupaev et al., 2014; Kolupaev, 2018; Paul, 1968a,b; Torre, 1950b),
the corresponding properties are important for comparison of extrapolations. We
may introduce

rTTT =
σTTT

σT
0

=
1

3γ1
and rCCC =−

σCCC

σT
0

=−
1

3γ2
. (2.35)
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where σTTT and σCCC are the limit loading under hydrostatic tension and compres-
sion, respectively. Except for porous and granular media, hydrostatic compressive
failure does typically not occur for relevant loadings and

rCCC →∞

can be assumed (Subsect. 2.2.3). Based on the NSH (Appendix 2.7.6), a reference
value as coordinate TTT on the I1-axis (Fig. 2.4)

1
γ1

= 3

is important for comparison. For porous and granular materials, a reference value as
coordinate CCC on the I1-axis (Fig. 2.4)

1
γ2

=−3rC
60

can be used (Kolupaev, 2018).
Now, the values r0, r30, and r60 describe the π-plane shape at a chosen cross

section (2.30) and

rC
60, rTT

60 , rS
30, rCc

30 , rTt
30, rCC

0 , rCCC, and rTTT

describe corresponding material properties. When γ1 = γ2 = 0, pressure-sensitive
criteria degenerate to pressure-insensitive criteria: the meridians are parallel to the
hydrostatic axis. The values on the same meridians (characterized by the angle θ)
coincide:

r60 = rC
60 = rTT

60 , r30 = rS
30 = rCc

30 = rTt
30, and rCC

0 = 1. (2.36)

Pressure-insensitive criteria of hexagonal symmetry do not distinguish between ten-
sile and compressive properties

r60 = rC
60 = rTT

60 = rCC
0 = 1. (2.37)

The meridians θ = 0 and π/3 coincide in the BURZYŃSKI-plane and together with
other meridians are parallel to the I1-axis.

Classical yield and strength criteria such as VON MISES, TRESCA, SCHMIDT-
ISHLINSKY (Table 2.1), and the normal stress hypothesis (Table 2.3) describe the
material behaviour with the property

rTT
60 = 1 (2.38)

and the linear combinations (Table 2.4), e.g. the criteria of MOHR-COULOMB and
PISARENKO-LEBEDEV describe the material behaviour with the properties

rTT
60 = 1 and rC

60 = rCC
0 � 1, (2.39)



44 Holm Altenbach and Vladimir A. Kolupaev

which can be used for the comparison of approximations or for the formulation of
fitting restrictions. In the case of missing measured data, it can be assumed, that

rTT
60 ∈

]
1
2

, 1
[

.

The low bound follows with the convexity requirement on the meridian θ= π/3 and
the top bound yields as a conservative restriction of the idealized behavior (2.38).

Special attantion is focused to the value (Birger, 1977; Kolupaev, 2018; Sdobyrev,
1959; Yu, 2004)

rC
60 = 2

for the criteria in Table 2.4 and YST (Table 2.5), which results as the middle of the
restriction 1/rC

60 ∈]0, 1]. We note, if only the value

rC
60 ∈

[
1
2

, 2
]

is known, it is impossible to distinguish between pressure-insensitive and pressure-
sensitive material behavior, see the statement in Burzyński (1928) and Fig. 2.8. Fur-
ther measured data is mandatory for any statement. Details on fitting procedures and
the parameter identification for pressure-sensitive materials are discussed in Kolu-
paev et al. (2016); Kolupaev (2017, 2018); Kolupaev et al. (2018); Rosendahl et al.
(2019b).

2.4 Yield and Strength Criteria

The phenomenological nature of yield and strength criteria has caused an unmana-
geable number of possible formulations. Selecting a criterion for a particular appli-
cation is usually not based on objective arguments. Having to choose an appropriate
criterion under basically lack of information can leave engineers confused, see also
Lebedev (2010).

Consideration of the plausibility assumptions (Appendix 2.7.8) reduce signifi-
cantly the number of the criteria suitable for application and minimise risk of inap-
propriate computation. The aim of this work is the selection of the most effective
criteria and their rationale (Table 2.5).

2.4.1 Recommended Yield and Strength Criteria

Desired are the C1-continuous differential criteria (Table 2.2)

3̂− 6̂ |© | 6̄− 3̄
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and
6̂− 1̂2 |© | 1̄2− 6̄

which fulfil the plausibility assumptions. These criteria should be formulated in the
form (2.8) as a functions of two parameters (Figs. 2.8 and 2.9). Such criteria are not
known so far. Some steps in this direction are proposed below.

In the authors’ opinion, the PODGÓRSKI and the ROSENDAHL yield criteria
(Table 2.2) meet the plausibility assumptions in the best way known and are recom-
mended for application. Unfortunately,

• the PODGÓRSKI criterion does not include isogonal hexagons (Figs. 2.8 and
2.10) and

• the ROSENDAHL criterion – isogonal dodecagons (Fig. 2.9).

These two criteria are generalized for reliable application (Subsect. 2.4.3). Different
ways are examined in order to satisfy the plausibility assumptions.

The C0-CTS (Table 2.2, criterion of trigonal symmetry)

3̂− 6̂ | 1̂2 | 6̄− 3̄

and the C0-CHS (Table 2.2, criterion of hexagonal symmetry)

6̂− 1̂2 | 2̂4 | 1̄2− 6̄

as functions of two parameters are derived on the basis of the modified ALTEN-
BACH-ZOLOCHEVSKY criterion (Kolupaev, 2017, 2018; Rosendahl et al., 2019b).
Together with the pyramid of PODGÓRSKI (Table 2.5)

3̂− 6̂ |©−3̄ → I1

the pressure-sensitive generalization C0-CTS→ I1

3̂− 6̂ | 1̂2 | 6̄− 3̄ → I1

is a powerful tool for fitting of the measured data. The linear I1-substitution (2.15)
is used here. The quadratic substitution with the parabolic meridians (2.16) can be
tried alternatively for approximation. If necessary, these I1-substitutions can be used
for the C0-CHS

6̂− 1̂2 | 2̂4 | 1̄2− 6̄ → I1.

The YU strength theory (Table 2.5, YST)

6̂− 1̂2− 6̄ + NSH

will be reformulated as function of the stress angle θ without plane intersections and
then generalized as the ROSENDAHL + NSH criterion (Table 2.5)

6̂− 1̂2 |©−6̄ + NSH
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for simple applicability. Based on the “rounded off” NSH (Appendix 2.7.6), the
modified YST with the properties of real construction materials

rCC
0 � rC

60 � 1

is suggested (Subsect. 2.4.4.2).
The fundamentally different concept of the criteria with variable cross section

approach is discussed in Sect. 2.5. These criteria have trigonal symmetry in standard
loading region and hexagonal symmetry at high hydrostatic compressive loading,
e.g.

6̂−©− 6̄ if I1 → −∞.

Because of their flexibility, such criteria provide good approximations of experi-
mental data. A general expression is proposed.

With the selected criteria (Tables 2.2 and 2.5), it can be checked, whether an
optimal approximation of the measured data with the convex shape in the π-plane
and the convex meridian is possible. The criteria (Tables 2.3 and 2.4) have rather
historical and, especially, didactic significance, see also Brandt et al. (1986). Fur-
ther criteria will be only needed if they fulfil more of the plausibility assumptions
compared with the selected criteria.

2.4.2 PODGÓRSKI-type Shape Functions

The systematization of the most effective yield criteria (Rosendahl et al., 2019b;
Rosendahl, 2020) leads to the shape function

Ω3k = cos
[

1
3k

(
πβ3k− arccos

[
η0 +η3k cos(3kθ)

])]
, k ∈ N (2.40)

which contains with (Table 2.2)

• k= 1 – the 3̂− 6̂ |©−3̄ criterion of trigonal symmetry,
• k= 2 – the 6̂− 1̂2 |©−6̄ criterion of hexagonal symmetry,
• k= 3 – the 9̂− 1̂8 |©−9̄ criterion of trigonal symmetry,
• k= 4 – the 1̂2− 2̂4 |©−1̄2 criterion of hexagonal symmetry.

The parameter η0 in (2.40) introduced in Bouvet et al. (2002, 2004); Lexcellent
(2018); Lexcellent et al. (2006), see also the series of the invariants (Appendix
2.7.7), is redundant and will be discarded

η0 = 0.

The setting with k = 1 in (2.40) is of crucial importance in the formulation of the
yield and strength criteria. The setting with k = 2 includes many well-known yield
criteria of plasticity theory without tension / compression differences (2.28)
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r60 = rC
60 = 1.

The setting with k = 3 is the consequence of generalization and only of theoreti-
cal significance (Kolupaev, 2006, 2018; Rosendahl et al., 2019b). The setting with
k = 4 will be used to obtain the 1̄2 criterion for a C0-generalization (Sect. 2.4.3.5).
Further settings with n� 5 are possible, but have not found any application.

Note that, in order to avoid numerical issues, the real part function � can be
introduced to the shape function Ω3k (2.40)

Ω3k =�

[
cos
[

1
3k

(
πβ3k− arccos

[
η3k cos(3kθ)

])]]
. (2.41)

Replacing the parameter η3k by

η3k = sin
[
κ3k

π

2

]
(2.42)

yields improved parameter sensitivity and numerical stability. According to Szwed
(2000), the parameter β3k can be replaced with

β3k = arccos(χ3k). (2.43)

This notion (2.43) will not be pursued here.

2.4.2.1 C1-criterion 3̂− 6̂ |©−3̄

Normalized with respect to the appropriate uniaxial tensile limit loading σeq = σT
0 ,

the PODGÓRSKI criterion (Table 2.2) reads

σeq =
√

3I ′2
Ω3(θ,β3,η3)

Ω3(0,β3,η3)
(2.44)

with the shape function of trigonal symmetry, see (2.40) with k= 1

Ω3(θ,β,η) = cos
[

1
3
(πβ3 − arccos[η3 cos3θ ])

]
(2.45)

and the parameter restrictions

β3 ∈ [0, 1], η3 ∈ [−1, 1]. (2.46)

It contains the criteria (Fig. 2.12, Tables 2.1 and 2.2)

• the SAYIR cubic criterion 3̂−©− 3̄ with β3 = {0,1},
• the CAPURSO isotoxal hexagons 3̂− 6̂− 3̄ with η3 = {−1, 1}, and
• the TRESCA-VON MISES transition 6̂−© with β3 = 1/2, η3 ∈ [0, 1].

The criterion (2.44)–(2.45) results from the solution of the cubic equation in σeq
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Sayir
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Haythornthwaite
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r60

0.6
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β3 = 1/4
β3 = 3/4

β3 = 1/8
β3 = 7/8

β3 = 5/8
β3 = 3/8

β3 = 3/4
β3 = 1/4

β3 = 7/8
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β3 = 0
β3 = 1

β3 = 1
β3 = 0

κ3 = ±1κ3 = ±0.9

±0.9

κ3 = ±0.7

±0.7

κ3 = ±0.5

κ3 = ±0.5

κ3 = ±0.3

κ3 = ±0.3

η3 = sin
(
κ3

π

2

)

Fig. 2.12: PODGÓRSKI criterion (2.44) in the r60 −r30 diagram (Fig. 2.8). The lines β3 = const.,
κ3 ∈ [−1, 1] (solid red) and κ3 = const., β3 ∈ [0, 1] (dashed blue) are shown (Rosendahl et al.,
2019b), cf. Podgórski (1984); Podgórski (1985), adapted from Kolupaev (2017, 2018).

S ′
3 +S ′

2 σeq +S ′
1 σ

2
eq = σ3

eq (2.47)

for the rational deviatoric series (Appendix 2.7.7, Eq. (2.147)) with the trigonomet-
ric identity (Bronstein and Semendjajew, 2007). The number of the basic geometries
included in the criterion is sufficient for many applications. The scheme of this C1-
criterion 3̂− 6̂ |©−3̄ is shown in Fig. 2.13. The PODGÓRSKI criterion (2.44)–(2.45)
has received great recognition from professional community (Table 2.2, comments).

The parameter restriction (2.46) is convenient for the practice. The parameters of
the criterion β3 and η3 can be determined numerically by known values r60 and r30.

The isogonal hexagons of the HAYTHORNTHWAITE criterion 3̂− 6̄− 3̄ containing
the regular hexagon 6̄ (SCHMIDT-ISHLINSKY criterion) cannot be described with
the PODGÓRSKI criterion limiting the application of the criterion in the general
case. Although a confined field between the criteria 3̂− 6̄− 3̄ and 3̂−©− 3̄ can be

Fig. 2.13 Scheme of the
PODGÓRSKI criterion of
trigonal symmetry (2.44)–
(2.45). CC - cubic criterion
(Table 2.2). Color meaning:
black - criteria without any
parameters, red – criteria with
one parameter, and blue - the
criterion with two parameters
additionally to σeq.

Ivlev
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Mariotte

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

Capurso
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⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

CC of Sayir

Tresca
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⎫
⎬
⎭ Lemaitre-Chaboche

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Podgórski
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mapped with complex parameters β3 and η3 (Kolupaev, 2017, 2018), such approach
is not user-friendly.

The PODGÓRSKI pyramid follows with the linear I1-substitution (2.15) in (2.44)
as

σeq −γ1 I1

1−γ1
=
√

3I ′2
Ω3(θ,β3,η3)

Ω3(0,β3,η3)
(2.48)

and is recommended for use (Table 2.5).

2.4.2.2 C1-criterion 6̂− 1̂2 |©−6̄

Normalized with respect to the appropriate uniaxial tensile limit loading σeq = σT
0 ,

the ROSENDAHL criterion (Table 2.2) reads

σeq =
√

3I ′2
Ω6(θ,β6,η6)

Ω6(0,β6,η6)
(2.49)

with the shape function of hexagonal symmetry

Ω6(θ,β6,η6) = cos
[

1
6

(
πβ6 − arccos[η6 cos6θ ]

)]
, (2.50)

see (2.40) with k= 2, or, equivalently, with (2.118)

Ω6(θ,β6,η6) = cos
[

1
6

(
πβ6 − arccos

[
η6
(
2 cos2 3θ−1

)])]
, (2.51)

which may be preferred. The parameter restrictions are

β6 ∈ [0, 1], η6 ∈ [−1, 1] (2.52)

It contains the criteria (Fig. 2.14, Tables 2.1 and 2.2)

• the SZWED bicubic criterion 6̂−©− 6̄ with β6 = {0, 1},
• the isotoxal dodecagons 6̂− 1̂2− 6̄ of the YU yield criterion with η6 = {1,−1},
• the SOKOLOVSKY-VON MISES transition 1̂2−© with β3 = 1/2, η6 ∈ [0,1].

The criterion (2.49)–(2.50) results from the solution of the bicubic equation

S ′
6 +S ′

4 σ
2
eq +S ′

2 σ
4
eq = σ6

eq (2.53)

for the rational deviatoric series (Appendix 2.7.7, Eq. (2.147)) with the trigonomet-
ric identity, cf. PODGÓRSKI criterion (2.44)–(2.45).

The number of basic geometries included in the criterion is sufficient for many
applications. The parameter restriction (2.52) is convenient for the practice, cf.
(2.46). This criterion (2.49)–(2.50) is relatively new but suitable for the solutions
of several problems in plasticity theory. The scheme of the criterion 6̂− 1̂2 | ©−6̄
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Fig. 2.14: ROSENDAHL criterion (2.50) with η0 = 0 in the r30 −r15 diagram (Fig. 2.9). The lines
β6 = const., κ6 ∈ [−1, 1] (solid red) and κ6 = const., β6 ∈ [0, 1] (dashed blue) are shown, cf.
Fig. 2.12. BCC – bicubic criterion of SZWED, MAC – multiplicative ansatz criterion (Table 2.2).

is shown in Fig. 2.15. The parameters of the criterion β6 and η6 can be determined
numerically by known values r30 and r15.

The isogonal dodecagons of the multiplicative ansatz criterion of hexagonal sym-
metry 6̂− 1̄2− 6̄ containing the ISHLINSKY-IVLEV criterion (regular dodecagon 1̄2)
cannot be described by the ROSENDAHL criterion limiting the application of the cri-
terion in the general case. Although a confined field between the criteria 6̂− 1̄2− 6̄
and 6̂−©− 6̄ can be mapped with complex parameters β6 and η6, this approach is
not easy-to-use.

The ROSENDAHL pyramid follows with the linear I1-substitution (2.15) in (2.49)
as

σeq −γ1 I1

1−γ1
=
√

3I ′2
Ω6(θ,β6,η6)

Ω6(0,β6,η6)
(2.54)

and can be recommended for some applications (Table 2.5).

2.4.3 Inductive Derivation of Criteria

The deductive derived approaches Φ are seldom possible, see Gurson (1977). An
attempt is made to provide a criterion inductively in order to approximate the gene-
ral forms. This path is not clear. Several ansätze are conceivable, which are fuzzily
restricted by the plausibility assumptions (Appendix 2.7.8).

In our opinion, the C1-criteria containing the transitions
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Fig. 2.15 Scheme of the
ROSENDAHL criterion of
hexagonal symmetry (2.50):
YYC - YU yield crite-
rion, BCC - bicubic cri-
terion (Table 2.2). The
SOKOLOVSKY-VON MISES
criterion was not specified
until now. Color meaning:
black - criteria without any
parameters, red – criteria with
one parameter, and blue - the
criterion with two parameters
additionally to σeq.
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3̂− 6̂ |© | 6̄− 3̄

and
6̂− 1̂2 |© | 1̄2− 6̄

should be searched considering the plausibility assumptions. Though these criteria
are provided in polynomial form as functions of two parameters (Table 2.2), their
application is not straightforward.

The major problem in the formulation is that the criteria

• the HAYTHORNTHWAITE 3̂− 6̄− 3̄ criterion and
• the multiplicative ansatz criterion (MAC) 6̂− 1̄2− 6̄

as a function of the stress angle θ without case discrimination are unknown. But
these criteria can be sufficiently good approximated (Rosendahl et al., 2019b). Two
methods are available:

• convex combination of the known criteria (Subsubsect. 2.4.3.1-2.4.3.5) and
• series developments (Subsubsect. 2.4.3.6).

2.4.3.1 Linear Combination of Yield Criteria

The criteria of PODGÓRSKI (Sect. 2.4.2.1) and ROSENDAHL (Sect. 2.4.2.2) have a
similar structure. The generalized criterion of trigonal symmetry follows with the
linear combination as

σeq =
√

3I ′2

[
α

Ω3(θ,β3,η3)

Ω3(0,β3,η3)
+(1−α)

Ω6(θ,β6,η6)

Ω6(0,β6,η6)

]
, α ∈ [0, 1]. (2.55)

For a criterion of hexagonal symmetry we obtain in a analog path

σeq =
√

3I ′2

[
α

Ω6(θ,β6,η6)

Ω6(0,β6,η6)
+(1−α)

Ω12(θ,β12,η12)

Ω12(0,β12,η12)

]
, α ∈ [0, 1]. (2.56)
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The advantage of the criteria (2.55) and (2.56) is that the parameter restrictions are
known. The disadvantage is, the criteria with five parameters are difficult to manage.
The shapes 6̂−© in (2.55) and 1̂2−© in (2.56) can be describe with each of both
terms, what is detrimental by parameter fitting.

The amount of the parameter can be reduced to four:

σeq =
√

3I ′2

[
α

Ω3(θ,0,η3)

Ω3(0,0,η3)
+(1−α)

Ω6(θ,β6,η6)

Ω6(0,β6,η6)

]
, α ∈ [0, 1]. (2.57)

and

σeq =
√

3I ′2

[
α

Ω6(θ,0,η6)

Ω6(0,0,η6)
+(1−α)

Ω12(θ,β12,η12)

Ω12(0,β12,η12)

]
, α ∈ [0, 1] (2.58)

but both terms in (2.57) and (2.58) contain the same ©-shape. Such formulations
seem intricate and can not be recommended. The number of parameters should be
further reduced.

2.4.3.2 C1-continuous Differential Yield Criteria

The linear combination SAYIR + SZWED of trigonal symmetry (Table 2.2)

3̂−©− 3̄ + 6̂−©− 6̄

and the linear combination of hexagonal symmetry (C1-LC-Hex)

6̂−©− 6̄ + 1̂2−©− 1̄2

are the functions of three parameters. The SAYIR + SZWED yield criterion follows
with the shape functions (2.45) and (2.50) and with the setting β3 = β6 = 0 as

σeq =
√

3I ′2

[
α

Ω3(θ,0,η3)

Ω3(0,0,η3)
+(1−α)

Ω6(θ,0,η6)

Ω6(0,0,η6)

]
, α ∈ [0, 1]. (2.59)

The SAYIR + SZWED pyramid is obtained with the linear I1-substitution (2.15) as

σeq −γ1 I1

1−γ1
=
√

3I ′2

[
α

Ω3(θ,0,η3)

Ω3(0,0,η3)
+(1−α)

Ω6(θ,0,η6)

Ω6(0,0,η6)

]
. (2.60)

The C1-LC-Hex yield criterion follows with the SZWED shape functions (2.50) and
the PODGÓRSKI-type shape functions (2.40) with k = 4. The setting β6 = β12 = 0
yields

σeq =
√

3I ′2

[
α

Ω6(θ,0,η6)

Ω6(0,0,η6)
+(1−α)

Ω12(θ,0,η12)

Ω12(0,0,η12)

]
, α ∈ [0, 1]. (2.61)

The C1-LS-Hex→ I1 pyramid follows with the linear I1-substitution (2.15) as



2 General Forms of Limit Surface: Application for Isotropic Materials 53

σeq −γ1 I1

1−γ1
=
√

3I ′2

[
α

Ω6(θ,0,η6)

Ω6(0,0,η6)
+(1−α)

Ω12(θ,0,η12)

Ω12(0,0,η12)

]
. (2.62)

Both criteria (2.59) and (2.61) can be thought of first as replacement for the missing
criteria CAPURSO + HAYTHORNTHWAITE (Table 2.2)

3̂− 6̂ |© | 6̄− 3̄

and YYC+MAC (Table 2.2)

6̂− 1̂2 |© | 1̄2− 6̄.

Disadvantage is that both terms in (2.59) and (2.61) can describe the ©-shape. Due
to an additional parameter, the shapes between the extreme yield criteria are not
uniquely defined.

2.4.3.3 C0-linear Combinations with Three Parameters

Possible modifications (Subsubsect. 2.4.3.1) as the C0-linear combination of SAYIR
and YYC of trigonal symmetry (Table 2.2)

3̂−©− 3̄ + 6̂− 1̂2− 6̄

or

σeq =
√

3I ′2

[
α

Ω3(θ,0,η3)

Ω3(0,0,η3)
+(1−α)

Ω6(θ,β6,1)
Ω6(0,β6,1)

]
, α ∈ [0, 1] (2.63)

and the linear combination of hexagonal symmetry (C0-LC-Hex)

6̂−©− 6̄ + 1̂2− 2̂4− 1̄2

or

σeq =
√

3I ′2

[
α

Ω6(θ,0,η6)

Ω6(0,0,η6)
+(1−α)

Ω12(θ,β12,1)
Ω12(0,β12,1)

]
, α ∈ [0, 1] (2.64)

are also the functions of three parameters. They can not be recommended for appli-
cation as over-refined for a C0-criterion.

These criteria are C1-criteria with the setting η6 ≈ 0.9999, β6 ∈ [0, 1] in (2.63)
and η12 ≈ 0.9999, β12 ∈ [0, 1] in (2.64), but it contradicts our aspiration to consider
a maximal number of extreme yield figures.

2.4.3.4 C0-linear Combination 3̂− 6̂− 3̄ + 6̄

A linear combination 3̂− 6̂− 3̄ + 6̄
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Φ3 =
√

3I ′2

⎡
⎢⎢⎣α

cos
[

1
3
(πβ3 − arccos [cos3θ])

]

cos
[

1
3
πβ3

] +

(1−α) cos
[

1
6

arccos [cos6θ]

]]
−σeq

(2.65)

with the parameter restriction

α ∈ [0, 1] and β3 ∈ [0, 1] (2.66)

provides the C0-criterion 3̂− 6̂ | 1̂2 | 6̄− 3̄ of trigonal symmetry. The values are

r60 =
2

2−α+α
√

3 tan
[
πβ3

3

] , (2.67)

r30 =
2

√
3+α tan

[
πβ3

3

] , (2.68)

and

r15 =
2
√

2

1+
√

3−α(1−
√

3) tan
[
πβ3

3

] . (2.69)

We obtain the parameters α and β3 with known values r60 and r30 as

α=
2
√

3
r30

−1−
2
r60

, (2.70)

β3 =
3
π

arctan

[
r60 (

√
3r30 −2)

(2+ r60)r30 −2
√

3r60

]
. (2.71)

The dodecagon 1̂2 with the values r60 = r30 = 1 (Fig. 2.7 b) follows with

α= 2
√

3−3 ≈ 0.4641 and β3 =
1
2

. (2.72)

The criterion Φ3 (2.65) describes all points in the r60 − r30 diagram (Fig. 2.8). The
parameter setting for the basic geometries are given in Table 2.1. It is comparable
to with the modified ALTENBACH-ZOLOCHEVSKY criterion of trigonal symmetry
(Kolupaev, 2017, 2018; Rosendahl et al., 2019b) and is designated as mAZ3.

The equations and restrictions are easy, so this criterion is advocated for the prac-
tical application. The function cos6θ can be replaced with (2.118) for uniform pre-
sentation of the criterion as function of cos3θ. A disadvantage is, that the geometry
of the HAYTHORNTHWAITE criterion (Table 2.2) cannot be exactly described with
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the settings
β3 = 1 for 3̂− 6̄

and
β3 = 0 for 6̄− 3̄

of mAZ3, although both criteria coincide in the r60 − r30 diagram. It is also detri-
mental that the criterion (2.65) does not include the ©-criterion.

The C0-CTS→ I1 pyramid follows with the linear I1-substitution (2.15) in (2.65)
as

σeq −γ1 I1

1−γ1
=
√

3I ′2

⎡
⎢⎢⎣α

cos
[

1
3
(πβ3 − arccos [cos3θ])

]

cos
[

1
3
πβ3

] +

(1−α) cos
[

1
6

arccos [cos6θ]

]]
−σeq

(2.73)

and is also recommended for application (Table 2.5).

2.4.3.5 C0-linear Combination 6̂− 1̂2− 6̄ + 1̄2

In analogy to mAZ3 (Sect. 2.4.3.4), a linear combination 6̂− 1̂2− 6̄ + 1̄2

Φ6 =
√

3I ′2

⎡
⎢⎢⎣α

cos
[

1
6
(πβ6 − arccos [cos6θ])

]

cos
[

1
6
πβ6

] +

(1−α) cos
[

1
12

arccos [cos12θ]

]]
−σeq

(2.74)

with the parameter restriction

α ∈ [0, 1] and β6 ∈ [0, 1] (2.75)

provides the C0-criterion 6̂− 1̂2 | 2̂4 | 1̄2− 6̄ of hexagonal symmetry. The values are

r60 = 1, (2.76)

r30 =
2

2+α

(√
3−2+ tan

[
πβ6

6

]) , (2.77)

and
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r15 =
2
√

2
√

3+1+α(
√

3−1) tan
[
πβ6

6

] . (2.78)

We obtain the parameters α and β6 with known values r30 and r15 as

α=
2+

√
3

r15 r30

(
2
√

2+
√

3r30 −2r15 −
√

3r15 r30

)
, (2.79)

β6 =
6
π

arctan

⎡
⎣

r30

(√
2−

√
6+ r15

)

−2
√

2+
√

3r30 +2r15 +
√

3r15 r30

⎤
⎦ . (2.80)

The icositetragon 2̂4 with the values r15 = r30 = 1 follows with

α= 5
√

2−4
√

3+3
√

6−7 ≈ 0.4913 and β6 =
1
2

. (2.81)

The criterion Φ6 (2.74) describes all points in the r30 − r15 diagram (Fig. 2.9).
The parameter settings of this modified ALTENBACH-ZOLOCHEVSKY criterion of
hexagonal symmetry (mAZ6) for the basic geometries are given in Table 2.1.

The equations are easy, so this criterion is recommended for the practical applica-
tion. The function cos12θ can be replaced with (2.118) for uniform presentation of
the criterion as function of cos3θ or cos6θ. The disadvantage is, that the geometry
of the MAC (Table 2.2) cannot be exactly described with the settings

β6 = 1 for 6̂− 1̄2

and
β6 = 0 for 1̄2− 6̄

of the mAZ6, although both criteria coincide in the r30 − r15 diagram. The criterion
(2.74) does not include the ©-criterion and is C0-continuous, which is detrimental
to the yield criteria.

The C0-CHS→ I1 pyramid follows with the linear I1-substitution (2.15) in (2.74)
as

σeq −γ1 I1

1−γ1
=
√

3I ′2

⎡
⎢⎢⎣α

cos
[

1
6
(πβ6 − arccos [cos6θ])

]

cos
[

1
6
πβ6

] +

(1−α) cos
[

1
12

arccos [cos12θ]

]]
−σeq

(2.82)

and is recommended for application (Table 2.5).
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2.4.3.6 Series Development

In the next step of the inductive derivations, the series development as sum of cosine
is introduced (Bulla and Kolupaev, 2021)

Ωm = cos
[

1
3λm

(
πβm − arccos

[
η0 +η3 cos(3θ)+η6 cos(6θ)+ . . .

])]
(2.83)

with

• m= 3 for criteria of trigonal symmetry containing at least one odd term, e.g. η3
and the even terms with η6, η12, etc. and

• m = 6 for criteria of hexagonal symmetry containing only even terms η6, η12,
etc.

The idea originates with the compete series (2.145) or reduced series (2.146) of the
invariants (Appendix 2.7.7).

The problem in (2.83) is the number of parameters which should be reduced for
practical application. The associated issue is the necessary restriction of parameters.
The functions cos6θ, cos12θ, etc. can be replaced with (2.118)–(2.119) for uniform
presentation. Because of the number of the parameters and related convexity con-
straints, this shape function (2.83) is not user-friendly.

The next possibility to try it out is a sum of arccosine

Ωm = cos
[
πβm−

1
3

arccos[η3 cos3θ]−
1
6

arccos[η6 cos 6θ]+ . . .
]

. (2.84)

This formulation also requires further study with the convexity analysis. It can not
be directly recommended.

A formally performed linear combination with two parameters

Ω3 = cos
[
α

1
3
(πβ3 − arccos[cos3θ])−(1−α)

1
6

arccos[cos 6θ]

]
, (2.85)

containing 3̂− 6̂ | 6̄− 3̄ with

α ∈ [0, 1] and β3 ∈ [0, 1] (2.86)

yields non-convex geometries for some setting of the parameters (2.86) and can also
not be recommended.

We are of the opinion, that these series developments are not effective for practi-
cal use because of the number of parameters and the intricate convexity constraints.
Maybe further investigations can show the usefulness of this approach.
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2.4.4 Modified YU Strength Theory

The YU strengh theory (YST) was introduced 2002 and has gained recognition from
the community (Table 1.5). The word "theory" in relation to the criteria is a trib-
ute to tradition. We adopt this denomination in relation to the YST. The YST can
be interpreted as a linear combination of the TRESCA and SCHMIDT-ISHLINSKY
criteria containing the SOKOLOVSKY criterion with the normal stress hypothesis
(Fig. 2.16):

6̂− 1̂2− 6̄ + NSH

or a convex combination of the equivalent stresses σTresca, σSI, and σI of these crite-
ria (TRESCA, SCHMIDT-ISHLINSKY, and the maximum normal stress hypothesis)
with two parameters (ξ,ζ):

ξσTresca +ζσSI +(1−ξ−ζ)σI = σeq (2.87)

and with parameter restrictions to ensure convexity

ξ ∈ [0, 1], ζ ∈ [0, 1], and ξ+ζ� 1. (2.88)

The parameters in the formulation (2.87) have no direct physical meaning. This
combination (2.87) can be realized in the different ways (Kolupaev, 2017, 2018;
Kolupaev et al., 2018; Rosendahl et al., 2019b).

2.4.4.1 C0-continuous Strength Criterion

Based on the normal stress hypothesis (Appendix 2.7.6) and the ROSENDAHL cri-
terion (2.49), we introduce the linear combination, cf. Kolupaev (2017, 2018);
Rosendahl et al. (2019b)

6̂− 1̂2 |©− 6̄ + NSH

Fig. 2.16 Scheme of the YU
strength theory (YST): TST –
twin shear theory of YU, NSH
– normal stress hypothesis,
the SOKOLOVSKY criterion
is a C0-approximation of the
VON MISES criterion with a
regular dodecagon 1̂2. Color
meaning: black - criteria
without any parameters, red
– criteria with one parameter,
and blue - the criterion with
two parameters additionally
to the equivalent stress σeq.

Tresca

NSH

⎫
⎬
⎭ Mohr-Coulomb

Sokolovsky

NSH

⎫
⎬
⎭ mod. Pisarenko-Lebedev

Schmidt-Ishlinsky

NSH

⎫
⎬
⎭ TST of Yu

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

YST
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or

σeq =
1
rC

60
σRsn +

(
1−

1
rC

60

)
σNSH (2.89)

with the parameter restrictions

1
rC

60
∈]0, 1], β6 ∈ [0, 1], η6 ∈ [−1, 1]. (2.90)

This results in a final equation of the modified YU strength criterion (mYU)

σeq =
1
rC

60

√
3I ′2

cos
[

1
6
(πβ6 − arccos [γ6 cos6θ])

]

cos
[

1
6
(πβ6 − arccos [γ6 ])

]

+
1
3

(
1−

1
rC

60

) (
I1 +2

√
3I ′2 cosθ

)
,

(2.91)

which contains the criteria shown in Fig. 2.17. The modified YU criterion (2.91)
describes the limit surface without plane intersections. The value rS

30 of the mYU is

rS
30 = 3rC

60 ×
[
√

3
(
rC

60 −1
)

+ 3 cos
[

1
6
(πβ6 − arccos [−γ6])

]
sec
[

1
6
(πβ6 − arccos [γ6])

]]−1

.

(2.92)

The value rTTT for the hydrostatic tensile limit loading results to

Fig. 2.17 Scheme of the
mYU criterion: UCC – uni-
fied classical criterion, YYT
– YU yield theory, mYU-I
and mYU-II – modified YU
criteria, mPL – modified
PISARENKO-LEBEDEV crite-
rion, BCC – bicubic criterion
of SZWED. Color meaning:
black - criteria without any
parameters, red – criteria with
one, blue - with two, and bold
black - with three parameters
additionally to the equivalent
stress σeq.
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60 Holm Altenbach and Vladimir A. Kolupaev

rTTT =
1

1−
1
rC

60

=
1

1−2νin
+

. (2.93)

The surface Φ of the mYU (2.91) is open in the hydrostatic compression direction
(I1 < 0):

rCCC →∞. (2.94)

The inelastic POISSON’s ratios at tension and compression are (Kolupaev, 2018)

νin
+ =

1
2rC

60
and νin

− =
rC

60
2

, (2.95)

as for the MOHR-COULOMB and further criteria in Table 2.4.
The TST (Table 2.4) cannot be reproduced exactly by this method (2.89). The

deviation between 6̂ −©− 6̄ of the BCC and 6̂ − 1̂2 − 6̄ of the YYC is rele-
vant for “very ductile materials” (Christensen, 2019; Kolupaev, 2018; Lemaitre and
Chaboche, 1990; von Mises, 1928; Theocaris, 1995)

νin
+ → 1

2
. (2.96)

The introduced criterion (2.89) is C0-continuously in the π-plane. The criterion con-
tains a singular peak at the hydrostatic node TTT for pressure-sensitive materials
with rC

60 > 1, which should be treated separately (Table 2.11, PG10). Like the YST,
the mYU criterion can be considered as unified classical criterion (UCC) with the
properties (2.39).

The modified YU strength criterion (2.89) meet the plausibility assumptions in
the best way and is recommended for application as a yield and strength criterion
(Figs. 2.18, 2.19, 2.20, and 2.21 with η3 = η6 = 1). Various material properties can
be described using this criterion. The implementation in the FEM code is simple
due to solely surface in the principal stress space.

Generalization of (2.89) based on the C0-linear combinations (2.74)

6̂− 1̂2 | 2̂4 | 1̄2− 6̄

or C1-linear combinations (Sect. 2.4.3.2)

6̂− 1̂2 |© | 1̄2− 6̄

and the NSH can be suggested (Table 2.5)

6̂− 1̂2 | 2̂4 | 1̄2− 6̄ + NSH

or
6̂− 1̂2 |© | 1̄2− 6̄ + NSH.
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σI
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η6 = 1

η3 = 0.9
η6 = 0.9

η3 = 0.99
η6 = 0.9
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Fig. 2.18: Modified YST (2.98) as function of the parameters η3 and η6 with the setting rC
60 = 2

and β6 = 0 in the normalized σI −σII diagram. The points of the approximated TST (aTST)
with η3 = η6 = 1 are highlighted. The ellipse of the VON MISES criterion (red) and the MOHR-
COULOMB criterion (MC) (dashed line) are shown for comparison.

Such criteria are far from the practical relevance. The additional fitting possibilities
with the transition 2̂4|1̄2-NSH or ©|1̄2-NSH can be only relevant for very ductile
material with rC

60 → 1 or, equivalently, with (2.96).

2.4.4.2 C1-continuous Strength Criterion

Linear combination (Sect. 2.4.4.1)

6̂−©− 6̄ + NSH



62 Holm Altenbach and Vladimir A. Kolupaev

Fig. 2.19 Modified YST
(2.98) as function of the
parameters η3 and η6 with the
setting rC

60 = 2 and β6 = 0
in the normalized σI −σII
diagram. The ellipse of the
VON MISES criterion (red) is
shown for comparison. The
first quadrant is enlarged for
better visualization.
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can be reformulated as linear combination with the linear I1-substitution (2.15)

6̂−©− 6̄ +
(

3̂ → I1
)

, γ1 =
1
3

as function of two parameters. The method searched for is a formulation of the C1-
criterion of the above schema in accordance with the YST (Table 2.5).

With the equivalent stress σC1 of the C1-NSH (Appendix 2.7.6) and the ROSEN-
DAHL criterion (2.49) we can write, cf. (2.89)

σeq =
1
rC

60
σRsn +

(
1−

1
rC

60

)
σC1 (2.97)

or inserted

σeq =
1
rC

60

√
3I ′2

cos
[

1
6

(
πβ6 − arccos[η6 cos6θ ]

)]

cos
[

1
6

(
πβ6 − arccos[η6 ]

)] +

(
1−

1
rC

60

)
⎛
⎜⎜⎝
√

3I ′2

cos
[
−

1
3

arccos[η3 cos3θ ]

]

cos
[
−

1
3

arccos[η3 ]

] (1−γ1)+γ1 I1

⎞
⎟⎟⎠

(2.98)

with the substitution (2.138)
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Fig. 2.20: Modified YST (2.98) as function of the parameters η3 and η6 with the setting rC
60 = 2

and β6 = 0 in the normalized π-plane. The cross sections orthogonal to the hydrostatic axis at
I1 = σT

0/
√

3 and the lines of the plane stress state (PSS, dashed lines) are shown. The points of
the C0-approximated TST (aTST) with η3 =η6 = 1 are highlighted. The circle of the VON MISES
criterion is shown for comparison.

γ1(η3) = 1
/{

1+ cos
[

1
3

arccos[η3 ]

]
sec
[

1
3

arccos[−η3 ]

]}
(2.99)

as function of four parameters (Figs. 2.18 and 2.19)

1
rC

60
∈ [0, 1], β6 ∈ [0, 1], η6 ∈ [−1, 1], η3 ∈ [−1, 1].

The fourth parameter can first be set η3 ∈ [0.99, 1[ for the “rounding off” NSH
(Table 2.8). We obtain with η6 ∈]−1, 1[ the C1-continuous strength criterion. The
values are

νin
+ =

1
2
−

3
2
rC

60 −1
rC

60
γ1, (2.100)
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Fig. 2.21: Enlarged cut of the π-plane (Fig. 2.20): modified YST (2.98) as function of the parame-
ters η3 and η6 with the setting rC

60 = 2 and β6 = 0 in the normalized π-plane. The circle of the
VON MISES criterion (red) is shown for comparison.

rTTT =
1
3

rC
60(

rC
60 −1

)
γ1

, (2.101)

and

rCC
0 =

rC
60

rC
60 +3γ1 −3rC

60 γ1
. (2.102)

Further values are too large and therefore omitted.
Based on the value rCC

0 (2.102), the deviation of the real material properties from
the classical assumption with rCC

0 = rC
60 (2.39) can be introduced

δYu =
rCC

0 − rC
60

rC
60

. (2.103)

And vice versa, the parameter η3 dependent on the deviation δYu of the value rCC
0

from the value rC
60 (2.102) can be set (Table 2.6).
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Table 2.6: Setting of the parameter η3 dependent on the default deviation δYu = 1 or 2% of the
value rCC

0 from rC
60.

rC
60 η3 at δYu = 1% η3 at δYu = 2%

1.1 0.963797 0.848176
1.2 0.991328 0.964532
1.5 0.998651 0.994610
2 0.999666 0.998677
5 0.999979 0.999919
10 0.999996 0.999984
12 0.999997 0.999990

This criterion (2.98) can be applied as the yield and strength criterion and is
recommended for use. Problems with the derivation become obsolete, but the prop-
erties of the classical criteria (2.39) are lost.

The number of parameters seems excessive at first, but can be easily reduced
based on the modeling concept:

• Setting β6 = 0, η6 ∈ [−1, 1] for the C1-transition 6̂−©− 6̄ or
• Setting β6 ∈ [0, 1], η6 = {−1, 1} for the C0-transition 6̂− 1̂2− 6̄ of the YYC,

with formal or computed setting η3 (Table 2.6). The setting η3 = 1 provides the
extended C0-criterion according to YU with the classical properties (Sect. 2.4.4.1).
Now, only two parameters remain for definition: (rC

60, η6) or (rC
60, β6).

If the amount of measured data is sufficiently large, the parameter η3 ∈ [−1, 1]
in (2.134) can be used as an extra parameter. The physical background behind the
YST is then lost, but fitting quality increases.

2.5 Criterion with Shape Variation in π-plane

Instead of generalizing possible shapes in the π-plane, Pisarenko and Lebedev
(1969); Ottosen (1975, 1977, 1980); Ottosen and Ristinmaa (2005); Xiaoping et al.
(1989) allowed for shape variation in the π-plane along the hydrostatic axis. Using
the PODGÓRSKI shape function Ω3 (2.45) and the POSENDAHL shape function Ω6
(2.50), the OTTOSEN idea can be extended as (Rosendahl et al., 2019b)

3(1−χ)I ′2

(
Ω6(θ, β6, η6)

Ω6(0, β6, η6)

)2

+χσeq

[
(1−ξ)

√
3I ′2

Ω3(θ, β3, η3)

Ω3(0, β3, η3)
+ξI1

]
= σ2

eq

(2.104)
with the parameters of the convex combinations

χ ∈ [0, 1] and ξ ∈ [0, 1]. (2.105)

With ξ ∈]0, 1[, we obtain a surface with cross sections of hexagonal symmetry in
the π-plane for I1 → −∞. Compared with (2.48), this effect is controlled with an
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additional parameter χ. Some approximations are obtained for data measured by
KUPFER for three types of concrete with χ ∈ [0.9845, 1] and ξ ∈ [0.3037, 0.3523]
(Rosendahl et al., 2019b).

The criterion (2.104) can be considered as a generalization of

• the PODGÓRSKI pyramid (2.48) or its corresponding CTS-formulation (2.55)
with χ= 1,

• the ROSENDAHL criterion (2.49)–(2.50), which can be replaced with one of the
CHS-formulations (2.56) with χ= 0,

• the formulation in accordance with OTTOSEN if β3 = β6 = η6 = 0, η3 ∈ [−1, 1],
• the strain criterion (Table 2.3) with χ = 1 and the regular triangle 3̄ with β3 =

{0,1} and η3 = {1,−1}. The NSH follows then with the setting ξ= 1/3,
• an alternative formulation of the PISARENKO-LEBEDEV criterion (Table 2.4)

with χ ∈]0, 1[, β3 = β6 = η3 = η6 = 0, and ξ= 1/3,
• the DRUCKER-PRAGER criterion (Table 2.3, rotationally symmetric cone) with

χ= 1 and β3 = β6 = η6 = 0, and
• the BURZYŃSKI-TORRE criterion (rotationally symmetric paraboloid) (Balandin,

1937; Burzyński, 1928; Torre, 1947; Yagn, 1931) with β3 = β6 = η3 = η6 = 0,
χ ∈]0, 1[ and ξ= 1.

The criterion (2.104) fulfils some plausibility assumptions (Appendix 2.7.8) quite
well and can be recommended for application. The variable cross section approach
according OTTOSEN is different from the fixed cross section approach. Because of
the greater flexibility, the criterion (2.104) provides very good approximations of
experimental data but such criteria require increased numerical effort in the appli-
cation.

Some measurements regarding the change of the cross section as function of
I1 are given in Launay et al. (1970); Launay and Gachon (1971, 1972). Appro-
ximations are shown in Gol’dman (1994); Fahlbusch (2015); Kolupaev (2018);
Rosendahl et al. (2019b), among others.

2.6 Summary

In this work, a nomenclature of the yield criteria Φ is introduced. The regular poly-
gons of trigonal and hexagonal symmetry in the π-plane are represented schemat-
ically based on the number of their edges and the orientation in the π-plane. The
rotationally symmetric VON MISES criterion is denoted as a circle (Subsect. 2.3.1).

Known plausibility assumptions of the yield and strength criteria are summarized
(Appendix 2.7.8). They limit the variety of the criteria on the basis of applicability.
The relevant assumptions in the authors’ opinion are highlighted, which are used for
selection of the recommended criteria (Table 2.2 and 2.5, criteria with the equation
number). It is posited, that only the yield criteria involving three or more regular
(basic) geometries (Table 2.1) are significant for application. This viewing reduces
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the number of the suitable criteria. Further criteria are particular and can be easily
approximated with these specified criteria.

The earlier strength criteria are presented in Tables 2.3 and 2.4. Some missing
criteria are introduced according to the pattern. These criteria are too simple for
design with current requirements but the introduced schematics can be primary used
as support in didactic.

Nowadays the most effective yield criteria are the criteria of PODGÓRSKI-type
with k= 1 and 2 (Subsect. 2.4.2). They meet the plausibility assumptions in the best
way known. However, they do not include all relevant yield criteria at once. Thus,
their application is associated with restrictions. Two ways for the formulation of the
generalized yield criteria are discussed (Subsect. 2.4.3):

• convex combination of the known criteria (Subsects. 2.4.3.1–2.4.3.5) and
• series development as ”arccosine of the sum“ and ”sum of arccosines“ (Subsect.

2.4.3.6).

The first schema has proven for practical use. The second way is still being investi-
gated.

Several ways can be envisaged for the linear combinations (Subsect. 2.4.3.1)
with the PODGÓRSKI-type shape functions (2.40). The disadvantage of the proposed
formulations is that the number of the parameters increases. Both terms in the line-
ar combinations (Subsect. 2.4.3.1) can describe the same geometries: TRESCA and
VON MISES criteria in (2.55) and SOKOLOVSKY and VON MISES criteria in (2.56).
These criteria are modified according to ALTENBACH-ZOLOCHEVSKY in order to
reduce the number of parameters (Subsects. 2.4.3.4 and 2.4.3.5). The resulting C0-
criteria extended with I1-substitution can be easily applied for fitting of measured
data.

Open question remains the formulation of the HAYTHORNTHWAITE and MAC
criteria as a function of the stress angles without case discrimination (Table 2.2).
If such criteria will be derived, the formulations (Subsect. 2.4.3) are no longer re-
quired.

The YU strength theory (Subsect. 2.4.4) is of crucial importance for practice.
The C0-generalization without plane intersections (Subsect. 2.4.4.1) provides deci-
sive advantages compared to the original YU’s formulation. The C1-generalization
(Subsect. 2.4.4.2) is a powerful tool that includes the YST and is recommended for
use.

The yield and strength criteria can be easily compared based on the introduced re-
lations (Subsects. 2.3.2 and 2.3.5). Different approximations can be visualized in the
diagrams r60 − r30 (Fig. 2.8) or r30 − r15 (Fig. 2.9), π-plane, and the BURZYŃSKI-
plane. Additional requirements can be set for the parameters to reduce their number,
e.g. the classical properties (2.39) or, based on the NSH, the position of the node
TTT with γ1 = 1/3 in order to obtain the special ”theories“.

The study of the yield and strength criteria remains in focus of professional com-
munity (Altenbach, 2010). Further development of the equivalent stress concept can
be seen in consideration of the adjusted plausibility assumptions, which should be
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accompanied with restriction of the parameters. The number of parameters should
be kept to a minimum.
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2.7 Appendix

2.7.1 Invariants of Stress Tensor

Stress based criteria Φ for isotropic materials should be invariant with respect to the
symmetric second-rank stress tensor σσσ (Życzkowski, 1981). Therefore, the criteria
are built up using the invariants of this tensor. As a result of the eigenvalue problem,
the principal values (principal stresses) are obtained and denoted by σI, σII, and
σIII (Altenbach et al., 1995; Altenbach and Kolupaev, 2014). The following order is
assumed

σI � σII � σIII. (2.106)

The invariants of the stress tensor play an important role in the formulation of the
equivalent stress expressions (Sect. 2.2). Three stress invariants: the trace (axiator)
I1 of the stress tensor and the invariants I ′2, I ′3 of the stress deviator as functions
of the principal stresses (Życzkowski, 1981; Altenbach et al., 1995; Altenbach and
Kolupaev, 2014)

I1 = σI +σII +σIII, (2.107)

and

I ′2 =
1
6

[
(σI −σII)

2 +(σII −σIII)
2 +(σIII −σI)

2
]
=

=
1
2

[(
σI −

1
3
I1

)2

+

(
σII −

1
3
I1

)2

+

(
σIII −

1
3
I1

)2
]

,
(2.108)

I ′3 =
(
σI −

1
3
I1

)(
σII −

1
3
I1

)(
σIII −

1
3
I1

)
=

=
1
3

[(
σI −

1
3
I1

)3

+

(
σII −

1
3
I1

)3

+

(
σIII −

1
3
I1

)3
] (2.109)

are often used in modeling, see (2.3).
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2.7.2 Scalar Functions of Invariants

Scalar functions of the invariants (2.107) - (2.109) are also invariants (Mālmeisters
et al., 1977), e. g.

• the scaled axiator I1 of the stress tensor (De Boer, 2000; Kolupaev, 2018)

ξ1 = I1/
√

3 (2.110)

describes the coordinate of loading on the hydrostatic axis (Fig. 2.1, axis ξ3),
• the root of the scaled second invariant of the stress deviator

ρHW =
√

2I ′2 (2.111)

as radius in the HAIGH-WESTERGAARD coordinates (De Boer, 2000; Kolupaev,
2018),

• the stress angle θ in the π-plane (plane with the cross section I1 = const.)
(Novozhilov, 1951b; Życzkowski, 1981; Chen and Zhang, 1991; Ottosen and
Ristinmaa, 2005)

cos3θ=
3
√

3
2

I ′3(
I ′2
)3/2 , θ ∈

[
0,

π

3

]
, (2.112)

and
• the elevation ψ (Hencky, 1943; Życzkowski, 1981; Altenbach and Kolupaev,

2014)

tanψ=

√
3I ′2
I1

, ψ ∈ [0, π ] (2.113)

or a stress triaxiality factor (Yagn and Vinogradov, 1954; Davis and Connelly,
1959; Lebedev et al., 1979; Kolupaev, 2006; Lebedev, 2010; Kolupaev, 2018)

η=
1

tanψ
. (2.114)

These invariants (2.110) - (2.113) are sometimes preferred because of the geomet-
ric interpretation of the loading in the stress space. Other invariants are given in
Altenbach et al. (1995); Altenbach and Kolupaev (2014); Yagn and Vinogradov
(1954); Życzkowski (1981) for instance.

2.7.3 Modified Invariants

The radius (2.111) can be also introduced based on the VON MISES hypothesis (von
Mises, 1913, 1928) as
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ρ=
√

3I ′2 (2.115)

for normalization of the measured data with respect to the appropriate uniaxial ten-
sile limit loading

σI = σT
0 , σII = σIII = 0 (2.116)

and uniform visualization (Subsects. 2.3.2 and 2.3.5).
The deviatoric invariant I ′3 (2.108) can be expressed as a function of ρ and cos3θ

(Szwed, 2000, 2013)

I ′3 =
2

3
√

3

√(
I ′2
)3 cos3θ=

2
33 ρ3 cos3θ, (2.117)

what is used in Appendix 2.7.7 for deployment of the series of invariants.
With a double-angle function (Bronstein and Semendjajew, 2007) we obtain fur-

ther invariants (Jemioło and Szwed, 1999; Szwed, 2000, 2013), see also Życzkowski
(1981)

cos6θ= 2cos2 3θ−1 = 2
33

22

(
I ′3
)2

(
I ′2
)3 −1 (2.118)

and

cos12θ= 2cos2 6θ−1 = 2
(
2cos2 3θ−1

)2
−1 = 2

(
2

33

22

(
I ′3
)2

(
I ′2
)3 −1

)2

−1,

(2.119)
which are used as “building blocks” in the formulation of the phenomenological
criteria Φ(ρ, θ) (Appendix 2.7.7).

2.7.4 Particular Points on Limit Surface

Particular points on the limit surface Φ can be obtained with the setting of the cor-
responding elevation ψ (2.113) and the stress angle θ (2.112)

√
3I ′2
I1

= tanψ and
3
√

3
2

I ′3(
I ′2
)3/2 = cos3θ (2.120)

normalized with √
3I ′2 = 1.

Typical settings follows, among others, with

tanψ=∞, ±
√

3 ±1, ± 1√
3

, ±1
2

, ±
(

2−
√

3
)

, ±
(√

6−
√

3+
√

2−2
)

, . . .
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for the angle

ψ=
π

2
, ±π

3
, ±π

4
, ±π

6
, ±0.4636,± π

12
,± π

24
, . . .

and the meridians (Subsect. 2.3.3), e.g.

θ= 0,
π

12
,
π

6
,
π

4
,
π

3
.

For example, we obtain with I1 = 0 and

meridian θ= 0 : σI =
2
3
rTcc

0 σT
0 , σII = σIII =−

1
2
σI,

meridian θ=
π

6
: σI =−σII =

1√
3
rS

30 σ
T
0 , σIII = 0,

meridian θ=
π

3
: σI =−

2
3
rttC

60 σT
0 , σII = σIII =−

1
2
σI.

The meridians of VON MISES criterion coincide in the BURZYŃSKI-plane and it
follows

rTcc
0 = rS

30 = rttC
60 = 1.

The seven points of the plane stress states and the points of the hydrostatic loading
are chosen for the analysis and comparison of the limit surfaces (Table 2.7). These
loading cases have established definition and can be considered as the basic tests
(Bulla and Kolupaev, 2021; Kolupaev, 2006, 2018).

2.7.5 Values for Comparison

In the following, details on the stress computation for comparison of geometric
properties of the yield criteria Φ are given (Subsects. 2.3.2 and 2.3.5). These norma-
lized stresses of the plane stress state are obtained with the setting

3I ′2 = 1 and σIII = 0. (2.121)

The value r15 is obtained setting

cos
[
3

π

12

]
=

√
2

2

with

σI =

√
2
3

, σII =−
1√
2
+

1√
6

, (2.122)
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Table 2.7: Basic stress states with the corresponding stress angle θ and the dimensionless invari-
ants η, cos3θ, cos6θ, cos9θ, and cos12θ (Kolupaev, 2018).

Label CCC CC Cc C S T Tt TT TTT

σI

σT
0

−rCCC −rCC
0 −

2√
3
rCc

30 −rC
60

1√
3
rS

30 1
2√
3
rTt

30 rTT
60 rTTT

σII

σT
0

−rCCC −rCC
0 −

1√
3
rCc

30 0 −
1√
3
rS

30 0
1√
3
rTt

30 rTT
60 rTTT

σIII

σT
0

−rCCC 0 0 0 0 0 0 0 rTTT

θ - 0
π

6
π

3
π

6
0

π

6
π

3
-

η −∞ -2 −
√

3 -1 0 1
√

3 2 ∞

cos3θ - 1 0 -1 0 1 0 -1 -

cos6θ - 1 -1 1 -1 1 -1 1 -

cos9θ - 1 0 -1 0 1 0 -1 -

cos12θ - 1 1 1 1 1 1 1 -

Comments: C - uniaxial compression, Cc - biaxial compression in the stress relation 1:2, CC -
equibiaxial compression, CCC - hydrostatic compression, S or TC - shear, T - uniaxial tension, Tt
- biaxial tension in the stress relation 1:2, TT - equibiaxial tension, TTT - hydrostatic tension.

σI =−

√
2
3

, σII =−

√
2
3
+

1√
3

(2.123)

or

σI =

√
2
3
+

1√
3

, σII =

√
2
3
−

1√
3

. (2.124)

The value r30 is obtained setting

cos
[
3
π

6

]
= 0 and σI =−σII

with
σI =

1√
3

. (2.125)

The value r45 is obtained setting

cos
[
3
π

4

]
=−

√
2

2

with

σI =

√
2
3

, σII =
1√
2
+

1√
6

(2.126)
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or

σI =±
√

2
3

, σII =

√
2
3
± 1√

3
. (2.127)

The value r60 is obtained setting

cos
[
3
π

3

]
=−1 and σII = 0

with
σI =−1. (2.128)

The value r7.5 is obtained setting (Weisstein, 2021)

cos
[
3

π

24

]
=

1
2

√
2+

√
2

with

σI =±
√

1
3

(
2+

√
2
)

, σII =±
√

1
3

(
2∓
√

2±
√

3
)

(2.129)

or

σI =−

√
1
3

(
2−
√

2+
√

3
)

, σII =

√
1
3

(
2+
√

2−
√

3
)

. (2.130)

And the value r22.5 is obtained setting (Weisstein, 2021)

cos
[
3
π

8

]
=

1
2

√
2−

√
2

with

σI =±
√

1
3

(
2−

√
2
)

, σII =

√
1
3

(
2±
√

2±
√

3
)

(2.131)

or

σI =−

√
1
3

(
2+
√

2+
√

3
)

, σII =−

√
1
3

(
2−
√

2−
√

3
)

. (2.132)

Further values of the plane stress state (Sect. 2.3.5)

rS
30, rTt

30, rTT
60 , rC

60, rCc
30 , and rCC

0

for pressure-sensitive criteria are given in Rosendahl et al. (2019b). The values for
hydrostatic tensile limit loading (Subsect. 2.3.5) is
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rTTT =
σTTT

σT
0

=
1

3γ1

and hydrostatic compressive limit loading is

rCCC =
σCCC

σT
0

=−
1

3γ2
,

which follow with 3I ′2 = 0. Accordingly, cos3θ (2.112) is indeterminate in these
two points.

2.7.6 Modified Normal Stress Hypothesis

Based on the PODGORSKI criterion (2.44) with (2.45), we obtain a conical (pyrami-
dal at the border of the parameter η3) criterion with the linear I1-substitution (2.15)

√
3I ′2

Ω3(θ, 0, η3)

Ω3(0, 0, η3)
=

σeq −γ1 I1

1−γ1
with γ1 ∈ [0, 1[, η3 ∈ [−1, 1]

(2.133)
or resolved with respect of the equivalent stress σeq

σeq =
√

3I ′2

cos
[
−

1
3

arccos[η3 cos3θ ]

]

cos
[
−

1
3

arccos[η3 ]

] (1−γ1)+γ1 I1. (2.134)

This criterion is named the SAYIR cone 3̂ − © − 3̄ → I1 (Kolupaev, 2018). The
maximum normal stress hypothesis (NSH) follows with the setting

γ1 =
1
3

and η3 = 1

or after substitution (Chen and Zhang, 1991; Kolupaev, 2018; Rosendahl et al.,
2019b)

σNSH =
1
3

(
I1 +2

√
3I ′2 cosθ

)
(2.135)

which results in the most important properties of the NSH (Fig. 2.22, Table 2.8)

rC
60 →∞, νin

+ = 0, rS
30 =

√
3, rTT

60 = rTTT = 1.

