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Preface

William Thurston’s ideas have had a profound and permanent influence on mathe-
matics since the last third of the twentieth century, and this influence is still growing
today, in geometry, topology, dynamics, and other fields, by the works of a whole
community of mathematicians who are inspired by these ideas.

This second volume of the collection In the Tradition of Thurston, with the
subtitle Geometry and Dynamics, covers several topics which originate in or are
strongly motivated by Thurston’s work. When we asked the various authors to
contribute to this volume, we told them (like we did for the previous volume) that
we wish the articles to be inspired by Thurston’s work, and to be preferably a survey.
On the other hand, we gave them complete freedom as to the choice of their topics,
because we knew that, given Thurston’s broad range of interests, there was little
chance to have any significant overlap between the various contributions.

The topics covered in the present volume include complex hyperbolic Kleinian
groups, Möbius structures, hyperbolic ends, cone 3-manifolds, Thurston’s norm,
surgeries in representation varieties, triangulations, spaces of polygons and of
singular flat structures on surfaces, combination theorems in the theories of Kleinian
groups, hyperbolic groups and holomorphic dynamics, iteration of rational maps,
automatic groups, and the combinatorics of right-angled Artin groups.

We thank all the authors for their valuable collaboration, and Elena Griniari for
her editorial support. We hope that the various chapters in this volume will be useful
for learning the kind of mathematics that Thurston transmitted to us.

Tokyo, Japan Ken’ichi Ohshika
Strasbourg, France Athanase Papadopoulos
July 2022
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William Thurston passed away in 2012, ten years ago. Since the beginning of his
career as a mathematician, in the early 1970s, Thurston continually introduced
new ideas, reviving old theories and making them very fresh and inspiring.
He reshaped many fields, including group theory, geometry, topology, complex
analysis, computer science, combinatorics and others, always trying to go deep in
his understanding of patterns and forms. He was an artist in every sense of the word,
creating beauty and sharing it with others. He loved mathematics, and transmitted
his way of thinking to several generations of mathematicians who work in a tradition
he established, until now and for many years to come.

Our objective in this volume, like in the other volumes of this series to which
we have given the generic name “In the tradition of Thurston”, is to make available
to the wide community of mathematicians some highlights of the beautiful ideas
which Thurston brought at the forefront of mathematical research. The main topics
considered here include complex hyperbolic Kleinian groups, Möbius structures,
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2 K. Ohshika and A. Papadopoulos

To give a more precise idea of the material presented in the volume, let us make
an overview of the content of each chapter.

Chapter 2, by Michael Kapovich, is titled A survey of complex hyperbolic
Kleinian groups. It consists in a survey of the geometry and dynamics of discrete
groups of isometries of complex hyperbolic spaces, with an emphasis on the
interactions between this theory and the function theory of complex hyperbolic
manifolds. Besides a fairly detailed exposition of these theories, the chapter contains
an introduction to several basic topics such as discrete subgroups of the group
PU(n, 1) of holomorphic isometries of complex projective space, geometrically
finite groups, the theory of ends, cone 3-manifolds, and critical exponents. The
chapter also contains a list of open problems on this theme.

In Chap. 3, titled Möbius structures, hyperbolic ends and κ-surfaces in hyper-
bolic space, Graham Smith studies a generalisation of the correspondence between
the boundary of the convex core of a quasi-Fuchsian manifold and the surface
at infinity, which was introduced in Thurston’s Princeton 1975–76 lecture notes.
The author proves general theorems giving the correspondence between Möbius
structures on a surface and hyperbolic ends, the latter being hyperbolic manifolds
carrying height functions, that is, locally strictly convex functions whose gradient
flow lines are unit speed geodesics and whose sub-level sets are complete. He
shows the existence and the uniqueness of the k-surface corresponding to a given
Möbius structure under certain reasonable assumptions, and constructs operators
which allow the passage back and forth between families of hyperbolic ends and
Möbius surfaces.

Chapter 4, by Joan Porti, titled Cone 3-manifolds, is concerned with the
deformation theory of cone 3-manifolds, more precisely, of 3-manifolds equipped
with metrics of constant curvature with singularities along embedded graphs. The
author describes the phenomena that occur by deforming the cone angles, including
the operations of cusp opening and collapsing, under special restrictions on the cone
angles. He reviews the role of cone 3-manifolds with small cone angles appearing
in the proof of Thurston’s orbifold geometrisation theorem. A central ingredient
in this proof involves a variation of the cone angles and an examination of the
phenomena that can occur during this process. The chapter also contains a survey
of the theory of geometric convergence of sequences of pointed cone manifolds
and a review of the related compactness theorems. At the same time, the author
mentions the appearance of cone manifolds in works of several authors other than
Thurston, including his own work with Boileau and Leeb, the works of Hodgson
and Kerckhoff in their study of Dehn fillings, of Bromberg in his proof of Bers’s
density conjecture, of Mednykh and Rasskazov on geometric structures on knot and
link complements, and of other authors working in Thurston’s tradition.

In Chap. 5, titled A survey of the Thurston norm, Takahiro Kitayama surveys
recent progress in 3-dimensional topology which involves the Thurston norm. This
is a semi-norm defined on the first cohomology group with real coefficient of a 3-
manifold, whose introduction has had a huge impact on 3-dimensional topology.
In this chapter, the author gives an overview of applications of the Thurston norm,
putting a special emphasis on its relation with topological invariants of 3-manifolds,
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such as the (twisted) Alexander polynomial, the Seiberg–Witten invariant, and
Heegaard–Flower homology, among others.

In Chap. 6, titled From hyperbolic Dehn filling to surgeries in representation
varieties, Georgios Kydonakis surveys gluing constructions in representation spaces
of surface groups into higher-rank Lie groups, as analogues of the operation
of hyperbolic Dehn filling invented by Thurston. The gluing construction in the
representation spaces consists in gluing Higgs bundles via the non-abelian Hodge
correspondence. Thurston, in his hyperbolic Dehn filling theorem, gave a family of
hyperbolic 3-manifolds which were unknown before. In the same way, the gluing
construction in the setting of this chapter gives subsets of “model representations”
which, presumably, could not be obtained by other methods. The author gives
specific examples in the case where the target Lie groups are SO(p, p + 1) and
Sp(4,R).

In Chap. 7, titled Acute geodesic triangulations of manifolds, Sang-Hyun Kim
gives a survey on the problem of existence of acute geodesic triangulations of
Riemannian manifolds. In the first part of this chapter, the author surveys known
results on acute triangulations of manifolds of dimension greater than 2: Kalai’s
theorem on the non-existence of acute geodesic triangulations of manifolds with
dimension greater than 5, and some partial results for dimensions 3 and 4. The
main part of the chapter deals with the case of surfaces. Starting from Colin
de Verdière’s result on the existence of geodesic triangulations on Riemannian
surfaces and Thurston’s famous theorem on the moduli space of flat metrics with
cone singularities on the two-sphere, the author presents important topics such as
the Koebe–Andreev–Thurston theorem on circle packings and a related result by
Hodgson–Rivin on hyperbolic 3-polytopes.

In Chap. 8, titled Signature calculation of the area Hermitian form on some
spaces of polygons, Ismail Sağlam studies Hermitian forms defined on the moduli
spaces of singular flat metrics on the sphere having unit area and with prescribed
curvature data at the singular points, arising from the area form. The work is
motivated by Thurston’s study of the moduli space of singular flat metrics on the
sphere with n cone-singular points having angles less than 2π , where he showed
that the area equation induces a Hermitian form of signature (1, n − 3) on the
moduli space of such structures. The author in this chapter generalises Thurston’s
construction to the case where one singular point has angle greater than 2π , and he
calculates the signature of the Hermitian form induced by the area form.

In Chap. 9, titled Equilateral convex triangulations of RP 2 with three conical
points of equal defect, Mikhail Chernaviskikh, Altan Erdnigor, Nikita Kalinin, and
Alexandr Zakharov study convex equilateral triangulations of the real projective
plane. The authors determine the top term of the growth function of the number
of isometry classes of equilateral triangulations of the real projective plane with at
most n vertices whose vertices have valency 6 except for three with valency 4. The
coefficient of the top term is expressed by the Lobachevsky function which appears
as the volume of a certain region in R

4.
Chapter 10 by Mahan Mj and Sabyasachi Mukherjee, is titled Combination

theorems in groups, geometry and dynamics. The authors survey a series of
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results, which they call “combination theorems”, and which are analogues of
the Klein–Maskit combination theorems for Kleinian groups. The fields visited
include hyperbolic geometry, geometric group theory and holomorphic dynamics.
Thurston’s influence on all these fields is highlighted. The survey starts with
the tools which Thurston developed in his proof of the uniformisation theorem
for Haken manifolds and then pass through combination theorems for Gromov-
hyperbolic groups due to Bestvina–Feign, Agol–Wise, Haglund–Wise and others.
They review the Mahan–Reeves combination theorems in the relative hyperbolicity
setting, Thurston’s topological characterisation of rational maps which led to the
Douady–Hubbard theory of mating in holomorphic dynamics, and the Mahan–
Mukherjee theory of combination of rational maps and Kleinian groups via orbit-
equivalence.

Chapter 11 by Kevin Pilgrim is titled On the pullback relation on curves induced
by a Thurston map. We recall here that a Thurston map is an orientation-preserving
branched covering of the sphere by itself which is of degree ≥2 and which is
postcritically finite, that is, the union of the forward orbit of its set of critical
points is finite. A key result in the theory of holomorphic dynamics is a theorem
of Thurston which provides a topological characterisation of (conjugacy classes
of) post-critically finite rational maps of the sphere among Thurston maps. In this
chapter, the author presents several results, including works of Floyd, Parry, himself
and others on the action of a Thurston map by inverse images on the set of isotopy
classes of simple closed curves in the complement of its post-critical set, and he
proposes several open questions in this setting.

Chapter 12, by William Floyd, is titled The pullback map on Teichmüller space
induced from a Thurston map. Thurston’s topological characterisation of rational
maps is based on a pullback map σf acting on a certain Teichmüller space associated
with a postcritically finite branched covering f of the Riemann sphere. Thurston
proved that such a branched covering is combinatorially equivalent (in some precise
sense) to a rational map if and only if σf has a fixed point. Furthermore, there is a
bijection between the fixed points of σf and the conjugacy classes of rational maps
equivalent to f . In this chapter, the author describes Thurston’s characterisation
theorem and discusses the recent development in understanding the pullback map
σf , made by Pilgrim, Selinger, Bartholdi, Nekrashevych, Buff, Epstein, Koch and
others.

Chapter 13, by Russell Lodge, Yauhen Mikulich and Dierk Schleicher, is titled A
classification of postcritically finite Newton maps. Here, a Newton map is a rational
function f : ̂C → ̂C for which there exists some complex polynomial p(z) such
that f (z) = z − p(z)

p′(z) for all z ∈ C. Newton maps arise in the application of
Newton’s method to a polynomial, and they form a natural family to be studied from
the dynamical perspective. In this chapter, the authors work out, for the family of
postcritically finite Newton maps, a complete combinatorial classification in terms
of a finite connected graph satisfying certain explicit conditions. The classification
relies on Thurston’s characterisation and rigidity theorem for postcritically finite
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branched covers of the sphere. This is a remarkable instance where a whole family
of rational functions is subject to a classification.

Chapter 14, by Sarah Rees, is titled The development of the theory of automatic
groups. After an overview of the basic notions of automatic, bi-automatic and
combable groups, the author explains why hyperbolic groups and fundamental
groups of compact 3-manifolds based on six of Thurston’s eight geometries are
automatic. She then describes algorithmic aspects of these groups and explains how
actions of groups on spaces satisfying various notions of negative curvature can be
used to prove automaticity or bi-automaticity. She shows how these results have
been used to derive such properties in the setting of mapping class groups, Coxeter
groups, braid groups and other families of Artin groups. All along the text, the author
surveys the important problems which were tackled by the theory of automatic
groups, mentioning several among those which remain open. We recall that the
notion of automatic group was introduced by Thurston, after Cannon published his
paper 1984 paper The combinatorial structure of cocompact discrete hyperbolic
groups, in which the latter showed that Cayley graphs of cocompact discrete groups
of isometries of n-dimensional hyperbolic space have a finite recursive description.
Cannon, in the introduction to this paper, expresses his debt to Thurston who
promoted a return to geometric considerations for the study of groups, that is, to
the classical methods of Dehn and Cayley.

Chapter 15, by Thomas Koberda, is titled Geometry and combinatorics via
right-angled Artin groups. We recall that for a given finite simplicial graph �, the
associated right-angled Artin group is the group whose generators are the vertices
of � and whose relations are the commutators corresponding to the edges �. As the
author explains, these groups interpolate between free groups and abelian groups.
Starting with right-angled Artin groups, he addresses several questions pertaining
to the fields of combinatorial group theory, graph theory, complexity theory,
mathematical logic, mapping class groups, hyperbolicity and others. Thurston’s seal
is visible on several of these questions. The author points out relations between
objects from these various fields and formulates some open problems. In the last
section, he provides a list of questions concerning what remains to be understood on
the relationship between combinatorics and algebra, from the perspective of right-
angled Artin groups.

The broad range of the contributions in this volume gives only a small idea of the
scope of Thurston’s impact on mathematics. It is certain that his insight, which is
unique in the modern history of mathematics, will continue to influence succeeding
generations of mathematicians.



Chapter 2
A Survey of Complex Hyperbolic
Kleinian Groups

Michael Kapovich

Abstract This survey of discrete subgroups of isometries of complex hyperbolic
spaces is aimed to discuss interactions between function theory on complex
hyperbolic manifolds and the theory of discrete groups. We present a number
of examples and basic results about complex-hyperbolic Kleinian groups. The
appendix to the paper written by Mohan Ramachandran includes a proof of a result
known as “Burns’ Theorem” about ends of complex-hyperbolic manifolds.

Keywords Discrete groups · Complex-hyperbolic geometry
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2.1 Introduction

This survey is based on a series of lectures I gave at the workshop “Progress in
Several Complex Variables,” held in KIAS, Seoul, Korea, in October of 2019. It
is useful to read it in conjunction with my (longer) survey of discrete isometry
groups of real hyperbolic spaces, [51], since most issues in the real and complex
hyperbolic settings are quite similar. The theory of complex hyperbolic manifolds
and complex hyperbolic Kleinian groups (aka discrete holomorphic isometry groups
of complex hyperbolic spaces H

n
C

) is a rich mixture of Riemannian and complex
geometry, topology, dynamics, symplectic geometry and complex analysis. The
choice of topics covered in the survey is governed by my personal taste and is,
by no means, canonical: It is geared towards a discussion of interactions between
the function theory on complex hyperbolic manifolds and the geometry/dynamics
of complex hyperbolic Kleinian groups (Sects. 2.9 and 2.10). I refer the reader
to [15, 33–35, 66, 70–72, 79] for further discussion of the geometry of complex
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hyperbolic spaces and their discrete isometry groups. The bibliography of complex
hyperbolic Kleinian groups appearing at the end of the survey is long but is not
meant to be exhaustive, my apologies to everybody whose papers are omitted.

It should be pointed out that the development of the theory of complex hyperbolic
manifolds and complex hyperbolic Kleinian groups was influenced in part by
the work of William Thurston on real hyperbolic manifolds and Kleinian groups
(especially Thurston’s approach to geometric finiteness and orbifolds), as well as
by Thurston’s work on general geometric structures on manifolds. On a personal
note, Thurston’s way of thinking about hyperbolic manifolds, discrete groups and
geometric structures, was the single most importance influence on my mathematical
work. Much of my past and present research is driven by attempting to understand
and generalize Thurston’s results.

2.2 Complex Hyperbolic Space

Most of the basic material on geometry of complex hyperbolic spaces can be
found in Goldman’s book [35]; I also refer the reader to [33, 70, 72] for shorter
introductions.

Consider the vector space V = C
n+1 equipped with the pseudo-Hermitian

bilinear form

〈z,w〉 = −z0w̄0 +
n
∑

k=1

zkw̄k.

Set q(z) := 〈z, z〉. This quadratic form has signature (n, 1). Define the negative
light cone V− := {z : q(z) < 0}. Consider the complex projective space Pn := PV ,
the projectivization of V , and the projection p : z 	→ [z] ∈ P

n. The projection
Bn := p(V−) is an open ball in P

n. In order to see this, consider the affine
hyperplane in C

n+1 given by A = {z0 = 1} (and equipped with the standard
Euclidean Hermitian metric). Then V− ∩ A is the open unit ball in A centered at
the origin. This intersection projects diffeomorphically to p(V−).

The tangent space T[z]Pn is naturally identified with z⊥, the orthogonal comple-
ment of Cz in V , taken with respect to 〈·, ·〉. If z ∈ V−, then the restriction of q
to z⊥ is positive-definite, hence, 〈·, ·〉 project to a Hermitian metric h (also denoted
〈·, ·〉h) on Bn. From now on, I will always equip Bn with the Hermitian metric h and
let d denote the corresponding distance function on Bn.

Definition 2.1 The complex hyperbolic n-space Hn
C

is (Bn, h).

I next describe the Hermitian metric h on Bn using the coordinates (z1, ..., zn) on
A. First, regarding Bn as a subset of the affine hyperplane A, for a vector y ∈ TxBn

we have

〈y, y〉h =
〈x, x〉〈y, y〉 − 〈x, y〉〈y, x〉

−〈x, x〉2 .
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Setting x = (1, z), z ∈ C
n, and denoting u · v the standard Euclidean Hermitian

inner product on C
n, we obtain:

〈y, y〉h =
(−1+ |z|2)|y|2 − (z · y)(y · z)

−(−1+ |z|2)2 , y ∈ TzBn.

In the differential form, the metric h is, thus, given by

ds2
h =

1

1− |z|2
n
∑

k=1

dzkdz̄k + 1

(1− |z|2)2
n
∑

j,k=1

zj z̄kdzkdz̄j .

This Hermitian metric is Kähler, with the Kähler potential (centered at the origin)
equal to

f (z) = log(1− |z|2),

and the Kähler form ω = i
2∂∂̄f equal to

ω = 1

1− |z|2
n
∑

k=1

dzk ∧ dz̄k + 1

(1− |z|2)2
n
∑

j,k=1

zj z̄kdzk ∧ dz̄j .

The complex hyperbolic metric on Bn (the unit ball in C
n) is the Bergman metric

with the Bergman kernelK(z, ζ ) equal to

K(z, ζ ) = n!
2πn

(1− (z · ζ ))−n−1,

where, as before, z · ζ is the standard Hermitian inner product on C
n.

The distance function d on H
n
C

satisfies

cosh2(d([x], [y])) = 〈x, y〉〈x, y〉
〈x, x〉〈y, y〉 .

For example, specializing to the case when [x] is the center of Bn and [y] is
represented by a point z ∈ Bn, we obtain:

cosh2(d(0, z)) = (1− |z|2)−1.

See [35, pp. 72–79] and [59, §1.4]; note however that Goldman uses a different
normalization of the metric on the complex hyperbolic space; with his normalization
sectional curvature varies in the interval [−2,− 1

2 ].
A real linear subspace W ⊂ V is said to be totally real with respect to the form

〈·, ·〉 if for any two vectors z,w ∈ W , 〈z,w〉 ∈ R. Such a subspace is automatically
totally real in the usual sense: JW ∩ W = {0}, where J is the almost complex
structure on V .
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Real geodesics in Bn are projections (under p) of totally real indefinite (with
respect to q) 2-planes in V (intersected with V−). For instance, geodesics through
the origin 0 ∈ Bn are Euclidean line segments in Bn.

More generally, totally-geodesic real subspaces in Bn are projections of totally
real indefinite subspaces in V (intersected with V−). They are isometric to the
real hyperbolic space H

n
R

of constant sectional curvature −1. Boundaries of real
hyperbolic planes are called real circles in S2n−1.

Complex geodesics in Bn are projections of indefinite complex 2-planes; bound-
aries of complex geodesics are called complex circles in S2n−1. Complex geodesics
are isometric to the unit disk with the Hermitian metric

dzdz̄

(1− |z|2)2 ,

which has constant curvature −4. These are the extremal disks for the Kobayashi
metric on Bn, which coincides with the complex hyperbolic distance function d . It is
also equal to the Caratheodory’s metric on Bn (as is the case for all bounded convex
domains in C

n).
More generally, complex hyperbolic k-dimensional subspaces H

k
C

in Bn are
projections of indefinite complex k + 1-dimensional subspaces (intersected with
V−).

All complete totally-geodesic submanifolds in H
n
C

are either real or complex
hyperbolic subspaces.

The holomorphic bisectional curvature of Hn
C

is constant, equal to −1. It turns
out that Hn

C
has negative sectional curvature which varies in the interval [−4,−1].

Thus, Hn
C

is a negatively pinched Hadamard manifold:

Definition 2.2

1. A Hadamard manifold X is a simply-connected complete nonpositively curved
Riemannian manifold.

2. A Hadamard manifoldX is said to have strictly negative curvature if there exists
a < 0 such that the sectional curvature of X is ≤ a.

3. A Hadamard manifold X is said to be negatively pinched (has pinched negative
curvature) if there exist two negative numbers b ≤ a < 0 such that the sectional
curvature of X lies in the interval [b, a].
The group U(n, 1) = U(q) of (complex) automorphisms of q projects to the

group G = PU(n, 1) = Aut(Bn) of complex (biholomorphic) automorphisms
of Bn. This group acts transitively, with the stabilizer of the center of Bn equal
to K = U(n). Consequently, the metric d on Bn is complete. The group G is a
Lie group, its Lie topology is equivalent to the topology of pointwise convergence,
equivalently, the topology of uniform convergence on compacts in Bn, equivalently,
the quotient topology of the matrix group topology on U(n, 1). The group G is
linear, its matrix representation is given, for instance, by the adjoint representation,
which is faithful since G has trivial center.
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The Lie groupG is connected and has real rank 1. Its Cartan decomposition is

G = KA+K,

where A+ is the semigroup of positive translations (transvections) along a chosen
geodesic through 0.

Let Bn denote the closure of Bn in P
n. The boundary sphere S2n−1 = ∂Bn of

Bn is the projection to P
n of the null-cone of the form q . The sphere S2n−1 is a CR

manifold: It is equipped with a smooth totally nonintegrable hyperplane distribution
Hz, z ∈ S2n−1,

Hz = TzS2n−1 ∩ J (TzS2n−1),

where J is the almost complex structure on P
n. The subspace Hz is a (complex)

hyperplane in TzPn. We let Pz denote the unique projective subspace in P
n passing

through z and tangent to Hz. Thus, Pz ∩ Bn = {z}.
One defines a sub-Riemannian metric dC on S2n−1 as follows. Given points

ξ, η ∈ S2n−1, define Cp,q as the collection of smooth paths c : [0, 1] → S2n−1

connecting p to q such that c is a contact path, i.e. c′(t) ∈ Hc(t) for all t ∈ [0, 1].
Then the Carnot metric dC on S2n−1 is

dC(ξ, η) = inf
c∈Cξ,η

∫ 1

0
||c′(t)||dt,

where || · || is a background Riemannian metric on S2n−1, say, the unique metric
of sectional curvature +1 invariant under O(2n). It turns out that dC is indeed a
metric which topologizes S2n−1. However, unlike a Riemannian metric on S2n−1,
which has Hausdorff dimension equal to the topological dimension, the metric space
(S2n−1, dC) is fractal, its Hausdorff dimension dimH is equal to

dimH(S2n−1, dC) = 2n.

Most of the following discussion is valid for general negatively pinched
Hadamard spaces; I refer to the paper by Bowditch [11] for details, especially
in the context of discrete isometry groups.

Since Hn
C

is a Hadamard manifoldX, it has an intrinsically defined ideal (visual)
boundary ∂∞X, defined as the set of equivalence classes of geodesic rays, where
two rays are equivalent if and only if they are within finite Hausdorff distance. Every
geodesic ray is equivalent to a geodesic ray emanating from a chosen base-point o ∈
X. The topology on ∂∞X is the quotient topology, where the space of geodesic rays
is equipped with the topology of uniform convergence on compacts. Equivalently,
since the map from the unit tangent sphere UToX at o to ∂∞X is bijective, ∂∞X is
homeomorphic to UToX. The union X := X ∪ ∂∞X also has a natural topology
with respect to which it is homeomorphic to the closed ball. Given a subset Y ⊂ X,
we define ∂∞Y as the intersection of the closure of Y in X with ∂∞X.
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If X is strictly negatively curved, it satisfies the visibility property: Any two
distinct points ξ, η ∈ ∂∞X are connected by a unique geodesic, denoted ξη.

In the case X = H
n
C

, this abstract compactification is naturally homeomorphic to
the closed ball compactification Bn: Two geodesic rays c1, c2 are equivalent if and
only if they terminate at the same point of the boundary sphere S2n−1.

Suppose that X is a Hadamard manifold. Given a closed subset � ⊂ ∂∞X, one
defines the closed convex hull, denoted hull(�), of � in X as the intersection of all
closed subsets C ⊂ X such that ∂∞C ⊃ �. For η > 0 we will use the notation
hullη(�) to denote the closed η-neighborhood of hull(�) in X.

Theorem 2.1 (M. Anderson [3]) If X has pinched negative curvature then for
every closed subset� ⊂ ∂∞X which is not a singleton, hull(�) is a (closed, convex)
subset of X such that ∂∞ hull(�) = �.

Remark 2.1

(a) Assuming that X is negatively curved:

1. hull(�) = ∅ if and only if � consists of at most one point.
2. For any two distinct points ξ, η ∈ ∂∞X, hull({ξ, η}) = ξη.

(b) Anderson’s theorem fails for the Euclidean plane X = E2.

Anderson’s theorem requires negative pinching: It fails if X merely has strictly
negative curvature, see [2].

The geometry of convex hulls remains a bit of a mystery, for instance we still do
not entirely understand volumes of convex hulls of finite subsets. The best known
result seems to be:

Theorem 2.2 (A. Borbély [9]) IfX ism-dimensional, has curvature in the interval
[−k2,−1] and � has cardinality ≤ n, then V ol(hull(�)) ≤ Cn2−η, where C =
C(m, k), while

η = 1

1+ 4k(m− 1)
.

For a closed subset � ⊂ ∂Bn, define its tangent hull �̂ as the union of
hyperplanes Pλ, λ ∈ �. I will refer to the hyperplanes Pλ, λ ∈ � as the complex
support hyperplanes of �. Similarly, for an open subset  = ∂Bn −�, define

̌ = P
n − �̂. (2.1)

Remark 2.2 �̂ is also closed and �̂ ∩ Bn = �.

See Appendix A for a discussion of horospheres and horoballs in Hadamard
manifolds X and the horofunction compactification of X, which leads to an
alternative description of the topology on X.
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Isometries ofX extend to homeomorphisms ofX; in the setting of Bn, this is just
the fact that all automorphisms of Bn are restrictions of projective transformations:

PU(n, 1) < PGL(n + 1,C).

The groupG = PU(n, 1) acts doubly transitively on the boundary sphere S2n−1:
Given two pairs of distinct points ξi , ηi , i = 1, 2, we connect these points by unique
biinfinite (unit speed) geodesics ci = ξiηi . Set zi := ci(0), vi := c′(0) ∈ TziBn.
Then, sinceG acts transitively on the unit tangent bundleUTBn, there exists g ∈ G
sending v1 	→ v2. Thus, g(c1) = c2 and, consequently, g(ξ1) = ξ2, g(η1) = η2.

Classification of Isometries Every isometry g ∈ G = Aut(Bn) is continuous
on the closed ball Bn and, hence, has at least one fixed point there. Accordingly,
automorphisms g ∈ G are classified as:

1. Elliptic: g has a fixed point z in Bn. After conjugating g via h ∈ Aut(Bn) which
sends z to 0,

hgh−1 ∈ K = U(n).

2. Parabolic: g has a unique fixed point in Bn and this is a boundary point z ∈
S2n−1. Equivalently,

inf{d(z, gz) : z ∈ Bn} = 0

and the infimum is not realized.
3. Hyperbolic: g has exactly two fixed points ξ, η in Bn, both are in S2n−1. (In

particular, g preserves the unique geodesic ξη in Bn and acts as a translation
along this geodesic. This geodesic is called the axis of g.) Equivalently,

inf{d(z, gz) : z ∈ Bn} �= 0.

This infimum is realized by any point on the axis of g.

The fixed point λ of a hyperbolic isometry γ is called attractive (resp. repulsive)
if for some (every) x ∈ X, γ i(x)→ λ as i →∞ (resp. i →−∞).

An elliptic automorphism of Bn is called a complex reflection if its fixed-point
set is a complex hyperbolic hyperplane in H

n
C

.

As any strictly negatively curved Hadamard manifold, Hn
C

satisfies the conver-
gence property:

Theorem 2.3 For every sequence gi ∈ G = PU(n, 1), after extraction, the
following dichotomy holds:

(a) Either gi converges to an isometry g ∈ G.
(b) Or there is a pair of points ξ, η ∈ S2n−1 such that gi |Bn−{η} converges uniformly

on compacts to the constant ξ .
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Proof First, one proves the convergence property for sequences of hyperbolic
isometries with a common axis. The Cartan decomposition of G then concludes
the proof.

In the case (b), I will say that (gi) converges to the quasiconstant map ξη. (The
point η is the indeterminacy point of ξη.)

It turns out that most elementary properties of discrete isometry groups of strictly
negatively curved Hadamard manifolds can be derived just from the Convergence
Property! See [12, 85, 86] for a development of the theory of convergence group
actions on compact metrizable spaces, i.e. topological group actions satisfying the
Convergence Property.

Remark 2.3

1. If gi → ξη then g−1
i → ηξ .

2. If gi → ξη, then (gi) converges (again, uniformly on compacts) to the constant
map ξ on P

n − Pη.

2.3 Basics of Discrete Subgroups of PU(n, 1)

Almost all the properties of discrete subgroups � < G = PU(n, 1) stated in
this section hold for discrete isometry groups of negatively pinched Hadamard
manifolds.

Definition 2.3 A subgroup � < Isom(X) of isometries of a Riemannian manifold
X is called discrete if it is discrete as a subset of Isom(X). Discrete subgroups
� < PU(n, 1) are complex hyperbolic Kleinian groups.

Here, all reasonable topologies on Isom(X) agree. For instance, one can use the
topology of uniform convergence on compact subsets, or the topology of pointwise
convergence.

Recall that a group � of homeomorphisms of a topological space X is said to act
properly discontinuously on X if for every compact C ⊂ X,

card{γ ∈ � : γC ∩ C �= ∅} <∞.

Remark 2.4 Suppose that X is a Riemannian manifold and G = Isom(X) is the
isometry group of X.

(a) The following are equivalent for subgroups � < G:

1. � is a discrete subgroup of G.
2. � acts properly discontinuously on X.
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3. For one (equivalently, every) x ∈ X the function � → R+, γ 	→ d(x, γ x)

is proper (with � equipped with discrete topology), i.e. if γi is a sequence
consisting of distinct elements of �, then

lim
i→∞ d(x, γix) = ∞.

(b) Every discrete subgroup of G is at most countable.

A group � is said to act freely on X is for every x ∈ X, the �-stabilizer

�x = {γ ∈ � : γ x = x}
is the trivial subgroup of �.

If X is a manifold and � is a group acting freely and properly discontinuously,
then the quotient space X/� is a manifold and the projection map X → X/�

is a covering map. If one does not assume freeness of the action then X/� is an
orbifold and the projection mapX→ X/� is an orbi-covering map. IfX is simply-
connected, the group � is the (orbifold) fundamental group of X/�. See Appendix
D for a discussion of orbifolds and related concepts.

In the case when X is a Hadamard manifold, a subgroup � < Isom(X) acts
freely on X if and only if � is torsion-free, i.e. every nontrivial element of �
has infinite order. If � acts on X isometrically/holomorphically, the Riemannian
metric/complex structure on X descends to the quotient manifold (orbifold)X/�.

Definition 2.4 A complex hyperbolic n-dimensional orbifold (manifold) is the
quotient of Hn

C
by a discrete (torsion-free) subgroup of PU(n, 1),M� = H

n
C
/�.

Remark 2.5 If X is a Hadamard manifold and � < Isom(X) is discrete, then � is
torsion-free if and only if it contains no elliptic elements, besides the identity.

For finitely generated subgroups � < PU(n, 1), one can eliminate torsion by
passing to a finite index subgroup:

Theorem 2.4 (Selberg’s Lemma, See E.g. [32] or [74]) If k is a field and � <
GL(n,k) is a finitely generated subgroup, then � is virtually torsion-free, i.e.
contains a torsion-free subgroup of finite index.

In particular, every complex hyperbolic orbifold O with finitely generated
(orbifold) fundamental group, admits a finite-sheeted manifold orbi-coveringM →
O.

Remark 2.6 Selberg’s theorem fails for discrete finitely generated groups of isome-
tries of negatively pinched Hadamard manifolds, see [52].

Definition 2.5 Given a Hadamard manifold X, a discrete subgroup � < Isom(X)
and a point x ∈ X, the limit set � = �� is the accumulation set of the orbit �x in
∂∞X, i.e.

� = ∂∞(�x).
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The complement := ∂∞X −� is called the discontinuity domain of �.

Remark 2.7 Suppose that � is a discrete subgroup of Isom(X) and X is strictly
negatively curved. Then:

1. � is independent of x ∈ X.1

2. � is closed and �-invariant. Accordingly,  is open in ∂∞X and is �-invariant
as well.

3.  is either empty or is dense in ∂∞X.
4. Either � consists of at most two points or it is perfect, i.e. contains no isolated

points.
5. If �′ is a subgroup of �, then��′ ⊂ �� .
6. If �′ � � is an infinite normal subgroup then ��′ = �� .
7. If �′ < � is a subgroup of finite index then ��′ = �� .

Example 2.1 Let γ ∈ Isom(X) be a non-elliptic element. Then the limit set of the
group � = 〈γ 〉 generated by γ is equal to the fixed-point set of γ in ∂∞X.

Lemma 2.1 If � < Isom(X) is a discrete subgroup and X is a strictly negatively
curved Hadamard manifold, then � acts properly discontinuously on Y = X ∪.

Proof Let C be a compact subset of Y . Suppose there exists a sequence consisting
of distinct elements γi ∈ � such that for each i, γiC ∩ C �= ∅. In view of
the Convergence Property, after extraction, the sequence γi either converges to
an isometry γ ∈ Isom(X) (which would contradict the discreteness of �) or to
a quasiconstant map ξη, with ξ, η ∈ �. Since (γi) converges to ξ uniformly on
compacts inX−{η} and C ⊂ Y ⊂ X−{η} is compact, there exists a neighborhood
U of ξ disjoint from C; thus, for all but finitely many values of i, γi(C) ⊂ U . A
contradiction.

A more difficult result is

Theorem 2.5 (A. Cano and J. Seade, See [15, 16]) Every discrete subgroup � <
PU(n, 1) acts properly discontinuously on ̌ := P

n − �̂ (see (2.1)).

Remark 2.8 An alternative proof of this result is an application of a proper discon-
tinuity theorem in [55]. More precisely, let F1,n be the flag-manifold consisting of
flags (V1, Vn) in V = C

n+1, where V1 is a line and Vn is a hyperplane (containing
V1). We have a G-equivariant holomorphic fibration π : F1,n → P

n sending each
pair (V1, Vn) to V1. The tangent hull �̂ of � defines a natural continuous map
θ : �→ F1,n sending each λ ∈ � to the pair (V1, Vn) consisting of the preimages
of λ and Pλ in V . Let �̃ be the image of θ and let T h(�̃) be the thickening of
�̃ in F1,n, consisting of flags (V ′1, V ′n) such that either V ′1 belongs to � or V ′n
is a complex support hyperplane of �. Then � acts properly discontinuously on
Th = F1,n − T h(�̃); see [55]. Since π−1(̌) ⊂ Th, the action of � on ̌ is
properly discontinuous as well.

1 This also holds for general Hadamard manifolds even though the convergence property fails.



2 A Survey of Complex Hyperbolic Kleinian Groups 17

In particular, the quotient M� := (Bn ∪ )/� embeds as an orbifold with
boundary in the complex orbifold without boundary ̌/�. The boundary of M�

(equal to /�) is strictly Levi-convex in ̌/�.

Notation The boundary ∂M� of a complex hyperbolic orbifold M� is �/�; in
other words, this is the boundary ofM� . ��

We now return to the discussion of discrete subgroups of general negatively
pinched Hadamard manifoldsX.

Theorem 2.6 If α, β are hyperbolic elements of a discrete subgroup of Isom(X),
then their fixed-point sets are either equal or disjoint.

Corollary 2.1 If � < Isom(X) is discrete and fixes a point λ ∈ ∂∞X then ��
either equals to {λ} and � contains no hyperbolic element, or �� consists of two
points,�� = {λ, λ′} and � contains no parabolic element.

Definition 2.6 A discrete subgroup � < Isom(X) is called elementary if
card(��) ≤ 2. It is said to be nonelementary otherwise.

Elementary subgroups are, in many ways, exceptional, among discrete sub-
groups.

In view of Remark 2.7(4), the limit set of every nonelementary subgroup is
perfect. In particular, it has the cardinality of the continuum. Hence:

Proposition 2.1 The limit set of a discrete subgroup of Isom(X) consists of 0, 1, 2
or a continuum of points.

Proposition 2.2 The limit set of a nonelementary discrete group � is the smallest
nonempty closed �-invariant subset of ∂∞X. In particular, every orbit in �� is
dense.

Proof Suppose that L � �� is a closed nonempty and �-invariant subset. Take a
point ξ ∈ ��−L and let (γi) be a sequence in � converging to a quasiconstant map
ξη. Then for every λ ∈ L − {η}, limi→∞ γi(λ) = ξ . Since L is closed and ξ /∈ L,
for all sufficiently large i, γi(λ) /∈ L, contradicting the invariance of L. This leaves
us with the possibility that L is the singleton {ξ} and ξ is fixed by the entire �. It
then follows that � is elementary.

Theorem 2.7 Suppose that � is an elementary subgroup of Isom(X).

1. If �� is a singleton then every element of � is elliptic or parabolic.
2. If �� consists of two points then every element of � is elliptic or hyperbolic.

Hyperbolic elements fix �� pointwise. Elliptic elements can swap the two limit
points.

3. � is a virtually nilpotent2 group.

2 I.e. contains a nilpotent subgroup of finite index.
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See [6] for a more detailed discussion of elementary groups and their quotient
spaces M� . Here we only note that discrete elementary subgroups of PU(n, 1) are
virtually 2-step nilpotent.

Proposition 2.3 Suppose thatX is a strictly negatively curved Hadamard manifold.
If ξ, η are distinct limit point of a discrete subgroup � < Isom(X) then there exists
a sequence γk ∈ � of hyperbolic elements whose attractive (resp. repulsive) fixed
points converge to ξ (resp. η).

Proof Since ξ, η are limit points of �, there exist sequences (gi), (hj ) in � which
converge, respectively, to the quasiconstant maps ξα and βη. By precomposing these
sequences with suitable elements of �, we can assume that the points ξ, η, α, β are
pairwise distinct. Let Uα,Uβ,Uξ ,Uη be pairwise disjoint open ball neighborhoods
in ∂∞X of α, β, ξ, η respectively. In view of the convergence gi → ξα, hj → βη,
for all sufficiently large i we have

hi(∂∞X − Uη) ⊂ Uβ, gi(∂∞X − Uα) ⊂ Uξ ,

and, hence,

gi ◦ hi(∂∞X − Uη) ⊂ Uξ .

In particular, the composition fi = gi ◦ hi has an attractive fixed point in Uξ .
Similarly, f−1

i has an attractive fixed point in Uη.

Corollary 2.2 If � is nonelementary then the set of hyperbolic fixed points of
elements of � is dense in �� .

Corollary 2.3 If a discrete group � contains a parabolic element then parabolic
fixed points are dense in �� .

The following theorem provides a converse to Theorem 2.7(3):

Theorem 2.8 Each nonelementary discrete subgroup � < Isom(X) contains a
nonabelian free subgroup whose limit set is homeomorphic to the Cantor set.

Definition 2.7 The convex core, Core(M), of M = M� = X/� is the projection
toM� of the closed convex hull hull(��) of the limit set of �.

Given η > 0, define Coreη(M) as the projection to M� of hullη(��).
Intrinsically, the convex core can be defined as:

Remark 2.9 Core(M) is the intersection of all closed convex suborbifoldsM ′ ⊂ M
such that π1(M

′)→ π1(M) is surjective.

Conical Limit Points I conclude this section with a discussion of a classification
of limit points of discrete subgroups of Isom(X).
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Definition 2.8 A sequence (xi) in X is said to converge to a point ξ ∈ ∂∞X
conically if there exists a geodesic ray xξ in X and a constant R <∞ such that:
d(xi, xξ) ≤ R for all i and limi→∞ xi = ξ .

Remark 2.10 Let λ ∈ �� be a limit point. The following are equivalent:

1. There exists a sequence γi ∈ � such that the sequence (γi(x)) converges to ξ
conically.

2. The projection of the ray xλ toM� defines a non-proper map R+ → M� .

Definition 2.9 A limit point λ ∈ �� is called conical or radial if it satisfies one of
the two equivalent properties in the above remark. The set of conical limit points of
� is denoted�c = �c� .

Example 2.2

1. If � is an elementary hyperbolic subgroup of Isom(X) then �� = �c� .
2. If � is an elementary parabolic subgroup of Isom(X) then �c� = ∅.

2.4 Margulis Lemma and Thick-Thin Decomposition

In this section, X is a negatively pinched Hadamard manifold. For each discrete
subgroup � < Isom(X), a point x ∈ X and a number ε > 0, define �x,ε to be the
subgroup of � generated by the (necessarily finite) set

{γ ∈ � : d(x, γ x) < ε}.

This subgroup is the “almost-stabilizer” of x in �.
Let U�,ε denote the subset of X consisting of points x for which the almost-

stabilizer �x,ε is infinite.
The components of U�,ε need not be convex (already for X = H

2
C

), but each
component is contractible:

Proposition 2.4 Each component of U�,ε is contractible.

In view of the contractibility of X and of hull�� , it follows that X − U�,ε and
hull�� − U�,ε are both contractible. Furthermore, if X has curvature ≤ −1, each
component U of U�,ε is uniformly quasiconvex:

Theorem 2.9 There exist universal constants δ0, η0 such that each component U
of U�,ε satisfies:

1. For any two points x, y ∈ U , the geodesic xy is contained in the δ0-neighborhood
of U .

2. The η0-neighborhood of U is convex.

Theorem 2.10 (Kazhdan–Margulis; Margulis; See E.g. [4]) Let X be an n-
dimensional Hadamard manifold of sectional curvature bounded below by b ≤ 0.
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Then there exists ε = ε(n, b) such that for every discrete subgroup � < Isom(X)
and every x ∈ X, the subgroup �x,ε is virtually nilpotent. In particular, if X is
negatively curved, then �x,ε is elementary.

Corollary 2.4 For each discrete torsion-free subgroup � < Isom(X), the set
U�,ε breaks into connected components X�,ε,i each of which is stabilized by some
elementary subgroup �i of � and for each x ∈ X�,ε,i the stabilizer �i contains the
“almost stabilizer” �x,ε . (The index can be infinite.)

As a corollary, one obtains the thick-thin decomposition of the orbifoldM = M� :
M(0,ε) is the projection of U�,ε toM . It consists of all points y ∈ M for which there
exists a homotopically nontrivial loop based at y of length < ε. Define also M(0,ε]
as the closure of M(0,ε) in M . Both M(0,ε) and M(0,ε] are called the ε-thin parts of
M . The complement M[ε,∞) = M − M(0,ε) and its interior M(ε,∞) are called the
ε-thick parts ofM .

One defines the ε-thick, resp. thin, part of the convex core Core(M) as the
intersection Core(M) ∩M[ε,∞), resp. Core(M) ∩M(0,ε).

Components of the thin partsM and Core(M) come in two shapes:

(a) Tubes. Suppose that U is a component of U�,ε whose stabilizer �U in � is
virtually hyperbolic, i.e. contains a cyclic hyperbolic subgroup of finite index.
In other words, the limit set of �U consists of two points ξ, η. The geodesic ξη
is then invariant under �U ; it is also contained in U and projects to a closed
geodesic c ⊂ U/�U . The quotient U/�U is a tube: If �U is torsion-free then
this quotient is homeomorphic to an R

k-bundle over S1, with the base of the
fibration corresponding to the closed geodesic c.

(b) Cusps. Suppose that U is a component of U�,ε whose stabilizer �U in � is
virtually parabolic, i.e. contains a parabolic subgroup of finite index. In other
words, the limit set of �U consists of a single point η. The group �U preserves
horoballsBη based at η. The subsets U�,ε are typically strictly smaller (not even
Hausdorff-close) than any of the horoballs Bη.

2.5 Geometrically Finite Groups

The notion of geometrically finite Kleinian group was introduced by Lars Ahlfors
in the mid 1960s for the real hyperbolic space and later generalized (by William
Thurston and Brian Bowditch) to manifolds of negative curvature: The discrete
groups in this class are the nicest-behaving among discrete isometry groups of
negatively pinched Hadamard manifolds.

Definition 2.10 Let X be a negatively pinched Hadamard manifold. A discrete
subgroup � < G = Isom(X) is called geometrically finite if:

(a) The orders of elliptic elements of � are uniformly bounded (from above), and
(b) the volume of Coreη(M�) is finite for some (equivalently, every, η > 0).



2 A Survey of Complex Hyperbolic Kleinian Groups 21

A discrete subgroup � < G is called convex-cocompact if card(��) �= 1 and
Core(M�) is compact.

For instance, if �� = ∂∞X then hull(��) = X and, thus, � is geometrically
finite if and only if � < G is a lattice, i.e. vol(M�) < ∞. Under the same
assumption, � is convex-cocompact if and only if � < G is a uniform lattice, i.e.
M� is compact.

Theorem 2.11

1. (B. Bowditch, [11]) A discrete subgroup � < G is geometrically finite if and only
if the ε-thick part of Core(M�) is compact.

2. (B. Bowditch, [11]) A discrete subgroup � < G is convex-cocompact if and only
ifM� is compact.

3. (B. Bowditch, [11]) A discrete subgroup � < G is convex-cocompact if and only
if every limit point of � is conical.

4. (M. Kapovich, B. Liu, [54]) A discrete subgroup � < G is geometrically finite if
and only if every limit point of � is either conical or a parabolic fixed point.

In particular, (1) implies that geometrically finite groups are finitely presentable
(since hull�� − U�,ε is contractible).

In particular, a convex-cocompact subgroup � < PU(n, 1) acts properly
discontinuously and cocompactly on H

n
C
∪ . The action of � on ̌ is properly

discontinuous but not cocompact. If becomes cocompact if we lift it to the flag-
manifold F1,n (see [55]):

Theorem 2.12 The �-action on the domain Th ⊂ F1,n is properly discontinuous
and cocompact.

2.6 Ends of Negatively Curved Manifolds

Let X be a negatively pinched Hadamard manifold and let � be a closed subset
of ∂∞X consisting of at least two points. Set  = ∂∞X − �. The nearest-point
projection� : X→ hull(�) extends continuously to a map� : X∪→ hull(�):
While for x ∈ X, �(x) is defined by minimizing the distance function dx = d(x, ·)
on hull(�), for ξ ∈ , the projection�(ξ) is defined by minimizing the Busemann
function bξ based at ξ . For a component 0 ⊂  we define a subset X0 ⊂ X as
the union of open geodesic rays xξ − {x}, where ξ ∈ 0, x = �(ξ). The union of
these geodesic rays is an open subset ofX−hull(�) whose closure inX∪ equals
X0 ∪0 ∪�(0).

We now specialize to the setting when � = �� is the limit set of a discrete
subgroup � < Isom(X). If 0 has cocompact stabilizer �0 in �, then �0 also acts
cocompactly onX0∪0∪�(0). Thus,M� has an isolated end E0 corresponding
to 0/�0, with isolating neighborhoodX0/�0.

Definition 2.11 Ends E0 ofM = M� which have this form are called convex ends
ofM .
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From the analytical viewpoint, the advantage of working with convex ends E0 is
that they admit convex exhaustion functions: For every convex end E0 there exists a
convex function φ : M → R+ which is proper on the closure of E0 and vanishes on
M − E0.

Suppose that C is an unbounded component of the thin partM(0,ε) ofM = M� ,
and C has compact boundary. Then C also defines an isolated end EC with an
isolating neighborhood given by C ∩M(0,ε).
Definition 2.12 Ends EC of M� which have this form are called cuspidal ends of
M� .

Remark 2.11

1. � is convex-cocompact if and only ifM� has only convex ends.
2. IfM� has only convex and cuspidal ends then � is geometrically finite.

One can refine (cf. [49]) the above definitions in two ways:

(a) Considering unbounded components of the thin part of Core(M�) and, thus,
defining cuspidal ends of the convex core.

(b) Removing from M� its cuspidal ends and their preimages under the nearest-
point projection M� → Core(M�), one then defines relative convex ends of
M� .

One can also classify ends of M� using potential theory as hyperbolic and
parabolic ends, see [68]. Note that if M = M� is a complex hyperbolic manifold,
then every convex end E ofM is hyperbolic.

2.7 Critical Exponent

Notation Let B(x, r) denote the open ball of radius r and center at x in a metric
space.

I will discuss the critical exponent mostly in the case of complex hyperbolic
Kleinian groups; for a discussion in the broader context of negatively curved
Hadamard manifolds and Gromov-hyperbolic spaces see e.g. [18, 24, 25, 60, 75].

The critical exponent of a discrete isometry group � of a Hadamard manifold
X (typically, satisfying some further curvature restrictions) is, probably, the single
most important numerical invariant of �: It reflects the geometry of �-orbits in
X, the geometry of the limit set of �, the ergodic theory of the action of � on
the limit set and analytic properties of the quotient space X/�. Its origin goes
back to the nineteenth century and the work of Poincaré (among others), who was
interested in constructing automorphic functions (and forms) on the hyperbolic
plane by “averaging” a certain holomorphic function (or a form) over a discrete
isometry group �. The resulting infinite series (the Poincaré series) may or may
not converge, depending on the weight of the form, leading to the notion of critical
exponent or exponent of convergence of �.
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Let � < Isom(X), a discrete isometry group of a Hadamard manifold. Pick
points x, y ∈ X. The entropy of � is defined as

δ = δ� = lim sup
r→∞

1

r
card(B(x, r) ∩ �y).

Thus, the entropy measures the rate of exponential growth of �-orbits in X. It turns
out that δ is equal to the critical exponent of �, defined as

δ = inf{s :
∑

γ∈�
exp(−sd(x, γy)) <∞},

i.e. δ is the exponent of convergence of the Poincaré series
∑

γ∈� exp(−sd(x, γy)).
Furthermore, δ is independent of the choice of x, y ∈ X. If

∑

γ∈�
exp(−δd(x, γy)) <∞

(which depends only on � and not on the choice of x, y), then � is said to be a
subgroup of convergence type; otherwise, � is said to be of divergence type.

Below are equivalent characterizations of δ in the case X = H
n
C

:

Theorem 2.13 Suppose that � < PU(n, 1) is a discrete subgroup.Then:

1. (Corlette [20]; Corlette–Iozzi [22], Theorem 6.1) δ = δ� is equal to the
Hausdorff dimension dimH �c� , where the conical limit set �c� is equipped with
the restriction of the Carnot metric on S2n−1. In particular, if � is geometrically
finite then δ = dimH �.

2. (Elstrodt–Patterson–Sullivan–Corlette–Leuzinger, see [61, Corollary 1]) Let λ =
λ(M�) denote the bottom of the L2-spectrum of the Laplacian onM� . Then

{

λ = n2 if 0 ≤ δ ≤ n
λ = δ(2n− δ) if n ≤ δ ≤ 2n

2.8 Examples

I will say that a discrete torsion-free subgroup � < G = PU(n, 1) is Stein if the
complex manifoldM� is Stein.

I will start with two elementary examples.

Example 2.3 (Cyclic Hyperbolic Groups) Let γ ∈ PU(n, 1) be a hyperbolic
isometry fixing points λ± ∈ S2n−1 = ∂∞H

n
C

and let � = 〈γ 〉 be the cyclic
subgroup of PU(n, 1) it generates. Then � is an elementary subgroup with the limit
set � = {λ−, λ+}. The quotient manifold M� = H

n
C
/� is diffeomorphic to the
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product R2n−1 × S1 whileM� is diffeomorphic to the product D̄2n−1 × S1, where
D̄2n−1 is the closed disk of real dimension 2n− 1.

Example 2.4 (Integer Heisenberg Groups) Given a natural number n, define the
2n+1-dimensional real Lie groupH2n+1 as the group of (n+2)× (n+2)-matrices

⎡

⎣

1 a c
0 In b
0 0 1

⎤

⎦ ,

where In is the identity n × n matrix, a ∈ R
n is a row-vector, b ∈ R

n is a
column-vector and c ∈ R. This group is 2-step nilpotent with 1-dimensional center
consisting of the matrices with a = b = 0 and c ∈ R. The quotient of H2n+1 by
its center is the 2n-dimensional commutative Lie group isomorphic to R

2n. The real
Heisenberg group H2n+1 contains the integer Heisenberg group H2n+1(Z), defined
as the intersection

H2n+1 ∩ SL(n + 2,Z).

The quotientN = H2n+1/H2n+1(Z) is a compact nil-manifold, which is a nontrivial
circle over the torus T 2n. Algebraically, in terms of its presentation, H2n+1(Z) is
given by

〈x1, y1, ..., xn, yn, t|[xi, t] = [yj , t] = 1, [xi, yi] = t, i = 1, ..., n, j = 1, ..., n〉.

The Heisenberg group H2n+1 embeds in PU(n + 1, 1), fixing a point ξ in
∂∞H

n+1
C

and acting simply-transitively on every horosphere in H
n+1
C

centered at
ξ . Thus, H2n+1(Z) embeds as a discrete elementary subgroup � < PU(n + 1, 1)
such that M� is diffeomorphic to N × (0,∞). The partial compactificationM� is
diffeomorphic to N × [0,∞).

The rest of our examples are nonelementary.

Example 2.5 (Schottky Groups) These are convex-cocompact subgroups � < G

isomorphic to free nonabelian groups Fk of finite rank k. The limit set �� is
homeomorphic to the Cantor set. Its Hausdorff dimension is positive but can be
arbitrarily close to 0. Schottky groups are always Stein. Every nonelementary
discrete subgroup contains a Schottky subgroup. Schottky subgroups can be found
via the following procedure. Let γ1, ..., γk be hyperbolic isometries with pairwise
disjoint fixed-point sets. Then there exists t0 such that for each integer t ≥ t0, the
subgroup generated by s1 = γ t1 , ..., sk = γ tk is a Schottky group with free generating
set s1, ..., sk .

Example 2.6 (Schottky-Type Groups) These are geometrically finite subgroups
� < G isomorphic to free products of elementary subgroups of G, such that the
limit set �� is homeomorphic to the Cantor set. Schottky-type subgroups can be
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Fig. 2.1 Quotient manifold
of a Schottky-type group with
k = 2

found via the following procedure. Let �1, ..., �k be elementary subgroups with
pairwise disjoint limit sets. Then there exist torsion-free finite-index subgroups
��i < �i, i = 1, ..., k, such that the subgroup generated by

��1, ..., �
�
k

is Schottky-type and the homomorphism

��1 � ... � �
�
k → � = 〈��1, ..., ��k〉

sending ��i → ��i , i = 1, ..., k, is an isomorphism. For instance, suppose that
�1, ..., �k are integer Heisenberg subgroups of G. Then M� has k cuspidal ends
(diffeomorphic toN × (0,∞)) and one convex end, with ∂M� diffeomorphic to the
k-fold connected sum of N with itself, where N = H2n−1/H2n−1(Z). See Fig. 2.1.

Real and complex Fuchsian groups defined below were introduced by Burns and
Shnider in [14].

Example 2.7 (Real-Fuchsian Subgroups) Let H2
R
⊂ H

n
C

be a real hyperbolic plane
in H

n
C

. Let � < PU(n, 1) be a geometrically finite subgroup whose limit set is
∂∞H

2
R

. Then � preserves H2
R

and acts on it with quotient of finite area. The quotient
surface-orbifold � is the convex core of M� . The limit set of � has Hausdorff
dimension 1. Assume now that n = 2, � is torsion-free and � is compact. Then
M� is diffeomorphic to the tangent bundle of � and is Stein.

Example 2.8 (Real Quasi-Fuchsian Subgroups) Let �t , t ∈ [0, 1], be a continuous
family of discrete convex-cocompact subgroups of PU(n, 1) such that �0 is real-
Fuchsian but other subgroups �t , t > 0 are not.3 The subgroups �t are real-quasi-

3 Such deformations exist as long as �t is, say, torsion-free. More generally, such deformations
exist if � has trivial center and is not isomorphic to a von Dyck group. See e.g. [89].



26 M. Kapovich

Fuchsian subgroups. Their limit sets are topological circles of Hausdorff dimension
>1.

Assume that n = 2, � is torsion-free and � is compact. Then M� is
diffeomorphic to the tangent bundle of � and is Stein.

Example 2.9 (Complex-Fuchsian Subgroups) Let H1
C
⊂ H

n
C

be a complex hyper-
bolic line in H

n
C

. Let � < PU(n, 1) be a geometrically finite subgroup whose
limit set is ∂∞H

1
C

. Then � preserves H1
C

and acts on it with quotient of finite area.
The quotient surface-orbifold � is the convex core of M� . The limit set of � has
Hausdorff dimension 2. Let W ⊂ V = C

n+1 be the 2-dimensional complex linear
subspace such that the projection of W ∩ V− to Bn equals H1

C
. The W⊥ ⊂ V (the

complex orthogonal complement with respect to the form q on V ) has the property
that q restricted to W⊥ is positive-definite. The projection [W⊥] ofW⊥ to P

n is �-
invariant. The pair ([W ], [W⊥]) defines a linear holomorphic fibration of Pn−[W⊥]
over [W ]: The fiber through x ∈ P

n − [W⊥] is the unique projective hyperplane
passing through x and intersecting transversally both [W ] and [W⊥]. Restricting to
Bn we obtain a �-invariant holomorphic fibration Bn → H

1
C

. Projecting to M� we
obtain a holomorphic orbi-fibration M� → �, whose fibers are biholomorphic to
quotients of Bn−1 by finite subgroups of Aut(Bn−1). Assume now that n = 2, �
is torsion-free and � is compact. Then M� is diffeomorphic to the square root of
the tangent bundle of � (the spin-bundle) and is not Stein (it contains the compact
complex curve �).

Convex-cocompact complex Fuchsian groups are locally rigid in the sense that
any small deformation of such a group is again complex Fuchsian, [84]. The
complex Fuchsian examples generalize to the case of geometrically finite subgroups
of PU(n, 1) whose limit sets are ideal boundaries of k-dimensional complex
hyperbolic subspaces H

k
C
⊂ H

n
C

. The rigidity theorem holds in this case as well,
see [13, 19, 36].

Example 2.10 (Hybrid Groups) One can combine, say, torsion-free, real and com-
plex Fuchsian groups in a variety of ways. For instance, one can form free products
of such groups. The nature of the quotient manifolds will depend on the precise way
in which the free factors are interacting with each other. For instance, in the case
n = 2 the boundary ofM� can be either a connected sum, or the toral sum of certain
circle bundles over surfaces. One can also break real and complex Fuchsian groups
into smaller pieces and consider amalgams over Z of these pieces. As a result, one
can get for instance, circle bundles over surfaces other than the unit tangent bundle
and its square root, see [37] and [1] for more detail.

Example 2.11 (AGG Subgroups: Anan’in–Grossi–Gusevskii, [1]) These interesting
examples of convex-cocompact subgroups of PU(2, 1) are isomorphic images of
von Dyck groups D(2, n, n), for n ∈ {10} ∪ [13, 1001]. None of these subgroups
is complex Fuchsian or real quasi-Fuchsian. According to Proposition C.6, these
subgroups are locally rigid in PU(2, 1): Every small deformation is conjugate in
PU(2, 1) to the original subgroup. The limit set is a topological circle but is neither



2 A Survey of Complex Hyperbolic Kleinian Groups 27

a complex nor a real circle. Fix a (unique up to conjugation) discrete, faithful and
isometric action of D(2, n, n) on H

1
C

. For each embedding ρ : D(2, n, n) →
� < PU(2, 1) constructed in Section 3.3 of [1], the complex hyperbolic orbifold
M� is diffeomorphic to the total space of an orbifold bundle over the complex 1-
dimensional orbifold B = H

1
C
/D(2, n, n) with fibers given by projections to M�

of some complex geodesics in H
2
C

. It follows from the local rigidity of each ρ,
combined with [81, Lemma 4.5], that there exists an equivariant holomorphic map

f̃ : H1
C
→ H

2
C
.

(I owe this observation to Ludmil Katzarkov.)4 Since the orbi-bundleM = M� →
B has holomorphic fibers, it follows that f̃ descends to a holomorphic map f :
B → M which has only positive, zero-dimensional intersections with the fibers.
Composing with the projection M → B, we obtain a self-map h : B → B which
is a branched covering. Since B is a hyperbolic orbifold, it follows that h = id. In
other words,M → B admits a holomorphic section. In particular,M (and any of its
finite manifold-covering spaces, given by Selberg’s Lemma) is non-Stein.

Example 2.12 (Polygon-Groups, J. Granier, [39]) The polygon-group �6,3 (see
Example C.17) embeds as a convex-cocompact subgroup in PU(2, 1) via the reflec-
tion representation ρ6,3. Thus, the limit set of �6,3 < PU(2, 1) is homeomorphic to
the Menger curve.

Conjecturally, the same holds for all polygon-groups�n,3, n ≥ 6, cf. [10, 29, 50]
for a discussion of isometric actions on real hyperbolic spaces.

Example 2.13 Complex-hyperbolic manifolds which are singular fibrations with
compact fibers.

Definition 2.13 A singular Kodaira fibration is a surjective holomorphic map with
connected fibers f : M → B between connected complex manifolds/orbifolds,
where 0 < dimB < dimM . (Usually, it is required that no two generic fibers are
biholomorphic to each other, but, in order to simplify the discussion, I will omit this
condition.)

Singular Kodaira fibrations need not be locally trivial in the holomorphic or even
topological sense; a Kodaira fibration is a holomorphic map f : M → B which is
a smooth fiber bundle.

In the context of complex hyperbolic manifolds, the first example of a singular
Kodaira fibration appeared in Ron Livne’s PhD thesis, [63]. Many more examples
are now known. Below we discuss one example which (to my knowledge) first
appeared in the work of Mostow [67] with an explicit description of the quotient-
orbifold given by Hirzebruch in [46].

4 I refer the reader to the book [17] for a gentle introduction to Simpson’s results, and for a
discussion of variations of Hodge structures and period domains.
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Fig. 2.2 Orbi-Kodaira
fibration

Fig. 2.3 Blow-up

Consider the standard quadrangle in P
2
C

, which is a configuration A of six
lines A1, A2, A3, B1, B2, B3 with four triple intersection points a1, a2, a3, a4 and
three double intersection points b1, b2, b3, see Fig. 2.2. Let Y denote the complex
surface obtained via blow-up of the four triple intersection points of A; let β :
Y → P

2
C

denote the blow-down map. Then Y contains a configuration Ã of eight
distinguished smooth rational curves C1, ..., C10: The four exceptional divisors
E1, ..., E4 of the blow-up and six lifts Ãi, B̃i , i = 1, 2, 3, of the original projective
lines in the arrangement A. (See Fig. 2.3.) The configuration Ã is a divisor D with
simple normal crossings: Any two curves intersect in at most one point and at every
intersection point only two curves intersect. Our next goal is to define a complex
orbifold O with underlying space Y and the singular/orbifold locus �O equal to the
union of curves in Ã (the preimage under β of the union of lines in A). The local
complex orbifold-charts of O are defined as follows.

1. At every point z ∈ O − �O the local chart is given by the restriction of β to a
suitable neighborhood of z.
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2. At every point z ∈ �O which is not a (double) intersection point of the divisorD
but z ∈ Ci , i = 1, ..., 10, the local chart is the holomorphic five-fold branched
covering over a suitable neighborhood of z, ramified over Ci .

3. Suppose that z is an intersection point of D, z ∈ Ci ∩ Cj , i �= j . Choose local
holomorphic coordinates at z where Ci,Cj correspond to the coordinate lines in
C

2 and z corresponds to the origin; C2 = C × C. Each factor C in this product
decomposition is biholomorphic to the quotient C/Z5, with Z5 acting linearly on
C. Thus, a small neighborhood U of z in Y is biholomorphic to the quotient of
the bi-disk,�2/Z2

5. This yields the local orbifold-chart at z, �2 → �2/Z2
5
∼= U .

The result is a complex orbifold O with the underlying space Y . Hirzebruch then
proves that the orbifold O is biholomorphic to the orbifold-quotientM� = B2/� of
the complex 2-ball, by appealing to Yau’s Uniformization Theorem, [90]: He verifies
that the orbifold O admits a finite holomorphic orbifold-coveringM → O, where
M is a complex surface of general type satisfying the equality of characteristic
classes 3c2 = c2

1; equivalently, 3σ(M) = χ(M), where σ is the signature and χ
is the Euler characteristic. Yau’s theorem implies that M admits a Kähler metric of
constant bisectional curvature−1, i.e. is a ball-quotient. Mostow Rigidity Theorem
then implies that O is a complex hyperbolic orbifold as well. A bit more streamlined
version of this argument was later developed by Barthel–Hirzebruch–Hofer [5],
and Holzapfel, [47], who defined orbifold-characteristic classes directly computable
from lines arrangementA in P

2
C

(as well as P1
C
× P

1
C

) and the orbifold-ramification
numbers assigned to rational curves in the corresponding post-blow-up divisor.

I next describe a singular orbi-Kodaira fibration on O. Pick one of the triple
intersection points, say, a1, of the arrangement A and let A1 be a line in A not
passing through a1. Consider the pencil of projective lines passing through a1. This
pencil defines a (nonsingular) holomorphic fibration of P

2
C
− {a1} with the base

A1; the fibration map sends z ∈ P
2
C
− {a1} to the point of intersection of the line

za1 with the line A1. This fibration becomes a holomorphic map f : Y → Ã1
when we lift it to Y . Some fibers of f are, however, singular: These are the
three singular fibers corresponding to the lifts of the three lines A2, A3, B1 passing
through a1 and other points of triple intersection ofA: a2, a3, a4. The corresponding
fibers are reducible rational curves (with the extra components corresponding to
the exceptional divisors E2, E3, E4). The line A1 has an orbifold structure induced
from O: The corresponding orbifold B has three singular points a2, a3, b1, with
local isotropy groups Z5 for each of them. The map f defined above respects
the orbifold structure of O and B and, hence, we obtain a singular Kodaira orbi-
fibration f : O → B. This fibration is nonsingular away from the preimages of the
points a2, b1, a3, with the generic fiber(s) F diffeomorphic to the orbifold with the
underlying space P1

C
and four singular points of order 5.

The restriction of f to O′ = f−1({a2, b1, a3}) is a nonsingular Kodaira fibration,
i.e. a smooth (orbifold) fiber bundle; accordingly, π1(F) embeds as a normal
subgroup in π1(O′). Since the inclusion O′ → O induces an epimorphism of
fundamental groups π1(O′) → π1(O) = �, the image N of π1(F) in π1(O) = �
is a normal finitely-generated subgroupN ��. By passing to the universal covering
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of B, we obtain a holomorphic map h : H2
C
/N → H

1
C

. The fibers of this map
are compact and, generically, diffeomorphic to F. The map h has infinitely many
critical values in H

1
C

which break into finitely many π1(B)-orbits and accumulate
to the entire circle ∂∞H

1
C

. Lifting h further to an N-invariant holomorphic function
H

2
C
→ H

1
C

and extending this function to a measurable N-invariant nonconstant
function S3 = ∂∞H

2
C
→ S1, we conclude that the action ofN on S3 is non-ergodic.

The group � in the above example is a special case of:

Example 2.14 (Arithmetic Lattices of Simplest Type) LetK be a totally real number
field, i.e. a finite extension of Q such that the image of every embeddingK → C lies
in R. Take an imaginary quadratic extension L/K , i.e. an extension which does not
embed in R. SinceK is totally-real and L is its imaginary extension, all embeddings
L→ C come in complex conjugate pairs:

σ1, σ̄1, ..., σk, σ̄k.

Next, take a Hermitian quadratic form in n+ 1 variables

ϕ(z, z̄) =
n+1
∑

p,q=1

apqzpz̄q

with coefficients in L. I require the forms ϕσ1, ϕσ2 to have signature (n, 1) and the
forms ϕσj , ϕσ̄j to be definite for the rest of the embeddings. I will identify L with
σ1(L), so σ1 = id. Let SU(ϕ) denote the group of special unitary automorphisms
of the form ϕ on Ln+1. The embedding σ1 defines a homomorphism SU(ϕ) →
SU(n, 1) with relatively compact kernel.

A subgroup � of SU(n, 1) is said to be an arithmetic lattice of the simplest type
(or of type I) if it is commensurable5 to SU(ϕ,OL) = SU(ϕ) ∩ SL(n + 1,OL),
where OL is the ring of integers of L. For every such � the quotient Hn

C
/� has

finite volume. I refer to [66] for more detail on arithmetic subgroups of SU(n, 1).

It is known that every arithmetic lattice � of the simplest type contains a
finite index congruence-subgroup �′ with infinite abelianization, [56] (see also
[88]). Equivalently, the quotient-space Bn/�′ has positive 1st Betti number. In
contrast, Rogawski, [76], proved that for type II arithmetic lattices in SU(2, 1), every
congruence-subgrouphas finite abelianization. It is unknown if such a lattice contain
finite index subgroups with infinite abelianization. Furthermore, certain classes of
non-arithmetic lattices in SU(2, 1) (the ones violating the integrality condition for
arithmetic groups) are proven to have positive virtual first Betti number by the work
of S.-K. Yeung, [91].

I now discuss the existence of (singular) Kodaira fibrations of compact complex
hyperbolic manifoldsM = H

n
C
/�.

5 I.e. the intersection of the two groups has finite index in both.
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1. Suppose that b1(M) > 0. Since M is Kähler, b1(M) is even, hence, there exists
an epimorphism φ : � → Z

2. If the kernel of φ is not finitely-generated,
then, according to a theorem of Delzant, [27], the manifoldM admits a singular
Kodaira fibration over a 1-dimensional complex hyperbolic orbifold.

2. IfM and B are both complex hyperbolic, then there are no (nonsingular) Kodaira
fibrationsM → B: This was first proven in the case whenM is a surface by Liu,
[62], and then generalized to arbitrary dimensions by Koziarz and Mok, [58].
They also prove nonexistence of Kodaira fibrations M → B when dim(B) ≥ 2
and M merely has finite volume. Furthermore, if M is 2-dimensional, for every
singular Kodaira fibration M → B, the kernel of the homomorphism π1(M) =
�→ π1(B) is finitely generated but is not finitely-presentable [45, 48].

Problem 2.1 Is there a discrete subgroup � < PU(2, 1) isomorphic to the
fundamental group of a compact real hyperbolic surface, such thatM = M� admits
a Kodaira fibration (with compact fibers) M → H

1
C

? Is there a singular Kodaira
fibration (with compact fibers) H2

C
/�→ H

1
C

which has only finitely many singular
fibers?

2.9 Complex Hyperbolic Kleinian Groups and Function
Theory on Complex Hyperbolic Manifolds

In this section we discuss some interesting interactions between the general theory
of holomorphic functions on complex manifolds (which I review in Sect. 2.10) and
geometry/topology of complex Kleinian groups.

Proposition 2.5 If � < PU(n, 1) is a discrete, torsion-free subgroup such that
M = M� admits a surjective holomorphic map with compact fibers f : M → B,
where B is a complex manifold satisfying dim(B) < n, then � = ∅. In particular,
M cannot have convex ends.

Proof Suppose, to the contrary, that � �= ∅. Then Coreη(M) is a proper
submanifold (with boundary) in M . Since H

n
C

is strictly negatively curved, the
nearest-point projection � : Hn

C
→ hullη(��) is strictly contracting away from

hullη �� . By the �-equivariance, � descends to a strictly contracting projection
π : M → Coreη(M). Therefore, if Y is a compact complex k-dimensional
subvariety inM of positive dimension not contained in Coreη(M) then π(Y ) has k-
volume strictly smaller than that of Y . This is a contradiction since π : Y → π(Y )

is homotopic to the identity inclusion map idY : Y → M and compact complex
subvarieties in Kähler manifolds are volume-minimizers in their homology classes.
Taking a generic fiber Y of f : M → B through a point x ∈ M − hullη(��)
concludes the proof.

I next discuss the geometry and topology of quotient-orbifoldsM� , primarily for
convex-cocompact subgroups � < PU(n, 1).
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A classical example of a complex submanifold with strictly Levi-convex bound-
ary is a closed unit ball Bn in C

n. Suppose that � < Aut(Bn) is a discrete
torsion-free subgroup of the group of holomorphic automorphisms of Bn with
(nonempty) domain of discontinuity ⊂ ∂Bn. The quotient

M� = (Bn ∪)/�

is a smooth submanifold with strictly Levi-convex boundary in the complex
manifold ̌�/� (see (2.1)). Thus, we conclude:

Lemma 2.2 If M� = (Bn ∪ )/� has compact boundary, then M is strongly
pseudoconvex.

Consequently:

Theorem 2.14 Let � < PU(n, 1), n ≥ 2, be a convex-cocompact discrete
subgroup. Then ∂M� is connected.

Proof Since � is convex-cocompact, it is also finitely generated. Hence, by
Selberg’s Lemma, the orbifold M� is very good. Therefore, it suffices to consider
the case when � is torsion-free, i.e. M� is a complex n-manifold. Since M� is
strongly pseudoconvex, connectedness of its boundary is an immediate consequence
of Theorem F.24.

Theorem 2.15 Let � < PU(n, 1), n ≥ 2, be a convex-cocompact discrete
subgroup which is not a lattice, i.e.� �= ∅. Then dim(��) ≤ 2n− 3, equivalently,
cdQ(�) ≤ 2n− 2.

Proof As before, it suffices to consider the case of torsion-free groups�. According
to Corollary F.6,M� is homotopy-equivalent to a CW complex of dimension≤ 2n−
2. It follows that cdQ(�) ≤ 2n−2 and, by the Bestvina-Mess theorem, dim(∂∞�) ≤
2n− 3. Since ∂∞� is homeomorphic to �� , dim(��) ≤ 2n− 3 as well.

In particular, �� does not separate S2n−1 (even locally) and, hence, � is
connected, which gives another proof of the fact that ∂M� is connected.

Specializing to the case n = 2, we obtain: If � < PU(2, 1) (for simplicity,
torsion-free) is convex-cocompact and is not a lattice, then �� is at most 1-
dimensional. In particular, according to [53], � admits an iterated amalgam
decomposition over trivial and cyclic subgroups, so that the terminal groups are
either cyclic, or isomorphic to Fuchsian groups (and the limit set is a topological
circle) or groups whose limit sets are Sierpinski carpets or Menger curves.

Theorem 2.16 Suppose that � is torsion-free convex cocompact, n > 1 and M�
contains no compact complex subvarieties of positive dimension. ThenM� is Stein.

Proof This is an immediate consequence of Theorem F.25.

One way to prove thatM� contains no compact complex subvarieties of positive
dimension is to argue that � = π1(M) is free: This implies that Hi(M�) = 0, i ≥
2, but, since M� is Kähler, every compact complex k-dimensional subvariety of
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M� would define a nonzero 2k-dimensional homology class. For instance, if � is
convex-cocompact, δ� < 1 then dim�� ≤ dimH(��) < 1, which implies that
dim�� = 0 and, hence, � is a virtually free group. However, even when H2(M) �=
0, one can still, sometimes, prove thatM� contains no compact complex curves. For
instance, let L→ M� be the canonical line bundle. If C ⊂ M� is an (even singular)
complex curve, the pull-back of L to C has nonzero 1st Chern class. Assuming
that H2(M�) ∼= Z (e.g. if � is isomorphic to the fundamental group of a compact
Riemann surface), if the 1st Chern class of L evaluated on the generator ofH2(M�)

is zero, then M� contains no complex curves. This argument applies in the case of
real-Fuchsian groups and their quasi-Fuchsian deformations.

Observe that if � < PU(2, 1) is a complex Fuchsian group, then dimH (��) =
2.

Theorem 2.17 (S. Dey and M. Kapovich [30]) If � < PU(n, 1) is discrete,
torsion-free andM� contains a compact complex subvariety of positive dimension,
then δ� ≥ 2.

Corollary 2.5 Suppose that � < PU(n, 1) is torsion-free, convex-cocompact and
δ� < 2, thenM� is Stein.

Burns’ Theorem I now drop the convex-cocompactness assumption and consider
general discrete, torsion-free subgroups � < PU(n, 1). Theorem 2.14 has the fol-
lowing striking generalization. It was first stated by Dan Burns, who, as it appears,
never published a proof; a published proof is due to Napier and Ramachandran, [69,
Theorem 4.2]:

Theorem 2.18 Suppose that n ≥ 3, � < PU(n, 1) is discrete, torsion-free and
∂M� has at least one compact component S. Then:

1. ∂M� = S.
2. � is geometrically finite.

A good example illustrating this theorem is that of a Schottky-type group
(Example 2.6), where the limit set is totally disconnected, the quotient manifold
�/� is compact and M� has k cusps. In particular, M� is noncompact in this
example.

It is unknown if Burns’ theorem holds for n = 2, but Mohan Ramachandran
proved the following:

Theorem 2.19 Suppose that � < PU(2, 1) is discrete, torsion-free, the injectivity
radius of M� is bounded away from zero, and ∂M� has at least one compact
component. Then � is convex-cocompact.

The proof of this theorem is given in Appendix G.



34 M. Kapovich

2.10 Conjectures and Questions

In this section I collect some conjectures and questions in addition to those scattered
throughout the survey.

The first conjecture is a generalization of Burns’ theorem, Theorem 2.18:

Conjecture 2.1 Suppose that � < PU(n, 1), n ≥ 2, is such that for M = M�
the thick part M[ε,∞) has a convex end. Then � is geometrically finite and � is
connected.

The next two conjectures are motivated by Theorem 2.17:

Conjecture 2.2 If � < PU(n, 1) is discrete, torsion-free, δ� = 2 andM� contains
a compact complex subvariety of positive dimension, then � is a complex Fuchsian
group.

Conjecture 2.3 If � < PU(n, 1) is discrete, torsion-free and δ� < 2k, then M�
cannot contain a compact complex subvariety of dimension k.

Conjecture 2.4 (Chengbo Yue’s Gap Conjecture, [92]) Suppose that � < G =
Aut(Bn) is a convex-cocompact torsion-free subgroup. Then either � is a uniform
lattice in G (and, thus, δ� = 2n) or δ� ≤ 2n− 1.

Note that the two other conjectures about nonelementary convex-cocompact
subgroups� < PU(n, 1) made in the introduction to [92] fail already in dimension
n = 2:

(a) The inequality dimH �� > n − 1 does not imply that M� is non-Stein. For
instance, a real-hyperbolic quasifuchsian subgroup of PU(2, 1) serves as an
example.

(b) Even if M� is non-Stein, a compact complex curve in M� need not be a finite
union of totally geodesic complex curves, as it is shown by the AGG-examples.

Problem 2.2

1. Investigate which polygon-groups embed discretely in PU(2, 1).
2. Is there a convex-cocompact subgroup of PU(2, 1) with the limit set homeomor-

phic to Sierpinski carpet?

While “most” compact 3-dimensional manifolds are hyperbolic, very few exam-
ples of hyperbolic 3-manifolds which are of the form �/�, � < PU(2, 1) are
known, see the book by Richard Schwartz [79] for further discussion.

Conjecture 2.5 The Menger curve limit set in Example 2.12 is “unknotted” in S3,
i.e. is ambient-isotopic to the standard Menger curve M ⊂ R

3 ⊂ S3 = R
3 ∪

{∞}. Furthermore, in this example, the quotient 3-dimensional manifold �/� is
hyperbolic.6

6 It suffices to show that �/� contains no incompressible tori, which is closely related to the
unknottedness problem of the Menger-curve limit set.
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Problem 2.3 Prove the existence of discrete geometrically infinite subgroups of
PU(2, 1) which are isomorphic to fundamental groups of compact surfaces.7

Note that such subgroups do not exist in PU(1, 1) but abound in PO(3, 1).
Furthermore, the only known examples of finitely generated geometrically infinite
subgroups of PU(2, 1) come from singular Kodaira fibrations and are not finitely-
presentable, see Example 2.13.

The conjectures and questions appearing above, deal with discrete subgroups �
of PU(n, 1) which are not lattices, i.e. the H

n
C
/� has infinite volume. Below, I

discuss two problems regarding lattices.

Arithmeticity The most famous open problem regarding lattices in PU(n, 1) deals
with the existence problem of nonarithmetic subgroups and was first raised in
Margulis’ ICM address [64]. It is known (due to the work of Margulis [65], Corlette
[21], Gromov–Schoen [42], and Gromov–Piatetski-Shapiro [41]) that:

(a) For each n, the Lie group SO(n, 1) contains non-arithmetic lattices.
(b) For every simple noncompact connected linear Lie groupG which is not locally

isomorphic to SO(n, 1) and SU(n, 1), every lattice � < G is arithmetic.

This leaves out the series of Lie groups PU(n, 1), n ≥ 2. Currently, primarily
due to the work of Deligne and Mostow, see [26], there are known examples of
nonarithmetic lattices in PU(2, 1) and PU(3, 1). Loosely speaking there are three
approaches to constructing nonarithmetic lattices:

(a) As monodromy groups of some linear holomorphic ODEs, see [23, 26], as well
as [83] for a geometric interpretation.

(b) By constructing the corresponding complex hyperbolic orbifolds M� whose
underlying space is a blown-up P

n, see [5, 23, 28, 80].
(c) By constructing a Dirichlet fundamental domain of � in H

2
C

, see [31, 67].

But using these techniques becomes increasingly difficult (or even impossible)
as the dimension n increases, which means that different approaches are needed.

Conjecture 2.6 For each n, PU(n, 1) contains a nonarithmetic lattice.

By analogy with the construction of non-arithmetic lattices in [41], one can hope
for a similar “hybrid” construction of nonarithmtic lattices in PU(n, 1), leading to
a conjecture due to Bruce Hunt:

Conjecture 2.7 For every n ≥ 2, there exists a quadruple of arithmetic lattices
�1, �2 < SU(n− 1, 1) and �3 < SU(n− 2, 1) such that:

(1) �3 is isomorphic to subgroups in �1, �2; hence, we obtain an amalgam �0 =
�1 ��3 �2.

(2) There exists an epimorphism ρ : �0 → � < SU(n, 1) injective on �1, �2,
whose image is a nonarithmetic lattice � < SU(n, 1).

7 Cf. section 11.4 in [51].
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Unlike [41], where nonarithmetic lattices in SO(n, 1) were constructed via a
similar process, with an isomorphism �0 → � < SO(n, 1), in the complex
hyperbolic setting there is no hope for an injective homomorphism ρ (a lattice in
SU(n, 1) cannot be isomorphic to an amalgam �0 as above).

Nonexistence of Reflection Lattices The known examples of nonarithmetic lat-
tices � in PU(n, 1), n = 2, 3, are all commensurable to complex reflection
subgroups, i.e. discrete subgroups of PU(n, 1) generated by complex reflections.
Furthermore, up to commensuration, the underlying spaces of their quotient orb-
ifoldsM� = H

n
C
/� are rational projective varieties.

Conjecture 2.8 There exists N such that for all n ≥ N the following holds:

1. If � < PU(n, 1) is a lattice then � cannot be a reflection subgroup.
2. If � < PU(n, 1) is a lattice then the underlying space of the orbifoldM� cannot

be a rational algebraic variety. More ambitiously, it has to be a variety of general
type.

The motivation for this conjecture comes from theorems due to Vinberg [87], and
Prokhorov [73], establishing nonexistence of reflection lattices in PO(n, 1), when
n is sufficiently large.

Appendix A: Horofunction Compactification

A metric space (Y, d) is called geodesic if any two points x, y in X are connected
by a geodesic segment, denoted xy. (This notation is a bit ambiguous since in many
cases such a segment is non-unique.) A geodesic triangle, denoted xyz, in a metric
space (X, d) is a set of three geodesic segments xy, yz, zx connecting cyclically the
points x, y, z, the vertices of the triangle; the segments xy, yz, zx are the edges of
the triangle. Thus, geodesic triangles are 1-dimensional objects.

Let (Y, d) be a locally compact geodesic metric space. For each y ∈ Y define
the 1-Lipschitz function dy = d(y, ·) on Y . This leads to the Kuratowski embedding
κ : Y → C(Y ) = C(Y,R), y 	→ dy . Let R ⊂ C(Y ) denote the linear subspace
of constant functions. Composing the embedding κ with the projection C(Y ) →
C(Y )/R (where R acts additively on C(Y )) we obtain the Kuratowski embedding of
Y ,

Y ↪→ C(Y )/R.

Then Y , the closure of Y in C(Y )/R, is the horofunction compactification of Y . The
horoboundary of Y is Y \ Y .

Functions representing points in ∂∞Y = Y − Y are the horofunctions on Y . In
other words, horofunctions on Y are limits (uniform on compacts in Y ) of sequences
of normalized distance functions dyi−dyi (o), where yi ∈ Y are divergent sequences
in Y . Each geodesic ray r(t) in Y determines a horofunction in Y called a Busemann
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function br , which is the subsequential limit

lim
i→∞ dr(i) − dr(i)(o).

If Y is a Hadamard manifold, then each limit as above exists (without passing to a
subsequence). Furthermore, each horofunction is a Busemann function. This yields
a topological identification of the visual compactification of Y and its horofunction
compactification. Level sets of Busemann functions are called horospheres in X.
The point r(∞) ∈ ∂∞Y is the center of the horosphere {br = c}. Sublevel sets
{br < c} are called horoballs. The point r(∞) represented by the ray r is the center
of the corresponding horospheres/horoballs.

Appendix B: Two Classical Peano Continua

A Peano continuum is a compact connected and locally path-connected metrizable
topological space. I will need two examples of 1-dimensional Peano continua. Both
are obtained via a procedure similar to the construction of the “ternary” Cantor set.

Sierpinski Carpet Let I = [0, 1] denote the unit interval. Start with the unit square
Q0 = I 2 ⊂ R

2. Divide I in three congruent subintervals and, accordingly, divide
I 2 in 9 congruent subsquares. Remove the interior of the “middle subsquare”, the
one disjoint from the boundary ofQ. Call the resultQ1. Now, repeat this procedure
for each of the remaining 8 subsquares inQ1, to obtain a planar regionQ2, etc. The
standard Sierpinski carpet in R

2 is the intersection

S :=
∞
⋂

i=0

Qi.

Menger Curve Consider the unit cube C = I 3 ⊂ R
3. Let πi, i = 1, 2, 3 denote

the orthogonal projections of R3 to the coordinate hyperplanes Pi, i = 1, 2, 3, in
R

3. In all three planes we take the Sierpinski carpets Si ⊂ Pi , constructed from the
unit squares Qi = C ∩ Pi , i = 1, 2, 3. Then the standard Menger curve in R

3 is
defined as

M :=
3
⋂

i=1

π−1
i (Si ).

Alternatively, M can be described as follows. First, divide C = C0 in 27 congruent
subcubes with the edge-length 1/3 and remove fromC the “middle ” open cube”Q1
as well as the 8 open subcubes which share with Q1 2-dimensional faces; remove
those open faces as well. Continue inductively constructing a sequence of nested
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compacts C0 ⊃ C1 ⊃ C2 ⊃ .. and. Lastly,

M =
∞
⋂

i=0

Ci.

Appendix C: Gromov-Hyperbolic Spaces and Groups

A geodesic metric space (X, d) is called δ-hyperbolic if every geodesic triangle xyz
inX is δ-slim, i.e. every edge of xyz is contained in the closed δ-neighborhood of the
union of the other two edges. A geodesic metric space is called Gromov-hyperbolic
if it is δ-hyperbolic for some δ <∞.

Examples of Gromov-hyperbolic spaces are strictly negatively curved Hadamard
manifolds: If X is a Hadamard manifold of sectional curvature ≤ −1 then X is δ0-
hyperbolic with δ0 = arccosh(

√
2).

Let � be a group with finite generating set S. Given S, one defines the Cayley
graph C�,S . This graph is connected and � acts on it with finite quotient (the
quotient graph has a single vertex and card(S) edges). The graph C�,S has a graph-
metric, where every edge has unit length.

Definition C.14 A finitely generated group � is called Gromov-hyperbolic or
simply hyperbolic if one (equivalently, every) Cayley graph of � is a Gromov-
hyperbolic metric space.

The Gromov boundary ∂∞� of � is the horoboundary of one (any) Cayley graph
of�: Gromov boundaries corresponding to different Cayley graphs are equivariantly
homeomorphic.

Examples of hyperbolic groups are given by:

Example C.15 Let X be a strictly negatively curved Hadamard manifold, Y ⊂ X

is a closed convex subset and � < Isom(X) acts properly discontinuously and
cocompactly on Y . Then � is hyperbolic and the ideal boundary ∂∞Y of Y is
equivariantly homeomorphic to the Gromov boundary of �.

In particular, every convex-cocompact discrete subgroup � < Isom(X) is
Gromov-hyperbolic and ∂∞� is equivariantly homeomorphic to the limit set of �.

Cohomological dimension (with respect to the Chech cohomology) of the Gro-
mov boundary of a hyperbolic group is closely related to the rational cohomological
dimension of � itself:

Theorem C.20 (Bestvina–Mess [7]) dim(∂∞�) = cdQ(�)− 1.

In particular, by the Stallings–Swan–Dunwoody Theorem,� is virtually free (i.e.
contains a free subgroup of finite index) if and only if ∂∞� is zero-dimensional, if
and only if ∂∞� is totally disconnected, equivalently, it is either empty, or consists
of two points or is homeomorphic to the Cantor set.
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One classifies 1-dimensional boundaries of hyperbolic groups as follows:

Theorem C.21 (Kapovich–Kleiner [53]) Suppose that � is a hyperbolic group
with connected 1-dimensional Gromov boundary. Then either ∂∞� is homeomor-
phic to S1, or � splits as a finite graph of groups with virtually cyclic edge groups,1

or ∂∞� is homeomorphic to the Sierpinski carpet or the Menger curve.

Example C.16 Hyperbolic von Dyck groupsD(p, q, r),

D(p, q, r) = 〈a, b, c|ap = bq = cr = 1, abc = 1〉, p−1 + q−1 + r−1 < 1.

These are hyperbolic groups with Gromov boundary homeomorphic to S1. More-
over, each D(p, q, r) admits a unique (up to conjugation in Isom(H2)) isometric
conformal action on the hyperbolic plane.

Representations of von Dyck Groups to PU(2, 1) Given an element g ∈ G =
PU(2, 1) we let ζ(g) denote the codimension in G of the centralizer of g in G. In
other words, ζ(g) is the local dimension near g of the subvariety of elements of G
conjugate to g. Thus, ζ(g) ≥ 2 for every g ∈ G. Furthermore, if g is an involution
then ζ(g) = 4. The paper [89] by Andre Weil describes the local geometry of the
character variety

Hom(D(p, q, r),G)//G

as follows:
Suppose that ρ : D(p, q, r) → G is a generic representation, i.e. one whose

image has trivial centralizer in G. For instance, any representation whose image
is discrete, nonelementary, not stabilizing a complex geodesic, will satisfy this
condition. Then, near [ρ], the real-algebraic variety Hom(D(p, q, r),G)//G is
smooth of dimension

ζ(ρ(a))+ ζ(ρ(b))+ ζ(ρ(c))− 2 dim(G) = ζ(ρ(a))+ ζ(ρ(b))+ ζ(ρ(c))− 16.

Assuming that p = 2, ζ(ρ(a)) = 4, which implies that

ζ(ρ(a))+ ζ(ρ(b))+ ζ(ρ(c))− 16 ≤ 4+ 12− 16 = 0.

Combined with an easy analysis of non-generic representations, one obtains:

Proposition C.6 If p = 2 then Hom(D(p, q, r),G)//G is zero-dimensional.

Example C.17 (Polygon-Groups) Fix two natural numbers p ≥ 5 and q ≥ 3.
Define the polygon-group �p,q via the presentation

〈a1, ..., ap|aqi = 1, [ai, ai+1] = 1, i = 1, ..., p〉,

1 Hence, its Gromov boundary can be inductively described using boundaries of vertex groups.
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where i is taken mod p. Each �p,q is hyperbolic with ∂∞�p,q homeomorphic to the
Menger curve.

Every �p,q admits a canonical reflection representation ρp,q to PU(2, 1)
constructed as follows:

Pick a real hyperbolic plane H
2
R
⊂ H

2
C

and a regular right-angled p-gon P =
z1...zp in H

2
R

. Let Ci denote the complex geodesic through the edge zizi+1 of P (i
is taken mod p). For each i let gi be the order q complex reflection with the fixing
Ci , with the rotation in the hyperplanes normal to Ci through the angle 2π/q . Then
[gi, gi+1] = 1 and, hence, we obtain a representation

ρp,q : �p,q → PU(2, 1).

Appendix D: Orbifolds

The notion of orbifold is a generalization of the notion of a manifold which appears
naturally in the context of properly discontinuous non-free actions of groups on
manifolds. Orbifolds were first invented by Satake [78] in the 1950s under the name
of V-manifolds, they were reinvented under the name of orbifolds by Thurston in
the 1970s (see [82]) as a technical tool for proving his Hyperbolization Theorem. I
refer the reader to [8] for a detailed treatment of orbifolds.

Before giving a formal definition we start with basic examples of orbifolds.
Suppose that M is a smooth connected manifold and G a discrete group acting
smoothly, faithfully2 and properly discontinuously on M . Then the quotient O =
M/G is an orbifold, such orbifolds are called good. The quotientM/G, considered
as a topological space XO, is the underlying space of this orbifold. If S is a set of
points in M where the action of G is not free, then its projection � = S/G is the
singular locus of the orbifold O.

To be more concrete, consider 2-dimensional orbifolds. Suppose that M = H
2
R

and G is a discrete subgroup of PSL(2,R). Then the quotient O = H
2/G is a

Riemann surface XO with a discrete collection of cone points zj which form the
singular locus � of the orbifold O. The projection p : H2 → O is the universal
cover of the orbifold O. The Riemann surface XO has a natural hyperbolic metric
which is singular in the discrete set �. Metrically, the points zj are characterized by
the property that the total angles around these points are 2π/nj . The numbers nj are
the orders of cyclic subgroupsGzj of G which stabilize the points in p−1(zj ), they
are called the local isotropy groups. The projection p is a ramified covering from
the point of view of Riemann surfaces. From the point of view of orbifolds this is
an (orbi) covering. Thus, the singular locus of the orbifold O consists of the points
zj in� equipped with the extra data: The PSL(2,R)-conjugacy classes of the local

2 I.e. each nontrivial element of G acts nontrivially.
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isotropy groupsGzj (of course, each local isotropy groupGzj is determined by the
number nj ).

I now discuss the general definition. A (smooth) n-dimensional orbifold O is a
pair: A Hausdorff paracompact topological space X (which is called the underlying
space of O and is denotedXO) and an orbifold-atlas A on X. The atlas A consists
of:

• A collection of open sets Ui ⊂ X,which is closed under taking finite intersec-
tions, such that X =⋃

i Ui .
• A collection of open sets Ũi ⊂ R

n.
• A collection of finite groups of diffeomorphisms �j acting on Ũi so that each

nontrivial element of �j acts nontrivially on each component of Ũj .
• A collection of homeomorphisms

φi : Ui → Ũi/�i .

The atlas A is required to behave well under inclusions. Namely, if Ui ⊂ Uj , then
there is a smooth embedding

φ̃ij : Ũi → Ũj

and a monomorphism fij : �i → �j such that φ̃ij is fij -equivariant.
The open sets Uj are the coordinate neighborhoods of the points x ∈ Uj and Ũj

are their covering coordinate neighborhoods.
Similarly to orbifolds, one defines the class of orbifolds with boundary; just

instead of open sets Ũj ⊂ R
n we use open subsets in

R
n+ ∪ R

n−1 = {(x1, ..., xn) : xn ≥ 0}.

The boundary of such an orbifold consists of points x ∈ XO which correspond
to R

n−1 under the identification Ui ∼= Ũi/�i . As in the case of manifolds, the
boundary of each orbifold is an orbifold without boundary. By abusing notation we
will call an orbifold with boundary simply an orbifold. A compact orbifold without
boundary is called closed.

To each point x ∈ X we associate a germ of action of a finite group of
diffeomorphisms �x at a fixed point x̃. If φj (x) is covered by a point x̃j ∈ Ũj ,
then we have the isotropy group �j,x of x̃j in �j . Note that if Ui ⊂ Uj , then
the map φ̃ij : Ũi → Ũj induces an isomorphism from the germ of the action of
�j,x at x̃j to the germ of the action of �i,x at x̃i . Thus we let the germ (�x, x̃)

be the equivariant diffeomorphism class of the germ (�j,x, x̃j ). The group �x is
called the local isotropy group of O at x. The set of points x with nontrivial local
isotropy group is called the singular locus of O and is denoted by �O. Note that
the singular locus is nowhere dense in XO. An orbifold with empty singular locus is
called nonsingular or a manifold.
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The main source of examples of orbifolds is:

Example D.18 Let M a smooth connected n-manifold and � is a discrete group
acting smoothly and faithfully on M . Then X = M/� has a natural orbifold
structure. The atlas A on X is given as follows: Each y ∈ M admits a coordinate
neighborhood Ũ (identified with an open subset of Rn) such that for every g ∈ �
either gŨ ∩ Ũ = ∅ or g ∈ �y (the stabilizer of y in �) and g(Ũ) = Ũ . Then
let φ : Ũ → U = φ(Ũ) be the quotient map. One verifies that A indeed satisfies
axioms of an orbifold-atlas. The groups Gj in the definition of an atlas are just the
stabilizers �y as above.

Since �x acts smoothly near the fixed point x̃, the germ (�x, x̃) is linearizable:
Equip a neighborhood of x̃ with a �x -invariant Riemannian metric. Then the
exponential map (with the origin at x̃) conjugates the orthogonal action of �x on
the tangent space Tx̃Rn to the germ of the action of �x at x̃.

Definition D.15 A Riemannian metric ρ on an orbifold O is a usual Riemannian
metric on XO − �O, such that after we lift ρ to the local covering coordinate
neighborhoods Ũi , it extends to a �i -invariant Riemannian metric on the whole Ũi .

The same definition applies to complex structures.

Remark D.12 Each orbifold O admits a Riemannian metric: The proof is the same
as for smooth manifolds, using a partition of unity.

A homeomorphism (resp. diffeomorphism) between orbifolds O,O′ is a homeo-
morphism h : XO → XO′ such that for all points x ∈ O, y = h(x) ∈ O ′, there
are coordinate neighborhoods Ux ∼= Ũx/�x, Vy ∼= Ṽy/�y such that h lifts to an
equivariant homeomorphism (resp. diffeomorphism)

h̃xy : Ũx → Ṽy.

Note that to describe a smooth orbifold O up to homeomorphism it suffices to
describe the topology of the pair (XO,�O) and the homeomorphic equivalence
classes of the germs (�x, x̃) for the points x ∈ �O.

Remark D.13 Let O be a connected compact 1-dimensional orbifold without
boundary which is not a manifold. Then O is homeomorphic to the closed interval
[a, b] where (�a, ã), (�b, b̃) are the germs (Z2, 0) of the reflection group Z2 acting
isometrically on R near its fixed point 0 ∈ R.

A smooth map between orbifolds O and O′ is a continuous map

g : O→ O ′

which can be (locally) lifted to smooth equivariant maps between pairs of coordinate
covering neighborhoods

g̃ij : Ũj → Ṽi
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Similarly we define immersions and submersions between orbifolds as smooth maps
between orbifolds which locally lift to immersions and submersions respectively.

Suppose that O′,O are orbifolds and p : XO′ → XO is a continuous map. The
map p is called a covering map or orbi-covering between the orbifolds O′,O if the
following property is satisfied:

For each point x ∈ XO there exists a chart U = Ũ/Gx such that for every
component Vi of p−1(U), the restriction map p : Vi → U is a quotient map of an
equivariant diffeomorphism hi : Ṽi → Ũ (if yi = p−1(x) ∩ Vi then hi conjugates
the action of Gyi on Ṽi to the action of a subgroup of �x on Ũ ).

From now on we will assume that the orbifolds under consideration are con-
nected.

The universal covering p : Õ → O of an orbifold O is the initial object in the
category of orbifold coverings, i.e. it is a covering such that for any other covering
p′ : O′ → O there exists a covering p̃ : Õ→ O′ satisfying p′◦p̃ = p. If p : Õ→ O
is the universal covering then the orbifold Õ is called the universal covering orbifold
of O.

The groupDeck(p) of deck transformations of an orbifold covering p : O′ → O
is the group of self-diffeomorphisms h : O′ → O′ such that p ◦ h = p. A covering
p : O′ → O is called regular if O′/Deck(p) = O.

The fundamental group π1(O) of the orbifold O is the group of deck transforma-
tions of its universal covering. Then O = Õ/π1(O). An alternative definition of the
fundamental group based on homotopy-classes of loops in O see in [74, Chapter
13].

Theorem D.22 Each orbifold has a universal covering.

Definition D.16 An orbifoldO is called good if its universal covering is a manifold.
Orbifolds which are not good are called bad. An orbifold is called very good if is
admits a finite-sheeted manifold-covering space.

Example D.19 Let O = M� be an n-dimensional complex hyperbolic orbifold.
Then � = π1(O) and O is a good orbifold: Its universal covering space is H

n
C

. If
� is finitely generated then, according to Selberg’s Lemma, the orbifold O is very
good.

Orbifold Bundles Instead of defining orbifold bundles in full generality, I will
define these only in the case of compact fibers and connected base, since this will
suffice for our purposes:

Definition D.17 A smooth orbi-bundle with compact fibers and connected base is
a proper submersion f : O → B between orbifolds. Fibers of f are preimages of
points under f .

Note that two different fibers need not be isomorphic to each other, but one can
prove that they are commensurable in the sense that they have a common finite-
sheeted orbi-covering.
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Appendix E: Ends of Spaces

Let Z be a locally path-connected, locally compact, Hausdorff topological space.
The set of ends of Z can be defined as follows (see e.g. [32] for details).

Consider an exhaustion (Ki) of Z by an increasing sequence of compact subsets:

Ki ⊂ Kj, whenever i ≤ j,

and

⋃

i∈N
Ki = Z.

Set Kci := Z \ Ki . The ends of Z are equivalence classes of decreasing sequences
of connected components (Ci) of Kic:

C1 ⊃ C2 ⊃ C3 ⊃ · · ·

Two sequences (Ci), (C′j ) of components of (Kic), (K ′
j
c
) are said to be equivalent if

each Ci contains some C′j and vice-versa. Then the equivalence class of a sequence
(Ci) is an end e of Z. Each Ci and its closure is called a neighborhood of e in Z.
The set of ends of Z is denoted Ends(Z). An end e is called isolated if it admits a
closed 1-ended neighborhoodC; such a neighborhood is called isolating.

An alternative view-point on the neighborhoods of ends is that there is a natural
topology on the union Ẑ = Z ∪ Ends(Z) which is a compactification of Z and the
neighborhoods C of ends e above are intersections of Z with neighborhoods of e
in Ẑ. Then an end e is isolated if and only if it is an isolated point of Ẑ. A closed
neighborhoodC of e in Z is isolating if and only if C ∪ {e} is closed in Ẑ.

From this definition it is not immediate that the notion of end is independent
of the choice of an exhausting sequence (Ki) of compact subsets. The true, but
less intuitive, definition of Ends(Z) is by considering the poset (ordered by the
inclusion) of all compact subsets K � Z. This poset defines the inverse system of
sets

{π0(K
c, x) : K � Z},

where the inclusionK ⊂ K ′ induces the map

π0(Z −K ′, x ′)→ π0(Z −K, x ′),

with x ′ ∈ Z − K ′ ⊂ Z − K . Taking the inverse limit of this system of sets yields
Ends(Z)which is, manifestly, a topological invariant. Furthermore, it is an invariant
of the proper homotopy type of Z.



2 A Survey of Complex Hyperbolic Kleinian Groups 45

In this survey, I adopt the analyst’s viewpoint on ends of manifolds and conflate
isolated ends and their isolating neighborhoods.

Appendix F: Generalities on Function Theory on Complex
Manifolds

For a complex manifoldM let OM denote the ring of holomorphic functions onM .
By a complex manifold with boundaryM I mean a smooth manifold with (possibly
empty) boundary ∂M , such that the interior, int(M), of the manifoldM , is equipped
with a complex structure, and there exists a smooth embedding h : M → X to an
equidimensional complex manifold X, biholomorphic on int(M). A holomorphic
function on M is a smooth function which admits a holomorphic extension to a
neighborhood ofM in X.

Suppose that X is a complex manifold and Y ⊂ X is a codimension 0 smooth
submanifold with boundary in X. The submanifold Y is said to be strictly Levi-
convex if every boundary point of Y admits a neighborhood U in X such that the
submanifold with boundary Y ∩ U can be written as

{φ ≤ 0},

for some smooth submersion φ : U → R satisfying

Hess(φ) > 0.

Here Hess(φ) is the holomorphic Hessian:

(

∂2φ

∂z̄i∂zj

)

.

(Positivity of the Hessian is independent of the local holomorphic coordinates.)

Example F.20 If X = C
n, Y = {z ∈ C

n : |z| ≤ 1}, then Y is strictly Levi-convex in
X: The complex Hessian of the function φ(z) = |z|2 = z · z̄ is the identity matrix.

Definition F.18 A strongly pseudoconvex manifold M is a complex manifold
with boundary which admits a strictly Levi-convex holomorphic embedding in an
equidimensional complex manifold.

Suppose, in addition, that M is compact and h : M → X is a holomorphic
embedding with strictly Levi-convex image Y . Then there exists a strictly Levi-
convex submanifold Y ′ ⊂ X such that Y ⊂ int(Y ′). Accordingly, M can be
biholomorphically embedded in the interior of a compact strongly pseudoconvex
manifoldM ′.
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Definition F.19 A complex manifold Z is called holomorphically convex if for
every discrete closed subset A ⊂ Z there exists a holomorphic function Z → C

which is proper on A.

Alternatively,3 one can define holomorphically convex manifolds as follows: For
a compact K in a complex manifold M , the holomorphic convex hull K̂M of K in
M is

K̂M = {z ∈ M : |f (z)| ≤ sup
w∈K

|f (w)|,∀f ∈ OM }.

Then M is holomorphically convex if and only if for every compact K ⊂ M , the
hull K̂M is also compact.

Definition F.20 A complex manifold is called Stein if it admits a proper holomor-
phic embedding in C

N for some N .

Equivalently,M is Stein if and only if it is holomorphically convex and any two
distinct points z,w ∈ M can be separated by a holomorphic function, i.e. there exists
f ∈ OM such that f (z) �= f (w). Yet another equivalent definition is: A complex
manifold M is Stein if and only if it is strongly pseudoconvex, i.e. it admits an
exhaustion by codimension 0 strongly pseudoconvex complex submanifolds with
boundary.

In particular:

Theorem F.23 The interior of every compact strongly pseudoconvex manifold Z is
holomorphically convex.

Therefore, by holomorphically embedding such (connected manifold) Z in the
interior of another compact strongly pseudoconvex manifold Z′ and applying
Grauert’s theorem to Z′, it follows that Z admits nonconstant holomorphic func-
tions.

Kohn and Rossi in [57] proved a certain extension theorem for CR functions
defined on the boundary of a complex manifold to holomorphic functions on the
entire manifold. I will state only a weak form of their result which will suffice for
our purposes.

Theorem F.24 (Kohn–Rossi) Suppose thatM is a compact strongly pseudoconvex
complex manifold of dimension>1 which admits at least one nonconstant holomor-
phic function. Then every holomorphic function on ∂M extends to a holomorphic
function on the entireM .

As one of the corollaries of this theorem (Corollary 7.3 of [57]), it follows that if
such anM is connected then ∂M is also connected. (If ∂M is disconnected, then one
can take a nonconstant locally constant function defined near ∂M: Such a function
cannot have a holomorphic extension toM .)

3 And this is the standard definition.
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Remark F.14 IfM is Kähler, then Theorem F.24 also holds without the assumption
on the existence of nonconstant holomorphic functions, see Proposition 4.4 in [69].

Theorem F.25 (Rossi, [77], Corollary on page 20) Suppose that M is a compact
strongly pseudoconvex complex manifold. Then int(M) admits a proper surjective
holomorphic map to a Stein space. In particular, if int(M) contains no compact
complex subvarieties of positive dimension, then int(M) is Stein.

I will not define Stein spaces here (strictly speaking, they are not needed for the
purpose of this survey), I refer to [40] for various equivalent definitions.

Topology of Stein Manifolds and Spaces Every complex n-dimensional Stein
space is homotopy-equivalent to an n-dimensional CW complex, see [43, 44]. More
precisely (see Theorem 1.1* on page 153 of [38]):

Theorem F.26 LetM be a n-dimensional complex manifold which admits a proper
holomorphic map M → C

N with fibers of positive codimension. Then M is
homotopy-equivalent to an n-dimensional CW complex.

Corollary F.6 Suppose that M is a connected compact strongly pseudoconvex
complex n-manifold with nonempty boundary. Then M is homotopy-equivalent to
a CW complex of dimension 2n− 2.

Appendix G (by Mohan Ramachandran): Proof of
Theorem 2.19

Proposition G.7 Let X be a complex manifold of dimension ≥2 and letM ⊂ X be
a domain with compact nonempty smooth strongly pseudoconvex boundary. Then
every pluriharmonic function onM which vanishes at ∂M , vanishes identically.

Proof The proof mostly follows that of Proposition 4.4 in [69]. Suppose that M =
{x ∈ X : ϕ(x) < 0} for some smooth function ϕ, which is strictly plurisubharmonic
on a neighborhood of ∂M and such that there exists ε < 0 such that ϕ−1([ε, 0])
is compact and ϕ|∂M = 0. Let β : M → R be a pluriharmonic function which
vanishes at ∂M . Fix a ∈ (ε, 0), such that ϕ is strictly plurisubharmonic on V =
{x ∈ M : ϕ(x) > a}. If β does not vanish identically on a neighborhood of ∂M , we
let b ∈ β(V ) denote a regular value of β. Thus, β−1(b) is disjoint from ∂M . Since
ϕ−1([ε, 0]) is compact, the restriction of ϕ to β−1(b) has a maximum at some point
x0 ∈ V ∩β−1(b). The holomorphic 1-form ∂β determines a (singular) holomorphic
foliation on M . Consider the leaf L through x0 of this holomorphic foliation: This
leaf is contained in β−1(b) and, hence, the restriction ϕ|L has a maximum at x0
contradicting strict plurisubharmonicity of ϕ. Therefore, β is identically zero near
∂M and, hence, is identically zero.

The next proposition is proven in [68, Theorem 2.6]:
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Proposition G.8 Suppose now that M has a complete Kähler metric of bounded
geometry,4 ∂M is connected and M has at least two ends. Then M admits a
nonconstant pluriharmonic function β :M → R which converges to zero at ∂M .

By combining the two propositions, we conclude:

Corollary G.7 Suppose that M is a complex manifold of dimension ≥2, which
admits a holomorphic embedding as a domain with compact nonempty smooth
strongly pseudoconvex boundary and which admits a complete Kähler metric of
bounded geometry. ThenM is 1-ended.

We can now conclude the proof of Theorem 2.19: Let M = M� be a complex
hyperbolic manifold of dimension ≥ 2 and of injectivity radius bounded below.
Suppose that E0 ⊂ M is a convex end. Let S0 ⊂ ∂M be the component
corresponding to the end E0. Consider the complex manifold Y = ̌�/�. Remove
from Y all the components of Y −M which are disjoint from S0 and call the result
X. ThenM embeds inX as a domain with nonempty smooth strongly pseudoconvex
boundary, namely, S0. Then, by the corollary,M is 1-ended. ��
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Chapter 3
Möbius Structures, Hyperbolic Ends
and k-Surfaces in Hyperbolic Space

Graham Smith

Abstract Möbius surfaces and hyperbolic ends are key tools used in the study of
geometrically finite three-dimensional hyperbolic manifolds. We review the theory
of Möbius surfaces and describe a new framework for the theory of hyperbolic
ends. We construct the ideal boundary functor sending hyperbolic ends into Möbius
surfaces, and the extension functor sending Möbius surfaces into hyperbolic ends.
We show that the former is a right inverse of the latter, and we show that every
hyperbolic end canonically embeds into the extension of its ideal boundary. We
conclude by showing that, for any given Möbius surface, there exists a unique
maximal hyperbolic end having that Möbius surface for its ideal boundary.

We apply these theories to the study of infinitesimally strictly convex (ISC)
surfaces in H

3 which are complete with respect to the sums of their first and third
fundamental forms (called quasicomplete in the sequel). We prove a new a prioriC0

estimate for such surfaces. We apply this estimate to provide a complete solution
of a Plateau-type problem for surfaces of constant extrinsic curvature in H

3 posed
by Labourie in 2000 (Invent Math 141:239–297). We conclude by describing new
parametrisations of the spaces of quasicomplete, ISC, constant extrinsic curvature
surfaces in H

3 by open subsets of spaces of holomorphic functions.
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3.1 Overview

3.1.1 Hyperbolic Ends and Möbius Structures

In the words of Thurston, within the family of all three-dimensional manifolds,
hyperbolic three-manifolds make up “by far the most interesting, the most complex,
and the most useful” class (see [30]). In this chapter, we will only be concerned with
two- and three-dimensional manifolds, which we will henceforth refer to simply
as surfaces and manifolds respectively. In addition, in order to avoid an avalanche
of unwieldy expressions, we will call a hyperbolic manifold geometrically finite
whenever it is complete, oriented, of finite topological type and without cusps. Our
aim is to present two of the main constructs used in the study of such manifolds,
namely hyperbolic ends and Möbius structures.

Hyperbolic manifolds are locally modelled on three-dimensional hyperbolic
space H3. For ease of visualisation, it is helpful to identify this space with the open
unit ball B3

1 in R
3 furnished with the Beltrami–Klein metric

gBK
ij := δij

(1− ‖x‖2)
+ xixj

(1− ‖x‖2)2
. (3.1.1)

This is called the Beltrami–Klein model of H3 (see [5]). Its most useful property for
our purposes is that its metric is affine equivalent to the standard Euclidean metric
in the sense that the geodesics of the one coincide, as sets, with the geodesics of the
other. In particular, a subset K of the unit ball is convex as a subset of H3 if and
only if it is convex as a subset of R3.

Let ∂∞H
3 denote the ideal boundary of H3 which, we recall, is defined to be

the space of equivalence classes of complete geodesic rays in H
3, where two such

rays are deemed equivalent whenever they are asymptotic to one another (see [2]).
In the Beltrami–Klein model, equivalence classes are uniquely defined by their end
points, so that ∂∞H

3 identifies topologically with the unit sphere S
2
1, and the union

H
3 ∪ ∂∞H

3 likewise identifies topologically with the closed unit ball B
3
1.

Let PSO0(3, 1) denote the group of orientation preserving isometries of H
3.

Recall that its action extends uniquely to a continuous action on H
3 ∪ ∂∞H

3.

Definition 3.1.1 Let S be a compact, oriented surface of genus at least 2, let �
denote its fundamental group and let θ : � → PSO0(3, 1) be an injective homo-
morphism with discrete image. We say that θ is a quasi-Fuchsian representation
whenever it preserves a Jordan curve in ∂∞H

3. We say that a hyperbolic manifold
X is quasi-Fuchsian whenever it is isometric to the quotient of H3 by the image of
some quasi-Fuchsian representation.

Remark 3.1.2 The quasi-Fuchsian manifold X is a complete hyperbolic manifold
diffeomorphic to S ×R (see [5] and [31]).
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Remark 3.1.3 The Jordan curve C preserved by θ(�) coincides with the limit set
of the θ(�)-orbit of every point of H3 ∪ ∂∞H

3. In particular, C is uniquely defined
by this representation.

Quasi-Fuchsian manifolds are geometrically finite. In fact, they are the archetypical
examples of this class of manifold. Of their various interesting properties, two
will concern us in particular. The first is a certain natural decomposition, which is
constructed as follows. Let θ : �→ PSO0(3, 1) be a quasi-Fuchsian representation,
let C ⊆ ∂∞H

3 denote the unique Jordan curve that it preserves, and let X :=
H

3/θ(�) denote the quasi-Fuchsian manifold that it defines. Let K̃ denote the
convex hull of C in H

3 and let ̃1 and ̃2 denote the two connected components of
its complement. Since θ(�) preserves K̃, ̃1 and ̃2, their respective quotients K ,
1 and 2 identify with subsets of X, and we thus obtain the decomposition

X := K ∪1 ∪2. (3.1.2)

Furthermore, K is the minimal, closed, convex subset onto which X retracts (see
[5]). More generally (see [15]), every geometrically finite hyperbolic manifold
decomposes in this way as the union of such a minimal, closed, convex subset,
known as its Nielsen kernel, and finitely many unbounded open subsets, of varying
topological type, known as its ends.

Definition 3.1.4 A height function over a hyperbolic manifold Y is defined to be a
locally strictly convex, C1,1

loc function h : Y →]0,∞[ such that

(1) the gradient flow lines of h are unit speed geodesics; and
(2) for all t > 0, h−1([t,∞[) is complete.

We say that a hyperbolic manifoldX is a hyperbolic end whenever it carries a height
function.

Remark 3.1.5 Height functions, whenever they exist, are unique (see Lemma 3.3.5).

Remark 3.1.6 We are not aware of a similar definition of hyperbolic ends having
been used before in the literature. However, we will show in Sect. 3.3 that
Definition 3.1.4 yields a rich and coherent theory. We believe that it has the virtues
over earlier definitions of being more direct and of lending itself better to potential
generalisations.

Consider now the quasi-Fuchsian manifold X and its three components introduced
above. By standard properties of convex subsets of hyperbolic space (see [2]), the
open sets ̃1 and ̃2 are both hyperbolic ends with height functions given by
distance in H

3 to K̃ . Since the above construction is invariant under the action of
θ(�), the quotients 1 and 2 are also hyperbolic ends. More generally, the con-
nected components of the complement of the Nielsen kernel of any geometrically
finite hyperbolic manifold are hyperbolic ends so that the theory of hyperbolic ends
encompasses the large scale geometry of geometrically finite hyperbolic manifolds.
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The second property of quasi-Fuchsian manifolds that interests us concerns their
asymptotic geometry. Indeed, with X as above, we define its ideal boundary ∂∞X
to be the space of equivalence classes of complete geodesic rays in X which are not
contained in any compact set where, again, two such rays are deemed equivalent
whenever they are asymptotic to one another. The lifts of such rays are complete
geodesic rays in H

3 whose end points are not elements of C, so that ∂∞X identifies
with the quotient of ∂∞H

3 \ C under the action of θ(�).
We now recall that ∂∞H

3 naturally identifies with the Riemann sphere Ĉ and that
the action of PSO0(3, 1) on ∂∞H

3 identifies with the action of the Möbius group
PSL(2,C) on this space. This identification is immediately visible in the Beltrami–
Klein model, since here the natural holomorphic structure of ∂∞H

3 is none other
than the structure that it inherits as a smooth, embedded submanifold of R3.

Definition 3.1.7 Let S be a surface. A Möbius structure (also known as a flat
conformal structure or a complex projective structure) over S is an atlas A of S in
Ĉ all of whose transition maps are restrictions of Möbius maps. A Möbius surface
is a pair (S,A) where S is a surface and A is a Möbius structure over S. In what
follows, when no ambiguity arises, we will denote the Möbius surface simply by S.

For each i, we denote �̃i := ∂∞̃i , so that the complement of C in ∂∞H
3

decomposes as

∂∞H
3 \ C = �̃1 ∪ �̃2. (3.1.3)

For each i, �̃i is trivially a Möbius surface and, since θ(�) acts on �̃i by Möbius
transformations, the quotient surface

�i := ∂∞̃i/θ(�) (3.1.4)

is also a Möbius surface. In this manner, we obtain a decomposition

∂∞X = �1 ∪�2 (3.1.5)

of the ideal boundary of X into the union of two Möbius surfaces, each homeomor-
phic to S. More generally, the ideal boundary of any geometrically finite hyperbolic
manifold consists of the union of finitely many compact Möbius surfaces, one
for each end, so that the theory of Möbius surfaces encompasses the asymptotic
geometry of geometrically finite hyperbolic manifolds.

We underline, however, that these theories extend beyond the theory of geo-
metrically finite hyperbolic manifolds. Indeed, it is straightforward to construct
hyperbolic ends and Möbius surfaces which do not arise respectively as the ends
or ideal boundaries of such manifolds. Nevertheless, in Sects. 3.3.4 and 3.3.6, we
show that every hyperbolic end X still has a well-defined ideal boundary, denoted
by ∂∞X, given by the space of equivalence classes of complete geodesic rays in
X, and that this ideal boundary naturally carries the structure of a Möbius surface.
Conversely, in Sects. 3.3.5 and 3.3.6, we show that, for every Möbius surface S,
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there exists a canonical hyperbolic end, which we denote by HS, and which we call
its extension, whose ideal boundary is canonically isomorphic to S.1 It follows that
the theories of hyperbolic ends and Möbius structures are naturally developed in
tandem. However, in contrast to the presentation of this introduction, we find that
the theory of Möbius structures precedes that of hyperbolic ends, and for this reason
it will be studied first in the following sections.

In Sects. 3.2 and 3.3, we comprehensively review the foundations of these
theories and the relationships between them. We have chosen to derive our results
using only classical tools of hyperbolic geometry, such as geodesics, spheres,
horospheres, and so on. The reader will notice certain similarities with aspects of
the work [16] of Kulkarni. Nonetheless, we find that our approach yields simpler
proofs of existing results and useful generalisations of others.