Restrictive is that the derivation at the corners of the surface Φ is discontinuous
(Lagioia and Panteghini, 2016). These corners in the π-plane can be “rounded off”
with the parameter η3 ∈ [0.99, 1[ depending on the required computation accuracy
(Fig. 2.22, Table 2.8).
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1

σI
σT

0

σII/σ
T
0

η
3
=

1

η3 = 0.9

η3 = 0

η3 = −1 S

TTT

T

Tt

C

Cc

CC

-8 -6 -4

-2

-2

-1

Fig. 2.22: Modified normal stress hypothesis (2.134) as function of the parameter η3 (2.138) in
the normalized σI −σII diagram. The ellipse of the VON MISES criterion (red line) and the NSH
(thick black line) are shown for comparison.

Table 2.8: Settings of the parameter η3 ∈ [−1, 1] and corresponding values for the modified
normal stress hypothesis (2.134) with the property rC

60 →∞ (2.138).

η3 γ1 νin
+ rS

30 rTt
30 rTT

60 rTTT π-plane

1 1/3 0
√

3
√

3/2 1 1 3̄

0.999999 0.3335 -0.0003 1.7325 0.8659 0.9995 0.9995 -

0.99999 0.3339 -0.0009 1.7335 0.8657 0.9982 0.9982 -

0.9999 0.3351 -0.0027 1.7368 0.8648 0.9946 0.9946 -

0.999 0.3390 -0.0085 1.7468 0.8623 0.9832 0.9832 -

0.99 0.3510 -0.0265 1.7773 0.8542 0.9496 0.9496 -

0.9 0.3870 -0.0804 1.8623 0.8284 0.8614 0.8614 -

0 1/2 -1/4 2
√

3−1 2/3 2/3 ©
-1 2/3 -1/2

√
3 1/

√
3 1/2 1/2 3̂

The value rC
60 for the criterion (2.134) can be computed as

rC
60 = 1

/[
(1−γ1) cos

[
1
3

arccos[−η3 ]

]
sec
[

1
3

arccos[η3 ]

]
−γ1

]
(2.136)

and the property rC
60 →∞ follows with the denominator

(1−γ1) cos
[

1
3

arccos[−η3 ]

]
sec
[

1
3

arccos[η3 ]

]
−γ1 = 0. (2.137)

The parameter γ1(η3) results in
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γ1(η3) = 1
/[

1+ cos
[

1
3

arccos[η3 ]

]
sec
[

1
3

arccos[−η3 ]

]]
. (2.138)

This means that the π/3-meridian is parallel to the straight line I1 = −
√

3I ′2 in the
BURZYŃSKI-plane (Kolupaev, 2018). Inserted Eq. (2.138) in Eq. (2.134) results in
the values of the modified normal stress hypothesis (C1-NSH):

rS
30 =

2√
3(1−γ1)

cos
[

1
3

arccos[η3 ]

]
(2.139)

or

rS
30 =

2√
3

[
cos
[

1
3

arccos[−η3 ]

]
+ cos

[
1
3

arccos[η3 ]

]]
, (2.140)

rTt
30 =

2
√

3
[

2γ1 +(1−γ1) sec
[

1
3

arccos[η3 ]

]] (2.141)

or

rTt
30 = 2

√
3

cos
[

1
3

arccos[−η3 ]

]
+ cos

[
1
3

arccos[η3 ]

]

3+6 cos
[

1
3

arccos[−η3 ]

] , (2.142)

rTT
60 =

1
3γ1

, (2.143)

and the inelastic POISSON’s ratio at tension follows with

νin
+ =

1
2
(1−3γ1) . (2.144)

This formulation (2.134) with (2.138) is used to derive a C1-continuous strength
criterion according to YST (Subsect. 2.4.4).

The C1-continuous normal stress hypothesis (C1-NSH) can be applied in the
whole range of the parameter η3 ∈ [−1, 1] for better approximation of measured
data (Table 2.8). Although the property rC

60 → ∞ is retained (Fig. 2.22), physical
background of the normal stress hypothesis is then lost.

2.7.7 Series of Invariants

The general structure of the yield criterion Φ is unknown and can not be deduce
based on theoretical considerations (Subsect. 2.4.3). It is known that the criteria Φ
are functions of the stress invariants (Subsect. 2.2.2), which can be grouped into the
number of series. One of possibilities is to construct the deviatoric series of the same
powers of the radius ρ (2.115) and increasing powers of cos3θ.

The complete deviatoric series S ′
n
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S ′
n = ρn (bn +cn1 cos3θ+cn2 cos2 3θ+ . . .

)
, n ∈ N (2.145)

contains several parameters bn and cni, which should be restricted based on the
theoretical considerations and later fitted to the test data. The terms with fractional
exponents (Chen and Han, 1993)

(I ′3)
1/3, (I ′3)

2/3, (I ′3)
4/3, etc.

or, what is the same,

ρ(cos3θ)1/3, ρ2 (cos3θ)2/3, ρ4 (cos3θ)4/3, etc.

are excluded from these series because they lead to non-convex surfaces, see Al-
tenbach et al. (1995); Gol’denblat and Kopnov (1968, 1971b); Spitzig et al. (1975);
Spitzig and Richmond (1979) and cf. Desai (1980); Desai and Faruque (1984b,a);
Jemioło (1992); Wojewódzki et al. (1995).

The applicability of the complete series (2.145) in a criterion is controversial
because of the large number of parameters. The method is sought for restriction of
this number in order to formulate the effective criteria according to the plausibility
assumptions (Appendix 2.7.8).

We obtain the reduced deviatoric series if only the invariants ρ (2.115), I ′3 in the
form ρ3 cos3θ (2.117), and their products of the same power n of ρ are taken:

S ′
1 = b1 ρ,

S ′
2 = b2 ρ

2,

S ′
3 = (b3 +c3 cos3θ)ρ3,

S ′
4 = (b4 +d13 cos3θ)ρ4,

S ′
5 = (b5 +d23 cos3θ)ρ5,

S ′
6 = (b6 +d33 cos3θ+c6 cos2 3θ)ρ6,

S ′
7 = (b7 +d43 cos3θ+d16 cos2 3θ)ρ7,

S ′
8 = (b8 +d53 cos3θ+d26 cos2 3θ)ρ8,

S ′
9 = (b9 +d63 cos3θ+d36 cos2 3θ+c9 cos3 3θ)ρ9,

S ′
10 = (b10 +d91 cos3θ+d46 cos2 3θ+d19 cos3 3θ)ρ10,

S ′
11 = (b11 +d83 cos3θ+d56 cos2 3θ+d29 cos3 3θ)ρ11,

S ′
12 = (b12 +d93 cos3θ+d66 cos2 3θ+d39 cos3 3θ+c12 cos4 3θ)ρ12,

. . .

(2.146)
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The parameters bn weight the invariant ρ and the parameters cn weight the invariant
ρ3 cos3θ of the appropriate powers n. The parameter dkl weights the product of the
invariants (ρ)k and (ρ3 cos3θ)l of the powers n= k+ l.

The terms bn ρ
n with odd powers and the terms with the parameters dkl for odd

k are often neglected in the modeling. The reason for this lies in the structure of the
polynomial criteria formulated as the intersection of three, six, nine, or twelve planes
in the principal stress space. Such formulations contain only terms with ρ2, ρ3 cos3θ
or, what the same, positive integer powers of the invariants I ′2 and I ′3 (2.117) and
their products (Kolupaev, 2018). The rational deviatoric series follows with

S ′
2 = b2 ρ

2,

S ′
3 = c3 cos3θρ3,

S ′
4 = b4 ρ

4,

S ′
5 = d23 cos3θρ5,

S ′
6 = (b6 +c6 cos2 3θ)ρ6,

S ′
7 = d43 cos3θρ7,

S ′
8 = (b8 +d26 cos2 3θ)ρ8,

S ′
9 = d63 cos3θ+c9 cos3 3θ)ρ9,

S ′
10 = (b10 +d46 cos2 3θ)ρ10,

S ′
11 = (d83 cos3θ+d29 cos3 3θ)ρ11,

S ′
12 = (b12 +d66 cos2 3θ+c12 cos4 3θ)ρ12,

. . . .

(2.147)

The highest art in the formulation of the phenomenological yield criteria Φ is to
select the appropriate terms S ′

i , which are relevant for the considered material be-
havior. As this is hardly possible, various formulations are tried out and tested for
the fulfillment of the plausibility assumptions (Appendix 2.7.8). The relevant for-
mulations are obtained with:

• cosine ansatz criterion (Altenbach and Kolupaev, 2009; Kolupaev, 2018; Kolu-
paev and Altenbach, 2010)

• quadratic, bi-, tri-, and sextaquadratic equations (Kolupaev, 2018), and
• cubic (2.47), bicubic (2.53), tri-, and quadracubic equations (Sect. 2.4.2),

which are the explicit functions of σeq (2.12). Further formulation possibilities are
shown in Subsect. 2.4.3.6.
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2.7.8 Plausibility Assumptions

Several requirements on the yield and strength criteria Φ (Sect. 2.2) were pro-
nounced in the past, which can be interpreted as plausibility assumptions. These
requirements are not mandatory but the quality of the criteria may be assessed
considering the plausibility assumptions, which are formally separated in physical,
mathematical, geometric, and ”subjective“ assumptions (Tables 2.9-2.12). Their re-
levance is shown in the authors’ opinion.

Two assumptions PM14 and PS1 are in contradiction with the known statements.
PM14 is immediately justified when an elasticity theory of higher order is consi-
dered and the number of parameters increases. Contradiction to PS1 comes from
the past as lack of tools was vindicated by lack of necessity.

The desires PS14 and PS15 disagree with the idea of the phenomenology. In en-
gineering methods the microstricture is homogenized. There are no physical princi-
ples, e.g. balance equations in Continuum Mechanics (Altenbach, 2018), underlying
such a formulation. The criteria should only not contradict the physical principles.

PS18 is problematic because the term “failure mode of isotropic material” is in
progress, see (Cuntze and Freund, 2004; Cuntze, 2006, 2013, 2021). If the poly-
nomial criteria Φ (2.3) of power three or greater in the stress are considered, differ-
ent failure modes can be set in the “global fitting” and the additional parameters can
be interpreted as “interaction parameters”. Furthermore, the mastery of convexity in
the criteria of the failure mode concept is not clear.
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Burzyński (1900-1970), Czasopismo Techniczne (1929) 47, 1–41, Lwów, (in Polish: Teo-
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własności mechaniczne betonu). Prace Naukowe Politechniki Warszawskiej, Budownictwo
128:1–150

Wronski AS, Pick M (1977) Pyramidal yield criteria for epoxides. J of Materials Science 12(1):28–
34

Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH,
Sendeckyi GP (eds) Treatise on Composite Materials, Academic Press, New York, vol 2, pp
353–431

Wu EM, Scheublein JK (1974) Laminate strength - a direct characterization procedure. In: Berg
CA, McGarry FJ, Elliott SY (eds) Composite Materials: Testing and Design (Third Confe-
rence), ASTM International, Special Technical Publication 546, Philadelphia

Xiaoping V, Ottosen NS, Thelandersson S, Nielsen MP (1989) Review of constructive models for
concrete, EUR 12394 EN. Final Report Ispra, Reactor Safety Programme 1985-1987, Commis-
sion of the European Communities, Nuclear Science and Technology, Contract No. 3301-87-12
ELISPDK, Luxembourg



94 Holm Altenbach and Vladimir A. Kolupaev

Xu P, Sun Z, Shao S, Fang L (2021) Comparative analysis of common strength criteria of soil
materials. Materials 14(15):4302

Yagn YI (1931) New methods of strength prediction (in Russ.: Novye metody pascheta na
prochnost’). Vestnik inzhenerov i tekhnikov 6:237–244

Yagn YI (1933) Strength of Materials: Theory and Problems (in Russ.: Soprotivlenie materialov:
teorja i zadachnik). Kubuch, Leningrad

Yagn YI, Vinogradov IN (1954) Influence of the shape of the stress deviator upon the strength
of metals at plastic deformations (in Russ.: Vlijanie vida deviatora naprjazhenij na sopro-
tivlenie metallov plasticheskomy deformierovaniju). Doklady Akademii Nauk SSSR (Moskva)
96(3):515–517

Yoshimine M, Yu MH, He LN, Iwatate T (2004) The beauty of strength criteria. In: Kleibner M,
Legocki A (eds) Int. Symposium on Developments in Plasticity and Fracture, Centenary of M.
T. Huber Criterion, August 12–14, 2004, Cracow, Poland, p 1

Yu MH (1961) General behaviour of isotropic yield function (in Chinese). Scientific and Techno-
logical Research Paper of Xi’an Jiaotong University pp 1–11

Yu MH (1999) Engineering Strength Theory (in Chinese). Higher Education Press, Beijing
Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th

century. Applied Mechanics Reviews 55(5):169–218
Yu MH (2004) Unified Strength Theory and its Applications. Springer, Berlin
Yu MH (2017) Unified strength theory (UST). In: Feng XT (ed) Rock Mechanics and Engineering,

Volume 1: Principles, CRC Press, Balkema, Leiden, pp 425–452
Yu MH (2018) Unified Strength Theory and its Applications. Springer, Singapore
Yu MH, Yu SQ (2019) Introduction to Unified Strength Theory. CRC Press/Balkema, London
Zhang J, Zhang ZX, Huang CP (2011) Representation based classification of strength theories of

concrete. In: Advanced Materials Research, vol 168, pp 74–77
Zhang N, Li X, Wang D (2021) Smoothed classic yield function for C2 continuities in tensile

cutoff, compressive cap, and deviatoric sections. Int J of Geomechanics 21(3):04021,005
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Chapter 3
Model Order Reduction: The Bridge Between
Structural Mechanics and System Simulation

Michael Beitelschmidt and Claudius Lein

Abstract System simulation using the multibody systems method is a standard pro-
cedure for the design of machines, plants and vehicles. It can be used to investigate
large movements including the behavior of drives and control. Often, individual
bodies have to be modeled elastically because relevant elastic deformations already
occurs in the frequency range under investigation. The state of the art is the “Float-
ing Frame of Reference” method, in which the motion of a body is divided into
a rigid-body motion and small, superimposed, linear-elastic deformations. Elastic
bodies are usually discretized using the finite element method, sometimes produc-
ing very large models. For the integration of such models into the MBS, a model or-
der reduction must be performed beforehand. This typically consists of a sequence
of steps: After a model preparation the actual reduction follows. Several different
methods therefore have been developed in the last years. Subsequently, the quality
of the reduced model can be estimated by correlation methods. Finally, the data is
converted for import into the MBS tool. For this purpose, the software tool MOR-
PACK was developed at the Chair of Dynamics and Mechanism Design at the TU
Dresden. MORPACK can perform all steps of the model order reduction and outputs
models that can be directly imported into MBS tools. In addition to numerous MOR
algorithms, various correlation methods are also stored in the software, ensuring the
greatest possible automation and standardization for the EMBS user.
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3.1 Introduction

Simulation has become an indispensable part of modern product development. Pre-
dicting the dynamic behavior of components, assemblies or entire systems before
building prototypes can save considerable costs in development and significantly
accelerate development processes.

Especially in mechanical and vehicle engineering, multi-body simulation (MBS)
has established itself as a proven tool for predicting motions and associated forces
and torques. The kinematics of a processing machine, the wheel suspension of a ve-
hicle or the flap mechanism in an aircraft wing are characterized by large movements
of individual bodies connected by ideal joints. The resulting equations of motion are
nonlinear due to the kinematics of large rotations and possible gyroscopic effects.
Thus, only an approximate solution by means of numerical time step integration is
possible here (Shabana, 2005; Wittenburg, 2008; Rill and Schaeffer, 2014; Wörnle,
2011). On the one hand, this solution method offers the opportunity to take into ac-
count the effects of drives or control inputs and to expand the calculation to a system
simulation. On the other hand, the level of detail of the simulation is limited. Due
to the poor parallelizability of time-step integrations, the number of state variables,
usually corresponding to the number of mechanical degrees of freedom, is limited.

The finite element method (FEM) has become the standard method for calcu-
lating the stresses in components and the elastic deformation of complex-shaped
bodies under load. For this purpose, the elastic body under consideration is divided
into a large number of small elements, the elastic field equations are set up and as-
sembled into a large system of equations. This system can be used to determine the
stresses and deformations at any location on the body as a result of external loads.
In the case of linear material laws and small distortions, the system of equations is
linear and can be solved in one step, using parallelization if necessary (Zienkiewicz
and Taylor, 2000; Bathe, 2002; Wissmann and Sarnes, 2006). Thus, even relatively
large systems resulting from a very fine discretization of the bodies can be handled.

A major challenge arises when MBS calculations have to include elastic bodies,
which is then called elastic multibody simulation (EMBS) (Schwertassek and Wall-
rapp, 1999; Shabana, 2005; Bremer and Pfeiffer, 1992). Then the two worlds “time
step simulation with a limited number of degrees of freedom” and “many degrees
of freedom of elastic bodies” collide. For this reason, it makes sense to use elastic
bodies in an MBS only when it is unavoidable. The criterion for this is that dynamic
elastic deformations actually influence the system motion or resulting joint loads
in the frequency range of interest. If this is not the case and if, on the other hand,
only the internal stresses in the elastic bodies as a result of the movement are af-
fected, these can also be calculated in a post-processing based on the load boundary
conditions that are the result of the MBS.

Therefore, to be able to perform a system simulation with MBS including elastic
bodies, the number of degrees of freedom of the elastic bodies, which are typically
modeled with the FEM, must be reasonably limited. For this purpose, numerous
methods for model order reduction (MOR) have been developed in the past.
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3.2 Multi-body Simulation Including Elastic Bodies

A typical MBS model is composed of three essential elements:

• bodies, rigid or elastic
• joints
• force elements

The joints link the bodies together. On the one hand they restrict the bodies’ mobility
against each other, on the other hand they enable movements in specific spatial
directions. The design of a mechanism or machine with many degrees of freedom
is essentially characterized by the selection of the right joints at the right place. In
the design of an MBS, ideal joints are used in which resistance-free directions of
movement and ideally rigid constrained directions are always orthogonal to each
other and thus no mechanical work is performed in the joints.

All load effects on the system are summarized as force elements. On the one
hand, these can be forces between bodies such as springs or dampers. Gravity, ex-
ternal drives and friction in joints can also be modeled by using force elements.

Two competing modeling approaches exist for setting up the equation of motion
for MBS, which lead to different types of equations. In the descriptor form, the
Newton-Euler equations are set up for each body and the constraints by the joints are
built-in using Lagrange multipliers. The result is the equation system (simplified).

MMMz̈zz+hhh= FFF+

(
∂ΦΦΦ

∂zzz

)T

·λλλ ,

ΦΦΦ(zzz) = 000.
(3.1)

The vector zzz contains the deflection coordinates of all bodies in the unbound state.
The mass matrix MMM contains the mass matrices of the involved bodies, the vector hhh
all gyroscopic forces. In FFF all external loads are summarized. The equation ΦΦΦ(zzz)= 000
describes all constraints in implicit form, which are introduced into the system by
joints. For simplicity only holonomic and rheonomic constraints will be considered
here. The vector λλλ contains the Lagrange multipliers, which can be directly inter-
preted as constraint forces or constraint torques in the joints if the constraints ΦΦΦ(zzz)
are suitably formulated. The system of equations (3.1) is comparatively simple to
set up, but it is a differential-algebraic (DAE) system of equations. Moreover, the
system is very large because the dimension of zzz, even for strongly bound systems,
is always 6 times the number of bodies. Such systems are much more difficult to
treat numerically, but special solution methods have been established, especially for
MBS.

Another formulation variant for MBS starts from the so-called minimal coordi-
nates. These coordinates describe the possible motions of the system under com-
pliance with all constraints. Especially for tree-structured systems these coordinates
are easy to find: The admissible joint deflections can be used as coordinates. Thus,
the equation of motion of a MBS can be written in the form
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MMMq̈qq+hhh= FFF (3.2)

where qqq describes the deflection of the minimal coordinates. The matrices and vec-
tors MMM, hhh and FFF are not identical to those in Eq. (3.1) since they are reduced to the
minimal coordinates. Equation (3.2) is a system of ordinary differential equations
(ODE), which is much more complicated to formulate, but can be solved using sim-
ple numerical integration techniques. In addition, it is much smaller, since qqq has
only the dimension of the degrees of freedom actually present in the system.

For the inclusion of elastic bodies in a MBS, usually the “Floating Frame of
Reference Formulation” (Schwertassek and Wallrapp, 1999) method is used. This
is based on the idea that the motion of the elastic body can be divided into a “large”
rigid-body part, viewed via the body-fixed coordinate system K, and superimposed,
“small”, linear-elastic deformations uuu. Thus, the equation of motion derived from
FEM can be used for the elastic part of the motion. The position vector rrrOP to the
body point P can be divided into two partial vectors rrrOR and dddRP, the latter being
composed of a constant part rrrRP and the linear-elastic deformation uuuP (Fig. 3.1):

rrrOP = rrrOR +AAA ·dddRP = rrrOR +AAA · (rrrRP +uuuP) . (3.3)

The rotation matrix AAA describes the transformation of a vector from the body-fixed
reference frame K into the inertial frame I. The linear-elastic deformation uuuP of all
points of the body is described by a global RITZ-approach, where usually the global
natural modes of vibration of the structure serve as shape functions ϕϕϕP. The shape
functions must not contain any rigid body components, since these are already taken
into account by the reference motion. The position vector follows with the help of
additional modal coordinates qqqe for the elastic body:

rrrOP = rrrOR +AAA · (rrrRP +ϕϕϕP ·qqqe) . (3.4)

Fig. 3.1: Floating-Frame of Reference Formulation, elastic body undeformed (left) and deformed
(right)
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Thus, in Eq. (3.2), the minimal coordinate set of the rigid multi-body system qqqr
can be extended by an elastic part qqqe and represented in matrix form. For an elastic
single body holds:

[
MMMr MMMre
MMMer MMMe

][
q̈qqr
q̈qqe

]
+

[
hhhr
hhhe

]
+

[
000

DDDeq̇qqe +KKKeqqqe

]
=

[
FFFr
FFFe

]
. (3.5)

The first line contains the rigid component, line two the elastic component. The
components of the elastic body MMMe, DDDe, KKKe represent the mass matrix, damping
matrix and stiffness matrix according to Eq. (3.6). The coupling matrices MMMre and
MMMer describe the occurring interaction between flexible and rigid body due to inertia
effects caused by large deflections. Model order reduction (MOR) methods can be
used for the dimensional reduction of the elastic part.

3.3 Methods of Model Order Reduction

The linear elastic behavior of an elastic body at small distortions is given by the
equation of motion derived from the FEM

MMMẍxx+DDDẋxx+KKKxxx= FFF. (3.6)

In it, xxx contains the nodal displacements in the FE grid. MMM, DDD and KKK are the mass,
damping and stiffness matrices, respectively. The vector FFF represents the external
loads applied to nodes. This can be formulated in the form FFF = BBBuuu with the input
matrix BBB and arbitrary external control inputs uuu.

If a FE grid is connected to other bodies at specified coupling nodes, the measur-
ing equation

yyy= CCCxxx (3.7)

is important, which uses the often sparse output matrix CCC to filter out the relevant
deflections from the entire deformation field. For the correct behavior of the elastic
body in the environment of a MBS, the connection between the system inputs uuu and
the outputs yyy is ultimately responsible. The intermediate system model (3.6) can
be simplified for this purpose if the mentioned relation is preserved as unaltered as
possible. This opens the door to model order reduction (Qu, 2004; Antoulas, 2005).

In linear MOR, a new, much smaller set of coordinates x̄xx is introduced with a
transformation

xxx= VVVx̄xx+εεε≈ VVVx̄xx (3.8)

that expresses its relation to the full set of coordinates. In case of vector xxx being of
length N representing the original system and vector x̄xx being of length n represent-
ing the reduced system with n
N, the projection matrix VVV consists of a dimension



100 Michael Beitelschmidt and Claudius Lein

N×n. Using an orthogonal projection, the Eqs. (3.6) and (3.7) can now be put into
the form

VVVTMMMVVV ¨̄xxx+VVVTDDDVVV ˙̄xxx+VVVTKKKVVVx̄xx= VVVTBBBuuu ,
yyy= CCCVVVx̄xx

(3.9)

where the matrices

M̄MM= VVVTMMMVVV , D̄DD= VVVTDDDVVV , K̄KK= VVVTKKKVVV (3.10)

have only the dimension n×n and thus allow a much smaller system description
with a significantly lower degree of freedom.

The art of model order reduction is to find a suitable projection matrix VVV . For this
purpose, after many years of research, a large variety of MOR methods now exists.
In parallel, numerous procedures for the quality assurance of a MOR have also been
developed (Sect. 3.4). These allow to estimate the admissibility of the reduction for
the respective application.

The MOR methods, can be roughly divided into three families according to the
nature of the reduced coordinates (Beitelschmidt and Lein, 2012):

1. The reduced coordinates are still nodal displacements in the cartesian space.
Only a partitioning into preserved master nodes and omitted slave nodes takes
place.

2. The coordinates describe the abstract deflections of vibration modes of the body
or more general deflection modes.

3. Hybrid methods use a mixture of coordinates in the cartesian space and abstract
coordinates.

In the following, two methods will be presented in more detail: The Craig-Bampton
method (Craig and Bampton, 1968; Craig, 2000; Wijker, 2005) and the Krylov sub-
space method (Antoulas et al., 2004; Bai, 2002).

The Craig-Bampton method is a hybrid method that combines the static reduction
to coupling nodes with the use of modal coordinates. On the one hand, this ensures
the connection of the reduced model to the coupling nodes (Fig. 3.2). On the other
hand, a physically based reduction can be achieved by using modal coordinates and
truncating accordingly at a frequency boundary. The Craig-Bampton method has
meanwhile been overtaken by more modern methods, but it is still used as a quasi-
industry standard, which is available in all commercial calculation programs, since a
further utilization is easy due to the node displacements being in the cartesian space.

In the independent static reduction part, also known as method of Guyan reduc-
tion (Guyan, 1965), the coordinates are divided into master and slave coordinates
xxxT = [xxxT

m xxxT
s ]. The criterion for this is that there are no inputs or outputs, i.e. cou-

plings, at slave coordinates or the associated slave nodes. The corresponding rows
in BBB or columns in CCC are zero. The matrices in equation (3.6) can be partitioned,
neglecting damping, as
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Fig. 3.2: FE-model of a frame structure (left) and a gearbox housing (right) with master nodes
connected to the FE-structure, which are used for coupling in the MBS model.

[
MMMmm MMMms
MMMsm MMMss

][
ẍxxm
ẍxxs

]
+

[
KKKmm KKKms
KKKsm KKKss

][
xxxm
xxxs

]
=

[
BBBm
000

]
uuu. (3.11)

In static reduction, the inertia is neglected and the second line of Eq. (3.11) can be
resolved to

xxxs =−KKK−1
ss KKKsmxxxm. (3.12)

This solution describes the quasi-static deformation of the body at the slave nodes
caused by displacements of the master nodes. For a pure static reduction, x̄xx = xxxm
can be set and the projection matrix holds:

VVV =

[
EEE

−KKK−1
ss KKKsm

]
. (3.13)

Here EEE is a unit matrix whose dimension corresponds to the number of master de-
grees of freedom. However, this reduction is insufficient for motions and resulting
inertial loads on the bodies and gives poor results.

For this reason the oscillation modes of the system with blocked master nodes are
calculated. This results in the modal matrix ΦΦΦ with the corresponding eigenvalues or
natural frequencies ω2

i. The motions of the slave nodes can now be calculated using
the modal coordinates xxxφ in the form xxxs = ΦΦΦxxxφ−KKK−1

ss KKKsmxxxm as the sum of the
dynamic and static components, where the dimension of xxxφ is initially still exactly
the same as that of xxxs. As a reduction step, all modes with a natural frequency above
a suitable frequency limit can now be neglected or “truncated”. This also eliminates
their modal coordinates, leaving a reduced set x̄xxφ with associated reduced modal
matrix Φ̄ΦΦ. The master deflections xxxm and the reduced modal deflections x̄xxφ are
used as the reduced coordinate set. The projection matrix is then
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VVV =

[
EEE 000

−KKK−1
ss KKKsm Φ̄ΦΦ

]
. (3.14)

Estimates are available for determining the frequency limit during truncation. In ad-
dition, the frequency limit can be determined iteratively with the methods described
in the Sect. 3.4. It should be noted, however, that due to the coupling of the elastic
body in the overall system by coupled masses, natural frequencies may decrease
sharply and initially neglected modes may become significant later.

As a method that has recently gained importance for MOR, the Krylov subspace
method (KSM) will be presented here. This method approximates the transfer func-
tion matrix HHH, which is obtained from the equation of motion (3.6) associated with
the input matrix BBB and the output matrix CCC according to Eq. (3.7)

HHH(s) = CCC
(
s2MMM+ sDDD+KKK

)−1
BBB. (3.15)

The most original form of the KSM formulation is based on Krylov (1931) and is set
up for first order systems, further developed by Grimme (1997) and Gallivan et al.
(2004), among others. Therefore, Eq. (3.15) can be written in a first-order form with
the descriptor matrix EEE and the system matrix AAA:

HHH(s) = C̆CC(sEEE−AAA)−1 B̆BB. (3.16)

With the help of a power series formulation at expansion point σ one obtains ac-
cording to Lehner and Eberhard (2006):

HHH(s) =

∞∑

j=1

C̆CC
[
(σEEE−AAA)−1 ·EEE]j · (σEEE−AAA)−1 · B̆BB · (σ− s)j

=

∞∑

j=1

TTTσ
j · (σ− s)j .

(3.17)

The coefficients TTTσ
j are called moments. By a so-called moment matching the mo-

ments between original and reduced model are brought into agreement. Similar to a
Taylor polynomial, the transfer function matrix is approximated accordingly.

For the determination of the Krylov subspace two basic methods are available:
The Arnoldi algorithm according to Arnoldi (1951) is preferred over the Lanczos al-
gorithm after Lanczos (1950) because of its simple implementability. Furthermore,
the choice of the development points σ determines the success of the approxima-
tion: The case σ = 0 is henceforth called original KSM. If σ �= 0 is valid for one or
more development points, we speak of rational KSM (RKSM). In case of an itera-
tive choice of the expansion point e.g. Fehr et al. (2013) one speaks then of iterative
rational KSM.

In mechanics, second-order multi-input-multi-output (MIMO) systems are usu-
ally present according to (3.6). For these, it is useful to remain in a second order
formulation (3.15) and not to revert to a first order formulation (3.16). This is ac-
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complished by means of a second order Arnoldi (SOAR) algorithm Salimbahrami
(2005); Lehner (2007) and Koutsovasilis (2009). The Krylov subspace VVVK is com-
posed of the basis vectors in VVVK,j and reads for an undamped system for σ= 0 with
moment j:

VVVK,j = span
(
(KKK−1MMM)j−1KKK−1bbb

)
. (3.18)

The Boolean starting vector bbb contains only values 1 at the places where inputs or
outputs are present, which is accomplished interpolatively using the input and output
matrices of the system Bunse-Gerstner et al. (2007). The dimension of the reduced
model depends on the number of columns in VVVK and results from the number of
expansion points σ multiplied by the order of series j. In contrast to the Craig-
Bampton approach (3.14), the number of master nodes does neither play a role for
the approximation quality nor for the dimension of the reduced model.

Preferably, an RKSM approach with a SOAR algorithm is used for an arbitrary
number and distribution of expansion points σ. The choice of σ and j is essential and
significantly determines the reduction success and the reduced model dimension.
The original KSM is rather conservative and usually yields passable results, but
numerical stability is not always given. For details see Koutsovasilis (2009) and
Lein and Beitelschmidt (2015), the latter work dealing with an optimal choice of
expansion points for a minimal model dimension.

3.4 Quality Assurance of the Model Order Reduction

A reduced system no longer has the full information content of the original system,
cf. eq. (3.8). Whether an information is important or unimportant can be determined
for mechanical systems mostly by the covered frequency range. Below a frequency
limit, which is different for each system, the reduced system should behave as much
as possible like the original system. Above this frequency limit, considerable devia-
tions can occur, but these are deliberately neglected.

To check the agreement between the original system and the reduced system
in the desired frequency range, several procedures for quality assurance of reduced
systems exist. These can be roughly divided into four types (Lein and Beitelschmidt,
2014):

• consideration of the eigenvalues (eigenfrequencies) of both systems.
• comparison of the eigenvectors (mode shapes) of both systems
• comparison of the transfer behavior of both systems
• comparison of properties of the system matrices

Both the information content and the computational effort increase from top to bot-
tom. In addition, there is the possibility to compare mass properties or the static
behavior, which will not be discussed in detail.
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Comparison of eigenfrequencies is a quick but crude procedure with limited sig-
nificance. Even seemingly matching eigenfrequencies can belong to strongly differ-
ent eigenmodes or to eigenmodes that are reversed in order. Therefore, mode pairing
is absolutely necessary in advance. For the comparison of the eigenfrequencies of
p mode pairs without rigid body modes, the Normalized Relative Frequency Dif-
ference (NRFD) is suitable (Fig. 3.3), which provides the percentage error of the
eigenfrequencies between reduced system fr,i and original system fv,i

NRFDi =

∣∣∣∣1−
fr,i

fv,i

∣∣∣∣ , i= 1,2, . . . ,p . (3.19)

Since a pure comparison of eigenfrequencies is not sufficient in many cases, a nu-
merical comparison of mode shapes is often considered. However, the eigenvectors
of the reduced model ΦΦΦr and the original model ΦΦΦv have different dimensions n and
N, which requires an adjustment of the eigenvectors. Different methods are used for
the dimension adjustment (Lein and Beitelschmidt, 2014):

• expansion of the reduced system to dimension N
• contraction of the original system to dimension n
• selection of common representative coordinates from both systems
• comparison based on a common intermediate dimension based on expansion of

the reduced and contraction of the original system

The various approaches differ significantly in numerical effort and expressiveness.
Very common but also numerically costly is the comparison based on the expanded
reduced model ΨΨΨr using the projection matrix VVV from Sect. 3.3:

ΨΨΨr = VVVΦΦΦr . (3.20)

The choice of available correlation methods based on the dimension-adjusted eigen-
vectors is manifold, the best known representative being the Modal Assurance Cri-
terion (MAC), of which numerous variations exist (Allemang, 2003). For the com-
parison of two eigenvectors of the reduced system ψψψr,i and the original system φφφv,i,
the MAC yields values between 0 and 1 (Allemang, 1980):

MACi,j =

(
ψψψH

r,i ·φφφv,j

)2

(
ψψψH

r,i ·ψψψr,i

)(
φφφH

v,j ·φφφv,j

) , i, j= 1,2, . . . ,p . (3.21)

The individual terms can be combined to form the MAC matrix. The terms on the
main diagonal of the matrix express the agreement of reduced and original mode
shape. Values above 0.9 indicate a good correlation. The off-diagonal elements
should not exceed 0.1 (Fig. 3.4).

Both methods NRFD and MAC depend on an identification and assignment of
the mode shapes, which can lead to problems in models with high mode density
or component symmetries. Furthermore, both methods only compare the maximum
peaks, but not the anti-resonances of the transfer behavior.
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Fig. 3.3: Natural frequency based correlation methods between original and reduced model, NRFD
error (top), NRDF error shown as frequency scaling (bottom).

The correlation based on the transfer behavior is the state of the art in automation
technology, even if the calculation of the transfer behavior according to (3.15) for
discrete frequency points Ω is numerically complex. Therefore, a modal formula-
tion H̃HH based on the modal matrix ΦΦΦ is suitable as a starting point:
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Fig. 3.4: Eigenvector-based correlation methods between original and reduced model, MAC iso-
metric (top), MAC top view (bottom).

H̃HH(Ω) =ΦΦΦ(−Ω2MMM+ jΩDDD+KKK)−1ΦΦΦT . (3.22)

Since the transfer function matrix H̃HH consists of dimension N×N, it is convenient
to calculate Eq. (3.22) only for selected i= o=a inputs/outputs. The modal transfer
function matrix H̃HH

IO
of dimension i× i follows with the help of input matrix BBB and
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output matrix CCC (Eqs. (3.6) and (3.7)):

H̃HH
IO
(Ω) = CCCΦΦΦ(−Ω2MMM+ jΩDDD+KKK)−1ΦΦΦTBBB . (3.23)

Analogously to the MAC in Eq. (3.21), the Frequency Domain Assurance Criterion
(FDAC) can be derived using the principal diagonal terms of the transfer function
matrix of the reduced model hhhr(Ω) and the original model hhhv(Ω) for a frequency
point (Pascual et al., 1997):

FDAC(Ω) =

(
hhhH

r (Ω) ·hhhv(Ω)
)2

(
hhhH

r (Ω) ·hhhr(Ω)
)(

hhhH
v (Ω) ·hhhv(Ω)

) . (3.24)

The FDAC provides a better evaluation of the anti-resonances, which is relevant for
example for the analysis of a minimal sound radiation (Woller et al., 2016). The
frequency points can be equidistant or adaptively distributed. The comparison of
system matrices is also usually based on modal approaches, but will not be discussed
further.

Another approach, often used in control engineering (Antoulas, 2005), is to ap-
ply the infinity matrix norm to the transfer function matrices H̃HH. By relative value
formation, the frequency-dependent H∞-error-norm eH∞ follows:

eH∞(Ω) =

∥∥∥HHHH
r (Ω)−HHHH

v (Ω)
∥∥∥
∞∥∥∥HHHH

r (Ω)
∥∥∥
∞

. (3.25)

The H∞-error-norm is a measure of the maximum error in the input-output gain due
to a harmonic excitation. However, in FDAC, the evaluation of the maximum valid
frequency range is greatly facilitated for the user by the percentage representation
(see Fig. 3.5).

3.5 Example for Model Order Reduction

At the Chair of Dynamics and Mechanism Design of the TU Dresden a program
for MOR is under development since 2008 (Koutsovasilis, 2009; Beitelschmidt and
Lein, 2012; Lein et al., 2015; Lein and Beitelschmidt, 2015; Lein et al., 2017). The
MORPACK program will be briefly introduced in this section and explained with
an example.

The MORPACK software can be used to automatically create and validate re-
duced body models based on FE-models for use in elastic multi-body systems
(EMBS) or FE-programs. Since the providing of elastic bodies has not been very
systematized so far and is associated with a large number of sub-steps in different
programs, MORPACK combines the entire process in one software, starting with
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Fig. 3.5: Transfer function based correlation methods between original and reduced model, FDAC
(top), H∞ (bottom).

model preparation, through model reduction with quality assurance, up to the export
of the reduced, elastic body (Fig. 3.6). All substeps in MORPACK are systematized
and preset depending on the model, so that the greatest possible automation and
standardization as well as reproducibility are ensured.
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Fig. 3.6: Modified sequence of the FEM-MKS coupling process using MORPACK software

MORPACK is a MATLAB R©-based tool and tailored to the specific EMBS user
requirements. By means of a comfortable user interface all settings can be adjusted
model-specific. MORPACK acts as an interface between the FE-program and the
MKS software.

The automated process is modular and includes the following steps:

1. data import (FE-program or measurement via EMA).
2. model preparation (definition of connections and coupling nodes, as well as

additional master nodes)
3. model order reduction (automated minimal models)
4. quality assurance (automated correlation)
5. data export (FE or MBS program)
6. EMBS program (spatial EMBS algorithm)

In the following, the reduction process is presented using a gearbox housing of a
locomotive. Large, thin-walled housing structures may well exhibit elastic defor-
mations in frequency ranges relevant to propulsion simulations. At the latest, if the
structure-borne noise, as it arises e.g. in the gear meshes, is to be investigated, an
elastic modeling of such large-surface structures is inevitable.

Figure 3.7 shows the imported FE-model. The import of detailed FE-elements is
omitted, since this limits the flexibility of the import process considerably. Instead,
a coarse surrogate mesh based on nodal coordinates is automatically created for
visualization. In this step, the coupling nodes with which the elastic body is later
connected to other components must also be defined. Additional master nodes are
defined automatically, which are relevant for the unique description of the mode
shapes, among other things.

In Table 3.1 the selection list of model order reduction methods is presented.
In addition to the methods presented in 3.3, Craig-Bampton and Krylov, numerous
other methods are implemented for experimental reasons.
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Fig. 3.7: MORPACK modules FE-model (left) and master node selection (right)

Table 3.1: MORPACK module model order reduction, overview of available reduction methods

Basic methods Cartesian
space

hybride
space

general
space ANSYS R© MORPACK

Static Reduction
Guyan X X X

Dynamic Reduction
Dynamic X X

Standard Improved Reduction System Method
IRS X X

System Equivalent Reduction Expansion Process
SEREP X X

Component Mode Synthesis
CMS / Craig-Bampton Method X X X

Combinations based on IRS / CMS / KSM
ICMS / KCMS / IKCMS X X

Krylov Subspace Method
KSM / Rational KSM / Block-KSM X X

Second Order Balanced Truncation
SOBT / frequency-weighting X X

Figure 3.8 shows screenshots of the model correlation. It can be seen that the
reduced model is well correlated to the original model up to a frequency of 996 Hz
(NRFD) or to 3183 Hz (MAC), meaning the mode shapes correlate better than the
natural frequencies. This is important for the selection of the modal shape functions
in the MBS program, because modes above 3200 Hz must not be considered.
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Fig. 3.8: MORPACK module correlation, based on eigenfrequencies (top) and based on eigenvec-
tors (bottom)



112 Michael Beitelschmidt and Claudius Lein

Fig. 3.9: MORPACK EMBS module (left) and an exported model from MORPACK to SIMPACK
(right)

Finally, the final reduced model can be exported to MBS programs. Figure 3.9
(top) shows the implemented EMBS algorithm in MATLAB R©, which can be used
for a preliminary analysis to optimize the selection of modal shape functions de-
pending on specific load cases. Figure 3.9 (bottom) shows the model imported to
SIMPACK R©, which is based on the equivalent mesh created at the beginning. How-
ever, the elastic properties are determined solely by the selection of the modal shape
functions and not by the visualized geometry.

3.6 Summary

System simulation using the multibody systems method is a standard procedure
for the design of machines, plants and vehicles. It can be used to investigate large
movements including the behavior of drives and control. Often, individual bodies
have to be modeled elastically because relevant elastic deformations already occur
in the frequency range under investigation. The state of the art is the “Floating Frame
of Reference” method, in which the motion of a body is divided into a rigid-body
motion and small, superimposed, linear-elastic deformations.

It is obvious that a model order reduction (MOR) is necessary to reduce the often
huge number of dregrees of freedom of the models of elastic bodes produced by
FEA for a fast simulation. For this purpose, the software tool MORPACK was de-
veloped at the Chair of Dynamics and Mechanism Design at the TU Dresden. MOR-
PACK can perform all steps of the model order reduction process chain. A focus in
the development of MORPACK was to implement established MOR algorithms as
well as experimental new methods. Furthermore, the quality assurance algorithms
of MORPACK basing on model correlation were introduced in this article.

Although model order reduction has already reached a high level of maturity, it is
still a research topic. Among other things, the goals of development are to efficiently
reduce even larger systems and to generate models that are as small as possible.



3 Model Order Reduction 113

Link MORPACK:
https://tu-dresden.de/ing/maschinenwesen/ifkm/dmt/forschung/projekte/morpack
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Chapter 4
Identification of Temperature Dependent
Material Properties in Composite Plates
Utilizing Experimental Vibration Data

Marcus Maeder, Sourav Chandra, and Steffen Marburg

Abstract In recent three decades, composite materials have received an increas-
ing interest among engineers and scientists. These materials are characterized by a
higher stiffness with reduced weight, compared to commonly used materials such
as aluminum or steel. It is not surprising that a wide range of applications emerged
within the aerospace and transportation sector for example for aircraft and high-
speed train hulls. However, these composite materials are generally made out of fiber
and matrix material. This material behavior strongly depends on the environmental
conditions such as temperature. This results in a complex macroscopic material be-
havior and the precise knowledge of the corresponding properties is a key factor
for computer aided engineering and virtual prototyping. Especially when composite
structures are subjected to dynamic loading and changing temperatures, resonances
can occur and ultimately lead to fatal dynamic behavior in the absence of sufficient
damping. Therefore, the experimental investigation of the material behavior under
dynamic loading for different temperatures together with a proceeding parameter
identification scheme is necessary to precisely capture the material properties of the
underlying model, which is the essence of the work at hand. Utilizing the presented
approach, the parameter identification is easy to implement and reliable.

Key words: Composites, Parameter identification, Temperature dependent elastic
material parameters, Experimental investigation, Optimization

4.1 Introduction

In the past several decades, the application of composite plates in transportation
industries, for example aircrafts, high-speed trains, sports-cars etc., is increasing
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rapidly. The light-weight, high-strength, and higher fatigue strength inspired re-
searchers and engineers to consider composite materials as a principal structural
material to design light-weight vehicles without compromising safety and comfort
of passengers. In new commercial aircrafts like the Boeing 787 or the Airbus 380,
composite materials comprise 50% of the total net mass (Gay, 2014). Furthermore,
to accomplish aerodynamically contoured nose designs of high-speed trains, the us-
age of composite materials shows better performance. Due to the high-speed move-
ment of these vehicles, the ambient temperature increases which may modify the
elastic properties of the composite materials. In general, these composite materials
consist of fibers and matrix material which both posse viscoelastic properties that
are frequency and temperature dependent. Generally, carbon-epoxy, graphite-epoxy,
and IM7-PEEK composites are extensively used as a high-strength composite ma-
terial in the field of aircraft or high-speed train production. These materials are ca-
pable to withstand prolong vibration and aerodynamic heating. However, altering
material properties due to changes in temperature can lead to unwanted vibrations
or even a loss in structural integrity. Therefore, the precise knowledge of tempera-
ture dependent elastic properties of these composite materials is essential for a safe
and reliable design of composite structures.

Primarily, determining the elastic properties of composite plates is carried out
using two methods – namely the direct method on the one hand and the inverse
method on the other hand. Different static test procedures can be used to evaluate
elastic properties of composite lamina (D3039/D3039M, 2017; D4255/D4255M,
2020; Adams and Bacon, 1973). However, the accuracy of these methods highly
depends on boundary conditions and the overall geometry of the lamina. Various
micro-mechanical theories have been implemented by scientists and engineers to
calculate the elastic and damping properties of a lamina by knowing the material
properties of the single fibers and the matrix material (Ni and Adams, 1984). Sara-
vanos and Chamis (1989) have proposed a micro-mechanic theory to evaluate elas-
tic properties of composite lamina by including hygrothermal effects. Based on this
theory, calculations of the temperature-dependent elastic properties of the lamina
provide only unsatisfactory results due to the lack of accurate knowledge of tem-
perature, fiber volume fraction, and fiber-matrix interaction (Brantseva et al., 1999).
Despite these circumstances, Lecompte et al. (2007) and Mi et al. (2020) have im-
plemented extensive static test procedures to identify the elastic properties of com-
posite plates. However, these static procedures fail to provide in-situ methods when
the composite laminates are subjected to dynamic loading with special consideration
of a varying thermal environment.

For this scenario, the determination of elastic properties of lamina based on dy-
namic test results together with an identification scheme offers several advantages.
The fundamental idea of the inverse technique is to minimize the error between in-
situ response measurements and simulated responses by numerically optimizing the
elastic properties of the material. This way, composite plates subjected to dynamic
loading should be evaluated using elastic properties that are obtained from dynamic
test. Zhou et al. (2017) have shown a variation of the identified elastic properties for
a wooden plate based on static and dynamic tests. Their study indicates that static
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tests underestimate Ex and Ey, and overestimate Gxy of the underlying orthotropic
material model. Furthermore, the elastic properties obtained from the dynamic test
results are sufficiently influenced by the applied boundary conditions. Therefore, the
material property identification based on the dynamic test data is receiving much at-
tention by the scientific community. Mota Soares et al. (1993) and Rikards et al.
(1999) proposed conducting an experimental modal analysis of laminated compos-
ite plates and subsequently evaluate the elastic properties by considering an inverse
approach. The finite element (FE) technique is utilized to develop numerical models
of such plates using a first order shear deformation theory (FSDT). To investigate
the effect of various shear deformation theories, Frederiksen (1997b,a) have identi-
fied the elastic properties of a laminated composite plate utilizing FSDT and differ-
ent higher order shear deformation theories (HSDTs). Overall, the determination of
elastic properties based on the experimental modal analysis imparts more realistic
values for laminated composite plate being subjected to dynamic loading.

To determine the temperature dependent elastic and damping properties, a suit-
able experimental procedure and instrumental setup needs to be implemented. Com-
monly, a dynamic mechanical analysis (DMA) is used for this purpose. However,
the DMA is conducted using only a small sample of laminate within a certain fre-
quency range. Typically, this frequency range is limited as 0 <f� 100 Hz. Melo and
Radford (2005) used a DMA to identify the temperature and frequency dependent
material properties of a IM7-PEEK lamina. Recognizing the importance of conduct-
ing an experimental modal analysis of a laminated composite plate to identify the
temperature dependent elastic properties, Frederiksen (1992); Sefrani and Berthelot
(2006) have conducted such experiments within a thermal environment and suit-
able minimization techniques, which have been implemented during the identifica-
tion process. Recently, Li et al. (2019, 2020) have presented a mixed experimental-
numerical strategy to identify the temperature dependent material properties of such
composites. In their work, the authors fixed the composite plate at one end inside
the thermal chamber which may impart extra rigidity to the plate and thus to the
identified material properties.

An extensive survey of available literature indicates the importance of the dis-
cussed identification strategies based on the experimental data. Moreover, the experi-
mental-modal-analysis-based identification technique is receiving greater attention
within the scientific community due to its simplicity and reliability. However, sev-
eral challenges have been encountered while conducting experimental modal anal-
ysis within a thermal chamber, which need to be addressed. Furthermore, studies
in this field are very limited. To extent the horizon of the identification of tempera-
ture dependent elastic properties of a laminated composite plate, a mixed numerical-
experimental procedure has been investigated. Therefore, the work at hand proposes
an efficient experimental strategy to investigate laminated composite plate within a
thermal chamber and evaluate the temperature dependent elastic properties by uti-
lizing modal data such as modal frequencies. This modal data is evaluated based on
measurements. In addition, an exhaustive search optimization technique is imple-
mented to solve this inverse problem, which avoids the numerical complexity of the
optimization procedure and evidently achieves the global minimum.
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4.2 Theory

To identify the temperature dependent elastic parameters, a mixed experimental-
simulation based procedure has been adopted utilizing an inverse approach and
experimental modal data at different temperatures. The minimization of the error
between simulated and experimental modal data is the core idea of the identification
procedure. In this section, the theoretical formulation of the laminated composite
plate is discussed.

4.2.1 Plate Theory

An equivalent single layer theory (ESLT) based on the FSDT is used to numerically
evaluate eigenfrequencies of a thin laminated composite plate. The dimension of
the plate is defined by the length, a, the width, b, and the overall thickness, h.
This laminate consists of n numbers of lamina of equal thickness (Fig. 4.1). Here,
a Cartesian coordinate system (x, y, z) at the mid-plane of the laminate is used to
describe the laminate dimensions and the system dynamics. The fiber orientation
of an individual lamina is defined by the local lamina coordinate system (1, 2, 3)
(Fig. 4.1) and the corresponding fiber angle is measured between the local and the
global coordinate system, i.e. the angle between 1-axis and x-axis for each lamina,
respectively.

According to the FSDT, the mid-plane displacement of a laminate is described as
d = {u0 v0 w0 θx θy}

T, where u0 and v0 are in-plane translations of a com-
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Fig. 4.1: A typical stacking sequence of lamina to form a symmetric angle-ply laminate,
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posite plate in the directions of x and y, respectively. The out-of-plane displacement
is denoted by w0 and rotations about x and y axes are presented by θx and θy. The
generalized displacement field of the composite plate at an arbitrary distance z is
calculated using the following expressions.

u= u0 +zθy, v= v0 −zθx, w=w0,
θx =w,y−ϕy, θy =−w,x+ϕx,

(4.1)

where ϕy and ϕx indicate share rotations in the x−z and y−z planes, respectively.
In FSDT, a shear correction factor of κ = 5/6 is used to account for the general
nonlinear distribution of shear strains.

With a uniform increment of temperature change, ΔT , above the reference tem-
perature (room temperature), the stress-strain relation for the kth lamina is written as

σσσk = Qk

{
εεεk−εεεT

}
=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0

0 0 0 Q44 Q45
0 0 0 Q45 Q55

⎤
⎥⎥⎥⎥⎦
{
εεεk−αααkΔT

}
, (4.2)

where, εεεk and εεεT =αααkΔT are the mechanical strain and the thermal strain vectors,
respectively for the kth lamina. Furthermore, the transformed reduced stiffness ma-
trix of the lamina is presented as Qk and the corresponding stress vector is indicated
as σσσk = {σx σy τxy τxz τyz}

T
k (Niyogi et al., 1999). Here, the matrix Qk is

developed based on the elastic parameters of the lamina, i.e., E11, E22, G12, G13,
G23, ν12 and ν21. Due to the transversely isotropic property of the lamina, the re-
lationship between elastic properties of G12, G13, G23, G12, ν21 and ν12 can be set
based on theoretical concepts or suitable measurements (Reddy, 2001; Daniel and
Ishai, 1994; Tsai and Daniel, 1990; Knight, 1982; Altenbach et al., 2018; Frederik-
sen, 1997b). Thereby, E11, E22, G12, and ν12 appear as principle elastic parameters
of the orthotropic lamina. In addition, the coefficient of thermal expansion, αααk, is
expressed in laminate coordinate system (x, y, z) as

αααk = {αx αy αxy 0 0}Tk, (4.3)

and the stress-resultant vector, Fr = {Nx Ny Nxy Mx My Mxy Qx Qy}
T, of

the composite is obtained by integrating the lamina stress over the thickness and
takes the compact form as

Fr = D
{
εεε∗− e∗

}
=

⎡
⎣

A B 0
B D 0
0 0 Ā

⎤
⎦εεε∗−

⎧
⎨
⎩

NT
MT
QT

⎫
⎬
⎭ . (4.4)

Here, εεε∗ and e∗ represent the mid-plane strain vector and the mid-plane thermal
strain vector of the composite laminate. The components of the stress-resultant and
the mid-plane strain vector relationship matrix, D, are expressed as
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(A, B, D) =

h/2∫

−h/2

Qij(1, z, z2)dz, i, j= 1, 2, 6,

Ā = κ

h/2∫

−h/2

Qijdz, i, j= 4, 5; κ= 5/6.

(4.5)

For a general case, the solution of the well-known conservation equations of
continuum mechanics together with the above discussed constitutive relations must
fulfill boundary and initial conditions, which hardly exists in a closed form. There-
fore, state-of-the-art numerical methods have been utilized that are briefly discussed
in the subsequent section. At this point, it must be mentioned that the influence of
the resultant thermal stress vector, {NT MT QT}

T in Eq. (4.4) can be neglected
when conducting a numerical analysis with free-free boundary conditions, which is
the case for the work at hand.

4.2.2 Numerical Methods

The plate domain is divided into a number of finite elements, which is the basic
idea of the finite element method (FEM) in order to compute the dynamics of the
laminated composite. A 2-dimensional eight-node element with five degrees of free-
dom (DOFs), i.e. u0, v0, w0, θx, and θy, at each node is used for the FE analysis.
Here, the ESLT, as explained before, is used and implemented for the FE analysis
to investigate the plates modal properties.

The governing equations for small deformation problems in an elastic continuum
are derived by the minimization of the total potential and kinetic energies. Accord-
ingly, these equations for the free vibration under a thermal environment are stated
as (

[K+KG]−ω2
numM

)
d= 0, (4.6)

which reassembles a system of equations. Here, the stiffness matrix, K, of the plate
that provides the interaction of ne elements is expressed as

K =

ne∑

i=1

∫

Ae

BTDBdAe, (4.7)

where Ae indicates the surface area of the corresponding element and B is the strain-
displacement matrix Niyogi et al. (1999); Das and Niyogi (2020). The geometric
stiffness matrix, KG, is given as
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KG =

ne∑

i=1

∫

Ae

GTSrGdAe, (4.8)

where Sr denotes the initial stress-stiffness matrix due the thermal pre-stressing ef-
fect and G is the corresponding shape function matrix (Chandra et al., 2019; Das
and Niyogi, 2020). The mass matrix, M, is written as

M =

ne∑

i=1

∫

Ae

NT M̄NdAe, (4.9)

where, N is the shape function matrix which relates d and the elemental mid-plane
displacement vector, de, as d = Nde, and M̄ is the inertia matrix (Chandra et al.,
2019). The eigenvalue solution of Eq. (4.6) imparts the numerically evaluated modal
frequencies, ωnum,m, of the laminated composite plates within the thermal environ-
ment.

The widely known commercially available FE software, ANSYS, is utilized to
calculate the modal frequencies in the thermal environment. A user defined FE code
is written in ANSYS parametric design language (APDL) applying the eight-node
shell element ‘SHELL281’ of the ANSYS element library. In a first step, a static
analysis is conducted to consider the thermal effect in the laminated composite plate
which is included as a pre-stressing force. These forces are then included in a sec-
ond step in which the modal analysis is considered to compute the eigenvalues and
associated mode shapes.

4.2.3 Operational Modal Analysis

Since the 1990’s, the operational modal analysis (OMA) has constantly gained in-
creasing interest among engineers for experimentally investigating the structural dy-
namics of complex and large systems (Zhang and Brincker, 2005). Originally, it was
intended to analyzing large structures such as building, bridges, off-shore platforms,
and towers, where natural conditions serve as excitation mechanisms. In contrast to
the wider known experimental modal analysis (EMA), where both the excitation as
well as the system responses are measured (Ewins, 2000), the OMA procedure only
requires the knowledge of system responses only. This way, a number of advantages
can be stated with respect to the EMA method (Zhang and Brincker, 2005):

• OMA is cheap and fast to conduct.
• It is possible to investigate complex structures.
• Systems under operational conditions can be analyzed.

In addition to the advantages when conducting measurements under operational
conditions, the OMA can be utilized within laboratory conditions, where the ex-
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citation with its special requirements can be synthesized. This way, it is possible to
construct various operational conditions under which the structure is investigated.

In this work, a white noise excitation serves as a suitable load, whereas a num-
ber of DOFs are measured sequentially. For this reason, each DOF measurement
possesses a unique references signal which can be handled by the utilized OMA
algorithm. The algorithm is constructed as a stochastic subspace identification (SSI)
procedure, where the parametric model is directly fitted to the raw time data of each
DOF measurement. This identification method can be written in a generalized form
as:

x̂t+1 = Ax̂t+Ket, (4.10)
yt = Cx̂t+et, (4.11)

where the matrix, A, contains the physical information, the matrix, C, extracts the
information from the system response, and the K-matrix contains statistical informa-
tion. In addition, the vector, et, represents measurement noise and x̂t reassembles
the discrete state vector. Finally, yt denotes the sampled output vector, i.e. the mea-
surements (Peeters and De Roeck, 2001; Au, 2017). As the theory is well known and
state of the art, the authors refer to Au (2017); Brincker and Ventura (2015); Zhang
and Brincker (2005); Peeters and De Roeck (2001) for deeper insight. For analyz-
ing the measured date, the software OMA Pulse 22 distributed by Brüel & Kjær is
utilized, which provides the SSI algorithm.

The obtained results consist of modal parameters such as the eigenfrequencies,
the mode shapes, and modal damping values. In this work, the authors utilize the
eigenfrequencies, fm,exp, as part of an optimization procedure which is discussed in
the following section.

4.2.4 Optimization Strategy

To calculate the temperature dependent elastic moduli of the laminated composite
plates, a suitable optimization strategy is implemented. The core idea of the opti-
mization strategy is to minimize the error between experimentally evaluated modal
responses and numerically simulated modal responses by adjusting the elastic pa-
rameters at different temperature, and thus identify the temperature dependent elas-
tic moduli. The numerically predicted modal responses are expressed in terms of
the modal frequencies, fm,num, i.e. ωm,num/2π. Similarly, the experimental modal
frequencies, fm,exp, are obtained from the operational modal analysis.

Assuming r̄ as the identified parameters, the optimization problem is defined as

Minimize : C(r̄)
subjected to : r̄min < r̄ < r̄max,

(4.12)

where
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C(r̄) =
Nm∑

m=1

(
fm,exp − fm,num

fm,exp

)2

. (4.13)

Here, the number of modal frequencies considered to develop the cost function,
C(r̄), is represented by Nm. In this study, three principle elastic parameters, i.e.,
E11, E22, and G12 are identified. To follow the physical relationship between the
elastic parameters of laminated composite plates, the identified parameters are ex-
pressed by r̄ = {E11 E11/E22 E22/G12}. The sensitivity of the Poisson’s ratio, ν12,
is negligible and therefore excluded in the identification process. The density, ρ, of
the composite plate has been determine experimentally by knowing the plate geom-
etry and mass of the plate with a satisfactory precision.

A brute-force search or exhaustive search optimization technique is implemented
for the elastic property identification. Considering a suitable step size, a sufficiently
large number of r̄ values are generated within a physically valid domain, Rd,
such that (r̄min, r̄max) ∈ Rd, and combined them to develop a set of parameters as
[r̄1 r̄2 ... r̄n]

T . Subsequently, based on the parameter set cost functions, C(r̄), the
parameter configuration, r̄, which minimizes the cost function is considered as the
sought material parameter set. The main advantage of implementing an exhaustive
search optimization technique in this problem is that it achieves the global mini-
mum. Henceforth, the temperature dependent elastic moduli of the composite plate
are calculated after suitable manipulation on the identified parameters. The exhaus-
tive search optimization is carried out using a MATLAB routine, linked with APDL
as a solver. The analysis framework is understood best by viewing it in a flowchart
(Fig. 4.2), which presents the link between the MATLAB script and the ANSYS
solver. As an example, a typical MATLAB script to link the solver is given below:

1 %% MATLAB script to execute APDL script.
2 % APDL script as a slover: inputAPDL.txt
3 % Output file: FreqOupout.txt
4 % Location of ANSYS executable file: "C:\Program Files\ ... "
5
6 system('set ANS_CONSEC=YES & set ANSYS_LOCK=OFF & SET

KMP_STACKSIZE = 4096k & "C:\Program Files\ANSYS Inc\v193\
ansys\bin\winx64\ansys2019R1.exe" −b −p ANSYS −i inputAPDL.
txt −o FreqOupout.txt −smp −np2');

4.3 Measurements and Simulations

An experimental modal analysis of a laminated composite plate has been conducted
to evaluate the experimental modal frequencies within a thermal chamber at differ-
ent temperatures, which is explained in more detail in the subsequent outlines.
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Fig. 4.2: Analysis framework showing interface between MATLAB and ANSYS solver.

4.3.1 Measurement Setup

The measurement setup consists of a thermal chamber, in which a carbon-epoxy
laminated composite plate has suspended through elastic strings. Note that the elas-
tic strings where mounted in the nodal lines of the first principle deflection shape of
the plate. This way, it was possible to realize a free-free boundary condition. The
plate has been exited with a white-noise sound signal generated from a loudspeaker
which has been placed at the corner of the thermal chamber. Two laser doppler vi-
brometers (LDVs) are used to measure the vibration of the composite plate through
windows, covered with glass plates, at the two opposite walls of the thermal cham-
ber. One LDV scanned the vibrating of the plate (i.e., scanning LDV), and the other
LDV measurement position remained fixed, which served as a phase reference (i.e.,
reference LDV). During the experiment, controlling the input, i.e., white noise, and
collecting measured data have been done through a data acquisition (DAQ) sys-
tem. A sufficient large time responses at each measurement point was collected. A
schematic diagram (Fig. 4.3) of the measurement setup provides an overview of the
overall setup. The internal temperature of the thermal chamber has been set to a con-
stant value during the measurement operation. Therefore, a sequential measurement
procedure was possible.
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Fig. 4.3: Measurement setup with Laser Doppler Vibrometer (LDV); PDV100 as reference LDV,
PSV500 as scanning LDV (Polytec GmbH, Waldbronn, Germany).

4.3.2 Test Sample

A 14-layered symmetric cross ply laminated composite plate, (45◦/−45◦)7s, made
out of unidirectional T700 carbon fiber-epoxy is used as the sample structure. To ide-
alized a free-free boundary condition, the composite plate is suspended diagonally
through Kevlar wires, as shown in Fig. 4.3. Moreover, the dimension of the plate
has been selected wisely, so that the acoustic cavity together with its corresponding
acoustic resonances could be considered as a high frequency regime. This way, the
required uncorrelated excitation to conduct the OMA was satisfied. In contrast, the
size of the structure was relatively small. Therefore, the lowest structural vibration
resonances where excited by the acoustic excitation. The dimensions of the plate
are (150× 110× 4.018) mm. The Measurements on the vibrating plate are carried
out over a temperature range that varied between 0◦C and 125◦C with temperature
increments of 25◦C. Moreover, a 0% humidity level has been maintained during the
experimental study. The density, ρ, of the laminated composite plate is considered
as 1603.7 kg/m3. Poisson’s ratio, ν12, is assumed as temperature independent with
a value of 0.32.

Reference LDV

Composite
plate

1.01 m

1.10 m

1.09 m Kevlar string
with hook

Thermal chamber

Glass windows

Scanning
LDV

DAQ system

Loudspeaker Microphone

Post-processing
Eigenfrequency, fm
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4.3.3 Numerical Model

The carbon-epoxy composite plate which is used as a sample structure during ex-
perimental study is numerically model by 2-dimensional FEM. The commercially
available FE software ANSYS is used for this purpose in which the eight-node shell
element ‘SHELL281’ of the ANSYS element library was utilized. Within this eigen-
value analysis, the modal data in terms of eigenfrequencies and corresponding mode
shapes have been computed. The theoretical background of the FEM for analyzing a
laminated composite plate is described in Sects. 4.2.1 and 4.2.2. The geometry and
known parameters of the plate are stated in previous subsection.

For the underlying FE model, the plate is discretized with a 8×7 element mesh
for which a free-free boundary condition was assumed. Consequently, the numeri-
cally obtained first six rigid modes are neglected while accounting the first six de-
formation mode shapes in the optimization algorithm.

4.4 Results

The experimentally obtained modal frequencies at prescribed temperatures are pre-
sented here. Further, these modal frequencies are used to identify the temperature
dependent elastic properties of the experimented carbon-epoxy composite plate.

4.4.1 Experimental Results and Analysis

A T700-carbon fiber-epoxy laminated composite plate was excited by a white noise
sound signal inside the thermal chamber at different temperatures, and a scanning
LDV measured the structural vibration of the plate. The experimental setup inside
the thermal environment is shown in Fig. 4.3, where the plate is suspended through
the elastic string which simulate the free-free boundary condition. Measurements
have been conducted at every DOF on the plate for a duration of 50 s and the cor-
responding time responses were stored using the DAQ system. The post-processing
of the raw time data had been carried out with the use of the Brüel & Kjær Software
OMA Pulse 22 to conduct the operational modal analysis and to evaluate the modal
results such as eigenfrequencies and mode shapes of the composite plate.

In order to analyze the temperature dependent material behavior, a set of six
different temperature conditions, namely at 0◦C, 25◦C, 50◦C, 75◦C, 100◦C, and
125◦C have been realized within the climate chamber. Before initiating the mea-
surement, the temperature and humidity inside the thermal chamber was controlled
through an automatic controller, where a delay time of 10 min has been set to
achieve equilibrium condition.

The experimentally obtained modal frequencies at each temperature for the sym-
metric angle-ply laminated composite plate are plotted in Fig. 4.4a. To understand
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Fig. 4.4: (a) Experimental modal frequencies at different temperature; (b) percentage of reduction
of modal frequencies, Δ(j)

exp,m, at different temperature with respect to the modal frequencies at
0◦C for symmetric angle-ply laminate (45◦/−45◦)7s at different temperatures.

the trend of the variation of the modal frequencies with increasing temperature, a
comparative bar chart is shown in Fig. 4.4b. The percentage of the reduction of the
modal frequencies at 25◦C, 50◦C, 75◦C, 100◦C, and 125◦C temperatures are de-
picted. Here, the obtained eigenfrequencies at 0◦C have been used as the reference
and the relative estimate of the eigenfrequency reduction has been calculated as

Δ
(j)
exp,m =

f
(j)
exp,m− f

(0)
exp,m

f
(0)
exp,m

, where j= 25◦, 50◦, 75◦, 100◦, and 125◦C. (4.14)

The first five modes clearly show a decreasing trend of the modal frequency with
increasing temperature. Furthermore, the rate of reduction of the first modal fre-
quency is significantly large as compared to the other modes. The modes 2 and 3
exhibit some exception of the trend at the temperature between 100◦C and 125◦C,
and 50◦C and 75◦C, respectively.

The associated mode shapes obtained by the operational modal analysis at 0◦C
are shown in Fig. 4.6 in the Appendix. At this point, it is not clear, why mode 1,
3, and 4 show a significant higher dependency on the temperature changes than the
remaining modes. The investigation of this behavior is subject of future research.

4.4.2 Identified Elastic Properties

The modal frequencies which are evaluated based on experimental data and shown
in Fig. 4.4 are used in a process for material parameter identification. This process
includes two different mode set combinations. Here, the modal frequencies with
combinations of (a) 1 to 3 and (b) 1 to 6 are considered to evaluate the cost function

0 25 50 75 100 125
0

1000

2000

3000

4000

(a)

1 2 3 4 5 6
0

3

6

9

12

(b)



128 Marcus Maeder, Sourav Chandra, and Steffen Marburg

within the optimization strategy. The results of this parameter identification for each
set of mode combination are shown in Table 4.1. It can be seen that the variation of
E11 with increasing temperature is rather insignificant. With increasing temperature,
E22 obtained from modes 1 to 3 shown an overall deteriorating tendency except
a small peak at 100◦C. In the second set where the modes 1 – 6 are taken into
account, the authors believe that an over-determined system exists, which results in
an un-physical behavior of the material properties with respect to temperature. For
this reason, sudden changes in the material parameters can be noticed at 75◦C and
125◦C for E22. Here, a less strictly decreasing behavior was expected. In contrast,
the identified temperature dependent shear modulus, G12, has shown a decreasing
trend with the increasing temperature for both types of modal contributions.

It is of interest to evaluate the accuracy of the identification. This verification
of the results is performed by calculating the relative error in percent between the
experimental modal frequencies and simulated modal frequencies based on the iden-
tified elastic parameters (Table 4.1). The calculated errors of discrepancy at all tem-
peratures are shown in Fig. 4.5. It can be seen that the differences between exper-
imental and numerical frequencies are very small and overall remain below 1%.
This level of accuracy is maintained for the modes which are not participate for
the identification, i.e., for the first set of identification results using modes 1 to 3.
This indicates the accuracy of identified elastic parameters and adopted optimiza-
tion techniques. By adopting the identified elastic properties of the composite plates
(modes 1 to 3) at 0◦C, it was possible to compute the mode shapes numerically
using ANSYS, which are shown in Fig. 4.7 in the Appendix. It is evident that the
numerically simulated mode shapes are similar with those obtained from OMA (see,
Fig. 4.6). Both facts, i.e. low errors between numerical and experimental calculated

Table 4.1: Identified temperature dependent elastic moduli of T700carbon-epoxy lamina consid-
ering the modal frequencies (experimental and simulated) ranges between 1 to 3 and 1 to 6 for the
symmetric angle-ply laminate (45◦/−45◦)7s.

Contributing modes Temp. [◦C] Identified elastic moduli [GPa]
E11 E22 G12

1 to 3

0 129.26 9.65 5.85
25 129.80 9.41 5.53
50 130.68 8.27 5.33
75 130.88 7.88 5.09
100 130.80 8.07 4.89
125 131.96 7.76 4.57

1 to 6

0 128.58 10.20 5.83
25 129.12 9.93 5.52
50 129.68 8.76 5.31
75 129.08 10.08 5.04
100 131.02 7.80 4.87
125 130.96 8.85 4.54
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Fig. 4.5: Percentage of error between experimental and simulated eigenfrequencies at different
temperature.

eigenfrequencies as well as matching of mode shapes proves the accuracy of the
identified elastic properties of the carbon-epoxy laminated composite plate.
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4.5 Conclusion

The identification of the temperature dependent elastic properties of carbon-epoxy
laminated composite plate is presented here. The identification is carried out using
an inverse process based on the experimental modal frequencies. The experiment
has been conducted within a thermal chamber at different temperature conditions
ranging from 0◦C to 125◦C with an 25◦C interval. An exhaustive search optimiza-
tion technique is implemented to identify the elastic properties. The minimization
of the error between experimental and numerical modal frequencies are the key idea
of the identification process. Furthermore, using the exhaustive search optimization
method leads to the global minimum which is confirmed by the accuracy of the
elastic properties; though it is computationally expensive. Two sets of modal con-
tributions, i.e., 1 to 3 and 1 to 6 are accounted during the optimization process. It
has been found that the experimental modal frequencies are temperature dependent,
and the first modal frequencies are shown higher sensitivity with the variation of
the temperature. Furthermore, the identified elastic properties of the carbon-epoxy
lamina vary with temperature. However, this variation is insignificant for the E11
parameter. The temperature dependent shear modulus, G12 have shown an inverse
variation with the increasing temperature.

In summary, utilizing a contact free excitation and measurement procedure
within a climate chamber together with an OMA of the raw time data gives reliable
modal estimates that serve as a basis for an inverse material parameter identification.
In this identification an exhaustive optimization has been carried out with the use of
adequate FE simulations. This way, it was possible to achieve high accuracies of the
identified material parameters under dynamic loading of the underlying composite
plate. The presented method is easy to implement and has the potential for future
improvements with respect to time and computational cost.

Acknowledgements We would like to acknowledge Heiko Beinersdorf (MFPA Weimar) and Prof.
Jörg Bienert (TH Ingolstadt) for their help on conducting the measurements and the data analysis.
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4.6 Appendix

4.6.1 Mode Shapes of OMA

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Fig. 4.6: Mode shapes of OMA with (a) Mode 1 to (f) Mode 6 at 0◦C; All off diagonals in MAC-
Matrix less than 0.01.
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4.6.2 ANSYS Simulated Mode Shapes

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Fig. 4.7: Mode shapes obtained from ANSYS simulation from (a) Mode 1 to (f) Mode 6 at 0◦C.
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Chapter 5
Unilateral Constraints and Multibody Dynamics

Friedrich Pfeiffer

Abstract Constraints are the most important design elements of all moving me-
chanical systems. They decide about the structure of the system allowing its com-
ponents only certain directions of free motion. Most applications deal with smooth
constraints and thus with no interruption of the smooth flow of motion. Mechanical
systems with contacts, being able to be open or closed, do not possess this property.
Motion might be interrupted, be it as a wanted design element, be it as suddenly
appearing constraints, or be it as a consequence of unavoidable tolerance effects in
all machine interconnections. Chapter will give some review about the dynamics of
such systems, theoretically and practically.

5.1 Introduction

Multibody systems are interconnected rigid or elastic bodies with bilateral or uni-
lateral interconnections, being defined by kinematic constraints. Very often under-
estimated, the constraints decide about the structure of a machine or a mechanism
much more than the bodies. They tell mechanical systems, where to go thus en-
abling free motion where it is wanted and where it is needed. Figure 5.1 depicts the
possibilities.

Graph (a) illustrates a constraint surface where motion has to take place, a classi-
cal concept characterized by tangential manifolds of the constraints themselves and
Riemann space properties. Graph (b) shows an interconnection by force laws, a case
we shall not discuss here, but which is of some importance in practical descriptions
of machines. Finally, graph (c) depicts the situation of a unilateral constraint in the
form of a contact, which is open showing relative distance and no constraint force.
This case and friction problems will be matter of the following chapter.
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Fig. 5.1: Constraints and interconnections form the structure of mechanical systems.

Classical multibody system theory is well established, kinematics and dynam-
ics are smooth, see, for example, Shabana (2013); Bremer (2008); Pfeiffer (2008);
Woernle (2016). Very fundamental and general aspects are given in Papastavridis
(2002), and an excellent kinematical basis is presented by Wittenburg (2016).

Unilateral constraints appear with contacts between rigid or elastic bodies. Con-
tacts may be closed, and the contact partners may detach again. Within a closed
contact we might have sliding or sticking, both connected with local friction. If two
bodies come into contact, they usually penetrate into each other leading to local de-
formations. If contacts are accompanied by tangential forces and by tangential rela-
tive velocities within the contact plane, we get in addition to normal also tangential
deformations. Depending on the dynamical (or statical) environment contacts may
change their state, from closure to detachment, from sliding to sticking, and vice
versa. We call a contact active, if it is closed or if we have stiction, otherwise we
call a contact passive.

The birth of non-smooth mechanics mainly took place in France, Italy and
Greece, in the second half of the last century. Fathers of this development are
Moreau in Montpellier (Moreau, 1988) and Panagiotopoulos in Thessaloniki (Pana-
giotopoulos, 1993). The crucial step to a set-theoretical formulation was done by
Alart and Curnier (1991). Their theory reduced computer time drastically for the
price of diminishing mechanical transparency. An excellent presentation of the
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whole field is given by Brogliato (1999), and very good introduction to the set-
theoretical background of non-smooth dynamics give the books of Glocker (2001);
Leine and Nijmeijer (2004).

At the author’s Institute and pushed by practical problems non-smooth theories
were applied for large multibody systems with many contact connections (Pfeif-
fer and Glocker, 1996; Pfeiffer, 2008). Glocker (2001) introduced the concept of
"set-valued" forces, which is adequate for non-smooth problems due to the friction
cone properties. Large multibody systems with unilateral constraints automatically
generate large numerical problems, which were successfully treated by Foerg et al.
(2006); Foerg (2007) giving an efficient solution of the constraint prox-formulation.
Currently this seems to be the best solution concept for large non-smooth multibody
systems.

5.2 Concepts of Dynamics

5.2.1 Bilateral Dynamics

Classical theory for multibody dynamics starts with the equations of motion for
interconnected masses and with the appropriate constraints. For putting that in a
suitable form, usually the principles of d’Alembert or Jourdain are applied (Pfeiffer
and Schindler, 2015). Using Jourdain’s principle of lost power and assuming rigid
bodies results in

n∑

i=1

δ

(
vvvO ′
ωωω

)

︸ ︷︷ ︸
˙zzzT

T
{

d

dt

[(
mIII mr̃rrTO ′S

mr̃rrO ′S ΘΘΘO ′

)

︸ ︷︷ ︸
MMM

(
vvvO ′
ωωω

)

︸ ︷︷ ︸
żzz

]
+

(
mω̃ωωω̃ωωrrrO ′S
ω̃ωωΘΘΘO ′ωωω

)

︸ ︷︷ ︸
fffg

−

−

(
FFFe+FFFa+FFFp

MMMe
O ′ +MMMa

O ′ +MMM
p
O ′

)

︸ ︷︷ ︸
fffe+fffa+fffp

−

(
FFFc

MMMc
O ′

)

︸ ︷︷ ︸
fffc

}

i

= 0, (5.1)

written in body-fixed coordinates (vvvO ′ ,ωωω translational and rotational velocities,
m,III,ΘΘΘO ′ masses and mass moments of inertia, O ′,S reference point and center of
gravity, fffg,fffe,fffa,fffp,fffc gyroscopic, applied, driving, process and constraint forces
and torques). Systems with time-dependent masses are included.

The virtual velocities δżzz, as presented in Eq. (5.1), cannot be chosen arbitrar-
ily, but they must satisfy side-conditions in form of bilateral constraints with well-
known classification (Pfeiffer, 2008). Taking this into consideration and following
the ideas of Jacobi (1866), usually addressed to as Lagrange I, in the form given in
Bremer (2008), we come out with the typical example
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MMMz̈zz+ṀMMżzz+fff−fffc =000, ∈ Rn (fff= fffg−fffe−fffa−fffp)

Φ̇ΦΦ=WWWT żzz+w̄ww, ∈ Rm

Φ̈ΦΦ=WWWT z̈zz+

[(
dWWWT

dt

)
żzz+

(
dw̄ww

dt

)]
=WWWT z̈zz+ŵww,

fffc =−WWW(zzz,t)λλλ. (5.2)

The mass matrix is positive definite and symmetric. The constraints Φ̇ΦΦ include all
multibody constraints ΦΦΦ. TheWWW-matrices are Jacobians defining the tangential con-
straint surfaces. The constraint forces are perpendicular to these manifolds. All con-
straints are assumed to be bilateral and independent from each other. Jacobi (1866)
has been aware of the fact already that the differentiated form of the constraints is
needed to solve the complete set of equations of motion and constraints, see third
equation of Eqs. (5.2). It is

z̈zz=−MMM−1
[
(ṀMMżzz+fff)+WWW(WWWTMMM−1WWW)−1WWWTMMM−1[(ṀMMżzz+fff)−ŵww]

]
,

λλλ=−(WWWTMMM−1WWW)−1
[
WWWTMMM−1(ṀMMżzz+fff)−ŵww

]
. (5.3)

If the coordinate zzz depends on some other coordinates qqq, where zzz might be non-
minimal and qqq might be minimal, then we get from Bremer (2008)

Φ̇ΦΦ=WWWT żzz+w̄ww=WWWT

(
∂zzz

∂qqq

)
q̇qq+w̄ww=000,

∂Φ̇ΦΦ

∂q̇qq
=WWWT

(
∂zzz

∂qqq

)
=

(
∂zzz

∂qqq

)T

WWW =000,

(5.4)
which is very helpful for projection needs.

5.2.2 Unilateral Dynamics

5.2.2.1 Classical Approach

Two problems have to be solved for multibody systems with many unilateral con-
tacts: the problem of non-smooth solution trajectories and the combinatorial prob-
lem. We start with the last one. For this purpose we define all contact sets, which
can be found in a multibody system:

IA(t) = {1,2, . . . ,nA} with nA elements
IC(t) = {i ∈ IA : gNi = 0} with nC elements
IN(t) = {i ∈ IC : ġNi = 0} with nN elements
IT (t) = {i ∈ IN : |ġTi|= 0} with nT elements

(5.5)

These sets describe the kinematic state of each contact point. The set IA consists of
the nA indices of all contact points. The set combination IA \ {IC,IN,IT } includes
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all contacts. The elements of set IC are the nC indices of the unilateral constraints
with vanishing normal distance gNi = 0, but arbitrary relative velocity in the normal
direction. In the index set IN are the nN indices of the potentially active normal
constraints, which fulfill the necessary conditions for continuous contact (vanishing
normal distance gNi = 0 and no relative velocity ġNi in the normal direction).
The index set IN includes for example all contact states with slipping. The nT

elements of the set IT are the indices of the potentially active tangential constraints.
The corresponding normal constraints are closed and the relative velocities ġTi in
the tangential direction are zero. The numbers of elements of the index sets IC,IN
and IT are not constant, but depend on time, because there are variable states of
constraints due to separation and stick-slip phenomena.

As a next step we must organize all transitions from contact to detachment and
from stick to slip and the corresponding reversed transitions. In normal direction
of a contact we find the following situation (Pfeiffer and Glocker, 1996):

• Passive contact i
gNi(g,t)� 0, λNi = 0, indicator gNi,

• Transition to contact
gNi(g,t) = 0, λNi � 0,

• Active contact i
gNi(g,t) = 0, λNi > 0, indicator λNi,

• Transition to detachment
gNi(q,t)� 0, λNi = 0.

The kinematical magnitudes gNi, ġNi, g̈Ni are determined from contact kinematics
(Sect. 5.4). The constraint forces λNi must be compressive forces. If they change
sign, we get separation. The properties above establish a complementarity behavior,
which might be expressed by nN (set IN) complementarity conditions (put on an
acceleration level)

g̈ggN � 000 ; λλλN � 000 ; g̈ggT
NλλλN = 0 , (5.6)

The complementarity problem defined in Eq. (5.6) might be interpreted as a corner
law, which requires for each contact g̈Ni � 0, λNi � 0, g̈NiλNi = 0. Figure 5.2
illustrates this property.

With respect to the tangential direction of a contact we shall confine our consid-
erations to the application of Coulomb’s friction law, which in no way means a loss
of generality. The complementary behavior is a characteristic feature of all contact
phenomena independent of the specific physical law of contact. Furthermore we
assume that within the infinitesimal small time step for a transition from stick to
slip and vice versa the coefficients of static and sliding friction are the same. For
ġTi �= 0 any friction law may be applied. With this property Coulomb’s friction law
distinguishes between the two cases

Stiction: |λTi|< μ0iλNi ⇒ |ġTi|= 0 (Set IT )
Sliding: |λTi|= μ0iλNi ⇒ |ġTi|> 0 (SetIN\IT ).

(5.7)
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Fig. 5.2: Corner laws for normal and tangential contact behavior.

Equation (5.7) formulates the mechanical property that we are within the friction
cone if the relative tangential velocity is zero and the tangential constraint force
|λTi| is smaller than the maximum static friction force (μ0iλNi). Then we have
stiction. We are on the friction cone if we slide with |ġTi| > 0. At a transition point
the friction force is then (μ0iλNi) (see (5.7)). In addition we must regard the fact
that in the tangential contact plane we might get one or two directions according to
a plane or a spatial contact. From this we summarize in the following way keeping
in mind that these are conditions not equations:

• Passive contact i (Sliding, Set IN\IT )
|ġTi|� 0, |μ0iλNi|− |λTi|= 0, indicator |ġTi|,

• Transition Slip to Stick
|ġTi|= 0, |μ0iλNi|− |λTi|� 0,

• Active contact i (Sticking, Set IT )
|ġTi|= 0, |μ0iλNi|− |λTi|> 0, indicator |μ0iλNi|− |λTi|,

• Transition Stick to Slip
|ġTi|� 0, |μ0iλNi|− |λTi|= 0.

From a classical numerical point of view we have to check the indicator for a
change of sign, which then requires a subsequent interpolation. For a transition from
stick to slip one must examine the possible development of a non-zero relative tan-
gential acceleration as a start for sliding.

Equation (5.7) put on an acceleration level can then be written in a more detailed
form

|λTi|< μ0iλNi∧ g̈Ti = 0 (i ∈ IT sticking)
λTi =+μ0iλNi∧ g̈Ti � 0 (i ∈ IN\IT negative sliding)
λTi =−μ0iλNi∧ g̈Ti � 0 (i ∈ In\IT positive sliding)

(5.8)
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This contact law may be represented by a double corner law as indicated in Fig. 5.2.
A complementarity formulation for the tangential direction might be evaluated as
follows.

For stiction we are within a friction cone, either a plane or a spatial one. Let
us consider a plane one, see Fig. 5.2, right side. Being within a friction cone, the
relative tangential velocities and accelerations (ġT = 0, g̈T = 0) are zero within the
range (−μ0λN �+μ0λN). Suppose, the tangential force in contact i comes out after
some time step with λTi, then the following complementarity can be formulated

g̈Ti � 0, (μ0λNi−λTi)� 0, g̈Ti(|μ0λNi|−λTi) = 0. (5.9)

We call the term (μ0λNi−λTi) friction reserve, because it defines the distance of
the tangential friction force λTi from the maximum possible static friction force
μ0λNi.

All classical concepts are characterized by the necessity to determine such kine-
matic indicators describing a change of the contact situation for each of the contacts.
This makes the numerical evaluation lengthy and sometimes cumbersome. Modern
approaches avoid these problems.

5.2.2.2 Modern Approaches

Considering non-smooth systems simply means replacing bilateral by unilateral
constraints, which writes (Pfeiffer, 2008)

MMM(qqq,t)q̈̈q̈q(t)+hhh(qqq, q̇̇q̇qt)− [(WWWN+WWWR) WWWT ]

(
λλλN(t)
λλλT (t)

)
= 000, ∈ Rf,

g̈̈g̈gN =WWWT
Nq̈̈q̈q+ w̄̄w̄wN, ∈ RnN ,

g̈̈g̈gT =WWWT
T q̈̈q̈q+ w̄̄w̄wT , ∈ R2nT ,

g̈ggN � 000, λλλN � 000, g̈ggTNλλλN = 0,

|λTi|< μ0iλNi∧ g̈Ti = 0 (i ∈ IT sticking),
λTi =+μ0iλNi ∧ g̈Ti � 0 (i ∈ IN\IT negative sliding),
λTi =−μ0iλNi∧ g̈Ti � 0 (i ∈ IN\IT positive sliding). (5.10)

Contacts are assumed to be plane. The unilateral possibilities are described by the
last four inequalities. Active or passive contacts require a complementarity of the
normal relative distance gggN and the force λλλN. In tangential direction we are either
within the local friction cone for sticking, or on the friction cone surface for positive
or negative sliding (Glocker, 2001; Leine and Nijmeijer, 2004; Pfeiffer, 2008). To
evaluate this set requires the computation of contact kinematics in terms of relative
distances, velocities and accelerations (ggg,ġgg,g̈gg). Modern theories of non-smooth sys-
tems use another form by introducing Moreau’s measure differential equations to-
gether with a representation of unilateral constraints by prox-functions from convex
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analysis (Moreau, 1988; Alart and Curnier, 1991; Brogliato, 1999). This combina-
tion is called Augmented Lagrange method (Leine and Nijmeijer, 2004). It can be
shown that the prox-formulation for the unilateral contacts is perfectly equivalent to
the complementarity relations as applied above (Schindler et al., 2011). A proximal
point to a convex set C is defined by

proxC(z) = arg min
x∗∈C

|z−x∗|, z ∈ Rn (5.11)

and returns the closest point in C to its argument, which is illustrated in Fig. 5.3
(Leine and Nijmeijer, 2004). If we look at this convex set as the cut of a friction
cone with different friction coefficients in the two contact directions, then every
solution of the system falling outside the convex set has to be brought back to the
hull of the set, which defines numerically an iteration procedure. In the case of a
complementarity in normal direction (contact/detachment-case) the set is just the
half space with non-negative constraint forces λN, Fig. 5.2. Therefore we get the
relation

λλλN = proxCN
(λλλN− rg̈ggN) , CN(λN) = {λλλN|λλλN � 0} . (5.12)

In the same manner we can put Coulomb’s friction law of the tangential direction
into the form

λλλT = proxCT (λN)(λλλT − rg̈ggT ) , CT (λλλN) = {λλλT | |λTi|� μiλNi} . (5.13)

x1 = proxC(z1)

z2
x3 = proxC(z3)

distC(z1)

z1

x2 = proxC(z2)

convex set C

boundary of C
x̄3

x̄1

x̄2

NC(x̄2)

x̄4 /∈C ⇒ NC(x̄4) = /0

Fig. 5.3: Normal cone, proximal point and distance function (Leine and Nijmeijer, 2004).
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The arbitrary auxiliary parameter r > 0 represents the slope of the regularizing func-
tion. More details may be found in Leine and Nijmeijer (2004); Foerg et al. (2006);
Foerg (2007).

Keeping that in mind, Moreau’s measure differential equation writes

MMMduuu+hhhdt−[(WWWN+WWWR) WWWT ]

(
dΛΛΛN(t)
dΛΛΛT (t)

)
= 000,

dġ̇ġgN =WWWT
Nduuu+ w̄̄w̄wNdt,

dġ̇ġgT =WWWT
Tduuu+ w̄̄w̄wTdt,

λλλN =proxCN
(λλλN− rgggN), ΛΛΛN = proxCN

(ΛΛΛN− rgggN),

λλλT =proxCT
(λλλT − rġggT ), ΛΛΛT = proxCT

(ΛΛΛT − rġggT ), (5.14)

which includes also impacts with or without friction. Glocker (2001) introduces a
decomposition of the velocity uuu into parts, an absolute continuous part duuuL = u̇̇u̇udt
with the Lebesgue measure dt and a discontinuous part duuuA = (uuu+ −uuu−)dη in
the form of a step function with the atomic measure dη =

∑
idδi. In a similar

way we may split up the forces in a continuous and thus Lebesgue-measurable part
λλλdt and in an atomic part ΛΛΛdη with dΛΛΛ = λλλdt+ΛΛΛdη. The part λλλdt contains
all contact reactions due to non-impulsive contacts and the part ΛΛΛdη all impulsive
contact reactions.

5.3 Impacts with Friction

5.3.1 General Theory

Impacts with and without friction play an important role in many machines and
mechanisms. They were a research topic at the author’s former institute since many
years starting with impacts without friction (Pfeiffer, 2008) and finally proceeding
to a theory, which describes impacts with friction in a rather general way (Glocker,
2001, 2013, 2014). This new theory has convincingly been verified by a large variety
of experiments performed by Beitelschmidt (1999). In the following we shall give a
short survey. As a matter of fact there have been quite a number of remarkable and
significant contributions to this topic, for example Moreau (1988); Frémond (2002,
2007); Brogliato (1999).

We assume as usual that an impact takes place in an infinitesimal short time
and without any change of position, orientation and of all non-impulsive forces.
Nevertheless and virtually we zoom the impact time, establish the equations for a
compression and for an expansion phase and then apply these equations again for an
infinitesimal short time interval. The evaluation has to be performed on a velocity
level, which we realize by formal integration of the equations of motion (5.10), the
constraints and the contact laws. Denoting the beginning of an impact, the end of
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compression and the end of expansion by the indices A,C,E, respectively, we get
for Δt= tE− tA

M(q̇C− q̇A)−(WNWT )

(
ΛΛΛNC

ΛΛΛTC

)
= 000, M(q̇E− q̇C)−(WNWT )

(
ΛΛΛNE

ΛΛΛTE

)
= 0

with ΛΛΛi = lim
tE → tA

tE∫

tA

λλλidt, (5.15)

Here ΛΛΛNC,ΛΛΛTC are the impulses in the normal and tangential direction, which
are transferred during compression, and ΛΛΛNE,ΛΛΛTE those of expansion. Defining
q̇A = q̇(tA); q̇C = q̇(tC); q̇E = q̇(tE) we express the relative velocities as

(
ġNA

ġTA

)
=

(
WT

N

WT
T

)
q̇A+

(
w̃N

w̃T

)
,

(
ġNE

ġTE

)
=

(
WT

N

WT
T

)
q̇E+

(
w̃N

w̃T

)
,

(
ġNC

ġTC

)
=

(
WT

N

WT
T

)
q̇C+

(
w̃N

w̃T

)
.

(5.16)

Considering in a first step the compression phase and combining the Eqs. (5.15)
and (5.16) we come out with

(
ġNC

ġTC

)
=

(
WT

N

WT
T

)
M−1

(
WN

WT

)T

︸ ︷︷ ︸
G

·
(

ΛΛΛNC

ΛΛΛTC

)
+

(
ġNA

ġTA

)
, (5.17)

where G is the matrix of projected inertia. It consists of the four blocks (GNN,
GNT , GTN, GTT ). Equation (5.17) gives the relative velocities ġNC and ġTC at
the end of compression phase, depending on the velocities at the beginning of the
impact ġNA and ġTA under the influence of the contact impulses ΛΛΛNC and ΛΛΛTC.
To calculate these impulses two impact laws in normal and tangential direction are
necessary.

As already indicated magnitudes of relative kinematics and constraint forces
(here impulses) are complementary quantities. In normal direction these are ġNC

and ΛΛΛNC. In tangential direction we have the relative tangential velocity vector
ġTC and the friction saturation (ΛΛΛTC−(diagμi)ΛΛΛNC). Decomposing the tangen-
tial behavior we obtain (see Fig. 5.4)

ΛTCV ,i =ΛTC,i+μiΛTN,i, ġTC,i = ġ+TC,i− ġ−TC,i,

Λ
(+)
TCV ,i =ΛTCV ,i, Λ

(−)
TCV ,i =−ΛTCV ,i+2μiΛNC,i, (5.18)
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Fig. 5.4 Decomposition of
tangential friction law (Bei-
telschmidt, 1999).

+

-

ġ+TC

ġ−TC

Λ (+)
TCV

Λ (−)
TCV

ΛTCD = 2μΛNC

Λ TCV

ġTC

Together with equation (5.17) this results in a Linear Complementary Problem
(LCP) in standard form y = Ax+b with x � 0,y � 0 and xTy = 0
⎛
⎝

ġNC

ġ+TC
ΛΛΛ

(−)
TCV

⎞
⎠

︸ ︷︷ ︸
y

=

⎛
⎝

GNN−GNTμμμ GNT 0
GTN−GTTμμμ GTT E

2μμμ −E 0

⎞
⎠

︸ ︷︷ ︸
A

·
⎛
⎝

ΛΛΛNC

ΛΛΛ
(+)
TCV

ġ−TC

⎞
⎠

︸ ︷︷ ︸
x

+

⎛
⎝

ġNA

ġTA
0

⎞
⎠

︸ ︷︷ ︸
b

, (5.19)

wherein μμμ is a diagonal matrix, containing the friction coefficients of the contacts.
The problem is solved numerically. The velocities ġNC, ġTC and the impulsions
ΛΛΛNC,ΛΛΛTC are either part of the result or can be obtained by transformation (5.18)
and by ΛΛΛTC =ΛΛΛ

(+)
TCV −μμμΛΛΛNC.

In the compression phase kinetic energy of the colliding bodies is stored as po-
tential energy. During the expansion phase parts of this energy are regained. This
process is governed by two coefficients of restitution in normal and tangential di-
rection εN and εT respectively.

In the case of multiple impacts Poisson’s hypothesis does not guarantee impen-
etrability of the bodies (Glocker, 2001). So the law is enhanced by an additional
condition. The normal impulse during phase of restitution ΛNE is in the minimum
εEΛNC in each contact, but can be arbitrary high to avoid penetration. In this case
the bodies remain in contact after the impact. This impact law with a complementary
character is drawn in Fig. 5.5.

In tangential direction the impact law is influenced by three effects: At first a
minimum impulse [εN(εTΛTC)] must be transferred. It is the impulse stored dur-
ing compression reduced by losses due to Poisson’s law, but as all contact actions
in tangential direction are always connected with constraints in normal direction
we have to consider also a loss due to εN. In addition the impulse must not ex-
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Fig. 5.5 Impact law for the
phase of expansion in normal
direction.

gNE

.

0
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�NE

ceed the static friction limit. Usually it is assumed that between these two limits
the tangential velocity is zero. The measurements of Beitelschmidt (1999) however
indicate a small tangential velocity ġTE0 in this area. It might be produced by the
local difference of the contact point and that point, where the tangential restoring
force due to tangential compression applies. The inclusion of this velocity gives a
slight improvement for the comparison theory/measurement. With

ġTE0 = GTNεεεNΛΛΛNC+GTTεεεN(εεεTΛΛΛTC) (5.20)

one can calculate ġTE0 for all contacts and the tangential impact law looks like
drawn in Fig. 5.6. εεεN and εεεT are diagonal matrices containing the different coef-
ficients for all contacts. To formulate the equation for the phase of restitution as a
LCP similar to the compression phase the two matrices

S+ = diag
(

1
2
(1+ sign(ΛTC,i))

)
,

S− = diag
(

1
2
(1− sign(ΛTC,i))

) (5.21)

are introduced. After some transformations similar to those of the compression
phase the LCP writes

Fig. 5.6 Impact law for the
phase of restitution in tangen-
tial direction.
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⎛
⎝

ġNE

ġ+TEV
ΛΛΛ

(−)
TEV

⎞
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⎛
⎝

GNN−GNTS−μμμ GNT 0
GTN−GTTS−μμμ GTT E

μμμ −E 0
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⎠ ·
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⎝
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ΛΛΛ
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TEV

ġ−TEV
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⎛
⎝

b1
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b3

⎞
⎠ (5.22)

with

b1 =GNNεNΛΛΛNC+GNTS+εNεTΛΛΛTC−GNTS−μμμεNΛΛΛNC+ ġNC,

b2 =GTT (S+−E)εNεTΛΛΛTC−GTTS−μμμεNΛΛΛNC+ ġTC, (5.23)
b3 =μμμεNΛΛΛNC−εNεT |ΛΛΛTC|,

After solution the velocities ġNC, ġTC and the impulses ΛΛΛNC,ΛΛΛTC are either part
of the result or can be obtained by the transformations

ġTE = ġ+TEV − ġ−TEV + ġTE0,
ΛΛΛNE = ΛΛΛNP+εNΛΛΛNC,
ΛΛΛTE = ΛΛΛ

(+)
TEV +ΛΛΛTEL =ΛΛΛ

(+)
TEV +S+εNεTΛΛΛTC−S−μμμΛΛΛNE,

If the impulses during the two phases of the impact are known, one can calculate the
motion q̇E of the multibody system at the end of the impact,

q̇E = q̇AM−1 (WN(ΛΛΛNC+ΛΛΛNE)+WT (ΛΛΛTC+ΛΛΛTE)) , (5.24)

The above impact theory has been verified in Beitelschmidt (1999), utilizing an
especially developed precision throwing machine. More than 600 throwing mea-
surements have been performed. Figure 5.7 depicts a typical result for a material
pair PVC/PVC. The comparison with measurements is excellent, as in many other
cases. In addition, such a precision machine can be conveniently used for measure-
ment of the friction coefficients ε resulting in excellent accuracy; ε is the slope of
the measured functions.
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Fig. 5.7: Dimensionless tangential relative velocity after versus before the impact for a PVC-body
(γ= ġTA/(−ġNA), γTE = ġTE/(−ġNA)) (Beitelschmidt, 1999).
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5.3.2 Energy Considerations

All contact processes are accompanied by losses due to the energy conversion mech-
anisms taking place within the contact zone. The loss of energy is the difference of
the total system energy after an impact and before an impact (Pfeiffer, 2016). In
terms of the generalized velocities q̇̇q̇q we write

ΔT =TE−TA � 0,

ΔT =
1
2
q̇qqT
EMMMq̇qqE−

1
2
q̇qqT
AMMMq̇qqA =

1
2
(q̇qqE+ q̇qqA)TMMM(q̇qqE− q̇qqA). (5.25)

These are expressions considering scleronomic systems without an excitation by
external kinematical sources and consequently do not take into account the www-terms
of the Eqs. (5.16), for example. Using the Eqs. (5.15) to (5.17) we can express the
generalized velocities by the relative velocities ġ̇ġg in the contacts or by the contact
impulses ΛΛΛ. We get

2ΔT =+2
(
ġ̇ġgNE

ġ̇ġgTE

)T

GGG−1
[(

ġ̇ġgNE

ġ̇ġgTE

)
−

(
ġ̇ġgNA

ġ̇ġgTA

)]
−

−

[(
ġ̇ġgNE

ġ̇ġgTE

)
−

(
ġ̇ġgNA

ġ̇ġgTA

)]T
·GGG−1

[(
ġ̇ġgNE

ġ̇ġgTE

)
−

(
ġ̇ġgNA

ġ̇ġgTA

)]
,

2ΔT =+2
(
ġ̇ġgNE

ġ̇ġgTE

)T [(
ΛΛΛNC

ΛΛΛTC

)
+

(
ΛΛΛNE

ΛΛΛTE

)]
−

−

[(
ΛΛΛNC

ΛΛΛTC

)
+

(
ΛΛΛNE

ΛΛΛTE

)]T
·GGG
[(

ΛΛΛNC

ΛΛΛTC

)
+

(
ΛΛΛNE

ΛΛΛTE

)]
. (5.26)

The second term of these two energy equations is a quadratic form and for itself
always positive or zero. The matrix GGG is at least positive semi-definite, which is also
true for its inverse GGG−1. The energy loss has to be negative, which will be decided
by the first term of the above relations. If this term is negative or at least zero, the
condition ΔT � 0 will hold. Therefore we shall concentrate on these first terms,
which writes in more detail (see equation for the matrix GGG and the abbreviations
GGG−1 = Ḡ̄ḠG, ΔT = ΔT1 +ΔT2 for the two energy terms in Eq. (5.26))

ΔT1 = +

(
ġ̇ġgNE

ġ̇ġgTE

)T

Ḡ̄ḠG

[(
ġ̇ġgNE

ġ̇ġgTE

)
−

(
ġ̇ġgNA

ġ̇ġgTA

)]

= {ġ̇ġgT
NE[Ḡ̄ḠGNN(ġ̇ġgNE− ġ̇ġgNA)+ Ḡ̄ḠGNT (ġ̇ġgTE− ġ̇ġgTA)]

+ġ̇ġgTTE[Ḡ̄ḠGTN(ġ̇ġgNE− ġ̇ġgNA)+ Ḡ̄ḠGTT (ġ̇ġgTE− ġ̇ġgTA)]},

ΔT2 = +

(
ġ̇ġgNE

ġ̇ġgTE

)T [(
ΛΛΛNC

ΛΛΛTC

)
+

(
ΛΛΛNE

ΛΛΛTE

)]

= {ġ̇ġgTNE(ΛΛΛNC+ΛΛΛNE)+ ġ̇ġgT
TE(ΛΛΛTC+ΛΛΛTE)}. (5.27)
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To estimate the sign of these terms we need to look at the contact laws, for example
the complementarities of the relations (5.10) and (5.14). For this consideration the
second form of the energy losses is more convenient than the first form, we only have
to find out the signs of the expression {ġ̇ġgTNE(ΛΛΛNC+ΛΛΛNE)+ ġ̇ġgTTE(ΛΛΛTC+ΛΛΛTE)}.
For this purpose we investigate the possible impact cases, namely compression and
expansion either with sticking or sliding, which makes altogether four cases under
the assumption that we have always contact and no detachment during the impact.

At this point we must discuss our model concept. We consider the beginning of an
impact with index A, a compression phase with index C and an expansion phase with
index E, all indices expressing the end of the corresponding phase. Therefore we get
from our model and the evaluation of the preceding chapters the C-magnitudes at
the end of compression and the E-magnitudes at the end of expansion, the last ones
being the magnitudes after the impact. This is all clear, theoretically and experimen-
tally often verified, and gives correct results. For the consideration of an impact we
do not need the internal details of compression and expansion. But we need them
for an energy consideration.

We need to know, for example, how and where a transition sticking/sliding or vice
versa occurs within the structure of the impact. As we do not have some means to
determine that, we say, transitions occur always at the end of the phases compression
and expansion in an infinitesimal short instant of time not influencing the impact
dynamics but only going from one branch of the corner laws of the Figs. (5.5), (5.6)
to another branch, which means, transitions take place in the corners of the contact
laws. This model concept has influence on the energy evaluation.

So it can be shown that the first term ġ̇ġgTNE(ΛΛΛNC+ΛΛΛNE) of the energy equation
(5.27), last line, is not zero due to positive normal impulses (ΛΛΛNC +ΛΛΛNE) and
due to a non-zero end velocity ġ̇ġgNE after the impact, which is physically reasonable
for a separation of the two contacting bodies. But on the other hand sliding during
expansion requires a zero normal relative velocity ġNE = 0 in the contact, which
makes the above mentioned term to zero. The solution can only consist in a model
concept, where the change from contact to detachment takes place at the very last
end of the expansion phase. The (ΛΛΛNE)-value slips into the corner of Fig. (5.5)
allowing the system to build up the necessary separation velocity.

As a result of the last condition of continual contact during the impact we get for
compression and expansion ΛΛΛN > 0 and ġ̇ġgN = 0, which is also part of the comple-
mentarity eq. (5.10), and therefore simply

2ΔT1 = 2ġ̇ġgTTE(ΛΛΛTC+ΛΛΛTE), (5.28)

the sign of which we have to investigate. Before doing so we consider the slid-
ing cases. All sticking cases are governed by set-valued impulse laws, all sliding
cases by a single-valued impulse law, the one by Coulomb. Accordingly, the slid-
ing impulse is proportional to the normal constraint impulse and opposite to (ġ̇ġgTk).
Therefore it holds

ΛΛΛTk =−diag(μ)sign(ġ̇ġgTk)ΛΛΛNk, (k= C,E) (5.29)
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and for sliding (ġ̇ġgTk) �= 000, always, and therefore we get for the second expression
of the energy term ΔT1 in Eq. (5.28) together with Eq. (5.29) the following result

ġ̇ġgTTEΛΛΛTE =−diag(μ)|ġ̇ġgTE|ΛΛΛNE � 000 (5.30)

due to the fact of continual contact and thus ΛΛΛNE > 000. With these results in mind
we come to the four impact cases:

• Sticking during compression, sticking during expansion
The tangential impulses have to be within the appropriate friction cones. The
tangential velocities are zero, therefore we need not to consider the magnitudes
of the impulses. For the definitions see also the Figs. 5.5 and 5.6.
−diag(μ0)ΛΛΛNC �ΛΛΛTC �+diag(μ0)ΛΛΛNC, ΛΛΛTEL �ΛΛΛTE �ΛΛΛTER

=⇒ ġ̇ġgTTE(ΛΛΛTC+ΛΛΛTE) = 0.
• Sliding during compression, sliding during expansion

Sliding means single-valued impulse laws according to equation (5.29). Some
difficulties will appear for the cases with reversed sliding. That means, with a
tangential relative velocity the sign of which is different during compression and
during expansion. Therefore we have to consider the two cases without and with
tangential reversibility. For the first case we do not have a change of sign of the
relative tangential velocity, which gives sign(ġ̇ġgTC) = sign(ġ̇ġgTE). This comes out
with the relations
ġ̇ġgTTEΛΛΛTC =−ġ̇ġgTTE[diag(μ)sign(ġ̇ġgTE)ΛΛΛNC] = −diag(μ)|ġ̇ġgTE|ΛΛΛNC � 000

=⇒ ġ̇ġgTTE(ΛΛΛTC+ΛΛΛTE)< 0.
The case with tangential reversibility is more complicated, because it includes
a change of sign of the tangential relative velocity and thus at least an ex-
tremely short stiction phase, which we put exactly at the point (end of com-
pression)/(beginning of expansion). The sliding velocity during compression de-
creases until it arrives at one of the corners of Fig. 5.6, then we get an extremely
short shift from this corner to the other one, which allows the contact to build up
a tangential velocity with an opposite sign, then valid for the expansion phase.
Only by such a short stiction phase a reversal of tangential velocity is possible.
On the other hand such a transition from stick to slip, as short as it might be,
follows the same process as for the next case sticking/sliding. Therefore it is dis-
sipative.
=⇒ ġ̇ġgT

TE(ΛΛΛTC+ΛΛΛTE)< 0.
• Sticking during compression, sliding during expansion

The transition from sticking in compression and sliding in expansion follows the
mechanism (Fig. 5.6): If ΛΛΛTC ≷ 000, then sliding is only possible for being at the
very end of compression on the friction cone boundary with

ΛΛΛTC =±diag(μ)ΛΛΛNC

and ġ̇ġgTC−at ≶000 (at = after transition stick-slip). This results always in a negative
sign of the expression (ġ̇ġgT

TEΛΛΛTC). For the rest we assume a continuation of the
signs after going from stick to slip [sign(ġ̇ġgTE) = sign(ġ̇ġgTC−at)]. Then we arrive
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at:
=⇒ ġ̇ġgTTE(ΛΛΛTC+ΛΛΛTE)< 0.

• Sliding during compression, sticking during expansion
This case is again simpler, because we get sticking at the end with a zero relative
tangential velocity. Therefore we need not to consider the impulses.
=⇒ ġ̇ġgT

TE(ΛΛΛTC+ΛΛΛTE) = 0.

• Summarized result for all four cases
=⇒ ġ̇ġgT

TE(ΛΛΛTC+ΛΛΛTE)� 0 =⇒ ΔT1 � 0,
=⇒ ΔT � 0.

One may object that the above considerations assume in the case of multiple im-
pacts the same impact structure for all simultaneously appearing impacts, which is
usually not true. But even any combination of the above four cases for simultaneous
impacts gives a loss of energy. Practical experience indicates in addition that the
simultaneous appearance of impacts is extremely scarce, it is an event, which nearly
does not happen.

As a final result we may state that the above evaluation confirms the physical ar-
gument, that any impact processes are accompanied by energy losses. This confirms
also the well-known statement of Carnot, that "in the absence of impressed impulses,
the sudden introduction of stationary and persistent constraints that change some
velocity reduces the kinetic energy. Hence, by the collision of inelastic bodies, some
kinetic energy is always lost" (Pars, 1979).

5.4 Contact Kinematics

Geometry and kinematics are the fundament for establishing models of dynami-
cal systems. In the case of unilateral contacts this is especially important, because
magnitudes of relative kinematics serve as indicators for passive contacts and as
constraints for active contacts (see Sect. 5.1). As most of the applications require
more or less arbitrary body contours it makes sense to derive the kinematical contact
equations in a general form applying well-known rules of the differential geometry
of surfaces (Glocker, 1995; Meitinger, 1998; Pfeiffer and Glocker, 1996).

In practice we find two types of contacts, two- and three-dimensional ones. For
the two-dimensional case the contacting bodies lie in a plane thus defining a contact
line with given direction. Only the sense of direction has to be determined. Problems
of that kind are connected with linear complementarity.

For the three-dimensional case the contacting bodies have a spatial form, and the
contact takes place in a plane allowing two tangential directions. The resulting direc-
tion for the contact process is not known beforehand and usually must be determined
iteratively. Problems of that kind are connected with nonlinear complementarity.
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5.4.1 Plane Contact Kinematics

Plane contact kinematics has been presented in Glocker (1995) and are then applied
to many practical problems (see also Pfeiffer and Glocker, 1996). We start with the
geometry of a single body as indicated in Fig. 5.8. We assume a convex contour
and describe it by a parameter s. Connecting with s a moving trihedral (t,n,b) and
introducing a body-fixed frame B we write

Bt = Br ′
PΣ; κBn = Br ′′

PΣ; ( · ) ′ =
d

ds
,

Bn = Bb× Bt, Bb = Bt× Bn ,

Bt = Bn×B b ,

Bn ′ = Bb× Bt ′ = Bb× Bnκ=−κBt,

Bt ′ = κBn .

(5.31)

For planar contours the binormal Bb is constant. Therefore

Bṅ = Bn ′ṡ=−κṡBt , B ṫ = Bt ′ṡ=+κṡBn . (5.32)

On the other hand, the absolute changes of n and t are given by the Coriolis
equation

B(ṅ) = Bṅ+ BΩ̃ΩΩBn , B(ṫ) = Bṫ+ BΩ̃ΩΩBt , (5.33)

where we must keep in mind that BωωωIB = BΩΩΩ for body-fixed frames B. Putting
(5.32) into (5.33) we get a coordinate-free representation of the overall changes ṅ, ṫ.

ṅ = Ω̃ΩΩn−κṡt , ṫ = Ω̃ΩΩt+κṡn , (5.34)

which we can evaluate in any basis. The main advantage of (5.34) consists of the
eliminated, frame-dependent differentiations Bṅ and B ṫ.

Fig. 5.8 Planar contour ge-
ometry.
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In the same manner we proceed with the contour vector rPΣ. According to (5.32),
(5.33) we write

BṙPΣ =B r ′
PΣ ṡ= ṡBt, B(ṙPΣ) =B ṙPΣ+ BΩ̃ΩΩBrPΣ , (5.35)

and eliminate BṙPΣ. Then we get the absolute changes of rPΣ,

ṙPΣ = Ω̃ΩΩrPΣ+ ṡ t . (5.36)

Due to vΣ = vP + ṙPΣ, the absolute velocity of the moving contour point is given
by

vΣ = vP+ Ω̃ΩΩrPΣ+ ṡ t , (5.37)

where
vC := vP+ Ω̃ΩΩ rPΣ . (5.38)

The velocity vC results from rigid body kinematics and corresponds to the velocity
of a body-fixed point at the contour. From (5.37) and (5.38) we see that

vΣ = vC+ ṡ t . (5.39)

Next, we want to derive the absolute acceleration of C by differentiating (5.38)
with respect to time:

v̇C = v̇P+ ˙̃ΩΩΩrPΣ+ Ω̃ΩΩṙPΣ . (5.40)

With v̇C = aC, v̇P = aP and ṙPΣ from Eq. (5.35) we get

aC = aP+ ˙̃ΩΩΩrPΣ+ Ω̃ΩΩΩ̃ΩΩrPΣ+ Ω̃ΩΩ t ṡ, (5.41)

which is not the acceleration of a body-fixed point on the contour. Only the part

aQ := aP+ ˙̃ΩΩΩrPΣ+ Ω̃ΩΩΩ̃ΩΩrPΣ (5.42)

corresponds to such an acceleration, so we can write

aC = aQ+ Ω̃ΩΩtṡ . (5.43)

Later we have to determine the relative velocities of contact points in the normal
and tangential directions and their time derivatives. For this purpose we introduce
the scalars

vn = nTvC, vt = tTvC (5.44)

and state their derivatives as

v̇n = ṅTvC+nT v̇C , v̇t = ṫTvC+ tT v̇C . (5.45)

With ṅ, ṫ from (5.34), v̇C = aC from (5.43), and noting nT Ω̃ΩΩt = bTΩΩΩ, tT Ω̃ΩΩt = 0 we
derive
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v̇n = nT
(
aQ− Ω̃ΩΩvC

)
−κṡtTvC+ ṡbTΩΩΩ,

v̇t = tT
(
aQ− Ω̃ΩΩvC

)
+κṡnTvC .

(5.46)

With this basis we are able to derive the relative kinematics of two bodies such
as relative distances, relative velocities and accelerations. Without going into details
and referring especially to Pfeiffer and Glocker (1996) we summarize the relation-
ships as depicted in Fig. 5.9:

Potential contact points can be characterized by

nT
1 (s1) · t2(s2) = 0 ⇔ nT

2 (s2) · t1(s1) = 0 , (5.47)

rTD(s1,s2) · t1(s1) = 0, rTD(s1,s2) · t2(s2) = 0 . (5.48)

From each set we need only one equation. The relative distance gN is

gN(q,t) = rTDn2 =−rTDn1. (5.49)

Since the normal vectors always point inward, gN is positive for separation and
negative for overlapping. Therefore, a changing sign of gN from positive to negative
indicates a transition from initially separated bodies to contact.

With these equations and considering Fig. 5.9 we derive the relative velocities in
normal and tangential direction

ġN = nT
1 vC1 +nT

2 vC2, ġT = tT1 vC1 + tT2 vC2, (5.50)

where vC1,vC2 are the absolute velocities of the potential contact points C1,C2.
These velocities might be expressed by the generalized velocities q̇ and some Jaco-
bians JC1,JC2 to give

vC1 = JC1q̇+ j̃C1, vC2 = JC2q̇+ j̃C2. (5.51)

Putting (5.50) into (5.51) yields
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Fig. 5.9: General orientation of two bodies.
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ġN = wT
Nq̇+ w̃N; ġT = wT

T q̇+ w̃T (5.52)

with
wN = JTC1n1 +JTC2n2; wT = JTC1t1 +JTC2t2,

w̃N = j̃TC1n1 + j̃TC2n2; w̃T = j̃TC1t1 + j̃TC2t2,
(5.53)

which we use in the following as a representation of the relative velocities. It may
be noticed here that a negative value of ġN corresponds to an approaching process
of the bodies and coincides at vanishing distance gN = 0 with the relative velocity
in the normal direction before an impact. In the case of a continual contact (gN =
ġN = 0) the term ġT shows the relative sliding velocity of the bodies, which we can
use to determine the time points of transitions from sliding (ġT �= 0) to sticking or
rolling (ġT = 0).

The relevant accelerations follow from a further time differentiation.

g̈N = wT
Nq̈+wN, g̈T = wT

T q̈+wT , (5.54)

where wN,wT are given by (5.53), and wn,wT are

wN = nT
1 (jQ1 − Ω̃ΩΩ1vC1)−κ1ṡ1tT1 vC1 + ṡ1bT

12ΩΩΩ1

+nT
2 (jQ2 − Ω̃ΩΩ2vC2)−κ2ṡ2tT2 vC2 + ṡ2bT

12ΩΩΩ2,

wT = tT1 (jQ1 − Ω̃ΩΩ1vC1)+κ1ṡ1nT
1 vC1

+tT2 (jQ2 − Ω̃ΩΩ2vC2)+κ2ṡ2nT
2 vC2,

(5.55)

with

ṡ1 =
κ2tT1 (vC2 −vC1)−κ2gNbT

12ΩΩΩ1 +bT
12(ΩΩΩ2 −ΩΩΩ1)

κ1 +κ2 +gNκ1κ2
,

ṡ2 =
κ1tT1 (vC2 −vC1)−κ1gNbT

12ΩΩΩ2 −bT
12(ΩΩΩ2 −ΩΩΩ1)

κ1 +κ2 +gNκ1κ2

The angular velocities ΩΩΩ1,ΩΩΩ2 relate to the two contacting bodies (Figs. 5.8 and
5.9).