Two main themes will be of particular interest to us. The first concerns the
construction and properties of certain special functions which encode global
geometry in a local manner. In the case of hyperbolic ends, this function will be
none other than the height function defined above, whose analytic properties we
will establish in some detail. In the case of Möbius surfaces, it will be a C1,1

loc section
of the density bundle of the surface which we call the Kulkarni–Pinkall form. This
form, first studied in [17], is naturally related to the horospherical support function
of immersed surfaces in H

3 (see [8] and [22]) and for this reason constitutes a key
ingredient of useful a priori estimates that we will develop in Sect. 3.4 and which
we will discuss presently.

The second main theme that interests us is the construction of the operators ∂∞
and H mentioned above. These operators allow us to pass back and forth between
the families of hyperbolic ends and Möbius surfaces. In particular, they allow us to
compare the geometries of different hyperbolic ends with the same ideal boundaries,
and we thereby obtain the following nice result. We say that a hyperbolic end X is
maximal if it cannot be isometrically embedded in a strictly larger hyperbolic end
with the same ideal boundary.

Theorem 3.1.8 (Maximality) For every Möbius surface S, the extension HS of S
is, up to isometry, the unique maximal hyperbolic end with ideal boundary S.

Remark 3.1.9 To form a clearer idea of the concept of maximality, consider two
half-spacesH1,H2 ⊆ H

3 such thatH2 is strictly contained in H1. AlthoughH1 and
H2 are both maximal hyperbolic ends, this does not invalidate the definition, since
the ideal boundary of the second is strictly contained in that of the first.

Remark 3.1.10 We prove Theorem 3.1.8 in Sect. 3.3.6. In the case where S is
compact, this result follows from the work [21] of Scannell via the natural duality
between hyperbolic ends and GHMC de Sitter spacetimes (see [9]). An independent
proof of the compact case was also provided by the author in [24].

1 The extension coincides with the hyperbolic end constructed by Kulkarni–Pinkall in Section 8 of
[17], where it is called the H-hull of the Möbius surface.
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3.1.2 Infinitesimal Strict Convexity, Quasicompleteness and
the Asymptotic Plateau Problem

We now discuss the applications of the theories of Möbius surfaces and hyperbolic
ends to the study of certain types of immersed surfaces in H

3.

Definition 3.1.11 An immersed surface in H
3 is a pair (S, e), where S is an oriented

surface and e : S → H
3 is a smooth immersion. In what follows, we denote the

immersed surface sometimes by S and sometimes by e, depending on which is more
appropriate to the context.

We first recall some standard definitions of surface theory (c.f. [6]). Let S be an
immersed surface. Let UH

3 denote the bundle of unit vectors over H3. Let Ne :
S → UH

3 denote the positively oriented unit normal vector field over e. The first,
second and third fundamental forms of e are respectively the symmetric bilinear
forms Ie, IIe and IIIe defined over S such that, for every pair ξ , ν of vector fields
over this surface,

Ie(ξ, ν) := 〈De · ξ,De · ν〉, (3.1.6)

IIe(ξ, ν) := 〈∇ξNe,De · ν〉, and (3.1.7)

IIIe(ξ, ν) := 〈∇ξNe,∇νNe〉, (3.1.8)

where ∇ here denotes the Levi–Civita covariant derivative of H
3. The shape

operator of S is the field Ae of endomorphisms of T S defined such that

IIe(·, ·) =: Ie(Ae·, ·). (3.1.9)

In particular, the shape operator is symmetric with respect to Ie and the third
fundamental form of S is expressed in terms of the first fundamental form and the
shape operator by

IIIe(·, ·) = Ie(A
2
e ·, ·). (3.1.10)

Finally, the extrinsic curvature of S is defined by

Ke := Det(Ae). (3.1.11)

We now restrict attention to a class of immersed surfaces to which the theories
of Möbius surfaces and hyperbolic ends naturally apply.

Definition 3.1.12 Let (S, e) be an immersed surface in H
3. We say that (S, e)

is quasicomplete whenever the metric Ie + IIIe is complete and we say that it
is infinitesimally strictly convex (ISC) whenever its second fundamental form is
everywhere positive-definite.



3 Möbius Structures, Hyperbolic Ends... 59

Let (S, e) be a quasicomplete, ISC immersed surface in H
3. We associate a natural

hyperbolic end to S as follows. First, we denote ES := S × [0,∞[ and we define
the function Ee : ES → H

3 by

Ee(x, t) := Exp(tNe(x)). (3.1.12)

By local strict convexity of S, Ee is an immersion, and we thus furnish the
manifold ES with the unique hyperbolic structure that makes it into a local isometry.
Quasicompleteness then implies that ES is, in fact, a hyperbolic end (see Lemma
and Definition 3.4.1), which we call the end of S. In fact, a converse also holds:
ES is a hyperbolic end if and only if S is quasicomplete and IIe is non-negative
semi-definite.

In order to describe the natural Möbius structure associated to S, we now recall
the concept of developing maps. Let S be a surface and let φ : S → Ĉ be
a local diffeomorphism. For every point x of S, there exists a neighbourhood
U of x over which φ restricts to a diffeomorphism onto its image V . The set
A := (Uα, Vα, φ)α∈A forms an atlas of S in Ĉ whose transition maps are trivial, and
thus a fortiori Möbius. We call A the pull-back Möbius structure of φ. Given any
Möbius surface S, we say that a local diffeomorphism φ : S → Ĉ is a developing
map of S whenever its pull-back Möbius structure is compatible with the initial
Möbius structure of the surface. Not every Möbius surface possesses a developing
map, although every simply-connected Möbius surface trivially does. We say that
a Möbius surface is developable whenever a developing map exists. Likewise, we
define a developed Möbius surface to be a pair (S, φ), where S is a surface and
φ : S → Ĉ is a local diffeomorphism. Naturally, in this case, S is furnished with the
pull-back Möbius structure of φ.

We now return to the case where (S, e) is a quasicomplete ISC immersed surface
in H

3. We define the horizon map Hor : UH
3 → ∂∞H

3 such that, for every unit
speed geodesic γ : R→ H

3,

Hor(γ̇ (0)) := limt→+∞γ (t). (3.1.13)

We define asymptotic Gauss map of S by

φe := Hor ◦Ne, (3.1.14)

where Ne here denotes the positively oriented unit normal of e. By infinitesimal
strict convexity of S, this function is a local diffeomorphism from S into ∂∞H

3
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(see [2]).2 In particular, (S, φe) is a developed Möbius surface which we call the
asymptotic Gauss image of S.

We have thus seen how hyperbolic ends and Möbius surfaces are associated to
quasicomplete, ISC immersed surfaces in H

3. We now show how these construc-
tions yield a useful new a priori estimate for such surfaces. We first require the
following parametrisation of the space of open horoballs in H

3 by �2∂∞H
3. Let

y ∈ ∂∞H
3 be an ideal point. Let B ⊆ H

3 be an open horoball centred on y. Let
H be an open half-space whose boundary is an exterior tangent to B at some point.
Let D := ∂∞H denote the ideal boundary of H and let ω(D) denote the area
form of its Poincaré metric. It turns out that ω(D)(y) only depends on B. We call
y and ωy := ω(D)(y) the asymptotic centre and the asymptotic curvature of B
respectively, and we verify that these data defineB uniquely. For all ωy ∈ �2∂∞H

3,
we henceforth denote by B(ωy) the open horoball in H

3 with asymptotic centre y
and asymptotic curvature ωy . In this manner, we obtain the desired parametrisation
of the space of open horoballs in H

3 by �2∂∞H
3.

In Sect. 3.2.4, we associate to every Möbius surface S a canonical section of�2S

which we call its Kulkarni–Pinkall form. The push-forward of this section through
any developing map is a function taking values in�2∂∞H

3 which, by the preceding
discussion, associates to every point of S an open horoball in H

3.

Theorem 3.1.13 (A Priori Estimate) Let (S, e) be a quasicomplete ISC immersed
surface in H

3, let φ denote its asymptotic Gauss map and let ω denote the Kulkarni–
Pinkall form of the developed Möbius surface (S, φ). For all x ∈ S,

e(x) ∈ B(φ∗ω(x)). (3.1.15)

Remark 3.1.14 Theorem 3.1.13 follows immediately from Theorem 3.4.8.

This estimate in turn yields a complete solution to a problem of Plateau-
type concerning surfaces of constant extrinsic curvature, as we now show. First,
following the work [19] of Labourie, we make the following two definitions.

Definition 3.1.15 For k > 0, a k-surface is a quasicomplete, ISC immersed surface
in H

3 of constant extrinsic curvature equal to k. In what follows, we denote
the k-surface sometimes by S and sometimes by e, depending on which is more
appropriate to the context.

Definition 3.1.16 Let (S, φ) be a developed Möbius surface. For k > 0, we say
that a k-surface e : S → H

3 is a solution to the asymptotic Plateau problem (S, φ)
whenever its asymptotic Gauss image is equal to this Möbius surface.

2 In fact, it is not necessary for the immersed surface to be infinitesimally strictly convex for its
asymptotic Gauss map to be a local diffeomorphism. It is instead sufficient that both of its principal
curvatures be different to−1. The properties of surfaces which satisfy this condition are studied in
[8, 22].
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In other words, Labourie’s asymptotic Plateau problem concerns the unique pre-
scription of k-surfaces in terms of their asymptotic Gauss images. In [19], Labourie
proved various existence and uniqueness results for solutions of this problem in a
more general setting than that studied here. Further existence and continuity results
were also obtained by the author in [26]. There is now, scattered across the literature,
a rich theory around the asymptotic Plateau problem, which we will review in [28].

In Sect. 3.4, we apply the theories of Möbius surfaces and hyperbolic ends to the
study of this problem. In particular, using the a priori estimate of Theorem 3.1.13,
we obtain the following new compactness result. First, we say that two developed
Möbius surfaces (S, φ) and (S′, φ′) are equivalent whenever there exists a
diffeomorphism α : S → S′ and a Möbius map β ∈ PSL(2,C) such that

φ′ ◦ α = β ◦ φ. (3.1.16)

Theorem 3.1.17 (Monotone Convergence) Let (S, φ) be a developed Möbius
surface with universal cover not equivalent to (Ĉ, z), (C, z) or (C,Exp(z)). Let
(m)m∈N be a nested sequence of open subsets of S which exhausts S. If, for k > 0
and for allm, em : m→ H

3 is a k-surface solving the asymptotic Plateau problem
(m, φ|m), then (em)m∈N subconverges in the C∞loc sense over S to a k-surface
e∞ : S → H

3 solving the asymptotic Plateau problem (S, φ).

Remark 3.1.18 Theorem 3.1.17 is proven in Theorem 3.4.11.

Upon combining Theorem 3.1.17 with the existence results proven by Labourie
in [19], we obtain the main new result of this chapter: a complete solution of the
asymptotic Plateau problem for k-surfaces in three-dimensional hyperbolic space.

Theorem 3.1.19 (Existence and Uniqueness) For all 0 < k < 1, and for every
developed Möbius surface (S, φ) with universal cover not equivalent to (Ĉ, z),
(C, z) or (C,Exp(z)), there exists a unique k-surface e : S → H

3 solving the
asymptotic Plateau problem (S, φ).

Remark 3.1.20 Theorem 3.1.19 is proven in Theorem 3.4.16.

Remark 3.1.21 It is an interesting open problem to determine under what conditions
a k-surface is complete. We describe an example of a non-complete k-surface in
Appendix A.

3.1.3 Schwarzian Derivatives

We conclude this introduction by showing how a reformulation of Theorem 3.1.19 in
terms of Schwarzian derivatives yields nice linearisations of the spaces of k-surfaces
in H

3.
Let S be a simply-connected Riemann surface. By Riemann’s uniformisation

theorem, we may suppose that S is the Poincaré disk D, the complex plane C or
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the Riemann sphere Ĉ. For all k, let Im̃mk(S) denote the space of k-surfaces e :
S → H

3 whose asymptotic Gauss map is holomorphic. We furnish this space with
the C∞loc topology and we denote by Immk(S) its quotient under the action of post-
composition by elements of PSO0(3, 1). Trivially, every simply connected k-surface
is equivalent to a unique element of

Immk(D) ∪ Immk(C) ∪ Immk(Ĉ). (3.1.17)

The space Immk(Ĉ) will be of little interest to us since, for k > 1, it consists of a
single equivalence class corresponding to geodesic spheres of radius arctanh(1/

√
k)

whilst, for k � 1, it is empty.
We now show how Immk(D) and Immk(C) are parametrised by open subsets

of vector spaces. We first recall the concept of Schwarzian derivative (see [20]).
Recall that a function φ : S → Ĉ is said to be locally conformal whenever it is a
holomorphic local diffeomorphism. The Schwarzian derivative of any such function
φ : S → Ĉ is defined by

DSchφ :=
(

φ′′

φ′

)′
− 1

2

(

φ′′

φ′

)2

. (3.1.18)

A key property of the Schwarzian derivative is that, for any locally conformal
function φ : S → Ĉ and for any Möbius map α,

DSch(α ◦ φ) = DSchφ. (3.1.19)

Furthermore, for any holomorphic function f : S → C, there exists a locally
conformal function φ : S → Ĉ, unique up to post-composition by Möbius maps,
such that

DSchφ = f. (3.1.20)

Let Hol(S) denote the space of holomorphic functions over S furnished with the
C0

loc topology. For all k > 0, let �̃ : Im̃mk(S) → Hol(S) denote the function
defined such that, for every k-surface e : S → H

3,

�̃[e] := DSchφe, (3.1.21)

where φe denotes the asymptotic Gauss map of e. For any k-surface e ∈ Im̃mk(S)
and for any Möbius map α,

�̃∞[α ◦ e] = DSchφα◦e = DSch(α ◦ φe) = DSchφe = �̃∞[e], (3.1.22)

so that, for all k, �̃ descends to a continuous functional� : Immk(S)→ Hol(S).
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In [26], we prove an existence and uniqueness result for solutions of asymptotic
Plateau problems of hyperbolic conformal type. In the present framework, this is
reformulated as follows.

Theorem 3.1.22 (Hyperbolic Asymptotic Plateau Problem) For all 0 < k < 1
and for all f ∈ Hol(D), there exists a unique element e ∈ Immk(D) such that

�[e] = f. (3.1.23)

Furthermore, e depends continuously on f . In other words, � defines a homeomor-
phism from Hol(D) into Immk(D).

Remark 3.1.23 Theorem 3.1.22 is proven in Theorem 3.4.18, below.

Theorem 3.1.19 now yields the corresponding result in the parabolic case.

Theorem 3.1.24 (Parabolic Asymptotic Plateau Problem) For all 0 < k < 1
and for all f ∈ Hol(C) \ C, there exists a unique element e ∈ Immk(C) such that

�[e] = f. (3.1.24)

Remark 3.1.25 Theorem 3.1.24 is proven in Theorem 3.4.19, below.

Remark 3.1.26 It is not known in the parabolic case whether the solution e depends
continuously on the data f .

Remark 3.1.27 Interestingly, a complementary result holds in the limiting case
where k = 1. Indeed, by a theorem of Volkov–Vladimirova and Sasaki (see Theorem
46 of [29]), Imm1(D) is empty and Imm1(C) consists only of horospheres and
universal covers of cylinders of constant radius about complete geodesics.3 When e
is a horosphere, �[e] vanishes and when e is a universal cover of a cylinder, �[e]
is a non-zero constant. For this and other reasons, for 0 < k < 1, it makes sense
to identify complete geodesics and ideal points of ∂∞H

3 as degenerate solutions of
the asymptotic Plateau problem for f ∈ C \ {0} and f = 0 respectively.

Remark 3.1.28 For k > 1, we expect both Immk(D) and Immk(C) to be empty.
However, we are not aware of any proof of this affirmation.

3 In fact, Volkov–Vladimirova and Sasaki’s result as stated in [29] requires completeness as
opposed to mere quasicompleteness. However, as we will show in our forthcoming work [28],
a careful analysis of the proof reveals that quasicompleteness is quite sufficient for this result to
hold.
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3.1.4 Closing Remarks and Acknowledgements

Much of this chapter has been formulated in the language of category theory, which
we believe provides the best framework for presenting our results. For the benefit of
those who, like the author, have always met this theory with a certain foreboding,
we have provided an elementary discussion of its basic principles in Appendix B.

The author is grateful to Sébastien Alvarez, François Fillastre and Andrea Seppi
for helpful comments on earlier drafts of this text. Figure 3.5 was prepared by
Débora Mondaini.

3.2 Möbius Structures

3.2.1 Möbius Structures

A Möbius structure (also known as a flat conformal structure or a complex projective
structure) over a surface S is an atlas A all of whose transition maps are restrictions
of Möbius maps. A Möbius surface is a pair (S,A) where S is a surface and A is
a Möbius structure over this surface. In what follows, we will denote the Möbius
surface simply by S whenever the atlas is clear from the context. The family of
Möbius surfaces forms a category whose morphisms are those functions φ : X →
X′ whose expressions with respect to every pair of coordinate charts are restrictions
of Möbius maps. Naturally, we identify Möbius surfaces which are isomorphic.

Every Möbius structure trivially defines a holomorphic structure over the same
surface. We call the resulting Riemann surface the underlying Riemann surface
of the Möbius surface. The operation which associates to a Möbius surface its
underlying Riemann surface is trivially a covariant functor. This distinction between
Möbius surfaces and their underlying Riemann surfaces is more than a mere abstract
formality, and the reader may consult, for example, [7] for an overview of the rich
theory concerning the relationship between the two.

The model examples of Möbius surfaces are the open subsets of Ĉ and their
quotients under actions of subgroups of the Möbius group PSL(2,C). More
generally, given any surface S, and a local diffeomorphism φ : S → Ĉ, a Möbius
structure is constructed over S as follows. For every point x ∈ S, there exists a
neighbourhoodU of x over which φ restricts to a diffeomorphism onto its image V .
The set (Uα, Vα, φ)α∈A of all such charts defines an atlas of S in Ĉ whose transition
maps are trivial, and thus a fortiori Möbius. We call this structure the pull-back
structure of φ and we denote it by φ∗Ĉ. It will often be convenient in the sequel to
denote the Möbius surface defined by φ by (S, φ).

Given a Möbius surface S, we say that a local diffeomorphism φ : S → Ĉ is a
developing map of S whenever the pull-back Möbius structure of φ is compatible
with the initial Möbius structure of S. Any two developing maps φ, φ′ : S → Ĉ are
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related to one another by

φ′ = α ◦ φ, (3.2.1)

for some Möbius map α, so that the family of all developing maps over a given
Möbius surface can be parametrised by PSL(2,C)whenever it is non-empty. We say
that a Möbius surface is developable whenever it has a developing map. In particular,
every simply connected Möbius surface has this property. In the following sections,
we will mainly be concerned with developable Möbius surfaces. In particular, we
will take the developing maps to be given, and we leave the reader to verify that our
constructions are independent of the developing maps chosen.

Non-developable Möbius surfaces are studied as follows. Given a Möbius surface
S with fundamental group � and universal cover S̃, any developing map φ of S̃ is
equivariant with respect to a unique homomorphism θ : �→ PSL(2,C) which we
call its holonomy. Furthermore, given another developing map φ′ with holonomy
θ ′, there exists a unique Möbius map α such that

θ ′ = αθα−1, and (3.2.2)

φ′ = α ◦ φ. (3.2.3)

Although non-developable Möbius surfaces will be of little interest to us in the
sequel, their study has produced a deep and fascinating literature. For example,
the question of which homomorphisms arise as holonomies of Möbius surfaces is
addressed thoroughly by Gallo–Kapovich–Marden in [10]. Likewise, the structure
of the space of Möbius surfaces with a given fixed holonomy θ is studied by
Goldman in [11]. Finally, branched Möbius structures, for which the developing
map is allowed to be a ramified covering, add yet another layer of sophistication to
this theory (see, for example, [4]).

We conclude this section by describing a key trichotomy of the theory. We say
that a connected Möbius surface is elliptic or parabolic whenever its universal cover
is isomorphic to (Ĉ, z) or to (C, z) respectively and hyperbolic otherwise.

Lemma 3.2.1 Let S be a connected Möbius surface. If S contains an elliptic
surface, then S is elliptic. If S contains a parabolic surface, then S is either elliptic
or parabolic.

Proof Upon taking universal covers, we may suppose that S is simply connected.
Let S′ be an open subset of S. If S′ is elliptic then, being compact, it is closed so
that, by connectedness, S = S′ is also elliptic. Suppose now that S′ is parabolic.
Let φ : S → Ĉ be a developing map such that φ(S′) = C. We claim that S′ is
also simply connected. Indeed, let S̃′ denote its universal cover and let π : S̃′ → S′
denote the canonical projection. Since (φ ◦ π) is a developing map of S̃′, it is a
diffeomorphism from S̃′ onto C. It follows that π is injective and S′ is therefore
simply connected, as asserted. In particular, φ restricts to a diffeomorphism from S′
onto C.
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Suppose now that S′ �= S. In particular, the topological boundary ∂S′ of S′ in S
is non-empty. Since the restriction of φ to S′ is a diffeomorphism, φ(∂S′) = {∞}.
Now let x be a point of ∂S′. Let  be a connected neighbourhood of x in S over
which φ restricts to a diffeomorphism. In particular, by injectivity, ∂S′ ∩ = {x}. It
follows that S′ ∩ ( \ {x}) is a non-trivial, open and closed subset of \ {x} so that,
by connectedness,\{x} ⊆ S′. Since φ(S\) is uniformly bounded away from∞,
x is in fact the only element of ∂S′. We conclude that φ defines a diffeomorphism
from S onto Ĉ, so that S is elliptic. This completes the proof. ��
We underline that the above trichotomy for Möbius surfaces differs from the
elliptic-parabolic-hyperbolic trichotomy for Riemann surfaces. Indeed, although the
underlying Riemann surface of any elliptic or parabolic Möbius surface is also
respectively elliptic and parabolic, there exist many hyperbolic Möbius surfaces—
such as, for example, (C∗, z), (C, ez) and (C∗, ez)—whose underlying Riemann
surfaces are parabolic.

3.2.2 The Möbius Disk Decomposition and the Join Relation

We now introduce a canonical decomposition of Möbius surfaces which will be the
main tool used for their study in the sequel. Let S be a developable Möbius surface
with developing map φ. A Möbius disk in S is a pair (D, α) where D ⊆ Ĉ is an
open disk and α : D→ S satisfies

φ ◦ α = Id. (3.2.4)

We call the set (Di, αi)i∈I of all Möbius disks in S its Möbius disk decomposition.
Since φ is a local diffeomorphism, every point of S lies in the image of some Möbius
disk, so that the Möbius disk decomposition covers S. We define the join relation∼
of the Möbius disk decomposition such that, for all i, j ∈ I ,

i ∼ j ⇔ αi(Di) ∩ αj (Dj ) �= ∅. (3.2.5)

This relation is trivially reflexive and symmetric, but not transitive. Composing with
φ, we obtain

i ∼ j ⇒ Di ∩Dj �= ∅, (3.2.6)

and

i ∼ j, j ∼ k, Di ∩Dj ∩Dk �= ∅ ⇒ i ∼ k. (3.2.7)

We call the pair ((Di)i∈I ,∼) the combinatorial data of S. This data is sufficient to
recover S uniquely up to isomorphism, as follows from the following general result.
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Theorem & Definition 3.2.2 LetM be a smooth manifold. Let (i)i∈I be a family
of open subsets of M and let ∼ be a reflexive and symmetric relation over I such
that

(1) for all i, j ∈ I , i ∩j has at most 1 connected component;
(2) i ∼ j ⇒ i ∩j �= ∅; and
(3) i ∼ j, j ∼ k, i ∩j ∩k �= ∅ ⇒ i ∼ k.
There exists a (not necessarily second-countable) smooth manifold N , a smooth
local diffeomorphism φ : N → M and, for all i, a smooth function αi : i → N

such that,

(A) (αi(i))i∈I covers N;
(B) i ∼ j ⇔ αi(Di) ∩ αj (Dj ) �= ∅; and
(C) for all i, φ ◦ αi = Id.

Furthermore, the triplet (N, φ, (αi )i∈I ) is unique in the sense that if (N ′, φ′, (α′i )i∈I )
is another such triplet, then there exists a unique diffeomorphismψ : N → N ′ such
that, for all i, α′i = ψ ◦ αi .

We call N the join of ((i)i∈I ,∼), we call φ the canonical immersion and we
call (αi)i∈I the canonical parametrisations.

Remark 3.2.3 If M possesses any additional structure—such as, say, a hyperbolic
structure, a Möbius structure, and so on—then N inherits this structure fromM , as
follows immediately from the triviality of the transition maps of the atlas constructed
in the proof below.

Remark 3.2.4 We do not prove second-countability of N . This will not trouble
us, however, since second-countability is only required in manifold theory for
constructions involving either Sard’s Theorem or partitions of unity, neither of
which appear in this chapter. Besides, in every case arising in the sequel, second-
countability can be recovered, either by covering N by a countable subfamily of
(αi(i))i∈I , or by appealing to Radó’s Theorem (see [14]).

Proof We first prove existence. Define

Ñ := �i∈Ii,

and define the relation ≈ over Ñ such that, for all xi ∈ i and yj ∈ j ,

xi ≈ yj ⇔ i ∼ j and xi = yj .

It follows by (3) that≈ is an equivalence relation over Ñ . LetN := Ñ/ ≈ denote its
quotient space furnished with the quotient topology and let α : Ñ → N denote the
canonical projection. Recall now that a manifold is defined to be a second-countable,
Hausdorff space furnished with an atlas. The atlas of N is constructed as follows.
For all i, we verify that α restricts to a homeomorphism fromi onto an open subset
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of N , and we denote

Ui := α(i), Vi := i, αi := α|Vi , and φi := α−1
i .

The family A := (Ui, Vi, φi)i∈I forms an atlas of N all of whose transition maps
are trivial, and thus a fortiori smooth, as desired.

Since we are not concerned with second-countability, it only remains to show
that N is Hausdorff. For this, let xi ∈ i and yj ∈ j be such that there exists a
sequence (pm)m∈N of points in N converging simultaneously to α(xi) and to α(yj ).
For sufficiently large m, pm has representative elements xm,i in i and ym,j in j
respectively, which converge towards xi and yj respectively. In particular, i ∼ j

and, for all m, xm,i = ym,j . Upon taking limits, we obtain xi = yj , so that xi ≈ yj
and therefore α(xi) = α(yj ). We conclude thatN is indeed Hausdorff, and therefore
a (not necessarily second-countable) manifold.

Finally, the canonical inclusion φ̃ : Ñ → M trivially descends to a local
diffeomorphism φ : N → M . We verify that (N, φ, (αi )i∈I ) has the desired
properties, thus proving existence.

To prove uniqueness, let (N ′, φ′, (α′i )i∈I ) be another such triplet. Define ψ̃ :
Ñ → N ′ such that, for all xi ∈ i ,

ψ̃(xi) := α′i (xi).

We first show that ψ̃ descends to a function ψ : N → N ′. Indeed, let xi ∈ i and
yj ∈ j be such that xi ≈ yj . By (B),

α′i (i) ∩ α′j (j ) �= ∅.

Furthermore, by (1), (C) and a connectedness argument

α′i |i∩j = α′j |i∩j .

In particular, ψ̃(xi) = ψ̃(yj ) so that ψ̃ indeed descends to a function ψ : N → N ′.
By (A), ψ is surjective, by (B) and (C), it is injective. Since αi and α′i are local
diffeomorphisms for all i, it follows that ψ is a diffeomorphism, definition, for all
i, α′i = ψ ◦ αi . This proves existence of ψ , and since uniqueness is trivial, this
completes the proof. ��

3.2.3 Geodesic Arcs and Convexity

We now introduce a concept of geodesics for sets of Möbius disks in a given non-
elliptic Möbius surface. This in turn yields a concept of convexity for such sets
which will be useful for establishing uniqueness in the constructions that follow.
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To begin with, we study the geometry of the space D of disks in Ĉ. Recall that
Ĉ naturally identifies with the ideal boundary ∂∞H

3 of H3. With this identification,
every disk D in Ĉ is the ideal boundary of a unique open half-space H in H

3. The
boundary ∂H of every open half-space in H

3 is a totally geodesic plane which we
orient so that its positively oriented normal points outwards fromH . Trivially, open
half-spaces in H

3 are uniquely defined by their oriented boundaries. Consequently,
any parametrisation of the space of oriented totally geodesic planes in H

3 is also a
parametrisation of D.

The space of oriented totally geodesic planes in H
3 is parametrised by (2, 1)-

dimensional de Sitter space dS2,1 as follows. First, we identify H
3 and dS2,1 with

subsets of R3,1, namely

H
3 :=

{

x ∈ R
3,1 | 〈x, x〉3,1 = −1, x4 > 0

}

, and (3.2.8)

dS2,1 :=
{

x ∈ R
3,1 | 〈x, x〉3,1 = 1

}

, (3.2.9)

where here 〈·, ·〉3,1 denotes the Minkowski metric with signature (3, 1), that is

〈x, x〉3,1 := x2
1 + x2

2 + x2
3 − x2

4 . (3.2.10)

With this identification, every oriented totally geodesic plane P in H
3 is the

intersection of H3 with a unique oriented, time-like, linear hyperplane P̂ in R
3,1.

Every such hyperplane has, in turn, a well-defined positively-oriented unit normal
vectorN . Since N is also spacelike, it is an element of dS2,1. This yields a bijection
between the space of oriented, totally geodesic planes in H

3 and dS2,1, which is the
desired parametrisation.

Recall now that a subset� of dS2,1 is a geodesic if and only if it is the intersection
of dS2,1 with a linear plane �̂. Furthermore, � is said to be spacelike, lightlike or
timelike respectively whenever the restriction to this plane of the Minkowski metric
has signature (2, 0), (1, 0) or (1, 1). Of particular interest to us will be the spacelike
geodesics. Observe first that any two distinct totally geodesic planes in H

3 with
non-trivial intersection meet along a complete geodesic.

Lemma 3.2.5 Let P and P ′ be distinct, oriented totally-geodesic planes in H
3

which are neither equal nor equal with opposing orientations. P and P ′ have non-
trivial intersection if and only if their corresponding points in dS2,1 lie along a
common spacelike geodesic �. Furthermore, motion at constant speed along �
corresponds to rotation at constant angular speed around their common geodesicG.

Proof Observe first that the orthogonal complement in R
3,1 of any timelike linear

plane Ĝ is a spacelike linear plane �̂ whose intersection with dS2,1 is a circle in
�̂ and a spacelike geodesic � in dS2,1. Now let P = P̂ ∩ H

3 and P ′ = P̂ ′ ∩ H
3

be oriented totally-geodesic planes in H
3 which are neither equal nor equal with

opposing orientations. These planes meet along a common geodesic G if and only
if P̂ and P̂ ′ contain a common timelike linear plane Ĝ. This in turn holds if and
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only if their unit normals N and N ′, which are already elements of dS2,1, are also
elements of the orthogonal complement �̂ of Ĝ. This proves the first assertion. Since
the second assertion is straightforward, this completes the proof. ��

We now return to the case of disks in Ĉ. We say that two distinct disks
D0 and D1 overlap whenever their boundary circles meet at exactly two points.
Observe that this holds if and only if their intersection is non-trivial, the intersection
of their complements is non-trivial, and neither is contained within the other.
With the preceding parametrisation, this is precisely the requirement for their
corresponding points in dS2,1 to lie along a common spacelike geodesic. In addition,
the corresponding point of a third diskD lies along the shorter geodesic arc between
these two points if and only if

D0 ∩D1 ⊆ D ⊆ D0 ∪D1. (3.2.11)

We thus define the geodesic arc between two overlapping disksD0 andD1 to be the
set of all disksD in Ĉ which satisfy this property. This construction is illustrated in
Fig. 3.1.

This concept of geodesic arc extends to the Möbius disk decomposition of S
as follows. We say that two distinct Möbius disks (D0, α0) and (D1, α1) overlap
whenever α0(D0) and α1(D1) have non-trivial intersection and neither is contained
within the other. Upon composing with φ, it follows that D0 and D1 likewise have
non-trivial intersection and neither is contained within the other. In addition, since
S is not elliptic, the complements of D0 and D1 also have non-trivial intersection,
so that D0 andD1 also overlap. Using a connectedness argument, we show that

α0|D0∩D1 = α1|D0∩D1 , (3.2.12)

so that these functions join to define a function α01 : D0 ∪D1 → S such that

φ ◦ α01 = Id. (3.2.13)

In particular, for any other diskD along the geodesic arc fromD0 toD1, (D, α01|D)
is also a Möbius disk in S. We thus define the geodesic arc from (D0, α0) to (D1, α1)

Fig. 3.1 Here the disks D1
and D2 overlap. The disk D
is the mid-point of the
geodesic arc between these
two disks. Two other points
along this arc are marked by
dashed curves
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to be the set of all Möbius disks in S of this form. We say that any subset (Di, αi)i∈J
of the Möbius disk decomposition of S is convex whenever it contains the geodesic
arc between any two of its overlapping disks.

3.2.4 The Kulkarni–Pinkall Form

In [17], Kulkarni–Pinkall construct for any Möbius surface of hyperbolic type a
canonical metric which encodes its global geometry in a local manner. Kulkarni–
Pinkall’s construction will play a central role in the C0 estimates that we will derive
in Sect. 3.4 for quasicomplete ISC immersions in H

3. However, we will adopt here a
slightly different perspective from that of [17], since we believe it to be more natural
to work in terms of 2-forms rather than in terms of metrics.

Let S be a developable Möbius surface with developing map φ, let (Di, αi)i∈I
denote its Möbius disk decomposition and, for all i ∈ I , let Hi denote the open
half-space in H

3 with ideal boundary Di . For all x ∈ S, let I (x) denote the set of
indices i such that x ∈ αi(Di). For any disk D ∈ Ĉ, let ω(D) denote the area form
of its Poincaré metric. We define ωφ , the Kulkarni–Pinkall form of S, such that, for
all x ∈ S,

ωφ(x) := infi∈I (x)φ∗ω(Di), (3.2.14)

and we define gφ the Kulkarni–Pinkall metric of S by

gφ := ωφ(·, J ·), (3.2.15)

where J here denotes the complex structure of S.

Lemma 3.2.6 (Monotonicity) Let S and S′ be developable Möbius surfaces with
respective developing maps φ and φ′ and respective Kulkarni–Pinkall forms ωφ and
ωφ′ . If α : S → S′ is a morphism such that φ = φ′ ◦ α, then

ωφ ≥ α∗ωφ′ . (3.2.16)

Proof Indeed, composition with α sends the Möbius disk decomposition of S into
the Möbius disk decomposition of S′. ��

The following family of partial orders over I will prove useful in deriving
properties of the Kulkarni–Pinkall form. For all x ∈ S, we define

i ≥x j ⇔ i, j ∈ I (x) and ω(Di)(y) ≤ ω(Dj )(y), (3.2.17)

where y := φ(x). The geometric significance of the Kulkarni–Pinkall form as well
as this partial order becomes clear once we recall the parametrisation of the space
of open horoballs in H

3 by �2∂∞H
3 described in Sect. 3.1.2. Indeed, for all x ∈
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S, φ∗ωφ(x) is simply the infimal asymptotic curvature of horoballs asymptotically
centred on φ(x) and contained in Hi , as i varies over I (x). Likewise, for all x ∈ S
and for all i, j ∈ I (x), i ≥x j if and only if every open horoball asymptotically
centred on φ(x) and contained in Hj is also contained in Hi .

3.2.5 Analytic Properties of the Kulkarni–Pinkall Form

We restrict our attention initially to the simpler case of Möbius surfaces of the form
(, z), where is an open subset of Ĉ. At this stage, it is useful to recall that, for a
diskD in the complex plane C of radius R with centre lying at distance r < R from
the origin,

ω(D)(0) = 4R2dxdy

(R − r)2(R + r)2 � dxdy

(R − r)2 . (3.2.18)

In particular, if ω(D)(0) < λ2dxdy, thenD contains a disk of radius 1/λ about the
origin.

Lemma & Definition 3.2.7 Let  be an open subset of Ĉ and let ω denote its
Kulkarni–Pinkall form.

(1) If the complement of  in Ĉ contains at most 1 point then, for all x, ω(x) = 0
and I (x) contains no maximal element with respect to ≥x .

(2) If the complement of  in Ĉ contains at least 2 distinct points then, for all x,
ω(x) > 0 and I (x) contains a unique maximal element with respect to ≥x
which realizes ω(x).

In the second case, we denote by max(x) the unique maximal element of I (x).

Proof The first assertion is trivial. To prove the second assertion, we may suppose
that is a proper subset of the complex plane C. Existence follows by compactness
of the set of (possibly ideal) disks in C which have radius bounded below, which
contain a fixed point z0, and which avoid another fixed point w0. Observe now that
ω(Di)(x) restricts to a strictly concave function over every geodesic arc in I(x).
Uniqueness thus follows by convexity of I (x). Finally, since ω(x) is realized by the
unique maximal element of I (x), ω(x) > 0, and this completes the proof. ��
Given an ideal point x ∈ ∂∞H

3 and a closed subset Y ⊆ H
3 ∪ ∂∞H

3, we define the
curvature of distance c(x, Y ) from x to Y to be the infimal asymptotic curvature of
open horoballs with asymptotic centre x which do not meet Y .

Lemma 3.2.8 Let  be a proper open subset of the complex plane C, let ω denote
its Kulkarni–Pinkall form, let (Di, αi)i∈I denote its Möbius disk decomposition,
and, for all i ∈ I , let Hi denote the open half-space in H

3 with ideal boundary
Di . Let K denote the convex hull in H

3 ∪ ∂∞H
3 of the complement of  and let
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π : → ∂K denote the closest point projection. For all x ∈ ,

ω(x) = c(x,K), (3.2.19)

and H(x) := Hmax(x) is the unique supporting open half-space of K at the point
π(x) such that ∂H(x) is orthogonal to the geodesic joining π(x) to x. In particular,
ω(x), H(x) andD(x) := Dmax(x) are C0,1

loc functions over .

Remark 3.2.9 In fact, Kulkarni–Pinkall show in [17] that ω is a C1,1
loc function.

Proof Since the complement of K in H
3 is the union of all open half-spaces with

ideal boundary in , we have

Kc = ∪i∈IHi,
from which it follows that ω(x) = c(x,K) for all x ∈ . Now choose x ∈ . Let
B be the open horoball in H

3 with asymptotic centre x and asymptotic curvature
c(x,K). SinceHmax(x) is the unique open half-space inKc containingB, the second
assertion follows and this completes the proof. ��

We now address the general case. Let S be a developable Möbius surface with
developing map φ and let (Di, αi)i∈I denote its Möbius disk decomposition. For all
x ∈ S, with I (x) defined as in Sect. 3.2.4, we define

x := ∪i∈I (x)Di. (3.2.20)

For all i, j ∈ I (x), αi coincides with αj over Di ∩ Dj so that the join of these
functions yields a function αx : x → S satisfying φ ◦ αx = Id. We call (x, αx)
the localisation of S at x. The following trichotomy follows immediately from
Lemma 3.2.1.

Lemma 3.2.10 Let S be a developable Möbius surface with developing map φ :
S → Ĉ.

(1) If S is elliptic, then x = Ĉ for all x.
(2) If S is parabolic, then x is the complement of a single point in Ĉ for all x.
(3) If S is hyperbolic, then the complement of x contains at least two points in Ĉ

for all x.

For all x ∈ S, we define ωφ,x , the local Kulkarni–Pinkall form of S at x, to
be the push-forward through αx of the Kulkarni–Pinkall form of (x, z). Since
composition with αx sends the Möbius disk decomposition of (x, z) to I (x),
Lemmas 3.2.7 and 3.2.10 immediately yield the following result.

Lemma & Definition 3.2.11 Let S be a developable Möbius surface of hyperbolic
type with developing map φ : S → Ĉ and Kulkarni–Pinkall form ωφ . For all x ∈ S,
I(x) has a unique maximal element which realises ωφ(x). Furthermore

ωφ(x) = ωφ,x(x), (3.2.21)
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and, for all y ∈ αx(x),

ωφ(y) ≤ ωφ,x(y). (3.2.22)

For all x ∈ S, we denote by max(x) the unique maximal element of I (x).

Analytic properties of ωφ analogous to those obtained in Lemma 3.2.8 for localised
Möbius structures follow upon refining (3.2.21) to equality over a neighbourhood
of x.

Lemma 3.2.12 Let S be a developable Möbius surface of hyperbolic type with
developing map φ. For all x ∈ S, there exists a neighbourhood Ux of x such that,
for all y ∈ Ux ,

max(y) ∈ I (x). (3.2.23)

Proof Since S is hyperbolic, we may suppose that x is a proper subset of C. Let
(Di, αi)i∈I denote the Möbius disk decomposition of S. Denote i := max(x). We
may suppose that Di is the upper half-space in C and that φ(x) = √−1. Let dh
denote the hyperbolic distance in Di and define Ux by

Ux :=
{

y ∈ αi(Di) | dh(φ(y), φ(x)) < log((1+√5)/2)
}

.

Let y be an element of Ux . Observe that φ(y) is contained in the Euclidean ball of
radius (

√
5 − 1)/2 about φ(x) in C (see Fig. 3.2). Denote j := max(y). Since S

is hyperbolic, ∂Di intersects ∂Dj at least one point and, upon applying a suitable
Möbius transformation, we may suppose that one of these points lies at infinity. In

Fig. 3.2 The image of Ux is a disk in the upper half space, symmetric about the imaginary axis
and passing through the points (

√
5 + 1)i/2 and (

√
5 − 1)i/2. In particular, it is contained in the

Euclidean ball of radius (
√

5− 1)/2 about i
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particularDj is a disk in C. However, by (3.2.18) and (3.2.22),

ω(Dj )(φ(y)) = φ∗ωφ(y) ≤ φ∗ωφ,x(y) ≤ 4dxdy

(
√

5− 1)2
.

It follows by (3.2.18) again thatDj contains a ball of radius (
√

5−1)/2 about φ(y).
In particular, φ(x) ∈ Dj , so that x ∈ αj (Dj ) and j ∈ I (x), as desired. ��
Corollary 3.2.13 Let S be a developable Möbius surface of hyperbolic type with
developing map φ : S → Ĉ and Kulkarni–Pinkall form ωφ . Let x be a point of S.
With Ux as in Lemma 3.2.12, for all y ∈ Ux ,

ωφ(y) = ωx,φ(y). (3.2.24)

Combining the above results yields a description of the analytic properties of the
Kulkarni–Pinkall form of every Möbius surface.

Theorem 3.2.14 Let S be a developable Möbius surface with developing map φ :
S → Ĉ, Kulkarni–Pinkall form ωφ and Möbius disk decomposition (Di, αi)i∈I .
(1) If S is of elliptic or parabolic type, then ωφ vanishes identically.
(2) If S is of hyperbolic type, then ωφ is a nowhere vanishing section of �2S.

Furthermore ωφ(x) andD(x) := Dmax(x) are C0,1
loc functions over S.

Finally, Lemma 3.2.12 also shows that the Kulkarni–Pinkall metric of any Möbius
surface of hyperbolic type is everywhere non-degenerate. In addition, we also obtain
the following global information concerning this metric.

Lemma 3.2.15 Let S be a developable Möbius surface with developing map φ. The
Kulkarni–Pinkall metric gφ of S is complete.

Proof It suffices to show that there exists r0 > 0 such that the closed ball of radius
r0 with respect to gφ about any point of S is compact. Let (Di, αi)i∈I denote the
Möbius disk decomposition of S and for all i, let Hi denote the open half-space in
H

3 with ideal boundary Di . We consider first the case where (S, φ) = (, z) for
some connected neighbourhood  of 0 in C. We identify H

3 with the upper half-
space in C × R. Let K denote the convex hull in H

3 of the complement of  in Ĉ.
We may suppose that D := Dmax(0) is the unit disk about the origin so that (0, 1)t

is a boundary point of K . In particular, for all j ∈ I , (0, 1)t /∈ Hj . However, a
symmetry argument shows that if ωSph denotes the standard spherical area form of
Ĉ then, for all z ∈ Ĉ,

ωSph(z) = infj∈J (z)ω(Dj ),

where J (z) is the set of all indices j such that z ∈ Dj but (0, 1)t /∈ Hj . It follows
that

gφ ≥ gSph := 4

(1+ |z|2)2 δij .
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Consider now the general case. Let x be a point of S. Let (x, αx) denote the
localisation of S at this point. As before, we may suppose that φ(x) = 0 and that
D := Dmax(x) is the unit disk in C about the origin. Let Ux be as in Lemma 3.2.12.
Recall now that the hyperbolic distance in D is given by

dHyp(z, 0) = 2arctanh(|z|).

From this we verify that φ(Ux) coincides with the Euclidean disk of radius (
√

5−2).
However, by the preceding paragraph, over this disk,

φ∗gφ ≥ gSph,

so that Ux contains the open disk of radius arcsin((
√

5 + 2)/10) with respect to gφ
about x. The result now follows with r0 equal to this radius. ��

3.3 Hyperbolic Ends

3.3.1 Hyperbolic Ends

Given a hyperbolic manifold X, we define a height function over X to be a strictly
convex C1,1

loc function h : X→]0,∞[ such that

(1) the gradient flow lines of h are unit speed geodesics; and
(2) for all t > 0, h−1([t,∞[) is complete.

We will see in Lemma 3.3.5, below, that height functions, whenever they exist, are
unique. We define a hyperbolic end to be a hyperbolic manifold which carries a
height function. The family of hyperbolic ends forms a category whose morphisms
are those functions ψ : X → X′ which are local isometries. Naturally, we identify
hyperbolic ends which are isometric.

We first identify various components of hyperbolic ends. Let X be a hyperbolic
end with height function h. We call the gradient flow lines of h vertical lines. These
curves form a geodesic foliation of X which we denote by V and which we call its
vertical line foliation. We call the level sets of h the levels ofX. These form another
foliation of X by C1,1

loc embedded surfaces which we call its level set foliation and
which we denote by (Xt)t>0. These two foliations are transverse to one another and
every vertical line intersects every level at exactly one point. From this it follows that
every level of X is naturally homeomorphic to the leaf space of V . For all t > 0,
we define the vertical projection πt : X → Xt to be the function which sends each
point x of X to the intersection with Xt of the vertical line on which it lies. By
standard properties of convex sets in H

3, for all t > 0, πt restricts to a 1-Lipschitz
function from h−1([t,∞[) into Xt .
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We call any local isometry φ : X → H
3 a developing map of X. Any two

developing maps φ, φ′ : X→ H
3 are related by

φ′ = α ◦ φ, (3.3.1)

for some isometry α of H
3. We say that X is developable whenever it has a

developing map. In particular, every simply connected hyperbolic end has this
property. In the following sections, we will only be concerned with developable
hyperbolic ends and we leave the reader to formulate the trivial extensions of our
results to the general case. In particular, we will take the developing maps to be
given, and we leave the reader to verify that our constructions are independent of
the developing maps chosen.

The model examples of hyperbolic ends are the complements of closed, convex
subsetsK of H3, where the height function is the distance to K . More sophisticated
examples are given by quotients of such subsets by subgroups of the Möbius group
PSL(2,C), such as the ends of quasi-Fuchsian manifolds studied in the introduction.
We recall in addition that the complement of the Nielsen kernel of every finite
geometry hyperbolic manifold is the union of finitely many hyperbolic ends (see, for
example, [15]). However, we emphasize again that it is straightforward to construct
hyperbolic ends that do not arise in this manner. Indeed, the developing map of
the universal cover of any end of any finite geometry hyperbolic manifold with
fundamental group not equal to Z is an embedding in H

3. However, as we will see
in Sect. 3.3.5, it is straightforward to construct simply connected hyperbolic ends
with non-injective developing maps.

The key to understanding hyperbolic ends lies in the following analogue of the
Hopf–Rinow Theorem.

Theorem 3.3.1 Let (X, h) be a hyperbolic end. If γ : [0, a[→ X is a geodesic
segment such that γ̇ (0) is not downward-pointing, then γ extends to a geodesic ray
defined over the entire half-line [0,∞[.
Remark 3.3.2 A suitably modified version of Theorem 3.3.1 holds under the weaker
condition that there exists a convex function f : X→]0,∞[ such that f−1([t,∞[)
is complete for all t > 0. In fact, using the arguments of the following sections, we
may show that a hyperbolic manifold X is a hyperbolic end whenever there exists
a C1,1

loc convex function f : X →]0,∞[ such that f−1([t,∞[) is complete for all
t > 0 and ‖∇f ‖ ≥ ε > 0. Such functions, which one may call generalised height
functions are thus natural objects of study in the theory of hyperbolic ends (c.f. [1]).

Proof By strict convexity of h, (h ◦ γ ) has strictly increasing derivative. Since, by
hypothesis, (h ◦ γ ) has non-negative derivative at 0, it follows that its derivative
is strictly positive for all positive time, so that (h ◦ γ ) is itself strictly increasing.
In particular, γ remains within a complete subset of X and may thus be extended
indefinitely, as desired. ��
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3.3.2 The Half-Space Decomposition

Let X be a developable hyperbolic end with height function h and developing map
φ : X → H

3. We define a half-space in X to be a pair (H, α) where H is an open
half-space in H

3 and α : H → X satisfies

φ ◦ α = Id. (3.3.2)

We call the set (Hi, αi)i∈I of all half-spaces in X its half-space decomposition.

Lemma 3.3.3 Let X be a developable hyperbolic end with height function h. For
all x ∈ X, there exists a unique half-space (H, α) in X such that x ∈ ∂α(H) and
∇h(x) is the inward-pointing normal to ∂α(H) at this point.

Proof Let φ denote a developing map of X. Let x be a point of X. Define the
subset E+ of TxX by E+ := {ξ | 〈ξ,∇h(x)〉 > 0}. By Theorem 3.3.1, E+ lies
within the domain of the exponential map Expx of X at x. By Hadamard’s theorem,
the composition (φ ◦ Expx) restricts to a diffeomorphism from E+ onto its image
H := (φ ◦ Expx)(E

+). This image is an open half-space in H
3 and the function

α := Expx ◦ (φ ◦ Expx)
−1 is the desired right-inverse of φ. We readily verify that

(H, α) is the desired half-space and that it is unique. This completes the proof. ��
Corollary 3.3.4 Let X be a developable hyperbolic end. The half-space decompo-
sition of X covers X.

Proof Indeed, for all x ∈ X, upon applying Lemma 3.3.3 to any point lying
vertically below x, we obtain a half-space inX containing x. The result follows. ��

We define the join relation ∼ of the half-space decomposition such that, for all
i, j ∈ I ,

i ∼ j ⇔ αi(Hi) ∩ αj (Hj ) �= ∅. (3.3.3)

This relation is trivially reflexive and symmetric, but not transitive. Composing with
φ, we obtain

i ∼ j ⇒ Hi ∩Hj �= ∅, (3.3.4)

and

i ∼ j, j ∼ k, Hi ∩Hj ∩Hk �= ∅ ⇒ i ∼ k. (3.3.5)

As in Sect. 3.2.2, we call the pair ((Hi)i∈I ,∼) the combinatorial data of X. By
Theorem 3.2.2 and the subsequent remark, this data is sufficient to recover X up to
isometry.
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As a first application of the half-space decomposition, we obtain an elementary
formula for the height function. Indeed, for all x ∈ X, let I (x) denote the set of
indices i ∈ I such that x ∈ αi(Hi).
Lemma 3.3.5 Let X be a developable hyperbolic end with height function h,
developing map φ, and half-space decomposition (Hi, αi)i∈I . For all x ∈ X,

h(x) = supi∈I (x)d(φ(x), ∂Hi). (3.3.6)

In particular, the height function of X is unique.

Proof Choose x ∈ X. Since the integral curves of the gradient of h are unit speed
geodesics,

h(x) ≥ supi∈I (x)d(φ(x), ∂Hi).

Conversely, by completeness, there exists an integral curve γ :] − h(x),∞[→ X

of ∇h such that γ (0) = x. By Lemma 3.3.3, for all ε > 0, there exists k ∈ I (x)
such that γ (ε− h(x)) ∈ ∂αk(Hk) and γ̇ (ε− h(x)) is the inward-pointing normal to
∂αk(Hk) at this point. In particular,

supi∈I (x)d(φ(x), ∂Hi) ≥ d(φ(x), ∂Hk) = h(x)− ε.

Since ε > 0 is arbitrary, the result follows. ��
Corollary 3.3.6 (Monotonicity) Let X and X′ be developable hyperbolic ends
with respective height functions h and h′. If ψ : X→ X′ is a morphism, then

h ≤ h′ ◦ ψ. (3.3.7)

Proof Indeed, ψ sends the half-space decomposition of X into the half-space
decomposition of X′. ��
More generally, we obtain the following structure result for morphisms of hyper-
bolic ends.

Lemma 3.3.7 Let X andX′ be developable hyperbolic ends with respective height
functions h and h′. If ψ : X→ X′ is a morphism then, for all x ∈ X,

〈∇h(x),∇(h′ ◦ ψ)(x)〉 > 0. (3.3.8)

Proof Let φ : X→ H
3 and φ′ : X′ → H

3 be developing maps such that φ = φ′◦ψ .
Let x be a point ofX. By Lemma 3.3.3, there exists a unique half-space (H, α) inX
such that x ∈ ∂α(H) and ∇h is the inward-pointing normal to ∂α(H) at this point.
Observe furthermore that the closure of α(H) is complete inX. Its image (H,ψ ◦α)
is a half-space in X′ such that the closure of (ψ ◦ α)(H) is complete in X′. Denote
Y ′ := ∂(ψ ◦ α)(H) and let N ′ : Y ′ → TX′ denote its inward-pointing unit normal
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vector field. At every point of Y ′, 〈N ′,∇h′〉 > 0, for otherwise h′ would vanish at
some point x ′ of the closure of (ψ ◦α)(H), which is absurd. The result now follows
upon pulling back this inequality through ψ and evaluating at x. ��

3.3.3 Geodesic Arcs and Convexity

Geodesic arcs in the half-space decomposition are defined in a similar manner as
in the Möbius case. We first consider open half-spaces H0 and H1 in H

3. We say
that H0 and H1 overlap whenever their boundaries meet along a geodesic. Observe
that this holds if and only if their intersection is non-trivial, the intersection of their
complements is non-trivial and one is not contained within the other. When H0 and
H1 overlap, we define the geodesic arc between them to be the set of all open half-
spaces H in H

3 such that

H0 ∩H1 ⊆ H ⊆ H0 ∪H1. (3.3.9)

This definition extends to half-spaces in developable hyperbolic ends as follows.
Let X be a developable hyperbolic end with developing map φ. We say that two
distinct open half-spaces (H0, α0) and (H1, α1) in X overlap whenever the sets
α0(H0) and α1(H1) have non-trivial intersection and neither is contained within
the other. Upon composing with φ, it follows that H0 and H1 likewise have non-
trivial intersection, and neither is contained within the other. Furthermore, their
complements also have non-trivial intersection, for otherwiseX would be isometric
to H

3, contradicting the existence of a height function. H0 and H1 consequently
overlap. Using a connectedness argument, we show that

α0|H0∩H1 = α1|H0∩H1 , (3.3.10)

so that these functions join to define a function α01 : H0 ∪H1 → X such that

φ ◦ α01 = Id. (3.3.11)

In particular, for any other open half-spaceH along the geodesic arc fromH0 toH1,
(H, α01|H ) is also a half-space in X. We thus define the geodesic arc from (H0, α0)

to (H1, α1) to be the set of all half-spaces in X of this form. We say that a subset
(Hi, αi)i∈J of the half-space decomposition ofX is convex whenever it contains the
geodesic arc between any two of its overlapping elements.

Using this concept of convexity, we obtain deeper information about the structure
of the height function. Indeed, let X be a simply connected hyperbolic end with
height function h, developing map φ and half-space decomposition (Hi, αi)i∈I . For
all x ∈ X, let I (x) be as in the preceding section and observe now that this set is
convex. For all i ∈ I (x), let rx,i denote the supremal radius of open geodesic balls
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in Hi centred on φ(x). By Lemma 3.3.5, the height function h of X satisfies

h(x) := supi∈I (x)rx,i . (3.3.12)

For all x ∈ X, define the partial order ≥x over I such that, for all i, j ∈ I ,

i ≥x j ⇔ i, j ∈ I (x) and rx,i ≥ rx,j . (3.3.13)

Define also

̂x := ∪i∈I (x)Hi. (3.3.14)

By a connectedness argument, for all i, j ∈ I (x),

αi |Hi∩Hj = αj |Hi∩Hj , (3.3.15)

so that these functions join to define a smooth function αx : ̂x → X such that

φ ◦ αx = Id. (3.3.16)

We call (̂x, αx) the localisation of X about x. Let K̂x denote the complement of
̂x in H

3 and let hx : ̂x → R denote the distance to K̂x . Since K̂x is an intersection
of closed half-spaces, it is a closed, convex subset of H3 so that ̂x is a hyperbolic
end with height function hx .

Lemma & Definition 3.3.8 Let X be a developable hyperbolic end with height
function h and developing map φ. Let x be a point of X, let (̂x, αx) denote the
localisation of X at x, and let hx denote its height function. I (x) contains a unique
maximal element for ≥x which realises h(x). Furthermore,

h(x) = (hx ◦ φ)(x), (3.3.17)

and for all y ∈ αx(̂x),

h(y) ≥ (hx ◦ φ)(y). (3.3.18)

We denote by max(x) the unique maximal element of I (x).

Proof Let x be a point of X. Since, by (3.3.12), (rx,i)i∈I (x) is bounded above by
h(x), I (x) contains a maximal element, and existence follows. Since I (x) is convex
and since the restriction of rx,i to every geodesic arc in I (x) is strictly concave,
uniqueness follows. Finally, since αx sends the half-space decomposition of ̂x to
I (x), (3.3.17) and (3.3.18) follow, and this completes the proof. ��
Lemma 3.3.9 Let X be a developable hyperbolic end with developing map φ. Let
x be a point ofX and let (̂x, αx) denote the localisation ofX about x. There exists
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a neighbourhoodUx of x in αx(̂x) such that, for all y ∈ Ux ,

max(y) ∈ I (x). (3.3.19)

Proof Let h denote the height function ofX and let (Hi, αi)i∈I denote its half-space
decomposition. For x ∈ X, define

Ux :=
{

y ∈ αx(̂x) | d(φ(y), φ(x)) < h(x)/2
}

.

For y ∈ Ux , h(y) > h(x)/2. It follows that if i := max(y), then Hi contains the
ball of radius h(x)/2 about φ(y). In particular, φ(x) is an element of Hi , so that x
is an element of αi(Hi), and i ∈ I (x), as desired. ��
Corollary 3.3.10 Let X be a developable hyperbolic end with height function h
and developing map φ. Let x be a point of X, let (̂x, αx) denote the localisation
of X about x, and let hx denote its height function. With Ux as in Lemma 3.3.9, for
y ∈ Ux ,

h(y) = (hx ◦ φ)(y). (3.3.20)

Proof Indeed, αx sends the half-space decomposition of ̂x to I (x). ��
We are now ready to determine more refined analytic properties of the height

function. We first require the following definition of PDE theory (c.f. [3]). Given a
smooth manifold Y , a point y ∈ Y , a function f : Y → R and a symmetric bilinear
form B over TyY , we say that

Hess(f )(x) ≥ B (3.3.21)

in the weak sense whenever there exists a neighbourhood of y in Y and a smooth
function g : → R such that

(1) g ≤ f ;
(2) g(y) = f (y); and
(3) Hess(g)(y) = B.

We likewise say that Hess(f )(y) ≤ B in the weak sense whenever Hess(−f )(y) ≥
−B in the weak sense.

Lemma 3.3.11 Let X be a developable hyperbolic end with height function h. For
all x ∈ X, with respect to the decomposition TxX = Ker(dh(x))⊕ 〈∇h(x)〉,

(

tanh(h(x))Id 0
0 0

)

≤ Hess(h)(x) ≤
(

coth(h(x))Id 0
0 0

)

. (3.3.22)

in the weak sense.



3 Möbius Structures, Hyperbolic Ends... 83

Fig. 3.3 Here, y is the closest point of K̂x to φ(x), and H is the supporting half-space to K̂x at
this point whose inward-pointing normal points towards φ(x). For any other point z of H , ∂H is
closer to z than K̂x , which in turn is no further from to z than y

Proof Let φ denote the developing map of X. Let x be a point of X. By
Corollary 3.3.10, it suffices to prove the result for the localisation (̂x, αx) of X at
x. Let y ∈ K̂x be the closest point to φ(x). Let H denote the supporting open half-
space to K̂x at y whose boundary is normal to the geodesic joining y to φ(x) (see
Fig. 3.3). Let f, g : H3 → R denote respectively the distance to y and the distance
to ∂H . Trivially, f (φ(x)) = g(φ(x)) = hx(φ(x)) and, over H , g ≤ hx ≤ f . The
result now follows upon explicitly determining the hessian operators of f and g at
φ(x). ��

3.3.4 Ideal Boundaries

We now study functors which map between the categories of simply connected
Möbius surfaces and simply connected hyperbolic ends. We first describe the ideal
boundary functor ∂∞ which associates a simply connected Möbius surface to every
simply connected hyperbolic end. For this we require the following finer control of
complete geodesic rays in hyperbolic ends.

Lemma & Definition 3.3.12 Let X be a developed hyperbolic end with height
function h. For every complete geodesic ray γ : [0,∞[→ X,

limt→∞(h ◦ γ )(t) ∈ {0,∞} . (3.3.23)

We say that γ is bounded whenever this limit is zero and unbounded otherwise.

Proof Indeed, by convexity (h ◦ γ )(t) converges to a (possibly infinite) limit as t
tends to infinity. Suppose now that

limt→∞(h ◦ γ )(t) > 2ε,
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for some ε > 0. Denoting f (t) := (h◦γ )(t), (3.3.22) yields, for sufficiently large t ,

f̈ � tanh(ε)(1− ḟ 2)

in the weak sense. Upon solving this ordinary differential inequality, we see that
f (t) tends to +∞ as t tends to infinity, as desired. ��
Lemma 3.3.13 Let X be a developable hyperbolic end and let γ : [0,∞[→ X be
a complete, unbounded geodesic ray. For all t > 0, there exists x ∈ Xt such that

lims→+∞(πt ◦ γ )(s) = x. (3.3.24)

In particular, γ is asymptotic to the vertical line passing through x.

Proof Naturally, we may suppose that γ is parametrized by arc-length. Let h denote
the height function of X. By (3.3.22), for sufficiently large t , the function f :=
〈γ̇ ,∇h ◦ γ 〉 satisfies

ḟ (t) ≥ (1− ε)(1− f (t)2)

in the weak sense. Solving this ordinary differential inequality, we show that f
converges exponentially fast to 1, so that the component of γ̇ orthogonal to ∇h ◦ γ
converges exponentially fast to zero. Since πt is 1-Lipschitz, and since∇h lies in the
kernel of Dπt , the curve (πt ◦ γ ) thus has finite length, and the result now follows
by completeness. ��

Let X be a developable hyperbolic end with developing map φ. We define
∂∞X, the ideal boundary of X, to be the space of equivalence classes of complete,
unbounded geodesic rays in X, where two such rays are deemed equivalent
whenever they are asymptotic to one another. The union X ∪ ∂∞X is topologised
as follows. By Theorem 3.3.1, for all x ∈ X, for every upward-pointing unit vector
ξ ∈ TxX, for all r > 0, and for sufficiently small θ ∈]0, π[, the truncated cone

C(ξ, θ, r) := {

Expx(tμ) | μ ∈ TxX, ‖μ‖ = 1, t > r, 〈μ, ξ〉 > cos(θ)
}

(3.3.25)
is well-defined. For all such ξ , θ and r , we define the ideal boundary ∂∞C(ξ, θ, r)
to be the set of equivalence classes of unbounded geodesic rays which eventually lie
in C(ξ, θ, r). The collection of all sets of the form

C(ξ, θ, r) ∪ ∂∞C(ξ, θ, r) (3.3.26)

together with the open subsets of X forms a basis of a Haussdorf topology of X ∪
∂∞X which we call the cone topology. In particular, with respect to this topology,
∂∞X has the structure of a topological surface.

By Lemma 3.3.13, every complete geodesic ray in X is asymptotic to some
vertical line. On the other hand, since πt is 1-Lipschitz for all t , no two vertical



3 Möbius Structures, Hyperbolic Ends... 85

lines are asymptotic to one another. It follows that ∂∞X is homeomorphic to the leaf
space of the vertical line foliation of X which, we recall, is in turn homeomorphic
to every levelXt ofX. In particular, since X retracts ontoXt for all t , it follows that
X and ∂∞X are homotopy equivalent.

Since the developing map φ : X → H
3 sends complete geodesic rays

continuously to complete geodesic rays, it defines a continuous function ∂∞φ :
∂∞X → ∂∞H

3. By standard properties of convex subsets of hyperbolic space, this
function is a local homeomorphism and thus defines a developable Möbius structure
over ∂∞X which we readily verify is of hyperbolic type. In particular, we verify that,
for all t , the homeomorphism sending ∂∞X toXt is in fact a smooth diffeomorphism
with respect to this structure.

Finally, let X′ be another developable hyperbolic end with developing map φ′ :
X′ → H

3 and let ψ : X → X′ be a morphism such that φ := φ′ ◦ ψ . Since ψ
also maps complete, unbounded geodesic rays continuously to complete, unbounded
geodesic rays, it defines a morphism ∂∞ψ : ∂∞X → ∂∞X′ such that ∂∞φ′ ◦
∂∞ψ = ∂∞φ. We verify that ∂∞ respects identity elements and compositions, and
thus defines a covariant functor from the category of simply connected hyperbolic
ends into the category of simply connected Möbius surfaces.

It is useful to observe how the ideal boundary functor acts on the half-space
decomposition of the hyperbolic end.

Lemma 3.3.14 Let X be a developable hyperbolic end with developing map φ, let
(Hi, αi)i∈I denote its half-space decomposition, and let ∼ denote its join relation.
Then (∂∞Hi, ∂∞αi)i∈I is a subset of the Möbius disk decomposition of (∂∞X, ∂∞φ)
which covers ∂∞X. Furthermore, the restriction to I of the join relation of the
Möbius disk decomposition of ∂∞X coincides with ∼.

Remark 3.3.15 Significantly, however, (∂∞Hi, ∂∞αi)i∈I rarely accounts for the
entire Möbius disk decomposition of ∂∞X. Indeed, this only occurs when X is
functionally maximal in the sense of Lemma and Definition 3.3.21, below.

Proof For all i, ∂∞Hi is a disk in Ĉ = ∂∞H
3 and, by functoriality, ∂∞αi defines a

function from ∂∞Hi into ∂∞X such that

∂∞φ ◦ ∂∞αi = Id.

It follows that (∂∞Hi, ∂∞αi)i∈I is a subset of the Möbius disk decomposition of
∂∞X. We now show that (∂∞Hi, ∂∞αi)i∈I covers ∂∞X. Let γ : [0,∞[→ X be a
complete, unit speed geodesic ray. Let t0 > 0 be such that γ̇ (t0) is upward pointing.
Let i be the unique element of I such that γ (t0) ∈ ∂Hi and γ̇ (t0) is the inward
pointing unit normal to ∂Hi at this point. The equivalence class of γ is then an
element of ∂∞αi(∂∞Hi) and since γ is arbitrary, it follows that (∂∞Hi, ∂∞αi)i∈I
covers ∂∞X, as desired. Finally, we readily show that, for all i, j ∈ I ,

i ∼ j ⇔ ∂∞αi(∂Hi) ∩ ∂∞αj (∂Hj ) �= ∅,
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so that the restriction to I of the join relation of the Möbius disk decomposition of
∂∞X coincides with ∼, as desired. ��
It is also worth verifying that half-spaces inX are uniquely determined by their ideal
boundaries in ∂∞X.

Lemma 3.3.16 Let X be a developable hyperbolic end. For any two half-spaces
(Hi, αi) and (Hj , αj ) in X,

(∂∞Hi, ∂∞αi) = (∂∞Hj, ∂∞αj ) ⇒ (Hi, αi) = (Hj , αj ). (3.3.27)

Proof Since ∂∞Hi = ∂∞Hj , we haveHi = Hj =: H . Let φ denote the developing
map of X. Denote U := αi(Hi) ∩ αj (Hj ) and V = φ(U). Observe that, over V ,
αi = φ−1 = αj . It thus suffices to show that V = H . However, since αi and αj
are local isometries, ∂V is a totally geodesic subset of H and, since ∂∞αi = ∂∞αj ,
∂∞V = ∂∞H , so that V = H , as desired. ��

Finally, the following estimate, though elementary, will play a key role in
Sect. 3.4 in the study of quasicomplete ISC immersions in H

3. Let X be a
developable hyperbolic end with developing map φ and let (∂∞X, ∂∞φ) denote
its ideal boundary. Let π∞ : X → ∂∞X denote the function that sends every point
x ∈ X to the equivalence class of the vertical line on which it lies. We call π∞ the
vertical line projection.

Lemma 3.3.17 Let X be a developable hyperbolic end with developing map φ, let
(∂∞X, ∂∞φ) denote its ideal boundary, let ω∞ denote the Kulkarni–Pinkall form of
∂∞X and let π∞ : X→ ∂∞X denote the vertical line projection. For all x ∈ X,

φ(x) ∈ B((∂∞φ)∗(ω∞ ◦ π∞)(x)), (3.3.28)

where B here denotes the parametrisation of the space of open horoballs in H
3 by

�2∂∞H
3 as described in Sect. 3.1.2.

Proof Let h denote the height function of X, let x be a point of X and denote
x∞ := π∞(x). Let y be a point of X lying vertically below x. In particular, x∞ =
π∞(y). Let (H, α) be the unique half-space of X such that y ∈ ∂α(H) and ∇h(y)
is the inward-pointing unit normal to ∂α(H) at this point. Since ∂∞ is functorial,
(∂∞H, ∂∞α) is a Möbius disk in ∂∞X. By definition of the Kulkarni–Pinkall form,

(∂∞φ)∗ω∞(x∞) ≤ ω(∂∞H)(∂∞φ(x∞)).

Thus, if B is the largest open horoball contained in H with asymptotic centre
∂∞φ(x∞), then

B ⊆ B((∂∞φ)∗ω∞(x∞)).

Since B is an interior tangent to ∂H at φ(y), it contains φ(x), and the result follows.
��
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3.3.5 Extensions of Möbius Surfaces

We now construct the extension functor H, and show that it is a right-inverse functor
of ∂∞. Let S be a developable Möbius surface of hyperbolic type with developing
map φ. Let (Di, αi)i∈I denote its Möbius disk decomposition and let ∼ denote
its join relation. For all i, let Hi denote the open half-space in H

3 with ideal
boundaryDi . Observe that ((Hi)i∈I ,∼) are combinatorial data of some hyperbolic
manifold in the sense of Theorem 3.2.2. Let HS, Hφ : HS → H

3 and (Hαi)i∈I
denote respectively the join of (Hi)i∈I , its canonical immersion and its canonical
parametrisations. In particular, (Hi,Hαi)i∈I is a half-space decomposition of HS.

In order to show that HS is a hyperbolic end, it remains only to construct its
height function. Bearing in mind Lemma 3.3.5, we proceed as follows. For x ∈ HS,
let I (x) denote the subset of I consisting of those indices for which x ∈ Hαi(Hi),
and observe that this set is convex. For all i ∈ I (x), let rx,i denote the supremal
radius of open geodesic balls in Hi centred on Hφ(x). We now define the function
h : HS → R by

h(x) := supi∈I (x)rx,i . (3.3.29)

Lemma 3.3.18 The function h is a height function over HS.

Proof We first observe that, since S is of hyperbolic type, I (x) contains a maximal
element for all x ∈ HS, and uniqueness of this maximal element follows by
the convexity arguments already used earlier in this section. The construction and
results of Sect. 3.3.3 now follow as before. It remains only to verify that h has the
required analytic properties. Let x be a point of HS. Let (̂x,Hαx) denote the
localisation of HS at this point and let hx denote its height function. With Ux as
in Lemma 3.3.9, for all y ∈ Ux , h(y) = (hx ◦Hφ)(x). It thus follows by standard
properties of convex sets in H

3 that h is a locally strictly convexC1,1
loc function whose

gradient flow lines are unit speed geodesics. Finally, for all t > 0, for all x ∈ HS
such that h(x) ≥ t , and for all ε < t , the closed ball of radius (t − ε) about x in HS
is complete. It follows that h−1([t,∞[) is complete for all t > 0, and this completes
the proof. ��

It follows by Lemma 3.3.18 that the operator H associates a hyperbolic end HS
to every developable Möbius surface S of hyperbolic type. Given two such Möbius
surfaces S and S′ and an injective morphism φ : S → S′, Theorem 3.2.2 yields a
canonically defined morphism Hφ : HS → HS′. We verify that H respects identity
elements and compositions and thus defines a covariant functor between these two
categories. We call H the extension functor. It is a right inverse of the ideal boundary
functor, as the following result shows.

Lemma 3.3.19 Let S be a developable Möbius surface of hyperbolic type with de-
veloping map φ, Möbius disk decomposition (Di, αi)i∈I and extension (HS,Hφ).
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There exists a unique isomorphism ψ : S → ∂∞HS such that, for all i,

∂∞Hαi = ψ ◦ αi. (3.3.30)

Remark 3.3.20 Naturally, in what follows, rather than mention ψ explicitly, we
identify S and ∂∞HS.

Proof For all i, let Hi denote the open half-space in H
3 with ideal boundary

Di . Since (Hi,Hαi)i∈I is a subset of the half-space decomposition of HS which
covers HS, by Lemma 3.3.14, (Di, ∂∞Hαi)i∈I is a subset of the Möbius disk
decomposition of ∂∞HS which likewise covers ∂∞HS. Furthermore, the join
relation of this decomposition coincides with that of (Hi,Hαi), which in turn
coincides with that of (Di, αi)i∈I . It follows by Theorem 3.2.2 that there exists a
unique diffeomorphismψ : S → ∂∞HS satisfying (3.3.30), as desired. ��

Finally, the height functions of hyperbolic ends obtained by extending Möbius
surfaces have more structure than in the general case. Indeed, given a function f :
X→ R, a point x ∈ X, a vector ξ ∈ Tx(X) and a real number λ ∈ R, we say that

Hess(f )(x)(ξ, ξ) ≤ λ (3.3.31)

in the weak sense whenever there exists a geodesic segment γ :] − ε, ε[→ X such
that γ (0) = x, γ̇ (x) = ξ , and

∂2

∂t2
f ◦ γ

∣

∣

∣

∣

t=0
≤ λ. (3.3.32)

in the weak sense of Sect. 3.3.3.

Lemma & Definition 3.3.21 Let S be a developable Möbius surface of hyperbolic
type, let HS denote its extension, and let h denote the height function of HS. For all
x ∈ HS, there exists a unit vector ξ ∈ TxHS such that

〈ξ,∇h(x)〉 = 0, and (3.3.33)

Hess(h)(x)(ξ, ξ) ≤ tanh(h(x)) (3.3.34)

in the weak sense. We say that a hyperbolic endX is functionally maximal whenever
its height function satisfies (3.3.34).

Remark 3.3.22 We will see in Theorem 3.3.25, below, that a hyperbolic end is an
extension of a Möbius surface if and only if it is functionally maximal.

Proof Let φ denote the developing map of S, let (Di, αi)i∈I denote its Möbius disk
decomposition, and, for all i, let Hi denote the open half-space in H

3 with ideal
boundaryDi . Let x be a point of HS, let (̂x,Hαx) denote the localisation of HS
about x and let hx denote its height function.
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Denote y := π∞(x). Let (y, αy) denote the localisation of (S, φ) about y and
denote

Hy := ∪i∈I (y)Hi.

Let K̂y denote the complement of Hy in H
3. Let hy : Hy →]0,∞[ denote the

distance to K̂y and observe that hy is a height function over Hy so that Hy is a
hyperbolic end. Indeed, it is none other than the extension of y . By functoriality,
the extension of αy is a morphism Hαy : Hy → HS such that

Hφ ◦Hαy = Id.

In particular, Hαy embeds Hy into HS.
For all i ∈ I ,

x ∈ Hαi(Hi)⇒ y ∈ αi(Di),

so that every half-space in (̂x,Hαx) is also a half-space in (Hy,Hαy). Conse-
quently,

Hαx(̂x) ⊆ Hαy(Hy) ⊆ HS.

It follows by Corollaries 3.3.6 and 3.3.10 that, over Ux ,

hx ◦Hφ = hy ◦Hφ = h.

Now let z denote the closest point in K̂y to x̂ := Hφ(x). Since K̂y is the convex
hull in H

3 of the complement ofy in ∂∞H
3, there exists an open geodesic segment

γ :] − ε, ε[→ K̂y such that γ (0) = z (see, for example, Section 4.5 of [27]). Let
P ⊆ H

3 be the totally geodesic plane containing γ and x̂. Let μ :] − δ, δ[→ P

be a curve segment in P lying at constant distance from γ such that μ(0) = x̂

(see Fig. 3.4). Since μ has constant geodesic curvature equal to tanh(h(x)), upon
denoting ξ := μ̇(0), we obtain

Hess(hy)(Hφ(x))(ξ, ξ) ≤ tanh(h(x))

in the weak sense, and this completes the proof. ��

3.3.6 Left Inverses and Applications

We study the extent to which H is also a left inverse of ∂∞.
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Fig. 3.4 The totally geodesic plane P contains both γ and x̂. The curve μ lies at constant distance
from γ and is contained in P

Lemma 3.3.23 Let S be a developable Möbius surface with developing map φ. Let
X be a developable hyperbolic end with developing map ψ . Let f : ∂∞X → S be
an injective morphism such that

φ ◦ f = ∂∞ψ. (3.3.35)

There exists a unique injective morphism f̂ : X→ HS such that

Hφ ◦ f̂ = ψ, and (3.3.36)

∂∞f̂ = f. (3.3.37)

Proof Let (Di, αi)i∈I denote the Möbius disk decomposition of S with join relation
∼α, let (Hj , βj )j∈J denote the half-space decomposition of X with join relation
∼β , and, for all j ∈ J , denote Dj := ∂∞Hj . By Lemma 3.3.14, (Dj , ∂∞βj )j∈J is
a subset of the Möbius disk decomposition of ∂∞X which covers ∂∞X. By (3.3.35),
(Dj , f ◦ ∂∞βj )j∈J is a subset of the Möbius disk decomposition of S which covers
Im(f ). We thus identify J with a subset of I in such a manner that, for all j ,

f ◦ ∂∞βj = αj .

X identifies with the join of ((Hj)j∈J ,∼β) whilst the join Y of ((Hj)j∈J ,∼α)
identifies with an open subset of HS. However, by injectivity of f , the join relations
∼α and ∼β coincide over J , so that, by Theorem 3.2.2, there exists a unique
isomorphism f̂ : X→ Y such that, for all j ∈ J ,

f̂ ◦ βj = Hαj .
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Consequently, for all j ,

Hφ ◦ f̂ ◦ βj = Hφ ◦Hαj = Id = ψ ◦ βj .

Likewise, by functoriality,

∂∞f̂ ◦ ∂∞βj = ∂∞(f̂ ◦ βj ) = ∂∞Hαj = ∂∞H(f ◦ ∂∞βj ).

Since (βj )j∈J and (∂∞βj )j∈J coverX and ∂∞X respectively, it follows that

Hφ ◦ f̂ = ψ, and

∂∞f̂ = ∂∞Hf.

Identifying (∂∞H)f with f as in Lemma 3.3.19, we obtain (3.3.37), and existence
follows. To prove uniqueness, let f̂ ′ : X → HS be another function satisfying
(3.3.36) & (3.3.37). Let j be an element of J . Since

Hφ ◦ f̂ ′ ◦ βj = ψ ◦ βj = Id = Hφ ◦ f̂ ◦ βj ,

it follows that (Hj , f̂ ′ ◦ βj ) and (Hj , f̂ ◦ βj ) are half-spaces in HS. Furthermore,

∂∞(f̂ ′ ◦ βj ) = ∂∞f̂ ′ ◦ ∂∞βj = (∂∞Hf ) ◦ ∂∞βj = ∂∞f̂ ◦ ∂∞βj = ∂∞(f̂ ◦ βj ),

so that, by Lemma 3.3.16,

f̂ ′ ◦ βj = f̂ ◦ βj .

Since (Hj , βj )j∈J coversX, it follows that f̂ ′ = f̂ , and uniqueness follows. ��
With Lemma 3.3.23 in mind, we now study the relationship between two

hyperbolic ends when one is contained within the other. Thus, letX be a developable
hyperbolic end. Let V denote its vertical line foliation whose leaf space we recall
is naturally homeomorphic to ∂∞X. Let S be a C1 embedded surface in X. We say
that S is a graph over an open subset  of ∂∞X whenever it is transverse to V and
the vertical line projection restricts to a homeomorphism from ∂S onto .

Lemma 3.3.24 Let X and X′ be developable hyperbolic ends. If ψ : X → X′ is
an injective morphism, then the image ψ(Xt ) of every level of X is a graph over
∂∞ψ(∂∞X) in X′.

Proof Indeed, choose t > 0. Let π ′∞ : X′ → ∂∞X′ denote the vertical
line projection of X′. By Lemma 3.3.7, Yt := ψ(Xt ) is everywhere transverse
to the vertical foliation of X′ so that the restriction of π ′∞ to this surface is
everywhere a local homeomorphism. By Theorem 3.3.1, any vertical line which
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enters ψ(h−1[t,∞[) remains within this set, so that no vertical line of X′ can cross
Yt more than once. It follows that the restriction of π ′∞ to this surface is injective.

It only remains to prove surjectivity. By connectedness, it suffices to show that
π ′∞(Yt ) is a closed subset of ∂∞ψ(∂∞X). Thus, let (x ′m)m∈N be a sequence of points
of π ′∞(Yt ) converging to the limit x ′∞ ∈ ∂∞ψ(∂∞X). For all m ∈ N ∪ {∞}, let
γ ′m :]0,∞[→ X′ be the height parametrisation of the vertical line of X′ terminating
at x ′m and, for all finite m, let Tm > 0 be such that γ ′m(Tm) ∈ Yt . Since x ′∞ is an
element of ∂∞ψ(∂∞X), there exists T > 0 such that γ ′∞(T ) ∈ ψ(X). Since ψ(X)
is open, we may therefore suppose that γ ′m(T ) ∈ ψ(X) for all m. In particular,
Tm < T for all m, and we may therefore suppose that (Tm)m∈N converges to some
value T∞, say. For allm ∈ N∪{∞}, let γm : [Tm−T ,∞[→ X denote the unit speed
parametrisation of the preimage of γ ′m under ψ , normalised such that ψ(γm(0)) =
γ ′m(T ). For all finitem, denote ym := μ(Tm−T ) so that ym ∈ Xt and x ′m = ψ(ym).
Since the projection along vertical lines in X to Xt is distance decreasing, it follows
that

limsupm,n→∞d(ym, yn) ≤ 2T ,

so that, by completeness, there exists a point y∞, say, ofXt towards which (ym)m∈N
subconverges. We verify that π ′∞(ψ(y∞)) = x ′∞ so that π ′∞(Yt ) is indeed a closed
subset of ∂∞ψ(∂∞X). Surjectivity follows, and this completes the proof. ��
Theorem 3.3.25 Let S be a developable Möbius surface of hyperbolic type with
developing map φ. Let (HS,Hφ) denote its extension. HS is the only functionally
maximal developable hyperbolic end with ideal boundary S.

Proof Let X be another developable hyperbolic end with height function h and
developing map ψ such that ∂∞X = S. Let f̂ : X → HS denote the unique
injective morphism such that Hφ ◦ f̂ = ψ and ∂∞f̂ = Id. We identify X with its
image f̂ (X) in HS. Let ĥ denote the height function of HS. By Corollary 3.3.6,
h ≤ ĥ. We now claim that h = ĥ. Indeed, suppose the contrary. Choose x ∈ HS
such that ĥ(x) > h(x). By completeness, for sufficiently small ε > 0, there exists
a geodesic ray γ : [−h(x)− ε,∞[→ HS such that γ (0) = x and γ̇ (0) = ∇h(x).
Let (H, α) be the unique half-space in HS such that γ (−h(x) − ε) ∈ ∂α(H) and
γ̇ (−h(x) − ε) is the inward-pointing unit normal to ∂α(h) at this point, let hε :
α(H) →]0,∞[ denote distance to ∂α(H), and let Yε denote the level set of this
function at height h(x) + ε. For sufficiently small ε, Yε is wholly contained in X
and h restricts to a proper function over this set. Let y ∈ Yε be the point at which h
is minimised. Since x ∈ Yε , h(y) ≤ h(x). However, at this point, with respect to the
decomposition TyX = Ker(dh(y))⊕ 〈∇h(y)〉,

Hess(h)(y) ≥ Hess(hε)(y) =
(

tanh(h(x)+ ε) 0
0 0

)

,

which contradicts (3.3.34). It follows that h = ĥ as asserted. Finally, since every
level of X is a graph over S, it follows that X = HS, as desired. ��
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We conclude this section by addressing the case of non-developable Möbius
surfaces and proving Theorem 3.1.8. Observe first that the definition of the ideal
boundary functor ∂∞ given in Sect. 3.3.4 readily extends to the non-developable
case. We now examine the extension functor. Let S be a Möbius surface with
fundamental group �. Let S̃ denote its universal cover, let φ be a developing map
of S̃ and let θ denote its holonomy. Let Deck : �→ Isom(S̃) denote the action of
� on S̃ by deck transformations. By definition, for all γ ∈ �,

θ(γ ) ◦ φ = φ ◦ Deck(γ ). (3.3.38)

By Lemma 3.3.23, Deck extends to a unique homeomorphism HDeck : � →
Isom(HS̃) such that

θ(γ ) ◦Hφ = Hφ ◦HDeck(γ ), and (3.3.39)

∂∞(Hφ ◦Hγ ) = φ ◦ Deck(γ ). (3.3.40)

In addition, for all γ , HDeck(γ ) preserves every level of HS̃, and its action on each
level is conjugate to its action on S. It follows that HDeck acts discretely on HS̃,
and we define

HS := HS̃/HDeck(�). (3.3.41)

We verify that HS is a hyperbolic end with ideal boundary canonically isomorphic
to S and, in the case where S is developable, this hyperbolic end is canonically
isomorphic to the extension of S constructed above. This completes the construction
of the extension functor in the non-developable case. We now prove Theorem 3.1.8.

Proof of Theorem 3.1.8 Suppose that HS is not maximal. There exists a hyperbolic
end X and an injective morphism f : HS → X such that ∂∞f : S → ∂∞X is an
isomorphism. In particular, ∂∞X, and therefore also X, has fundamental group �.
since ∂∞X is diffeomorphic to S, � is also the fundamental group of X. Lifting to
the universal covers, f defines a �-equivariant injective morphism f̃ : HS̃ → X̃

such that ∂∞f̃ is an isomorphism. Now let φ andψ be respectively developing maps
of S̃ and X̃ such that

ψ ◦ f̃ = Hφ.

Since ∂∞f̃ is an isomorphism, by Lemma 3.3.23, there exists a unique injective
morphism g : X̃→ HS̃ such that Hφ ◦ g = ψ and ∂∞g ◦ ∂∞f̃ = Id. In particular

Hφ ◦ (g ◦ f̃ ) = Hφ, and

∂∞(g ◦ f̃ ) = Id,
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so that, by uniqueness,

g ◦ f̃ = Id.

Since g is injective, it is also a right-inverse of f̃ , so that f̃ is an isomorphism, and
therefore so too is f . This proves maximality. Uniqueness is proven in a similar
manner, and this completes the proof. ��

3.4 Infinitesimally Strictly Convex Immersions

3.4.1 Infinitesimally Strictly Convex Immersions

We define an immersed surface in H
3 to be a pair (S, e) where S is an oriented

surface and e : S → H
3 is a smooth immersion. In what follows, we denote the

immersed surface sometimes by S and sometimes by e, depending on which is more
appropriate to the context. The family of immersed surfaces forms a category where
the morphisms between two immersed surfaces (S, e) and (S, e′) are those functions
φ : S → S′ such that e = e′◦φ. Naturally, we identify two immersed surfaces which
are isomorphic.

Let (S, e) be an immersed surface. In what follows, we will use the terminology
of classical surface theory already described in Sect. 3.1.2. Recall that S is
said to be infinitesimally strictly convex (ISC) whenever its second fundamental
form is everywhere positive-definite. When this holds, every point x of S has a
neighbourhood over which e takes values on the boundary of some strictly convex
subset X and Ne points outwards from this set. Recall also that S is said to be
quasicomplete whenever the metric Ie+ IIIe is complete. We now show that this is a
natural requirement for studying ISC immersions in H

3 in terms of hyperbolic ends.
Indeed, denote ES := S×]0,∞[ and define the function Ee : ES → H

3 by

Ee(x, t) = Exp(tNe(x)), (3.4.1)

where Exp here denotes the exponential map of H
3. By standard properties of

convex surfaces in H
3, Ee is an immersion and we therefore furnish ES with the

unique hyperbolic metric that makes it into a local isometry.

Lemma & Definition 3.4.1 Let (S, e) be an ISC immersed surface in H
3. ES is a

hyperbolic end if and only if S is quasicomplete. When this holds, we call ES the
end of S, its developing map is Ee and its height function is

h(x, t) := t . (3.4.2)

Proof It suffices to verify that h defines a height function over ES if and only if S
is quasicomplete. By definition, h is smooth, its gradient flow lines are unit speed
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geodesics and, by standard properties of convex subsets of hyperbolic space, it is
strictly convex. It thus remains only to study completeness. Choose t > 0 and let
et denote the restriction of Ee to S × {t}. By classical hyperbolic geometry, the first
fundamental form of this immersion is

It := cosh2(t)Ie + 2cosh(t)sinh(t)IIe + sinh2(t)IIIe,

so that, by infinitesimal strict convexity,

sinh2(t)(Ie + IIIe) ≤ It ≤ 2cosh2(t)(Ie + IIIe).

It follows that Ie + IIIe is complete if and only if It is complete. However, by
convexity, h−1([t,∞[) is complete if and only if It is complete. Since t > 0
is arbitrary, it follows that h−1([t,∞[) is complete for all t if and only if S is
quasicomplete, as desired. ��
The operation E trivially sends morphisms between quasicomplete ISC immersed
surfaces to morphisms between hyperbolic ends. Since E respects identity elements
and compositions, it therefore defines a covariant functor between these two
categories which we call the end functor.

There is also a natural way to associate a Möbius surface to every ISC immersed
surface. Indeed, let (S, e) be an ISC immersed surface and let φe denote its asymp-
totic Gauss map. By infinitesimal strict convexity,φe is a local diffeomorphism from
S into ∂∞H

3 = Ĉ and is thus the developing map of a Möbius structure over S. We
denote MS := S and Me := φe, and we verify that M defines a covariant functor
from the category of ISC immersed surfaces into the category of Möbius surfaces.
However, this level of precision will be of little use to us and we will not use this
terminology in other sections.

We have now reached a pivotal point of our construction. Indeed, we have
associated two distinct hyperbolic ends to each quasicomplete ISC immersed
surface, namely the end ES of S constructed above, and the hyperbolic end HMS

obtained by applying the extension functor of Sect. 3.3.5 to the Möbius surface
MS. Furthermore, by Lemmas 3.3.23 and 3.3.24, ES naturally embeds into HMS

in such a manner that the levels of ES are mapped to graphs in HMS. Since e is
smooth and ISC, a small modification of the proofs of these results extends this
embedding to the boundary of ES. In this manner, we obtain an embedding ẽ of S
into HMS which factors the immersion e through the developing map HMφe.

This construction allows us to apply the machinery of Sects. 3.2 and 3.3 to
the study of quasicomplete ISC immersions. Given its utility, we first extend it
as follows. Let (S, φ) be a simply connected Möbius surface and let (HS,Hφ)
denote its extension. Let  ⊆ S be an open subset and let e :  → H

3 be a
quasicomplete ISC immersion whose Gauss map φe is equal to the restriction of φ
to . Let (E, Ee) denote the end of (, e) and let ψ : E → HS denote the
unique injective morphism such that

Hφ ◦ ψ = Ee, and (3.4.3)
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∂∞ψ = Id. (3.4.4)

As before, a small modification of the proof of Lemma 3.3.23 shows that ψ extends
to a smooth embedding from the whole of E =  × [0,∞[ into HS. We define
the embedding ẽ : S → HS by

ẽ(x) := ψ(x, 0), (3.4.5)

and we call it the canonical lift of e. By (3.4.3), ẽ factors e through Hφ in the sense
that

e = Hφ ◦ ẽ. (3.4.6)

Furthermore, an equally small modification of the proof of Lemma 3.3.24 then
shows that the image of ẽ is also a graph over  in HS, and we denote by Ext(ẽ)
the open subset of HS lying above this graph.

Let U+HS denote the bundle of upward-pointing unit vectors over HS. As in
Sect. 3.1.2, we define the horizon map Hor : U+HS → ∂∞HS = S such that, for
every unit speed geodesic ray γ : [0,∞[→ HS with γ̇ (0) = U+HS,

Hor(γ̇ (0)) := limt→+∞γ (t). (3.4.7)

This function is well-defined by Theorem 3.3.1. Let Nẽ : S → U+HS denote the
positively-oriented unit normal vector field over ẽ. We define the asymptotic Gauss
map of ẽ by

φẽ := Hor ◦Nẽ, (3.4.8)

so that φẽ maps S into ∂∞HS.

Lemma 3.4.2 Let S be a developable Möbius surface of hyperbolic type with
developing map φ and let (HS,Hφ) denote its extension. Let  ⊆ S be an open
subset and let e :  → H

3 be a quasicomplete ISC immersion whose asymptotic
Gauss map φe is equal to the restriction of φ to . If ẽ :  → HS denotes the
canonical lift of e, then its asymptotic Gauss map φẽ satisfies

φẽ = Id. (3.4.9)

Proof Indeed, let (E, Ee) denote the end of (, e). Let ψ : E→ HS denote the
unique injective morphism such that Hφ ◦ ψ = Ee and ∂∞ψ = Id. For all x ∈ S,

φẽ(x) = limt→∞ψ(x, t) = ∂∞ψ(x) = x,

as desired. ��
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As a byproduct of the preceding construction, we obtain the following estimate
for the Kulkarni–Pinkall metric of S in terms of the geometry of e.

Lemma 3.4.3 Let S be a developable Möbius surface with developing map φ and
Kulkarni–Pinkall metric gφ . Let  ⊆ S be an open subset and let e :  → H

3

be a quasicomplete ISC immersion whose asymptotic Gauss map φe is equal to the
restriction of φ to . If Ie, IIe and IIIe denote respectively the first, second and third
fundamental forms of e then, over ,

gφ ≤ Ie + 2IIe + IIIe. (3.4.10)

Remark 3.4.4 The right hand side of (3.4.10) is the none other than the horospheri-
cal metric studied by Schlenker in [22].

Proof Let (HS,Hφ) denote the extension of (S, φ). Let (E, Ee) denote the end
of (, e) and let h denote its height function. Let ψ : E→ HS denote the unique
injective morphism such that Hφ ◦ ψ = Ee and ∂∞ψ = Id. Let x be a point of .
Let (H, α) denote the half space in E such that (x, 0) ∈ ∂α(H) and ∂t = ∇h(x)
is the inward-pointing normal to this surface at this point. Denote P := ∂H and
D := ∂∞H . Let g′ denote the Poincaré metric of D and let φ0 : P → D denote the
asymptotic Gauss map of P . Observe that φ0 is an isometry from P into (D, g′).

Let Hor denote the horizon map of UH
3. Let Ne : S → UH

3 denote the
positively-oriented unit normal vector field of S. Denote ν := Ne(x) and observe
that, by the chain rule,

Dφ(x) = DHor(ν) ◦DNe(x).

Recall now that TνUH
3 decomposes as

TνUH
3 = Hν ⊕ Vν, (3.4.11)

where Vν is the vertical subspace and Hν is the horizontal subspace of the Levi–
Civita covariant derivative. Recall furthermore thatDπ(ν) mapsHν isomorphically
onto TyH3 and that there exists a natural projection pν : Vν → 〈ν〉⊥. We henceforth
identify vectors in Hν and Vν with their respective images under Dπ(ν) and pν .
With respect to the decomposition (3.4.11), for all ξ ∈ TxS,

DNe(x) · ξ = (De(x) · ξ,De(x) · Ae(x) · ξ),

where Ae here denotes the shape operator of e.
Since P is totally geodesic, for all ξ ∈ 〈ν〉⊥,

DHor(ν) · (ξ, 0) = Dφ0(y) · ξ.
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Using the fact that Hor restricts to a conformal diffeomorphism from UyH3 into
∂∞H

3, we likewise show that, for all ξ ∈ 〈ν〉⊥,

DHor(ν) · (0, ξ) = Dφ0(y) · ξ.
Combining the above relations, it follows that, for all ξ ∈ TxS,

Dφ(x) · ξ = Dφ0(y) ·De(x) · (ξ + Ae(x) · ξ).
Since φ0 is an isometry, it follows that

(φ∗g′)(x) = Ie + 2IIe + IIIe. (3.4.12)

However, by definition of the Kulkarni–Pinkall metric,

g(x) ≤ (φ∗g′)(x),

and the result follows. ��
The proof of Lemma 3.4.3 also yields the following useful result.

Lemma 3.4.5 Let (S, e) be an immersed surface in H
3 and let Ie, IIe and IIIe denote

respectively its first, second and third fundamental forms. The asymptotic Gauss
map φe of e is conformal with respect to the non-negative semi-definite bilinear
form Ie + 2IIe + IIIe.

Proof Indeed, this follows from (3.4.12) since, with the notation of the proof of
Lemma 3.4.3, g′ is a conformal metric overD. ��

3.4.2 A Priori Estimates

We are now ready to derive our main a priori estimates for quasicomplete ISC
immersed surfaces in H

3. First, for every open half-spaceH in H
3, denote

Hr := {x ∈ H | d(x, ∂H) ≥ r} . (3.4.13)

Lemma 3.4.6 Let S be a developable Möbius surface with developing map φ. Let
(HS,Hφ) denote its extension, let (Di, αi)i∈I denote its half-space decomposition
and, for all i, let Hi denote the open half-space in H

3 with ideal boundary Di . Let
 be an open subset of S and let e :  → H

3 be a quasicomplete ISC immersion
whose asymptotic Gauss map φe is equal to the restriction of φ to . Let ẽ : →
HS denote the canonical lift of e and let Ext(ẽ) denote the subset of HS lying above
ẽ(). For all r > 0, if the extrinsic curvature of e satisfies

Ke ≤ tanh(r)2, (3.4.14)
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then, for all i such that αi(Di) ⊆ ,

Hαi(Hi,r ) ⊆ Ext(ẽ). (3.4.15)

Proof Let i be an element of I such that Di ⊆ . Let j ∈ I be another element
such that Dj ⊆ Di and αj = αi |Dj . Since ẽ() is a graph over , for sufficiently
large s,

Hαj (Hj,s) ⊆ Ext(ẽ).

We claim that this holds for all s > tanh(r). Indeed, suppose the contrary, and let
s0 > tanh(r) be the infimal value of s for which this relation holds. In particular,
the surface ∂Hαj (Hj,s0) is an exterior tangent to ẽ() at some point. However,
since ∂Hαj (Hj,s0) has constant extrinsic curvature equal to tanh(s0)2, this yields a
contradiction by the geometric maximal principle. The result follows upon letting
Dj tend to Di . ��
Theorem 3.4.7 Let S be a developable Möbius surface with developing map φ. Let
(Di, αi)i∈I denote its Möbius disk decomposition and, for all i, let Hi denote the
open half-space in H

3 with ideal boundary Di . Let  be an open subset of S and
let e :  → H

3 be a quasicomplete ISC immersion whose asymptotic Gauss map
φe is equal to the restriction of φ to . For all r > 0, if the extrinsic curvature of e
satisfies

Ke ≤ tanh(r)2, (3.4.16)

then, for all x ∈  and for all i ∈ I ,

x ∈ αi(Di) ⊆  ⇒ e(x) /∈ Hi,r . (3.4.17)

Proof Let (HS,Hφ) denote the extension of S, let (E, Ee) denote the end of
(, e), and let ψ : E → HS denote the unique injective morphism such that
Hφ ◦ ψ = Ee and ∂∞ψ = Id. Let x be a point of , and let i be an element of I
such that x ∈ αi(Di) ⊆ . Define γ (t) := Ee(x, t) and μ(t) := ψ(x, t), so that
γ = Hφ ◦ μ. Observe that μ is the geodesic ray in HS normal to ẽ() at ẽ(x). In
particular,

limt→+∞μ(t) = ∂∞ψ(x) = x ∈ αi(Di).

Since, by Lemma 3.4.6, ẽ() lies outside Hαi(Hi,r ), it follows by the intermediate
value theorem that μ crosses ∂Hαi(Hi,r ) at some point. Furthermore, by convexity,
μ crosses this surface transversally from the outside to the inside. Composing with
Hφ, it follows that γ crosses ∂Hi,r transversally from the outside to the inside at
some point. However, since ∂Hi,r is strictly convex, γ can meet this surface no more
than once, so that e(x) = γ (0) lies outsideHi,r , as desired. ��
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Theorem 3.4.8 Let S be a developable Möbius surface with developing map φ and
Kulkarni–Pinkall form ωφ . Let  be an open subset of S and let e :  → H

3 be
a quasicomplete ISC immersion whose asymptotic Gauss map φe is equal to the
restriction of φ to . For all x ∈ S,

e(x) ∈ B(φ∗ωφ(x)), (3.4.18)

where B here denotes the parametrisation of the space of open horoballs in H
3 by

�2∂∞H
3 described in Sect. 3.1.2.

Proof Let (E, Ee) denote the end of (, e). Observe that the level set foliation of
(E, Ee) is (×{t})t>0 so that every level of this hyperbolic end as well as its ideal
boundary ∂∞E naturally identifies with . With respect to these identifications,
∂∞Ee = φ and the vertical line projection π∞ : E → ∂∞E is given by
π∞(x, t) = x. Thus, if ω denotes the Kulkarni–Pinkall form of (, φ) then, by
Lemma 3.3.17, for all x ∈  and for all t > 0,

Ee(x, t) ∈ B(φ∗ω(x)).

However, by Lemma 3.2.6, ω ≥ ωφ , so that, for all such x and t ,

Ee(x, t) ∈ B(φ∗ωφ(x)),

and the result now follows upon letting t tend to zero. ��

3.4.3 Cheeger–Gromov Convergence

In order for the text to be as self-contained as possible, we now recall the basic
theory of Cheeger–Gromov convergence. A pointed Riemannian manifold is a triplet
(X, g, x), where X is a smooth manifold, g is a Riemannian metric and x is a point
of X. We say that a sequence (Xm, gm, xm)m∈N of complete pointed Riemannian
manifolds converges to the complete pointed Riemannian manifold (X∞, g∞, x∞)
in the Cheeger–Gromov sense whenever there exists a sequence ( m)m∈N of
functions such that

(1) for all m,  m : X∞ → Xm and m(x∞) = xm; and

for every relatively compact open subset  of X∞, there existsM such that

(2) for all m ≥ M , the restriction of  m to  defines a smooth diffeomorphism
onto its image; and

(3) the sequence (( m|)∗gm)m≥M converges to g∞| in the C∞loc sense.

We call ( m)m∈N a sequence of convergence maps of (Xm, gm, xm)m∈N with respect
to (X∞, g∞, x∞).

At first sight, the concept of Cheeger–Gromov convergence can appear rather
daunting and, indeed, its correct usage can be sometimes counterintuitive. However,
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it is reassuring to observe that it defines a Hausdorff topology over the space
of isometry equivalence classes of complete pointed Riemannian manifolds.4

Furthermore, although the convergence maps are trivially non-unique, any two
sequences ( m)m∈N and ( ′m)m∈N of convergence maps are equivalent in the sense
that there exists an isometry ! : X∞ → X∞ preserving x∞ such that, for any two
relatively compact open subsets U ⊆ U ⊆ V of X∞, there existsM such that

(1) for allm ≥ M , the respective restrictions of m and ′m ◦! to U and V define
smooth diffeomorphisms onto their images;

(2) for all m ≥M , ( ′m ◦!)(U) ⊆  m(V ); and
(3) the sequence (( m|V )−1◦ ′m◦!)m∈N converges in theC∞ sense to the identity

map over U .

The concept of Cheeger–Gromov convergence applies to sequences of immersed
submanifolds as follows. We say that a sequence (Sm, xm, φm)m∈N of complete
pointed immersed submanifolds in a complete Riemannian manifold (X, g)

converges to the complete pointed immersed submanifold (S∞, x∞, φ∞) in the
Cheeger–Gromov sense whenever (Sm, xm, φ∗mg)m∈N converges to (S∞, x∞, φ∗∞g)
in the Cheeger–Gromov sense and, for one, and therefore for any, sequence
( m)m∈N of convergence maps, the sequence (φm ◦  m)m∈N converges to φ∞
in the C∞loc sense.

Cheeger–Gromov convergence of immersed submanifolds can also be described
in terms of graphs. Indeed, let NS∞ denote the normal bundle of (S∞, φ∞) in
φ∗∞TX. Recall that the exponential map of X defines a smooth function Exp :
NS∞ → X. In particular, given a sufficiently small smooth section f : → NS∞
defined over an open subset  of S∞, the composition Exp ◦ f defines a smooth
immersion of  in X which we call the graph of f . It is straightforward to show
that if the sequence (Sm, xm, φm)m∈N converges to (S∞, x∞, φ∞) in the Cheeger–
Gromov sense, then there exists a sequence (x ′m)m∈N of points in S∞ and sequences
of functions (fm)m∈N and (αm)m∈N such that

(1) (x ′m)m∈N converges to x∞;
(2) for allm, fm maps S∞ into NS∞, αm maps S∞ into Sm and αm(x ′m) = xm; and

for every relatively compact open subset  of S∞, there existsM such that

(3) for all m ≥M , fm restricts to a smooth section of NS∞ over, αm restricts to
a smooth diffeomorphism of  onto its image, and

Exp ◦ fm| = φm ◦ αm|; and

(4) the sequence (fm)m≥M tends to zero in the C∞loc sense.

4 Strictly speaking, of course, the family of all complete pointed Riemannian manifolds is not a
set. However, by Whitney’s theorem, we restrict attention to the family of submanifolds of Rm, for
some m, with smooth complete metrics defined over them, which is a set.
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Finally, these definitions are readily extended in a number of ways. For example,
in the case of a sequence (Xm, gm, xm)m∈N of pointed Riemannian manifolds, the
hypothesis of completeness is unnecessary. Instead, it is sufficient to assume that
for all R > 0, there exists M such that, for all m ≥ M , the closed ball of radius R
about xm in (Xm, gm) is compact. Likewise, in the case of immersed submanifolds,
the target space can be replaced with a sequence (Xm, gm, xm)m∈N of pointed
Riemannian manifolds converging in the Cheeger–Gromov sense to some complete
pointed Riemannian manifold. Furthermore, it is not necessary to suppose that the
Riemannian manifolds in this sequence are complete, and so on.

3.4.4 Labourie’s Theorems and Their Applications

For k > 0, we define a k-surface to be a quasicomplete ISC immersed surface in
H

3 of constant extrinsic curvature equal to k. Let (S, e) be a k-surface in H
3. Let

Ne denote its positively-oriented unit normal vector field. Observe that, if Ie and
IIIe denote respectively the first and third fundamental forms of e, then Ie + IIIe
is uniformly equivalent to the pull-back through Ne of the Sasaki metric of UH

3

so that, by quasicompleteness, Ne is actually a complete immersion of S in UH
3.

In order to emphasise our interest in this function as an immersion rather than as a
vector field, following Labourie, we denote ê := Ne and we call ê the Gauss lift of
e. In [18], Labourie proves the following result (see also [28]).

Theorem 3.4.9 (Labourie’s Compactness Theorem) Choose k > 0. Let
(Sm, em, xm)m∈N be a sequence of pointed k-surfaces in H

3. For all m, let
êm : Sm → UH

3 denote the Gauss lift of em. If (êm(xm))m∈N remains within a
compact subset of UH

3 then there exists a complete, pointed immersed surface
(S∞, ê∞, x∞) in UH

3 towards which (Sm, êm, xm)m∈N subconverges in the
Cheeger–Gromov sense.

Significantly, Theorem 3.4.9 does not affirm that the limit is a lift of some k-surface.
In order to address this, Labourie introduces what he calls curtain surfaces, which
are defined as follows. Given a complete geodesic � in H

3, we denote by N� ⊆
UH3 the set of unit normal vectors over �. Observe that N� is an immersed surface
conformally equivalent to S

1 × R with respect to the Sasaki metric of UH
3. We

define a curtain surface to be any immersed surface (S, ê) in UH
3 which is a cover

of N�, for some complete geodesic �.

Theorem 3.4.10 (Labourie’s Dichotomy) Choose k > 0. Let (S∞, ê∞) be a limit
of a sequence of lifts of k-surfaces, as in Theorem 3.4.9. If (S∞, ê∞) is not a curtain
surface, then (S∞, π ◦ ê∞) is a k-surface.

The phenomenon described in Theorem 3.4.10 is best illustrated by the case where
k = 1. Indeed, by a theorem of Volkov–Vladimirova and Sasaki (see Theorem 46
of [29]), the only 1-surfaces in H

3 are the horospheres and covers of equidistant
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cylinders around complete geodesics.5 Let � be a complete geodesic in H
3. For all

r > 0, let Cr denote the cylinder of radius r about �. For all m, let em : R2 →
C1/m be a covering map which is isometric with respect to the sum of its first and
third fundamental forms. The sequence (R2, em, 0)m∈N subconverges in the C∞loc
sense to a smooth function e∞ : R2 → �. Consequently, viewed as a sequence
of pointed immersed surfaces, this sequence degenerates. However, the sequence
(R2, êm, 0)m∈N of Gauss lifts converges in the C∞loc sense to a cover of N�, that is, a
curtain surface. Labourie’s dichotomy affirms that, even in the general case, this is
the only mode of degeneration that can occur.

We now prove one of the main results of this chapter.

Theorem 3.4.11 (Monotone Convergence) Let S be a developable Möbius sur-
face of hyperbolic type with universal cover not isomorphic to (C,Exp(z)). Let φ
be a developing map of S. Let (m)m∈N be a nested sequence of open subsets of
S which exhausts S. For k > 0 and for all m, let em : m → H

3 be a k-surface
whose Gauss map φm is equal to the restriction of φ to . There exists a k-surface
e∞ : S → H

3 towards which (em)m∈N subconverges in the C∞loc sense over S.

Proof For all m, let êm denote the Gauss lift of em. Let ωφ denote the Kulkarni–
Pinkall form of S. Let x be a point of S. We claim that there exists a Möbius disk
(D, α) in S such that x ∈ α(D) and (êm ◦ α)m∈N subconverges in the C∞loc sense.
Indeed, let (D′, α′) be a Möbius disk in S such that x ∈ α′(D′) and the closure of
α′(D′) in S is compact. By Theorems 3.4.7 and 3.4.8, for all sufficiently largem,

em(x) ∈ K := B(φ∗ωφ(x)) \Hα′(H ′
r ),

where H ′ here denotes the open half-space in H
3 with ideal boundary D′ and

r := arctanh(
√
k). Since K is compact, it follows by Theorem 3.4.9 that there

exists a complete pointed immersed surface (S∞, ê∞, x∞) in UH
3 towards which

(m, êm, x)m∈N subconverges in the Cheeger–Gromov sense. Denote

φ∞ := Hor ◦ ê∞,

where Hor here denotes the horizon map of UH
3. Since φ∞ is a local diffeomor-

phism from S into ∂∞H
3, it defines a developable Möbius structure over S∞. Let

( m)m∈N be a sequence of convergence maps of (m, êm, x)m∈N with respect to
(S∞, ê∞, x∞). Let (D′′, α′′) be a Möbius disk about x∞ in (S∞, φ∞) such that
α′′(D′′) is relatively compact in S∞. Let M be such that, for all m ≥ M ,  m
restricts to a smooth diffeomorphism from α′′(D′′) onto an open subset Um of S.
Since (φm ◦ m ◦ α′′)m≥M converges in the C∞loc sense overD′′ to (φ∞ ◦ α′′) = Id,
upon increasing M and reducing D′′ if necessary, we may suppose that, for all
m ≥ M , (φm ◦  m ◦ α′′) is a diffeomorphism onto its image m whose inverse
we denote by βm. Let D be another disk with closure contained in D′′ such that

5 We refer the reader to Footnote 4 of Sect. 3.1.3.
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x∞ ∈ α′′(D). For sufficiently large m, m contains D and we therefore define
αm : D → S by αm := ( m ◦ α′′ ◦ βm). For all such m, (D, αm) is in fact a
Möbius disk in (S, φ) and, upon increasingm further if necessary, we may suppose
in addition that αm(Dm) contains x. It then follows that αm is independent of m,
and we therefore denote α := αm. By construction (êm ◦ α)m≥M subconverges to
(ê∞ ◦ α′′), and (D, α) is therefore the desired Möbius disk.

A diagonal argument now shows that (êm)m∈N subconverges in the C∞loc sense to
a smooth immersion ê∞ : S → UH

3 satisfying

Hor ◦ ê∞ = φ∞.

We now claim that ê∞ is complete. Indeed, for all m ∈ N, if Im, IIm and IIIm
denote respectively the first, second and third fundamental forms of em, then, by
Lemma 3.4.3,

Im + IIIm ≥ 1

2
(Im + 2IIm + IIIm) ≥ gφ,

where gφ here denotes the Kulkarni–Pinkall metric of (S, φ). However, for all m,
Im+ IIIm is also the metric of êm. It follows upon taking limits that the metric of ê∞
is bounded below by gφ . However, by Lemma 3.2.15, gφ is complete, and therefore
so too is ê∞, as asserted. Finally, by Labourie’s dichotomy, either e∞ := π ◦ ê∞ is
a k-surface, or ê∞ is a curtain surface. Since the latter can only occur when (S, φ)
is isomorphic to a cover of (C∗, z), that is, when its universal cover is isomorphic to
(C,Exp(z)), it follows that e∞ is a k-surface, and this completes the proof. ��

3.4.5 Uniqueness and Existence

We are now ready to prove the main result of this chapter. Before proceeding, we
require the following technical lemma.

Lemma 3.4.12 Let (S, e) be an ISC immersion in H
3 and let ê : S → UH

3 denote
its Gauss lift. If, for 0 < k < 1, e has constant extrinsic curvature equal to k then,
for all t > 0, the immersion et (x) := Exp(t ê(x)) has curvature at every point
strictly greater than k and strictly less than 1.

Proof Indeed, by the tube formula (see [12]), the shape operator At of et solves

Ȧt = Id− A2
t .

Thus, denoting Ht := Tr(At ) and Kt := Det(At ), we have

∂

∂t
Kt = Tr(A−1

t − At) = 1

Kt
(1−Kt)Ht .
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Solving this ordinary differential equation with K0 = k < 1 yields, for all t > 0,

k < Kt < 1,

as desired. ��
The following result is proven by Labourie in [19]. Since its proof fits into the
framework developed in this chapter, we include it for completeness.

Theorem 3.4.13 (Monotonicity) Let S be a developable Möbius surface with
developing map φ and let (HS,Hφ) denote its extension. For 0 < k < 1, and for
i ∈ {1, 2}, leti ⊆ S be an open subset of S, let ei : i → H

3 be a k-surface whose
asymptotic Gauss map φi is equal to the restriction of φ to i , and for each i, let
ẽi : i → HS denote the canonical lift of ei . If 1 ⊆ 2 then Ext(ẽ1) ⊆ Ext(ẽ2).

Proof Suppose the contrary. Let U denote the set of all points in 1 whose image
under ẽ1 lies in the complement of the closure of Ext(ẽ2). For each i, let (Ei, Eei)
denote the end of (i, ei) and let ψi : Ei → HS denote the unique injective
morphism such that Hφ ◦ ψi = Eei and ∂∞ψi = Id. Denote r := arctan(

√
k).

We claim that there exists a unique smooth function f : U → [0, r] and a unique
function α : U → 2 such that α is a diffeomorphism onto its image and, for all
x ∈ U ,

(ẽ2 ◦ α)(x) = ψi(x, f (x)).

Indeed, let x be a point of U . Let (H, α) denote the unique half space in E1 such
that (x, 0) ∈ ∂α(H) and let D denote the ideal boundary of H . (H,ψ1 ◦ α) is the
unique half-space in HS which is tangent to ẽ1() at ẽ1(x). Since

∂∞(ψ1 ◦ α)(D) = (∂∞ψ1 ◦ ∂∞α)(D) = ∂∞α(D) ⊆ 1 ⊆ 2,

it follows by Lemma 3.4.6 that

(ψ1 ◦ α)(Hr) ⊆ H(ẽ2).

In particular, for all t > r ,

ψ1(x, t) ∈ H(ẽ2).

We define f (x) to be the infimal value of t such that ψ1(x, t) ∈ ẽ2(2). By
Theorem 3.3.1, this is the only value of t such that ψ1(x, t) ∈ ẽ2(2). Since,
by convexity, the geodesic t 	→ ψ1(x, t) is transverse to ẽ2(2) at this point, it
follows that f is smooth. The existence of α now follows from the fact that ẽ2 is an
embedding, and this proves the assertion.
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We now apply a maximum principle at infinity to obtain a contradiction. Let
(xm)m∈N be a sequence in U such that

limm→∞f (xm) = f0 := supx∈Uf (x) ≤ r,

and, for allm, denote ym := α(xm). Let p be a fixed point of H3. For allm, let βm be
an isometry of H3 such that βm(e1(xm)) = p and, for each i, denote ei,m := αm ◦ ei
and let êi,m denote its Gauss lift. By Theorem 3.4.9, we may suppose that there
exist pointed immersions (S1,∞, ê1,∞, x∞) and (S2,∞, ê2,∞, y∞) towards which
(1, ê1,m, xm)m∈N and (2, ê2,m, ym)m∈N subconverge in the Cheeger–Gromov
sense. Observe that there exist neighbourhoodsU of x∞ in S1,∞, V of y∞ in S2,∞,
a smooth diffeomorphism α : U → V and a smooth function f : U → [0, r] such
that α(x∞) = y∞, f attains its maximum value of f0 at x∞ and, for all z ∈ U ,

(ê2,∞ ◦ α)(z) = Exp(f (z)ê1,∞(z)). (3.4.19)

We now show that this is absurd. Define e1,∞ : S2,∞ → H
3 by e1,∞(z) :=

Exp(f0ê1,∞). We claim that the extrinsic curvature of this immersion is at every
point strictly greater than k. Indeed, there are two cases to consider. If ê1,∞ is a
curtain surface, then e′1 is a cylinder of radius f0 about a complete geodesic in H

3

and thus has constant extrinsic curvature equal to 1. On the other hand, if e1,∞ is the
lift of a k-surface, then, by Lemma 3.4.12, ê′1 also has extrinsic curvature at every
point strictly greater than k, and the assertion follows. We now examine the function
e2,∞ := π ◦ ê2,∞. Once again, there are two cases to consider. If ê2,∞ is a curtain
surface, then e2,∞(S2,∞) is a complete geodesic � in H

3 which, by (3.4.19), is an
interior tangent to e1,∞ at e1,∞(x∞). By convexity, this is absurd. Otherwise, e2,∞
is a k-surface which is an interior tangent to e1,∞ at e1,∞(x∞), which is also absurd
by the geometric maximum principle. We thus obtain a contradiction in all cases,
and this completes the proof. ��
Theorem 3.4.13 is useful for studying the geometry of k-surfaces in H

3. In the
present section, when 1 = 2, it yields uniqueness.

Theorem 3.4.14 For all 0 < k < 1 and for every developable Möbius surface S
with developing map φ, there exists at most one k-surface e : S → H

3 such that
φe = φ.

Proof Indeed, let e, e′ : S → H
3 be k-surfaces such that φe = φe′ = φ. Let

(HS,Hφ) denote the extension of (S, φ). Let ẽ, ẽ′ : S → HS denote the respective
canonical lifts of e and e′. By Theorem 3.4.13, ẽ(S) = ẽ′(S). From this it follows
that ẽ = ẽ′ and so e = e′, as desired. ��
The following result is proven by Labourie in [19].

Theorem 3.4.15 Let S be a developable Möbius surface with developing map φ.
Let  be a relatively compact open subset of S with smooth boundary. For all 0 <
k < 1, there exists a k-surface e : → H

3 such that φe = φ|.



3 Möbius Structures, Hyperbolic Ends... 107

Sketch of Proof Labourie’s result holds for asymptotic Plateau problems in Cartan-
Hadamard manifolds of bounded geometry. For the reader’s convenience, we sketch
a simpler proof valid for the hyperbolic case studied here. First, using the Beltrami–
Klein model we identify H

3 with the unit ball in R
3. For all r ∈]0, 1[, let Br denote

the closed ball of (Euclidean) radius r about the origin, let Sr := ∂Br denote its
boundary, let πr : ∂∞H

3 → Sr denote the canonical projection, and denote φr :=
πr ◦ φ. For all r , the argument used in [13] and [32] applies equally well in the
hyperbolic case to prove the existence of an ISC immersion er : → Br , isotopic
through ISC immersions to φr , of constant extrinsic curvature equal to k and whose
restriction to ∂ coincides with φr (c.f. Theorem 1.2 of [25]). Reasoning as in [32],
we then show that (er )r>0 subconverges to a complete, locally Lipschitz immersion
e∞ : → H

3, of constant extrinsic curvature equal to k in the viscosity sense, and
solving the asymptotic Plateau problem (, φ). Finally, since (, e∞) is not a tube,
the arguments of Sect. 3.4.4, allow us to show that this sequence in fact converges
in the C∞loc sense, so that e∞ is smooth, and the result follows. ��
We now obtain our main existence result.

Theorem 3.4.16 Let S be a developable Möbius surface of hyperbolic type with
developing map φ. If the universal cover of S is not isomorphic to (C,Exp(z)), then
for all 0 < k < 1, there exists a unique k-surface e : S → H

3 such that φe = φ.