5.4.2 Spatial Contact Kinematics

Spatial contact kinematics has been presented in the dissertation (Meitinger, 1998)
and since then applied to many practical problems. The situation in this case is of
course more complex. We still assume that the two approaching bodies are convex
(Fig. 5.10) at least in that area where contact points might occur. The two bodies
are moving with vi,ΩΩΩi(i = 1,2). For the description of a surface Σ we need two
parameters s and t : rΣ = rΣ(s,t). The tangents s and t, which span the tangent
plane at a point of the surface, are defined as
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Fig. 5.10 Contact geometry
of two surfaces.
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. (5.56)

From these basic vectors the fundamental magnitudes of the first order are cal-
culated

E= sT s , F= sT t , G= tT t . (5.57)

The normalized normal vector n is perpendicular to the tangential plane pointing
outwards

n =
s× t√
EG−F2

. (5.58)

We further need the fundamental magnitudes of the second order

L= nT ∂2rΣ
∂s2 , M= nT ∂2rΣ

∂s∂t
, N= nT ∂2rΣ

∂t2 . (5.59)

For a contact point we require that the normal vector of body 1 (n1) and the distance
vector rD are perpendicular to the tangent vectors of body 2 (s2 and t2). Thus we
obtain four nonlinear equations

nT
1 s2 = 0 , rTDs2 = 0 ,

nT
1 t2 = 0 , rTDt2 = 0 .

(5.60)

This nonlinear problem has to be solved at every time step of the numerical integra-
tion. After the solution is found the distance gN between the possible contact points
can be calculated as

gN = nT
1 rD =−nT

2 rD . (5.61)
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gN is used as an indicator for the contact state. Its value is positive for ‘no contact’
and negative for penetration. The constraints are again formulated on velocity level,
where in the spatial case we have three of them, one in normal direction ġN and two
in the tangential directions ġS, ġT

ġN(q, q̇,t) = nT
1 (vΣ2 −vΣ1) ,

ġS(q, q̇,t) = sT1 (vΣ2 −vΣ1) ,

ġT (q, q̇,t) = tT1 (vΣ2 −vΣ1) ,

(5.62)

with vΣ1 and vΣ2 being defined in an analoguous way as in (5.51). Differentiating
these equations with respect to time leads to the constraints on acceleration level

g̈N = nT
1 (v̇Σ2 − v̇Σ1)+ ṅT

1 (vΣ2 −vΣ1) ,

g̈S = sT1 (v̇Σ2 − v̇Σ1)+ ṡT1 (vΣ2 −vΣ1) ,

g̈T = tT1 (v̇Σ2 − v̇Σ1)+ ṫT1 (vΣ2 −vΣ1) .

(5.63)

The time derivatives of the contact point velocities vΣ1 and vΣ2 can be written in
the form

v̇Σ1 = JΣ1(q,t)q̈+ jΣ1(q̇,q,t) ,

v̇Σ2 = JΣ2(q,t)q̈+ jΣ2(q̇,q,t) .
(5.64)

The vectors ṅ1, ṡ1 and ṫ1 are determined by the formulas of Weingarten and Gauss
Zeidler et al. (2003), which express the derivatives of the normal vector and of the
tangent vectors in terms of the basic vectors:

ṅ1 = ΩΩΩ1 ×n1 +
∂n1

∂s1
ṡ1 +

∂n1

∂t1
ṫ1 ,

∂n1

∂s1
=

M1F1 −L1G1

E1G1 −F2
1︸ ︷︷ ︸

α1

s1 +
L1F1 −M1E1

E1G1 −F2
1︸ ︷︷ ︸

β1

t1 ,

(5.65)
∂n1

∂t1
=

N1F1 −M1G1

E1G1 −F2
1︸ ︷︷ ︸

α ′
1

s1 +
M1F1 −N1E1

E1G1 −F2
1︸ ︷︷ ︸

β ′
1

t1 ,

ṡ1 = ΩΩΩ1 × s1 +
∂s1

∂s1
ṡ1 +

∂s1

∂t1
ṫ1 ,

∂s1

∂s1
= Γ1

11,1s1 + Γ2
11,1t1 +L1n1 ,

∂s1

∂t1
= Γ1

12,1s1 + Γ2
12,1t1 +M1n1 , (5.66)
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ṫ1 = ΩΩΩ1 × t1 +
∂t1

∂s1
ṡ1 +

∂t1

∂t1
ṫ1 ,

∂t1

∂s1
= Γ 1

12,1s+ Γ2
12,1t+M1n1 ,

∂t1

∂t1
= Γ 1

22,1s+ Γ2
22,1t+N1n1 . (5.67)

The definition of the Christoffel symbols Γσαβ, α,β,σ = 1,2 can be found in
standard textbooks (Zeidler et al., 2003). Inserting Eqs. (5.66), (5.67) in (5.63) yields
the constraint equations:

g̈N = nT
1 (JΣ2 −JΣ1)q̈+nT

1

(
jΣ2 − jΣ1

)
+(vΣ2 −vΣ1)

T (ΩΩΩ1 ×n1)+(vΣ2 −vΣ1)
T ·

[
(α1s1 +β1t1)ṡ1 +

(
α ′

1s1 +β ′
1t1
)
ṫ1
]

,

g̈S = sT1 (JΣ2 −JΣ1)q̈+ sT1
(
jΣ2 − jΣ1

)
+(vΣ2 −vΣ1)

T (ΩΩΩ1 × s1)+(vΣ2 −vΣ1)
T ·

[
(Γ 1

11,1s1 + Γ2
11,1t1 +L1n1)ṡ1 +(Γ1

12,1s1 + Γ2
12,1t1 +M1n1)ṫ1

]
,

g̈T = tT1 (JΣ2 −JΣ1)q̈+ tT1
(
jΣ2 − jΣ1

)
+(vΣ2 −vΣ1)

T (ΩΩΩ1 × t1)+(vΣ2 −vΣ1)
T ·

[
(Γ 1

12,1s1 + Γ2
12,1t1 +M1n1)ṡ1 +(Γ1

22,1s1 + Γ2
22,1t1 +N1n1)ṫ1

]
.

(5.68)
These equations depend on the Jacobians with respect to the contact points JΣ1,

JΣ2, the basic vectors of the surfaces and the time derivatives of the contour param-
eters ṡ1, ṫ1, ṡ2, ṫ2. The Jacobians are known from the rigid body algorithm, the basic
vectors from the surface description. The time derivatives of the contour parameters
can be calculated by deriving (5.60) with respect to time:

(
nT

1 s2
)·

= 0 ,
(
rTDs2

)·
= 0 ,

(
nT

1 t2
)·

= 0 ,
(
rTDt2

)·
= 0 ,

(5.69)

which means, that the conditions for the contact point should not change while the
two bodies are moving. Evaluating Eq. (5.69) we obtain a system of equations,
which are linear in the derivatives of the contour parameters
⎛
⎜⎜⎜⎜⎝

sT2 (α1s1 +β1t1) sT2
(
α ′

1s1 +β ′
1t1
)

L2 M2

tT2 (α1s1 +β1t1) tT2
(
α ′

1s1 +β ′
1t1
)

M2 N2

−sT1 s2 −sT1 s2 sT2 s2 sT2 t2

−sT1 t2 −sT1 t2 sT2 t2 tT2 t2

⎞
⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎝

ṡ1

ṫ1

ṡ2

ṫ2

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

(s2 ×n1)
T (ΩΩΩ2 −ΩΩΩ1)

(t2 ×n1)
T (ΩΩΩ2 −ΩΩΩ1)

sT2 (vΣ1 −vΣ2)

tT2 (vΣ1 −vσ2)

⎞
⎟⎟⎟⎟⎠

(5.70)
This linear problem has to be solved at every time step of numerical integration.
Let us summarize the constraint equations in the well known form, by rewriting Eq.
(5.68):
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g̈N = wT
Nq̈+wN ,

g̈S = wT
S q̈+wS ,

g̈T = wT
T q̈+wT .

(5.71)

The terms in (5.68), which are linearly dependent on q̈, are collected in the con-
straint vectors wN,wS and wT , all the rest is included in the scalars wN,wS,wT .

5.5 Numerical Aspects

A simple and common approach for integrating mechanical systems with frictional
contacts in time is to regularize the set-valued force laws or to replace the unilateral
constraints by some compliant models. However, this approach not only results in
stiff differential equations with large integration times but also leads to inexact so-
lutions with respect to the non-smooth model. In order to deal with the unilateral
nature of the constraints two groups of numerical schemes can be distinguished,
namely event-driven and time-stepping schemes (Pfeiffer et al., 2006).

Event-driven schemes detect changes of the constraints (events), for example
stick-slip transitions, and resolve the exact transition times. Between these events
the motion of the system is smooth and can be computed by a standard ODE/DAE-
integrator with root-finding. If an event occurs the integration stops and the com-
putation of the contact forces is performed by solving a (N)LCP or the non-smooth
equations of the Augmented Lagrangian formulation (5.14). While this approach
is very accurate, the event-detection can be time consuming, especially in case of
frequent transitions. This approach is only recommended for systems with few con-
tacts. Another drawback is the fact that the constraints are only fulfilled at the accel-
eration level, which results in a numerical drift effect. Therefore we shall consider
in the following only time stepping algorithms.

Time-stepping schemes are based on a time-discretization of the system dynam-
ics including the contact conditions in normal and tangential direction. The whole
set of discretized equations and constraints is used to compute the next state of the
motion. In contrast to event-driven schemes these methods need no event-detection.
Moreover, time discretization can be formulated such that unilateral constraints are
satisfied at the position and velocity level without any correction step. Excellent pre-
sentations of the dynamics of non-smooth systems are given in the books of Glocker
(2001) and Leine and Nijmeijer (2004), the last one also with respect to numerical
algorithms.

To present at least an idea of the solution techniques, the augmented Lagrange ap-
proach will be discussed shortly (Pfeiffer et al., 2006). It can be applied to Moreau’s
measure differential equations (5.14), which is written in a discretized form. The
corresponding set writes
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Δq−(u+Δu)Δt= 0,
MΔu−hΔt−WNΛΛΛN−WTΛΛΛT = 0,

ΛΛΛN−proxCN
(ΛΛΛN− r1 gN) = 0,

ΛΛΛT −proxCT (ΛΛΛN)(ΛΛΛT − r2 ġT ) = 0. (5.72)

In order to proceed to the next state during the time integration, the unknowns Δq,
Δu,ΛΛΛN andΛΛΛT have to be found by solving the above set of non-smooth equations,
which might be accomplished by the generalized Newton method. Unfortunately,
the discretization in (5.72) suffers from problems that are known from DAE systems
of index 3. One way to overcome this problem is to consider the constraints in
normal and tangential direction on the velocity level only. The formulation in terms
of the Augmented Lagrangian method is then given by

MΔu−hΔt−WNΛΛΛN−WTΛΛΛT = 0,
ΛΛΛN−proxCN

(ΛΛΛN− r1ġN) = 0,

ΛΛΛT −proxCT (ΛΛΛN)(ΛΛΛT )− r2ġT ) = 0, (5.73)

with

ġeN = WT
N(Δu+u)+ w̃NΔt, (5.74)

ġT = WT
T (Δu+u)+ w̃TΔt. (5.75)

(5.76)

Now the dependence on the positions is not taken into account anymore and the
unknowns that have to be evaluated in each integration step reduce to Δu, ΛΛΛN and
ΛΛΛT (Foerg et al., 2006; Foerg, 2007).

5.6 Applications

Keeping in mind that the real world of mechanics is as much bilateral as it is uni-
lateral, we could expect from the very beginning a large field of applications wait-
ing for being treated by the new methods. Contact systems of any form are widely
spread everywhere, concerning machines, transportation, biological systems and
much more. In the following we shall give only a few examples, which are typi-
cal for that kind of problems. At my former Institute we always tried to establish
and to maintain a certain balance of theoretical and applied research allowing a
transfer of newest theoretical findings into challenging and large industrial applica-
tions. Figure 5.11 illustrates the evolution of theory and applications. From utilizing
the classical methods of interconnections by force laws or bilateral constraints the
first progress in modeling non-smooth systems came along with the formulation of
complementarity constraints, which at the beginning has been not self-evident but a
new finding. The next steps to set-valued considerations and to the prox-approach
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Fig. 5.11: The evolution of large applications (LCP, NCP linear, nonlinear complementarity prob-
lem , MBS multibody system; mde measure differential equation).

was the result of international efforts culminating in contributions like that of Alart
and Curnier (1991). So, in the course of the years, a new approach was established
characterized by Augmented Lagrange Method and measure differential equations.
The examples of Fig. 5.11 reflect the theoretical progress by more and more com-
plicated industrial applications. CVT-belts, for example, include some thousands of
unilateral contacts. The same is true for granular media. In the following we shall
present some typical examples.

5.6.1 Woodpecker, a Non-smooth Toy

The woodpecker toy has been from the very beginning an important motivation to
look into non-smooth theories available at that time and to try to transfer these find-
ings into multibody theory. The first investigation was published in 1984 (Pfeiffer,
1984) including a woodpecker analysis, where the impacts with friction were ap-
proximated by a semi-empirical algorithm. The next step was then done by Glocker
(1995), who introduced a concise theoretical model of impacts with friction allow-
ing a description without empirical approximations. The last step, at least at the time
being, is a contribution of Zander et al. (2007), who analyzed the woodpecker going
down an elastic bar based on a theory of elastic continua with non-smooth contacts.
A woodpecker toy hammering down a pole is a typical system combining impacts,
friction and jamming. It consists of a sleeve, a spring and the woodpecker. The hole
of the sleeve is slightly larger than the diameter of the pole, thus allowing a kind of
pitching motion interrupted by impacts with friction.

The motion of the woodpecker can be described by a limit cycle behavior as illus-
trated in Fig. 5.12. The gravitation represents an energy source, the energy of which
is transmitted to the woodpecker mass by the y-motion. The woodpecker itself os-
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y

Fig. 5.12: Self-sustained vibration mechanism of a woodpecker toy (Pfeiffer and Glocker, 1996).

cillates and possesses a switching function by the beak for quick ϕS reversal and by
the jammed sleeve, which transmits energy to the spring by jamming impacts.

A typical sequence of events is portrayed in Fig. 5.13. We start with jamming in
a downward position, moving back again due to the deformation of the spring, and
including a transition from one to three degrees of freedom between phases 1 and 2.
Step 3 is jamming in an upward position (1 DOF) followed by a beak impact which
supports a quick reversal of the ϕ-motion. Steps 5 to 7 are then equivalent to steps
3 to 1.

Fig. 5.13 Sequence of events
for a woodpecker toy.
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The system possesses three degrees of freedom q = (y,ϕM,ϕS)
T , where ϕS

and ϕM are the absolute angles of rotation of the woodpecker and the sleeve, re-
spectively, and y describes the vertical displacement of the sleeve (Fig. 5.14): Hor-
izontal deviations are negligible. The diameter of the hole in the sleeve is slightly
larger than the diameter of the pole. Due to the resulting clearance, the lower or up-
per inner edge of the sleeve may come into contact with the pole. This is modeled by
the edge contact constraints 2 and 3, see Fig. 5.14. Further contact may occur when
the beak of the woodpecker hits the pole, which is expressed by constraint 1. The
special geometrical design of the toy enables us to assume only small deviations of
the displacements. Thus a linearized evaluation of the system’s kinematics is suffi-
cient and leads to the dynamical terms and constraint magnitudes listed below. For
the dynamics of the woodpecker we apply the theory above for impacts with friction,
but we assume that no tangential impulses are stored during the impulsive processes.
The mass matrix M, the force vector h and the constraint vectors w follow from Fig.
5.14 in a straightforward manner. They are (see (5.10) and (5.15))

M =

⎛
⎝

(mS+mM) mSlM mSlG
mSlM (JM+mSl

2
M) mSlMlG

mSlG mSlMlG (JS+mSl
2
G)

⎞
⎠ ,

h =

⎛
⎝

−(mS+mM)g
−cϕ(ϕM−ϕS)−mSglM
−cϕ(ϕS−ϕM)−mSglG

⎞
⎠ , q =

⎛
⎝

y
ϕM

ϕS

⎞
⎠ ,
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⎛
⎝

0
0

−hS

⎞
⎠ , wN2 =

⎛
⎝

0
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⎝

0
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⎞
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⎝

1
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⎞
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(5.77)

Fig. 5.14 Woodpecker model.
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For a simulation we consider theoretically and experimentally a woodpecker toy
with the following data set:

• Dynamics: mM = 0.0003; JM = 5.0 · 10−9; mS = 0.0045; JS = 7.0 · 10−7;
cϕ = 0.0056; g= 9.81.

• Geometry: r0 = 0.0025; rM = 0.0031; hM = 0.0058; lM = 0.010; lG = 0.015;
hS = 0.02; lS = 0.0201.

• Contact: εN1 = 0.5; εN2 = εN3 = 0.0; μ1 =μ2 =μ3 = 0.3; εT1 = εT2 = εT3 =
ν1 = ν2 = ν3 = 0.0.

Using these parameters, the contact angles of the sleeve and the woodpecker result
in |ϕM| = 0.1 rad and ϕS = 0.12 rad, respectively. Before discussing the dynam-
ical behavior obtained by a numerical simulation, some results from an analytical
investigation of the system may be presented.

Firstly, we assume that constraint 2 is sticking. The coordinates ϕM and y are
then given by certain constant values (ϕM =−0.1 rad), and the system has only one
degree of freedom (ϕS) with an equilibrium position at ϕS0 = –0.218 rad. Sticking
at that position is only possible if μ2 � 0.285. Such values of μ2 correspond at the
same time to a jamming effect of the system in the sense that no vertical force, acting
on the woodpecker’s center of mass, could lead to a transition to sliding, however
large it would be. Undamped oscillations around this equilibrium with a frequency
of 9.10 Hz influence the contact forces and lead the system to change into another
state if the amplitudes are large enough.

The second analytically investigated system state is the unconstrained motion
with three degrees of freedom. Besides the fourfold zero eigenvalue, which de-
scribes the rotational and translational free-body motion, a complex pair of eigen-
values with a frequency of f= 72.91 Hz exists. The corresponding part of the eigen-
vector q = (y,ϕM,ϕS)

T is given by u = (−0.086,10.7,−1.0)T and shows the ratio
of the amplitudes.

The limit cycle of the system, computed by a numerical simulation, is depicted
in Fig. 5.15. We start our discussion at point (6) where the lower edge of the sleeve
hits the pole. This completely inelastic frictional impact leads to continual contact
of the sleeve with the pole. After a short episode of sliding (6)–(7) we observe a
transition of the sleeve to sticking (7). The angle of the woodpecker is now large
enough to ensure continual sticking of the sleeve by the self-locking mechanism. In
that state the system has only one degree of freedom, and the 9.10 Hz oscillation can
be observed where the woodpecker swings down and up until it reaches point (1).

At (1) the tangential constraint becomes passive and the sleeve slides up to
point (2) where contact is lost. Note that the spring is not free of stresses in this
situation; thus during the free-flight phase (2)–(3) the high-frequency oscillation
(f = 72.91 Hz) of the unbound system occurs in the phase space plots. In this state
the sleeve moves downward (y decreases), and the first part of the falling height Δy
at one cycle is achieved.

At (3) the upper edge of the sleeve hits the pole with a frictional, completely
inelastic impact. Contact, however, is not maintained due to the loaded spring. Point
(4) corresponds to a partly elastic impact of the beak against the pole. After that
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Fig. 5.15: Phase space portraits (Glocker and Stude, 2005).

collision the velocity ϕ̇S is negative and the woodpecker starts to swing downward.
At (5) the upper edge of the sleeve hits the pole a second time with immediate
separation. Then the system is unbound and moving downward (5)–(6), where the
second part of the falling height is achieved and the 72.91-Hz frequency can be
observed once more.

Table 5.1 summarizes all of the state transitions during one cycle, and Table 5.2
compares the amounts of dissipated energy. The main dissipation results from

Table 5.1: Table of the possible transitions.

Phase Plot Point State Transitions

(1) Constraint 2 Sticking → Sliding

(2) Constraint 2 Sliding → Separation

(3) Constraint 3 Separation → Separation First upper sleeve impact

(4) Constraint 1 Separation → Separation Beak impact

(5) Constraint 3 Separation → Separation Second upper sleeve impact

(6) Constraint 2 Separation → Sliding Lower sleeve impact

(7) Constraint 2 Sliding → Sticking

the beak impact and lower sleeve impact, which contribute 88% of the dissipa-
tion. The remaining 12% are shared by the upper sleeve impacts and phases of
sliding, which are nearly negligible. The frequency of the computed limit cycle in
Fig. 5.15 amounts to f = 8.98 Hz and is slightly different from the measured value
of f = 9.2 Hz. The total falling height during one cycle can be seen in the left
diagram of Fig. 5.15. The computed and measured values are Δy = 5.7 mm and
Δy= 5.3 mm, respectively.
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Table 5.2: Amounts of dissipated energy.

Change in Potential Energy ΔV = 2.716 ·10−4 100.00%

First upper sleeve impact ΔT(3) =−0.223 ·10−4 8.21%

Second upper sleeve impact ΔT(5) =−0.046 ·10−4 1.69%

Beak impact ΔT(4) =−1.370 ·10−4 50.44%

Lower sleeve impact ΔT(3) =−1.032 ·10−4 38.00%

Phases of sliding ΔT(G) =−0.045 ·10−4 1.66%

5.6.2 Vibration Conveyor

Vibratory feeders are used in automatic assembly to feed small parts. They are ca-
pable to store, transport, orient and isolate the parts. An oscillating track with fre-
quencies up to 100 Hz excites the transportation process, which is mainly based on
impact and friction phenomena between the parts and the track. Vibratory feeders
are applied for a wide variety of parts and for lots of different tasks. In the majority
of cases, the parts are available as a sort of bulk material that is stored in a con-
tainer. The transportation process, starting in this reservoir, is often combined with
orienting devices that orient parts, or select only these parts having already the right
orientation (Fig. 5.16 shows an example of a vibratory bowl feeder with an orient-
ing device). Each kind of parts, with its special geometry and mechanical properties,
requires an individual adaption of the feeder. This individual tuning comprises the
development of suitable track and orienting device geometries and the adjustment
of the excitation parameters frequency and amplitude. Due to the complex mechan-
ics of the feeding process this design is usually done by trial and error without any
theoretical background. A complete dynamical model of the transportation process
allows a theoretical investigation and consequently an improvement of the the feeder
properties (Wolfsteiner, 1999; Wolfsteiner and Pfeiffer, 1999).

base

device

orienting devicetrack

F(t)d c

	


orienting device

parts

base device

track

Fig. 5.16: Vibratory bowl feeder and mechanical model.
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Friction and impact phenomena between the parts and the track are the most
important mechanical properties of transportation processes. Consequently, the re-
quired dynamical model has to deal with unilateral constraints, dry friction and mul-
tiple impacts. The mechanical model of the vibratory feeder can be split in two parts:
the transportation process and the base device. Wolfsteiner (1999) focuses on mod-
eling and simulation of the transportation process. The modeling of the base device
can be done with well known standard techniques of multibody systems.

For the verification of the developed model of the transportation process an ex-
perimental vibratory feeder was built, allowing different measurements concerning
the impact model and the average transportation rates. Figure 5.17 shows the princi-
ple of the device. The track, fixed on leaf springs is excited with an electromagnetic
shaker with a frequency about 50 Hz. The eigenfrequency of the system is at 52 Hz.
The resulting vibration amplitude reaches a maximum value of about 2 mm. The
track has an inclination angle α= 3o, the angle between the track and the direction
of the vibration is β = 15o. For the accurate contact-free measurement of the mo-
tion of the transported part six laser distance sensors were applied. For the vibration
measurement of the track an eddy current sensor is used.

For a comparison of the theory and the measurements the averaged transportation
rate was used. Figure 5.18 gives a result, which taking into account the complexity
of the problem looks good. An interesting finding is the fact that the averaged trans-
portation velocity does not depend very much on the number of parts and also not on
the type of modeling, plane or spatial (Wolfsteiner, 1999). Therefore the design of
vibration conveyors can be carried through considering one part only. For the layout
of orienting devices we need of course a spatial theory.
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Fig. 5.17: Test setup and part measurement.
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5.6.3 Roller Coaster

One of the challenging practical examples concerning unilateral multibody theory
are roller coasters (Stiegelmeyr and Pfeiffer, 1999; Stiegelmeyr, 2001). In Germany,
we have amongst others a system called Wild Mouse. The trajectory configuration
for this Wild Mouse is depicted in Fig. 5.19 together with the vehicle system. The
track generates frequent and abrupt changes of the vehicle’s course resulting in a
special thrill for the passengers. Thereby, and due to the slackness of the wheel
rail contact, sequences of impacts with friction take place producing a significant
amount of load and stress to the wheels and the undercarriage system. Each carriage
possesses four packages each with six wheels coming out with altogether 24 wheel-
track-contacts of a spatial character.

The six carriage wheels per wheel-package are necessary to keep the carriage
safely on the track for all possible accelerations, which means two wheels on three
sides of the track, top, bottom, side. The model includes the vehicle body and the
two axes, front and transaxle, and the four wheel packages, all considered to be
rigid bodies, body and axes with six degrees of freedom each. Between vehicle
body and the axes we have force laws in the form of a spring-damper-arrangement.
Figure 5.20 illustrates the arrangement of the body-axes- and of the axis-wheel-
configuration.

The wheels, manufactured from plastic materials, are modelled as sliding ele-
ments due to their very small masses in comparison with the mass of the axes. In
addition we assume rolling without sliding, which is realistic for nearly all operation
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Fig. 5.19: "Wild Mouse" and roller coaster carriage.
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Fig. 5.20: Models of axes and wheels.
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conditions. The wheel-track contact thus includes three contact possibilities, namely
contact/detachment, stiction/sliding in lateral direction and rolling without sliding
in trajectory direction (Fig. 5.20). For the first case impacts with friction are con-
sidered, for the second case the relevant complementarities, and for the third case
we introduce rolling friction in the form of an empirical coefficient. The derivation
of the equations of motion is straightforward by first modelling the bodies, con-
necting them either with smooth or set-valued force laws and by establishing the
accompanying geometrical and kinematical algebraic equations.

A model has been established with 18 DOF and 24 potential contacts. Direct
measurements of the roller contacts are either impossible or very difficult. There-
fore the vehicle has been simply equipped with acceleration sensors for measuring
the lateral motion. Figure 5.19 depicts the location of the sensor, and Fig. 5.21
compares these measurements with the simulation. The agreement is very good and
validates the model of the overall dynamics. On the basis of the simulation model
some improvements of the roller design could be performed.

5.6.4 Drop Tower Hydraulics

An interesting example is the hydraulic safety brake system of a fun ride, the free
fall tower. Figure 5.22 shows such a tower. Under normal operation conditions the
passenger cabin is lifted by a cable winch to a height of about 60 m. Subsequently,
the cabin is released and falls down nearly undamped. Before reaching the ground,
the normal brake system stops the cabin softly via the cable winch. For safety rea-
sons, a redundant brake system is necessary. In the case of a failure of the regular
brakes or a cable rupture the safety brake system has to catch the cabin even under
disadvantageous conditions.

The safety brake system is a hydraulic system, which moves brake-blocks via
hydraulic cylinders. For this purpose steel blades are fixed to the cabin. The steel
blades fall into a guide rail with the brake-blocks fixed to it. They are closed by very
large spring forces and opened by hydraulic cylinders, which must operate very
fast and synchronously. Under normal operation conditions, the brake-blocks are
moved out of the guide rail shortly before the cabin reaches them. Only in case of

Fig. 5.21 Comparison with
measurements for the lateral
motion.
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Fig. 5.22 Droptower.

some failure, the safety brakes remain closed and the cabin is stopped by the friction
forces. Due to the very short opening time of the brake, the hydraulic cylinders move
fast and reach the end stop with high velocities. In some cases, the resulting impact
forces have caused damages to the cylinders.

The safety brakes are designed in modules, where each module contains the me-
chanical and the complete hydraulic part of the brake. According to the functionality
of the passenger cabin, they must be arranged in a vertical sense, one on the top of
the other. Depending on the height of the drop tower one needs usually about six
to seven of these brake segments. The brakes are realized in such a way that they
safely catch the passenger cabin even under very disadvantageous conditions like
rope rupture at maximum height in combination with rain.

Hydraulic systems can conveniently be modeled as non-smooth systems lead-
ing to computing times up to three orders of magnitude smaller than the classical
approach as often used in commercial codes. Therefore we establish a hydraulic
model on the basis of non-smooth and smooth hydraulic components according
to Fig. 5.23, see, for example, Borchsenius (2003). The underlying mathematical
model for one segment including the oil supply component consists of 202 differ-
ential equations, for each further module not containing the oil supply we get 132
differential equations. For seven brake segments, we have thus altogether 994 differ-
ential equations, which correspond to the number of hydraulic degrees of freedom.
Mechanics is involved only with a few degrees of freedom for the drop tower model.

The model has been verified by measurements. Figure 5.24 shows the result.
The opening of the cylinders starts at t = 0.1 s. After that point, the cylinders move,
thus increasing the pressure due to the growing spring force in the cylinders. After
having reached the end stop the oil pressure becomes stable at a level of 120 bar.
This large pressure is kept constant, because the oil cannot flow back after the check
valves have been closed in the feed lines. The agreement between the simulations
and measurements is very good, confirming the theory. The simulations have been
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Fig. 5.23 Hydraulic model of
the drop tower safety brakes. signal a
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used to improve the time-behavior of the hydraulic modules in connection with the
brakes.

5.6.5 CVT Power Transmission

For technological developments in the field of CVT-gears see the SAE-publication
(Maten and Anderson, 2006). My former Institute started modeling CVT’s in the
early nineties considering in a first step CVT rocker pin chains and in a second step
CVT push belts. Push belts are complicated including a very large amount of degrees
of freedom and extraordinary many unilateral contacts (Schindler et al., 2007). In
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the following we shall present this type of belts. Table 5.3 gives a comparison of
two types. Note the large frequencies, DOF’s and number of contacts.

CVT-belts have a multiple contact structure (Fig. 5.25). We have a unilateral spa-
tial contact between element and pulley, a plane unilateral contact between element
and ring and five contacts between the elements themselves. The last ones are cov-
ered by an empirical nonlinear force law. All other contacts are unilateral contacts
described by complementarities, then converted and solved by prox-functions (Geier
et al., 2006). For an element this sums up to 17 contacts, see Fig. 5.26. For building
a simulation the equations of motion and the relevant bilateral and unilateral con-
straints are established resulting in a large structure to be evaluated, see Schindler
et al. (2007); Pfeiffer (2008). The whole set has the following form

• equations of motion
⎛
⎝

Mp 000 000
000 Me 000
000 000 Mr

⎞
⎠
⎛
⎝

u̇p

u̇e

u̇r

⎞
⎠=

⎛
⎝

hp

he

hr

⎞
⎠+

⎛
⎝

WB,erλB,er+WT ,erλT ,er
WU,peλU,pe+WT ,peλT ,pe

WU,eeλU,ee

⎞
⎠ (5.78)

• constraints:

Table 5.3: Typical Data of CVT-chain and -belt.

LUK VDT
number of elements 63 382
element length (thickness) 9.85 mm 1.80 mm
element width 36 mm 29.6 mm
polygonal frequency 550 Hz 3000 Hz
elements/second (1000 rpm, i=1) 550 3000
lowest eigenfrequency 90 Hz 120 Hz
DOF, plane case ≈200 ≈1300
contacts, plane case ≈150 >1000

Pitch

Yaw

Roll

pulley contact

ring contact

element-element
contact

MsMs

ωsωs

MpMp

ωpωp

Fig. 5.25: Contact configurations of push belt elements (p = primary, s = secondary).
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Fig. 5.26: Interactions of element/element, element/ring package, element/pulley, pulley/environ-
ment with 17 contacts per element.

λB,er = proxCB
(λB,er− rgB,er), λU,pe = proxCU

(λU,pe− rgU,pe),

λU,ee = proxCU
(λU,ee− rgU,ee), λT ,pe = proxCT (λN,pe)

(λT ,pe− rġT ,pe),

λT ,er = proxCT (λN,er)
(λT ,er− rġT ,er) (5.79)

The indices (p,e,r) stand for pulley, element and ring, respectively. The indices
(U,B,T ) indicate unilateral, bilateral and tangential, respectively. The MMM are the
mass matrices, WWW the constraint matrices, uuu= q̇̇q̇q are velocities, and λλλ are constraint
forces. The magnitudes ggg,ġgg indicate relative displacements and velocities in the
contacts, r is an iteration variable, which has been discussed in connection with
(5.13).

The system (5.78), (5.79) is solved numerically by a time stepping scheme in-
cluding prox-algorithms. The modular configuration of the model comprising sub-
systems and constraints enables a refinement or even a substitution of models for
single components and interactions in a convenient manner. By this, both bodies
and contacts can be modeled rigidly or flexibly in a hybrid way.

We consider some results concerning push forces, see Fig. 5.27. The top row
presents the measurements, the bottom row simulations. Agreement is very good
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Fig. 5.27: Representation of measured (top row) and simulated (bottom row) push forces at in-
creasing torque levels r = 0, 0.15, 0.30, 0.60, 0.95.



174 Friedrich Pfeiffer

taking into account the complexity of the model. With increasing output torque ratio
r the level of push forces is growing. The existing simulation software has been used
to consider noise and wear problems.

5.7 Conclusion

Classical theory of rigid or elastic multibody systems dynamics may be character-
ized by d’Alembert’s principle in the form of Lagrange and extended by Jourdain
allowing to project the equations of motion of all interconnected bodies into their
free directions according to their individual constraints. These constraints are bilat-
eral in classical theory and do not include contact phenomena.

If we want to consider dynamical problems with unilateral contacts, especially
multibody systems with multiple contacts, and if we further want to model such
contacts by unilateral constraints, we must enlarge multibody theory by certain rules
describing unilateral features. One fundamental property, sometimes addressed to as
Signorini’s law, consists in the fact that for each contact either quantities of relative
kinematics are zero and the corresponding constraint forces are not zero, or vice
versa. This establishes a linear or nonlinear complementarity problem for each of
the contacts, which has to be added to the classical multibody formalism.

Direct numerical treatment of complementarity is cumbersome, so an approach
from convex analysis has been developed using proximity functions. It offers many
numerical advantages for the prize of largely diminished mechanical transparency.
But these alternative algorithms allow to solve also non-smooth problems of very
large dimensions.

Contribution gives an overview of the activities at the author’s Institute during
the last decades, indicating also the evolution of the methods concerning multibody
dynamics with unilateral constraints. Theory of non-smooth multibody dynamics is
presented, and some typical applications from industry are discussed.

References

Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton-
like solution methods. Computer Methods in Applied Mechanics and Engineering 92(3):353–
375

Beitelschmidt M (1999) Reibstösse in Mehrkörpersystemen. No. 275 in Fortschritt-Berichte VDI,
Reihe 11, VDI-Verlag, Düsseldorf

Borchsenius F (2003) Simulation ölhydraulischer Systeme. No. 1005 in Fortschritt-Berichte VDI,
Reihe 8, VDI-Verlag, Düsseldorf

Bremer H (2008) Elastic Multibody Dynamics. Springer Science + Business Media, B.V.
Brogliato B (1999) Nonsmooth Mechanics. Springer, London
Foerg M (2007) Mehrkörpersysteme mit mengenwertigen Kraftgesetzen - Theorie und Numerik.

No. 411 in Fortschritt-Berichte VDI, Reihe 20, VDI-Verlag, Düsseldorf



5 Unilateral Constraints and Multibody Dynamics 175

Foerg M, Geier T, Neumann L, Ulbrich H (2006) r-factor strategies for the augmented Lagrangian
approach in multi-body contact mechanics. In: Mota Soares CA, Martins JAC, Rodrigues HC,
Ambrosio JAC, Pina CAB, Mota Soares CM, Pereira EBR, Folgado J (eds) III European Con-
ference on Computational Mechanics - Solids, Structures and Coupled Problems in Engineer-
ing, Book of Abstracts, Springer, Dordrecht, p 316

Frémond M (2002) Nonsmooth Thermomechanics. Springer, Berlin, Heidelberg
Frémond M (2007) Collisions. Edizioni del Dipartimento di Ingegneria Civile, Universitetà di

Roma Tor Vergata, Rome
Geier T, Foerg M, Zander R, Ulbrich H, Pfeiffer F, Brandsma A, van der Velde A (2006) Sim-

ulation of a push belt CVT considering uni- and bilateral constraints. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
86(10):795–806

Glocker C (1995) Dynamik von Starrkörpersystemen mit Reibung und Stössen. No. 182 in
Fortschritt-Berichte VDI, Reihe 18, VDI-Verlag, Düsseldorf

Glocker C (2001) Set-Valued Force Laws - Dynamics of Non-Smooth Systems. Springer, Berlin,
Heidelberg, New York

Glocker C (2013) Energetic consistency conditions for standard impacts, Part I: Newton-type in-
equality impact laws and Kane’s example. Multibody System Dynamics 29 (1) 29:77–117

Glocker C (2014) Energetic consistency conditions for standard impacts, Part II: Poisson-type
inequality impact laws. Multibody System Dynamics 32(4):445–509

Glocker C, Stude C (2005) Formulation and preparation for numerical evaluation of linear com-
plementarity systems in dynamics. Multibody System Dynamics 13(4):447–463

Jacobi CGJ (1866) Vorlesungen über Dynamik. Verlag Georg Reimer, Berlin
Leine R, Nijmeijer H (2004) Dynamics and Bifurcations of Non-Smooth Mechanical Systems.

Springer Berlin Heidelberg, New York
Maten JR, Anderson BD (2006) Continuously variable transmission (CVT). Tech. Rep. PT-125,

SAE International
Meitinger T (1998) Dynamik automatisierter Montageprozesse. No. 476 in Fortschrittberichte

VDI, Reihe 2, VDI-Verlag, Düsseldorf
Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau JJ,

Panagiotopoulos PD (eds) Nonsmooth Mechanics and Applications, Springer, Wien, Interna-
tional Centre for Mechanical Sciences (Courses and Lectures), vol 302, pp 1–82

Panagiotopoulos PD (1993) Hemivariational Inequalities. Springer Verlag, Berlin, Heidelberg,
New York

Papastavridis G (2002) Analytical Mechanics. Oxford University Press
Pars LA (1979) Analytical Dynamics. Ox Bow Press, Woodbridge, Connecticut 06525, first pub-

lished 1965
Pfeiffer F (1984) Mechanische Systeme mit unstetigen Übergängen. Ingenieur-Archiv 54(3):232–

240
Pfeiffer F (2008) Mechanical System Dynamics. Springer, Heidelberg
Pfeiffer F (2016) Impacts with friction - structures, energy, measurements. Springer, Berlin, Hei-

delberg, Archive of Applied Mechanics, 1-2/2016
Pfeiffer F, Glocker C (1996) Multibody Dynamics with Unilateral Contacts. Wiley Series of Non-

linear Science (ed. A Nayfeh), John Wiley & Sons, INC., New York
Pfeiffer F, Schindler T (2015) Introduction to Dynamics. Springer, Berlin, Heidelberg
Pfeiffer F, Foerg M, Ulbrich H (2006) Numerical aspects of non-smooth multibody dynamics.

Computer Methods in Applied Mechanics and Engineering 195(50):6891–6908
Schindler T, Geier T, Ulbrich H, Pfeiffer F, van der Velde A, Brandsma A (2007) Dynamics

of Pushbelt CVTs. In: VDI-Berichte, Nr. 1997: Umschlingungsgetrieb, VDI-Gesellschaft En-
twicklung Konstruktion Vertrieb

Schindler T, Nguyen B, Trinkle J (2011) Understanding the difference between prox and comple-
mentarity formulations for simulation of systems with contact. In: 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp 1433–1438

Shabana A (2013) Dynamics of Multibody Systems, 4th edn. Cambridge University Press



176 Friedrich Pfeiffer

Stiegelmeyr A (2001) Zur numerischen Berechnung strukturvarianter Mehrkörpersysteme. No. 271
in VDI Fortschrittberichte, Reihe 18, VDI Verlag, Düsseldorf

Stiegelmeyr A, Pfeiffer F (1999) A Time Stepping Algorithm for Mechanical Systems With Unilat-
eral Contacts. In: Proceedings of the ASME 1999 Design Engineering Technical Conferences,
ASME, vol 7B: 17th Biennial Conference on Mechanical Vibration and Noise, pp 2245–2253

Wittenburg J (2016) Kinematik - Theory and Applications. Springer Berlin Heidelberg 2016
Woernle C (2016) Mehrkörpersysteme, 2nd edn. Springer, Berlin, Heidelberg
Wolfsteiner P (1999) Dynamik von Vibrationsförderern. No. 511 in Fortschrittberichte VDI, Reihe

2, VDI-Verlag, Düsseldorf
Wolfsteiner P, Pfeiffer F (1999) The parts transportation in a vibratory feeder. In: Pfeiffer F, Glocker

C (eds) IUTAM Symposium on Unilateral Multibody Contacts, Springer, Dordrecht, Solid Me-
chanics and its Applications, vol 72

Zander R, Schindler T, Friedrich M, Huber R, Förg M, Ulbrich H (2007) Non-smooth dynamics in
academia and industry: recent work at TU München. Acta Mechanica 195(1):183–195

Zeidler E, Schwarz R, Hackbusch W (2003) Teubner-Taschenbuch der Mathematik. Teubner, Wies-
baden



Chapter 6
Influence of Thermal Stabilisation on the
Thermal Regime in the Strapdown Inertial
Navigation System

Sergiy Yu. Pogorilov, Valeriy L. Khavin, Konstantin Naumenko, and Holm
Altenbach

Abstract This paper proposes an approach to modeling the temperature field of a
strapdown inertial unit that is part of an inertial navigation system based on fiber-
optic gyroscopes. Mathematical and finite element models for heat transfer analysis
of the strapdown inertial unit has been developed. Results of numerical simulations
including the effect of changes in external temperature on the temperature field in
the device and temperature rates at specified points of the device are presented.
It is found that the application of thermal stabilisation in the considered makes it
possible to form a temperature field with a temperature difference of 2 K on the
fibre optic gyroscopes platform, which provides a minimum level of thermal strains
and reduces the fluctuations of external temperature to 0.2 K/min.

6.1 Introduction

Modern aerospace technology makes extensive use of strapdown inertial navigation
systems (SINS) based on fibre optic gyroscopes (FOGs). Due to the high sensitivity
of FOGs to temperature variations, ensuring stable thermal operation is an impor-
tant problem. The key step in improving the accuracy of the system is to develop
methods of thermal protection and thermal stabilisation of the FOG.

This paper is concerned with the modelling of the temperature field of a Strapless
Inertial Unit (SIN), which is part of the SINS, in order to ensure a minimum tem-
perature difference at the FOG platform under temperature stabilisation conditions.
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Modern fibre optic gyroscopes have high performance requirements, the most
important of which is to provide an inertial accuracy of less than 0.01 deg/h
under conditions of significantly varying temperature range [−60◦C ÷ +60◦C]
(Dzhashitov and Pankratov, 2014). As a consequence, there is a need to consider the
quantitative impact of thermal effects on the performance of the FOG (Dzhashitov
et al., 2014). It is important to take into account thermal influences, leading to so-
called thermal drift (fictitious, thermally induced changes of instrument readings)
and thermal deformations of SINS elements (Dzhashitov and Pankratov, 2014).

In order to ensure the necessary accuracy of the FOG, both passive methods
of preventing the influence of the temperature field such as thermal compensation,
special methods of winding the FOG coil fibre, thermal bypass, design improve-
ments of the FOG coil, etc. (Shen and Chen, 2012; Wang and Ma, 2009; Zhang
et al., 2012) and active methods consisting in creation of multiloop reversible ther-
mal control systems for both individual FOG and the entire SINS are used in practice
(Dzhashitov and Pankratov, 2014; Zhang et al., 2015).

The most commonly used approach to improve the accuracy of angular velocity
measurements by fiber optic and laser gyroscopes is based on post-processing of an-
gular velocity measurements according to an algorithmic model called the temper-
ature model of measurement errors (Plaksiy et al., 2021). A widely used approach
is to use the measurement error dependence (drifts) of a fibre optic gyroscope as a
third order polynomial (Diesel and Dunn, 1996). When implementing this approach
in angular velocity measurement devices, the problem of estimating the value of the
temperature gradient arises.

The greatest influence on the FOG signal drift is exerted by the coil of the fibre
loop. Although it has no inherent heat generation, it is very sensitive to changes in
temperature. At the same time, the gradient and the rate of temperature change have
a much greater influence on the drift of the useful signal than the temperature level
(Dzhashitov et al., 2013).

In (Breslavsky et al., 2012; Pogorilov et al., 2020) it is proposed to determine the
temperature gradient for the fiber-optic gyroscope OIS501 by calculating the differ-
ence between the temperature sensor readings at a given point and the temperature
sensor located at another point of the same object. The same approach is used in
this paper to numerically estimate the temperature field gradient of the original BIB
system under temperature-stabilized conditions.

The aim of this study is to simulate the temperature field of the SIN measuring
unit, and to determine the conditions that ensure a minimum of temperature variation
on the FOG platform under temperature-stabilised conditions. In order to achieve
the objective, the following problems are addressed

• develop a finite element model of the SIN device,
• analyse the effect of changes in external temperature on the temperature field of

the SIN device, and
• compute the temperature gradients at given points of the device
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6.2 Description of the Model and Physical Process

The idealized geometric model of the SIN is presented in Figs. 6.1 and 6.2. It in-
cludes the following components

1. heat sink base,
2. emulator of the electronics unit,
3. four insulating sleeves,
4. FOG platform,
5. four FOG emulators, each of which consists of a FOG base and a FOG cover,

and
6. side heat receiving panels and the top cover of the FOG compartment (not

shown in the figures)

Fig. 6.1 Geometric model
including retracted side pan-
els, the upper FOG cover and
the cover of the gyroscope
number 3.

Fig. 6.2 Geometric model
without top FOG compart-
ment cover.
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During the operation of SIN, the following heat sources can be considered (Fig. 6.3):

1. Three sources of the emulator of the electronics unit, which are three planes
(each plane with a surface of heat generation of 85 cm2). Every source generates
heat with a power of 12 W;

2. Four sources of FOG (in each FOG there are two heat-generating surfaces),
having the following heat generation characteristics:

• the mounting surface (6.27 cm2) of the emitting laser based on FOG with the
power of 1.2 W

• the rest of the inner surface of the base FOG (71.74 cm2) with the power of
0.6 W

3. Four elements of the thermal stabilization system (heat-release surface area
27 cm2) located on the FOG platform under the FOG installation sites. Each
element has a power of 26 W.

The physical heat transfer process was modeled as follows:

1. Heat flow from the cells of the electronics unit to the heat sink base is modeled
by conductive heat transfer

2. The heat sink from the FOG platform to the heat-receiving panels and the inner
surface of the heat-removing base is considered due to radiation from the FOG
platform to the heat-receiving panels and the inner surface of the heat-removing
base

3. Heat transfer between the heat-receiving panels and the heat-dissipating base is
assumed by conduction at the fixing points of the panels to the base

Fig. 6.3: Heat sources.
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4. Heat transfer between all components of the FOG platform is modeled by con-
duction through the contact points of the components

5. Conductive heat transfer at the contact points of system elements is simulated
by an ideal thermal contact

6. The heat exchange of the device with the environment is modeled by the func-
tion of the temperature variation of the bottom plane of the heat sink base over
time (interaction with the object on which the SIN is installed).

7. Convective heat transfer is ignored because of the intended use of FOG in vac-
uum

6.3 Mathematical Framework and Solution Method

The analysis of the heat transfer process and the temperature field is carried out
by solving a transient heat conduction problem in a three-dimensional formulation.
All elements of the FOG geometric model (Figs. 6.1 and 6.2) were considered as
bulk bodies occupying a volume V with boundary Γ . The body is exposed to heat
flux q(x,y,z,t), where x,y,z are Cartesian coordinates and t is the time. The den-
sity of internal heat sources which can also be present inside the body is specified
Q(x,y,z,t). The temperature distribution function inside the domain V is denoted
by T(x,y,z,t). To determine the unknown temperature distribution it is necessary
to solve the following differential equation for the transient heat transfer (Nellis and
Klein, 2009; Naumenko and Altenbach, 2016).

∂
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)
+

∂

∂z
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k
∂T

∂z

)
+Q−ρc

∂T

∂t
= 0, (6.1)

where k is the coefficient of thermal conductivity, c is the specific heat capacity and
ρ is the material density. For the uniqueness of the solution of the differential equa-
tion (6.1), the boundary and initial conditions should be supplemented. As initial
conditions, the initial temperature distributions over the volume V are specified as
follows

T(x,y,z,0) = T(x,y,z) (6.2)

The boundary conditions are considered as follows:

1. Specified temperature values on the part of the surface of the body Γ1 (condition
of the 1st kind)

T(x,y,z,t)|Γ1
= T(x,y,z,t) (6.3)

The function T was set based on the experimental conditions. The surface Γ1 in
the model corresponds to the bottom surface of the heat sink base.

2. The specified values of the heat flux on the surface part of the body Γ2 (condition
of the 2nd kind)

−k
∂T(x,y,z,t)

∂n

∣∣∣∣
Γ2

= q̄n, (6.4)
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where n is the unit normal to the surface part Γ2 and q̄n is the given heat flux.
The surface part Γ2 corresponds to heat sources. The heat flux is determined by
dividing the released thermal power to the areas of the respective surfaces.

3. Heat transfer by radiation. The following non-linear dependence of the heat
flow rate on the temperature is applied

q̇= εeqC0A1

[(
T1

100

)4

−

(
T2

100

)4
]

, εeq =
1

1
ε1

+
A1

A2

(
1
ε2

−1
) , (6.5)

where εeq is the reduced emissivity coefficient, ε1 the degree of blackness of
the internal radiating surface, ε2 the degree of blackness of the outer radiating
surface, C0 is the black body radiation coefficient, A1 is the area of the internal
radiating surface (elements of the FOG platform), A2 is the area of the outer
radiating surface (heat-receiving panels and the surface of the heat sink base
bounded by them, as well as the compartment cover) T1 is the temperature of
the internal radiating surface, and T2 is the temperature of the external radiating
surface.

In the model, the radiation from the FOG platform to the heat-receiving panels as
well as to the surface of the heat-dissipating base and the cover of the compartment
limited by them is considered. To solve the heat transfer problem the finite element
method and the ANSYS finite element code was applied. The finite element model
of SIN consists of

• 362392 10-node tetrahedron elements for heat transfer analysis,
• 54533 auxiliary plane 4-node elements for collecting radiation parameters, and
• 45867 auxiliary plane 4-node elements for implementing thermal contact

The material properties of the components of SIN are presented in (Pogorilov et al.,
2020). Heat radiation from external surfaces of the FOG platform and FOG covers
with a blackness degree of 0.89 to the heat-receiving surfaces of the heat sink base,
compartment covers and heat-receiving panels with a blackness degree of 0.90 is
considered. Heat transfer through insulating sleeves was minimized by choosing the
low thermal conductivity of the material. External thermal processes of the installa-
tion plane of the heat sink base are modeled by the function of temperature variation
over time.

6.4 Results

The validation of the model by comparing results of simulation with experimental
data is discussed in Pogorelov and Schastlivets (2005), where the temperature field
of a similar device, namely a ring laser gyroscope (RLG), obtained by finite element
analysis and a series of thermographic snapshots of working RLG was compared.
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The comparison parameters of the computational model and the experimental ther-
mograms were the qualitative coincidence of the temperature field in the resonator,
as well as the coincidence of the temperature values at the selected points.

Based on modeling the thermal mode of the device using a cyclogram of a con-
stant external temperature, the analysis of the temperature field parameters in the
”self-heating” mode (”self-heating time”, overheating, temporary and alternative
gradients) for a constant external temperature was performed. Furthermore possible
locations of external temperature sensors for the purpose of simultaneous measure-
ment of the temperature gradient over time were determined.

The parameters for comparing the calculated model and the thermograms ob-
tained from the experiment are the qualitative coincidence of the temperature field
pattern of the resonator in all angles, as well as the coincidence of the model and
thermogram temperature values at selected points. Based on the results of simulation
of the thermal regime of the device with a thermal stabilisation system for acceler-
ated heating using an external temperature cyclogram as a periodic function, the
parameters of the temperature field (ramp-up time, superheat value, time gradients,
power value of controlled heat sources) have been investigated.

The following heat sources were activated for this calculation experiment

1. two electronics unit emulator sources, far from the FOG platform compartment,
2. three sources of FOG: FOG1, FOG2, FOG3, and
3. three thermostatic stabilisation system elements located on the FOG platform

in the recesses below the FOG, FOG2, FOG3 mounting locations, each of 23
W.

During the computational experiment, a non-stationary heat transfer problem
with a duration of 17641 s (three change cycles of 98 min each) was solved in a
constant step of 120 s. The computational experiment was carried out with initial
conditions corresponding to the lower limit of the operating temperature range. The
initial temperature of the SIN model was assumed to be 268 K (-5 ◦C).

The temperature of the heat sink base changed according to the following law

T(t) = TA sin
(

2πt
tmax

+ϕ

)
+T0, (6.6)

where t, is the time variable within the interval [0, 17641s], TA = 20◦C is the am-
plitude of temperature change, tmax = 5880 s, is the period of temperature change,
ϕ= 3π/4 is the phase of the temperature change and T0 = 288 K is the temperature
offset. The model of the thermal stabilisation system is described by the following
equation

Q̇Stb(TFOG) =

{
69, TFOG < TTAR,
0, TFOG � TTAR. (6.7)

where Q̇Stb is the total power of the three active thermal stabilisation elements,
TFOG is the arithmetic mean of the temperatures of FOG1, FOG2 and FOG3.
TTAR = 298 K is the target value for the average FOG temperature, upon reach-
ing which the appliance is considered warm. All the thermal stabilisation elements
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are controlled simultaneously. The following results were obtained from the com-
putational experiment. Figure 6.4 illustrates the temperature graphs including the
diagram of the outside temperature change (line 5) at the node corresponding to the
point on the bottom surface of the heat sink base at the intersection of the diagonals
between the attachment points of the thermal insulating bushings and the temper-
ature of the FOG, and graphs of temperature changes at the bases of FOGs (lines
1-4). From these results, it can be seen that thermal stabilisation takes approx. 1800
seconds, compared to 3 cycles of external temperature change (17640 s) without the
thermal stabilisation system (Pogorilov et al., 2020).

The rates of the external temperature and the base temperature are calculated
using the time-differentiated method described in (Breslavsky et al., 2012). The rates
of the outside temperature and the base temperature of FOG1-FOG4 are shown in
Fig. 6.5. From the graphs it can be seen that the temperature rates of FOG1–FOG4
do not exceed 0.27K per minute after the accelerated warm-up period. Figure 6.6

Fig. 6.4 Temperature varia-
tions vs. time: 1 – FOG1,
2 – FOG2, 3 – FOG3,
4 – FOG4, 5 – external tem-
perature.
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Fig. 6.5 Temperature rates in
FOGs vs. time: 1 – FOG1,
2 – FOG2, 3 – FOG3,
4 – FOG4, 5 – external tem-
perature.
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Ṫ , K/min

t , s



6 Thermal Stabilisation in Strapdown Inertial Unit 185

Fig. 6.6 Heat output of the
thermal stabilisation system
vs. time.

Q̇Stb, W

t , s

illustrates the change in power of the thermal stabilisation system over time Q̇FOG

over time.
Next, the temperature field parameters were investigated using thermal stabili-

sation to accelerate warm-up and reduce temperature gradients at the FOG sensors
with a control law corresponding to changes in the base temperature. In the com-
putational experiment, a non-stationary heat transfer problem with a duration of
17641 s (three change cycles of 98 min each) was solved in a constant step of 120 s.
The analysis was carried out with initial conditions corresponding to the lower limit
of the operating temperature range. The initial temperature of the SIN model is
268 K. The temperature of the heat sink base was changed according to Eq. (6.6).

For the thermal stabilisation system the following equation is applied

Q̇Stb(TFOG) =

{
69, TFOG < TTAR,
Q̇A sin(2πt/tmax +ϕ+π)+ Q̇A, TFOG � TTAR, (6.8)

where Q̇Stb is the total power of the three active thermal stabilisation elements, TFOG,
K is the arithmetic mean of the temperatures of FOG1, FOG2, FOG3, TTAR = 312 K
is the target value for average FOG temperature, upon reaching which the appliance
is considered warmed up. Q̇A = 8.0 W is the amplitude of total thermal stabilisation
power.

All the thermal stabilisation elements are controlled simultaneously. Figure 6.7
illustrates temperature changes at the base of the FOGS. Furthermore the diagram
of the external temperature change at the node corresponding to the point on the
bottom surface of the heat sink base at the intersection of the diagonals between the
attachment points of the thermal insulation sleeves is presented. From these results
it can be seen that at a given level of the temperature TTAR the steady-state heat
build-up occurs within 2000 s.

The temperature rates are presented in Fig. 6.8. From the graphs it can be seen
that the temperature rates in FOG1–FOG4 after the accelerated warm-up period are
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Fig. 6.7 Temperature varia-
tions vs. time: 1 – FOG1,
2 – FOG2, 3 – FOG3,
4 – FOG4, 5 – external tem-
perature.
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Fig. 6.8 Temperature rates in
FOGs vs. time: 1 – FOG1,
2 – FOG2, 3 – FOG3,
4 – FOG4, 5 – external tem-
perature.
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less than 0.1 K/min. The graphs of the change in power of the thermal stabilisation
system over time are presented in Fig. 6.9.

6.5 Conclusions

In this study a finite element model of the SIN device has been developed in order
to simulate the temperature field of the SIN. In particular, conditions that ensure a
minimum of temperature variation on the FOG platform under thermally stabilised
conditions have been determined. A computational thermal model of the device has
been developed and verified.

Based on the results of numerical simulation, the parameters of the temperature
field of the device and characteristics of the thermal stabilisation system have been
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Fig. 6.9 Heat output of the
thermal stabilisation system
vs. time.

Q̇Stb, W

t , s

investigated. The temperature rates at the given points of the device have been nu-
merically determined. It is found that the thermal stabilisation law must ensure the
stability of the temperature field (small temperature rate). The temperature value of
the FOG itself has no significant effect on the drift value.

It is found that the application of thermal stabilisation in the considered design of
the SIN device with heat dissipation from the FOG platform by means of radiation
makes it possible to form a temperature field with a temperature difference of 2 K
on the FOG platform, which provides a minimum level of thermal strains in the
FOG platform and reduces the fluctuations of external temperature at a rate of over
8K/min down to 0.2 K/min. When stabilised with a control law corresponding to the
temperature change of the FOG platform, it is possible to reduce the temperature
fluctuations of the FOG platform down to 0.1 K/min.

A temperature stabilisation system should only be used to bring the system to
operating temperature for a maximum of 30min and should not be used during op-
eration.
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Chapter 7
Experimental-numerical Analysis of
Microstructure-property Linkages for
Additively Manufactured Materials

Benjamin Schmidt, Alexander Raßloff, Robert Kühne, Martina Zimmermann, and
Markus Kästner

Abstract The innovation of new or improved products fabricated from additive
manufacturing processes with desired properties depends on a multitude of trials
as stated by the Materials Genome Initiative for Global Competitiveness of the US
National Science and Technology Council. Therefore, a systematic approach is es-
sential to accelerate materials development. This can be realised by developing sys-
tematic materials knowledge in the form of process-structure-property linkages. In
this envisioned framework, the present work aims to derive the structure-property
linkages of additively manufactured Ti-6Al-4V alloy.