Remark 3.4.17 Recall that the hypothesis that S be of hyperbolic type is equivalent
to excluding the possibility that the universal cover of S be equivalent to (Ĉ, z) or
(C, z).

Proof Let (m)m∈N be a nested sequence of relatively compact open subsets of S
with smooth boundary which exhausts S. By Theorem 3.4.15, for all m, there exists
a k-surface em : m → H

3 such that φem = φ|m . By Theorem 3.4.11, there exists
a k-surface e : S → H

3 towards which (em)m∈N subconverges in the C∞loc sense.
Uniqueness follows by Theorem 3.4.14, and this completes the proof. ��

We conclude by proving the results of Sect. 3.1.3.

Theorem 3.4.18 For all 0 < k < 1 and for all f ∈ Hol(D), there exists a unique
element e ∈ Immk(D) such that

�[e] = f. (3.4.20)

Furthermore, e depends continuously on f . In other words, � defines a homeomor-
phism from Immk(D) into Hol(D).

Proof It suffices to construct a continuous inverse of �. Let Cõnf(D) denote the
space of locally conformal functions fromD into Ĉ furnished with theC0

loc topology.
Let Conf(D) denote the quotient of this space under the action of post-composition
by Möbius maps. Now choose f ∈ Hol(D). By Theorem 1.1 of Section 2 of
[20], there exists an element φ := Ãf ∈ Cõnf(D) with Schwarzian derivative
equal to f . Furthermore, φ is unique up to post-composition by Möbius maps,
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and its equivalence class in Conf(D) varies continuously with f . Ã thus defines a
continuous map from Hol(D) into Conf(D) which we denote by A. Now let φ be an
element of Cõnf(D). Since the developed Möbius surface (D, φ) is not of any of the
exceptional types, it follows by Theorem 3.4.16, that there exists a unique k-surface
e := Bφ : D→ H

3 such that φe = φ. Trivially, for any element α ∈ PSO(3, 1),

B(α ◦ φ) = α ◦ (Bφ),

so that B descends to a map from Conf(D) into Immk(D). We readily verify that
BA inverts �. Finally, by Theorem 1.5 of [26], B is continuous, and therefore so
too is BA. This completes the proof. ��
Theorem 3.4.19 For all 0 < k < 1 and for all f ∈ Hol(C) \ C, there exists a
unique element e ∈ Immk(C) such that

�[e] = f. (3.4.21)

Proof The proof is identical to that of Theorem 3.4.18 with two modifications.
First, the developed Möbius surface (C, φ) is equivalent to (C, ez) if and only if
the Schwarzian derivative of φ is a non-zero constant, and it is equivalent to (C, z)
if and only its Schwarzian derivative vanishes. Second, since Theorem 1.5 of [30]
does not apply in this case, continuity of the inverse of � remains unproven. ��

Appendix A: A Non-complete k-Surface

In this appendix, we describe a non-complete k-surface. We leave the reader to
provide the complete proofs of the statements made in what follows. Consider the
holomorphic function

f (z) := −Exp(z)cosh(z). (A.1)

This is the Schwarzian derivative of the function

φ̃(z) := Exp(Exp(z)). (A.2)

For 0 < k < 1, let ẽk : C→ H
3 denote the unique k-surface solving the asymptotic

Plateau problem (C, φ̃). By uniqueness, for all k ∈ Z,

φ̃(z+ 2πik) = φ̃(z). (A.3)
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so that ẽk descends to a unique k-surface ek : C∗ → H
3 such that, for all z ∈ C,

ek(Exp(z)) = ẽk(z). (A.4)

This k-surface solves the Plateau problem (C∗,Exp(z)).
We now identify Ĉ with ∂∞H

3. In [23], we show that ek has a cusp at 0 whose
end point in ∂∞H

3 = Ĉ is 1. We now study the asymptotic geometry of ek(z) as
z tends to infinity in C

∗. Let � denote the geodesic in H
3 joining 0 and ∞. For all

y ∈ R, denote

Ly := {x + iy | x ∈ R} , (A.5)

The image of Ly under ek converges exponentially fast to a constant speed
parametrisation of � as y tends to ±∞. On the other hand, the image of Ly under
Exp is a complete radial line rotating at constant speed as y varies. Since, by
definition, Exp is the asymptotic Gauss map of ek , we see that ek wraps around
�, ever tighter, infinitely many times as y tends to ±∞.

We now use a heuristic argument to show that ek is not complete. By Theo-
rem 3.4.11, ek is the limit asm tends to infinity of the solution em,k of the asymptotic
Plateau problem (C \ 2mπiZ,Exp(z)). However, by uniqueness, for all m, em,k is
2mπ periodic in the y direction with fundamental domain

m := {x + iy | x ∈ R, y ∈] − πm,πm[} \ {0} . (A.6)

In particular, for all m, the resulting quotient surface has the conformal type of
Ĉ \ {0, 1,∞} and, by the Gauss–Bonnet Theorem, its metric has area 2π/(1 − k).
Since this area is independent ofm, upon lettingm tend to infinity, it is reasonable to
expect that the area induced over C∗ by ek is also equal to 2π/(1− k). In particular,
since ek has the topology of a pointed disk, it cannot be complete, for there is no
hyperbolic surface with finite area, vanishing genus and two cusps. In fact, we
expect the metric induced by ek over C

∗ to be, up to rescaling, isometric to the
surface

S := {z := x + iy ∈ C | y > 0, d(z, 2mZ) > 1} /4mZ, (A.7)

whose fundamental domain is shown in Fig. 3.5.

Appendix B: Category Theory

Our presentation has been structured around the framework of category theory. For
didactic purposes, we provide here an elementary and low-level discussion of its
basic definitions.
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Fig. 3.5 The fundamental domain of ek

A category consists of

(1) a family A of mathematical objects;
(2) for any two objects X and Y of A, a set Mor(X, Y ), which we call the

morphisms from X to Y ; and
(3) for any three objects X, Y and Z in A, a function

◦ : Mor(X, Y )×Mor(Y,Z)→ Mor(X,Z), (B.1)

which we call composition,

such that

(4) for any object X of A, there exists a unique element e ∈ Mor(X,X), which
we call the identity, such that for any other object Y of A, and for all f ∈
Mor(X, Y ),

e ◦ f = f, (B.2)

whilst, for all f ∈ Mor(Y,X),

f ◦ e = f ; and (B.3)

(5) for any four objectsX, Y ,Z andW ofA, for all α ∈ Mor(X, Y ), β ∈ Mor(Y,Z)
and γ ∈ Mor(Z,W),

α ◦ (β ◦ γ ) = (α ◦ β) ◦ γ. (B.4)

It is crucial at this stage to pay close attention to the semantics of these definitions.
A family is not a set. In fact, there is an implicit abuse of language in the concept of
family: a family is a list of axioms which can be written down. Likewise, an object
of a family is not an element of a set: it is a mathematical object which satisfies the
axioms of the family. Thus, the family of groups is given by the axioms of group
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theory; the family of vector spaces is given by the axioms of linear algebra; and so
on.

Most familiar mathematical constructs lie within this framework. For example,
the category of vector spaces is the category whose objects are vector spaces and
whose morphisms are linear maps; the category of Banach spaces is a category
whose morphisms are bounded linear maps; the category of smooth manifolds is
a category whose morphisms are smooth maps; and so on. It should hopefully
become clear that in defining new mathematical objects, it is indeed often desirable
to identify their morphisms and to verify whether these morphisms include identity
elements and compose associatively. It is in this sense that the above axioms
constitute a check-list of properties that families of mathematical objects ought to
possess.

A (covariant) functor F between two categories A and B consists of

(1) a mathematical operation that associates to every objectX of A an object F(X)
of B; and

(2) another mathematical operation which associates to every pair X and Y of
objects of A and to every morphism α in Mor(X, Y ) a morphism F(α) in
Mor(α(X), α(Y )),

such that

(3) for any object X of A,

F(e) = e; and (B.5)

(4) for any three objects X, Y and Z of A, for all α ∈ Mor(X, Y ) and for all
β ∈ Mor(Y,Z),

F(β ◦ α) = F(β) ◦ F(α). (B.6)

Condition (4) can also be replaced with the condition that

F(β ◦ α) = F(α) ◦F(β), (B.7)

in which case the functor is said to be contravariant. However, although the simplest
examples of functors are often contravariant, only covariant functors will be used in
this chapter.

As before, it is crucial to pay close attention to the semantics of these definitions.
A functor is not a function: it is a list of mathematical operations which can be
written down. For example, the dual operation, which associates to every vector
space its dual vector space is a contravariant functor from the category of vector
spaces to itself; the C∞ operation, which associates to every smooth manifold the
vector space of smooth functions defined over that manifold, is a contravariant
functor from the category of smooth manifolds to the category of vector spaces;
and so on. Once again, it should hopefully become clear that in defining new
mathematical operations between families of objects, it is often desirable to know
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their effects on morphisms so that the above axioms again provide a check-list of
properties that such operations ought to possess.

For those of us trained to express our ideas in terms of sets and functions, this
formalism can appear at first quite unsettling. However, the concepts of category
theory are, ironically, less abstract than those of set theory and closer to what
we have in mind when mathematical operations are performed. To see this, recall
that sets are actually abstract mathematical objects which are not necessarily
constructible in any sense that we would normally understand, which is precisely
what gives the mystery to such results as the Banach–Tarski paradox. Families, on
the other hand, are clearly defined by fixed lists of axioms which can be written
down. Likewise, functions are abstract objects of set theory which are also not
necessarily constructible in any sense that we would normally understand, whilst
functors are fixed lists of mathematical operations which can again be written down.
In fact, whenever we carry out explicit calculations, we never work with functions,
but rather with the sequences of operations used to define them. Such sequences,
which we regularly encounter in our day-to-day mathematical life, are, in fact, closer
in kind to the functors of category theory than they are to the functions of set theory.
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Chapter 4
Cone 3-Manifolds

Joan Porti

Abstract This is an overview on hyperbolic cone 3-manifolds, their deformation
theory and their role in Thurston’s orbifold theorem. We also describe the phenom-
ena that may occur when deforming the cone angles, like cusp opening or collapses,
under the assumption that the cone angles are less than π .

Keywords Cone manifolds · Deformations · Rigidity · Orbifold

MSC 57M50

4.1 Introduction

Cone 3-manifolds are manifolds equipped with metrics of constant curvature that
are singular at an embedded graph, and the singularity follows a specific conical
structure. They can be obtained from 3-dimensional polyhedra of constant curvature
by identifying their faces along isometries, thus the singular locus is contained in
the 1-skeleton.

Cone 3-manifolds were considered by Thurston in his proof of the orbifold
theorem. The underlying space of an orientable orbifold of constant curvature has
a natural metric of cone manifold. The starting point in the proof of the orbifold
theorem is another well known theorem of Thurston: the hyperbolic Dehn filling
theorem. The proof of the hyperbolic Dehn filling theorem provides cone manifolds
with small cone angles; then the main strategy of the orbifold theorem is to increase
those cone angles (until the angles determined by the topology of the orbifold)
and to analyze the possible phenomena that may occur. This motivates the study
of geometric properties of cone 3-manifolds, like their deformation theory or the
convergence of sequences of cone 3-manifolds.
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The first sketch, or program, of the proof of the orbifold theorem was the content
of a preprint by Thurston in 1982 [48], see also [49]. Then the proof was completed
by several contributors [3, 4, 14, 25, 45, 54]. There are some later results that give
a more natural argument in some parts of the proof, like the local rigidity theorems
surveyed here. The goal of this paper is not to provide a proof of the orbifold
theorem, but to give an overview of some properties of cone 3-manifolds.

Kleiner and Lott have proved the orbifold theorem with Ricci flow on orbifolds
[30], without using cone manifolds. Cone manifolds remain however an interesting
geometric object, that may have an intuitive visualization. Besides, cone manifolds
have applications other than the orbifold theorem: Hodgson and Kerckhoff use
them in [27] to find a uniform upper bound on the number of non-hyperbolic
Dehn fillings. The deformation theory of cone manifolds is used by Bromberg
in the proof of the Bers density conjecture [10], by Brock and Bromberg in in
a generalization of this conjecture [7], by Brock, Bromberg, Evans and Souto in
the tameness conjecture [8], as well as by Bonahon and Otal [5] to study bending
measured laminations.

It is worth mentioning that there are a lot of contributions on cone 3-manifolds
that are not overviewed here. For instance, the many examples of deformations and
volume computations of the Siberian school around Alexander D. Mednykh, as well
as the pioneering examples from the long term collaboration between Mike Hilden,
José Maria Montesinos Amilibia and Maite Lozano Imízcoz. Here we just mention
a few examples from these authors.

This paper is organized as follows: Sect. 4.2 reviews the definition, basic
constructions, and elementary properties of cone manifolds, focusing in dimensions
2 and 3. Section 4.3 is devoted to Thurston’s hyperbolic Dehn filling theorem,
that explains how cone 3-manifolds with small cone angles occur, and the natural
questions that arise. Then Sect. 4.4 reviews local rigidity results, in particular the
results that allow to deform cone angles. Section 4.5 is devoted to sequences of
cone 3-manifolds, more precisely to the notions of convergence, a compactness
theorem, a description of thin parts and their applications (eg. global rigidity), all for
cone angles strictly less than π . Finally Sect. 4.6 is devoted to some examples, that
illustrate previous sections and give examples of different phenomena that occur to
cone manifolds, including some examples with cone angles larger than π .

4.2 Cone Manifolds

In this section we give the definition and basic constructions of cone manifolds,
focusing on dimensions two and three.

We start with the definition in dimension 2, with curvature κ ∈ R. To describe
the metric in constant curvature κ , consider the function

sk(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sin(r
√
k)√

k
if κ > 0

r if κ = 0
sinh(r

√−k)√−k if κ < 0
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This function is the unique solution to the differential equation s′′k + κsk = 0 with
initial conditions sk(0) = 0, s′k(0) = 1. In the next definition, the local description of
the metric in polar coordinates for a cone surface (4.1) is a modification of the metric
of the plane of constant curvature, ds2 = dr2 + s2

k(r)dθ
2, with r ∈ (0, r0), θ ∈

[0, 2π].
Definition 4.1 A cone surface of constant curvature κ ∈ R is a surface equipped
with a length distance, where the metric is locally described, in polar coordinates,
by

ds2 = dr2 +
( α

2π

)2
s2
k(r)dθ

2, r ∈ (0, r0), θ ∈ [0, 2π], (4.1)

where θ = 2π is identified to θ = 0. The parameter α > 0 is called the cone angle
at the point with coordinate r = 0.

When α �= 2π , we say that the point is singular, or a cone point.
For α = 2π the metric is locally a Riemannian metric of constant curvature κ

and the point is called regular.

In Eq. (4.1), r ∈ (0, r0) is the radial coordinate and θ ∈ [0, 2π] is the angle
parameter. Furthermore, when κ > 0 we require r0 ≤ π√

κ
.

Notice that the metric in (4.1) can be changed to the standard metric by re-
parameterizing and changing the domain of the coordinate θ :

ds2 = dr2 + s2
k(r)dθ

2, r ∈ (0, r0), θ ∈ [0, α], (4.2)

where θ = α is identified to θ = 0. Namely, we consider a sector of angle α in the
space of constant curvature κ and we identify its sides by a rotation, Fig. 4.1.

Example 4.1 Consider a triangle with angles 0 < α1
2 ,

α2
2 ,

α3
2 < π . It lies in a plane

of constant curvature κ , with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

κ < 0 if α1
2 + α2

2 + α3
2 < π,

κ = 0 if α1
2 + α2

2 + α3
2 = π,

κ > 0 if α1
2 + α2

2 + α3
2 > π (and αi

2 +
αj
2 <

αk
2 + π, for i �= j �= k �= i).

α
α

Fig. 4.1 A singular point of cone angle α < 2π is viewed as a cone (though the definition allows
cone angle α > 2π)
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Fig. 4.2 On the left, three turnovers: cone surfaces S2(α1, α2, α3) of curvature κ (subject to αi +
αj < 2π + αk , for i �= j �= k �= i). On the right, cone surfaces S2(α, α) of curvature > 0

We double the triangle with angles α1
2 , α2

2 , and α3
2 along its boundary: in this way

we obtain a Riemannian metric on S2 of constant curvature everywhere except at
the vertices. Namely we obtain a cone surface with three cone points, of respective
cone angles α1, α2 and α3, subject to αi + αj < αk + 2π , for i �= j �= k �= i. This
example is called a turnover and it is denoted by S2(α1, α2, α3), see Fig. 4.2, left.

Example 4.2 Consider a spherical bigon of angle 0 < α < 2π , namely the region
of S2 bounded by two meridians at angle α. In spherical coordinates it is the region
with parameters (ρ, θ) ∈ (0, π) × [0, α] where ρ is the distance to the north pole
and θ the longitude (and π/2 − ρ the latitude). We identify the sides by a rotation.
The result is a cone manifold with two cone points of angle α, that we denote by
S2(α, α). See Fig. 4.2 right. It is the spherical suspension of a circle of length α,
namely with the metric

ds2 = dρ2 + sin2(ρ)dθ2, for ρ ∈ (0, π) and θ ∈ [0, α]/α ∼ 0.

The cone manifold S2(α, α) can be seen as the limit of S2(α1, α2, α3) when
α3 → 2π , because |α1 − α2| ≤ 2π − α3.

The definition of cone manifold is inductive on the dimension. The construction
uses the metric cone. Start with the topological cone: for a compact topological
space X, consider the product X × [0, R) for some R > 0 and collapse X × {0} to
a point (the tip of the cone), and denote the quotient by X × [0, R)/ ∼.

Definition 4.2 Let (X, dX) be a metric space of diameter ≤ π . The metric cone of
constant curvature κ on X is the topological cone X × [0, R)/ ∼ (we require that
R < 2π/

√
κ when κ > 0) equipped with the distance d so that (x1, r1), (x2, r2) ∈

X × (0, R] and the tip of the cone (∗, 0) form a triangle isometric to the triangle in
the plane of constant curvature κ with edge lengths r1, r2, d((x1, r1), (x2, r2)), and
angle dX(x1, x2) at the tip (∗, 0). It is denoted by

ConeR,κ (X) = (X × [0, R)/ ∼, d).

The space X is called the link of the tip of the cone.
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When the distance onX is provided by a Riemannian metric ds2
X, then the metric

on ConeR,κ(X) is described by

ds2 = dr2 + s2
κ (r)ds

2
X.

Notice that in Definition 4.1 the local description of a cone surface is the metric
cone of constant curvature over a circle.

Definition 4.3 A d-dimensional cone manifold of constant curvature κ is a metric
length space C satisfying the following local property. For each x ∈ C there
exists a cone manifold Link(x) of curvature 1 homeomorphic to Sd−1 such that
a neighborhood of x is isometric to the metric cone of constant curvature κ on
Link(x), Coneε,κ (Link(x)).

When the curvature κ is equal to 1 the cone manifold is called spherical, when
κ = 0, Euclidean, and when κ = −1, hyperbolic.

Remark 4.1 We require that Link(x) is homeomorphic (not isometric) to a sphere
Sd−1, so that C is topologically a manifold.

If we do not require Link(x) to be homeomorphic to a sphere, then we talk about
conifolds, but we will not consider them here. The easiest example of conifold that
is not a cone manifold is the cone on the projective plane.

Proposition 4.1 The underlying space of an orientable orbifold of constant curva-
ture and dimension 2 or 3 inherits naturally the structure of a cone manifold.

Proof The underlying space of an orbifold of constant curvature is locally modeled
on X

n
κ/�, where Xnκ is the space of constant curvature κ , and � ⊂ SO(n) is a finite

group of isometries fixing a point.
By construction, there exists ε > 0 such that a neighborhood of a point x in the

underlying space is isometric to B(x̃, ε)/�, where B(x̃, ε) is a metric ball of radius
ε > 0 in X

n
κ . Notice that B(x̃, ε)/� is the metric cone of radius ε > 0 on its link

Sn−1/�. Since we assume orientability, for n = 2, S1/� is homeomorphic to a
circle and for n = 3, S2/� is homeomorphic to a 2-sphere. ��

The previous proposition holds in any dimension if we allow conifolds instead of
cone manifolds, i.e. if we do not require the link to be homeomorphic to a sphere.

Proposition 4.2 (Gluing Polygons in Dimension 2) Let P1, . . . , Pk ⊂ X
2
κ be

polygons of constant curvature κ . Assume that their edges (Pi)j are paired by
isometries sij . Then the metric space obtained by identification along the isometries

(P1 � · · · � Pk)/ ∼sij
is a cone surface.
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The cone structure is easily constructed from matching the cones on the
polygons. The key point is to prove that the link of each point is a circle; this follows
from the classification of 1-dimensional manifolds (see also Theorem 6.7.6 in [42]).

Remark 4.2 Proposition 4.2 generalizes to dimension 3 if we can guarantee that
links of equivalence classes of vertices are homeomorphic to spheres. This holds
true for instance if cone angles of edges are ≤ 2π , by Gauss-Bonnet (Proposi-
tion 4.3).

Proposition 4.2 is illustrated in Examples 4.1 and 4.2. By means of the Dirichlet
polyhedron (below in Definition 4.5 and Proposition 4.5) we show that all cone
manifolds can be constructed from Proposition 4.2.

Definition 4.4 On a cone d-manifold C, a point x ∈ C is singular if its link is not
isometric to the standard (d − 1)-sphere Sd−1, and regular otherwise. The singular
locus of C is denoted by �.

Remark 4.3 The singular locus � is a stratified subspace of codimension ≥ 2. In
particular, for a cone surface,� is a discrete subset.

For a 2-dimensional cone manifold, we have a Gauss-Bonnet formula, see for
instance [34, 50]:

Proposition 4.3 (Gauss-Bonnet Formula for Cone Surfaces) Let C2 be a cone
surface of constant curvature κ , with finite area and n cone points of respective
cone angles α1, . . . , αn. Then

κ area(C2)+
∑

i

(2π − αi) = 2πχ(C2),

where χ(C2) denotes the Euler characteristic of the underlying surface.

It follows from the Gauss-Bonnet formula that if κ = 1 and the cone angles
are ≤ π , then there are at most three cone points. With some extra work, one can
determine geometrically those cone manifolds:

Proposition 4.4 Let C2 be a spherical cone surface with cone angles≤ π . If C2 is
orientable, then it is one of the following:

1. A smooth sphere S2.
2. S2(α, α), the spherical suspension of a circle.
3. S2(α, β, γ ), a turnover with α + β + γ > 2π .

IfC2 is not orientable, then it is the quotient of S2 or S2(α, α) by the antipodal map,
i.e. the projective plane with possibly a cone point, P 2 or P 2(α).

Furthermore, the isometry class of C2 is determined by the cone angles (namely
they are rigid).

This rigidity does not hold anymore for spherical cone manifolds with cone
angles larger than π ; consider for instance the double of a spherical quadrilateral.
See [34] for a description of the moduli space of spherical cone surfaces.
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Fig. 4.3 The models of the
singular locus � when cone
angles are ≤ π

Fig. 4.4 Locally, a singular
edge is the result of
identifying the sides of a
sector in the space of constant
curvature by a rotation

From Proposition 4.4, as the link of a point is a spherical cone manifold, we have:

Corollary 4.1 A 3-dimensional cone manifold with cone angles ≤ π is locally
isometric to one of the following:

1. A smooth point (the cone of a smooth sphere).
2. A singular edge (the cone of S2(α, α)).
3. A trivalent vertex of a singular graph (the cone of S2(α, β, γ )).

In particular, the singular locus� is a disjoint union of circles and trivalent graphs,
see Fig. 4.3.

Furthermore, the isometry class of a neighborhood is determined by the cone
angles.

For a singular edge, the cone angle of the link at every point is also called the
cone angle of the edge, see Fig. 4.4.

Definition 4.5 Let C be a cone 3-manifold and x ∈ C \� a regular point. The cut
locus of C centered at x is

Cutx = {y ∈ C | y ∈ � or y has at least 2 minimizing segments to x}.

The complement of the cut locus is the Dirichlet domain centered at x ∈ C \ �,
Dx = C \ Cutx :

Dx = {y ∈ C \� | there is a unique minimizing segment from x to y}.

Proposition 4.5 The Dirichlet domain embeds as a star-shaped domain in X
3
κ , the

space of constant curvature κ ∈ R, and for κ ≤ 0 its closure is a polyhedron.
Furthermore, when the cone angles are≤ π , this Dirichlet polyhedron is convex.
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This proposition helps to explain why the hypothesis on cone angles ≤ π is
relevant for cone manifolds. The fact that the Dirichlet polyhedron is convex allows
to reproduce arguments in Riemannian geometry in this context. We see examples
in Sect. 4.5.

Before finishing this section, we state a result related to the following section.

Proposition 4.6 Let C be a closed hyperbolic cone 3-manifold without singular
vertices (i.e. � is a link). Then |C| \ � is a hyperbolic manifold (namely, it admits
a complete hyperbolic metric).

Proof Deform the non-complete metric on |C| \� to a complete metric of variable
negative curvature. Then one can show that it has the topological properties required
for being hyperbolic (irreducible, atoroidal, and π(|C|\�) has no center) and apply
geometrization for Haken manifolds. ��

The complete structure on this proposition can be seen as a cone manifold
structure of angle zero. This is better explained in the next section, by Thurston’s
hyperbolic Dehn filling.

Remark 4.4 LetC be a closed hyperbolic cone 3-manifold without singular vertices
as in Proposition 4.6. Then the volume of the complete hyperbolic structure on
|C| \ � is larger than the volume of the cone 3-manifold C. The maximality of the
volume is due to Gromov–Thurston–Goldman, and written by Dunfield [20]. More
precisely, as explained in [20], Goldman notices in [21] that the proof of Mostow
rigidity in Thurston’s notes [47] applies to representations, a proof that Thurston
attributes to Gromov.

4.3 Hyperbolic Dehn Filling

Thurston’s hyperbolic Dehn filling provides examples of hyperbolic cone three-
manifolds, with small cone angles, and it is the starting point of the proof of
the orbifold theorem. Those cone 3-manifolds are obtained by deforming cusped
manifolds and then taking the metric completion.

We first consider a two-dimensional example:

Example 4.3 Start with a hyperbolic triangle with ideal vertices and double it along
its boundary. This yields a planar hyperbolic surface with three cusps, that we call
S2(0, 0, 0). Next consider triangles with finite vertex and angle α/2 > 0 at every
vertex, for α in a neighborhood of 0. By taking the double of the triangles along the
boundary, we get a family of turnovers S2(α, α, α) as in Example 4.1 and Fig. 4.2.
As triangles with small angles are deformations of ideal triangles, the turnovers
S2(α, α, α) are deformations of the cusped surface S2(0, 0, 0) (Fig. 4.5).

In dimension three, we first recall the topological description of filling. Consider
a compact 3-manifoldM3 with boundary a 2-torus ∂M3 ∼= T 2 ∼= S1 × S1. Attach a
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Fig. 4.5 Triangle of small angles as perturbation of the ideal triangle, with angles 0 (left). The
double of the ideal triangle is the cusped surface S2(0, 0, 0) (center) and the double of the compact
triangle is the turnover S2(α, α, α) (right)

solid torusD2 × S1 (a product of a disc and a circle) to its boundary:

M3 ∪ϕ D2 × S1 =
(

M3 �D2 × S1
)

/x ∼ ϕ(x)

where ϕ : ∂D2×S1 → ∂M3 is a homeomorphism. The solid torusD2×S1 is called
the filling torus and the curve {0} × S1 its soul.

The homeomorphism type of the Dehn filling depends only on the unoriented
isotopy class of the curve ϕ(∂D2 × {∗}) in ∂M3 ∼= T 2, the filling meridian.
In its turn, this unoriented isotopy class is determined by its homology class in
H1(T

2,Z) up to sign, hence it may be described by a rational slope, an element
of Q ∪ {∞}, as follows. Fix a basis for the first cohomology group, namely an
isomorphism H1(T

2,Z) ∼= Z
2; the filling meridian with homology class ±(p, q)

via this isomorphism is described by the slope p/q ∈ Q ∪ {∞}.
When the 3-manifold is a knot exterior in S3, a Dehn filling on its exterior is

called Dehn surgery on the knot.
Next we state the well known Thurston hyperbolic Dehn filling theorem in terms

of cone manifolds. To simplify, we state it for only one cusp.

Theorem 4.1 (Thurston’s Generalized Hyperbolic Dehn Filling) Let M3 be a
compact orientable 3-manifold with boundary a 2-torus. Assume its interior is
hyperbolic.

For every slope q ∈ Q∪ {∞} there exists #q > 0, depending on the slope q and
the manifoldM3, so that there is a family of cone manifold structures on the Dehn
filling with slope q , with singular locus the soul of the filling torus, and with cone
angles in the interval (0,#q).

Furthermore, the number of slopes q ∈ Q ∪ {∞} such that#q ≤ 2π is finite.

Notice that when #q > 2π , Thurston’s hyperbolic Dehn filling provides a
honest hyperbolic three-manifold (e.g. with a metric with no singularities), and we
recover the usual statement of Thurston’s hyperbolic Dehn filling theorem. The last
statement in Theorem 4.1 guarantees that almost all Dehn fillings are hyperbolic



124 J. Porti

manifolds. In fact the statement is even more general. Thurston’s proof provides a
deformation space with a complex parameter. In this deformation space, the metric
is non complete and its metric completion may yield a topological manifold (with
singular metric or not) or a singular space, a so-called singularity of “generalized
Dehn type”. In this deformation space, the manifold Dehn filings are a countable set
of points, joined by lines to the initial point, corresponding to the angle deformation
of the cone manifolds.

Remark 4.5 Cone manifolds in Theorem 4.1 are constructed by deforming the
complete metric structure and taking the metric completion. As in Example 4.3,
we may view the metric at angle zero as the complete metric on the interior ofM3,
hence the cone angle varies in [0,#q).
Remark 4.6 In Theorem 4.1 one can replace 2π in the last sentence by any positive
constant C > 0; the conclusion is that the number #{q ∈ Q ∪ {∞} | #q ≤ C} is
finite. Of course this number depends on C, and a priori it depends also onM3.

Theorem 4.2 LetM3 be a compact orientable 3-manifold with boundary a 2-torus
and with hyperbolic interior. Then, for every slope q ∈ Q ∪ {∞}, #q ≥ 2π/3.

This theorem is part of the proof of Thurston’s orbifold theorem, and can be
found in the different approaches to the proof [3, 4, 14, 25, 45, 54]. We discuss
it later in Sect. 4.5. When #q > 2π/n Theorem 4.1 yields a hyperbolic orbifold,
with branching locus the soul of the filling torus, and branching index n. Thus, as
corollary of Theorem 4.2:

Corollary 4.2 LetM3 be a compact orientable 3-manifold with boundary a 2-torus
and with hyperbolic interior. For every slope q ∈ Q ∪ {∞}, the orbifold with
underlying space the q-Dehn filling, branching locus the soul of the filling torus,
and branching index n ≥ 4 is hyperbolic.

The bound n = 4 is optimal: for instance the orbifold with underlying space the
three-sphere, branching locus the figure eight knot and ramification 3 is Euclidean.
Equivalently, there exists a Euclidean cone manifold structure on S3, with singular
locus the figure eight knot and cone angle 2π/3.

If we focus on nonsingular Dehn fillings, then a natural question is to find a
uniform bound on the number of Dehn fillings that are not hyperbolic. This has
been found by Hodgson and Kerckhoff in [27]:

Theorem 4.3 (Hodgson–Kerckhoff) Let M3 be a compact orientable 3-manifold
with boundary a 2-torus and with hyperbolic interior. Then#q ≤ 2π for at most 60
slopes q ∈ Q ∪ {∞}, independently ofM3.

The statement in [27] involves the so-called normalized length of a slope in the
hororspherical torus. This torus has a natural Euclidean structure up to homotety,
and one normalizes it so that it has area 1. Hodgson and Kerckhoff prove that for
slopes q so that its normalized length in the horospherical torus is at least 7.515, we
have #q > 2π . Besides the tools we describe here, one of the main innovations of
Hodgson and Kerckhoff are infinitesimal harmonic deformations. They succeed in
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controlling the radius of a metric tube around the singular geodesic when deforming.
We recall more results of [27] in Sect. 4.5.

In the proof of Theorem 4.2 there are two basic ingredients: deforming the
structures by changing the cone angles and studying the limits of sequences. In
Sect. 4.4 we describe how cone manifolds are deformed, and in Sect. 4.5 we analyze
sequences of cone manifolds.

4.4 Local Rigidity

In this section we overview results that allow to deform the cone angles of cone
manifolds. Those are local rigidity results because they show that the multiangles
are local parameters of the deformation space.

Given a cone manifold C, the underlying manifold is denoted by |C|. The
topological pair formed by (|C|,�) is called the topological type, where � ⊂ |C|
is the singular locus. The meridians are (conjugacy classes of) elements in the
fundamental group π1(|C| \ �) represented by loops around the arcs and circles
of � (that in |C| bound a disc that intersects � in its center), Fig. 4.6.

We are interested in deformations that preserve the topological type. The
complement |C| \ � inherits a non-singular hyperbolic metric that is not complete,
whose metric completion is C. The incomplete structure on |C| \� has a holonomy
representation

holC : π1(|C| \�)→ Isom+(H3) ∼= PSL(2,C)

that is unique up to conjugation. We consider the topology in the deformation space
of C induced by the variety of representations up to conjugation

hom(π1(|C| \�),PSL(2,C))/PSL(2,C).

Here we are using Ehresmann principle to say that deformations of structures are
described by conjugacy classes of representations, cf. [13].

Notice that not all representations in hom(π1(|C| \ �),PSL(2,C))/PSL(2,C)
close to the holonomy of the initial cone manifold correspond to the holonomy of a
cone manifold structure: we must require that the holonomy of the meridians of �
are rotations.

Fig. 4.6 Loops representing
meridians of the singular
locus in π1(|C| \�)
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Theorem 4.4 (Hyperbolic Local Rigidity [26, 33, 51, 53]) Let C be a compact
orientable hyperbolic 3-manifold with topological type (|C|,�). Then the deforma-
tion space with fixed topological type is locally parameterized by the cone angles
(in particular it cannot be deformed without changing the cone angles).

This theorem was first proved by Hodgson and Kerckhoff [26] when the singular
locus � is a link. For arbitrary � but cone angles ≤ π (hence the singular
locus is a trivalent graph) it was proved by Weiss [51], and the general case was
proved independently by Montcouquiol-Mazzeo [33] and Weiss [53]. The approach
of Hodgson–Kerckhoff and Weiss uses infinitesimal deformations as differential
forms valued on the Lie algebra and their cohomology theory, though Mazzeo and
Montcouquiol use the deformation theory of Einstein metrics.

The local rigidity theorem requires a fixed topological type (|C|,�). This
hypothesis is satisfied when the singular locus� is a manifold (there are no singular
vertices) or when all cone angles are at most π . In general there are deformations
that may change the singular locus: for instance a 4-valent vertex of � may split
into two 3-valent vertices joined by a graph (this does not change the topology of
|C| \�). See [36].

Infinitesimal rigidity has been generalized by Bromberg to noncompact geomet-
rically finite manifolds (without rank one cusps nor singular vertices):

Theorem 4.5 ([9]) If C3 is a geometrically finite cone-manifold without rank one
cusps and if all cone angles are ≤ 2π , then M is locally rigid relative to the cone
angles and the conformal boundary.

Remark 4.7 There is a stronger notion, infinitesimal rigidity, that implies local
rigidity. In fact Theorems 4.4 and 4.5 are proved by establishing infinitesimal
rigidity first.

When the cone angles are larger than 2π , infinitesimal rigidity does not hold.
In a talk at the Third MSJ regional workshop in Tokyo in 1998 (devoted to the
orbifold theorem), Casson gave an example of infinitesimally non-rigid hyperbolic
cone 3-manifolds with singular vertices. Izmestiev has given further examples of
infinitesimally non-rigid hyperbolic cone 3-manifolds, including examples without
singular vertices. Furthermore, Izmestiev has provided examples that are not locally
rigid in [28].

We conclude the section discussing spherical and Euclidean geometry.

Theorem 4.6 (Spherical Local Rigidity [51]) Let C be a spherical cone 3-
manifold with cone angles ≤ π and such that the topological pair (|C|,�) is not
Seifert fibered; then it is locally rigid.

We say that the pair (|C|,�) is Seifert fibered when |C| is Seifert fibered and �
consists of fibres. The Seifert fibered case has been discussed by Kolpakov in [32].
Essentially, it corresponds to the deformation space of the basis.

By means of polyhedra, Schlenker constructed examples of spherical cone 3-
manifolds that are not locally rigid, with singular vertices and cone angles ≤ 2π
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Fig. 4.7 The open set U in
the space of multiangles and
the hypersurface E ⊂ U as in
Theorem 4.7

[43]. Without singular vertices and allowing cone angles ≥ 2π , non locally rigid
spherical cone manifolds are found in [38].

Theorem 4.7 (Euclidean Local Rigidity [41]) Let C be a closed orientable
Euclidean cone 3-manifold with cone angles ≤ π . If C is not an almost product,
then in a neighborhood U of the space of multiangles there is a cone manifold
structure with topological type (|C|,�) with these angles. To determine the type of
structure, there exists a smooth, properly embedded hypersurfaceE ⊂ U consisting
of multiangles of Euclidean cone structures that splits U into 2-connected com-
ponents corresponding to multiangles of spherical and hyperbolic cone structures
respectively, Fig. 4.7.

Furthermore, for each ᾱ ∈ E the tangent space of E at ᾱ is orthogonal to the
vector of singular lengths l̄.

Almost product means that it can be realized as a product C2 × S1 divided by
a finite group of isometries. For instance the cone manifold structure on S3 with
singular locus the Borromean rings and cone angle π is an almost product. In
Sect. 4.6 we describe the deformation space of the Borromean rings, as well as an
example that illustrates Theorem 4.7.

The last result we review in this section is Schläfli’s formula. It is named so
because it can be established from the classical formula for the volume variation in
a family of polyhedra of constant curvature (due to Schläfli for spherical tetrahedra).
See for instance [24, 37].

Proposition 4.7 (Schläfli’s Formula) LetCt be a deformation of cone manifolds of
constant curvature κ , for t ∈ I . Assume that it has fixed topological type (|C|,�C)
and that it is of class C1 (in the variety of representations of |C| \ �C ). Then the
volume is differentiable and

κ
d Vol(Ct )

dt
= 1

2

∑

e

le
dαe

dt
,

where the sum runs on the singular edges and circles e of �, le denotes the length
and αe, the cone angle at e.
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A consequence of this formula is that, when cone angles increase, then the
volume decreases for hyperbolic cone manifolds, but the volume increases for
spherical cone manifolds. It also explains why the space of multiangles of Euclidean
structures is perpendicular to the vector of singular lengths in Theorem 4.7.

4.5 Sequences of Cone Manifolds

After reviewing results that allow us to deform cone angles, we look for applications
by considering sequences of cone manifolds with fixed topological type. We start
with the notion of convergence and a compactness result in Sect. 4.5.1. Then, in
Sect. 4.5.2 we analyze the thin part, in order to describe the possible limiting
cone manifolds. Finally, applications are described in Sects. 4.5.3 and 4.5.4, by
decreasing and increasing respectively the cone angles.

4.5.1 Compactness Theorem

Let C be a compact cone 3-manifold of constant curvature κ . By definition, for
every x ∈ C a metric ball B(x, ε) centered at x of radius ε > 0 is isometric to the
cone (of curvature κ) of its link Link(x), see Definition 4.2, which is a spherical
cone surface:

B(x, ε) ∼= Coneκ,ε(Link(x)).

This is called a standard ball.

Definition 4.6 The injectivity radius of C at x is

inj(x) = sup{δ > 0 such that B(x, δ) is standard ball in C}.

The cone-injectivity radius of C at x is

cinj(x) = sup{δ > 0 such that B(x, δ) is contained in a standard ball in C}.

Notice that in a compact cone manifold, a point x can be arbitrarily close to the
singular locus, therefore its injectivity radius can be arbitrarily small, this is why
Thurston defined the cone injectivity radius. The standard ball in the definition of
cone injectivity radius does not need to be centered at x, in this way regular points
arbitrarily close to the singular locus may have cone-injectivity radius away from
zero. The definition of injectivity radius inj(x) can also be given in terms of the
exponential map.
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Let X and Y be metric spaces and ε > 0. We call a map φ : X → Y a (1 + ε)-
bi-Lipschitz embedding if

1

1+ ε <
d(φ(x1), φ(x2))

d(x1, x2)
< (1+ ε)

holds for all x1 �= x2 ∈ X.

Definition 4.7 (Geometric Convergence) Let (Cn, xn)n∈N be a sequence
of pointed cone-3-manifolds. We say that the sequence (Cn, xn) converges
geometrically to a pointed cone-3-manifold (C∞, x∞) if for every R > 0 and
ε > 0 there exists N = N(R, ε) ∈ N such that for all n ≥ N there is a (1 + ε)-bi-
Lipschitz embedding φn : BR(x∞)→ Cn satisfying:

1. d(φn(x∞), xn) < ε,
2. B(xn, (1 − ε)R) ⊂ φn(B(x∞, R)), and
3. φn(B(x∞, R) ∩�∞) = φn(B(x∞, R)) ∩�n.

If the Cn have curvature κn ∈ R, then C∞ has curvature κ∞ = limn→∞ κn.
The cone-angle along an edge of �∞ is the limit of the cone-angles along the
corresponding edge in �n. Notice also that part of the singular locus of the
approximating cone-3-manifolds may disappear at the limit by going to infinity.

Theorem 4.8 (Compactness) Let (Cn, xn)n∈N be a sequence of pointed cone-3-
manifolds with curvature κn ∈ [−1, 1] and cone-angles ≤ π . Suppose that for
some ρ > 0, inj(xn) > ρ. Then (possibly after passing to a subsequence) the
sequence (Cn, xn) converges geometrically to a pointed cone-3-manifold (C∞, x∞)
with curvature κ∞ = limn→∞ κn.

There are two remarks to be made:

• Firstly, we fix a lower bound ρ > 0 on the injectivity radius of the base point xn,
not the cone-injectivity radius. We can use the cone injectivity radius if we fix a
lower bound away from zero for the cone angles.

• Secondly, Theorem 4.8 is analogous to a well known compactness theorem for
sequences of pointed Riemannian manifolds with bounded sectional curvature
and injectivity radius at the base point bounded away from zero. One of the main
steps is to establish a uniform lower bound on the cone-injectivity radius at every
point in balls B(xn,R), depending only on ρ and R. This uses the hypothesis on
cone angles ≤ π , see Proposition 4.5.

In view of applications we consider sequences of cone manifolds with fixed
topological type (|C|,�) and with bounded volume. To analyze the limits, we
need to understand non compact hyperbolic cone manifolds with finite volume. In
particular their thin or cone-thin parts.
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4.5.2 Cone-Thin Part

For a non-singular hyperbolic 3-manifold, Margulis theorem yields a description
of the set of points with injectivity radius less than a uniform constant μ3, called
the Margulis constant. Those are either cusps or tubular neighborhoods of short
geodesics. Besides the cone manifold version of cusps and tubes, we still need
another model to describe regions with small injectivity radius, called necks.

Let S2(α, β, γ ) be a turnover, with constant curvature −1, 0 or +1 according to
the sign of α + β + γ − 2π , Example 4.1 and Fig. 4.2. View it as the double of a
triangle T = T (α2 , β2 , γ2 ) and consider the following constructions:

• When α + β + γ < 2π , view the triangle T = T (α2 , β2 , γ2 ) in a totally geodesic
plane H2 ⊂ H

3. Consider

NR(T ) = {x ∈ H
3 | d(x,H2) ≤ R and pr(x) ∈ T }

where pr : H3 → H
2 denotes the orthogonal projection, see Fig. 4.8.

A neck of radius R over S2(α, β, γ ) is the double of NR(T ) along ∂T ×
[−R,R]. In the smooth part, the metric is written locally as

ds2 = dt2 + cosh2(t)
(

dr2 + sinh2(r)dθ2
)

,

where
(

dr2 + sinh2(r)dθ2
)

is the hyperbolic metric on the smooth part of
S2(α, β, γ ) and t ∈ [−R,R] is the signed distance to the turnover.

The boundary of a neck consists of two umbilical turnovers of curvature
− cosh−2(R).

• When α + β + γ = 2π , view the triangle T = T (α2 , β2 , γ2 ) in a horosphere H
centered at an ideal point center(H) ∈ ∂∞H

3. Consider

N∞(T ) = {x ∈ H
3 | x lies in a geodesic from T to center(H)},

Fig. 4.8 The models whose
double are a neck (left) and a
cusp (right)
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see Fig. 4.8. A cusp with horospherical cross-section S2(α, β, γ ) is the double of
N∞(T ) along ∂T × [0,+∞). In the smooth part, the metric is locally written as

ds2 = dt2 + e−2t
(

dr2 + r2dθ2
)

,

where
(

dr2 + r2dθ2
)

is the Euclidean metric on the smooth part of S2(α, β, γ )

and t ∈ (0,+∞) is the distance to the turnover.
The boundary of a cusp is an umbilical Euclidean turnover.

Those necks and cusps are naturally foliated by umbilical cone surfaces, that
are turnovers. Here we have considered hyperbolic and Euclidean turnovers. For
spherical turnovers the corresponding region foliated by umbilical turnovers is a
standard ball.

Cusps have always small cone injectivity radii. Hyperbolic necks may have
small cone injectivity radius. If we fix a lower bond on the cone angle, small cone
injectivity radius at necks only occurs when α + β + γ approaches π .

Theorem 4.9 (Cone-Thin Part [4]) For D > 0 and 0 < α ≤ β < π there exists
ρ = ρ(D, α, β) > 0 such that the following holds: If C is an orientable cone-3-
manifold (without boundary) of constant curvature κ ∈ [−1, 0) with cone-angles
∈ [α, β] and diam(X) ≥ D, then the set of points {x ∈ C | cinj(x) < ρ} is
contained in the disjoint union of:

1. Tubular neighborhoods of (perhaps singular) closed geodesics.
2. Cusps with horospherical cross-section a 2-torus or a Euclidean turnover
3. Necks on a hyperbolic turnover.

Here are some remarks about Theorem 4.9:

• The theorem assumes that the diameter is larger than a positive constant D > 0.
In fact there are hyperbolic cone manifolds with small cone-injectivity radius
everywhere, but they have small diameter: they correspond to sequences of
hyperbolic cone manifolds that collapse to a point.

• The theorem does not hold when we allow cone angles close to π : we show
in Sect. 4.6 sequences of hyperbolic cone manifolds that Hausdorff converge
to a two-dimensional cone manifold, hence with a positive lower bound of the
diameter.

• Notice that the necks describe the only way two singular edges can approach,
under the assumptions that cone angles are bounded above away from π and that
the diameter is bounded below away from zero.

Remark 4.8 In [4] a stronger version of this theorem is proved, with the description
of points with injectivity radius less than some constant, i.e. including regular
points close to the singularity. This includes cones over turnovers, that have a large
cone injectivity radius but small injectivity radius at all regular points. One of the
conclusions is that the boundary of the components of the thin part includes a point
with large injectivity radius.



132 J. Porti

Theorem 4.9 and the stronger statement in Remark 4.8 need a careful analysis to
construct, from short loops, foliations by umbilical surfaces. Theorem 4.9 can also
be proved from the classification of non-compact Euclidean cone manifolds with
cone angles less than π .

Next we give two applications of Theorem 4.9. Notice that the boundary of the
neighborhoods of small cone-injectivity radius contains always a point with large
injectivity radius. Thus we have:

Corollary 4.3 (Thickness) There exists r = r(D, α, β) > 0 such that if C is as in
Theorem 4.9, then C contains an embedded smooth standard ball of radius r .

Corollary 4.4 (Finiteness) Let C be as in Theorem 4.9 and suppose in addition
that vol(C) < ∞. Then C has finitely many ends and all of them are (smooth or
singular) cusps with compact horospherical cross-sections.

4.5.3 Decreasing Cone Angles: Global Rigidity

Definition 4.8 We say that a hyperbolic cone 3-manifold C is globally rigid
if, when C′ is a hyperbolic cone manifold with the same topological type,
(|C′|,�|C ′|) ∼= (|C|,�|C|), and the same cone angles, then C′ is isometric to C.

Theorem 4.10 (Hyperbolic Global Rigidity [31, 52]) Hyperbolic cone manifolds
with cone angles less than π are globally rigid.

This theorem was first proved by Kojima in [31] when there are no singular
vertices, using the local rigidity theorem of Hodgson and Kerckhoff, available at
that time, and the case with vertices was proved by Weiss in [52], after he had
proved local rigidity when there are vertices.

Here is a sketch of the proof. Assume first thatC has no singular vertices, i.e. that
� is a link. The proof consists in decreasing the cone angles, until one reaches a
hyperbolic orbifold. The angles can be decreased by local rigidity, and one has to
analyze the limits to prove that the space of angles realized by a hyperbolic cone
structure on (|C|,�) is not only open but closed. We consider sequences of cone
manifold structures with decreasing cone angles. The volume of these sequences
increases (by Schläfli’s formula), in particular the diameter is bounded below by
D > 0. Furthermore the volume of C is bounded above by the volume of the
complete structure on |C| \ �, Remark 4.4. As the diameter is bounded below by
D > 0, by the compactness theorem (Theorem 4.8) the sequence of cone manifolds
converges to a finite volume hyperbolic manifold C∞. If C∞ is compact, then it has
the same topological type as Cn, which means that we can continue decreasing the
angles. If C∞ is non compact, then one uses the finiteness theorem (Corollary 4.4)
and a topological argument to get a contradiction with the opening of cusps.

When C has singular vertices, then one has to take into account that some of the
singular vertices can go to infinity, i.e. the cone on a spherical turnover becomes a
cusp with horospherical cross-section a turnover.



4 Cone 3-Manifolds 133

Once one reaches cone angles that are 2π/n, the argument concludes from
Mostow–Prasad rigidity on orbifolds: the structure on the orbifold is unique, and,
by local rigidity, the path to reach it is also unique.

In the spherical case, Weiss establishes also global rigidity by increasing cone
angles; here Mostow–Prasad is replaced by a rigidity theorem in the spherical case
due to de Rham:

Theorem 4.11 (Spherical Global Rigidity [52]) Non Seifert fibered spherical
cone manifolds with cone angles less than π are globally rigid.

From Theorems 4.7, 4.10 and 4.11, we get:

Theorem 4.12 (Euclidean Global Rigidity [41]) Let C be a closed orientable
Euclidean cone 3-manifold with cone angles ≤ π . If C is not an almost product,
then C is globally rigid (up to homoteties).

Furthermore, for every multiangle ᾱ ∈ (0, π)q there exists a unique cone
manifold structure of constant curvature in {−1, 0, 1} on C with those cone
angles:

• If all cone angles of C are π , then every point in (0, π)q is the multiangle of a
hyperbolic cone structure on C.

• If some of the cone angles is < π , then the subset E ⊆ (0, π)q of multiangles
of Euclidean cone structures is a smooth, properly embedded hypersurface that
splits (0, π)q into 2 connected components, corresponding to multiangles of
spherical and hyperbolic cone structures respectively.

Sequences of cone manifolds without singular vertices can also be analyzed by
controlling the radius of a metric tube around the singular locus, so the singular
locus does not crosses itself. This is the technique of Hodgson and Kerckhoff to
prove Theorem 4.3, and by decreasing the cone angle they also prove the following
theorem for short geodesics (cf. Proposition 4.6):

Theorem 4.13 ([27]) Let M3 be a closed hyperbolic 3-manifold and γ a geodesic
in M3 of length less than 0.111; then there exists a family of hyperbolic cone
structures on M3 with singular locus γ and cone angle in [0, 2π] (the cone angles
decrease from 2π , the non-singular metric, to 0, the complete structure onM3 \ γ ).

This has applications in Kleinian groups [7, 8, 10].

4.5.4 Increasing Cone Angles

Next we discuss sequences of cone manifolds with increasing cone angles. We
assume that the cone angles are bounded above away from π .
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Theorem 4.14 Let Cn be a sequence of compact hyperbolic cone manifolds with
fixed topological type and increasing cone angles that are bounded above by η < π .
Then, up to a subsequence, there are three possibilities:

• It converges geometrically (Definition 4.7) to a compact hyperbolic cone mani-
fold with the same topological type.

• It converges geometrically to a hyperbolic cone manifold C∞ of finite volume
with cusps, each cusp with horospherical cross-section a turnover (singular
cusps opening).

• It collapses to a point and, after rescaling, it converges geometrically to a
Euclidean cone manifold.

The idea of the proof is to apply the compactness theorem (Theorem 4.8) and
the finiteness theorem (Corollary 4.4). More precisely, if the diameter of Cn stays
bounded below away from zero, then we apply the compactness theorem, and the
limit C∞ is a manifold of finite volume (the deformation decreases the volume by
Schläfli’s formula). Furthermore we can get rid of the case where C∞ has some
nonsingular cusp by a topological argument on Dehn fillings. Hence all cusps of
C∞ are singular, and they have horospherical cross-section a turnover. This yields
the first two items of the conclusion of the theorem. The remaining case occurs
when the diameter of Cn converges to zero: then the cone manifold collapses to
a point. In this case we rescale by the diameter, so that the curvature converges to
zero. We apply again the compactness theorem and we get convergence to a compact
Euclidean cone manifold (of diameter one).

Recall that Theorem 4.2 says that, for an orientable hyperbolic manifold with a
single cusp M3 and for any slope q , we have #q ≥ 2π

3 , i.e. the cone manifold is
hyperbolic for cone angles α ∈ (0, 2π

3 ). With all the results we have reviewed, we
can sketch its proof.

Sketch of the Proof of Theorem 4.2 in the Introduction
Assume that for some slope q , #q < 2π

3 and, seeking a contradiction, consider a
sequence of angles αn < #q converging to #q . Apply Theorem 4.14; then there
are three possibilities. The first one is that the sequence converges to a compact
hyperbolic manifold with the same topological type. In this case the cone angle
can be increased by the local rigidity theorem and we get a contradiction by the
definition of #q . The second case of Theorem 4.14 is that a singular cusp opens,
with horospherical cross-section a Euclidean turnover. But a Euclidean turnover has
at least one cone angle ≥ 2π

3 . Therefore this case does not occur because#q < 2π
3 .

The third case is that the sequence of cone manifolds collapses to a Euclidean cone
manifold with cone angle #q . Since #q < 2π

3 , the Euclidean cone manifold is not
an almost product. By Theorem 4.7 the cone angle can be increased to be spherical.
Then, by Weiss’s theorem (Theorem 4.11 and its proof), or by Theorem 4.12, the
cone manifold with cone angle 2π

3 is spherical. As the cone angle is 2π
3 andM3 (the

smooth part) is hyperbolic, then the spherical orbifold is not Seifert fibered. Finally,
we look at the classification of Dunbar of spherical orbifolds that are not Seifert
fibered [19], and we reach a contradiction.
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This finishes the sketch of the proof of Theorem 4.2.

4.6 Examples

In this section we discuss a few examples of deformations of cone manifolds,
possibly with cone angles π or larger.

4.6.1 Hyperbolic Two-Bridge Knots and Links

A two-bridge knot or link is the result of gluing two tangles (a tangle is the pair
formed by a ball with two unknotted arcs), Figs. 4.9 and 4.10. Such a link is either a
torus link or hyperbolic. See [11] for details.

We next discuss the canonical tunnels. The arcs in the tangle may be joined by
a third arc, called tunnel, so that they form a letter H shape, Fig. 4.9. These arcs
are indeed tunnels: the exterior of the union of the link and any of the tunnels is
a handlebody. These tunnels are geodesic in the complete hyperbolic structure [1],
see also [2] for hyperbolic cone manifold structures singular along the tunnels. Here
we show that the tunnels play a role in the limit of spherical cone structures.

The double covering of S3 branched along a two-bridge link L is a lens space (it
is the union of two solid tori, the double covering of the balls branched along the
tangles). Hence the orbifold on S3 with ramification locus L and branching index 2
is spherical.

Fig. 4.9 Two tangles, with
the arcs and the canonical
tunnels. The union along the
boundaries yields a 2-bridge
link of one or two
components

Fig. 4.10 The figure eight
knot as a two bridge knot.
The canonical tunnels are
represented by a blue thin line
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Proposition 4.8 ([39]) Let L be a hyperbolic 2-bridge knot or link. There exists
αEuc ∈ [ 2π

3 , π) such that S3 has a cone manifold structure with singular locus L
and cone angle α (the same cone angle in both components if it is a link) of the
following type:

• hyperbolic for α ∈ (0, αEuc),
• Euclidean for α = αEuc,
• spherical for α ∈ (αEuc, 2π − αEuc).

Furthermore, when α→ 2π − αEuc the singular locus intersects itself transversely
along two points (the length of the canonical tunnels converges to zero) and the cone
manifold converges to the spherical suspension of a sphere with four cone points of
cone angle 2π − αEuc.

From Theorem 4.1 the cone manifold is hyperbolic for angles in the interval
(0, 2π

3 ). Furthermore, as it is spherical for angle α = π , it has to become
Euclidean at some angle αEuc ∈ [ 2π

3 , π), by Boileau and Porti [3, Appendix A]. By
Theorem 4.12 it is spherical for α ∈ (αEuc, π]. The spherical structures with cone
angles (π, 2π − αEuc) are constructed in [39], using the symmetry of the variety of
representations of π1(S

3 \K) in SU(2), as SU(2)× SU(2) is the universal covering
of SO(4). In [35] the explicit example of the figure-eight knot is explained.

Notice that for the figure eight knot αEuc = 2π
3 . From Dunbar’s classification or

Euclidean orbifolds [18], form any other 2-bridge knot or link αEuc >
2π
3 .

For links we may consider different cone angles on each component, Theo-
rem 4.12 applies. We describe it with one example, the Whitehead link.

Example 4.4 Consider the cone manifold structures on S3 with singular locus the
Whitehead link, and cone angles α and β (Proposition 4.8 assumes α = β),
Fig. 4.11. Cone manifold structures have been described by several authors, for
instance Shmatkov [44]. Here we follow [41].

For (α, β) ∈ [0, π)2 there exists a cone manifold structure on S3 with singular
locus the Whitehead link and angles α, and β according to Fig. 4.12.

The curve of Euclidean cone manifolds is described by

x6y2 − 2x4y4 + 2x4y2 + x2y6 + 2x2y4 − 11x2y2 + 32

− 48x2 − 48y2 + 24y4 + 24x4 − 4x6 − 4y6 = 0. (4.3)

Fig. 4.11 Cone manifold
structure on S3 with singular
locus the Whitehead link and
cone angles α and β
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Fig. 4.12 The kind of
geometric structures on the
Whitehead link according to
cone angles α and β

where x = ±2 cos(α/2) and y = ±2 cos(β/2). Here is an explanation of Eq. (4.3).
The fundamental group of a two bridge link exterior S3 − L is generated by two
elements μ1 and μ2, that are represented by meridians. The variety of SL(2,C)-
characters of π1(S

3 − L) is an affine surface in C
3, with coordinates x([ρ]) =

trace(ρ(μ1)), y([ρ]) = trace(ρ(μ2)) and z([ρ]) = trace(ρ(μ1μ2)), for every
conjugacy class (or character) of a representation ρ : π1(S

3 − L) → SL(2,C).
Then the curve (4.3) is the discriminant of the projection of the variety of characters
to the plane with coordinates (x, y), intersected with R

2.
For fixed β < π , when α→ π−:

• for β < π/2 the cone manifold collapses to a two-dimensional hyperbolic cone
manifold with boundary.

• for β = π/2 it collapses to a point (the corresponding orbifold has Nil geometry,
see [46] and [38]).

• β ∈ (π/2, π], the limit is a spherical cone 3-manifold.

This is because the double branched covering along one of the components of the
Whitehead link is again S3, and the other component lifts to a torus link. This
assertion can be extrapolated to general hyperbolic links with two bridges, but the
limits α→ π− depend on the geometry of the partial double covering.

4.6.2 Montesinos Links

Montesinos links are links L ⊂ S3 such that the double covering of S3 branched
along L is Seifert fibered, and the fibration is transverse to the branching locus.
For instance, 2-bridge links are Montesinos. The Seifert fibration of the double
covering induces an orbifold Seifert fibration of the orbifold structure on S3 with
ramification locus L and ramification index 2, see [6] or [11]. The orbifold basis
of this fibration is a 2-orbifold, with underlying space a polygon PL, mirror edges
and corner reflectors (corresponding to rational tangles). The polygonal 2-orbifold
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Fig. 4.13 Example of Montesinos knot. When α → π , the corresponding hyperbolic cone
manifold C(α) collapses to a hyperbolic quadrilateral with angles π2 , π3 , π3 and π

5

is geometric: the polygon PL can be realized in a plane of constant curvature
(the angles being π/n for a corner reflector of order 2n, hence determined by the
topology of the link). For a 2-bridge link, PL is a spherical bigon. For the link L in
Fig. 4.13, PL is a hyperbolic quadrilateral. Notice that when PL has more than three
vertices, then the 2-orbifold has a nontrivial Teichmüller space.

Proposition 4.9 Let L ⊂ S3 be a hyperbolic Montesinos link. Consider the cone
manifold C(α) with underlying space S3, branching locus L and cone angle α. Let
PL be the polygonal basis of the orbifold Seifert fibration:

• If PL is spherical, then there exists an angle αE ∈ [ 2π
3 , π) so that C(α) is

hyperbolic for α ∈ [0, αE), Euclidean for α = αE and spherical for α ∈ (αE, π].
• Otherwise C(α) is hyperbolic for α ∈ [0, π).
Furthermore, when PL is hyperbolic, as α→ π−, C(α) Hausdorff converges to the
polygon with minimal perimeter among all polygons with given angles.

In the spherical case, the discussion is the same as for two-bridge links.
Furthermore, if a collapse occurs before π then PL must be spherical.

The assertion on the hyperbolic case is proved in [40], including the minimal
perimeter of the polygon PL with given angles.

When PL is Euclidean, the orbifold has naturally a Nil or Euclidean structure. In
the Nil case, for α > π the cone manifold C(α) becomes spherical [38]. When PL
is hyperbolic, the natural way to continue the deformations is by means of anti-de
Sitter structures [15].

4.6.3 A Cusp Opening

Fix three angles α, β, γ ∈ (0, π) subject to

α + γ
2
< π, β + γ

2
< π.

By Andreev’s theorem, there exists a truncated hyperbolic tetrahedron with angles
α and β at opposite edges, and γ

4 at the remaining 4 edges. The truncation triangles
are totally geodesic and perpendicular to the sides of the tetrahedron, so that we can
view the polyhedron as a hyperbolic tetrahedron with vertices outside the hyperbolic
space (in the de Sitter sphere). See Fig. 4.14.



4 Cone 3-Manifolds 139

Fig. 4.14 The truncated
hyperbolic tetrahedron

Fig. 4.15 The cone manifold
after side pairings of the
tetrahedron in Fig. 4.14

α β
γ

To construct a cone manifold identify the faces of the tetrahedron by rotations
along the edges of angles α and β. After the identification, the four edges of angles γ4
correspond to a single equivalence class. We obtain in this way a cone manifold with
totally geodesic boundary consisting of two turnovers S2(α, α, γ ) and S2(β, β, γ ),
with underlying space S2 × [0, 1], and singular locus three arcs of cone angles α, β
and γ as in Fig. 4.15.

Notice that when 2α + γ = 2π or when 2β + γ = 2π , some of the exterior
vertices of the truncated tetrahedron in Fig. 4.14 become ideal (i.e. the truncation
triangles go to infinity, to an ideal vertex). This means that the corresponding totally
geodesic boundary component goes to infinity and the end becomes a cusp, with
horospherical cross-section a turnover.

If we furthermore assume α = β, then we may identify one boundary component
with the other by an isometry (turnovers are rigid). In this way we get a family of
closed hyperbolic cone manifolds with an embedded totally geodesic turnover when
2α+γ ≤ 2π , that develops a cusp with horospherical cross-section a turnover when
2α + γ → 2π . This example can be found in [25], see Fig. 4.16.

4.6.4 Borromean Rings

Next we are interested in cone manifold structures on S3 with singular locus the
Borromean rings. Those have been described by many authors, starting by Thurston
in his notes [47] for the Euclidean structures, and including for instance [22, 23]. To
my knowledge, the different degenerations of hyperbolic structures at angle π are
first described in Hodgson’s thesis [24], and they are also in [14] (Fig. 4.17).
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Fig. 4.16 Surgery
description of [25], due to
Hodgson. When
2α + γ < 2π the turnover is
totally geodesic, and when
2α + γ → 2π it converges to
a horospherical turnover

0
α

γ

Fig. 4.17 The Borromean
rings. They are the singular
locus of a hyperbolic cone
manifold structure on S3 with
cone angles α, β, γ ∈ [0, π)

Fig. 4.18 (A Euclidean
representation of) the
hyperbolic Lambert cube
L( α2 ,

β
2 ,
γ
2 ), with three

dihedral angles
α
2 ,
β
2 ,
γ
2 ∈ (0, π2 ), the other

dihedral angles are π/2

The building block for the hyperbolic cone manifold structures is the Lambert
cube. For α, β, γ ∈ (0, π), the hyperbolic Lambert cube L(α2 ,

β
2 ,
γ
2 ) is a hyperbolic

cube with three dihedral angles α
2 , β2 , and γ

2 , as in Fig. 4.18, and all other angles
right. By Andreev’s theorem, it exists and is unique. Its name comes from its faces,
that are Lambert quadrilaterals, Fig. 4.19. The hyperbolic Lambert cube has been
considered by several authors, see for instance [12, 17, 29].

We consider eight copies of the Lambert cube L(α2 ,
β
2 ,
γ
2 ), after duplicating

it three times, to obtain a polyhedron as in Fig. 4.20. We identify faces of this
polyhedron by side pairings along rotations as indicated in Fig. 4.20, so that we
get a hyperbolic cone structure on S3 with singular locus the Borromean rings and
cone angles α, β and γ , as explained in Thurston’s notes [47].



4 Cone 3-Manifolds 141

Fig. 4.19 A Lambert
quadrilateral with angle
θ ∈ (0, π2 ). Edges A and B
can be arbitrarily short. For a
given θ ∈ (0, π2 ) the length of
A′ and B ′ is bounded below
away from zero

Fig. 4.20 Eight copies of the
Lambert cube, after
duplicating it three times. We
identify the pentagonal faces
by rotations along the red axis
we obtain the cone manifold
B(α, β, γ ) of
Proposition 4.10

Thus we have:

Proposition 4.10 For every multiangle (α, β, γ ) ∈ [0, π)3 there exists a hyperbolic
cone structure B(α, β, γ ) on S3 with singular locus the Borromean rings and cone
angles α, β and γ .

When some of the angles are zero, we just replace the corresponding edge in
the Lambert cube by an ideal point. Notice that Andreev’s Theorem applies to the
polyhedron of Fig. 4.20, but the computations are easier for the Lambert cube.

Next we ask what happens when some angles converge to π . We do not give the
explicit formulas, we just mention that the results below on the limits of Lambert
cubes L(α2 ,

β
2 ,
γ
2 ) can be determined from the formulas in [12, 17, 29].

First assume that all angles converge to π .

Lemma 4.1 When α → π−, then the Lambert cube L(α2 ,
α
2 ,
α
2 ) converges to a

point, and after rescaling it converges to a Euclidean cube.
More precisely, if α, β, γ → π− and the ratios π−α

π−β and π−α
π−γ converge to

positive reals, thenL(α2 ,
β
2 ,
γ
2 ) converges to a point and, after rescaling it converges

to a right rectangular prism.

Corollary 4.5 When α, β, γ → π−, and if π−α
π−β and π−α

π−γ converge to positive
real numbers, then B(α, β, γ ) collapses to a point. Furthermore, after rescaling
B(α, β, γ ) converges to a Euclidean orbifold.

This Euclidean orbifold is an almost product and Theorem 4.7 does not apply.
Next assume that one of the angles remains constant.
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Fig. 4.21 A Lambert cube
collapsing to a quadrilateral,
when β/2 and γ/2 approach
π/2. Four of the Lambert
quadrilaterals on the
boundary collapse to
segments

α

2

β

2

γ

2

Fig. 4.22 A cone surface that
is the limit when β, γ → π−.
The singular components
with angles β and γ converge
to the segments in the
boundary

α

Lemma 4.2 Fix α ∈ (0, π). The Hausdorff limit of the Lambert cube L(α2 ,
β
2 ,
γ
2 )

when β, γ → π− is a, possibly degenerate, Lambert quadrilateral (a hyperbolic
quadrilateral with three right angles and a fourth angle α/2, Fig. 4.21), provided
that π−β

π−γ converges in [0,+∞].
Furthermore, any (possibly degenerate) Lambert quadrilateral of angle α

2 is

realized as a limit, depending on the limit of π−β
π−γ .

By a possibly degenerate Lambert quadrilateral we mean a triangle with an ideal
vertex and two finite vertices, of angles π2 and α

2 .
Again Lemma 4.2 is proved using the formulas for Lambert cubes and quadrilat-

erals. It is useful to have in mind the following remark, to know what edge lengths
can converge to zero:

Remark 4.9 Given θ ∈ (0, π2 ), a Lambert quadrilateral is determined by an angle
θ and the length of any of the edges, Fig. 4.19. Allowing degenerate Lambert
quadrilaterals, the length of an edge takes any value in the interval:

• [arccosh(1/sin(θ)),+∞], if the edge is adjacent to the vertex of angle θ ;
• [0,+∞], if the edge is disjoint from to the vertex of angle θ .

From Lemma 4.2, by gluing two Lambert quadrilaterals of angle α2 we have:

Corollary 4.6 For fixed α ∈ (0, π), when β, γ → π− and π−β
π−γ converges in

[0,+∞], then B(α, β, γ ) Hausdorff converges to a (possibly degenerate) hyper-
bolic cone surface with boundary and corners, a bigon with right angles and a cone
point α in the interior, Fig. 4.22 (or Fig. 4.25 for the degenerate case).

Next we fix two angles α, β ∈ (0, π) and look at the limit when γ → π−. We
describe the behavior of its six sides. It can be computed that:

• The sides that are Lambert quadrilaterals of angle γ /2 collapse to a segment.
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• The sides that are Lambert quadrilaterals of angle α/2 or β/2 converge to ideal
triangles.

In particular four of the edge lengths converge to zero, four of them converge
to infinity, and the remaining four have a non-vanishing finite limit. This can be
visualized by a “long” Lambert cube as in Fig. 4.23.

Lemma 4.3 For fixed α, β ∈ (0, π), when γ → π− the diameter of L(α2 ,
β
2 ,
γ
2 )

converges to infinity. There are choices of base points so that the pointed Hausdorff
limit is either an ideal triangle of angle α

2 , an ideal triangle of angle β
2 , or a line.

See Fig. 4.23.

Two phenomena occur simultaneously when γ → π−. On the one hand, there
is a cusp opening, whose horospherical cross section is a sphere with 4 cone points
S2(π, π, π, π) (corresponding to the middle quadrilateral in Fig. 4.23) that separates
the cone manifold in two components see Fig. 4.24. On the other hand, each one
of these pieces collapses to a hyperbolic cone surface with boundary and finite
area, Fig. 4.25. The end of this surface is the quotient of a cusp by an involution,
and corresponds to a collapse of the Euclidean cone manifold S2(π, π, π, π) to a
segment.

Corollary 4.7 For fixed α, β ∈ (0, π), when γ → π−, B(α, β, γ ) develops a cusp
with horospherical cross-section S2(π, π, π, π), that separates B(α, β, γ ) in two
pieces that collapse to cone surfaces as in Fig. 4.25.

α

2

β

2

γ

2

α

2
β

2

Fig. 4.23 A “long” Lambert cube, when γ/2 approaches π/2 (top) and the limiting ideal triangles
(bottom)
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α

ππ

Fig. 4.24 One of the components after splitting B(α, β, π) along the Euclidean cone 2-manifold
S2(π, π, π, π). It is Seifert fibered over the surface of Fig. 4.25

α

Fig. 4.25 One of the cone surfaces that appear when γ → π− (the other is obtained by replacing
α by β)

Fig. 4.26 The tetrahedron in Lemma 4.4, with the dihedral angles (when they are not right). The
length of an edge is the dihedral angle of the opposite edge, thus lα = β

2 − π
2 , lβ = α

2 − π
2 , and

lγ = π
2

4.6.5 Borromean Rings Revisited: Spherical Structures

Next we consider cone angles ≥ π . For dihedral angles between π/2 and π , the
Lambert cube is spherical, and it has been studied for instance by Díaz [17] and
Derevnin and Mednykh [16].

Proposition 4.11 ([17]) For α, β, γ ∈ (π, 2π):
• The Lambert cube L(α2 ,

β
2 ,
γ
2 ) with dihedral angles α

2 , β2 , γ2 is spherical and
rigid.

• S3 admits a unique spherical structure with singular locus the Borromean rings
and cone angles (α, β, γ ), B(α, β, γ ).

Now we look at the spherical Lambert cube when some dihedral angles approach
π/2 (hence some of the cone angles of B(α, β, γ ) converges to π).

Lemma 4.4 When γ → π+ and α, β > π remain constant, L(α2 ,
β
2 ,
γ
2 ) Hausdorff

converges to a spherical tetrahedron with right angles, except at two opposite edges,
that have angles α/2− π/2 and β/2− π/2, Fig. 4.26.
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In Lemma 4.4, the edge with dihedral angle α/2 − π/2 is the result of merging
two edges, one with dihedral angle α/2 and another one with a right angle, hence
its dihedral angle is

(

α
2 + π

2

)− π .
When two of the cone angles converge to π , we have a collapse similar to the

hyperbolic case:

Lemma 4.5 When β, γ → π+ and α > π remains constant, L(α2 ,
β
2 ,
γ
2 )

Hausdorff converges to a spherical Lambert quadrilateral of angle α2 , provided that

the ratio β−π
γ−π converges in [0,+∞].

Furthermore, any (possibly degenerate) Lambert quadrilateral of angle α
2 is

realized as a limit, according to the limit of the ratio β−π
γ−π .

Finally, the case where all cone angles converge to π− is similar to the hyperbolic
case.

Lemma 4.6 When α, β, γ → π+, and the ratios α−π
β−π and α−π

γ−π converge to

positive real numbers, then L(α2 ,
β
2 ,
γ
2 ) converges to a point. After rescaling, it

converges to a right rectangular prism.

The translation of the results on Lambert cubes to cone manifolds is the
following:

Corollary 4.8

1. When γ → π+, and α, β > π remain constant, the Hausdorff limit of B(α, β, γ )
is S3 with a singular locus as in Fig. 4.27. The singular components of angle α
and β intersect the component of angle π and are folded to a segment with cone
angle 2α − 2π and 2β − 2π respectively.

2. When β, γ → π+, α > π remains constant and the ratio β−π
γ−π converges in

[0,+∞], then B(α, β, γ ) converges to a cone surface as in Fig. 4.22, possibly
degenerate (if the cone point goes to the boundary).

3. When α, β, γ → π+, and the ratios β−π
γ−π and α−π

γ−π converge in (0,+∞), then
B(α, β, γ ) Hausdorff converges to a point, and after rescaling it converges to a
Euclidean orbifold.

Fig. 4.27 Singular locus of
the limit of B(α, β, γ ) when
γ → π+



146 J. Porti

Fig. 4.28 The Hausdorff limit of the spherical Lambert cube when some of the dihedral angles
converge to π

We can also consider limits when the cone angles α, β or γ approach 2π ;
the Hausdorff limits of the spherical Lambert cube L(α2 ,

β
2 ,
γ
2 ) are described in

Fig. 4.28.
We describe the limits of the cone manifold in the following remark.

Remark 4.10 When α → 2π−, β → β0 ∈ (π, 2π], and γ → γ0 ∈ (π, 2π],
B(α, β, γ ) Hausdorff converges to the spherical suspension over a cone surface S.
The first singular geodesic converges to a geodesic in S, and, at the limit, the other
singular components intersect at the tips of the suspension.

Notice that we allow the limit β0 or γ0 to equal 2π . The suspension structure of
the remark is obtained from doubling the cones of the Lambert cubes in Fig. 4.28.
Hence the Hausdorff limit of B(α, β, γ ) has a suspension structure for each cone
angle that becomes 2π .
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Chapter 5
A Survey of the Thurston Norm

Takahiro Kitayama

Abstract We present an overview of the study of the Thurston norm, introduced
by W. P. Thurston in the seminal paper “A norm for the homology of 3-manifolds”
(written in 1976 and published in 1986). We first review fundamental properties
of the Thurston norm of a 3-manifold, including a construction of codimension-1
taut foliations from norm-minimizing embedded surfaces, established by D. Gabai.
In the main part we describe relationships between the Thurston norm and other
topological invariants of a 3-manifold: the Alexander polynomial and its various
generalizations, Reidemeister torsion, the Seiberg–Witten invariant, Heegaard Floer
homology, the complexity of triangulations and the profinite completion of the
fundamental group. Some conjectures and questions on related topics are also
collected.
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measures the topological complexity of embedded surfaces dual to a given integral
cohomology class. The unit ball of the seminorm constitutes a convex polyhedron
and Thurston described the distribution of the cohomology classes represented by
fibrations over a circle in terms of the top-dimensional faces of the polyhedron.
Thurston also showed that every compact leaf of a codimension-1 taut foliation
minimizes the Thurston norm. The Thurston norm has become a fundamental tool
in the study of incompressible surfaces, fibrations over a circle and codimension-1
foliations.

The roots of the Thurston norm go back to the study of the genus of a knot in the
3-sphere, and it has been extensively studied in various contexts up to the present.
The goal of this chapter is to present an overview of the study of the Thurston
norm, with an emphasis on its relationships with other topological invariants, and
without aiming for completeness. We summarize some of the results discussed in
this chapter in the following.

Inspired by the foundational work [202] of Thurston, Gabai [74] developed
sutured manifold theory, extended by Scharlemann [193], and established a con-
struction of codimension-1 taut foliations from embedded surfaces minimizing
the Thurston norm. As consequences Gabai resolved the Property R conjecture
and the Poénaru conjecture, and showed the equivalence of the Thurston norm
and the Gromov norm [83] on the second homology group. Sutured manifold
theory provides an efficient algorithm to compute the Thurston norm. Tollefson and
Wang [203, 204], and later Cooper and Tillmann [32] described another algorithm
via normal surface theory.

One of the most fundamental algebraic invariants related to the Thurston norm
is the Alexander polynomial, equivalent to Milnor torsion [149, 205, 211]. It is well
known that the classical Alexander polynomial of a knot in the 3-sphere gives a
lower bound on its genus. As a generalization, McMullen [147] introduced the
Alexander norm for a general 3-manifold, and showed that it gives a lower bound
on the Thurston norm. Also, gauge theory has been a successful tool to study
the complexity of embedded surfaces in 3- and 4-manifolds. In the adjunction
inequality for a 3-manifold the Seiberg–Witten invariant [216] gives a lower bound
on the Thurston norm [6, 114]. By the equivalence of Milnor torsion and the
Seiberg–Witten invariant of a 3-manifold [148, 208], the above two lower bounds
coincide [114, 214]. Furthermore, Kronheimer and Mrowka [119] described the
Thurston norm in terms of solutions of the Seiberg–Witten monopole equations.

These relationships were generalized in Heegaard Floer homology [177, 180]
and monopole Floer homology [120], which provide categorifications of the Milnor
torsion and the Seiberg–Witten invariant of a 3-manifold. These homology theories
were also shown to be equivalent [28–30, 125–128]. Ozsváth and Szabó [177]
showed that Heegaard Floer homology determines the Thurston norm of a closed 3-
manifold, and Ni [165] showed that Heegaard Floer homology detects fiberedness of
a closed 3-manifold. Knot Floer homology [178, 189] provides a categorification of
the classcal Alexander polynomial of a knot. Ozsváth and Szabó [177] showed that
knot Floer homology determines the genus of a knot, and Ghiggini [79], Ni [163],
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and Juhász [102, 103] showed that knot Floer homology detects fiberedness of a
knot.

Twisted Alexander polynomials [132, 215] associated with linear represen-
tations, and higher-order Alexander polynomials [27, 85] with coefficients in
skew-fields are more direct generalizations of the Alexander polynomial. These
polynomials give generalized lower bounds on the Thurston norm [48, 54, 87].
Furthermore, Friedl and Vidussi [64, 65, 67, 69] showed that twisted Alexander
polynomials detect fiberedness of a 3-manifold, and Friedl, Nagel and Vidussi [60,
71] showed that twisted Alexander polynomials determine the Thurston norm. The
L2-Alexander invariant or torsion [38, 131] are “polynomial-like” L2-invariants,
generalizing the L2-torsion [140]. Friedl and Lück [58], and Liu [137] showed that
the L2-Alexander torsion determines the Thurston norm.

Boileau and Friedl [13], Bridson, Reid and Wilton [16, 17], and Liu [138]
showed certain rigidity results of the Thurston norm and fiberedness of a 3-manifold
on the profinite completion of the fundamental group. Also, Jaco, Rubinstein,
Spreer and Tillmann [97, 98, 100] introduced a Z/2Z-analogue of the Thurston
norm and showed that it gives lower bounds on minimal numbers of tetrahedra in
triangulations and ideal triangulations of a 3-manifold.

The influence of the Thurston norm is not limited to low-dimensional topology,
and the following significant topics are, for example, unfortunately beyond the scope
of this article. The universal L2-torsion defines an equivalence class of a pair of
convex polytopes for a torsion-free group satisfying certain conditions. Such an
equivalence class can be regarded as the unit ball of the (dual) Thurston norm,
and as already shown in [56, 57, 59, 61, 63, 73, 78, 89, 90, 107], there should be a
fruitful theory for the “Thurston norm of groups”. Calegari [19–23] studied a group-
theoretical interpretation of the Thurston norm in terms of the stable commutative
length. Also, Flores, Kahrobaei and Koberda [45] proposed a public-key and a
symmetric-key cryptographic schemes based on the Thurston norm of hyperbolic
3-manifolds.

For foundational results on the Thurston norm there are already excellent
expositions in [77, 168, 193], and also in [24, Chapter 10] and [105, Chapter 2].
See also the survey [192, Section 12] of the impact of Thurston’s work on knot
theory in the first volume of this series of books. For terminology and developments
of the study of 3-manifolds we refer the reader to the book [5].

Throughout we do not attempt to state results in their greatest generality, and we
do not make any claims to originality.

Organization

Section 5.2 provides a brief review of the definition and fundamental properties
of the Thurston norm, including the correspondence between embedded surfaces
minimizing the Thurston norm and codimension-1 taut foliations. Section 5.3
describes the relationships between the norms on the first cohomology group
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associated with the Alexander and Teichmüller polynomials and the Thurston norm.
Section 5.4 discusses adjunction inequalities from Seiberg–Witten theory for 3-
and 4-manifolds. Section 5.5 summarizes the facts that Heegaard Floer homology
and knot Floer homology detect the Thurston norm, knot genus and fiberedness of
a 3-manifold and a knot. Section 5.6 deals with twisted Alexander polynomials,
higher-order Alexander polynomials and L2-Alexander torsion. Here results on the
Thurston norm are described in terms of Reidemeister torsion. Section 5.7 contains
constructions of the Thurston norm ball via normal surface theory and applications
of a Z/2Z-analogue of the Thurston norm to the study of complexity of a 3-
manifold. Section 5.8 is devoted to explain certain rigidity results of the Thurston
norm on the profinite completion of the fundamental group. In Sect. 5.9 we conclude
by collecting some conjectures and questions on the Thurston norm and related
topics.

Conventions and Notation

All surfaces and manifolds are understood to be compact, connected and oriented
unless we say specifically otherwise. For a link L in S3 we denote by XL the
complement of an open tubular neighborhood of L. For an integral domain R we
denote byQ(R) its quotient field.

5.2 Foundations of the Thurston Norm

First we briefly review the definition of the Thurston norm of a 3-manifold and
its fundamental properties. We summarize original results by Thurston [202] and
Gabai [74, 76] on the polyhedron structure of the unit ball of the Thurston norm,
the distribution of cohomology classes represented by fibrations over a circle, the
correspondence between embedded surfaces minimizing the Thurston norm and
codimension-1 taut foliations, and the equivalence of the Thurston and Gromov
norms.

5.2.1 Thurston Norm

We begin with the definition of the Thurston norm of a 3-manifoldM [202].
For a surface S with connected components S1, S2, . . . , Sk its complexity χ−(S)

is defined by
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χ−(S) =
k
∑

i=1

max{−χ(Si), 0},

where χ is the Euler characteristic. Every cohomology class in H 1(M;Z) is
represented by a smooth mapM → S1 and the properly embedded surface obtained
as the inverse image of any regular value represents the Poincaré dual of the
cohomology class. The Thurston norm xM on H 1(M;Z) ofM is defined by

xM(φ) = min{χ−(S) ; S is a properly embedded surface inM dual to φ}

for φ ∈ H 1(M;Z).
In [202] Thurston first showed that xM is a seminorm on H 1(M;Z). Key

observations are that the k-multiple of a homology class is represented by |k|
disjoint properly embedded surfaces representing the homology class, and that
the “double curved sum” of two properly embedded surfaces with transverse
intersection represents the sum of their homology classes. Since xM is linear on
each ray through the origin, it extends to H 1(M;Q). Since xM is a convex function,
it extends to all ofH 1(M;R) in a unique continuous way. We denote also by xM the
extended seminorm on H 1(M;R). Moreover, for φ ∈ H 1(M;R) with xM(φ) = 0
the ray through φ comes arbitrarily near lattice points, and if nonzero multiple aφ
is near enough to a lattice point l, then the integer xM(l) = xM(l − aφ) must be
0. Thus φ can be approximated by multiples of lattice points l with xM(l) = 0.
Summarizing, we state the following theorem [202, Theorem 1]:

Theorem 5.2.1 ([202]) The Thurston norm xM uniquely extends toH 1(M;R) as a
seminorm:

1. xM(aφ) = |a|xM(φ),
2. xM(φ + ψ) ≤ xM(φ)+ xM(ψ),
for φ, ψ ∈ H 1(M;R) and a ∈ R. Moreover, x−1

M ({0}) is spanned by integral
cohomology classes dual to properly embedded surfaces in M with non-negative
Euler characteristic. ��
Remark 5.2.2 More generally, the seminorm can be defined on H2(M,A;R) for
any submanifold A in ∂M , as Scharlemann described in [193]. ��

In general, xM is only a seminorm, but Theorem 5.2.1, in particular, shows that
xM is nondegenerate for a hyperbolic 3-manifold, i.e., a 3-manifold whose interior
admits a complete Riemannian metric of constant sectional curvature−1 and finite
volume.

A properly embedded surface S is called norm-minimizing if χ−(S) = xM(φ) for
its dual φ ∈ H 1(M;Z). Every connected norm-minimizing surface S with negative
Euler characteristic is incompressible since any compression of such a surface S
along a simple closed curve not bounding any disc in S would reduce χ−(S).
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Example 5.2.3 The Thurston norm is a generalization of the knot genus: The genus
g(K) of a knot K in S3 is the minimum genus of Seifert surfaces of K . Every
norm-minimizing surface in the complement XK of K dual to a generator ψ ∈
H 1(XK ;Z) corresponds to a minimal genus Seifert surface of K , and we have

xXK (φ) = 2g(K)− 1

for a nontrivial knotK . ��
Example 5.2.4 Let M be a 3-manifold fibering over a circle with a fiber surface S.
Then every incompressible surface in M representing the same homology class in
H2(M, ∂M;Z) as S is isotopic to S.

We give a sketch of the proof as in [42, Lemma 5.1]. First such an incompressible
surface S′ in M lifts homeomorphically to an incompressible surface S

′
in the

infinite cyclic covering S × R of M corresponding with the fibration. Then the
inclusion-induced homomorphismπ1S

′ → π1(S×R) is an isomorphism. If it would
be not surjective, then an argument with van Kampen’s theorem would imply that
π1(S × R) is not finitely generated. We thus see that S′ is isotopic to S.

An immediate consequence is that S is norm-minimizing. We will see a more
general result in Theorem 5.2.14 for codimension-1 foliations onM . ��

5.2.2 Norm Balls and Fibrations Over a Circle

We next discuss the structure of the unit ball of the Thurston norm and the
distribution of the cohomology classes represented by fibrations over a circle.

The Thurston norm ball of a 3-manifold M , denoted by BM , is the unit ball of
xM :

BM = {φ ∈ H 1(M;R) ; xM(φ) ≤ 1}.

A seminorm determines its unit ball and vice versa. We set

Ann(x−1
M ({0})) = {α ∈ H1(M;R) ; 〈φ, α〉 = 0 for all φ ∈ x−1

M ({0})},

where 〈·, ·〉 is the Kronecker pairing. Note that if xM is nondegenerate, then
Ann(x−1

M ({0})) = H1(M;R). The dual Thurston norm x∗M on Ann(x−1
M ({0})) is

defined by

x∗M(α) = sup{〈φ, α〉 ; φ ∈ BM }
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for α ∈ Ann(x−1
M ({0})). Theorem 5.2.1 implies that x∗M is a norm on Ann(x−1

M ({0})).
The dual Thurston norm ball ofM , denoted by B∗M , is the unit ball of x∗M :

B∗M = {α ∈ Ann(x−1
M ({0}) ; x∗M(α) ≤ 1}

= {α ∈ Ann(x−1
M ({0}) ; 〈φ, α〉 ≤ 1 for all φ ∈ BM }.

The unit ball of a seminorm, a priori, may be an arbitrary convex body symmetric
in origin, but Thurston [202, Theorem 2] showed that the structure of BM is more
restrictive.

Theorem 5.2.5 ([202]) The dual Thurston norm ball B∗M of a 3-manifold M is
a convex polytope in H1(M;R) with finitely many vertices ±α1, . . . , ±αk ∈
Ann(x−1

M ({0})) ∩H1(M;Z), and we have

BM = {φ ∈ H 1(M;R) ; |〈φ, αi 〉| ≤ 1 for 1 ≤ i ≤ k}.

Theorem 5.2.5 is a formal consequence of the fact that xM is Z-valued on the
integral lattice H 1(M;Z).
Corollary 5.2.6 ([202]) The Thurston norm ball BM of a 3-manifold M is a
(possibly noncompact) convex polyhedron in H 1(M;R) with finitely many vertices
in H 1(M;Q). ��
Remark 5.2.7 In this chapter a convex polyhedron in a real affine linear space
refers to a closed convex subset such that every point on the boundary lies in only
finitely many maximal convex subsets of the boundary. A convex polytope refers to
a compact convex polyhedron. ��

A cohomology class φ ∈ H 1(M;Z) is called fibered if M fibers over a circle
such that the fibers are dual to φ. Since integration of a nonsingular closed 1-form
onM with integer periods defines a fibration over a circle, φ ∈ H 1(M;Z) is fibered
if and only if φ is represented by a nonsingular closed 1-form onM .

An observation is that since every nonsingular closed 1-form on M remains
nonsingular after sufficiently small perturbation, the subset of cohomology classes
of nonsingular closed 1-forms is open in H 1(M;R). Also, a nonsingular closed
1-form on M defines a codimension-1 foliation on M , which we will discuss in
Sect. 5.2.3. Based on the study of general position of incompressible surfaces with
respect to codimension-1 foliations [202, Theorem 4], Thurston [202, Theorem 5]
described the distribution of fibered classes in terms of BM as follows:

Theorem 5.2.8 ([202]) Let M be a 3-manifold fibering over a circle with fiber of
negative Euler characteristic. There are some top-dimensional faces of BM such
that φ ∈ H 1(M;Z) is fibered if and only if φ lies in the interior of the cone on one
of the faces. ��
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Remark 5.2.9 For a 3-manifold M fibering over a circle with fiber of nonnegative
Euler characteristic, xM vanishes on H 1(M;R). ��

Such top-dimensional faces of BM as in Theorem 5.2.8 are called fibered faces
of BM .

A 3-manifoldM is atoroidal ifM contains no incompressible torus.

Corollary 5.2.10 ([202]) LetM be an atoroidal 3-manifold with b1(M) > 1. Then
there exists an incompressible surface which is not the fiber of a fibration over a
circle. ��
Remark 5.2.11 In the proof of Thurston’s hyperbolization theorem [105, 170, 171]
Corollary 5.2.10 played a significant role to reduce the exceptional (semi)fibered
case to the generic case. ��

For a 3-manifold M with b1(M) = 1 its norm balls BM and B∗M are closed
intervals centered at origins, possibly consisting only of origins. The following
examples together with one for the complement of the 3-link chain in S3 are given
in [202, Examples 1, 2, 3]. See also [202, Section 4] for a large variety of shapes for
(dual) Thurston norm balls.

Example 5.2.12 Let L be the Whitehead link. Let μ1, μ2 ∈ H1(XL;R) be a basis
represented by meridians of the two components of L, and μ∗1, μ∗2 ∈ H 1(XL;R) its
dual basis. Then BXL is the diamond with vertices±μ∗1,±μ∗2 and B∗XL is the square
with vertices ±μ1 ± μ2. All the 2-dimensional faces of BXL are fibered faces. ��
Example 5.2.13 Let L be the Borromean rings. Let μ1, μ2, μ3 ∈ H1(XL;R) be
a basis represented by meridians of the three components of L, and μ∗1, μ∗2, μ∗3 ∈
H 1(XL;R) its dual basis. Then BXL is the octahedron with vertices ±μ∗1, ±μ∗2,
±μ∗3 and B∗XL is the cube with vertices±μ1±μ2±μ3. All the 3-dimensional faces
of BXL are fibered faces. ��

5.2.3 Norm-Minimizing Surfaces and Codimension-1
Foliations

Here we describe the correspondence between norm-minimizing surfaces and
certain codimension-1 foliations.

A codimension-1 foliation F on a 3-manifold M is a decomposition of M into
possibly noncompact immersed 2-dimensional submanifolds called leaves such that
M is covered by a collection of charts of the form R

2 × R where the leaves pass
through a given chart in slices of the form R

2 × {z} for z ∈ R. A codimension-1
foliation F onM is transversely oriented if some vector field onM transverse to the
leaves of F is fixed.

A Reeb component is the foliation on the solid torus D2 × S1 described as
follows: Consider the decomposition R

2 × [0,∞) into planes R
2 × {z} for z ∈

[0,∞) and the action (x, y, z) → 2(x, y, z) on R
2 × [0,∞) by Z. The quotient
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(R2 × [0,∞) \ {(0, 0, 0)})/Z is a solid torus, and the induced foliation on it is a
Reeb foliation.

As a generalization of the fact that every fiber of a fibration over a circle is
norm-minimizing, Thurston [202, Corollary 2] proved the following theorem. A
3-manifold is irreducible if every embedded 2-sphere in M bounds an embedded
3-ball inM .

Theorem 5.2.14 ([202]) LetM be an irreducible 3-manifold with empty or toroidal
boundary and F a codimension-1 transversely oriented foliation on M such that F
has no Reeb components, and each component of ∂M is either transverse to F or is
a leaf of F. Then every compact leaf of F is norm-minimizing. ��

For such a codimension-1 foliation F as in Theorem 5.2.14 we can consider the
Euler class of the bundle of planes tangent to the leaves. The key ingredient of the
proof is that the dual Thurston norm of the Poincaré dual of the Euler class is less
than or equal to 1.

A codimension-1 transversely oriented foliation F on M is taut if there exists a
closed curve inM transversally intersecting each leaf of F. Every taut foliation has
no Reeb components [81]. Let F be a codimension-1 foliation onM . We say that a
leaf L of F is of depth 0 if L is compact. Having defined depth j ≤ k leaves we say
that L is of depth k + 1 if L \L is a union of depth j ≤ k leaves and contains a leaf
of depth k. We say that F is of finite depth if there exists an integer k such that the
depth of every leaf of F is defined to be less than k.

Developing the theory of sutured manifolds, Gabai [74, Theorem 5.5] proved the
following theorem, which can be seen as the converse of Theorem 5.2.14:

Theorem 5.2.15 ([74]) LetM be an irreducible 3-manifold with empty or toroidal
boundary and S a norm-minimizing surface in M representing a nontrivial class
in H2(M, ∂M;Z). Then there exists a codimension-1 transversely oriented taut
foliation F on M of finite depth such that F is transverse to ∂M , S is a leaf of
F and F|∂M is a suspension of homeomorphisms of S1. ��

Gabai’s construction of such a foliation as in Theorem 5.2.15 used a so-
called sutured manifold hierarchy [74, 193]: A sutured manifold (M, γ ) is a
3-manifold M equipped with a decomposition of ∂M into two subsurfaces R±
meeting along a possibly empty system γ of simple closed curves such that
R− and R− are transversely oriented inwards and outwards respectively. Under
the assumptions in Theorem 5.2.15 there exists a sequence of sutured manifolds
(M0, γ0), . . . , (Mn, γn), where (M0, γ0) is obtained by decomposing M along S,
(Mi, γi) is obtained by decomposingMi−1 along certain type of properly embedded
surface, and (Mn, γn) is a collection of 3-balls with single simple closed curves. A
codimension-1 transversely oriented taut foliation on M is constructed inductively
on the hierarchy.

Together with Theorem 5.2.14, the construction provides an effective algorithm
to compute the Thurston norm. Applying the techniques to knots and links,
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Gabai [75] gave tables of the genera of knots with 10 or fewer crossings and links
with 9 or fewer crossings.

Remark 5.2.16 Based on the idea, Lackenby [130] showed that it is in NP to
determine the Thurston norm of a given first cohomology class. Computations of
the Thurston norm were described by Oertel [168] in terms of branched surfaces,
and by Mosher [154–156] in terms of pseudo-Anosov flows. We will see another
algorithm via normal surface theory in Sect. 5.7.1. ��

As a corollary of Theorems 5.2.14, 5.2.15, Gabai [74, Corollary 6.13] proved the
following, which has been conjectured by Thurston [202].

Corollary 5.2.17 Let p : ˜M → M be an n-fold covering. Then

x
˜M(p

∗(φ)) = nxM(φ)

for φ ∈ H 1(M;R). ��
It is worth pointing out here that for a finite covering p : ˜M → M , φ ∈

H 1(M;Z) is fibered if and only if p∗(φ) is fibered, which is an immediate
consequence of Stallings’ fibration theorem.

In [76, Theorem 2] Gabai showed the following stronger result than Theo-
rem 5.2.15 in the case of knots in S3:

Theorem 5.2.18 ([76]) LetK be a knot in S3 and S a minimal genus Seifert surface
of K . Then there exits a codimension-1 taut foliation F onK(0) of finite depth such
that the capped off surface S is a leaf of F. ��

As a corollary Gabai [76, Corollary 5] proved the following:

Corollary 5.2.19 ([76]) For a knot K in S3, K(0) is prime and the genus g(K) is
equal to the minimal genus of an embedded nonseparating surface in K(0). ��

The Property R conjecture asserts that if K(0) is homeomorphic to S2 × S1,
thenK is the unknot. The Poénaru conjecture is stronger and asserts that if K(0) is
reducible, then K is the unknot. Corollary 5.2.19 gave the positive proofs of these
conjectures.

Remark 5.2.20 Let M be an irreducible 3-manifold with toroidal boundary, not
being a cable space and not homeomorphic to T 2 × [0, 1]. Generalizing a result
of Sela [194], Baker and Taylor [7] showed that for all but finitely many slopes of
∂M , the Thurston norm of M equals that of the result of the Dehn filling along a
slope plus the so-called winding norm. ��

Another corollary [76, Corollary 6] of Theorem 5.2.18 is the following:

Corollary 5.2.21 ([76]) A knot K in S3 is fibered if and only if K(0) is fibered. ��
Scharlemann [193] realized that much of Gabai’s theory could work only in terms

of sutured manifolds without any reference to foliations. See also [25] for results on
a generalization of the Thurston norm for sutured manifolds.
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5.2.4 Singular and Gromov Norms

Using Theorem 5.2.15, Gabai [74, Corollary 6.18] showed the equivalence of the
Thurston norm, its singular one and the Gromov norm of a 3-manifoldM .

The singular Thurston norm xM,s on H 1(M;Z) is defined by

xM,s(φ) = min

{

1

n
χ−(S) ; f : (S, ∂S)→ (M, ∂M) is a proper map from

a surface S such that f∗([S, ∂S]) is dual to nφ} ,

for φ ∈ H 1(M;Z). It is straightforward to see that xM,s uniquely extends to
H 1(M;R) as a seminorm.

For a singular k-chain
∑

i aiσi ∈ Ck(M, ∂M;R) its norm is defined to be the
sum

∑

i |ai | of its absolute values of the coefficients. The Gromov norm or l1-
seminorm ||c||1 of c ∈ Hk(M, ∂M;R) is the induced seminorm [83]:

||c||1 = inf

{

∑

i

|ai | ;
∑

i

aiσi is a singular 2-cycle representing c

}

.

We also denote by || · ||1 the seminorm on H ∗(M;R) induced by Poincaré duality.
The first equality in the following theorem has been conjectured by

Thurston [202]. See also [186] for a combinatorial proof.

Theorem 5.2.22 ([74]) The following equality holds on H 1(M;R):

xM = xM,s = 1

2
|| · ||1.

As a special case, Gabai [74, Corollary 6.23] proved the following generalization
of Dehn’s lemma for higher genus surfaces.

Corollary 5.2.23 ([74]) Let f : S → M be a map from a surface with connected
boundary such that f |∂S is an embedding and f−1(f (∂S)) = ∂S. Then there exists
an embedded surface S′ in M such that ∂S′ = ∂S and the genus of S′ is less than
or equal to that of S. ��

In particular, Corollary 5.2.23 shows equality of the embedded and immersed
genera of knots [74, Corollary 6.22]:

Corollary 5.2.24 ([74]) The genus g(K) of a knot K in S3 is equal to the minimal
genus of immersed surfaces S in S3 boundingK which are nonsingular alongK .��
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5.3 Alexander and Teichmüller Polynomials

We describe the lower bound on the Thurston norm by the Alexander polynomial,
following McMullen [147]. This lower bound is then restated in terms of abelian
Reidemeister torsion. We also discuss the Teichmüller polynomial associated with
a fibered face of the Thurston norm ball, introduced by McMullen [146].

5.3.1 Alexander Polynomial

It is well known that the classical Alexander polynomial �K(t) ∈ Z[t, t−1] of a
knotK in S3 gives a lower bound on the genus g(K):

2g(K) ≥ deg�K(t),

where equality holds if K is a fibered knot. Following McMullen [147], we
describe a generalization of this inequality on the Thurston norm and the Alexander
polynomial of a general 3-manifold.

LetM be a 3-manifold with empty or toroidal boundary. We denote by H1(M)f
the free abelian group obtained by dividing H1(M;Z) by the torsion submodule.
We denote by M the maximal free abelian cover of M , which is the cover of M
associated with the canonical projection π1M → H1(M)f . Since H1(M)f acts on
M by deck transformations,H1(M;Z) is a finitely generated module over the group
ringZ[H1(M)f ]. The Alexander polynomial�M ∈ Z[H1(M)f ] ofM is the order of
H1(M;Z) over Z[H1(M)f ], which is well-defined up to multiplication by elements
of ±H1(M)f : In general, for a finitely generated module L over a noetherian UFD
R and an exact sequence

Rl
r−→ Rm → L→ 0

with l ≥ m, the order of L is the greatest common divisor of the m-minors of a
representation matrix r , and is well-defined up to multiplication by units in R.

Example 5.3.1 For a knot K in S3, �XK coincides with the classical Alexander
polynomial �K(t) ∈ Z[t, t−1] under the identification of H1(XK ;Z) with the
infinite cyclic group generated by t . ��

McMullen [147, Theorem 1.1] introduced the Alexander norm || · ||A on
H 1(M;R) and showed an inequality between the Thurston and Alexander norms
as follows: We write�M =∑

h∈H1(M)f
ahh for ah ∈ Z. If�M = 0, then we define

|| · ||A = 0. Otherwise, we define

||φ||A = max{〈φ, h− h′〉 ; h, h′ ∈ H1(M)f such that ahah′ �= 0}

for φ ∈ H 1(M;R). It is clear that || · ||A is a seminorm on H 1(M;R).
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Theorem 5.3.2 ([147]) Let M be a 3-manifold with empty or toroidal boundary.
Then

xM(φ) ≥ ||φ||A −
{

1+ b3(M) if H 1(M;Z) is generated by φ,

0 if b1(M) > 1,

for φ ∈ H 1(M;Z). Furthermore, equality holds if φ is fibered with M �= S1 × S2

andM �= S1 ×D2. ��
Remark 5.3.3 As Dunfield [39] showed, there are examples of 3-manifolds M
fibering over a circle with b1(M) > 1 such that xM and || · ||A do not agree. ��

It is known that 2g(K) = deg�K(t) for all knots up to 10 crossings or less (see
for example [75]). McMullen [147, Theorem 7.1] showed that the Thurston and
Alexander norms agree for all the tabulated links with 9 or fewer crossings in [191]
except 93

21, and possibly 92
41, 92

50 and 93
15.

5.3.2 Abelian Torsion

We discuss a corresponding result to Theorem 5.3.2 in terms of abelian Reidemeister
torsion. We will see the precise definition of Reidemeister torsion in Sect. 5.6.1.

Let M be a 3-manifold with empty or toroidal boundary with a CW-complex
structure. We denote by Q(H1(M)f ) the quotient field of Z[H1(M)f ]. The abelian
torsion or Milnor torsion τ (M) ∈ Q(H1(M)f ) of M is the Reidemeister torsion
associated with the canonical projection π1M → H1(M)f , which is the algebraic
torsion of the twisted chain complex C∗(M) ⊗Z[H1(M)f ] Q(H1(M)f ) of the CW-

complexM . The topological invariant τ (M) is well-defined up to multiplication by
elements of ±H1(M)f , and is known to be symmetric, i.e., τ (M) is invariant up
to multiplication by elements of ±H1(M)f under the involution on Q(H1(M)f )

reversing the elements of H1(M)f .

Example 5.3.4 For a knot K in S3,

τ (XK) = �K(t)

t − 1

under the identification ofH1(XK ;Z)with the infinite cyclic group generated by t .��
Turaev [205, 211] showed that τ (M) determines the Alexander polynomial�M ,

and vise versa:
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Theorem 5.3.5 ([205, 211]) Let M be a 3-manifold with empty or toroidal bound-
ary. If H1(M)f is an infinite cyclic group generated by t , then

τ (M) =
{

�M
(t−1)2

if ∂M = ∅,
�M
t−1 if ∂M �= ∅.

If b1(M) > 1, then

τ (M) = �M.

A cohomology class φ ∈ H 1(M;Z) induces a ring homomorphism
Z[H1(M)f ] → Z[t, t−1] by sending h ∈ H1(M)f to t〈φ,h〉. We define
τφ(M) ∈ Q(t) to be the reduction of τ (M) by the induced homomorphism, which
is the algebraic torsion of C∗(M)⊗Z[H1(M)f ] Q(t).

Theorem 5.3.2 is restated in terms of τφ as follows. We define

deg
(

alt
l + al+1t

l+1 + · · · + amtm
)

= m− l

for l, m ∈ Z with l < m and ai ∈ Z with alam �= 0, and further define

deg
p(t)

q(t)
= degp(t)− deg q(t)

for p(t), q(t) ∈ Z[t, t−1] \ {0}.
Theorem 5.3.6 LetM be a 3-manifold with empty or toroidal boundary. Then

xM(φ) ≥ deg τφ(M)

for φ ∈ H 1(M;Z). Furthermore, equality holds if φ is fibered with M �= S1 × S2

andM �= S1 ×D2. ��
It is well known that�K(t) is monic for a fibered knotK in S3. More generally,

τφ(M) is represented by a monic polynomial divided by (t−1)1+b3(M) for a fibered
class φ ∈ H 1(M;Z). We will discuss more the property in Remark 5.6.5.

In analogy with the Thurston norm, Turaev [210, 212] introduced a seminorm
on H 1(X;R) for a finite 2-dimensional complex X, and numerical functions on
H2(M;Q/Z) and on the torsion subgroup ofH1(M;Z) for a 3-manifoldM . Turaev
showed that the Alexander polynomial and abelian Reidemeister torsion give lower
bounds also on these functions. See [62, 166] for further studies of such analogues
of the Thurston norm.
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5.3.3 Teichmüller Polynomial

Here we give a brief exposition of the Teichmüller polynomial introduced by
McMullen [146].

A (codimension-1) lamination L on a 3-manifoldM is a codimension-1 foliation
on a closed subset ofM . A lamination L onM is transversely orientable if there is
a nonsingular vector field on a neighborhood of the underlying closed subset of L
inM transverse to the leaves. A geodesic lamination λ on a hyperbolic surface S is
a decomposition of a closed subset of S into simple geodesics.

Let M be a hyperbolic 3-manifold having a fibered face F of BM . Let φ ∈
H 1(M;Z) be a fibered class in the cone on F , and ψ : S → S a pseudo-Anosov
monodromy of a fibration representing φ. Then ψ has an expanding invariant
geodesic lamination λ on S. Let L be the lamination onM obtained as the mapping
torus ofψ|λ. Based on results by Fried [46], McMullen [146, Corollary 3.2] showed
that the isotopy class of L depends only on F .

We denote by L the preimage of L by the maximal free abelian coveringM →
M . A transeversal for L is a compact totally disconnected subset of L such that
there is an open neighborhood U of T with a homeomorphism (U, T ) → (T ×
R

2, T ×{0}). Note that the free abelian groupH1(M)f acts on the set of transversals
for L. We define T (L) to be the abelian group generated by all transversals [T ] for
L modulo the following relations:

1. [T ] = [T ′] + [T ′′], if T is a disjoint union of T ′ and T ′′,
2. [T ] = [T ′], if there is an open neighborhoodU of T ∪T ′ with homeomorphisms
(U, T )→ (T × R

2, T × {0}), (U, T ′)→ (T ′ ×R
2, T ′ × {0}).

A consequence of the compactness of L is that T (L) is a finitely generated
Z[H1(M)f ]-module.

Now the Teichmüller polynomial #F ∈ Z[H1(M)f ] of F is defined to be the
order of T (L) over Z[H1(M)f ], which is well-defined up to multiplication by
elements of ±H1(M)f . McMullen showed that#F is monic and symmetric.

McMullen [146, Theorem 6.1] introduced the Teichmüller norm || · ||#F on
H 1(M;R) and showed its relation with the Thurston norm as follows: We write
#F =∑

h∈H1(M)f
ahh for ah ∈ Z and define

||φ||#F = max{〈φ, h − h′〉 ; h, h′ ∈ H1(M)f such that ahah′ �= 0}

for φ ∈ H 1(M;R). It is clear that || · ||#F is a seminorm on H 1(M;R).
Theorem 5.3.7 ([146]) Let F be a fibered face of BM of a hyperbolic 3-manifold
M . Then there exists a face D of the unit ball of || · ||#F such that the cones on F
andD coincides. ��

Together with a computational formula of #F in terms of train tracks on
fibers [146, Theorem 3.6], Theorem 5.3.7 provides an effective algorithm to
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determine a fibered face of BM for a hyperbolic 3-manifold M from a single fiber
and the monodromy on it.

Using Theorem 5.3.2, McMullen [146, Theorem 7.1] proved the following
theorem:

Theorem 5.3.8 ([146]) Let F be a fibered face of BM of a hyperbolic 3-manifold
M with b1(M) > 1. Then there exists a unique face A of the unit ball of the
Alexander norm containing F . Furthermore, if the lamination L associated with
F is transversely orientable, then F = A and �M divides#F . ��

McMullen [146] also showed that for a fibered class φ ∈ H 1(M;Z) lying in the
cone on a fibered face F , the dilatation λ(φ) of its monodromy is the largest root of
the polynomial equation

∑

h∈H ahtφ(h) = 0 obtained by evaluating #F by φ, and
that the function 1

logλ(φ) extends to the cone on F as a real-analytic function which
is strictly concave, extending results in [47, 143]. See also [199].

Dowdall, Kapovich and Leininger [35, 36] introduced analogues of the Teich-
müller polynomial and proved analogous results for free-by-cyclic groups. In their
work a hyperbolic 3-manifold fibering over a circle and its fibered face of the
Thurston norm ball are replaced by a free-by-cyclic group and a component of its
Bieri–Neumann–Strebel invariant [11].

5.4 Seiberg–Witten Invariant

Here we are concerned with adjunction inequalities, which give relationships
between the Seiberg–Witten invariant of a 4-manifold and the complexity of
embedded surfaces in the manifold, and between the Seiberg–Witten invariant of
a 3-manifold and its Thurston norm. As a related topic we also discuss the harmonic
norm on the cohomology group associated with a Riemannian metric.

5.4.1 Seiberg–Witten Theory

We briefly review Seiberg–Witten theory [216] in the case of a closed smooth
4-manifold with b+2 (N) > 1. (Here b+2 (N) is the dimension of a maximal positive-
definite subspace H 2+(N;R) of the intersection pairing on H 2(N;R).) For the
details we refer the reader to the expositions [94, 120, 133, 157].

Recall that the Lie group Spinc(n) = Spin(n)×±1 U(1) is a central extension of
SO(n) by U(1). A Spinc-structure on a Riemannian n-manifoldX is a lifting of the
principal SO(n)-frame bundle on X to a principal Spinc(n)-bundle. We denote by
Spinc(X) the set of equivalence classes of Spinc-structures on X. The set Spinc(X)
has a free and transitive action by H 2(X;Z), and we write s + c for the image of
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s by c ∈ H 2(X;Z). The first Chern class of the principal U(1)-bundle associated
with a Spinc-structure on X defines the map c1 : Spinc(X)→ H 2(X;Z).

LetN be a closed Riemannian 4-manifold with a metric g, and ˜P a spinc structure
onN . We denote by L the determinant line bundle of ˜P and by S± the two complex
spin bundles associated with ˜P . For a connection on L we have Dirac operators
DA : �(S±) → �(S∓) on the set of sections of S±, defined using Levi–Civitá
connection on the frame bundle on X. The Seiberg–Witten monopole equations
associated with ˜P are the following pair of nonlinear elliptic equations for unitary
connectionsA on L and sections ψ of S+:

F+A = ψ ⊗ ψ∗ − |ψ|2
2
Id,

DA(ψ) = 0,

where we identify S+ with its dual via an anti-complex isomorphism and ψ∗ is its
image of ψ . We denote by MN(˜P ) the quotient of the space of gauge-equivalence
classes of solutions to the equations. The moduli space MN(˜P ) is known to be
compact [216]. A class c ∈ H 2(N;Z) is called a Seiberg–Witten monopole class if
c = c1(s) for some s ∈ Spinc(M) representing ˜P with nonempty M(˜P, g).

If b+2 (N) > 1, then the Seiberg–Witten invariant SWN : Spinc(N) → Z is
defined as follows: Let ˜P be a Spinc-structure on N representing s ∈ Spinc(N).
We denote by CN(˜P ) the space of gauge-equivalence classes of pairs (A,ψ) with
ψ �= 0, which is a classifying space of the group (S1)N . There is a universal
S1-bundle over CN(˜P ) whose Chern class μ generates H 2(CN(˜P);Z). After a
perturbation of MN(˜P ) by an addition of iη to the right hand side of the first
Seiberg–Witten monopole equation for a generic (real) self-dual 2-form η on N ,
the resulting moduli space M is known to become a smooth submanifold in CN(˜P )
of dimension

d(s) = 〈c1(s)
2, [N]〉 − (2χ(N)+ 3σ(N))

4
,

where σ(N) is the signature of N . Moreover, choosing an orientation of the real
vector spaceH 2+(N;R)⊕H 1(N;R) gives an orientation of M. If d(s) is odd, then
we define SWN(s) = 0, and otherwise we define

SWN(s) = 〈μd(s), [M]〉.

This is an invariant of s, which is independent of the choice of the Riemannian
metric of N and the perturbation term η [216]. The invariant SWN takes nonzero
value only on finitely many Spinc-structures, and changing the orientation of
H 2+(N;R)⊕H 1(N;R) reverses its sign. A class c ∈ H 2(N;Z) is called a Seiberg–
Witten basic class if c = c1(s) for some s ∈ Spinc(N) with SWN(s) �= 0. Note that
every Seiberg–Witten basic class is a Seiberg–Witten monopole class.
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5.4.2 Seiberg–Witten Invariant of a 3-Manifold

The Seiberg–Witten invariant SWM : Spinc(M) → Z of a closed 3-manifold M
with b1(M) > 1 can be defined by

SWM(s) = SWM×S1(π∗s)

for s ∈ Spinc(M), where π∗s ∈ Spinc(M×S1) is the pullback of s by the projection
π : M×S1 → M . Note that all solutions to the Seiberg–Witten monopole equations
on M × S1 are known to be S1-invariant [169]. One can also define SWM directly
in terms of Seiberg–Witten monopole equations on M as in Sect. 5.4.1. As in the
case of a 4-manifold, a class c ∈ H 2(M;Z) is called a Seiberg–Witten monopole
class if c = c1(s) for some s ∈ Spinc(M) representing a Spinc-structure ˜P on
M with nonempty MM×S1(π∗˜P) for the pullback π∗˜P on M × S1. Also, a class
c ∈ H 2(M;Z) is called a Seiberg–Witten basic class if c = c1(s) for some s ∈
Spinc(M) with SWM(s) �= 0.

For a closed 3-manifold M , Turaev [206, 207] introduced a refinement of the
abelian torsion τ (M) as an integer-valued function TM on Spinc(M) (or on the set
of so-called Euler structures on M), called Turaev’s torsion function of M . When
b1(M) > 1, τ (M) is represented by an element of Z[H1(M)f ] (Theorem 5.3.5),
and TM satisfies

τ (M) =
∑

h∈H1(M;Z)
TM(s− PD(h))[h]

for s ∈ Spinc(M), where PD(h) ∈ H 2(M;Z) is the Poincaré dual of h. Similarly,
when H1(M)f is an infinite cyclic group generated by t , τ (M) is represented by an
element of the Novikov ring Z((t)) = Z[[t]][t−1] (Theorem 5.3.5), and TM satisfies

τ (M) =
∑

h∈H1(M;Z)
TM(s− PD(h))[h] ∈ Z((t))

for s ∈ Spinc(M).
In terms of TM , Turaev [208, Theorem 1] refined the equivalence of the Seiberg–

Witten invariant and the abelian torsion shown by Meng and Taubes [148]:

Theorem 5.4.1 ([148, 208]) For a closed 3-manifold M with b1(M) > 1, the
Seiberg–Witten invariant and Turaev’s torsion function ofM coincides up to sign:

SWM = ±TM.

Theorem 5.4.1 similarly extends to the case b1(M) = 1 [148, 208]. See [162] for
the case b1(M) = 0.

The following is the adjunction inequality for 3-manifolds. See [6, 114] for the
details. We will discuss more on adjunction inequalities in Sect. 5.4.3.
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Theorem 5.4.2 ([6, 114]) LetM be a closed irreducible 3-manifold with b1(M) >

1 and c ∈ H 2(M;Z) a Seiberg–Witten basic class. Then

xM(φ) ≥ |〈c ∪ φ, [M]〉|

for φ ∈ H 1(M;R). ��
Kronheimer and Mrowka [119, Theorem 1] showed that the Thurston norm is

determined by the Seiberg–Witten monopole classes:

Theorem 5.4.3 ([119]) LetM be a closed irreducible 3-manifold with b1(M) > 1.
Then

xM(φ) = max{|〈c∪φ, [M]〉| ; c ∈ H 2(M;Z) is a Seiberg–Witten monopole class}

for φ ∈ H 1(M;R). ��
Corollary 5.4.4 ([119]) LetM be a closed irreducible 3-manifold with b1(M) > 1.
Then the convex hull of the Seiberg–Witten monopole classes in H 2(M;R) is equal
to B∗M . ��

As described by Kronheimer [114] and Vidussi [214], Theorems 5.4.1, 5.4.2,
5.4.3 deduce Theorem 5.3.2 for closed irreducible 3-manifoldsM with b1(M) > 1.

5.4.3 Complexity of Surfaces in a 4-Manifold

Adjunction inequalities give relationships between the Seiberg–Witten invariants of
a 4-manifold and the genus of embedded surfaces in the manifold. The terminology
arises from the adjunction formula for a smooth algebraic curve C in an algebraic
surface X:

χ−(C) = C · C − 〈c1(X), [C]〉.

The genus of the algebraic curve of degree d in CP 2 is given by (d−1)(d−2)
2 . A

conjecture attributed to Thom states that the genus of the algebraic curve is minimal
among smoothly embedded surfaces in CP 2 representing d[CP 1] ∈ H2(CP

2;Z).
With the advance of the Seiberg–Witten monopole equations, Kronheimer and
Mrowka [116, 117] and Morgan, Szabó and Taubes [158] proved the Thom
conjecture for holomorphic curves in a general Kähler surface with nonnegative
intersection. Later, Ozsváth and Szabó [172, Theorem 1.1 and Corollary 1.2] proved
the symplectic Thom conjecture in its complete generality:

Theorem 5.4.5 ([172]) The genus of an embedded symplectic surface in a closed
symplectic 4-manifold is minimal among smoothly embedded surfaces representing
the same homology class. ��
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The theorem for Kähler surfaces follows as a special case of Theorem 5.4.5:

Corollary 5.4.6 The genus of an embedded holomorphic curve in a Kähler surface
is minimal among smoothly embedded surfaces representing the same homology
class. ��

The following are adjunction inequalities shown by Morgan, Szabó and
Taubes [158, Proposition 4.2] and Ozsváth and Szabó [172, Corollary 1.7]:

Theorem 5.4.7 ([158]) Let N be a smooth closed 4-manifold with b+2 (M) > 1 and
c ∈ H 2(N;Z) a Seiberg–Witten basic class. Then for a smoothly embedded surface
� in N with nonpositive Euler characteristic and [�] · [�] ≥ 0, we have

χ−(�) ≥ [�] · [�] + 〈c, [�]〉.

Theorem 5.4.8 ([172]) Let N be a smooth closed 4-manifold with b+2 (M) > 1
and c ∈ H 2(N;Z) a Seiberg–Witten basic class. Suppose that d(s) = 0 for any
s ∈ Spinc(N) associated with a basic class in H 2(N;Z). Then for a smoothly
embedded surface inN with nonpositive Euler characteristic and [�] · [�] < 0, we
have

χ−(�) ≥ [�] · [�] + |〈c, [�]〉|.