One main focus is to investigate the influence of potential defects, in the form
of pores, inherited from the fabrication process on the fatigue properties. For this
purpose, the pore microstructure is obtained by x-ray computed tomography and a
low-dimensional representation of the structure is derived by a statistical analysis.
In a following numerical analysis, statistical volume elements (SVEs) with varying
pore microstructures are reconstructed and microscale crystal plasticity simulations
are performed in DAMASK to obtain the material properties such as yield strength
and fatigue indicator parameters (FIPs). The influence of pore statistics on FIPs is
obtained numerically and a comparison with Murakami’s empirical square root area
concept is made.

In a second part, the influence of the grain microstructure on mechanical prop-
erties is analysed. To this end, the grain microstructure is obtained by scanning
electron microscopy (SEM) for specimens manufactured with different process
configurations. Those structures are characterised through spatial three-point auto-
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correlation functions. The main properties of this high-dimensional descriptor are
transformed to a low-dimensional representation by employing principal compo-
nent analysis (PCA). Using LASSO regression, a meta model is derived, which al-
lows for linking the microstructure to experimentally obtained micro hardness. This
makes predictions of the hardness for new, unknown microstructures possible.

Key words: Additive manufacturing, Structure-property linkages, Microstructure,
Defects, Multiscale modelling, Fatigue

7.1 Introduction

Additive manufacturing (AM) paves the way to customised, lightweight and inno-
vative materials. The process of qualifying new materials with desired properties
and their reliable utilisation requires more than ten years according to the Mate-
rials Genome Initiative for Global Competitiveness of the US National Science
and Technology Council. Understanding the relationships between process, struc-
ture and properties is essential for accelerating materials development. Deriving a
large database of associated process-structure and structure-property pairs based on
experiments and augmented by numerical simulations allows for an inverse mate-
rials design. However, a major challenge in transforming AM into the efficient and
reliable commercial application can be seen in the lack of sufficient and systematic
knowledge about process-structure-property (PSP) relationships. Hence, AM com-
ponents often contain imperfections and inhomogeneities that cause premature fail-
ure especially under cyclic loading. Therefore, further development of methods for
material qualification, structure and process simulation as well as component con-
struction and quality control is necessary and addressed within the project AMTwin.

The goal of AMTwin is the data-driven prediction of PSP linkages for the widely
used metal alloy Ti-6Al-4V manufactured by laser powder bed fusion (LPBF). A
multitude of steps as illustrated in Fig. 7.1 is necessary to achieve this goal by ac-
cumulating enough data through data fusion, i.e. the augmentation of few experi-
mental data by numerical simulations. A digital process chain and workflows are
established to create a digital twin of the AM process and material. Starting with
a detailed analysis of the Ti-6Al-4V powder, all data and metadata are coherently
stored. Many specimens are built by design of experiment through variation of the
LPBF process parameters to capture a significant range of microstructures and asso-
ciated properties, allowing for both establishing process-structure relationships and
the derivation of a process model for data augmentation.

In this contribution, the microstructure-property relationship is analysed. The mi-
crostructure is characterised on the one hand by pores and defects in the microstruc-
ture, which is referred to as pore microstructure in the further course. On the other
hand, the microstructure is characterised by the grain morphology and the phase
distribution, which is referred to as grain microstructure in this contribution.
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Fig. 7.1: Schematic overview over processes within AMTwin for the data-driven prediction of PSP
relationships.

The grain microstructure is experimentally characterised by light microscopy
(LM). In a first study, the resulting images are to be statistically analysed and serve
as basis for the in silico reconstruction of grain microstructures. The material’s me-
chanical properties are determined by static and cyclic tests. Capturing the pores by
x-ray computed tomography (CT) is essential for a comprehensive pore microstruc-
ture analysis. Based on these experimental data, a process model is derived that
simulates the LBPF process. Additionally, methods are developed to reconstruct
microstructures based on statistical and translation-invariant descriptors, see Seibert
et al. (2021a). A low-dimensional description in the form of few meaningful scalars
that capture the crucial microstructural features is key for establishing the PSP re-
lationships. The reconstructed SVEs – synthetic structures that are as a single one
not representative for all possible instances of a microstructure associated with that
statistic, but as a set – serve as simulation domains for the numerical crystal plas-
ticity (CP) simulations. Mechanical properties such as fatigue indicator parameters
(FIPs) or yield stress are determined by modelling the material behaviour. Process-
ing these mechanical parameters yields the properties which are incorporated in the
data base. Finally, the latter one can be used to establish the desired PSP relation-
ships.

As a show case of this approach, the current article aims at presenting an
experimental-numerical approach and an exemplary demonstration for the inves-
tigation of the influence of pores on the fatigue properties by numerical simulation
as illustrated in Fig. 7.2. To that end, specimens of Ti-6Al-4V are manufactured and
their microstructures statistically characterised on the basis of LM images and CT
scans. SVEs are reconstructed and CP simulations are conducted to calculate FIPs.
Analysing the simulation results by extreme value distribution yields the targeted
data of pore structure and fatigue property pairs, enabling the ranking of microstruc-
tures. Additionally, a ranking based on the empirical

√
area parameter as introduced

by Murakami (1989) is comparatively considered.
In addition to porosity, a factor that significantly influences the mechanical prop-

erties of Ti-6Al-4V is the crystalline microstructure, which is analysed in the second
part of this contribution. As thoroughly described in Kühne et al. (2021) and ter Haar
and Becker (2021), the microstructure is composed of α- and β-phase. The grain mi-
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Fig. 7.2: Illustration of the approach to access pore microstructure-property relationships based
on experimentally observation and numerical simulation: Specimens are printed, the material mi-
crostructure is observed by light microscopy and computed tomography, the structure is statisti-
cally quantified and SVEs are in silico reconstructed for simulating fatigue indicator parameters
by crystal plasticity simulations to derive the relationships by data analysis.

crostructure and ratio of α- and β-phase is strongly influenced by the LPBF process
parameters and thermal post-treatment. Hence, microstructures that were produced
by different configurations are analysed and compared. From SEM images of the mi-
crostructure the distribution of α- and β-phase can directly be derived, as presented
in Fig. 7.3 for images from different batches. The phase distributions are described
by spatial three-point correlations. They are a high-dimensional descriptor, which
is disadvantageous for the further analyses. In order to create a low-dimensional
descriptor, a PCA is performed.

In Kühne et al. (2021) it is demonstrated, that the microstructure and ratio of the
two phases influence the micro hardness of the material, which was determined ex-
perimentally. As a demonstration, the linkage between low-dimensional microstruc-

(a) SEM batch
1.

(b) SEM batch
3.

(c) SEM batch
5.

(d) SEM batch
6.

(e) SEM batch
7.

(f) SEM batch
8.

(g) Phasesbatch
1.

(h) Phasesbatch
3.

(i) Phases batch
5.

(j) Phases batch
6.

(k) Phasesbatch
7.

(l) Phases batch
8.

Fig. 7.3: SEM images (a)-(f) and derived phases (g)-(l) of the microstructures.
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ture descriptors and micro hardness is analysed through meta models, which allow
for a prediction of the micro hardness for new microstructures.

The experimental and numerical methods are briefly introduced in Sect. 7.2. In
Sect. 7.3 the results of illustrative studies are presented and briefly discussed. A
conclusion is given in Sect. 7.4.

7.2 Methods

7.2.1 Experimental Characterisation of Microstructure and Defect
Population

For this study, Ti-6Al-4V powder of Grade 23, atomised by argon, is utilised. A
LPBF is used to build rectangular specimens of size 10× 10× 15mm as shown
in Fig. 7.2. LM images as in the same figure of sections parallel to the building
direction are taken to measure the width of the visible prior β-grains, yielding an
average width of 192 μm. These values constitute a simplified characterisation of
the grain structure.

In order to characterise the pores, x-ray CT scans as illustrated in Fig. 7.2 are
conducted with a voxel resolution of 9μm. The pores are detected and analysed us-
ing the software VGSTUDIO Max 3.4. For the porosity analysis, a workflow based
on du Plessis et al. (2018) is utilised. To achieve a more sophisticated processing,
the data is transferred to MATLAB, where additional quantities are calculated to
serve as input for the microstructure characterisation as described in the subsequent
section.

7.2.2 Numerical Characterisation of Microstructure and Defect
Population, and Reconstruction

7.2.2.1 Microstructural Descriptors

An adequate and condensed description of the structure is mandatory for deriving
PSP relationships and for reconstructing synthetic microstructures. For the present
study, the spatial distribution and morphology of the pores need to be captured. For
this purpose, each voxel cluster from the CT that was identified as a pore is approx-
imated by an ellipsoid to allow for a simplified, analytical description of the pores,
that the authors are well aware of the fact, that the failure-relevance of a defect sig-
nificantly relies on the defect shape and here in particular the aspect ratio and its
position relative to the loading direction. These pores are characterised by the distri-
butions of two meaningful parameters, the equivalent spherical diameter (ESD) deq
and the shortest distance between the surfaces to the nearest pore δS. As the pores
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are to be reconstructed as spheres for this first demonstration, the ESD captures not
only the crucial effect of pore size, but also the complete morphology. The latter pa-
rameter contributes to the significant effect of high plastification in dense areas. De-
scribing the distribution of these quantities by probability density functions (PDFs)
allows for characterising the structure in the desired low-dimensional manner by
few parameters, i.e. the descriptors. Figure 7.4 shows the distribution of deq and δS
derived by CT for three real specimen. As can been seen, the ESD distribution can
be well fitted to a gamma PDF

f
(
deq;a, lΓ ,sΓ

)
=

(
deq

sΓ
− lΓ

)a−1

exp
(
lΓ −

deq

sΓ

)
Γ−1(a), deq � 0, a> 0. (7.1)

The parameters s and l scale and shift the function, whereas a denotes the shaping
parameter and Γ(·) denotes the gamma function1. A lognormal PDF

f(x;σ, lln,sln) =
[
(m)σ

√
2π
]−1

exp
(
−

log2 (m)

2σ2

)
,

with x > 0, σ > 0, m=
δS
sln

− lln, (7.2)

is applied to fit the distribution of the shortest distance to the nearest pore surface.
Here, the shape parameter is denoted by σ. The Python package SciPy is employed
for identifying the parameters by maximising a log-likelihood function. The volume
fraction of pores, i.e. the porosity φ, serves as another descriptor.

Fig. 7.4: (Left) ESD deq distribution and fitted gamma PDF for three exemplary CT scans; (right)
distribution of the shortest distance to the next pore surface δS and fitted lognormal PDF.

1 The gamma function is defined as

Γ(z) =

∞∫

0

tz−1e−t dt

for arguments z with a positive real part.
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7.2.2.2 Reconstruction

The grain structure and pores are reconstructed separately. As the focus of the
present work lies on the investigation of the influence of pores, one grain structure is
reconstructed in which the pores are incorporated. DREAM.3D (Groeber and Jack-
son, 2014) is utilised for this task. The structure parameters for DREAM.3D are
chosen so that the resultant grains represent lamellae colonies, i.e. regions of simi-
lar orientation within a prior β-grain. The mean grain ESD is set to 200μm with a
length/width-ratio of 4 to 5, based on the LM observation. The resultant SVE of size
(1200μm)3 is discretised in 2003 elements and is visualised on the left in Fig. 7.5.

The pores are reconstructed following a procedure of sampling random variates
from the distribution functions (7.1), (7.2) for given parameters. For the present
study, they are chosen to resemble CT scan 1 from Fig. 7.4. A Python script is used
to (a) compute the ESD and number of pores by sampling from the corresponding
PDF, (b) distribute the spherical pores spatially by sampling from the distance PDF
and (c) compare the resultant distribution to the input and either restart or finish
procedure. Now, the pores are incorporated into the grain domain from DREAM.3D,
yielding the final SVE for the CP simulation as described in the subsequent section.
Figure 7.5 shows an exemplary SVE.

Fig. 7.5: (Left) Reconstructed polycrystalline simulation domain with spherical pores (blue);
(right) spatial distribution of the highest Fatemi-Socie FIPs (red) in a SVE with 114 pores (blue).
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7.2.3 Microstructure Properties and Ranking

7.2.3.1 Crystal Plasticity Simulations to Derive Fatigue Indicator Parameters

The Düsseldorf Advanced Material Simulation Kit (DAMASK) (Roters et al., 2019)
is used to conduct the CP simulations. Taking the crystalline structure of the mate-
rial into account enables a thorough investigation of the structure-property linkages.
The material of the grains is modelled by a phenomenological powerlaw constitu-
tive equation, see Roters et al. (2019) for detailed information, assuming a hexago-
nal lattice. The material parameters are chosen to depict the behaviour of Ti-6Al-4V
lamellae colonies and are motivated from Bridier et al. (2009); Mayeur and Mc-
Dowell (2007); Zambaldi et al. (2012). The mechanical behaviour of the pores is
modelled by an elastic and plastically dilatational material model proposed by Maiti
and Eisenlohr (2018).

For the derivation of fatigue related properties, FIPs are calculated from results of
cyclic simulations. The processed quantities comprise the plastic shear strain tensor
γγγ, the first Piola-Kirchhoff stress tensor PPP and the plastic velocity gradient tensor
LLLp. Following the definition as introduced by, e.g. McDowell (2007), the local FIP
fields are computed as

ΦFS = max
α

{
Δγα

max

2

(
1+k

Pα
n,max

Py

)}

ΦMPS = max
α

{
Δγα

max

2

}

ΦAPS =

∫

cyc

√
2
3
DDDp :DDDp dt . (7.3)

The Fatemi-Socie (FS) FIP ΦFS is defined as a function of the maximum range
of plastic shear strain of the last cycle Δγmax, the maximum stress normal to the slip
plane Pn,max, the yield stress Py and a mediating parameter k. ΦMPS denotes the
maximum plastic shear strain range (MPS) FIP and ΦAPS denotes the accumulated
plastic shear strain (APS) FIP. For the latter FIP, the plastic rate of the deformation
tensor

DDDp =
1
2

(
LLL+LLLT

)

is used.
To extract a representative fatigue property for a specific microstructure charac-

terised by a certain statistical description from simulations on non-representative
SVEs, an adequate data analysis is conducted. Employing an extreme value distri-
bution approach as by, e.g. Muth et al. (2021), all FIPs from a SVE set, i.e. a set
of SVEs that share the same statistical descriptors, above a certain threshold are
described by a distribution function. This method is illustrated in Fig. 7.6 at the
example of structures with varying porosity. For three porosities, the real distribu-
tion of the highest FS FIPs is plotted on the left alongside a dashed line, indicating
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Fig. 7.6: (Left) Cumulative distribution of highest Fatemi-Socie FIPs and fitted distribution func-
tion (dashed line) for three exemplary SVE sets of differing porosity; (right) associated Fatemi-
Socie ranking parameter based on extreme value distribution.

the cumulative distribution function FEVD of the fitted generalised gamma PDF. The
function is defined as

f(x;a,c, l,s) = |c|

(
ΦFS

s
− l

)ca−1

exp
{
−

(
ΦFS

s
− l

)c}
Γ−1(a)

ΦFS � 0, a > 0, c �= 0, (7.4)

where l and s denote the shift and scale parameters, a and c the shape parameters
and Γ is the already introduced gamma function. A ranking parameter P is now
introduced to describe the fatigue proneness of the SVE set. It is defined as the FIP
that will not be exceeded with a probability of 99.5%, i.e.

P = F−1
EVD(0.995).

In Fig. 7.6 this ranking parameter is shown. To allow for a better comparison, a
relative ranking parameter

P̃ =
Pref

P

is introduced.

7.2.3.2 Murakami’s
√

area Estimation

To serve as a comparative value, an empirical method for the estimation of the fa-
tigue strength is additionally employed. The Kitagawa-Takahashi diagram estab-
lished by Liu et al. (2020) is used here. It can be expressed as

Δσw = Δσw0

√
a0

a+a0
= Δσw0

√ √
areaeff0√

areaeff +
√

areaeff0
. (7.5)

The fatigue limit Δσw of the AM structure can be calculated based on the fatigue
limit of the defect-free structure Δσw0 and two size parameters a and a0. Liu et al.
(2020) substituted the latter ones by the

√
area parameter introduced in Murakami
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(1989). Based on the work of Leuders et al. (2013), the specific value of

Δσw0 = 420MPa

was chosen. For defects within the specimen,
√

areaeff0 = 102.6μm

was determined. Comparing this empirical determination of a fatigue property to
the FIPs is facilitated by defining the ranking parameter as

P̃√
area =

Δσw

Δσw,ref
,

analogously to the FIP-based one, so that higher values indicate a better fatigue
performance.

7.2.4 Grain Structure Characterisation

7.2.4.1 Microstructural Descriptors

As presented in Fig. 7.3, from SEM images, a binary image with the phase distribu-
tion can directly be derived with colour value limits, where one colour represents the
α-phase (light grey) and the other the β-phase (dark grey). Similar as described in
Subsect. 7.2.2, for interpretation of these binary images and deriving PSP linkages
it is necessary to find meaningful descriptions.

In this case, the spatial three-point auto-correlation is used for this purpose. A
generalised definition and thorough discussion is given in Jiao et al. (2007), here, an
implementation introduced by Seibert et al. (2021b) is utilised: for two vectors rrra
and rrrb, the three-point auto-correlation of the β-phase

S
β→β
3 (rrra,rrrb)

is defined as the probability of both vectors starting and ending in the β-phase, if
their mutual starting point is placed randomly in the microstructure. The three-point
auto-correlation captures generalized information about distribution of α- and β-
phase, as exemplified in Fig. 7.7.

7.2.4.2 Dimensionality Reduction

Correlation fields contain a lot of information, however, with only few sample
points this high-dimensional representation is disadvantageous for the following
meta model fitting. The meta model would have much more parameters than sample
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Fig. 7.7: SEM image, derived binary image representing α- and β-phase and corresponding two-
point auto-correlation of the β-phase. The two-point autocorrelation is included in the three-point
autocorrelation.

points to fit those parameters. One way to get around this problem is dimensionality
reduction, the transformation of a high-dimensional descriptor to a low-dimensional
representation, that still contains meaningful properties of the original data set. In
this contribution, PCA, which is a linear method, is used for this purpose. The basic
idea of this method is the construction of eigenvectors of the covariance matrix, so
only few values contain a majority of the systems significant properties, so that

PCA : Rn → Rm (7.6)
SSS �→ PPPCCC

the n entries of the correlation are mapped to m principal components with m
n.
In the specific case of dimensionality reduction of auto-correlation fields, there

is the problem, that many values are near zero with only few larger values, which
dominate the PCA and mask weaker effects. Here an element-wise scaling of the
entries of the three-point correlation S

β→β
3 in the form of

S
β→β
3,norm = arctan(aS

β→β
3 ) (7.7)

with a factor a > 1 can mitigate this effect and reduce the error of the meta model.
For this analysis the PCA function implemented in scikit-learn (Pedregosa et al.,
2011) is used.

7.2.4.3 Meta Modelling

One aim of this study is the micro hardness prediction for new batches with adapted
process parameters based on SEM images of those specimens. For this purpose a
meta model was fitted to the SEM images and micro hardness values of the present
data set. From a variety of different models, the linear LASSO regression imple-
mented in scikit-learn (Pedregosa et al., 2011) showed the smallest error and the
highest robustness. A detailed overview of the method is provided by Kim et al.
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(2007). The objective of LASSO regression is the minimisation

min
w

1
2nsamples

‖Xw−y‖2
2 +α‖w‖1 (7.8)

of the sum of least-square error and the product of a constant model factor α and the
!1-norm of the coefficient vector. While the first summand minimises the error of
the prediction Xw, the regularisation in the second summand prevents overfitting.

7.3 Results

The following section presents the results of studies that have been conducted to
illustrate the presented approaches.

7.3.1 Pore Microstructure-property Linkage

Three pore structure descriptors are chosen and varied, namely (a) the scale param-
eter of the ESD sesd, (b) the size of the largest pore

√
area and (c) the porosity φ.

Figure 7.5 shows the local spatial distribution of the highest FS FIP. It can be seen
that they locate at the pores as expected.

The results of the studies are shown in Fig. 7.8 in terms of the ranking parameter.
The scale parameters are presented as relative values to allow for a better evaluation.
Per study only one parameter is varied and the others are set to constant values as
given in the same figure.

The study on the ESD as shown in Fig. 7.8(a) indicates that the proneness to fa-
tigue increases for higher scale parameters s̃esd. As can be seen from the associated
plot of the gamma PDF, a high value of s̃esd means that there are more larger pores
compared to small values. This result seems plausible as larger pores tend to have a
major impact on the fatigue performance. The empirical ranking parameter P̃√

area
remains fairly constant for s̃esd � 0.8, indicating that the size of the largest pore does
not change significantly. However, the FIP based parameters suggest a further de-
creasing trend, underlining the potential of high-resolution CP simulations, allowing
for a more sophisticated investigation.

The data in Fig. 7.8(b) shows the defined trend of P̃√
area. The other parameters

pose significant scatter. P̃FS and P̃APS even rise for pores below
√

area = 100μm.
That could imply a less pronounced impact of the largest pore compared to other
factors related to local phenomena. This relation seems to change as the ranking
parameters decrease for higher

√
area.

The study on the influence of the porosity shows the expected outcome of worse
fatigue performance for higher porosity. It can be seen from Fig. 7.8(c) that the
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Fig. 7.8: Relative ranking parameters P̃ from simulations and empirical estimations.

empirically motivated parameter follows roughly the same trend. The cause could
lie in the increased possibility of larger pores for higher volume fraction of pores.

7.3.2 Grain Microstructure-property Linkage

The presented approaches for the grain microstructure-property linkage are demon-
strated on a data set of 31 SEM images and their derived binary images of α- and
β-phase. The total of 31 samples were produced by six different process parameter
configurations, one sample of each batch is presented in Fig. 7.3. For each of the
six batches, the micro hardness was measured on an additional specimen. While all
batches have different processing parameters, batch 1, 3 and 5 are all low tempera-
ture stress relieved (550◦C,3h, Ar), batch number 6 was treated with Hot Isostatic
Pressing (HIP, 920◦C,1000bar,2h, Ar) and batches 7 and 8 were annealed at higher
temperature (843◦C,4.5h, Ar). The high temperature treatments of the batches 6,
7 and 8 significantly decrease the micro hardness. The PCA was performed with
a scaling parameter a = 105 in Eq. (7.7). In Fig. 7.9 the first three PCA parame-
ters (PC1, PC 2 and PC 3) and the micro hardness are presented, the marker colour
represents the value of PC 1. The first component shows two clusters, which differ-
entiate between batches 1, 3 and 5 (green) and the high temperature treated batches
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6, 7 and 8 (blue). The subplot of PC 1 and micro hardness demonstrates the strong

Fig. 7.9: Visualisation of principle components 1, 2 and 3, and micro hardness. The upper trian-
gular shows contour lines of cross-plots, the main diagonal represents the density of the individual
parameters. In the lower triangular, there is a scatter plot of the specimens. The colour represents
the value of the first principal component, for the blue specimens, the marker differentiates the
shape of the larger alpha sections in mainly compact, round inclusions (circular marker), mixed
shapes (cross) and slim inclusions (diamond).

influence of the high temperature treatment process on the micro hardness. PC 2 has
a small scattering range in the high temperature treated specimens but a large range
in the low temperature stress relieved ones, so it can be assumed, that the value of
this PC characterises a variation in the low temperature stress relieved specimens.

High temperature treated specimens can be sorted by the shape of the large
α-phase sections to mainly compact, round inclusions (blue circular marker in
Fig. 7.9), mixed shapes (cross), and slim inclusions (diamond). This shape variance
is also represented in PC 3, where the low temperature stress relieved specimens all
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are close to zero, while mainly round specimen have smaller values and slim ones
larger value.

In order to simulate the prediction of the micro hardness based on grain mi-
crostructure images, the dataset is split in one test batch and five training batches.
The spatial three-point auto-correlation of the training images is used to perform the
PCA with nPC = 20. Subsequently the LASSO regression is fitted to the PCs and
the corresponding micro hardness values. Afterwards, the trained PCA and LASSO
models are applied to the test set. In Fig. 7.10 (a) this is demonstrated exemplarily
for batch 1 as test batch and the remaining configurations as training data. Here, it
can be seen, that the trained model fits the training data very well, while the model
predicts values similar to the micro hardness of batch 3 and 5. This means, that the
model could identify the similarity between low temperature stress relieved speci-
mens, but since the correct result is unknown to the model, it obviously predicted
those results already known.

In Fig. 7.10 (b), the prediction results for all six runs, each fitted with the re-
maining five batches as training data, are combined. Here again, the model reliably
differentiates between HIP and low temperature relieved specimens, but due to the
limited training data set, the prediction results are scattered around the training data.
The prediction results might be improved by extending the data set.

In many applications, it will not be necessary to predict a value for a complete
new process configuration, but only for a new specimen of a known process. In this
case, the model only has to compare the test specimen to very similar specimens in
the training set and so the prediction would be significantly simplified.

A second challenge for the prediction can be found in the micro hardness results,
which represent an average value of each batch, so all samples are assigned the
same mean hardness. This complicates the identification of structure features that
influence the specimens hardness, as individual variations of the micro hardness

(a) Model performance and prediction for batch
1 for PCA and metamodel fitted to results of
batch 3, 5, 6 and 8.

(b) Prediction for each batch respectively
trained with results of the remaining five
batches.

Fig. 7.10: Results of the prediction of micro hardness, based on SEM images of batches with
different process parameters.



204 Benjamin Schmidt et al.

of a specimen cannot be recognized. Using a mean hardness limits the model to
recognising only ‘mean’ features, that all specimens of one batch have in common.
This means, ideally, the data set would contain results which can be directly assigned
to the corresponding structure.

7.4 Conclusions

Two experimental-numerical analyses of microstructure-property relationships for
AM materials were presented. At the example of the influence of pores on the fatigue
behaviour, these relationships are derived by

(a) manufacturing specimen of Ti-6Al-4V,
(b) characterising their microstructure by LM and CT,
(c) computing meaningful structural descriptors based on statistical functions,
(d) conducting CP simulations to compute FIPs and
(e) post processing the results using extreme value distributions.

Although substantial computational and experimental effort is needed, the approach
is promising for accessing PSP relationships. A first demonstrative study shows
that local phenomena seem to significantly influence the fatigue behaviour. Even
simple descriptors like the distribution of the pore ESDs and the shortest distance
between pores are potentially influential. Experimental fatigue tests are planned and
necessary to validate the findings.

Improving this first implementation of the workflow in terms of microstructure
characterization and reconstruction, e.g. by employing the approach by Seibert et al.
(2021a) and using a closed design of experiment loop will open up promising pos-
sibilities for deriving PSP relationships and accelerating materials innovation. Pat-
terns yielding to fatigue failure could be identified by a more detailed analysis based
on more sophisticated descriptors. Deliberately constructing microstructure constel-
lations, like clusters of densely located large pores at triple grain boundaries, could
yield an improved understanding of fatigue failure in AM materials. Combining
the CP simulations with damage modelling seems another promising approach for
improving the framework.

The presented approach for grain structure-property linkage characterisation of
LPBF TI-6Al-4V shows a good prediction quality of the micro hardness based on
SEM grain microstructure images, even for a limited data set. The presented data
processing chain of three-point auto-correlation, PCA of the scaled values and fi-
nally LASSO regression can reliably identify significant characteristics and predict
micro hardness values with an acceptable accuracy, which can be improved with an
extension of the data set.

As Kühne et al. (2021) showed, the micro hardness indirectly correlates to the
ductility and fatigue resistance, so this approach can easily be extended to further
structure property relationships.
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Chapter 8
Multisurface Theory of Plasticity with one
Active Surface: Basic Relations, Experimental
Validation and Microstructural Motivation

Artem S. Semenov and Boris E. Melnikov

Abstract Constitutive equations, experimental foundation, and comparison with
other inelastic models are considered for the multisurface theory of plasticity with
one active surface. The proposed variant of multisurface theory is aimed to describe
the inelastic deformation processes under the complex passive loading. The condi-
tions of thermodynamic consistency of the theory are obtained. Generalization of
the theory for the case of arbitrary shape of surfaces with equal compliances and the
anisotropy of elastic properties was carried out. Surfaces of equal compliances for
the multilink loading paths and for the complex cyclic loading with total and partial
unloading are experimentally studied. Comparison of experimental data and the the-
ory predictions was carried out on the polycrystalline nickel, steel and aluminium
alloy specimens under complex non-proportional loading.
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8.1 Introduction

Concept of the multisurface plasticity has become widespread in theoretical and
computational inelasticity. There are three different main directions of the multisur-
face formalism application:

• Non-smooth yield surfaces. Formulation of the plastic flow theory with non-
smooth (singular) yield surfaces was proposed by Koiter (1953, 1960) and Man-
del (1964, 1965). In metal plasticity, the classical Tresca yield criterion is char-
acterized by several smooth yield surfaces (planes) intersecting in a non-smooth
fashion. Furthermore, description of the single-crystal plasticity involves a num-
ber of yield conditions associated with the slip systems. Such systems might
be activated simultaneously. In soil, rock, and concrete plasticity, the Mohr-
Coulomb yield criterion, the Cap model, and the Cam-Clay models are examples
of using the multisurface approach (Nemat-Nasser, 1983; Desai and Siriwardane,
1984; Chen, 1984).

• Non-linear hardening under complex cyclic loading. For description of the
non-linear hardening, the multisurface theory was proposed by Mroz (1967);
Mroz et al. (1978). There the set of nested yield surfaces were used to provide
the piece-wise linear approximation of the stress-strain curve. The similar math-
ematical description was obtained by Iwan (1967) on the basis of the rheologi-
cal (structural) model that consists of connection in series of blocks of parallel
elastic and perfect plastic elements. The two-surface theories were developed by
Krieg (1975); Dafalias and Popov (1976); Petersson and Popov (1977). An im-
portant feature of the multisurface approach is the significant dependence of the
direction and value of hardening on the previous history and intensive hardening
after changing the loading direction. The Mroz-type rule for the yield surface
translations provides the correct multiaxial description of nonlinear hardening
and preserves the Masing extended behavior (Masing, 1926) that is important for
simulation of the cyclic response.

• Passive loading processes. For description of the passive loading paths (unload-
ing, neutral loading, and loading inside the classical yield surface), the multisur-
face theory of plasticity with one active surface of equal plastic compliance was
proposed by Izotov and Yagn (1961); Izotov (1963). The active surface transla-
tion and expansion rules were introduced empirically on the basis of numerous
experimental results for various non-proportional loading paths. The model mod-
ifications are proposed in Melnikov et al. (1990); Melnikov and Semenov (1991,
1996b); Izotov et al. (2001). Analysis of the thermodynamic consistency of the
multisurface theory of plasticity with one active surface is carried out in Semenov
(2003a). The considered model describes the plastic strain accumulation under
yield stress and applied to the high-cycle fatigue prediction.

This article deals with the detailed study within the framework of the third direction.
The classical theory of plastic flow with the combined isotropic-kinematic hard-

ening is not sufficiently reliable (Lamba and Sidebottom, 1978) for the description
of deformation processes under the loading including partial or complete unload-
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ing after sharp breaks of the loading path. Typically, the models of plasticity are
aimed to the improved description of the active loading. The detailed analysis of
the passive loading is attempted only occasionally and, mostly, is limited by some
assumption of the elastic behavior of material at the unloading.

In the theory of elastic-plastic processes of Ilyushin (1963), in the endochronic
theory of plasticity Valanis (1980); Kadashevich and Mosolov (1989) and in the
rheological (structural) models (e.g. Palmov, 1998), the plastic strain accumulation
(under passive loading) is taken into account. But here, the governing equations and
constants are set based on the only active loading mode without taking into account
specifics of the processes under passive loading.

The multisurface theory of plasticity with one active surface (Izotov and Yagn,
1961; Melnikov et al., 1990; Melnikov and Semenov, 1996b) provides more precise
formulation of the passive loading. Another specific feature of the theory version
is the refusal of application of the yield surface to evaluation of the plastic defor-
mation. The disadvantage of the yield surface is that its shape, size, and location
depend on the off-set of the residual strain. This disadvantage is avoided when the
surfaces of the equal plastic compliance are applied as it is done in the considered
theory. The principle of building the surfaces of equal plastic compliance is shown
in Fig. 8.1.

Mathematical formulation of the multisurface theory of plasticity (with one ac-
tive surface under active loading) corresponds to the classical theory of plastic flow.
Differences are observed only under passive loading. Under these conditions, spe-
cial equations for evolution of the active surface are introduced. They are formulated
based on the analysis of experimental data using the concept of reversing points
of the deformation trajectory initiating appearance of the new active yield surface.
Only the active surface changes location and size are considered. The rest of the
surfaces remain frozen. However, they store information about the history of defor-
mation in the form of many reversing points. This can affect the further behavior of
the material when the active surface reaches the dimensions of the previous surface.

Fig. 8.1: Surfaces of equal plastic compliances.
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Representative algorithmic treatments of the multisurface theory are in Sandler
and Rubin (1979); Loret and Prevost (1986); Aravas (1987); Simo et al. (1988);
Simo and Hughes (1998). Numerical integration of the constitutive equations of the
multisurface theory of plasticity with one active surface is considered in Melnikov
and Semenov (1996b); Semenov (1996).

Examples of the application of the multisurface theory of plasticity in practice
cover a wide range of materials from wood (Mackenzie-Helnwein et al., 2003), pa-
per (Bedzra et al., 2019), concrete (Fan and Yin, 2003), geomaterials (Whyte et al.,
2020) to metals (Sawischlewski et al., 1996; Semenov et al., 2007; Shahrooi et al.,
2010) and fibre reinforced composites (Bedzra et al., 2017) and allow describing
the phenomena of instability (Sawischlewski et al., 1996), strain localization (Saw-
ischlewski et al., 1996), fatigue (Garud, 1981; Shahrooi et al., 2010) and ductile
fracture (Keralavarma, 2017).

The multisurface theory with one active surface plays the key role in the multi-
model analysis (Melnikov and Semenov, 1995; Semenov and Melnikov, 1998; Mel-
nikov and Semenov, 1996a; Melnikov et al., 2010) of the plastic deformation that is
based on using the hierarchical sequence of models adequate to complexity of the
problem.

8.2 Conditions of Reversing

Reversing is one of the basic concepts in the theory. The loading paths are assumed
to be piece-wise smooth in the space of the stress tensor deviators. The subset of the
loading path kinks, after which the following stress development is directed inside
the surface of equal compliance, is defined as the reversing points of the loading
path (σσσR1 and σσσR2 in Fig. 8.2).

Condition for initiation of the k-th new reversing point is defined as follows:

∂fk(σσσ−σσσOk
)

∂σσσ
· · σ̇σσ < 0, (8.1)

where σσσ is the stress tensor, σσσOk
is the center of the k-th surface of the equal plastic

compliances that characterizes its translation as of a rigid body.

Fig. 8.2: Illustration of the reversing points birth and the evolution of the corresponding surfaces
of the equal plastic compliances.
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Occurrence of the new k-th reversing point σσσRk
causes developments of the new

k+1-st surface

Fk+1(σσσA,σσσRj
,εεεp) = fk+1(σσσA)−Yk+1(σσσRj

,εεεp) = 0, j= 1,k, (8.2)

which determines the plastic deformation. The tensor of active stress is defined by
the relation

σσσA = σσσ−σσσOk+1 . (8.3)

In equation (8.2) the σσσRj
is the stress at the j-th reversing point, εεεp is the plastic

strain tensor. Equation for the center of the k-th surface of the equal plastic compli-
ances σσσOk

reflects the main feature of the theory under consideration and will be
presented in the next section.

The birth condition of the first reversing point according to (8.1) at k = 1 coin-
cides with condition for the elastic unloading postulated in the flow theory. However,
in the multisurface theory, the reversing causes further plastic strain accumulation.

The family of k+1 surfaces occurs after appearance of k reversing points on the
loading path. The initial surface F1 has a non-reversing initiation and its evolution
is defined by the stress-strain curve as it is similarly in the flow theory. The active
surface (i.e., changing its dimensions and controlling plastic deformation) is the ul-
timate surface Fk+1. Parameters of all preceding surfaces remain unchanged. These
surfaces are nested: every preceding surface completely envelops the successive one.
So far, the active surface initially has the minimal dimensions, but under loading, it
grows up and may become equal to the preceding surface. This issue is classified
as the deletion of the conclusive k-th reversing point. The Fk-surface becomes the
active one instead of the Fk+1-surface. This deletion is defined by coinciding of the
k+1-th and k-th surfaces

fk+1(σσσ−σσσOk+1) = fk(σσσRk
−σσσOk

). (8.4)

8.3 Constitutive Equations

In the infinitesimal case under the isothermal conditions, the constitutive equations
(taking into account the elastic anisotropy and arbitrary shape of the surfaces) are
given by the following expressions (Melnikov and Semenov, 1996b):

σ̇σσ= 4DDD · · (ε̇εε− ε̇εεp) = 4DDDep · · ε̇εε, (8.5)

ε̇εεp = C
∂f(σσσA)

∂σσσ
⊗ ∂f(σσσA)

∂σσσ
· · σ̇σσ, (8.6)

where εεε and εεεp are the total and plastic strain tensors, the condition f(σσσA) =
fk+1(σσσA) corresponds to the k+ 1-th active surface, C is the modulus of plastic
compliance, 4DDD is the fourth-order tensor of the elastic moduli. This tensor (in the
case of isotropic material) is defined by the Young’s modulus E and Poisson’s ratio v
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4DDD=
Ev

(1+v)(1−2v)
111⊗111+

E

2(1+v)
(111⊗111+111⊗111), (8.7)

where 111 is the unit tensor, (AAA⊗BBB)ijkl = AijBkl is the direct dyadic product, and
(AAA⊗BBB)ijkl = AikBjl, (AAA⊗BBB)ijkl = AilBjk are the indirect dyadic products. In
Eqs. (8.5)-(8.6), the symbol ·· denotes the double contraction.

The tensor of the elastic-plastic tangent moduli is determined by the expression

4DDDep = 4DDD−
4DDD · · ∂f(σσσA)

∂σσσ
⊗ ∂f(σσσA)

∂σσσ
· · 4DDD

1
C
+

∂f(σσσA)
∂σσσ

· · 4DDD · · ∂f(σσσA)
∂σσσ

. (8.8)

The simplest version of approximation of the plastic compliance C= Ck+1 was
proposed in Melnikov et al. (1990) based on the analysis of experimental data:

Ck+1 = C0 C1

(
Yk+1

Y1

)n

, (8.9)

where C1 is the plastic compliance, corresponding to the first (outer) surface that is
traditionally determined from the stress-strain curve (under the uniaxial monotonic

loading) as C1 =
dε

p
i

dσi
, C0 and n are the coefficients, which are determined from the

experiment in presence of one reversing point (loading-unloading).
When the surface of equal compliance is assumed as the von-Mises hypersphere

f(σσσA) = f(sssA) =

√
3
2
sssA · · sssA, (8.10)

where sssA = σσσA− 1
3 111⊗ 111 · ·σσσA is the deviator of the active stress tensor σσσA, then

the flow rule (8.6) would become

ε̇εεp =
3
2
C

sssA · · ṡss
sssA · · sssA sssA (8.11)

and the tensor of the tangent moduli (8.8) are simplified to the expression:

4DDDep = 4DDD−
4DDD · · sssA⊗ sssA · · 4DDD

sssA··sssA
3C + sssA · · 4DDD · · sssA

. (8.12)

If the hypothesis (8.11) is applied, then the process of plastic deformation is
completely defined in the five-dimensional space of the stress deviators (Fig. 8.3).
Therefore, the equations of evolution of the equal compliance surfaces and revers-
ing conditions are defined in this case by the deviatoric components of the tensors
σσσ,σσσA,σσσRk

,σσσOk
, denoted, respectively, as sss,sssA,sssRk

,sssOk
.

To define the motion of the center of the active surface sssOk+1 , the visual-
geometric representations are used that are obtained as a result of generalization
of experimental data (Melnikov et al., 1990). It is postulated that the active k+1-th
surface passes through two characteristic points: the current stress state sss = sssRk+1
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Fig. 8.3 Active (Fk+1 = 0)
and passive (Fk = 0) surfaces
of the equal plastic compli-
ances.

and the last reversing point sssRk
(see, also, Fig. 8.3), and the surface center sssOk+1

lies on the straight line connecting the center of the preceding k-th surface sssOk
and

the reversing point sssRk

sssOk+1 = sssOk
+ak(sssRk

− sssOk
), (8.13)

where the scalar parameter ak ∈ [0,1] is defined by the relation:

ak =
(sssRk+1 + sssRk

−2sssOk
) · · (sssRk+1 − sssRk

)

2(sssRk
− sssOk

) · · (sssRk+1 − sssRk
)

. (8.14)

For the von Mises hypersphere surface equation (8.2) is simplified to

Fk+1 =

√
2
3
sssAk+1 · · sssAk+1 −Yk+1 = 0, Yk+1 =

√
2
3
ρk+1. (8.15)

The radius of the k-th passive surface is given by the formula

ρk =
√

sssPk
· · sssPk

=
√

(sssRk
− sssOk

) · · (sssRk
− sssOk

). (8.16)

The radius of the k+1-th active surface is defined by the similar expression

ρk+1 =
√

sssAk+1 · · sssAk+1 =
√

(sss− sssOk+1) · · (sss− sssOk+1). (8.17)

The nesting condition requires the fulfillment of the inequalities

0 < ρk+1 < ρk < . . . < ρ2 < ρ1. (8.18)

Using the introduced notations, it can be shown that the parameter ak (8.14) is
linearly related with the radius of the active surface ρk+1

ak = 1−
ρk+1

ρk
(8.19)

and, as a result of (8.13), we get the relation
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sssOk+1 =

k∑

j=1

ρk+1

ρj+1

(
1−

ρj+1

ρj

)
sssRj

. (8.20)

It was shown (Semenov, 2003a), that the multisurface theory with one active sur-
face satisfies to the thermodynamic constraints in a form of the dissipative inequality

σσσ · · ε̇εε−ρψ̇� 0 (8.21)

if the plastic compliance is approximated as

Ck+1 =

⎧
⎪⎪⎨
⎪⎪⎩

C1

(
ρk+1

ρ1

)n

if ρ∗∗k+1 � ρk

C1
ρk−ρk+1

ρ1

(
ρk+1

ρ1

)n

if ρ∗∗k+1 > ρk

, (8.22)

where

ρ∗∗k+1 =−
1

1− cos(ψk+1,k)
[ρk cos(ψk+1,k)+

k−1∑

j=1

(ρj−ρj+1)cos(ψk+1,j)].

8.4 Experimental Analysis

The program of experimental studies includes the complex loading tests of the thin
wall tubular steel specimens (tension, internal, and external pressure) and the tubular
pure nickel specimens (tension and torsion).

8.4.1 Test Results for Nickel Specimens

Specimen particulars are: the thin wall tubular of outer diameter 8.1 mm, the wall
thickness 0.19 mm (not less than 6-7 grains), the gage length 150 mm. The material
is a pure nickel (impurities: Si - 0.068%; Fe - 0.025%; Cu - 0.02%). The tolerance on
the tube cylindricity does not prevail ±0.01 mm (±0.1%); the maximum deviation
of the cross-section area in the same specimen was achieved about ±0.03 mm2

(±0.7%). The specimens were annealed at 860◦C and cooled in the furnace.
Initially, the shape of surfaces of the equal plastic compliance was determined for

various types of primary loading. Uniaxial tension, torsion, and combined loading:
the tension together with torsion were applied. The maximum stress level achieved
in the tests was characterized by σ0 and τ0. For all the cases of the primary loading,
a nearly circular (the von Mises criterion) shape of the loading surface was observed
(Fig. 8.4).
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Fig. 8.4 Geometric locations
of the equal plastic compli-
ance surfaces for various pri-
mary loading programs (ten-
sion, torsion, and combined
tension/torsion σ=

√
3τ) of

the tubular nickel specimens.

Geometric places of the equal δεpi (0.006%; 0.012%; 0.018%; 0.036%) and of
the equal C (10−11; 2·10−11; 3·10−11; 5·10−10; 10−9 Pa−1) deviate not more than
5% from the corresponding circles.

In Fig. 8.5 the geometric places of the equal δεpi are shown (the curve 1 - 0.006%,
2 - 0.012%, 3 - 0.018%, 4 - 0.036%) under the primary loading by the tensile force
up to σ0 = 148 MPa.

Fig. 8.5 Geometric locations
of the equal plastic strain
increment δεp

i surfaces (the
curve 1 - 0.006%, 2 - 0.012%,
3 - 0.018%, 4 - 0.036%) under
the primary tension of the
tubular nickel specimens. The
secondary loading paths are
shown with the thin dash-dot
lines.
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Directions of the secondary loading are shown by the dash-dotted lines. The ar-
rows, for a number of the secondary loading paths, show the directions of the εεεp.
Deviations of the εεεp from the normals increase as the distance increases from the
end point of the primary loading. In average, these deviations were 5◦. The prac-
tical use of the geometric places δε

p
i (determining the direction of the vectors εεεp)

is difficult, since the shapes of these surfaces change significantly depending on the
value δε

p
i .

Next tests were carried out for five variants of the non-proportional primary load-
ings with maximal von Mises stress intensities of 100 MPa, 150 MPa, 250 MPa and
300 MPa, which were achieved in different ways as shown in Fig. 8.6. In tests, both
with primary and secondary loading, the axial force and torque were simultaneously
changed.

Geometric locations of the equal plastic compliance surfaces for various primary
loading programs of the tubular nickel specimens are shown in Fig. 8.7 for the
primary tension and in Fig. 8.8 for the primary torsion.

In all the cases studied, the deformation anisotropy manifested itself at the plastic
strain of about 0.2% and did not disappear at the large values. Geometric places of
the equal C were approximated by circles, the positions of the centers and radii of
which were found by the method of the least squares. In this case, the deviation did
not exceed 2–3% of the radius and was of the same order as the scatter due to the
inhomogeneity of the samples.

In the case of the secondary loads that do not go beyond the the Mises circle
(corresponding to the last point of the primary loading), the field equal C in the first
approximation is uniquely determined only by the history of the primary loading. In
the range of 10−11 Pa−1 �C� 10−10 Pa−1, the geometric places of the equal C are
very close to the circles. Their centers are offset from the origin. The direction of the
center displacement vector is approximately determined by the ratio of components
of the primary plastic deformation, and the modulus of this vector depends only on
the value of C for the given circle and does not depend on the loading history.

Fig. 8.6: Loading paths for the nickel specimens.
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Fig. 8.7: Geometric locations of the equal plastic
compliance surfaces for the primary tension.

C1 = 1 ·10−11 Pa−1

C2 = 2 ·10−11 Pa−1

C3 = 3 ·10−11 Pa−1

C4 = 5 ·10−11 Pa−1

C5 = 10 ·10−11 Pa−1

Fig. 8.8: Geometric locations of the equal plastic
compliance surfaces for the primary torsion.

The radii of the circles do not depend on the primary loading path and are de-
termined only by the corresponding value of C and the maximum stress intensity.
For C � 10−11 Pa−1, the geometric places of the equal C can be approximately
considered as the circles passing through the last point of the primary loading path.
The centers of these circles are located on the same straight line as the centers of the
circles corresponding to large values of the C.

The stress-strain curve for nickel (determined in experiments and used in further
calculations) is shown in Fig. 8.9. The value of the Young’s modulus is E= 207 GPa.

Fig. 8.9 Stress-strain curve
for the nickel.
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Comparison of various models predictions with the experimental data for nickel
specimens (under the complex loading path) are discussed below for two variants of
the loading program including the unloading and passive loading. Under the passive
loading, the most intense accumulation of the plastic strains occurs near the outer
surface on the paths making small angles with tangents to the loading surface. The
"sawtooth" path of the non-proportional secondary loading (after the primary ten-
sion to σ = 306 MPa) are shown in Fig. 8.10. It passed near the von Mises circle
corresponding to the end of the primary loading.

The material response to the "sawtooth" loading (Fig. 8.10) in the form of a strain
path and measured in the experiment on the nickel specimen Izotov (1963), is shown
in Fig. 8.11 with the black solid line. The prediction of the multisurface theory with
one active surface is shown by the red dashed line. The result of the plastic flow

Fig. 8.10 "Sawtooth" loading
path near to the yield surface
given in the experiment on the
nickel specimen.

Fig. 8.11 Comparison of
the simulation results (the
plastic flow theory with the
kinematic hardening and
the multisurface theory with
one active surface) with the
experimental data (Izotov,
1963) for the "sawtooth"
loading path performed in
the experiment on the nickel
specimen (see Fig. 8.10).
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theory with the kinematic hardening and the von Mises yield criterion is shown by
the blue dash-dotted line.

Experimental data illustrate the phenomenon of the plastic strain accumulation
under the passive loading. The prediction of the multisurface theory demonstrates
more accurate prediction in comparison with the plastic flow theory. It is since the
latter does not take into account the plasticity under the passive loading.

The "five-link" loading path (including the passive loading sections) is shown in
Fig. 8.12 as the solid black line.

It includes the primary (proportional) loading and the secondary (the non-
proportional) loading with an alternate change in the tensile force and torque. The
loading path in the stress space σ−τ has the breaks of 90o.

Fig. 8.12 "Five-link" loading
path including the passive
loading sections given in
the experiment on the nickel
specimen.

Fig. 8.13 Comparison of
simulation results (plastic
flow theory with kinematic
hardening and multisurface
theory with one active sur-
face) with experimental data
(Izotov, 1963) for the "five-
link" loading path (performed
in the experiment on the
nickel specimen) is shown in
Fig. 8.12.
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The material response to "five-link" loading (Fig. 8.12) in the form of the strain
path measured in the experiment on the nickel specimen is shown in Fig. 8.13 with
the black solid line. The prediction of the multisurface theory with one active surface
is shown by the red dashed line. The result of the plastic flow theory with the kine-
matic hardening and the von Mises yield criterion is shown by the blue dash-dotted
line.

Comparative analysis of two theories predictions has shown the significant ad-
vantage of the multisurface theory over the theory of flow when describing the com-
plex passive loading. The deviation from the experimental data for strains for the
multisurface theory does not exceed 0.009% according to the plastic flow theory:
0.09% for ε and 0.22% for γ; that is they are by the order of magnitude about (see
Fig. 8.13).

Also, in Fig. 8.12, the calculated loading paths for the flow theory (blue dash-
dotted line) and the multisurface theory (red dashed line) are shown; they correspond
to the experimentally observed secondary deformation path (see black solid line in
Fig. 8.13). The largest deviation from the experimental loading path is 10.8 MPa for
the multisurface theory and 33.3 MPa for the flow theory.

8.4.2 Test Results for Steel Specimens

The experiments were carried out for the Cr-Ni-Ti steel specimens under the com-
plex multiaxial loading. The specimens sizes are: the length 170 mm; the nominal
outer diameter 26.4 mm; the wall thickness of 0.3 mm; the ratio of the wall thick-
ness of the sample to its average diameter is of 0.011. This ratio corresponds to
the recommended values and provides a good uniformity in the distribution of the
circumferential and radial stresses along the thickness of the wall. This makes it
possible to calculate the stresses in the middle layer by the formulae for membrane
shells. The chemical composition of the Cr-Ni-Ti steel (1H18N10T) is: C - 0.1%;
Mn - 2%; Cr - 19%; Mo - 0.3% Ni - 11%; Cu - 0.4%.

Computation of the material response under the complex loading program has
been performed using three theories:

• the plastic flow theory with kinematic hardening (stress-strain curve is shown in
Fig. 8.14 and approximated by the relation σi = 325+1470 ε0.678

i [MPa]);
• the multisurface theory with one active surface (C0 = 1.6, n= 25.3);
• the rheological (structural) model including 7 elements Izotov et al. (2001) (see

Fig. 8.15) (Y2 = 325 MPa, Y5 = 711 MPa, Y7 = 770 MPa).

The experiments were carried out in the high-pressure chamber with sample sub-
jected to repetitive loading and unloading along the straight radial paths in the stress
space. The typical non-proportional loading path is shown in Fig. 8.16. The exper-
imental data (Kuznetsov, 2000; Kuznetsov et al., 2017) and results of the calcula-
tions by different theories are compared in Fig. 8.17 for the loading path shown in
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Fig. 8.14: Stress-strain curve for the Cr-Ni-Ti steel. Fig. 8.15: Structural model
used in computations.

Fig. 8.16. Comparison results indicate the best accuracy of the multisurface theory
with one active surface.

The results of calculations by means of the plastic flow theory with the kinematic
hardening indicate inadequate (unsatisfactory) describing the process of the com-
plex non-proportional loading with the unloadings and passive loading paths. The
multisurface plasticity theory with one active surface and the rheological (structural)
model are in general better describe the process of the complex non-proportional
loading. The predictive calculations for both models gave the satisfactory agreement
with the experimental data.

No significant dependence of the parameters of the multisurface theory on the
loading level has been discovered both in the reference test and for arbitrary loading
paths. The theory adequately describes the complex cyclic loading with the stress
intensities both above and below the stress intensity, at which the model parameters
were determined. Additional adjustment of the parameters was not required.

The Odqvist’s parameter has reached the following levels after loading:

• the experimental value 0.340;
• by the multisurface theory 0.345;
• by the rheological (structural) model (see Fig. 8.15) 0.551;
• by the plastic flow theory with the kinematic hardening < 0.020.

The comparison of simulation results with experimental data on the steel specimen
for the "four-link" cyclic loading path including the passive loading sections is ana-
lyzed in details in Kuznetsov et al. (2017).

The results obtained confirm the advantage of the multisurface theory with
one active surface in describing the material behavior under the complex non-
proportional loading paths with the intermediate unloading.
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Fig. 8.16 "Five-link" cyclic
loading path including the
passive loading sections given
in the experiment on the steel
specimen.

Fig. 8.17 Comparison of
simulation results (plastic
flow theory with the kine-
matic hardening, multisurface
theory with one active sur-
face, and rheological (struc-
tural) model (see Fig. 8.15)
with the experimental data
(Kuznetsov, 2000) for the
"five-link" loading path ob-
tained in the experiment
on the steel specimen (see
Fig. 8.16).

The check of the uniform curve hypothesis consistency (the invariance of the
stress-strain curve and the robustness of approximation of the modulus C) was car-
ried out for the multisurface theory and one possessing the specified properties.
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Fig. 8.18 Experimental veri-
fication of the plastic compli-
ance approximation (8.9) for
the steel specimens.

The results of experimental verification of the power-law approximation (8.9) for
the plastic compliance C as a function of the radius of the active surface Y under
non-proportional loading path for different levels of initial loading are shown in
Fig. 8.18. There is a good agreement between the results of the approximation (8.9)
with parameters C0 = 1.6, n= 25.3 and the experimental data.

8.5 Comparison of the Multisurface Model and the
Microstructural Model Predictions

The plastic strain accumulation under passive loading is a consequence of the mi-
croheterogeneity of the mechanical properties of the polycrystalline material, the
presence of microstresses and microplastic strain in individual grains. Therefore,
the comparison of the behavior of the multisurface theory with one active surface
with the results of the micromechanical (microstructural, physical, crystallographic,
multislip) model is of interest for a better understanding of the reasons for the ori-
gin of plastic deformations under passive loading and the possibility of describing
it using the formalism of the multisurface theory.

Description of the passive loading processes of the polycrystal is carried out by
direct mathematical modeling of the spatially inhomogeneous processes of the in-
elastic deformation of a representative volume element (RVE). The response of the
polycrystalline material is obtained by means of the finite element homogenization
of the representative volume, consisting of a set of randomly oriented individual
single crystals. Behavior of each crystal is described by a micromechanical model
taking in account the real deformation mechanisms on the micro- and meso-levels.
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Within the framework of the micromechanical models of the material (Cailletaud,
1992; Asaro, 1983; Raabe et al., 2001; Besson et al., 2009; Trusov et al., 2013;
Trusov and Shveikin, 2019; Staroselsky and Martin, 2015; Semenov, 2014), it is
assumed that the plastic flow occurs as a result of the possible slip in the N slip
systems characterized by the normal nnnα to the α slip plane; the slip direction lllα

(α = 1, ...,N). For the considered case of single crystals with the face-centered cu-
bic lattice, with taking into account only the octahedral slip systems (for example,
{111}〈011〉 for the nickel) N = 12. In the case of joint activation of the octahedral
and cubic slip systems (for example, {111}〈011〉 and {001}〈011〉 for nickel) N= 18.

The rate of plastic strain in the case of the isothermal infinitesimal approximation
is determined by the equation:

ε̇εεp =

N∑

α=1

γ̇α (lllα⊗nnnα)S, (8.23)

where the symmetrization operator is defined by

(lllα⊗nnnα)S =
1
2
(lllα⊗nnnα+nnnα⊗ lllα) .

For calculation of the rate of the shear strain γ̇α in the case of the rate independent
material behavior, the following expression is used:

γ̇α =

N∑

β=1

[
∂Rβ

∂γα
+

∂Xβ

∂γα
sign

(
τβ−Xβ

)]−1

sign
(
τβ−Xβ

)
τ̇β, (8.24)

where τβ = σσσ · ·
(
lllβ⊗nnnβ

)S
is the shear stresses in β slip system, Rβ and Xβ are

the internal variables characterizing the isotropic and kinematic hardening. Only the
active slip systems are taken into account when summing over β in (8.24); that is,
satisfying the plasticity condition:

|τβ−Xβ|−Rβ−τ0 = 0. (8.25)

The variables characterizing the nonlinear isotropic and kinematic hardening are
determined by the equations:

Rβ = bQ

N∑

β=1

hβαrα with ṙα = (1−brα)γ̇α, (8.26)

and
Xβ = Cxβ with ẋβ =

[
sign

(
τβ−Xβ

)
−Dxβ

]
γ̇β. (8.27)

In Eqs. (8.25)-(8.27) τ0,b,Q,C and D are material constants, the symmetric ma-
trix hαβ =

[
q+(1−q)δαβ

]
defines the latent hardening, δαβ is the Kronecker

symbol, α ∈ [1,N], β ∈ [1,N].



8 Multisurface Theory of Plasticity with one Active Surface 225

In computations of the stress-strain state of the polycrystalline nickel RVE, the
following values of the parameters of the single-crystal material were used τ0 = 50.2
MPa, Q = 36.9 MPa, b = 51.4, q = 0.7, C = 3921 MPa, D = 796 (Murtazin et al.,
2021). The RVE of the polycrystalline material has the cubic form with the regular
subdivision into the finite elements. Each three dimensional finite element contains
eight Gauss points of integration, each of which considered as a single crystal. The
random orientation of each crystal (defined by 3 Euler’s angles) is generated under
assumption of the texture absence. The finite element mesh with 8×8×8 subdivi-
sions (4096 crystallites) is used in the computations. The homogenization procedure
was carried out numerically using the finite element program PANTOCRATOR (Se-
menov, 2003b) where the microstructural model was implemented. Averaging the
volume of the strain and stress tensors is performed as

ε̄εε=

∫

VRVE

εεε dV , σ̄σσ=

∫

VRVE

σσσ dV , ε̄εεp =

∫

VRVE

εεεpdV (8.28)

and is used in the homogenization procedure.
The complex non-proportional "five-link" loading path (Fig. 8.12) including the

passive loading sections is considered for RVE of the polycrystalline nickel. Exam-
ples of the axial and tangential stress field distributions at the last time point are
shown in Fig. 8.19.

Comparison of predictions of the micromechanical model and the multisurface
theory with one active surface (in the case of the "five-link" complex passive load-
ing, Fig. 8.12) demonstrates closeness of the results of the material response in the
strain space (Fig. 8.20). The microstructural model, as well as the multisurface the-
ory, predicts intense accumulation of plastic deformations at the stage of the passive
loading, while the theory of plastic flow demonstrates the significantly different re-
sult. Prediction of the flow theory in the last section of loading (see Fig. 8.12) shows
the intensive growth of plastic strains due to the release of stresses beyond the limits
of the primary loading yield surface that is not confirmed by the experimental data.

Fig. 8.19: The axial σx [MPa] (left) and tangential τxy [MPa] (right) stress field distribution in
RVE of the polycrystalline nickel after the "five-link" loading (see Fig. 8.12). Displacements are
scaled in 30 times for clarity.
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Fig. 8.20 Comparison of
simulation results of the
microstructural model with
the plastic flow theory (with
the kinematic hardening)
and the multisurface theory
(with one active surface)
with the experimental data
(Izotov, 1963) for the "five-
link" loading path found in
the experiment on the nickel
specimen (see Fig. 8.12).