See [173] for further refinements of Theorems 5.4.7, 5.4.8.
There is also an adjunction inequality by Fintushel and Stern [43] for embedded

spheres:

Theorem 5.4.9 ([43]) Let N be a smooth closed 4-manifold with b+2 (M) > 1.
Suppose that there exists a Seiberg–Witten basic class. Then there exist no smoothly
embedded spheres � such that � ·� ≥ 0 and [�] �= 0. ��

See [8, 9] for a refinement of Theorem 5.4.9 in terms of the so-called Bauer-
Furuta invariants. See also [113, 198] for adjunction-type inequalities for families
of embedded surfaces.

Now we describe results on the relationship between complexity of embedded
surfaces in circle bundles over a 3-manifold and its Thurston norm.

Let N be a smooth closed 4-manifold. We define a function xN : H2(N;Z)→ Z

by

xN(α) = min{χ−(�) ; � is an embedded surface representing α}

for α ∈ H2(N;Z).
Using Agol’s virtual fibering theorem [1, 2] (see Theorem 5.9.8) and considering

the Seiberg–Witten invariants of finite covers, Friedl and Vidussi [70, Theorem 1.1],
and Nagel [159, Theorem 5.6] showed the following theorem:

Theorem 5.4.10 ([70, 159]) LetM be a closed irreducible 3-manifold which is not
a Seifert fibered space and not covered by a torus bundle, and let p : N → M be an
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oriented circle bundle. Then

xN(α) ≥ |α · α| + xM(p∗α)

for α ∈ H2(N;Z). ��
Remark 5.4.11 Kronheimer [115] proved the same inequality as in Theorem 5.4.10
for the case N = M × S1 such that M is a closed irreducible 3-manifold whose
Thurston norm does not identically vanish. ��

Let M be a closed 3-manifold. We set %M to be the inverse image by the
canonical map H 2(M;Z) → H 2(M;R) of the set of nonzero classes w ∈
H 2(M;R) such that v + 2w lies on an edge of B∗M for some vertex v of B∗M . Note
that %M is a finite set.

Friedl and Vidussi [70, Corollary 1.3] also showed that equality in Theo-
rem 5.4.10 holds for all but finitely many circle bundles over a 3-manifold which is
not exceptional:

Theorem 5.4.12 ([70]) Let M be a closed irreducible 3-manifold which is not a
closed graph manifold such that �φM �= 0 for all nontrivial φ ∈ H 1(M;Z), and let
p : N → M be an oriented circle bundle with Euler class not in %N . Then

xN(α) = |α · α| + xM(p∗α)

for α ∈ H2(N;Z). ��
Remark 5.4.13 Friedl and Vidussi showed Theorem 5.4.12 also for nonpositively
curved graph manifolds. By the work by Agol [2], Liu [136], and Przytycki and
Wise [187, 217] the so-called virtually special theorem holds for irreducible non-
positively curved 3-manifolds. As a consequence, Agol’s virtual fibering theorem
also holds for such 3-manifolds. ��

5.4.4 Harmonic Norm

We discuss relationships between the harmonic norm associated with a Riemannian
metric and the Thurston norm.

Let M be a closed Riemannian 3-manifold with a metric h. The L2-norm || · ||h
on the vector space k(M) of k-forms onM is associated with the inner product

〈α, β〉 =
∫

M

α ∧ ∗β

for α, β ∈ k(M), where ∗ is the Hodge star operator. The k-th homology group
Hk(M;R) is identified with the subspace of harmonic k-forms, and || · ||h induces
a norm on Hk(M;R). The induced norm is called the harmonic norm and is also
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denoted by || · ||h. As it comes from a positive-definite inner product, the unit ball
of || · ||h is a smooth ellipsoid.

In the study of the Seiberg–Witten monopole equations Kronheimer and
Mrowka [118, 119] showed that the Thurston norm xM is characterized in terms of
the harmonic norm:

Theorem 5.4.14 ([119]) Let M be a closed irreducible 3-manifold not containing
non-separating tori. Then

xM(φ) = 1

4π
inf
h
||sh||h||φ||h

for φ ∈ H 1(M;R), where sh is the scalar curvature of h, and the infimum is taken
over all Riemannian metrics h onM .

Remark 5.4.15 The original statement of [119, Theorem 2] is in terms of the dual
Thurston norm x∗M onH2(M;R). As explained in [18, Theorem 5.1], it is equivalent
to that of Theorem 5.4.14. ��

See [15, 197] for extensions of Theorem 5.4.14 in another approach studying
harmonic 1-forms. See also [106].

For a closed hyperbolic 3-manifold M , by Mostow rigidity, the harmonic norm
is uniquely determined by the underlying topology of M . We denote it by || · ||L2 .
Refining results of Bergeron, Şengün and Venkatesh [10] as well as Theorem 5.4.14,
Brock and Dunfield [18] showed the following inequalities between the two norms
|| · ||L2 and xM :

Theorem 5.4.16 ([18]) LetM be a closed hyperbolic 3-manifold. Then

π√
Vol(M)

xM(φ) ≤ ||φ||L2 ≤ 10π
√

inj(M)
xM(φ)

for φ ∈ H 1(M;R), where inj(M) is the injectivity radius of M , which is half the
length of the shortest closed geodesic inM . ��

Brock and Dunfield used the theory of minimal surfaces to prove Theo-
rem 5.4.16. They also showed that the inequality is qualitatively sharp [18,
Theorem 1.3].

Since the scalar curvature of a hyperbolic metric h is −6, specializing Theo-
rem 5.4.14 to such h gives

2π

3
√

Vol(M)
xM(φ) ≤ ||φ||L2,

which is weaker than the first inequality in Theorem 5.4.16. Lin [134] gave a gauge-
theoretic proof of the stronger inequality.
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5.5 Floer Homology

We look at the fact that Floer homology detects the Thurston norm and fiberedness
of a 3-manifold.

With a motivation to better understand the Seiberg–Witten invariant, Ozsváth and
Szabó [179, 180] introduced Heegaard Floer homology:

̂HF(M), HF∞(M), HF+(M), HF−(M).

Analogously, based directly on the Seiberg–Witten monopole equations, Kron-
heimer and Mrowka [120] introduced monopole Floer homology:

~HM∗(M), ̂HM∗(M), HM∗(M).

Passing through embedded contact homology ECH introduced by Hutchings and
Taubes [93, 95, 96], Heegaard Floer homology and Monopole Floer homology were
shown to be equivalent by Colin, Ghiggini and Honda [28–30], and Kutluhan, Li
and Taubes [125–129].

In the following we focus on results in terms only of Heegaard Floer homology.
But by the equivalence of the theories corresponding results hold also in terms
of monopole Floer homology. For details including the definitions of the Floer
homology groups, we refer the reader to the expositions [82, 92, 104, 176, 178,
181, 183] for Heegaard Floer homology, and to [120, 133] for monopole Floer
homology. For combinatorial computations of Heegaard Floer homology see the
survey article [142] and the references given there.

5.5.1 Heegaard Floer Homology

A Heegaard diagram for a closed 3-manifoldM is a Heegaard surface � of genus
g together with two systems α and β of simple closed curves α1, . . . , αg and β1,
. . . , βg on � representing generators of H1(�;Z) and bounding disks in the two
handlebodies inM respectively. Heegaard Floer homology is constructed by taking
a Heegaard diagram (�, α, β) for M and applying Lagrangian intersection Floer
theory [44, 72] to the tori α1× · · ·×αg and β1× · · ·×βg in the symmetric product
of g copies of � [179, 180].

Heegaard Floer homology assigns to M a finitely generated abelian group
̂HF(M) and finitely generated Z[U ]-modules HF∞(M), HF+(M), HF−(M),
where U is a formal variable in the polynomial ring Z[U ]. Each group HF ◦(M)
has the following decomposition over Spinc(M):

HF ◦(M) =
⊕

s∈Spinc(M)

HF ◦(M, s).
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Furthermore, each groupHF ◦(M, s) carries an absolute Z/2Z-grading, and we can
take the Euler characteristic χ(HF ◦(M, s)) with respect to the grading. These four
flavors of Heegaard Floer homology are related by the following exact triangles:

· · · → HF−(M, s)→ HF∞(M, s)→ HF+(M, s)→ HF−(M, s)→ · · · ,
· · · → ̂HF(M, s)→ HF+(M, s)→ HF+(M, s)→ ̂HF(M, s)→ · · · ,
· · · → HF−(M, s)→ HF−(M, s)→ ̂HF(M, s)→ HF−(M, s)→ · · · .

Ozsváth and Szabó [180, Theorem 1.2] showed that HF+(M) is a categolifica-
tion of Turaev’s torsion function TM :

Theorem 5.5.1 ([180]) LetM be a closed 3-manifold and s ∈ Spinc(M) such that
c1(s) is not torsion. Then

χ(HF+(Y, s)) = ±TM(s).

When M is a rational homology 3-sphere, HF+(M, s) carries an absolute Q-
grading. The correction term or d-invariant d(M, s) is defined to be the minimal
grading of nontorsion elements in the image of the map π : HF∞(M, s) →
HF+(M, s). Ozsváth and Szabó [174, Theorem 1.3] showed that d(M, s) and
χ(Cokerπ) determine the Casson invariant of an integral homology sphereM .

Ozsváth and Szabó [177, Theorem 1.1] also showed that ̂HF(M) detects the
Thurston norm.

Theorem 5.5.2 ([177]) LetM be a closed 3-manifoldM . Then

xM(φ) = min{|〈c1(s) ∪ φ, [M]〉| ; s ∈ Spinc(M) such that ̂HF(M, s) �= 0},

for φ ∈ H 1(M;R). ��
Ni [164, Theorem 1.1] showed that HF+(M) detects fiberedness ofM:

Theorem 5.5.3 ([164]) LetM be a closed irreducible 3-manifold and S a properly
embedded surface inM of negative Euler characteristic. If the group

⊕

s∈Spinc(M) with 〈c1(s),[S]〉=χ−(S)
HF+(M, s)

is isomorphic to Z, thenM fibers over a circle with fiber S. ��
Theorems 5.5.1, 5.5.2, 5.5.3 recover Theorem 5.3.6 on the abelian torsion.
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5.5.2 Knot Floer Homology

Ozsváth and Szabó [178], and Rasmussen [189] independently defined the knot
Floer homology ĤFK(L) for a null-homologous link L in a closed 3-manifold
M . This finitely generated abelian group ĤFK(L) refines ̂HF(M) in the sense
that there exists a spectral sequence from ĤFK(L) converging to ĤF (M).

In the case of a knotK in S3, ĤFK(K) is bigraded:

ĤFK(K) =
⊕

(i,j)∈Z2

ĤFKj (K, i),

where i and j are called the Alexander grading and the homological grading
respectively. The group ĤFK(K) is a categorification of the classical Alexander
polynomial�K(t) ofK:

Theorem 5.5.4 ([178, 189]) For a knotK in S3 we have

�K(t) =
∑

(i,j)∈Z2

(−1)j
(

rank ĤFKj (K, i)
)

t i .

As shown in [175], ĤFK(K) of an alternating knotK is completely determined by
�K(t) and the signature ofK . See also [188].

As a consequence of the proof of Theorem 5.5.2, Ozsváth and Szabó [177,
Theorem 1.2] also showed that ĤFK(K) determines the knot genus g(K):

Theorem 5.5.5 ([177]) For a knotK in S3 we have

g(K) = max{i ∈ Z ;
⊕

j∈Z
ĤFKj (K, i) �= 0}.

Theorem 5.5.5 implies that ĤFK(K) detects the unknot. See [165, 182] for the
case of links. In particular, Ozsváth and Szabó [182] showed that the Thurston and
Alexander norms agree for the complements of alternating links in S3.

Results by Ghiggini [79], Ni [163], and Juhász [102, 103] showed that ĤFK(K)
detects fiberedness of K:

Theorem 5.5.6 ([79, 102, 103, 163]) A knot K in S3 is fibered if and only if

⊕

j∈Z
ĤFKj (K, g(K))

is isomorphic to Z. ��
More generally, Juhász [101] introduced the sutured Floer homology

SFH(M, γ ) for sutured manifolds (M, γ ) satisfying certain conditions,



174 T. Kitayama

generalizing ̂HF(M) and ĤFK(K). See [51] for the decategorification of
SFH(M, γ ) and the relationship between SFH(M, γ ) and the Thurston norm
for sutured manifolds. See also [4].

Kronheimer and Mrowka [121–123] extended instanton and monopole Floer
homology to sutured manifolds. They also introduced a knot invariant KHI(K)
being a categorification of the classical Alexander polynomial and detecting the
knot genus and fiberedness of knots.

5.6 Torsion Invariants

The Alexander polynomial has been generalized in different ways to three flavors
of nonabelian Alexander polynomials: twisted Alexander polynomials introduced
by Lin [132] and Wada [215], higher-order Alexander polynomials by Cochran [27]
and Harvey [85], and L2-Alexander invariant by Li and Zhang [131]. As seen in
the equivalence of the Alexander polynomial and abelian torsion (Theorem 5.3.5),
these generalized Alexander polynomials are also systematically studied in terms
of nonabelian Reidemeister torsion: Reidemeister torsion associated with linear
representations, higher-order Reidemeister torsion introduced by Friedl [48], and
L2-Alexander torsion by Dubois, Friedl and Lück [38]. We describe relationships
between these invariants and the Thurston norm.

5.6.1 Reidemeister Torsion

We briefly review Reidemeister torsion associated with linear representations. See
[149, 161, 209, 211] for details on Reidemeister torsion.

Let C∗ = (Cn
∂n−→ Cn−1 −→ · · · −→ C0) be a finite-dimensional acyclic chain

complex over a commutative field F, and let c = {ci} be a basis of C∗. We choose a
basis bi of Im ∂i+1 for each i. Taking a lift b̃i−1 of b̃i−1 in Ci and combining it with
bi , we have a basis bib̃i−1 of Ci for each i. The algebraic torsion τ (C∗, c) ∈ F \ {0}
is defined as:

τ (C∗, c) =
n
∏

i=0

[bib̃i−1/ci](−1)i+1
,

where [bib̃i−1/ci] is the determinant of the base change matrix from ci to bib̃i−1. It
can be checked that τ (C∗, c) does not depend on the choice of bi and bib̃i−1.

Let X be a connected CW-complex and R a noetherian UFD (e.g., R equals Z
or F). The cellular chain complex C∗(˜X) of its universal cover ˜X is a left Z[π1X]-
module. We think of C∗(˜X) also as a right Z[π1X]-module, using the involution of
Z[π1X] reversing elements of π1X. Let ρ : π1X → GL(n,R) be a representation.
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For each nonnegative integer i the i-th twisted homology group Hρ1 (X;Rn) is
defined as:

H
ρ
i (X;Rn) = Hi(C∗(˜X)⊗Z[π1X] Rn).

The Reidemeister torsion τρ(X) ∈ F associated with a representation ρ : π1X→
GL(n,F) is defined as follows. If Hρ∗ (X;Fn) does not vanish, then we define
τρ(X) = 0. Otherwise, we choose a lift ẽ in ˜X of each cell e of X, and define

τρ(X) = τ
(

C∗(˜X)⊗Z[π1X] Fn, {ẽ ⊗ fj }e,1≤j≤n
)

,

where f1, . . . , fn is the standard basis of F
n. It is known that τρ(X) is well-

defined as a simple homotopy invariant up to multiplication by elements of
(±1)n det ρ(π1X). Reidemeister torsion τρ(X) is invariant under conjugation of
representations ρ.

Remark 5.6.1 Turaev introduced a refinement of Reidemeister torsion τρ(X) as an
element of F without any indeterminacy, by fixing an orientation of H∗(X;R) and
an Euler structure of X, which is an equivalence class of the choice of lifts ẽ [209,
211]. ��

5.6.2 Twisted Alexander Polynomials

We describe the results by Friedl and Vidussi [64, 65, 67, 69, 71], and Friedl
and Nagel [60] that twisted Alexander polynomials detect the Thurston norm and
fiberedness of a 3-manifold. For more details on twisted Alexander polynomials we
refer the reader to the survey papers [37, 66, 151].

Let M be a 3-manifold with empty or toroidal boundary, ψ : π1M → F a
homomorphism to a free abelian groupF and ρ : π1X→ GL(n,R) a representation
over a noetherian UFD R. We write ψ ⊗ ρ : π1M → GL(n,R[F ]) for the
tensor representation defined by ψ ⊗ ρ(γ ) = ψ(γ )ρ(γ ) for γ ∈ π1M . Then
H
ψ⊗ρ
i (M;R[F ]n) is a finitely generated R[F ]-module for each i. The i-th twisted

Alexander polynomial �ψ,ρM,i ∈ R[F ] of M associated with ψ and ρ is defined to
be its order over R[F ], which is well-defined up to multiplication by units in R[F ].
We set �ψ,ρM = �

ψ,ρ
M,1. Twisted Alexander polynomials �ψ,ρM,i are invariant under

conjugation of representations ρ.
When ψ : π1M → H1(M)f is the canonical projection and ρ is the trivial

representation, �ψ,ρM coincides with the usual Alexander polynomial �M of M
defined in Sect. 5.3.1. We identifyH 1(M;Z)with Hom(π1M,Z) andR[Z] with the
polynomial ring R[t, t−1] so that 1 ∈ Z corresponds to t . Then for φ ∈ H 1(M;Z)
twisted Alexander polynomials�φ,ρM,i are in R[t, t−1].
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The Reidemeister torsion τψ⊗ρ(M) ∈ Q(R)(F ) associated withψ⊗ρ : π1M →
GL(n,Q(R)(F )) is defined as in Sect. 5.6.1, where Q(R)(F ) is the quotient field
of R[F ]. For φ ∈ H 1(M;Z), τφ⊗ρ(M) ∈ Q(R)(t) is also defined. We define

deg
(

alt
l + al+1t

l+1 + · · · + amtm
)

= m− l

for l, m ∈ Z with l < m and ai ∈ R with alam �= 0, and further define

deg
p(t)

q(t)
= degp(t)− deg q(t)

for p(t), q(t) ∈ R[t, t−1] \ {0}.
The following is a relationship between Reidemeister torsion and twisted

Alexander polynomials. See also [109, 110].

Proposition 5.6.2 ([52, 54, 209]) Let M be a 3-manifold with empty or toroidal
boundary. For a homomorphism ψ : π1M → F and a representation ρ : π1M →
GL(n,R), if �ψ,ρM �= 0, then

τψ⊗ρ(M) = �
ψ,ρ
M

�
ψ,ρ

M,0�
ψ,ρ

M,2

.

Remark 5.6.3 It can be checked for any ψ and ρ that�ψ,ρM,0 �= 0 and�ψ,ρM,3 = 1, and

that �ψ,ρM,2 = 0 if and only if �ψ,ρM = 0. The second one follows from the first one
and an Euler characteristic argument. See [66, Proposition 3.2]. ��

Proposition 5.6.2, in particular, shows that �ψ,ρM = 0 if and only if

H
ψ⊗ρ∗ (M;Q(R)(F )n) = 0, and that for φ ∈ H 1(M;Z), if �φ,ρM �= 0, then

deg τφ⊗ρ(M) = deg�φ,ρM − deg�φ,ρM,0 − deg�φ,ρM,2.

An advantage of twisted Alexander polynomials and the corresponding Reide-
meister torsion is that if a representation ρ is given explicitly, then these invariants
can be combinatorially computed, for example, by Fox derivatives for a presentation
of the fundamental group.

Friedl and Kim [52, Theorems 1.1, 1.2] generalized Theorem 5.3.6 to twisted
Alexander polynomials:

Theorem 5.6.4 ([52]) LetM be a 3-manifold with empty or toroidal boundary and
ρ : π1M → GL(n,R) a representation. For φ ∈ H 1(M;Z), if �φ,ρM �= 0, then

xM(M) ≥ 1

n
deg τφ⊗ρ(M).
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Furthermore, �φ,ρM �= 0 and equality holds if φ is fibered with M �= S1 × D2 and
M �= S1 ×D2. ��
Remark 5.6.5 Friedl and Kim [52, Theorems 1.3] also showed that under the
assumptions of Theorem 5.6.4, if φ ∈ H 1(M;Z) is fibered, then �φ,ρM is monic,
i.e., its highest and lowest coefficients are units in R. As explained in [52,
Proposition 6.1], this theorem can be deduced from Theorem 5.6.4. ��

Generalizing the Alexander norm, Friedl and Kim [54, Theorems 3.1, 3.2] also
defined the twisted Alexander norm || · ||ρA on H 1(M;R) associated with a repre-
sentation ρ : π1M → GL(n,R) and generalized Theorem 5.3.2. Let ψ : π1M →
H1(M)f be the canonical projection, and write�ψ,ρM =∑

h∈H1(M)f
ahh for ah ∈ R.

If �ψ,ρM = 0, we define || · ||ρA = 0. Otherwise, we define

||φ||ρA = max{〈φ, h − h′〉 | h, h′ ∈ H1(M)f such that ahah′ �= 0}

for φ ∈ H 1(M;R). It is clear that || · ||ρA is a seminorm on H 1(M;R) for any ρ.
When ρ is the trivial representation, || · ||ρA = || · ||A.

Theorem 5.6.6 ([54]) LetM be a 3-manifold with empty or toroidal boundary and
ρ : π1M → GL(n,R) a representation. Suppose that b1(M) > 0. Then

xM(φ) ≥ 1

n
||φ||ρA

for φ ∈ H 1(M;R). Furthermore, equality holds for φ in the cone on a fibered face
of BM withM �= S1 × S2 andM �= S1 ×D2. ��

Theorems 5.6.4, 5.6.6 also provide a fibering obstruction. Fibering obstructions
on twisted Alexander polynomials in various level of generality were proved in
[26, 49, 54, 80, 111, 112, 185].

As a corollary of the duality of (refined) Reidemeister torsion, Friedl, Kim and
the author [55, Theorem 1.4] proved the following theorem.

Theorem 5.6.7 ([55]) Let M be an irreducible 3-manifold with empty or toroidal
boundary such that M �= S1 × D2, and let ρ : π1M → U(n) be a representation.
For φ ∈ H 1(M;Z) whose restriction to any component of ∂M is nontrivial, if
�
φ,ρ
M �= 0, then

deg τφ⊗ρ(M) ≡ nxM(φ) mod 2.

Using the virtually special theorem by Agol [2], Liu [136] and Przytycki and
Wise [187, 217], Friedl and Vidussi [71, Theorem 1.2, Corollary 5.10] with an
extension by Friedl and Nagel [60, Theorem 1.3] showed that twisted Alexander
polynomials determine the Thurston norm:
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Theorem 5.6.8 ([60, 71]) Let M be an irreducible 3-manifold with empty or
toroidal boundary. Then there exists a representation ρ : π1M → GL(n,C) with
finite image such that �φ,ρM �= 0 and

xM(φ) = 1

n
deg τφ⊗ρ(M)

for all φ ∈ H 1(M;Z). ��
Corollary 5.6.9 ([71]) Let M be an irreducible 3-manifold with empty or toroidal
boundary. Suppose that b1(M) > 1. Then there exists a representation ρ : π1M →
GL(n,C) with finite image such that

xM(φ) = 1

n
||φ||ρA

for all φ ∈ H 1(M;R). ��
As explained in [71, Section 6] Theorem 5.6.8 gives an effective algorithm to

compute the Thurston norm. We will see another algorithm in terms of normal
surface theory in Sect. 5.7.1. Also, Theorem 5.6.8 and Corollary 5.6.9, in particular,
show that the Thurston norm is an invariant of fundamental groups of 3-manifolds.
We will discuss more on this point of view in Sect. 5.8.

Friedl and Vidussi [64, 65, 67, 69] also showed that twisted Alexander polyno-
mials detect fiberedness of 3-manifolds. Based on different ideas using Novikov–
Sikorav homology, Sikorav [196] showed the fibering detection theorem for general
φ ∈ H 1(M;R).
Theorem 5.6.10 ([69]) Let M be a 3-manifold with empty or toroidal boundary.
If φ ∈ H 1(M;Z) is not fibered, then there exists a representation ρ : π1M →
GL(n,Z) with finite image such that�φ,ρM = 0. ��

As a corollary of the fibering detection, together with the study of the Seiberg–
Witten invariants of symplectic 4-manifolds, Friedl and Vidussi [64, 66, 68, 69]
further showed that a closed 4-manifold which carries a free circle action admits a
symplectic structure if and only if the orbit 3-manifold is fibered. The ‘if’ direction
generalizes earlier work of Thurston [200]. See also [14, 84].

5.6.3 Higher-Order Alexander Polynomials

Cochran [27] and Harvey [85] introduced higher-order Alexander polynomials, ana-
logues of the Alexander polynomial with coefficients in skew fields and showed that
their degrees give lower bounds on the Thurston norm. Following Friedl [38, 48],
we describe results in terms of corresponding higher-order Reidemeister torsion.
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Let � be a torsion-free elementary-amenable group. By [34, 124] Z[�] is a
right (and left) Ore domain, i.e., Z[�] embeds in its classical right ring of quotient
Q(�) = Z[�] (Z[�] \ {0})−1. The Dieudonné determinant defines a canonical
isomorphism K1(Q(�)) → Q(�)×ab, where Q(�)×ab is the abelianization of the
multiplicative group Q(�) \ {0}.

Let M be a 3-manifold with empty or toroidal boundary. We define the higher-
order Reidemeister torsion τρ(M) ∈ Q(�)×ab ∪ {0} associated with an epimorphism
ρ : π1M → � onto a torsion-free elementary-amenable group as follows: If
H
ρ∗ (M;Q(�)) �= 0, then we define τρ(M) = 0. Otherwise, we take a CW-complex

structure ofM , choose a lift ẽ of each cell e, and define

τρ(M) = τ
(

C∗(˜M)⊗Z[π1M] Q(�), {ẽ ⊗ 1})) ,

where τ (·) ∈ Q(�)×ab is the algebraic torsion defined by replacing the usual
determinant by the Dieudonné determinant. The invariant τρ(M) is well-defined
up to multiplication by elements in ±�.

A pair (ρ, φ) of an epimorphism π1M → � onto a torsion-free elementary-
amenable group and φ ∈ H 1(M;Z) is admissible if there exists a homomorphism
φ� : � → Z such that φ� ◦ ρ : π1M → Z coincides with φ under the identi-
fication Hom(π1M,Z) with H 1(M;Z). For an admissible pair (ρ, φ) we define
degφ : Q(�)×ab ∪ {0} → Z ∪ {−∞} as follows: Given p =∑

g∈� agg ∈ Z[�] \ {0},
we set

degφ p = max{φ�(g)− φ�(g′) ; agag′ �= 0},

and then define

degφ pq
−1 = degφ p − degφ q

for p, q ∈ Z[�] \ {0}, which induces a homomorphism Q(�)×ab → Z. We extend
this to degφ 0 = −∞. Now we have an integer-valued invariant degφ τρ(M).

Example 5.6.11 LetM be a 3-manifold with empty or toroidal boundary. Examples
of admissible pairs for M are given by rational derived series introduced by
Cochran [27] and Harvey [85]: We set π(0)r = π1M and inductively define

π(i)r = {γ ∈ π(i−1)
r ; γ k ∈ [π(i−1)

r , π(i−1)
r ] for some nonzero k ∈ Z}.

Then for any n, π1M/π
(n)
r is a poly-torsion-free-abelian group, and is, in particular,

a torsion-free elementary-amenable group. We write ρn : π1M → π1M/π
(n)
r for the

quotient map. Then (ρn, φ) is an admissible pair for any n and φ ∈ H 1(M;Z), and
we can define τρn(M) and degφ τρn(M). The invariant τρn(M) is called the higher-
order Reidemeister torsion of order n. The invariant τρ0(M) of order 0 coincides
with the abelian torsion ofM . ��
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Extending the results by Cochran [27, Theorem 7.1] and Harvey [85, Theo-
rem 10.1], Friedl and Harvey [48, Theorem 1.2], [87, Theorem 3.1] proved the
following theorem, generalizing Theorem 5.3.6:

Theorem 5.6.12 ([48, 87]) LetM be a 3-manifold with empty or toroidal boundary,
and (ρ, φ) an admissible pair forM . Then

xM(φ) ≥ degφ τρ(M).

Furthermore, equality holds if φ is fibered withM �= S1 × S2 andM �= S1 ×D2.

Theorem 5.6.12 also provides a fibering obstruction. Friedl [50] gave more
fibering obstructions on higher-order Reidemeister torsion in terms of Novikov-
Sikorav homology.

By the duality of higher-order Reidemeister torsion Friedl and Kim [53, Theo-
rem 4.4] proved the following theorem:

Theorem 5.6.13 ([53]) Let M be a closed 3-manifold or the complement of a link
in S3 and (ρ, φ) an admissible pair forM . Then

max{degφ τρ(M), 0} ≡ xM(φ) mod 2.

An advantage of higher-order Alexander polynomials or higher-order Reidemeis-
ter torsion is that these invariants have monotonicity concerning epimorphisms ρ.
Extending the result by Cochran [27, Theorem 5.4], Friedl [48, Theorem 1.3] and
Harvey [86, Theorem 2.2, Corollary 2.10] proved the following:

Theorem 5.6.14 ([48, 86]) LetM be a 3-manifold with empty or toroidal boundary,
and (ρ : π1M → �, φ) an admissible pair for M . Let ϕ : � → �′ be an
epimorphism such that (ϕ ◦ ρ, φ) is admissible. Then

degφ τϕ◦ρ(M) ≤ degφ τρ(M).

Corollary 5.6.15 ([27, 86]) Let M be a 3-manifold with empty or toroidal bound-
ary and φ ∈ H 1(M;Z). Then

degφ τρn−1(M) ≤ degφ τρn(M)

for each positive integer n.

5.6.4 L2-Alexander Torsion

Li and Zhang [131] introduced the L2-Alexander invariant, an L2-analogue of
higher-order Alexander polynomials. Dubois, Friedl and Lück [38] introduced the
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L2-Alexander torsion, the corresponding Reidemeister tosion generalizing the L2-
torsion [140]. Later, Friedl and Lück [56] introduced the universalL2-torsion, which
is a further generalization of the invariants. For more details on these L2-invariants
we refer the reader to the survey papers [37, 59, 141]. For basic terminology in
L2-theory see [140].

Let � be a torsion-free group. We denote by L2(�) the Hilbert space of formal
sums

∑

γ∈Γ aγ γ for aγ ∈ C such that
∑

γ∈Γ |aγ |2 <∞. The group von Neumann
algebra N(�) of � is defined to be the algebra of bounded �-equivalent operators
on L2(�). We denote by U(�) the Ore localization of N(�) with respect to the
multiplicative subset of nonzero divisors. (It is the algebra of affiliated operators.)
Now we consider the division closure D(�) of Z[�] in U(�), which is the smallest
subring S of U(�) containing Z[�] so that any element of S invertible in U(�) is
already invertible in S. We say that � satisfies the Atiyah conjecture if given any
m × n matrix A in Z[�] the L2-dimesnion of the kernel of the map L2(�)m →
L2(�)n sending v→ vA for v ∈ L2(�)m is a natural number. It is an open question
whether all torsion-free groups satisfy the Atiyah conjecture. By [135] � satisfies
the Atiyah conjecture if and only if D(�) is a skew-field.

Let M be an aspherical 3-manifold with empty or toroidal boundary. It is one
of the consequences of the virtually special theorem [2, 136, 187, 217] that if M is
not a closed graph manifold, then π1M satisfies the Atiyah conjecture. Suppose that
π1M satisfies the Atiyah conjecture. We define ρ(2)u (˜M) ∈ D(π1M)

×
ab by

ρ(2)u (
˜M) = τ (C∗(˜M)⊗Z[π1M] D(�), {ẽ ⊗ 1})) ∈ D(π1M)

×
ab

as in the definition of higher-order Reidemeister torsion. The invariant ρ(2)u (˜M) is
well-defined up to multiplication by elements in ±π1M and coincides with the one
introduced by Friedl and Lück in [56], called the universal L2-torsion onM .

As described in [56, Section 2.4] the Fuglede–Kadison determinant defines
a homomorphism detN(π1M) : D(π1M)

×
ab → R. The image detN(π1M)(ρ

(2)
u (˜M))

coincides with the L2-torsion ρ(2)(˜M) ofM , which is equal to

− 1

6π

∑

VolMi,

whereMi are the hyperbolic pieces in the JSJ decomposition ofM . More generally,
for φ ∈ H 1(M;Z) and t ∈ R>0, we can consider the Fuglede–Kadison determinant
detN(π1M),t D(π1M)

×
ab → R twisted by the character on H1(M)f sending h ∈

H1(M)f to t〈φ,h〉. We define a function ρ̄(2)(˜M;φ) : R>0 → R by

ρ̄(2)(˜M;φ)(t) = detN(π1M),t (ρ
(2)
u (

˜M)).

The invariant ρ̄(2)(˜M;φ) is well-defined up to multiplication by functions of the
form tr for some r ∈ R, and coincides with the (full) L2-Alexander torsion of M
introduced by Dubois, Friedl and Lück [38]. In fact, the L2-Alexander torsion itself
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is defined for any irreducible 3-manifoldM with empty or toroidal boundary. The
following example complements the case of graph manifolds.

Example 5.6.16 LetM be a graph manifold which is not homeomorphic to S1×S2

nor to S1×D2. Dubois, Friedl and Lück [38, Theorem 1.1] showed that ρ̄(2)(˜M;φ)
is represented by the function

ρ̄(t) =
{

1 if t ≤ 1,

txM(φ) if t ≥ 1

for φ ∈ H 1(M;Z). See also [91]. ��
Based on the virtually special theorem [2, 136, 187, 217], Friedl and Lück [58,

Theorem 0.1], and Liu [137, Theorem 1.2] independently proved the following
theorem:

Theorem 5.6.17 ([58, 137]) Let M be an irreducible 3-manifold with empty or
toroidal boundary which is not homeomorphic to S1 × D2. Then the limits

limt→∞ ρ̄(2)(˜M;φ)
ln(t) and limt→0

ρ̄(2)(˜M;φ)
ln(t) exist, and

lim
t→∞

ρ̄(2)(˜M;φ)
ln(t)

− lim
t→0

ρ̄(2)(˜M;φ)
ln(t)

= −xM(φ)

for φ ∈ H 1(M;Z). ��
Remark 5.6.18 In Theorem 5.6.17 the difference of the limits on the left hand side
can be regarded as the ‘degree’ of the function ρ̄(2)(˜M;φ). ��

See [57, Theorem 0.2] for a related theorem on the φ-twisted L2-Euler charac-
teristic and the Thurston norm.

We now discuss an equivalence class of a pair of convex polytopes in H1(M;R)
associated with the universal L2-torsion.

The Minkowski sum of convex polytopes P andQ in H1(M;R) is defined by

P +Q = {p + q ; p ∈ P and q ∈ Q}.

Two convex polytopesP andQ inH1(M;R) are translation equivalent ifQ = P +
{v} for some v ∈ H1(M;R). We denote by P(M) the set of translation equivalence
classes of convex polytopes inH1(M;R). The Minkowski sum induces the structure
of a commutative monoid on P(M). We denote by G(M) the Grothendieck
group of P(M). Let ϕ : π1M → H1(M)f be the canonical projection. Taking
a section H1(M)f → π1M , we can identify Z[π1M] with Z[Kerϕ][H1(M)f ].
We define a map P : Z[π1M] → P(M) as follows: For f = ∑

h∈H1(M)f
ahh ∈

Z[Kerϕ][H1(M)f ] \ {0} we define P(f ) to be the convex hull of all h with ah �= 0
in H1(M;R). The map extends as a homomorphism P : D(π1M) \ {0} → G(M),
which further induces a homomorphism P : D(π1M)

×
ab → G(M).
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Friedl and Lück [56, Theorem 3.35] showed that the universal L2-torsion
determines the (dual) Thurston norm ball:

Theorem 5.6.19 ([56]) Let M be an aspherical 3-manifold with empty or toroidal
boundary such that π1M satisfies the Atiyah conjecture. Then

[B∗M ] = 2 · P(ρ(2)u (˜M)) ∈ G(M).

More generally, the above construction associates an equivalence class of a pair
of convex polytopes P(�) also to a torsion-free group � satisfying the Atiyah
conjecture and having a finite classifying space B�. For a group � admitting a
presentation with two generators and one relator, reinterpreting results by Friedl,
Schreve and Tillmann [61, 63], Friedl, Lück and Tillmann [59, Theorems 3.1,
5.4] described a combinatorial construction of P(�) from such a presentation, and
showed that P(�) determines the Bieri–Neumann–Strebel invariant of �. See also
[184] for related results. Funke and Kielak [73] studied P(�) and its relationships
with the Bieri–Neumann–Strebel invariant and higher-order Alexander polynomials
for free-by-cyclic groups �.

5.7 Triangulations

We discuss relationships between triangulations of a 3-manifold and its Thurston
norm. There are algorithms to compute the Thurston norm ball and its fibered
faces from triangulations in normal surface theory. Also, a Z/2Z-analogue of the
Thurston norm is known to give a lower bound on the minimal number of tetrahedra
in triangulations.

5.7.1 Thurston Norm Via Normal Surfaces

Algorithms to compute the Thurston norm ball in terms of normal surface theory
are given by Tollefson and Wang [203, 204], and Cooper and Tillmann [32]. Here
we overview a construction of the Thurston norm ball, following [32].

Let M be a closed irreducible 3-manifold and T a triangulation of M with
t tetrahedra. Here we mean triangulations to be more general than simplicial
triangulations. We allow triangulations to have simplices with self-identifications
on their boundary. A triangulation is called 0-efficient if every normal 2-sphere
bounds a 3-ball contained in a small neighborhood of a vertex. Recall that there
are 7 types of normal discs in a tetrahedron �: 4 triangles around the vertices of
� and 3 quadrilaterals separating the vertices of � into 2 pairs. A normal surface
is an embedded surface in M whose intersection with each tetrahedron of T is a
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collection of disjoint normal discs. A fundamental fact in normal surface theory is
that every incompressible surface inM is isotopic to a normal surface.

If we also take into account of transverse orientations of normal surfaces, there
are 2 equivalence classes for each type of normal discs. We first consider the linear
subspace of the real vector space of dimension 14t with a basis consisting of the
equivalence classes of transversely oriented normal discs in the tetrahedra of T. We
denote byNSν(T) the linear subspace defined by the so-called matching equations:
for each equivalence class of transversely oriented arcs γ in each triangle shared by
2 tetrahedra�±,

t− + q− = t+ + q+,

where t± and q± are the coefficients of the equivalence classes of transversely
oriented triangle and quadrilateral in �± respectively containing γ in their bound-
ary. We denote by NSν+(T) the subset of NSν(T) consisting of elements whose
coefficients are all nonnegative. An element of NSν+(T) is admissible if at most one
type of quadrilateral in each tetrahedron is allowed to have nonzero coefficients.

By the construction every admissible integral point of NSν+(T) is represented
by a transversely oriented normal surface in M , and there are a linear map
χ∗ : NSν(T) → R and a surjective homomorphism h : NSν(T) → H2(M;R)
corresponding to the Euler characteristic and homology class of a normal surface
respectively [32, Lemma 3, Proposition 4]. The set P(T) of all elements ofNSν+(T)
such that the sum of the coefficients is equal to 1 is a compact convex polytope in
NSν(T). We define B(T) to be the convex hull of the points v

|χ∗(v)| , where v is an
admissible vertex of P(T) satisfying χ∗(v) < 0. Now we can state the following
theorem [32, Theorem 5]:

Theorem 5.7.1 ([32]) Let M be a closed irreducible atoroidal 3-manifold with
b1(M) > 0, and T a simplicial or 0-efficient triangulation. Then h(B(T)) coincides
with BM .

Together with Haken’s algorithm to check whether the complement of an open
tubular neighborhood of an embedded surface S is homeomorphic to the product
S × [0, 1] [145], Theorem 5.7.1 also gives an algorithm to determine the fibered
faces of BM [32, Algorithm 6]. An alternative algorithm to construct BM is given in
[204, Algorithm 5.9].

5.7.2 Z/2Z-Thurston Norm and Complexity of 3-Manifolds

Jaco, Rubinstein and Tillmann [100] introduced a Z/2Z-analogue of the Thurston
norm. Let M be a closed irreducible 3-manifold. Every cohomology class in
H 1(M;Z/2Z) is the Poincaré dual of the homology class represented by a possibly
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nonorientable embedded surface with some components inM . The Z/2Z-Thurston
norm xM,2 is the function on H 1(M;Z/2Z) defined by

xM,2(φ) = min{χ−(S) ; S is a possibly nonorientable embedded surface dual to φ}

for φ ∈ H 1(M;Z/2Z).
The complexity c(M) ofM is the minimal number of tetrahedra in triangulations

of M . The number agrees with the one defined by Matveev [144] unless M is
homeomorphic to S3, RP 3 or L(3, 1).

Generalizing earlier work [99], Jaco, Rubinstein, Spreer and Tillmann [100,
Theorems 1, 2], [97, Theorems 1, 3], and Nakamura [160, Theorems 1.1, 1.2]
showed that xM,2 gives lower bounds on c(M):

Theorem 5.7.2 ([97, 160]) Let M be a closed irreducible 3-manifold not homeo-
morphic to RP 3. Then

c(M) ≥ 1+ 2xM,2(φ).

Furthermore, if equality holds, thenM is a lens space. ��
Theorem 5.7.3 ([97, 100, 160]) Let M be a closed irreducible 3-manifold and
supposeH 1(M;Z/2Z) contains a subgroupH of rank 2. Then

c(M) ≥ 2+
∑

φ∈H\{0}
xM,2(φ).

Furthermore, if equality holds, thenM is a generalized quaternionic space. ��
Jaco, Rubinstein, Spreer and Tillmann [98, Theorem 1] also showed that another

Z/2Z-analogue of the Thurston norm gives a lower bound on the minimal number
of tetrahedra in ideal triangulations of cusped hyperbolic 3-manifolds.

For rational homology 3-spheresM , Ni and Wu [167, Corollary 1.2] gave a lower
bound on xM,2 by the d-invariant d(M, s), defined via gradings in Heegaard Floer
homology [174].

5.8 Profinite Rigidity

What properties of 3-manifolds are determined by the set of finite quotients of their
fundamental groups, or the profinite completions of their fundamental groups? We
describe results on the Thuston norm and fiberedness by Boileau and Friedl [12],
Bridson, Reid and Wilton [16, 17], and Liu [138]. We refer the reader to the survey
[190] for recent work on profinite rigidity of residually finite groups.

The profinite completion π̂ of a group π is defined to be the limit lim← π/� of
the inverse system {π/�}� , where � runs over all finite index normal subgroups of
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π . It easily follows from consideration of finite abelian quotients that if the profinite
completions π̂ and π̂ ′ of finitely generated groups π and π ′ are isomorphic, then so
are H1(π;Z) and H1(π

′;Z).
Bridson, Reid and Wilton [16, Theorem A, Corollary 1.1], [17, Theorem C]

showed the following rigidity theorems on fiberedness of 3-manifolds M with
b1(M) = 1:

Theorem 5.8.1 ([16]) LetM1 andM2 be 3-manifolds with b1(M1) = b2(M2) = 1.
Suppose that π̂1M1 and π̂1M2 are isomorphic. If M1 has nonempty incompressible
boundary and fibers over a circle such that π1M1 is isomorphic to a semidirect
product of the free group of rank r and Z, then so doesM2. ��
Theorem 5.8.2 ([17]) Let M1 and M2 be 3-manifolds with b1(M1) = b2(M2) =
1. Suppose that π̂1M1 and π̂1M2 are isomorphic. If M1 is a closed hyperbolic 3-
manifold fibering over a circle with fiber of genus g, then so isM2. ��

Using different methods, Boileau and Friedl [13, Theorems 1.1, 4.6] showed the
following theorems:

Theorem 5.8.3 ([13]) Let M1 and M2 be aspherical 3-manifolds with empty or
toroidal boundary. Suppose that there exists an isomorphism π̂1M1 → π̂1M2

such that the induced isomorphism ̂H1(M1;Z) → ̂H1(M2;Z) is induced by an
isomorphism f : H1(M1;Z)→ H1(M2;Z). Then

xM1(f
∗φ) = xM2(φ)

for φ ∈ H1(M2;Z). Furthermore, f ∗φ is fibered if and only if so is φ. ��
Theorem 5.8.4 ([13]) Let M1 and M2 be aspherical 3-manifolds with empty or
toroidal boundary such that H1(M1;Z) and H2(M2;Z) are infinite cyclic groups.
Let φ1 ∈ H1(M1;Z) and φ2 ∈ H1(M2;Z) be generators. Suppose that there exists
an isomorphism π̂1M1 → π̂1M2. Then

xM1(φ1) = xM2(φ2).

Furthermore, φ1 is fibered if and only if so is φ2. ��
The proofs of Theorems 5.8.3, 5.8.4 rest on the facts that 3-manifold groups are

good in the sense of Serre [195], and that the profinite completion of a 3-manifold
group contains enough information on certain twisted Alexander polynomials
determining the Thurston norm and fiberedness as in Theorems 5.6.8, 5.6.10.

For knots in S3 Theorems 5.8.1, 5.8.4 can be restated as follows:

Corollary 5.8.5 ([13, 16]) Let J and K be two knots in S3 such that π̂1XJ and
π̂1XK are isomorphic. Then g(J ) = g(K). Furthermore, J is fibered if and only if
K is fibered. ��
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Bridson and Reid [16, Theorem A, Proposition 3.10] showed that the profinite
completions of fundamental groups distinguish each of the complements of the
trefoil knot and the figure-eight knot, and the Gieseking manifold among 3-
manifolds. Also, Boileau and Friedl [13, Theorem 1.5] showed that every torus knot
is also distinguished among knots in S3.

For examples, Hempel’s pairs [88] give examples of Seifert fibered spaces the
profinite completions of whose fundamental groups are isomorphic but not satis-
fying the assumption as in Theorem 5.8.3. For hyperbolic 3-manifolds, Liu [138,
Theorems 1.2, 1.3] strengthen Theorem 5.8.3:

Theorem 5.8.6 ([138]) Let M1 and M2 be hyperbolic 3-manifolds. Suppose that
there exists an isomorphism  : π̂1M1 → π̂1M2. Then the following hold:

1. There exists a unit μ ∈ ̂Z such that  ∗ : Ĥ1(M)f → ̂H1(M2)f is induced by an
isomorphism f : H1(M1)f → H1(M2)f composed with the multiplication by μ.

2. We have

xM1(f
∗φ) = xM2(φ)

for φ ∈ H 1(M2;Z). Furthermore, f ∗φ is fibered if and only if so is φ.

��
Using Theorem 5.8.6 as one of the key ingredients, Liu[138, Theorem 1.1]

proved the following theorem:

Theorem 5.8.7 ([138]) For the fundamental group π of a hyperbolic 3-manifold
there exists only finitely many 3-manifold groups whose profinite completions are
isomorphic to π̂ . ��

In [12] Boileau and Friedl showed that the Thurston norms of all finite covers
of an aspherical 3-manifold determine whether it is a hyperbolic manifold, a
graph manifold, or a mixed manifold, i.e., the JSJ decomposition is nontrivial and
contains at least one hyperbolic component. Ueki [213] showed that the Alexander
polynomial of a knot in S3 is determined by the profinite completion of its knot
group.

5.9 Conjectures and Questions

We conclude by collecting some conjectures and questions on the Thurston norm
and related topics.
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5.9.1 Realization Problem

In [202, Section 4] Thurston already gave a large variety of shapes for (dual)
Thurston norm balls. However, the following naive question has been open since
the Thurston norm was introduced:

Question 5.9.1 Which polyhedrons in R
n are realized as the (dual) Thurston norm

balls of 3-manifolds? ��
See [59, Question 6.11] for a restatement of this question and another one in

terms of the universal L2-torsion, and see also [184] for a related result.

5.9.2 Complexity Functions for Circle Bundles

In Theorem 5.4.12 Friedl and Vidussi showed that for all but finitely many
circle bundles N over a non-exceptional 3-manifold M the complexity function
xN : H2(N;Z) → Z is attained by the Thurston norm xM . As remarked in [70,
Section 1.3] we can ask whether the theorem holds for all circle bundles:

Question 5.9.2 Let M be a closed irreducible 3-manifold which is not a closed
graph manifold such that�φM �= 0 for all nontrivial φ ∈ H 1(M;Z), and let p : N →
M be an oriented circle bundle. Then does the equality

xN(α) = |α · α| + xM(p∗α)

hold for any oriented circle bundle p : N → M and any α ∈ H2(N;Z)? ��

5.9.3 Twisted Alexander Polynomials for Hyperbolic Knots

Let K be a hyperbolic knot in S3 and φ ∈ H 1(XK ;Z) a generator. A holonomy
representation ρ : π1XK → PSL(2,C) of the hyperbolic structure has a lift
ρ̃ : π1XK → SL(2,C) [33, 201]. Thus Reidemeister torsion τφ⊗ρ̃ (XK) ∈ C(t) is
defined, and can be checked to be in C[t, t−1]. Considering Turaev’s refinement
of τφ⊗ρ̃ (XK), Dunfield, Friedl and Jackson [40] introduced hyperbolic torsion
polynomial TK ∈ C[t, t−1] without any indeterminacy.

Based on experimental results for knots with at most 15 crossings, Dunfield,
Friedl and Jackson [40, Conjecture 1.7] proposed the following conjecture:

Conjecture 5.9.3 ([40]) Let K be a hyperbolic knot in S3. Then

degTK = 4g(K)− 2.
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Furthermore,K is fibered if and only if the leading coefficient of TK is equal to 1.��
Morifuji and Tran [150, 152, 153] showed that Conjecture 5.9.3 holds for a

certain class of 2-bridge knots. Later, Agol and Dunfield [3] showed that equality in
Conjecture 5.9.3 holds for all libroid hyperbolic knots in S3, including all 2-bridge
knots. The class of libroid knots is closed under Murasugi sum and contains all
special arborescent knots obtained from plumbing oriented bands. See [153] for a
generalization of Conjecture 5.9.3 for links.

5.9.4 Higher-Order Alexander Polynomials and the Knot
Genus

Theorems 5.6.12, 5.6.14 naturally raise the question whether the higher-order
Reidemeister torsion determines the Thurston norm. Dubois, Friedl and Lück [38,
Conjecture 4.4] proposed the following conjecture:

Conjecture 5.9.4 ([38]) Let K be a knot in S3 and φ ∈ H 1(XK ;Z) a generator.
Then there exists an epimorphism ρ : π1XK → � onto a torsion-free elementary-
amenable group such that the pair (ρ, φ) is admissible and

degφ τρ(XK) = 2g(K)− 1.

The following theorem proved by Friedl, Schreve and Tillmann [61, Theorem 3],
in particular, shows that there are ‘enough’ epimorphisms from knot groups onto
torsion-free elementary-amenable groups:

Theorem 5.9.5 ([61]) Let M be an irreducible 3-manifold with empty or toroidal
boundary, which is not a closed graph manifold. Then π1M is a residually torsion-
free elementary amenable group, i.e., for any nontrivial γ ∈ π1M there exists an
epimorphism ρ : π1M → � onto a torsion-free elementary-amenable group such
that ρ(γ ) is nontrivial. ��

5.9.5 Lower Bounds on Complexity of 3-Manifolds

We have seen in Theorems 5.7.2, 5.7.3 that the Z/2Z-Thurston norm gives lower
bounds on the complexity of 3-manifolds.

The following question was asked by Jaco, Rubinstein and Tillmann in [99,
Section 1].

Question 5.9.6 ([99]) Determine an effective bound for the complexity of a closed
irreducible 3-manifoldM using a rank k subgroup of H 1(M;Z/2Z) for k ≥ 3. ��
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5.9.6 Thurston Norm Balls of Finite Covers

As described in [5, Proposition 5.4.9], the following is a consequence of the virtually
special theorem [2, 136, 187, 217] and the work of Cooper, Long and Reid [31]:

Theorem 5.9.7 LetM be an irreducible 3-manifold with empty or toroidal bound-
ary which is not a closed graph manifold. Then for each positive integer n there
exists a finite cover ˜M ofM such that B

˜M has at least n top-dimensional faces. ��
The following is a version of Agol’s virtual fibering theorem [1, 2] with a

generalization by Kielak [108].

Theorem 5.9.8 ([1, 2, 108]) Let M be an irreducible 3-manifold with empty or
toroidal boundary which is not a closed graph manifold. Then there exists a finite
covering p : ˜M → M such that for every nonfibered φ ∈ H 1(M;R), the pullback
p∗(φ) lies in the cone on the boundary of a fibered face of B

˜M . ��
As a corollary of Theorems 5.9.7, 5.9.8 we have the following:

Corollary 5.9.9 Let M be an irreducible 3-manifold with empty or toroidal
boundary which is not a closed graph manifold. Then for each positive integer n
there exists a finite cover ˜M ofM such that B

˜M has at least n fibered faces. ��
See also [41, 139] for related results.
The following questions (also for nonpositively curved graph manifolds in Ques-

tion 5.9.10) were asked by Aschenbrenner, Friedl and Wilton in [5, Questions 7.5.5,
7.5.6].

Question 5.9.10 ([5]) Let M be an irreducible 3-manifold with empty or toroidal
boundary which is not a closed graph manifold. Does there exist a finite cover ˜M of
M such that all top-dimensional faces of B

˜M are fibered? ��
Question 5.9.11 ([5]) Let M be an irreducible 3-manifold with empty or toroidal
boundary which is not a graph manifold. Does there exist a finite cover ˜M of M
such that at least one top-dimensional face of B

˜M is not fibered? ��
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Chapter 6
From Hyperbolic Dehn Filling
to Surgeries in Representation Varieties

Georgios Kydonakis

Abstract Hyperbolic Dehn surgery and the bending procedure provide two ways
which can be used to describe hyperbolic deformations of a complete hyperbolic
structure on a 3-manifold. Moreover, one can obtain examples of non-Haken
manifolds without the use of Thurston’s Uniformization Theorem. We review these
gluing techniques and present a logical continuity between these ideas and gluing
methods for Higgs bundles. We demonstrate how one can construct certain model
objects in representation varieties Hom (π1 (�) ,G) for a topological surface� and
a semisimple Lie groupG. Explicit examples are produced in the case of#-positive
representations lying in the smooth connected components of the SO (p, p + 1)
representation variety.

Keywords Hyperbolic Dehn surgery · Character variety · Higher Teichmüller
space · Higgs bundle · Parabolic structure · Elliptic operator

AMS Classification Primary: 53C07; Secondary: 14H60, 58D27

6.1 Introduction

A Dehn surgery on a 3-manifold M containing a link L ⊂ S3 is a 2-step process
involving the removal of an open tubular neighborhood of the link (drilling) and then
gluing back a solid torus using a homeomorphism from the boundary of the solid
torus to each of the torus boundary components ofM (filling). Of particular interest
are the many inequivalent ways one can perform the filling step of the operation,
thus providing a way to represent certain examples of 3-dimensional manifolds. In
fact, the so-called fundamental theorem of surgery theory by Lickorish and Wallace
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implies that every closed orientable and connected 3-manifold can be obtained by
performing a Dehn surgery on a link in a 3-sphere.

William Thurston introduced hyperbolic geometry into this operation, thus
opening the way to certain breakthroughs in 3-manifold theory. His hyperbolic
Dehn filling theorem implies that the complete hyperbolic structure on the interior
of a compact 3-manifold with boundary has a space of hyperbolic deformations
parameterized by the generalized Dehn filling coefficients describing the metric
completion of the ends of the interior. Among the various and deep advances
marked by this result, we highlight here the fact that using hyperbolic Dehn surgery
theory one can also obtain examples of non-Haken manifolds, whose hyperbolicity
cannot be shown by Thurston’s Uniformization Theorem for Haken manifolds. In
general, such examples of non-Haken manifolds are not easy to construct otherwise.
Deformations of hyperbolic cone structures can, moreover, be better understood
when viewed through this prism. In the course of proving Thurston’s theorem, one
shows not only the existence of a 1-parameter family of cone 3-manifold structures,
but can also obtain a path of corresponding holonomies in the representation variety
Hom(π1(M),SL(2,C)).

Deformations of hyperbolic structures on n-manifolds can be also described by
the bending procedure. This involves the construction of a family of quasiconformal
homeomorphisms of the hyperbolic (n + 1)-space, which is required to converge
under some compatibility conditions. In the case of a surface, the embedded totally
geodesic hypersurfaces are simple closed curves along which bending is possible.

Hyperbolic Dehn surgery was originally developed in dimension 3. In this
chapter we describe a set of similar ideas of surgery techniques in representation
varieties Hom(π1(M),G), where M this time is a closed connected and oriented
topological surface of genus g ≥ 2 and G is a semisimple Lie group. The
Teichmüller space, viewed as the moduli space of marked hyperbolic structures
on �, can be realized as a connected component of the representation variety
Hom(π1(M),PSL(2,R)). The recently-emerged field of higher Teichmüller theory
involves the study of certain connected components of the representation varieties
Hom(π1(M),G), which share essential geometric, topological and dynamical
properties with the classical Teichmüller space.

We describe here a gluing construction in Hom(π1(M),G) “in the tradition”
of Thurston’s hyperbolic Dehn filling procedure. The parameters involved in this
construction are the genus of the surface � and the holonomy of a surface group
representation along the boundary of �.

The non-abelian Hodge correspondence referring to a homeomorphism between
representation varieties and moduli spaces of Higgs bundles over a Riemann surface
(with underlying topological surface � as above) allows us to develop a gluing
procedure for the corresponding holomorphic objects, and this makes it easier to
determine the connected component where these newly constructed model objects
lie, due to an explicit computation of appropriate topological invariants that emerge
for their holomorphic counterparts. The deformations involved in the construction
are rather expressed in terms of appropriate complex gauge transformations on these
holomorphic objects.
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In this way, one can construct specific models in certain subsets of representation
varieties Hom(π1(M),G), that are hard to be obtained otherwise; in particular,
model representations that do not factor as ρ : π1 (�) → SL (2,R) → G. These
models can be used in turn to describe their deformations in the representation
variety and use them as a means to study open subsets (or connected components)
of objects with certain geometric properties. As an example, we study here model
#-positive representations that exhaust the smooth p · (2g − 2) − 1 exceptional
components of the SO (p, p + 1)-character variety for p > 2; similar models have
been also constructed for the 2g − 3 exceptional components of the Sp(4,R)-
character variety.

This comparison of ideas points towards further ways in developing tools to study
certain subsets of representation varieties, quantitative aspects of this holomorphic
gluing strategy or universal bounds for the rational parameters involved.

6.2 Hyperbolic Dehn Surgery

In this section we review the basic concepts involved in the hyperbolic Dehn
surgery operation. Even though the results of the technique summarized here do not
directly apply for the case of character varieties that we study next, these provide
a motivation and an interesting counterpoint to the fundamental ideas behind these
surgery methods.

6.2.1 Dehn Surgery

Dehn surgery is a method that has found profound relevance in 3-manifold topology
and knot theory. It provides a way to represent 3-dimensional manifolds using a
“drilling and filling” process. First, a solid torus is removed from a 3-manifold
(drilling) and then it is re-attached in many inequivalent ways (filling). This two-
stage operation was introduced by Max Dehn in Kapitel II of his 1910 article Über
die Topologie des dreidimensionales Raumes [27] as a method for constructing
Poincaré spaces, that is, non-simply connected 3-manifolds with the same topology
as the 3-sphere. The texts of Boyer [14], Gordon [40], [41], Luecke [75] offer a
broad survey on this construction with numerous references for further study.

The basic parameter of the Dehn surgery operation, in particular referring to the
filling stage of the operation, is that of a slope on a torus; we briefly introduce this
next. LetM be an orientable 3-manifold and T ⊂ ∂M , a toral boundary component
of M . Denote by K a knot lying in the interior of M and let N(K) ⊂ int(M) be
a closed tubular neighborhood of K . For a homeomorphism f : ∂ (S1 ×D2

) →
T , consider the identification space M (T ; f ) := (

S1 ×D2
)∪fM obtained by

identifying the points of ∂
(

S1 ×D2
)

with their images by f . We shall call
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M (T ; f ), a Dehn filling of M along T . A Dehn surgery on a knot K is then a
filling of the exterior of the knotK ,MK :=M\int (N (K)), along ∂N (K).

Note that a filling M (T ; f ) depends only on the isotopy class of the attaching
homeomorphism f : ∂ (S1 ×D2

) → T . In fact, the dependence of f is much
weaker, for, if C0 = {pt} × ∂D2 ⊂ ∂ (S1 ×D2

)

, then M (T ; f ) depends only on
the isotopy class of the curve f (C0) in T .

Definition 6.1 A slope on a torus T is defined as the isotopy class of an essential
unoriented simple closed curve on T . IfK is a knot in a 3-manifoldM , then a slope
of K is any slope on ∂N (K).

One has the following proposition:

Proposition 6.1 A Dehn filling of M along a torus T ⊂ ∂M is determined up to
orientation preserving homeomorphism, by a slope on T . Furthermore, any slope
on T arises as the slope of a Dehn filling ofM .

The set of slopes on a torus T is parameterized by the set of ±-pairs of
primitive homology classes in H1 (T ). In particular, for the 3-sphere S3 with its
usual orientation based on the right-hand rule, the set of slopes of knots in S3 is

canonically identified with Q ∪
{

1
0

}

; we may thus realize a slope r of a knot K by

a fraction p
q
∈ Q ∪

{

1
0

}

.

Definition 6.2 Let K be a knot in S3. An integral slope of K is a slope corre-
sponding to an integer. We will call integral surgery a surgery on K whose slope is
integral.

One may now consider the problem of existence and uniqueness of a surgery
presentation of a given closed connected orientable 3-manifold by surgery on a finite
number of knots in S3. By a set of surgery data (L; r1, . . . , rn) we shall mean a link
L = K1 ∪ · · · ∪ Kn lying in the interior of a 3-manifoldM , together with a slope
ri for each knot Ki . Let L (r1, . . . , rn) denote the manifold obtained by performing
the Dehn surgeries prescribed by the surgery data. In the special case whenM = S3

and each ri is an integral slope, the surgery data (L; r1, . . . , rn) is often called a
framed link.

The following result is known as the fundamental theorem of surgery theory; it
was proved using different and independent approaches by Lickorish and Wallace:

Theorem 6.1 (Lickorish [74], Wallace [105]) Let M be a closed connected
orientable 3-manifold. There exists a framed link (L; r1, . . . , rn) in S3 such that
M is homeomorphic to L (r1, . . . , rn).

For the problem of uniqueness of a surgery presentation of a given manifold,
Kirby [59] introduced two moves on (integrally) framed links which do not alter
the presented manifold; he also proved that two framed links represent manifolds
which are orientation preserving homeomorphic if and only if they are related by
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a finite sequence of these moves, nowadays called Kirby moves. This problem was
completely analyzed by Rolfsen in [90].

6.2.2 Hyperbolic Dehn Surgery

A breakthrough in 3-manifold theory as well as in knot theory was signified by the
introduction by Thurston of hyperbolic geometry into the Dehn surgery operation.
Necessary and sufficient conditions for the complete gluing of a hyperbolic 3-
manifold were given by Seifert in [94]. The concept of link of a cusp point of a
hyperbolic 3-manifold was introduced by Thurston in his seminal 1979 lecture notes
[101].

The celebrated hyperbolic Dehn filling theorem of Thurston (Theorem 5.9 in
[101]) provides a parameterization of a set of hyperbolic deformations of a complete
hyperbolic structure on the interior of a compact 3-manifold with boundary;
the parameters, called generalized Dehn filling coefficients, describe the metric
completion of the ends of the interior.

Among the various and deep advances in 3-manifold theory marked by this
result, we will highlight here the fact that using hyperbolic Dehn surgery theory
one can also obtain examples of non-Haken manifolds, whose hyperbolicity cannot
be shown by Thurston’s Uniformization Theorem for Haken manifolds; in fact,
the proof of Thurston’s theorem does not depend on uniformization. Deformations
of hyperbolic cone structures can, moreover, be better understood when viewed
through this prism. Another important aspect to be stressed next is the role
the generalized Dehn filling coefficients play in the perception of the spaces of
hyperbolic deformations parameterized by these coefficients.

The Theorem was first proven in Thurston’s notes [101] in the manifold case and
has later been extended in the case of orbifolds by Dunbar and Meyerhoff [30]. A
detailed review of the proof in both cases can be found in Appendix B of [13] using
(in the manifold case) an argument of Zhou [111]. We will follow next the approach
of [13] for our purposes.

LetM be a compact 3-manifold with boundary ∂M = T 2
1 ∪· · ·∪T 2

k , a non-empty
union of tori, whose interior int (M) is complete hyperbolic with finite volume. For
each boundary component T 2

j of M , with j = 1, . . . , k, fix two oriented simple

closed curvesμj and λj generating the fundamental group π1

(

T 2
j

)

. The holonomy

of μj and λj can be viewed as affine transformations of C = ∂H3\ {∞} (∞ being a
point fixed by μj and λj ). Then, one can introduce holomorphic parameters uj and
vj as branches of the logarithm of the linear part of the holonomy around μj and
λj respectively. For U ⊂ C

k a neighborhood of the origin, associate to each u ∈ U
a point ρu ∈ X (M) = Hom (π1 (M) ,SL (2,C))//SL (2,C) in the SL (2,C)-
character variety; this can be done by considering an analytic section

s : V ⊂ X (M)→ Hom (π1 (M) ,SL (2,C)) ,
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such that s (χ0) = ρ0, where ρ0 is a lift of the holonomy representation of int (M)
and χ0 ∈ X (M) its character. Then, one has the following important lemma:

Lemma 6.1 (Lemma B.1.6 in [13]) For j = 1, . . . , k, there is an analytic map
Aj : U → SL (2,C) such that for every u ∈ U :

ρu
(

μj
) = εjAj (u)

(

euj/2 1
0 e−uj /2

)

Aj(u)
−1, with εj = ±1,

while the commutativity between λj and μj implies the following:

Lemma 6.2 (Lemma B.1.7 in [13]) There exist unique analytic functions vj , τj :
U → C such that vj (0) = 0 and, for every u ∈ U ,

ρu
(

λj
) = ±Aj (u)

(

evj (u)/2 τj (u)

0 e−vj (u)/2
)

Aj(u)
−1.

In addition:

1. τj (0) ∈ C− R;
2. sinh

(

vj /2
) = τj sinh

(

uj/2
)

;
3. vj is odd in uj and even in ul , for l �= j ;
4. vj (u) = uj

(

τj (u)+O
(|u|2)).

We are finally set to define the generalized Dehn filling coefficients:

Definition 6.3 (Thurston [101]) For u ∈ U we define the generalized Dehn filling
coefficients of the j -th cusp

(

pj , qj
) ∈ R

2 ∪ {∞} ∼= S2 by the formula

{ (

pj , qj
) = ∞, if uj = 0

pjuj + qjvj = 2π
√−1 if uj �= 0.

These coefficients are well-defined and the map

U → S2 × · · · × S2

u 	→ ((p1, q1) , . . . , (pk, qk))

defines a homeomorphism between U and a neighborhood of {∞, . . . ,∞}.
Remark 6.1 If pj , qj ∈ Z are coprime, then the completion at the j -th torus is a
non-singular hyperbolic 3-manifold, which topologically is the Dehn filling with
surgery meridian pjμj + qjλj . One may also perform (p, q)-Dehn surgery also
when p and q are not necessarily coprime integers; this refers to orbifold Dehn
surgery, as in [30]. For instance, (p, 0)-Dehn surgery on a knot K ⊂ S3 provides
an orbifold with base S3 and singular set the knotK with cone angle 2π/p .
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The statement of the theorem is the following:

Theorem 6.2 (Hyperbolic Dehn Filling Theorem, Thurston [101]) Let M be a
compact 3-manifold with boundary ∂M = T 2

1 ∪ · · · ∪ T 2
k , a non-empty union of

tori, whose interior int (M) is complete hyperbolic with finite volume. There exists
a neighborhood of {∞, . . .∞} in S2 × · · · × S2, such that the complete hyperbolic
structure on int (M) has a space of hyperbolic deformations parameterized by the
generalized Dehn filling coefficients in this neighborhood.

The first major step in the proof involves the construction of the algebraic
deformation of the holonomies around each boundary component of the manifold
M . The second step is to associate generalized Dehn filling coefficients to the
aforementioned deformation. The third and final step in the proof involves the
construction of the developing maps with the given holonomies. In particular,

let D0 : ˜int (M) → H
3 be the developing map for the complete structure on

int (M) with holonomy ρ0. Then, for each u ∈ U , there is a developing map

Du : ˜int (M) → H
3 with holonomy ρu, such that the completion of int (M) is

given by the generalized Dehn filling coefficients of u.
We remark here that the family of maps {Du}u∈U is continuous in u in the

compact C1-topology and that the result above shows not only the existence of
a 1-parameter family of cone 3-manifold structures, but also gives a path of
corresponding holonomies in the representation variety Hom (π1(M),SL (2,C)).

6.2.3 Haken Manifolds and Thurston’s Uniformization

The notion of Haken manifold involves a large class of closed 3-manifolds and play
an important role in the study of the topology of 3-manifolds. These were introduced
by Wolfgang Haken [48] as a class of compact irreducible 3-manifolds containing
incompressible surfaces, for which he showed in [49] that they admit a hierarchy
to a union of 3-balls by cutting along essential embedded surfaces. This property
allows one to produce certain statements for Haken manifolds using an induction
process. Let us next state these definitions more rigorously:

Definition 6.4 Let M be a 3-manifold. A properly embedded surface � ⊂ M is
called incompressible if the map between fundamental groups π1 (�) → π1 (M)

is injective. Otherwise, the surface is called compressible. A torus in an irreducible
3-manifold is compressible if and only if it bounds a solid torus.

Definition 6.5 A compact orientable 3-manifoldM is called a Haken manifold if it
is irreducible and contains an orientable incompressible surface � ⊂ M .

In [49], Haken associated a notion of complexity to a Haken manifold, which
decreases when one cuts the Haken manifold along an incompressible surface; this
can be iterated in order to reduce the complexity until we obtain 3-balls. This
approach was a key ingredient in the proof of the Waldhausen theorem showing
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that closed Haken manifolds are topologically characterized by their fundamental
groups:

Theorem 6.3 (Waldhausen, Corollary 6.5 in [103]) LetM andM ′ be two Haken
manifolds and let π1 (M)→ π1

(

M ′) be an isomorphism between their fundamental
groups. ThenM andM ′ are homeomorphic.

An algorithm to determine whether a 3-manifold is Haken was given by Jaco
and Oertel [56]. Thurston’s studies of various examples of 3-manifolds admitting
complete hyperbolic metrics lead to his proof of a “uniformization theorem”
satisfied by this large class of Haken manifolds:

Theorem 6.4 (Uniformization Theorem for Haken Manifolds, Thurston [101])
Any atoroidal Haken manifold M admits a hyperbolic structure. By atoroidal here
is meant that any embedded incompressible torus is boundary parallel, that is, it
can be isotoped into a boundary component ofM .

Thurston’s proof uses the hierarchy property of Haken manifolds. By the
Waldhausen theorem, (a Haken manifold)M can be decomposed into a finite sum of
closed balls B3 by incompressible surfaces; in other words, there exists a sequence
of manifolds with boundary

M 	→ M1 	→ . . . 	→ B3 ∪ . . . ∪ B3.

Then, starting with hyperbolic structures on the balls B3 we may get a hyperbolic
structure by gluing at each step in this sequence from these balls back to M . A full
proof of this theorem was never published by Thurston; fairly detailed outlines of
the proof can be found in the articles by Morgan [81] or Wall [104]. It also follows
from Perelman’s proof of the more general geometrization conjecture of Thurston
constructing the Ricci flow with surgeries on 3-manifolds [84]; see also [7], [82].

The geometrization conjecture evolved from Thurston’s considerations that a
similar uniformization theorem as for Haken manifolds should hold for all closed
3-manifolds. An important fact considered was that non-Haken manifolds do not
contain incompressible surfaces, thus it is impossible to decompose those into
simpler pieces. One way by which Thurston proved that non-Haken atoroidal 3-
manifolds can be equipped with a hyperbolic structure was by deforming the
structure of a cone manifold by increasing its cone angle.

Furthermore, using hyperbolic Dehn surgery it is possible to obtain non-Haken
manifolds, whose hyperbolicity cannot be shown by the uniformization theorem.
Such examples are not easy to construct otherwise; see Reid [89] for explicit
examples of non-Haken hyperbolic 3-manifolds with a finite cover which fibers over
the circle. Moreover, deformations of hyperbolic structures can be described more
concretely using the framework of hyperbolic Dehn surgery.

In [53] Hodgson and Kerckhoff established a universal upper bound on the
number of non-hyperbolic Dehn surgeries per boundary torus, thus giving a
quantitative version of Thurston’s hyperbolic Dehn filling theorem; see also the
later article of Lackenby and Meyerhoff [71] on the maximal number of exceptional
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Dehn surgeries, providing a proof to Gordon’s conjecture [41] on the number of
exceptional slopes. For example, Dehn surgeries on the figure-eight knot produce
non-Haken, hyperbolic 3-manifolds except in ten cases. For the exterior of the
figure-eight knot in S3 the exceptional surgeries, that is, the ones which do not result
in a hyperbolic structure, are

{(1, 0) , (0, 1) ,± (1, 1) ,± (2, 1) ,± (3, 1) ,± (4, 1)} .

6.3 Deformations of Hyperbolic Structures by Bending

A deformation method of hyperbolic structures on n-manifolds called bending is
suggested by the famous “Mickey Mouse” example of Thurston (Example 8.7.3 in
[101]). Given a hyperbolic structure on a genus two surface, the structure can be
considered to arise from the bending of the surface along a simple closed geodesic
by an angle π2 . If the geodesic is short enough, this will give rise to a quasi-Fuchsian
group. In order to extend this idea to n dimensions, the manifold is required to
contain a totally geodesic submanifold of codimension one along which the bending
can take place, thus defining a deformation. That there are compact hyperbolic n-
manifolds with arbitrarily many such submanifolds was shown by Millson in [79].

For n = 3, hyperbolic structures of infinite volume are related to Kleinian
groups which are discrete subgroups of PSL(2,C) acting discontinuously on part
of S2. In turn, deformations of Kleinian groups can be studied by analyzing the
conformal structures on the components of the boundary of the quotient space; a
similar phenomenon occurs in higher dimensions (see the works of Apanasov and
Tetenov [2, 3]).

Christos Kourouniotis introduced in [62] a deformation technique of hyperbolic
structures on n-manifolds via the construction of a family of quasiconformal
homeomorphisms of the hyperbolic (n+ 1)-space. His construction of the bending
homeomorphism is similar to the construction by Wolpert in [110] of a homeomor-
phism giving rise to the Fenchel–Nielsen deformation; cf. also the work of Johnson
and Millson [57] for an algebraic version of the bending deformation.

The idea in [62] is to construct a quasi-conformal homeomorphism compatible
with a subgroup � of Gn step by step, as the infinite product of a sequence of
homeomorphisms; this product is required to converge and to be compatible with �.

In the case of a surface, the embedded totally geodesic hypersurfaces are simple
closed curves along which bending is possible. One could also extend in this case
the definition of bending to the case of a geodesic lamination, as for instance in
the work of Epstein and Marden [31]. Still in this surface case, Kourouniotis has
studied in [63] the possibility of bending quasi-Fuchsian structures. Namely, for a
closed surface �, the space QF(�) of quasi-Fuchsian structures on � is a quotient
of the space of injective homomorphisms ρ : π1 (�)→ PSL (2,C) with Imρ = �
and � × I ∼= H

3/� ; Fuchsian points are classes of homomorphisms with image
in PSL (2,R) and correspond to hyperbolic structures on �. For a simple closed
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geodesic γ ⊂ �, there is a 1-parameter family of pairs (ft , ρt ), where ft : �̃→ H
3

and ρt : π1 (�)→ PSL (2,C), such that ft is ρt -equivariant, for every t ≥ 0. Note
that for t = 0, ρ0 is Fuchsian and f0 equivariantly embeds �̃ as a hyperbolic plane in
the hyperbolic 3-space H3. This deformation is induced by a 1-parameter family of
isometries from PSL (2,C). When the bending parameter t is small enough, then ft
is an embedding and ρt is an isomorphism of π1 (�) onto a quasi-Fuchsian subgroup
of PSL (2,C).

In [64], Kourouniotis studies some quantitative aspects of this bending construc-
tion, while universal bounds on the bending lamination of a quasi-Fuchsian group,
hence of the bending deformation, were obtained by Bridgeman [16, 17].

6.4 Higher Teichmüller Theory

The newly-emerged field of higher Teichmüller theory concerns the study of
connected components of character varieties for semisimple real Lie groups that
entirely consist of discrete and faithful representations. We summarize here some
of the very basic topological and geometric properties of these spaces, as well
as a recent unified approach to the subject introduced by Olivier Guichard and
Anna Wienhard, which seems to be identifying all the cases when such components
emerge.

6.4.1 The Teichmüller Space

Let � be a closed connected and oriented topological surface with negative Euler
characteristic χ (�) = 2 − 2g < 0, for g the genus of �. The Teichmüller
space T (�) of the surface � is defined as the space of marked conformal
classes of Riemannian metrics on �. The Uniformization Theorem of Riemann–
Poincaré–Koebe (see [26] for a complete account) guarantees the existence of a
unique hyperbolic metric with constant curvature -1 in each conformal class. The
Teichmüller space can be thus identified with the moduli space of marked hyperbolic
structures. Moreover, the mapping class group Mod (�), that is, the group of all
orientation-preserving diffeomorphisms of� modulo the ones which are isotopic to
the identity, acts naturally on T (�) by changing the marking; this action is properly
discontinuous and the quotient is the moduli space M (�) of Riemann surfaces of
topological type given by �.

A well-known fact about the Teichmüller space is that it is homeomorphic to
R

6g−6. There are several ways to see this. One direct way is by parameterizing
T (�) by Fenchel–Nielsen coordinates—a complete proof may be found in [88],
Theorem 9.7.4. Another method is to use Teichmüller’s theorem to identify T (�)
with the unit ball in the vector space Q(M) of holomorphic quadratic differentials
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on a Riemann surface M homeomorphic to �—a detailed proof can be found in
[55], Theorem 7.2.1. In fact, T (�) can be identified with the entire vector space
Q(M) using Hopf differentials of harmonic maps from M to a Riemann surface
of topological type given by �—see [108] for this approach. An application of
the Riemann-Roch theorem finally provides that dimRQ(M) = 6g − 6, for genus
g ≥ 2; we refer, for instance, to Corollary 5.4.2 in [58] for a proof.

However, what opens the way from the classical Teichmüller theory to what is
today called Higher Teichmüller Theory is the algebraic realization of the space
T (�) as a subspace of the moduli space of representations of the fundamental group
of � into the isometry group of the hyperbolic plane. This algebraic realization is
conceived through the holonomy representation of a hyperbolic structure. Indeed,
for (M, f ) a hyperbolic structure over �, the orientation preserving homeomor-
phism f : � → M induces an isomorphism of fundamental groups f∗ : π1 (�)→
π1 (M) and π1 (M) acts as the group of deck transformations by isometries on M̃ ∼=
H

2. But, since PSL (2,R) ∼= Isom+ (
H

2
)

, the orientation preserving isometries, it
follows that this action induces a homomorphism ρ : π1 (�) → PSL (2,R) which
is well-defined up to conjugation by PSL (2,R). This homomorphism is called the
holonomy of the hyperbolic structure (M, f ). The representation variety

R (PSL (2,R)) := Hom (π1 (�) ,PSL (2,R))//PSL (2,R)

is the largest Hausdorff quotient of all group homomorphisms ρ : π1 (�) →
PSL (2,R) modulo conjugation by PSL (2,R). Furthermore, representations in-
duced by equivalent hyperbolic structures using the above approach are conjugate
by an element in PSL (2,R) and the converse is true.

On the other hand, Weil in [106] (see also Theorem 6.19 in [87]) proved that
the set of discrete such embeddings {π1 (�) ↪→ PSL (2,R)} is open in the quotient
space R (PSL (2,R)). This open subset is called the Fricke space F (�) of the
topological surface �. Fricke spaces first appeared in the work of Fricke and Klein
[35] defined in terms of Fuchsian groups (see [6] for an expository account).

The connected components of the representation variety R (PSL (2,R)) are
distinguished in terms of the Euler class e (ρ) of a representation ρ; such a
topological invariant for a representation ρ can be considered in the realm of the
Riemann–Hilbert correspondence and the associated flat PSL (2,R)-bundle.

In [39], Goldman showed that this Euler class distinguishes the connected
components and takes values in Z∩[χ (�) ,−χ (�)]. In particular, the Fricke space
F (�) is identified with the component maximizing this characteristic class (consist-
ing of representations that correspond to holonomies of hyperbolic structures on�).

To conclude this discussion about the Teichmüller space, the Uniformization
Theorem implies that F (�) and T (�) can be identified, therefore the Teichmüller
space is a connected component of the representation varietyR (PSL (2,R)). In fact,
it is one of the two connected components entirely consisting of discrete and faithful
representations ρ : π1 (�)→ PSL (2,R); the other such component is T

(

�̄
)

, that
is, the Teichmüller space of the surface �̄ with the opposite orientation.
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Since the representation variety can be considered for any reductive Lie groupG,
it is natural to ask whether there are special connected components of it for higher
rank Lie groupsG than PSL (2,R), which consist entirely of representations related
to significant geometric or dynamical structures on the fixed topological surface.
This question leads to the introduction of higher Teichmüller spaces as we shall see
next.

6.4.2 Higher Teichmüller Spaces

Let� be a closed oriented (topological) surface of genus g. The fundamental group
of � is described by

π1 (�) =
〈

a1, b1, . . . , ag, bg

∣

∣

∣

∏

[ai, bi] = 1
〉

,

where [ai, bi] = aibia
−1
i b

−1
i is the commutator. The set of all representations of

π1 (�) into a connected reductive real Lie groupG, Hom (π1 (�) ,G), can be natu-
rally identified with the subset ofG2g consisting of 2g-tuples

(

A1, B1, . . . , Ag, Bg
)

satisfying the algebraic equation
∏

[Ai,Bi ] = 1. The group G acts on the space
Hom (π1 (�) ,G) by conjugation

(g · ρ) = gρ (γ ) g−1,

where g ∈ G, ρ ∈ Hom (π1 (�) ,G) and γ ∈ π1 (�), and the restriction of this
action to the subspace Homred (π1 (�) ,G) of reductive representations provides
that the orbit space is Hausdorff. Here, by a reductive representation we mean
one that composed with the adjoint representation in the Lie algebra of G can be
decomposed as a sum of irreducible representations. When G is algebraic, this is
equivalent to the Zariski closure of the image of π1 (�) in G being a reductive
group. Define the moduli space of reductive representations of π1 (�) into G to be
the orbit space

R (G) = Homred (π1 (�) ,G)/G.

The following theorem of Goldman [38] shows that this space is a real analytic
variety and so R (G) is usually called the character variety:

Theorem 6.5 (Goldman [38]) The moduli space R (G) has the structure of a real
analytic variety, which is algebraic if G is algebraic and is a complex variety if G
is complex.

Higher Teichmüller Theory is concerned with the study of the properties of
fundamental group representations lying in certain subsets of the character variety
R (G), for simple real groups G. An abundance of methods from geometry, gauge
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theory, algebraic geometry and dynamics is used to approach these subsets, many
methods of which provided by the non-abelian Hodge theory for the moduli space
R (G). The term higher Teichmüller space originates in the work of Vladimir Fock
and Alexander Goncharov [33], who developed a more algebro-geometric approach
to Lusztig’s notion of total positivity in the context of general split real semisimple
reductive Lie groups (see [76]) and defined positive representations of the funda-
mental group π1(�) into these groups; among establishing significant geometric
properties, Fock and Goncharov construct in [33] all positive representations and
show that they are faithful, discrete and positive hyperbolic. Today, the term refers
to connected components of the character variety in a broader sense:

Definition 6.6 Let � be a closed connected oriented topological surface of genus
g ≥ 2 and G a semisimple real Lie group. A higher Teichmüller space is a
connected component of the character variety R (G) that entirely consists of faithful
representations with discrete image.

Several essential features of higher Teichmüller spaces can be traced back to the
ideas and work of Thurston. For instance, Thurston’s shear coordinates have been
extended in this setting by Fock and Goncharov [33], and are sometimes called
Fock–Goncharov coordinates; noncommutative coordinates on the spaces of framed
and decorated fundamental group representations for a surface with boundary into
the group Sp (2n,R) have been introduced by Alessandrini, Guichard, Rogozin-
nikov and Wienhard in [1]. Labourie and McShane [70] studied cross ratios and
McShane–Mirzakhani identities in the case G = PSL(n,R) and gave explicit
expressions of these generalized identities in terms of a suitable choice of Fock–
Goncharov coordinates; see also the work of Vlamis and Yarmola [102] for a
generalization of Basmajian’s identity for Hitchin representations into PSL(n,R),
as well as the article of Fanoni and Pozzetti [32] for Basmajian-type inequalities
for maximal representations ρ : π1(�) → Sp (2n,R). Hitchin and maximal
representations, in particular, lie in higher Teichmüller spaces and will be briefly
reviewed below. Generalizations of the McShane identities for higher Teichmüller
spaces were obtained by Huang and Sun in [54]; these are expressed in terms of
simple root lengths, triple ratios and edge functions. Le in [72] gave a definition
of a higher lamination in the spirit of Thurston for the space of framed G-local
systems over � and showed that this coincides with the approach of Fock and
Goncharov [33] as the tropical points of a higher Teichmüller space. Another
example is the pressure metric for Anosov representations from [18, 19], which
can be viewed as a generalization of the Weil–Peterson metric on the Teichmüller
space as seen by Thurston. Moreover, generalizations of the Collar Lemma from
hyperbolic geometry to Hitchin representations and to maximal representations have
been also considered in [73] and [22] respectively (see also [8]).

Examples, however, of higher Teichmüller spaces appeared long before the
term was invented. For an adjoint split real semisimple Lie group G, there exists
a unique embedding π : SL (2,R) → G, which is the associated Lie group
homomorphism to a principal 3-dimensional subalgebra of g, Kostant’s principal
subalgebra sl (2,R) ⊂ g (see [61]). For a fixed discrete embedding ι : π1 (�) →



214 G. Kydonakis

SL (2,R), Nigel Hitchin in [52] showed that the subspace containing π ◦ ι :
π1 (�) → G is a connected component and, in fact, topologically trivial of
dimension (2g − 2) dimG. In the special case when the group is G = PSL (2,R),
this component is the Teichmüller space.

Following the work of Hitchin, it became apparent that the spaces identified,
now called Hitchin components, include representations with important geometric
features. For instance, Labourie introduced in [68] the notion of an Anosov represen-
tation and used techniques from dynamical systems to prove (among other essential
geometric properties) that representations lying inside the Hitchin component for
G = PSL (n,R), PSp (2n,R) or PO (n, n+ 1) are faithful with discrete image; we
refer the reader to [18, 43, 44, 69, 70, 73, 85] for subsequent works on the geometric
and dynamical properties of representations in the Hitchin components.

The second family of Lie groups G where components of discrete and faithful
representations have been detected, is the family of Hermitian Lie groups of
non-compact type, that is, the symmetric space associated to G is an irreducible
Hermitian symmetric space of non-compact type. In this case, a characteristic
number called the Toledo invariant of a representation ρ : π1 (�) → G can be
defined as the integer

Tρ :=
〈

ρ∗ (κG) , [�]
〉

,

where ρ∗(κG) is the pullback of the Kähler class κG ∈ H 2
c (G,R) of G and [�] ∈

H2 (�,R) is the orientation class. The absolute value of the Toledo invariant has an
upper bound of Milnor–Wood type

∣

∣Tρ
∣

∣ ≤ (2g − 2) rk (G) (6.1)

and a representation ρ : π1 (�) → G is called maximal when this upper bound
is achieved. Subspaces of maximal representations also have interesting geometric
and dynamical properties and, in particular, consist entirely of discrete and faithful
representations, as seen in [20] and [21].

It is also interesting to note at this point that in the case when the group G is
the group PSL (2,R), the Toledo invariant is actually the Euler class, Inequality
(6.1) is the Milnor–Wood inequality for the Euler class and the space of maximal
representations in this case is identified with the Teichmüller space, as in [39].

We refer the reader to the survey articles of Wienhard [107] and Pozzetti [86] for
a broader presentation of the geometric properties of higher Teichmüller spaces, as
well as for an overview of the similarities and differences between these spaces and
the classical Teichmüller space.
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6.4.3 �-Positive Representations

The special connected components introduced for the two families of Lie groups
above, namely the adjoint split real semisimple Lie groups and the Hermitian Lie
groups on non-compact type share (among many other fundamental properties) a
common characterization that relates to the existence of a continuous equivariant
map sending positive triples in RP

1 to positive triples in certain flag varieties
associated with the Lie group G. This property was identified by Labourie [68],
Guichard [43] and Fock–Goncharov [33] in the case of split semisimple real Lie
groups, and by Burger–Iozzi–Wienhard [21] for Hermitian Lie groups of non-
compact type.

This in turn provided the motivation to propose in [45] that the characterization
above in terms of positivity can, in fact, distinguish all higher Teichmüller spaces.
We next include more details about this general conjectural picture; for complete
references the reader is directed to the original article of Guichard and Wienhard
[45].

The definition of a #-positive structure for a real semisimple Lie group G is a
generalization of Lusztig’s total positivity condition in [76] and is given in regards
to properties of the Lie algebra of parabolic subgroups P# < G defined by a
subset of simple positive roots # ⊂ �. In these terms, let u# := ∑

α∈�+#
gα, for

�+# = �+\Span (�−#), where �+ denotes the set of positive roots, and then the
standard parabolic subgroup P# associated to # ⊂ � is the normalizer in G of u#.
The group P# is the semidirect product of its unipotent radical U# := exp (u#).
Consider the Levi subgroup L# := P# ∩ P opp

# , where P opp
# is the normalizer in G

of uopp
# := ∑

α∈�+#
g−α . The Levi factor L# acts on u# via the adjoint action. Denote

by L0
# the component of L# containing the identity.

For z#, the center of the Lie algebra l# := Lie (L#), u# can be decomposed into
weight spaces

u# =
∑

β∈z∗#
uβ,

where uβ := {N ∈ u# |ad (Z)N = β (Z)N, for every Z ∈ z# }.
Definition 6.7 (Guichard–Wienhard, Definition 4.2 in [45]) LetG be a semisim-
ple Lie group with finite center and # ⊂ � a subset of simple roots. The group G
admits a #-positive structure if for all β ∈ #, there exists an L0

#-invariant sharp
convex cone in uβ .

A central result in [45] provides that the semisimple Lie groupsG that can admit
a #-positive structure are classified as follows:
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Theorem 6.6 (Guichard–Wienhard, Theorem 4.3 in [45]) A semisimple Lie
group G admits a #-positive structure if and only if the pair (G,#) belongs to
one of the following four cases:

1. G is a split real form and # = �.
2. G is a Hermitian symmetric Lie group of tube type and# = {αr }.
3. G is a Lie group locally isomorphic to a group SO (p, q), for p �= q , and # =
{

α1, . . . , αp−1
}

.
4. G is a real form of the groups F4, E6, E7, E8 with restricted root system of type
F4, and# = {α1, α2}.
In order to define the notion of a positive triple in the generalized flag variety

G/P# for a semisimple Lie group G with a #-positive structure, one needs to
introduce the notion of a #-positive semigroup. First, associate to # a subgroup
W(#) of the Weyl groupW as follows: The groupW is generated by the reflections
sα , for α ∈ �; set σβ = sβ for all β ∈ # − {β#} and define σβ# to be the longest
element of the Weyl groupW{β#}∪(�−#) of the sub-root system generated by {β#}∪
(�−#). Define now the subgroup ofW ,

W(#) = 〈

σβ
〉

β∈#.

The group W(#) acts on the weight spaces u#, for β ∈ span(#). Denote by w0
#,

the longest element in W(#) and consider a reduced expression w0
# = σi1 · · ·σil .

Then, for c0
β ⊂ u#, the interior of the L0

#-invariant closed convex cone, there is a
map for every β ∈ # defined by

Fσi1 ···σil : c0
βi1
× · · · × c0

βil
→ U#

(

vi1 , . . . , vil
) 	→ χβi1

(

vi1
) · . . . · χβil

(

vil
)

,

where, for any β ∈ #, the map χβ : u# → Uβ ⊂ U# with v 	→ exp (v) is
considered. The#-positive semigroup of U# is now defined as follows:

Theorem 6.7 (Guichard–Wienhard, Theorem 4.5 in [45]) The imageU>0
# of the

map Fσi1 ···σil defined above is independent of the reduced expression of w0
#.

One may now define positive triples in the generalized flag variety:

Definition 6.8 Fix E# and F# to be the standard flags in G/P# such that
StabG (F#) = P# and StabG (E#) = P

opp
# . For any S# ∈ G/P# transverse to

F#, there exists uS# ⊂ U# such that S# = uS#E#. The triple (E#, S#, F#) in the
generalized flag variety G/P# will be called #-positive, if uS# ∈ U>0

# , for U>0
#

the #-positive semigroup of U#.
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The definition of a #-positive fundamental group representation is now the
following:

Definition 6.9 (Guichard–Wienhard, Definition 5.3 in [45]) Let � be a closed
connected and oriented topological surface of genus g ≥ 2 and let G be a
semisimple Lie group admitting a #-positive structure. A representation of the
fundamental group of � into G will be called #-positive, if there exists a ρ-
equivariant positive map ξ : ∂π1 (�) = RP

1 → G/P# sending positive triples
in RP

1 to #-positive triples in G/P# .

In their recent article [47], Guichard, Labourie and Wienhard show that #-
positive representations are #-Anosov, thus discrete and faithful, and that, in fact,
for the four families of semisimple Lie groupsG listed in Theorem 6.6 above, there
are higher Teichmüller spaces in the character variety:

Theorem 6.8 (Guichard–Labourie–Wienhard, Theorem A in [47]) Let G be
a semisimple Lie group that admits a #-positive structure. Then there exists a
connected component of the representation variety R(G) that consists solely of
discrete and faithful representations.

6.5 Non-abelian Hodge Theory

A major contribution to the various methods available in order to study higher
Teichmüller spaces involves fixing a complex structure J on the topological surface
�, thus transforming � into a Riemann surface X = (�, J ), therefore opening
the way to holomorphic techniques and the theory of Higgs bundles, as initiated
by Nigel Hitchin in his article The self duality equations on a Riemann surface
published in 1987 [51]. The non-abelian Hodge theory correspondence provides a
real-analytic isomorphism between the character variety R (G) and the moduli space
of polystableG-Higgs bundles, which we briefly introduce next.

6.5.1 Moduli Spaces of G-Higgs Bundles

Let X be a compact Riemann surface and let G be a real reductive group. The
latter involves considering Cartan data (G,H, θ, B), where H ⊂ G is a maximal
compact subgroup, θ : g → g is a Cartan involution and B is a non-degenerate
bilinear form on g which is Ad (G)-invariant and θ -invariant. The Cartan involution
θ gives a decomposition (called the Cartan decomposition)

g = h⊕m

into its ±1-eigenspaces, where h is the Lie algebra of H .



218 G. Kydonakis

Let HC be the complexification of H and let gC = hC ⊕ mC be the
complexification of the Cartan decomposition. The adjoint action ofG on g restricts
to give a representation (the isotropy representation) ofH on m. This is independent
of the choice of Cartan decomposition, since any two Cartan decompositions of G
are related by a conjugation using also that [h,m] ⊆ m. The action of H extends to
a linear holomorphic action ofHC on mC, thus providing the complexified isotropy
representation ι : HC → GL(mC). This introduces the following definition:

Definition 6.10 Let K ∼= T ∗X be the canonical line bundle over a compact
Riemann surface X. A G-Higgs bundle is a pair (E, ϕ) where

• E is a principal holomorphicHC-bundle overX and
• ϕ is a holomorphic section of the vector bundle E

(

mC
)⊗K = (

E×ιmC
)⊗K .

The section ϕ is called the Higgs field. Two G-Higgs bundles (E, ϕ) and
(

E′, ϕ′
)

are said to be isomorphic if there is a principal bundle isomorphism E ∼= E′ which
takes ϕ to ϕ′ under the induced isomorphism E

(

mC
) ∼= E′ (mC

)

.

To define a moduli space of G-Higgs bundles we need to consider a notion
of semistability, stability and polystability. These notions are defined in terms of
an antidominant character for a parabolic subgroup P ⊆ HC and a holomorphic
reduction σ of the structure group of the bundle E from HC to P (see [37] for the
precise definitions).

When the group G is connected, principal HC-bundles E are topologically
classified by a characteristic class c (E) ∈ H 2

(

X,π1
(

HC
)) ∼= π1

(

HC
) ∼=

π1 (H) ∼= π1 (G).

Definition 6.11 For a fixed class d ∈ π1 (G), the moduli space of polystable G-
Higgs bundles of fixed topological class d with respect to the group of complex
gauge transformations is defined as the set of isomorphism classes of polystable
G-Higgs bundles (E, ϕ) such that c (E) = d . We will denote this set by Md (G).

Using the general GIT constructions of Schmitt for decorated principal bundles
in the case of a real form of a complex reductive algebraic Lie group, it is shown
that the moduli space Md (G) is an algebraic variety. The expected dimension of
the moduli space of G-Higgs bundles is (g − 1) dimGC, in the case when G is a
connected semisimple real Lie group; see [37, 92, 93] for details.

6.5.2 G-Hitchin Equations

Let (E, ϕ) be a G-Higgs bundle over a compact Riemann surface X. By a slight
abuse of notation we shall denote the underlying smooth objects of E and ϕ by
the same symbols. The Higgs field can be thus viewed as a (1, 0)-form ϕ ∈
1,0

(

E
(

mC
))

. Given a reduction h of structure group to H in the smooth HC-
bundle E, we denote by Fh the curvature of the unique connection compatible with
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h and the holomorphic structure on E. Let τh : 1,0
(

E
(

gC
))→ 0,1

(

E
(

gC
))

be
defined by the compact conjugation of gC which is given fiberwise by the reduction
h, combined with complex conjugation on complex 1-forms. The next theorem was
proved in [37] for an arbitrary reductive real Lie groupG.

Theorem 6.9 (Hitchin–Kobayashi Correspondence, Theorem 3.21 in [37])
There exists a reduction h of the structure group of E from HC to H satisfying
the Hitchin equation

Fh − [ϕ, τh (ϕ)] = 0

if and only if (E, ϕ) is polystable.

From the point of view of moduli spaces it is convenient to fix a C∞ principal
H -bundle EH with fixed topological class d ∈ π1 (H) and study the moduli space
of solutions to Hitchin’s equations for a pair (A, ϕ) consisting of an H -connection
A and ϕ ∈ 1,0

(

X,EH
(

mC
))

with

FA − [ϕ, τ (ϕ)] = 0 (*)

∂̄Aϕ = 0

where dA is the covariant derivative associated withA and ∂̄A is the (0, 1)-part of dA,
defining the holomorphic structure on EH . Also, τ is defined by the fixed reduction
of structure group EH ↪→ EH

(

HC
)

. The gauge group GH of EH acts on the space
of solutions by conjugation and the moduli space of solutions is defined by

Mgauge
d (G) := {(A, ϕ) satisfying equations (*)}/GH .

Now, Theorem 6.9 implies that there is a homeomorphism

Md (G) ∼=Mgauge
d (G) .

Using the one-to-one correspondence between H -connections on EH and ∂̄-
operators on EHC , the homeomorphism in the above theorem can be interpreted
as saying that in the GC

H -orbit of a polystable G-Higgs bundle
(

∂̄E0 , ϕ0
)

we can
find another Higgs bundle

(

∂̄E, ϕ
)

whose corresponding pair (dA, ϕ) satisfies the
equation FA − [ϕ, τ (ϕ)] = 0, and this is unique up to H -gauge transformations.

6.5.3 The Non-abelian Hodge Correspondence

We can assign a topological invariant to a representation ρ ∈ R (G) by considering
its corresponding flat G-bundle on � defined as Eρ = �̃×ρG. Here �̃ → � is the
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universal cover and π1 (�) acts onG via ρ. A topological invariant is then given by
the characteristic class c (ρ) := c (Eρ

) ∈ π1 (G) , π1 (H), for H ⊆ G a maximal
compact subgroup of G. For a fixed d ∈ π1 (G) the moduli space of reductive
representations with fixed topological invariant d is now defined as the subvariety

Rd (G) := {[ρ] ∈ R (G) |c (ρ) = d } .

A reductive fundamental group representation corresponds to a solution to the
Hitchin equations. This is seen using that any solution h to Hitchin’s equations
defines a flat reductiveG-connection

D = Dh + ϕ − τ (ϕ) , (6.2)

where Dh is the unique H -connection on E compatible with its holomorphic
structure. Conversely, given a flat reductive connectionD on a G-bundle EG, there
exists a harmonic metric, in other words, a reduction of structure group to H ⊂ G
corresponding to a harmonic section of EG/H → X. This reduction produces a
solution to Hitchin’s equations such that Eq. (6.2) holds.

In summary, equipping the surface � with a complex structure J , a reductive
representation of π1 (�) into G corresponds to a polystable G-Higgs bundle over
the Riemann surface X = (�, J ); this is the content of non-abelian Hodge
correspondence; its proof is based on combined work by Hitchin [51], Simpson
[96], [98], Donaldson [28] and Corlette [25]:

Theorem 6.10 (Non-abelian Hodge Correspondence) Let G be a connected
semisimple real Lie group with maximal compact subgroup H ⊆ G and let
d ∈ π1 (G) , π1 (H). Then there exists a homeomorphism

Rd (G) ∼=Md (G) .

The introduction of holomorphic techniques via the non-abelian Hodge corre-
spondence allows the description of a theory of higher Teichmüller spaces from the
Higgs bundle point of view. In [15], Bradlow, Collier, García-Prada, Gothen and
Oliviera obtain a parameterization of special components of the moduli space of
Higgs bundles on a compact Riemann surface using the decomposition data for a
complex simple Lie algebra g. The possible decompositions of g are defined by
a newly introduced class of sl (2,R)-triples, and the classification of these triples
is shown to be in bijection with the classification of the #-positive structures of
Guichard and Wienhard (Theorem 6.6). We refer to [15] for the precise statements;
see also the survey article of García-Prada [36] for a broader description of the
results for higher Teichmüller spaces that can be obtained using the theory of Higgs
bundles.
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6.6 Surgeries in Representation Varieties-General Theory

We next describe a gluing construction for points of the moduli spaces appearing in
the non-abelian Hodge correspondence. In particular, this technique can be used to
obtain specific model objects of the moduli spaces which are hard to be constructed
otherwise and can be used to improve our understanding of the geometric properties
of the subsets of the character variety they live in.

6.6.1 Topological Gluing Construction

For a closed oriented surface� of genus g, let� = �l∪γ �r be a decomposition of
� along one simple closed oriented separating geodesic γ into two subsurfaces, say
�l and �r . Let now ρl : π1 (�)→ G and ρr : π1 (�)→ G be two representations
into a semisimple Lie groupG.

One could amalgamate the restriction of ρl to �l with the restriction of ρr to
�r , however the holonomies of those along γ do not have to agree a priori. If the
holonomies do agree (possibly after applying a deformation of at least one of the
two representations for the holonomies to match up), then one can introduce new
representations by gluing with a use of the van Kampen theorem at the level of
topological surfaces, as follows.

Definition 6.12 A hybrid representation is defined as the amalgamated representa-
tion

ρ := ρl
∣

∣

π1(�l) ∗ ρr
∣

∣

π1(�r) : π1 (�) , π1 (�l) ∗〈γ 〉π1 (�r)→ G.

Remark 6.2 The assumption that the holonomies agree over the boundary is crucial.
In §3.3.1 of [46], Guichard and Wienhard provide an explicit example of hybrid
representations in the case when the group is the symplectic group Sp (4,R). Special
attention is paid there in order to establish this assumption via an appropriate
deformation argument.

The above construction/definition can be generalized to the case when the
subsurfaces �l and �r are not necessarily connected. For � as earlier, let �1 ⊂
� denote a subsurface with Euler characteristic χ(�1) ≤ −1. The (nonempty)
boundary of �1 is a union of disjoint circles

∂�1 =
∐

d∈π0(∂�1)

γd .
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The circles γd are oriented so that for each d , the surface �1 lies on the left of
γd . Now, write

�\∂�1 =
⋃

c∈π0(�\∂�1)

�c.

Then, for any d ∈ π0(∂�1), the curve γd bounds exactly two connected components
of�\∂�1, namely, one is included in �1 and denoted by �l(d) with l(d) ∈ π0(�1),
while the other is included in the complement of �1 and is denoted by �r(d) with
r(d) ∈ π0(�\�1). In this way, we have l(d), r(d) ∈ π0(�\∂�1), but it can be that
l(d) = l(d ′) or that r(d) = r(d ′), for d �= d ′.

Assume now that the graph with vertex set π0(�\�1) and edges given by
the pairs {l(d), r(d)}d∈π0(∂�1) is a tree. This allows us to apply a generalized
van Kampen theorem argument and write the fundamental group π1(�) as the
amalgamated product of the groups π1(�c), for all c ∈ π0(�\∂�1) over the groups
π1(γd), for all d ∈ π0(∂�1).

Pick a family of representations {ρc : π1(�c)→ G}c∈π0(�\∂�1) subordinate to
the following condition: there exist elements gc ∈ G for each c ∈ π0(�\∂�1), such
that for any d ∈ π0(∂�1) it holds that

gl(d)ρl(d)(γd)g
−1
l(d) = gr(d)ρr(d)(γd)g−1

r(d).

Then one may construct a hybrid representation ρ : π1(�)→ G by amalgamating
the representations gcρcg−1

c , for each c ∈ π0(�\∂�1). An explicit example of
amalgamation of a family of representations that satisfy the condition above is
provided in §3.3.2 of [46] in the case when G = Sp(4,R).

6.6.2 Gluing in Exceptional Components of the Moduli Space

Motivated by the amalgamation construction for representations and in the realm
of the non-abelian Hodge correspondence, one may seek for an analogous gluing
construction from a holomorphic point of view. The benefit from establishing this
method in the Higgs bundle moduli space is that it is easier to compute the Higgs
bundle invariants for any models constructed in order to identify in which connected
component these new objects lie. Indeed, for the cases when the Lie group is the
group Sp (4,R) or SO (p, p + 1) the moduli space has a number of exceptional
components in terms of their topological and geometric properties; these exceptional
components do, in fact, fall in the class of higher Teichmüller spaces. It is for such
components that a gluing construction for Higgs bundles can provide good models
that are not easily obtained otherwise, thus allowing us to study more closely the
components themselves. Examples of models in the case of the group Sp (4,R)were
obtained in [66] (see also [65]), while for G = SO (p, p + 1) we will demonstrate
some examples in Sect. 6.7 later on.
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6.6.2.1 Parabolic GL (n,C)-Higgs Bundles

Remember that the amalgamation method involved fundamental group represen-
tations defined over a surface with boundary. The appropriate analog to a surface
group representation into a reductive Lie group G for a surface with boundary is
a parabolic G-Higgs bundle over a Riemann surface with a divisor. This involves
an extra layer of structure encoded by a weighted filtration on each fiber of the
bundle over a collection of finitely many distinct points of the surface. We include
next basic definitions for a parabolic GL (n,C)-Higgs bundle; concrete examples of
such pairs will be studied later on in Sect. 6.7.

Parabolic vector bundles over Riemann surfaces with marked points were
introduced by Conjeeveram S. Seshadri in [95] and similar to the Narasimhan–
Seshadri correspondence, there is an analogous correspondence between stable
parabolic bundles and unitary representations of the fundamental group of the
punctured surface with fixed holonomy class around each puncture [78]. Later on,
Carlos Simpson in [97] proved a non-abelian Hodge correspondence over a non-
compact curve.

Definition 6.13 Let X be a closed, connected, smooth Riemann surface of genus
g ≥ 2 with s-many marked points x1, . . . , xs and let a divisor D = {x1, . . . , xs}. A
parabolic vector bundle E over X is a holomorphic vector bundle E → X of rank
n with parabolic structure at each x ∈ D (weighted flag on each fiber Ex ):

Ex = Ex,1 ⊃ Ex,2 ⊃ . . . ⊃ Ex,r(x)+1 = {0}
0 ≤ α1 (x) < . . . < αr(x) (x) < 1.

The real numbers αi (x) ∈ [0, 1) for 1 ≤ i ≤ r (x) are called the weights
of the subspaces Ex and we usually write (E, α) to denote a parabolic vector
bundle equipped with a parabolic structure determined by a system of weights
α (x) = (

α1 (x) , . . . , αr(x) (x)
)

at each x ∈ D; whenever the system of weights is
not discussed in the context, we will be omitting the notation α to ease exposition.
Moreover, let ki (x) = dim

(

Ex,i/Ex,i+1
)

denote the multiplicity of the weight
αi (x) and notice that

∑

i

ki (x) = n. A weighted flag shall be called full, if ki (x) = 1

for every 1 ≤ i ≤ r (x) and every x ∈ D.
The parabolic degree and parabolic slope of a vector bundle equipped with a

parabolic structure are the real numbers

par deg (E) = degE +
∑

x∈D

r(x)
∑

i=1

ki (x) αi (x),

parμ (E) = pardeg (E)

rk (E)
.
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Definition 6.14 Let K be the canonical bundle over X and E a parabolic vector
bundle. The bundle morphism  : E → E ⊗ K (D) will be called a parabolic
Higgs field if it preserves the parabolic structure at each point x ∈ D:

 
∣

∣

x

(

Ex,i
) ⊂ Ex,i ⊗K (D) |x .

In particular, we call strongly parabolic if

 
∣

∣

x

(

Ex,i
) ⊂ Ex,i+1 ⊗K (D) |x ,

that is,  ∈ H 0(X,End(E) ⊗ K(D)) is an element with simple poles along the
divisorD, whose residue at x ∈ D is nilpotent with respect to the filtration.

After these considerations we define parabolic Higgs bundles as follows.

Definition 6.15 Let K be the canonical bundle over X and E a parabolic vector
bundle over X. A parabolic Higgs bundle is a pair (E, ), where E is a parabolic
vector bundle and  : E→ E ⊗K (D) is a strongly parabolic Higgs field.

Analogously to the non-parabolic case, we may define a notion of stability as
follows:

Definition 6.16 A parabolic Higgs bundle will be called stable (resp. semistable)
if for every  -invariant parabolic subbundle F ≤ E we have parμ (F) < parμ (E)
(resp. ≤). Furthermore, it will be called polystable if it is the direct sum of stable
parabolic Higgs bundles of the same parabolic slope.

6.6.3 Complex Connected Sum of Riemann Surfaces

In order to describe how two parabolic Higgs bundles can be glued to a (non-
parabolic) Higgs bundle, the first step is to glue their underlying surfaces with
boundary as follows.

Take annuli A1 = {z ∈ C |r1 < |z| < R1 } and A2 = {z ∈ C |r2 < |z| < R2 }
on two copies of the complex plane, and consider the Möbius transformation
fλ : A1 → A2 with fλ (z) = λ

z
, where λ ∈ C with |λ| = r2R1 =

r1R2. This is a conformal biholomorphism (equivalently bijective, angle-preserving
and orientation-preserving) between the two annuli and such that the continuous
extension of the function z 	→ |fλ (z)| to the closure of A1 reverses the order of the
boundary components.

Consider two compact Riemann surfaces X1,X2 of respective genera g1, g2.
Choose points p ∈ X1, q ∈ X2 and local charts around these points ψi : Ui →
�(0, εi) on Xi , for i = 1, 2. Now fix positive real numbers ri < Ri < εi such that
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the following two conditions are satisfied:

• ψ−1
i

(

�(0, Ri)
) ∩ Uj �= ∅, for every Uj �= Ui from the complex atlas of Xi . In

other words, we are considering an annulus around each of the p and q contained
entirely in the neighborhood of a single chart, and

• R2
r2
= R1

r1
.

Set now

X∗i = Xi\ψ−1
i

(

�(0, ri)
)

.

Choosing the biholomorphism fλ : A1 → A2 as above, fλ is used to glue the
two Riemann surfaces X1,X2 along the inverse image of the annuli A1,A2 on the
surfaces, via the biholomorphism

gλ : 1 = ψ−1
1 (A1)→ 2 = ψ−1

2 (A2)

with gλ = ψ−1
2 ◦ fλ ◦ ψ1.

Define Xλ = X1#λX2 = X∗1
∐

X∗2/ ∼, where the gluing of 1 and 2 is
performed through the equivalence relation which identifies y ∈ 1 with w ∈ 2
iff w = gλ (y). For collections of s-many distinct points D1 on X1 and D2 on X2,
this procedure is assumed to be taking place for annuli around each pair of points
(p, q) for p ∈ D1 and q ∈ D2.

If X1,X2 are orientable and orientations are chosen for both, since fλ is
orientation preserving we obtain a natural orientation on the connected sum X1#X2
which coincides with the given ones on X∗1 and X∗2 .

Therefore, X# = X1#X2 is a Riemann surface of genus g1 + g2 + s − 1, the
complex connected sum, where gi is the genus of the Xi and s is the number of
points in D1 and D2. Its complex structure however is heavily dependent on the
parameters pi, qi , λ.

6.6.4 Gluing at the Level of Solutions to Hitchin’s Equations

For gluing two parabolic G-Higgs bundles over a complex connected sum X# of
Riemann surfaces, we choose to switch to the language of solutions to Hitchin’s
equations and make use of the analytic techniques of Clifford Taubes for gluing
instantons over 4-manifolds [100] in order to control the stability condition. These
techniques have been applied to establish similar gluing constructions for solutions
to gauge-theoretic equations, as for instance in [29, 34, 50, 91], and they pertain
first to finding good local model solutions of the gauge-theoretic equations. Then
one has to put, using appropriate gauge transformations, the initial data into these
model forms, which are identified locally over annuli around the marked points,
thus allowing a construction of a new pair over X# that combines the original data
fromX1 andX2. This produces, however, an approximate solution of the equations,
which then has to be corrected to an exact solution via a gauge transformation. The
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argument providing the existence of such a gauge is translated into a Banach fixed
point theorem argument and involves the study of the linearization of a relevant
elliptic operator. We briefly describe these steps in the sequel; for complete proofs
we refer to [65] and [66].

6.6.4.1 The Local Model

Local SL(2,R)-model solutions to the Hitchin equations can be obtained by studying
the behavior of the harmonic map between a surface X with a given complex
structure and the surface X with the corresponding Riemannian metric of constant
curvature -4, under degeneration of the domain Riemann surface X to a nodal
surface; a Riemann surface with nodes arises from an unnoded surface by pinching
off one or more simple closed curves (see [99, 109] for a detailed description).

Let (E, ) be an SL(2,R)-Higgs bundle over X with E = L ⊕ L−1 for L
a holomorphic square root of the canonical line bundle over X endowed with

an auxiliary Hermitian metric h0, and  =
(

0 q
1 0

)

∈ H 0 (X, sl (E)) for q a

holomorphic quadratic differential. If (E, ) is stable, then there is an induced
Hermitian metric H0 = h0 ⊕ h−1

0 on E and an associated Chern connection A
with respect to h, such that A = AL⊕A−1

L , where AL denotes the restriction of the
connectionA to the line bundle L. The stability condition implies that there exists a
complex gauge transformation g unique up to unitary gauge transformations, such
that

(

A1,s, 1,s
) := g∗ (A, ) is a solution to the Hitchin equations. Calculations

in [99] considering the Hermitian metric on L and a complex gauge giving rise to
an exact solution

(

A1,s, 1,s
)

of the self-duality equations imply that

A1,s = O
(|ζ |s)

(

1 0
0 −1

)(

dζ

ζ
− dζ̄
ζ̄

)

,  1,s =
(

1+O (|ζ |s))
(

0 s
2

s
2 0

)

dζ

iζ

for local coordinates ζ . Therefore, after a unitary change of frame, the Higgs field

 1,s is asymptotic to the model Higgs field  mod
s =

(

s
2 0
0 − s2

)

dζ
iζ

, while the

connection A1,s is asymptotic to the trivial flat connection.
In conclusion, the model solution to the SL(2,R)-Hitchin equations we will be

considering is described by

A mod = 0,  mod =
(

C 0
0 −C

)

dz

z

over a punctured disk with z-coordinates around the puncture with the condition that
C ∈ R with C �= 0 and that the meromorphic quadratic differential q := det mod

has at least one simple zero. That this is indeed the generic case, is discussed in [77].
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6.6.4.2 Approximate Solutions of the SL(2,R)-Hitchin Equations

Let X be a compact Riemann surface and D := {p1, . . . , ps} a collection
of s distinct points on X. Moreover, let (E, h) be a Hermitian vector bundle
on E. Choose an initial pair

(

A mod , mod
)

on E, such that in some unitary
trivialization of E around each point p ∈ D, the pair coincides with the local
model from Sect. 6.6.4.1; of course, on the interior of each region X\ {p} the pair
(

A mod , mod
)

need not satisfy the Hitchin equations.
One can then define global Sobolev spaces on X as the spaces of admis-

sible deformations of the model unitary connection and the model Higgs field
(

A mod , mod
)

and introduce the moduli space M
(

X×
)

of solutions to the Hitchin
equations modulo unitary gauge transformation, which are close to the model
solution over a punctured Riemann surface X× := X−D for some fixed parameter
C ∈ R; this moduli space was explicitly constructed by Konno in [60] as a
hyperkähler quotient.

In fact, as was shown by Biquard and Boalch (Lemma 5.3 in [10]) and
later improved by Swoboda (Lemma 3.2 in [99]), a pair (A, ) ∈ M

(

X×
)

is asymptotically close to the model
(

Amod, mod
)

near each puncture in D. In
particular, there exists a complex gauge transformation g = exp (γ ) such that

g∗ (A, ) coincides with
(

A mod
p , mod

p

)

on a sufficiently small neighborhood of

the point p, for each p ∈ D.
We shall now use this complex gauge transformation as well as a smooth cut-off

function to obtain an approximate solution to the SL(2,R)-Hitchin equations. For
fixed local coordinates z around each puncture p and given the positive function
r = |z| around the puncture, fix a constant 0 < R < 1 and choose a smooth cut-off
function χR : [0,∞) → [0, 1] with suppχ ⊆ [0, R] and χR (r) = 1 for r ≤ 3R

4 .
We impose the further requirement on the growth rate of this cut-off function:

|r∂rχR| +
∣

∣

∣(r∂r)
2χR

∣

∣

∣ ≤ k (6.3)

for some constant k not depending on R.
The map x 	→ χR (r (x)) : X× → R gives rise to a smooth cut-off function on

the punctured surfaceX× which by a slight abuse of notation we shall still denote by

χR . We may use this function χR to glue the two pairs (A, ) and
(

A mod
p , mod

p

)

into an approximate solution (Fig. 6.1)

(

A
app
R , 

app
R

) := exp (χRγ )
∗ (A, ) .

The pair
(

A
app
R , 

app
R

)

is a smooth pair and is by construction an exact solution of the
Hitchin equations away from each punctured neighborhood Up, while it coincides
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Fig. 6.1 Constructing an approximate solution over the punctured surface X×

with the model pair
(

A mod
p , mod

p

)

near each puncture. More precisely, we have:

(

A
app
R , 

app
R

) =

⎧

⎪

⎨

⎪

⎩

(A, ) , over X\ ⋃

p∈D

{

z ∈ Up
∣

∣

∣

3R
4 ≤ |z| ≤ R

}

(

A mod
p , mod

p

)

, over
{

z ∈ Up
∣

∣

∣0 < |z| ≤ 3R
4

}

, for each p ∈ D.

Since
(

A
app
R , 

app
R

)

is complex gauge equivalent to an exact solution (A, )
of the Hitchin equations, the Higgs field  app

R is holomorphic with respect to the
holomorphic structure ∂̄Aapp

R
, in other words, one has ∂̄Aapp

R
 

app
R = 0. Moreover,

assumption (6.3) on the growth rate of the bump function χR provides us with a
good estimate of the error up to which

(

A
app
R , 

app
R

)

satisfies the first among the
Hitchin equations, F (A)+ [ , ∗] = 0.

6.6.5 Approximate Solutions to the G-Hitchin Equations

We now wish to obtain an approximateG-Higgs pair by extending the SL(2,C)-data
via an embedding

φ : SL(2,R) ↪→ G,

for a reductive Lie group G. It is important that copies of a maximal compact
subgroup of SL(2,R) are mapped via φ into copies of a maximal compact subgroup
of G and that the norm of the infinitesimal deformation φ∗ on the complexified
Lie algebra gC satisfies a Lipschitz condition. Assuming that this is indeed the case
for an embedding φ (examples can be found in [66] and will be demonstrated in
Sect. 6.7), one gets by extension via the embedding φ a GC-pair satisfying the G-
Hitchin equations up to an error, which we have good control of.
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For i = 1, 2, let Xi be a closed Riemann surface of genus gi and let
D1 = {p1, . . . , ps}, D2 = {q1, . . . , qs} a divisor of s-many distinct points on
X1, X2 respectively. Choose local coordinates z near the points in D1 and local
coordinates w near the points in D2. Assume that we get via an embedding as
was described above approximate solutions (A1, 1), (A2, 2), which agree over
neighborhoods around the points in the divisors D1 and D2, with A1 = A2 = 0
and with  1 (z) = − 2 (w). Then, there is a suitable frame for the connections
over which the Hermitian metrics are both described by the identity matrix and

so they are constant in particular. Set
(

A mod
p,q , 

mod
p,q

)

:=
(

A mod
1,p , mod

1,p

)

=
−
(

A mod
2,q , mod

2,q

)

. We can glue the pairs (A1, 1) , (A2, 2) together to get an

approximate solution of the G-Hitchin equations over the complex connected sum
X# := X1#X2 (Figs. 6.2 and 6.3):

(

A
app
R , 

app
R

) :=

⎧

⎪

⎨

⎪

⎩

(A1, 1) , over X1\X2;
(

A mod
p,q , 

mod
p,q

)

, over around each pair of points (p, q) ;
(A2, 2) , overX2\X1.