8.6 Numerical Implementation of the Constitutive Equations of
the Multisurface Theory with one Active Surface

It is important to note that the equation for the center of the active surface (8.13)
is not differential, but algebraic one, and, therefore, does not require incremental
integration methods. In this model, influence of the loading history is taken into
account not continuously, but discretely, by storing the information only at the re-
versing points.

In presence of k reversing points on the loading path 2k+3, the following situa-
tions are possible at the current loading step:

• there are no birth and deletion of reversing points;
• a birth of the new k+1-th reversing point can happen;
• there can appear k cases of simultaneous deletions from one to k reversing points;
• there can appear k+ 1 cases of the birth of the k+ 1-th reversing point after

preceding deletion from one to k+1 reversing points.

The loading step is subdivided into the sub-steps with the aim to take into account
the mentioned peculiarities. The points of intersection of the stress path with the
deletable surfaces are defined by the equation

sssil+1 = sssl+αi(sssl+1 − sssl) (8.29)

with

αi =−

(
sssl− sssOk+1−i

) · ·Δsss

Δsss · ·Δsss
+

√√√√
[(

sssl− sssOk+1−i

) · ·Δsss

Δsss · ·Δsss

]2

+
ρ2
Rk+1−i

−ρ2
l

Δsss · ·Δsss
, (8.30)
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Fig. 8.21: Comparison of the FE analysis results for the aluminium ring under the uniaxial ten-
sion/compression with the experimental data (Axelsson and Samuelsson, 1979).

where

ρRk+1−i
=
√(

sssRk+1−i
− sssOk+1−i

) · ·(sssRk+1−i
− sssOk+1−i

)
, (8.31)

ρl =
√(

sssl− sssOk+1−i

) · ·(sssl− sssOk+1−i
). (8.32)

8.7 Finite-element Simulations

The constitutive equations (8.5)-(8.14) represent the quasilinear differential-alge-
braic equations and admit to obtain exactly the tangent moduli and the algorith-
mically consistent tangent moduli (Semenov, 2008). This allows one to use of the
effective methods (e.g., the Newton-Raphson method) for the solution of nonlinear
finite element (FE) equations (Semenov, 2008). The constitutive equations of the
multisurface theory have been implemented in the FE program PANTOCRATOR
(Semenov, 2003b), and solutions of the non-linear boundary value problems have
been obtained (see Figs. 8.21 and 8.22).

The uniaxial tension-compression of the circular aluminium ring is considered.
The problem formulation corresponds (Axelsson and Samuelsson, 1979). There the
experimental data and results (of the finite element simulation with help of the flow
theory) are presented. Geometric parameters of the model are a = 0.635 m and
b= 0.890 m. Elastic-plastic characteristics of the aluminium alloy are E= 87.6 GPa,
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Fig. 8.22: Comparison of the FE analysis results for the steel tube (under the combined tension and
torsion) with the experimental data (Szabo, 1984).

v= 0.324, Y0 = 192.5 MPa, H= 1/C= 3220 MPa. The problem was solved under
the assumption of the plane stress state.

Comparison of simulation results (obtained on the basis of various plasticity
models) with the experimentally measured force-displacement curve is shown in
Fig. 8.21. At the initial stage of the loading (tension), the predictions of all the practi-
cal theories under consideration coincide. Significant difference between the results
is observed under the unloading and reverse loading (compression). The extreme es-
timates (upper and lower bounds) are observed for the kinematic and isotropic hard-
ening of the flow theory. Simulation using the theory of plastic flow with the mixed
hardening (the parameter of the mixed hardening is equal to 0.2) shows the most ac-
curate approximation. The multisurface theory with one active surface demonstrates
satisfactory results.

In the second test, the stress-strain state was investigated of the thin-walled pipe
under the complex non-proportional loading induced by the combined action of the
tensile force and torque. The finite element model and loading conditions are shown
in Fig. 8.22. The four-link loading path OABCO corresponding to the combined
tension and torsion is shown in Fig. 8.22. In sections AB and BC, the loading is
close to neutral.

In this simulation, the constitutive equations of four theories of plasticity were
used:

• the theory of plastic flow with the mixed isotropic-kinematic hardening,
• the endochronic theory of plasticity,
• the multisurface theory of plasticity with one active surface,



8 Multisurface Theory of Plasticity with one Active Surface 229

• the holonomic (deformation) theory of plasticity.

The elastic-plastic characteristics of the steel 304 are: E = 195 GPa, v = 0.3,
Y0 = 181 MPa, H = 1/C = 2700 MPa. The bilinear approximation is used for the
stress-strain curve.

Comparison of simulation results (obtained on the basis of the mentioned various
plasticity models) with the experimentally measured curve is shown in Fig. 8.22.
Under the proportional loading (OA section), there is coincidence of the results of
all the considered theories and experimental data. Significant differences arise at the
non-proportional loading stages AB and BC.

The holonomic theory of plasticity offers the prediction that is significantly dif-
ferent from the experimental results. The value of axial strain εx after the unloading
based on the holonomic theory is 4.9 times higher than that observed in experiment.
Solutions obtained by means of the flow theory with the mixed hardening are located
between two extreme cases of the isotropic and kinematic hardening. The error in
calculation of the residual strain εx for various versions of the flow theory varies
from 3.9 % to 20.4 %.

Prediction by the multisurface theory of plasticity with one active surface is clos-
est to the experiment in comparison with the all considered theories. In the simula-
tion according to this theory, the power-law approximation of the plastic compliance
(8.9) is used. The value of the exponent n was taken equal to 4, C0 = 1. As n in-
creases, the solution tends to the theory of flow with the isotropic hardening.

8.8 Conclusions

The proposed multisurface theory of plasticity with one active surface is aimed to
describe the inelastic material behavior under the complex passive loading. The
theory allows one to investigate the plastic strain accumulation under the unload-
ing, neutral loading, and passive cyclic loading that is essential in the case of the
high-cycle fatigue analysis. In this model, the loading history is taken into account
discretely by storing the information only at the reversing points. Therefore the con-
stitutive equations with the non-differential (recurrent) relations for the center of the
active surface are used. The plastic strain rate tensor is determined by means of the
associated plastic flow rule using only the one active surface as the plastic potential.
Conditions of the thermodynamic consistency of the theory are considered. The pe-
culiarities of numerical implementation within the framework of the finite-element
analysis is discussed.

The results of computations based on the proposed theory reasonably good fit the
results of the experimental studies for various polycrystalline materials: the nickel,
steel, and aluminium alloy. The comparison of multisurface model with other plas-
tic models (the plastic flow theory with isotropic and kinematic hardening, the en-
dochronic theory, the holonomic theory and structural models) are performed and
discussed. The multisurface model demonstrates fine proximity of predictions with
ones by the microstructural model. This indicates the adequacy of the phenomeno-
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logical physically consistent description of the passive loading paths using the mul-
tisurface theory with one active surface.
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Chapter 9
A Damage Model for Corrosion Fatigue due to
Hydrogen Embrittlement

Yuhao Shi, Sven Harzheim, Martin Hofmann, and Thomas Wallmersperger

Abstract Predicting the durability of components subjected to mechanical load un-
der environmental conditions leading to corrosion is one of the most challenging
tasks in mechanical engineering. The demand for precise predictions increases with
the desire of lightweight design in transportation due to environmental protection.
Corrosion with its manifold of mechanisms often occurs together with the produc-
tion of hydrogen by electrochemical reactions. Hydrogen embrittlement is one of the
most feared damage mechanisms for metal constructions often leading to early and
unexpected failure. Until now, predictions are mostly based on costly experiments.
Hence, a rational predictive model based on the fundamentals of electrochemistry
and damage mechanics has to be developed in order to reduce the costs.

In this work, a first model approach based on classical continuum damage me-
chanics is presented to couple both, the damage induced by the mechanical stress
and the hydrogen embrittlement. An elaborated two-scale model based on the self-
consistent theory is applied to describe the mechanical damage due to fatigue. The
electrochemical kinetics are elucidated through the Langmuir adsorption isotherm
and the diffusion equation to consider the impact of hydrogen embrittlement on
the fatigue. The modeling of the mechanism of hydrogen embrittlement defines the
progress of damage accumulation due to the electrochemistry. The durability results
like the S-N diagram show the influence of hydrogen embrittlement by varying, e.g.
the fatigue frequency or the stress ratio.

Key words: Hydrogen embrittlement, Fatigue, Continuum damage mechanics,
Numerical simulation, Multi-field problem
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Nomenclature

a Eshelby parameter
A kinematic hardening
b model parameter
cH hydrogen concentration
cmax maximal concentration
C microscopic kinematic hardening parameter
D damage variable
Dc critical damage
DH diffusion coefficient of hydrogen
E Young’s modulus
f frequency
fM yield function
F Faraday constant
H(x) Heaviside function
J flux
k reaction rate constant
L length
M molar mass
N fatigue cycles
p accumulated plastic strain
pD threshold value of accumulated plastic strain
R ideal gas constant
Rν uniaxial function
s damage exponent
S damage strength
t time
T temperature
Y damage-associated variable
X dimensionless hydrogen concentration
X̄ uniform concentration

α charge transfer coefficient
β material parameter
ε tensor
η overpotential
dΛ indeterminate plastic multiplier
μ model parameter
ν Poisson’s ratio
r1,2,3,4 reaction rate
π pi
ρ material density
σel surface charge density
σ stress
σa stress amplitude
σEQ equivalent stress
σF fatigue limit
σF0 initial fatigue limit
σH hydrostatic stress
σmax maximal stress
σU uniaxial tensile strength
Θ hydrogen coverage

9.1 Introduction

Corrosion is a detrimental and frequent phenomenon of metallic components in nat-
ural and artificial environments that occurs in many forms (Fontana, 2005). In gen-
eral, corrosion degrades the metal’s surface which often leads to loss of function
of the metallic component. This surface degradation is caused by differences in the
electric potential of the metal and its surroundings. Here, electrons are transferred
from the metal (anode) to the cathode. The cathodic reaction strongly depends on the
metal’s environment. A general consequence, however, is the oxidation of the metal
surface. Depending on the type of metal, an oxide layer may serve as a protective
barrier against corrosion (e.g. aluminum oxide). In the case of iron, the occurring
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hydroxide layer does not protect the surface from further corrosion, due to its rela-
tively high molar volume.

In acidic regimes, hydrogen forms at the cathode during corrosion. This hydrogen
is able to diffuse into the metal, posing an additional threat by degrading the metal’s
mechanical properties. Hydrogen embrittlement is subject to current research, and
its most prominent degradation mechanisms are (i) hydrogen enhanced decohesion,
(ii) hydrogen-assisted void nucleation, and (iii) hydrogen enhanced localised plas-
ticity. An overview of the mechanisms is given, e.g., by Lynch (2012). Corrosion is
not the only source of hydrogen in steels. Processes like electrolysis, using pickling
solutions, or welding in moist atmospheres can also cause hydrogen embrittlement
(Lynch, 2012; Ćwiek, 2010). Concluding, corrosion not only degrades the surface of
metallic components, it also affects the fatigue life through hydrogen embrittlement
(Gerard et al., 1998).

The aim of the present paper is to investigate the influence of hydrogen – created
by corrosion – on the fatigue life of steel. We aim at extending the two-scale high-
cycle fatigue damage model introduced by Lemaitre et al. (1999) with a reduction
of the fatigue limit through hydrogen. Thus, we treat hydrogen damage as a generic
category that is not representative of the hydrogen embrittlement damage types in-
troduced above. The ultimate goal is to predict crack initiation in the metal sample,
depending on different concentrations of hydrogen. In our modeling approach, the
damage within a metal sample with no initial hydrogen is investigated. Furthermore,
it is assumed that hydrogen serves as the unique source of damage resulting from
corrosive effects, and the theoretical change in geometry of the metal sample is ne-
glected. In the literature, this effect is known to also have a large influence on the
fatigue life. However, we are only interested in investigating the effect of hydro-
gen on the fatigue life. Our approach is a phenomenological one and uses an ansatz
function that describes the hydrogen concentration within the representative volume
element of the two-scale model.

The source of hydrogen is assumed to stem from the hydrogen evolution reac-
tions (HER), which result from the reaction rate models established in previous
studies (Harrington and Conway, 1987; Lasia, 1993; Lasia and Grégoire, 1995; La-
sia and Rami, 1990). Meanwhile, the fatigue damage caused by the cyclic stress will
be approximated by a two-scale damage model concerning the plasticity of micro-
inclusions to predict the cracking initiation at the metal surface.

The present paper is structured as follows. In Sect. 9.2, we introduce the math-
ematical model that is used to describe the damage accumulation due to hydrogen.
In Sect. 9.3, we provide and discuss results of the numerical simulations. Finally, in
Sect. 9.4, we give a conclusion of the obtained results.

9.2 Model Description

In the present section, we elucidate the setup of the predictive model based on the
conclusion drawn from the relevant literature. The fundamental concept is to solve a
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coupled multi-field problem, consisting of the mechanical field, i.e., the stress evalu-
ation, and the chemical field, i.e., the hydrogen reaction and diffusion, by numerical
methods. First, the fundamental equations for hydrogen formation, adsorption, and
absorption are given in Subsect. 9.2.1. Then, the analysis of the damage is shown in
Subsect. 9.2.2.

9.2.1 Hydrogen Formation, Adsorption, and Absorption

In this section, we consider the hydrogen accumulation kinetics based on a general
model of hydrogen adsorption-desorption in the presence of hydrogen evolution
reactions, see Harrington and Conway (1987); Lasia (1993); Lasia and Grégoire
(1995); Lasia and Rami (1990). It is assumed that the reaction proceeds through the
following characteristic steps:

H2O+M+ e− � MHads +OH− (Volmer) (9.1)

MHads +H2O+ e− � H2 +OH−+M (Heyrovsky) (9.2)

2MHads � H2 +2M (Tafel) (9.3)

The transfer of the hydrogen adsorbed by the surface into the metal should be addi-
tionally taken into account:

MHads � MHabs (9.4)

The kinetics equations of hydrogen reaction steps are given by the reaction rates

r1 =
−→
k1(1−Θ)−

←−−
k−1Θ (9.5)

r2 =
−→
k2Θ−

←−−
k−2(1−Θ) (9.6)

r3 = k3Θ
2 −k−3(1−Θ)2 (9.7)

r4 = k4Θ(1−X0)−k−4(1−Θ)X0 (9.8)

where the potential dependent rate constants
−→
kj ,

←−−
k−j(j = 1,2) are related to the re-

action rate constants kj,k−j(j= 1,2) in the form of the equations

−→
kj = kj exp(−fη) (9.9)

←−−
k−j = k−j exp [(1−)fη]. (9.10)
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The electrode equations are the Butler-Volmer equations for the anode reaction
and the cathode reaction, respectively. The positive subscript ( )j indicates the for-
ward reaction, whereas the negative subscript ( )−j presents the backward reaction,
is the charge transfer coefficient and η is the overpotential. The symbol f denotes
f = F/(RT), where F is the Faraday constant, R the ideal gas constant and T the tem-
perature. Furthermore, Θ denotes the surface coverage by adsorbed hydrogen, and
X is the dimensionless hydrogen concentration inside the metal. This concentration
is obtained by the ratio of the hydrogen concentration to the maximal concentra-
tion, i.e., cH/cH,max. The index 0 designates the concentration at position x = 0
(surface), in the metal.

According to the former studies of HER, the Volmer-Heyrovsky mechanism is
usually involved. Hence, we consider both, the kinetics of the Volmer-Heyrovsky
reactions and the hydrogen absorption in our model. The time derivative of the hy-
drogen surface coverage Θ is obtained through the reaction rates:

dΘ

dt
=

F

σel

(r1 − r2 − r4) (9.11)

where σel is the total surface charge density. The reaction rates r1, r2 and r4 can
be obtained from Eqs. (9.5) to (9.8). Besides, the adsorption-absorption kinetics is
obtained by the flux of hydrogen at the metal surface,

r4 = JH =−DH
ρel
F

∂X

∂x

∣∣∣∣
x=0

(9.12)

where ρel indicates the volume electric charge density due to the hydrogen concen-
tration.

The hydrogen transfer within the metal corresponds to the general diffusion equa-
tion. The semi-infinite solution of the 1D diffusion equation is applied to describe
the hydrogen absorption in the metal. If the surface concentration X0 changes only
slowly, one can assume that the concentration just beneath the surface of the metal
is approximately equal to the concentration at the surface. Then, the boundary con-
ditions at the surface and far away can be given by

X|x=0 = X0,
dX

dx

∣∣∣∣
x=∞

= 0, (9.13)

where x is the Cartesian coordinate. This approach aims at modeling the sample im-
mersed in the inexhaustible source where the sample size is here not to be discussed.
The concentration profile within the metal is expressed by the semi-infinite solution

X= X0 erfc
(

x

2
√
DHt

)
(9.14)

with the complimentary error function
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erfc
(

x

2
√
DHt

)
= 1−

2
π

∫∞

0
exp

[
−

(
x

2
√
DHt

)2
]
dx (9.15)

The common solution with the error function is principally valid for a constant hy-
drogen concentration at the boundary and furthermore for an infinite half space.
The constant hydrogen concentration requires the inexhaustible source in the en-
vironment. For this reason, the surface concentration is set as boundary condition.
The characteristic length (penetration depth of the field) can be approximated by
δcH = 2

√
DHt. The half thickness of the sample should be much higher than the

diffusion length when the representative volume element (RVE) is determined as
failed, so that the error within the RVE is negligible. If the test duration exceeds the
time of hydrogen species penetrating to the specimen center, the approximation with
semi-infinite diffusion is not any longer reliable. With a thickness of 0.1 cm the max-
imum hydrogen diffusion time is 625000s for a diffusion coefficient of DH = 10−9

cm2/s. For this reason, the 1D-Fourier solution is appropriate for the diffusion in a
small specimen in longitudinal direction. Since the aim of this paper is to show the
principal efficiency of the model, we use the analytical solution here instead of the
full solution that would require a large memory space to record the concentration
profile for the long period test, e.g., for very high cycle fatigue. The analytical solu-
tion is beneficial for the forward method that the value of the hydrogen concentra-
tion of the last step can be overwritten. In future works the hydrogen concentration
field inside the metal will be calculated numerically by applying the finite element
method.

According to Eq. (9.14), the derivative of the dimensionless concentration X with
respect to the position x is given by

∂X

∂x
=−

X0√
πDHt

exp

[
−

(
x

2
√
DHt

)2
]

(9.16)

Hence, (i) the charge of the metal ρel = FcH,max corresponding to the saturation
with hydrogen, and (ii) the diffusion coefficient of hydrogen within the metal DH,
are decisive for adsorption and absorption mechanisms. Associating Eq. (9.8) with
Eq. (9.12) we obtain the explicit expression for hydrogen concentration at metal
surface by

[
DHρel

F
√
πDHt

+k4Θ+k−4(1−Θ)

]
X0 = k4Θ (9.17)

⇔ X0 =
k4Θ[

DHρel

F
√
πDHt

+k4Θ+k−4(1−Θ)

] (9.18)

Even though Eq. (9.11) has the form of an ordinary differential equation, there
still exists the obstacle to determine a solution since the term X0 in Eq. (9.18) is
also time-dependent. For this reason, Eq. (9.11) will be solved by using the Crank-
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Nicolson Method, see Appendix. According to the discretisation of Eq. (9.11) with
dΘ/dt= f(Θ,X0),

Θi+1 −Θi = τ
[
f(Θi+1,X0,i+1)+ f(Θi,X0,i)

]
(9.19)

is used, where τ = (FΔt)/(2σel). Please note that the subscript ( )i indicates the
time step number. The initial conditions at t= 0 are given by

Θ1 = 0, X0,1 = 0. (9.20)

9.2.2 Damage Analysis

The elaborated two-scale damage model established by Lemaitre et al. (1999) serves
as the framework for the damage analysis in the present work. It postulates a micro-
scopic volume element M included in a RVE at the mesoscale, which has the same
elastic properties as the RVE. However, it is subjected to elastic-plastic deformation
with a microscopic yield stress σM

Y equal to the material fatigue limit σF. This pro-
cess induces the damage within the RVE and leads to the failure of the RVE, i.e., the
crack initiation occurs at the macroscale (Lemaitre et al., 1999). By means of the
localization law of the self-consistent theory, the stress at the microscale σM

ij (please
note that the superscript ( )M denotes a variable at the microscale). The variables
with the subscript ( )ij are tensors with the index notation) is related to the meso-
scopic stress σij in the RVE (Berveiller and Zaoui, 1985; Kröner, 1961; Lemaitre
and Sermage, 1997):

σM
ij = σij−aEε

Mp
ij (9.21)

where ε
Mp
ij is the microscopic plastic strain and a is the Eshelby solution for a

spherical inclusion (Eshelby, 1957),

a=
1−β

1+ν
, where β=

2(4−5ν)
15(1−ν)

. (9.22)

The symbol ν denotes here the Poisson’s ratio. The evolution law of the plastic
strain at the microscale is obtained from the normality rule,

dεMp
ij =

∂fM

∂σM
ij

dΛ. (9.23)

Afterward, the yield function fM concerning the linear kinematic hardening tensor
AAAM and the stress tensor σσσM at the microscale is obtained by elastic-plastic theory
as follow:

fM =

(
σM
ij

1−D
−AM

ij

)

EQ

−σF = 0 (9.24)
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dfM = 0. (9.25)

where the subscript ( )EQ indicates the equivalent value of the tensor. The evolution
law of the linear kinematic hardening is obtained by the elastic-plastic constitutive
equations of isotropic damaged material

dAMD
ij =

2
3
C(1−D)dεMp

ij (9.26)

where AMD
ij denotes the deviatoric tensor of microscopic kinematic hardening and

C is the microscopic kinematic hardening parameter (Lemaitre et al., 1999; Mu-
rakami et al., 2013). The indeterminate plastic multiplier dΛ can be determined in
different ways (Malvern, 1969) whereas

dΛ= 0, for fM < 0 or for dfM < 0 and (9.27)

dΛ �= 0, for fM = 0 or for dfM = 0. (9.28)

The damage development in the element M is governed by the damage-associated
variable YM which can be interpreted as the release rate of the strain energy density
as a result of the damage evolution (Chaboche, 1988a,b). Then we obtain the damage
evolution equation by

dD=

(
YM

S

)s

dpMH(pM−pD) (9.29)

dpM =

(
2
3

dεMp
ij dεMp

ij

)1/2

(9.30)

where the damage strength S and the damage exponent s are material dependent
parameters. The Heaviside function H(x) is applied here to indicate the fact that
the damage can only increase when the accumulated plastic strain pM exceeds
the threshold value pD. The variable YM is derived from the derivative of the
Helmholtz free energy function with respect to the damage variable D (Lemaitre,
1996; Lemaitre and Desmorat, 2005; Murakami, 2011). The expression of YM is
given by

YM =
(σM

EQ)2 RM
ν

2E(1−D)2 (9.31)

where

RM
ν =

2
3
(1+ν)+3(1−2ν)

(
σM
H

σM
EQ

)2

. (9.32)

The term RM
ν is designated as uniaxial function at the microscale. σM

H and σM
EQ

denote the hydrostatic stress and the equivalent stress of the microelement, respec-
tively.
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The onset of the local fracture of the material on the mesoscale, i.e., the crack
initiation is assumed to appear if the damage threshold DC is attained. This variable
is dependent on the material and the loading conditions (Lemaitre, 1996; Bonora
et al., 2005). For the materials under uniaxial stress, the critical damage DC is given
as

DC = 1−
σM
R

σU

(9.33)

where σM
R denotes the fracture stress on the microscale

σM
R = σM

EQ(RM
ν )1/2. (9.34)

σU is the uniaxial tensile strength, which can be related to the fatigue limit of ma-
terials.

Furthermore, we postulate that the hydrogen embrittlement affects the material
durability by swaying the fatigue limit at the mesoscale. In this model, the relief of
the fatigue limit is governed by the hydrogen diffusion beginning from the metal
surface as

σF = σF0
{

exp
[
−μX̄+ ln(1−b)

]
+b

}
, (9.35)

where μ and b are the parameters for the purpose of investigating the effect of
hydrogen. σF0 indicates the initial fatigue limit of the material at t= 0. X̄ denotes the
uniform dimensionless hydrogen concentration within the RVE at the metal surface.
This uniform concentration is governed by the integral of the local concentration
within the RVE with a thickness L:

X̄=

∫L

0

X(x)

L
dx (9.36)

9.3 Numerical Results and Discussions

In this section, we provide results of the hydrogen adsorption and absorption, as
well as the influence of hydrogen on the fatigue life. In order to approximate the
fatigue life of a corroded material, the previously developed model is implemented
and numerically solved for the simple loading case of uniaxial tension in a flat strip.
Figure 9.1 presents an illustration of the model to be solved. A metal specimen
is immersed in water, the hydrogen species produced through HER diffuses into
the metal and will be trapped by the microscopic inclusions. Meanwhile, the metal
specimen undergoes a cyclic loading with the amplitude σa. The damage of an RVE
on the metal surface will be determined to predict the crack initiation. The evolution
equation of the hydrogen coverage Θ is given by Eq. (9.19), then the dimensionless
concentration at the metal surface X0 is obtained. The numerically obtained uniform
hydrogen concentration X̄ within the RVE is related to the reduced fatigue limit in
Eq. (9.35). This effect has a large influence on the mechanical damage process, as
the damage increment per cycle increases.
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Fig. 9.1 Illustration of the 1D
damage model.
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9.3.1 Hydrogen Adsorption and Absorption

In the present work, the production of hydrogen is only associated with HER due to
the chosen model. The time-dependent hydrogen concentration at the metal surface
results from the reaction kinetics and the adsorption capacity of the material. Since
the Volmer-Heyrovsky reaction as a part of the entire HER is a potential-dependent
electrochemical reaction, the overpotential η affects the rate of the hydrogen adsorp-
tion. Figure 9.2 presents the dimensionless variables Θ and X0 as functions of time
– due to application of different overpotentials – assuming semi-infinite diffusion.
The applied parameters are taken from Lasia and Grégoire (1995) and are listed in
Table 9.1. The hydrogen coverage Θ as well as the dimensionless hydrogen concen-
tration X0 increase with increasing time. The curves for the overpotential η=−0.5V
show larger values of Θ and of X0 than the curves for η=−0.12V. According to the

Fig. 9.2: Time dependence of the hydrogen concentration Θ and the dimensionless hydrogen con-
centration X0 during the application of different overpotentials in the conditions of semi-infinite
diffusion. The applied electrochemical parameters stem from Table 9.2.
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Table 9.1: Material properties for the hydrogen capacity

Material Density Molar mass Maximal concentration

[g/cm3] [g/mol] [mol/cm3]

Aluminium 2.7 26.982 0.1001

Titanium 4.54 47.867 0.0948

Iron 7.87 55.845 0.1409

Nickel 8.9 58.6934 0.1516

Table 9.2: Electrochemical parameters for the numerical simulations (Lasia and Grégoire, 1995)

Parameter Value

Maximal surface concentration cH,max 0.1415mol/cm3

Diffusion coefficient within the metal DH 1 ·10−9 cm2/s

Faraday constant F 96485C/mol

Volmer forward reaction rate constant
−→
k1 1 ·10−11 mol/cm2/s

Volmer backward reaction rate constant
←−
k−1 1 ·10−10 mol/cm2/s

Heyrovsky forward reaction rate constant
−→
k2 1 ·10−12 mol/cm2/s

Heyrovsky backward reaction rate constant
←−
k−2 1 ·10−13 mol/cm2/s

Diffusion forward reaction rate constant k4 1 ·10−7 mol/cm2/s

Diffusion backward reaction rate constant k−4 2 ·10−7 mol/cm2/s

Ideal gas constant R 8.314J/K/mol

Temperature T 298K

Charge transfer coefficient 0.5

Overpotential η −0.5V

Total surface charge density σel 2.1 ·10−4 C/cm2

Butler-Volmer equations (9.9) and (9.10), at a certain metallic electrode, the more
negative the overpotential is, the higher the reaction rate of HER gets (Hamann,
2007). The numerical results shown in Fig. 9.2 match the results given in Lasia and
Grégoire (1995) and therefore confirm the validity of the present model.

Besides the reaction kinetics, the saturation concentration of the metal with hy-
drogen also limits the rate to reach the threshold of the hydrogen coverage, as well
as of the surface concentration. Lasia and Grégoire (1995) assumed that the maxi-
mal hydrogen concentration in metal equals one atom of hydrogen per metal atom.
Hence, the maximal hydrogen concentration is equal to the quotient between the
metal density and its molar mass cH,max = ρ/M. This material dependent param-
eter cH,max limits the ability of hydrogen adsorption and absorption. Some typical
applied metals together with their absorption properties are listed in Table 9.1. Fig-
ure 9.3, which shows the time dependence of the surface coverage by adsorbed
hydrogen Θ and of the surface concentration X0, indicates that the materials which
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have the higher maximal absorption concentration, adsorb the hydrogen also faster.
Nickel has the better ability of hydrogen absorption and its metal hydrides are thus
applied for hydrogen storage technologies (Zhao and Ma, 2009).

9.3.2 Parameters of Damage Model

In this section, we present the material parameters used for the two-scale damage
model, as well as the parameters used to describe the reduction of the fatigue limit.

9.3.2.1 Material Parameters and Size of RVE

After considering the electrochemical conditions, the material parameters have
to be settled subsequently. The material parameters at the micro- and mesoscale
will be determined through the results by former studies and are listed in Ta-
ble 9.3 (Lemaitre, 1996; Lemaitre et al., 1999). Some key parameters will be mod-
ified further to investigate the interactions between the mechanical model and the
electrochemical model. The Lemaitre’s two-scale damage model focuses on the
micro-defect and its development within the representative volume element at the
mesoscale. According to the statistical homogenization in the discontinuous struc-
ture, the RVE is supposed to represent the mechanical properties of the homoge-
nized material. Hence, the failure of the RVE due to the propagation of microscopic
voids and inclusions leads to the crack initiation at the macroscopic structure, even
possibly leading to a complete fracture. Since the hydrogen embrittlement initiates
the process at the metal surface while the metal adsorbs and absorbs the hydrogen,

Fig. 9.3: Time dependence of Θ and X0 for different metals with η=−0.5V; the applied elec-
trochemical parameters are given in Tables 9.1 and 9.2.
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Table 9.3: Material parameters for the damage model

Parameter Value

Microscopic kinematic hardening parameter C 2000MPa

Young’s modulus E 2.1 ·105 MPa

Threshold value of the accumulated plastic strain pD 0

Damage strength S 0.3MPa

Damage exponent s 2

Poisson’s ratio ν 0.3

Initial fatigue limit σF0 200MPa

Uniaxial tensile strength σU 2σF

Fig. 9.4: Uniform concentration within an RVE in dependence of the RVE length L being the
diffusion length; the applied electrochemical parameters are given in Table 9.2.

the crack initiation due to failure of the RVE at the metal surface occurs naturally
before the complete fracture. The size of the RVE indicates the characteristic length
for the hydrogen diffusion. In this work, we select the cubic-geometric RVE with a
side length of 0.01 cm with respect to the literature (Lemaitre, 1996) for the model
problems. It is further assumed that at least one RVE is in contact with the metal
surface with at least one geometric point. By concerning the sample geometry, the
maximal diffusion length can be considered as the space diagonal, which is about
0.017 cm. Figure 9.4 illustrates the concentration-time profiles for different diffu-
sion lengths L.
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Fig. 9.5: Fatigue limit σF versus the dimensionless hydrogen concentration X0.

9.3.2.2 Model Parameters for Reduction of Fatigue Limit

The deterioration of the investigated material is described by the exponential func-
tion, Eq. (9.35), in this work. As mentioned before, the corrosion fatigue can reduce
the material thickness and the true fatigue limit can hardly be observed. Hence, it
is reasonable to believe that hydrogen embrittlement can produce a similar effect as
some experiments have proven (Johnson et al., 1958; Murakami et al., 2013; Ogata,
2010, 2012). In Eq. (9.35), the decrease of the value of the fatigue limit is governed
by two material-dependent model parameters μ and b, which can be – in principle
– determined by experiments. The parameter μ then serves as a factor to determine
the hydrogen concentration according to the fatigue limit profile. The parameter b
implies the ratio between the actual fatigue limit σF and its initial value σF0, since
the lower limit of the exponential part approaches zero with increasing uniform con-
centration X̄. Please note that X̄ is restricted to be between 0 and 1. In Fig. 9.5, the
fatigue limit is presented – for different model parameters – as a function of the
dimensionless hydrogen concentration. It can be seen that for increasing hydrogen
concentration, the fatigue limit is reduced. For b = 0.3, the fatigue limit converges
to σF = 60MPa while for b = 0.1 it converges to σF = 20MPa. An increase of μ
results in a faster decrease of the fatigue limit versus the dimensionless hydrogen
concentration.

Some perspectives confirm the assumption of a lower limit of the fatigue limit
since the molecular hydrogen is trapped by the microscopic inclusions within the
material to induce the hydrogen-assisted damage (Lynch, 2012; Murakami et al.,
2013). Only a limited amount of inclusions are located within the material. It is thus
assumed that the fatigue limit will not further be decreased when all inclusions are
inhabited. The maximal concentration of absorption is not the prerequisite to obtain
the lower limit since the hydrogen capacity of inclusions is undoubtedly lower than
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of the entire matrix. A further developed model may include the information of the
content within the matrix material, e.g. for alloys.

9.3.3 Influences of Frequency on the Fatigue Life

For illustrating the approximated fatigue life by the numerical damage models, we
take advantage of the S-N diagram (stress versus number of cycles) to interpret
our results. The applied single mechanical damage model implements the fatigue
without hydrogen reaction to have a reference for a further comparison. Since the
fatigue life is usually presented by the test cycles, the frequency of the workload is
associated by describing the material endurance at the time scale t=N/f, where N
is the number of cycles, and f is the frequency.

Based on the implemented model and its parameters, the results at the cycle
scale in Fig. 9.6 indicate that the frequency yields a significant influence on the
fatigue life, except for the very low cycle fatigue, i.e., less than 103 cycles. It is
comprehensible that the metal suffering high-frequency workload can achieve more
loading cycles than for low-frequency since there is only little time for hydrogen
embrittlement. On the other hand, the high cycle fatigue, i.e., more than 105 cycles,
shows a weak dependence on the frequency. The starting point of the quasi-overlap
of the curves in the high cycle range results from the exponential function (9.35)
describing the reduction of the fatigue limit at the mesoscale. In Figs. 9.4 and 9.5,
with the given model parameters (μ = 30,b = 0.1), the fatigue limit does not vary
considerably after X̄ = 0.2 where ca. 104 seconds elapse. Hence, we can observe
the curve for a frequency of 1 Hz overlapping with the curve for 10 Hz at N= 105.

Fig. 9.6: Influence of frequency upon reduced fatigue life by hydrogen embrittlement at the cycle
scale (η=−0.5V, μ= 30, b= 0.1, L= 0.01cm. The other parameters can be found in Tables
9.2 and 9.3).
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Meanwhile, the curve for 100 Hz intersects at N= 106. However, it can be observed
in Fig. 9.7 that the curve for the lower frequency indicates a longer fatigue life at the
time-scale, especially for the high cycle fatigue. This result stems from the fatigue
life results depicted in Fig. 9.6. Moreover, the runs of the curves indicate that the
material failure due to the fatigue corrosion is initiated by the mechanical loading.
The sudden cracking of a corroded specimen often occurs (i) due to the long-time
contact with the corrosive environment and (ii) due to the sufficiently large stress
amplitude. It is the reason that the curves for frequencies of 0.1 Hz and 0.01 Hz end
at a lower stress amplitude than the other curves. In Figs. 9.6 and 9.7, the influence
of corrosion on the finite fatigue life can be seen. For high frequencies (f� 103 Hz),
the corrosion has a weak effect, its endurance limit is not significantly aggrieved;
for the medium frequencies (10Hz < f< 102 Hz), the corrosion and the fatigue limit
have a considerable interaction; for low frequencies (f � 1Hz), the corrosion has a
crucial effect owing to the long loading time. After the sufficient time of species
diffusion, the residual fatigue limit dominates the further fatigue.

9.3.4 Influences of Stress Ratio

In cases concerning the fatigue due to the cyclical workload, the stress ratio
R = σmin/σmax also affects fatigue endurance. With the damage model applied
in this work, only the stress amplitudes exceeding the material fatigue limit con-
tribute to the damage. Since only the maximal and minimal stresses in the cycle
sequence will be considered, if the magnitude of stress peak is below the fatigue
limit, the yield condition is not satisfied. According to Eqs. (9.23) and (9.30), neither
the accumulated plastic strain, nor the damage accumulation due to the plasticity at

Fig. 9.7: Influence of frequency upon reduced fatigue life by hydrogen embrittlement at the time
scale; the parameters are the same as in Fig. 9.6.
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the microscale, will be considered. The solution of the elaborated two-scale model
without hydrogen damage approximates the fatigue life with a fixed critical damage
and fatigue limit. The results in dependence on the stress ratio are thus reliable in
the coupled-field problem.

The discussions of the quantitative relationship between fatigue cycles N de-
pending on the stress ratio R get benefit from the analytical formulation of the dam-
age evolution in the two-scale damage model (Lemaitre et al., 1999; Murakami,
2011). Comparing the completely reverse stress (R=−1) and the stress (R= 0), the
fatigue life of the latter one is the double of the former one with the equal maximal
stress σmax, since the minimal stress σmin of repeated stress cycle does not count
for the damage accumulation. As a result of the hydrogen embrittlement, the reduc-
tion of the fatigue limit, or to be precise, the reduction of the microscopic yield stress
of the inclusions leads to the plastic deformation with the lower stress amplitude,
which would not create damage. Figures 9.8 and 9.9 present the maximal stress as
function of the number of fatigue cycles N with different stress ratios R and with
loading frequencies f = 1Hz and f = 1000Hz, respectively. In these diagrams, the
cases without chemical reactions are given as reference. It can be observed in both
diagrams that the curves of the fluctuating stress (0 < |R| < 1) are located between
the ones of stress (R= 0) and the ones of completely reverse stress (R=−1).

Fig. 9.8: S-N curves in dependence of the stress ratio R with a frequency of f= 1Hz.

The ratio between fatigue lives of various stress cycles with equal maximal stress
is only dependent on their stress ratio in the cases, when only the mechanical stress
generates damage. The chemical damage leads to a correlation between fatigue life
and loading frequency, and it further results in a correlation between fatigue life and
stress ratio. The significant chemical effect on low-frequency fatigue due to the long
time diffusion causes the disparity in the ratio of the fatigue cycles. In the case of
low cycle fatigue, the ratio of fatigue cycles under the same maximal stress between
repeated stress and completely reverse stress N(R = −1)/N(R = 0) is much less
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Fig. 9.9: S-N curves in dependence of the stress ratio R with a frequency of f = 1000Hz.

than the value of the issue without hydrogen embrittlement. In Fig. 9.8, the curves
for the repeated stress approach the respective curves for the completely reverse
stress in the region of low cycle fatigue, i.e., 103 < N < 105. Please note that in
this region, the reference curves for R = 0 and R = −1 show a different behaviour.
This dissimilarity of the reference curves indicates the effect of hydrogen embrit-
tlement by reducing the fatigue life. This issue results from the interaction between
the damage increment dD and the critical damage Dc at the time scale. With the
identical loading frequency, the workload sequence with the lower minimal stress
profits from the slower damage accumulation throughout a fatigue cycle to obtain a
longer fatigue life. In the meantime, the critical damage variable Dc decreases with
the further elapsing time. It leads to the differentiation of N(R = −1)/N(R = 0)
from the principal value. The curves of fatigue with a frequency of f = 1000Hz in
Fig. 9.9 show a similar behaviour as the reference points since the hydrogen em-
brittlement has a weak effect. Moreover, in both diagrams, Figs. 9.8 and 9.9, the
curves of the fluctuating stress with the stress ratio R= 0.8 approach – for N > 103

– the curves for R = 0. Concluding, the obtained results are dependent on (i) the
stress ratio, (ii) the initial fatigue limit, and also on (iii) the maximal stress. For the
initial fatigue limit σF0 = 200MPa with the stress ratio R = 0.8, it can be seen that
– if the maximal stress σmax is equal or lower than 250MPa – the minimum stress
does not produce damage. Hence, the reference points for R= 0.8 and for R= 0 are
coincident for σmax = 250MPa. The similar results can be obtained for the cases
containing hydrogen embrittlement. However, these curves have different progres-
sion at a certain point of fatigue life for N > 104. It can be observed in Figs. 9.8
and 9.9 that (i) for f = 1Hz, the different run of the curves starts at N ≈ 105, i.e.,
at t≈ 105 s and (ii) for f = 1000Hz, it starts at N≈ 106, i.e., at t≈ 103 s. This dif-
ference in time results from the different maximal stresses, i.e., the different stress
amplitudes. In further runs of the curves, the values of the ratios between fatigue
lives N(R = 0)/N(R = −1) and N(R = 0.8)/N(R = −1) converge to the values
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of the cases without the chemical damage. This is the case as the fatigue limit also
converges to its lower limit. In our model, the fatigue strength of around 200 MPa
is approached after around 104 cycles, which results from using parameters from
the literature, see Table 9.3. The transition to the fatigue strength can be shifted by
adjusting the damage strength S.

9.4 Conclusions

In this research, we postulated a coupled approach between the hydrogen evolu-
tion kinetics and the microscopic damage development, where the hydrogen dif-
fusion and the microscopic plasticity are considered, respectively. The failure cri-
terion results from the concept of continuum damage mechanics by defining the
critical damage variable Dc as the threshold. The size of the representative volume
element (RVE) serves as the critical crack length since the elements at the metal
surface undergo the crucial chemical attack. The moment of failure is governed by
both, the damage accumulation and the decrease of the critical damage variable. The
damage evolution and the critical damage are affected by the hydrogen absorption
kinetic since the reduced fatigue limit depends on the uniform hydrogen concen-
tration within the RVE. Furthermore, the quantity of the dimensionless hydrogen
concentration in the RVE is restrained by the material-dependent absorption capa-
bility and the diffusion length where they determine the maximal concentration and
the concentration profile, respectively. The frequency of the workload has an influ-
ence on the fatigue comprising the simultaneous chemical attack. This leads to the
difference of the S-N curves in the region of high cycle fatigue due to the hydrogen
diffusion. The higher the loading frequency is, the weaker effect has the hydrogen
embrittlement. Additionally to the stress frequency, also the stress ratio has a signif-
icant effect on the fatigue life. The longer fatigue life time promotes the hydrogen
embrittlement to affect both, the damage accumulation and the damage threshold by
reducing the fatigue limit.

Further work will concentrate on determining the parameters of the model by
appropriate experiments, the extension to general geometries and loading situations
by using the finite element method and including other corrosion mechanisms as
for example contact corrosion. The latter is especially important for multi-material
components.
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9.5 Appendix

Let us discuss an analytical solution of hydrogen adsorption. According to Eqs. (9.5)
to (9.19), the detailed expression of the Crank-Nicolson Method

Θi+τ ·
{(−→

k1 +
←−−
k−2 +k−4X0,i

)
−
[−→
k1 +

←−−
k−1 +

−→
k2

+
←−−
k−2 +k4(1−X0,i)+k−4X0,i+1

]
Θi

}

=Θi+1 −τ ·
{(−→

k1 +
←−−
k−2 +k−4X0,i

)
−
[−→
k1 +

←−−
k−1 +

−→
k2

+
←−−
k−2 +k4(1−X0,i+1)+k−4X0,i+1

]
Θi+1

}
(9.37)

shows a progressing relationship of the hydrogen adsorption. By setting the initial
condition (Θ1 = 0,X0,1 = 0) into Eq. (9.37), the value at the next time step is then
given. The explicit expression of the hydrogen adsorption rate at the new step Θi+1
is then determined by Eqs. (9.18) and (9.37)

F= K1 ·Θi+1 +
k4(k−4 −k4) ·τ ·Θi+1 −k4k−4 ·τ ·Θi+1

2

DH ·ρel
F
√
πDHt

+k4Θi+1 +k−4(1−Θi+1)

(9.38)

where

F=Θi+τ ·
{(−→

k1 +
←−−
k−2 +k−4X0,i

)
−
[−→
k1 +

←−−
k−1 +

−→
k2 +

←−−
k−2

+k4(1−X0,i)+k−4X0,i+1

]
Θi

}
+τ · (−→k1 +

←−−
k−2). (9.39)

Equation (9.38) is then expressed by the parabolic equation

A ·Θi+1
2 +B ·Θi+1 +C= 0 (9.40)

where the explicit solution can be obtained by

Θi+1 =
−B±√

B2 −4AC
2A

(9.41)

where
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A= (K1 −τ ·k4)(k4 −k−4)

B=

[
K1

(
DHρel

F
√
πDHt

+k−4

)
−τ ·k4k−4 −F(k4 −k−4)

]

C= F
(

DHρel

F
√
πDHt

+k−4

)
.

(9.42)

Finally, the dimensionless concentration X0,i+1 at the next time step can then be
determined.
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Chapter 10
A Thermodynamics-Based Wear Model and its
Application with the Finite Element Analysis

Robert Tandler and Ulrich Gabbert

Abstract In the paper a generalized wear equation for sliding solid bodies at contact
is derived from the fundamental law of thermodynamics. The wear model consists
of a physical correlation between the wear, the binding potential of the materials in
the contact area and the work done by friction in the tribological system. The wear
model is based on the knowledge of material parameters of the bodies in sliding
contact which can only be derived from measurements. The application of the wear
model for analyzing industrial problems requires a powerful numerical solution ap-
proach. The finite element analysis (FEA) is a customary and widespread applied
simulation approach in industry. Consequently, it is obvious to include the devel-
oped wear model into the frame of a commercial FEA software tool, where the FEA
software Abaqus is used in the paper. Finally, as a complex industrial application
problem the wear of automotive timing chains is presented. The simulated numeri-
cal wear results are compared with measurements at engines after mileage of about
50000 km.

10.1 Introduction

Friction and wear are important issues in technical systems influencing the quality
of a product, such as the operation accuracy, the safety, the energy consumption
as well as the life span of the product and its environmental compatibility. Wear is
designated as a progressive loss of material at a solid body’s surface caused from
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contact and relative movement with an opposing body. Such undesired change of the
surface is very typical at bearings, clutches, gears and transmissions, chain drives,
valve drives etc. The wear modifies the geometry of a component, influences its
function and can lead to failures which affect the safety of a technical system. The
reduction of wear is an important option to increase the life span of technical sys-
tems and to reduce costs. The wear is caused by several physical phenomena, such
as adhesive and abrasive processes as well as a complete surface breakdown. An
adhesive wear is mainly caused by an inadequate lubrication such that the surfaces
in contact adhere. In a sliding motion the surface layers are sheared off such that
material is being removed. An abrasive wear occurs if particles or roughness peaks
of the material of one surface penetrate the boundary layer of the opposite surface
which results in a micro scratching. For more details we refer to Ludema (1996);
Sommer et al. (2018); Stolarski (1999). In the paper the focus is set on a numerical
simulation of the wear process, which is based on an analytical wear model. Many
wear models with respect to a generated wear volume are based on the equations of
Holm-Archard (Archard, 1953; Holm, 1967) and Fleischer (Fleischer, 1973, 1990).
There is a large variety of further wear equations available in the literature, which
depend on numerous nonphysical parameters. For example, Beckmann et al. (1986)
developed a conceptional approach to determine a wear equation. For applications
with mainly stationary periodic sliding, Páczelt and Mróz (2010, 2015) have devel-
oped a wear model, where Coulombs friction law holds. Antusch (2008) investigated
a correlation between wear and friction in his experiments. These measurements are
done for fresh oil as well as for soot contaminated diesel oil. Popov (2017) stated an
important influence of the surface roughness on the wear process in a system. For
an overview about several other wear models we refer to the PhD thesis of Tandler
(2020). For the numerical simulation of wear processes in engineering applications
the finite element (FE) method is ideally suited. Põdra and Andersson (1999) as well
as Mukras et al. (2009) describe FE-simulations with an underlying wear model. In
these simulations the nodes of the finite element mesh are moved if wear occurs.
Schmidt et al. (2018) describe a FE approach to simulate the wear of tilted shaft
bearings.

In this paper the focus is set on the development of a stringent physically based
wear model and its numerical realization with help of a FEA software tool. But, such
a model can only be trustworthy applied if reliable input data from measurements
are available. In Sect. 10.4 the required measurements are described briefly without
going into the details. An overview of tribological measurements can be found in
the textbooks Ludema (1996); Sommer et al. (2018); Stolarski (1999).

The paper is organized as follows. In Sect. 10.2 a generalized wear equation is
derived from thermo-mechanical considerations. It is interesting that the result is in
a general agreement with the early work of Fleischer (1973). In order to calculate
the wear in industrial applications the wear equation has been embedded in a finite
element analysis (FEA) software tool, where Abaqus CAE is used. This general
approach is presented in Sect. 10.3. In Sect. 10.4 the developed approach is tested
at timing chains of automotive engines. The simulation results are compared with
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measured data of chains of automotive engines after different mileages up to 50000
km. A summary in Sect. 10.5 closes the paper.

10.2 Wear Equation Based on a Thermodynamics Approach

To determine a most general wear model an open system is assumed, where irre-
versible processes can occur. In this system a solid body is considered that slides
on another solid body. This relative sliding process induces friction and wear. In the
general case heat and work are transferred into the system. This leads to an increas-
ing inner energy and kinetic energy in the system. The first law of thermodynamics
in form of differentials is given as (Greiner et al., 1995)

dEkin +dU= δWirrev +δQirrev. (10.1)

Here Ekin is the kinetic energy, U is the inner energy; the heat energy Qirrev and the
work Wirrev are irreversibly transferred into the system. The inner energy U for h
components in a system is given by the Euler equation of thermodynamics as

U= TS−pV+

h∑

i=1

μiNi. (10.2)

Here T is the temperature, S is the entropy, p is the pressure, V is the volume,
μi describes the chemical potential and Ni is the particle count of the i-th com-
ponent, respectively. It can be proven that the work and the heat energy in (10.1)
are no total differentials and therefore written as δWirrev and δQirrev because these
physical quantities interfere with each other (Greiner et al., 1995). The difference
δWirrev − dEkin in Eq. (10.1) is equivalent to a dissipative work (of friction) δWF,
which cannot be converted into kinetic energy if work is applied into the system.
Consequently, it remains the influence of the work of friction δWF and the thermal
energy δQirrev on the inner energy dU as

dU= δWF +δQirrev. (10.3)

Furthermore with respect to Greiner et al. (1995) for all stages of a system, including
solid systems, the differential form of the Euler equation of thermodynamics holds
as

dU= TdS−pdV+

h∑

i=1

μidNi. (10.4)

The pressure p is a scalar equivalent to the overlain stresses at infinite volume of the
solid. An increase of the extensive state variables result in an increase of the inner
energy as follows

U(aS,aV ,a(Ni)i=1,...,h) = aU(S,V ,(Ni)i=1,...,h), (10.5)
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where a is a scaling factor. This is verified by considering an infinitesimal change
of a = 1+ ε(ε 
 1) and applying a Taylor series expansion, which is terminated
after the first derivatives as follows

U((1+ε)S,(1+ε)V ,(1+ε)(Ni)i=1,...,h)

= U+
∂U

∂S
εS+

∂U

∂V
εV+

∂U

∂N1
εN1 + . . .+

∂U

∂Nh

εNh.
(10.6)

From Eq. (10.2) it follows

∂U

∂S
= T ,

∂U

∂V
=−p,

∂U

∂Ni

= μi. (10.7)

Inserting Eq. (10.6) into Eq. (10.5) results in

U((1+ε)S,(1+ε)V ,(1+ε)(Ni)i=1,...,h) = U+ε(TS−pV+

h∑

i=1

μiNi)

= (1+ε)U= aU.
(10.8)

The total differential of Eq. (10.2) results in

dU= TdS−pdV+

h∑

i=1

μidNi+SdT −Vdp+
h∑

i=1

Nidμi. (10.9)

By coefficient comparison with Eq. (10.3) the well known Gibbs-Duhem relation
follows as

0 = SdT −Vdp+
h∑

i=1

Nidμi. (10.10)

The Gibbs-Duhem relation demonstrates that in a thermodynamical system the in-
tensive state variables cannot be varied independently.

Hereafter we consider a solid body system with h= 1. From the Eqs. (10.3) and
(10.4) it follows

dU= TdS−pdV+

h∑

i=1

μidNi = δWF +δQirrev. (10.11)

For a macroscopic consideration of the wear the particle number Ni is expressed
by a correlating volume V of a special material with the Avogadro constant NA =
6.02214076 ·10−23 mol−1, the molar mass M and a homogenous density ρ. This is
used to derive a volumetric relation for the energetically relevant binding potential
of the solid. If a constant material density is assumed we receive the relation

N1 =
ρNA

M
V . (10.12)
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The infinitesimal form of Equation (10.12) is written as

dN1 =
ρNA

M
dV . (10.13)

Inserting Eq. (10.13) into Eq. (10.11) results in

TdS−pdV+
μ1ρNA

M
dV = δWF +δQirrev. (10.14)

The second law of thermodynamics for an irreversible process reads as follows

δQirrev � TdS. (10.15)

The entropy S in a system can rise without temperature change, e.g. by a wear
process of a solid body. Consequently, from Eq. (10.14) it follows

TdS+
(
μ1ρNA

M
−p

)
dV−δWF � TdS. (10.16)

From Eq. (10.16) it follows
(
μ1ρNA

M
−p

)
dV � δWF. (10.17)

Introducing a constant k̄ ∈ R which is initially unknown, the Eq. (10.17) with an
introduced wear volume VW can be written as

(
μ1ρNA

M
−p

)
dVW = k̄δWF. (10.18)

A certain part of the dissipative work of friction δWF is equivalent to the binding
potential of a solid body, represented by the chemical potential μ1, reduced by an
outlet pressure. The work of friction induces a shear stress in the contact area which
leads to a local failure in the solids binding. This can be related to a produced wear
volume VW with the probability proportional to k̄. The magnitude of p is limited by
the binding potential

p <
μ1ρNA

M
,

which represents the stress limit of the material until a local breaking of the solid
body occurs. Based on a different approach (Fleischer, 1973, 1990) received a sim-
ilar result. In the following, Eq. (10.18) is used as a fundamental equation for mod-
eling the wear in a solid body.

The binding potential of a material is represented by its hardness H. If the pres-
sure p at outlet is sufficiently small in relation to the material binding potential from
Eq. (10.18) we receive
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δVW =
k̄

μ1ρNA
M

−p
δWF :=

k̄

H
δWF := k(H, . . .)δWF. (10.19)

The physical quantity k(H, . . .) has to be estimated experimentally. It is also impor-
tant to determine a valid law of the work of friction in a specific system. This means
an empirical adaptation of the wear model is necessary if a certain application is
investigated. For a system of automotive bush chain drive systems the experimental
investigations of Tandler et al. (2019) have shown that the work of friction can be
approximated sufficiently accurate by Coulomb’s law of friction FF = μFN, with the
friction force FF, the normal force FN and the coefficient of friction μ. With the work
of friction δWF = FFds from (10.19) the wear volume is received by integration as

VW =

s1∫

s0

k(H, . . .)μFNds, (10.20)

with the sliding path s from s0 to s1. Experimental investigations have shown (Tan-
dler et al., 2019; Tandler, 2020) that the physical parameters in Eq. (10.20) are
changing with time. Therefore, the integration over the sliding path is replaced by
integration over time. It has also to be taken into account, that the coefficient of
friction depends on the engine speed n, the kinematic viscosity η of the lubricating
oil and its time dependent soot content ψ, the temperature T , the surface rough-
nesses RA,RB and the hardnesses HA,HB of the two surfaces A and B in contact,
respectively. The wear volume of the contact partner j can be written as

VWj
=

t1∫

t0

k(Hj, . . .) ·μ(n,η(T),ψ(t),RA,RB,HA,HB) ·FN(n,t) · ds
dt

dt, (10.21)

The soot is interacting with the material due to a chemical binding which could
reduce the main binding potential of the material and may lead to a faster locally
fatigue of the material, see Antusch (2008). This means that an increasing soot con-
tent in the oil causes more chemical bindings between the soot and the contacting
surfaces of the material. This effect reduces the local binding potentials of the ma-
terial and leads to a lower resistance against certain load cases, which increases the
wear of the system.

10.3 Application with the Finite Element Analysis

10.3.1 Time Discretization

In order to solve Eq. (10.21) within the FE analysis the equation has to be discretized
in time by introducing time increments Δt as t → iΔt and path increments s →
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Δs(iΔt). Then from Eq. (10.21) it follows

VVj
=

I−1∑

i=0

k(Hj, . . .) ·μ(n ·η(T), . . . ,ψ(iΔt)) ·FN(n, iΔt) ·Δs(iΔt), (10.22)

where (I−1) is the total number of incremental time steps, and the i-th sliding path
per time increment is defined as Δs(iΔt) = s(((i+ 1)Δt)− s(iΔt)), with s(0) =
0. In a FE analysis the contact surface j is normally subdivided in finite elements
consisting of nodes (l). To each node (l) a contact area A(l) can be assigned. Then
the wear depth d(l) can be calculated as

d(l) =
VVj

A(l)
. (10.23)

Based on Eq. (10.23) the coordinate of the FE node (l) can be updated by shifting
the node (l) in normal direction by d(l). In most cases of a wear analysis it can be
assumed that the change of the FE coordinate d(l) is much smaller than the size
of the assigned finite element. In this case no degeneration of the geometry of the
finite element occurs. If this is not the case a remeshing of finite elements is required,
which also requires a mapping of the meanwhile calculated data to the new mesh.

For solving the time discretized equation (10.22) the knowledge of all input data
of the body under investigation are required at each time increment. Besides the
material properties as function of time the simulation also requires the knowledge
of the contact forces at each FE node in the contact area. The correct modeling of the
contact conditions is a fundamental issue of the wear simulation. In the application
example, presented in Sect. 10.4, it is shown how the contact forces are determined
with help of a multibody simulation (MBS).

10.3.2 Contact Iteration

Independent from the specific application the modeling of the nonlinear contact
conditions during the FE analysis is very decisive for receiving sufficient accurate
wear results. The contact problem is nonlinear even in the frame of a linear elastic
analysis and, consequently, requires another iterative solution procedure within each
time increment. The contact problem is nonlinear because the regions of contact are
not known in advance. If locally two surfaces are in contact, then a contact force is
acting and the displacement difference of the surfaces is zero. If the displacement
differences are larger than zero, then the two surfaces are separated. In this case
the contact force is zero. But these situations can change with time, which makes
the simulation complicated and time consuming. Only if contact forces are acting
at the surfaces wear occurs. For the contact simulation in FE software tools, such
as Ansys, Abaqus, Nastran etc., several well known and accepted iterative solution
methods are available. The three standard methods which are available in each com-
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mercial software tool are the method of Lagrange multipliers, the penalty method
and the method of augmented Lagrange multipliers which can be applied to solve
the contact problem (for details see Johnson, 1985; Wriggers, 2002).

10.4 The Wear Simulation of Timing Chains

As an application example in the following the wear analysis of automotive timing
chains is presented. Modern combustion engines aim at high performances at low
emission levels, which is especially present in the premium vehicle class. This re-
sults in high moments on the crankshaft and further in high forces in the chain links
of the chain drive. The timing chain moves the camshafts as well as the balance
shafts and pumps in a combustion engine. The chain wear results in an elongation
of the chain, which can be as large as it cannot be compensated by the tensioning
system. This can create loud noises, but in special situations the chain may jump off
and causes fatale engine damages. Therefore it is important to calculate the wear of
chain drive systems to receive information about the safety and the lifetime of the
engine. A typical chain drive is shown in Fig. 10.1. In Fig. 10.2 a detail of a chain
link is illustrated. In the following we present an investigation on the wear of timing
chains with coated pins and extruded hardened bushes. A detailed specification of
such chains can be found in Bauer (2018).