By construction,
(

A
app
R , 

app
R

)

is a smooth pair onX#, complex gauge equivalent
to an exact solution of the Hitchin equations by a smooth gauge transformation
defined over all of X#. It satisfies the second Hitchin equation (holomorphicity),
while the first equation is satisfied up to an error which we have good control of.

Fig. 6.2 Constructing approximate solutions over X×1 and X×2
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Fig. 6.3 The approximate solution
(

A
app
R , 

app
R

)

over the complex connected sum X#

6.6.6 The Contraction Mapping Argument

A standard strategy, due largely to Taubes [100], for correcting an approximate
solution to an exact solution of gauge-theoretic equations involves studying the
linearization of a relevant elliptic operator. In the Higgs bundle setting, the
linearization of the Hitchin operator was first described in [77] and furthermore in
[99] for solutions to the SL(2,C)-self duality equations over a nodal surface. We are
going to use this analytic machinery to correct our approximate solution to an exact
solution over the complex connected sum of Riemann surfaces. We summarize this
strategy below.

LetG be a connected, semisimple Lie group. For the complex connected sumX#,
consider the nonlinear G-Hitchin operator at a pair (A, ) ∈ 1

(

X#, EH
(

hC
))⊕

1,0
(

X#, EH
(

mC
))

:

H (A, ) = (

F (A)− [ , τ ( )] , ∂̄A 
)

. (6.4)

Moreover, consider the orbit map

γ 	→ O(A, ) (γ ) = g∗ (A, ) =
(

g∗A, g−1 g
)

,

for g = exp (γ ) and γ ∈ 0
(

X#, EH
(

hC
))

, where H ⊂ G is a maximal compact
subgroup.

Therefore, correcting the approximate solution
(

A
app
R , 

app
R

)

to an exact solution
of theG-Hitchin equations accounts to finding a point γ in the complex gauge orbit
of
(

A
app
R , 

app
R

)

, for which H
(

g∗
(

A
app
R , 

app
R

)) = 0. However, since we have seen
that the second equation is satisfied by the pair

(

A
app
R , 

app
R

)

and since the condition
∂̄A = 0 is preserved under the action of the complex gauge group GC

H , we actually
seek a solution γ to the following equation

FR (γ ) := pr1 ◦H ◦ O(Aapp
R , 

app
R )
(exp(γ )) = 0.
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For a Taylor series expansion of this operator

FR (γ ) = pr1H
(

A
app
R , 

app
R

)+ L(Aapp
R , 

app
R )
(γ )+QR (γ ) ,

where QR includes the quadratic and higher order terms in γ , we can then see that
FR (γ ) = 0 if and only if γ is a fixed point of the map

T : H 2
B (X#)→ H 2

B (X#)

γ 	→ −GR
(

H
(

A
app
R , 

app
R

)+QR(γ )
)

,

where we denotedGR := L−1
(A

app
R , 

app
R )

and H 2
B (X#) is the Hilbert space defined by

H 2
B (X#) :=

{

γ ∈ L2 (X#)

∣

∣

∣∇Bγ,∇2
Bγ ∈ L2 (X#)

}

,

for a fixed background connection ∇B defined as a smooth extension to X# of the
model connection Amod

p,q over the cylinder for each pair of points (p, q).
The problem then reduces to showing that the mapping T is a contraction of

the open ball BρR of radius ρR in H 2
B (X#), since then from Banach’s fixed point

theorem there will exist a unique γ such that T (γ ) = γ , in other words, such that
FR (γ ) = 0. In particular, one needs to show that:

1. T is a contraction defined on BρR for some ρR , and
2. T maps BρR to BρR .

In order to complete the above described contraction mapping argument, we need
to show the following:

1. The linearized operator at the approximate solution L(Aapp
R , 

app
R )

is invertible.

2. There is an upper bound for the inverse operator GR = L−1
(A

app
R , 

app
R )

as an

operator L2 (rdrdθ)→ L2 (rdrdθ).
3. There is an upper bound for the inverse operator GR = L−1

(A
app
R , 

app
R )

also when

viewed as an operator L2 (rdrdθ)→ H 2
B (X#, rdrdθ).

4. We can control a Lipschitz constant for QR , that means there exists a constant
C > 0 such that

‖QR (γ1)−QR (γ0)‖L2 ≤ Cρ‖γ1 − γ0‖H 2
B

for all 0 < ρ ≤ 1 and γ0, γ1 ∈ Bρ , the closed ball of radius ρ around 0 in
H 2
B (X#).
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6.6.7 Correcting an Approximate Solution to an Exact Solution

We shall focus on the linear term in the Taylor series expansion. The linearization
operator L(A, ) at a pair (A, ) ∈ 1

(

X#, EH
(

hC
)) ⊕ 1,0

(

X#, EH
(

mC
))

is
defined by

L(A, ) := −i ∗DF (γ ) : 0
(

X#, EH

(

hC
))

→ 0
(

X#, EH

(

hC
))

,

whereDF (γ ) denotes the differential

DF (γ ) = ∂A∂̄Aγ − ∂̄A∂Aγ ∗ + [ ,−τ ([ , γ ])]+ [[ , γ ] ,−τ ( )] ,

for H ⊂ G a maximal compact subgroup and τ the compact real form of gC. It
satisfies the following lemma; for a proof, see Lemma 5.1 in [66]:

Lemma 6.3 For γ ∈ 0 (X#, EH (h)), the linearization operator satisfies

〈

L(A, )γ, γ
〉

L2 = ‖dAγ ‖2
L2 + 2 ‖[ , γ ]‖2

L2 ≥ 0.

In particular, L(A, )γ = 0 if and only if dAγ = [ , γ ] = 0.

In order to prove the existence of the inverse operator GR := L−1
(A

app
R , 

app
R )

and

obtain an upper bound for its L2-norm, we apply a version of the Cappell–Lee–
Miller gluing theorem for a pair of cylindrical Z2-graded Dirac-type operators (see
[23] and [83, §5.B]).

For our approximate solution
(

A
app
R , 

app
R

)

constructed overX# with 0 < R < 1
and T = − logR, consider the elliptic complex

0 −→ 0
(

X#, EH

(

hC
))

L1,T−−→ 1
(

X#, EH

(

hC
))

⊕1,0
(

X#, EH

(

gC
))

L2,T−−→ 2
(

X#, EH

(

hC
))

⊕2
(

X#, EH

(

gC
))

−→ 0,

where

L1,T γ =
(

dAapp
R
γ,
[

 
app
R , γ

]

)

is the linearization of the complex gauge group action and

L2,T (α, ϕ) = DH (α, ϕ) =
(

dAapp
R
α + [ app

R ,−τ (ϕ)]+ [ϕ,−τ ( app
R

)]

∂̄Aapp
R
ϕ + [α, app

R

]

)
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is the differential of the Hitchin operator from (6.4). Note that, in general, it does
not hold that

L2,T L1,T =
[

FAapp
R
, γ
]

+ [[ app
R ,−τ ( app

R

)]

, γ
] = 0,

since
(

A
app
R , 

app
R

)

need not be an exact solution. Decomposing ∗
(

X#, EH
(

gC
))

into forms of even, respectively odd total degree, we may introduce the Z2-graded
Dirac-type operator

DT :=
(

0 L∗1,T + L2,T

L1,T + L∗2,T 0

)

on the closed surface X#.
For applying the Cappell–Lee–Miller theorem, one has to study the kernel

ker
(

L1 + L∗2
)

on the extended L2-space L2
ext

(

X×#
)

for the nodal surface X×#
obtained by extending the cylindrical neck of X# infinitely (see Definition 6.2 and
§6.2 in [66] for the precise definitions).

As R ↘ 0, the curve X# degenerates to a nodal surface X×# (equivalently, the
cylindrical neck of X# extends infinitely). For the cut-off functions χR that we
considered in obtaining the approximate pair

(

A
app
R , 

app
R

)

, their support will tend
to be empty as R ↘ 0, therefore the “error regions” disappear along with the neck
, thus

(

A
app
R , 

app
R

)→ (A0, 0) uniformly on compact subsets with

(

A
app
0 , 

app
0

) =
{

(A1, 1) , X1\
(A2, 2) , X2\

an exact solution with the holonomy of the associated flat connection in G.
For trivial kernel ker

(

L1 + L∗2
)

, and computing the upper bound for the inverse
operator and a Lipschitz constant for the quadratic or higher order terms in the
Taylor series expansion, one can correct the approximate solution constructed into
an exact solution of the G-Hitchin equations. The contraction mapping argument
described above then provides the following:

Theorem 6.11 There exists a constant 0 < R0 < 1, and for every 0 < R <

R0 there exist a constant σR > 0 and a unique section γ ∈ H 2
B

(

X#, EH
(

hC
))

satisfying ‖γ ‖H 2
B(X#)

≤ σR , so that, for g = exp (γ ),

(A#, #) = g∗
(

A
app
R , 

app
R

)

is an exact solution of theG-Hitchin equations over the closed surface X#.
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Theorem 6.11 now implies that for ∂̄ := A0,1
# , the Higgs bundle

(

E# :=
(

E#, ∂̄
)

,

 #) is a polystableG-Higgs bundle over the complex connected sumX#. Collecting
the steps from the previous subsections one has the following:

Theorem 6.12 Let X1 be a closed Riemann surface of genus g1 and D1 =
{p1, . . . , ps} be a collection of s distinct points on X1. Let also G be a subgroup
of GL (n,C). Consider respectively a closed Riemann surface X2 of genus g2 and
a collection of also s distinct points D2 = {q1, . . . , qs} on X2. Let (E1, 1) →
X1 and (E2, 2) → X2 be parabolic polystable G-Higgs bundles with corre-
sponding solutions to the Hitchin equations (A1, 1) and (A2, 2). Assume that

these solutions agree with model solutions
(

A mod
1,pi

, mod
1,pi

)

and
(

A mod
2,qj

, mod
2,qj

)

near the points pi ∈ D1 and qj ∈ D2, and that the model solutions satisfy
(

A mod
1,pi

, mod
1,pi

)

= −
(

A mod
2,qj

, mod
2,qj

)

, for s pairs of points
(

pi, qj
)

. Then there

is a polystable G-Higgs bundle (E#, #) → X#, constructed over the complex
connected sum of Riemann surfaces X# = X1#X2, which agrees with the initial
data over X#\X1 and X#\X2.

Definition 6.17 We call a G-Higgs bundle constructed by the procedure developed
above a hybrid G-Higgs bundle.

6.6.8 Topological Invariants

The connected component of the moduli space M (G) that a hybrid Higgs bundle
lies, can be determined by Higgs bundle topological invariants, and one needs
to understand how these invariants behave under the complex connected sum
operation. The next two propositions show that there is an additivity property for
topological invariants over the connected sum operation, both from the Higgs bundle
and the surface group representation point of view.

When the group G is a subgroup of GL (n,C), the data of a parabolic G-
Higgs bundle (defined in full generality in [11]) reduce to the data of a parabolic
Higgs bundle as seen in Sect. 6.6.2.1. Moreover, the basic topological invariant of a
parabolic (resp. non-parabolic) pair is the parabolic degree (resp. degree) of some
underlying parabolic (resp. non-parabolic) bundle in the Higgs bundle data. We refer
to [67] for a detailed description of this data and the corresponding topological
invariants for a number of cases of parabolicG-Higgs bundles.

The following proposition now describes an additivity property for the degrees:

Proposition 6.2 (Proposition 8.1 in [66]) Let X# = X1#X2 be the complex
connected sum of two closed Riemann surfaces X1 and X2 with divisors D1 and
D2 of s distinct points on each surface, and let V1, V2 be parabolic vector bundles
over X1 and X2 respectively. Then, if the parabolic bundles V1, V2 glue to a bundle
V1#V2 over X#, the following identity holds

deg (V1#V2) = pardeg (V1)+ pardeg (V2) .
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Considering the connected sum of the underlying topological surfaces � =
�1∪γ �2 along a loop γ , a notion of Toledo invariant is defined for representations
over these subsurfaces with boundary; see [21] for a detailed definition in this
context. Moreover, the authors in [21] have established an additivity property for
the Toledo invariant over a connected sum of surfaces. In particular:

Proposition 6.3 (Proposition 3.2 in [21]) If � = �1∪γ �2 is the connected sum
of two subsurfaces �i along a simple closed separating loop γ , then

Tρ = Tρ1 +Tρ2,

where ρi = ρ
∣

∣

π1(�i ) , for i = 1, 2.

The two propositions above allow one to determine the topological invariants
of the hybrid Higgs bundles, respectively fundamental group representations, from
the topological invariants of the underlying objects that were deformed and glued
together. Note, in particular, that this property implies that the amalgamated product
of two maximal representations is again a maximal representation defined over the
compact surface �.

6.7 Examples: Model Higgs Bundles in Exceptional
Components of Orthogonal Groups

We now exhibit specific examples where the previous gluing construction can pro-
vide model objects lying inside higher Teichmüller spaces of particular geometric
importance.

When the Lie group is G = Sp (4,R), hybrid Higgs bundles in the exceptional
connected components of the maximal G = Sp (4,R)-Higgs bundles identified by
Gothen in [42] were obtained in [66]. We next provide such examples in the case
of the group G = SO (p, p + 1), which involves an extra parameter compared to
the Sp (4,R)-case. Note, however, that a maximality property is not apparent in this
case apart from when p = 2, since the group G = SO (p, p + 1) for p �= 2 is not
Hermitian of noncompact type; cf. the discussion on maximality in Sect. 6.4.2.

6.7.1 SO (p, q)-Higgs Bundle Data

The connected components of the SO (p, q)-character variety R (SO (p, q)) can be
more explicitly described using the theory of Higgs bundles. Let X be a compact
Riemann surface with underlying topological surface �. Under the non-abelian
Hodge correspondence, fundamental group representations into the group SO (p, q)
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correspond to holomorphic tuples (V ,QV ,W,QW , η) over X, where:

• (V ,QV ) and (W,QW) are holomorphic orthogonal bundles of rank p and q
respectively with the additional condition that ∧p (V ) ∼= ∧q (W).

• η : W → V ⊗K is a holomorphic section of Hom (W, V )⊗K .

Using Higgs bundle methods, in particular a real valued proper function defined
by the L2-norm of the Higgs field and a natural holomorphic C∗-action, the authors
in [5] classify all polystable local minima of the Hitchin function in M (SO (p, q)),
for 2 < p ≤ q . For these moduli spaces, not all local minima occur at fixed points
of the C∗-action and additional connected components of M (SO (p, q)) emerge by
constructing a map

! :MKp (SO (1, q − p + 1))×
p−1
⊕

j=1

H 0
(

X,K2j
)

→M (SO (p, q)) ,

which is an isomorphism onto its image, open and closed. In the description
above, MKp (SO (1, q − p + 1)) denotes the moduli space of Kp-twisted
SO (1, q − p + 1)-Higgs bundles on the Riemann surface X, where K is the

canonical line bundle over X, and
p−1
⊕

j=1
H 0

(

X,K2j
)

denotes the vector space of

holomorphic differentials of degree 2j . Note that a Kp-twisted SO (1, n)-Higgs

bundle is defined by a triple
(

I, Ŵ , η̂
)

, where
(

Ŵ ,Q
Ŵ

)

is a rank n orthogonal

bundle, I = ∧nŴ and η̂ ∈ H 0
(

Hom
(

Ŵ , I
)

⊗Kp
)

. A point in the image of the

map ! is then described by

!
((

I, Ŵ , η̂
)

, q2, . . . , q2p−2

)

= (V ,W, η) , (6.5)

where

V := I ⊗
(

Kp−1 ⊕Kp−3 ⊕ . . .⊕K3−p ⊕K1−p) ;

W := Ŵ ⊕ I ⊗
(

Kp−2 ⊕Kp−4 ⊕ . . .⊕K4−p ⊕K2−p) ;

η :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

η̂ q2 q4 . . . q2p−2

0 1 q2 · · · q2p−4
...

. . .
...

... 1 q2

0 0 · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.6)
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Moreover, an SO (p, q)-Higgs bundle (V ,W, η) is (poly)stable if and only if the

Kp-twisted SO (1, n)-Higgs bundle
(

I, Ŵ , η̂
)

is (poly)stable (see Lemma 4.4 in

[5]).
The case when q = p+ 1 is even more special, because the relevantKp-twisted

O (q − p + 1)-Higgs bundles in the pre-image of ! are now rank 2 orthogonal

bundles. In this case, when the first Stiefel-Whitney class w1

(

Ŵ ,Q
Ŵ

)

vanishes,

then the structure group of Ŵ reduces to SO (2,C) ∼= C
∗ and thus

(

Ŵ ,Q
Ŵ

) ∼=
(

M ⊕M−1,

(

0 1
1 0

))

,

for a degree d holomorphic line bundleM ∈ Picd (X), while for stability reasons d
is an integer in the interval [0, p (2g − 2)]. This degree is a new topological invari-
ant, which distinguishes extra components of the moduli space M (SO (p, p + 1)),
and in [24] is proven the following:

Theorem 6.13 (Theorem 4.1 in [24]) For each integer d ∈ (0, p (2g − 2)− 1]
there is a smooth connected component Rd (SO (p, p + 1)) of the moduli space
R (SO (p, p + 1)), which does not contain representations with compact Zariski
closure.

Since all points in these p (2g − 2) − 1 many components are smooth, all
corresponding fundamental group representations are irreducible representations.
In fact, these representations are conjectured in [24] to have Zariski dense image.
For this reason we shall call these components exceptional to distinguish them
among the rest of the components of the character varieties R (SO (p, q)) that are
not detected by the fixed points of the C∗-action.

Definition 6.18 The connected components of the moduli spaceM (SO (p, p + 1)),
which are smooth, will be called the exceptional components of the moduli space
M (SO (p, p + 1)).

For each integer 0 < d ≤ p (2g − 2) − 1, the Higgs bundles (V ,W, η) in the
exceptional components are described by the map ! from (6.5) as follows:

(V ,QV ) =
⎛

⎝Kp−1 ⊕Kp−3 ⊕ . . .⊕K3−p ⊕K1−p,

⎛

⎝

1

1

⎞

⎠

⎞

⎠ ,

(W,QW) =
⎛

⎝M ⊕Kp−2 ⊕Kp−4 ⊕ . . .⊕K4−p ⊕K2−p ⊕M−1,

⎛

⎝

1

1

⎞

⎠

⎞

⎠ ,

(6.7)
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η =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 . . . 0 ν

1 q2 q4 · · · q2p−2

0 1 q2 q2p−4

0 0
. . .

...
...

. . . 1 q2

0 0 . . . 0 μ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: V → W ⊗K,

for M ∈ Picd (X), and sections μ ∈ H 0
(

M−1Kp
) \ {0} and ν ∈ H 0 (MKp) with

0 �= μ �= λν.
In the case when d = p (2g − 2), then (V ,W, η) lies in the Hitchin component

of M (SO (p, p + 1)) with data

(V ,QV ) =
⎛

⎝Kp−1 ⊕Kp−3 ⊕ . . .⊕K3−p ⊕K1−p,

⎛

⎝

1

1

⎞

⎠

⎞

⎠ ,

(W,QW) =
⎛

⎝Kp ⊕Kp−2 ⊕Kp−4 ⊕ . . .⊕K4−p ⊕K2−p ⊕K−p,

⎛

⎝

1

1

⎞

⎠

⎞

⎠ ,

η =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q2 q4 . . . q2p−2 q2p

1 q2 q4 · · · q2p−2

0 1 q2 q2p−4

0 0
. . .

...
...

. . . 1 q2

0 0 . . . 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: V → W ⊗K.

6.7.2 Hitchin Equations for Orthogonal Groups

The moduli space M (SO (p, q)) of polystable SO (p, q)-Higgs bundles is alter-
natively viewed as the moduli space of polystable pairs

(

∂̄E, 
)

modulo the gauge
groupG (E), where ∂̄E is a Dolbeault operator on a principal SO (p,C)×SO (q,C)-
bundle E and  ∈ 1,0

(

E
(

mC
))

satisfying ∂̄E ( ) = 0, for the (−1)-eigenspace
m in the Cartan decomposition of the Lie algebra of the group SO (p, q).

For the principal SO (p,C) × SO (q,C)-bundle E equipped with a Dolbeault
operator ∂̄E , the gauge group

G (E) ∼= 0 (ESO(p,C) (SO (p,C))
)×0 (ESO(q,C) (SO (q,C))

)



6 Surgeries in Representation Varieties 239

acts on the operators ∂̄E by conjugation, where E = ESO(p,C) × ESO(q,C). Now a
Dolbeault operator on E corresponds to a connection A on the reduction V of E to
SO (p,C)× SO (q,C) and consider a Higgs field  ∈ 1,0

(

V
(

mC
))

.
The group G = SO (p, q) is a real form of SO (p + q,C). It coincides with the

compact real form when p = q = 0 and with the split real form when p = q for
p + q even, or when q = p + 1 for p + q odd. Matrix conjugation τ (X) = X̄

defines the compact real form; indeed, we check

so (p + q) = {

X ∈ so (p + q,C) ∣∣X = X̄ }

=
{

X ∈ so (p + q,R)
∣

∣

∣X +XT = 0
}

.

If we locally write  = ϕdz, then a calculation shows that

[ , τ ( )] =
(−ϕϕ∗ − ϕ̄ϕT

−ϕT ϕ̄ − ϕ∗ϕ
)

.

The Hitchin-Kobayashi correspondence for G = SO (p, q) provides that if an
SO (p, q)-Higgs bundle (V ,QV ,W,QW , η) is polystable, then and only then the
pair (A, ) as considered above satisfies the Hitchin equation

{

FA − [ , τ ( )] = 0
∂̄A ( ) = 0,

where FA denotes the curvature of the unique connection compatible with the
structure group reduction and the holomorphic structure. For a local description
of the connectionA = (A1, A2) the equation FA− [ , τ ( )] = 0 becomes the pair

FA1 + ϕϕ∗ + ϕ̄ϕT = FA1 + 2Re
(

ϕϕ∗
) = 0

FA2 + ϕT ϕ̄ + ϕ∗ϕ = FA2 + 2Re
(

ϕT ϕ̄
)

= 0.

6.7.3 Model Parabolic SL (2,R)-Higgs Bundles

Parabolic SL (2,R)-Higgs bundles corresponding via the non-abelian Hodge corre-
spondence to Fuchsian representations of the fundamental group of a punctured
surface into the group PSL (2,R) were first identified by Biswas, Arés-Gastesi
and Govindarajan in [12]; see also the article of Mondello [80] for a complete
topological description of the relevant representation space. We next investigate
these pairs more closely.
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Let D = {x1, . . . , xs} be a finite collection of s-many points on a closed genus
g Riemann surface X, such that 2g − 2 + s > 0. Let K denote the canonical line
bundle over the Riemann surface X. Consider the pair (E, ), where:

1. E := (L⊗ ι)∗ ⊕ L,
where L is a line bundle with L2 = K and ι := OX (D) denotes the line bundle
over the divisor D; we equip the bundle E with a parabolic structure given by a
trivial flag Exi ⊃ {0} and weight 1

2 for every 1 ≤ i ≤ s.
2.  :=

(

0 1
0 0

)

∈ H 0 (X,End (E)⊗K ⊗ ι).

Then, the pair (E, ) is a stable parabolic SL (2,R)-Higgs bundle with parabolic
degree pardeg(E) = 0. Therefore, from the non-abelian Hodge correspondence on
non-compact curves [97], the vector bundle E supports a tame harmonic metric; the
local estimate for this Hermitian metric on E restricted to the line bundle L is

r
1
2 |log r| 1

2 ,

for r = |z|. Indeed, if β ∈ R denotes in general the weights in the filtration of
the filtered local system F corresponding to a parabolic Higgs bundle with weights
α, for 0 ≤ α < 1, then, if Wk is the span of vectors of weights ≤ k, the weight
filtration of Resx (F ) describes the behavior of the tame harmonic map under the
local estimate

Crβ |log r| k2 .

In our case, the weight is α = 1
2 = β and the residue at each point xi ∈ D is

N =
(

0 1
0 0

)

, an upper triangular 2× 2 nilpotent matrix. Thus, its weight filtration is

W−2 = 0,W−1 = W0 = Im (N) = ker (N), andW1 = the whole space. Therefore,
in the notation of Simpson from [97] we have L ⊂ W1 and L �⊂ W0 = W−1, while
the Hermitian metric on the line bundle L is locally

rα|log r| k2 = r 1
2 |log r| 1

2 .

For the parabolic dual (L⊗ ι)∗, the weight is by construction equal to 1− 1
2 and in

the weight filtration for the residue it is (L⊗ ι)∗ ⊂ W−1 and L �⊂ W1. Thus, the
Hermitian metric on (L⊗ ι)∗ is locally

rα|log r| k2 = r1− 1
2 |log r|− 1

2 = r 1
2 |log r|− 1

2 .
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In conclusion, the metric on Hom
(

L, (L⊗ ι)∗) is induced by the restricted tame
harmonic metric of E on the line bundles L and (L⊗ ι)∗, as a section of L∗ ⊗
(L⊗ ι)∗ and is locally described by

r−
1
2 |log r|− 1

2 · r 1
2 |log r|− 1

2 = |log r|−1,

for r = |z|. Subsequently, the metric on the tangent bundle L−2 is locally

r−
1
2 |log r|− 1

2 · r− 1
2 |log r|− 1

2 = r−1|log r|−1

and is therefore the Poincaré metric of the punctured disk on C; we refer the
interested reader to [12] and [97] for further information.

6.7.4 Parabolic SO (p, p + 1)-Models

In this subsection we construct model parabolic SO (p, p + 1)-Higgs bundles which
shall be later on used in providing the desired (non-parabolic) SO (p, p + 1)-models
in the exceptional components over the complex connected sum of Riemann sur-
faces. Of critical importance to this construction are the parabolic SL (2,R)-Higgs
bundles (E, ) of Biswas, Arés-Gastesi and Govindarajan from [12] described
earlier. As we have seen in Sect. 6.6.4.1, from the gauge theoretic viewpoint, a model
solution to the SL (2,C)-Hitchin equations that corresponds to the polystable pair
(E, ) is given by a pair

(

A mod , mod
)

, where

A mod = 0,  mod =
(

C 0
0 −C

)

dz

z

over a punctured disk with z-coordinates around the puncture with the condition that
C ∈ R with C �= 0, and that the meromorphic quadratic differential q := det mod

has at least one simple zero.

6.7.4.1 Models via the Irreducible Representation
SL (2,R) ↪→ SO (p, p + 1)

We next construct model parabolic SO (p, p + 1)-Higgs bundles lying inside the
parabolic Teichmüller component for SO (p, p + 1). The general construction of
this component was carried out in [67], while in the non-parabolic case, a detailed
construction of models can be found in [4].



242 G. Kydonakis

The connected component of the special orthogonal group containing the
identity SO0 (p, p + 1) is a split real form of SO (2p + 1,C). The Lie algebra of
SO (p, p + 1) is

so (p, p + 1) = {

X ∈ sl (2p + 1,R)
∣

∣XtIp,p+1 + Ip,p+1X = 0
}

=
{(

X1 X2

Xt2 X3

)

|X1,X3 real skew-sym. of rank p,p + 1 resp.;

X2 real (p × (p + 1)) -matrix} .

The Lie algebra so (p, p + 1) admits a Cartan decomposition so (p, p + 1) = h⊕m
into its (±1)-eigenspaces, where

h = so (p)× so (p + 1) =
{(

X1 0
0 X3

)

|X1 ∈ so (p) ,X3 ∈ so (p + 1)

}

,

m =
{(

0 X2

Xt2 0

)

|X2 real (p × (p + 1)) -matrix

}

.

The Cartan decomposition of the complex Lie algebra is

so(2p + 1,C) = (so (p,C)× so (p + 1,C))⊕mC,

where

mC =
{(

0 X2

−Xt2 0

)

|X2 complex (p × (p + 1)) -matrix

}

.

If c is a Cartan subalgebra of so (p, p + 1) and � is the set of the corresponding
roots, then the element

∑

α∈�
cαXα ∈ so (2p + 1,C) ,

is regular nilpotent, for cα �= 0, α ∈ � and Xα a root vector for α, where

�+ = {

ei ± ej , with 1 ≤ i < j ≤ p} ∪ {ei, 1 ≤ i ≤ p} ,

� = {ai = ei − ei+1, 1 ≤ i ≤ p − 1} ∪ {ap = ep
}

.
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The corresponding root vectors are

Xei−ej = Ei,j − Ep+j,p+i
Xei+ej = Ei,p+j − Ej,p+i
Xei = Ei,2p+1 − E2p+1,p+i
X−ei = Ep+i,2p+1 − E2p+1,i .

Now, let x :=
p
∑

i=1
2 (p + 1− i) (Ei,i − Ep+i,p+i

)

and take e := ∑

a∈�
Xa . From

this choice it is then satisfied that [x, e] = 2e, for the semisimple element x and the
regular nilpotent element e. Moreover, the conditions

[

x, ẽ
] = −2ẽ and

[

e, ẽ
] = x

determine another nilpotent element ẽ, thus the triple 〈x, e, ẽ〉 ∼= sl (2,C) defines a
principal 3-dimensional Lie subalgebra of so (p, p + 1).

The adjoint action 〈x, e, ẽ〉 ∼= so (2,C) → End (so (2p + 1,C)) of this
subalgebra decomposes so (p, p + 1) as a direct sum of irreducible representations

(2p + 1,C) = p⊕
i=1
Vi,

with dimVi = 4i − 1, for 1 ≤ i ≤ p. Therefore, Vi = S4i−2
C

2, 1 ≤ i ≤ p with
eigenvalues 4i−2, 4i−4,...,−4i+4,−4i+2 for the action of adx, and the highest
weight vectors are e1, . . . , ep, where ei has eigenvalue 4i − 2, for 1 ≤ i ≤ p.

Considering the representation

sl (2,C)→ so (2p + 1,C) ,

for so (2p + 1,C) = S2
C

2 + S6
C

2 + . . . + S4p−2
C

2 = �2
(

S2p
C

2
)

, we
may next deduce the defining data (E1, 1) for a parabolic SO (p, p + 1)-Higgs
bundle inside the parabolic Teichmüller component for the split real form Gr =
SO0 (p, p + 1). The parabolic vector bundle is obtained from the (2p)-th symmetric
power of the parabolic SL (2,R)-bundle in the Teichmüller component, as follows.

Let X1 be a compact Riemann surface of genus g1, D1 = {p1, . . . , ps} a
collection of s distinct points on X1 and let L1 → X1 with L2

1
∼= KX1 and

ι1 = OX1 (D1). Consider the parabolic vector bundle (L1 ⊗ ι1)∗⊕L1 over (X1,D1),
equipped with a trivial flag and weight 1

2 . Then, the vector bundle E1 of a model
parabolic SO (p, p + 1)-Higgs bundle in the parabolic Teichmüller component is

E1 : = S2p ((L1 ⊗ ι1)∗ ⊕ L1
)

= L−2p
1 ⊗ O (−pD1)⊕ L−2p+2

1 ⊗ O ((1− p)D1)⊕ . . .
. . .⊕ L2p−2

1 ⊗ O ((p − 1)D1)⊕ L2p
1 ⊗ O (pD1)

= K−p
1 ⊗ O (−pD1)⊕K−(p−1)

1 ⊗ O ((1− p)D1)⊕ . . .
. . .⊕Kp−1

1 ⊗ O ((p − 1)D1)⊕Kp1 ⊗ O (pD1) ,

equipped with a trivial parabolic flag and weight 0.



244 G. Kydonakis

Remark 6.3 Note that in the above description we have included the consideration
for the parabolic structure in a symmetric power of a parabolic bundle. In fact,
restricting attention on the first original term (L1 ⊗ ι1)∗ with weight 1

2 , the

symmetric power S2p
(

(L1 ⊗ ι1)∗
)

is the line bundle L−2p
1 ⊗ O (−2pD1) with

weight 2p · 1
2 = p. However, we obtain a well-defined parabolic bundle by

reducing the weight to a number within the interval [0, 1), this means, by tensoring
L
−2p
1 ⊗ O (−2pD1) by O (pD1). We thus get K−p

1 ⊗ O (−pD1) with weight 0, as
appears in the first term of the parabolic bundle E1 above.

The Higgs field in the parabolic SO (p, p + 1)-Teichmüller component is given
by

ẽ + q1e1 + . . .+ qpep,

for
(

q1, . . . , qp
) ∈ p⊕

i=1
H 0

(

K2i
1 ⊗ ι2i−1

1

)

and e1, . . . , ep are the highest weight

vectors. From the set of simple roots of so (p, p + 1),

� = {ei − ei+1, 1 ≤ i ≤ p − 1} ∪ {ep
}

,

we obtain the 3-dimensional subalgebra 〈x, e, ẽ〉 ∼= sl (2,C) ↪→ so (p, p + 1), with

x =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2p
2(p − 1)

. . .

2
−2p

−2(p − 1)
. . .

−2
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.8)

e =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1
. . .
. . .

1
0 1

0

−1
. . .

. . .

−1 0
−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.9)
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the semisimple and regular nilpotent element respectively; from these we may
also determine the third element in the principal 3-dimensional subalgebra of
so(p, p + 1):

ẽ =
⎛

⎝

A

B D

C

⎞

⎠ , (6.10)

where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

2p
. . .

2p + 2(p − 1)
. . .

2p + 2(p − 1)+ · · · + 2 · 2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is a p × p block with zeros on the main diagonal,

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −2p
. . . −2p − 2(p − 1)

. . .

−2p − 2(p − 1)− · · · − 2 · 2
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is a p × p block with zeros on the main diagonal, and

C = (

0 · · · 0 2p + 2(p − 1)+ · · · + 2
)

is a 1× p block,

D =

⎛

⎜

⎜

⎜

⎝

0
...

0
−2p − 2(p − 1)− · · · − 2

⎞

⎟

⎟

⎟

⎠

is a p × 1 block.

From the analysis above we deduce that a model parabolic Higgs pair lying
inside the parabolic SO0 (p, p + 1)-Hitchin component which is a local minimum
of the Hitchin functional, when viewed as an SL (2p + 1,C)-pair, is a pair (E1, 1)

with

• E1 = K
−p
1 ⊗ O (−pD1) ⊕ K

−(p−1)
1 ⊗ O ((1− p)D1) ⊕ . . . ⊕ K

(p−1)
1 ⊗

O ((p − 1)D1)⊕Kp1 ⊗ O (pD1)

a parabolic vector bundle of rank 2p+1 over (X1,D1) equipped with a parabolic
structure given by a trivial flag and weight 0,



246 G. Kydonakis

•  1 =

⎛

⎜

⎜

⎜

⎝

0 1 0 · · · 0
0 0 1 0 · · · 0
...

0 · · · 0 1

⎞

⎟

⎟

⎟

⎠

: E1 → E1 ⊗K1 ⊗ ι1

as a p × (p + 1)-matrix.

The next lemma is analogous to Lemma 2.1 in [12].

Lemma 6.4 The parabolic Higgs bundle (E1, 1) above is a parabolic stable
Higgs bundle of parabolic degree zero.

Proof The proof that pardeg (E1) = 0 is immediate, following the properties of
the parabolic degree on a direct sum and the dual of a parabolic bundle. The  1-
invariant proper subbundles of E1 are of the form

K
−p
1 ⊗O (−pD1)⊕K−(p−1)

1 ⊗O (− (p − 1)D1)⊕. . .⊕Km−p1 ⊗O ((m− p)D1) ,

for 0 ≤ m ≤ 2p− 1. One now checks that these all have negative parabolic degree,
that is, strictly less than pardeg (E1).

Therefore, from the punctured-surface version of the non-abelian Hodge corre-
spondence [97], there is a tame harmonic metric on the vector bundle E1. Let A1
denote the associated Chern connection. Parabolic stability implies the existence of
a complex gauge transformation, unique up to modification by a unitary gauge, such
that (A1, 1) solves the Hitchin equations.

In a suitably chosen local holomorphic trivialization of E1, the pair (A1, 1) is
asymptotic to a model solution, which after a unitary change of frame can be written
locally over a punctured neighborhood around a point pi ∈ D1 as

A mod
1 = 0,  mod

1 = Cx dz
z
,

where x denotes the semisimple element from (6.8) and z the local coordinate
around the point pi ∈ D1.

6.7.4.2 Models via the General Map �

Let X2 be a compact Riemann surface of genus g2 and D2 = {q1, . . . , qs} a
collection of s points on X2. Let ι2 = OX2 (D2). The second family of model
parabolic SO (p, p + 1)-Higgs bundles is obtained via the more general map

!par :Mpar

K
p

2 ⊗ιp−1
2

(SO (1, 2))× p−1⊕
j=1

H 0
(

X2,K
2j
2 ⊗ ι2j−1

2

)

→Mpar (SO (p, p + 1))



6 Surgeries in Representation Varieties 247

defined as in (6.5), but considering also the relevant parabolic structures. Take
(

I, Ŵ , η̂
)

∈ Mpar

K
p
2 ⊗ιp−1

2

(SO (1, 2)), the moduli space of Kp2 -twisted parabolic

SO (1, 2)-Higgs bundles, for

• Ŵ := M̃ ⊕ M̃∨, for M̃ ∼= O ((2k − 1− p)D2) with k = 1, . . . , p an integer;
• I := ∧2

parŴ
∼= ∧M̃ ⊗∧M̃∨ ∼= M̃ ⊗ M̃∨ ∼= O;

• η̂ = 0.

Then, one gets by the definition of the map !par the triple !par
((

I, Ŵ , η̂
)

,

(0, . . . , 0)) =: (V ,W, η), where

• V = Kp−1
2 ⊗ O ((p − 1)D2)⊕ . . .⊕K1−p

2 ⊗ O ((1− p)D2);

• W = M̃ ⊕ M̃∨ ⊕Kp−2
2 ⊗ O ((p − 2)D2)⊕ . . .⊕K2−p

2 ⊗ O ((2− p)D2);

• η =

⎛

⎜

⎜

⎜

⎝

η̂ = 0 0 · · · 0
0 1 0 · · · 0
...

0 · · · 0 1

⎞

⎟

⎟

⎟

⎠

.

From the description of the Higgs bundle data we see that since η̂ = 0,
the triple (V ,W, η) reduces to an SO (p, p − 1) × SO (2)-Higgs bundle whose
SO (p, p − 1)-factor lies in the parabolic Hitchin component. We rather define this
as an SL (2p + 1,C)-pair (E2, 2), where

• E2 = V ⊕ W = M̃ ⊕ M̃∨ ⊕ K−(p−1)
2 ⊗ O ((1− p)D2) ⊕ . . . ⊕ Kp−1

2 ⊗
O ((p − 1)D2);

•  2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 1 0 · · · 0
...
...
... 0 1 0 · · · 0

. . .

1
0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: E2 → E2 ⊗K2 ⊗ ι2.

The  2-invariant proper subbundles of E2 are

M̃ ⊕ M̃∨ ⊕K−(p−1)
2 ⊗ O ((1− p)D2)

M̃ ⊕ M̃∨ ⊕K−(p−1)
2 ⊗ O ((1− p)D2)⊕K−(p−2)

2 ⊗ O ((2− p)D2)

...

M̃ ⊕ M̃∨ ⊕K−(p−1)
2 ⊗ O ((1− p)D2)⊕ . . .⊕K(p−2)

2 ⊗ O ((p − 2)D2) ,
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or, in general, these are of the form

M̃ ⊕ M̃∨ ⊕K−(p−1)
2 ⊗ O ((1− p)D2)⊕ . . .⊕K(l−p)2 ⊗ O ((l − p)D2) ,

for each 1 ≤ l ≤ 2p − 2. As in the previous lemma, one sees that all proper  2-
invariant subbundles of E2 have negative parabolic degree, while pardeg (E2) = 0.
Therefore, the models (E2, 2) for every k = 1, . . . , p are all parabolic stable. For
A2 be the Chern connection with respect to a tame harmonic metric on E2, in a
suitably chosen local holomorphic trivialization of E2, the pair (A2, 2) is, after
conjugation by a unitary gauge, asymptotic to a model solution which locally over
a punctured neighborhood around a point qj ∈ D2 is written as

A mod
2 = 0,  mod

2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

2 (p − 1)C
. . .

2C
−2(p − 1)C

. . .

−2C
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dw

w
,

for coordinates w around each puncture qj ∈ D2.

6.7.5 Gauge-Theoretic Gluing of Parabolic
SO (p, p + 1)-Higgs Bundles

We have described parabolic SO (p, p + 1)-models (Ei, i), i = 1, 2, which are
parabolic stable. Model solutions to the Hitchin equations over punctured disks
corresponding to the pairs (Ei, i) are respectively of the form

A mod
1 = 0,  mod

1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2pC
2(p − 1)C

. . .

2C
−2pC

.. .

−2C
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dz

z
,
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A mod
2 = 0,  mod

2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

2 (p − 1)C
. . .

2C
−2(p − 1)C

. . .

−2C
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dw

w
.

In order to glue the above parabolic SO (p, p + 1)-Higgs bundles over the
complex connected sum of Riemann surfacesX# := X1#X2 of genus g = g1+g2+
s − 1 we shall use the gauge-theoretic gluing construction summarized in Sect. 6.6.
To this end, the initial model data

(

A mod
i ,  mod

i

)

should be identified locally over
the annuli around the points in the divisors of s-many points Di , for i = 1, 2. This
is achieved using the perturbation argument described next.

Consider the embedding

!
par
i :Mpar

K
p

i ⊗ιp−1
i

(SO (1, 2))× p−1⊕
j=1

H 0
(

Xi,K
2j
i ⊗ ι2j−1

i

)

→Mpar (SO (p, p + 1)) ,

for i = 1, 2. Over the pair (X1,D1), take a parabolic SO (1, 2)-Higgs bundle defined

by the triple
(

Ŵ1, I1, η̂1

)

with

Ŵ1 := K∨
1 ⊕K1;

I1 ∼= O;

η̂1 =
⎛

⎝

0 1 0
0 0 1
0 0 0

⎞

⎠ .

Let
(

Ã1,  ̃1

)

be the corresponding solution to the Hitchin equations. There is a

complex gauge transformation which locally puts
(

Ã1,  ̃1

)

into the model form

Ã mod
1 = 0,  ̃ mod

1 =
⎛

⎝

2C 0 0
0 −2C 0
0 0 0

⎞

⎠

dz

z

over a disk centered at the points in D1 with coordinates z.
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Remark 6.4 The existence of this complex gauge transformation is provided for

the local SL (2,R)-model solution

(

A mod = 0,  mod =
(

C 0
0 −C

)

dz
z

)

; then we

embed into SO (1, 2).

Using the map!par
1 above, the parabolic stable SO (p, p + 1)-pair (E1, 1) over

(X1,D1) corresponds to an approximate solution (A1, 1) of the Hitchin equations,
which near each point of D1 has the form

(

A mod
1 , mod

1

)

with

A mod
1 = 0,  mod

1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2pC
2(p − 1)C

. . .

2C
−2pC

. . .

−2C
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dz

z
,

for p > 2 and C ∈ R nonzero.

Over the pair (X2,D2), take the triple
(

Ŵ2, I2, η̂2

)

with

Ŵ2 := M̃ ⊕ M̃∨, where M̃ ∼= O ((2k − 1− p)D2) , for k = 1, . . . , p

I2 ∼= O

η̂2 ∈ H 0
(

Hom
(

Ŵ2, I2

)

⊗Kp2 ⊗ ιp−1
2

)

.

Applying a similar argument as above, we may perturb the relevant SL (2,R)-
pair and extend our data to SO (p, p + 1) to finally get an approximate solution
(A2, 2), which near each point of D2 has the form

(

A mod
2 , mod

2

)

with

A mod
2 = 0,  mod

2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2pC
−2(p − 1)C

. . .

−2C
2pC

.. .

2C
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dw

w
,

for p > 2 and C ∈ R nonzero, as above.
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The complex connected sum of Riemann surfacesX# = X1#X2 is realized along
the curve zw = λ for a parameter λ ∈ C, and so dz

z
= − dw

w
for coordinates on

annuli around each puncture which are glued using a biholomorphism for each pair
of points

(

pi, qj
)

from the divisors D1 and D2. Let  ⊂ X# denote the result

of gluing these pairs of annuli and set
(

A mod
pi,qj

, mod
pi,qj

)

:= (

A mod
1 , mod

1

) =
− (A mod

2 , mod
2

)

. We can glue the pairs (A1, 1), (A2, 2) together to get an
approximate solution of the SO (p, p + 1)-Hitchin equations:

(

Aapp, app) :=

⎧

⎪

⎨

⎪

⎩

(A1, 1) , over X1\X2
(

A mod
pi,qj

, mod
pi,qj

)

, over around each pair of points
(

pi, qj
)

(A2, 2) over X2\X1,

over the connected sum bundle over X#.
By construction, (Aapp, app) is a smooth pair on X#, complex gauge equivalent

to an exact solution of the Hitchin equations by a smooth gauge transformation
defined over all of X#. The next step is to correct the approximate solution
(Aapp, app) to an exact solution of the SO (p, p + 1)-Hitchin equations. We
follow the contraction mapping argument for the nonlinearG-Hitchin operator from
Sects. 6.6.6 and 6.6.7 developed for a general connected semisimple Lie group G.
We next describe how the general theory for showing that the linearization operator
is invertible adapts to the case when G = SO (p, p + 1); the computation of the
necessary analytic estimates for an approximate solution does not depend on the
semisimple Lie groupG and can be found in §6 of [66].

For the group G = SO(p, p + 1), a maximal compact subgroup is H =
SO(p,C)× SO(p + 1,C) with Lie algebra h = so(p)× so(p + 1). Moreover, for
a Higgs field  = ϕdz, the compact real form τ : gC → gC is giving τ ( ) = ϕ̄dz.
For the notation introduced in Sect. 6.6.7, we have the following:

Lemma 6.5 For an element (ψ1, ψ2) ∈ ker
(

L1 + L∗2
) ∩ L2

ext

(

X×#
)

, we have

dAapp
0
ψi =

[

ψi, 
app
0

] = [

ψi,
(

 
app
0

)∗] = 0,

for i = 1, 2.

Proof The proof follows exactly the same steps as that of Lemma 6.5 in [66]. There
are no nontrivial off-diagonal elements in the kernel of the operator

D (ψ1, ψ2) := 2

(

i
2∂θψ1 + [ψ2, τ (ϕ)]
− i

2∂θψ2 − [ψ1, ϕ]

)

,
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since we have taken a diagonal and traceless model Higgs field  mod = ϕ mod dz
z

,
where

ϕ mod =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2pC
2(p − 1)C

. . .

2C
−2pC

.. .

−2C
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with p > 2 and C ∈ R nonzero.

The next proposition is now providing invertibility:

Proposition 6.4 The operator L1 + L∗2 considered as a densely defined operator
on L2

ext

(

X×#
)

has trivial kernel.

Proof Let (ψ1, ψ2) ∈ ker
(

L1 + L∗2
) ∩ L2

ext

(

X×#
)

. From Lemma 6.5 we have

dAapp
0
ψi =

[

ψi, 
app
0

] = [

ψi,
(

 
app
0

)∗] = 0,

for i = 1, 2. We show that ψ1 = 0 by showing separately that γ := ψ1 + ψ∗1 ∈
0
(

X×# , E (h)
)

and δ := i (ψ1 − ψ∗1
) ∈ 0

(

X×# , E (h)
)

both vanish.
For holomorphic coordinate z centered at the node of X×# , the Higgs field  app

0
in our exact solution is written  app

0 = ϕ dz
z

with

ϕ ∈ mC (SO (p, p + 1)) =
{(

0 Q

−QT 0

)

, forM a p × (p + 1) complex matrix

}

.

We get that d|γ |2 = 2
〈

dAapp0
γ, γ

〉

= 0, that is, |γ | is constant onX×# , as well as that

γ (x) lies in the kernel of the linearization operator (see Lemma 6.3). Moreover,

γ (x) ∈ h =
{(

M 0
0 N

)

|M ∈ so (p) ,N ∈ so (p + 1)

}

,

thus γ (x) has orthogonal eigenvectors for distinct eigenvalues, but even if there are
degenerate eigenvalues, it is still possible to find an orthonormal basis consisting of
eigenvectors of γ (x).

Now, if γ (x) is non-zero, since [ϕ (x) , γ (x)] = 0 it follows that ϕ (x) preserves
the eigenspaces of γ (x) for all x ∈ X×# and so 〈ϕ (x) v, ϕ (x)w〉 = 〈v,w〉 for
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v,w ∈ C
2p+1. In other words, ϕ (x) ought to be an isometry with respect to the

usual norm in C
2p+1. Equivalently, ϕ (x) is unitary for all x ∈ X×# . The determinant

of the Higgs field det app
0 generically has a simple zero in at least one point in

X×# . For a zero x0 chosen, say, on the left hand side surface X1 of X×# where we
embed via the irreducible representation described in Sect. 6.7.4.1—let us denote it
at present φirr—we see that

ϕ (x0) = φirr∗
(

0 z
1 0

)

= ẽ + ze

which is not unitary, for the matrices e and ẽ as in (6.9) and (6.10) respectively. This
is a contradiction and therefore, γ = 0 everywhere.

That δ vanishes, as well as that ψ2 = 0, is proven entirely similarly.

Remark 6.5 The assumption of the existence of at least one simple zero of a generic
meromorphic quadratic differential allows us to show that the linear operatorL(A, )
is injective and thus assure absence of small eigenvalues of this linear operator
governing the gluing construction (cf. Swoboda [99] for a similar application). That
a generic solution of the rank 2 Hitchin equations has only simple zeroes is proven
in [77].

Theorem 6.12 adapts in the case G = SO (p, p + 1) to provide the following:

Theorem 6.14 Let X1 be a closed Riemann surface of genus g1 and D1 =
{p1, . . . , ps} a collection of s distinct points on X1. Consider respectively a closed
Riemann surface X2 of genus g2 and a collection of also s distinct points D2 =
{q1, . . . , qs} on X2. Let (E1, 1) → X1 and (E2, 2) → X2 be parabolic
polystable SO (p, p + 1)-Higgs bundles, one from each of the families described
in Sects. 6.7.4.1 and 6.7.4.2 with corresponding solutions to the Hitchin equations
(A1, 1) and (A2, 2). Then there is a polystable SO (p, p + 1)-Higgs bundle
(E#, #) → X# over the complex connected sum of Riemann surfaces X# =
X1#X2, which agrees with the initial data over X#\X1 and X#\X2.

Definition 6.19 We call such an SO(p, p + 1)-Higgs bundle constructed by the
theorem above a hybrid SO(p, p + 1)-Higgs bundle.

6.7.6 Model Representations in the Exceptional Components
of R (SO (p, p + 1))

We now show that the specific hybrid SO (p, p + 1)-Higgs bundles constructed
in the previous section lie inside the p (2g − 2) − 1 exceptional components of
the character variety R (SO (p, p + 1)). In fact, by varying the parameters in the
construction, namely, the genera g1, g2 of the Riemann surfacesX1,X2, the number
of points s in the divisorsD1,D2, and the weight α = 2k−1−p for the line bundle
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M̃ ∼= O ((2k − 1− p)D2), one obtains models in all exceptional components. This
is seen by an explicit computation of the degree of the line bundle M appearing in
the description (6.7) of the Higgs bundle data; the exceptional components are fully
distinguished by the degree of this line bundle. We have considered:

E1 = K−p
1 ⊗ O (−pD1)⊕K−(p−1)

1 ⊗ O ((1− p)D1)⊕ . . .
. . .⊕K(p−1)

1 ⊗ O ((p − 1)D1)⊕Kp1 ⊗ O (pD1) , and

E2 = V ⊕W = M̃∨ ⊕ M̃ ⊕K−(p−1)
2 ⊗ O ((1− p)D2)⊕ . . .

. . .⊕Kp−1
2 ⊗ O ((p − 1)D2) ,

with M̃ ∼= O ((2k − 1− p)D2) and pardeg
(

M̃
)

= (2k − 1− p) s, for k =
1, . . . , p. We now use Proposition 6.2, which asserts an additivity property for the
parabolic degree of the bundle over the connected sum operation. We thus have that

for each j ∈ {1− p, . . . , p − 1} the bundleK
⊗parj

1 #K
⊗par−j
2 has degree

deg
(

K
⊗parj

1 #K
⊗parj

2

)

= pardeg
(

K
j
1 ⊗ O (jD1)

)

+ pardeg
(

K
j
2 ⊗ O (jD2)

)

= j (2g1 − 2+ s)+ j (2g2 − 2+ s)
= 2j (g1 + g2 + s − 1− 1)

= 2j
(

gX# − 1
)

= degK⊗j
X#
.

It is thus a line bundle isomorphic to K⊗j
X#

.

Moreover, gluing the parabolic line bundles Kp1 ⊗ O (pD1) and M̃ provides a
line bundleM ∈ Pic (X#) with degree

deg (M) = pardeg
(

K
p

1 ⊗ O (pD1)
)+ pardeg

(

M̃
)

= p (2g1 − 2+ s)+ (2k − 1− p)s
= 2p (g1 − 1)+ (2k − 1) s.

We deduce that the result of the construction is a Higgs bundle (V ,Wk, η) with
data V and η as in (6.7) and

Wk := M ⊕Kp−2
X#

⊕ . . .⊕K2−p
X#

⊕M−1
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with d = deg (M) = 2p (g1 − 1) + (2k − 1) s, for k = 1, . . . , p. One can now
check that varying the values of the parameters g1, s and k, we can obtain model
SO (p, p + 1)-Higgs bundles by gluing, which exhaust all the exceptional smooth
p (2g − 2)− 1 components of M (SO (p, p + 1)).

Remark 6.6 Notice that the case when p = 1 actually describes the Sp (4,R)-case
from [66]. Indeed, we then have k = 1 and so M̃ ∼= O with d = deg (M) =
2 (g1 − 1)+ s = −χ (�l). The case p > 2 thus involves an extra parameter on the
non-trivial line bundle M̃ given by the parabolic structure on a trivial flag.

6.7.7 Model Representations and Positivity

The model SO (p, p + 1)-Higgs bundles obtained above are now all #-positive.
This follows directly from the recent work of Beyrer and Pozzetti [9], who
showed that the set of #-positive representations is closed in the character variety
R(SO(p, q)), for p ≤ q . Moreover, Theorem 6.8 asserts that the connected
components parameterized by using Higgs bundle methods in [15] consist solely
of #-positive representations; the exceptional components of Definition 6.18 do,
indeed, fall in these cases (see [5]).

A more direct way to show that the models in the exceptional p (2g − 2) −
1 smooth components of R(SO(p, p + 1)) are #-positive, is by gluing the
positivity condition at the level of infinity of the fundamental group. In fact,
a Hitchin representation into SO (p, p + 1), and a representation which factors
through SO (p − 1, p) × SO (2) with SO (p − 1, p)-factor in the relative Hitchin
component, that is, like the ones we chose, are both#-positive (see [5, 24]). On the
other hand, in [33, pp. 95–100], Fock and Goncharov provide a gluing method for
positive local systems on a pair of Riemann surfaces with boundary for the case of
split real Lie groups, and so for the group SO (p, p + 1) in particular. This involves
the requirement that the monodromies along the two boundary components, as well
as the assigned configurations of positive flags coincide; see p. 99 of (loc. cit.) for
more details.
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Chapter 7
Acute Geodesic Triangulations
of Manifolds

Sang-hyun Kim

Abstract We give a brief survey on acute geodesic triangulations of certain
manifolds such as higher dimensional manifolds, Riemannian surfaces and flat
cone surfaces. In the special case of a round two-sphere we review the result
of the author with Walsh that gives a complete combinatorial characterization of
acute geodesic triangulations. We particularly focus on results that are related with
hyperbolic geometry, including Thurston’s geometric description for the Deligne–
Mostow lattices and the Koebe–Andreev–Thurston theorem on circle packings. We
will briefly sketch the proofs of the key results, and list relevant outstanding open
problems.

Keywords Acute geodesic triangulation · Koebe–Andreev–Thurston theorem ·
Polytope · Hyperbolic space · Complex hyperbolic lattice
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7.1 Introduction

Let Md be a topological manifold. To avoid technicalities, we always assume that
M is equipped with a smooth structure and with a compatible PL structure; we allow
isolated singularities when d = 2. By a combinatorial triangulation of M we will
mean a simplicial complex that is PL–homeomorphic toM .

If M is equipped with a Riemannian metric, a geodesic triangulation means a
homeomorphism from a combinatorial triangulation L to M such that the image of
each simplex in L is a geodesic simplex. Here, a geodesic simplex is inductively
defined as the geodesic join of a geodesic simplex of one lower dimension; we
will only consider geodesic simplices in uniquely geodesic neighborhoods to avoid
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any ambiguity of this definition. We declare a point to be a geodesic simplex of
dimension zero.

The main object of study in this survey is an acute (geodesic) triangulation of
a Riemannian manifold (Md, g), i.e. a geodesic triangulation such that every pair
of (d − 1) faces in each geodesic simplex makes an angle less than π/2 at the
intersection points. We will mostly focus on the three questions below:

Question 7.1.1 Let (Md, g) be a Riemannian manifold.

(1) Does there exist an acute triangulation ofM at all?
(2) Which combinatorial triangulations are realized as acute triangulations ofM?
(3) Are there “qualitatively good” acute triangulations ofM?

The phrase “qualitatively good” may have several meaningful interpretations.
One motivation of studying acute triangulations comes from the finite element
method, a technique in numerical analysis used to find approximate solutions to
differential and integral equations. As one form of the method, a Euclidean domain
is divided into small geodesic simplices and a given function is interpolated linearly
in each subdomain. It is well-known that not just smaller sizes, but also more
regular shapes of simplices are important in reducing interpolation errors, gradient
interpolation errors, round-off errors, the worst-case running time and so forth [55].
An acute triangulation is suggested as one way of achieving such regularity of
shapes, based on empirical evidences; see [63, 67] and references therein. Many
other qualitative criteria of triangulations, such as the ratios of the circumscribed
balls to the inscribed ones, are considered in the literature [8, 55].

As a more theoretical instance, let us consider a geodesic triangulation T of
a compact Riemannian surface S. Given a function f on S, we can consider a
piecewise linear interpolation F defined by the values of f on the 0-skeleton T (0).
Colin de Verdière points out [16] that the Dirichlet integral

∫ |dF |2 has a certain
desirable form that is a discrete analogue of the classical Schrödinger operator if
the geodesic triangulation T is acute.

In this survey, we start from a discussion on dimensions d ≥ 5 where part
(1) of Question 7.1.1 has the negative answer. Namely, using the classical Dehn–
Sommerville relations we sketch Kalai’s proof that manifolds of dimension d ≥ 5
do not admit acute triangulations. For certain three and four manifolds, we will
survey known negative and affirmative answers for the same question. Part (2) of
the question on the classification of acute triangulations in these dimensions still
seems far from reach.

We will then move to manifolds of dimension two, i.e. surfaces. We consider
two classes of surfaces: general Riemannian surfaces and flat cone surfaces.
These two types of surfaces are acutely triangulable, admitting the affirmative
answer to part (1) of the above question. More strongly, an “almost equilateral”
triangulation of a general Riemannian surface is described, in relation to part (3)
of Question 7.1.1. We will then illustrate a remarkable discovery of Thurston that
completely classifies equilateral triangulations of certain flat cone spheres. The
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proof of a result by Margulis–Mozes is included, which shows that the hyperbolic
plane can be aperiodically tiled by a single acute triangle.

The last object to be discussed is a round sphere S2. This is one of a few spaces
where the first two questions are completely answered. We will include necessary
background material including the Koebe–Andreev–Thurston theorem and CAT(κ)
geometry, and then describe the complete classification by Walsh and the author [33]
of acute triangulations of S2.

7.2 In Dimension Three and Higher

It is a fundamental question as to whether or not a given space admits an
acute triangulation. An affirmative answer can be given by prescribing such a
triangulation, while the negative answer is often much trickier to exhibit. One of
the main tools in dimension d ≥ 3 is the theory of convex polytopes.

7.2.1 Polytopes and Dehn–Sommerville Equations

Let us first introduce basic concepts of the general polytope theory. Let P be a d-
polytope, namely the convex hull of a finite set in R

d . We let Fi (P ) denote the set
of its i-dimensional faces, and fi(P ) the cardinality of Fi (P ). We regard the empty
set as a (−1)-dimensional face. The face lattice of P is a partial order structure on

F(P ) :=
d
⋃

i=−1

Fi (P )

defined by inclusion. The face vector of P is defined as

f (P ) := (f0(P ), f1(P ), . . . , fd−1(P )).

Let 〈x, y〉 denote the usual inner product in R
d . If P contains the origin in its

interior, then its (polar) dual P ∗ is defined by

P ∗ := {y ∈ R
d | 〈x, y〉 ≤ 1 for all x ∈ P },

There exists an order–reversing bijection between the face lattices F(P ) and
F(P ∗). In particular, we have fi(P ) = fd−1−i (P ∗).

For each face F ∈ F(P ) the interval [F,P ] in the lattice F(P ) is order–
isomorphic to the face lattice of some polytope LinkP (F ), called the (combina-
torial) link of F in P . In the special case when F is a vertex then LinkP (F ) is
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combinatorially isomorphic to the intersection betweenP and a small sphere around
F .

Setting fd(P ) = 1 and using the Euler characteristic formula for P ≈ Bd , we
obtain

d
∑

i=0

(−1)ifi(P ) = χ(P ) = χ(point) = 1.

The above equality is called the Euler relation for the polytope P .
A polytope is said to be simplicial if it is combinatorially isomorphic to a

simplicial complex. While the Euler relation is the only affine relation satisfied
by the face vectors of all (possibly non-simplicial) d-polytopes [27], a simplicial
polytope satisfies extra affine relations called the Dehn–Sommerville equations:

d−1
∑

j=k
(−1)j

(

j + 1

k + 1

)

fj (M) = (−1)d−1fk(P ).

Here, we let k = −1, 0, . . . , d − 1, and f−1(P ) = 1. These equations are obtained
by repeatedly applying the Euler relation to all the links of the faces of the polytope
P .

More generally, let M be a closed oriented triangulated n-manifold and let
fi(M) denote the number of i-simplices in M . We let f−1(M) be half of the Euler
characteristic of M . Then a similar idea as above yields the Dehn–Sommerville
equations for closed manifolds [34], which again hold for each k = −1, . . . , n:

n
∑

j=k
(−1)j

(

j + 1

k + 1

)

fj (M) = (−1)nfk(M).

The equation for k = −1 is simply the Euler characteristic formula. Setting M =
Sd−1, we recover the Dehn–Sommerville equations for d-polytopes.

7.2.2 Spherical Complexes

In order to study dihedral angles of a spherical, Euclidean or hyperbolic d-polytope
P it is natural to consider the (metric) link of a vertex v in P , which is defined as
the space LinkP (v) = T1

v(P ) of unit tangent vectors at v. The Riemannian angle at
v naturally induces a spherical metric on LinkP (v), making this space isometric to
a convex subset of a unit (d − 1)-sphere.

We say a polytope is simple if the link of every vertex is combinatorially a
simplicial complex. In the case when P is acute and simple, every link is an acute
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spherical simplicial complex. A facet of a d-dimensional polytope means the top
(i.e. (d − 1)-) dimensional face of P . We have the following simple observation.

Lemma 7.2.1 If d ≥ 2 then every facet of an acute spherical d-simplex is acute.

Remark 7.2.2 When d = 2 the lemma shows that the side lengths of an acute
spherical triangle are acute, i.e. less than π/2. The converse of the lemma does not
hold, even when d = 2. For instance, consider a spherical triangle of dihedral angles
(π/3, π/3, π/2). This triangle is obtained by dividing a sphere into four isometric
equilateral triangles (tetrahedral subdivision) and then further dividing each triangle
into six isometric triangles sharing the center of the gravity as a common vertex.
Although each side length is acute, the triangle itself is not acute. By a small
perturbation one can even find an obtuse spherical triangle with acute side lengths.

Proof of Lemma 7.2.1 Let P be a d-dimensional acute spherical simplex. We first
consider the case d = 2. If P has side lengths a, b, c and their opposite angles
A,B,C then it satisfies the spherical law of cosines for angles:

cos c = cosC + cosA cosB

sinA sinB
.

This implies that the cosine of each side length is positive, implying that each facet
of P is acute.

Consider the case that P = [v0, . . . , vd ] is d ≥ 3 dimensional. We may
inductively assume that the conclusion holds for an acute spherical (d−1)-simplex.
We claim that an arbitrary facet F is acute. We will fix F := [v0, v1, v2, . . . , vd−1]
and estimate the dihedral angle θ between these two faces of F :

E0 := [v0, v̂1, v2, v3, . . . , vd−1],
E1 := [v0, v1, v̂2, v3, . . . , vd−1].

Let v̄i be the image of the geodesic ray v0vi in LinkP (v0) = T1
v0
(P ). Then the angle

θ is equal to the dihedral angle between

Ē0 := [v̄2, v̄3, . . . , v̄d−1],
Ē1 := [v̄1, v̄3, . . . , v̄d−1].

Since LinkP (v0) is an acute spherical (d − 1)-simplex we inductively see that the
(d − 2)-simplex

[v̄1, v̄2, . . . , v̄d−1]

is also acute. It follows that θ is acute, as required. ��
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7.2.3 Dimension Four and Five

Regarding manifolds of dimension d = 4, one has the following result; this is
implicit in [31] and [35] forM = S4 andM = (S1)4, respectively.

Theorem 7.2.3 ([31, 35]) If a closed Riemannian 4-manifold admits an acute
triangulation then its Euler characteristic is larger than four.

Proof Assume that a closed Riemannian 4-manifold M is given with a geodesic
triangulation, and that χ(M) ≤ 4. We will prove that some 2-face is shared by four
or fewer 4-faces. Plugging the face vector

f := (f0, f1, f2, f3, f4)

of M into the Dehn–Sommerville equations with k = −1, 0 and 3, we obtain the
following.

⎛

⎝

1 −1 1 −1 1
0 −2 3 −4 5
0 0 0 −4 10

⎞

⎠ f =
⎛

⎝

χ(M)

0
0

⎞

⎠

Eliminating f1 and f3, we have

10f4 − 5f2 + 10f0 = 10χ(M).

For each 0 ≤ i < j ≤ 4 we define a flag number as

fi,j := #{(ui, uj ) | ut is a t–face for t = i and t = j such that ui ⊆ uj }.

It is easy to see that fi,j =
(

j+1
i+1

)

fj . Since each 4-simplex contains five vertices we
have

f2,4 = 10f4 = 5f2 + 10(χ(M)− f0) ≤ 5f2 + 10(χ(M)− 5) < 5f2.

This implies that the average number of 4-simplices that contain a given 2-simplex
in the triangulation of M is less than five. In particular, some 2-simplex u2 must
belong to four or fewer 4-simplices. Since the sum of the dihedral angles at u2 of
those 4-simplices is 2π we conclude that the given triangulation is not acute. ��
Remark 7.2.4 Kalai [31] actually proved the following result: if d ≥ 5 then every
d-dimensional polytope must contain a (d − 3)-face shared by at most four (d − 1)-
faces. For a simplicial polytope P this follows from applying the argument of
Theorem 7.2.3 to the boundary (≈ S4) of the link of each (d − 5)-face in P .
The case of general polytopes would require a deep result of rigidity theory of
frameworks [32].
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Let us note another consequence of the above theorem.

Corollary 7.2.5 (cf. [35, Theorem C]) If d ≥ 5, then a Riemannian manifold of
dimension d does not admit an acute triangulation.

In particular, the space R
d does not admit an acute triangulation for d ≥ 5; see

also [37, 38]. One may compare this result with the non-existence of hyperbolic
Coxeter d-polytopes for sufficiently large d , which relies on the fact that higher di-
mensional simple polytopes have many triangular and quadrangular faces; see [65].

Proof of Corollary 7.2.5 The key idea is essentially the same as in the proof of
Theorem 7.2.3. Let L be such an acute triangulation, which is possibly infinite. Pick
an arbitrary vertex v of L. Topologically, the spaceQ := LinkL(v) can be identified
with the intersection of L with a very small (d − 1)-sphere centered at v; recall our
standing assumption from the introduction that the link of a vertex in a combinatorial
triangulation is a sphere. It follows that Q inherits a simplicial complex structure
from that of L. As in Theorem 7.2.3 and Remark 7.2.4, there exists some (d − 3)-
face ofQ shared by at most four (d−1)-faces ofQ. In particular, the given geodesic
triangulation ofQ is non-acute. This implies that a dihedral angle of some (d − 2)-
face in L, measured at v, is non-acute, either. ��

Another consequence of Theorem 7.2.3 is that no acute triangulation of R
4

is periodic, i.e. invariant under cocompact isometric actions. For example, a 4-
dimensional cube or parallelepiped will never admit an acute triangulation since
it tiles the space by translations. In [35], the authors proved a stronger fact that a
(hypothetical) acute triangulation of R

4 must contain a sequence of simplices in
which the largest angles converge to π/2. In particular, one cannot hope to tile R

4

with only finitely many isometry types of geodesic 4-simplices, periodically or non-
periodically. However, the following question is still open.

Problem 7.1 Does R4 admit an acute (necessarily non-periodic) triangulation?

7.2.4 R
3, S3 and More

Aristotle [3] stated the following in his treatise On the Heavens:

It is agreed that there are only three plane figures which can fill a space, the triangle, the
square, and the hexagon, and only two solids, the pyramid and the cube.

In a certain interpretation (e.g. [57]), Aristotle’s remark is understood to mean that
R

3 is filled with regular tetrahedra; this remark is then obviously a mathematical
error since a regular tetrahedron has the dihedral angle arccos 1/3, which is not
a rational multiple of π . See [54] for more historical remarks on this perspective
especially in relation to Plato’s theory of atoms.

It was not until the early 21st century that an acute triangulation of R3 was first
constructed [22]. This result was further strengthened later as follows.
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Theorem 7.2.6 ([35, 64]) A 3–dimensional cube (and hence, a 3–torus) admits an
acute triangulation.

The authors of [64] used a computational search to find such a triangulation with
1370 tetrahedra. Let us sketch the proof in [35], which gives a more conceptual
argument using 2715 tetrahedra. The authors of the latter paper considered the 600-
cell, which is a four-dimensional (Euclidean) polytope consisting of 600 facets. The
600-cell is polar dual to the 120-cell, a four-dimensional polytope consisting of 120
dodecahedra on the boundary. Since each face-adjacent pair of dodecahedra in the
120-cell share five vertices forming a pentagon, each edge in the 600-cell is shared
by five tetrahedra.

The 600-cell is homeomorphic to a four-dimensional ball, and the boundary is a
simplicial complex homeomorphic to S3. In this simplicial complex X600, consider
the union Q̄ of a simplex Q and all the simplices intersecting Q. Note that each
vertex v inX600 belongs to twenty tetrahedra so that Linkv(X600) is an icosahedron.
By inclusion–exclusion, the number of simplices in Q̄ can be counted as

20 · #Q(0) − 5 · #Q(1) + 2 · #Q(2) − 1 · #Q(3) = 80− 30+ 8− 1 = 57.

The union of the remaining 543 = 600− 57 tetrahedra in X600 is aptly denoted as

X543 := X600 \ Int Q̄.

It is obvious that X543 is a topological ball since it is the complement of a ball
from S3. The authors of [35] prove the following, which implies Theorem 7.2.6
by dividing a cube into one regular tetrahedron and four copies of a standard
tetrahedron, i.e. a tetrahedron containing three unit normal vectors on its edge set.
The proof uses a stereographic projection of X(0)600 ⊆ S3 ⊆ R

4 to R
3 along with a

numerical search by a computer.

Lemma 7.2.7 A regular tetrahedron and a standard tetrahedron admit acute
triangulations which is combinatorially equivalent to X543.

For S3, we can projectivize the boundary of the Euclidean 600-cell to the set

x2
1 + x2

2 + x2
4 + x2

4 = R

with a sufficiently R, and obtain a metric description of X600 as a geodesic
triangulation of a three-dimensional sphere. As we noted above the projection of
each edge belongs to five tetrahedra in X600. The dihedral angle at an edge of a
spherical regular tetrahedron in X600 is hence 2π/5, which is acute. From this we
have the following.

Proposition 7.2.8 A three-dimensional sphere admits an acute triangulation.

On the other hand, the classification problem for acute triangulations of S3 still
does not seem to be within reach. In fact, it is not even known exactly which
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combinatorial triangulation of S3 can be realized as the boundary of a 4-polytope;
see [48] and the references therein. The following basic question is also open.

Problem 7.2 What is the smallest number of tetrahedra needed to acutely triangu-
late a three-sphere?

The number 600 was a modestly conjectured answer to the above problem [9].
We will note later from Lemma 7.2.1 and Corollary 7.4.9 that each vertex in an
acute triangulation of S3 must belong to at least twenty tetrahedra.

Another intriguing open question is the following; the 600-cell is an example of
such a triangulation for S3, tiled by regular tetrahedra of dihedral angles 2π/5.

Problem 7.3 Does R
3 admit a triangulation by copies of a single (acute) tetrahe-

dron?

7.3 Dimension Two: General Riemannian and Flat Cone
Metrics

In this section, we consider acute triangulations of surfaces with general Riemannian
metrics, and also with singular flat metrics.

7.3.1 Riemannian Surfaces

Let S be a surface with a Riemannian metric g. If L is a combinatorial triangulation
of S, it is natural to wonder if L can be realized as a (not necessarily acute) geodesic
triangulation.

For example, let us consider the case that (S, g) is the round sphere, namely the
space S2 with the usual Fubini–Study metric. We will see in the next section (the
Koebe–Andreev–Thurston Theorem) that every combinatorial triangulation L of S2

is realized as the nerve of a coin graph; this means that there exists a collection of
interior-disjoint non-degenerate disks of various radii on the sphere such that � is
isomorphic to the graph obtained by placing a vertex at the center of each disk and
by joining two vertices whose corresponding disks are tangent to each other. By
joining the centers of tangent disks by spherical geodesic arcs, we obtain a geodesic
triangulation of S2 that is combinatorially isomorphic to L.

In the case of surfaces with nonpositive curvatures, Colin de Verdière obtained
the following.

Theorem 7.3.1 ([15]) If X is a closed orientable Riemannian surface with a non-
positive Gaussian curvature, then every combinatorial triangulation of X can be
realized by a geodesic triangulation.
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When X is a hyperbolic manifold, the resulting geodesic triangulation above can
be regarded as the two-dimensional case of the straightening map

C∗(X)→ C∗(X)

defined by Thurston [59]. This is a chain map chain homotopic to the identity, which
sends a singular simplex to a geodesic simplex having the same vertex images.

In the case of a general Riemannian surface as in Theorem 7.3.1, the main idea is
to consider a homeomorphism from a given simplicial complex L to S, and suitably
define an energy functional determined by the images of edges. Using variational
principles, the minimum of the energy functional can be shown to be attained by a
geodesic triangulation realizing L.

Strengthening the existence of acute triangulations, Colin de Verdière and Marin
proved that Riemann surfaces admit “almost equilateral” triangulations as follows.

Theorem 7.3.2 ([14]) If X is a closed orientable Riemannian surface with σ ∈
{−1, 0, 1} denoting the sign of the Euler characteristic ofX, and ifK is the smallest
compact interval containing

{

4π

12− 2σ
,
(4− σ)π
12− 2σ

}

,

then for every open interval J containingK there exists a geodesic triangulation of
X such that the angles of all the triangles belong to J ; furthermore, one can require
that such a geodesic triangulation has arbitrarily small diameters of geodesic
triangles.

Let us briefly sketch the proof of the theorem. The starting point is the
observation that the statement is invariant under a conformal change of the metric
(X, g) 	→ (X, eFg), where F : X → R is an arbitrary smooth map. From this
the torus case follows immediately, since one can simply assume that X is flat and
approximateX by the union of flat equilateral triangles.

In the case when the genus h of X is at least two, one has a sextic holomorphic
form  = φ(z)dz6 on the Riemann surface X with simple zeroes. The cube root
of the modulus of  then defines a singular flat metric ḡ on X conformal to g, and
the singularities of this new metric can be shown to have cone angles 7π/3. Colin
de Verdière and Marin then establish that for a dense choice of the Riemannian
metric g, the resulting singular flat metric ḡ admits a triangulation by flat equilateral
triangles which arbitrarily approximates a desired triangulation in the metric g. The
case h = 0 is similar.

It is much easier to see that the choice of the interval K is optimal. Indeed,
suppose X admits a geodesic triangulation L and let v, e and f denote the numbers
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of vertices, edges and faces. We let val(x) denote the valence of a vertex x ∈ L(0).
Combining the relation

2e = 3f =
∑

x∈L(0)
val(x)

with the Euler characteristic formula, we see that

6χ(X) = 6(v − e + f ) =
∑

x

(6− val(x)).

It follows that if χ(X) = 2 = 2σ then there exists vertices of valence at most five;
in this case, there exists a triangle T in L such that some angle θ1 of T satisfies
θ1 ≥ 2π/5. Moreover, if all the triangles are sufficiently small, then the sum of the
angles of T is π + δ for some small δ > 0. So, another angle θ2 of T satisfies

θ2 ≤ 1

2

(

π + δ − 2π

5

)

= 3π

10
+ δ

2
.

This means that one cannot replace the interval K by another compact interval not
containingK . If σ = −1, then some vertex of L has valence at least seven and one
sees the optimality in a similar way. The case σ = 0 is obvious.

One tantalizing question is the parametrization of all combinatorial triangulations
that can appear in the conclusion of Theorem 7.3.2. Suppose thatX is a Riemannian
surface, and that the interval J is chosen to be sufficiently close to the compact
interval K given in the theorem. Let L be a geodesic triangulation obtained in the
conclusion. If X ≈ S2, then the valences of the vertices in L are all five or six; this
is because we have

K =
[

3π

10
,

2π

5

]

�

(

2π

7
,

2π

4

)

and this inclusion implies that there are no vertices of valences seven (or more) or
of valences four (or less). By the Euler characteristic argument given above, one has
exactly twelve vertices of valence five.

Similarly, when X ≈ T 2 then all the valences must be six. When the genus h is
at least two, we note from the inclusion

K =
[

2π

7
,

5π

14

]

�

(

2π

8
,

2π

5

)

that all the valences in the triangulation are either six or seven; more precisely, we
have exactly 12(h − 1) vertices of valence seven and all the rest have valence six.
This naturally leads us to the following problem.
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Problem 7.4 Let X be a closed orientable surface and let σ ∈ {−1, 0, 1} be the
sign of the Euler characteristic of X. Can we parametrize all the combinatorial
triangulations of X such that the valences of all the vertices are either 6 or 6− σ?

See Sect. 7.3.3 for Thurston’s highly influential contribution to this problem
when X is homeomorphic to the two-sphere [60].

7.3.2 Euclidean and Flat Cone Surfaces

One may wonder how many triangles are needed to acutely triangulate an obtuse
triangle; this question can be traced back to a recreational mathematical article of
Gardner [23]. It was proved soon after the question was asked that the answer is
seven by a clever choice of a triangulation [24]. For a general n-gon the minimal
number is estimated as O(n) [39].

There are also numerous results on optimal acute triangulations, in which
dihedral angles are bounded away from 0 or π/2 by a definite amount, and in
which the number of triangles is controlled. Bishop [5] proved that every Euclidean
polygon admits a triangulation such that each triangle not containing a boundary
vertex has angles in [π/6, 5π/12].

More generally, one can consider flat cone surfaces defined as follows. A flat
cone surface is a topological surfaceX equipped with a metric g and with a finite set
of singularities onX such that X is locally isometric to a Euclidean disk near points
away from the singularities and such that X is locally isometric to the Euclidean
cone

{z ∈ C | |z| < ε, 0 ≤ arg z ≤ θ}/z ∼ eiθ z

at each singularity for some θ > 0 and ε > 0. This metric gives a Riemann surface
structure on X. The angle θ > 0 is called the cone angle of the singularity; it is
often more convenient to specify the apex curvature [60] (or, cone deficit), which is
2π − θ < 2π . A flat torus or the boundary of a platonic solid are simple examples
of such surfaces.

A result due to Troyanov [61] states that for all distinct points p1, . . . , ps on a
closed Riemann surface (X, g) and for all values κ1, . . . , κs in (−∞, 2π) satisfying
∑

i κi = 2πχ(X) there exists a conformal flat cone metric ḡ on X such that each
pi is a singularity of apex curvature κi ; furthermore, such a metric ḡ is unique up to
homothety. See also Thurston’s explanation in [60, Section 8]. The formal sum

∑

i

−κi
2π
pi

is called the divisor of ḡ.
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Y. D. Burago and V. A. Zalgaller established the following fundamental results
regarding acute triangulations of flat cone surfaces.

Theorem 7.3.3 ([11] for (1), [12] for (2))

(1) A flat cone surface admits an acute triangulation.
(2) A flat cone surface admits an isometric piecewise linear (continuous) embed-

ding into R
3.

In fact, the second part of the above theorem was crucially used in the proof of the
first, which is a discrete analogue of the Nash–Kuiper embedding theorem. See [51]
for an elementary proof of the first part. An extensive survey on works relevant to
Nash–Kuiper theorem can be found in [26].

The boundaries of platonic solids are examples of flat cone spheres. As an
example, a regular icosahedron can be given with a metric such that each facet is
an equilateral triangle with unit side lengths; this metric is flat everywhere but the
vertices, at which the apex curvature is π/3. Similarly, a regular dodecahedraon
has a flat metric with 20 cone points, at which apex curvatures are π/5. The
minimal number of triangles to acutely triangulate a regular icosahedral and a
regular dodecahedral surface is twelve in both cases. The minimal number of
all the other platonic solids is also found; see the survey [67] and references
therein. The proofs use clever choices of triangulations (for sufficiency) and Euler
number arguments (for necessity). Generalizing these results, we have the following
intriguing question.

Problem 7.5 LetX be a compact flat cone surface with a geodesic triangulation, in
which all the triangles are isometric to the unit Euclidean equilateral triangle. Does
there exist an algorithm to determine the minimum number of triangles that acutely
triangulate X?

Note that such a mimimum number is finite by the aforementioned result of Burago
and Zalgaller.

7.3.3 Parametrizing Equilateral Triangulations

Let us now concisely overview Thurston’s solution to Problem 7.4 for the two-
sphere. His solution is in fact a by-product of a much far-reaching theory of
moduli spaces of flat cone metrics on surfaces and their realizations as complex
hyperbolic orbifolds [60]. His theory gave a geometric interpretation of all of the 94
complex hyperbolic lattices in dimension 3 through 9 discovered by Mostow [44]
and Deligne–Mostow [18, 19]. For more details on this interpretation, see [45] and
references therein.

A triangle complex structure on a topological surface X is a 2-dimensional CW-
complex homeomorphic to X such that each 2-cell is the image of a triangle. For
instance, if ABC denotes the image of a closed triangular 2-cell inX, then we allow
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that two vertices B and C coincide. Moreover, it is allowed that two triangular 2-
cells share two edges in this subsection, which is forbidden for a simplicial complex.
Abusing the terminology (as was done in [60]), by a triangulation we will mean a
triangle complex structure.

Let n, s, k1, . . . , ks be positive integers such that 1 ≤ ki ≤ 5. The main
combinatorial object of interest for us is the space

P(n; k1, . . . , ks)

of triangle complex structures (simply, triangulations) of the two-sphere having 2n
faces with distinguished vertices v1, . . . , vs such that the valence of vi is 6− ki and
such that all the other vertices have valence six, up to isomorphism of triangulations.
Each triangulation in P(n; k1, . . . , ks) is said to have non-negative curvature, as the
apex curvature is either positive or zero at each vertex of the triangulation after
all triangles are metrized as Euclidean equilateral triangles. Note from the Euler
characteristic formula that

2 = χ(X2) = v − e + f =
∑

w: vertex

(

1− 1

2
val(w)+ 1

3
val(w)

)

=
∑

w: vertex

6− val(w)

6
=

s
∑

i=1

ki

6
.

It will be convenient for us to introduce the notation

a⊗n := (a, . . . , a),

where a is repeated n times. The parametrization space considered in Problem 7.4
for σ = 1 is realized as a subset of the space

P(n; 1⊗12)

for various choices of n.
For positive real numbers α1, . . . , αs we let C(α1, . . . , αs ) denote the moduli

space of flat cone metrics with cone angles

2π − α1, . . . , 2π − αs,

modulo orientation-preserving similarities without distinguishing the singular
points. We also let Ĉ(α1, . . . , αs ) denote the finite cover ofC(α1, . . . , αs)where the
s singular points are distinguished by labels. By the result of Troyanov mentioned
above, for each choice of distinct s points on S2 with the usual Fubini-Study metric
there exists a conformal flat cone structure in Ĉ(α1, . . . , αs) up to scaling if and
only if

∑

αi = 4π .
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Each triangulation T in P(n; k1, . . . , ks) determines a flat cone metric in
C( 1

3πk1, . . . ,
1
3πks) by metrizing each of the 2n triangles in T as a Euclidean

triangle with unit side lengths. The resulting Riemann surface has divisor

∑

i

−ki
6
vi

up to permutation of the singular vertices. In general, flat cone metrics on a
surface S obtained by gluing Euclidean equilateral triangles are called equilateral
triangulations of S. It is known that every noncompact Riemann surface admits
an equilateral triangulation [6]. A necessary and sufficient condition for a compact
Riemann surface to admit an equilateral triangulation is given in [66]. A point in
C(·) coming from an equilateral triangulation will be called a triangulation point in
the (unlabeled) moduli space C(·).

Let d ≥ 1 be an integer. The space C
d+1 is equipped with the standard (also

called “first” in the literature) Hermitian form

〈(z0, . . . , zd), (w0, . . . , wd)〉 :=
∑

i<d

ziw̄i − zdw̄d .

The image of complex vectors z ∈ C
d+1 satisfying 〈z, z〉 < 0 under the projection

map C
d+1 \ {0} → CPd is called the complex hyperbolic d-space and denoted as

H
d
C

. This space comes with the natural metric d(·, ·) given by

cosh2
(

d(z,w)
2

)

:= 〈z,w〉〈w, z〉
〈z, z〉〈w,w〉 .

The space H
d
C

is often modeled on the open complex unit ball Bd ⊆ C
d under the

projection

Proj : (z0, . . . , zd ) 	→ (z0/zd, . . . , zd−1/zd).

The induced metric is called the Bergman metric onBd . More generally, an arbitrary
Hermitian form of signature (d, 1) on C

d+1 is equivalent to the first standard
Hermitian form, defining a metric space on a suitable subset of CPd that is isometric
to H

d
C

.
Recall that a lattice � isometrically acting on a symmetric space is a discrete

subgroup of the corresponding Lie group with finite co-volume. As a particular case,
a lattice in a complex space Cn will mean an additive subgroup of finite co-volume.

Thurston’s result on Problem 7.4 can be summarized as follows.

Theorem 7.3.4 ([60]) The topological space M := C((π/3)⊗12) admits a Rie-
mannian metric, whose completion M̄ is isometric to H

9
C
/� for some lattice

� ≤ Isom(H9
C
).
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See a note of Schwartz [53, Remark 1.2] for an alternative account. For the proof,
we consider the finite cover M̂ := Ĉ((π/3)⊗12) and its 9-dimensional complex-
projective parametrization as follows. Each metric g in this latter space corresponds
to a divisor

∑

i

−1

6
vi

for some v1, . . . , v12. There exists a geodesic triangulationT of (S2, g)with vertices
on the singularities [60, Proposition 3.1]. We let T̃ ′ be the the universal cover of
T ′ := T \ {v1, . . . , v12}. One can show that an assignment of complex numbers to
10 edges on this triangulation (which form a spanning tree of 11 vertices) determines
a map Z from the set of edges of T̃ ′ to C, representing the image of an edge (as a
complex vector) in T̃ ′ under a fixed developing map

D : T̃ ′ → C.

Denoting the orthogonal part of the Euclidean holonomy π1(T
′) → Isom(R2) as

H0, we can see a cocycle relation

Z(γ.e) = H0(γ )Z(e)

for each γ ∈ π1(T
′) and e ∈ (T̃ ′)(1). This cocycle Z completely encodes the neces-

sary data for the developing map up to a scalar multiplication. After projectivising
by multiplicative complex numbers, the space M̂ admits local coordinate charts in
CP 9, and becomes a 9-dimensional complex-projective manifold.

By elementary complex analysis, the negative of the Euclidean area of the flat
cone metric with cocycle Z is easily seen to be

Area−(Z) := − i
4

∑

�∈T (2)
(zw̄ − z̄w).

Here, z and w are the images under Z of the two consistently oriented edges of a
triangle� in T (or, more precisely their lifts in T̃ ′). See Fig. 7.1.

By an inductive argument on the number of singular points, one can prove that the
map Area− defines a Hermitian form H of signature (9, 1) in the parameter space

Fig. 7.1 The area of a triangle in the complex plane
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C
10, which we now denote as C9,1 := (C10,H). After restricting to the vectors V

satisfying H(V, V ) < 0 and projectivising

Proj : V H− := {V ∈ C
9,1 | H(V, V ) < 0} → CP 9,

we obtain complex hyperbolic charts on M̂. Using these charts, Thurston further
proves that the completion M̄ of the unlabeled moduli space M is a complex
hyperbolic orbifold, that is, the quotient of H9

C
by a certain lattice �. Furthermore,

such an identification of the completed moduli space M̄ of flat cone metrics with a
complex hyperbolic orbifold can detect triangulation points.

Theorem 7.3.5 ([60]) There exists a lattice L ⊆ C
9,1 such that H and L are

both �-invariant, and such that the above parametrization produces a one-to-one
correspondence from each vector

V ∈ (L ∩ V H− )/�

to a non-negatively curved triangulation TV of the sphere having total area equal to
−H(V, V ). Furthermore, the lattice points V which project into M ⊆ M̄ = H

9
C
/�

correspond to the triangulations TV in P(n; 1⊗12) for n := −H(V, V )/(√3/4).

Here, the lattice L can be concretely written as the Eisenstein lattice

Z

[

e2πi/3
]9,1 ⊆ C

9,1.

One of the key ideas in Thurston’s proof is slit-and-patch. Namely, given a flat
cone metric

g ∈M = C(n; 1⊗12),

one can find six disjoint Euclidean geodesic arcs joining six pairs of singular
points. Slitting along one of these arcs, and patching the two–thirds of a Euclidean
equilateral triangle with its side length equal to the length of the slit, one can
combine the two singularities at the endpoints of the slit; see Fig. 7.2. Doing this for
all six slits, we obtain a metric

g1 ∈ C(n+m; 2⊗6),

for some m ≥ 1. The latter space includes for instance the metric of a regular
octahedron. Inductively, we have a complete description of triangulation points with
any less number of singularities and can obtain the conclusion of the theorem.

Using the complex hyperbolic volume of the above moduli spaces, Thurston
also deduces that the size of the finite set P(n; 1⊗12) is bounded by O(n10);
see [21, 36, 43] for precise estimates of these volumes and their asymptotics. This
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Fig. 7.2 Two cone points of
cone angles 5π/3 at a slit are
replaced by a single cone
point of cone angle 4π/3 in a
patch. (a) A slit. (b) A patch

is a very interesting combinatorial fact in its own, considering that the number
of planar triangular tilings grows exponentially [62]. Thurston further notes that
P(n; 1⊗12) is nonempty for all 11 �= n ≥ 10; one may compare this observation
with Corollary 7.4.9.

Problem 7.6 Develop a theory parallel to the above theorems in the case of a higher
genus surface. For instance, what is the growth of the number of almost equilateral
(that is, having valences six or seven) combinatorial triangulations with n triangles
for a closed surface of genus g ≥ 2?

7.3.4 Aperiodic Tilings

Another interesting question related to the theory of triangulations is to classify
aperiodic tiling sets, namely sets of topological balls that admit tilings of certain
ambient spaces with the additional condition that no such tilings admit invariant
cocompact isometric actions [42]. For instance, the famous Penrose tiling of the
Euclidean plane provides an aperiodic tiling with two quadrangles. In a different
perspective, Thurston solved the “tileability” problem of planar regions by various
tiles by converting the problem to a question on finite presentations of groups [58].

It is easy to see that one triangle or one quadrangle can never aperiodically tile
the Euclidean plane, since each of them does admit periodic tilings. More strongly,
it was recently announced that no single convex Euclidean polygon admits an
aperiodic tiling [47]. The analogous question in dimension three is still open; the
answer for the dimension four or higher is negative by the results in Sect. 7.2.

Problem 7.7 Does there exist an aperiodic tiling of R3 or H3 by an acute simplex?

The hyperbolic three-space H
3 admits a (periodic) tiling by the regular ideal

simplex with dihedral angles π/3. Although unlikely, it is still not determined
whether or not R

3 can be tiled, periodically or not, by a single acute simplex
(Problem 7.3). On the other hand, Margulis and Mozes discovered an affirmative
answer for H2.

Theorem 7.3.6 ([42]) The hyperbolic plane admits an aperiodic triangulation by
a single acute geodesic triangle.
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The aperiodicity is easy to be guaranteed. If a triangle T ⊆ H
2 tiles the plane

periodically, then there exists a cocompact isometry group � ≤ PSL(2,R) of the
hyperbolic plane leaving the tessellation invariant. By considering a finite index
torsion-free subgroup of �, we obtain a closed hyperbolic surface S tessellated by
T . In particular, the area of T divides the value

Area(S) = −2πχ(S).

It follows that if the angle sum of T is an irrational multiple of π then every
triangulation of H2 by copies of T is (if exists at all) aperiodic.

So, it suffices for us to find an acute geodesic triangle of H2, whose angle sum
is an irrational multiple of π and which tessellates H2. Let us consider a hyperbolic
isosceles triangle T with angles (A,B,B). We will require the following conditions,
which are slight variations of those in [42].

• A and 2B are less than π/2;
• A+ 2B = rπ for some irrational number r ∈ (0, 1);
• 4A+ 6B = 2π .

Solving the above linear equations, we easily obtain a parametrization

(A,B) = ((2− 3r)π, (−1+ 2r)π)

with r ∈ (1/2, 5/8).
We let Q be a hyperbolic rhombus obtained by gluing two copies of T ; in

particular, the interior angles of Q are given as (A, 2B,A, 2B). Set Q0 := Q.
Suppose we have constructed a topological disk Qi tiled by isometric copies of Q;
in particular, ∂Qi is a hyperbolic polygon. We assume also that all vertices of ∂Qi
belong to at most two tiles (i.e. isometric copies of Q), and some vertex vi belongs
to a single tile. Let us inductively add copies ofQ on the vertices ∂Qi starting from
a corner different from vi . We eventually obtain a topological diskQi+1 so that the
newly glued copies of Q intersect ∂Qi , and so that the vertices of ∂Qi are now in
the interior of Qi+1. This is possible since whenever at most three copies of Q are
glued side-by-side so that the copies share a vertex, one can add more copies of Q
at that vertex in such a way that that corner is completed to a full rotation; in other
words, whenever one has three (possibly redundant) angles from the set {A, 2B} one
can choose more angles from the same set so that the total sum is 2π . By continuing
this process i = 0, 1, 2, . . . one obtains a tessellation of H2 by Q, which gives a
tessellation by T . It is also easy to produce infinitely different tilings in this scheme
by changing the orders of gluing. This completes the proof of Theorem 7.3.6.

Note that by varying the choice of r ∈ (1/2, 5/8) one obtains infinitely many
examples of acute triangulations tessellating H

2. One can also have different
combinatorial types of the tessellation by considering a relation

mA+ 2nB = 2π

for various choices of integersm,n ≥ 3.
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7.4 Round Spheres

So far we have mostly focused on the question of whether or not a given metric
space admits an acute triangulation, possibly with certain additional desirable
conditions. Let us now consider the combinatorial characterization of all possible
acute triangulations of the space, in the special case of a sphere equipped with the
usual round (Fubini-Study) metric.

7.4.1 Acute Triangulations from Right-Angled Hyperbolic
3-Polytopes

The simplest acute triangulation of a sphere is the regular icosahedral partition,
which consists of twenty spherical triangles with dihedral angles 2π/5. Applying
Theorem 7.3.2 one can obtain infinitely many distinct acute triangulations with
triangles of arbitrarily small diameters.

Another method of producing an acute triangulation of a sphere is as follows.
Recall that the hyperbolic 3-space H

3 has a Poincaré ball model, which is the unit
open ball B3 in R

3 centered at the origin. Assigned with the hyperbolic metric, this
open ball becomes a Riemannian 3–manifold with sectional curvature constant and
equal to−1. The geodesics are either a straight line segment through the origin, or a
circular arc perpendicular to ∂B3 = S2. Similarly, if a sphere S intersects S2 = ∂H3

perpendicularly, then the portion of S in the unit open ball is a totally geodesic plane
isometric to the hyperbolic plane H2. This model is conformal, that is, the Euclidean
angles in this model coincide with the intrinsic Riemannian angles. At a very small
scale the hyperbolic (intrinsic) metric is arbitrarily close to the Euclidean (extrinsic)
metric.

A hyperbolic 3-polytope is a compact intersection of finitely many half-spaces in
H

3, each of which is determined by a totally geodesic plane. There exist infinitely
many right-angled hyperbolic polytopes, i.e. having dihedral angles precisely π/2.
For instance, take a very small Euclidean regular dodecahedron PE centered at the
origin of the conformal ball model. The hyperbolic convex hull PH := conv(V ) of
the vertices of V := P (0)E is a hyperbolic 3-polytope and its dihedral angles are very
near from those of PE . In particular, the polytope PH is obtuse. On the other hand,
by radially dilating the polytope tPH eventually approaches an ideal polytope P∞H ,
which is a polytope with vertices on ∂H3 = S2. At the ideal vertex three faces then
intersect at the angle π/3, making P∞H a regular ideal acute hyperbolic polytope.
It follows that at some moment t > 1 during the radial dilation the polytope tPH
is right-angled. We can also glue right-angled polytopes along isometric faces to
produce infinitely many non-isometric right-angled ones.

Each right-angled hyperbolic 3-polytope corresponds to an open three-
dimensional space of acute spherical triangulations. To describe this space, consider
a right-angled hyperbolic 3-polytope P and an arbitrarily chosen point p in the
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interior of P . After a hyperbolic translation we may assume that p = O in the
Poincaré ball model of H

3. The perpendiculars from O to the faces of P are
Euclidean radial segments in the model. We now draw the intersections of these
perpendiculars with a small sphere S centered at O , and join two intersection
points if the corresponding two faces of P are adjacent. The resulting picture on S
is a geodesic triangulation Tperp(P ) of S, which is combinatorially dual to P (1).
Indeed, the three vertices of a triangle� in Tperp(P ) are on the three perpendiculars
α, β, γ fromO to the three faces of P that contain some vertex V0.

The crucial point is that each triangle on S obtained as above is acute. To see
this, let Q be the intersection of P with the convex cone K containing the three
geodesic rays α, β and γ . ThenQ is combinatorially a cube with two distinguished
opposite vertices. One is the vertex V0 of P , and the other isO . At V0 three faces of
Q are mutually orthogonal, and atO the three faces bound the coneK . We will call
such a cubeQ as a slanted hyperbolic cube; see Fig. 7.3. By elementary hyperbolic
geometry one sees that the link � of Q at O is an acute spherical triangle. This
shows that the triangulation Tperp(P ) is acute. Moreover, we can freely move P as
long as O is contained in P so that the acute triangulations obtained in this way can
be parametrized by the interior of P , which is an open 3-ball.

Let us give an alternative description of a slanted hyperbolic cube. We take three
mutually orthogonal hyperplanes containingO in the Poincaré ball model, and pick
a point V1 in one of the open octants. By repeatedly reflecting V1 through the three
planes we obtain the points V1, V2, . . . , V8 corresponding to all the octants. We
will call the convex hull R of those eight points as a hyperbolic reflection cube.
The intersection of R with one of the closed octants is a slanted hyperbolic cube.
As we have noted above, the link of a vertex of R is an acute spherical triangle.
Furthermore, by moving V1 around in an open octant one sees the following.

Lemma 7.4.1 For every acute spherical triangle � there exists a hyperbolic
reflection cube such that all of its links are isometric to �.

Since the angles of the facets in a hyperbolic reflection cubes are acute we
deduce that the edge lengths of an acute spherical triangle are acute. By considering
polar duals, we also note that if a spherical triangle has obtuse side lengths then its
dihedral angles are also obtuse.

There are many acute spherical triangulations that do not have the form of
Tperp(P ). Indeed, applying small perturbations we see that the space of acute
spherical triangulations combinatorially dual to P (1) is locally homeomorphic to

Fig. 7.3 A slanted
hyperbolic cube. The dihedral
angles at the edges drawn in
bold are all π/2. The link�
is an acute spherical triangle
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R
m, where m is the number of faces in P . A surprising fact is that all the acute

spherical triangulations “combinatorially” come from this construction.

Theorem 7.4.2 ([33]) A combinatorial triangulation L of a two-sphere can be
realized as an acute triangulation if and only if there exists a right-angled
hyperbolic 3-polytope that is combinatorially dual of L.

We have so far shown the “if” part of the theorem, and will spend the rest of this
section to briefly sketch the idea of the “only if” part.

7.4.2 The Koebe–Andreev–Thurston Theorem and Its
Generalizations

Our strategy to prove the forward direction of Theorem 7.4.2 is to cook up a right-
angled hyperbolic 3-polytope out of a given acute spherical triangulation. For this
we will employ detailed characterizations of hyperbolic 3-polytopes due to Andreev
and Thurston, further refined by Rivin–Hodgson.

A circle packing on a sphere can be defined as a finite collection of interior-
disjoint closed disks (or, coins) on a sphere. It is often helpful to regard such a coin
as the intersection between the closure of a half space of the Poincaré ball model in
the compactification H

3 ∪ ∂H3 with the boundary ∂H3 = S2. The coin graph of a
circle packing is then defined as the combinatorial graph with vertices on the centers
of the coins and with edges joining pairs of centers of mutually tangent coins.

It is trivial that every coin graph is finite and planar. The converse, that every
finite planar graph is a coin graph, is a celebrated theorem of Koebe, Andreev and
Thurston recalled below.

Theorem 7.4.3 (Koebe–Andreev–Thurston) Every combinatorial triangulation
of a sphere can be represented as a coin graph, in a unique manner up to conformal
automorphisms of the sphere.

Koebe’s original proof is based on a form of a uniformization theorem, called
the Koebe–Poincaré uniformization theorem for finite planar domains. Andreev
gave a combinatorial characterization of finite-volume non-obtuse hyperbolic 3-
polytohedra, which involves the existence of positive solutions to a certain set
of linear inequalities; see [50] for a modern account of Andreev’s original proof.
Thurston re-interpreted Andreev’s Theorem as a theorem on circle packings,
generalized the latter theorem to the more general setting of Riemann surfaces [41],
and used the theory of circle packings as a crucial foundation for his geometrization
theorem of Haken 3–manifolds. As conjectured by Thurston and proved by Rodin–
Sullivan [49], circle packings can also be used to approximate a conformal map that
maps a given simply connected proper planar domain to an open disk, the existence
of which is given by the Riemann mapping theorem.
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Thurston’s argument for circle packings has several strong consequences. One
is the double circle packing theorem. This states that for a given combinatorial
triangulationL of S2 there exist two circle packings A and B whose coin graphs are
L and its combinatorial dual L∗, respectively such that each coin from A is either
disjoint or orthogonal to each coin in B. Indeed, the collection A is already given
in the Koebe–Andreev–Thurston Theorem. The collection B consists of the circles
containing the three tangent points for each triple of mutually tangent circles in A.

Another consequence is the cage theorem, which asserts that every Euclidean
3-polytope P is combinatorially isomorphic to another Euclidean polytope P ′ such
that all the edges in P ′ are tangent to some common 2–sphere; in other words, the
polytopeP ′ “cages a sphere”. This is straightforward from the double circle packing
theorem, since one may simply choose the Euclidean planes containing circles from
B above. These planes form facets of a desired polytope P ′ caging S2. The cage
theorem generalizes to the boundary of a smooth strictly convex body in R

3, as
shown by Schramm [52].

In the double circle packing theorem, the boundary circles of coins in A ∪ B
determine totally geodesic hyperplanes in H

3. These hyperplanes bound a right-
angled hyperbolic 3-polyhedron that is ideal (i.e. having all the vertices on ∂H3).
So, one may regard the double circle packing theorem as a special case of Andreev’s
theorem briefly mentioned above.

We will omit the (slightly technical) statement of Andreev’s theorem in its full
generality, i.e. for all non-obtuse hyperbolic 3-polytopes. For our purpose we only
need the special case of right-angled hyperbolic 3-polytopes, where the statement is
much simpler. Moreover, we will soon see a generalization by Rivin and Hodgson
of Andreev’s theorem to hyperbolic polytopes that not necessarily required to be
non-obtuse.

Note that the one-skeleton of a non-obtuse (hyperbolic or Euclidean) 3-polytope
is cubic, i.e. has valence three; for, the link of a vertex is a spherical n-gon with all
dihedral angles at most π/2 and this forces that n = 3. Let L be a combinatorial
triangulation of a sphere. We say a cycle C in L(1) is separating if each of the
two open components of L\C contains at least one vertex fromL(0). The following
result is due to Pogorelov, preceding Andreev’s paper [2]. We remark that a compact
right-angled hyperbolic d-polytope exists only for d ≤ 4; this is due to the fact that
every simple d-polytope with d ≥ 5 must have a 2–face that is a triangle or square,
which can be proved by the observation in Remark 7.2.4.

Theorem 7.4.4 ([46]) A combinatorial triangulation L of S2 having more than
four vertices is combinatorially dual to the one-skeleton of a right-angled hyper-
bolic 3-polytope if and only if L has no separating 3- or 4-cycles.

For convention, we excluded the case when L has four vertices, i.e. when it is
isomorphic to a tetrahedron.
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7.4.3 CAT(κ) Spaces

For the purpose of finding out the combinatorial type of an acute spherical trian-
gulation T , it will be necessary for us to consider some obtuse-angled hyperbolic
3-polytope P , that will arise as the combinatorial dual of T . We cannot study P by
Andreev’s Theorem since the latter applies only to non-obtuse polytopes. So, we
will take a detour on CAT(κ)-geometry and applyy the Rivin–Hodgson theorem on
hyperbolic 3-polytopes.

Consider a real number κ . We let Mn
κ denote a simply connected Riemannian

n-manifold of constant curvature κ . We will only consider the case κ = 1, 0 or −1,
where we have that Mn

κ is isometric to a sphere, a Euclidean space or a hyperbolic
space of dimension n ≥ 2.

Fix a value of κ ∈ {−1, 0, 1}. Let X be a metric space, and �0 ⊆ X be a
geodesic triangle; in the case when κ = 1 let us further assume that the perimeter
� of �0 is less than 2π . We suppose there exists a geodesic triangle �1 ⊆ M2

κ that
has the same side lengths as �0. In particular, we have arc length parameterizations
γi : [0, �] → �i such that the points γ0(t) and γ1(t) are on the vertices at the same
parameters t ∈ [0, �]. Here, we notice that each side length of�1 is necessarily less
than π if κ = 1. We say �0 satisfies the CAT(κ) inequality if

dX(γ0(s), γ (t)) ≤ dM2
κ
(γ1(s), γ1(t))

for all s, t ∈ [0, �].
In the case when κ �= 1, a geodesic space X is CAT(κ) if every geodesic triangle

in X satisfies the CAT(κ) inequality. We also say that a metric space X is CAT(1)
if every pair of points with distance less than π can be joined by a geodesic, and if
every geodesic triangle of perimeter less than 2π satisfies the CAT(κ) inequality.

A space X is locally CAT(κ) if every point has a small neighborhood which
is CAT(κ). If X is complete and if κ ≤ 0, then this condition is equivalent to
saying that the universal cover X̃ of X is CAT(κ); this result is called the Cartan–
Hadamard Theorem, which was originally proved for Riemannian manifolds of
nonpositive curvature. A CAT(κ) space is contractible whenever κ ≤ 0. It is
a classical result due to Alexandrov [1] that a smooth (in fact, C3) Riemannian
manifold has sectional curvature at most κ if and only if it is locally CAT(κ). See
also [10, Chapter II] for a detailed discussion on CAT(κ) spaces.

A closed hyperbolic n-manifold is a typical example of CAT(−1) spaces.
Different examples come from gluing hyperbolic polytopes as follows. An Mκ
cell complex is a metric space obtained by collecting polytopes in Mn

κ for various
dimensions n and gluing some of the faces by isometries. For example, a flat
cone surface is an M0 (or, Euclidean) cell complex as it admits a triangulation by
Euclidean triangles with vertices on the singularities. As another example, for each
right-angled hyperbolic 3-polytopeP there exists a closed hyperbolic 3-manifoldM
tiled by eight copies of P [29]. The manifoldM is a hyperbolic cell complex. Recall
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that the metric link of a Mκ cell complex at each vertex is aM1 (i.e. spherical) cell
complex.

Theorem 7.4.5 ([10, Chapter II.5]) Let X be a locally finite Mκ cell complex for
some κ ∈ {−1, 0, 1}.
(1) The metric space X is locally CAT(κ) if and only if the link of each vertex in X

is CAT(1).
(2) In the case when κ = 1, the metric spaceX is CAT(1) if and only ifX is locally

CAT(1) and X does not contain a closed geodesic of length less than 2π .

A two-dimensional spherical cell complex K is strongly CAT(1) if K and all of
its links do not contain a closed geodesic of length at most 2π . A strongly CAT(1)
space is CAT(1) by Theorem 7.4.5. Recall the Gauss image Gauss(P ) of a polytope
P is the spherical complex obtained by collecting the polar duals of the links of the
vertices along the edges of the spherical triangles that come from the same edge of
P . The spherical complex Gauss(P ) is homeomorphic to a sphere; it is isometric to
S2 if P is Euclidean.

It is often the case that the “no-short-closed-geodesic” condition in part (2) above
is quite tricky to verify. For instance, a link in a spherical complex Y of dimension
two is a collection of circular arcs, and it can easily be verified whether or not
such a link contains a short (less than 2π) closed geodesic. In other words, the
local CAT(1) condition for Y is easy to check. But verifying that Y is globally
CAT(1) often requires much more extra work; see [20] for related techniques and
common difficulties. For us the following characterization of hyperbolic 3-polytopes
will come for a rescue:

Theorem 7.4.6 ([28]) A finite spherical 2-complex homeomorphic to a sphere is
the Gauss image of a hyperbolic 3-polytope if and only if it is strongly CAT(1).

For instance, for a spherical triangle � let us consider the two-dimensional
spherical cell complex Y 222

� obtained from eight copies of � glued along the
corresponding edges by the octahedral symmetry Z2×Z2×Z2; see the proof below
for an alternative description of Y 222

� . Then we have the following.

Lemma 7.4.7 If � is a spherical triangle whose edge lengths are all obtuse, then
Y 222
� is strongly CAT(1).

Proof The polar dual�∗ of� is an acute spherical triangle. We have seen that there
exists a hyperbolic reflection cube R whose links are all isometric to �∗. Since the
Gauss image of R is isometric to Y 222

� the “only if” part of Theorem 7.4.6 implies
that Y 222

� is strongly CAT(1). ��
Let L be a finite simplicial complex. The right-angled Coxeter group on L is

defined as the group presentation

C(L) := 〈v ∈ L(0) | v2 = 1 for v ∈ L(0 and uv = vu for {u, v} ∈ L(1)〉.
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We say that L admits a separating clique if L can be written as the union of two
proper subcomplexes L1 and L2 such that the vertices of K := L1 ∩ L2 form a
clique in L and such that L1 \K is disconnected from L2 \K; in this case, we have

C(L) := C(L1) ∗A C(L2)

for the finite group A = C(K) ∼= Z
#K(0)
2 ; in particular, C(L) is not one–ended [56].

Recall that a geodesic metric spaceX is called δ-hyperbolic for some δ > 0 if for
each geodesic triangleABC inX the union of the two sidesAB∪BC is contained in
the δ-neighborhood of the remaining side AC; see [25]. It is an elementary exercise
to show that the hyperbolic plane is δ-hyperbolic for some δ > 0, which implies
that every CAT(−1) space is also δ-hyperbolic.

A finitely generated group is said to be word-hyperbolic if it properly and
cocompactly acts on a δ-hyperbolic space by isometries. It follows that every
finitely generated group acting properly and cocompactly on a CAT(−1) space by
isometries is word-hyperbolic.

It is well-known that a word-hyperbolic group does not contain Z × Z. As a
side remark, we note that it is an outstanding conjecture that a finitely generated
group acting properly and cocompactly by isometries on a CAT(0) space is word-
hyperbolic if it does not contain Z× Z. Note that if L is a square then

C(L) ∼= (Z2 ∗ Z2)× (Z2 ∗ Z2)

contains a copy of Z2. In particular, if C(L) is word–hyperbolic then L does not
contain a chordless square, i.e. a set of four vertices {a, b, c, d} that spans a square in
L. For right-angled Coxeter groups, the strong converses of the two aforementioned
remarks on one-endedness and word-hyperbolicity hold.

Lemma 7.4.8 For a finite simplicial complex L the following hold.

(1) The group C(L) is one-ended and if and only if L does not admit a separating
clique;

(2) The group C(L) is word-hyperbolic if and only if L(1) does not contain a
chordless square.

We are now ready to complete the proof of the main result in this section.

Proof (Proof of Theorem 7.4.2) Let T be a given acute triangulation of S2. For
each v ∈ T (0) ⊆ S2 we let �v denote the tangent plane to S2 at the point v. Denote
by �+v the closed half space containing 0 and bounding �v . We have a Euclidean
polytope

PE :=
⋂

v

�+v .

The 3-polytopePE has the Gauss image T , and is strongly obtuse, which means that
the face angles and the dihedral angles are all obtuse. For a sufficiently small t > 0,
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the convex hull PH of the points tP (0)E in the Poincaré ball model is a hyperbolic
3-polytope that is close to the Euclidean polytope tP1. In particular, we can require
that PH is also strongly obtuse and combinatorially isomorphic to PE .

A hyperbolic cell complex X(PH) is defined as follows. The (reduced) Cayley
graph Cayley(C(T )) is an undirected graph whose vertex set is C(T ) and whose
edge set consists of the unordered pairs {g, gv} for each g ∈ C(T ) and v ∈ T (0).
We place a copy of PH on the vertices in the Cayley graph Cayley(C(T )) of C(T )
and whenever there is an edge between two such copies we isometrically glue the
corresponding faces; more precisely, we let Fv denote the face of PH corresponding
to v ∈ T (0) and define an equivalence relation∼ on PH × C(L) by

(x, g) ∼ (x, gv)

whenever v ∈ T (0) and x ∈ Fv . We then obtain a hyperbolic cell complex

X(PH ) := PH × C(T )/ ∼ .

Let us consider the combinatorial dual �̃T of X(PH ), which has a description
of 2- and 3-cells as follows. The one-skeleton of �̃T coincides with Cayley(C(T )).
Whenever there is a 4-cycle in Cayley(C(T )) written as

(g, gu, guv, gv)

for some element g ∈ C(T ) and for some edge {u, v} in T , we glue a 2-cell along
the 4–cycle. Similarly, whenever we have eight vertices in Cayley(C(T )) that can
be written as

gupvqwr

for g ∈ C(T ), {u, v,w} ∈ T (2) and p, q, r ∈ {0, 1}, we glue a 3–cube along
those vertices. When T has no separating 3-cycle, then �̃T coincides with the Davis
complex of C(T ), which can be defined for an arbitrary Coxeter group [17].

In our situation where T is a triangulation of a sphere not equal to the boundary of
a tetrahedron, the following three conditions are easily verified to be equivalent [17,
Proposition 1.2.3]:

• C(T ) is one-ended;
• �̃T ≈ X(PH) is contractible;
• the natural cubical metric on �̃T is CAT(0).

Let v be a vertex in PH , and � be its link in PH . Then the link of a vertex in
X(PH) that comes from v is isometric to the complex Y 222(�). By Theorem 7.4.5
and Lemma 7.4.7, we see that X(PH ) is locally CAT(−1). Since X(PH ) ≈ �̃T
is simply connected, we see from the Cartan–Hadamard Theorem that X(PH) is
CAT(−1). We saw above that the contractibility of X(PH) implies that C(T ) is
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one-ended. The space X(PH) admits a natural proper cocompact isometric action
of C(T )

g.(x,w) = (x, gw)

for all x ∈ P and g,w ∈ C(T ). Since X(PH) is CAT(−1), we conclude that C(T )
is one-ended and word-hyperbolic. We conclude from Lemma 7.4.7 that T has no
separating 3- or 4-cycle. ��

Suppose an acute triangulations L of S2 has n faces. Using the hypothesis that
the valences of the vertices are at least five, one can easily deduce from the Euler
characteristic formula that n is an even number not smaller than 20, and that n �= 22.
Itoh [30] explicitly constructed examples of acute triangulations for all such even
numbers n except for the cases n = 28 and n = 34.

As a consequence of Theorems 7.4.2 and 7.4.4, one can algorithmically (i.e. in
finite time) recognize whether or not a given spherical combinatorial triangulation
L is acutely realizable. Using this fact, Walsh and the author constructed examples
of spherical acute triangulations with 28 and 34 faces by computer search, comple-
menting Itoh’s result above.

Corollary 7.4.9 ([30] for n �= 28, 34; [33] for n = 28, 34) There exists an acute
triangulation of S2 with n faces if and only if n is an even number satisfying that
n ≥ 20 and that n �= 22.

A similar statement to Theorem 7.4.2 holds for a Euclidean polygon, as proved
by Maehara [40] using plane geometry. Namely, a combinatorial triangulation of a
disk admits an acute triangulation in R

2 if and only if there are no cycles of length
at most four that bounds an open disk containing at least one vertex. This result
can alternatively be deduced from the method of this section. Furthermore, The-
orem 7.4.2 generalizes to a combinatorial characterization of acutely triangulated
planar surfaces in S2. For instance, one can show [33] that a hemisphere has an
acute triangulation, by using the triangulation in Fig. 7.4.

Let L be a combinatorial triangulation of S2 having no separating 3- or 4-cycles.
We know from Theorem 7.4.2 that the space A(L) of acute triangulations realizing
L is nonempty. Moreover, if n denotes the number of vertices in L then A(L) is
an open n-manifold contained in the configuration space Confn(S2) of n points in

Fig. 7.4 An acute geodesic
triangulation of a hemisphere.
This graph appeared in [40]
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S2. The configuration space is connected and its fundamental group is the n-strand
braid group on S2. On the other hand, very little is known about the topology of
A(L).

Problem 7.8 Is the space A(L) connected? What is its homotopy type?

It is a highly nontrivial result due to Cairns that the space GT(L) of all geodesic
triangulations of S2 isomorphic to L is path-connected [13]. An outstanding
conjecture of Cairns asserts that GT(L) has the homotopy type of SO(3); see [4, 7]
for a relevant work.
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9. J. Brandts, S. Korotov, M. Křížek, J. Šolc, On nonobtuse simplicial partitions. SIAM Rev.

51(2), 317–335 (2009)
10. M.R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319
(Springer, Berlin, 1999)

11. Y.D. Burago, V.A. Zalgaller, Polyhedral embedding of a net. Vestnik Leningrad. Univ. 15(7),
66–80 (1960)

12. Y.D. Burago, V.A. Zalgaller, Isometric piecewise-linear embeddings of two-dimensional
manifolds with a polyhedral metric into R3. Algebra i Analiz 7(3), 76–95 (1995)

13. S.S. Cairns, Isotopic deformations of geodesic complexes on the 2-sphere and on the plane.
Ann. Math. (2) 45, 207–217 (1944)

14. Y. Colin de Verdière, A. Marin, Triangulations presque équilatérales des surfaces. J. Differ.
Geom. 32(1), 199–207 (1990)

15. Y. Colin de Verdière, Comment rendre géodésique une triangulation d’une surface?. Enseign.
Math. (2) 37(3–4), 201–212 (1991)

https://www.math.stonybrook.edu/~bishop/papers/acutepoly.pdf
https://www.math.stonybrook.edu/~bishop/papers/acutepoly.pdf


290 S.-h. Kim

16. Y. Colin de Verdière, Spectres de graphes. Cours Spécialisés [Specialized Courses], vol. 4
(Société Mathématique de France, Paris, 1998)

17. M.W. Davis, The Geometry and Topology of Coxeter Groups. London Mathematical Society
Monographs Series, vol. 32 (Princeton University Press, Princeton, NJ, 2008)

18. P. Deligne, G.D. Mostow, Monodromy of Hypergeometric functions and Nonlattice Integral
Monodromy. Inst. Hautes Études Sci. Publ. Math. 63, 5–89 (1986)

19. P. Deligne, G.D. Mostow, Commensurabilities Among Lattices in PU(1, n). Annals of Mathe-
matics Studies, vol. 132 (Princeton University Press, Princeton, NJ, 1993)

20. M. Elder, J. McCammond, CAT(0) is an algorithmic property. Geom. Dedicata 107, 25–46
(2004)

21. P. Engel, P. Smillie, The number of convex tilings of the sphere by triangles, squares, or
hexagons. Geom. Topol. 22(5), 2839–2864 (2018)

22. D. Eppstein, J.M. Sullivan, A. Üngör, Tiling space and slabs with acute tetrahedra. Comput.
Geom. 27(3), 237–255 (2004)

23. M. Gardner, New mathematical Diversions, revised ed. (MAA Spectrum, Mathematical
Association of America, Washington, DC, 1995)

24. M. Goldberg, W. Manheimer, Elementary problems and solutions: solutions: E1406. Am.
Math. Monthly 67(9), 923 (1960)

25. M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8,
Springer, New York, 1987, pp. 75–263.

26. M. Gromov, Geometric, algebraic, and analytic descendants of Nash isometric embedding
theorems. Bull. Am. Math. Soc. (N.S.) 54(2), 173–245 (2017)

27. B. Grünbaum, Convex Polytopes, 2nd ed. Graduate Texts in Mathematics, vol. 221 (Springer,
New York, 2003). Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M.
Ziegler

28. C.D. Hodgson, I. Rivin, A characterization of compact convex polyhedra in hyperbolic 3-space.
Invent. Math. 111(1), 77–111 (1993)

29. T. Inoue, Organizing volumes of right-angled hyperbolic polyhedra. Algebr. Geom. Topol.
8(3), 1523–1565 (2008)

30. J. Itoh, Acute triangulations of sphere and icosahedron, Differential geometry (Sakado, 2001).
Josai Math. Monogr., vol. 3 (Josai Univ., Sakado, 2001), pp. 53–62

31. G. Kalai, On low-dimensional faces that high-dimensional polytopes must have. Combinator-
ica 10(3), 271–280 (1990)

32. G. Kalai, Rigidity and the lower bound theorem. I. Invent. Math. 88(1), 125–151 (1987)
33. S.-H. Kim, G.S. Walsh, Coxeter groups, hyperbolic cubes and acute triangulations. J. Topol.

9(1), 117–142 (2016)
34. V. Klee, A combinatorial analogue of Poincaré’s duality theorem. Canadian J. Math. 16, 517–

531 (1964)
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Chapter 8
Signature Calculation of the Area
Hermitian Form on Some Spaces
of Polygons

İsmail Sağlam

Abstract This chapter is motivated by the paper by Thurston on triangulations
of the sphere and singular flat metrics on the sphere. Thurston gave a local
parametrization of the moduli space of singular flat metrics on the sphere with
prescribed positive curvature data at the singular points by a complex hyperbolic
space of an appropriate dimension. This work can be considered as a generalization
of the signature calculation of the Hermitian form that he made in his paper.

The moduli space of singular flat metrics on the sphere having unit area and
with prescribed curvature data at the singular points can be locally parametrized by
certain spaces of polygons. This can be done by cutting singular flat spheres through
length minimizing geodesics from a fixed singular point to the others. In that case the
space of polygons is a complex vector space of dimension n−1 when there are n+1
singular points. There is natural area Hermitian form of signature (1, n− 2) on this
vector space. In this chapter we calculate the signature of the area Hermitian form on
some spaces of polygons which locally parametrize the moduli space of singular flat
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8.1 Introduction

Let S be a compact singular flat surface perhaps with boundary. By this we mean
that

• each interior point of S has a neighborhood isometric to a neighborhood of the
apex of a standard cone,

• near each boundary point S possesses the geometry of a surface obtained by
cutting a cone through a line passing from the apex.

There is a well-defined notion of angle for each point p ∈ S. Let us denote the
angle at p by θ(p). If p is an interior point we define the curvature at p to be
κp = 2π − θ(p). If p is a boundary point, then κp = π − θ(p). Note that a point
p ∈ S is called singular if κp �= 0. Otherwise p is called non-singular.

In [15] Thurston considered the moduli space of singular flat structures on the
sphere with prescribed positive curvature data. He showed that if the number of
singular points on the sphere is n, then this moduli space is a complex hyperbolic
manifold of dimension n − 3. To achieve this, he considered singular flat metrics
on the sphere and triangulated the sphere so that the vertices of the triangulation are
exactly the singular points of the metric. Observing that nearby singular flat metrics
admit the same combinatorial triangulation, he obtained local coordinates from the
moduli space to the projectifization of the positive part of a certain cocycle space
equipped with the Hermitian form induced by the area of a singular flat structure. He
showed that the signature of the Hermitian form is (1, n−3), where n is the number
of singular points of the sphere. Note that this implies that the local coordinates
are from the moduli space to the complex hyperbolic space of dimension n − 3.
In this chapter we make a similar signature calculation for the case of singular flat
spheres with one singular point of negative curvature. Now we return to the theory
of triangulation of a singular flat surface S.

It is well known that a singular flat surface S can be triangulated by Euclidean
triangles. See [16]. It follows that one can obtain any compact singular flat surface
from a finite numbers of Euclidean triangles. However, the result in [16] does not
give us any constructive method to obtain a singular flat surface from triangles in
the Euclidean plane.

There is a stronger result which says that a triangulation with a minimum number
of triangles exists. More precisely, this theorem states that S has a triangulation
whose vertex set coincides with the set of singular points of the S. See [6], [14] and
[13] for proofs of this fact. However, even by this method, it is not clear how one
can construct a singular flat surface from a collection of triangles in the Euclidean
plane.

Another way to construct singular flat surfaces is to use flat disks instead of
triangles. Here, a flat disk is a singular flat surface which is homeomorphic to a
closed disk and has no singular interior points. It is not difficult to see that for any
compact singular flat surface S, there exists a flat disk D so that S can be obtained
by gluing some of the edges ofD appropriately. In [13], it was shown thatD can be
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chosen so that it has a minimum number of edges. Equivalently, there exists a finite
number of simple geodesic arcs on S that can intersect only at their endpoints so
that when we cut S through these arcs we get a flat disk.

When S has genus 0 and each point in S has angle less than 2π , there is a
nice way to construct S from a flat disk. Assume that S has n + 1 singular points
P0, P1, . . . , Pn of positive curvature, that is, assume that the angle at Pi , θ(Pi), is
less than 2π for each i. Let li be a length-minimizing geodesic joining P0 and Pi
for each i > 0. Then it can be shown that each li is simple and li intersects lj only
at P0 when i �= j . It follows that we get a flat disk if we cut S through l1, l2, . . . , ln.
The Alexandrov Unfolding Theorem [1] states that this polygon can be embedded
into the Euclidean plane. Therefore, any singular flat sphere with angle less than 2π
at each singular point can be obtained from a polygon in the Euclidean plane.

As an example, consider the polygon in Fig. 8.1. The edges that are denoted by
the same letters have the same length. The polygon has two vertices with angle π :
A and B. It has also one vertex having angle 3π

2 . If we glue a and a′, b and b′, c
and c′, then we get a flat sphere. Note that this flat sphere has four singular points
and three of them are obtained from A, B and C. At these points the angles are π ,π
and 3π

2 , respectively. Also, after this gluing operation the vertices X,Y and Z of the
polygon come together to form a singular point of the flat sphere. This singular point
has angle π

2 . Note that the Alexandrov Unfolding Theorem states that any singular
flat sphere with 4 singular points of angle π

2 ,
3π
2 , π, π can be obtained from such a

polygon in the Euclidean plane.
Let us consider the general case again, that is, the case where S has genus 0 and

n + 1 singular points P0, . . . , Pn so that each θ(Pi) is less than 2π . If we cut S
through l1, . . . , ln, then we get a flat disk which is isometric to a polygon. Note that

Fig. 8.1 A flat sphere with 4
singular points from a planer
polygon
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this polygon is not arbitrary since it satisfies certain conditions. First of all, it has 2n
vertices and 2n edges. It has n vertices coming from P1, . . . , Pn so that the interior
angles of the polygon at these vertices are θ(P1), . . . θ(Pn). Let

κi = 2π − θ(Pi) for i = 0, 1, . . . , n.

The Gauss-Bonnet Formula [18] implies that

n
∑

i=0

κi = 4π

and we have

0 < κ0 = 4π −
n
∑

i=1

κi < 2π.

This polygon has n vertices which are induced from P0 and the sum of the angles at
these vertices is equal to P0. Furthermore, a vertex which comes from the singular
point Pi ( 1 ≤ i ≤ n) is incident to two edges of the same length. Let us move
the polygon in the plane so that one of the vertices induced from P0 is at the origin
in the complex plane. If we assume that the vertices of the polygon having angles
θ(P1), . . . , θ(Pn) are in counter-clockwise orientation, then these vertices give us
an element ẑ = (z1, . . . , z2n) ∈ C

2n so that

1. z1 = 0,
2. eıκk (z2k−1 − z2k) = z2k+1 − z2k, 1 ≤ k ≤ n.

Here, ı denotes the complex number
√−1. The elements in C

2n which satisfy the
above conditions form an n− 1 dimensional complex vector space. We denote this
vector space by P(κ) = P(κ1, . . . , κn). Note that the elements in P(κ) can be
considered as possibly self-intersecting polygons. If such a polygon is positively
oriented and does not have any self-intersection, then it represents a flat sphere. In
this case the flat sphere and the polygon have the same area. If this polygon has
coordinates ẑ = (z1, . . . , z2n), then its area is given by the following formula:

√−1

4

2n−1
∑

i=1

(zizi+1 − zi+1zi).

Therefore it is natural to consider the following area Hermitian form hA on P(κ):

hA(ẑ, ŵ) =
√−1

4

2n−1
∑

i=1

(ziwi+1 − zi+1wi).
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This Hermitian form is called area Hermitian form. Fillastre [3] computed the
signature of the area Hermitian form and showed that it is (1, n− 2). Note that this
computation is consistent with the one that was done by Thurston [15].

In this chapter, we calculate the signature of the area Hermition form hA on
P(κ) = P(κ1, . . . , κn) by dropping some conditions on the curvature data κ =
(κ1, . . . , κn). As before, we assume that 0 < κi < 2π for each 1 ≤ i ≤ n. But we
do not require that

0 < κ0 = 4π −
n
∑

i=1

κi < 2π.

That is, κ0 may be any number less than 4π . This has the following geometric
significance. Assume that κ1+ · · · + κn > 4π and ẑ ∈ P(κ) is a positively oriented
polygon. Then we can obtain a flat sphere by identifying equal edges of this polygon
appropriately. This flat sphere has n+ 1 singular points and one of them has angle

2π − κ0 = 2π − (4π − (κ1 + · · · + κn)) > 2π.

Therefore, at least some part of the moduli space of flat spheres with exactly one
singular point having angle greater than 2π can be parametrized by using P(κ),
for some κ . This gives us the hope to endow the moduli space of flat spheres with
prescribed curvature data with new geometric structures.

The paper [10] is closely related to the present one. Indeed our work can
be considered as a generalization of this paper by Nishi and Ohshika in which
the authors calculated the signature of the area Hermitian form on P(κ), where
κ = (π, . . . , π). This calculation led them to put a pseudo-metric on the moduli
space/Teichmüller space of flat metrics on the sphere with n + 1 singular points,
where the cone angles are (n − 2)π, π, . . . , π . This new metric structure enabled
them to put a pseudo-metric on the moduli space of hyperelliptic curves, since a
hyperelliptic curve is a degree 2 branched cover of the complex projective line. We
also point out that the papers [7] and [9] are closely related to the present one.
Furthermore, in [2], the authors calculated the signature of a symmetric bilinear
form on a space of polygons. The formulae and the proofs given in this chapter are
similar. Finally, we note that Nishi [8] addressed the question on the signature of a
Hermitian form given by the area function on the space of singular flat metrics on
the sphere with conical singularities of possibly negative curvatures.

For more information on the geometry of polygons, see [4] and [5]. For more
information on the geometry of flat surfaces, see [12, 16–18].
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8.2 Basic Facts on Hermitian Forms

In this section we introduce the main facts that we use from the theory of the
Hermitian forms. Let V be a complex vector space. A Hermitian form on V is a
function

h : V × V → C

such that

1.

h(αu+ βv,w) = α(u,w)+ βh(u,w)

for all u, v,w ∈ V and for all α, β ∈ C,
2.

h(w, αu + βv) = ᾱh(w, u) + β̄h(w, v)

for all u, v,w ∈ V and for all α, β ∈ C.
3.

h(u, v) = h(v, u)

for all u, v ∈ V .

Note that if u ∈ V , then h(u, u) ∈ R. h(u, u) is called the square-norm of u.
Assume that V has dimension n and U = {u1, . . . un} is an ordered basis for V .

Then the matrix

H = [h(ui, uj )]

is called the matrix of h in the ordered basis U . This matrix has the property that
Hji = Hij for all 1 ≤ i, j ≤ n. That is, the transpose of the conjugate matrix of H ,
which is denoted by H ∗, is equal to H . Note that such a matrix is called Hermitian
matrix.

Definition 8.1 The rank of a Hermitian form h is the rank of the matrix H . It is
denoted by Rank(h).

Definition 8.2 A Hermitian form h on an n-dimensional complex vector space V
is called non-singular if Rank(h) = n.

Note that h is non-singular if and only if for each u �= 0 ∈ V there exist v ∈ V
such that h(u, v) �= 0.
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Definition 8.3 Let h be a Hermitian form on a complex vector space V .

• h is called positive definite if h(u, u) > 0 for all u �= 0 ∈ V .
• h is called negative definite if h(u, u) < 0 for all u �= 0 ∈ V .

The following theorem asserts that each finite-dimensional complex vector space
has a basis U such that the matrix of h in U is diagonal.

Theorem 8.1 Let V be a finite-dimensional complex vector space and let h be a
Hermitian form on V . Then there is an ordered basis for V in which h is represented
by a diagonal matrix.

One can sharpen the previous theorem so that the entries of the diagonal matrix are
1,−1 or 0. Here is the precise statement.

Theorem 8.2 Let V be an n-dimensional complex vector space and h be a
Hermitian form on V which has rank r . Then there is an ordered basis {u1, . . . , un}
for V in which the matrix of h is diagonal and such that

h(uj , uj ) = ±1 for all j = 1, . . . r,

h(uj , uj ) = 0 for all j = r + 1, . . . , n.

Furthermore, the number of vectors uj such that h(uj , uj ) = 1, h(uj , uj ) = −1
and h(uj , uj ) = 0 are independent of the choice of basis.

We say that two elements u, v ∈ V are orthogonal if h(u, v) = 0. Let W be a
subspace of V . Let us define W⊥ as the subspace of V which consists of elements
of V that are orthogonal to each element in W . Note that V⊥ has dimension n − r
and it has a basis {ur+1 . . . , un}.

Let U andW be subspaces of V such that

1. U ∩W = 0;
2. any element in v ∈ V can be written as v = u+w, where u ∈ U and w ∈ W ;
3. h(u,w) = 0 for all u ∈ U and w ∈ W .

In this case we write

V = U
⊕

W,

and callW an orthogonal complement of U in V .
Let us denote the cardinality of a set A by |A|.

Definition 8.4 Let V be an n-dimensional complex vector space and h a Hermitian
form on V . Let U = {u1, . . . un} be a basis as in Theorem 8.2. We introduce the
following quantities:

1. P(h) = |{uj : h(uj , uj ) = 1}|;
2. N(h) = |{uj : h(uj , uj ) = −1}|;
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3. Z(h) = |{uj : h(uj , uj ) = 0}|.
(P (h),N(h)) is called signature of h.

Clearly, P(h) + N(h) = Rank(h) and the dimension of V ⊥ is equal to Z(h).
Also, P(h) + N(h) + Z(h) is equal to n. We have Z(h) = 0 if and only if h is
non-singular. Furthermore, h is positive definite if and only if P(h) = n, and h is
negative definite if and only if N(h) = n.

Now we define isomorphisms of complex vector space equipped with Hermitian
forms. Let V and V ′ be complex vector spaces together with Hermitian forms h and
h′. We say that V and V ′ are isomorphic as vector spaces equipped with Hermitian
forms if there is a vector space isomorphism f : V → V ′ such that

h(v,w) = h′(f (v), f (w))
for all v,w ∈ V . Note that f is an isomorphism vector spaces having Hermitian
forms if it satisfies the following weaker condition:

h(u, u) = h′(f (u), f (u))
for all u ∈ V . Note that the rank and signature of a Hermitian form is invariant under
isomorphisms. Also, two vector spaces having Hermitian forms are isomorphic if
and only if they have the same signature and dimension.

8.3 Spaces of Polygons and Signature Calculation

In this section, we introduce the spaces of polygons that we consider. Each of these
spaces is a complex vector space and admits a natural area Hermitian form on it.
We calculate the signature of the area Hermitian form for each of these spaces. Let

κ = (κ1, . . . , κn), n > 1, 0 < κi < 2π, 1 ≤ i ≤ n,
be an n-tuple of real numbers. We will sometimes call it as curvature data. Let

P(κ) ={ẑ = (z1, . . . , z2n) ∈ C
2n :

z1 = 0, eıκi (z2i−1 − z2i ) = z2i+1 − z2i , 1 ≤ i ≤ n}.
P(κ) can be thought as the set of oriented polygons

z1 → z2 → z3 . . . z2n→ z1.

Note that each element in P(κ) has an outer angle κi at the vertex 2i, z2i , where the
outer angle is the angle between the vectors z2i−1 − z2i and z2i+1 − z2i measured
counter-clockwise. Also, for all 1 ≤ i ≤ n and for all z ∈ P(κ), |z2i−1 − z2i | =
|z2i+1 − z2i |. See Fig. 8.2.
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z6

z5

z4

z2

z8z7

k4

z10 =

z3

κ2

κ1

κ3

Fig. 8.2 An element of P(κ1, κ2, κ3, κ4) as a polygon in the complex plane. Note that an edge of
an element of P(κ1, κ2, κ3, κ4) considered as a polygon may intersect another edge

Remark 8.1 Dimension of P(κ) is n− 1 since each element ẑ = (0, z2, . . . , z2n) is
determined by its coordinates z3, . . . , z2n−1.

8.3.1 The Area Hermitian Form and the Formula for Its
Signature

In this section we introduce the Hermitian form that we are interested in. Also we
give the formula for its signature. Consider the Hermitian form

hA(ẑ, ŵ) =
√−1

4

2n−1
∑

i=1

(ziw̄i+1 − zi+1w̄i )
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on P(κ), where ẑ = (z1, . . . , z2n), ŵ = (w1, . . . , w2n). We know that if ẑ is a
simple polygon, then the area of z is just the square-norm of ẑ, hA(ẑ, ẑ). Therefore
this form is called area Hermitian form.

We now state the formula that we prove. First, we introduce some notation.
Let

ε(κ) :=
{

1 if
∑n
i=1 κi ∈ 2πZ,

0 else.

We denote the cardinality of a set A by |A|. Let

q(κ) = ∣

∣{i : 1 ≤ i < n,
⌊

i+1
∑

k=1

κk

2π

⌋

=
⌊

i
∑

k=1

κk

2π

⌋

}∣∣, (8.1)

and

p(κ) = n− 1− q(κ)− ε(κ), (8.2)

where /0 is the floor function.

Lemma 8.1 Let f (i) =
⌊

∑i
k=1

κk
2π

⌋

. Then

n− 1− q(κ) = f (n).

In particular, q(κ) only depends on
∑n
k=1 κk .

Proof Note that f (i + 1)− f (i) = 0 or 1. The definition of q(κ) implies that

n− 1 = q(κ)+ ∣∣{i : 1 ≤ i < n,
⌊

i+1
∑

k=1

κk

2π

⌋

�=
⌊

i
∑

k=1

κk

2π

⌋

}∣∣.

Therefore, it follows that

n− 1− q(κ) = ∣

∣{i : 1 ≤ i < n,
⌊

i+1
∑

k=1

κk

2π

⌋

�=
⌊

i
∑

k=1

κk

2π

⌋

}∣∣

= ∣

∣{i : 1 ≤ i < n, f (i + 1) �= f (i)}∣∣

= ∣

∣{i : 1 ≤ i < n, f (i + 1)− f (i) = 1}∣∣

= f (n)− f (n− 1)+ f (n− 1)− f (n− 2)+ . . . f (2)− f (1) = f (n),

since f (1) is equal to 0. The particular case is obvious. ��
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Lemma 8.2 If σ is a permutation of {1, . . . , n} and κ(σ ) = (κσ(1), . . . , κσ(n)), then

q(κ) = q(κ(σ )), and p(κ) = p(κ(σ )) and ε(κ) = ε(κ(σ )).

Proof It is clear from the definition of ε that ε(κ) = ε(κ(σ )). Also Lemma 8.1
implies that q(κ) = q(κ(σ )). Since

p(κ) = n− 1− q(κ)− ε(κ)

it follows that p(κ) = p(σ(κ)) for any permutation σ . ��
We will prove that the signature of the area Hermitian hA is

(p(κ), q(κ)),

that is, we will prove that

1. P(hA) = p(κ) =
⌊∑n

k=1
κk
2π

⌋− ε(κ);
2. N(hA) = q(κ) = n− 1− ⌊∑n

k=1
κk
2π

⌋

;
3. Z(hA) = ε(κ).
Note that this will imply that hA is non-singular if and only if ε(κ) = 0.

8.3.2 The Case n=2

In this section we consider the case where κ = (κ1, κ2). It follows that P(κ) has
dimension 1. This means that the polygons that we consider have 4 edges and we
can easily draw them. See Fig. 8.3.

Lemma 8.3 If n = 2, then the signature of the area Hermitian form is (p(κ), q(κ)).

Proof There are 3 cases to consider.

1. κ1+κ2 > 2π . From the left of Fig. 8.3, it is clear that the polygon corresponding
to a non-zero element of P(κ) has positive area. Since the area of the polygon
corresponding to a non-zero element of P(κ) is the square-norm of that element,
we see that each non-zero element of P(κ) has positive square-norm. Since P(κ)
is one-dimensional, it follows that the signature of the area Hermitian form is
(1, 0). On the other hand, it follows directly from the definition of p(κ) and q(κ)
that (p(κ), q(κ)) = (1, 0). The result follows.

2. κ1 + κ2 = 2π . In this case, every element in P(κ) has area 0. See the middle of
Fig. 8.3 . Therefore, the signature is (0, 0). Also, it is clear that p(κ) = q(κ) = 0.

3. 0 < κ1 + κ2 < 2π . In this case each polygon corresponding to a non-zero
element is negatively oriented. This means that the orientation of these polygons
is clockwise. Therefore, each non-zero element of this set has negative area. See
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z4

z3 z3

z2=z4

κ2

κ1
κ1

κ2

z 1

z 2

z3

z2

z1

z4

z1

Fig. 8.3 In each part of the figure, a generic element in P(κ1, κ2) is given. In the leftmost picture,
we have κ1 + κ2 > 2π . In the picture in the middle, we have κ1 + κ2 = 2π . In the rightmost
picture, we have κ1 + κ2 < 2π

the right hand side of Fig. 8.3. It follows that the signature of the form is (0, 1).
Also, it is clear from the definition of p(κ) and q(κ) that q(κ) = 1 and p(κ) = 0.

��

8.3.3 A Special Family of Polygons

In this section, we assume that κ = κ(n) := (π, π, . . . , π), where the curvature
data (π, . . . , π) has length n.

Lemma 8.4 Let κ = κ(n) = (π, . . . , π).
1. If n = 2k+1, then the signature of the area Hermitian form on P(κ(n)) is (k, k).
2. If n = 2k, then the signature of the area Hermitian form on P(κ(n)) is (k −

1, k − 1).

Proof The case n = 2 was proven in Lemma 8.3. We will prove the lemma by
induction on the length of curvature data (π, . . . , π), n. Assume that n ≥ 3. We
start with a useful observation. Consider the map

ẑ = (0, z2, z3 . . . , z2n−1, z2n) 	→ ẑ′ = (0, z2n, z2n−1, . . . , z3, z2)
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which sends P(κ(n)) to itself. It is clear that this map is a vector space isomorphism.
It simply gives a polygon the opposite orientation. Note that the following formula
holds:

hA(ẑ
′, ẑ′) = −hA(ẑ, ẑ).

It follows that P(hA) = N(hA). Consider the following vector subspace of
P(κ(n)):

P′ = {ẑ ∈ P(κ(n)) : z2 = 0}.

Note thatP′ is an (n−2)-dimensional vector subspace. Also, consider the restriction
of the area Hermition form on P′. It is easy to see that P′ and P(κ(n − 1)) are
isomorphic as complex vector spaces with Hermitian forms.

Consider a basis {u1, . . . , ur , ur+1, . . . , ur+s , . . . , un−2} for P′ so that

1. hA(ui, uj ) = 0 if i �= j ;
2. hA(ui, ui) = 1 if 1 ≤ i ≤ r;
3. hA(ui, ui) = −1 if r + 1 ≤ i ≤ r + s;
4. and hA(ui, ui) = 0 if i > r + s.

Let

1. P′+ be the vector subspace spanned by {u1, . . . , ur };
2. P′− be the vector subspace spanned by {ur+1, . . . , ur+s};
3. P′⊥ be the vector subspace spanned by {ur+s+1, . . . , un−2}.

Assume that n = 2k, k ≥ 2. Then P′ is (2k − 2)-dimensional and the induction
hypothesis implies that the signature of the area Hermitian form on P′ is (k−1, k−
1). Therefore

P′ = P′+⊕P′−,

where P′+ and P′− have dimension k − 1. Consider an element u ∈ P(κ(n)) \P′.
Applying the Gram–Schmidt orthogonalization process if necessary, we can choose
u so that it is orthogonal to P′. Therefore the signature of the area Hermitian form
on P(κ(n)) is

1. (k − 1, k − 1),
2. (k, k − 1) or
3. (k − 1, k).

Since P(hA) = N(hA), it follows that this signature is (k − 1, k − 1).
Assume that n = 2k+ 1. Then P′ is a 2k− 1 dimensional subspace of P(κ(n)).

The induction hypothesis implies that the signature of the area Hermitian form on
P′ is (k− 1, k− 1). Therefore the dimension of P′+ is k− 1, the dimension of P′−
is k − 1 and the dimension of P′⊥ is 1.
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Take an element v ∈ P(κ(n)) \ P′ so that v is orthogonal to P′+ and P′−.
We can assure this by the Gram–Schmidt orthogonalization process. Let W be the
vector space spanned by v and P′⊥. It is clear that

P(κ(n)) = P′+⊕P′−⊕W. (8.3)

Assume that W is orthogonal to P(κ(n)), or equivalently, that the area Hermitian
form restricted toW is zero. Let

w = (0, 0, 0, w4, . . . , w2n)

be a generator of P′⊥. There is an integer l such thatwk = 0 for k < 2l andw2l �= 0.
Note that 2w2l = w2l+1. Consider the following element of P(κ(n)):

a = (0, . . . , 0, 1, 2, 1, 0, . . . , 0),

where the first 1 is in the coordinate 2l − 2. Then

hA(a,w) =
√−1w̄2l �= 0.

This is a contradiction. It follows that the area Hermitian form restricted toW is not
trivial. Therefore the signature of the area Hermitian form restricted toW is

1. (0, 1),
2. (1, 0) or
3. (1, 1).

Regarding the decomposition 8.3, it follows that the signature of hA on P(κ(n))
is

1. (k − 1, k),
2. (k, k − 1) or
3. (k, k).

Since P(hA) = N(hA), the signature is (k, k). ��
The following corollary is an immediate application of Lemma 8.4.

Corollary 8.1 If κ = (π, . . . , π), then the signature of the area Hermitian form is
(p(κ), q(κ)).

Proof It is not difficult to see that

• (p(κ), q(κ)) = (k, k) if n = 2k, and
• (p(κ), q(κ)) = (k − 1, k − 1) if n = 2k.

Therefore the statement follows from Lemma 8.4. ��
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8.3.4 Cutting-Gluing Operations

In this section, we explain why for any permutation σ ∈ Sn, P(κ) and P(κ(σ )) are
isomorphic as complex vector spaces equipped with Hermitian forms.

We prove the claim by using some cutting and gluing operations. Before proceed-
ing to the general case, we first introduce cutting and gluing operations on P(κ),
where κ = (π, π, π). We know that P(κ) is 2-dimensional and that the signature
of hA on it is (1, 1). See Lemma 8.4. Take an element ẑ = (z1, z2, z3, z4, z5, z6) ∈
P(κ). Then

ẑ = (z1, z2, z3, z4, z5, z6) = (0, z3

2
, z3,

z3 + z5

2
, z5,

z5

2
)

and

hA(ẑ, ŵ) =
√−1

4
(z3w̄5 − z5w̄3).

By abusing notation, we denote an element ẑ ∈ P(κ) as ẑ = [[z3, z5]]. Now
consider a positively oriented element ẑ ∈ P(κ). This element has positive square-
norm, that is,

hA(ẑ, ẑ) =
√−1

4
(z3z̄5 − z5z̄3) > 0.

Recall that hA(ẑ, ẑ) is the area of the corresponding polygon which actually is a
triangle.

In Fig. 8.4, consider the line segment [z2, z5] and cut the triangle [0, z3, z5]
through this line segment to get two triangles. Glue the edges [z2, z3] and [0, z2]
by a rotation of angle π around z2. In this way, we get another element in P(κ)
having the same area with coordinates [[z3 − z5, z5]]. Therefore we have a map

P(κ)→ P(κ)

sending [[z3, z5]] 	→ [[z3− z5, z5]]. Clearly this map is a vector space isomorphism
and we realized that it respects the area Hermitian form.

In general, even if the entries of the curvature data κ are not equal, we can use
these cutting-gluing operations to find isomorphisms between P(κ) and P(κ(σ )).
Note that it is enough to consider the cases for which σ = (i, i+1) is a transposition
to prove that P(κ) and P(κ(σ )) are isomorphic. Take an element ẑ ∈ P(κ), and
consider it as a polygon in the complex plane. Assume that the line segment joining
z2i+3 and z2i does not intersect the polygon except at its endpoints. Cut the polygon
through the line segment joining z2i+3 and z2i . Glue the edge [z2i, z2i+1] in the
resulting quadrangle with the edge [z2i , z2i−1] of the polygon to get the element
ẑ′. In this way, we get an area-preserving map from a subset of P(κ) to P(κ(σ )),
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Fig. 8.4 Cutiing-gluing
operation on P(π, π, π)

z5

z6
z4

z3z2

z3 z5–

z3 0=

where σ = (i, i + 1). Note that this map extends to an area-preserving linear map
between P(κ) and P(κ(σ )). Indeed, this linear map is an isomorphism; one can
reverse the cutting and gluing operations to get an inverse for the map. See Fig. 8.5.

Therefore, we have proved the following lemma.

Lemma 8.5

1. For any σ ∈ Sn, P(κ) and P(κ(σ )) are isomorphic as complex vector spaces
equipped with Hermitian forms.

2. The signature of the area Hermitian form on P(κ) is equal to the signature of
the area Hermitian form on P(κ(σ )).

Note that these cutting-gluing operations were introduced in [11].

8.3.5 Signature Calculation

In this section we prove the signature formula. Let κ = (κ1, . . . , κn). Assume that
n > 2 and κ1 + κ2 < 2π . Let

κ12 =
{

κ1 + κ2 if κ1 + κ2 < 2π

κ1 + κ2 − 2π if κ1 + κ2 > 2π
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z2i+2

z2i+3 z′2i+3=

z2i–1 z′2i–1=

z2i z′2i+2=
z2i+1

z′2i+1

z′2i

Fig. 8.5 We obtain an element P(κ(σ )) from an element of P(κ)

Also let κ ′ = (κ12, κ3, . . . , κn). Consider the following n − 2 dimensional
subspace of P(κ):

P(κ) = {ẑ ∈ P(κ) : z2 = z4}.

A generic element of P(κ) is shown in Fig. 8.6. It is not difficult to see that P(κ)
together with the induced Hermitian form and P(κ ′) are isomorphic. We want to
find an orthogonal complement of P(κ) in P(κ). In P(κ), there is a unique element
of the form

X = (0,−1,−1+ eiκ1, x, 0, . . . , 0).

Since the angle at the fourth vertex, x, is κ2 �= 2π − κ1, it follows that X /∈ P̄(κ)
and

(−1+ eıκ1 − x)eıκ2 = −x,
eı(κ1+κ2) − eıκ2 = x(eıκ2 − 1),

1− e−ıκ1 + x(−e−ıκ1 + e−ı(κ1+κ2)) = 0.
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Fig. 8.6 A generic element
of P(κ) when κ1 + κ2 < 2π

z7

z5

z3

z1 =0

z2 z4=

z6
κ3

κ2

κ1

On the other hand, any element in P(κ) is a constant multiple of an element of the
form

Y = (0,−1,−1+ eıκ1,−1,−1+ eı(κ1+κ2), . . . ).

It follows that

hA(X, Y ) = 1− e−ıκ1 + x(−e−ıκ1 + e−ı(κ1+κ2)) = 0.

Let CX denote the vector space generated by X. Clearly CX ≡ P(κ1, κ2). Note
that we have proved the following lemma.

Lemma 8.6 If n > 2 and κ1 + κ2 �= 2π , then CX ⊕P(κ) = P(κ).

Theorem 8.3 The signature of the area Hermitian form for P(κ) is (p(κ), q(κ)).
Also we have the following formulas for p(κ) and q(κ):

q(κ) = n− 1−
⌊

n
∑

k=1

κk

2π

⌋
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and

p(κ) =
⌊

n
∑

k=1

κk

2π

⌋

− ε(κ),

where

ε(κ) :=
{

1 if
∑n
i=1 κi ∈ 2πZ,

0 else.

Proof We prove the first part of the theorem by induction on n. If n = 2 we know
that the statement is true. See Lemma 8.3. Assume that n > 2. If all of the κi are π ,
then we know the theorem is true. See Corollary 8.1. Assume that not all of the κi
are π . It follows that there are i, j ∈ {1, 2, . . . n}, i �= j , such that κi + κj �= 2π . By
Lemma 8.2 and Lemma 8.5, we may assume that κ1 + κ2 �= 2π .

Assume that κ1 + κ2 < 2π . Note that Lemma 8.6 and the induction hypothesis
on the vector spaces CX ≡ P(κ1, κ2), P(κ) ≡ P(κ1 + κ2, κ3, . . . κn) imply that

N(hA) = q(κ1, κ2)+ q(κ1 + κ2, κ3, . . . , κn)

= ∣

∣{i : 1 ≤ i < 2,

⌊

i+1
∑

k=1

κk

2π

⌋

=
⌊

i
∑

k=1

κk

2π

⌋

}∣∣

+ ∣∣{i : 2 ≤ i < n,
⌊

i+1
∑

k=1

κk

2π

⌋

=
⌊

i
∑

k=1

κk

2π

⌋

}∣∣

= ∣

∣{i : 1 ≤ i < n,
⌊

i+1
∑

k=1

κk

2π

⌋

=
⌊

i
∑

k=1

κk

2π

⌋

}∣∣

= q(κ).

And we also have

P(κ) = p(κ1, κ2)+ p(κ1 + κ2, κ3, . . . κn)

= 1− q(κ1, κ2)− ε(κ1, κ2)+ n− 2

− q(κ1 + κ2, κ3, . . . , κn)− ε(κ1 + κ2, κ3, . . . , κn)

= n− 1− q(κ)− ε(κ1 + κ2, κ3, . . . , κn)

= n− 1− q(κ)− ε(κ)
= p(κ).
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Therefore (P (hA),N(hA)) = (p(κ), q(κ)). Note that a similar calculation holds
for the case κ1 + κ2 > 2π .

The formulae for p(κ) and q(κ) follow easily from Lemma 8.1. ��
Corollary 8.2 Let κ = (κ1, . . . , κn).

1. If 2π <
∑n
i=1 κi < 4π , then the signature is (1, n− 2).

2. If
∑n
i=1 κi = 2π , then the signature is (0, n− 2).

3. If
∑n
i=1 κi = 2π(n− 1), then the signature is (n− 2, 0).

4. If
∑n
i=1 κi < 2π , then the signature is (0, n− 1).

5. If 2π(n− 1) <
∑n
i=1 κi < 2πn, then the signature is (n− 1, 0).

6. If 2π(n− 2) <
∑n
i=1 κi < 2π(n− 1), then the signature is (n− 2, 1).
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Chapter 9
Equilateral Convex Triangulations of
RP 2 with Three Conical Points of Equal
Defect

Mikhail Chernavskikh , Altan Erdnigor , Nikita Kalinin ,
and Alexandr Zakharov

Abstract Consider triangulations of RP 2 whose all vertices have valency six
except three vertices of valency 4. In this chapter we prove that the number f (n)
of such triangulations with no more than n triangles grows as C · n2 + O(n3/2)

where C = 1
20

√
3 · л(π3 )ζ−1(4)ζ(Eis, 2) ≈ 0.2087432125056015 . . ., where л is

the Lobachevsky function and ζ(Eis, 2) = ∑

(a,b)∈Z2\0

1
|a+bω2|4 , and ω6 = 1.

Keywords Flat metric · Equilateral triangulation · Conical singularity · Zeta
function · Epstein zeta function · Hyperbolic volume

AMS Codes 51M09, 57N45, 11P21, 11M36, 11E45

9.1 Introduction

Consider a triangulation T of RP 2 such that each vertex of T is contained in at most
six triangles. These triangulations are called convex. Let each triangle in T be the
equilateral triangle with sides of length one. This supplies RP 2 with a flat metric
outside of the vertices of T . If at a vertex v of T exactly k triangles come together
then we say that the defect at v is equal to (6 − k)π/3. Convex triangulations are
exactly those with non-negative defects. By counting edges, vertices, and triangles
in T one can see that the sum of all defects of the vertices of T is equal to 2π ,
because the Euler characteristic of RP 2 is one. Hence this construction gives a flat
metric on RP 2 except at most six points (vertices of valency less than six).
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Consider the covering of RP 2 by S2. Naturally we obtain a metric on S2 which
is flat everywhere except at most twelve points with so-called conical singularities.
A conical singularity with defect θ, 0 ≤ θ < 2π is locally modeled on the sector
0 ≤ φ ≤ 2π−θ of the unit disk (r, φ)with identified boundaries (r, 0) ∼ (r, 2π−θ).

By Alexandrov’s theorem [1] each flat metric on S2 with conical singularities
can be realized as the surface of a (possible degenerate) convex polytope in R

3 with
intrinsic metric. If we have only two conical points (with defects θ and 2π − θ )
on an everywhere else flat RP 2, then its covering S2 has four conical points, and
they should be identified by the central symmetry. Thus this metric is realized as a
two-sided planar parallelogram (a degenerate polytope) with angles θ/2, π − θ/2.
If we consider RP 2 with three conical points, then its covering S2 is isometric to a
centrally-symmetric octahedron.

Thurston [4] (see also the lecture notes [3] which contain more detailed proofs)
studied convex triangulations of S2 and the moduli space of flat metrics on S2

with a finite number of arbitrary conical singularities; the set of convex equilateral
triangulations lives as a discrete subset in this moduli space. Following Thurston’s
ideas, we study equilateral triangulations of RP 2 whose vertices have all valency
six except three vertices of valency four.

9.2 Triangulations of RP 2 with Three Marked Points
with Defects 2π/3

A graph without loops and multiple edges, drawn on RP 2, is called a triangulation
of RP 2 if each face of this graph has three edges. Note that two faces of such a
triangulation can intersect in zero, one, two, or three vertices.

Consider a triangulation T of RP 2 such that only three vertices A,B,C have
valency four, and all the other vertices have valency six.
T gives a flat metric μRP 2 on RP 2 except at A,B,C. Passing to the universal

covering sphere S2 one gets a flat metric μS2 on S2 except six points. By
Alexandrov’s theorem, μS2 is realised as the intrinsic metric of the surface of a
certain centrally symmetric octahedron F . The projections of the edges of F give
six geodesic paths between A,B,C in RP 2, thus cutting RP 2 into four triangles
(all with vertices A,B,C, so we have four triangles ABC). Choose one of these
four triangles, call it �. Call A,B,C,� the label of T .

Denote by TRP 2 the set {T ,A,B,C,�} of labelled triangulations of RP 2. Two
such triangulations (T1, A1, B1, C1,�1), (T2, A2, B2, C2,�2) are said isometric if
there exists a map between triangulations T1, T2, which sends vertices and edges of
T1 to vertices and edges of T2, A1 to A2, B1 to B2, C1 to C2 and�1 to �2.

Consider the smallest possible triangulation of RP 2 which consists of three
vertices, four triangles, and six edges. We can label it in 3 · 2 · 1 · 4 different ways,
but all the obtained labelled triangulations are isometric.
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Fig. 9.1 An octahedron with
vertices AA′BB ′CC′, two
Fermat–Torricelli points in
the faces ABC,ACB ′, and
the corresponding
parallelogram with sides a, b

Let f (n) be the cardinality of the set of isometry classes of labelled triangulations
in RP 2 with no more than n triangles.

Consider a labelled triangulation {T ,A,B,C,�} of RP 2. Consider the octahe-
dronF as above. Then� lifts toF as two triangles�1,�2. CallA,B,C the vertices
of �1 and A′, B ′, C′ the vertices of �2, then A,A′ ∈ F are projected to A ∈ RP 2,
B,B ′ ∈ F are projected to B ∈ RP 2, C,C′ ∈ F are projected to C ∈ RP 2 under
the covering map F → RP 2. Who is �1 and who is �2 is uniquely defined by
the condition that the order of vertices A,B,C is counterclockwise (looking from
outside of F ⊂ R

3, see Fig. 9.1).
We can reverse the procedure. Consider a convex triangulations T̃ of S2 with

six points with defects 2π/3. Mark three of these points as A,B,C and suppose
that by supplying S2 with a flat metric as above and realising it as the surface of a
polyhedron we obtain a centrally symmetric octahedron F , and ABC is a face of F ,
and its orientation gives the counterclockwise order of ABC (Fig. 9.1). The central
symmetry of F preserves T̃ and provides us with a projection p : F → RP 2.
Projecting T̃ to a triangulation T of RP 2 we mark the images of A,B,C ∈ F as
A,B,C ∈ RP 2. Label by � the image of the face ABC of F under p.

Consider a centrally symmetric octahedron F ⊂ R
3, such that the sum of angles

at each vertex of F is 4π/3. Suppose that T̃ is a convex equilateral triangulation of
F . Choose any face of F and call its vertices A,B,C in such a way that the order
of A,B,C is counterclockwise (if looking from outside of F ⊂ R

3, see Fig. 9.1)
and call the opposite facesA′, B ′, C′. (A,B,C) is a label of T̃ . We consider labeled
triangulations (T̃ , A,B,C) up to isometry.

We proved the following lemma

Lemma 9.2.1 There exist a bijection between labelled triangulations (T ,A,B,
C,�) of RP 2 with n triangles and labelled triangulations (T̃ , A,B,C) with 2n
triangles.

Therefore f (n) = #{(T̃ , A,B,C) with no more than 2n triangles}.
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9.3 Moduli Space of Flat Metrics on S2 with Six Pair-Wise
Centrally Symmetric Conical Points of Equal Defect

Consider the set of all centrally symmetric octahedra F , such that the sum of angles
at each vertex of F is 4π/3. There exist natural coordinates on this space as follows
[5].

Recall that for a triangle ABC whose angles are all less than 2π/3 the Fermat–
Torricelli point is the unique point X inside the triangle such that all the angles
AXB,BXC,CXA are equal to 2π/3. If the angle ABC is equal to 2π/3 then we
say thatB is the Fermat–Torricelli point of the triangleABC. The Fermat–Torricelli
pointX is the point minimizing |XA| + |XB| + |XC|.

Pick the Fermat–Torricelli point in each face of F and connect it with the vertices
of this face. Then, among the lengths of these 24 intervals there are only four
different ones [5], let us denote them by a, b, c, d .

Conversely, given four non-negative numbers a, b, c, d (we allow at most one of
them to be zero, see the examples below), we can construct 12 parallelograms with
acute angle π/3 and sides (a, b), (a, c), (a, d), (b, c), (b, d), (c, d) (two copies of
each parallelogram). Let us bend each of them along its diagonal and glue them in
an octahedron F . The diagonals of the parallelograms become edges of F . If a = 0
then the angle BAC is 2π/3 and the parallelogram in Fig. 9.1 degenerates to the
edge AC of F .

Let us say that the counterclockwise order around A of the intervals from A to
the Torricelli points of the adjacent faces gives a, b, c, d , and let us also fix that the
interval of length a belongs to the triangle ABC, see Fig. 9.1. Note also that there
are six rotational orderings of a, b, c, d and that all of them are realized at exactly
six vertices of F .

Given these coordinates on the moduli space of such octahedra (see details in [5]
for octahedra with general defects at the vertices), we easily compute the area of the
octahedron F = (a, b, c, d) (note that 2 sin π3 =

√
3): it is

Area(a, b, c, d) = √
3(ab + ac + ad + bc+ bd + cd).

Let Q(a, b, c, d) = ab + ac + ad + bc + bd + cd;Q is a quadratic form of
signature (1, 3) since

Q(a, b, c, d) = 1

8
(3(a+ b+ c+ d)2− (c+ d − a− b)2− 2(c− d)2− 2(a− b)2).

If we start with an equilateral triangulation of RP 2 with n triangles, then its
covering sphere has 2n triangles, and each triangle has area

√
3/4, so the area of the

sphere is

n
√

3/2 = √
3Q(a, b, c, d))

which gives n = 2Q(a, b, c, d).
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Define

X =
{

(a, b, c, d) ∈ R
4≥0 | Q(a, b, c, d) ≤ 1

}

.

Lemma 9.3.1

Vol(X) = √
3л(
π

3
),

where л(φ) = − ∫ φ0 ln |2 sin θ |dθ is the Lobachevsky function.

Proof Recall that each bilinear symmetric form (·, ·) yields a volume form on R
4.

Namely, Vol(·,·)(v1, v2, v3, v4) = ±√| det(vi , vj )|, the square root of the Gramian
of (·, ·) with respect to this system of vectors. The sign of the (oriented) volume is
defined by the orientation of (v1, v2, v3, v4).

Denote by Q̄ the bilinear symmetric form associated with Q. Define a 3-form α
on R

4 as follows:

∀x ∈ R
4, α :

∧3
TxR

4 → R, α(v1, v2, v3) = VolQ̄(x, v1, v2, v3).

Note thatQ induces a hyperbolic structure in the set Q(v) = 1 and that α is the
corresponding volume form. Next (see [5] for details),

∫

v∈R4≥0,Q(v)=1

α = 3л(
π

3
).

Let dQ be the differential ofQ, namely

dQ : TxR4 → R, dQ(w) = 2Q̄(x,w).

Let v = (a, b, c, d), considerQ′(v) = Q′(a, b, c, d) = a2 + b2 + c2 + d2. Let
ω be the standard Euclidian volume form ω(v1, v2, v3, v4) = VolQ̄′(v1, v2, v3, v4).

Let us prove that

Q−1dQ ∧ α =
√

3

2
ω. (9.1)

Denote the coordinate basis in R
4 by (e1, e2, e3, e4). Take any x, v1, v2, v3 ∈ R

4,
and denote by A ∈ Mat4×4(R) the matrix of their coordinates.

On TxR4 we have

(Q−1dQ ∧ α)(x, v1, v2, v3) = Q(v)−12Q̄(x, x)VolQ(x, v1, v2, v3) =

= 2 detAVolQ(e1, e2, e3, e4) =
√

3

2
ω(x, v1, v2, v3)

which proves (9.1).
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Now,

Vol(X) =
∫

X

ω = 2√
3

∫

X

Q−1dQ ∧ α =

= 2√
3

1
∫

0

q−1dq

∫

a,b,c,d≥0,Q(a,b,c,d)=q
α = 2√

3

1
∫

0

q−1(dq) q2
∫

a,b,c,d≥0,Q(a,b,c,d)=1

α =

= 2√
3

1
∫

0

qdq · 3л(
π

3
) = √

3л(
π

3
).

��
Denote

g(n) = #
{

(a, b, c, d) ∈ Z
4
>0 | Q(a, b, c, d) ≤ n

}

.

Theorem 9.3.1

g(n) = √
3л(
π

3
)n2 +O(n3/2),

where

√
3л(
π

3
) ≈ 0.58597680967236472265039057221806926727385075240896 . . .

Proof Define

Yt =
{

(a, b, c, d) ∈ R
4≥0 | 1 ≤ Q(a, b, c, d) ≤ t

}

.

Note that g(n) = |Yn ∩ Z
4
>0|. It follows from Lemma 9.3.1 that

g(n) ≈ Vol(Yn) ≈
√

3л(
π

3
)n2.

Note that the error term is proportional to the Euclidean three-dimensional
volume of the boundary of Yn since the three-dimensional volume of the boundary
of X is finite (one can use a similar reasoning as in Lemma 9.3.1).

For t ≥ 1, denote the three-dimensional volume of the boundary of Yt by r(t).
Denote by 2Yt the image of Yt under the homothety with center at 0 and coefficient
2. Then the three-dimensional volume of the boundary of 2Yt is 8r(t). On the other
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hand Y4t = Y4 ∪ 2Yt hence r(4t) ≤ r(4)+ 8r(t), thus

r(4t)+ 1

7
r(4) ≤ 8

[

r(t)+ 1

7
r(4)

]

.

Letting b(t) = r(t) + 1
7r(4) we obtain b(4t) ≤ 8b(t) and this leads to the

estimate b(4kt) ≤ 8kb(t). Let n = 4kx, 1 ≤ x < 4. Note that 8k ≤ n3/2. Then
b(n) ≤ 8kb(x). Let c = max1≤x≤4 b(x). Thus we obtain b(n) ≤ cn3/2. This can
be rewritten as r(n) + 1

7 r(4) ≤ cn3/2 and so the volume of the boundary of Yn is
O(n3/2). ��

Let us also introduce

h(n) = #
{

(a, b, c, d) ∈ Z
4
>0 | a ≡ b ≡ c ≡ d (mod 3),Q(a, b, c, d) ≤ n

}

.

The covolume (in Z
4) of the lattice generated by such quadruples is 27, so, repeating

the arguments of our proof of Theorem 9.3.1 we obtain

Theorem 9.3.2

h(n) =
√

3

27
л(
π

3
)n2 +O(n3/2).

9.4 A Parametrization of Equilateral Triangulations of S2

with Six Centrally-Symmetric Points with Defects 2π/3

Let ω = e 2πi
6 = 1+√−3

2 . Consider the Eisenstein lattice

Eis = Z⊕ Zω2 ⊂ C.

Define ˜Eis = 1
1−ω2 Eis. Note that ˜Eis contains Eis, and ˜Eis\Eis is the set z+Eis

where z = 1+ω
3 = 1

1−ω2 is the Torricelli point of the triangle with vertices 0, 1, ω.

Consider a labelled triangulation (T̃ , A,B,C) of a centrally symmetric octahe-
dron with vertices A,A′, B,B ′, C,C′. Take the faces ABC,ACB ′, AB ′C′, AC′B,
make a cut along AC′, and develop the obtained polygon onto the plane such that
A goes to 0 ∈ Eis under our developing map, and the vertices of T go to Eis. Then
the developing map is defined up to the action of Z6 by rotations, because under the
developing map we preserve the local orientation at A.

Let 1a, 1b, 1c, 1d be the vectors in C connecting the point 0 ∈ Eis and the Torrichelli
points of the four faces ABC,ACB ′, AB ′C′, AC′B of F (Fig. 9.2).

Lemma 9.4.1 Under the developing map vectors 1a, 1b, 1c, 1d go to ˜Eis.
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Fig. 9.2 A developing of the octahedron AA′BB ′CC′ on R
2 is presented, A = 0, vertices

A,B,C,A′, B ′, C′ go to the lattice Eis. Note that a triangulation of RP 2 can be obtained from
the grey area by gluing AB to AB, then BC to B ′C′ and then BC′ to B ′C. Note that the Torricelli
centers of the faces do not belong to Eis but belong to ˜Eis, e.g. see the Torricelli center of ABC

Proof All the vertices of the octahedron are developed into the lattice points. Then
the sums 1a+ 1b, 1b+1c, 1c+ 1d, 1a+ 1dω2 also belong to Eis. Then, 1a+ 1b− (1b+1c)+1c+
1d − (1a + 1dω2) = 1d(1 − ω2) ∈ Eis, hence 1d ∈ 1

1−ω2 Eis = ˜Eis. Then, 1c + 1d ∈ Eis

and the latter is a sublattice in ˜Eis, therefore 1c ∈ ˜Eis. Similarly, 1b, 1a ∈ ˜Eis. ��
Definition 9.4.1 The vectors

1ex = 1/(1− ω2), 1ey = ω2/(1− ω2)

form a basis in the lattice ˜Eis. Each vector in ˜Eis can be expressed as x1ex + y1ey ,
(x, y) ∈ Z

2. There are three cases for the sum (x + y) mod 3. The lattice ˜Eis is
divided into three subsets:

˜Eisk = {x1ex + y1ey in˜Eis|(x + y) ≡ k mod 3}.

Note that 1ex − 1ey = 1/(1− ω2)− ω2/(1− ω2) = 1 ∈ Eis and

21ex + 1ey = 2/(1− ω2)+ ω2/(1− ω2) = 2+ ω2

1− ω2 =
2+ ω2

1− ω2 = ω ∈ Eis.

This implies that ˜Eis0 = Eis.
However the vectors 1a, 1b, 1c, 1d are not arbitrary.
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Lemma 9.4.2 If the vectors 1a, 1c lie in ˜Eisk then 1b, 1d lie in ˜Eis−k . In other words,
there are three cases:

(1) 1a, 1b, 1c, 1d ∈ ˜Eis0;
(2) 1a, 1c ∈ ˜Eis1 and 1b, 1d ∈ ˜Eis2;
(3) 1a, 1c ∈ ˜Eis2 and 1b, 1d ∈ ˜Eis1.

Proof This follows from ˜Eisk +˜Eism = ˜Eisk+m and fact that ω2
˜Eisk = ˜Eisk .

��
Thus we constructed a bijection between the labelled triangulations (T̃ , A,B,C)

up to isometry and certain 4-tuples of vectors 1a, 1b, 1c, 1d ∈ ˜Eis up to a Z6 action.
One could consider the sublattice Eis0 ⊂ Eis,

Eis0 =
{

x + yω2 | x, y ∈ Z, x + y ≡ 0 (mod 3)
}

.

The cosets of Eis0 in Eis are Eis0,Eis1,Eis2 where

Eisk =
{

x + yω2 | x, y ∈ Z, x + y ≡ k (mod 3)
}

.

If L is a lattice, let PrimL = {v ∈ L \ 0 | �w ∈ L, n > 1 : nw = v}.
Let E0 = PrimEis ∩ Eis0 and E �=0 = PrimEis ∩ (Eis1 � Eis2), then

PrimEis0 = E0 � 3E �=0. (9.2)

Indeed, it follows from PrimEis = E0 � E �=0 that each primitive vector v of Eis0
is either a primitive vector in Eis (and then it is an element of E0) or there exists
v′ ∈ Eis, v = kv′, k > 1 and v′ /∈ Eis0, v

′ ∈ E �=0. In the latter case, 3v′ ∈ Eis0
(this is true for each vector in Eis), therefore k can be equal to three only. Therefore
v ∈ 3E �=0.

Theorem 9.4.1

f (n) = 1

6
#{(z ∈ PrimEis, (a, b, c, d) ∈ Z

4
>0)|

2

3
|z|2Q(a, b, c, d) ≤ n},

where (i) z ∈ E0 and a, b, c, d are arbitrary or (ii) z ∈ E �=0, a ≡ b ≡ c ≡ d

(mod 3).

Proof Each labelled triangulation (T̃ , A,B,C) is determined by the vectors

1a, 1b, 1c, 1d ∈ 1

1− ω2 Eis = ˜Eis
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with the oriented angles � (1a, 1b) = � (1b, 1c) = � (1c, 1d) = π
3 . One could find z′ ∈

Prim˜Eis — the primitive vector proportional to 1a. Then

(1a, 1b, 1c, 1d) = z′ · (a, bω, cω2, dω3), a, b, c, d ∈ Z>0.

Let z = (1− ω2)z′ ∈ PrimEis. The number of triangles in T̃ is equal to the total
area of the octahedron divided by the area of one equilateral triangle. The area equals
sin π3 ·2|z′|2Q(a, b, c, d) = 1√

3
|z|2Q(a, b, c, d)whereas the area of one equilateral

triangle is
√

3
4 . So the total number of triangles is equal to 4

3 |z|2Q(a, b, c, d). Recall

that f (n) is the number of labelled triangulations (T̃ , A,B,C) with at most 2n
triangles. The last condition is equivalent to 2

3 |z|2Q(a, b, c, d) ≤ n.
Let us study the conditions 1a + 1b, 1b + 1c, 1c + 1d ∈ Eis. In the case z′ ∈ Eis ⇐⇒

z ∈ Eis0 the condition is satisfied automatically. Otherwise, z′ /∈ Eis ⇐⇒ z ∈
Eis1 � Eis2 the condition on their sums 1a + 1b, etc., belonging to Eis is equivalent to
a ≡ b ≡ c ≡ d (mod 3) by a direct computation.

Finally, we notice that the triangulations with z and ωz determine isometric
triangulations. This adds the factor 1

6 . ��
Given a lattice L ⊂ R

2 and Re(s) > 1 we define the Epstein zeta function

ζ(L, s) =
∑

γ∈L\0

< γ, γ >s .

One can prove that

ζ(Eis, s) =
∑

z∈Eis\0

|z|−2s = 6ζ
Q[√−3](s) = 6ζ(s)L(χ−3, s).

We refer to [2] for details.
Now we are ready to estimate f (n).

Theorem 9.4.2

f (n) = 1

20

√
3 · л(π

3
)ζ−1(4)ζ(Eis, 2)n2 +O(n3/2),

as n→∞ where

1

20

√
3 · л(π

3
)ζ−1(4)ζ(Eis, 2) ≈

≈ 0.20874321250560157071750716031497138622997487996283 . . .

Here ζ(s) is Riemann’s zeta function.
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Proof By the definition,

6f (n) =
∑

z∈E0

g(
3

2
|z|−2n)+

∑

z∈E�=0

h(
3

2
|z|−2n) =

√
3л(
π

3
)
9

4

[
∑

z∈E0

(|z|−4n2 +O(|z|−2n)3/2)+
∑

z∈E�=0

(
1

27
|z|−4n2 +O(|z|−2n)3/2)

] =

√
3л(
π

3
)
9

4
n2(

∑

z∈E0

|z|−4 + 1

27

∑

z∈E�=0

|z|−4)+ “error term”

The error term can be estimated as follows:

∑

z∈E0∪E�=0

O((|z|−2n)3/2) ≤ cn3/2
∑

z∈Eis

|z|−3 = O(n3/2).

To compute the summands notice that

∑

z∈E0

|z|−4 +
∑

z∈E�=0

|z|−4 =

∑

z∈PrimEis

|z|−4 = ζ−1(4)
∑

z∈Eis\0

|z|−4 = ζ−1(4)ζ(Eis, 2).

Indeed,

∑

z∈Eis\0

|z|−4 =
∑

k∈Z>0

[
∑

z′∈PrimEis

|kz′|−4] = ζ(4)
∑

z′∈PrimEis

|z′|−4

since for each vector z ∈ Eis there exists k ∈ Z>0 and z′ ∈ PrimEis such that
z = kz′.

Now we use (9.2) which implies

∑

z∈E0

|z|−4 + 1

81

∑

z∈E�=0

|z|−4 =
∑

z∈E0

|z|−4 +
∑

z∈E�=0

|3z|−4 =

=
∑

z∈E0

|z|−4 +
∑

z∈3E�=0

|z|−4 =
∑

z∈PrimEis0

|z|−4 =

= ζ−1(4)
∑

z∈Eis0\0

|z|−4 = ζ−1(4)
∑

z∈Eis\0

|(1+ ω)z|−4 =

= 1

9
ζ−1(4)

∑

z∈Eis\0

|z|−4 = 1

9
ζ−1(4)ζ(Eis, 2).
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From this system of linear equations one finds

∑

z∈E0

|z|−4 = 1

10
ζ−1(4)ζ(Eis, 2)

∑

z∈E�=0

|z|−4 = 9

10
ζ−1(4)ζ(Eis, 2)

It follows that

f (n) = 1

6

√
3 · л(π

3
)
9

4
n2(

1

10
+ 1

27

9

10
)ζ−1(4)ζ(Eis, 2)+O(n3/2) =

= 1

20

√
3 · л(π

3
)ζ−1(4)ζ(Eis, 2)n2 +O(n3/2).

��

9.5 Examples and Computer Computations

It follows from an Euler characteristic computation that no triangulation of RP 2

with an odd number of triangles exists.
Here is the list of f (2n)− f (2n− 1), i.e., the number of labelled triangulations

(T ,A,B,C,�) of RP 2 with exactly 2n triangles, for n = 1, . . . , 74:

0, 1, 4, 0, 16, 1, 12, 17, 20, 0, 46, 8, 18, 34, 40,

12, 64, 9, 36, 48, 60, 6, 94, 41, 24, 64, 72, 24, 112, 8,

60, 81, 94, 24, 160, 56, 42, 82, 114, 24, 160, 58, 60, 126, 96,

30, 190, 60, 96, 81, 160, 54, 184, 65, 72, 194, 132, 24, 238, 96,

90, 130, 220, 60, 232, 62, 84, 192, 214, 24, 286, 105, 90, 160.

Only one triangulation of RP 2 with four triangles exists, see Fig. 9.3.

Fig. 9.3 In this case z =
1+ω

3 = 1
1−ω2 , (a, b, c, d) =

(1, 1, 1, 1)
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Fig. 9.4 In this case z = 1, (a, b, c, d) = (1, 1, 1, 0), and we count this triangulation four times
as (a, b, c, d) = (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1). Two of them are isometric while
another two differ by relabelling B → C

Fig. 9.5 The leftmost picture: z = 1+ω
3 , (a, b, c, d) = (4, 1, 1, 1) (counted four times). The

central pictures and the rightmost picture are representatives for the tuple (2, 1, 1, 0) (counted
12 = 8 + 4 times). Namely, z = 1, (a, b, c, d) = (2, 1, 1, 0) in the central picture (counted eight
times). The rightmost picture: z = 1, (a, b, c, d) = (1, 2, 1, 0) (counted four times)

Fig. 9.6 In this case z = 1, (a, b, c, d) = (1, 1, 1, 1)

Four marked triangulations of RP 2 with 6 triangles exist, see Fig. 9.4.
No triangulation of RP 2 with 8 triangles exists.
Sixteen triangulations with 10 triangles exist, see Fig. 9.5. Only one triangulation

with 12 triangles exists, see Fig. 9.6. Plots of the function f(n) and the error term are
presented in Figs. 9.7 and 9.8.
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Fig. 9.7 On this plot we see that f (n)/n2 converges to C = 0.2087 . . . = 1
20

√
3 ·

л( π3 )ζ
−1(4)ζ(Eis, 2)

4002000

0.5
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Fig. 9.8 The plot for the error term 1
20

√
3л( π3 )ζ

−1(4)ζ(Eis, 2)n2 − f (n) divided by n3/2 is

presented. Thus we see that f (n) ≈ 1
20

√
3 · л( π3 )ζ−1(4)ζ(Eis, 2)n2 − 2.5n3/2
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Chapter 10
Combination Theorems in Groups,
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Abstract The aim of this chapter is to give a survey of combination theorems
occurring in hyperbolic geometry, geometric group theory and complex dynamics,
with a particular focus on Thurston’s contribution and influence in the field.
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10.1 Introduction

The aim of this survey is to give an eclectic account of combination theorems in
hyperbolic geometry, geometric group theory and complex dynamics. Thurston’s
contribution and influence in the theme is pervasive, and we will only be able to
touch upon some of these aspects. The hope in writing this survey is therefore only
to whet the appetite of the reader and provide some references to more detailed
articles and surveys.

Combination theorems have a long history, going back to Klein’s paper from
1883 [73]. A major subsequent development in terms of combination theorems for
Kleinian groups is due to Maskit [96–100]. See Sect. 10.2 for further details.
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A combination theorem of a different, more complex analytic, flavor was intro-
duced by Ahlfors and Bers (see Sect. 10.3). The Bers Simultaneous Uniformization
Theorem provided a way of combining two abstractly isomorphic Fuchsian surface
groups into a single Kleinian surface group. Equivalently, two discrete faithful
representations ρi : π1(S) → PSL(2,R) are combined in a dynamically natural
way into a single discrete faithful representation ρ : π1(S) → PSL(2,C). The
study of Kleinian groups around this time thus took on a rather complex analytic
orientation.

In the 1970s and 1980s, a phase transition occurred in the theory with the advent
of Thurston, who combined the above two strands into one unified theme, and vastly
generalized both. He introduced a 3-dimensional hyperbolic geometry point of view,
leading to his proof of hyperbolization of atoroidal Haken manifolds [70, 121, 122,
143–145]. Particular mention must be made of his Double Limit Theorem that may
be thought of as a limiting case of the Simultaneous Uniformization Theorem. (See
Sect. 10.4.)

Thurston’s work has had a deep and profound influence on hyperbolic geometry
ever since, and has provided a template for related developments in geometric group
theory and complex dynamics. In geometric group theory, Bestvina and Feighn
[12] isolated the coarse geometric features of Thurston’s combination theorem and
proved a highly influential combination theorem for Gromov-hyperbolic groups
[49], spawning considerable activity and several generalizations [4, 28, 45, 115,
116]. In particular, the main theorem of [12] was extended to a relatively hyperbolic
setup [4, 28, 45, 115] and also to the setup of a coarse-geometric analog of bundles
[116]. (See Sect. 10.5 for further details.)

In a relatively recent major development leading to a resolution of Thurston’s
virtual Haken conjecture by Agol and Wise [1, 149], Haglund and Wise [54] proved
a combination theorem for virtually special cubulable hyperbolic groups [53]. For
these and related developments, see Sect. 10.6.

In a closely related theme, Fatou and Julia laid the foundation of the theory
of dynamics of rational maps on the Riemann sphere in the first quarter of the
twentieth century [40–43, 65, 66]. These early developments in the field drove Fatou
to observe similarities between limit sets of Kleinian groups and Julia sets of rational
maps: ‘L’analogie remarquée entre les ensembles de points limites des groupes
Kleineens et ceux qui sont constitués par les frontières des régions de convergence
des itérées d’une fonction rationnelle ne paraît d’ailleurs pas fortuite et il serait
probablement possible d’en faire la synthèse dans une théorie générale des groupes
discontinus des substitutions algébriques.’ After several decades, this analogy was
set on a firm footing by Sullivan with the introduction of quasiconformal techniques
in the study of rational dynamics [140]. Shortly afterwards, Sullivan put forward
a dictionary between the aforementioned classes of conformal dynamical systems,
Thurston proved a topological characterization for an important class of rational
maps [33] as a philosophical analog of the hyperbolization of atoroidal Haken 3-
manifolds. The theory of polynomial mating, designed by Douady and Hubbard
[35], extends the notion of a combination theorem from the world of Kleinian groups
to that of complex dynamics. This theme too bears the tell-tale stamp of Thurston.
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In fact, Thurston’s topological characterization of rational maps is an invaluable tool
in constructing such matings [33, 136] (see Sect. 10.7).

The idea of combining Kleinian groups with rational maps was first conceived
by Bullett and Penrose in [21], where they used iterated algebraic correspondences
to ‘mate’ the modular group PSL(2,Z) with certain quadratic polynomials. More
recently, a one complex variable approach was adopted to bind together the actions
of Kleinian groups and rational maps in the dynamics of a single map. This
perspective can be thought of as a unification of Bers simultaneous uniformization
theorem (and in certain cases, Thurston’s double limit theorem) with the Douady–
Hubbard theory of polynomial mating. The crucial difference between this mating
framework and that of Bullett-Penrose is that here one extracts a non-invertible map
from a Kleinian group that is orbit equivalent to the group on its limit set (i.e., one
extracts a semi-group dynamics from the dynamics of a non-commutative group),
and ‘mates’ this map with the dynamics of a polynomial. In the anti-holomorphic
setting, this is achieved by associating a piecewise circular reflection map, called
the Nielsen map, to a Kleinian reflection group. The simplest example of this
mating phenomenon is given by the Schwarz reflection map associated with a simply
connected quadrature domain; namely, the exterior of a deltoid curve (which is the
conformal mating of the anti-polynomial z2 and the ideal triangle reflection group).
A series of papers [75, 78, 79, 91] culminated in a comprehensive framework for
conformally mating Kleinian reflection groups with anti-holomorphic polynomials
(see Sect. 10.8.1).

On the holomorphic side, a framework for combining Kleinian groups with
polynomial maps was devised in [114]. The key player in this setting of combination
theorems is a class of piecewise Möbius maps, termed mateable maps. Such maps
are dynamically and combinatorially compatible with Kleinian groups on the one
hand and polynomials on the other. In particular, a mateable map associated to
a Kleinian group is orbit equivalent to the group on the limit set. While the
simplest examples of mateable maps are given by the classical Bowen–Series maps
associated with Fuchsian punctured sphere groups, a new class of examples called
higher Bowen–Series maps was also described in [114]. These maps enjoy various
close connections with Bowen–Series maps, and are interesting in their own right
(for instance, they are responsible for failure of topological orbit equivalence
rigidity of Fuchsian groups). It turns out that any mateable map can be conformally
mated with suitable complex polynomials giving rise to disconnected moduli spaces
of matings of punctured spheres with complex polynomials (see Sect. 10.8.2).

10.2 Klein–Maskit Combination for Kleinian Groups

A discrete subgroup � of PSL2(C) is called a Kleinian group. The limit set of the
Kleinian group �, denoted by �� , is the collection of accumulation points of a �-
orbit � · z for some z ∈ Ĉ. �� is independent of z. It may be thought of as the
locus of chaotic dynamics of � on Ĉ, i.e. for � non-elementary and any z ∈ �� ,
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� · z is dense in �� . We shall identify the Riemann sphere Ĉ with the sphere at
infinity S

2 of H3. The complement of the limit set Ĉ \ �� is called the domain of
discontinuity (�) of �. If the Kleinian group � is torsion-free, it acts freely and
properly discontinuously on (�) with a Riemann surface quotient.

Definition 10.1 A set D is called a for �, if

1. D �= ∅,
2. D ⊂ (�), and
3. g(D) ∩D = ∅, for all g ∈ �, g �= 1.

If, further,
⋃

g∈� g.D = (�), then D is called a fundamental domain for �.

The story of combination theorems starts with the following theorem of Klein:

Theorem 10.1 (Klein Combination Theorem [73]) Let�1, �2 be Kleinian groups
with fundamental domains D1,D2 respectively. Assume that the interior of D1
(resp. D2) contains the boundary and exterior of D2 (resp. D1).Then the group
� generated by �1, �2 is Kleinian, and D = D1 ∩D2 is a fundamental domain for
�.

In the 1960s, Maskit started working on extending the Klein combination
Theorem 10.1 to a more general setup. Maskit’s work on combination theorems
for Kleinian groups started with the following.

Theorem 10.2 (Klein-Maskit Combination Theorem for Free Product with
Amalgamation [95]) Let �1, �2 be Kleinian groups with domains of discontinuity
1,2 respectively. Let H = �1 ∩ �2. Let D1,D2,� be partial fundamental
domains for �1, �2,H respectively. For i = 1,2, set Ei = H.Di . Denote the interior
ofD = E1 ∩ E2 ∩� by D′. If

1. D′ �= ∅,
2. E1 ∪ E2 = 1 ∪2.

Then the group � generated by �1, �2 is Kleinian, D′ is a partial fundamental
domain for �, and � = �1 ∗H �2 is the free product with amalgamation of �1, �2
along H . Further, gD ∩D = ∅, for all g ∈ �, g �= 1.

In [96], Maskit strengthened the above theorem by determining precisely a
fundamental domain for the group.

Theorem 10.3 (Klein-Maskit Combination Theorem for Free Product with
Amalgamation [96]) Let �1, �2 be Kleinian groups with domains of discontinuity
1,2 respectively. Let H ⊂ �1 ∩ �2. such that H is either cyclic or consists only
of the identity. Let D1,D2,� be fundamental domains for �1, �2,H respectively.
For i = 1, 2, set Ei = H.Di . Denote the interior of D = E1 ∩ E2 ∩ � by D′.
Suppose E1 ∪ E2 = (H) and that D′ �= ∅. Assume further that there is a simple
closed curve γ contained in int (E1 ∪ E2) ∪�H such that γ is invariant under H ,
the closure of γ ∩� is contained in int (E1∩E2) and γ separates both E1 \E2 and
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E2 \ E1. Then the group � generated by �1, �2 is Kleinian, � = �1 ∗H �2, and D
is a fundamental domain for G.

Subsequently, in [97, 98], Maskit upgraded Theorem 10.3 to the following. We
start with two Kleinian groups �1, �2 with H ⊂ �1 ∩ �2, where H �= �1, �2.
We are also given a simple closed curve γ dividing the Riemann sphere Ĉ into two
closed topological discs, B1 and B2, where Bi is precisely invariant under H in �i .
More precisely, Bi is H−invariant, and if g ∈ �i \ H , then g(Bi) ∩ Bi = ∅. Then
� = 〈�1, �2〉, the group generated by �1 and �2, is also a Kleinian group. What
really needs to be proved in all these cases is the discreteness of �.

In all these cases, Maskit shows that � = �1 ∗H �2, i.e. � = 〈�1, �2〉 is equal
to the free product with amalgamation of �1, �2 along H . Further, by carefully
choosing fundamental domains for �1, �2 one can ensure that their intersection
will be a fundamental domain for �. Thus, the basic hypothesis guaranteeing
discreteness of � can be summarized as follows:

1. The disks B1 and B2 are both invariant underH .
2. The (�1 \H)−translates of B1 are disjoint disks in B2.
3. The (�2 \H)−translates of B2 are disjoint disks in B1.

There is also a version of the Klein-Maskit combination theorem for HNN
extensions. We are given a single group �0, with two subgroups H1 and H2, two
closed disks B1 and B2 which have disjoint projections to (�0)/�0, where

1. Hi preserves Bi ,
2. there exists a Möbius transformation hmapping the outside of B1 onto the inside

of B2 and conjugatingH1 to H2.

Maskit then shows that � = 〈�0, h〉 is a Kleinian group. Also � = �0∗H is the
HNN-extension of G0 along H , where the two inclusions of H map to H1,H2 and
h is the stable letter conjugating one to the other. Further, by carefully choosing a
fundamental domainD for �0, one can ensure thatD \ (B1 ∪ B2) is a fundamental
domain for �.

Maskit weakens the hypotheses further in [100], allowing translates of the closed
disks B1, B2 to have common boundary points. However, in [100] he requires that
such points of intersection also be ordinary points of our original group. In [100],
it is also shown that � is geometrically finite if and only if the original groups are
so. The basic topological tool used in the proof is a Jordan curve γ in Ĉ and its
translates under a Kleinian group. The standard hypothesis in these papers is the
‘almost disjointness’ of γ from all its translates. More precisely, if g(γ ) ∩ γ �=
∅, then it is required that g(γ ) is entirely contained in the closure of one of the
open disks bounded by γ . Thus, a substantial amount of the technical difficulty in
[98, 100] comes from controlling the points of intersection g(γ ) ∩ γ .

To conclude this section, we refer the reader to

1. Work of Li et al. [83, 84] for generalizations of the Klein-Maskit combination
theorems to higher dimensions.
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2. Work of Dey et al. [34] for a combination theorem for Anosov subgroups, a
natural class of discrete subgroups of higher rank Lie groups that generalizes
convex cocompact subgroups of PSL2(C).

10.3 Simultaneous Uniformization and Quasi-Fuchsian
Groups

The aim of this section is to give a brief account of Bers simultaneous uniformization
theorem. The reason is twofold. First, it provides the context for Thurston’s
double limit theorem in Sect. 10.4.2. Second, it is the Kleinian group analog for
the Douady–Hubbard mating construction [35], and more generally the original
motivation for the mating constructions in Sect. 10.8.

Fix a surface S. The collection of all representations ρ : π1(S) → PSL2(C)

up to conjugacy (in PSL2(C)) is called the character variety and is represented as
R(S). We note in passing that the appropriate quotient by PSL2(C) of the space of
all representations ρ : π1(S) → PSL2(C) is the GIT quotient. This is needed in
order to obtain the structure of a variety on R(S).

10.3.1 Topologies on Space of Representations

For future reference, we summarize here a natural collection of topologies on the
space of discrete faithful ρ : π1(S) → PSL2(C). The algebraic topology is the
topology of pointwise convergence on elements of π1(S):

Definition 10.2 We shall say that a sequence of representations ρn : π1(S) →
PSL2(C) converges algebraically to ρ∞ : π1(S)→ PSL2(C) if for all g ∈ π1(S),
ρn(g)→ ρ∞(g) in PSL2(C).

The collection of conjugacy classes of discrete faithful representations of π1(S)

into PSL2(C) equipped with the algebraic topology is denoted as AH(S). Thus,
AH(S) ⊂ R(S) comes naturally equipped with a complex analytic structure. The
space of discrete faithful representations of π1(S) into PSL2(R) equipped with the
algebraic topology is precisely the Teichmüller space. Thus, the Teichmüller space
sits ‘diagonally’ in AH(S).

For analyzing convergence from a geometric point of view, the natural topology
is the geometric topology, or equivalently, the Gromov–Hausdorff topology.

Definition 10.3 Let ρn : � → PSL2(C) be a sequence of discrete, faithful
representations of a finitely generated, torsion-free, nonabelian group �. Thus,
ρn(�) is a sequence of closed subsets of PSL2(C). If G ⊂ PSL2(C) is a closed
subgroup such that ρn(�) converges to G in the Gromov–Hausdorff topology, then
ρn(�) is said to converge geometrically to G, and G is called the geometric limit.
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Definition 10.4 Gn converges strongly to G if Gn converges to G both alge-
braically and geometrically.

10.3.2 Simultaneous Uniformization

Definition 10.5 Let ρ : π1(S) → PSL2(C) be a discrete faithful representation
such that the limit set of G = ρ(π1(S)) is a topological circle in S

2. Then G is
said to be quasi-Fuchsian. The collection of conjugacy classes of quasi-Fuchsian
representations is denoted asQF(S).

Note that QF(S) is contained in AH(S) and hence inherits a complex analytic
structure. The domain of discontinuity of a quasi-FuchsianG consists of two open
invariant disks1,2. Hence the quotient/G is the disjoint union1/G�2/G.
Hence we have a map τ : QF(S) → T eich(S) × T eich(S), where T eich(S)
denotes the Teichmüller space of S. The Bers simultaneous Uniformization
Theorem asserts:

Theorem 10.4 ([9, 10]) τ : QF(S)→ T eich(S)×T eich(S) is a homeomorphism.

Hence, given any two conformal structures T1, T2 on a surface, there is a unique
discrete quasi-Fuchsian G whose limit set �G is topologically a circle, and the
quotient of whose domain of discontinuity is T1 � T2. See Fig. 10.1 [67], where the
inside and the outside of the Jordan curve correspond to 1,2.

We refer to [61] for a proof of Theorem 10.4 and summarize the main ideas
here. Theorem 10.4 is essentially complex analytic in nature and goes back to
an understanding of the Beltrami partial differential equation due to Morrey. Let
KS denote the canonical bundle of the Riemann surface S (if S has punctures as
a hyperbolic surface, we regard them as marked points in the complex analytic
category).

Definition 10.6 A Beltrami differential on S is an L∞ section ofK−1
S ⊗KS , where

KS denotes the complex conjugate of KS . The space of Beltrami differentials on S
will be denoted as Db(S)

The local expression for an element of Db(S) in a complex analytic chart U ⊂ S
is thus given by μdz

dz
, where μ ∈ L∞(U) is called a Beltrami coefficient.

Definition 10.7 A quasiconformal map between two Riemann surfaces S1 and S2
is a homeomorphism φ : S1 → S2 having locally square-integrable weak partial
derivatives such that

μ = φz

φz

satisfies ||μ||∞ < 1. Here, μ is called the Beltrami coefficient of φ.
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Fig. 10.1 Quasi-Fuchsian group limit set

The first major ingredient in the proof of Theorem 10.4 is the Measurable
Riemann mapping theorem. As pointed out by Hubbard in [61, p. 149], the
Beltrami coefficient μ really represents an almost-complex structure on U and
the Measurable Riemann mapping theorem (due to Ahlfors–Bers–Morrey) below
ensures its integrability to a complex structure.

Theorem 10.5 (Measurable Riemann Mapping Theorem [61, Theorem 4.6.1])

Existence of Quasiconformal Maps Let U ⊂ C be open. Let μ ∈ L∞(U)
satisfying ||μ||∞ < 1. Then there exists a quasiconformal mapping f : U → C

solving the Beltrami equation

∂f

∂z
= μ∂f

∂z
.

Uniqueness of Quasiconformal Maps If g is another quasiconformal solution to
the Beltrami equation above, then there exists a univalent analytic function φ :
f (U)→ C such that g = φ ◦ f .

The rest of this brief account of Theorem 10.4 follows [50] which captures the
relevant conformal geometry. Recall that we have fixed a base Riemann surface S.
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Let � < PSL2(R) be a (base) Fuchsian group uniformizingS. Let S′ be an arbitrary
point in the Teichmüller space of the underlying topological surface. Theorem 10.4
then associates to S′ a quasiconformal map  : Ĉ → Ĉ fixing the three points
0, 1,∞, and conjugating the action of � to that of a Kleinian group �(S, S′), such
that

1.  is conformal on the lower half-plane.
2. �(S, S′) leaves invariant the images of the lower and upper half-planes.
3. The quotient of the lower half-plane by �(S, S′) is S.
4. The quotient of the upper half-plane by �(S, S′) is S′.

To prove the existence of a  as above, we first note that the Teichmüller space
can be identified (via Theorem 10.5) with Beltrami differentials on S with norm
bounded by one. Let μ be the Beltrami differential on S corresponding to S′. Next.
lift μ to the upper half plane. Extend to a Beltrami coefficient μ0 on Ĉ by defining
it to be identically zero on the lower half plane. The map  above is then given by
the normalized solution to the Beltrami equation with the Beltrami coefficient μ0.
Invariance ofμ0 under� ensures the existence of an isomorphismρ : �→ �(S, S′)
to the desired Kleinian group �(S, S′) such that

 ◦ g = ρ(g) ◦ ,

for all g ∈ �.

10.3.3 Geodesic Laminations

We turn now to the hyperbolic geometry of quasi-Fuchsian groups.

Definition 10.8 A geodesic lamination on a hyperbolic surface is a foliation of a
closed subset with geodesics.

A geodesic lamination on a surface may further be equipped with a transverse
(positive) measure to obtain a measured lamination. The space ML(S) of measured
(geodesic) laminations on S then has the structure of a positive cone in a vector
space, i.e. for every λ ∈ ML(S) and t ∈ R+, tλ ∈ ML(S). It can be projectivized
to obtain the space of projectivized measured laminations PML(S). It was shown
by Thurston [39] that

Theorem 10.6 PML(S) is homeomorphic to a sphere and can be adjoined to
T eich(S) compactifying the latter to a closed ball.

Definition 10.9 ([142, Definition 8.8.1]) A pleated surface in a hyperbolic three-
manifold N is a complete hyperbolic surface S of finite area, together with an
isometric map f : S → N such that every x ∈ S is in the interior of some geodesic
segment which is mapped by f to a straight line segment. Also, f must take every
cusp of S to a cusp of N
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The pleating locus of the pleated surface f : S → M is the set γ ⊂ S

consisting of those points in the pleated surface which are in the interior of unique
line segments mapped to line segments.

Proposition 10.7 ([142, Proposition 8.8.2]) The pleating locus γ is a geodesic
lamination on S. The map f is totally geodesic in the complement of γ .

The geometry of quasi-Fuchsian groups and their relationship with geodesic
laminations arises out of the geometry of the convex core that we now describe.

Definition 10.10 Let � be an infinite Kleinian group and let� ⊂ Ĉ denote its limit
set. The convex hull of � is the smallest non-empty closed convex subset of H

3

whose set of accumulation points in Ĉ equals�. We denote the convex hull of� by
CH(�).

The convex hull CH(�) of a Kleinian group� is invariant under �. The quotient
CH(�)/� ⊂ H

3/� is called the convex core of the hyperbolic 3-manifold M =
H

3/�.

For a quasi-Fuchsian group � = ρ(π1(S)), the convex core is homeomorphic
to a product S × [a, b] (the Fuchsian case corresponds to a = b). The hyperbolic
distance between S × {a} and S × {b} is a measure of the geometric complexity of
�. In [142][Ch. 8], Thurston further shows:

Proposition 10.8 Let M be a complete hyperbolic 3-manifold corresponding to
a quasi-Fuchsian group �, and let CC(M) denote its convex core. Then each
component of the convex core boundary ∂CC(M) is a pleated surface.

10.4 Thurston’s Combination Theorem for Haken Manifolds

The material in this section provides the core inspiration for most combination
theorems that came subsequently.

Definition 10.11 ([57]) A properly embedded surface (F, ∂F ) ⊂ (M, ∂M) in a
3-manifold M with boundary ∂M (possibly empty) is said to be incompressible if
the inclusion map i : (F, ∂F ) ⊂ (M, ∂M) induces an injective homomorphism
of fundamental groups i∗ : π1(F ) → π1(M). Further, we require that for every
boundary component γ of ∂F , i∗ : π1(γ ) → π1(∂M) is injective. (The second
condition is automatic when F is not a disk.)

An embedded incompressible surface (F, ∂F ) ⊂ (M, ∂M) is said to be
boundary parallel if F can be isotoped into ∂M keeping ∂F ⊂ ∂M fixed.

A compact 3-manifoldM (possibly with boundary ∂M) is said to be Haken if

1. π2(M) = 0.
2. There exists an embedded incompressible surface (F, ∂F ) that is not boundary

parallel.

M is said to be atoroidal if π1(M) contains no Z ⊕ Z subgroups. M is said to
be acylindrical if any embedded incompressible annulus in (M, ∂M) is boundary
parallel.
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We summarize Thurston’s celebrated hyperbolization theorem now and then give
a brief account of the ingredients that go into the proof.

Theorem 10.9 ([143–145]) LetM be a compact atoroidal Haken 3-manifold. Then
M is hyperbolic.

There is a version of Theorem 10.9 for 3-manifolds with torus boundary
components also. But, in the interests of exposition, we shall largely focus on
the compact atoroidal case. The proof of Theorem 10.9 breaks into two principal
pieces:

1. M is compact atoroidal Haken and does not fiber over S
1. This case will be

described in Sect. 10.4.1.
2. M fibers over the circle with fiber F . This case will be described in Sect. 10.4.2.

10.4.1 Non-fibered Haken 3-Manifolds

There are a number of detailed expositions for the compact atoroidal Haken non-
fibered case and we point out [70, 101, 121] in particular.

It is a fundamental fact of 3-manifold topology [57, Chapter 13] that any Haken
manifold admits a Haken hierarchy. Cutting (M, ∂M) open along (F, ∂F ) gives us
a new (possibly disconnected) atoroidal 3-manifold with boundary. The cut open
manifold is automatically Haken, and we can proceed inductively. At the last stage,
we are left with a finite collection of balls, and these are clearly hyperbolic.

Thus, in order to prove Theorem 10.9 in the non-fibered case, an essential step is
the following:

Theorem 10.10 ([121]) Let M1 be an acylindrical atoroidal 3-manifold with non-
empty incompressible boundary ∂M1 whose interior admits a complete hyperbolic
metric. Let τ : ∂M1 → ∂M1 be an orientation-reversing involution. Then the
interior ofM = M1/τ admits a complete hyperbolic metric.

To prove Theorem 10.10, a first tool is the following generalization of Theo-
rem 10.4:

Theorem 10.11 LetM1 be a compact 3-manifold with boundary such that

1. The interior ofM1 admits a complete hyperbolic metric.
2. No component of ∂M1 is homeomorphic to a torus or a sphere.

Then the space of complete hyperbolic metrics onM1 is given by T eich(∂M1).

Let ∂M1 = �i�i , where each �i is a surface of genus greater than one. Then
T eich(∂M1) = ∏

i T eich(�i). Fix a complete hyperbolic structure on M1 (the
existence of such a structure is guaranteed by the hypothesis of Theorem 10.11).
This is equivalent to a discrete faithful representation ρ : π1(M1)→ PSL2(C). Let
� = ρ(π1(M1)). Then each �i ⊂ ∂M1 gives (via inclusion) a conjugacy class of
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quasi-Fuchsian subgroups of �. Thus the involution τ of Theorem 10.10 induces a
map

σ : T eich(∂M1)→ T eich(∂M1).

The map σ is called the skinning map. The existence of a complete hyperbolic
structure on M = M1/τ is equivalent to the existence of a fixed point of the
skinning map σ , as such a fixed point ensures an isometric gluing. Thurston’s fixed
point theorem can now be stated as the following: If M is atoroidal then σ has a
fixed point. It now follows from the Klein-Maskit combination theorem (Sect. 10.2)
that M admits a complete hyperbolic structure. The acylindricity hypothesis of
Theorem 10.10 guarantees thatM is atoroidal, completing an outline of the proof of
Theorem 10.10.

An effective method of proving the existence of a fixed point of the skinning map
σ was taken by McMullen in [101]. As mentioned in [121] Hubbard had observed
that the analytical formula for the coderivative of the skinning map relates it to the
Theta operator in Teichmüller theory. McMullen studies the fixed point problem via
||Dσ ||, the norm of the derivative of the skinning map. He reproves Theorem 10.10
by showing that if M1 is acylindrical, then there exists c < 1 such that ||Dσ || < c
guaranteeing a solution to the gluing problem.

Both Thurston’s fixed-point theorem and McMullen’s estimates in [101] are
easiest to state when M1 is acylindrical. However, both approaches can be refined
to conclude hyperbolicity ofM as long as M1 is not of the form S × I and τ glues
S × {0} to S × {1}. The excluded case is that of 3-manifolds fibering over the circle
and involves a completely different approach that we describe now.

10.4.2 The Double Limit Theorem

We shall follow [122] to give an outline of the steps involved in the hyperbolization
of 3-manifolds fibering over the circle. Recall (Theorem 10.6) that the space of
projectivized measured laminations PML(S) compactifies T eich(S). Thurston’s
double limit theorem may be thought of as an extension of the simultaneous
uniformization Theorem 10.4 to the case where the pair (τ1, τ2) of Riemann surfaces
in T eich(S) × T eich(S) is replaced by a pair (�1, �2) ∈ T eich(S) × T eich(S),
where T eich(S) = T eich(S) ∪PML(S) denotes the Thurston compactification of
T eich(S) as in Theorem 10.6.

Dual to any measured lamination � ∈ ML(S) there is an action of π1(S) on
an R−tree. An R−tree is a geodesic metric space such that any two distinct points
are joined by a unique arc isometric to an interval in R. We refer to [11] for an
expository account of group actions on R−trees and convergence of �−spaces, and
mention only the following theorem. Fix a group �. A triple (X, o, ρ) is called a
based �−space if o ∈ X is a base-point, and � acts on X via a homomorphism
ρ : �→ Isom(X) from � to the isometry group Isom(X) of X.



10 Combination Theorems in Groups, Geometry and Dynamics 343

Theorem 10.12 ([11, Theorem 3.3]) Let (Xi, oi, ρi) be a convergent sequence of
based �-spaces such that

1. Each Xi is δ hyperbolic, for some δ ≥ 0.
2. there exists g ∈ � such that the sequence di = dXi (oi, ρi(g)(oi)) is unbounded.

Then there is a based R-tree (T , o) and an isometric action ρ : �→ Isom(T ) such
that (Xi, oi, ρi)→ (T , o, ρ).

Further, the (pseudo)metric on the R−tree T is obtained as the limit of pseudo-

metrics
d(Xi,oi ,ρi )

di
.

Finally, we shall need the following theorem of Skora [139] on the structure of
groups admitting small actions on R−trees.

Theorem 10.13 ([139]) Let S be a finite area hyperbolic surface. Suppose π1(S)

acts non-trivially on an R−tree T , such that for every cusp P of S, π1(P) fixes a
point in T . Then the stabilizer of each non-degenerate arc of T contains no free
subgroup of rank 2 if and only if the action is dual to an element of ML(S).

An action of π1(S) on an R−tree T such that the stabilizer of each non-
degenerate arc of T contains no free subgroup of rank 2 is called a small action.
Morgan and Shalen [117–119] constructed a compactification of the variety R(S)
by the space of projectivized length functions arising from small actions of π1(S)

on R−trees. Skora’s theorem 10.13 allows us to replace PML(S) in Theorem 10.6
by such length functions.

With this background in place we return to an outline of Thurston’s double
limit theorem [144] following Otal [122]. Let (τ+i , τ

−
i ) ∈ T eich(S) × T eich(S)

be a sequence of points converging to (�+, �−) ∈ T eich(S) × T eich(S). By
Theorem 10.4, we can identify T eich(S)×T eich(S)withQF(S) and hence assume
that (τ+i , τ

−
i ) ∈ QF(S). For convenience of exposition, we assume that �+, �− are

both in PML(S) (a similar statement holds if only one of �+, �− lies in PML(S)).
Assume further that �+, �− fill S, i.e. each component of S\(�+∪�−) is either simply
connected or else is topologically a punctured disk. Let ρi : π(S) → PSL2(C)

be the quasi-Fuchsian representation corresponding to (τ+i , τ
−
i ) ∈ QF(S) and let

�i = ρi(π(S)). Thurston’s double limit theorem now says:

Theorem 10.14 ([144]) Under the above assumptions, there exists a Kleinian
group � such that �i converges to � in AH(S).

We sketch Otal’s proof following [122] and argue by contradiction. If �i
diverges, then Theorem 10.12 shows that there is a limiting small action of π1(S)

on an R−tree T . By Theorem 10.13 such a small action is dual to a measured
lamination � on S.

It is then shown in [122] that any measured lamination that intersects � essentially
is realizable in T . Hence at least one of �+ and �− must be realizable in T ,
since the two together fill S. Without loss of generality, suppose �+ is realizable
in T . This allows us to approximate �+ by simple closed curves σ on S and
estimate the translation length li(σ ) of σ in H

3/�i . The estimate thus obtained
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contradicts a classical estimate of li (σ ) due to Ahlfors obtained in terms of the
length of the geodesic realization of σ in τ+i and τ−i . This final contradiction proves
Theorem 10.14.

Finally, to hyperbolize an atoroidal 3-manifold fibering over the circle with
monodromy φ, one picks a base Riemann surface τ , and sets τ+i = φi(τ ) and
τ−i = φ−i (τ ). Then �+, �− turn out to be the stable and unstable laminations of
φ. The 3-manifold M obtained from the double limit theorem is easily seen to be
invariant under φ, and hence M admits a quotient which is the required hyperbolic
3-manifold.

10.5 Combination Theorems in Geometric Group Theory:
Hyperbolic Groups

The fundamental combination theorem in the context of hyperbolic groups in the
sense of Gromov [49] is due to Bestvina and Feighn [12]. The theorem was
motivated by Thurston’s combination Theorem 10.9. In the context of geometric
group theory, free products with amalgamation and HNN extensions can be treated
on a common footing by passing to the universal cover and looking at the resulting
Bass–Serre tree of spaces [133]. Thus, while the main combination theorem of [12]
provides only a weaker conclusion than Theorem 10.9 inasmuch as it establishes
Gromov-hyperbolicity, the context is considerably more general and works for trees
of spaces. It turns out that the sufficient condition in [12] is also necessary and this
converse direction was established by Gersten [48], Bowditch [14] and others. The
paper [12] spawned considerable activity in geometric group theory and have been
giving rise to a number of combination theorems [4, 28, 45–47, 93, 115, 116] right
up to the time of writing this article. A forthcoming book of Kapovich and Sardar
[71] furnishes a definitive account and rather general versions of the material in
Sects. 10.5.1 and 10.5.2.

10.5.1 Trees of Spaces

The framework of [12] is that of a tree of spaces. We follow the exposition in [113]
to define the relevant notions.

Definition 10.12 ([12]) Let (X, d) be a geodesic metric space. Let T be a simplicial
tree. Let V(T ) and E(T ) denote the vertex set and edge set of T respectively. Then
P : X → T is said to be a tree of geodesic metric spaces satisfying the quasi-
isometrically embedded condition (or simply, the qi condition) if there exists a map
P : X→ T , and constants K ≥ 1, ε ≥ 0 satisfying the following:

1. ∀v ∈ V(T ), Xv = P−1(v) ⊂ X equipped with the induced path metric dv is a
geodesic metric space Xv . Also, the inclusion maps iv : Xv → X are uniformly
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proper, i.e. ∀M > 0, v ∈ T and x, y ∈ Xv , there exists N > 0 such that
d(iv(x), iv(y)) ≤ M implies dv(x, y) ≤ N .

2. Let e = [v1, v2] ∈ E(T ) with initial and final vertices v1 and v2 respectively (we
assume that all edges have length 1). Let Xe be the pre-image under P of the
mid-point of e. There exist continuous maps fe : Xe×[v1, v2] → X, such that
fe|Xe×(v1,v2) is an isometry onto the pre-image of the interior of e equipped with
the path metric de.
Further, we demand that fe is fiber-preserving, i.e. projection to the second co-
ordinate in Xe×[v1, v2] corresponds via fe to projection to the tree P : X→ T .

3. fe|Xe×{v1} and fe|Xe×{v2} are (K, ε)-quasi-isometric embeddings into Xv1 and
Xv2 respectively. We shall often use the shorthand fe,v1 and fe,v2 for fe|Xe×{v1}
and fe|Xe×{v2} respectively.

We shall refer toK, ε as the constants or parameters of the qi-embedding condition.

If there exists δ > 0 such that the vertex and edge spaces Xv,Xe above are all
δ-hyperbolic metric spaces for all vertices v and edges e of T , then P : X→ T will
be called a tree of hyperbolic metric spaces.

Definition 10.13 ([12]) A continuous map f : [−k, k]×I → X is called a hallway
of length 2k if it satisfies the following:

1. f−1(∪Xv : v ∈ T ) = {−k, · · · , k}×I
2. f is transverse, relative to condition (1) to ∪eXe.
3. for all i ∈ {−k, · · · , k}, f maps i×I to a geodesic in Xv for some vertex space
Xv .

Definition 10.14 ([12]) A hallway f : [−k, k]×I → X is said to be ρ-thin if

d(f (i, t), f (i + 1, t)) ≤ ρ

for all i, t .
A hallway f : [−m,m]×I → X is called λ-hyperbolic if

λl(f ({0} × I)) ≤ max {l(f ({−m} × I)), l(f ({m} × I))}.

The girth of the hallway is defined to be the quantity

mini {l(f ({i} × I))}.

A hallway is essential if the edge path in T resulting from projecting the hallway
under P ◦ f onto T does not backtrack (and is therefore a geodesic segment in the
tree T ).

Definition 10.15 (Hallways Flare Condition [12]) The tree of spaces, X, is said
to satisfy the hallways flare condition if there exist λ > 1 and m ≥ 1 such that the
following holds:
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∀ρ > 0 there exists H(= H(ρ)) such that any ρ-thin essential hallway of length
2m and girth at least H is λ-hyperbolic.

The constants λ,m are referred to as the constants or parameters of the hallways
flare condition. If, further, the constant ρ is fixed, then H will also be called a
constant or parameter of the hallways flare condition.

With these notions in place, we can state the main geometric combination
theorem of [12]:

Theorem 10.15 Let P : X → T be a tree of hyperbolic spaces satisfying the
qi-embedded condition (as in Definition 10.12). Further, suppose that the hallways
flare condition (as in Definition 10.15) is satisfied. Then X is hyperbolic.

The proof of Theorem 10.15 in [12] proceeds by establishing a linear isoperi-
metric inequality ensuring hyperbolicity. We shall indicate a different proof scheme
below in the special case that the edge-to-vertex inclusion maps are uniform quasi-
isometries rather than qi-embeddings. The forthcoming book [71] provides a new
proof as well.

10.5.2 Metric Bundles

The notion of a metric bundle [116] adapts the idea of a fiber bundle to a coarse
geometric context. We shall describe below the main combination theorem of [116]
which is an analog of Theorem 10.15 in this context.

Definition 10.16 Let (X, dX) and (B, dB) be geodesic metric spaces. Let c,K ≥ 1
be constants and h : R+ → R

+ a function. P : X → B is called an (h, c,K)−
metric bundle if

1. P is 1-Lipschitz.
2. For each z ∈ B, Fz = P−1(z) is a geodesic metric space with respect to the path

metric dz induced from (X, dX). We refer to Fz as the fiber over z.
We further demand that the inclusion maps iz : (Fz, dz) → X are uniformly

metrically proper as measured with respect to h, i.e. for all z ∈ B and u, v ∈ Fz,
dX(iz(u), iz(v)) ≤ N implies that dz(u, v) ≤ f (N).

3. For z1, z2 ∈ B with dB(z1, z2) ≤ 1, let γ be a geodesic in B joining them. Then
for any z ∈ γ and x ∈ Fz, there is a path in p−1(γ ) of length at most c joining x
to both Fz1 and Fz2 .

4. For z1, z2 ∈ B with dB(z1, z2) ≤ 1 and γ ⊂ B a geodesic joining them, let
φ : Xz1 → Xz2 , be any map such that for all x1 ∈ Xz1 there is a path of length at
most c in P−1(γ ) joining x1 to φ(x1). Then φ is a K−quasi-isometry.

If in addition, there exists δ′ such that each Xz is δ′−hyperbolic, then P : X → B
is called an (h, c,K)− metric bundle of δ′−hyperbolic spaces (or simply a metric
bundle of hyperbolic spaces if the constants are implicit).
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It is pointed out in [116] that condition (4) follows from the previous three (with
suitable K); but it is more convenient to have it as part of our definition.

A closely related notion of a metric graph bundle often turns out to be more
useful:

Definition 10.17 ([116, Definition 1.2]) Suppose X and B are metric graphs and
f : N → N is a proper function. We say that X is an f -metric graph bundle over
B if there exists a surjective simplicial map π : X → B such that the following
hold.

1. For all b ∈ V (B), Fb := π−1(b) is a connected subgraph of X. Moreover, the
inclusion maps Fb → X, b ∈ V (B) are uniformly metrically proper as measured
by f .

2. For all adjacent vertices b1, b2 ∈ V (B), any x1 ∈ V (Fb1) is connected by an
edge to some x2 ∈ V (Fb2).

For all b ∈ V (B), Fb is called the fiber over b and its path metric is denoted by
db. It is pointed out in [116] that any metric bundle is quasi-isometric to a metric
graph bundle, where the quasi-isometry coarsely preserves fibers and restricts to a
quasi-isometry of fibers. Condition (2) of Definition 10.17 immediately shows that
if π : X → B is a metric graph bundle then for any points v,w ∈ V (B) we have
that Hd(Fv, Fw) <∞, where Hd denotes the Hausdorff distance.

Example 10.16 Let

1 → N → G→ Q→ 1

be an exact sequence of finitely generated groups. Choose a finite generating set of
N and extend it to a finite generating set ofG. The image of the finite generating set
ofG inQ under the quotient map is then a generating set ofQ. This gives a natural
simplicial map P : �G → �Q between the respective Cayley graphs. This is the
prototypical example of a metric graph bundle. The fibers are all copies of �N .

Definition 10.18 Suppose X is an f -metric graph bundle over B. Given k ≥ 1 and
a connected subgraph A ⊂ B, a k-qi section over A is a map s : A→ X such that
s is a k-qi embedding and π ◦ s is the identity map on A.

For any hyperbolic metric space F with more than two points in its Gromov
boundary ∂F , there is a coarsely well-defined barycenter map

φ : ∂3F → F

mapping an unordered triple (a, b, c) of distinct points in ∂F to a centroid of the
ideal triangle spanned by (a, b, c). We shall say that the barycenter map φ : ∂3F →
F is N−coarsely surjective if F is contained in the N-neighborhood of the image
of φ. A K−qi-section σ : B → X is a K−qi-embedding from B to X such that
P ◦ σ is the identity map. The following guarantees the existence of qi-sections for
metric bundles:



348 M. Mj and S. Mukherjee

Proposition 10.17 ([116, Section 2.1]) Given δ,N, c,K ≥ 0 and proper f : N→
N, there exists K0 such that the following holds.
Let P : X→ B be an (f, c,K)-metric bundle of δ−hyperbolic spaces such that all
barycenter maps φb : ∂3Fb → Fb are N−coarsely surjective, Then through each
point of X, there exists a K0-qi section.

A similar statement holds for metric graph bundles.

The following gives the analog of Definition 10.15 in the context of metric
bundles and metric graph bundles:

Definition 10.19 Let P : X → B be a metric bundle or a metric graph bundle.
P : X → B is said to satisfy a flaring condition if ∀k ≥ 1, there exist λk > 1 and
nk,Mk ∈ N such that the following holds:
Let γ : [−nk, nk] → B be a geodesic and let γ̃1 and γ̃2 be two k-qi sections of γ in
X. If dγ (0)(γ̃1(0), γ̃2(0)) ≥ Mk , then

λk.dγ (0)(γ̃1(0), γ̃2(0)) ≤ max{dγ (nk)(γ̃1(nk), γ̃2(nk)), dγ (−nk)(γ̃1(−nk), γ̃2(−nk))}.

The following Theorem is the analog of Theorem 10.15 in the context of metric
(graph) bundles.

Theorem 10.18 Suppose that P : X → B is a metric bundle or a metric graph
bundle such that all fibers Fz are uniformly hyperbolic, and the barycenter maps
are uniformly coarsely surjective. Equivalently, by Proposition 10.17, there exists
ρ ≥ 1 such that for every x ∈ X, there exists a ρ−qi section s : B → X passing
through x, i.e. s ◦ P(x) = x.

Then if X satisfies the qi-embedded condition and the flaring condition (as in
Definition 10.19) corresponding to ρ−qi sections, then X is hyperbolic.

Conversely, if X is hyperbolic, then as a metric bundle or metric graph bundle,
X satisfies the flaring condition.

10.5.2.1 Ladders

A tool that has turned out to be considerably useful in the context of both trees of
spaces and metric bundles is the notion of a ladder. In particular, for our proof of
Theorem 10.18 (sketched in Sect. 10.5.2.2), we shall use it. The notion is related to,
but different from that of a hallway. Ladders were introduced in [109] in the context
of trees of spaces and in [108] in the context of groups. Instead of going through the
construction in detail, we extract the relevant features from the ladder construction
of [108, 109]. The following is a restatement of [109, Theorem 3.6] reformulated to
emphasize the connection with hallways.

Theorem 10.19 Given δ ≥ 0,K ≥ 1, ε ≥ 0 there exists D such that the following
holds.
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We consider one of the two following situations:

1. P : X → T is a tree of δ−hyperbolic spaces as in Definition 10.12 with
parameters K, ε. Let Fv be a vertex space,

2. P : X→ B is a metric bundle or metric graph bundle, and Fv is a fiber.

In both cases, the intrinsic metric on Fv is denoted by dv . Then for every geodesic
segment μ ⊂ (Fv, dv) there exists a D−qi-embedded subset Lμ of X such that the
following holds.

1. Fv ∩Lμ = μ,
2. (a) For P : X → T a tree of hyperbolic metric spaces and every w ∈ T,
Fw ∩ Lμ is either empty or a geodesic μw in (Fw, dw). Further, there exists a
subtree T1 ⊂ T such that the collection of verticesw ∈ T satisfying Fw∩Lμ �= ∅
equals the vertex set of T1.
(b) For P : X → B a metric bundle or metric graph bundle, Fw ∩ Lμ is a
geodesic μw in (Fw, dw).

3. There exists ρ0 ≥ 1 such that through every z ∈ Lμ, there exists a ρ0−qi-section
σz of [v, P (z)] contained in Lμ satisfying

σz(P (z)) = z, σz(v) ∈ μ.

Further, there exists a D−coarse Lipschitz retraction�μ : X→ Lμ, i.e.

1. d(�μ(x),�μ(y)) ≤ Dd(x, y)+D, ∀ x, y ∈ X,
2. �μ(x) = x, ∀ x ∈ Lμ.

The qi-embedded set Lμ is called a ladder in [108, 109]. Theorem 10.19 shows
in particular that there is a (2D, 2D)− quasigeodesic of (X, dX) joining the end-
points of μ and lying on Lμ.

Remark 10.20 Note that in Theorem 10.19, we have not assumed that X is
hyperbolic: no assumptions on the global geometry of X are necessary here.

10.5.2.2 Idea Behind the Proof of Theorem 10.18

We focus on the metric graph bundle case for convenience. Theorem 10.19
guarantees that for any pair of points x, y in a metric graph bundle X, there exist

1. Qi-sections �x,�y through x, y.
2. A ladder L(x, y) bounded by �x,�y . In fact, in this case (as shown in [108,

116]), L(x, y) ∩ Fb is equal to a geodesic in Fb joining �x(b),�y(b) (here
we are abusing notation slightly by identifying the qi-sections �x,�y with their
images).

Thus, for every x, y ∈ X there are preferred quasigeodesics in X contained
in L(x, y). We have not used the flaring condition so far. The flaring condition
guarantees hyperbolicity of L(x, y). We shall return to this shortly. Hyperbolicity
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of L(x, y) ensures (by the Morse Lemma) that all quasigeodesics in L(x, y) joining
x, y are in a bounded neighborhood of each other. This gives a family of paths in X,
one for every pair x, y. We then use a path-families argument following Hamenstädt
[56] and a criterion due to Bowditch to conclude that X is hyperbolic.

We return to the proof of hyperbolicity of L(x, y). We note that L(x, y) is a
bundle over B where the fibers are intervals. The flaring condition is inherited
by L(x, y) with slightly worse constants. Thus, we are reduced to proving Theo-
rem 10.18 in the special case that fibers are intervals. To do this, we decompose
the ladder L(x, y) using qi-sections contained in L(x, y) into a finite number
of ladders ‘stacked one on top of another’. Thus, there exist disjoint sections
�x = �0,�1, · · · ,�n = �y and laddersLi bounded by�i−1,�i such that distinct
Li’s have disjoint interiors. The ubiquity of qi-sections allows us to ensure that each
of these smaller ladders has bounded girth (in the spirit of Definition 10.14), i.e.
�i−1,�i are at a bounded distance from each other along some fiber Fb and flare
away from each other as one goes to infinity in B. A further path families argument
following [56] allows us to prove that L(x, y) is hyperbolic.

A word about the proof sketch above. Note that we use only the 1-dimensional
property of quasigeodesics flaring and path families to prove the combination
theorem in this case, as opposed to the more ‘2-dimensional’ area argument of [12].
This has been considerably refined in [71] to give a new path-families proof of
Theorem 10.15.

10.5.3 Relatively Hyperbolic Combination Theorems

We refer the reader to [15, 38, 49] for the basics of relative hyperbolicity. Theo-
rem 10.15 was generalized to the context of trees of relatively hyperbolic spaces in
two different ways:

1. Using an acylindricity hypothesis in [28] and [4]. This is in the spirit of
Theorem 10.10.

2. Using the flaring condition in [45, 115]. This in the spirit of Theorem 10.14.

10.5.3.1 Relatively Hyperbolic Combination Theorem Using Acylindricity

Let G be hyperbolic relative to a finite collection P = {P1, · · · , Pk} of parabolic
subgroups. Let ∂hG denote the Bowditch boundary ofG. LetH ⊂ G be a relatively
quasiconvex subgroup [58]. We shall give Dahmani’s version of the combination
theorem [28] below. Let �H ⊂ ∂hG denote the limit set of H . A relatively
quasiconvex subgroups H is full relatively quasi-convex if it is quasi-convex and
if, for any infinite sequence gn ∈ G in distinct left cosets of H , the intersection
∩ngn(�H) is empty.
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Lemma 10.1 ([28, Lemma 1.7]) LetG be hyperbolic relative to a finite collection
P = {P1, · · · , Pk} of parabolic subgroups. Let H be a full relatively quasi-convex
subgroup. Let P be a conjugate of one of the Pi’s. Then P ∩H is either finite, or of
finite index in P .

Definition 10.20 ([134]) The action of a groupG on a tree T is k−acylindrical for
some k ∈ N if the stabilizer of any geodesic of length k in T is finite. The action of
a groupG on a tree T is acylindrical if it is k−acylindrical for some k ∈ N.

A finite graph of groups is said to be acylindrical, if the action on the associated
Bass–Serre tree is acylindrical.

Then Dahmani’s combination theorem states:

Theorem 10.21 ([28]) Let G be the fundamental group of an acylindrical finite
graph of relatively hyperbolic groups, whose edge groups are full quasi-convex
subgroups of the adjacent vertex groups. Let G be the family of images of the
maximal parabolic subgroups of the vertex groups, and their conjugates in G. Then
G is strongly hyperbolic relative to G.

The approach in [28] is quite different from that of [12]. From the Bowditch
boundaries of the vertex and edge groups, a metrizable compact space Z is
constructed in such a way that G naturally acts on Z. It is then shown that this
action is a convergence action. Finally, it is shown that the action is geometrically
finite, forcingG to have a relatively hyperbolic structure.

The Bass–Serre tree of G has vertex groups Gv and edge groups Ge. Hence,
associated to the Bass–Serre tree T there is a natural tree (T ) of compact spaces
given by ∂hGv and ∂hGe. The set Z is built [28, Section 2] from these copies of
∂hGv and ∂hGe. Suppose e = [v1, v2] is an edge of T . For all such edges e, glue
together ∂hGv1 and ∂hGv2 along the limit set ∂hGe. The relevant identification space
is thus obtained from the set �v∈V (T )∂hGv by identifying pairs of points according
to the images of ∂hGe. Finally, the base tree T encodes (infinite) directions that are
‘transverse’ to all the vertex spaces. The set Z is then obtained from topologizing
∂T ∪ �v∈V (T )∂hGv/ ∼, where∼ is the equivalence relation given by edge spaces.

Alibegovic [4] proves a similar combination theorem for relatively hyperbolic
groups following the original strategy of Bestvina and Feighn in Theorem 10.15
using the linear isoperimetric inequality characterization of hyperbolicity.

10.5.3.2 Relatively Hyperbolic Combination Theorem Using Flaring

We next define a tree of relatively hyperbolic spaces in general.

Definition 10.21 ([115]) A tree P : X → T of geodesic metric spaces is said to
be a tree of relatively hyperbolic metric spaces if in addition to the conditions of
Definition 10.12
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1. each vertex spaceXv is strongly hyperbolic relative to a collection of subsets Hv
and each edge space Xe is strongly hyperbolic relative to a collection of subsets
He. The sets Hv,α ∈ Hv or He,α ∈ He are referred to as horosphere-like sets.

2. the maps fe,vi above, for i = 1, 2, are strictly type-preserving. That is, for
i = 1, 2 and for any Hvi,α ∈ Hvi , f−1

e,vi
(Hvi,α), is either empty or is equal to

some He,β ∈ He. Further, for all He,β ∈ He, there exists v and Hv,α, such that
fe,v(He,β) ⊂ Hv,α.

3. There exists δ > 0 such that each E(Xv,Hv) is δ-hyperbolic (here, E(Xv,Hv)

denotes the electric space obtained from Xv by electrifying all the horosphere-
like sets in Hv).

4. The induced maps of the coned-off edge spaces into the coned-off vertex spaces
̂fe,vi : E(Xe,He) → E(Xvi ,Hvi ) (i = 1, 2) are uniform quasi-isometries. This
is called the qi-preserving electrification condition

We state conditions (4) and (6) in conjunction by saying that Xv is strongly
δ−hyperbolic relative to Hv .

We explain condition (7) briefly. Given the tree of spaces P : X → T with
vertex spaces Xv and edge spaces Xe there exists a naturally associated tree whose
vertex spaces are the electrified spacesE(Xv,Hv) and edge spaces are the electrified
spaces E(Xe,He) obtained by electrifying the respective horosphere like sets.
Condition (4) of the above definition ensures that we have natural inclusion maps
of edge spaces E(Xe,He) into adjacent vertex spaces E(Xv,Hv). The resulting tree
of coned-off spaces P : TC(X) → T is referred to simply as the induced tree of
coned-off spaces. The cone locus of TC(X) is the forest given by the following:

1. the vertex set V(TC(X)) consists of the cone-points cv,α in the vertex spaces
Xv resulting from the electrification operation of the horosphere-like setsHv,α ∈
Hv .

2. the edge set E(TC(X)) consists of the cone-points ce,α in the edge set Xe
resulting from the electrification operation of the horosphere-like setsHe,α ∈ He.

Each connected component of the cone-locus is a maximal cone-subtree. The
collection of maximal cone-subtrees is denoted by CT and elements of CT are
denoted as CTα . Note that each maximal cone-subtree CTα naturally gives rise
to a tree CTα of horosphere-like subsets depending on which cone-points arise as
vertices and edges of CTα . The metric space that CTα gives rise to is denoted as Cα .
We refer to any such Cα as a maximal cone-subtree of horosphere-like spaces. The
induced tree of horosphere-like sets is denoted by

gα : Cα → CTα.

The collection of these maps will be denoted as G. The collection of the maximal
cone-subtree of horosphere-like spaces Cα is denoted as C. Note that each CTα thus
appears both as a subset of TC(X) as well as the underlying tree of Cα .
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Definition 10.22 (Cone-Bounded Hallways Strictly Flare Condition)
An essential hallway of length 2k is cone-bounded if f (i × ∂I) lies in the cone-

locus for i = {−k, · · · , k}.
The tree of spaces, X, is said to satisfy the cone-bounded hallways flare

condition if there are numbers λ > 1 and k ≥ 1 such that any cone-bounded hallway
of length 2k is λ-hyperbolic, where λ, k are called the constants or parameters of the
strict flare condition.

We now state the combination theorem for relative hyperbolicity using the flaring
condition.

Theorem 10.22 ([45, 115]) Let P : X → T be a tree of uniformly relatively
hyperbolic spaces in the sense of Definition 10.21 satisfying the qi-embedded
condition, such that the resulting tree of coned-off spaces satisfies

1. the hallways flare condition,
2. the cone-bounded hallways flare condition.

Then X is hyperbolic relative to the maximal cone-subtrees of horosphere-like
spaces.

10.5.4 Effective Quasiconvexity and Flaring

We now state a couple of theorems along the lines of Theorems 10.15 and 10.18
ensuring quasiconvexity of a subspace of a vertex space. The first, due to Ilya
Kapovich [69] is in the setup of an acylindrical graph of groups:

Theorem 10.23 Let G be a finite acylindrical graph of groups where all vertex and
edge groups are hyperbolic and edge-to-vertex inclusions are quasi-isometric em-
beddings. Let T ⊂ G be a maximal subtree. Let G denote the group corresponding
to the tree T. (By Theorem 10.15, G is hyperbolic.) Then each vertex group Gv of
G is quasiconvex in G.

Next, we shall consider in a unified way the two following situations:

1. P : X → T is a tree of hyperbolic metric spaces satisfying the qi-embedded
condition with constants K, ε and the hallways flare condition with parameters
λ0,m0. Further, if ρ0 is given we shall assume an additional constant H0 as a
lower bound for girths of ρ0−thin hallways.

2. P : X → B is a metric bundle or a metric graph bundle satisfying the flaring
condition with constants as in Definitions 10.16, 10.17, and 10.19.

Also (Xv, dv) will be a vertex space of X (in the tree of spaces case) or P−1(v)

equipped with the induced metric in the metric (graph) bundle case.

Definition 10.23 Let P : X→ T be a tree of hyperbolic spaces. Let Y ⊂ (Xv, dv)
be a C−quasiconvex subset of (Xv, dv). We say that Y flares in all directions with
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parameter K if for any geodesic segment [a, b] ⊂ (Xv, dv) with a, b ∈ Y and any
ρ−thin hallway f : [0, k] × I → X satisfying

1. ρ ≤ ρ0,
2. f ({0} × I) = [a, b],
3. l([a, b]) ≥ K ,
4. k ≥ K ,

the length of f ({k} × I) satisfies

l(f ({k} × I)) ≥ λl([a, b]).

Similarly, let P : X → B be a metric bundle or metric graph bundle with
hyperbolic fiber. Let Y ⊂ Xv be quasiconvex. Further, assume that there is a ρ−qi
section through every x ∈ X (cf. the second hypothesis of Theorem 10.18).

We say that Y flares in all directions with parameter K ≥ 0,D ≥ 1, λ > 1 if the
following holds:

Let γ : [0,D] → B be a geodesic such that γ (0) = v and let γ̃1 and γ̃2 be two
ρ-qi lifts (sections) of γ in X. If dv(γ̃1(0), γ̃2(0)) ≥ K , then we have

λ.dv(γ̃1(0), γ̃2(0)) ≤ dγ (D)(γ̃1(D), γ̃2(D)).

We can now state a proposition guaranteeing quasiconvexity of subsets of vertex
spaces.

Proposition 10.24 ([113]) Given K,C, there exists C0 such that the following
holds.
Let P : X → T and Xv be as in Theorem 10.19 above. If Y is a C−quasiconvex
subset of (Xv, dv) and flares in all directions with parameter K , then Y is
C0−quasiconvex in (X, dX).

Conversely, given C0, there exist K,C such that the following holds.
For P : X → T and Xv as above, if Y ⊂ Xv is C0−quasiconvex in (X, dX), then
it is a C−quasiconvex subset in (Xv, dv) and flares in all directions with parameter
K .

A similar statement holds for metric (graph) bundles.

Proposition 10.25 GivenK,D, λ,C, there exists C0 such that the following holds.
Let P : X → B be a metric (graph) bundle and Xv be as in Definition 10.23. If Y
is a C−quasiconvex subset of (Xv, dv) and flares in all directions with parameters
K,D, λ, then Y is C0−quasiconvex in (X, dX).

Conversely, given C0, there exist K,D, λ,C such that the following holds.
For P : X → B a metric (graph) bundle and Xv as above, if Y ⊂ Xv is
C0−quasiconvex in (X, dX), then it is a C−quasiconvex subset in (Xv, dv) and
flares in all directions with parameters K,D, λ.
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10.6 Combination Theorems in Geometric Group Theory:
Cubulations

We turn now to the remarkable work during the last decade on special cube
complexes. We refer to [53] for the basics of special cube complexes. Let G denote
a finite graph, RAAG(G) the right-angled Artin group associated to G, and S(G)
its Salvetti complex. A cube complex C is said to be special if there exists a
combinatorial local isometry from C to S(G) for some finite graph G. By Agol’s
resolution of Wise’s conjecture in [1] (see Theorem 10.30 below), hyperbolic groups
that are virtually special are precisely those that act geometrically on a CAT(0) cube
complex. We give a brief account of some of the combination theorems that have
been proved around this theme.

In [59], Hsu and Wise proved the precursor of all virtually special combination
theorems by showing that if a hyperbolic groupG splits as a finite graph of finitely
generated free groups with cyclic edge groups, then G is virtually special. In [60],
they later generalized this to amalgamated products of free groups over a finitely
generated malnormal subgroup. A landmark combination theorem due to Haglund
and Wise concerns the combination of hyperbolic virtually special cubulable groups
along malnormal quasiconvex subgroups:

Theorem 10.26 ([54]) Let A,B,M be compact virtually special cube complexes.
Suppose that GA = π1(A), GB = π1(B), and GM = π1(M) are hyperbolic.

Let M
iA−→ A, and M

iB−→ B be local isometries of cube complexes such that
iA∗(GM) and iB∗(GM) are quasiconvex and malnormal inGA andGB respectively.
Let X = A ∪M B be the cube complex obtained by gluing A and B together along
M usingM × [0, 1]. Then X is virtually special.