10.4.1 Experimental Investigations

It is obvious that there are various influences on the intensity of internal chain fric-
tion during engine operation which is causing wear, such as the strand forces, the
engine speed, the quality of the engine oil and its temperature as well as the vis-
cosity of the oil and several other parameters as the surface roughness and hardness

Fig. 10.1 A typical timing
assembly (Ludema, 1996).
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Fig. 10.2: Cross section of a chain link.

of the chain links. The strand force is defined as the specific chain tensile force
in the area between two chain wheels. It is complicated to measure, but it can be
received with great accuracy by multi-body simulations. The engine speed during
operation is well defined, but the determination of the influences of the engine oil
on the internal chain friction is not trivial, because the oil’s properties change during
the engine operation. The theory of Stribeck-curves is beneficial for the analysis of
the measurements. It can be observed that the viscosity of the lubricating medium,
the sliding speed in the contact area and the contact force in a system are important
parameters. In case of the boundary lubrication the lubricating medium is displaced
out of the contact area of a system. At full film lubrication the height of the lubri-
cating medium is big enough, that there is no direct contact between the two solid
bodies in the contact area. The state of mixed lubrication contains both conditions
of full film lubrication and boundary lubrication.

In order to receive a reliable data basis for modelling and optimizing the wear of
timing chains extensive experimental investigations are required. For this purpose a
special experimental set up has been developed (see Tandler et al., 2019; Tandler,
2020, for details). It consists of the bush chain, the chain wheels, the bearings, the
radial seal and the oil nozzle. An electric motor induces the torque to the chain as-
sembly at a given engine speed, where the engine speed is verified by a measurement
with a fork light barrier and slotted disc. On the driving shaft there is a torque gauge
bar to detect the friction torque at each working point. Two different set-ups are used
in the chain case. The first is necessary to measure the friction torque at some given
working points. This torque contains all frictional effects, thus the internal friction
of the bush chain, the bearings, the radial seal and the friction from the contact of
the chain wheel to the bush chain. If another set-up can be found which contains all
frictional effects except the internal chain friction, the internal chain friction can be
determined from the difference of both measured values. Such a measurement can
be done except for the friction of the contact of the chain wheel to the bush chain,
which can be neglected (Tandler, 2020).

The experimental investigation provides the following essential findings and in-
sights. The application of used oil in a bush chain drive system leads to an increased
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internal chain friction and a faster onset of mixed or boundary lubrication for a cor-
responding engine speed. This can be seen in a comparison between the measured
data of the internal chain friction versus the engine speed for the used oil and the
fresh oil. This effect is aided at higher strand force and higher oil temperature. It
is assumed that particles of the used engine oil get in the contact area of bush and
pin, where the particles interact with the asperities of a certain contact surface. This
induces additional friction in the contact area especially at higher oil temperatures.
Furthermore, it is detrimental to operate such engine at elevated temperatures using
used oil as opposed to fresh oil. Through a variation of the strand force with used
oil at fixed temperature and engine speed the validity of Coulomb’s friction law
has been determined. These experimental investigations have been accompanied by
a number of further special measurements such as the investigation of the surface
roughness of bush and pin with help of the scanning electron microscopy (REM),
the application of the laser scanning microscopy for component measurements, the
determination of the surface hardness of pin and bush with help of nanoindentation
methods. With the application of the radionuclide technology informations about
the separate wear of pin and bush at different time steps are received. For details
of the experimental investigation the interested reader is referred to Tandler (2020).
These experimentally received data have been used as input data for the numerical
investigations.

10.4.2 Description of the Finite Element Model

Due to the symmetry only one half of a bush chain link is required for the FE simula-
tion. The developed finite element model is shown in Fig. 10.3 (Tandler et al., 2020).
The detailed mesh of the contact area can be observed in more detail in Fig. 10.4.
The angle ϕ of the chain link to its axis is given by the geometrical design of the
chain drive system. During one chain rotation the chain link passes various contours
with different curvatures; where the position dependent angle changes permanently.

If a model as shown in Fig. 10.3 is used for wear simulations for each position
of the chain link during rotation the position of the chain link is required as well as
the acting force. The force is changing during the chain rotation, but can be received
from an elastic multi-body simulation (MBS) with a model as shown in Fig. 10.5.
The parameters for the stiffness, the mass and the damping factor of the certain
components can be received from the database of the respective vehicle manufac-
turer (Tandler, 2020). Only with this information the finite element model of the
chain can be reduced to only one chain link as shown in Fig. 10.3.

For a specific position of the chain link the contact normal force at each node
can be calculated during the finite element simulation with help of the given chain
force. The corresponding coefficient of friction from the experimental investigations
is also implemented in the model. The factor k is received from radionuclide wear
measurements in a constant wear state with fresh oil. In the presented application
a value of k = 1 · 10−10 mm2/N was determined. For the simulation the ABAQUS
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Fig. 10.3: Symmetric finite element model of a bush chain link.

Fig. 10.4 Mesh of the contact
area.

CAE software has been used. A linear element type of C3D8R and a fine mesh in
the contact region (see Fig. 10.4) are applied to obtain sufficiently accurate values
concerning the contact normal force and the contact sliding. This is required be-
cause the circular contour of the contact area has to be described numerically with
a polygon, meaning that smaller edges of the elements lead to a better approxima-
tion of a circle. Another reason of the applied fine mesh with element edge size of
≈ 60 μm in the contact area is that also topographically measured initial surface
structures can be embedded into the model. But, a continuous overall mesh with
such an element size would cause high computational times in the dynamic implicit
simulation and consequently a TIE-contact has been used at the bush and the pin to
couple a coarse meshed part outside the contact area with a fine meshed part in the
contact region.

The proper mesh density and the contact approach have been developed with
help of several test simulations in order to find a compromise between computa-
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Fig. 10.5 MBS model of a
chain drive system.

tional time and sufficient solution accuracy. In Fig. 10.6 two meshing variants are
compared. It can be seen that an overall very fine FE mesh in the contact area does
not provide much better results as the TIE coupling of the mesh in the contact area
with a coarser FE mesh.

Fig. 10.6: Comparison of the pressure at the surface of the bush calculated with a uniform fine
mesh (left) and a coarse mesh coupled with TIE contact (right).
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For the realization of the sliding contact between pin and bush the penalty method
has been used. Other methods have been also tested. The method of Lagrange mul-
tipliers results in a large increase of the system of equations, since at each potential
node of the very fine meshed contact area one additional degree of freedom – the
unknown Lagrange multiplier – is introduced. This results in a huge increase of the
computing time. The method of augmented Lagrange multipliers also increases the
computing time because additional iterations are required to receive a converged so-
lution. The penalty method is robust and has given sufficient accurate solutions with-
out any additional computational time. But the application of the penalty method
requires a proper selection of the penalty factor; if it is too small the constrained
conditions are not sufficiently enough fulfilled. An increasing penalty factor results
in an increasing loss of leading digits in the numerical calculation of the displace-
ments, which is particularly critical if single precision real words are used during the
calculation. A too large penalty number can finally result in an unsolvable singular
system of equations. Several tests have demonstrated that in the given application
a penalty number of only 2 ·102 Kii,max is a good compromise between stability of
the solution process and the accuracy of the fulfilment of the constrained equations.
Here Kii are the elements of the main diagonal of the stiffness matrix.

10.4.3 Determining an Extrapolation Factor for the Wear
Simulation

Since a common chain performs many millions of rotations during its lifetime it
is important to determine an extrapolation factor for the simulation to get realistic
computational times. To investigate this, convergence studies have been performed.
The aim was to find a critical wear depth at the nodes of the contact area for each
simulation step such that numerical stability holds and still physically reasonable
results are received. Extrapolation means that at a given simulation step the wear
depth after one complete chain rotation is calculated at each node. The wear depth
is multiplied with an extrapolation factor (the number of chain rotations) and with
this extrapolated wear depth the new geometry is determined. With this new gen-
erated mesh the next step – the simulation of a full chain rotation – is performed.
This is done as often as the necessary number of total chain rotations is reached. As
an example in Fig. 10.7 the wear depth at the surface of the pin after 1.8 million
chain rotations is presented which were calculated with different extrapolation fac-
tors. For the presented example it turns out that a sufficient accurate result can be
calculated with acceptable computational times with extrapolation factors between
100000 and 200000. With an extrapolation factor of 200000 in the given example
the error is limited to be smaller than 5% after 4000000 chain rotations in com-
parison to the most refined solution (a) in Fig 10.7. If a completely different chain
design with different tribological features has to be simulated, it would be necessary
to recalculate the extrapolation factor.
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Fig. 10.7: Wear after 1.8 million chain rotations calculated with different extrapolation factors.

10.4.4 Comparison of the Numerical Results with Measurements

The presented simulation approach has been used to calculate the wear on timing
chains of two test vehicles with a mileage of about 50000 km and a 75% partial-
load range. The simulation results are compared with measurements of the real part
chains. The wear factor k used in the simulation was estimated in advance for both
applied timing chains with help of RNT measurements. The numerical results of the
chain type with extruded bushes were generated with wear simulations of 90 chain
rotations and extrapolations with a factor of 2000000. The total simulation time
was 270 h on a computer system with a computational power of 8×3.6 GHz. The
simulation confirms a contact opening on the unloaded surface of pin and bush. It
can be observed that the maximum wear depth occurs at peak load in the simulation.
The topographical profile of the pins worn area is measured with laser microscopy.
Figure 10.8 shows a comparison of the simulation results with measurements.

In the contact area of bush and pin, a smooth mirror-like area can be observed,
which is characterised by an almost constant surface pressure during engine op-
eration. The simulated and the measured wear depths show a good agreement. In
Fig. 10.8 a major difference between the simulated and the measured curve at the
edge of the pins contact area is observed. The reason is that the ends of the bush in
reality show an edge rounding which is not included in the FE model.

10.5 Summary

In the paper a theoretical wear model based on the fundamental principles of
thermo-mechanics is developed. In this model the wear is calculated by taking into
account the binding potential of the materials in the contact area and the work of
friction. It depends on several physical data, such as the hardness, the roughness
of the bodies, the contact forces, the friction coefficient, the velocity of the sliding
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Fig. 10.8: Comparison of the measured and simulated wear for two different bush chains after a
mileage of 50000 km.
Above: Comparison of the wear mirror at the pin of an extruded bush chain.
Below: Comparison of the wear depth along the pin surface for a wrapped bush chain.

bodies in contact, the quality of the lubricant, especially the soot content has shown
to be an important factor, the temperature etc. Based on experimental investigations
the required time depended input data of the model have to be estimated. For the
application of the proposed wear model to real engineering problems it should be
included into a FEA simulation process. In the paper the wear approach is imple-
mented in the commercial FEA software tool ABAQUS CAE. For demonstrating
the engineering application the wear of a timing chain of automotive engines is pre-
sented. It is shown that half of one chain link only is enough to receive the complete
behaviour of the chain. But in this case it is required to know the time varying posi-
tions of the chain link in space and time as well as the chain forces at all positions
during the chain rotation in the steady state. These data can be received from multi-
body simulations of the chain drive system including all relevant auxiliary units.
The quality of the developed FE model has been ensured by numerous convergence
studies with respect to the mesh density and the contact formulation. The calcu-
lated wear depth of a real engine chain drive has been examined by a comparison
of the simulation results with measurements at test vehicles after different mileages.
It is demonstrated that even after vehicle mileage of about 50000 km the simula-
tion results are in a good agreement with measurements. In ongoing investigations
the finite element model and the contact formulation are further improved to obtain
lower computational costs with an increasing accuracy. Additionally the simulations
will be applied to different fields of applications, such as bearings, clutches, gears,
transmissions, valve drives etc.
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Chapter 11
Discrete Description of Crack Kinematics in
Regularized Free Discontinuities of Crack Faces

Bo Yin, Johannes Storm, and Michael Kaliske

Abstract The fracture mechanical free discontinuity problem can be associated with
a generalized, variational approach of GRIFFITH’s fracture theory. By introducing a
regularization for the sharp displacement discontinuity at cracks and crack surfaces,
stable computational fracture models are developed, e.g., the phase-field fracture
formulation and the eigenfracture approach. The presented work summarizes recent
findings regarding unrealistic deformation kinematics at cracks predicted by con-
ventional formulations of both models and introduces the variational framework of
Representative Crack Element to overcome these discrepancies. Illustrative exam-
ples for crack propagation and post-fracture behavior at small and finite deforma-
tions, brittle and cohesive failure as well as for rate-dependent materials frictional
crack contact demonstrate the flexibility and the generality of of the introduced Rep-
resentative Crack Element.

Key words: Free discontinuity, Eigenfracture, Phase-field fracture, Representative
crack element

11.1 Introduction

The research on material failure, including strain softening, brittle rupture, cohesive
delamination, and fatigue aging, is becoming an area of increasing interest in engi-
neering application. A number of failure mechanisms is identified and a variety of
criteria are postulated to effectively predict material strength within a safe and con-
trollable application. To provide a reliable prediction, crack initiation, propagation,
kinking, and branching studies are of importance and necessity. Meanwhile, crack
deformation kinematics during fracture evolution plays an equivalent role as afore-
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mentioned features during fracture evolution. Taking a closing crack deformation
as one representative example, material integrity is preserved and loading normal to
the crack surfaces can be fully transferred from one side to the other one through the
crack surfaces. Furthermore, a relative motion of the two contacted crack faces may
yield other mechanical phenomena, e.g., friction, abrasion and corrosion, which are
realistically and physically featured in particular for complex and mixed load pat-
terns. Originally inspired by experimental investigations, Griffith (1921) proposed a
conceptual understanding of brittle crack formation, namely, the energetic balance
between the stored strain potential and the crack forming dissipation. To depict the
amount of strain energy consumed to generate a unit crack surface during fracture
evolution, an important material parameter is defined, Gc, known as the critical en-
ergy release rate or the fracture toughness. The triggering condition of fracture evo-
lution is that the instantaneous energy G reaches or exceeds the critical value, i.e.,
G� Gc. This classical GRIFFITH fracture theory provides a physical understanding
of crack nucleation and propagation criterion, but unfortunately, does not provide
an explicit definition for the crack propagation path during fracture evolution.

In the past decades, a variety of numerical methods has been developed to model
reliably fracture evolution. By categorizing the present models, crack approximation
is numerically described by either a discrete or a continuous, smeared approach.
Regarding the former one, a discrete crack methodology renders, e.g., the crack
boundary as an explicit element edge within the finite element discretization. The
crack-induced displacement discontinuity is, hence, naturally modeled based on the
geometrical boundary. Material separation due to the existence of cracks is straight-
forwardly modeled for an opening or shearing crack deformation. Nevertheless, nu-
merical complexity arises for a closing crack deformation with respect to crack
surface interpenetration. To address crack contact, additional algorithmic efforts
are required. The classical cohesive zone model (Barenblatt, 1962; Dugdale, 1960;
Schellekens and de Borst, 1993; Alfano and Crisfield, 2001; Foulk et al., 2000; Or-
tiz and Pandolfi, 1999) is a representative approach of discrete crack approximation,
which constitutes the traction-separation relationship based on the crack opening
distance. It is intensively applied to pre-known crack path problems, unfortunately,
the prediction of an unknown crack propagation largely increases computational
efforts. Another concept, the configurational force method (Gurtin, 2000; Kien-
zler and Herrmann, 2000; Maugin, 1995; Braun, 1997; Maugin, 2010; Miehe and
Gürses, 2007; Mueller and Maugin, 2002), is frequently applied to discrete crack
approaches, which depicts a non-NEWTONIAN force acting on a crack tip within
a homogeneous domain. The calculated material force allows for a prediction of
crack growth direction and provides a crack evolving criterion. Thereafter, several
approaches adopt a node splitting algorithm and an r-adaptivity re-meshing strategy
to model crack propagation. Nevertheless, these methodologies are restricted by the
fact that an initial notch is required to generate stress concentrations.

De Giorgi and Ambrosio (1988) have provided a general variational description
through the formulation of free discontinuity problems. In general, unknown field
variables are allowed to have jumps, meanwhile, the locations of the discontinuities
are unknown. The existence of minimizers is successfully shown in the space of
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special functions of bounded variation, see Ambrosio et al. (2000) for an overview.
Although used in other contexts, free discontinuity problems can be interpreted as
a generalization of GRIFFITH’s criterion. However, computational solutions of free
discontinuity problems are difficult and have lead to several regularized formula-
tions, e.g., phase-field fracture and eigenfracture to name two representatives in the
context of fracture mechanics. Closed form proofs exist for both methods, where the
regularized models converge to the original free discontinuity problem for decreas-
ing regularization lengths and discretization sizes, see e.g. Ambrosio and Tortorelli
(1990) and Schmidt et al. (2009).

With respect to smeared crack approximation, the phase-field approach for frac-
ture depicts a continuous and diffusive crack representation from the numerical
point of view. Incorporating classical GRIFFITH’s fracture theory, Francfort and
Marigo (1998) formulates a brittle fracture model by thermodynamically minimiz-
ing the internal strain energy potential and the fracture energy, see also Bourdin et al.
(2000, 2008); Hakim and Karma (2009); Miehe et al. (2010b); Pham et al. (2011) for
detailed insights. Thereafter, several publications, e.g., Borden et al. (2014); Linse
et al. (2017); Chambolle et al. (2018), study classical Γ -convergence for phase-field
modeling in the field of fracture evolution. Furthermore, brittle phase-field model-
ing is subsequently extended to different features, e.g., rate-dependent fracture (Yin
et al., 2020b; Yin and Kaliske, 2020c; Shen et al., 2019; Schänzel, 2015; Loew et al.,
2019), ductile fracture (Ambati et al., 2015a; Miehe et al., 2015; Borden et al., 2016;
Yin and Kaliske, 2020b), anisotropic fracture (Gültekin et al., 2018; Teichtmeister
et al., 2017; Yin and Kaliske, 2020a), cohesive fracture (Verhoosel and de Borst,
2013; Vignollet et al., 2014; Nguyen and Wu, 2018; Geelen et al., 2019), and fa-
tigue fracture (Alessi et al., 2018; Carrara et al., 2020; Seiler et al., 2020; Yin et al.,
2020a), to name a few.

The much younger eigenfracture method is developed by Schmidt et al. (2009)
and is applied to problems of linear elasticity and elasto-plasticity, see for instance
Pandolfi and Ortiz (2012); Stochino et al. (2017); Qinami et al. (2020) for some
early applications. Similar to phase-field fracture, a second field is introduced called
eigenstrain in order to relax the sharp displacement jump at the crack. However, the
second field is solved at the material level and equivalently the crack evolution in a
post-processing step after each load step of the mechanical problem. Less degrees of
freedom and a better convergence behavior yield relatively low computational costs
compared to phase-field fracture. Pandolfi et al. (2021) have further demonstrated a
larger Γ -convergence rate for eigenfracture versus phase-field fracture, which allows
to obtain the same solution accuracy like for phase-field fracture on coarser meshes.
On the other side, the eigenfracture method is still in an early development stage
and further studies on the properties of the method are necessary.

The strength of the phase-field fracture and the eigenfracture method is the ca-
pability to capture crack initiation and propagation with complex patterns indepen-
dent of any specific criterion. Nevertheless, one of the challenging tasks is predic-
tion of the deformation kinematics of crack surfaces under complex loading states,
e.g., opening, closing, shearing and mixed mode. A realistic determination of the
material stiffness degradation considering complex crack deformation kinematics
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is significantly important. In many publications, sophisticated approaches are pro-
posed to approximate the correct crack kinematics by decompositions of the strain
energy potential. A comprehensive review of existing split models can be found
in Ambati et al. (2015b); Storm et al. (2020). As one common choice based upon
a straightforward volumetric and deviatoric energetic decomposition, Amor et al.
(2009) and Freddi and Royer-Carfagni (2009) propose the fracture driving force for
volume shrinkage by excluding the volumetric energy contribution. Another com-
monly used split, postulated by Miehe et al. (2010a), is depending upon a spectral
decomposition scheme. The strain tensor is decomposed into the eigenvalues and the
elastic strain energy density is redefined by using the tensile and compressive strain
components. For other representative split models, it is referred to e.g. Henry and
Levine (2004); Lancioni and Royer-Carfagni (2009); Freddi and Royer-Carfagni
(2010); Hesch and Weinberg (2014). Nevertheless, these models cannot yield phys-
ical crack deformations under complex loading conditions. Thereafter, several at-
tempts are proposed to address this issue. A conceptual Directional Decomposition
is considered by Strobl and Seelig (2016); Steinke and Kaliske (2019); Luo et al.
(2021) to reformulate the strain or stress quantity by taking the local crack orienta-
tion into consideration. As a result, these models successfully address the issue of
crack kinematics compared to the aforementioned V-D split and spectral split ap-
proaches. Nevertheless, the approaches are unfortunately restricted to an isotropic,
linear elastic solid at small strain. The basis of the Directional Decomposition is
formed by the local crack orientation. Applying the concept of maximum dissipa-
tion, the crack orientation can be formulated as a variational problem (Bryant and
Sun, 2018). However, this minimization is non-convex and computationally hard
to solve without further restrictions. Therefore, several approximation are proposed
to capture crack orientation, e.g. the gradient of the phase-field (Strobl and Seelig,
2016) and the maximum principal stress direction (Steinke and Kaliske, 2019).

With the intention to generalize the Directional Decomposition model and to
overcome its limitations, the framework of Representative Crack Elements (RCE)
is developed. On the basis of variational homogenization theory (Blanco et al.,
2016), Storm et al. (2020) introduce the fundamental theory which allows to con-
sistently derive realistic crack kinematics from representative discrete crack models
and to transfer the overall behavior to the regularized crack models. The RCE con-
cept is first applied to bulk materials considering anisotropic elasticity and thermo-
elasticity in the context of phase-field fracture. Subsequently, applications to visco-
elasticity (Yin et al., 2021), crack face friction, inelastic materials and finite defor-
mations, fully coupled thermo-mechanics (Storm et al., 2021b), cohesive fracture
and eigenfracture (Storm et al., 2021a) are developed. Within the work at hand, a
review of the RCE framework applied to phase-field fracture and to eigenfracture
in the context of the regularized free discontinuity problem is presented. In par-
ticular, a fundamental theoretical background of the RCE framework is provided,
which includes the strain kinematics for both the continuous and the RCE descrip-
tion. A virtual power principle is employed within the RCE to solve the unknown
crack deformations within the RCE. In the sequel, the phase-field fracture and the
eigenfracture modeling within an RCE framework are briefly summarized. Several
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representative numerical examples have been presented to show the general appli-
cability of the conceptual RCE modeling.

11.2 Representative Crack Elements

11.2.1 Structure and Notation

The classical Representative Volume Element concept bases upon the theory of ho-
mogenization. It is referred to Blanco et al. (2016) for a general summary. The
principle of multi-scale virtual power, which is based on the first thermodynamical
theorem, provides the theoretical foundation of homogenization theory. Meanwhile,
this principle is a generalization of the HILL-MANDEL condition of stress work con-
servation (Hill, 1963). The work at hand adopts a similar methodology to formulate
the so-called Representative Crack Element (RCE) framework, which on purpose
incorporates a regularized approach to resolve the issues of accurate deformations
kinematics in free discontinuity problems, see phase-field fracture modeling (Storm
et al., 2020) and eigenfracture modeling (Storm et al., 2021a).

The fundamental derivation and illustration start from a definition of the basic
notational description. Two classes of mathematical fonts, namely, a standard one
and a fraktur one, are used to depict the quantities of the regularized fracture model
and of the RCE model, respectively. Explicitly, the symbols

GGG
∣∣
XXX
=∇XXXuuu and GGG

∣∣
xxx
=∇xxxuuu (11.1)

are the general spatial gradient terms of uuu and uuu with respect to the RCE and the
continuous descriptions, respectively. A schematic depiction of an RCE motion is
shown in Fig. 11.1 including the reference and deformed RCE blocks. The crack

(a) discrete crack in RCE (b) crack opening in RCE

Fig. 11.1: Schematic description of crack kinematics of the RCE approach.
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displacement in the RCE is denoted as

uuuΓ =

3∑

I=1

uIΓ nnn
I, (11.2)

where the normal and tangential unit vectors with respect to the crack surface are
expressed by nnn1 and nnn2,3, respectively. Two important conditions

• linear boundary constraints of upper and lower block surfaces in respective B1

and B2,
• identical and homogeneous deformations of upper and lower blocks in respective

B1 and B2, and also homogeneous crack deformation in BΓ

provide basic assumptions for the understanding and the derivation of the kinematics
in an RCE. The dimensional length of the RCE is given as lc and the two identical
solid blocks (B1 for the upper one and B2 for the lower one) have the volumes
V1 =V2 = l3

c/2. In addition to the two solid subdomains B1,B2, another subdomain
is characterized by the crack space BΓ , where the infinitesimal thickness of the crack
space is assumed to be lΓ → 0. Hence, the cross-sectional area and the volume
of the crack subdomain are approximated by AΓ = l2

c and VΓ = AΓ lΓ = l2
c lΓ ,

respectively. The total domain is expressed as B = B1 ∪B2 ∪BΓ , and the entire
volume of an RCE is V= V1 +V2 +VΓ .

11.2.2 Kinematic Coupling

The fundamental coupling relation of the regularized fracture model and the RCE
reads

uuu = uuu+GGG
∣∣
xxx
·
(
XXX−X̂XX

ref
)
+ũuu. (11.3)

Considering the homogeneous deformation fields at the RCE, the displacement
fields at the three subdomains are given by

uuu =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ûuu1 +GGGb

∣∣
XXX
·
(
XXX−X̂XX

ref
)
= ûuu1 +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B1,

ûuu2 +GGGb

∣∣
XXX
·
(
XXX−X̂XX

ref
)
= ûuu2 +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B2,

ûuuΓ +GGGΓ

∣∣
XXX
·
(
XXX−X̂XX

ref
)
= ûuuΓ +

(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈BΓ ,
(11.4)

where the quantities ûuu1, ûuu2 and ûuuΓ are the rigid body translations of the three sub-
domains. The reference coordinate is

X̂XX
ref

=
1
V

∫

B

XXXdV. (11.5)



11 Discrete Description of Crack Kinematics in Regularized Free Discontinuities 277

Thereafter, decomposing the RCE into three subdomains, the RCE displacements
and gradients vary with respect to each other. The second assumption aforemen-
tioned characterizes the identical RCE displacement gradient GGGb

∣∣
XXX

for the upper
and lower block, reading

GGGb

∣∣
XXX
=GGG

∣∣
xxx
+G̃GGb

∣∣
XXX

∀XXX ∈ (B1 ∪B2) , (11.6)

where the gradient fluctuation in the subdomains of solid blocks is described by
G̃GGb

∣∣
XXX

. Similarly, the RCE gradient in the crack subdomain GGGΓ

∣∣
XXX

reads

GGGΓ

∣∣
XXX
=GGG

∣∣
xxx
+G̃GGΓ

∣∣
XXX

∀XXX ∈BΓ , (11.7)

where the gradient fluctuation in the crack subdomain is denoted by G̃GGΓ

∣∣
XXX

. Hence,
a general relation in the RCE is defined as

GGG
∣∣
XXX
=GGG
∣∣
xxx
+G̃GG
∣∣
XXX

, where G̃GG
∣∣
XXX
=

{
G̃GGb

∣∣
XXX

, ∀XXX ∈ (B1 ∪B2
)

,

G̃GGΓ

∣∣
XXX

, ∀XXX ∈BΓ .
(11.8)

According to the evaluation of the compatibility condition for kinematically ad-
missible displacement fluctuations, the relations

uuu=
1
V

∫

B

uuudV and 000 =
1
V

∫

B

ũuudV (11.9)

and
GGG
∣∣
xxx
=

1
V

∫

B

GGG
∣∣
XXX

dV and 000 =
1
V

∫

B

G̃GG
∣∣
XXX

dV (11.10)

exist, where the terms ũuu and G̃GG
∣∣
XXX

represent the displacement and the gradient fluc-
tuations with respect to the RCE description in a general case. Furthermore, one
obtains a symmetric rigid body translations of both, the upper and lower block, with
respect to the crack center displacement at continuous level uuu, reading

ûuu1 = uuu+
1
2
uuuΓ , ûuu2 = uuu−

1
2
uuuΓ , ûuuΓ = uuu. (11.11)

As a result, the displacement fluctuations eventually are obtained as

ũuu =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
uuuΓ +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B1,

−
1
2
uuuΓ +

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈B2,
(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

) ·
(
XXX−X̂XX

ref
)

, ∀XXX ∈BΓ .

(11.12)

The projection of the crack deformation normal to the crack surface in the RCE is
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G̃GGΓ

∣∣
XXX
·nnn1 =

uuuΓ
lΓ

=

3∑

I=1

uIΓ
lΓ

nnnI ∀XXX ∈BΓ , (11.13)

which further leads to the crack deformation gradient as

G̃GGΓ

∣∣
XXX
=

uuuΓ
lΓ

⊗nnn1 =

3∑

I=1

uIΓ
lΓ

nnnI⊗nnn1 ∀XXX ∈BΓ . (11.14)

Considering kinematic coupling of gradient terms in Eq. (11.10)1, the relation

GGG
∣∣
xxx
=

1
V

⎛
⎜⎝

∫

B1∪B2

GGGb

∣∣
XXX

dV+

∫

BΓ

GGGΓ

∣∣
XXX

dV

⎞
⎟⎠

=
1
V

⎛
⎜⎝

∫

B1∪B2

(
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

)
dV+

∫

BΓ

(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

)
dV

⎞
⎟⎠

=
1
V

((
GGG
∣∣
xxx
+G̃GGb

∣∣
XXX

)(
V1 +V2)+

(
GGG
∣∣
xxx
+G̃GGΓ

∣∣
XXX

)
VΓ
)

=
1
V

(
GGG
∣∣
xxx
V+G̃GGb

∣∣
XXX

(
V1 +V2)+G̃GGΓ

∣∣
XXX
VΓ
)

=GGG
∣∣
xxx
+
G̃GGb

∣∣
XXX

(
V1 +V2

)
+G̃GGΓ

∣∣
XXX
VΓ

V

(11.15)

exists, which forces the condition

G̃GGb

∣∣
XXX

(
V1 +V2

)
+G̃GGΓ

∣∣
XXX
VΓ

V
= 000. (11.16)

As a consequence, it subsequently leads to

G̃GGb

∣∣
XXX
=−

VΓ

V1 +V2 G̃GGΓ

∣∣
XXX
=−

l2
c lΓ
l3
c

G̃GGΓ

∣∣
XXX
=−

lΓ
lc

3∑

I=1

uI

lΓ
nnnI⊗nnn1 =−

3∑

I=1

uI

lc
nnnI⊗nnn1.

(11.17)
Meanwhile, the condition in Eq. (11.16) fulfills the second condition of the kinemat-
ically admissible displacement fluctuations in Eq. (11.10)2, which can be interpreted
as

000 =
1
V

∫

B

G̃GG
∣∣
XXX

dV=
1
V

⎛
⎜⎝

∫

B1∪B2

G̃GGb

∣∣
XXX

dV+

∫

BΓ

G̃GGΓ

∣∣
XXX

dV

⎞
⎟⎠

=
G̃GGb

∣∣
XXX

(
V1 +V2

)
+G̃GGΓ

∣∣
XXX
VΓ

V
.

(11.18)
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Substituting the gradient fluctuation in Eq. (11.17) into Eq. (11.6), the RCE gradient
of the block material of RCE reads

GGGb

∣∣
XXX
=GGG

∣∣
xxx
−

3∑

I=1

uI

l
nnnI⊗nnn1 ∀XXX ∈ (B1 ∪B2) . (11.19)

By further making use of the gradient terms, the second order strain tensors for both
the continuous description and the RCE blocks are defined as

εεε=
1
2

(
GGG
∣∣
xxx
+
(
GGG
∣∣
xxx

)T) (11.20)

and
eee =

1
2

(
GGGb

∣∣
XXX
+
(
GGGb

∣∣
XXX

)T) , (11.21)

respectively. Substituting Eqs. (11.19) and (11.20) into Eq. (11.21), the relationship
of the strain quantities between the continuous and the RCE description eventually
yields

eee = εεε−

3∑

I=1

ΓIPPPI, (11.22)

where

ΓI =
uI

lc
and PPPI =

1
2

(
nnnI⊗nnn1 +nnn1 ⊗nnnI

)
. (11.23)

Therefore, two important aspects, namely, the unknown crack orientation nnnI and the
unknown crack deformation ΓI with I= 1,2,3, need to be appropriately resolved to
yield the consequent constitutive description of the RCE. The former one, the ori-
entation of the orthogonal local RCE system EΓ ∼

{
nnn1,nnn2,nnn3

}
with respect to the

global coordinate system Ee ∼
{
eee1,eee2,eee3

}
is determined by an accurate crack ori-

entation criterion, which is, nevertheless, still challenging for a robust definition of
crack orientation. Herein, several simplified criteria or a predefined crack orienta-
tion can be considered with regard to this issue. Therefore, the only remaining issue
is the solution for the crack deformation in the RCE framework.

11.2.3 Solution for the Crack Deformation in the RCE

The RCE block material is assumed to be characterized by the same constitutive
law as the intact bulk material, whereas the local strain fields e and εεε are different.
To describe the constitutive laws of the RCE and the intact material by a straight-
forward understanding, the HELMHOLTZ free energy functional is adopted to derive
the stress and the consistent material tangent, reading
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s =
∂ϕ(e)

∂e
, C =

∂2 ϕ(e)

∂e2 , and σσσ0 =
∂ϕ(εεε)

∂εεε
, C0 =

∂2 ϕ(εεε)

∂εεε2 ,
(11.24)

respectively. The general form for the principle of total virtual power of the RCE
reads

δP=

∫

B1∪B2

{
s : δė

}
dV

︸ ︷︷ ︸
internal power

−

(∫

AΓ

{
t ·δu̇Γ

}
dA+

∫

∂VRCE

{
T ·δu̇

}
dA+

∫

VRCE

{
(fp−fa) ·δu̇

}
dV

)

︸ ︷︷ ︸
external power

= 0.

(11.25)

It is noteworthy that the internal power is defined by the stress power in the block
subdomains B1 ∪B2. The external power consists of the traction power T ·δu̇ at the
external surface of the RCE domain ∂VRCE. Besides, it may include some other
constitutive characteristics, e.g. crack surface friction or cohesive traction. Hence,
a virtual power term t · δu̇Γ within the crack surfaces AΓ is necessarily included
to depict the aforementioned considerations. Furthermore, the passive and active
volume force power (fp−fa) · δu̇ within the RCE volume ∂VRCE is presented as
well. For simplicities, the work at hand does not take the RCE surface traction power
and the volume force power quantities into account, which simplifies Eq. (11.25) to

δP=

∫

B1∪B2

{
s : δė

}
dV−

∫

AΓ

{
t ·δu̇Γ

}
dA= 0. (11.26)

Another notable point is that the constitutive behavior of the RCE blocks and the
intact bulk material is not restricted to simple linear elasticity. In contrast, it can also
be associated with nonlinear elasticity as well as inelasticity, even at finite strains.

The virtual power principle of the RCE always exists for an arbitrary rate of
virtual crack deformation, i.e. δΓ̇I with I= 1,2,3. As a result, the relation

δΓP=

∫

B1∪B2

{
−s :

3∑

I=1

δΓ̇IPI

}
dV−

∫

AΓ

{
t ·

3∑

I=1

δΓ̇I lc n
I

}
dA= 0 (11.27)

exists, and the crack deformation ΓI with I = 1,2,3 can be consistently solved by
a straightforward minimization method. Nevertheless, even a correct mathematical
solution of ΓI may possibly conflict with the physically correct crack deformation
for a closing crack, i.e. a negative Γ1 indicates crack surfaces penetrated instead of a
stiff contact. In this regard, an additional constraint needs to be imposed to prevent
penetrated crack surfaces, and to obtain a realistic crack deformation. The crack
state is determined by a predictor-corrector procedure, which means prediction of
an opening crack deformation and correction for a closing crack deformation.
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11.2.3.1 Crack Opening

The initial guess is based on an opening crack deformation, the minimization prob-
lem leads to

ΓI = arg

{
min

Γ 1,2,3∈R
P
(
εεε,Γ 1,Γ 2,Γ 3)

}
. (11.28)

Thereafter, the unique solution of ΓI fulfills the equilibrium
∫

B1∪B2

{
s : PI

}
dV+

∫

AΓ

{
lc t ·nI

}
dA= 0, where I= 1,2,3. (11.29)

For a general nonlinear constitutive law with respect to the RCE blocks and bulk
materials or a nonlinear definition of t with respect to uΓ , this equilibrium is char-
acterized as nonlinear as well. Therefore, analytical solutions of the unknown ΓI

are not straightforward, and even sometimes not possible to obtain. As a result, an
internal NEWTON-RAPHSON algorithm is postulated to solve the equilibrium in Eq.
(11.29). The local residual RΓI is, thus, defined as

RΓI =

∫

B1∪B2

{
s : PI

}
dV+

∫

AΓ

{
lc t ·nI

}
dA

=

(
V1 +V2

)
s : PI+AΓ lc t ·nI

= l3
c

(
s : PI+t ·nI

)
(11.30)

and the internal consistent tangent is derived as

KΓIΓJ =−
∂RΓI

∂ΓJ
=−l3

c

(
∂s

∂ΓJ
: PI+

∂ t

∂ΓJ
·nI
)

=−l3
c

(
PI :

∂s

∂e
:
∂e

∂ΓJ
+nI · ∂ t

∂uΓ
· ∂uΓ
∂ΓJ

)

= l3
c

(
PI : C : PJ− lc n

I · k ·nJ
)

,

(11.31)

where k = ∂ t/∂uΓ is defined. The internal iteration algorithm is illustratively shown
in Table 11.1. It is noteworthy that the trial state of the crack deformation ΓI,tr

k=0 in
Table 11.1 can be numerically implemented as a history variable, which consists of
values of the previous loading step. This algorithmic treatment yields a relatively
fast local convergence to a certain extent.
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Table 11.1: Internal NEWTON-RAPHSON iteration to obtain the RCE crack deformation quanti-
ties ΓI.

Initiation k= 0, ΓI
k = ΓI,tr

k

Do Loop

Residual RΓI = l3
c

(
s : PI+t ·nI

)

Linearization LinRΓI = RΓI

∣∣∣∣
ΓI
k

+
∂RΓI

∂ΓJ

∣∣∣∣
ΓI
k

ΔΓJ
k

Tangent KΓIΓJ =−
∂RΓI

∂ΓJ

∣∣∣∣
ΓI
k

Solving ΔΓJ
k = (K)−1

ΓJΓI RΓI

Update ΓJ
k+1 = ΓJ

k+ΔΓJ
k, k= k+1

While Tol� ‖RΓI‖

11.2.3.2 Crack Closing

After the initial guess of crack opening prediction, the realistic crack deformation
can be identified, i.e. opening or closing. Once the condition Γ1 < 0 is fulfilled,
the correction of a closing crack deformation is triggered. Thereafter, a mathemat-
ical constraint is artificially imposed to the new equilibrium and the relation in Eq.
(11.27) is substituted by

Γ 2,3 = arg

{
min

Γ 2,3∈R
P
(
εεε,Γ 2,Γ 3)

∣∣∣∣∣
Γ 1=0

}
for Γ1 < 0,

Γ1 = 0.

(11.32)

From the numerical point of view, the implementation of such a constraint condi-
tion may potentially lead to oscillations between opening and closing cracks. That
phenomenon is investigated when Γ1 is within an interval around the contact point,
where the interval size is in the order of the numerical precision for the calculation
of Γ1. To obtain a relatively stable contact condition, a numerical assumption by set-
ting a contact tolerance Tol is employed in order to detect the change of a contact
state. In this regard, the contact triggering condition is redefined as

Γ 1 � Tol, (11.33)

where the tolerance Tol can be a sufficiently small and positive number, e.g., Tol=
10−12. Introducing the constraint Γ 1 = 0, the block strain in Eq. (11.22) needs to be
rewritten as
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e = εεε− Γ 1P1 − Γ2P2. (11.34)

The RCE stress s and tangent C as well as the crack surface tractions t and its
tangent k = ∂ t/∂uΓ in Eq. (11.31) are necessarily rederived based on the constraint
condition. Reperforming the NEWTON-RAPHSON iteration in Table 11.1 using the
updated quantities, the crack deformations ΓI with I = 2,3 for the closing state are
eventually obtained. The solution procedure is given in Fig. 11.2.

11.3 Regularization of the Free Discontinuity Problem

11.3.1 Governing Equations

The free discontinuity problem for brittle fracture with conservative external forces
reads

E
(
uuu,BΓ

)
=

∫

B\BΓ

ϕ(∇uuu) dV+GcH
2
(
BΓ
)

−→ min
uuu,BΓ

E
(
uuu,BΓ

)
, (11.35)

where the strain energy density ϕ is defined on the domain of the bulk material
B\BΓ . The fracture energy is given by the fracture toughness Gc and the area of
crack surfaces H2

(
BΓ
)
. Different regularization methodologies are proposed for

this variational problem. The regularization in eigenfracture yields

Fig. 11.2 Solution procedure
for the RCE with homoge-
neous block deformations
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E(uuu,εεε∗) =
∫

B

ϕ(εεε−εεε∗)dV+
Gc

2ε
|Bε| −→ min

uuu,εεε∗
E(uuu,εεε∗) (11.36)

with the approximated crack surfaces

Bε :=
{
XXX ∈B

∣∣∣∃ aaa ∈ supp(εεε∗) ;ε� |aaa−XXX|
}

, (11.37)

and the regularization in phase-field fracture reads

E(uuu,d,∇d) =

∫

B

ϕ(εεε)dV+Gc

∫

B

γl (d,∇d) dV −→ min
uuu,d

E(uuu,d,∇d) . (11.38)

Herein, new variables are added to the energy formulation, namely the phase-field
variable d and the eigenstrain εεε∗. For regularized eigenfracture, the ε-neighborhood
Bε of the support of the eigenstrain can be determined a posteriori to the mechan-
ical equilibrium, and allows to introduce the eigenstrain εεε∗ as an internal variable.
Nevertheless, the phase-field regularization of the crack area by means of γl(d,∇d)
involves spacial gradients of the phase-field. Thus, it requires the phase-field vari-
able d to be introduced as global state variable. A common crack surface density for
the multi-dimensional problem is defined as

γl =
1
2l
(
d2 + l2|∇XXXd|2

)
, (11.39)

where the internal length scale l is employed to govern the width of the transition
zone between fractured (d = 1) and sound state (d= 0) of the material. For several
intensive studies of the length scale l with respect to discretization, it is referred
to Miehe et al. (2010b); Zhang et al. (2017); Mandal et al. (2019). The crack sur-
face density function in Eq. (11.39) is also known as the AT2 model, which yields
an exponentially shaped crack profile. Furthermore, another common alternative to
approximate the crack surface density function is the classical AT1 model (Pham
et al., 2011), which is not main scope of the discussion in this work.

The strain energy in the eigenfracture and the phase-field regularization can be
related to the two material states ϕ0 and ϕc, which are expressed by

ϕ(εεε−εεε∗) =

{
ϕc, for XXX ∈ supp(εεε∗) ,
ϕ0, else,

and ϕ=ϕc
(
εεε,ΓI

)
+g(d)

(
ϕ0 (εεε)−ϕc

(
εεε,ΓI

))
,

(11.40)

respectively. Thus, the regularizations of the strain energy in eigenfracture and
phase-field fracture are based on the behavior of intact material ϕ0, i.e. in absence
of a crack, and of fully broken material ϕc, i.e. in presence of a crack. While the
intact material is described by classical constitutive models, the material behavior
in the presence of a crack can be derived from an RCE.
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Neglecting the derivation process based on a straightforward variational princi-
ple, the governing equations for the RCE problem read

ρüuu−∇XXX ·σσσ−bbb= 000 in B and σσσ ·nnn= ttt at ∂B (11.41)

and
∫

B1∪B2

{
sss : PPPI

}
dV+

∫

AΓ

{
lcttt ·nnnI

}
dA= 0 in VRCE with I= 1,2,3

(11.42)
for the continuous deformation equilibrium and the RCE response, respectively. The
notation ∇XXX · (∗) represents a divergence operator. The evolution equilibrium in
Eq. (11.42) exactly coincides with the virtual power principle of Eq. (11.26) and
the solution of crack deformation is according to the minimization problem Eq.
(11.27). For eigenfracture modeling, the eigenstrain εεε∗ is regarded as an internal
quantity, and the fracture evolution process is mainly based on a post-processing
technique according to an ε-neighborhood algorithm. Nevertheless, in particular for
phase-field fracture modeling, a degree of freedom is necessary to model fracture
evolution, and the governing equation eventually reads

∂dg(d)
(
ϕ0 −ϕc

)
+

Gc

l

(
d− l2∇XXX ·d

)
= 0 in B and ∇XXXd ·nnn= 0 at ∂B.

(11.43)
The phase-field driving force term

(
ϕ0 −ϕc

)
is based on two types of definitions,

i.e. a damage-like approximation (Miehe et al., 2010a) or a fracture-like approxima-
tion (Kuhn and Müller, 2010).

11.3.2 Stress and Consistent Tangent

According to a straightforward derivation, the stress response and the consistent
material tangent can be derived from the total effective HELMHOLTZ energy density
function for both eigenfracture and phase-field fracture. In the intact material, the
stress σσσ0 and the consistent tangent C0 can be straightforwardly derived based on
the constitutive law, see Eqs. (11.24)1 and (11.24)3, respectively. However, with
respect to the RCE description, the stress and material tangent tensors are obtained
indirectly. Basically, the stress for the fully cracked state is characterized to be the
RCE stress, i.e., σσσc =sss. The consistent tangent Cc yields
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Cc =
dσσσc

dεεε
=

dsss
dεεε

=
∂sss

∂εεε
+

3∑

J=1

∂sss

∂ΓJ
⊗ ∂ΓJ

∂εεε

=
∂sss

∂εεε
+

3∑

J=1

(
∂sss

∂eee
:
∂eee

∂ΓJ

)
⊗ ∂ΓJ

∂εεε

=CCC+

3∑

J=1

(
−CCC :PPPJ

)
⊗ ∂ΓJ

∂εεε
,

(11.44)

where the partial derivative ∂ΓJ/∂εεε cannot be derived in a straightforward manner.
Therefore, by making use of the unconditional equilibrium of the minimization, one
obtains the term ∂ΓJ/∂εεε indirectly, reading

RΓI = 0 ⇒ dRΓI

dεεε
= 000

⇒ ∂RΓI

∂εεε
+

3∑

J=1

(
∂RΓI

∂ΓJ
∂ΓJ

∂εεε

)
= 000

⇒ ∂RΓI

∂sss
:
∂sss

∂eee
:
∂eee

∂εεε
=

3∑

J=1

(
−

∂RΓI

∂ΓJ
∂ΓJ

∂εεε

)

⇒ −PPPI : CCC : I=
3∑

J=1

(
KΓIΓJ

∂ΓJ

∂εεε

)

⇒ ∂ΓJ

∂εεε
=−

3∑

I=1

((
K−1)

ΓJΓICCC :PPPI
)

.

(11.45)

As a result, substituting Eq. (11.45) into Eq. (11.44), the consistent tangent tensor
for the fully cracked material yields

Cc =CCC+

3∑

J=1

3∑

I=1

(
−CCC :PPPJ

)
⊗
(
−
(
K−1)

ΓJΓICCC :PPPI
)

=CCC+

3∑

J=1

3∑

I=1

(
K−1)

ΓJΓI

(
CCC :PPPJ

)
⊗
(
CCC :PPPI

)
,

(11.46)

Thus, based on Eq. (11.40)1, the deformation response can be straightforwardly
formulated within an eigenfracture framework, since
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σσσ=

{
σσσc, for XXX ∈ supp(εεε∗) ,
σσσ0, else,

and C=

{
Cc, for XXX ∈ supp(εεε∗) ,
C0, else.

(11.47)
Nonetheless, for a variational phase-field fracture modeling, a further manipula-
tion needs to be accounted for according to the similar relationship in Eq. (11.40)2,
namely

σσσ= σσσc+g(d)
(
σσσ0 −σσσc

)
and C= Cc+g(d)

(
C0 −Cc

)
. (11.48)

11.4 Numerical Applications

This section introduces a comprehensive application of eigenfracture and phase-
field fracture modeling within an RCE framework with respect to different model
problems. Each constitutive approach is consistently derived and implemented into
an in-house simulation platform.

11.4.1 Self-consistent Test

Phenomenologically, without considering cohesive traction and friction at crack
surfaces, an open-crack leads to a stress-free boundary. A closed and friction-free
crack at a compressive state is supposed to fully transfer the normal compressive
stress, which is characterized as an equivalent contact mechanism. Furthermore, a
pure shear deformation along the friction-free crack surface should not transfer any
force neither. The aforementioned characteristics have been studied in Steinke and
Kaliske (2019); Strobl and Seelig (2016); Storm et al. (2020) to evaluate the correct
phase-field crack kinematics for realistic applications. The first numerical example,
herein, attempts to examine the crack kinematics to demonstrate the advantages of
the presented eigenfracture and phase-field modeling in an RCE description com-
pared to the classical spectral split and the V-D split approaches with respect to
tension, compression and shearing deformation.

The two-dimensional boundary value problem is depicted in Fig. 11.3, which
consists of a contact model, an eigenfracture model, and a phase-field model with
the same dimensions. The contact model consists of two blocks and a contact pair.
The eigenfracture model depicts the crack using a row of fully eroded elements,
and the phase-field model describes the straight crack by prescribing the phase-field
value d = 1 at the nodes attached to the middle row of elements. All models are
discretized by 2500 four-node elements uniformly with the element size he = 2mm.
The upper and lower edges are fully bounded and a displacement load is subjected
to the upper edge with a loading function given in Fig. 11.4 for tension, compression
and shear deformation in a linear elastic body as well as compressive relaxation for
linear viscoelasticity.
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Fig. 11.3: Geometric setup for contact surface and phase-field crack.

11.4.1.1 Linear Elasticity

The simulations are based on the spectral split, V-D split as well as the RCE descrip-
tion of both eigenfracture and RCE phase-field modeling. The material parameters
are given as λ= 19.6MPa, μ= 2.06MPa for linear elasticity. Based on the loading in
Fig. 11.4 (a), the RCE eigenfracture results are shown in Fig. 11.5 (with ε= 14mm),
and the RCE phase-field solutions are shown in Fig. 11.6 (with l = 4mm). Appar-
ently, the three simulations, the spectral split, the V-D split and the RCE approach,
have obtained realistic crack opening deformations compared to the reference dis-
crete crack simulation, i.e. non residual material deformations exist in the upper
and lower block at the maximum separation t = 1 s. In the sequel, the material is
compressed and both the spectral and the V-D split simulations are not capable to
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Fig. 11.4: Displacement loading function at (a) tension, compression and shear deformation for
linear elasticity and only at (b) compression and relaxation for linear viscoelasticity.
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capture the realistic crack closing deformations at t= 3 s. A slight unphysical lateral
expansion by the spectral split is obtained. Unfortunately, this lateral expansion is
significantly increased by the V-D split result. Nevertheless, this unphysical behav-
ior does not appear at all for the proposed RCE modeling. Furthermore, the spectral
split result fails to capture a realistic shear deformation at the crack, see Figs. 11.5
(b) and 11.6 (a).

11.4.1.2 Linear Viscoelasticity

It is noteworthy that the constitutive laws in Steinke and Kaliske (2019); Strobl and
Seelig (2016); Storm et al. (2020) are restricted to linear elasticity. Nevertheless, the
RCE phase-field approach provides a general framework, which may be applied to
any constitutive material model. For the total derivation, it is particularly referred
to Yin et al. (2021). Furthermore, the RCE eigenfracture does not restrict the con-
stitutive law as well. This work does not present the linear viscoelasticity model
for an RCE eigenfracture description, but it is one of the next priorities for future
publications. Due to linearity of the material, the RCE phase-field formulation afore-
mentioned eventually returns to a relatively simple problem. The material tangent
tensors for both bulk material and RCE blocks, i.e. C0 and CCC are always constant.
Meanwhile, ttt and kkk vanish due to traction-free and friction-free considerations. As
a result, the crack deformations Γ 1,2,3 (opening) or Γ2,3 (closing) can be resolved by
a closed form solution, which largely simplify the model problems.

It is necessary to point out that the standard spectral split (Miehe et al., 2010a)
is not included for linear viscoelasticity due to some difficulties. The coupled con-
stitutive equations of the spectral split model in Miehe et al. (2010a) are straightfor-
wardly and consistently derived out of a predefined strain energy density functional
involving the spectral decomposition of the strain tensor. However, the present linear
viscoelastic model is governed by internal stress-type quantities, which cannot be
obtained by a straightforward variational algorithm of strain based energy density
function. Furthermore, the elastic energy for the non-equilibrium branches is ob-
tained based on the non-equilibrium stress and the conjugate elastic tensor due to the
constitutive linear characteristics. Therefore, the spectral split of the internal stress
governed viscoelastic model has shown significant complexities. As a result, several
existing phase-field models regarding fracture of viscoelastic material, see e.g. Shen
et al. (2019); Schänzel (2015); Loew et al. (2019); Yin and Kaliske (2020c), are de-
veloped depending on the framework of the V-D split. Instead of the spectral split, a
classical contact model is additionally considered for a representative reference for
the crack kinematics demonstration in viscoelastic materials.

Another loading function in Fig. 11.4 (b) describes pure compression and sub-
sequent relaxation for the viscoelastic solid. The spectral split simulation is consid-
ered. Instead, classical contact modeling is performed. In a detailed description, the
viscoelastic response of the material is supposed to relax from t = 1s to t = 6s at
compressive state and from t= 7s to t= 10s at a non-external load state. Regarding
viscoelasticity, only one PRONY term is considered and the parameters are given as
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(a) deformation by discrete crack

(b) deformation by spectral split

(c) deformation by V-D split

(d) deformation by RCE

Fig. 11.5: Crack deformation at t= 1s, t= 3s and t= 5s regarding the loading function in Fig.
11.4 (a) for spectral split, V-D split and RCE approach using the eigenfracture approach.
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(a) deformation by spectral split

(b) deformation by V-D split

(c) deformation by RCE approach

Fig. 11.6: Crack deformation at t= 1s, t= 3s and t= 5s regarding the loading function in Fig.
11.4 (a) for spectral split, V-D split and RCE approach using phase-field modeling.

τ = 0.98s and χ = 0.6. As aforementioned, the V-D split model is not capable of
capturing an appropriate compressive deformation in a viscoelastic body neither due
to an unrealistic lateral stretch. Nevertheless, the RCE simulation properly addresses
this issue and shows similar behavior compared to the contact model. Meanwhile,
the contour distributions of the vertical stress σy for three approaches are compared
at t= 1s and t= 6s in Fig. 11.7, where the RCE modeling successfully predicts the
results that the contact model shows.

Furthermore, the effective strain energy ϕmech, the viscous dissipation Wvis as
well as their summation ϕ̂ = ϕmech +Wvis for the three models are evaluated. The
V-D split model uses the standard form of ϕmech =ϕ−+g(d)ϕ+, where for the de-
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(a) σy at t = 1 s by contact simulation (b) σy at t = 1 s by RCE simulation (c) σy at t = 1 s by V-D simulation

(d) σy at t = 6 s by contact simulation (e) σy at t = 6 s by RCE simulation (f) σy at t = 6 s by V-D simulation

Fig. 11.7: Comparison of the distribution of the vertical stress σy for contact modeling, RCE
simulation and V-D split simulation at t= 1 s (a)-(c) and t= 6 s (d)-(f), respectively.

tailed algorithmic setup, it is referred to Schänzel (2015); Yin and Kaliske (2020c).
In the sequel, by a post-processing technique of volume integration of these two
quantities, the total elastic strain energy and dissipation energy are obtained. Then,
the quantity ϕ̂ = ϕmech +Wvis is also evaluated, since it straightforward indicates
the external work induced into the closed system. Observing the energy components
evolution in Figs. 11.8 (a)-(c), ϕmech and Wvis increase initially along with the ex-
ternal load application. Subsequently, the constant load leads to a slight decrease of
ϕmech and a gradual increase of Wvis up to the situation that the specimen is fully re-
laxed. The summation ϕ̂ stays almost constant during the relaxation. It is explained
that the external work does not change as long as the external load is kept constant.
After the displacement returns to u = 0 mm and the material is fully relaxed, e.g.
t = 10 s, ϕmech returns to 0 kJ and the total external work is fully dissipated due
to viscous effects. Comparing these three approaches, the RCE formulation suffi-
ciently agrees to the results of the contact modeling. However, the V-D split always
underestimates the results, also see the reaction forces given in Fig. 11.8 (d). Based
on the aforementioned comments, the RCE approach is demonstrated to capture
realistic crack kinematics for a closing crack within linear elastic and viscoelastic
materials.
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Fig. 11.8: Investigation of energy components: elastic strain energy ϕmech, viscous dissipation
energy Wvis and their summation ϕ̂=ϕmech+Wvis for (a) contact modeling, (b) RCE sim-
ulation and (c) V-D split simulation, (d) reaction force f for the three approaches.

11.4.2 A Single Edge Notch Plate (SENP) at Shear Load

Using the similar geometric setup as in Miehe et al. (2010a), an elastic plate of
length 100 mm, which is cracked half by an initial notch, is studied in this example.
The plate edges parallel to the crack are clamped, and one edge is displaced parallel
to the crack, leading to shear failure. The elastic parameters are λ = 121.15 GPa,
μ = 80.77 GPa, the fracture toughness is Gc = 2.7 N/mm2 and the length scale for
phase-field is l = 0.2 mm. The displacement application is linearly increasing with
time. For the numerical discretization of the two-dimensional boundary value prob-
lem, a total of 27225 uniform quadrilateral elements for plane strain with linear
shape functions are used. In particular, in the used eigenfracture implementation, a
new mechanical equilibrium state is determined before the next most critical ele-
ment may fracture. The simulations are performed using the eigenfracture approach
based on well known spectral split (Miehe et al., 2010a) and the V-D split (Amor
et al., 2009), as well as for the eigenfracture model based on the RCE framework.
A noteworthy point for the RCE framework is that the crack orientation for each
element is calculated at the GAUSS point applying a reduced integration scheme.
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Regarding the simulation results of the SENP test, the crack evolution and the
crack neighborhood (ε= 30.1he) are shown in Figs. 11.9 (a) and (b). In particular,
the crack paths of the models with the spectral split, V-D split, and based on the
RCE framework are compared. In principle, considering frictionless features, the
crack surfaces along the initial crack should slide on each other without force trans-
fer through the crack. Using the spectral split, the result based on a discrete crack
description significantly differs from the model with pre-eroded elements. There-
fore, the spectral split approach cannot be equivalently used for a discrete and a
numerical crack due to the unphysical force transfer through a sliding crack surface.
The crack paths predicted by the V-D and the RCE model differ in the propagation
angle. Furthermore, both models yield a crack broadening in the region of the initial
crack tip. The broadening is possibly caused by the regularized formulation of the
increment of the crack surface area. As a consequence, crack surface increments for
crack propagation perpendicular to the crack ligament are systematically smaller
than in the direction of the crack ligament. Moreover, crack surface increments be-
hind the crack tip are systematically smaller than at the crack tip. Thus, the elastic
energy required to propagate a crack is largest at the crack tip for cracks propagating
towards the crack ligament.

In addition to the eigenfracture simulation, the phase-field approach is also em-
ployed to simulate the SENP cracking as a comparison, see Figs. 11.9 (c) and (d).
Based on the same reason, the spectral split crack is not capable of predicting the
realistic crack evolution by prescribing a phase-field crack as the initial notch. Since
the whole process of SENP shear does not introduce any compressive deformation,
the V-D split and the RCE framework yield good agreement to each other regarding
the crack path prediction. Nevertheless, as long as compressive deformation exists,
the V-D split immediately fails to predict the correct crack path as aforementioned
in Sect. 11.4.1.