Theorem 10.26 generalizes earlier work of Wise [147] where he showed that any
2-complex built by amalgamating (in terms of fundamental group) two finite graphs
along a malnormal immersed graph is virtually special. Theorem 10.26 is also a
crucial ingredient in Wise’s proof of the virtual specialness of hyperbolic groups
admitting a quasiconvex hierarchy. This is very much in the spirit of the Haken
hierarchy for Haken 3-manifolds and Thurston’s hyperbolization of such manifolds
(cf. Sect. 10.4.1).

Theorem 10.27 ([149]) Let G be a hyperbolic group admitting a quasiconvex
hierarchy. Then G is the fundamental group of a compact non-positively curved
cube complex that is virtually special.

We list below some of the important consequences of Theorem 10.27. The
following resolved a conjecture of Baumslag:

Theorem 10.28 ([149]) Every one-relator group with torsion is virtually special.

In the context of hyperbolic 3-manifolds, Wise showed the following.

Theorem 10.29 ([149]) Compact hyperbolic Haken manifolds are virtually spe-
cial.
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Using work of Kahn and Markovic [68], Bergeron and Wise [8] proved that all
hyperbolic 3-manifolds can be cubulated, i.e. they act geometrically on CAT(0) cube
complexes. This led Wise to conjecture that hyperbolic groups that act geometrically
on CAT(0) cube complexes are virtually special. The following celebrated theorem
of Agol resolved this conjecture affirmatively:

Theorem 10.30 ([1]) Hyperbolic groups acting geometrically on CAT(0) cube
complexes are virtually special.

A flurry of activity ensued in trying to show that several naturally defined
hyperbolic groups are, in fact, cubulable. In [51, 52], Hagen and Wise proved that
hyperbolic groupsG admitting an exact sequence of the form

1 → Fn → G→ Z→ 1

are cubulable. (Here Fn denotes the free group on n generators.) Hence, by Agol’s
Theorem 10.30, such groups G are virtually special. In a different direction,
Manning, the first author and Sageev [92] showed that there exist cubulable
hyperbolic groupsG admitting an exact sequence of the form

1 → π1(S)→ G→ Fn → 1,

where S is a closed surface of genus greater than one. Again, by Agol’s Theo-
rem 10.30, such groupsG are virtually special.

Finally, we mention work of Przytycki and Wise [126], who proved the virtual
specialness of fundamental groups of 3-manifolds whose JSJ decomposition has
both a hyperbolic as well as a Seifert-fibered piece. 3-manifolds admitting such a
JSJ decomposition are called mixed. As a consequence of their result, the authors
show that mixed manifolds virtually fiber.

The proof in [126] proceeds by first showing that there are enough codimension
one surface subgroups to ensure cubulability. This is established by combining
surfaces coming from the graph manifold pieces with those coming from hyperbolic
pieces. Once cubulability has been established, the malnormal special quotient
theorem [149] (see also [2]) is used to establish specialness of the cube complex
thus built.

In this section, we have given only a cursory treatment of a topic that, starting
with [131] has undergone tremendous development over the last two decades. We
refer the reader to the books [5] and [148] for a more comprehensive treatment.

10.7 Holomorphic Dynamics and Polynomial Mating

Before entering the theme of combination theorems in holomorphic dynamics, we
say a few words on the history of the subject, and sketch briefly some of the
philosophical parallels between holomorphic dynamics and Kleinian groups and
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some of the developments inspired by this synergy. These will also serve as a
motivation for combination theorems involving complex polynomials and Kleinian
groups that we will discuss later in the section.

10.7.1 Historical Comments

The study of dynamics of rational maps on the Riemann sphere started with
groundbreaking work of Fatou and Julia [40–44, 65, 66] in the 1920s. The subject
remained dormant for several decades barring a handful of important contributions,
most notably by Siegel [138] and Brolin [18]. Around the 1970s, the availability of
computers allowed Feigenbaum and Mandelbrot to perform numerical experiments
on finer structures of dynamical and parameter spaces of real/complex-analytic
maps. Their pioneering discoveries infused fresh blood into the field, and gave rise
to problems and conjectures that played pivotal roles in the development of the
modern theory of holomorphic dynamics.

A revolutionary contribution came from Sullivan, who introduced quasiconfor-
mal methods into the study of rational dynamics to prove nonexistence of wandering
domains in the Fatou set for rational maps [140]. The seminal work of Douady
and Hubbard on the dynamics of quadratic polynomials and the structure of the
Mandelbrot set [31, 32] turned out to be equally fundamental in that the techniques
devised by them were robust enough to be applied to the study of a wide variety of
holomorphic dynamical systems.

Sullivan proposed a dictionary between Kleinian groups and rational dynamics
that was motivated by various common features shared by them [140, p. 405]. In
addition to the apparent similarities between the topological structures of the limit
set (respectively, the domain of discontinuity) of a Kleinian group and the Julia set
(respectively, the Fatou set) of a rational map, there are deeper similarities between
the techniques employed in proving various statements in these two parallel worlds.
In fact, in the same paper, Sullivan gave a new proof of Ahlfors’ finiteness theorem
which closely parallels the proof of the ‘no wandering Fatou component’ theorem
for rational maps.

Around the same time, Thurston proved a topological characterization for an
important class of rational maps [33]. This result, which is a philosophical analog
of the hyperbolization of atoroidal Haken 3-manifolds, has given rise to a wealth of
rich and beautiful results that we will not be touching upon in this survey (see [129,
§9] and the references therein).

We should emphasize that the aforementioned dictionary is not an automatic
method for translating results in one setting to the other, but rather an inspiration
for results and proof techniques. We now list a few prominent pieces of work
motivated by this dictionary. Sullivan and McMullen introduced Teichmüller spaces
of conformal dynamical systems in the spirit of Teichmüller spaces of Riemann
surfaces in [141]. Bullett and Penrose constructed matings of holomorphic quadratic
polynomials and the modular group as holomorphic correspondences [21]. In [90],
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Lyubich and Minsky constructed “an explicit object that plays for a rational map the
role played by the hyperbolic 3-orbifold quotient of a Kleinian group”.McMullen
established conceptual connections between renormalization ideas used in holo-
morphic dynamics and the study of 3-manifolds fibering over the circle [102].
Pilgrim proved a canonical decomposition theorem for Thurston maps as an analog
of the torus decomposition theorem for 3-manifolds [124]. Another noteworthy
development in the framework of the above dictionary is the recent work of Luo
[86–88], where results in rational dynamics were proved using techniques that are
closely related to Thurston’s work on 3-manifolds.

We refer the reader to [23, 107] for a basic introduction to rational dynamics, to
[89] for a comprehensive account on the dynamics of quadratic polynomials and the
Mandelbrot set, to the recent survey article by Rees on major advances in the field
[129], and a survey by DeZotti on connections between holomorphic dynamics and
other branches of mathematics [30].

10.7.2 Mating of Polynomials

The operation of polynomial mating, which was introduced by Douady and Hubbard
in [35], constructs a rational map on ̂C by combining the actions of two complex
polynomials. Since the first appearance of the notion, several closely related
definitions and perspectives have been put forward. In this survey, we will follow the
route adopted in [123] (see [130] for the original formulation and some historical
comments, and [106] for a lucid account of the mating construction along with a
detailed worked out example).

To define the operation of polynomial mating formally, we need to introduce
some terminology. The Fatou set of a rational map R, denoted by F(R), is the
largest open subset of̂C on which the sequence of iterates {R◦n}n≥0 forms a normal
family. Its complement is called the Julia set, and is denoted byJ(R). For a complex
polynomialP , the filled Julia set (i.e., the set of points with bounded forward orbits)
and the basin of attraction of infinity (i.e., the complement of the filled Julia set) are
denoted by K(P ) and B∞(P ), respectively. We refer the reader to [107] for basic
topological and dynamical properties of these sets.

A rational map R is called postcritically finite if each of its critical points has a
finite forward orbit. R is called hyperbolic if each of its critical points converges to
an attracting cycle under forward iteration.

If P is a monic, centered polynomial of degree d with a connected Julia set,
then there exists a conformal map φP : ̂C \ D → B∞(P ) that conjugates zd to P ,
and satisfies φ′P (∞) = 1 [107, Theorem 9.1, Theorem 9.5]. We will call φP the
Böttcher coordinate for P . Furthermore, if ∂K(P ) = J(P ) is locally connected,
then φP extends to a semiconjugacy between zd |

S
1 and P |J(P ). In this case, the

map φP : S1 → J(P ) is called the Carathéodory loop/semi-conjugacy for J(P ).
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Now let P1, P2 be two monic polynomials of the same degree d ≥ 2 with
connected and locally connected filled Julia sets. We consider the disjoint union
K(P1) �K(P2) and the map

P1 � P2 : K(P1) �K(P2)→ K(P1) �K(P2),

P1 � P2|K(P1) = P1, P1 � P2|K(P2) = P2.

Let∼ be the equivalence relation on K(P1)�K(P2) generated by φP1(z) ∼ φP2(z),
for all z ∈ S

1. It is easy to check that∼ is P1�P2−invariant, and hence it descends to
a continuous map P1⊥⊥P2 to the quotient K(P1)⊥⊥K(P2) := (K(P1) �K(P2)) / ∼
(see [123, §4.1] for details). The map P1⊥⊥P2 is called the topological mating of the
polynomials P1, P2. Moreover, if K(P1)⊥⊥K(P2) is homeomorphic to a 2-sphere,
we say that the topological mating is Moore-unobstructed. We refer the reader
to [123, Theorem 2.12] for the statement of Moore’s theorem, which provides a
general sufficient condition for the quotient of S2 under an equivalence relation to
be a topological 2−sphere, and to [123, Proposition 4.12] for a useful application
of Moore’s theorem giving a sufficient condition for the topological mating of
P1, P2 (as above) to be Moore-unobstructed (note that the conditions of Moore’s
theorem are not necessary, see [13, Example 13.18]). By [123, Proposition 4.3], if
the topological mating of P1, P2 is not Moore obstructed (i.e., if K(P1)⊥⊥K(P2) ∼=
S

2), then P1⊥⊥P2 is topologically conjugate to an orientation-preserving branched
covering of S2. The following definition relates the topological mating to rational
maps of ̂C. We refer the reader to [33] for the notion of Thurston equivalence
appearing below.

Definition 10.24 ([123, Definition 4.4]) Let the topological mating of P1⊥⊥P2 be
Moore-unobstructed, and h : K(P1)⊥⊥K(P2)→ S

2 be a homeomorphism.

1. The polynomials P1, P2 are called combinatorially mateable if they are postcrit-
ically finite and if the branched covering h◦P1⊥⊥P2 ◦h−1 : S2 → S

2 is Thurston
equivalent to a rational map R.

2. The polynomials P1, P2 are called conformally/geometrically mateable if the
homeomorphism h can be so chosen that R = h ◦ P1⊥⊥P2 ◦ h−1 : S2 → S

2

is a rational map and h is conformal on the interior of K(P1)⊥⊥K(P2).

Conversely, a rational map R is said to be combinatorially (respectively, con-
formally) a mating if there exist polynomials P1, P2 satisfying the corresponding
property above with R = h ◦ P1⊥⊥P2 ◦ h−1.

The following equivalent definition of conformal mating is often useful in
practice (see [123, §4.7] for other definitions). In fact, this definition can be easily
adapted for the other frameworks of combination theorems that we will discuss in
this section (compare Definition 10.30).

Definition 10.25 ([123, Definition 4.14]) A rational map R : ̂C → ̂C of degree
d ≥ 2 is said to be the conformal mating of two degree d monic, centered,
polynomials P1 and P2 with connected and locally connected filled Julia sets if
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and only if there exist continuous maps

ψ1 : K(P1)→ ̂C and ψ2 : K(P2)→ ̂C,

conformal on int K(P1), int K(P2), respectively, such that

1. ψ1(K(P1))
⋃

ψ2(K(P2)) = ̂C,
2. ψi ◦ Pi = R ◦ ψi , for i ∈ {1, 2}, and
3. ψ1(z) = ψ2(w) if and only if z ∼ w, where∼ is the equivalence relation defined

above.

With the above notions of mating in place, we can now mention the first major
results on mateability of complex polynomials. In fact, these provided the first
main application of Thurston’s theorem on the topological characterization for
rational maps. The following theorem completely answers the question of conformal
mateability of postcritically finite quadratic polynomials (see [31, 32] for a detailed
study of the Mandelbrot set, or [105] for a quick introduction).

Theorem 10.31 ([81, 127, 136]) Let P1(z) = z2 + c1 and P2(z) = z2 + c2 be
two postcritically finite quadratic polynomials. Then P1 and P2 are conformally
mateable if and only if c1 and c2 do not belong to conjugate limbs of the Mandelbrot
set.

Among other early works on matings of postcritically finite polynomials, we
ought to mention the work of Shishikura and Lei which highlighted additional
complexities that are absent in the quadratic setting, but arise for cubic rational
maps [137].

In [82], Lei described the dynamics of postcritically finite cubic Newton maps
(these maps, which are obtained by plugging in complex polynomials in Newton’s
classical root-finding method, form an important and well-studied class of rational
maps), and exhibited in the process the fact that a large subclass of such maps are
matings. (See also the more recent work [6] for a description of certain postcritically
infinite cubic Newton maps as matings.)

The next theorem, due to Yampolsky and Zakeri, was the first existence result
for conformal matings of polynomials that are not ‘close cousins’ of postcritically
finite ones. A quadratic polynomial P is said to have a bounded type Siegel fixed
point if it has a fixed point z0 with P ′(z0) = e2πiθ such that the continued fraction
expansion of θ ∈ R/Z has uniformly bounded partial fractions.

Theorem 10.32 ([150]) Suppose P1, P2 are quadratic polynomials which are not
anti-holomorphically conjugate and each of which has a bounded type Siegel fixed
point. Then P1 and P2 are conformally mateable.

The question of unmating a rational map; i.e., deciding whether a given rational
map appears as the mating of two polynomials (and if so, whether such a decomposi-
tion is unique) has also been studied by various authors. For a general combinatorial
characterization of hyperbolic, postcritically finite rational maps arising as matings,
see [104, Theorem 4.2]. The situation is a bit more subtle for postcritically finite,
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non-hyperbolic rational maps, as discussed in the same paper. However, the next
theorem gives a positive answer to the unmating question for a class of postcritically
finite, non-hyperbolic rational maps:

Theorem 10.33 ([103, Theorem 1.1]) Let R : ̂C → ̂C be a postcritically finite
rational map such that its Julia set is the whole sphere. Then every sufficiently high
iterateR◦n ofR arises as a mating (i.e., is topologically conjugate to the topological
mating of two polynomials).

We refer the reader to the excellent survey article [104] for more on this topic.
Matings of geometrically finite polynomials (i.e., a polynomial whose postcrit-

ical set intersects the Julia set in a finite set, or equivalently, if every critical point
is either preperiodic, or attracted to an attracting or parabolic cycle) were studied
by Haïssinsky and Lei using techniques of David homeomorphisms. They showed
that two geometrically finite polynomials P1 and P2 with connected Julia sets
and parabolic periodic points are mateable if and only if the postcritically finite
polynomials T(P1),T(P2) canonically associated to P1, P2 (such that T(Pi) and
Pi have topologically conjugate Julia set dynamics, i = 1, 2) are mateable [55,
Theorem D] (cf. [91, Theorem 5.2]).

Mating of Anti-holomorphic Polynomials Let us now mention a class of anti-
holomorphic polynomials (anti-polynomials for short) for which a complete solu-
tion to the conformal mating problem is known. These are the so-called critically
fixed anti-polynomials; i.e., anti-polynomials that fix all of their critical points. The
proof of the following theorem crucially uses [125, Theorem 3.2], which in many
situations, facilitates the application of Thurston’s topological characterization of
rational maps.

Theorem 10.34 ([85, Theorem 1.3]) Let P1 and P2 be two (marked) anti-
polynomials of equal degree d ≥ 2, where P1 is critically fixed and P2 is
postcritically finite, hyperbolic. Then there is an anti-rational map R that is the
conformal mating of P1 and P2 if and only if there is no Moore obstruction.

In the opposite direction, the question of unmating critically fixed anti-rational
maps was also settled in [85, Theorem 1.2], and examples of shared matings were
demonstrated (cf. [128]).

Remark 10.35

(1) Combined with [85, Lemma 4.22], Theorem 10.34 yields an effective procedure
to decide conformal mateability of a critically fixed anti-polynomial P1 and a
postcritically finite, hyperbolic anti-polynomial P2. This is particularly useful
in applying Theorem 10.45 below to concrete examples.

(2) It is worth mentioning that the above mating (respectively, unmating) results
for critically fixed anti-polynomials (respectively, anti-rational maps) serve as a
precise philosophical counterpart of the double limit theorem for (geometrically
finite) Kleinian reflection groups in the complex dynamics world (see the
discussion before [85, Theorem 1.3] and [85, §4.3]).
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To conclude, we list a few relevant works that we did not touch upon in this
survey: [19, 25, 27, 37, 94, 135]. A good part of the mating theory discussed above
carries over to the setting of Thurston maps (i.e., postcritically finite, orientation-
preserving branched coverings of S2), for which we encourage the reader to consult
[7, 13]. Several beautiful visual illustrations of polynomial matings can be found in
[24]. For a list of open questions on polynomial matings, we refer the reader to [20].

10.8 Combining Rational Maps and Kleinian Groups

In this section, we will expound recently developed frameworks for combining
polynomials (respectively, anti-polynomials) with Kleinian (respectively, reflection)
groups.

10.8.1 Mating Anti-polynomials with Reflection Groups

The story of mating anti-polynomials with Kleinian reflection groups began with
the study of a new class of anti-holomorphic dynamical systems given by Schwarz
reflection maps associated with quadrature domains. We will recall the definitions
of these objects, and sketch the simplest examples of the mating phenomenon in
Sect. 10.8.1.1. To put these examples in a general framework, we will introduce
in Sect. 10.8.1.2 a class of Kleinian reflection groups (called necklace reflection
groups), that are central to the mating construction. Further, we will associate a map
(called the Nielsen map) to each necklace reflection group that is orbit equivalent
to the group. In Sect. 10.8.1.3, we formalize the notion of conformal mating of a
necklace group and an anti-polynomial. Section 10.8.1.4 summarizes some of the
main results of [75, 78, 79], where various explicit examples of Schwarz reflection
maps were shown to be conformal matings of necklace groups and anti-polynomials.
Finally in Sect. 10.8.1.5, we state a general combination theorem for necklace
groups and anti-polynomials proved in [91].

10.8.1.1 Schwarz Reflection Maps and Motivating Examples

By definition, a domain  � ̂C satisfying ∞ �∈ ∂ and  = int  is a quadrature
domain if there exists a continuous function σ :  → ̂C such that σ is anti-
meromorphic in  and σ(z) = z on the boundary ∂. Such a function σ is unique
(if it exists), and is called the Schwarz reflection map associated with . (See [3],
[77] and the references therein.)

It is well known that except for a finite number of singular points (cusps
and double points), the boundary of a quadrature domain consists of finitely
many disjoint real analytic curves [132]. Every non-singular boundary point has a
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neighborhood where the local reflection in ∂ is well-defined. The (global) Schwarz
reflection σ is an anti-holomorphic continuation of all such local reflections.

Round disks on the Riemann sphere are the simplest examples of quadrature
domains. Their Schwarz reflections are just the usual circle reflections. Further
examples can be constructed using univalent polynomials or rational functions. In
fact, simply connected quadrature domains admit a simple characterization.

Proposition 10.36 ([3, Theorem 1]) A simply connected domain � ̂C with∞ /∈
∂ and int =  is a quadrature domain if and only if the Riemann uniformization
f : D →  extends to a rational map on ̂C. The Schwarz reflection map σ of  is
given by f ◦ (1/z) ◦ (f |D)−1.

In this case, if the degree of the rational map f is d , then σ : σ−1() → 

is a (branched) covering of degree (d − 1), and σ : σ−1(int c) → int c is a
(branched) covering of degree d .

D

C D C.

f

f

In [77], questions on equilibrium states of certain 2-dimensional Coulomb gas
models were answered using iteration of Schwarz reflection maps associated with
quadrature domains. It transpired from their work that these maps give rise to
dynamical systems that are interesting in their own right. The general situation is as
follows. Given a disjoint collection of quadrature domains, we call the complement
of their union a droplet. Removing the double points and cusps from the boundary of
a droplet yields the desingularized droplet or the fundamental tile. One can then look
at a partially defined anti-holomorphic dynamical system σ that acts on (the closure
of) each quadrature domain as its Schwarz reflection map. Under this dynamical
system, the Riemann spherêC admits a dynamically invariant partition. The first one
is an open set called the escaping/tiling set, it is the set of all points that eventually
escape to the fundamental tile (on the interior of which σ is not defined). The second
invariant set is the non-escaping set, the complement of the tiling set or equivalently,
the set of all points on which σ can be iterated forever. When the tiling set contains
no critical points of σ , it is often the case that the dynamics of σ on its non-escaping
set resembles that of an anti-polynomial on its filled Julia set, while the σ−action
on the tiling set exhibits features of reflection groups.

This is precisely the case for the Schwarz reflection map of the exterior of
a deltoid curve: this map is conformally conjugate to the anti-polynomial z2 on
its non-escaping set, and conformally conjugate to a suitable piecewise circular
reflection map associated with the ideal triangle reflection group on its tiling set.
In this sense, this map is a conformal mating of z2 and the ideal triangle reflection
group [78, §5] (see Theorem 10.39 and Fig. 10.2).
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Fig. 10.2 Left: The tessellation of D for the ideal triangle reflection group. Right: The dynamical
plane of the Schwarz reflection map associated with the quadrature domain 0 = f0(D) (the
exterior of a deltoid curve), where f0(z) = 1/z + z2/2. The dynamics on the exterior of the
bright green fractal curve is conformally conjugate to z2|D, while the dynamics on the interior is
conformally equivalent to the Nielsen map of �3

Fig. 10.3 Under the bijection χ of Theorem 10.41, the postcritically finite quadratic anti-
polynomial z2 − 1 corresponds to Fa with a = 0. Left: The filled Julia set of z2 − 1. Right:
The part of the non-escaping set of F0 inside the cardioid (in dark blue) with the critical point 0
marked. Both maps have a critical cycle of period 2

The above example was extended in [79] by studying the Schwarz reflection
maps associated with a fixed cardioid and a family of circumscribing circles.
Such Schwarz reflection maps were shown to be conformal matings of generic
quadratic anti-holomorphic polynomials with the ideal triangle reflection group (see
Theorem 10.41 for the precise statement and Fig. 10.3 for a specific example).
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While the above examples produce matings of a rigid group with quadratic anti-
polynomials, conformal matings of a large class of Kleinian reflection groups (called
necklace groups) with the anti-polynomial zd were constructed in [75], and these
matings were realized as Schwarz reflection maps arising from a natural space of
‘univalent rational maps’.

10.8.1.2 Necklace Reflection Groups

A circle packing is a connected collection of oriented circles in C with disjoint
interiors (where the interior is determined by the orientation). Up to a Möbius map,
we can always assume that no circle of the circle packing contains∞ in its interior;
i.e., the interior int C of each circle C in the circle packing can be assumed to be
the bounded complementary component ofC. Combinatorially, a circle packing can
be described by its contact graph, where we associate a vertex to each circle, and
connect two vertices by an edge if and only if the two associated circles touch. By
the Koebe-Andreev-Thurston circle packing theorem [142, Corollary 13.6.2], every
connected, simple, planar graph is the contact graph of some circle packing.

Definition 10.26 A necklace reflection group is a group generated by reflections
in the circles of a finite circle packing whose contact graph is 2-connected and
outerplanar; i.e., the contact graph remains connected if any vertex is deleted, and
has a face containing all the vertices on its boundary (Fig. 10.4).

Note that since a necklace reflection group is a discrete subgroup of the group
of all Möbius and anti-Möbius automorphisms of ̂C, definitions of limit set and
domain of discontinuity can be easily extended to necklace reflection groups. By
[85, Proposition 3.4], the limit set of a necklace reflection group is connected.
Moreover, for a necklace reflection group � generated by reflections in the circles
C1, · · · , Cd+1, the set

F� := ̂C \
⎛

⎝

d+1
⋃

i=1

int Ci
⋃

j �=k
(Cj ∩ Ck)

⎞

⎠

is a fundamental domain for the �−action on (�) [75, Proposition 7] (Fig. 10.5).
The domain of discontinuity of a necklace group has a simply connected,

invariant component. Thus, such groups play the role of Bers slice closure Kleinian
groups in the world of reflection groups.

To a necklace reflection group �, one can associate a piecewise anti-Möbius
reflection map ρ� that plays an important role in the mating construction.
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Fig. 10.4 Left: A 2-connected graph that is not outerplanar. Right: A 2-connected, outerplanar
graph. A circle packing realizing this graph and the limit set of the associated necklace reflection
group are shown in Fig. 10.5

Fig. 10.5 Left: The dynamical plane of the Schwarz reflection map associated with some f ∈
∂�∗4 . Right: The limit set of the corresponding necklace reflection group �f

Definition 10.27 ([75, Definition 14], [91, Definition 6.6]) Let � be a necklace
reflection group generated by reflections {ri}d+1

i=1 in circles {Ci}d+1
i=1 . We define the

associated Nielsen map ρ� by:

ρ� :
d+1
⋃

i=1

int Ci → ̂C, z 	−→ ri (z) if z ∈ int Ci.

The next proposition underscores the intimate dynamical connection between a
necklace group � and its Nielsen map ρ� .

Proposition 10.37 ([75, Proposition 16]) Let� be a necklace reflection group. The
map ρ� is orbit equivalent to � on̂C; i.e., for any two points z,w ∈ ̂C, there exists
g ∈ � with g(z) = w if and only if there exist non-negative integers n1, n2 such that
ρ
◦n1
� (z) = ρ◦n2

� (w).

The simplest examples of necklace reflection groups are regular ideal polygon
reflection groups.

Definition 10.28 Consider the Euclidean circles C1, · · · ,Cd+1 where Cj inter-

sects S1 at right angles at the roots of unity exp ( 2πi·(j−1)
d+1 ), exp ( 2πi·j

d+1 ). (By [146,
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Part II, Chapter 5, Theorem 1.2], the group generated by reflections in these circles
is discrete.) We denote this group by �d+1.

Note that the Nielsen map ρ�d+1
of the regular ideal polygon reflection group

�d+1 restricts to an expansive degree d orientation-reversing covering of S
1. By

[26], there exists a homeomorphismEd of the circle that conjugates ρ�d+1 to zd . The
conjugacy Ed serves as a connecting link between reflection groups and quadratic
anti-polynomials.

10.8.1.3 Conformal Mating of Anti-polynomials and Necklace Groups

The precise meaning of conformal matings of the Nielsen map of a necklace
group and an anti-polynomial is given below. The definition is an adaptation of
the classical definition of conformal matings of two polynomials.

Let � be a necklace group generated by reflections in circles C1, · · · , Cd+1. The
unbounded component of the domain of discontinuity (�) is �−invariant [75,
Proposition 15], and we denote it by ∞(�). We also set K(�) := C \ ∞(�).
According to [75, Proposition 22], the restriction of ρ� to ∞(�) is conformally
conjugate to the ρ�d+1−action on ̂C \ D, and (the inverse of) this conformal
conjugacy continuously extends to yield a semiconjugacy φ� : S1 → �(�) =
∂K(�) between ρ�d+1|S1 and ρ� |�(�) such that φ�(1) is the point of tangential
intersection of C1 and Cd+1. Recall also that Ed : S

1 → S
1 is a topological

conjugacy between ρ�d+1 |S1 and z 	→ zd |
S

1 .
Let P be a monic, centered, anti-polynomial of degree d such that J(P ) is

connected and locally connected. Denote by φP : D
∗ → B∞(P ) the Böttcher

coordinate for P such that φ′P (∞) = 1. We note that since ∂K(P ) = J(P ) is
locally connected by assumption, it follows that φP extends to a semiconjugacy
between z 	→ zd |

S
1 and P |J(P ).

The equivalence relation below specifies a gluing of K(�) with K(P ) along
their boundaries. The presence of the topological conjugacy Ed in the definition
of the equivalence relation ensures that the maps ρ� and P fit together to produce
a continuous map on the resulting topological 2-sphere (when there is no Moore
obstruction).

Definition 10.29 We define the equivalence relation∼ on K(�) �K(P ) generated
by φ�(t) ∼ φP (Ed(t)) for all t ∈ S

1.

The following definition essentially says that an anti-holomorphic map F

(defined on a subset of the Riemann sphere) is a conformal mating of � and P if
there are continuous semi-conjugacies from K(�),K(P ) into the dynamical plane
of F (conformal on the interiors) such that the images fill up the whole sphere and
intersect only along their boundaries as prescribed by the equivalence relation ∼
(compare Definition 10.25).



368 M. Mj and S. Mukherjee

Definition 10.30 ([91, Definition 10.16]) Let � be a necklace group as above, and
let P be a monic, centered anti-polynomial such that J(P ) is connected and locally
connected. Further, let  � ̂C be an open set, and F : → ̂C be a continuous map
that is anti-meromorphic on . We say that F is a conformal mating of � with P if
there exist continuous maps

ψP : K(P )→ ̂C and ψ� : K(�)→ ̂C,

conformal on int K(P ), int K(�), respectively, such that

1. ψP (K(P ))
⋃

ψ�(K(�)) = ̂C,
2.  = ̂C \ ψ�(F�),
3. ψP ◦ P = F ◦ ψP on K(P ),
4. ψ� ◦ ρ� = F ◦ ψ� on K(�) \ int F� , and
5. ψ�(z) = ψP (w) if and only if z ∼ w where∼ is as in Definition 10.29.

Remark 10.38 For the purposes of mating necklace groups with anti-polynomials,
it is important to work with labeled circle packings, or equivalently, to regard
the space of necklace groups as a space of representations of the ideal polygon
reflection group �d+1. While we have suppressed this abstraction for ease of
exposition, we refer the reader to [75, §2.2] or [91, §10.1], where necklace groups
are organized in Bers slices of �d+1. Although this point of view may seem like an
artificial complication at a first glance, the language of representations turns out
to be an unavoidable technicality in the mating theory. Roughly speaking, different
representations give rise to different ways of gluing the limit set of a necklace group
with the Julia set of an anti-polynomial, and the choice of gluing determines whether
or not a conformal mating exists (compare [91, Remark 10.21]).

10.8.1.4 Examples of the Mating Phenomenon

By studying the dynamics and parameter spaces of specific families of Schwarz
reflection maps, one can often recognize such maps as matings of anti-polynomials
and necklace reflection groups. This strategy was successfully implemented in [75,
78, 79]. We collect some results from these papers in this subsection.

Example 10.1 (The Deltoid Reflection) We will start with the simplest instance of
the mating phenomenon; namely, the conformal mating of the anti-polynomial z2

and the ideal triangle reflection group �3.

Theorem 10.39 ([78, Theorem 1.1]) The map f0(z) = 1/z + z2/2 is injective
on D, and hence 0 := f0(D) is a simply connected quadrature domain. The
associated Schwarz reflection map σ0 is the unique conformal mating of z2 and �3.

Remark 10.40 A welding homeomorphism is a homeomorphism of the circle that
arises as the composition of a conformal map from the unit disk onto the interior
region of a Jordan curve with a conformal map from the exterior of this Jordan curve
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onto the exterior of the unit disk. A complex-analytic corollary of Theorem 10.39
is that the circle homeomorphism E2 is a welding homeomorphism. That the
same is true for each Ed (d ≥ 2) follows from a straightforward higher degree
generalization of Theorem 10.39 worked out in [80, Appendix B] (also compare
Theorem 10.44 below). We refer the reader to [91, Theorem 5.1] for a general
conformal welding result for circle homeomorphisms conjugating suitable covering
maps of the circle.

Example 10.2 (The Circle and Cardioid Family) To describe Schwarz reflection
maps that are conformal matings of other quadratic anti-polynomials with the ideal
triangle reflection group, we need to recall the Circle and Cardioid family which
was introduced in [78, §6]. We consider the fixed cardioid

♥ :=
{

w = z/2− z2/4 : |z| < 1
}

,

and for each complex number a ∈ C \ (−∞,−1/12), let B(a, ra) be the smallest
open disk containing ♥ centered at a (in other words, {w : |w − a| = ra} is a
circumcircle of the cardioid; see [79, Figure 2]). Let a := ♥ ∪ B(a, ra)

c (where
B(a, ra) is the closed disk {w : |w − a| ≤ ra}), and Ta := ca . We now define a
piecewise Schwarz reflection dynamical system Fa : a → ̂C as,

w 	→
{

σ(w) if w ∈ ♥,
σa(w) if w ∈ B(a, ra)c,

where σ is the Schwarz reflection of♥, and σa is reflection with respect to the circle
∂B(a, ra). The family

S := {

Fa : a → ̂C : a ∈ C \ (−∞,−1/12)
}

is referred to as the C&C family.

For any a ∈ C \ (−∞,−1/12), ∂Ta has two singular points; namely, the double
point αa where ∂B(a, ra) touches ∂♥, and the cusp point 1

4 . Both of them are
fixed points of Fa . The fundamental tile of Fa is defined as T 0

a := Ta \ {αa, 1
4 }.

A parameter a ∈ C \ (−∞,−1/12) (equivalently, the corresponding map Fa ∈ S)
is said to be postcritically finite if the unique (simple) critical point 0 of Fa has
a finite forward orbit that does not meet T 0

a . The following mating description for
postcritically finite maps in S was given in [79].

Theorem 10.41 ([78, §8], [79, Theorems 1.1, 1.2]) There exists a bijection χ
between postcritically finite maps in S and (the Möbius conjugacy classes of)
postcritically finite quadratic anti-polynomials z2 + c (excluding z2) such that the
postcritically finite mapFa ∈ S is a conformal mating of the ideal triangle reflection
group �3 and the quadratic anti-polynomial z2 + χ(a).
Remark 10.42 For conformal matings of �3 with more general quadratic anti-
polynomials, see [79, Theorem 1.1]. Further, a combinatorial model of the con-
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nectedness locus of the family S is given in [79, Theorem 1.4] in terms of the
Tricorn, which is the connectedness locus of quadratic anti-polynomials (for a quick
introduction to the Tricorn, see [79, §2], and for its detailed topological properties,
see [62–64, 120]).

Example 10.3 (The Space�∗d ) The family of ‘univalent rational maps’

�∗d :=
{

g(z) = z+ a1

z
+ · · · + ad

zd
: ad = − 1

d
and g|

̂C\D is conformal

}

was introduced in [76] and studied extensively in [74, 75] in terms of the associated
Schwarz reflection maps.

Remark 10.43 The family �∗d is closely related to the classically studied space �
of suitably normalized schlicht functions on̂C \D, see [36, §4.7, §9.6].

Combining the pinching deformation theory for�∗d (developed in [74]) with tools
from holomorphic dynamics, it was proved in [75] that (Fig. 10.5):

Theorem 10.44 ([75, Theorem A]) There is a bijection f 	→ �f between �∗d and
the space of necklace reflection groups of rank d + 1 (up to a natural equivalence)
such that the Schwarz reflection map associated with f ∈ �∗d is a conformal mating
of the anti-polynomial zd with the corresponding necklace group �f .

10.8.1.5 The General Theorem

We conclude our discussion of combinations of necklace reflection groups and anti-
polynomials with a general existence theorem:

Theorem 10.45 ([91, Lemma 10.17, Theorem 10.20]) Let P be a monic, post-
critically finite, hyperbolic anti-polynomial of degree d , and let � be a necklace
group. Then, P and � are conformally mateable if and only if K(P ) �K(�)/ ∼ is
homeomorphic to S

2 (where ∼ is the equivalence relation from Definition 10.29).
Moreover, if F : → ̂C is a conformal mating of � and P , then each component

of  is a simply connected quadrature domain, and F is the piecewise defined
Schwarz reflection map associated with these quadrature domains.

The hard part of the above theorem is to show that if K(P ) � K(�)/ ∼ is
homeomorphic to S

2, then a conformal mating of P and � exists. In fact, the
condition that K(P ) � K(�)/ ∼ ∼= S

2 guarantees the existence of a topological
mating on a 2-sphere, but promoting the topological mating to an anti-holomorphic
map lies at the heart of the difficulty. This goal is achieved in two steps. One first
uses Thurston’s topological characterization theorem to construct a hyperbolic anti-
rational map R that is a conformal mating of P and another postcritically finite (in
fact, critically fixed), hyperbolic anti-polynomialP� such that the Julia dynamics of
P� is topologically conjugate to the limit set dynamics of the Nielsen map ρ� . The
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existence of such an anti-polynomial P� follows from [75] or [85], while conformal
mateability of P and P� follows from the general mateability criterion given in
Theorem 10.34 (in fact, the condition K(P )�K(�)/ ∼∼= S

2 is equivalent to saying
that the topological mating of P and P� is Moore-unobstructed, so Theorem 10.34
can be applied to produce R). Finally, to turn R into a conformal mating of P and
�, one needs to glue Nielsen maps of ideal polygon reflection groups in suitable
invariant Fatou components of R. The fact that all fixed points of R on its Julia
set are hyperbolic while those of a Nielsen map are parabolic prohibits the use
of purely quasiconformal tools to carry out this task. This problem is tackled by
employing surgery techniques involving David homeomorphisms: generalizations
of quasiconformal homeomorphisms.

Remark 10.46 Although Theorem 10.45 guarantees the existence of conformal
matings of suitable anti-polynomials and necklace reflection groups, in general,
it may be hard to find explicit Schwarz reflection maps realizing such conformal
matings. However, in certain low complexity situations, the second statement
of the theorem (that the conformal matings are piecewise Schwarz reflection
maps associated with simply connected quadrature domains) allows one to use
Proposition 10.36 and the desired dynamical properties to explicitly characterize
the conformal matings (see Fig. 10.6 for an illustration, and [91, §11] for various
worked out examples).

10.8.2 Mating Polynomials with Kleinian Groups

This subsection is a summary of [114], where a new setup for combination theorems
of complex polynomials and Kleinian surface groups was designed using the notion
of orbit equivalence.

10.8.2.1 The Fuchsian Case

A foundational problem that arises in trying to make sense of what it means to
combine a polynomial P with a Kleinian group � is that on one side of the picture
we have the semigroup 〈P 〉 generated by P , while on the other side we have a non-
commutative group � generated by more than one element. To formulate a precise
notion of mateability between Fuchsian groups and complex polynomials (with
Jordan curve Julia sets), one needs to address this inherent discord between these
two objects, and this leads to the notion of mateable circle maps: single mapsA that
capture essential dynamical and combinatorial features of Fuchsian groups acting
on S

1. Further, A should also be dynamically compatible with polynomial maps.
Before giving a precise definition of mateable maps, let us outline the underlying
motivation: the following features are required of a mateable map A : S1 → S

1.
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Fig. 10.6 Bottom left: The circles Ci generate a necklace reflection group �. Bottom right: The
dynamical plane of P (z) = z3 − 3i√

2
z; each critical point of which forms a 2-cycle. Top: The

conformal mating of P and the necklace group � is given by the piecewise Schwarz reflection map
associated with the disjoint union of three quadrature domains: the exterior of an ellipse, and two
round disks contained in the interior of the ellipse. Each of the two critical points of F forms a
2-cycle (See [91, §11.2] for proofs of these statements.)

1. A must be dynamically compatible with a Fuchsian group �. This leads to

a. orbit equivalence between A and �.
b. A has to be piecewise Fuchsian.

2. A must be dynamically compatible with complex polynomials. Hence we
demand the existence of a topological conjugacy between A and the polynomial
zd |

S
1 (where d ≥ 2 is the degree of A),

3. A must be combinatorially compatible with zd leading to a Markov condition,
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4. A must be conformally compatible with zd requiring absence of asymmetrically
hyperbolic periodic break-points of A (this is a weaker version of the C1-
condition).

To fulfill the above requirements, we make the following definition. We denote
the group of conformal automorphisms of the unit disk D by Aut(D).

Definition 10.31 ([114, Definitions 2.7, 2.16])

1. A map A : S1 → S
1 is called piecewise Möbius if there exist k ∈ N, closed arcs

Ij ⊂ S
1, and gj ∈ Aut(D), j ∈ {1, · · · , k}, such that

(a) S
1 =

k
⋃

j=1

Ij ,

(b) int Im ∩ int In = ∅ for m �= n, and
(c) A|Ij = gj .

A piecewise Möbius map is called piecewise Fuchsian if g1, · · · , gk generate
a Fuchsian group, which we denote by �A.

2. A map A : S1 → S
1 is called piecewise Fuchsian Markov if it is a piecewise

Fuchsian expansive covering map (of degree at least two) such that the pieces
(intervals of definition) of A form a Markov partition for A : S1 → S

1.
3. A piecewise Fuchsian Markov map A is said to be mateable if A is orbit

equivalent to the Fuchsian group �A generated by its pieces, and none of the
periodic break-points of A is asymmetrically hyperbolic.

We refer the reader to [114, §2] for the definition of the term ‘symmetrically hy-
perbolic’, and for a detailed discussion on the necessity of each of the requirements
in the definition of a mateable map. We also note that the expansivity condition
above ensures that a mateable map is topologically conjugate to the polynomial zd

(for some d ≥ 2).

Remark 10.47 In the anti-holomorphic setting, the role of mateable maps was
played by Nielsen maps of necklace reflection groups (see Sect. 10.8.1.2).

The simplest example of a mateable map is given by the classical Bowen–Series
map [16, 17]. While such a map can be defined for arbitrary Fuchsian groups
equipped with suitable fundamental domains, they are typically discontinuous.
However, it turns out that for Fuchsian groups uniformizing spheres with punctures
(possibly with one/two order two orbifold points), the Bowen–Series map is a
covering map of the circle satisfying the defining properties of a mateable map [114,
§2].

Higher Bowen–Series Maps More examples of mateable maps are given by
higher Bowen–Series maps of punctured sphere Fuchsian groups (see [114, §4] for
their definition and basic properties). As suggested by the name, there are close
connections between higher Bowen–Series maps and Bowen–Series maps. Indeed,
the higher Bowen–Series map of a Fuchsian group uniformizing S0,k (a sphere with
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Fig. 10.7 Left: R is a fundamental domain of a Fuchsian group � uniformizing S0,3 with
side pairing transformations g±1

1 , g±1
2 . The canonical extension of the Bowen–Series map of

� (associated with R) is defined on D \ int R in terms of g±1
1 , g±1

2 as shown in the figure.
Right: The second iterate of the Bowen–Series map of � is a higher Bowen–Series map of
the index two subgroup �′ = 〈g2

1, g1g2, g1g
−1
2 〉 ≤ �, which uniformizes S0,4. Its canonical

extension is defined on the region enclosed by S
1 and the red (hyperbolic) geodesics in terms

of h1 = g2
1 , h2 = g1g2, h3 = g1g

−1
2 as shown in the figure. It maps the boundary of the red

polygon onto the boundary of R. The degree of the Bowen–Series map of � (as a circle covering)
is 3, so the degree of the higher Bowen–Series map of �′ is 9

k punctures) can be represented as the second iterate of the Bowen–Series map of a
Fuchsian group uniformizing a sphere with roughly k/2 punctures and zero/one/two
order two orbifold points [114, Corollary 5.6] (see Fig. 10.7). Alternatively, a higher
Bowen–Series map of a Fuchsian group is obtained by ‘gluing together’ several
Bowen–Series maps of the same Fuchsian group with overlapping fundamental
domains [114, Proposition 4.5] (see Fig. 10.8).

Every piecewise Fuchsian Markov map A of the circle can be conformally
extended to a canonically defined subset of D (see [114, §2.2]). This extension is
termed the canonical extension of A. The following result, which is a conformal
combination theorem for punctured sphere Fuchsian groups and hyperbolic poly-
nomials with Jordan curve Julia sets, can be regarded as an analog of the Bers
simultaneous uniformization theorem in the current setting.

Theorem 10.48 ([114, Theorem 3.7, Theorem 4.8]) The canonical extensions of
Bowen–Series maps and higher Bowen–Series maps of Fuchsian groups uniformiz-
ing punctured spheres (possibly with one/two orbifold points of order two) can be
conformally mated with polynomials lying in principal hyperbolic components (of
appropriate degree).

Remark 10.49 As in the anti-holomorphic case, there is a key qualitative difference
between the dynamics of Bowen–Series (respectively, higher Bowen–Series) maps
on S

1 and the dynamics of polynomials (lying in principal hyperbolic components)
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Fig. 10.8 The quadrilaterals D and P with ideal vertices at 1, 2, 3, 4 and 1, 2−, 3−, 4 (respec-
tively) together form a fundamental domain of a Fuchsian group � uniformizing S0,4 with side
pairing transformations g±1

1 , g±1
2 , g±1

3 . The corresponding higher Bowen–Series map A of �
acts on the anti-clockwise arc from 1 to 4 as the Bowen–Series map of � associated with the
fundamental domain D ∪ P ; while on the clockwise arc from j to j + 1, A equals the Bowen–
Series map of � associated with the fundamental domain D ∪ gj (P ) (j = 1, 2, 3). The degree of
a Bowen–Series map of � (associated with any fundamental domain) is 5, while the degree of a
higher Bowen–Series map of � is 9

on their Julia set; namely, the former has parabolic fixed points on S
1 while all fixed

points of the latter on their Julia sets are repelling. Consequently, the topological
conjugacy between a Bowen–Series (respectively, higher Bowen–Series) map and
such a polynomial is not quasisymmetric. This forces one to abandon classical qua-
siconformal techniques (used in the proof of the Bers simultaneous uniformization
theorem), and apply David homeomorphisms to prove Theorem 10.48.

Moduli Space of Fuchsian Matings In the torsion-free case, the only topological
surfaces that Theorem 10.48 succeeds to combine with complex polynomials are
punctured spheres (see [114, 6.35] for the definition of moduli space of matings
between a topological surface and hyperbolic complex polynomials with Jordan
curve Julia sets). This naturally raises the following questions.

1. Do mateable maps exist for higher genus surfaces (possibly with punctures)?
More precisely, does there exist a mateable mapAwith D/�A ∼= Sg,k , for g ≥ 1?

2. Are Bowen–Series and higher Bowen–Series maps the only mateable maps
associated with punctured spheres?

In this generality, the above questions remain open. However, [114, Theo-
rems 6.18, 6.33] give a complete description of mateable maps satisfying some
natural 2-point conditions over and above orbit equivalence. It turns out that under
these additional hypotheses, punctured spheres are the only topological surfaces
that can be combined with complex polynomials (see [114, Theorem 6.36] for a
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complete description of the interiors of such constrained moduli space of matings).
A major part of the proofs of these theorems is to determine the topology of
the surface D/�A from the dynamical properties of a mateable map A, and this
is accomplished by analyzing certain patterns and laminations associated with
mateable maps.

10.8.2.2 The Case of Bers Boundary Groups

We proceed to discuss the structure of the boundaries of the moduli spaces of
Fuchsian matings arising from Theorem 10.48.

For definiteness, let us fix a base Fuchsian group �0 uniformizing S0,k (k ≥ 3).
For each � lying on the boundary of the Bers slice B(�0), there exists a continuous
map φ� : S

1 → �� , called the Cannon–Thurston map after [22], that semi-
conjugates the action of �0 to that of � [29, 110–112]. In fact, the data of the ending
lamination can be recovered from the Cannon–Thurston map. More precisely, the
group � can be obtained by ‘pinching a lamination’ on the surface D/�0 (while
keeping the hyperbolic structure on the surface (̂C \ D)/�0 unchanged), and the
endpoints of the corresponding geodesic lamination on D generate a �0−invariant
equivalence relation on S

1 which agrees with the one defined by the fibers of the
Cannon–Thurston map φ� .

Assume further that A�0 is a Bowen–Series (respectively, higher Bowen–Series)
map of �0. To extend the notion of mateability to a group � ∈ ∂B(�0), one needs
the limit set of � to carry a continuous, piecewise complex-analytic self-map A�
(that is orbit equivalent to �) defined by the following commutative diagram:

S
1

S
10

See [114, §7.1] for details and an alternative description of A� as a uniform limit of
Bowen–Series (respectively, higher Bowen–Series) maps. The map A� , if it exists,
is called the Bowen–Series (respectively, higher Bowen–Series) map of � and can
be thought of as a mateable map associated with a Bers boundary group.

It turns out that the existence of such a map A� imposes severe restrictions on
the laminations that can be pinched. The next theorem says that only finitely many
possibilities exist. We call such laminations admissible (see Fig. 10.9 for an example
of an admissible lamination in the Bowen–Series case).

For � ∈ ∂B(�0), we denote the unique �-invariant component of the domain
of discontinuity (�) by ∞(�), and set K(�) := ̂C \ ∞(�). If � admits a
Bowen–Series (respectively, higher Bowen–Series) map A� : �� → �� , then this
map can be extended as a continuous, piecewise Möbius map to a canonical closed
set K(�) \ int R� , where R� is a ‘pinched’ fundamental domain for the �−action
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Fig. 10.9 Left: R�0 is a fundamental domain of a Fuchsian group �0 uniformizing S0,7 with side
pairing transformations g±1

1 , · · · , g±1
6 . The geodesic lamination L∗ on D/�0 consisting of two

simple, closed curves corresponding to the elements g5, g2g
−1
5 ∈ �0 is admissible for the Bowen–

Series map A�0 . The blue and green geodesics are the connected components of the �0-lift of L∗
that intersect R�0 . Right: A cartoon of the limit set of a Bers boundary group �, which is obtained
by pinching L∗. The �-action on (�) \ ∞(�) admits a pinched fundamental domain R� , and
the canonical extension ̂A� of the Bowen–Series map of � is defined on K(�) \ int R� . Two of
the components of (�) intersecting R� are invariant under ̂A� , while the other two components
U± form a 2-cycle. The first return map of ̂A� on U± is conformally conjugate to higher Bowen–
Series maps of punctured sphere Fuchsian groups. The Möbius maps defining ̂A� are also marked,
where ĝi is the image of gi under the representation �0 → �

on (�) \ ∞(�) determined by R�0 (see [114, §7.3]). This canonical extension
is denoted by ̂A�. The following theorem also demonstrates conformal mateability
of groups � ∈ ∂B(�0) admitting Bowen–Series/ higher Bowen–Series maps with
polynomials lying in principal hyperbolic components (of suitable degree).

Theorem 10.50 ([114, Lemma 7.3, Lemma 7.5, Theorem 7.19]) Let �0 be a
Fuchsian group uniformizing S0,k. Then, there are only finitely many quasiconfor-
mal conjugacy classes of groups � ∈ ∂B(�0) for which the Cannon–Thurston map
of � semi-conjugates the Bowen–Series (respectively, higher Bowen–Series) map of
�0 to a self-map of �(�) that is orbit equivalent to �. These Kleinian groups arise
out of pinching finitely many disjoint, simple, closed curves (on the surface D/�0)
out of an explicit finite list. In particular, all such groups � are geometrically finite.

Let � ∈ ∂B(�0) be a group that admits a Bowen–Series (respectively, higher
Bowen–Series) map A� . Then the canonical extension ̂A� : K(�) \ int R� →
K(�) can be conformally mated with polynomials lying in the principal hyperbolic
component of degree 2k − 3 (respectively, (k − 1)2).

We refer the reader to [114, Remark 7.20] for a precise definition of conformal
mateability of canonical extensions of the Bowen–Series/ higher Bowen–Series
maps with polynomials lying in principal hyperbolic components (the definition is
analogous to Definition 10.30).

The finiteness part of Theorem 10.50 underscores the incompatibility between
group invariant geodesic laminations and polynomial laminations (see [72] for
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details on polynomial laminations) by establishing that the equivalence relation on
S

1 induced by a group invariant geodesic lamination on D is seldom invariant under
A�0 (since A�0|S1 is topologically conjugate to zd |

S
1 for some d ≥ 2, invariance

under A�0 should be thought of as zd−invariance).
The proof of existence of a conformal mating between ̂A� : K(�) \ int R� →

K(�) and polynomials lying in principal hyperbolic components has two main
steps. The first one is to topologically realize the action of A�|�� by the dynamics
of a postcritically finite polynomial P� on its Julia set, which is the content of [114,
Theorem 7.16]. Once this is achieved, one needs to replace the dynamics of P� on
periodic Fatou components by the action of Bowen–Series/ higher Bowen–Series
maps of suitable punctured sphere Fuchsian groups. This involves a rather delicate
surgery technique using David homeomorphisms.
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Chapter 11
On the Pullback Relation on Curves
Induced by a Thurston Map

Kevin M. Pilgrim

Abstract Via taking connected components of preimages, a Thurston map f :
(S2, Pf ) → (S2, Pf ) induces a pullback relation on the set of isotopy classes of
curves in the complement of its postcritical set Pf . We survey known results about
the dynamics of this relation, and pose some questions.
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11.1 Introduction

An orientation-preserving branched covering f : S2 → S2 of degree at least two is
a Thurston map if its postcritical set Pf = ∪n>0f

n(Cf ) is finite, where Cf is the
finite set of branch (critical) points at which f fails to be locally injective.

A fundamental theorem in complex dynamics is Thurston’s Characterization
and Rigidity Theorem [14]. It asserts that apart from a well-understood set of
counterexamples, (1) a Thurston map f is conjugate-up-to-isotopy-relative-to-Pf
(or “equivalent”) to a rational mapR if and only if it has no “obstructions”, and (2) if
f has no obstructions, R is unique, up to holomorphic conjugacy. An obstruction is
a multicurve (a finite collection of pairwise disjoint simple closed curves in S2−Pf ,
up to isotopy) with certain invariance properties.

Suppose P ⊂ S2 is finite. The set of isotopy classes relative to P of Thurston
maps f for which Pf ⊂ P admits the structure of a countable semigroup under
composition; we denote this by BrMod(S2, P ). Pre- and post-composition with
homeomorphisms fixing P gives this semigroup the additional structure of a biset
over the mapping class group Mod(S2, P ). In this way, BrMod(S2, P ) may be
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fruitfully thought of as a generalization of the mapping class group. This perspective
is useful in developing intuition for the range of potential behavior of and structure
theory for Thurston maps.

The mapping class group of a surface acts naturally on the countably infinite set
of isotopy classes of curves on the surface. Even better, it acts on the associated
curve complex; see [18]. It is natural to try to do something similar for Thurston
maps. Since the set Pf contains the branch values of f , the restriction f : S2 −
f−1(Pf ) → S2 − Pf is a covering map. It follows that a component γ̃ of the
inverse image f−1(γ ) of a simple closed curve γ in S2 − Pf is a simple closed
curve in S2 − f−1(Pf ). Since Pf is forward-invariant, we have an inclusion S2 −
f−1(Pf ) ↪→ S2 − Pf , so the curve γ̃ is again a simple closed curve in S2 − Pf .
Abusing terminology, we’ll call γ̃ a preimage of γ , or sometimes say γ lifts, or pulls

back, to γ̃ . By lifting isotopies, we obtain a pullback relation f← on the set C of such
simple closed curves up to isotopy. The curve γ might have several preimages, so
we obtain an induced relation instead of a function. A preimage of an inessential
curve is again inessential. Similarly, a preimage of a peripheral curve—one which
is essential and isotopic into any small neighborhood of a single point in Pf—is
either again peripheral, or is inessential. We call inessential and peripheral curves
trivial, and note that the set of trivial curves is invariant under the pullback relation.

When #Pf = 4, the pullback relation induces—almost—a function on the set
of nontrivial curves. On the one hand, distinct nontrivial curves in this case must
intersect. On the other hand, distinct components of f−1(γ ) are in general disjoint.
It follows that there can be at most one class of nontrivial preimage, and we almost
get a function in this case. Why “almost”? Typical examples have the property
that for some curve, each of its preimages are trivial. So while the mapping class
group acts naturally on e.g. the infinite diameter curve complex, it is less clear
how to construct a nice complex related to curves on which a Thurston map acts
via pullback. This relative lack of preserved structure makes answering even basic
questions challenging.

This survey presents some known results about the dynamical behavior of taking
iterated preimages of curves under a given Thurston map. It assumes the basic
vocabulary related to Thurston maps from [14], and the reader may find [21]
also useful for more detailed explanations and references to some terminology
encountered along the way.

Here are some highlights, to convince you that this is interesting. When f (z) =
z2+c is the so-called Douady Rabbit polynomial, where c is chosen so that 4(c) > 0
and the origin has period 3, under iteration every curve pulls back to either a trivial
curve, or to the prominent 3-cycle. But when f (z) = z2 + i, every curve pulls
back eventually to a trivial curve. See [29]. In these two cases, we see that there
is a finite global attractor for the pullback relation. That is, there is a finite set of
curves such that under iterated pullback, each curve either iterates into this set, or
to the trivial curve; see the next section for a precise definition. Among obstructed
Thurston maps, though, it is easy to manufacture examples with wandering curves
and infinitely many fixed curves. A basic conjecture is
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Conjecture 11.1.1 If f is rational and not a flexible Lattès example, then the
pullback relation on curves has a finite global attractor.

The flexible Lattès examples are ubiquitous counterexamples to general state-
ments in complex dynamics. They arise as follows. Suppose� < C is a lattice, and
X = C/� is the corresponding complex torus, regarded as both a Riemann surface
and an abelian group. Via the corresponding Weierstrass ℘-function, the quotient
X/(x ∼ −x) is the Riemann sphere ̂C. For an integer n ≥ 2, the endomorphism
x 	→ n · x of X descends to a degree n2 self-map f of ̂C with #Pf = 4. It is
easily seen that the pullback relation on nontrivial curves is the identity map. For
fixed n, the quasiconformal conjugacy class of f is independent of the choice of �,
hence the term “flexible”. More general Lattès examples arise as quotients of other
holomorphic endomorphisms of complex tori by more complicated finite groups; in
this case, the lattice � must be more special. For all Lattès examples f , we have
#Pf ≤ 4.

Here, informally, is the source of the tension in Conjecture 11.1.1. Equipping
̂C−Pf with its hyperbolic metric, we may represent each element of C by a unique
geodesic. Pulling back and lifting the metric to ̂C − f−1Pf , the lifted curve γ̃
may unwind and become up to deg(f ) times as long as γ . But when including
the curve γ̃ back into ̂C − Pf , the Schwarz-Pick lemma implies the length of γ̃
shrinks. It is unclear which force—lengthening or shortening—dominates in the
long run. And since there exist expanding non-rational examples with wandering
curves (see Sect. 4.4 below), the exact mechanism that would imply the conjecture
remains mysterious.

11.2 Conventions and Notation

Throughout, f denotes a Thurston map, P its postcritical set, and d its degree. To
avoid repeated mention of special cases, unless otherwise stated, f has hyperbolic
orbifold and #P ≥ 4. In particular, f is not a Lattès example. We denote by

• , the equivalence relation of isotopy-through-Thurston-maps-with-fixed-
postcritical-set P ;

• C, the countably infinite set of isotopy classes of unoriented, essential, simple,
nonperipheral curves in S2−P (we will often call such elements simply “curves”,
abusing terminology); on C we have the geometric intersection number ι(α, β)
which counts the minimum number of intersection points among representatives;

• o, the union of the #P+1 isotopy classes of unoriented, simple, closed, peripheral
and inessential curves in S2 − P , i.e. the trivial ones;

• C := C ∪ {o};
• f←, the pullback relation on C induced by γ f← δ ⊂ f−1(γ ), where [γ ] ∈ C and δ

is a component of f−1(γ );
• A and A, the set of curves contained in cycles of f← in C and C, respectively;
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Fig. 11.1 The fundamental
diagram

• W ⊂ C, the set of “wandering” curves γ0, namely, those for which there is
an infinite sequence γn, n ≥ 0, of distinct nontrivial curves satisfying γn

f←
γn+1, n ≥ 0;

• the relation f← has a finite global attractor if W is empty and A is finite;
• the moduli space MP = {P ↪→ ̂C}/Aut(̂C) the space of injections of P into the

Riemann sphere, up to post-composition with Möbius transformations;
• Teich(S2, P ), the Teichmüller space of the sphere marked at the set P ;
• σf : Teich(S2, P ) → Teich(S2, P ), the holomorphic self-map obtained by

pulling back complex structures; it is the lift to the universal cover of an algebraic
correspondence on moduli space X ◦ Y−1, where Y is a finite cover and X is
holomorphic. See Fig. 11.1.

• Mod(S2, P ) and PMod(S2, P ), the mapping class group and pure mapping class
group, respectively.

• The covering Y is induced by a finite-index subgroup Hf < PMod(S2, P )

characterized by the property that hf , f h̃ for some h̃ ∈ PMod(S2, P ); the
map h 	→ h̃ =: φf (h) is the virtual endomorphism of PMod(S2, P ) induced by
f .

• A nearly Euclidean Thurston map (NET map) is one for which #Pf = 4 and
each critical point has local degree two; see [11] and also [16] for a survey.

11.3 Non-dynamical Properties of
f←

A Thurston map f : (S2, P ) → (S2, P ) may factor as a composition of maps of
pairs

(S2, P )
f1→ (S2, C)

f2→ (S2, P )

where each fi is admissible in the sense that its set of branch values is contained
in the distinguished subset appearing in its codomain. This motivates studying
properties of so-called admissible branched covers f : (S2, A) → (S2, B) with
f (A) ⊂ B ⊃ f (Cf ) where domain and codomain are no longer identified; this
perspective was introduced by S. Koch. Instead of a pullback self-relation on curves
C, we have a pullback relation CB f← CA from classes of curves in S2 − B to
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classes in S2 − A. The virtual endomorphism becomes a virtual homomorphism
φf : PMod(S2, B)→ PMod(S2, A).

11.3.1 Known General Results

Thinking non-dynamically first, we have the following known results about the
pullback relation f←.

1. When #A = #B, each nonempty fiber of f← is dense in the Thurston boundary;
in particular, each nontrivial fiber is infinite [21]. Here, by the fiber over β, we
mean {α : α f← β}.

2. The relation f← can be trivial in the sense that the only pairs are of the form γ f← δ
where δ is trivial. Equivalently, σf is constant. See [21], correcting an argument
appearing originally in [8].

3. The relation f← satisfies a Lipschitz-type inequality related to intersection
numbers: ι(̃α,˜β) ≤ d · ι(α, β) whenever α f← α̃, β f← ˜β. To see this, we represent
the pair α, β by minimally intersecting curves, and note that the full preimage of
their intersection has at most the indicated cardinality.

The study of the interaction between intersection numbers and the geometry
of σf seems to be just beginning. Implicit use of such interactions appears in
the analysis of NET maps by W. Floyd, W. Parry, and this author; see [11, 17].
Parry develops this intersection theory further in [26]. Intersection theory has
been fruitfully applied to control the possible locations of obstructions in the
formulation of surgery operations; see [6, 13, 30].

4. The set of nonempty multicurves is in natural bijective correspondence with
boundary strata in the augmented Teichmüller space, which by a theorem of
Masur is known to be the completion of Teichmüller space in the Weil-Petersson
metric [24]. A result of Selinger [32] shows that σf : Teich(S2, B) →
Teich(S2, A) extends to this completion, sending the stratum corresponding
to a multicurve � to the stratum corresponding to the multicurve f−1(�). It
follows that analytical tools for studying σf can be used to study properties of

the combinatorial relation f← [21, 29]. There is thus a rich interplay between
the analytic and algebro-geometric properties of the correspondence on moduli
space, and the combinatorial properties of the pullback relation; see [31], for
example.

5. Associated to a nonempty multicurve � ⊂ S2 − B is the free abelian group
Tw(�) of products of powers of Dehn twists about the curves in �. It is easy to
see that φf (Tw(�)) < Tw(f−1�). Hence the pullback relation on curves can
be encoded using the associated induced virtual homomorphism. It follows that
group-theoretic tools can also be used to study properties of the pullback relation
on curves; see [29] and [20].
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Question 11.3.1 If the pullback relation f← is not trivial, must it be surjective?

It seems very likely that the answer is no, for the following reason. The
Composition Trick, introduced in the next subsection, should allow one to build
examples where the image of σf has positive dimension and codimension, so that
its the closure of its image misses many WP boundary strata.

11.3.2 Mechanisms for Triviality of
f←

There seem to be three or four mechanisms via which f← can be trivial.

1. Composition trick. The map f : (S2, A)→ (S2, B)may factor through (S2, C)

with #C = 3 (C. McMullen, [8]). Such maps have the property that σf and f←
are trivial.

2. NET maps. A. Saenz [23] found an example of a Thurston map f for which σf
is constant but for which f does not decompose as in the Composition Trick.
Here is his example, from a different point of view.

Let X = C/� be a complex torus, regarded again as a Riemann surface and
an abelian group. There are 8 distinct points of order 3; under the involution
x 	→ −x these 8 points descend to a set A of 4 points on ̂C whose cross-ratio
is, miraculously, constant as � varies. Now take X to be the square torus and
let f : ̂C → ̂C be the degree 9 flexible Lattès map induced by the tripling
map on X, and let B be the image of the set of four fixed-points of x 	→ −x
under projection to ̂C. Note that f (A) is a single element of B, corresponding to
the image in ̂C of the identity element. As � varies, the conformal shape of B
varies, but that of A does not. Thus σf is constant and so f← is trivial. One can
see this triviality directly by observing that the action of PSL2(Z) is transitive on
curves (since it acts transitively on extended rationals regarded as slopes), that
A is invariant under this action (since points of order 3 are invariant under the
induced group-theoretic automorphisms), and that the horizontal curve has all
preimages inessential or peripheral (as drawing a single easy picture shows).
W. Parry (personal communication) has classified which NET maps with σf
constant arise via the Composition Trick. He reports the empirical finding that
an exhaustive search of low-complexity examples reveals that Saenz’ example is
among a very small handful of five sporadic cases.

3. Other sporadic examples. Let f be the unique (up to pre- and post-composition
by independent automorphisms) degree four rational map with three double crit-
ical points (c1, c2, c3)mapping to necessarily distinct critical values (v1, v2, v3).
Choose w a point distinct from the vi ’s, let B = {v1, v2, v3, w} and A =
R−1(w) = {z1, z2, z3, z4}. Then the j -invariant (obtained from the cross-ratio
by applying a certain degree six rational function) of the zi’s is constant in w,
whence σf is constant and so f← is trivial. To see this, note that as w approaches
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some vi , three of the zi ’s equidistribute around and converge to ci , and the
remaining one converges to some other point, call it c′i . Normalizing so ci = 0
and c′i = ∞ and scaling via multiplication with a nonzero complex constant
shows that the conformal shape of the fiber R−1(w) converges to that of the cube
roots of unity together with the point at infinity. Thus the j -invariant of R−1(w)

is a bounded holomorphic function, hence constant.
4. Combinations of the above.

Question 11.3.2 Do there exist examples f with σf constant and deg(f ) prime?

Cui G. has thought about the general case, see [12]. It is natural to look for the
simplest such examples. By cutting along a maximal multicurve, one may restrict to
the case #A = #B = 4; let’s call these “minimal”. It is natural to look for examples
which do not factor as in the Composition Trick; let’s call these “primitive”.

Question 11.3.3 What are the minimal primitive branched covers f : (S2, A) →
(S2, B) for which f← is trivial?

11.3.3 Computation of
f←

Though the set of curves C is complicated, it is conveniently described by a variety
of coordinate systems. For example, Dehn-Thurston coordinates record intersection
numbers of curves with edges in a fixed triangulation with vertex set P [15]. Train
tracks and measured foliations give other methods. But expressing the pullback
relation in these coordinates can be very complicated. The effect on Dehn-Thurston
coordinates of pulling back from S2 − Pf to S2 − f−1(Pf ) is indeed easy to
compute, since one can just lift intersection numbers. But the formula for the
induced “puncture erasing map” is hard to write down in closed form and leads
to continued-fraction-like cases.

When #Pf = 4, though, the set of curves C can be encoded by “slopes” in the

extended rationals Q ∪ {1/0}, the pullback relation f← is a almost a function, and
things are a bit easier but are still quite complicated.

If f is an NET map, there is an algorithm that computes the image of a slope
under pullback. This can be done easily by hand, and has been implemented. NET
maps can be easily encoded by combinatorial input. W. Parry has written a computer
program that implements this algorithm. The website http://intranet.math.vt.edu/
netmaps/, maintained by W. Floyd, contains a database of tens of thousands of
examples. For NET maps, it appears that this ability to calculate the pullback map on
curves (and related invariants, such as the degree by which preimages map, and how
many preimages there are) leads to an effective algorithm for determining whether
a given example is, or is not, equivalent to a rational map; see [17].

http://intranet.math.vt.edu/netmaps/
http://intranet.math.vt.edu/netmaps/
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Fig. 11.2 The sphere is the union of the two squares at left along their boundaries as indicated to
form a square “pillowcase”. Each big square at right is identified with the square just to its left by
a translation, so that the pillowcases are identified. The figure shows a cell structure in domain and
codomain. The map f goes in the opposite direction to the indicated arrow and defines a cellular
degree 5 map from the pillowcase to itself. The four corners of the pillowcase form the postcritical
set. Figure by W. Floyd

When #Pf = 4 and f is the subdivision map of a subdivision rule of the square
pillowcase (like in Fig. 11.2), W. Parry has written a program for computing the
image of a slope under pullback (personal communication).

Question 11.3.4 Are there any interesting settings in which one can effectively
compute f← when #Pf ≥ 5?
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11.3.4 When Each Curve Has a Nontrivial Preimage

The example studied by Lodge [22] is, nondynamically speaking, the unique generic
cubic, in the following sense. We have f : (S2, A) → (S2, B) where A is the set
of four simple critical points and B = f (A) is the corresponding set of four critical
values. Each nontrivial curve has exactly one nontrivial curve in its preimage.

Question 11.3.5 Suppose f : (S2, A) → (S2, B) has the property that A consists
of 2d − 2 simple critical points, B = f (A), and f |A is injective, so that B consists
of the 2d − 2 critical values. Does each nontrivial curve in S2 −B have a nontrivial
preimage?

Up to pre- and post-composition with independent homeomorphisms there is
a unique such map [4]. If each curve γ has a nontrivial preimage, so does h(γ ),
where h ∈ Hf lifts under f . Since Hf is a finite-index subgroup of Mod(S2, Pf ),
determining the answer to this question is a finite computation.

In the case of four postcritical points, we have the following result from [17,
Thm. 4.1].

Theorem 11.3.6 If #P = 4, the pullback function on curves is either surjective, or
trivial.

The key insight: when #P = 4, looking at the correspondence on moduli space, the
space W is a Riemann surface whose set of ends consists of finitely many cusps, the
map X : W → MP is holomorphic, and MP is the triply-punctured sphere; thus
if X is nonconstant, then each cusp of MP is the image of a cusp of W .

11.4 Dynamical Properties

11.4.1 General Properties

Here, we discuss some examples and known results about the possible dynamical
behavior of f←.

1. Example: Every curve iterates to the trivial curve. This happens for z2 + i.
Here is one way to see this. Examining the possibilities for how the bounded
region enclosed by a curve meets the finite postcritical set {i, i − 1,−i}, one
sees that a curve must eventually become trivial unless it surrounds both −i and
i − 1. For this type of curve α, there is at most one nontrivial curve β with
α

f← β and β a curve of the same type. Moreover, deg(α f← β) = 1. Equipping
the complement of the postcritical set with the hyperbolic metric, the Schwarz-
Pick Lemma shows that the length of a geodesic representative of β is strictly
shorter than that of α. Iterating this process, it follows that such a curve cannot
be periodic or wandering under f←: curves in its orbit cannot get too complicated,
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since otherwise they would have to get long, so they must eventually become a
different type of curve and thus become trivial upon further iteration.

The “airplane” quadratic polynomial f (z) = z2 + c, with the origin periodic
of period 3 and Im(c) = 0, is another such example [20].

2. Another very natural question is

Question 11.4.1 Does there exist an example of a Thurston map f for which the
pullback relation induced by f is nontrivial but that induced by some iterate f n

is trivial?

3. Theorem If f is rational and non-Lattès, then there are only finitely many
multicurves for which f−1� = �; see [29, Thm. 1.5]. The proof uses the
decomposition theory.

4. Conjecture 11.1.1 If f is rational and not a flexible Lattès example then the
pullback relation on curves has a finite global attractor.

There is partial progress on this conjecture for special families of Thurston
maps.

(a) Kelsey and Lodge [20] verify this for all quadratic non-Lattès maps with four
postcritical points.

(b) Hlushchanka [19] verifies this for rational maps each of whose critical points
is fixed. Such maps up to holomorphic conjugacy are classified by connected
planar multigraphs, up to planar isomorphism, and the global attractor can
be explicitly identified in terms of the multigraph.

(c) If the virtual endomorphism φf on the mapping class group is contracting,

then f← has a finite global attractor [29, Thm. 1.4]. Here, contracting means
that for some generating set of PMod(S2, P ), there exists 0 < ρ < 1, n ∈ N,
and C ≥ 1 such that ||φnf (g)|| < ρ||g|| whenever ||g|| > C. Nekrashevych
[25, Thm. 7.2] establishes this contraction property in the case of hyperbolic
polynomials.

(d) A topological polynomial is a Thurston map f which is maximally ramified
at some fixed-point, which we call infinity. It is convenient to redefine
the postcritical set Pf so as to omit infinity. Belk, Lanier, Margalit, and
Winarski [3] associate to a topological polynomialf a contractible simplicial
complex T whose vertices are planar trees with endpoints in Pf , up to
planar isomorphism, and a simplicial map λf : T → T induced by lifting.
For general complex polynomials, the associated Hubbard trees are fixed
vertices, and the uniquness of the Hubbard tree for iterates of f leads to
a contraction property of λf that implies the existence of a finite global
attractor for the pullback relation on curves.

Question 11.4.2 For a general Thurston map, is there a natural simplicial
action on a contractible simplicial complex?

(e) If the correspondence on moduli space (in the direction of σf ) has a
nonempty invariant compact subset, then φf is contracting, so there is a finite
global attractor. If moduli space admits an incomplete metric which is (i)
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uniformly contracted by σf , and (ii) whose completion is homeomorphic to
that of the WP metric, then the trivial curve is a finite global attractor [21,
Thm. 7.2]. The latter occurs for f (z) = z2+i; the correspondence on moduli
space is the inverse of a Lattès map with three postcritical points and Julia
set the whole sphere, which expands the Euclidean orbifold metric.

(f) Intersection theory provides some insight. Elementary arguments show that
if α, β are any two curves in ̂C− P then

mod(α)mod(β) � 1/ι(α, β)2; (11.1)

here mod(·) refers to the analytic modulus of the family of paths in the given
homotopy class. Now consider the linear map λf : R[C] → R[C] defined on
basis vectors γ by

γ 	→
∑

δ⊂f−1(γ )

1

deg(γ f← δ)
[δ]

where [δ] denotes the class of δ in C if it is nontrivial, and zero other-
wise. Obstructions correspond to certain invariant subspaces for which the
restriction has an eigenvalue outside the open unit disk. If f is rational,
γ ∈ C, A is an embedded annulus homotopic to γ with mod(A) ≥ m, and
f−1(γ )∩ C = {γ1, . . . , γk}, then the annulusA lifts to a collection of annuli
with corresponding vector of moduli bounded below by λf (m · γ ).

If f is rational, then for any curve γ , we have ||λnf (γ )||∞ → 0 as n →
∞. For otherwise, one has either an obstruction arising from cycles of f←
(of possibly a generalized sort, in which the curves might intersect), or a
wandering curve with a uniform lower bound on the moduli of path families
in the corresponding coordinates. The former possibility is ruled out by the
rationality assumption, and the latter by Eq. (11.1).

11.4.2 Bounds on the Size of the Attractor

Since up to conjugacy there are only finitely many non-flexible Lattès rational maps
with a given degree d and size #P of postcritical set, the cardinality of the finite
global attractor A, if one exists, must be bounded by some constant depending on d
and #P . I know very little about the behavior of this function.

1. Certainly #A can be large if #P is large: for n ≥ 2 the “1/n-rabbit” quadratic
polynomial will have an n-cycle of curves. Other examples can be constructed
by perturbing flexible Lattès examples f as follows. By pushing down from the
complex torus, we can find, for any integer m ≥ 1, a collection γ1, . . . , γm of
analytic curves in̂C for which f (γi) = γi, i = 1 . . . m. The union of these curves
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is a hyperbolic set, which is therefore stable under sufficiently small perturbations
of the map f . A result of X. Buff and T. Gauthier [7, Cor. 3] implies that f is
a limit of a sequence f1, f2, . . . of hyperbolic rational Thurston maps each with
the maximum number 2d−2 of attracting cycles. Combining these observations,
we conclude some fk with k sufficiently large is a Thurston map with m fixed
curves.

2. In composite degrees, #A can be small (say zero), by taking e.g. examples with
σf constant. Using McMullen’s compositional trick one can easily build both
hyperbolic rational maps and rational maps with Julia set the whole sphere having
the property that σf is constant and #Pf is arbitrarily large.

3. Results of G. Kelsey and R. Lodge [20] show that for quadratic rational maps f
with #Pf = 4, we have #A ≤ 4.

The bound might be explained as follows. The map f corresponds (not quite
bijectively) to a repelling fixed-point p of a correspondence g = Y ◦ X−1 on
moduli space. In the nonexceptional cases, this is actually a rational map g :
̂C → ̂C. There appears to be a natural bijection between invariant (multi)curves
for f and periodic internal rays joining points in periodic superattracting cycles
of g (these lie at infinity in moduli space) to p. This seems to be true also for
critically fixed polynomials with three finite critical points.

Question 11.4.3 If f is rational and � is an invariant multicurve, does there
exist a real-analytic σf -invariant curve connecting the unique fixed-point of σf
in Teich(̂C, P ) to a fixed-point in a WP-boundary stratum corresponding to �?
More generally, does something similar occur for periodic multicurves?

For quadratics with four postcritical points, the analysis of [20] seems to
confirm this. But in higher degrees with #Pf = 4, the situation is more
complicated; see e.g. [22].

In higher dimensions, another first natural example to try is the case of f a
critically fixed polynomial with four finite simple critical points. One would need
to show the existence of internal rays in two complex dimensions. This example
is beautifully symmetric and possesses many invariant complex lines that might
make the problem more tractable. See [9, section 3].

11.4.3 Examples with Symmetries

Maps with nontrivial symmetries provide a source of non-rational examples without
a finite global attractor. We denote by Mod(f ) = {h : hf , f h}. We recall four
facts:

1. The pure mapping class group PMod(S2, P ) has no elements of finite order, so
neither does PMod(f ).

2. If f is rational, PMod(f ) is trivial, unless f is a flexible Lattès example, in
which case it is isomorphic to the free group on two generators.
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3. Suppose f has an obstruction � = (γ1, . . . , γm) satisfying f−1(�) = � as
subsets of C, and with the property that the linear map λf : R[�] → R[�] has
1 among its eigenvalues, with a corresponding nonnegative integer eigenvector
(a1, . . . , am). Let Ti denote the Dehn twist about γi . Then some power of
T
a1

1 · · ·T amm gives an element of Mod(f ) [28].
4. Thurston maps are like mapping classes. If f is obstructed, there is a canonical

decomposition by cutting along a certain invariant multicurve [27, 32]. The
“pieces” might contain cycles of degree one: mapping classes, each with its
own centralizer. The fact that the decomposition is canonical means that the
centralizers of the pieces will embed into Mod(f ). Using this idea one can
create examples of Thurston maps with a variety of prescribed behaviors. For
example, if f is the identity on some sufficiently large piece, then clearly A
contains infinitely many fixed curves. If f is a pseudo-Anosov map on some other
sufficiently large piece, then there are infinitely many distinct orbits of wandering
curves.

5. L. Bartholdi and D. Dudko give an explicit example of f with Mod(f ) infinitely
generated [1].

11.4.4 Maps with the Same Fundamental Invariants

As motivation, recall that if L is a flexible Lattès example with postcritical set P ,
then σL acts as the identity, and the pullback relation on curves is the identity
function. So if f is now an arbitrary Thurston map with the same postcritical set
P , and if PL◦f = P , then σL◦f = σf and the pullback relation on curves for f and
L ◦ f are the same.

Question 11.4.4 When do two Thurston maps have the same pullback relation on
curves?

11.4.5 Expanding vs. Nonexpanding Maps

The examples in Sect. 11.4.3 are not isotopic to expanding maps. There exist Levy
cycles—cycles of f← in C in which each curve maps by degree 1. Levy cycles are
essentially the only obstructions to the existence of an expanding representative, as
the main result of [2] shows. The example below shows that there exist expanding
obstructed maps without finite global attractors.

Blow up the degree four flexible Lattès example along the lower middle vertical
edge to get a Thurston map f ; see Fig. 11.2. The “rim” of the square pillowcasethe
common boundary of the two squares at left is an invariant Jordan curve containing
Pf : that is, f is the subdivision map of a finite subdivision rule. This example
has no Levy cycles: for otherwise, the Levy cycle forms an obstruction. For maps
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with four postcritical points, there is precisely one obstruction. In this example, it
is the vertical cure, which is not a Levy cycle. Appealing to the characterization of
expanding maps in [2], we conclude there is such an example that is expanding on
the whole sphere with respect to a complete length metric. We remark that one can
rule out Levy cycles also as follows: this map satisfies the combinatorial expansion
properties of both Bonk-Meyer [5] and Cannon-Floyd-Parry [10]. Appealing to
either one of these works, we conclude there is a map isotopic to this example in
which the diameters of the tiles goes to zero upon iterated subdivision. This implies
that this example has no Levy cycles.

The vertical curve is an obstruction with multiplier 1, and the horizontal curve is
invariant. Let T be the Dehn twist about this vertical curve, so that f T 2 , T 2f .
This immediately implies (1) Af is infinite, since the orbit of the horizontal curve
under the infinite cyclic group generated by T 2 will consist of f -invariant curves,
and (2) if we put g = Tf , then the horizontal curve γ wanders. To see this, note that
g−n(γ ) = (Tf )−n(γ ) = T −nf−n(γ ) = T −nγ as required. I do not know if Tf
is isotopic to an expanding map. Letting L denote the flexible Lattès map induced
by doubling on the torus, however, we have that LTf is expanding. To see this, we
observe that under L every preimage of a curve maps by degree two. Thus LTf has
no Levy cycles and has a wandering curve.

Question 11.4.5 Suppose Mod(f ) is trivial. Could there exist infinitely many
periodic curves? Could there exist wandering curves?
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Chapter 12
The Pullback Map on Teichmüller Space
Induced from a Thurston Map

William Floyd

Abstract William Thurston’s topological characterization of rational maps has had
an enormous impact in complex dynamics. The proof depends heavily on a pullback
map σf on Teichmüller space associated with a postcritically finite branched
covering f : S2 → S2. In this chapter we describe Thurston’s characterization
theorem, and briefly discuss some more recent developments on understanding the
pullback map σf .
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When is a branched covering f : S2 → S2 equivalent, in some useful sense, to
a rational map? If it is equivalent to a rational map, how many (up to conjugacy)
rational maps is it equivalent to? And given the map f , how do you tell? For
a general branched covering f , these are extremely difficult questions. A natural
reduction is to assume that f is postcritically finite, that is that the forward orbit Pf
of the set of critical points is finite.

For a postcritically finite branched covering f : S2 → S2, William Thurston
answered these questions in 1982. To make the statements clearer, we assume that
f has a hyperbolic orbifold; this avoids a small number of cases which are well
understood. The first step in answering the questions is to involve Teichmüller
theory. Given f as above, let Tf := TPf be the Teichmüller space of the
orbifold (S2, Pf ) associated with f . There is a pullback map σf : Tf → Tf . In
Theorem 12.1 Thurston proves that f is combinatorially equivalent to a rational
map if and only if σf has a fixed point. Moreover, there is a bijection between fixed
points of σf and conjugacy classes of rational maps equivalent to f . Thurston then
develops an obstruction theory and uses it to characterize when f is equivalent to a
rational map.
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12.1 Thurston’s Characterization Theorem

Let f : S2 → S2 be a continuous map. The map f is a branched covering if it is
orientation preserving and for each x ∈ S2 there are local charts about x and f (x)
(sending x and f (x) to 0) for which f becomes the map x 	→ xk for some positive
integer k. The integer k is independent of the choice of charts; it is called the local
degree of f at x and is denoted degx(f ). A point x ∈ S2 is called a critical point if
degx(f ) > 1 and is called a postcritical point if there exist a critical point y ∈ S2

and a positive integer n such that f ◦n(y) = x. The critical setΩf is the union of the
critical points, and the postcritical set Pf is the union of the postcritical points. The
map f is postcritically finite or critically finite if Pf is finite. If f is postcritically
finite and the degree of f is at least two (so f isn’t a homeomorphism), then f is a
Thurston map.

For each x ∈ S2, let Df (x) = {k ∈ Z+ : there exist a positive integer n and a
point y ∈ S2 such that f ◦n(y) = x and degy(f

◦n) = k}. That is, Df (x) is the set
of local degrees of iterates of f at preimages of x. Define νf : S2 → Z+ ∪ {∞} by

νf (x) =
{

lcm(Df (x)) if Df (x) is finite,

∞ if Df (x) is infinite.

Let Of be the orbifold (S2, νf ). The postcritical set Pf is the set of distinguished
points (points x ∈ S2 with νf (x) > 1) of Of . The Euler characteristic of the
orbifold Of is

χ(Of ) = 2−
∑

x∈Pf

(

1− 1

νf (x)

)

.

The orbifold Euler characteristic differs from the Euler characteristic of the
underlying space in that the contribution of a vertex x is 1/νf (x) instead of 1. It is
standard, see for example Peter Scott’s paper [29, Section 2], that Of is hyperbolic
if and only if χ(Of ) < 0, and Of is Euclidean if and only if χ(Of ) = 0.

Two Thurston maps f, g : S2 → S2 are combinatorially equivalent
or Thurston equivalent if there are orientation-preserving homeomorphisms
h0, h1 : (S2, Pf )→ (S2, Pg) such that h0 ◦ f = g ◦ h1 and h0 and h1 are isotopic
rel Pf . A Thurston map f is realizable by a rational map if it is combinatorially
equivalent to a rational map.

A fundamental contribution of Thurston’s to complex dynamics is his topological
characterization theorem for rational maps. It solves the problem of determining
when a Thurston map is combinatorially equivalent to a rational map. A special
case of the problem of when a Thurston map is realizable by a rational map came
up in an earlier paper [21, Theorem 12.1] of John Milnor and Thurston on iterating
maps of an interval; the proof of the existence of the required polynomials there is
by a different method.
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Thurston’s approach to the problem is through the Teichmüller space of the
associated orbifold. Let f be a Thurston map, and let P = Pf . The Teichmüller
space TP := T (S2, P ) = T (Of ) of the orbifold Of is the space of complex
structures on Of \ P , up to isotopy. Since there is a single complex structure
on S2, we can view a point in TP as a finite set B ⊂ ̂C together with an
orientation-preserving homeomorphism φ : (S2, P ) → (̂C, B). In this point of
view, two orientation-preserving homeomorphisms φ1 : (S2, P ) → (̂C, B1) and
φ2 : (S2, P ) → (̂C, B2) are equivalent if there is a Möbius transformation
h : (̂C, B1)→ (̂C, B2) such that h◦φ1 is isotopic to φ2 relP . The Teichmüller space
TP is a complex manifold (for example, see Hubbard’s book [11, Theorem 6.5.1]).
The moduli space MP := M(Of ) is the space of injections of P into ̂C, modulo
the equivalence of postcomposition with a Möbius map. The Teichmüller space
TP is the universal covering space of the moduli space MP ; the covering map π
is defined by π([φ]) = [φ|P ] (for example, see the Douady-Hubbard paper [8,
Section 3]).

A complex structure on Of \ P lifts under f to a complex structure on Of \
f−1(P ), and this extends to a complex structure on Of \ P . This map on complex
structures descends to the quotient spaces to give the pullback map σf : TP → TP .
It is straightforward to show that σf is analytic (see [8, Proposition 2.1]), and that σf
only depends on the combinatorial equivalence class of f . Using the coderivative of
σf , one can show that ‖Dσf (z)‖ ≤ 1 and if Of is hyperbolic then ‖Dσ ◦2

f (z)‖ < 1

for all z ∈ TP (see [8, Proposition 3.3] or [12, Proposition 10.7.3]) and so σ ◦2
f is a

weak contraction.
If f is a rational Thurston map, then f fixes the complex structure on ̂C and

the pullback map σf has a fixed point. The combinatorial equivalence relation
on Thurston maps fits well enough together with the equivalence relation in the
definition of the Teichmüller space that one has the following theorem.

Theorem 12.1 (Thurston) Let f be a Thurston map. Then f is combinatorially
equivalent to a rational map if and only if σf has a fixed point.

Proof First suppose that f is combinatorially equivalent to a rational map g. Then
there are orientation-preserving homeomorphisms φ1, φ2 : (S2, Pf ) → (̂C, Pg)

such that the diagram

commutes, and φ1 and φ2 are isotopic rel Pf . Then σf ([φ1]) = [φ2]. By the
definition of combinatorial equivalence, [φ2] = [φ1] and [φ1] is a fixed point of
σf .
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Now suppose that [φ] is a fixed point of σf . Then there are finite setsA1, A2 ⊂ ̂C

and an orientation-preserving homeomorphism φ̃ : (S2, Pf ) → (̂C, A2) such that
the diagram

commutes, where g = φ ◦ f ◦ φ̃−1 is analytic. Since [φ̃] = σf ([φ]) = [φ], there is
a Möbius transformation h : (̂C, A1)→ (̂C, A2) such that the diagram

commutes up to isotopy rel Pf . Then the diagram

shows that g ◦ h is a rational map combinatorially equivalent to f . ��
It follows from the proof that the fixed points of σf correspond to conjugacy

classes of rational maps that are combinatorialy equivalent to f . If f is a Thurston
map with a Euclidean orbifold and P = Pf , then, unless Of is a (2, 2, 2, 2) orbifold
(a rectangular pillowcase), TP is a single point and f is combinatorially equivalent
to a rational map.

If a Thurston map f has a hyperbolic orbifold, then σ ◦2
f is a weak contraction and

so σf cannot have more than one fixed point. We get the following as a corollary.

Theorem 12.2 (Thurston Rigidity) Suppose f : S2 → S2 is a Thurston map
such that the orbifold Of is hyperbolic. If g and h are rational maps that
are combinatorially equivalent to f , then g and h are conjugate by a Möbius
transformation.
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We continue to suppose that f is a Thurston map with a hyperbolic orbifold and
let P = Pf . Choose a point τ0 ∈ TP , and define the sequence {τn} in TP recursively
by τi = σf (τi−1) for all positive integers i. Since σ 2

f is a weak contraction, {τn}will
converge if and only if it stays in a compact subset of TP . By Mumford’s theorem
[23] (see also Hubbard’s book [11, Theorem 7.3.3] for the statement in genus 0) on
compact subsets of the moduli spaces, this will happen as long as there is a lower
bound on the lengths of simple closed geodesics in hyperbolic surfaces represented
by the points τn.

One way that the sequence {τn} can fail to converge is if there is an annular
obstruction (Thurston obstruction). Here is the terminology. A multicurve in Of is
a finite set Γ = {γ1, . . . , γk} of pairwise disjoint, unoriented, simple closed curves
in Of \Pf such that i) each γi is essential (does not bound a disk containing at most
one element of Pf ) and ii) if i, j ∈ {1, . . . , k} and i �= j , then γi is not isotopic to γj
in Of \Pf . A multicurve Γ is invariant if for each γ ∈ Γ , each element of f−1(γ )

is either non-essential or isotopic in Of \Pf to an element of Γ . IfΓ = {γ1, . . . , γk}
is an invariant multicurve, let AΓ be the k × k matrix with i, j -entry

Aij =
∑

α

1

deg(f : α→ γj )
,

where the sum is over curves α ⊂ f−1(γj ) that are isotopic in Of \ Pf to γi . If
Γ is an invariant multicurve, the spectral radius of AΓ (the eigenvalue of largest
norm) is called the multiplier. We denote it by λ(Γ ). If Of is hyperbolic and Γ is
an invariant multicurve whose multiplier is at least one, then Γ is called an annular
obstruction or a Thurston obstruction.

Here is the motivation. Suppose f : S2 → S2 is a Thurston map such that Of
is hyperbolic. Let P = Pf , and suppose that Γ = {γ1, . . . , γk} is an annular
obstruction for f . Let τ0 ∈ TP , and define the sequence {τn} recursively as above.
Choose a family of pairwise disjoint annuli in Of \Pf with core curves γ1, . . . , γk .
For each i ∈ {1, . . . , k}, let vi be the conformal modulus of the annulus above
containing γi in a hyperbolic surface determined by τ0. Let V = (v1, . . . vk)

t .
It follows by induction and the subadditivity of conformal moduli that for each
positive integer n and each i ∈ {1, . . . , k}, in a hyperbolic surface determined by τn
there is an annulus with core curve γi whose conformal modulus is at least the i th

component ofAnV . In a hyperbolic surface, the conformal modulus of an annulus is
bounded above by 2π2 times the reciprocal of the length of a simple closed geodesic
homotopic to a core curve. If the multiplier of Γ is greater than one, then the norms
‖AnV ‖ are not bounded above, so {τn} does not stay in a compact subset of TP and
hence does not converge. If the multiplier is one, it follows from a theorem of Kurt
Strebel [34, Theorem 21.7] that f cannot be a rational Thurston map unless Of is
a (2, 2, 2, 2) orbifold. If Of is a (2, 2, 2, 2) orbifold, then f is double covered by a
torus endomorphism F : Tf → Tf . In this case, let Af : H1(Tf ,Z)→ H1(Tf ,Z)

be the induced map on the first homology group.
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Let f be a Thurston map with a hyperbolic orbifold. If f is combinatorially
equivalent to a rational map, then it doesn’t have an annular obstruction. Thurston’s
characterization theorem states that the converse is true. For completeness, we
include the statement for the case that f has a Euclidean orbifold.

Theorem 12.3 (Thurston’s Characterization Theorem) Let f : S2 → S2 be
a Thurston map. If Of is hyperbolic, then f is combinatorially equivalent to a
rational map if and only if λ(Γ ) < 1 for every invariant multicurve Γ . If Of is
Euclidean, then f is combinatorially equivalent to a rational map unless Of is a
(2, 2, 2, 2) orbifold and a matrix representing Af has distinct real eigenvalues.

Let f be a Thurston map whose orbifold Of is hyperbolic, let P = Pf , and
consider a sequence {τi} in TP of iterates under the pullback map σf . If {τi} does not
converge to a fixed point of σf , then for every ε > 0 there must exist an index i such
that some simple closed geodesic in a hyperbolic structure on Of representing τi has
length less than ε. However, this does not imply that the lengths of the geodesics in
that free homotopy class will converge to zero under further iteration. For a smaller
choice of ε, the length of the geodesic in a different free homotopy class could be
short. The essence of the proof of the hard direction of Thurston’s theorem is that if
{τi} does not converge, then for some ε > 0 and some index i, the ε-short geodesics
give an invariant multicurve which is an annular obstruction. Here ε depends on the
largest possible multiplier less than one for an invariant multicurve for f . (Since
there are only finitely many possible matrices AΓ for an invariant multicurve for f ,
there is a largest possible multiplier less than one.)

While this is a fundamental and very useful theorem, it can be difficult to apply.
There are infinitely many multicurves, and it’s difficult to predict or know which
ones are candidates for annular obstructions.

We’ll next briefly describe the application of Thurston’s characterization theorem
to matings, after first defining Levy cycles since they are needed for that application.
For an excellent discussion of several other applications of Thurston’s characteriza-
tion theorem, see the article [3, Section 3] by Xavier Buff, Cui Guizhen and Tan
Lei.

12.1.1 Levy Cycles

In his thesis [18], Silvio Levy defines an important class of multicurves which are
now called Levy cycles. A Levy cycle is a multicurve Γ = {γ1, . . . , γk} such that for
each i ∈ {1, . . . , k}, there is a component of f−1(γi) that is isotopic to γi−1 (where
we define γ0 := γk) and maps to γi with degree 1. Levy proves that if a Thurston
map with degree 2 is obstructed, then it has a Levy cycle. In [2, Theorem 5.5] Ben
Bielefeld, Yuval Fisher, and John Hubbard prove that if a topological polynomial is
obstructed, then any annular obstruction contains a Levy cycle. In each case this is
a big reduction, since ruling out the existence of a Levy cycle is much easier than
ruling out the existence of an annular obstruction.
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12.1.2 An Application to Matings

A primary motivation for Thurston’s characterization theorem was the discovery of
matings by Douady and Hubbard in 1982 [37, Preface] and their mating conjecture
on when two quadratic polynomials are mateable. We start with some terminology.
Let d ∈ Z with d ≥ 2, and let p1 : C1 → C1 and p2 : C2 → C2 be monic
complex polynomials of degree d , where C1 = C = C2. Let K1 be the filled Julia
set of p1 and letK2 be the filled Julia set of p2. For each i ∈ {1, 2}, the Böttcher map
φi : C\Ki → C\D is a biholomorphism that conjugates the restriction of pi on the
complement of its filled Julia set to the map z 	→ zd on the complement of the closed
unit disk. The preimages of rays {reiθ : r ∈ (1,∞)} under the Böttcher map are
called external rays, and their closures are called closed rays. Let ˜C1 and ˜C2 be the
standard compactification˜C of C obtained by adding a circle {∞ · e2πiθ : θ ∈ R/Z}
which we call the equator at infinity. For i ∈ {1, 2}, pi extends continuously to ˜Ci

by defining pi(∞ · e2πiθ ) = ∞ · e2dπiθ . Let S = ˜C1
∐

˜C2/ ∼, where ∼ is the
equivalence relation generated by identifying∞· e2πiθ ∈˜C1 with∞· e−2πiθ ∈˜C2
for all θ ∈ R/Z. Then p1

∐

p2 induces a continuous map p : S → S with p([z]) =
[pi(z)] if z ∈ ˜Ci . The map p : S → S is the formal mating of p1 and p2.

Now let ∼ be the equivalence relation on S generated by calling two points
equivalent if they lie on the image in S of a closed ray in ˜C1 or ˜C2. Since any
point in the equator is on two closed rays and a point in the Julia set of p1 or the
Julia set of p2 may be on multiple closed rays, this equivalence relation can be very
complicated. By a theorem of R. L. Moore [22], the quotient space will be a 2-
sphere if there is more than one equivalence class, each equivalence class is closed
and connected, and no equivalence class separates S into at least two components. If
the quotient space S/ ∼ is a 2-sphere, then the map p1

∐

p2 induces a postcritically
finite map on the quotient space. This map is a topological mating of p1 and p2, and
p1 and p2 are topologically mateable.

There is a third construction called the degenerate mating or essential mating. Let
Y ′ be the set of equivalence classes of∼ that contain at least two points ofΩf ∪Pf ,
and let Y be the set of equivalence classes of ∼ that contain at least one point of
Ωf ∪ Pf and have some iterated image under f which is an iterated image under
f of an element of Y ′. If Y ′ = ∅, then the degenerate mating is the formal mating.
If Y ′ �= ∅ and some element of Y has disconnected complement in the 2-sphere,
then the degenerate mating is not defined (and the topological mating is also not
defined since the quotient space isn’t a 2-sphere). If Y ′ �= ∅ and no element of Y has
disconnected complement, then the quotient space S′ of S obtained by collapsing
each element of Y to a point is a 2-sphere; the map f ′ : S′ → S′ induced by f is
not a branched covering because it collapses some nontrivial equivalence classes to
points. It can be easily modified to a branched covering; this branched covering is
the degenerate mating. For more details, see Mitsuhiro Shishikura’s paper [32] or
Tan Lei’s paper [35] or [36].

If the topological mating exists and is topologically conjugate to a rational map g
such that the conjugating map is holomorphic on the images in S/ ∼ of the interiors
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of the filled-in Julia sets of p1 and p2, then g is a geometric mating of p1 and p2,
and p1 and p2 are geometrically mateable or mateable.

Douady and Hubbard conjectured (see [7, Section III.3]) that two quadratic
polynomials fc(z) = z2 + c and fc′(z) = z2 + c′ are mateable if and only if c
and c′ are not in conjugate limbs of the Mandelbrot set. It is straightforward that
fc and fc′ are not mateable if c and c′ are in conjugate limbs. Using his theorem
on Levy cycles, Levy made initial progress on the conjecture in [18, Chapter 5].
In her thesis [35] (see also [36]), Tan proves the hard direction of the following
theorem. The proof depends crucially on Thurston’s characterization theorem, and
on the theorem that if a quadratic Thurston map has an annular obstruction then it
has a Levy cycle. Shishikura gives a proof in [32] that if the degenerate mating is
equivalent to a rational map then the topological mating is topologically conjugate
to this rational map; his proof is based on an unpublished manuscript of Mary Rees.

Theorem 12.4 (Tan, Rees-Shishikura) Suppose fc(z) = z2+c and fc′(z) = z2+
c′ are postcritically finite. The following are equivalent.

1. fc and fc′ are geometrically mateable.
2. fc and fc′ are topologically mateable.
3. c and c′ are not in conjugate limbs of the Mandelbrot set.

In degrees three and higher, an obstructed Thurston map need not have a Levy
cycle. In [33, Section 2], Shishikura and Tan give an example of a cubic Thurston
map which has an annular obstruction but does not have a Levy cycle. They also
give an example of two monic cubic polynomials such that their topological mating
exists but their geometric mating does not exist.

12.2 Further Developments

In the years since Thurston proved his characterization theorem, there has been a
great deal of interest in getting a deeper understanding of the pullback map. In this
section we briefly describe some of the progress that has been made.

12.2.1 Canonical Obstructions

A fixed Thurston map can have more than one annular obstruction. In [8, Appendix],
Douady and Hubbard give an example with four different annular obstructions.
Furthermore, the homotopy classes of curves in the four obstructions cannot be
realized by pairwise disjoint simple closed curves.

In [26, Theorem 1.1], Kevin Pilgrim refines the arguments of [8] and shows that
if a Thurston map with hyperbolic orbifold is obstructed then there is a canonical
annular obstruction. Let f be a Thurston map with a hyperbolic orbifold and let
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P = Pf . Given τ ∈ TP and a homotopy class α of an essential simple closed curve
in Of , let lτ (α) be the length of a geodesic representing α in a hyperbolic metric
on Of representing the point τ . Choose a point τ0 ∈ TP , and as before define the
sequence {τi} recursively by τi = σf (τi−1). Let Γc be the set of homotopy classes
α of essential simple closed curves on Of such that limi→∞ lτi (α) = 0. Since the
pullback map is distance nonincreasing, Γc does not depend on the initial point τ0.

Theorem 12.5 (Pilgrim) Let f be a Thurston map with hyperbolic orbifold, and
let Γc be defined as above.

i) If Γc = ∅, then f is combinatorially equivalent to a rational map.
ii) If Γc �= ∅, then f is obstructed and there is an annular obstruction for f

consisting of a representative of each element of Γc.

While knowing the existence of a canonical annular obstruction is useful, it is still
difficult to (a) determine whether or not a Thurston map is obstructed and (b) find
an annular obstruction (or find the canonical annular obstruction) for an obstructed
Thurston map.

12.2.2 The Extension to a Boundary

If you already know Thurston’s work on surface homeomorphisms, it’s natural to
wonder if the pullback map on Teichmüller space has a continuous extension to one
of the boundaries of Teichmüller space. In his thesis [30, Theorem 4.1.1] and in the
paper [31, Theorem 6.4], Nikita Selinger proves the following:

Theorem 12.6 (Selinger) Let f : S2 → S2 be a Thurston map with postcritical
set P . Then σf extends continuously to the augmented Teichmüller space T P of
Of .

The augmented Teichmüller space T P is homeomorphic to the completion of
TP with respect to the Weil-Peterson metric. T P is a stratified space, with each
stratum being homeomorphic to the Teichmüller space of a noded surface obtained
by collapsing each element of a multicurve to a point.

The augmented Teichmüller space T P is in general neither compact nor locally
compact, and a continuous map of T P to itself need not have a fixed point. However,
the quotient of T P by the action of the mapping class group is homeomorphic to
the Mumford-Deligne compactification of the moduli space.

Even without compactness or the fixed-point property, this is a powerful ap-
proach. Using the analysis in the proof, Selinger derives new proofs of Thurston’s
characterization theorem and of Pilgrim’s canonical obstruction theorem. He also
notes that in general the pullback map σf will not extend continuously to the
Thurston boundary of TP .
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12.2.3 The g-Map and the Hurwitz Space

In their seminal paper [1, Section 5.1] on the twisted rabbit problem, Laurent
Bartholdi and Volodymyr Nekrashevych define a “g-map” for the rabbit polynomial.
Let f be the rabbit polynomial, defined by f (z) = z2 + c where f ◦2(c) = 0 and
4(c) > 0. Let P = Pf , let τ ∈ TP , let τ ′ = σf (τ ), let w1 = π(τ), and let
w0 = π(τ ′), where π : TP →MP is the universal covering map. They show that

w1 = 1− 1

w2
0

.

Note that this is the projection to the moduli space of the correspondence σf (τ ) 	→
τ and not of the function σf . For the polynomial h(z) = z2 + i, they show that the
correspondence σh(τ ) 	→ τ projects to the moduli space to the function F(w) =
(

2−w
w

)2
. They also compute the functionF for a third quadratic polynomial f (z) =

z2 + c corresponding to the critical value c having preperiod 2 and period 1.
In her two theses [14] and [15], Sarah Koch starts with these examples and builds

a beautiful theory. Suppose f : S2 → S2 is a Thurston map. We have a diagram

When is there a continuous map gf : MP →MP such that the diagram

commutes? We get a related question by replacing MP by its compactification P
n,

where n = |Pf | − 3. When is there a continuous map gf : Pn → P
n such that the

diagram
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commutes, where now we abuse notation and denote by π the postcomposition of
the universal covering map with the inclusion of MP into its compactification P

n?
In [14, Theorem 7.7] she proves that if f is a unicritical topological polynomial,

then there is a postcritically-finite endomorphism gf : P
n → P

n that makes
the diagram commute. Furthermore, for each such map the complement of the
postcritical set is Kobayashi hyperbolic. The periodic cycles of gf in MP are all
repelling, and each fixed point corresponds to a rational map with the same dynamic
portrait as f . In [15, Theoren 4.0.1] she proves the same results for a topological
polynomial f such that each critical point of f is periodic. Furthermore, if gf exists
then σf (TP ) is open and the restriction σf : TP → σf (TP ) is a covering map.

Koch revisits the issue in [16]. Suppose f : S2 → S2 is a Thurston map such
that |Pf | ≥ 4, and let P = Pf . A homeomorphism h : (S2, P ) → (S2, P ) with
h|P = id (that is, a representative of an element of the pure mapping class group)
is called liftable if there is a homeomorphism h′ : (S2, P ) → (S2, P ) such that
h′|P = id and f ◦ h′ = h ◦ f . Let Hf be the subgroup of the pure mapping
class group of (S2, P ) represented by liftable elements. Koch defines the Hurwitz
space Wf , which has the following properties: Wf is a complex manifold that is

homeomorphic to TP /Hf ; the universal covering map factors as

, where ωf is a holomorphic covering map and Y is a
finite holomorphic covering map; and there is a holomorphic map X : Wf →MP

such that π ◦ σf = X ◦ ωf . Hence the following diagram commutes.

The Hurwitz space Wf depends only on the Hurwitz class of f . If f is a topological
polynomial that is either unicritical or has all critical points periodic, then X is
injective. If f has only two critical points and one of them is a postcritical point,
then f is Hurwitz equivalent to a unicritical topological polynomial and so X is
injective.

12.2.4 The Pullback Map Near a Fixed Point

In [4, Theorem 1.1], Buff, Adam Epstein, Koch, and Pilgrim consider the pos-
sibilities for the pullback map near a fixed point. They show that the following
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possibilities can each occur for a fixed point τ for the pullback map σf of a Thurston
map f : S2 → S2 with |Pf | ≥ 4. As before, let P = Pf .

(1) τ is an attracting fixed point of σf , the image σf (TP ) is open and dense in TP ,
and σf is a covering map.

(2) τ is a superattracting fixed point of σf , σf is surjective, and σf is a ramified
Galois covering map.

(3) σf is the constant map to the point τ .

They prove that case (1) occurs whenever f is a polynomial such that |Pf | ≥ 4
and all of the critical points of f are periodic.

For case (2), they give the specific example f (z) = 3z2

2z3+1
. Here Pf =

{0, 1,−1/2 ± i√3/2}. All four postcritical points are critical; 0 and 1 are fixed,
and the other two are mapped to each other. In his thesis [19, Section 4] and in
the paper [20, Section 5], Russell Lodge studies this example in great depth. He
computes the functions ωf , X, and Y from the W-space diagram, and computes
the virtual endomorphism on the fundamental group and the virtual endomorphism
on the pure mapping class group. He analyzes the slope function (the pullback map
on the boundary points of TP ) and shows that the slope function has a finite global
attractor consisting of a fixed point and a 2-cycle. Using this, he solves the twist
problem for f .

The example that Buff, Epstein, Koch, and Pilgrim give for case (3), f (z) =
2i
(

z2 − 1+i
2

)2
, is due to Curtis McMullen, as is the explanation for why it has a

constant pullback map. The map f factors as g ◦ s, where g(z) = 2i
(

z − 1+i
2

)2

and s(z) = z2. Furthermore, σf factors as σf = σs ◦ σg , where A = {0, 1,∞},
σg : T (̂C, Pf ) → T (̂C, A), and σs : T (̂C, A) → T (̂C, Pf ). Since T (̂C, A) is a
single point, σf is a constant map. In addition to this example, they give hypotheses,
now often called McMullen’s condition, on a factorization of a Thurston map f that
implies that σf is a constant map. It was believed that these conditions might be the
only way for a Thurston map f to have |Pf | ≥ 4 and σf constant, but this is now
known to be false. They also prove that σf is a constant map if and only if for every
essential curve α in S2 \ Pf , no component of f−1(α) is essential.

In their introductory paper [6, Theorem 10.2] on nearly Euclidean Thurston
(NET) maps, James Cannon, Floyd, Walter Parry, and Pilgrim give an algebraic
formulation that characterizes when a NET map has a constant pullback map. A
NET map is a Thurston map f : S2 → S2 such that |Pf | = 4 and every critical
point has local degree 2. They are close enough to Euclidean Thurston maps to be
computationally tractable, but general enough to have many interesting examples.

In his thesis [27] (much of which appears in [28]), Edgar Saenz does extensive
work on NET maps with constant pullback maps. He gives a NET map of degree
9 that has constant pullback map and does not satisfy McMullen’s condition, and
shows that for every odd multiple of 9 there is a NET map of that degree that has
constant pullback map and does not satisfy McMullen’s condition.
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In [27, Appendix D] Saenz also gives a remarkable example in degree 4, the

map f (z) = z(z3+2)
2z3+1

. The map f isn’t a NET map since each of the three critical
points has local degree 3. An easy core arc argument shows that f has a constant
pullback map. Since the critical points have degree 3, f cannot factor so as to satisfy
McMullen’s condition.

12.2.5 Other Pullback Invariants

In addition to the pullback map σf on Teichmüller space, there are several other
pullback invariants that can be associated with a Thurston map f : (S2, Pf ) →
(S2, Pf ). In [17], Koch, Pilgrim, and Selinger discuss these invariants and establish
connections between them. Before describing their results, we start with some
terminology.

Let P be a finite subset of S2 with |P | ≥ 3. As before TP denotes the Teichmüller
space T (S2, P ) and MP denotes the moduli space M(S2, P ). Let SP denote the
set of homotopy classes of simple, unoriented, essential curves in S2 \ P , and let
R[SP ] denote the free R-module with basis SP . LetGP := PMod(S2, P ), the pure
mapping class group of (S2, P ).

Now suppose that f : (S2, Pf ) → (S2, Pf ) is a Thurston map with |Pf | ≥ 3,
and let P = Pf . Two pullback invariants of f are the pullback map σf : TP → TP
and its continuous extension σf : T P → T P . We can also define the pullback
relation

SP ∪ {o} f←− SP ∪ {o}

by o
f←− o, [α] f←− o if a connected component of f−1(α) is not essential, and [α] f←−

[β] if a connected component of f−1(α) is in [β]. Much as we define the matrixAΓ
associated with an invariant multicurve Γ , there is a linear operator λf : R[SP ] →
R[SP ] defined by

λf ([α]) =
∑

βi

di[βi],

where the sum is over essential connected components of f−1(α) and di =
1/(deg(f : βi → α)).

LetHf be the subset of liftable elements of the pure mapping class groupGP . So
a homeomorphismh : (S2, P )→ (S2, P ) which fixes each element of P represents
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an element of Hf if and only if there is a homeomorphism h̃ : (S2, P ) → (S2, P )

fixing each element of P such that the diagram

commutes. They prove that Hf has finite index in GP and that there is a
homomorphism φf : Hf → GP . Hence there is a virtual homomorphism

φf : GP ��� GP .

Though I’ve given the pullback invariants in the dynamic setting for a map
f : (S2, P ) → (S2, P ), Koch, Pilgrim, and Selinger work more generally in the
nondynamic setting of a map f : (S2, A)→ (S2, B). The requirements onA and B
are that both are finite, f (A) ⊆ B, and B contains the set of critical values. If these
conditions are satisfied, f : (S2, A)→ (S2, B) is an admissable cover.

If f : (S2, A)→ (S2, B) is an admissable cover, we have the pullback relation

SB ∪ {o} f←− SA ∪ {o},

the linear transformation

λf : R[SB] → R[SA],

the pullback map

σf : TB → TA and its continuous extension σf : T B → T A,

the pullback correspondence

X ◦ Y−1 : MB ⇒ MA,

and the virtual homomorphism

φf : GB ��� GA.

Here are two of their theorems, one dealing with the case that the preimage of
an essential curve always contains an essential component, and the other dealing
with the case that the preimage of an essential curve never contains an essential
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component. In the dynamic setting that A = B = Pf , much of Theorem 12.8
appears in the Buff-Epstein-Koch-Pilgrim paper [4, Theorem 5.1].

Theorem 12.7 Suppose f : (S2, A) → (S2, B) is an admissable cover. The
following are equivalent.

1. No element of SB is in the kernel of the linear transformation λf .
2. No nontrivial composition of positive Dehn twists in the elements of a multicurve

in S2 \ B is in the kernel of the virtual homomorphism φf .
3. The pullback map σf takes ∂TB into ∂TA.
4. The pullback correspondenceX ◦ Y−1 : MB ⇒ MA is proper.

Theorem 12.8 Suppose f : (S2, A) → (S2, B) is an admissable cover. The
following are equivalent.

1. The pullback relation SB ∪ {o} f←− SA ∪ {o} is constant.
2. The linear transformation λf : R[SB ] → R[SA] is constant.
3. The virtual homomorphism φf : GB ��� GA is constant.
4. The pullback map σf : TB → TA is constant.
5. The pullback correspondenceX ◦ Y−1 : MB ⇒ MA is constant.

In the dynamic setting of a rational map f : (S2, P )→ (S2, P ) with hyperbolic
orbifold, they prove that ifX ◦Y−1 has an invariant, nonempty, compact subset then

φf is contracting and
f←− has a finite global attractor.

12.2.6 Examples

As we saw previously, in the Buff-Epstein-Koch-Pilgrim paper [4] they give
examples of three different behaviors of the pullback map σf near a fixed point.

One of these examples, f (z) = 3z2

z3+1
, is also extensively studied by Lodge in the

papers [19, Section 4] and [20, Section 5].
For the quadratic polynomials (the rabbit, f (z) = z2 + i, and the polynomial fc

where c has preperiod 2 and period 1) considered by Bartholdi and Nekrashevych
in [1], one can get information on the pullback map σf because of knowing the
associated g-map. For more information see their paper [1, Sections 5.1, 6.3, 7.2],
Koch’s thesis [14, Section 11], or the excellent discussion in Hubbard’s book [12,
Appendix C7]. In their paper [13], Gregory Kelsey and Lodge enumerate all of the
combinatorial equivalence classes of non-Euclidean quadratic Thurston maps with
at most four postcritical points. They show that every such map with exactly four
postcritical points is a twist (by an element of the mapping class group) of a rational
map with at most three postcritical points. They compute the wreath recursions
for the g-maps corresponding to these rational maps with at most three postcritical
points, and use this to enumerate the combinatorial equivalence classes.
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The NET maps website [24] has detailed information about the pullback map for
many examples. As mentioned previously, a nearly Euclidean Thurston (or NET)
map f is a Thurston map such that there are exactly four postcritical points and
every critical point has degree 2. Since there are exactly four postcritical points, any
nonempty multicurve in S2 \ Pf consists of a single curve, and any essential curve
can be parametrized by its slope, an element of Q = Q ∪ {∞}. If we consider only
essential preimages as long as there is an essential preimage, the pullback relation
on curves can be viewed as a slope function μf : Q→ Q ∪ {o}.

In their paper [6, Theorem 2.1] giving the basic theory of NET maps, Cannon,
Floyd, Parry, and Pilgrim show that any NET map is a composition of a Euclidean
Thurston map and a push homeomorphism. The Euclidean Thurston map is induced
from a map x 	→ Ax + b of the plane to itself, where the entries of A and b
are integers. It can be described by the columns of A (λ1 and λ2) and by the
translation vector b, which we can assume is in the set {0, λ1, λ2, λ1 + λ2}. The
push homeomorphism can be described up to isotopy by four integral points in
the parallelogram in the plane spanned by 2λ1 and λ2. The slope function can be
computed from this combinatorial input. If p/q ∈ Q and μf (p/q) �∈ {p/q, o}, then
by the half-space theorem [6, Theorem 6.7] there is an open interval in R ∪ {∞}
containing p/q which does not contain the slope of an annular obstruction.

Parry created his program NETmap [25] to input combinatorial data for a
NET map and then compute the slope function on all curves with slope p/q
satisfying |p|, |q| ≤ N , where N is a bound supplied by the user. The program
has been very successful in determining whether or not a given NET map is
combinatorially equivalent to a rational map, and Floyd, Parry, and Pilgrim prove
in [10, Corollary 1.2] that this rationality question is decidable for NET maps. In
conjunction with the work on NET maps stemming from an AIM SQuaRE group
consisting of Floyd, Kelsey, Koch, Lodge, Parry, Pilgrim, and Saenz, the program
was expanded greatly by Parry. Among other things, the program gives detailed
information on the subgroups of liftable elements for the mapping class group, for
the pure mapping class group, and for the extended mapping class group. Using
the information it produces for the subgroup of liftable elements for the extended
mapping class group, it gives a guess for a fundamental region for the pullback map.

Here is an example which is discussed in detail in the documentation section
of [24]. Let λ1 = (2, 0), let λ2 = (2, 2), and let b = (0, 0). Let A be the 2 × 2
matrix with columns λ1 and λ2. Let Λ be the lattice in R

2 with basis {λ1, λ2},
and let Γ be the group of isometries of R

2 of the form x 	→ 2λ ± x for some
λ ∈ Λ. Let S = R

2/Γ , and let π : R
2 → S be the quotient map. Then S is a

2-sphere, and the map x 	→ Ax on R
2 descends to the quotient space to a Euclidean

Thurston map g : S → S. Figure 12.1, which is one of 14 output files from NETmap
for this example, shows a fundamental domain F for the action of Γ on R

2. Let
h : S2 → S2 be the push homeomorphism that is supported in a neighborhood of the
images of the gray arcs, and such that h(π(0, 0)) = π(3, 1), h(π(2, 0)) = π(1, 0),
and h(π(2, 2)) = π(1, 1). Our Thurston map is f = h ◦ g.
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(0, 0) λ1 = (2, 0) 2λ1 = (4, 0)

λ2 = (2, 2) λ1 + λ2 = (4, 2) 2λ1 + λ2 = (6, 2)

Fig. 12.1 A presentation diagram for the NET map f

A

A B

C

0
1

1
2

1
1

BC

A

-2
1

-1
1

0
1

Fig. 12.2 The pullback map σf

Figure 12.2, which is another output file from NETmap for this example, gives
information about the pullback map σf . The top of the figure is part of the domain
of σf and the bottom of the figure is part of the codomain. The top shows a (white)
quadrilateral bounded by four geodesics. Each of these geodesics is a reflection
arc for the pullback map σk of an orientation-reversing, liftable homeomorphism
k. Each of these reflection arcs maps under σf into the associated reflection arc of
the lifted homeomorphism. The arcs are labeled A, B, and C so that σf preserves
labels. Viewing the quadrilateral as a conformal triangle with vertices at 1/2, 1, and
∞, there is a unique conformal homeomorphism taking it to the (white) triangle at
the bottom of the figure and taking 1/2 to 0, 1 to∞, and∞ to −1+ i. Using a little
more information from the other output files, one can show that σf is the analytic
extension of this map to the upper-half plane by means of the reflection principle.
See the NET map documentation at [24] for more details about this example. For a
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detailed description of another example, see the Floyd-Kelsey-Koch-Lodge-Parry-
Pilgrim-Saenz paper [9, Section 6].

The example above is just one of an extensive collection of examples described
on the NET maps website. For each of the 10, 626 possible dynamic portraits of a
NET map of degree at most 40, it has input and output files for a NET map with
that dynamic portait. And for each of the 46, 265 Hurwitz classes of NET maps of
degree at most 30, there are input and output files for a NET map in that Hurwitz
class.

12.2.7 Eigenvalues of the Pullback Map

Suppose f is a postcritically finite rational map, and suppose for convenience that
the orbifold Of is hyperbolic. Then σf has a unique fixed point τf and σ ◦2

f is a
weak contraction. What can we say about the eigenvalues of Dσf (τf )? If we fix an
upper bound D on the degree, what can we say about the set of eigenvalues of the
derivativesDσf (τf ) for f a postcritically finite rational map with degreeD?

Buff, Epstein, and Koch consider these and related questions in their paper [5].
To compute the eigenvalues of Dσf , they study the coderivative of σf . Let Q(̂C)
be the space of meromorphic quadratic differentials on̂C with simple poles, and let
Qf be the subspace of Q(̂C) of quadratic differentials whose poles are contained in
Pf . There is a pushforward operator (called the Thurston pushforward operator in
[5]) f∗ : Q(̂C) → Q(̂C). It restricts to a pushforward operator f∗ : Qf → Qf
and there is an induced operator f∗ : Q(̂C)/Qf → Q(̂C)/Qf . Let Σf be the
set of eigenvalues of f∗ : Qf → Qf and let Λf be the set of eigenvalues of
f∗ : Q(̂C)/Qf → Q(̂C)/Qf . Then Qf is isomorphic to the cotangent space of
TPf at the point τf , and f∗ : Qf → Qf is isomorphic to the coderivative of σf at
τf .