Furthermore, the influence of the ε-neighborhood size is studied in Fig. 11.10.
The simulation is performed for different values of ε on the same mesh. The load
at which the crack begins to propagate in the simulation is evaluated for different
value of ε. Apparently, Fig. 11.10 shows that the maximum force converges asymp-
totically with increasing neighborhood size. Convergence of the results can be ac-
cepted for the presented study when the neighborhood size parameter ε is about
15 times the element size he. However, crack propagation is disturbed when the
ε-neighborhood reaches the geometry boundary of the model, e.g., crack kinking.

11.4.3 Structural Fracture at Finite Strain

The presented example is performed to demonstrate the capability of the phase-
field model applied to hyper-elastic material by studying a promising benchmark of
polymer fracture. The experimental tests are conducted by Hocine et al. (2002) to
estimate the critical fracture energy. In the sequel, this example is studied by several
different numerical approaches, e.g. the material force method Özenç and Kaliske
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(a) eigenfracture with discrete crack for spectral split, V-D split and RCE, respectively

(b) eigenfracture with element erosion crack for spectral split, V-D split and RCE, respec-
tively

(c) phase-field with discrete crack for spectral split, V-D split and RCE, respectively

(d) phase-field with smeared phase-field crack for spectral split, V-D split and RCE, respec-
tively

Fig. 11.9: Eigenfracture and phase-field simulation of crack evolution for both discrete crack and
numerical crack (pre-eroded elements or phase-field crack) with respect to spectral split, V-D split
and the RCE framework, respectively.
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Fig. 11.10 Dependency of
the maximum reaction force
norm on the neighborhood
size parameter ε.
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(2014) and the phase-field model (Miehe and Schänzel, 2014), which show good
agreement compared to the evaluations of Hocine et al. (2002).

Regarding the constitutive law, Özenç and Kaliske (2014) simulates polymer
fracture using the ARRUDA-BOYCE model, whose HELMHOLTZ energy density
function generally reads

ϕ0 = κ(J− ln J−1)+μN

(
λrL

−1 (λr)+ ln
L−1 (λr)

sinhL−1 (λr)

)
. (11.49)

The segmentation N is a material parameter in addition to the bulk and shear moduli

κ and μ. The stretch quantity λr is obtained by λr =
√

tr
(
C̄CC
)
/3N, where C̄CC is the

isochoric part of the right CAUCHY-GREEN tensor, and the inverse LANGEVIN func-
tion is defined by L−1. By applying the phase-field approach, Miehe and Schänzel
(2014) describes the polymer based on the compressible NEO-HOOKEAN formula-
tion, whose energy density function is defined as

ϕ0 =
μ

β

(
J−β−1

)
+

μ

2
(tr(CCC)−3) , (11.50)

where β and μ are two governing parameters. For the purpose of simplicity and gen-
erality, this work chooses a nearly incompressible NEO-HOOKEAN model, which
depends on the energy density function

ϕ0 = κ(J− ln(J)−1)+
μ

2
(
tr
(
C̄CC
)
−3
)

. (11.51)

As a result of a consistent and straightforward derivation, the intact KIRCHHOFF
stress and the corresponding material tangent tensors yield

τττ0 = p111+μ

(
b̄bb−

1
3

tr
(
C̄CC
)

111
)

︸ ︷︷ ︸
τττiso

(11.52)

and
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C0 =
(
p+ s

)
111⊗111−2pI+

2
3

(
μ tr
(
C̄CC
)
P−τττiso⊗111−111⊗τττiso

)
, (11.53)

respectively. The definition of the isochoric right and left CAUCHY-GREEN tensors
are C̄CC = J

2
3 CCC and b̄bb = J

2
3 bbb. The hydrostatic scalar p and its corresponding mod-

ulus are obtained based on the first and the second order partial derivative of the
volumetric energy density with respect to J, i.e. p= J∂JU(J) and s= J2 ∂2

JJU(J).
According to the material description aforementioned, a two-dimensional bound-

ary value problem is taken into account. The geometry and boundary condition
setup are depicted in Fig. 11.11. The bottom edge is fully fixed and the top one
is fixed by a vertical upward displacement, which leads to monotonic tensile fail-
ure. Three symmetrical notch widths a0 = [12,20,28] mm are evaluated. Due to the
symmetric geometry, loading as well as boundary conditions, a simplification can be
employed by only considering half of the original specimen with appropriate sym-
metry conditions. The finite element discretizations consist of approximately 1200
4-node quadratic elements, where the potential damage paths are meshed by the
uniform element size he = 1mm. The model parameters are given as κ= 5.49MPa,
μ = 0.57MPa, G0

c = 6.16J/mm2 and the length-scale parameter for the phase-field
evolution is l= 2mm. The initial crack normal coincides with the loading direction.

The visualization of the phase-field crack evolution of the specimen with a0 = 20
mm is shown in Fig. 11.12. With the help of a post-processing blanking technique,
i.e. the phase-field value d � 0.95 is not visible, a vivid crack initiation and propa-
gation before the complete separation can be effectively investigated. Furthermore,
the load-displacement relations obtained by the present phase-field modeling are
compared to the experimental results in Fig. 11.13 for all the three specimen ge-
ometries. The fact of a smaller initial notch leading to larger overall strength is
validated. Meanwhile, both the peak and the fracture displacements for the three
cases can be approximately predicted. The force-displacement characteristics and
the structural deformations are in good agreement with the experimental findings.
Before structural rupture, a sudden drop of the reaction force along with unstable

Fig. 11.11 (a) Geometrical
setup of two-dimensional
notched specimen and (b) its
simplified half model due to
symmetry.
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Fig. 11.12: Fracture evolution of the two-dimensional model by blanking the phase-field d� 0.95.

Fig. 11.13 Comparison of the
load-displacement relations
of styrene butadiene rubber
obtained by experimental
results (Hocine et al., 2002) to
the present phase-field model.
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crack growth is obtained. The numerical convergence of the model in this final part
of the simulation is hard to achieve due to large distortions of the elements at the
crack tip. Therefore, full rupture is not reached.
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11.4.4 Cohesive Failure Modeling

The example at hand studies cohesive failure within an RCE phase-field framework.
The mechanism is mainly governed by the classical traction-separation law, which
is commonly taken into consideration by the interface element approach.

The cohesive traction at the crack surface denoted by ttt in Eq. (11.25) usually
cannot be neglected. This term is defined to be oriented outwards at the crack sur-
face and the direction opposite the crack surface deformation uuuΓ . Herein, a classical
traction-separation law (van den Bosch et al., 2008) is considered, and the pseudo
potential functional is defined as

ϕTS = φ−
(‖uuuΓ‖+Δ) φ

Δ
exp
(
−
‖uuuΓ‖
Δ

)
, (11.54)

where φ is a model parameter to represent the work or energy of separation and Δ
is another parameter for the characteristic opening length. The maximum tractions
Tmax can be indirectly calculated by means of Tmax = φ/(exp(1) Δ). According to
variational derivation, the surface traction is derived as

ttt = −
∂ϕTS

∂uuuΓ
=−

φ

Δ2 exp
(
−
‖uuuΓ‖
Δ

)
uuuΓ , where uuuΓ =

3∑

I=1

lc Γ
InnnI (11.55)

and the consistent tangent reads

kkk =
∂2 ϕTS

∂uuu 2
Γ

=−
∂ttt

∂uuuΓ
=

φ

Δ2 exp
(
−
‖uuuΓ‖
Δ

)(
111−

uuuΓ ⊗uuuΓ
Δ ‖uuuΓ‖

)
. (11.56)

The aforementioned traction and tangent quantities characterize the path indepen-
dent traction-separation formulation, which describe crack healing phenomena of
the unloading and reloading processes. In order to achieve a general damage-like
formulation, an algorithmic manipulation is proposed that distinguishes between
loading and unloading paths. A representative approach is based on the compari-
son between the current separation and the maximum history separation (during the
whole loading history from first load step till current one). The loading case is as-
sumed when the current separation is the maximum one. In contrast, an unloading
or reloading procedure is identified as long as the current separation is smaller than
the maximum one, where the linear traction law is substituted. The maximum sep-
aration needs to be updated and saved as an internal variable at each loading step.
Thereafter, the surface traction and the tangent quantities are rewritten as

ttt = −
φ

Δ2 exp
(
−
umax
Γ

Δ

)
uuuΓ (11.57)

and
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kkk =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

φ

Δ2 exp
(
−
umax
Γ

Δ

)
111 if umax

Γ > ‖uuuΓ‖ ,

φ

Δ2 exp
(
−
umax
Γ

Δ

)(
111−

uuuΓ ⊗uuuΓ
Δumax

Γ

)
if umax

Γ = ‖uuuΓ‖ ,
(11.58)

respectively, by introducing the maximum separation

umax
Γ = Max

τ�tn+1
‖uuuΓ (τ)‖= Max

τ�tn+1

√√√√
3∑

I=1

(lc ΓI)
2. (11.59)

Returning the quantities ttt and kkk to the RCE description, a consistent cohesive RCE
phase-field modeling is obtained.

It is noteworthy that, in this example, the cohesive adhesion failure mechanism
is formulated within a predefined phase-field crack path by setting the DIRICHLET
boundary condition, which indicates that the crack orientation is also predefined in
advance. As a result, the cohesive failure only occurs with respect to the existing
phase-field crack path. Simultaneous evolution of crack propagation and cohesive
adhesion failure at the evolved crack surfaces is not the scope of this work.

Inspired by Kim and Aragao (2013); Aragao (2011), which study a three-point
bending test of a semi-circular specimen, the presented cohesive RCE phase-field
approach is adopted for a numerical investigation. The experiment is shown in Fig.
11.14 (a) and it is referred to Kim and Aragao (2013) for detailed insights. The spec-
imen is a pre-notched semi-circular structure and it is characterized as bituminous
mixture material. Two symmetrical points at the bottom edge are constrained along
with the vertical direction and a downward displacement is applied at the top center
of the curved boundary. Due to the symmetric properties of the geometry, the con-
straint and the loading condition, only half of the structure is taken into account for
the numerical simulation, see Fig. 11.14 (b). Since the cohesive crack path is known

(a) experimental setup in Kim and Aragao (2013) (b) simplified numerical model

Fig. 11.14: (a) Experimental setup according to Kim and Aragao (2013) and (b) corresponding
geometrical setup for cohesive failure simulation for the SCB test.
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as a fact according to the experimental validations in Kim and Aragao (2013); Ara-
gao (2011), the present model is applied to study the cohesive behavior during the
crack opening. The loading governed by displacement control is applied to a single
node next to the crack path, see Fig. 11.14 (b) for the numerical setup in detail.

According to a parametric calibration study, the material parameters are identi-
fied as λ=11.3 GPa, μ=26.5 GPa, Tmax=19.2 kPa, φ=110 kN/m2, lc=1 mm and
l=0.85 mm based on the experimental result in Aragao (2011). The relationship of
the resultant load with respect to the crack mouth opening displacement (CMOD)
shows good agreement with the data in Aragao (2011). As can be observed, the
simulation successfully captures the gradual increase of reaction force at the initial
loading phase (Phase I). After reaching the peak load (Phase II), the traction starts
to decrease and the expected softening behavior (Phase III) is investigated. A slight
difference exists for the final failure status (Phase IV), where the experimental result
completely reduces the reaction force but the simulation does not yet.

Furthermore, Fig. 11.15 shows the deformed shapes of the specimen at four rep-
resentative phases, which are in accordance with Fig. 11.16. It is noteworthy that
the rotation of the symmetric specimen results in a combination of a stiff contact in
the vicinity top region of the cohesive zone and a tensile separation in the rest part.
The aforementioned constrained minimization algorithm can appropriately address
the issue and guarantee numerical robustness in such loading conditions. Another
interesting investigation is the norm of the cohesive traction ‖ttt‖ in the cracked re-
gion, see Figs. 11.17 (a)-(d) for Phase I-IV, respectively. For a straightforward un-

(a) Phase I: CMOD= 0 mm (b) Phase II: CMOD= 3.82 mm

(c) Phase III: CMOD= 10 mm (d) Phase IV: CMOD= 30 mm

Fig. 11.15: Deformation of SCB specimen with a prescribed phase-field crack path using a mirror-
ing post-processing technique.
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Fig. 11.16 Comparion of the
load-CMOD relationships for
the present simulation and
the experimental prediction in
Aragao (2011).
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derstanding, the traction norm is plotted as outwards norm to the geometry plane
and the height represents the magnitude of the traction norm. It can be easily seen
that the traction norm evolves initially at the notch tip and ’propagates like a wave’
from the notch tip towards the top of the specimen along the prescribed phase-field
crack path. Eventually, Fig. 11.17 (d) still shows a portion of cohesive tractions at
the top region, which explains the reason why the reaction force in Fig. 11.16 does
not decrease to 0 at Phase IV. Using the same setup for the SCB test and model
parameters, a further investigation with respect to different initial notch lengths is
also included in this example. Three different initial lengths, i.e. a = [20,25,30]
mm, are simulated, where the loading-CMOD relations are shown in Fig. 11.18. It
can be found that the peak loads and the subsequent softening behavior are strongly
affected by the initial notch length.

11.4.5 Contact Friction Modeling

Friction between crack faces is a well known property which influences crack prop-
agation and the deformation of a fully evolved crack. However, friction is frequently
neglected in models of phase-field fracture even in investigations on Mode II, Mode
III and mixed mode deformations at the crack front. The influence of friction on
brittle fracture is demonstrated in the following examples. Results are compared to
the frictional phase-field approaches of Fei and Choo (2020a,b) and to discrete crack
models considering friction.

Considering the present RCE framework, the traction term ttt is reformulated
based on a classical COULOMB friction law. The friction force components for
I= 2,3 are written as
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(a) Phase I: CMOD= 0 mm (b) Phase II: CMOD= 3.82 mm

(c) Phase III: CMOD= 10 mm (d) Phase IV: CMOD= 30 mm

Fig. 11.17: Visualization of the cohesive traction norm ‖ttt‖ along with the prescribed phase-field
crack path by an out-plane description.

tttI =−
1
AΓ

{
fIstat, for ‖fffIstat‖� ‖fffIdyna‖,
fIdyna, else,

kkkIJ =
1
AΓ

{
EΓδIJ, for ‖fffIstat‖� ‖fffIdyna‖,

0, else,

(11.60)

where ⎧
⎪⎨
⎪⎩

fIstat =−EΓ
(
ΓI− ΓIpl

)
,

fIdyna = μAΓsss : PPPI
fIstat

‖fffIstat‖
.

The parameters μ and AΓ are the friction coefficient and the crack surface area.
Static friction (without surface sliding) is modeled via the penalty parameter EΓ .
The dynamic friction force fffIdyna is proportional to the normal compression force,
obtained from current stresses and the crack normal. Dynamic friction causes per-
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Fig. 11.18 Load-CMOD
relationships evaluated at
different lengths of the initial
notch.
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manent sliding deformation ΓIpl between the crack surfaces. The crack state is con-
sidered for the evolution equation as

• opened crack, ΓIpl,tn+1
= ΓItn ,

• closed crack and static friction, ΓIpl,tn+1
= ΓIpl,tn ,

• closed crack and dynamic friction, ΓIpl,tn+1
= ΓItn +

fIdyna

EΓ
.

It is notable that COULOMB’s assumption of area independent friction forces is pre-
served in this model.

A long strip at compressive and shear loading is presented by Palmer et al.
(1973), compare Fig. 11.19. The experiment is applied to over-consolidated clay
observing significant cohesive fracture and crack surface friction. However, the ex-
perimental setup is adopted for the subsequent example and applied to brittle ma-
terial behavior (Gc = 30 J/mm) with COULOMB friction at the crack surfaces. The
bulk material is considered as linear elastic (E= 1 GPa, ν= 0.3) at small deforma-
tions. A fully constrained support is applied at the lower edge of the strip. The upper
edge first undergoes a compressive displacement of uy =−0.01 mm, followed by a
tangential displacement of ux = 0.25 mm applied in increments of Δux = 0.25e−2
mm. The model is uniformly discretized by 48400 linear elements.

The evolution of the phase-field is given in Fig. 11.20 for different time steps and
a friction coefficient of μ= 0.3. The relations of the normal and tangential reaction

Fig. 11.19: Sketch of the long shear apparatus with initial phase-field crack and load history of
normal and tangential displacement boundary conditions.
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Fig. 11.20: Deformed shear strip with scaling factor 25 for different loading states, phase-field
crack distribution during crack propagation.

forces versus tangential displacements are presented in Fig. 11.21 for friction coef-
ficients between μ = 0 and μ = 1. The comparison of the normal to the tangential
reaction forces shows that the COULOMB law, which is applied at material level to
the RCE model, is fulfilled at the component level, too. Furthermore, the initiation
of crack propagation is significantly influenced by the frictional reaction force at the
crack surface. The realistic relation between compression and friction force is also
obtained by the cohesive phase-field model of Fei and Choo (2020b) considering
crack friction. However, the approach presented there uses a directional decompo-
sition of the stress based on the crack orientation but without considering lateral
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Fig. 11.21: Characteristics of normal force Fn versus tangential displacement and tangential fric-
tional forces Ff for coefficients varied between μ= 0 and μ= 1.
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contractions caused by POISSON’s ratio ν. Additional criteria are introduced in or-
der to distinguish frictional sticking and sliding. Crack surface contact is identified
based on the sign of the normal strain which also misses lateral contractions at the
crack surface. In contrast, the RCE framework allows for a realistic frictional crack
model without the introduction of additional assumptions in order to approximate
crack contact and frictional sticking.

11.5 Conclusions

Regularized formulations of the free discontinuity problem have been successfully
applied to many classical and advanced problems of fracture mechanics in the past
decade. A rapid development of phase-field fracture models could be observed,
for instance, towards inelastic and anisotropic materials, fatigue behavior, multi-
physical, multi-scale problems, frictional contact, and pore pressure models etc.
Moreover, some fundamental challenges of classical fracture mechanical models,
e.g., crack nucleation, crack branching, and proper discretizations, are solved by
phase-field fracture and eigenfracture models. However, those models are recently
shown to lack of reliable predictions for the crack contact state and the deformation
kinematics at cracks. These intrinsic features of a fracture mechanical model are fur-
ther related to the prediction of crack nucleation, propagation and branching. The
recently introduced concept of representative crack elements provides a variational
framework to couple physical crack models to regularized fracture formulations.

In this contribution, the fundamentals of representative crack elements are de-
rived and the framework is presented in the context of phase-field fracture and
eigenfracture. Discrepancies in previous models are demonstrated by consistency
tests through a comparison to contact mechanical simulations. Same examples are
further studied to verify deformation kinematics for cracks predicted by the mod-
els based on representative crack elements. The flexibility of the approach is finally
proven by some applications to rate-dependent material, finite deformations, cohe-
sive failure and crack surface friction.
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Applications of Viscoplasticity and Damage
Models, the Thermomechanical Consistency and
the Prospect of a Microstructural
Representation
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Abstract Material models in the framework of continuum mechanics cover the ex-
perimentally observed phenomena with a mathematical representation and a corre-
sponding set of material parameters, which need to be established and validated. The
theory of viscoplasticity plays an important role to describe the material behaviour
of polymers and metals for a conventional as well as an additive manufacturing pro-
cess. Naturally, the manufacturing process influences the microstructure and is to
be reflected in the analysis and the characterisation of the material. The geometry
reconstruction of microscopic images supports the extension of well-known mate-
rial models and motivates the investigation of the interaction in bicontinuous com-
posites. A universal measurement method as the contactfree thermography can be
applied to validate the analytical assumption by an extended set of characteristics.
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12.1 Introduction

The interest in describing complex material behaviour is ongoing and is fed by the
development of new materials and their application in medical technology or auto-
motive and aerospace engineering. These design materials should work safely and
predictably until the defined end-of-life of the corresponding component or part.
Material and damage models are developed at differentiated levels of abstraction
and verified with adequate test procedures.

The fundamental model comparisons analysed by Krempl (1987) consider mod-
els applying a yield surface, e.g. Perzyna (1963) and Chaboche (1989), and models
without using a yield surface, like in Bodner and Partom (1975). The application
of these models is documented for metals in Olschewski (1996). The research on
strain rate dependent models for elastic as well as plastic behaviour carried out by
Reese (1998) justifies the attempt to capture the material behaviour of metals and
polymers with the Chaboche or Bodner-Partom model.

Currently, the number of testing standards for additively manufactured polymers
is limited. According to Forster (2015), only 20 of 47 available testing standards are
conditionally applicable. This challenge adds up onto the constantly improved and
modified manufacturing processes and an increased set of variable process parame-
ters. The manufacturing process itself generates inhomogeneities on the microscale
predominantly in form of voids. Under mechanical loading, a stress concentration
in the vicinity of the voids occurs and, thus, a localized damage evolution is initi-
ated. With the assumption of a statistically uniform void distribution and restrictions
on the void properties, the original material models can be enhanced by ideas from
the continuum damage mechanics, where ductile damage, referencing void initia-
tion, growth and coalescence, can be represented by the models of Gurson (1977)
or Lemaître and Desmorat (2005).

The generalised classification of material behaviour according to Haupt (2002)
is used. The tensorial formulations of backstress, overstress and equilibrium stress
developed by Haupt are applied and reference is made to the presentation of these
variables in connection with the arguments related to dislocation movement and
velocity in Krempl (1987).

To substantiate the material classification and to assess the suitability of the cho-
sen modelling approach, a temperature evolution is very sensitive to certain defor-
mation mechanisms. The required accuracy in the temperature measurement is given
by modern infrared cameras. The pioneering works of Taylor and Quinney (1934);
Oldyrev and Tamuzh (1969); Chrysochoos (2012) concerning a temperature evo-
lution due to mechanical loading and the accompanying experimental methods for
metallic and polymer materials have been initiating new thermomechanical mod-
elling approached over the last decades. The fundamental KELVIN effect can be
used to determine the yield point, while the dissipative phenomena for inelastic de-
formation or the microstructural evolution in cyclic loading becomes clearly evident
for self-heating. The principles of continuum thermomechanics generate a univer-
sal framework for the formulation of thermodynamically consistent material models
not limited to certain material classes and also provided the functionality for incor-
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porating scale effects. The here considered models (Bodner and Lindenfeld, 1995;
Bröcker and Matzenmiller, 2013; Kamlah and Haupt, 1998) are applied to casted
and additively manufactured metal alloys with respect to plastic and viscoplastic
deformation processes, where microstructural effects in terms of a material phase
interaction are not in focus.

Complex material configurations due to strengthening, weakening or functional
integration by particles require the representation of inhomogeneity. The analysis
of models using representative volume elements (RVE) at the appropriate scale are
very successful in this respect. Following the Eshelby approach for elastic material,
Yanase et al. (2020) investigate the influence of the particle shape on the overall
stiffness properties of a two-phase composite. A multi-step method proposed by El
Ghezal and Doghri (2018) combines of the Eshelby-based Mori-Tanaka method,
the generalized self-consistent scheme and the Gurson model to account for plas-
tic deformations and a concurrent porosity evolution. A random dispersion of elastic
spheres in an elastic-plastic polymer matrix is the subject of the FE-based numerical
homogenisation by Khdir et al. (2013), where the statistical deviation was quantified
with respect to the number of particles per control volume. Examples for bicontin-
uous material configuration (two interpenetrating phases) and a corresponding ho-
mogenised representation are given in Carolan et al. (2015); Soyarslan et al. (2019)
and address three-dimensional networks within a matrix as in Arndt et al. (2021).

In this contribution, the addressed topics are reflected in the three main sections.
Sect. 12.2 focuses on classical, viscoplastic material models in conjunction with
continuum damage mechanics. An external temperature load is incorporated. The
self-heating phenomenon is the core of Sect. 12.3. Especially, the extended evalu-
ation of the thermomechanical process is pointed out, and the significance of the
applied models is emphasized. In Sect. 12.4, the beginning of the analysis of bicon-
tinuous or multiphase materials is shown by a model generation technique through
microscopic image data processing, where the aforementioned procedures can be
applied to.

12.2 Experimental and Numerical Investigation of
Temperature-dependent Mechanical Behaviour of 3D
Printed Polyamide 12

The engineering requirements for additively manufactured polymer components are
growing as well as their applications are becoming more complex. Therefore, the
additively manufactured polymers are increasingly used in mechanically stressed
components. To ensure that additively manufactured polymers can withstand the
new conditions, it is essential to subject them to a testing procedure.

It cannot be assumed that a homogeneous material structure is achieved in ad-
ditive manufacturing in contrast to conventionally manufactured injection-molded
components. The thermoplastic polyamide 12 (PA12) is one of the materials used
and the subject of the described analysis. The damage behaviour under quasi-static
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tensile stress and the relaxation properties are of special interest in the characterisa-
tion procedure.

12.2.1 Experimental Analysis

12.2.1.1 Sample Preparation

The samples have been prepared by selective laser sintering (SLS). The SLS PA2200
material has been used. A sPro 230 printer from 3D Systems with a power of 70W
was used. It was operated with a laser scanning speed of 10m/s for the infill and
5m/s for contours. The nominal layer thickness was 0.08−0.15mm. The tempera-
ture of the pressure chamber and the process were 170◦C and 200◦C. The spherical
powder particles had a size in the range of 20− 80μm. Due to the fact that no test
standards exist for additive manufactured (AM) polymers, the geometry of the test
specimens was chosen according to DIN EN ISO 527-2 Type 1A (DIN Deutsches
Institut für Normung e.V., 2012), Fig. 12.1a. In previous investigations, it was found
that the material properties only slightly depend on the printing direction (Franke
et al., 2017). Therefore, all samples were printed in x-direction, according to the
definition in Fig. 12.1b.

12.2.1.2 Test Conditions

Exhibiting PA12 at a temperature from 10 to 40◦C shows a significant influence on
the mechanical properties. Therefore, three different types of tests were performed
- (I) isothermal and (II) non-isothermal tensile tests and (III) isothermal multirelax-
ation tests. A servo-hydraulic test machine from ZwickRoell with a 25kN load cell
and temperature chamber were used. (I) For the isothermal tensile tests four lev-
els of chamber temperature, 10◦C, 20◦C, 30◦C and 40◦C were selected. Five tests
were carried out for each temperature level with a displacement rate of 0.5mm/min,
Fig. 12.2 (a). (II) Five non-isothermal tests were performed with the temperature

Fig. 12.1: (a) Dimensions of the specimen, (b ) Sketch of the printing job: individual layers printed
in xy-plane; the build-up (stacking direction) in z-direction.
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Fig. 12.2 Test conditions for:
(a) isothermal tensile test, (b )
non-isothermal tensile test
and (c) isothermal multirelax-
ation test. (c)
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cyclically changing between 10− 40◦C at a rate of 0.2◦C/s during tensile load-
ing, Fig. 12.2 (b ). (III) Multirelaxation tests were built up stepwise and divided
into three holding times and three tensile load steps. The holding times were 4min
and the displacement rate of the tensile load was kept constant during the test at
5mm/min, Fig. 12.2 (c).

12.2.2 Microanalysis

12.2.2.1 Scanning Electron Microscopy

To describe the damage behaviour, the microstructure of the fracture surfaces of
the specimens was examined by means of a scanning electron microscopy (SEM)
after the tensile tests, Fig. 12.3. The images show an inhomogeneous microstructure
containing pores. In the fringe area, it was found that the printing process does not
produce a smooth surface and that small notches are formed on the surface.

Fig. 12.3: Scanning electron micrographs, (a) fracture surface 40× magnification, (b ) Section of
the upper edge area, 150× magnification.
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12.2.2.2 X-ray Computed Tomography

Figure 12.4 shows the reconstructed computed tomography (CT) images of a spec-
imen at a virgin state and after tensile loading. A porosity of 3.7% for the virgin
state resp. 3.6% for the loaded sample was measured. The distribution of the cavi-
ties over the specimen is very uniform, which means that an intensified melting on
the surfaces and edges during the printing process did not take place.

A statistical uniform void distribution together with the average void size sug-
gests that the assumption of material homogeneity and the validity of the phe-
nomenological approach are justified.

12.2.3 Numerical Analysis

Previous investigations (Schob et al., 2019) have shown that additively manufac-
tured PA12 behaves viscoplastically. The viscoplastic models established in recent
years can essentially be divided into two groups. One group introduces a specific
yield limit, while the other renounces an explicit yield limit and, consequently,
a pure elastic domain altogether. The first group includes the material model of
Chaboche (1989) and the material model of Bodner and Partom (1975); Bodner
(2000) belongs to the second group.

A separated temperature dependency for each material parameter can be estab-
lished for a temperature range of interest. A complete map involving a interdepen-
dence of all relevant parameters is usually experimentally out of scope. Instead,
the Johnson-Cook approach allows a generalised covering of the temperature de-
pendency in a material model and is mathematically applicable to the models of
Bodner-Partom and Chaboche (Bodner, 2000; Cook and Cook, 1983).

Furthermore, the microstructure analysis in Schob et al. (2019) showed a porosity
of 4.7% in the virgin samples. The pores have a spherical shape and change the shape
during loading. To model the damage behaviour of PA12, the Gurson-Tvergaard-
Needleman (GTN) model was successfully applied in Schob et al. (2019, 2020) for
static and cyclic loading at room temperature.

Fig. 12.4 CT rendering of
pores for a virgin (V, bot-
tom) and a loaded (T, top)
specimen.
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The Gurson (1977) and Lemaître and Desmorat (2005) damage models are the
most commonly used approaches for simulating processes with ductile fracture.
The approach of Lemaitre is based on the model of effective stresses by Kachanov
(1980). In the initially two-dimensional formulation, Lemaitre derives the damage
value from the ratio of the pore area fraction to the total area. The Gurson model
was developed on the studies of void growth by Rice and Tracey (1969) and takes
the void volume fraction of the total volume for the damage evolution into account.

In the following paragraphs, the Chaboche and the Bodner-Partom material mod-
els as well as the Johnson-Cook extension and the damage models of Gurson-
Tvergaard-Needleman and Lemaitre are described. Furthermore, they are applied
to the additively manufactured PA12 samples with the previously outlined loading
schemes.

12.2.3.1 The CHABOCHE Model

The CHABOCHE model is composed as a system of differential equations. Consid-
ering the theory of infinitesimal deformation, the total strain rate ε̇εεtot follows the
additive split into an elastic ε̇εεel and a viscoplastic ε̇εεvp rate fraction,

σ̇σσ= C · (ε̇εεtot − ε̇εεvp) (12.1)

with the CAUCHY stress σσσ and the linear elastic stiffness tensor C. Here, the defini-
tion of the viscoplastic strain rate ε̇εεvp is decisive:

ε̇εεvp = λ̇
∂φ

∂σσσ
with λ=

〈
φ

K

〉n

(12.2)

with the viscosity factor K and n. The viscoplastic multiplier λ describes the evolu-
tion of the viscoplastic deformation increment. The flow function φ enables the de-
termination whether the material undergoes a pure elastic or an elastic-viscoplastic
deformation (in the elastic domain φ< 0; in the elastic-viscoplastic domain φ= 0).
The following equation defines the flow function, where σy is the yield stress and
q1, q2 are the damage parameters according to Tvergaard and Needleman (1984).

φ=

(
σeff

eq

σy

)2

+2q1f
∗ cosh

(
3q2

2
σeff

m

σy

)
−1−(q1f

∗)2 � 0 (12.3)

Furthermore, the flow function is defined by the effective stress σeff
m and the

VON MISES equivalent stress σeff
eq ,
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σeff
eq =
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1
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2 +(σr
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3 −σr
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2
]

(12.4)

σeff
m =

(
σr
kk

3

)
(12.5)

σσσr = σσσ−ααα∗ (12.6)

ααα∗ = (1− f∗)
2∑

k=1

ααα(k) (12.7)

where σσσr is the relative stress and f∗ the damage evolution. Compared to the previ-
ous investigation (Schob et al., 2019), the kinematic hardening ααα∗

ααα∗ = T h(1− f∗)
2∑

k=1

ααα(k) with k= 1,2 (12.8)

was extended by the Johnson-Cook equation T h, Cook and Cook (1983); Bodner
(2000). This approach takes into account the displacement of the flow surface due
to the influence of temperature change. The Johnson-Cook equation is defined as,

T h =

(
1−

T −T0

Tm −T0

)d

(12.9)

by the empirical value d and the melting temperature Tm, with (T � T0). For the
isothermal experiments T h equals to one. In Eq. (12.8), the kinematic hardening
ααα(k) is defined by the following equation,

α̇αα(k) =
2
3
C(k)ε̇εεvp −γ(k)ααα(k)ε̇

vp
M with k= 1,2 and ε̇

vp
M =

σσσrε̇εεvp

(1− f∗)σy

(12.10)
where C and γ are hardening parameters and ε̇

vp
M is the rate of the equivalent vis-

coplastic strain.

12.2.3.2 The BODNER-PARTOM Model

The BODNER-PARTOM model has been used for modelling the mechanical be-
haviour of metals (Olschewski, 1996) and polymers (Zaïri et al., 2005). In contrast
to the CHABOCHE model, it contains no formulation of an established yield crite-
rion (Bodner, 2000). Thus, plastic deformation occurs at any time on the load-path,
no matter whether loading or unloading takes place. The BODNER-PARTOM model
is a system of ordinary first order differential equations and can be decomposed into
an equation for the viscoplastic strain rate ε̇vp, the multiplier ṗ connecting the strain
rate with the stress deviator, the scalar variable ZI representing isotropic hardening,
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the tensorial variable ZD representing kinematic hardening as well as the evolution
equation for the inelastic work Wvp.

Here, the isotropic hardening variable ZI consists of the coefficient for isotropic
hardening m1, the initial value for isotropic hardening K0, the limiting (maximum)
value for isotropic hardening K1, the fully recovered (minimum) value for isotropic
hardening K2, the recovery rate coefficient for isotropic hardening A1 and the re-
covery exponent for isotropic hardening r1. The tensorial variable ZD combines
the coefficient for kinematic hardening m2, the limiting (maximum) value for kine-
matic hardening K3, the recovery rate coefficient for kinematic hardening A2 and
the recovery exponent for kinematic hardening r2. The BODNER-PARTOM model is
summarized in Eqs. (12.11) - (12.15).

ε̇εεvp =
3
2
ṗ

σσσ ′

J(σσσ ′)
with σσσ ′ = σσσ−σiiI (12.11)

ṗ=
2√
3
D0 exp

⎡
⎢⎢⎢⎣−

1
2

⎛
⎜⎜⎜⎝

ZI+ZD · σσσ

J(σσσ)

J(σσσ ′)

⎞
⎟⎟⎟⎠

2n⎤
⎥⎥⎥⎦ (12.12)

Isotropic hardening

ŻI =m1(K1 −ZI)Ẇ
vp −A1

(
ZI−K2

K1

)r1

(12.13)

Kinematic hardening

ŻD =m2

(
K3

σσσ

J(σσσ)
−ZD

)
Ẇvp −A2

(
2
3J(ZD)

K1

)r2 ZD

J(ZD)
(12.14)

Specific viscoplastic work rate

Ẇvp = σσσ · ε̇εεvp (12.15)

12.2.3.3 The GURSON-TVERGAARD-NEEDLEMAN model

Since the CT results (Schob et al., 2019) suggest assuming spherical pores, the GTN
model (Tvergaard and Needleman, 1984) was applied. The original Gurson model
from 1977 is based on the assumption of spherical pores (Gurson, 1977). Whereby
a rigid-perfect plastic material behaviour is accepted and the flow criterion of VON
MISES is applied. A constant strain rate is applied. The flow function φ (Eq. (12.3))
is defined as a function of the macroscopic stress and the randomly distributed void
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volume. Tvergaard and Needleman (1984) extended the Gurson model. The ex-
tended model considers growth, nucleation and coalescence.

With the modified void volume fraction f∗, it is now possible to model the load
capacity loss above a critical void volume fraction fc. When a critical void volume
fraction fc is reached, coalescence occurs. This process continues until a failure
value fF is reached and the specimen fails. The initial porosity f0 is determined at
time t= 0.

f∗ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f0 if t= 0
f if f� fc

fc+

1
q1

− fc

fF− fc
(f− fc) if fc < f� fF

(12.16)

The void volume fraction considers the growth fg and nucleation fn of voids,
Eqs. (12.17) - (12.20).

ḟ= ḟg+ ḟn (12.17)

ḟg = (1− f)ε̇εε
vp
kk (12.18)

ḟn =
fNε̇

vp

SN
√

2π
exp

(
−

1
2

(
εvp −εN

SN

)2
)

(12.19)

f0 = f(t= 0) (12.20)

Nucleation is controlled by the nucleation porosity fN, the effective viscoplastic
strain εvp, the viscoplastic strain rate ε̇

vp, the mean strain εN and the standard de-
viation of the stress SN. The GTN model contains 8 damage parameters. The ini-
tial damage parameter f0 was determined by computed tomography in Schob et al.
(2020) and is 4.7%.

12.2.3.4 The LEMAITRE Damage Model

Layered building of components in AM results in anisotropy and material defects,
e.g. microcracks. Recent research (Stichel et al., 2017) revealed the correlation be-
tween microcracks in AM materials and anisotropy. Therefore, the focus of this
work is the mathematical description of the microcracks.

The anisotropic mechanical response could be the direct result of distinct pore
shapes or arrangements since pores are analogous to small pre-existing cracks
(Stichel et al., 2017). 3D printed PA12 shows distinct brittle material behaviour in
contrast to PA12 manufactured by injection moulding (Franke et al., 2017). The is-
sue of brittleness should be addressed considering two features: first, the nucleation
of a crack, which is favoured by the residual voids due to incomplete sintering;
secondly the crack propagation (Dupin et al., 2012). If the material does not fully
consolidate, crack initiation and failure can occur. (van Hooreweder et al., 2010)
performed fatigue tests on laser sintered PA12 and found that the crack initiation
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resulted from inclusions in the material caused by unfused powder particles. As a
result, lower density parts had a higher chance of crack initiation and undergoing
fatigue damage (Goodridge et al., 2012). The material density is a crucial influence
factor for the fatigue life of the components. The lower the density, the more un-
fused powder particles appear and the higher the chance for crack initiation to start
will be.

To predict rupture of structures with good accuracy, it is necessary to use coupled
constitutive equations. Therefore, the viscoplastic model of BODNER-PARTOM is
coupled with the LEMAITRE damage model (Lemaître and Desmorat, 2005). It is
based on the concept of effective stress due to material damage and fatigue. The
damage is caused by micro-cracks and only determined by the state in one single
material point. So, the impact of damage nearby is not considered. A macro-crack
is then considered as the set of points for which the local damage has reached its
critical value at failure. The Lemaitre model has the form of a system of ordinary
first order differential equations and can be decomposed into the effective stress
rate σ̇eff, the damage rate Ḋ and energy release rate Y. The damage rate consists
of the elastic modulus E, the damage parameters s and S, as well as of the rupture
time tr. The LEMAITRE damage model for the one-dimensional case is given in
Eqs. (12.21) - (12.24).
Effective stress

σ̇eff = (1−D)E(ε̇− ε̇vp) (12.21)

Damage rate

Ḋ=

(
Y

S

)s

ṗ (12.22)

S=
(2s+1)

1
s

2E

(∫tr
0

σ2s
eff ṗdt

) 1
s

(12.23)

Energy release rate

Y =
σ2

eff
2(1−D)2E

(12.24)

Further explanations on the LEMAITRE damage model can be found in Lemaître
and Desmorat (2005). For simplicity reasons, only isotropic material damage was
considered.
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12.2.4 Results

The material model parameters were optimized by the nonlinear least square method.
This method is commonly used for obtaining material parameters of the CHABOCHE
viscoplastic material model (Gong et al., 2010). The solution of the equations of the
material models with optimal material parameters is then compared with experi-
mental results. In Fig. 12.5 the results of the isothermal tensile test are presented
and validated with the CHABOCHE-GTN model. Throughout all temperature stages
an excellent agreement between experiment and simulation could be achieved. A
direct dependency between temperature and the elastic modulus could be observed.
The higher the temperature, the lower the elastic modulus. Furthermore, a decrease
of the maximum stress with increasing temperature could be noticed.

In Fig. 12.6 the results of the non-isothermal tensile test are presented and val-
idated with the CHABOCHE-GTN-JC model. An excellent agreement between ex-

Fig. 12.5 Results of the
isothermal tensile test, vali-
dation with the CHABOCHE-
GTN model.

Fig. 12.6: Results of the non-isothermal tensile test, validation with the CHABOCHE-GTN-JC
model.
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periment and simulation could be achieved. The JOHNSON-COOK extension of the
Chaboche-GTN model causes a stress increase with falling temperature and a stress
decrease with growing temperature. So, the JOHNSON-COOK extension allows to
precisely depict stress hardening and softening.

In Fig. 12.7 the results of the multirelaxation test are presented and validated
with the BODNER-PARTOM model as well as with the LEMAITRE micromechanical
damage extension. The solution of the equations of the material models with opti-
mal material parameters is compared with experimental results using the absolute
deviation (Agius et al., 2017). It reproduces the discrepancy between measured and
calculated stress of the material model at each time step of the experiment. An ex-
cellent agreement between experiment and simulation could be achieved with both
approaches, but the extended model reached a slightly lower absolute deviation and
thus a more realistic depiction of the material behaviour. This is due to consideration
of the effective stress due to damage of the LEMAITRE micromechanical damage
extension.

12.3 Thermomechanical Approach

In contrast to the described phenomenological description in the framework of con-
tinuum mechanics with the assumption of decoupling the mechanical and the ther-
mal process, this section provides the full set of equations in terms of continuum
thermomechanics towards a thermomechanical consistent material model. In this
scheme, the second law of thermodynamics leads to the well-known COLEMAN-
NOLL procedure motivating constitutive assumptions and the equation of heat con-
duction, as a major result of the energy balance, which is integrated in the set of
equations to solve. Therefore, the applied load and the corresponding deformation
path is understood as a thermodynamic process, which is expressed in a fully cou-
pled thermomechanical problem and implies a temperature evolution in the speci-
men.

In this respect, the thermomechanical approach opens up the observation meth-
ods in the experimental analysis to the evolving temperature field of the samples and
extents the classical characterisation procedure.

Fig. 12.7 Results of the mul-
tirelaxation test, validation
with the BODNER-LEMAITRE
model.
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The central stress-strain characteristics are accompanied by the temperature evo-
lution and the evolution of derived quantities such as the energy resp. energy-rate
transformation ratio (ETR). These three characteristics combined can improve the
assessment of the investigated deformation load path qualitatively as well as quan-
titatively.

The initial boundary value problem of the coupled displacement and tempera-
ture fields is experimentally well supported by a high-resolution infrared camera.
A reduced thermal boundary value control simplifies the experimental measures to
be realised. It is shown in the analysis that the attained surface temperature accu-
racy is well-suited for the identification of model parameters related to dissipative
deformation phenomena.

12.3.1 Analytical Formulation in the Framework of Continuum
Thermomechanics

As the analytical foundation for the description of deformation processes of fluids
and solids in the framework of thermodynamics was initiated among others by the
contributions of Truesdell and Noll (1992) in the 1960ies. Numerous valuable books
and articles followed. A more recent book by Haupt (2002) collects the earlier find-
ings in a clear systematisation and notation and addresses the theory of materials
and its applicability to generalized material classes with a large set of various defor-
mation phenomena comprehensively.

Thermodynamic consistency is proven by the fulfillment of the second law of
thermodynamics, which can be rewritten by the reduced dissipation inequality of
eq. (12.25).

δ=
1
ρ
σσσ ·ε̇εεi− ∂ψ̂

∂aaa
· ȧaa−

1
ρθ

qqq ·ggg� 0 with ψ= ψ̂
(
εεεe,θ,aaa

)
, (12.25)

ggg=∇∇∇θ and qqq=−kggg .

The reduced dissipation inequality is the result of the COLEMAN-NOLL procedure,
which connects the HELMHOLTZ free energy with the CAUCHY stress tensor σσσ as
well as with the entropy designated by η in the next equation. Here, the thermody-
namic potential of the HELMHOLTZ free energy ψ depends on the elastic fraction of
the total strain, the temperature θ and a set of internal variables of tensorial and/or
scalar type represented by aaa. The notation above incorporates the theory of infinites-
imal deformation (εεε = εεεe + εεεi – additive decomposition of the strain tensor into an
elastic resp. inelastic strain fraction) as well as the concept of internal variables aaa to
formulate the inelastic deformation phenomena. The temperature gradient is defined
by ggg and forms by being multiplied with the thermal conductivity k the heat flux qqq
– the isotropic case of FOURIER’s law.
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Then, the mechanical fraction, the first and second term in (12.25), of the inter-
nal dissipation δ consists of the plastic stress power and the rate of stored energy
dominated by the evolution of the internal variables assembled in a.

The thermodynamic restrictions lead to the GIBBS equation and furthermore,
with the balance of energy, to the equation of heat conduction (12.26), which forms
a coupled initial boundary value problem with the balance of momentum and the
appropriate set of boundary conditions.

cε
(
εεεe,θ,aaa

)
θ̇= θ

∂2ψ

∂θ∂εεεe
·ε̇εεe+ 1

ρ
σσσ ·εεεi− ∂

∂aaa

(
ψ+θη

) · ȧaa−
1
ρR

divqqq+ r (12.26)

In (12.26), the heat capacity cε belongs to the thermodynamic potential ψ and refers
to fixed state of deformation. The volumetric heat supply r is negligible for the
observed materials.

Work ratios dating back to the pioneering findings of TAYLOR/QUINNEY, 1934,
are used to give insight into the material behaviour. Additionally, the ratio ϕ (resp.
"ETR" in Fig. 12.8) of the corresponding rates assesses the kinetics on the energetic
level along the load path and provides, therefore, even more information with respect
to the chosen material model.

ei =
1
ρ
σσσ · ε̇εεi and es =

∂Ψ̂

∂aaa
ȧaa combined to ϕ := es/ei (12.27)

The generalised understanding of mechanical deformation as a thermomechani-
cal process can be connected to all sorts of possible deformation mechanisms and
their analytical representation. In the last decades, numerous contributions inves-
tigated the mechanical deformation behaviour, with reference to plastictity or vis-
coplasticity (replacing the index "i" by either "p" or "vp" in the equations above).

The presented results of the thermomechanical analyses focus on metal alloys,
where the experimental findings for a copper alloy suggest a viscoplastic behaviour
(Sparr et al., 2020). In this case, the thermomechanical analysis adopts two signifi-
cantly different material models for viscoplastic deformation phenomena. The first
viscoplasticity model by Bodner and Lindenfeld (1995) is slightly extended in the
description of the hardening behaviour, which has been outlined in 12.2.3.2, but
maintains it overall structure. It is again emphasised that it does not apply a yield
limit. The plastic strain rate is proportional to the stress deviator and its kinetics is

Fig. 12.8 Tensile test with
stepwise increased strain rate
– ETR–Plastic Work curve.
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represented in the proportionality factor by an exponential function. The negative
exponent itself contains the hardening parameters and is limited by the stress devi-
ator. The saturation behaviour in the hardening range is accounted for through the
plastic stress power in the evolutionary equations, which is also the regulatory entity
for the consistent thermomechanical coupling.

The second model proposed by Bröcker and Matzenmiller (2013) is based on
rheological model principles and returns to the strict separation of pure elastic and
elastic-viscoplastic deformation with a classical yield function, which is the core of
the PERZYNA rule of viscoplasticity. The hardening variables obey simple evolution
equations and account for the typical saturation behaviour. The original model was
extended to account for viscous deformation below the yield limit. For both cases,
the reader is referred to the original articles and the given sources therein.

In the context of finite deformation, a more generalized approach was given by
Shutov and Ihlemann (2011). The presented framework is a more detailed additive
split of the HELMHOLTZ free energy by adding an energy fraction, which ". . . stands
for the remaining part of the energy storage on the microstructural level . . . [and] is
not directly connected to any hardening effects".

A second investigation was directed at an additive manufactured stainless steel.
The Ultrafuse 316L filament from BASF is well suited for 3D printing on typical
FDM 3D printers. After printing, the tensile testing samples are subjected to a stan-
dard MIM (Metal Injection Molding) rinsing and a sintering processes to obtain
the final shape (Form E2× 6× 25 according to DIN 50125). In this case, a classi-
cal elasto-plastic material model is applied. Its motivation, mathematical formula-
tion and the thermomechanical consistency are thoroughly discussed in Kamlah and
Haupt (1998).

The basic ingredients for the stress-strain characteristic are the VON MISES type
yield function:

f=

√
2
3
(
σσσ−ξξξ

) ′ ·(σσσ−ξξξ
) ′
−σy (12.28)

and an associated flow rule. The symbol () ′ expresses the deviatoric part of the
tensorial entity, where the back stress and the yield limit are identified by ξξξ and
by σy, respectively. Here, the analysis for this material model is restricted to kine-
matic hardening, where the evolutionary equation for the back stress follows the
FREDERICK-ARMSTRONG type:

ξ̇ξξ= cε̇εεp−
ṡb

1+ap
ξξξ. (12.29)

The material parameters a,b and c are non-negative and the accumulated plastic
strain s is calculated from the consistency condition ḟ= 0. The first order differential
equation in Eq. (12.29) is non-linearly coupled with the evolution of the second
internal variable p:

ṗ=
ṡ

s0

(‖ξξξ‖−p
)

. (12.30)
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The positive material parameter s0 reflects the range of cycles, which is necessary
to adapt to a new plastic strain amplitude in a cyclic loading regime with the ampli-
tudes being stepwise constant. The proposed model accounts for cyclic hardening
as well as cyclic softening. In consequence to the applied stress-like internal vari-
ables ξξξ and p, Kamlah and Haupt (1998) develop the equation of heat conduction
by means of the free enthalpy as the corresponding thermodynamic potential. All
related equations can be transferred to the potential of the free HELMHOLTZ energy
by the LEGENDRE transform.

All models are implemented in the finite element software suite Abaqus FEA as a
user subroutine in the one-dimensional representation and are numerically analysed
accordingly.

12.3.2 Experimental Approach

Fundamental contributions to the experimental setup were made by Chrysochoos
et al. (1989); Rosakis et al. (2000). The technical progress in accuracy (≈0.01 K)
and resolution (≈ 1 Megapixel) of current infrared (IR) cameras extended the ap-
plicability and simplified the experimental setup. By own experiences (Sparr et al.,
2020), no extra measures have to be applied to control the thermal boundary condi-
tions. Standardized, blackened, flat copper samples were investigated by using the
ImageIR R© 8300 camera (InfraTec GmbH, Germany).

Additionally, the IR camera was used as an extensometer. In this regime, a
random, high emissive pattern was applied on the surface of the sample. A well-
designed correlation algorithm of the IR image sequence combined with an emis-
sivity correction scheme allows an accurate displacement compensation in the tem-
perature measurement as well as a surface strain field evaluation, which meets the
accuracy of other contact-free methods.

The temperature evolution of the full specimen surface as well as the temperature
of the clamps were established. The machine and the camera were synchronized by
a trigger signal.

12.3.3 Results and Discussion

The model parameters were identified by tensile tests at various strain rates. The
model was validated by a more complex loading scheme. Figure 12.9 (left) shows
the calculated stress-strain curve of four load-unload loops, while the strain rate is
increased stepwise. Especially, the unloading slopes are best met by the BODNER-
LINDENFELD model (B-L). The temperature evolution is illustrated by Fig. 12.9
(right) and is in good accordance with the measured temperature field.

The graphs in Fig. 12.8 of the applied models gives a third characteristic - the
ratio ϕ over the plastic work. The final plastic work value after four steps is almost



328 M. Ziegenhorn et al.

-50

 0

 50

 100

 150

 200

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

S
tre

ss
 [M

P
a]

Total Strain [-]

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06

Thermoelastic loading
Viscoplastic loading

Thermoelastic unloadingTe
m

pe
ra

tu
re

 C
ha

ng
e 

[K
]

Strain [-]

Experiment
orig. B-M
ext. B-M

B-L

Fig. 12.9: Tensile test with stepwise increased strain rate – (left) σ–ε curve and (right) ΔT–ε
curve.

identical for all three curves, while the values of the ETR ratio for the BRÖCKER-
MATZENMILLER models (original resp. extended B-M) are slightly higher than for
the B-L model. The starting ETR ratios at the beginning of the elastic-viscoplastic
deformation match for the extended B-M and the B-L model only. In contrast to the
B-M models, the BODNER-LINDENFELD model shows a very pronounced dynam-
ics in the turning points of the load parameter (transition for loading to unloading
and vice versa) .

In the pure tensile test, the elastic-plastic material model by Kamlah and Haupt
(1998) is limited to kinematic hardening. The graphs in Figs. 12.10 and 12.11 com-
pare two parameter sets for the additive manufactured stainless steel. The main dif-
ferences occur quali- and quantitatively at the beginning of plastic deformation.
While the σ-ε curve of set 2 agrees very well with the experimental data (blue),
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Fig. 12.10: Tensile test stainless steel (AM) with the application of the KAMLAH-HAUPT model –
(left) σ–ε curve and (right) ΔT–ε curve.

Fig. 12.11 Tensile test stain-
less steel (AM) with the
application of the KAMLAH-
HAUPT model – ETR–
Plastic Work curve.
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the set 1 is better suited to describe the smooth transition at the yield limit in the
temperature characteristics.

This becomes even more obvious in the ETR characteristics. The larger slope of
the parameter set 1 at the beginning of plastic deformation accommodates better the
behaviour observed of other metals or metal alloys, which poses questions on the
applied material model. The microstructure of the printed material has significant
differences to its casted counterparts in terms of grain size and voids. Therefore, it is
sensible to look for theoretical enhancements in the thermomechanical formulation,
which reflect the described effects of continuum damage mechanics in Sect. 12.2
for polymers, or to investigate the microstructure of materials with a complex man-
ufacturing procedure in more detail and apply suitable homogenisation strategies.
Both approaches rely on the numerical and experimental methods and tools in the
macroscopic scale.

12.4 Numerical Models Based on CT Data

While materials with moderate void volume fraction can be modeled with an ansatz
from continuum damage mechanics (cf. Sect. 12.2), other microstructures need to
be investigated at their corresponding scale. In the case of complex deformation
mechanisms of network structures or an unknown multiphase material interaction,
Fig. 12.12, it is necessary to take the actual microstructure of the material into ac-
count. It is important in the description of the material behaviour for numerical
analyses. One of the methods of analysing such materials is the preparation of a ge-
ometry model and its discretization based on computed tomography (CT) (Richert
and Huber, 2018).

Fig. 12.12: An example of a material with a non-homogeneous microstructure and a microscopic
image made with the SEM technique.
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Various modelling approaches simplify and parametrise the complex microstruc-
ture of porous materials for studying the structure–property relationship based on
artificially generated structures. This chapter presents an approach to generate com-
putational efficient and versatile finite element (FE) beam models which are based
on skeletonization and diameter information derived from CT data. The geomet-
rical skeleton network is thoroughly examined for a better understanding of the
microstructural material behaviour and to define an effective representative volume
element (RVE). A skeleton FE beam model is derived that can predict the macro-
scopic mechanical behaviour of the material (Fig. 12.13). Comparisons of the me-
chanical response between a beam model and a model based on a volumetric dis-
cretisation for the skeleton structure are conducted. The skeletonization algorithm
was implemented in the open-source software FIJI (Schindelin et al., 2012), among
other things commonly used for the geometry analysis and reconstruction of image
data.

Based on the imaging process (DICOM), the skeleton is obtained using the FIJI
software package. The sequence of grayscale images are thresholded first to obtain
binary data. For this purpose, Otsu method (Otsu, 2018) was used. Next, using me-
dial surface axis thinning algorithms (Lee et al., 1994) images of this sequence were
skeletonized (Fig. 12.14) resulting in a new sequence of images, with white pixels
on the estimated axes of beams only. In-house tools, based on the OpenCV library
and the Python environment, were then used to create a finite element mesh.

First, the data from Fiji, in the form of a series of monochrome bitmaps, are read.
Then, the whole volume is scanned, pixel by pixel, for all x, y and z coordinates,
using a frame of the size 3×3×3 pixels. The further actions will be applied if the
central pixel is white, depending on the number of neighbouring white pixels within
the frame.

If there is only one neighbouring white pixel, the current pixel is considered as
an endpoint. If there are exactly two neighbours, the current pixel lies on the beam.
If there are three or more neighbours, the current pixel represents a beam junction
(Fig. 12.15). Between neighbouring points the linear elements are created, forming
an initial mesh. After the scanning of the bitmap series, the initial mesh is being
simplified. The endpoint and junction nodes are preserved, while the most of the

Fig. 12.13: CT model and its representative FE model based on a full geometry volume.
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Fig. 12.14: The process of skeletonization from CT data in FIJI software.

Fig. 12.15: Selected CT imaging sequences and a view of the nodes identifying the connections of
individual branches.

rest of the nodes (lying along the beams) are removed. The only exception are nodes
lying in the middle of longer beams, which are preserved as well. The same applies
to the elements of the initial mesh that connect removed nodes. The next step is the
process of filling in the obtained FE model. The Gmsh software will be used for this
process. Based on the existing nodes of the skeleton, a mesh is added where matrix
properties are assigned to.

The generated FE model incorporates the geometry of the real microstructure
and allows for a high computational efficiency (Fig. 12.16). To this end, the dis-
cretisation of the structure has made use of beam elements available in Abaqus
FEA (Abaqus, 2014). As proposed by Huber et al., the cylindrical B31 beam el-
ement is used, which account for transverse shear strain in the Timoshenko beam
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Fig. 12.16: Model comparison: a) FE model based on volumetric elements; b) reduced FE model
based on beam elements.

theory (Huber et al., 2014; Roschning and Huber, 2016). In comparison to the ar-
tificially generated beam model of Huber et al., the novelty is that the skeleton FE
beam model emulates the actual ligament path and shape of the sample, which is
based on the skeleton and diameter information, respectively, and extracted from the
computed tomography. As for the translation of the tomography data into the beam
model, each ligament is divided into several beam elements along the skeleton line.
The number of beam elements per ligament depends on the chosen discretisation.
Each cylindrical beam element receives the average diameter of the associated vox-
els. Preliminary numerical validation (Fig. 12.16) was performed on the basis of
the obtained beam models. The obtained result and the stress concentration in the
same computational node were evaluated. The resulting numerical model is useful
for creating an effective RVE.

12.5 Summary

Each of the three main sections of this contribution can be considered separately.
However, in our understanding, essential points of overlaps exist in the three ex-
amined sub-areas of mechanics, so that in the overall view, the combination of the
different aspects makes a significant contribution to the analysis of new materials.
This concerns both the experimental investigations as well as the numerical simula-
tions.

The temperature dependency of the respective material parameters in Sect. 12.2
is based on the classical decoupling of purely mechanical and purely thermal pro-
cesses in the context of a continuum mechanical description for the numerical anal-
ysis. With the help of experimental observations, a microstructural evolution by
nucleation and/or pore growth is proven. This development could be successfully
depicted with the integration of continuum mechanical damage models. Slow tem-
perature changes by external heating in a climatic chamber can be adequately repre-
sented by the model variants as well, whereby the self-heating due to loading is not
accounted for in the material models.
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The analytical extension to the full thermomechanical coupling with regard to
an evolving temperature field considered in Sect. 12.3 gives additional information
about the physicality of the applied material models. The self-heating is driven by
the elastic and inelastic deformation and determined by the thermal parameters in
the general equation of heat conduction. The temperature evolution is dominated
by the internal dissipation and, therefore, strongly related to plastic resp. viscoplas-
tic deformation mechanisms covered in the material models in different ways. The
models need to obey to second law of thermodynamics. In addition to the classical
stress-strain characteristic, the temperature evolution as well as derived parameters
by evaluating of the energy balance are available and complement the physical un-
derstanding. The quantification of the dissipation due to damage is currently not
taken into account. With respect to damage modeling, additional energy terms ac-
cording to nucleation and/or pore growth have to be integrated, and the correspond-
ing material parameters have to be quantified.

A similar approach is also conceivable for multiphase materials from complex
manufacturing processes. However, the basis for this is an analysis of the compo-
nents and a microstructural analysis of the interaction of these components. The de-
scribed image processing and the associated reconstruction algorithms of Sect. 12.4
provide access to a deeper understanding. With the general assumptions of contin-
uum mechanics, the aforementioned methods can be applied on different scales.
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