Here are two of their theorems. The first is about the eigenvalues of a single map,
and the second is about the eigenvalues of a family of unicritical maps.

Theorem 12.9 (Buff-Epstein-Koch) Suppose f : ̂C → ̂C is a postcritically finite
rational map.

i) The elements of Σf are algebraic numbers. If λ ∈ Σf and λ is an algebraic

integer, then either λ = 0 or f is a Lattès map and λ ∈ {±1,±i, 1
2 ± i

√
3

2 ,− 1
2 ±

i
√

3
2 }.

ii) The elements of Λf are algebraic numbers. If λ ∈ Λf is an algebraic integer,
then λ = 0. Furthermore,Λf = {0}∪{λ ∈ ̂C\{0} : there exist a positive integer
m and a cycle of f of period m which has multiplier 1/λm and is not contained
in Pf }.
Given an integerD ≥ 2, let Λ(D) = ∪f Λf and let Σ(D) = ∪f Σ(f ), where in

both cases the union is over all unicritical polynomials f of degree D whose finite
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critical point is periodic. Let rD = 1
2D if D is even and let rD = 1

2D cos(π/(2D)) if D
is odd.

Theorem 12.10 (Buff-Epstein-Koch) Let D ≥ 2 be an integer.

i) Σ(D) ⊂ {z ∈ C : 1
4D < |z| < 1} and {z ∈ C : rD ≤ |z| ≤ 1} ⊂ Σ(D).

ii) Λ(D) ⊂ {z ∈ C : 1
2D < |z| < 1}.

Acknowledgements I thank Sarah Koch, Walter Parry, Kevin Pilgrim, and Edgar Saenz for
helpful comments on an earlier version of this paper.
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Chapter 13
A Classification of Postcritically Finite
Newton Maps

Russell Lodge, Yauhen Mikulich, and Dierk Schleicher

Abstract The dynamical classification of rational maps is a central concern of
holomorphic dynamics. Much progress has been made, especially on the classifi-
cation of polynomials and some approachable one-parameter families of rational
maps; the goal of finding a classification of general rational maps is so far
elusive. Newton maps (rational maps that arise when applying Newton’s method
to a polynomial) form a most natural family to be studied from the dynamical
perspective. Using Thurston’s characterization and rigidity theorem, a complete
combinatorial classification of postcritically finite Newton maps is given in terms
of a finite connected graph satisfying certain explicit conditions.
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13.1 Introduction

The past four decades have seen tremendous progress in the understanding of
holomorphic dynamics. This is largely due to the fact that the complex structure
provides enough rigidity, allowing many interesting questions to be reduced to
tractable combinatorial problems.

To understand the dynamics of rational maps, an important first step is to
understand the dynamics of postcritically finite maps, namely the maps where
each critical point has finite forward orbit. Thurston’s “Fundamental Theorem
of Complex Dynamics” [5] is available in this setting, providing an important
characterization and rigidity theorem for postcritically finite branched covers that
arise from rational maps. Also, the postcritically finite maps are the structurally
important ones, and conjecturally, the set of maps that are quasiconformally
equivalent (in a neighborhood of the Julia set) to such maps are dense in parameter
spaces [18, Conjecture 1.1].

Polynomials form an important and well-understood class of rational functions.
In this case, the point at infinity is completely invariant, and is contained in a
completely invariant Fatou component. This permits enough dynamical structure
so that postcritically finite polynomials may be described in finite terms, e.g., using
external angles at critical values or finite Hubbard trees. A complete classification
of postcritically finite polynomials has been given [1, 22].

Classification results for families of rational functions are rare and mostly
concern one-dimensional families. There is a recent classification of critically fixed
rational maps [4, 12] and critically fixed anti-rational maps [10, 14] in arbitrary
degree, but these classification results do not address higher period critical points.
The noteworthy family that exceeds all these limitations is the family classified here:
Newton maps.

Definition 13.1.1 (Newton Map) A rational function f : ̂C → ̂C is called a
Newton map if there is some complex polynomial p(z) so that f (z) = z − p(z)

p′(z)
for all z ∈ C.

Denote such a Newton map by Np. Newton maps of degree 1 and 2 are trivial
and thus excluded from our entire discussion.

Note that Np is precisely the function that is iterated when Newton’s method
is used to find the roots of the polynomial p. Each root of p is an attracting fixed
point of the Newton map, and the point at infinity is a repelling fixed point. The
algebraic number of roots of p is the degree of p, while the geometric number of
roots of p (ignoring multiplicities) equals the degree of Np . The space of degree d
Newton maps considered up to affine conjugacy has d−2 degrees of freedom, given
by the location of the d roots of p after affine conjugation. The space of degree d
complex polynomials up to affine conjugacy has d − 1 degrees of freedom, given
by the d + 1 coefficients after affine conjugation. Thus it is clear that Newton maps
form a substantial subclass of rational maps, making the combinatorial classification
all the more remarkable. A brief summary of “extended Newton graphs” is given
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below in the introduction, where it should be noted that arbitrary choices must be
made in the construction of so-called “Newton rays” with the result that there is
no unique extended Newton graph associated with a Newton map. The abstract
graph definition and combinatorial equivalence are given in Definitions 13.4.5
and 13.5.13).

Main Theorem A (Classification of Postcritically Finite Newton Maps) There
is a natural bijection between the set of postcritically finite Newton maps (up
to affine conjugacy) and the set of abstract extended Newton graphs (up to
combinatorial equivalence) so that for every abstract extended Newton graph
(�, f ), the associated postcritically finite Newton map has the property that any
associated extended Newton graph is equivalent to (�, f ).

In the study of Newton maps, an important first theorem is the following
characterization in terms of fixed point multipliers.

Proposition 13.1.2 (Head’s Theorem [11]) A rational map f of degree d ≥ 3 is
a Newton map if and only if for each fixed point ξ ∈ C, there is an integerm ≥ 1 so
that f ′(ξ) = (m− 1)/m.

This condition on multipliers forces ∞ to be a repelling fixed point by the
holomorphic fixed point formula. In fact, for a postcritically finite Newton map
all the finite fixed points must be superattracting (otherwise, the immediate basin
contains a critical point that converges to the root), and this corresponds to the roots
of p being simple.

There are a number of partial classification theorems for postcritically finite
Newton maps. Tan Lei has given a classification of cubic Newton maps in terms
of matings and captures (or alternatively in terms of abstract graphs [29]; see also
earlier work by Head [11]). Luo produced a similar combinatorial classification for
Newton maps of arbitrary degree subject to the condition that there is only a single
non-fixed critical value, and this critical value is either periodic or eventually maps
to a fixed critical point [16].

The classification of postcritically fixed Newton maps for arbitrary degree (those
Newton maps whose critical points eventually land on fixed points) is given in
[7] building on the work of [25]. The fundamental piece of combinatorial data
is the channel diagram � which is constructed in [13]. This is a graph in the
Riemann sphere whose vertices are given by the fixed points of the Newton map and
whose edges are given by all accesses of the immediate basins of roots connecting
the roots to ∞ (see the solid lines of Fig. 13.1). To capture the behavior of non-
periodic critical points that eventually map to the channel diagram, it is natural
to consider1 the graph N−np (�) for some integer n. However this graph is not
necessarily connected (see Fig. 13.1 for an example), and so the Newton graph of
level n associated with Np is defined to be the component of N−np (�) that contains
�. It is shown in [7] that for any postcritically finite Newton map Np, there is some

1 We denote the n-th iterate of a dynamical system f : X→ X by f n : X→ X.



424 R. Lodge et al.

Fig. 13.1 Dynamical plane of a degree 6 Newton map Np . The six roots are indicated by black
dots. The five finite poles are indicated by white circles. The channel diagram� is drawn with thick
black curves, and N−1

p (�) \� is drawn with thin black curves. The Newton graph of level one �1

is visible as the component of N−1
p (�) that contains �. Note that N−1

p (�) \�1 is nonempty and
contains one connected component. There are three non-fixed simple critical points indicated by
orange arrows and a white “+”. The rightmost such critical point is mapped by Np to the root in
the blue basin, but more than one iterate is required to map the other two critical points to a root.
There are no free critical points

level n so that the Newton graph of level n contains all critical points that eventually
map to the channel diagram (this fact is non-trivial because preimage components
of the channel diagram were discarded). For minimal n this component is called the
Newton graph in the context of postcritically fixed maps, and the data consisting of
this graph equipped with a graph map inherited from the dynamics of the Newton
map is enough to classify postcritically fixed Newton maps.

We classify postcritically finite Newton maps, building on work of [19]. The chief
difficulty in this generalized setting is the existence of critical points whose forward
orbit does not contain a fixed point. We thus call a critical point free if it is not
contained in the Newton graph �n for any level n. In [15] a finite graph containing
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the postcritical set was constructed for a postcritically finite Newton map. The graph
is composed of three types of pieces:

• the Newton graph (which contains the channel diagram) is used to capture the
behavior of critical points that are eventually fixed.

• Hubbard trees are used to give combinatorial descriptions of renormalizations
at periodic non-fixed postcritical points. See [8] for the construction of the
renormalization. Preimages of the Hubbard trees are taken to capture the behavior
of critical points whose orbits intersect the Hubbard trees (or equivalently the free
critical points).

• Newton rays (single edges comprised of either an internal ray or a sequence
of infinitely many preimages of channel diagram edges) are used to connect all
Hubbard trees and their preimages to the Newton graph.

The construction of these three types of edges is given in [15] and not reproduced
here, but an example is provided in Figs. 13.2 and 13.3.

The restriction of the Newton map to this “extended Newton graph” yields a
graph self-map, and the resulting dynamical graphs are axiomatized (as abstract
extended Newton graphs; see Definition 13.4.5).

Theorem 13.1.3 (Newton Maps to Graphs; [15, Theorem 1.2]) For any extended
Newton graph �∗N ⊂ ̂C associated with a postcritically finite Newton map Np, the
pair (�∗N , Np) satisfies the axioms of an abstract extended Newton graph.

It must be emphasized that arbitrary choices were made in the construction of
the Newton rays, necessitating a rather subtle but natural combinatorial equivalence
relation on our way to a classification.

Our first main result on the way to the classification is that every abstract ex-
tended Newton graph is realized by a unique Newton map (up to affine conjugacy);
it is proven using Thurston’s theorem. In the following theorem statement, f denotes
the unique extension (up to Thurston equivalence) of the graph map f to a branched
cover of the whole sphere, and the set of vertices of a graph � is denoted by �′.

Main Theorem B (Graphs to Newton Maps) Let (�, f ) be an abstract extended
Newton graph (as in Definition 13.4.5). Then there is a postcritically finite Newton
map Np, unique up to affine conjugacy, with extended Newton graph �∗N so that
the marked branched covers (f ,�′) and (Np, (�∗N )

′) are Thurston equivalent.

Denote by Newt the set of postcritically finite Newton maps up to affine
conjugacy, and by NGraph we denote the set of abstract extended Newton graphs
under the graph equivalence of Definition 13.5.13. It follows from the statements of
Theorem 13.1.3 and B that there are well-defined maps

F : Newt → NGraph and F ′ : NGraph → Newt

respectively. It will be shown that the mappingsF and F ′ are bijective, and inverses
of each other, yielding Main Theorem A.
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Fig. 13.2 The dynamical plane of a cubic Newton mapNp displaying part of the extended Newton
graph. The centers of the biggest red, green, and blue basins are fixed critical points. The white
“x” indicates a free critical point, and its orbit is indicated by white dots. It has period 5 and the
corresponding polynomial-like map straightens to z 	→ z2 (which is visible in Fig. 13.3). Thick
black edges indicate the channel diagram �, and successively lighter edges indicate the additional
edges in �1, �2 and �3 (due to the small scale many edges from �3 are omitted, though enough
are drawn to separate the filled Julia sets as required by the construction). The combinatorial
invariant for Np consists of �3, the Hubbard trees of each of the five filled Julia sets, and five
Newton rays connecting them to �3. A Hubbard tree/Newton ray pair is exhibited in the zoom of
Fig. 13.3. (Both images produced by Wolf Jung’s Mandel software)

Remark 13.1.4 This paper not only provides a classification of the largest non-
polynomial family of rational maps so far, it also lays foundations for classification
and rigidity results in a substantially larger context. In particular, there is the
following rigidity result: all Newton maps, postcritically finite or not, are rigid in
the sense that any two such maps can be distinguished in purely combinatorial terms
(plus conformal invariants such as multipliers of attracting cycles), except when they
admit embedded polynomial-like dynamics that fails to be rigid [6] (see also [24]
in the non-renormalizable case). In parallel, strong results about local connectivity
for the Julia sets of Newton maps are developed. In particular, the boundary of
every component of the basin of a root is locally connected; this was also shown
independently in [30].
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Fig. 13.3 Zoom of Fig. 13.2 at the free critical point. The filled Julia set is visible as a black disk,
and its Hubbard tree is drawn in orange. The white edges are level 3 edges in the Newton graph
�3. The yellow edge is a period 5 Newton ray

The fundamental property of the dynamics that is underlying our work is that
Fatou components have a common accessible boundary point at infinity, as well
as the preimages of these Fatou components. A basic ingredient in more general
classification and rigidity results builds on periodic Fatou components with common
accessible boundary points, and for these our methods will be a key ingredient.

We also mention work of Mamayusupov [17] that establishes a bijection between
the set of rational maps that arise as Newton maps of transcendental entire functions
and the set of postcritically finite Newton maps of our study. Finally, we should also
mention that Newton’s method is much better at actually finding roots of complex
polynomials than its reputation sometimes predicts; see for instance [23, 26–28].

Structure of This Paper Section 13.2 introduces Thurston’s characterization and
rigidity theorem for postcritically finite branched covers. This theorem asserts that a
topological branched cover that has no obstructing multicurves is uniquely realized
by a rational map (under a mild assumption that is irrelevant for our purposes), and
that such multicurves are the only possible obstructions for existence. Since it is
often very hard to show directly that a cover is unobstructed, we describe a theorem
of Pilgrim and Tan that is very useful for this purpose, controlling the location of
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obstructions. Section 13.3 presents a result on how to extend certain kinds of graph
maps to branched covers on the whole sphere.

Section 13.4 defines the abstract extended Newton graph, which will be shown
to be a complete invariant for postcritically finite Newton maps. The equivalence on
such graphs is defined in Sect. 13.5, and the connection between this combinatorial
equivalence and Thurston equivalence is described.

Section 13.6 proves Theorem B by showing that abstract extended Newton
graphs equipped with their graph self-maps extend to branched covers of the sphere
that are unobstructed.

Section 13.7 proves Theorem A, establishing the combinatorial classification of
postcritically finite Newton maps.

13.2 Thurston Theory on Branched Covers

We will be using Thurston’s theorem to prove that the combinatorial model for
postcritically finite Newton maps is realized by a rational map, and we present
the requisite background in this section. As one observes from the statement of
Thurston’s theorem below, this amounts to showing that the combinatorial model
has no obstructing multicurves. There are infinitely many multicurves in a sphere
with four or more marked points, so a priori it is very hard to show obstructions do
not exist. However, the “arcs intersecting obstructions” theorem of Pilgrim and Tan
can in some cases drastically reduce the possible locations of obstructions.

Let f : S2 → S
2 be an orientation-preserving branched cover from the two-

sphere to itself. Denote the set of critical points of f by Cf . Define the postcritical
set Pf as follows:

Pf :=
⋃

n≥1

f n(Cf ).

The map f is said to be postcritically finite if the set Pf is finite.
A marked branched cover is a pair (f,X), where f : S2 → S

2 is an orientation-
preserving branched cover and X is a finite set containing Pf such that f (X) ⊂ X.

Definition 13.2.1 (Thurston Equivalence of Marked Branched Covers) Two
marked branched covers (f,X) and (g, Y ) are Thurston equivalent if there are two
orientation-preserving homeomorphisms φ1, φ2 : S2 → S

2 such that

φ1 ◦ f = g ◦ φ2

and there exists an homotopy : [0, 1]×S
2 → S

2 with (0, ·) = φ1 and (1, ·) =
φ2 such that  (t, ·)|X is constant in t ∈ [0, 1] with  (t,X) = Y . If φ1 and φ2 are
homotopic to the identity map, the marked branched covers are said to be homotopic.
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It is perhaps more intuitive to rephrase Thurston equivalence as saying that f and
g are given only up to homotopy rel the marked points, and this homotopy may be
chosen so that f and g are topologically conjugate.

We say that a simple closed curve γ is a simple closed curve in (S2,X) if γ ⊂
S

2 \X. Such a γ is essential if both components of the complement S2 \ γ contain
at least two points of X. Let γ0, γ1 be two simple closed curves in (S2,X). We
say that γ0 and γ1 are isotopic relative to X, written γ0 ,X γ1, if there exists a
continuous, one-parameter family of simple closed curves in (S2,X) joining γ0 and
γ1. We use [γ ] to denote the isotopy class of a simple closed curve γ . A multicurve
is a collection of pairwise disjoint and non-isotopic essential simple closed curves
in (S2,X). A multicurve� is said to be f -stable if for every γ ∈ �, every essential
connected component of f−1(γ ) is isotopic relative to X to some element of�.

Definition 13.2.2 (Thurston Linear Transform) For every f -stable multicurve�
we define the corresponding Thurston linear transform f� : R� → R

� as follows:

f�(γ ) =
∑

γ ′⊂f−1(γ )

1

deg(f |γ ′ : γ ′ → γ )
[γ ′],

where [γ ′] denotes the element of � isotopic to γ ′ if it exists. If there are no such
elements, the sum is taken to be zero. Denote by λ� the largest eigenvalue of f�
(by the Perron–Frobenius theorem, it exists and is non-negative real).

The Thurston linear transform is also known equivalently as the Thurston matrix
or multicurve matrix.

Suppose that � is a stable multicurve. A multicurve � is called a multicurve
obstruction (or Thurston obstruction) if λ� ≥ 1. A real-valued n × n matrix A is
called irreducible if for every entry (i, j), there exists an integer k > 0 such that
Aki,j > 0. A multicurve � is said to be irreducible if the matrix representing the
linear transform f� is irreducible.

The statement of Thurston’s theorem uses the notion of a hyperbolic orbifold. We
omit the definition, referring the reader to [5] while observing that there are only
a few well-understood cases where Of is not hyperbolic, and that Of is always
hyperbolic if f has at least three fixed branched points. The latter is always the case
for Newton maps of degree d ≥ 3, so the restriction to hyperbolic orbifolds is of no
concern to us.

Theorem 13.2.3 (Thurston’s Theorem [3, 5]) A marked branched cover (f,X)
with hyperbolic orbifold is Thurston equivalent to a marked rational map if and only
if (f,X) has no multicurve obstruction. Furthermore, if (f,X) is unobstructed, the
marked rational map is unique up to Möbius conjugacy.

We now present a theorem of Pilgrim and Tan [21] that will be used in Sect. 13.6
to show that certain marked branched covers arising from graph maps do not have
obstructions and are therefore equivalent to rational maps by Thurston’s theorem.
First some notation will be introduced.
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Assume that (f,X) is a marked branched cover of degree d ≥ 3. An arc in
(S2,X) is a continuous map α : [0, 1] → S

2 such that α(0) and α(1) are in X, the
map α is injective on (0, 1), and X ∩ α((0, 1)) = ∅. A set of pairwise non-isotopic
arcs in (S2,X) is called an arc system.

The following intersection number is used in the statement of Theorem 13.2.5;
we use the symbol, to denote isotopy relative to X.

Definition 13.2.4 (Intersection Number) Let α and β each be an arc or a simple
closed curve in (S2,X). Their intersection number is

α · β := min
α′,α, β ′,β

#{(α′ ∩ β ′) \X} .

This intersection can be extended to arc systems and multicurves as follows: let A
and B each be an arc system or a multicurve in (S2,X). Then

A · B := min
A′,A,B ′,B

#{(A′ ∩ B ′) \X} .

For an arc system �, we introduce a linear map f� : R� → R
�, which is a

rough analogue of the Thurston linear map for multicurves. For λ ∈ �, let

f�(λ) :=
∑

λ′⊂f−1(λ)

[λ′]� ,

where [λ′]� denotes the element of � homotopic to λ′ rel X (the sum is taken to
be zero if there are no such elements). It is said that � is irreducible if the matrix
representing f� is irreducible.

Denote by �̃(f n) the union of those components of f−n(�) that are isotopic
to elements of � relative X, and define �̃(f n) for a multicurve � analogously.
The following is a special case of a theorem from [21] that gives control on
the location of irreducible multicurve obstructions by asserting that they may not
intersect certain preimages of irreducible arc systems.

Theorem 13.2.5 (Arcs Intersecting Obstructions [21, Theorem 3.2]) Let (f,X)
be a marked branched cover, � an irreducible multicurve obstruction, and � an
irreducible arc system. Suppose furthermore that #(� ∩�) = � · �. Then exactly
one of the following is true:

(1) � ·� = 0 and� · f−n(�) = 0 for all n ≥ 1.
(2) � · � �= 0 and for n ≥ 1, each component of � is isotopic to a unique

component of �̃(f n). The mapping f n : �̃(f n) → � is a homeomorphism
and �̃(f n)∩ (f−n(�)− �̃(f n)) = ∅. More precisely, for each γ ∈ �, there is
exactly one curve γ ′ ⊂ f−n(γ ) such that γ ′ ∩ �̃(f n) �= ∅. Moreover, the curve
γ ′ is the unique component of f−n(γ ) which is isotopic to an element of �.
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13.3 Extending Maps on Finite Graphs

We present a sufficient condition under which a certain type of map of a graph in
S

2 has a unique continuous extension to the whole sphere up to equivalence. The
following formulation follows [1, Chapter 5]. The Alexander Trick is foundational
to such results and will be used elsewhere.

Lemma 13.3.1 (Alexander Trick) Let h : S1 → S
1 be an orientation-preserving

homeomorphism. Then there exists an orientation-preserving homeomorphism h :
D→ D such that h|S1 = h. The map h is unique up to isotopy relative S1.

Definition 13.3.2 (Finite Graph) Let V be a finite set of distinct points in S
2. Each

element of V is called a vertex. An edge is a subset of S2 of the form λ(I) where
I = [0, 1] and

• λ : I → S
2 is continuous and injective on (0, 1), and

• λ(x) ∈ V ⇐⇒ x ∈ {0, 1}.
LetE be a finite set of edges that (pairwise) intersect only at vertices. A finite graph
(in S

2) is a pair of the form (V ,E).

We sometimes omit the reference to the ambient space S
2 though it is always

implicit.

Definition 13.3.3 (Subgraphs) Let �1 = (V1, E1) and �2 = (V2, E2) be finite
graphs. We say that �1 is a subgraph of �2 (denoted �1 ⊂ �2) if V1 ⊂ V2 and
E1 ⊂ E2.

Definition 13.3.4 (Graph Map) Let �1, �2 be connected finite graphs. A continu-
ous map f : �1 → �2 is called a graph map if it is injective on each edge of �1,
if f (V1) ⊂ V2 and f−1(V2) ⊂ V1, and f is compatible with the embeddings of the
graphs in S

2.

The compatibility condition on f is a local condition at each vertex v, described
as follows. If f is locally injective at v, then f is required to preserve the cyclic
ordering at v. On the other hand, if f is not locally injective at v, then the
cyclic ordering of the half-edges at v and f (v) should be compatible with a local
orientation-preserving cover of degree degv f . We will use this definition only when
the number of half-edges at v equals degv f times the number of edges at f (v), and
thus compatibility means that the half-edges at v have the same cyclic ordering as
f (v), repeated degv f times.

Definition 13.3.5 (Regular Extension) Let f : �1 → �2 be a graph map. An
orientation-preserving branched cover f : S2 → S

2 is called a regular extension of
f if f |�1 = f and f is injective on each component of S2 \ �1.

It follows that every regular extension f may have critical points only at the vertices
of �1, and the local degree of f at v coincides with degv(f ).
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Lemma 13.3.6 (Isotopic Graph Maps[1, Corollary 6.3]) Let f, g : �1 → �2 be
two graph maps that coincide on the vertices of �1 such that for each edge e in
�1 we have f (e) = g(e) as a set. Suppose that f and g have regular extensions
f , g : S2 → S

2. Then there exists a homeomorphism ψ : S2 → S
2, isotopic to the

identity relative the vertices of �1, such that f = g ◦ ψ .

We must establish some notation for the following proposition from [1]. Let f :
�1 → �2 be a graph map. For each vertex v of �i with fixed i ∈ {1, 2}, choose
a neighborhood Uv ⊂ S

2 such that all edges of �i that enter Uv are incident to v,
the vertex v is the only vertex of �i in Uv , and the neighborhoods Uv and Uw are
disjoint for all vertices v �= w in �i . We may assume without loss of generality that
in local coordinates, Uv is a round disk of radius 1 that is centered at v and that
the intersection of any edge of �i with Uv is either empty or a radial line segment.
Without loss of generality, we may assume that f |Uv∩�1 is length-preserving for all
vertices v in �1.

We describe how to explicitly extend f to each Uv . For a vertex v ∈ �1, let γ1
and γ2 be two adjacent edges ending there. In local coordinates, these are radial
lines at angles #1,#2 where 0 < #2 − #1 ≤ 2π (if v is an endpoint of �1, then
set #1 = 0, #2 = 2π). In the same way, choose arguments #′1, #′2 for the image
edges in Uf(v) and extend f to a map f̃ on �1 ∪⋃v Uv defined by

f̃ (ρ,#) =
(

ρ,
#′2 −#′1
#2 −#1

· (#−#1)+#′1
)

, (13.1)

where (ρ,#) are polar coordinates in the sector bounded by the rays at angles #1
and #2. In particular, sectors are mapped onto sectors in an orientation-preserving
way.

Proposition 13.3.7 ([1, Proposition 5.4]) A graph map f : �1 → �2 has a regular
extension if and only if for every vertex y ∈ �2 and every component U of S2 \ �1,
the extension f̃ is injective on

⋃

v∈f−1(y)

Uv ∩ U .

The fundamental combinatorial object in our classification of Newton maps is
a finite graph � equipped with a self-map f : � → � (Definition 13.4.5).
Strictly speaking, f is in general not a graph map since Newton ray edges contain
finitely many preimages of vertices in the Newton graph that are not vertices in
� (these vertices are purposely ignored on our way to producing a finite graph).
This motivates the following weaker definition which is identical except that we no
longer assume f−1(V2) ⊂ V1.

Definition 13.3.8 (Weak Graph Map) A continuous map f : �1 → �2 is called
a weak graph map if it is injective on each edge of �1, if f (V1) ⊂ V2, and f is
compatible with the embeddings of the graphs in S

2.
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Remark 13.3.8 Given a weak graph map f : �1 → �2, the combinatorics of the
domain can be slightly altered to produce a graph map f̂ : �̂1 → �2 in the following
natural way. We take the graph �̂1 to have vertices given by f−1(V2), and edges
given by the closures of complementary components of �1 \ f−1(V2). We simply
take f̂ = f .

13.4 Abstract Extended Newton Graph

In [15], we extracted from every postcritically finite Newton map an extended
Newton graph (Sect. 13.6.1), and we axiomatized these graphs in Sect. 13.7. In this
section we review the definition of the abstract extended Newton graph which will
be used in Sect. 13.7 of the present work to classify postcritically finite Newton
maps. Abstract extended Newton graphs consist of three pieces: abstract Newton
graphs, abstract extended Hubbard trees, and abstract Newton rays connecting the
first two objects.

The definition of abstract extended Hubbard trees was given in Definition 4.4 of
[15], and will not be repeated here. We simply note that it is the usual definition of
degree d abstract Hubbard tree from [22], where the set of marked points includes
all periodic points of periods up to some fixed length n (since postcritically finite
Newton maps cannot have parabolic cycles, the number of periodic points of period
i equals di). Such an abstract extended Hubbard tree is said to have cycle type n.

To define the abstract Newton graph, it is necessary to first define the abstract
channel diagram.

Definition 13.4.1 An abstract channel diagram of degree d ≥ 3 is a graph� ⊂ S
2

with vertices v∞, v1, . . . , vd and edges e1, . . . , el that satisfies the following:

• l ≤ 2d − 2;
• each edge joins v∞ to some vi for i ∈ {1, 2, . . . , d};
• each vi is connected to v∞ by at least one edge;
• if ei and ej both join v∞ to vk , then each connected component of S2 \ ei ∪ ej

contains at least one vertex of �.

The classification of postcritically fixed Newton maps was given in terms of a
combinatorial object called the “abstract Newton graph” [7]. We define the term
almost identically except that in the following definition Condition (3) is relaxed
from equality to an inequality (this corresponds to the fact that postcritically finite
maps may have critical points that are not eventually fixed).

Definition 13.4.2 (Abstract Newton Graph) Let � be a connected finite graph in
S

2 with vertex set V (�) and f : � → � a graph map. The pair (�, f ) is called an
abstract Newton graph of level N� if it satisfies the following conditions:

(1) There exists d� ≥ 3 and an abstract channel diagram� � � of degree d� such
that f fixes each vertex and each edge of � (pointwise).
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(2) If v∞, v1, . . . , vd� are the vertices of �, then vi ∈ � \� if and only if i �= ∞.
Moreover, there are exactly degvi (f )− 1 ≥ 1 edges in � that connect vi to v∞
for i �= ∞.

(3)
∑

x∈V (�)
(

degx f − 1
) ≤ 2d� − 2.

(4) N� is the minimal integer so that fN�−1(v) ∈ � for all v ∈ V (�) with
degv f > 1.

(5) fN� (�) ⊂ �.
(6) For every v ∈ V (�) with fN�−1(v) ∈ �, the number of adjacent edges in �

equals degv f times the number of edges adjacent to f (v).
(7) The graph � \� is connected.
(8) For every vertex y ∈ V (�) and every componentU of S2\�, the local extension

f̃ from Eq. (13.1) is injective on
⋃

v∈f−1(y) Uv ∩ U .
Next we define abstract Newton rays. Let� be a finite connected graph embedded

in S
2 and f : �→ � a weak graph map so that after f is promoted to a graph map

in the sense of Remark 13.3.8, it can be extended to a branched cover f : S2 → S
2.

Definition 13.4.3 (Abstract Newton Ray) Let R be an arc in S
2 whose endpoints

are denoted i(R) and t (R). Then R is called an abstract Newton ray with respect
to (�, f ) if R ∩ � = {i(R)} and f (R) = R ∪ E , where E is a (possibly empty)
subgraph of �. Such an abstract Newton ray is called a periodic abstract Newton
ray with respect to (�, f ) if moreover there is a minimal positive integer m so that
f
m
(R) = R ∪ E , where E is a (possibly empty) subgraph of �. We say that the

integerm is the period of R, and that R lands at t (R).

Definition 13.4.4 (Preperiodic Abstract Newton Ray) An abstract Newton ray
R′ is called a preperiodic abstract Newton ray with respect to (�, f ) if the following
hold:

• there is a minimal integer l > 0 such that f
l
(R′) = R∪E , where E is a (possibly

empty) subgraph of � and R is a periodic abstract Newton ray with respect to
(�, f ).

• R′ is not a periodic abstract Newton ray with respect to (�, f ).

We say that the integer l is the preperiod of R′, and that R′ lands at t (R′).

Now we are ready to introduce the concept of an abstract extended Newton
graph. Later we prove that this graph carries enough information to characterize
postcritically finite Newton maps.

Definition 13.4.5 (Abstract Extended Newton Graph) Let � ⊂ S
2 be a finite

connected graph, and let f : � → � be a weak graph map. A pair (�, f ) is called
an abstract extended Newton graph if the following are satisfied:

(1) (Abstract Newton graph) There exists a positive integer N and an abstract
Newton graph � at level N so that � ⊆ �. Furthermore N is minimal so
that condition (4) holds.
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(2) (Periodic Hubbard trees) There is a finite collection of (possibly degenerate)
minimal abstract extended Hubbard trees Hi ⊂ � which are disjoint from �,
and for each Hi there is a minimal positive integer mi ≥ 2 called the period of
the tree such that f mi (Hi) = Hi.

(3) (Preperiodic trees) There is a finite collection of possibly degenerate treesH ′
i ⊂

� of preperiod �i , i.e. there is a minimal positive integer �i so that f �i (H ′
i ) is a

periodic Hubbard tree (H ′
i is not necessarily a Hubbard tree). Furthermore for

each i, the tree H ′
i contains a critical or postcritical point.

(4) (Trees separated) Any two different periodic or pre-periodic Hubbard trees lie
in different complementary components of �.

(5) (Periodic Newton rays) For every periodic abstract extended Hubbard tree Hi
of periodmi , the graph� contains exactly one periodic abstract Newton ray Ri
with respect to (�, f ). The ray lands at a repelling fixed point ωi ∈ Hi of f mi

and has periodmi .
(6) (Preperiodic Newton rays) For every preperiodic tree H ′

i , there exists at least
one preperiodic abstract Newton ray in � with respect to (�, f ) connecting a
vertex of H ′

i to �.
(7) (Unique extendability) For every vertex y ∈ V (�) and every component U of

S
2 \�, the local extension f̃ from Eq. (13.1) is injective on

⋃

v∈f−1(y) Uv ∩U .
(8) (Topological admissibility)

∑

x∈V (�)
(

degx f − 1
) = 2d� − 2, where d� is the

degree of the abstract channel diagram� ⊂ �.
(9) (Edges and vertices) Every edge in � must be one of the following three

types:

• Type N: An edge in the abstract Newton graph � of condition (1).
• Type H: An edge in a periodic or pre-periodic abstract Hubbard tree of

condition (2) or (3).
• Type R: A periodic or pre-periodic abstract Newton ray with respect to
(�, f ) from condition (5) or (6).

As a consequence, every vertex of� is either a Hubbard tree vertex or a Newton
graph vertex.

Remark 13.4.6 (Regular Extension) The purpose of condition (7) is that after f
has been upgraded to a graph map following Remark 13.3.8, the hypothesis of
Proposition 13.3.7 is met. Thus f has a regular extension f which is unique up
to Thurston equivalence.

Remark 13.4.7 (Implied Auxiliary Edges) Suppose that Hi is a Hubbard tree (or
Hubbard tree preimage) in some complementary component Ui of � with connect-
ing Newton ray Ri . If Hi contains a critical point, the existence of a regular graph
map extension from Condition (7) implies that� must have at least one pre-periodic
Newton ray edge distinct from Ri connecting Hi to �. All such pre-periodic rays
must map to f (Ri) under f (ignoring the parts in � as usual), and each such ray is
called an auxiliary edge corresponding to Ri .
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Remark 13.4.8 (Consistency in [15]) It is well-known that a polynomial may have
a fixed point that is the landing point of a non-fixed periodic cycle of rays. On the
other hand, each polynomial has at least one fixed point that is the landing point
of a fixed ray (in the quadratic case, this is the so-called β fixed point). There was
some effort in [15] to allow more generally that a periodic Newton ray land at a
fixed point in a Hubbard tree through a higher period access. Unfortunately this
was not done consistently, and so there are some matters that we would like to
clarify. First, Condition (5) of Definition 7.3 in [15] might seem to permit accesses
of higher period ri , but the uniqueness of Newton rays in a given complementary
component of � (found in the same condition) immediately implies that ri = 1.
Thus, despite the superficial difference, Condition (5) in Definition 7.3 of [15] and
Definition 13.4.5 above are actually equivalent. The only remaining issue is that in
the proof of Theorem 6.2 in [15], one should always choose the fixed point of the
first return map on the Hubbard tree to be the landing point of a fixed external ray
under straightening. This ensures that the graph satisfies Condition (5).

13.5 Equivalence of Abstract Extended Newton Graphs

When the extended Newton graph was constructed for a postcritically finite
Newton map in [15], the Newton graph and Hubbard tree edges were constructed
intrinsically, but the construction of the Newton rays involved many choices. The
endpoints and accesses of the Newton rays were chosen arbitrarily, and in the
case of non-degenerate Hubbard trees, there are a countably infinite number of
homotopy classes of arcs by which the tree could be connected to the Newton graph
(corresponding to the fact that removing the Hubbard tree from the complementary
component of the Newton graph produces a topological annulus).

Let (�1, f1) and (�2, f2) be two abstract extended Newton graphs. In this
section, we define an equivalence relation for abstract extended Newton graphs so
that we can tell from the combinatorics of (�1, f1) and (�2, f2) whether or not their
extensions to branched covers are Thurston equivalent. In fact, the main difficulty in
determining equivalence of these graphs comes from establishing the equivalence
of extensions across the topological annuli just mentioned. This motivates the
following notation: for an abstract Newton graph �, denote by �− the resulting
graph when all edges of type R are removed; only the type N and H edges remain.
We keep the endpoints of the removed edges as vertices of �−.

The combinatorial equivalence given below in Definition 13.5.13 must somehow
encode the Thurston class of graph map extensions to complementary components
of �−1 and �−2 that contain non-degenerate Hubbard trees (for other types of
components it is already clear how to proceed because they are either topological
disks or once-punctured disks). This is our primary focus from now until the
definition is given.
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Definition 13.5.1 (Newton Ray Grand Orbit) The (forward) orbit of a Newton
ray R in an abstract extended Newton graph � is the set of all Newton rays R′ in �
so that f k(R) contains R′ for some k. The grand orbit of a Newton ray R in � is
the union of all Newton rays R′ in � whose orbit contains an edge in the orbit of R.

Remark 13.5.2 (Some Simplifying Assumptions) To simplify notation, we assume
in Sects. 13.5.1 and 13.5.2 that �1 and �2 are combinatorially and dynamically
equal apart from their Newton rays. Specifically this means that the identity map on
S

2 induces a graph isomorphism between the Newton graphs of �1 and �2 (from
now on denoted �), as well as the Hubbard trees. We also assume that f1 = f2
on all vertices of �1 and �2 (the restriction to vertices of either graph map will be
denoted f ).

In Sect. 13.5.1 we describe how to alter the endpoints and accesses of Newton
ray grand orbits in �1 so that they coincide with those of �2 without changing
the homotopy class of the graph map extension. Once this is done, a method is
given in Sect. 13.5.2 to determine whether the rays yield equivalent extensions
across complementary components of �−1 and �−2 that contain non-degenerate
Hubbard trees; accordingly, an equivalence is placed on ray grand orbits. Finally
the combinatorial equivalence of abstract extended Newton graphs is given in
Sect. 13.5.3 in terms of the equivalence on ray grand orbits.

13.5.1 Making Ray Endpoints and Accesses Coincide

We present an initial alteration to the Newton ray grand orbits of �1 and �2 so that
their endpoints and accesses to the Newton graph and Hubbard tree vertices coincide
(it is possible and not infrequent for a repelling fixed point of a polynomial to be
the landing point of multiple external rays, and we simply wish to fix a preferred
external ray, corresponding to an access to the fixed point in the complement of
the filled Julia set). These alterations are done so as to not change the homotopy
classes of the graph map extensions, so after the alterations the different graph
maps are easier to compare because they only differ in the homotopy classes of
rays connecting Hubbard trees to the Newton graph with corresponding endpoints,
and so can be distinguished using an integer condition. Even though the operation
is performed on ray grand orbits, it is somewhat non-dynamical in nature because a
periodic Newton ray may be replaced with a Newton ray that is not periodic.

Lemma 13.5.3 Suppose that �−1 = �−2 and that f1|�−1 = f2|�−2 . Let Hm be a
Hubbard tree of period m ≥ 2 in both �1 and �2, where Hm is contained in the
complementary component Um of �. Let R1,m ⊂ �1 be a Newton ray landing at
ω1 ∈ Hm and R2,m ⊂ �2 a Newton ray landing at ω2 ∈ Hm. Then there is a
Newton ray R′2,m landing at Hm whose grand orbit under the extension f2 has the
same endpoints and accesses as the ray grand orbit of R1,m (while the homotopy
class of R′2,m will usually be different from that of Rq,m).
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Proof Let Hm+1 be the Hubbard tree that contains f (Hm), and let Vm be the
complementary component of f (�) containing Hm+1. Note that upon restricting
the domain,

f 2 : Um \ f−1
2 (Hm+1)→ Vm \Hm+1

defines a covering map between two topological annuli. Under this map, the image
ofR1,m is a curve in Vm that is not necessarily simple, but using annular coordinates
this image curve is homotopic in Vm \Hm+1 rel endpoints to a simple curve ρ′2,m+1.

Let R′2,m be the lift of ρ′2,m+1 under f 2 that is homotopic to R1,m, having the same
accesses and endpoints (such a lift exists by the homotopy lifting property rel the
vertex set). Clearly f 2(R

′
2,m) is a simple arc in Vm \ Hm+1. We have thus shown

that R′2,m is a ray that has the correct endpoints and accesses.
Next we produce the ray grand orbit of R′2,m by a lifting procedure. LetHm−1 be

a Hubbard tree so that f2(Hm−1) containsHm, and letR1,m−1 be the ray in the grand
orbit of R1,m that lands atHm−1. Define Um−1 to be the complementary component
of � containing Hm−1, and let Vm−1 := f 2(Um−1). Let zm be the endpoint of
f2(R1,m−1) that is in ∂Vm−1. Note that the portion of the path f2(R1,m−1) that is
contained in � defines a path connecting zm to the endpoint of R′2,m that lies in the

Newton graph. The concatenation of this path with R′2,m yields a path in Vm−1 that
connectsHm to zm. There is a lift of this concatenation that has the same endpoints
and accesses as R1,m−1, and we denote this lift by R′2,m−1.

Continuing this lifting procedure inductively produces the desired ray grand
orbit. ��
Corollary 13.5.4 Suppose that �−1 = �−2 and that f1|�−1 = f2|�−2 . There is a

graph �′2 that is the domain of a continuous map f ′2 so that

• �−2 is a subgraph of �′2 and f2|�−2 = f
′
2|�−2 ,

• the only edges of �′2 that are not in �−2 are Newton ray edges,
• the endpoints and accesses of the Newton rays in �1 coincide with those of the

rays in �′2, and
• f ′2 is the restriction of f 2 to �′2.

Proof Apply the preceding lemma to each Newton graph ray orbit in �1. ��
Remark 13.5.5 Having changed the Newton rays, a corresponding change is made
to the auxiliary edges. The auxiliary edges associated with R′2,i are taken to be all

the Newton rays in f
−1
2 (f 2(R2,i)) that are contained in Ui . It is easily seen that �′2

in the Corollary satisfies all of the properties of an abstract extended Newton graph
except that the Newton rays are not necessarily periodic or preperiodic. The loss
of periodicity is actually not significant since we only need to understand certain
topological properties of the extension described next.
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13.5.2 Equivalence on Newton Ray Grand Orbits

We now wish to compare the extensions of graph maps over complementary compo-
nents of �−1 and�−2 containing nondegenerate Hubbard trees in their closures. The
other complementary components may only be disks or once-punctured disks; these
are not discussed here because there is a unique extension over such components up
to isotopy given by the Alexander trick [9, Chapter 2.2].

Restricting attention to the complementary components of � that contain the
grand orbit of a single Hubbard tree, we will show in Lemma 13.5.8 that whether
or not two extensions are equivalent (in the sense of Definition 13.5.6) can be
determined solely in terms of numerical properties of the Newton rays. We can then
define a combinatorial equivalence on Newton ray grand orbits so that two ray grand
orbits are Thurston equivalent if and only if the extensions to the complementary
components of � intersecting the grand orbit are equivalent (see Lemma 13.5.11).

Let H1 be a nondegenerate Hubbard tree in �1 (and �2) of preperiod r ≥ 0
and period m ≥ 2, and let Hi = f i−1(H1) for 1 ≤ i ≤ r + m. Let Ui be
the complementary component of � that contains Hi and let U = ∪iUi . Each
f1(Ui) is homeomorphic to a disk, and is a complementary component of f (�) that
contains both Hi+1 and Ui+1 as a proper subset. So strictly speaking, the restriction
of f1 and f2 to U do not define a dynamical system on U. To remedy this, fix a
homeomorphism f1(U) → U that restricts to the identity on each Hubbard tree.
Postcomposing each of f1 and f2 by this homeomorphism produces two maps
which we denote f1, f2 : U→ U by a slight abuse of notation.

Definition 13.5.6 (Thurston Equivalent Graph Extensions Over U) We say that
two extensions f1, f2 : U → U of the graph maps f1, f2 are Thurston equivalent
over U if there are homeomorphisms φ1, φ2 : U→ U so that:

φ1 ◦ f1 = f2 ◦ φ2

and there exists a homotopy : [0, 1] ×U → U with  (0, ·) = φ1,  (1, ·) = φ2
so that for all t ∈ [0, 1], we have that  (t, ·)|∂U ⊂ ∂U and  (t, ·) restricts to the
identity on graph vertices for all t . If φ1 and φ2 are homotopic to the identity in the
sense just mentioned, we say that the extensions are homotopic over U.

Each Hubbard tree Hi is contained in a complementary component Ui of � so
that Ui \ Hi is a non-degenerate topological annulus. Let Ti denote the right-hand
Dehn twist about this annulus. The Ti operate on pairwise disjoint annuli because
no two Hi lie in the same complementary component of the Newton graph. Thus
any two such twists commute.

Let R1,i , R2,i for 1 ≤ i ≤ r+m denote the Newton ray edges connectingHi to �
in �1,�2 respectively. By Corollary 13.5.4, we may assume R1,i and R2,i have the
same endpoints and accesses. The equality symbol is used for arcs to indicate that
they are homotopic rel endpoints on U. Note that for all i, there is a unique �i ∈ Z

and �′i ∈ Z so that T �ii (R1,i) = R2,i and T
�′i
i+1(f1(R1,i)) = f2(R2,i).
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Remark 13.5.7 It is very likely that the numerical condition in the following lemma
can be simplified. For example, in Proposition 2.2 of [2], the Thurston class of a
polynomial mating postcomposed by a Dehn twist about the equator is expressed
in terms of the same mating with one of the polynomials rotated. A similar sort
of behavior is expected when applying a Dehn twist about a filled Julia set for a
Newton map. Though less conceptual, the following lemma can be proven quickly.

Lemma 13.5.8 (Numerics of Equivalent Extensions) The extensions f1 and f2
over U of the graph maps f1 and f2 are Thurston equivalent if and only if there are
integers n1, . . . , nr+m−1 that satisfy the following system of linear equations:

di(ni − �i)+ �′i = ni+1 (13.2)

where 1 ≤ i ≤ r +m− 1 and nr = nr+m.

Proof Suppose that the extensions f1 and f2 are Thurston equivalent. Then there
are ni ∈ Z so that up to branched cover homotopy,

S ◦ f1 = f2 ◦ S (13.3)

where S = T n1
1 ◦ . . . ◦ T nm+r−1

m+r−1 .
Fix i as in the statement of the lemma. All of the Dehn twists T1, . . . , Tm+r−1 fix

f1(R1,i) except possibly Ti+1, and thus the expression on the left side of Eq. (13.3)
acts on the ray R1,i as follows:

S ◦ f1(R1,i) = T ni+1
i+1 ◦ f1(R1,i) (13.4)

and the right side acts on R1,i as follows:

f2 ◦ S(R1,i) = f2(T
ni
i (R1,i))

= f2(T
ni−�i
i (R2,i))

= T di(ni−�i)i+1 (f2(R2,i))

= T di(ni−�i)+�
′
i

i+1 (f1(R1,i)).

Equating the expression in the previous line and the right side of Eq. (13.4) we
obtain Eq. (13.2).

If on the other hand Eq. (13.2) has integer solutions, it follows that S◦f1 and f2◦S
are homotopic over U using a close analog of Lemma 13.3.6. Thus the extensions
f1 and f2 are Thurston equivalent over U. ��
Remark 13.5.9 Since the grand orbit of a Hubbard tree can be written as the union
of the forward orbit of finitely many Hubbard trees, Definition 13.5.6 extends to the
case of complementary components of the Newton graph containing the grand orbit
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of a Hubbard tree. Similar numerics as in the previous lemma hold for this slightly
more general case.

Definition 13.5.10 (Newton Ray Grand Orbit Equivalence) We say that the
grand orbit of the Newton ray R1,i ⊂ �1 landing at Hi is equivalent to the grand
orbit of the ray R2,i ⊂ �2 landing at Hi if after applying Corollary 13.5.4 to
guarantee that R1,i and R2,i have the same endpoints and accesses, the numerical
condition of Lemma 13.5.8 is satisfied.

Lemma 13.5.11 Let (�1, f1) and (�2, f2) be two abstract extended Newton
graphs with �−1 = �−2 and f1 = f2. Then if the corresponding Newton ray orbits
are equivalent under Definition 13.5.10, the extensions of f1 and f2 to the sphere
are Thurston equivalent as marked covers.

Proof Applying Lemma 13.5.4 to f2 : �2 → �2, we may assume that the Newton
ray grand orbit of f2 has the same endpoints and accesses as�1. Let U be the union
of the complementary components of �−2 that contain a non-degenerate Hubbard
tree in the closure. Then define the homeomorphisms φ1, φ2 : S2 → S

2 to be the
identity on S

2 \ U and on the components of U (which are necessarily annuli), the
maps are defined to be the self-homeomorphism of U from Lemma 13.5.8. Then
Lemma 13.5.8 and Lemma 13.3.6 imply that f1 and f2 are Thurston equivalent as
marked covers. ��

13.5.3 Equivalence on Abstract Extended Newton Graphs

We now define the combinatorial equivalence relation on abstract extended Newton
graphs that is used in the classification theorem (Theorem A) and prove an
important result connecting this equivalence with Thurston equivalence. Note that
the simplifying assumptions of Remark 13.5.2 are in effect for Sect. 13.5.3.

Lemma 13.5.12 (Extension Across Newton Rays) Let (�1, f1) and (�2, f2) be
abstract extended Newton graphs. Let φ−1 , φ

−
2 : �−1 → �−2 be graph homeomor-

phisms that preserve the cyclic order of edges at all the vertices of �−1 , �
−
2 , and

satisfy the equation φ−1 ◦ f1 = f2 ◦ φ−2 on �−1 . Then if the accesses/endpoints of
each Newton ray in �1 correspond under φ−1 and φ−2 to the accesses/endpoints of
a Newton ray in �2, then φ−1 , φ

−
2 extend to graph homeomorphisms φ1, φ2 : �1 →

�2 that preserve the cyclic order of edges at each vertex, with φ1 ◦ f1 = f2 ◦ φ2 on
�1.

Proof For a given Newton rayR in�, the graph maps φ1 and φ2 are already defined
at the endpoints i(R) and t (R) of R. Thus the image of the single edge R under φ1
must be taken to be the unique Newton ray in�2 connecting φ1(t (R)) and φ1(i(R)),
and likewise for φ2. The extension of the conjugacy across R is accomplished by
pullback. ��
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Definition 13.5.13 (Equivalence Relation for Abstract Extended Newton
Graphs) Let (�1, f1) and (�2, f2) be abstract extended Newton graphs. We
say that (�1, f1) and (�2, f2) are equivalent if and only if

• there exist two homeomorphisms φ−1 , φ
−
2 : �−1 → �−2 that are graph maps and

preserve the cyclic order of edges at all the vertices of �−1 , �
−
2 ,

• the equation φ−1 ◦ f1 = f2 ◦ φ−2 holds on �−1 , and
• upon applying Corollary 13.5.4 and Lemma 13.5.12 to produce the extensions
φ1, φ2 : �1 → �2, each ray grand orbit of f2 is equivalent (see Defini-
tion 13.5.10) to a ray grand orbit of φ1 ◦ f1 ◦ φ−1

2 and vice versa.

We now show that two abstract extended Newton graphs are combinatorially
equivalent if and only if their extensions are Thurston equivalent.

Theorem 13.5.14 (Combinatorial Formulation of Thurston Equivalence) Let
(�1, f1) and (�2, f2) be abstract extended Newton graphs with graph map
extensions f1, f2 : S2 → S

2 respectively. Then (�1, f1) and (�2, f2) are equivalent
in the sense of Definition 13.5.13 if and only if (f1,�

′
1) and (f2,�

′
2) are Thurston

equivalent as marked branched covers.

Proof First assume that the two abstract extended Newton graphs are equivalent. By
definition of extended Newton graph equivalence, there are graph homeomorphisms
φ1, φ2 : �1 → �2 that satisfy the conditions in Definition 13.5.13. Since the
complementary components of �1 and �2 are all disks, φ1, φ2 can be extended to
global homeomorphisms φ̄1, φ̄2. Since the Newton ray grand orbits are equivalent
in the sense of Definition 13.5.10, Lemma 13.5.11 implies that there must be
homeomorphisms S1 and S2 of the sphere which are both products of Dehn twists
about the non-degenerate Hubbard trees as in Lemma 13.5.8 so that

S1 ◦ φ̄1 ◦ f1 = f2 ◦ φ̄2 ◦ S2 (13.5)

where S1 is homotopic to S2 relative to the vertices of �1. The maps on both sides
of Eq. (13.5) are both regular extensions of a graph map (see Proposition 13.3.7)
and they also satisfy the hypotheses of Lemma 13.3.6. Thus f1 and f2 are Thurston
equivalent as marked branched covers.

Now suppose that (f 1,�
′
1) and (f 2,�

′
2) are Thurston equivalent as marked

branched covers. Take g0, g1 : (S2,�′1) → (S2,�′2) to be the maps from
the definition of Thurston equivalence where g0 ◦ f1 = f2 ◦ g1. Let e be an
edge of �−1 with endpoints ∂e. Then g1(e) connects the two points in g1(∂e).
Moreover, g1 preserves the cyclic order at each vertex of �−1 , because it is an
orientation-preserving homeomorphism of S

2. Let g′ : (S2,�′2) → (S2,�′2) be
a homeomorphism that for all edges e not Newton rays maps each g1(e) to an edge
of �2 that connects the two points in g1(∂e).

Then g′ ◦ g1 realizes an equivalence between the two abstract extended Newton
graphs (let φ0 = φ1 = g′ ◦ g1 in Definition 13.5.13), except that the Newton rays
must still be shown to be equivalent. Apply Corollary 13.5.4 so that all Newton
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rays have corresponding endpoints under φ0, φ1. Then since f1 and f2 are Thurston
equivalent as branched covers, Lemma 13.5.8 implies the rays are equivalent. Thus
(�1, f1) and (�2, f2) are combinatorially equivalent. ��

13.6 Newton Maps from Abstract Extended Newton Graphs

We now prove that all abstract extended Newton graphs are realized by Newton
maps.

Proof of Theorem B It suffices to show that the marked branched cover (f ,�′) is
unobstructed, where�′ denotes the set of vertices of �. The conclusion will follow
by Head’s theorem, where the holomorphic fixed point theorem is used to argue that
the point at infinity is repelling [20].

Suppose to the contrary that � is a multicurve obstruction for (f ,�′), and
without loss of generality assume � is irreducible. Recall from Condition (1) of
Definition 13.4.5 that� contains an abstract Newton graph� which in turn contains
an abstract channel diagram �. The following lemma restricts where obstructions
may exist, using Theorem 13.2.5.

Lemma 13.6.1 If� is a multicurve obstruction for (f ,�′), then

� · (� \�) = 0.

Proof Suppose first that there exists an edge λ in � so that λ · � �= 0. Since {λ}
itself forms an irreducible arc system, the second case of Theorem 13.2.5 implies
that� intersects no other preimage of λ except for λ itself.

If on the other hand, λ · � = 0, the first case of Theorem 13.2.5 implies that
no preimage of λ intersects �. Since every edge in � is a lift of an edge in �, the
conclusion follows. ��

The proof of the theorem is now completed by showing that whether or not �
has intersection with � in minimal position, a contradiction results.

13.6.1 Contradiction for the Case � ·	 �= 0

Let γ1 be any curve in� so that γ1 ·� �= 0. Recall from Definition 13.4.2 that � \�
is connected. It is a consequence of Lemma 13.6.1 that � \� does not intersect�;
thus � \�must be a subset of one of the complementary components of γ1. Denote
the complementary component of γ1 that does not contain � \� by D(γ1). None
of the vertices of � except possibly v∞ lie in D(γ1). However, there must be at
least two vertices of � in D(γ1) for otherwise γ1 would not be essential. The only
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H2

H1

v∞
Δ

γ1

γ′2

γ2

Fig. 13.4 Illustration of the first case � ·� �= 0

vertices of � which could possibly be in D(γ1) are v∞ and Hubbard tree vertices.
Due to the connectedness of �, at least one of the following must hold: γ1 ·H1 �= 0
for some Hubbard tree H1 or γ1 · R1 �= 0 for some Newton ray R1. We only prove
the Hubbard tree case, noting that the Newton ray case is identical.

First suppose γ1 · H1 �= 0 (see Fig. 13.4). Let γ2 ∈ � be some curve whose
preimage under f has a component γ ′2 which is homotopic to γ1 rel vertices (γ2
exists by irreducibility). Clearly γ ′2 must intersect H1 and �. Let λ1 be some
component of γ ′2 ∩ (S2 \ �) that intersects H1. Recall that H1 must either be
non periodic or have period at least two, so in either case H2 := f (H1) does not
intersect H1. Also H1 and H2 must be in the same complementary component of �
because λ1 connects H1 to � (without passing through any other edges of � due to
Lemma 13.6.1), and f is an orientation-preserving map that fixes each edge of �.

Now we show that H1 and H2 can be connected by some path that avoids
� except at its endpoints. Since all critical points of f are contained in � (by
Condition (8) of Definition 13.4.5) the Riemann–Hurwitz formula implies that

f
−1
(�) ⊂ �. The edges of� are invariant under f , so the endpoints of λ2 := f (λ1)

are in the same edges as the endpoints of λ1. Since f
−1
(�) ⊂ �, we have that λ2

intersects � only at its endpoints. Starting at an intersection of H1 and λ1, traverse
λ1 until right before the intersection with the edge of �. Traverse a path in a small
neighborhood of this edge until λ2 is reached without intersecting any edges of �.
Traverse λ2 untilH2 is reached. This completes the construction of a path λ1,2 from
H1 to H2 that does not intersect�. Moreover, Lemma 13.6.1 implies that λ1 and λ2
do not intersect � \� avoiding � and so λ1,2 does not intersect �. This contradicts
the assumption thatH1 andH2 are separated by the Newton graph (Condition (4) of
Definition 13.4.5).
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13.6.2 Contradiction for the Case � ·	 = 0

Using Lemma 13.6.1 we see that � · � = 0. Recall the assumption that every
complementary component of � contains at most one abstract extended Hubbard
tree (Condition (4) of Definition 13.4.5).

Suppose that U is such a complementary component containing some γ ∈ �.
The only postcritical points that could possibly be contained in U are vertices of
Hubbard trees, soU contains one Hubbard tree or one Hubbard tree preimage. Since
� is irreducible, the Hubbard tree must in fact be periodic and since γ is essential
the Hubbard tree is non-degenerate. Thus U contains exactly one non-degenerate
periodic abstract Hubbard tree H of some period m. Define F := f

m
, and note

that � is also a multicurve obstruction for F . Extract an irreducible multicurve
obstruction for F from �, which we again denote by �, and assume that U still
contains some component of�.

We show that the two Thurston linear maps F� and (F |U)� are equal. In fact,
we show � ⊂ U . Suppose that W is a complementary component of � different
from U , and γ ′ ⊂ W for some γ ′ ∈ �. By the irreducibility of �, there is some
n > 0 and a component γ ′′ of F−n(γ ′) that is homotopic to γ rel vertices. Note
that γ ′′ ⊂ U and that its complementary component that is a subset of U contains
some vertices of � which must in fact be vertices of H . Since γ ′′ is homotopic to a
subset of each arbitrarily small neighborhood of H , we obtain a contradiction since
Fn(γ ′′) ⊂ W but Fn(H) = H ⊂ U . Thus the two Thurston linear maps F� and
(F |U)� are equal.

This contradicts the realizability (or unobstructedness) of the abstract Hubbard
tree H [22, Theorem II.4.7], and thus no such obstruction� exists, completing the
proof.

13.7 Proof of the Classification Theorem

Theorem 1.2 of [15] asserts that every postcritically finite Newton map has an
extended Newton graph that satisfies the axioms of Definition 13.4.5, and we
have shown in Sect. 13.6 that every abstract extended Newton graph extends to an
unobstructed branched cover, and is therefore realized by a Newton map. We now
check that these two assignments are well-defined on equivalence relations and are
inverses of each other, giving an explicit classification of postcritically finite Newton
maps in terms of combinatorics.

Recall that Newt is the set of postcritically finite Newton maps up to affine
conjugacy, and that NGraph is the set of abstract extended Newton graphs up to
Thurston equivalence (Definition 13.5.13). Equivalence classes in both cases are
denoted by square brackets. Our first goal is to show that the assignments made in
Theorems 13.1.3 and B are well-defined on the level of equivalence classes, namely,
they induce mappings F : Newt → NGraph and F ′ : NGraph → Newt.
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We now argue that F is well-defined. The construction from [15] of the extended
Newton graph for a fixed Newton map involved no choices in the construction of
type H and N edges, and possibly many choices in the construction of type R edges.
Let (�∗N ,1, Np) and (�∗N ,2, Np) be two extended Newton graphs constructed for

Np. Proposition 6.4 in [15] asserts that �−N ,1 = �−N ,2 and Np |�−N ,1
= Np|�−N ,2

(recall that �−N ,1 denotes the graph �N ,1 with all Newton ray edges removed).
We thus only need to show that the Newton ray grand orbits are equivalent. The
branched cover (Np, (�∗N ,1)

′) is identical as a branched cover to (Np, (�∗N ,2)
′)

and they are both extensions of graph maps Np |�∗N ,1
and Np|�∗N ,2

respectively.
Theorem 13.5.14 then implies equivalence for corresponding ray grand orbits.

Well-definedness of F ′ is immediate from the fact that equivalent graphs have
Thurston equivalent extensions (Theorem 13.5.14) which correspond to affine
conjugate Newton maps by Thurston rigidity (Theorem 13.2.3).

Proof of Theorem A We first show injectivity of F : Newt → NGraph. Let Np1

and Np2 be two postcritically finite Newton maps that have equivalent extended
Newton graphs �∗N ,1 and �∗N ,2. Theorem 13.1.3 asserts that each of these graphs
satisfies the axioms of an abstract extended Newton graph, and since both graphs
are equivalent, the marked branched covers (Np1 , (�

∗
N ,1)

′) and (Np2, (�
∗
N ,2)

′) are
equivalent by Theorem 13.5.14. We may then conclude that Np1 and Np2 are affine
conjugate using Thurston rigidity.

Next we show injectivity of F ′ : NGraph → Newt. Suppose that a postcritically
finite Newton map Np realizes two abstract extended Newton graphs (�1, f1) and
(�2, f2). By minimality of the extended Hubbard trees and the Newton graph, we
know that �′1 = �′2. Then the marked branched covers (Np,�′1) and (Np,�′2) are
Thurston equivalent. By Theorem 13.5.14 we conclude that (�1, f1) and (�2, f2)

are combinatorially equivalent.
Finally we prove that F and F ′ are bijective and inverses of each other.

Let (�, f ) ∈ NGraph be an abstract extended Newton graph. It follows from
Theorem B that (�, f ) is realized by a postcritically finite Newton map Np. Thus

F ′([(�, f )]) = [Np].

Denote by �∗N an extended Newton graph associated with Np which is guaranteed
by Theorem 13.1.3 so that

F([Np]) =
[(

�∗N , Np
)]

.

The injectivity statement just proved implies that under the equivalence of Defini-
tion 13.5.13,

[(�, f )] = [(

�∗N , Np
)]

.
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Thus F ◦ F ′ is the identity, and consequently the mapping F : Newt → NGraph
is bijective and F ′ ◦F is the identity. ��

This completes the combinatorial classification of postcritically finite Newton
maps.
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Chapter 14
The Development of the Theory
of Automatic Groups

Sarah Rees

Abstract We describe the development of the theory of automatic groups. We begin
with a historical introduction, define the concepts of automatic, biautomatic and
combable groups, derive basic properties, then explain how hyperbolic groups and
the groups of compact 3-manifolds based on six of Thurston’s eight geometries
can be proved automatic. We describe software developed in Warwick to compute
automatic structures, as well as the development of practical algorithms that use
those structures. We explain how actions of groups on spaces displaying various
notions of negative curvature can be used to prove automaticity or biautomaticity,
and show how these results have been used to derive these properties for groups
in some infinite families (braid groups, mapping class groups, families of Artin
groups, and Coxeter groups). Throughout the text we flag up open problems as well
as problems that remained open for some time but have now been resolved.
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14.1 Introduction

This chapter describes the development of the theory of automatic groups. It aims
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that have already been solved, and describe those problems that remain open.
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Thurston is credited with the definition of automatic groups, and is one of six
authors of one of the primary early references of the subject [29]; but some of the
foundations were laid in particular in work of Gromov on hyperbolic groups [35],
Cannon on properties of the fundamental groups of compact hyperbolic manifolds
[18], Gilman on groups with rational cross-sections [34]. The standard reference
is certainly the book [29], but that is supplemented by some powerful results in
[7, 32, 33], while Farb’s article [30] gives a useful and readable overview of early
development of the subject.

The definition of an automatic group was originally designed to identify proper-
ties of a group that were observed in the fundamental groups of compact hyperbolic
3-manifolds, and which facilitated computation with those groups. Such groups are
finitely generated. When a group is automatic, its associated automatic structure
allows the elements of the group to be represented as strings belonging to a
particularly well structured set of strings, for which certain computations can be
easily performed using finite state automata, as we shall see below.

Within this introductory section, we shall give some historical background, then
define the notation and terminology that we shall need in the remainder of this
chapter. Section 14.2 contains the definition of an automatic group, identifies the
basic properties, and describes the most natural examples, and non-examples. Sec-
tion 14.3 describes computation with automatic groups, how automatic structures
may be computed, how they may, and have been, used. Section 14.4 describes how
automaticity or biautomaticity of a group may be deduced from the geometry of a
space on which the group has a good action. Section 14.5 describes the derivation
of results proving automaticity or biautomaticity of groups in some well known
families of group, which often used techniques or results described in Sect. 14.4.
Finally Sect. 14.6 describes some problems that remain open.

14.1.1 Historical Background

Alongside Thurston, it is natural to indentify Cannon, Epstein and Holt as the key
figures in the early development of automatic groups. Much of the information in
this section comes from discussion with these three people [19], or can be found in
the preface of the standard reference [29].

Cannon’s article [19] identifies the International Congress of Mathematicians in
Helsinki in 1978 as a location at which key ideas that influenced the development
of the concept of an automatic group were discussed.

In his plenary address, Thurston discussed the construction of geometric struc-
tures on a 3-manifold M , and the tesselation of its universal cover M̃ by a
structure dual to the Cayley graph of π1(M). Thurston’s geometrisation conjecture
[70], subsequently proved by Perelman, claimed that every closed 3-manifold
was geometrisable, that is, admitted a canonical decomposition into pieces each
admitting one of eight types of geometric structure.
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In his article [19], Cannon attributes to Thurston at that conference the conjecture
that the growth series of a groupG acting discretely, cocompactly and isometrically
on a finite dimensional hyperbolic space Hn should be a rational function. Cannon
proved that conjecture in [18], where he identified features of Hn within the Cayley
graph Cay(G,X) for G with respect to a finite generating set X. In particular, he
proved that Cay(G,X) admits finitely many types of “cones” on geodesics, and
deduced from this the rationality of the growth function of G. Cannon also proved
that the word and conjugacy problems for G could be solved using analogues of
Dehn’s algorithms for those in hyperbolic surface groups . Gromov’s 1987 article
[35] defined a combinatorial notion of hyperbolicity for a graph, and hence for a
group (via its Cayley graph), and generalised Cannon’s results to groups satisfying
this definition of hyperbolicity. There is a substantial body of material studying
(Gromov) hyperbolic groups, in particular [2].

Thurston realised that the finiteness of the set of cone types in one of Cannon’s
groups of hyperbolic isometries allowed the construction of a finite state automaton
recognising the set of geodesic words within the group; rationality of the growth
function is an immediate consequence of that set of words being the language of a
finite state automaton. “Fellow travelling” properties of quasi-geodesic paths in Hn

that had been recognised by Cannon allowed the construction of further automata
that recognised right multiplication in the goup by a generator.

Now Thurston defined the concept of an automatic group. He called a group
with finite generating set X automatic if it possessed a representative set of words
L over X, such that one finite state automaton recognised the words in L, and
other automata recognised pairs of words in L related in the group under right
multiplication by the generators in X. Very early on, according to Holt, groups of
this type were known as regular groups. But this terminology conflicted with other
uses of the term regular, and so was soon changed.

Initially, in particular in [7, 29], the study of the family of automatic groups
was largely driven by the desire to find within it the groups of the geometrisable 3-
manifolds, and hence to harness computational techniques that were provided by the
association of automatic groups with regular languages. Epstein realised very early
on that any automatic group must be finitely presented, while Thurston deduced
that any such group had quadratic Dehn function and hence word problem soluble in
quadratic time. Epstein and Holt in Warwick worked, together with the author of this
chapter, to develop practical procedures to (attempt to) build automatic structures for
finitely presented groups, and to compute within the groups using those structures.

14.1.2 Mathematical Background and Notation

All the groups that we consider will be finitely generated. If X is a finite generating
set for a group G, then we write G = 〈X〉. In that case every element of G can be
represented as a product (or string) of elements of X and their inverses. We denote
by X−1 the set of symbols x−1 for which x ∈ X, and then by X± the disjoint union
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of X and X−1; every non-identity element of G can now be described as a string of
elements of X±. The identity element, which we denote by 1, can be described as a
product of length 0.

Given a finite set A, we define a string w over A to be a sequence a1a2 · · · an
with ai ∈ A, and call n the length of w, denoted by |w|; we may alternatively
use the term word over A rather than string. A subsequence aiai+1 · · · aj of w is
called a substring or subword. We write w(i) for the prefix a1 · · · ai of w. We call
the string or word of length 0 over A the empty string or empty word and denote
that by ε. As is standard, we denote by A+ the set of all strings over A of finite
length > 0 and by A∗ the union A+ ∪ {ε}. Given an ordering of the elements of
A, we define the shortlex ordering on A∗ as follows: for words u = x1 . . . xr and
v = y1 . . . ys , we define v <slex u if |v| < |u|, or if |u| = |v| and for some i,
y1 = x1, . . . , yi−1 = xi−1 but yi < xi .

When X is a generating set for a groupG, and w ∈ (X±)∗, it is often convenient
to abuse notation and use w to indicate not only that string over X± but also the
group element that the string represents; if w, v ∈ X±, we write w = v to denote
thatw, v are identical as strings, andw =G v to denote thatw, v represent the same
group element. If g ∈ G, we denote by |g| the length of the shortest word over X±
that represents g. Suppose that Cay = Cay(G,X) is the Cayley graph of G over
X, that is the graph with vertex set G and, for each g ∈ G, x ∈ X, directed edges
labelled x and x−1 connecting the ordered pairs of vertices (g, gx) and (gx, g).
Then for each g ∈ G, a path labelled by w joins the vertex g of Cay to the vertex
gw; we shall represent that path as gw.

When G is finitely generated by X, we define a language for G over X to be a
subset of (X±)∗ that contains at least one representative of each element of G, that
is, that maps ontoG under the map assigning each product over X to the element it
represents.

For the free group Fn on a set X of n generators x1, . . . , xn, a language is
provided by the set of all freely reduced words of length≥ 0 overX±, that is, the set
of all words within which no subword xix

−1
i or x−1

i xi appears. For the free abelian
group Z

n on the same set of n generators, a language is provided by the set of all
words of the form xr1i1 x

r2
i2
· · · xrkik , with k ≥ 0, i1 < i2 < · · · < ik and ri ∈ Z \ {0}. In

each of these two examples the language provides a unique representative for each
group element.

Each of the two languages just described is an example of a regular language,
that is, it is the set L(M) of strings accepted by a finite state automaton (fsa) M
with alphabet {x±1

1 , x±1
2 . . . , x±1

n }. Finite state automata provide standard models
of bounded memory computation and are defined and studied in [44]. It is common
to represent a finite state automaton M with alphabet A as a finite directed graph,
with each directed edge labelled by one or more elements ofA, one vertex identified
as the start, and a subset of the vertices selected as accepting. A word w is then
accepted by M if it labels at least one directed path from the start to an accepting
vertex; if there is no such path, or if the end point (target) of every such path is a non-
accepting vertex then w is not accepted. It is standard to call the vertices of M its
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Fig. 14.1 fsaM1,M2 giving the languages described in the text for F 2 and Z
2

states, the directed edges its transitions and the set of accepted words its language
L(M). In the cases where n = 2, the languages described above for the free and
free abelian groups over {a, b} are accepted by the two finite state automata shown
in Fig. 14.1; in each diagram, following convention, the start state is indicated by an
arrow, and the accepting states are ringed. In each of the two examples, each of the
five states shown in the diagram is accepting, but a further failure state is not shown,
which constitutes a sixth state; the failure state is non-accepting, any transitions not
shown in the diagram are assumed to be to that failure state, and all transitions from
the failure state are to the failure state.

14.2 Automatic Groups

14.2.1 Definition of an Automatic Group

Now suppose that G is a group with finite generating set X. For k ∈ N, words w, v
over X± are said to k-fellow travel in G if for each i ≤ max{|w|, |v|} the distance
between the vertices w(i) and v(i) of Cay = Cay(G,X) (using the graph metric)
is at most k. Equivalently, we say that the paths 1w and 1v of Cay k-fellow travel.
A groupG with finite generating set X is defined to be automatic overX if

A1 there is a language L forG over X that is regular,
A2 there is an integer k such that, for each y ∈ X ∪ {1}, and for any w, v ∈ L

with wy =G v, the paths 1w, 1v k-fellow travel in Cay.

We call L the language, the fsa accepting L the word acceptor and k the fellow
traveller constant of an automatic structure for G.
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The fsaM1 illustrated in Fig. 14.1 is the word acceptor of an automatic structure
with fellow traveller constant 1 for F2 over {a, b}; each element of the group has
a unique representative in the language, and given two words w, v ∈ L(M1) and
y ∈ {a±1, b±} with wy =F2 v, one of the words is a maximal prefix of the other,
and so the words 1-fellow travel in G.

Similarly, the fsaM2 of Fig. 14.1 is the word acceptor of an automatic structure
with fellow traveller constant 2 for Z2 over {a, b}. Again each element of the group
has a unique representative in the language, and given two words w, v ∈ L(M2)

and y ∈ {a±1, b±1} with wy =Z2 v, corresponding vertices on the paths 1w

and 1v in Cay(Z2, {a, b}) are joined in the graph by a path of length 1 or 2. The
language L(M2) is the set of all SHORTLEX minimal geodesic representatives of
group elements; we call this a shortlex automatic structure for Z2. Note that we can
define a similar shortlex automatic structure for Zn.

In the definition of automaticity given in [29] the condition A2 given above is
replaced by the following condition:

A2’ For each y ∈ X ∪ {{1}}, the set of pairs (w, v) for which w, v ∈ L and
wy =G v is a regular language when viewed as a set of strings over the
alphabet of pairs {(a, b) : a, b ∈ X± ∪ {$}}; the character $ is a padding
symbol used to deal with the situation where |w| �= |v|, in which case the
shorter of the two words is padded with $s at its end.

The automata recognising the regular languages just described are known as the
multiplier automata of the automatic structure, usually denoted by My , for each
choice of y.

In the presence of A1 the conditions A2 and A2’ are equivalent. This is a
consequence of the fact that the k-fellow travelling of a pair of words w, v can
be tracked by an automaton whose state set D corresponds to a set of words of
length at most k; a pair of words (w, v) is accepted by that automaton so long as
all the products w′−1v′ associated with prefixes w′ := w(i), v′ := v(i) of w, v are
represented by words in D. We call such an automaton a word difference machine,
and the associated set D its corresponding set of word differences.

Where G is automatic over its finite generating set X, with automatic structure
L, k, then G is said to be biautomatic (and (L, k) to be a biautomatic structure for
G) if the additional condition A3 is satisfied:

A3 for each y ∈ X, and for any w, v ∈ L with yw =G v, the paths yw, 1v k-
fellow travel in Cay(G,X).

This further fellow traveller condition can be expressed in terms of fsa that
recognise left multiplication, usually denoted by yM , for y ∈ X. It is an open
question whether all automatic groups are biautomatic.

The concept of automaticity can be generalised to one of asynchronous auto-
maticity by replacing the fellow traveller condition by an asynchronous fellow travel
condition; for two words w, v to asynchronously fellow travel within a group G it
is the distance between vertices w(ji) and v(ki) that must be bounded, where, for
some m ≥ max(|w|, |v|), the sequences (j0, j1, . . . , jm) and (k0, . . . , km) are both
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increasing sequences of integers, with j0 = k0 = 0, jm = |w|, km = |v|, and for
0 ≤ l < m, jl+1 − jl and kl+1 − kl are in {0, 1}. Asynchronous automaticity is
certainly a more general concept than automaticity, and it is satisfied by examples
such as the Baumslag–Solitar groups which are certainly not automatic.

It is fairly standard to call a language L for a groupG that satisfies the condition
A2 (but not necessarily A1) a combing for G, and a language that satisfies both
A2 and A3 a bicombing for G; however some authors use these terms differently,
e.g. impose additional (geometric) conditions on L. Again, the fellow travelling
condition can be replaced by an asynchronous one, in order to define asynchronous
combings and bicombings. The basic properties of combable groups are studied
in [12], where it is proved that non-automatic combable groups exist (answering a
question posed in [29]), as well as combable groups that are not bicombable.

Given an automatic (or biautomatic) structure (L, k) for a group G, it is
straightforward (using well known properties of regular languages, such as the
“Pumping lemma” [44]) to modify the structure and achieve a new automatic
structure with particular properties. For instance we can achieve a structure in which
every element of G has a unique representative (a structure with uniqueness) a
prefix closed structure in which the language contains every prefix of every one
of its elements, a quasigeodesic structure in which every element is represented
by a (λ, ε)-quasigeodesic, We note that a word w representing an element g of
a group G is called a (λ, ε)-quasigeodesic if every subword w′ of w has length
at most λ|g′| + ε, where g′ is the element represented by w′. Note that it is not
clear that all combinations of properties can be achieved within the language of a
single automatic structure. In particular it is an open question [29] whether, given
an automatic structure for a group G, an automatic structure can be derived for G
that is both prefix closed and has uniqueness.

Note that the definitions of automaticity and biautomaticity are independent
of choice of generating set; that is if G has an automatic structure over a finite
generating set X, then it has one over any other finite generating set Y .

14.2.2 Basic Properties of Automatic Groups

Some properties of automatic groups can be deduced very easily from basic
properties of regular languages, which imply certain constraints on their Cayley
graphs. In particular any automatic group is finitely presented with soluble word
problem, and quadratic Dehn function, while any biautomatic group has soluble
conjugacy problem. We recall that the word problem is soluble in G if an algorithm
exists that can decide whether or not any input word represents the identity, and
the conjugacy problem is soluble if an algorithm exists that can decide whether or
not two input words represent elements that are conjugate within the group; it is an
open question whether the conjugacy problem is soluble for automatic groups. It
also is an open question whether the isomorphism problem is soluble for automatic
groups, that is, whether an algorithm that was given as input automatic structures
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for a pair of groups G,H could decide whether or not G and H were isomorphic.
It is conjectured in [29] that this problem is insoluble. Note that it is soluble for
hyperbolic groups [24, 67].

In order to explain these statements in more detail, we use the language of van
Kampen diagrams. Informally (essentially, following [51]), given a group G with
presentation 〈X | R〉 and a word w over X that represents the identity of G, we
define a van Kampen diagram �w for w to be a finite, connected, directed, planar
graph, with a selected basepoint, whose directed edges are labelled by elements of
X, in such a way that the boundary of every face of the graph (known as a cell) is
labelled (from some starting point, in some orientation) by a word from R, while
the boundary of the graph is labelled (from the basepoint) by w. As a directed,
edge labelled graph, �w maps (not necessarily injectively) into the Cayley graph
Cay(G,X). The area of the diagram Area(�w) is defined to be the number of cells
it contains; of course its value is dependent on the set R, and would change if R
were changed.

We define the area of the word w to be the minimum of the areas of all
van Kampen diagrams that represent w. And we define the Dehn function (or
isoperimetric function) for G, f : N → N, to be the function for which f (n)
is the maximum area of all words w of length n over X± that represent the
identity of G. Although the precise form of the Dehn function depends on the
chosen presentation for G, it can be shown that two Dehn functions corresponding
to different presentatives are related by a natural notion of equivalence, and in
particular if one is polynomially bounded, then both are, by polynomials of the
same degree.

Proposition 14.2.1 Every automatic group is finitely presented, with a quadratic
upper bound on the Dehn function, and hence soluble word problem.

We sketch the proof, which is that of [43, Theorem 5.2.13].

Proof We suppose that L, k are the language and fellow traveller constant of an
automatic structure over a generating set X; we may assume that L consists of
quasigeodesics. Suppose that w = a1 · · · an is a word of length n representing the
identity. Now we define words w0, . . . , wn as follows. We define w0 = wn to be
a representative in L of 1, and for each i = 1, . . . , n − 1 we choose wi to be a
representative in L of the prefix of w of length i; since L is quasigeodesic, we
can choose wi of length at most |w0| + Ci, for some constant C of the automatic
structure. We start with a disk within the plane whose boundary is labelled byw, and
divide it into cells to form a van Kampen diagram�w with boundary w as follows.
First, a loop labelled by w0 connects the basepoint to itself, while for each i a path
labelled wi connects the basepoint to the point on the boundary distance i along w,
and none of these paths cross each other. Then, since the paths 1wi−1 and 1wi in
Cay(G,X) fellow travel at distance at most k, we can construct paths of length at
most k that connect corresponding vertices on the paths within the disk labelled by
those two words, and hence divide the region between the two paths into cells each
of length at most 2k + 2. In this way we divide the interior of the diagram into a
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Fig. 14.2 Van Kampen diagram for a representative of the identity in an automatic group

number of cells labelled by words of length at most 2k + 2. together with two cells
labelled by the word w0 = wn, as illustrated in Fig. 14.2.

Using the bounds on |wi |, we see that the total number of cells is bounded by a
quadratic function of n. We now define R to be the set of all words of length up to
2k+2 that represent the identity, together with the wordw0. Then 〈X | R〉 is a finite
presentation for G, and, relative to R, �w has quadratic area. ��
A similar argument proves an exponential upper bound on the Dehn function for any
asynchronously automatic group; it is an open question [29] whether a polynomial
time solution to the word problem must exist.

The most straightforward way to prove a group non-automatic is probably to
show that it has a Dehn function that is above quadratic. This argument proves
easily the non-automaticity of the Baumslag–Solitar groups 〈a, b | bapb−1 = aq

for which p, q > 0 and p �= q , since they have exponential Dehn function; in fact
they provide examples of non-automatic groups that are asynchronously automatic.

But there are many groups with quadratic Dehn functions that are known by other
methods not to be automatic.

The non-automaticity of the groups SLn(Z) for n ≥ 3 is proved in [29].
The group SL2(Z) is well known to be virtually free, and hence hyperbolic with
linear Dehn function. The group SL3(Z) has exponential Dehn function and so is
certainly non-automatic. However, the existence of a quadratic Dehn function for
SLn(Z) with n ≥ 5 was proved in [75] in 2013 (and had been conjectured by
Thurston, in fact for n ≥ 4). In order to prove non-automaticity of the group for all
n ≥ 3, Epstein and Thurston derived higher dimensional isoperimetric inequalities
that would have to hold in any combable group of isometries acting properly
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discontinuously with compact quotient on a k-connected Riemannian manifold [29,
Theorem 10.3.5]. The non-automaticity of SLn(Z) now follows by the construction
of a proper discontinous cocompact action on a suitable contractible manifold, and
the demonstration that a higher dimensional isoperimetric inequality fails; hence
SLn(Z) is proved to be non-combable and so non-automatic.

Van Kampen diagrams can also be used to prove solubility of the conjugacy
problem in any biautomatic group, by demonstrating the existence of a conjugator
of bounded length. The proof below, valid for any bicombable group, is taken
from [68]; an earlier result of [33] constructs an automaton out of the biautomatic
structure to solve the problem.

Proposition 14.2.2 Given a biautomatic groupG, any two words u, v representing
conjugate elements are conjugate by an element of length at most a|u|+|v|, for some
constant a (depending only on the biautomatic structure). Hence any biautomatic
group has soluble conjugacy problem.

Proof We choose a biautomatic structure (L, k) over a finite generating set X, and
suppose that the words u, v over X± represent conjugate elements of G. Let N :=
|X±|k(|u|+|v|). We find a conjugator of length at most N , and so a = |X±|k .

For suppose that an element g ∈ G conjugates u to v, that is that gu =G vg, and
that w,w′ ∈ L represent the elements g and ug, respectively. We consider the paths
1w, 1w

′ and uw within the Cayley graph Cay(G,X), and see that the biautomaticity
ofG ensures that 1w and 1w

′ fellow travel at distance at most |u|k, and that 1w
′ and

uw fellow travel at distance at most |v|k. We deduce that we can construct a van
Kampen diagram with boundary labelled by wuw−1v−1 in which chords of length
at most (|u| + |v|)k join boundary vertices in corresponding positions on the two
boundary subwords labelled byw, as shown on the left hand side of Fig. 14.3. Where
|w| = n, let d1, d2, . . . , dn−1 be the words that label those chords.

Now if n > |X±|(|u|+|v|)k, then for some i, j we have di = dj . In that case, where
ŵ is the word formed from w by deleting its middle section of length j − i, from
its (i + 1)-th to its j -th letter, we can form the van Kampen diagram with boundary
word ŵuŵ−1v−1 shown on the right hand side of Fig. 14.3 by deleting the central
part of the diagram we already constructed for wuw−1v−1. ��

Various combinations of automatic groups are known to be automatic [7, 29]:
these include free products, direct products, certain amalgamated products and HNN
extensions of automatic groups, as well as subgroups of finite index in automatic
groups, groups with automatic groups as subgroups of finite index, quotients of
automatic groups by finite normal subgroups. Some, but not all, of these closure
properties also hold for biautomatic groups. It is an open question whether direct
factors of automatic groups must be automatic (but the analogous result is proved
for biautomatic groups [58]). It is also open [29] whether a group with a biautomatic
group as a subgroup of finite index must be biautomatic.
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Fig. 14.3 Finding a conjugator of bounded length

14.2.3 Basic Examples and Non-examples

14.2.3.1 Virtually Abelian Groups, Soluble Groups

We already described shortlex automatic structures for the free abelian group Z
n. In

fact Zn is also biautomatic, but with a different (less straightforward) language, and
indeed so is every virtually abelian group. However it was already proved in [29] that
an automatic nilpotent group must be virtually abelian; the proof uses the fact that
a regular language with polynomial growth cannot satisfy a (synchronous) fellow
traveller property. It was conjectured by Thurston that the same result must hold
for an automatic soluble group. That conjecture remains open, but it was proved for
automatic polycylic groups in [37], using an embedding of a finite index subgroup
of a polycyclic group of exponential growth as a lattice in an appropriate Lie group,
where [29, Theorem 10.3.5] about higher dimensional isoperimetric functions could
be applied, which had previously been used to prove the non-automaticity of SLn(Z)
for n ≥ 3. Much more recently it was proved in [66] that biautomatic soluble groups
must be virtually abelian.

14.2.3.2 Hyperbolic Groups

Maybe the most natural examples of non-abelian automatic groups are provided by
the large family of word hyperbolic groups, which contains all finitely generated
free groups as well as the fundamental groups of all compact hyperbolic manifolds.
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A groupG with finite generating setX is said to be word hyperbolic if its Cayley
graph Cay(G,X) is a δ-hyperbolic metric space, for some δ ≥ 0; a geodesic metric
space (X , d) is δ-hyperbolic if for any triangle in X with geodesic sides γ1, γ2, γ3
and for any vertex p on the side γ1 there is a vertex q on the union γ2 ∪ γ3 of the
other two sides for which d(p, q) < δ (we say that triangles in X are δ-slim).
The property of being word hyperbolic is independent of the choice of a finite
generating set for G, although the value of δ is not. The fundamental groups of
compact hyperbolic manifolds give examples, as do finitely generated free groups
(which are 0-hyperbolic with respect to free generating sets).

We note that there are many equivalent definitions of hyperbolicity for metric
spaces (and hence for finitely generated groups), which are explained in [2]. In
particular there is a characterisation in terms of thin rather than slim triangles (and
a linear relationship between the associated parameters “δ”).

It is proved in [29] that a word hyperbolic group G is automatic over any
generating set X, with an automatic structure whose language consists of all
geodesic words over the selected generating set. The regularity of that set of
geodesic words is equivalent to the fact that the Cayley graph Cay = Cay(G,X)
contains finitely many cone types. For g ∈ G, represented by a geodesic word w,
we define the coneC(g) (orC(w)) on the vertex g of Cay to be the set of (geodesic)
paths γ within Cay starting at g for which the concatenation ηγ of a geodesic path
η from 1 to g with γ is also geodesic. The cone type [C(g)] or [C(w)] of the cone is
defined to be the set of words that label the paths within it. Now for y ∈ X ∪ X−1,
if wy is also geodesic then for any word v,

v ∈ [C(wy)] ⇐⇒ yv ∈ [C(w)].

It follows that we can recognise the set of geodesic words over X± with an fsa
whose states correspond to the cone types, with a transition from [C(w)] to [C(wy)]
on y whenever wy is geodesic, but otherwise to a single failure state (i.e. a non-
accepting sink state). We can illustrate this construction in the free abelian group
Z

2 with generating set {a, b}, where there are nine cone types [C(w)], defined by
the nine geodesic words ε, a, b, a−1, b−1, ab, ab−1, a−1b, a−1b−1, and consisting
of the nine possible sets of geodesic words in which each generator appears either
only with positive exponent, or only with negative exponent, or not at all. The fsa is
illustrated in Fig. 14.4. This automaton is not part of an automatic structure for Z2; it
cannot be since, for example, the vertices distance i from the origin on the geodesic
words aibi and biai are distance 2i apart within the Cayley graph, and hence this
language does not satisfy a fellow travelling property.

Given the finiteness of the set of cone types in a word hyperbolic group,
biautomaticity of any word hyperbolic group now follows once it is observed that
the fellow travelling of two geodesic words with common (or adjacent) start and
end vertices can be derived from the slimness of triangles. In fact, it is proved by
Papasoglu [64] that this fellow traveller condition characterises word hyperbolic
groups, and hence so does the existence of a (bi)automatic structure that consists
of all geodesic words. A procedure to test for hyperbolicity that is based on this
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Fig. 14.4 fsa recognising
geodesics in Z

2

result is described in [73]. Starting with a shortlex automatic structure (L, k) for a
group G over X, the procedure attempts to construct an automatic structure (̂L,̂k)
with ̂L ⊃ L and̂k ≥ k, and such that ̂L contains all geodesic words over X±. It
will terminate with such a structure precisely when G is hyperbolic. An improved
procedure, based on the same result was developed by Holt and Epstein [26] and
implemented in KBMAG.

The fundamental groups of finite volume hyperbolic manifolds (geometrically
finite hyperbolic groups) were proved biautomatic by Epstein [29], with a further
biautomatic structure subsequently described by Lang [52].

Geometrically finite hyperbolic groups were the motivating examples for
Bowditch’s definition [9] of a group hyperbolic relative to a collection of subgroups;
a geometrically finite hyperbolic group is hyperbolic relative to a collection of
abelian groups. The major part of the definition of relative hyperbolicity is the
requirement that the Cayley graph of a group hyperbolic relative to a collection H
of subgroups becomes hyperbolic after the contraction of edges within left cosets
of subgroups in H. However weaker and stronger versions of the definition exist
depending on whether or not a condition of bounded coset penetration is required to
hold. Under the stronger definition (studied in [63]) it is proved, in particular in [5],
that groups hyperbolic relative to shortlex biautomatic subgroups are themselves
shortlex biautomatic. The shortlex biautomaticity of geometrically finite hyperbolic
groups is a consequence of this result.

A further generalisation of hyperbolic groups is provided by semihyperbolic
groups, which were introduced by Bridson and Alonso in [3]; the class contains
all biautomatic groups (hence all hyperbolic groups) and all CAT(0) groups (see
Sect. 14.4). A group G with finite generating set X is defined to be weakly
semihyperbolic if Cay(G,X) admits a bounded quasi-geodesic bicombing (with
a unique combing path sg1,g2(t) identified between any pair g1, g2 of vertices of the
graph), and semihyperbolic if it has such a bicombing that is equivariant under the
action of G (so that g.sg1,g2(g) = sgg1,gg2(t)). This class of groups satisfies many
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closure properties, and all groups within it are finitely presented, with soluble word
and conjugacy problems.

14.2.3.3 Fundamental Groups of Compact 3-Manifolds

It is proved in [29] that the fundamental groups of compact 3-manifolds based on six
of Thurston’s eight model geometries for compact 3-manifolds [71] admit automatic
structures. But it is also proved that the fundamental groups of closed manifolds
based on the Nil and Sol geometries (which are non-abelian, nilpotent and soluble,
respectively) cannot even be asynchronously automatic [10, 29].

However, using combination theorems for automatic groups, it can be proved (as
in [29, Theorem 12.4.7], but our wording is slightly different) that an orientable,
connected, compact 3-manifold with incompressible toral boundary whose prime
factors have JSJ decompositions containing only hyperbolic pieces has automatic
fundamental group. It was proved in [13, Theorem B] that the fundamental group
of a manifold as above in which manifolds based on Nil and Sol are allowed within
the JSJ decomposition, while not automatic, still admits an asynchronous combing
based on an indexed language [1].

14.3 Computing with Automatic Groups

14.3.1 Building Automatic Structures

The original motivation for the definition of automatic groups was computational,
and so it was important from the beginning of the subject to be able to construct au-
tomatic structures, that is, given a presentation for a groupG, to have a mechanism
for building the word acceptor and multiplier automata of an associated automatic
structure. Software to build these automata was developed at the University of
Warwick, and the procedure used is described in [28]. The original programs were
subsequently rewritten by Holt, and released within his KBMAG package [40], now
available within both GAP and Magma computational systems [55, 69].

The basic procedure is the same in both versions (the ideas are due to Holt) and
we describe it briefly now, but refer the reader to [28] or [41] for more details.

A presentation for a group G over a finite generating set X is input, together
with an ordering of the set X±. The procedure attempts to prove G to be shortlex
automatic over X (with the given ordering) by first constructing a set of automata
consisting ofW andMy for y ∈ X± ∪ {ε}, and then attempting to verify that those
automata are indeed the automata of a shortlex automatic structure. If verification
tests fail, some looping is possible within the procedure, and indeed that looping
could continue indefinitely (or at least until the computer runs out of resources).
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If all verification tests pass, then the procedure will have verified the shortlex
automaticity of G by construction and checking of a shortlex automatic structure.

So the procedure may succeed in proving shortlex automaticity of G. But if it
fails, it has certainly not proved thatG is not automatic, or even thatG is not shortlex
automatic, but rather it suggests thatG is unlikely to be shortlex automatic over the
given generating set X, with the given ordering of the elements of X. We note that
the question of automaticity for a finitely presented group is undecidable in general;
this follows from the undecidability of questions such as triviality for a group. We
note too that it is an open question [29] whether every automatic group must be
shortlex automatic with respect to some ordered generating set.

The first step of the procedure to prove shortlex automaticity is the construction
of a rewrite system R from the group presentation that is compatible with the
shortlex order. By definition, R is a set of substitution rules ρ : u → v, for
u, v ∈ (X±)∗, and with v <slex u; in order that R encodes the presentation we
require that every relator from the group presentation is a cyclic conjugate of the
product uv−1 or its inverse for at least one such rule.

The next step is to run the Knuth–Bendix procedure for a while on R. The
Knuth–Bendix procedure (described in [43]) is a general procedure that, given
as input a rewrite system R for strings compatible with a partial order, modifies
it by adding rules that are consequences of existing rules and deleting rules that
have become redundant, in order to produce a new rewrite system. The procedure
attempts to build a finite complete system, for which any input word w can be
rewritten after a finite number of steps to a unique irreducible word w′ (where
irreducible means that w′ cannot be rewritten further). However with this goal the
procedure may never terminate; all that is guaranteed is that after bounded time the
modified system must contain enough rules to reduce any word up to some bounded
length to an irreducible.

In fact the procedure to construct a shortlex automatic structure for G does
not need the Knuth–Bendix procedure to terminate on the input rewrite system R.
Instead, while the Knuth–Bendix procedure is running it accumulates the set D of
word differences u(i)−1v(i) and their inverses (reduced according to the current
modification of R) that correspond to prefixes of the rules u → v in the system.
Where u = u1 · · · um, and v = v1 · · · vm′ , a transition is added from each word
difference u(i)−1v(i) to u(i+1)−1v(i+1), creating a word difference machine that
can recognise fellow travelling with respect to D.

The Knuth–Bendix procedure is paused when it seems that the set D and the
associated automaton have stabilised. And then a candidate word acceptor WA is
constructed, designed to reject a word u if a string v exists with v <slex u for which
(u, v) fellow travels according to D while also the word difference u−1v reduces,
according to the current rewrite system, to the empty word.

Similarly, multiplier automata are constructed for each y ∈ X± ∪ {ε}, using a
direct product construction on automata to recognise pairs of words u, v for which
u, v ∈ L(W), (u, v) fellow travels according to D, while also the word difference
u−1v reduces, according to the current rewrite system, to y.
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Now a series of elementary tests is applied to the candidate automata. If some
of these tests fail, then D has been proved to be inadequate, and the Knuth–Bendix
procedure is restarted. If and when those tests are passed, further tests known as
axiom checking are applied, and a positive result for these tests proves the automata
to provide a shortlex automatic structure for G. If the axiom checks fail then the
procedure is abandoned.

14.3.2 Calculation Using the Automatic Structure

Once an automatic structure has been constructed for a group G, much can be
computed using the automata of that structure. Various of these functions are
available within the KBMAG package [40].

It is straightforward to enumerate the language of a finite state automaton. Hence
we can enumerate a set of representative words for an automatic group, with unique
representation if necessary (recall that once an automatic structure has been derived,
a structure with unique representation can be derived from that).

For any regular language L the generating function
∑∞
n=0 sL(n)x

n, where sL(n)
denotes the number of words of length n in L, is a rational function, and can
be computed from an automaton recognising L. Hence the growth series of an
automatic group is computable, given a geodesic automatic structure.

Reduction of an input word to the “normal form” defined by the language L
of the automatic structure for G can be performed using a combination of the
word acceptor and multiplier automata, or alternatively using the word difference
machine.

Finiteness of otherwise of an automatic group is immediately recognisable from
a word acceptor for an automatic structure; the language is infinite precisely when
the automaton admits loops. In this way, the Heineken group G = 〈x, y, z |
[x, [x, y]] = z, [y, [y, z]] = x, [z, [z, x]] = y〉 was proved infinite, by Holt using
KBMAG; computation with the automatic structure subsequently revealed the group
to be hyperbolic. Previously that group had been proposed as a possible example
of a finite group with a balanced presentation. Similarly, a second proof of the
infiniteness of the Fibonacci group F(2, 9) was provided by the construction of
an automatic structure for it [39].

Tests for hyperbolicity [26, 73] that make use of automatic structures for G
together with Papasoglu’s characterisation of hyperbolic groups have already been
described in Sect. 14.2.3.2. The second of those is implemented in KBMAG, as is
an algorithm [26] estimating the thinness constant (related to, but not equal to, the
slimness constant) for geodesic triangles in the Cayley graph of a word hyperbolic
group.

Quadratic and linear time solutions to the conjugacy problem in a hyperbolic
group are described in [15] and [17, 27]. A practical cubic time solution that restricts
to infinite order elements is due to Marshall [56], using some ideas from Swenson,
and has been implemented in the GAP system.
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14.4 Group Actions and Negative Curvature

One of the basic principles of geometric group theory is generally referred to as the
the Milnor–S̆varc lemma:

If a group G has a “nice” (properly discontinuous and cocompact) discrete,
isometric action on a metric space X then its Cayley graph is quasi-isometric to X .
In particular a group with such an action on a δ-hyperbolic space is word hyperbolic.

A variety of results derive automaticity or biautomaticity of a group from its
“nice” actions on spaces in which some kind of non-positive curvature can be found.

Theorem 14.4.1 (Gersten and Short [32, 33]) A group acting discretely and fixed
point freely on a piecewise Euclidean 2-complex of typeA1×A1,A2,B2 orG2 (cor-
responding to tesselations of the Euclidean plane by squares, equilateral triangles,
or triangles with angles (π/2, π/4, π/4) or (π/2, π/3, π/6)) is biautomatic.

As a consequence of the above results, and within the same two articles, Gersten
and Short deduce that groups satisfying any of the small cancellation conditions
C(7) or else T(p) and T(q) with (p, q) ∈ {(3, 7), (4, 5), (5, 4)} (defined in [54])
are hyperbolic, and hence in particular biautomatic, and then that groups satisfying
the small cancellation conditions C(6), or C(4) and T(4), or C(3) and T(6) are
biautomatic.

A geodesic metric space X is defined to be CAT(0) if for any geodesic triangle in
the space, and for any two points p, q on the sides of that triangle, the distance
between p and q in X is no more than the distance between the points in
corresponding positions on the sides of a geodesic triangle with the same side
lengths in the Euclidean plane, as illustrated in Fig. 14.5. A complete CAT(0) space
is often called a Hadamard space. A group is called CAT(0) if it acts properly and
cocompactly on a CAT(0) space.

The CAT(-1) condition is defined similarly with respect to the hyperbolic plane;
any CAT(-1) space is δ-hyperbolic, for some δ, and hence CAT(-1) groups are word
hyperbolic.

Fig. 14.5 Comparable triangles in Euclidean and CAT(0) spaces
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A (not necessarily geodesic) metric space (X, d) is said to have non-positive
curvature (or curvature ≤ 0) if every point of X is contained in a CAT(0)
neighbourhood. By the Cartan-Hadamard theorem [14] the universal cover of a
complete connected space of non-positive curvature is CAT(0).

Niblo and Reeves studied in particular groups acting on CAT(0) cube complexes:

Theorem 14.4.2 (Niblo and Reeves [61]) A group acting faithfully, properly
discontinuously and cocompactly on a simply connected and non-positively curved
cube complex is biautomatic.

A cube complex is defined to be a metric polyhedral complex in which each cell
is isometric to the Euclidean cube with side lengths 1, where the gluing maps are
isometries. Such a complex is non-positively curved provided that it contains at
most one edge joining any two vertices, and no triangles of edges, and (by a result
of Gromov [35]) is CAT(0) if non-positively curved and simply connected.

Actions of Coxeter groups on CAT(0) cube complexes are constructed in [62],
but are not necessarily cocompact. However in some cases it follows from those or
related constructions that the Coxeter groups are biautomatic (see Sect. 14.5.2).

There are many open problems relating to CAT(0) groups (see for example [31]).
The question of whether every CAT(0) group must be biautomatic was recently
resolved in the negative by Leary and Minasyan [53], who constructed an example
of a 3-dimensional CAT(0) group which could admit no biautomatic subgroup of
finite index. It is still unknown whether non-automatic CAT(0) groups can exist.

However a restricted class of CAT(0) groups is provided by groups that act
geometrically on CAT(0) spaces with isolated flats. A k-flat in a CAT(0) space
is an isometrically embedded copy of Euclidean space R

k . This family contains
a number of interesting examples, including geometrically finite Kleinian groups,
the fundamental groups of various compact manifolds, and limit groups, arising
from the solutions of equations over free groups. Groups of this type are studied in
[46], where more details (of definition and examples) can be found. Theorem 1.2.2
of that article establishes a number of properties of such groups, including their
biautomaticity.

A form of non-positive curvature in simplicial complexes is defined in [50]: a
flag simplicial complex X is called k-systolic if connected, simply connected and
locally k-large (no minimal �-cycle with 3 < � < k in the link of a vertex). A group
is called k-systolic if it acts simplicially, properly discontinuously and cocompactly
on a k-systolic simplical complex, and is called systolic if 6-systolic.

Theorem 14.4.3 (Januszkiewicz and Swiatkowski [50]) 7-systolic groups are
hyperbolic, 6-systolic groups are biautomatic.

This result is used to prove biautomaticity of a large class of Artin groups [47], as
detailed in Sect. 14.5.1.

A Helly graph is a graph in which every family of pairwise intersecting balls has
a non-empty intersection. A group is called Helly if it acts properly and cocompactly
by graph automorphisms on a Helly graph; word hyperbolic groups, CAT(0) cubical
groups and C(4)-T(4) small cancellation groups are all examples. It is proved in [22]
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that all Helly groups are biautomatic. This result is used to prove biautomaticity of
another large class of Artin groups [48], as detailed in Sect. 14.5.1.

14.5 Some Automatic and Biautomatic Families

Over a period of more than 30 years, automatic and biautomatic structures were
found for various families of groups, including braid groups, many Artin groups,
mapping class groups, and Coxeter groups. But some questions remain open for
these families.

14.5.1 Braid Groups, Artin Groups and Mapping Class Groups

Automatic structures for the braid group Bn on n strands and also for the (closely
related) mapping class group of the (n + 1)-punctured sphere were constructed by
Thurston and are described in [29]; one of the structures described for the braid
groups is symmetric, proving the braid groups to be biautomatic. The automaticity
(but not necessarily biautomaticity) of the mapping class group of the n + 1-
punctured sphere then follows from the fact that it contains the quotient of the braid
group Bn by its centre as a subgroup of index n+ 1.

The braid group on n + 1 strands is isomorphic to the Artin group of finite type
An. We recall that an Artin group is a group defined by a presentation of the form

〈x1, x2, · · · , xn |
mij

︷ ︸︸ ︷

xixjxi · · · =
mij

︷ ︸︸ ︷

xjxixj · · ·, i �= j ∈ {1, 2, . . . , n}〉,

relating to a symmetric, integer Coxeter matrix (mij), or equivalently a Coxeter
diagram� on n vertices, whose edge {i, j } is labelledmij, and is naturally associated
with a Coxeter group by adding relations x2

i = 1 for each i. The Artin group has
finite type if the associated Coxeter group is finite (and hence � is a disjoint union
of diagrams from the well–known list of spherical Coxeter diagrams).

In [23], Charney used results of Deligne to extend Thurston’s construction for
the braid groups to all finite type Artin groups. Charney’s construction provided
biautomatic structures for all finite type Artin groups; these biautomatic structures
were geodesic over the “Garside” generating sets, but not over the standard
generators xi . Biautomatic structures for all Garside groups (of which finite type
Artin groups are examples) were described by Dehornoy [25].

For Artin groups of FC type (free products of finite type groups with amalgama-
tion over parabolic subgroups, for which the complete subgraphs of the labelled
graph formed by deleting all ∞-labelled edges from � are all of finite type),
asynchronously automatic structures were constructed in [4], and used to define
quadratic time solutions to the word problem; we recall that an exponential (rather
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then quadratic) time solution is guaranteed by asynchronous automaticity. Right-
angled Artin groups (those for which all the parametersmij are within the set {2,∞},
which form a subset of FC type) were then proved automatic in [38, 72]. Very
recently [48] Artin groups of FC type have been proved to be Helly, and hence
biautomatic.

Mosher’s paper [57] answered a major open question raised by Thurston’s proof
of the automaticity of the mapping class group of the punctured sphere. Using quite
different techniques from Thurston, Mosher proved automaticity of the mapping
class group of any surface of finite type, that is, the group of (orientation preserving)
homeomorphisms modulo isotopy of any surface obtained from a compact surface
by removing at most finitely many points. In the case of a surface with at least one
puncture the automatic structure is explicitly defined (and could be constructed), in
terms of a complex whose vertices are ideal triangulations on S (triangulations with
vertex set the puncture set) and whose edges are elementary moves between ideal
triangulations. The more general case can be reduced to the case of a punctured
surface using a short exact sequence. The question of whether the mapping class
group was in fact biautomatic was finally solved by Hamenstaedt’s construction of
a biautomatic structure in 2009 [36].

An Artin group is defined to have large type if all the associated parameters mij
are at least 3, extra large type if all mij are at least 4. For large and especially extra
large groups small cancellation techniques associated with negatively curved geom-
etry were developed in [6]. All extra large Artin groups were proved biautomatic in
[65], using those small cancellation techniques; the language is a set of geodesics
over the standard generating set. All those groups and many others of large type were
found by Brady and McCammond [11] to act appropriately on piecewise Euclidean
non-positively curved 2-complexes of types A2 or B2, and hence, by results of
[32, 33] to be biautomatic (but in this case the biautomatic structure is defined over
a non-standard generating set).

All Artin groups of large type were proved to be shortlex automatic over their
standard generating sets in [42]. A rewrite system was described, which rewrote
any word to shortlex geodesic form using sequences of moves on 2-generator
substrings. The result extended beyond large type to sufficiently large type, where
some parameters mij might take the value 2 (provided that for any triple i, j, k, if
mij = 2, then either mik = mjk = 2 or at least one of mik and mjk is infinite).
Biautomatic structures for all large type Artin groups (and in fact for the slightly
large class of almost large groups) were proved to exist in [47], where all those
groups were proved to have appropriate actions on systolic complexes. An Artin
group is called almost large if for any triple i, j, k it is only possible to have mij = 2
if one of mik or mjk is infinite, and for any 4-set i, j, k, l at most 2 of mij, mjk, mkl,
mil can be equal to 2 unless one of the four parameters is infinite.
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14.5.2 Coxeter Groups

The proof in [16] of shortlex automaticity of any Coxeter group relative to its
standard generating set provided a result that had long been conjectured. We recall
that a Coxeter groupW is described by a presentation

〈x1, . . . , xn | x2
i = 1, (xixj )mij = 1, i �= j ∈ {1, . . . , n}〉,

relative to a Coxeter matrix (mij) and associated Coxeter diagram �; the set X =
{x1, . . . , xn} is its standard generating set.

The proof of the theorem constructs an automatic structure for W using
properties of its associated root system, which arises from the natural isomorphism
betweenW and a reflection groupW as we now describe; more details can be found
in [49]. The group W is generated by a set of reflections r1, . . . , rn of Rn defined
by ri (v) := v − 2〈v, ei〉ei , for v ∈ R

n, where ei : i = 1, . . . , n is a basis for Rn

and 〈, 〉 is the symmetric, bilinear form on R
n defined by 〈ei , ej 〉 = − cos(π/mij).

The isomorphism from W to W maps xi to ri , and induces an action of W on R
n.

The roots ofW are defined to be the elements of the set  = W {e1, . . . , en}, which
decomposes as a disjoint union  + ∪ − of positive roots (vectors

∑

λiei with all
λi ≥ 0) and their negatives.

Brink and Howlett’s proof of regularity of the set of shortlex geodesic words in
W is derived from their proof in [16] of the finiteness of the set of positive roots
forW that dominate any given positive root; a positive root α is said to dominate a
second positive root β if whenever w(α) is negative, for w ∈ W , then so is w(β).
We define ˜�W to be the set of positive roots that dominate no others. Then a word
acceptor WA for a shortlex automatic structure forW can be built whose accepting
states are all subsets of ˜�W [16, Proposition 3.3].

The transitions in WA are determined by the following observation from [16,
Lemma 3.1]. When w = xi1 · · · xil is a shortlex geodesic word representing an
element of W then, for xi ∈ X, the word w′ = wxi is non-geodesic if and only
if there exists j ∈ {1, . . . , l} for which ei = xil · · · xij+1(eij ). In the case where
w′ = wxi is geodesic, that fails to be shortlex minimal if and only if there exists
j ∈ {1, . . . , l} and a generator xk ≺ xij for which ei = xil · · · xij (ek). In that
case the word xi1 · · · xij−1xkxij · · · xil is shortlex minimal. Based on these two facts,
transition on a generator xi from (the state corresponding to) a subset S of ˜�W is to
a failure state F if ei ∈ S. But for ei �∈ S, transition is to the intersection with ˜�W
of the set

S′′ = {xi(α) | α ∈ S} ∪ {ei} ∪ {xi(ek) | xk ≺ xi}.

A similar construction to the above, described in [45], proves regularity of the
set of all geodesic words in G over S.

The question of whether all Coxeter groups are not just automatic but actually
biautomatic remains open. Work of Niblo and Reeves [62] shows that any finitely
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generated Coxeter group G acts properly discontinuously by isometries on a
locally finite, finite dimensional CAT(0) cube complex; their construction is based
on the root system  associated with G, and an extension of the dominance
relation of [16] from  + to  . When the action of G on the cube complex is
cocompact, then biautomaticity follows, using [61]. Cocompact actions are proved
in [62] to exist whenever G is right-angled or word hyperbolic (by [59] word
hyperbolicity of G is recognisable from the diagram �). It is also observed in [62]
that, by [74], cocompact actions are guaranteed whenever G contains only finitely
many conjugacy classes of subgroups isomorphic to rank 3 parabolic subgroups
〈xi, xj , xk〉 (associated with rank 3 subdiagrams �ijk of �) for which mij,mil,mjk
are all finite; [21] used this result to derive biautomaticity of G provided that �
contains no affine subdiagram of rank 3 or more. Subsequently, Caprace [20] proved
biautomaticity of all relatively hyperbolic Coxeter groups using results from [46].

The dimension of a Coxeter group is defined to be the dimension of its Davis
complex, equivalently the maximal rank of any of its spherical parabolic subgroups.
It follows that a Coxeter group is 2-dimensional if none of the rank 3 subdiagrams
�ijk is spherical, equivalently if for all i, j, k, 1

mij
+ 1

mil
+ 1

mjk
≤ 1. The biautomaticity

of all 2-dimensional Coxeter groups is proved in [60]. The construction of a geodesic
language generalises ideas from [62], and the result generalises an earlier result
proving biautomaticity for certain 2-dimensional groups that used the results of [62].

14.6 Open Problems

More than 30 years after the subject started there continue to be many open problems
involving automatic groups. Some of these problems date from the beginning of the
subject, and are listed in [29]. Some but not all of these have been mentioned within
this chapter. In particular, it remains open whether automatic groups exist that are
not biautomatic (see Sect. 14.2) also whether automatic groups exist that do not have
soluble conjugacy problem (see Sect. 14.2.2) , whether all soluble automatic groups
must be virtually abelian. The most recent progress on this last question was made
by the proof of Romankov [66], that a soluble biautomatic group must be virtually
abelian (see Sect. 14.2.3.1).

It is still unknown whether a non-biautomatic Coxeter group can exist
(Sect. 14.5.2), or a non-automatic Artin group (Sect. 14.5.1).

There are many open problems relating to group actions, in particular, whether
a CAT(0) group must be automatic. The very recent construction in [53] of a 3-
dimensional CAT(0) group that cannot be biautomatic (Sect. 14.4) represents a
major advance on this problem; it does not resolve the question of automaticity.
The question of whether biautomaticity or automaticity are implied for a 2-
dimensional, piecewise Euclidean CAT(0) group remains open (but we note the
recent contribution to this problem of the main result of [60], see Sect. 14.5.2). The
2-dimensional problem is number 43 on a list of open problems within geometric
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group theory that was published ten years ago in [31], and motivated a body
of research, and rapid solution of some of the problems. However, some of the
problems listed in this useful and extensive list, or in the earlier list [8], remain
open.

References

1. A.V. Aho, Indexed grammars – an extension of context-free grammars. Assoc. Comput. Mach.
15, 647–671 (1968)

2. J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, H. Short,
Notes on word-hyperbolic groups, in Proceedings of the Conference on Group Theory from
a Geometrical Viewpoint, ed. by E. Ghys, A. Haefliger , A. Verjovsky. held in I.C.T.P., Trieste,
March 1990 (World Scientific, Singapore, 1991)

3. J. Alonso, M.R. Bridson, Semihyperbolic groups. Proc. London Math. Soc. 70(1), 56–114
(1995)

4. J.A. Altobelli, The word problem for Artin groups of FC type. J. Pure Appl. Algebra 129(1),
1–22 (1998)

5. Y. Antolin, L. Ciobanu, Finite generating sets of relatively hyperbolic groups and applications
to geodesic languages. Int. J. Algebra Comput. 11(04), 467–487 (2001)

6. K.I. Appel, P.E. Schupp, Artin groups and infinite Coxeter groups. Invent. Math. 72(2), 201–
220 (1983)

7. G. Baumslag, S.M. Gersten, M. Shapiro, H.B. Short, Automatic groups and amalgams. J. Pure
Appl. Algebra 76(3), 229–316 (1991)

8. M. Bestvina, Questions in geometric group theory, http://www.math.utah.edu/~bestvina/
eprints/questions-updated.pdf

9. B.H. Bowditch, Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3), 1250016, 66pp.
(2012)

10. N. Brady, Sol geometry groups are not asynchronously automatic. Proc. London Math. Soc.
83(1), 93–119 (2001)

11. T. Brady, J. McCammond, Three-generator Artin groups of large type are biautomatic. J. Pure
Appl. Algebra 151(1), 1–9 (2000)

12. M.R. Bridson, Combings of groups and the grammar of reparameterization. Comment. Math.
Helv. 78(4), 752–771 (2003)

13. M.R. Bridson, R.H. Gilman, Formal language theory and the geometry of 3-manifolds.
Comment. Math. Helv. 71(4), 525–555 (1996)

14. M.R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, in Grundlehren der
mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319
(Springer, Berlin, 1999) xxii+643pp.

15. M.R. Bridson, J. Howie, Conjugacy of finite subsets in hyperbolic groups. Internat. J. Algebra
Comput. 15(4), 725–756 (2005)

16. B. Brink, R.B. Howlett, A finiteness property and an automatic structure for Coxeter groups.
Math. Ann. 296(1), 179–190 (1993)

17. D.J. Buckley, D.F. Holt, The conjugacy problem in hyperbolic groups for finite lists of group
elements. Internat. J. Algebra Comput. 23(5), 1127–1150 (2013)

18. J.W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups. Geom.
Dedicata 16, 123–148 (1984)

19. J.W. Cannon, Max Dehn and the word problem, Max Dehn: Polymathis mathematician, ed. by
J. Lorenat, J. Mccleary, D. Rowe, M. Senechal, AMS, to appear

20. P.-E. Caprace, Buildings with isolated subspaces and relatively hyperbolic Coxeter groups.
Innov. Incidence Geom. 10, 15–31 (2009)

http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf
http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf


472 S. Rees

21. P.-E. Caprace, B. Mühlherr, Reflection triangles in Coxeter groups and biautomaticity. J. Group
Theory 8(4), 467–489 (2005)

22. J. Chalopin, V. Chepo, A. Genevois, H. Hirai, D. Osajda, Helly groups (2021).
arXiv:2002.06895

23. R. Charney, Artin groups of finite type are biautomatic. Math. Ann. 292(4), 671–683 (1992)
24. F. Dahmani, V. Guirardel, The isomorphism problem for all hyperbolic groups, Geom. Funct.

Anal. 21(2), 223–300 (2011)
25. P. Dehornoy, Groupes de Garside. Ann. Sci. Ecole Norm. Sup. 35(2), 267–306 (2002)
26. D.B.A. Epstein, D.F. Holt, Computation in word hyperbolic groups. Int. J. Algebra Comput.

11(04), 467–487 (2001)
27. D.B.A. Epstein, D.F. Holt, The linearity of the conjugacy problem in word-hyperbolic groups.

Int. J. Algebra Comput. 16(2), 287–305 (2006)
28. D.B.A. Epstein, D.F. Holt, S.E. Rees, The use of Knuth–Bendix methods to solve the word

problem in automatic groups. J. Symb. Comput. 12, 397–414 (1991)
29. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S. Levy, M.S. Patterson, W.P. Thurston, Word

Processing in Groups (Jones and Bartlett, Burlington, 1992)
30. B. Farb, Automatic groups: a guided tour. Enseign. Math. 38(3–4), 291–313 (1992)
31. B. Farb, C. Hruska, A. Thomas, Problems on automorphism groups of nonpositively curved

polyhedral complexes and their lattices. Geometry, Rigidity, and Group Actions. Chicago
Lectures in Mathematics (University of Chicago Press, Chicago, 2011), pp. 515–560

32. S.M. Gersten, H.B. Short, Small cancellation theory and automatic groups. Invent. Math.
102(2), 305–334 (1990)

33. S.M. Gersten, H.B. Short, Small cancellation theory and automatic groups. II. Invent. Math.
105(3), 641–662 (1991)

34. R.H. Gilman, Groups with a rational cross-section, in Combinatorial Group Theory and
Topology (Alta, Utah, 1984). Annals of Mathematics Studies, vol. 111, (Princeton University
of Press, Princeton, 1987), pp. 175–183

35. M. Gromov, Hyperbolic groups, in Essays in Group Theory. Mathematical Sciences Research
Institute Publications, vol. 8, (Springer, New York, 1987), pp. 75–263

36. U. Hamenstaedt, Geometry of the mapping class group II: A biautomatic structure (2009).
arXiv:0912.0137

37. A. Harkins, Combing lattices of soluble Lie groups, PhD thesis, University of Newcastle, 2001
38. S. Hermiller, J. Meier, Algorithms and geometry for graph products of groups. J. Alg. 171,

230–257 (1995)
39. D.F. Holt, An alternative proof that the Fibonacci group F(2,9) is infinite. Exp. Math. 4(2),

97–100 (1995)
40. D.F. Holt, KBMAG—Knuth–Bendix in Monoids and Automatic Groups, software package

(1995). Available from http://homepages.warwick.ac.uk/~mareg/download/kbmag2/
41. D.F. Holt, The Warwick automatic groups software, in Geometric and Computational Perspec-

tives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994). DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science, vol. 25, (American Mathematical
Society, Providence, 1996), pp. 69–82

42. D.F. Holt, S. Rees, Shortlex automaticity and geodesic regularity in Artin groups. Groups
Complex. Cryptol. 5, 1–23 (2013)

43. D.F. Holt, S. Rees, C.E. Röver, Groups, Languages and Automata. LMS Student Texts, vol. 88
(Cambridge University Press, London, 2017)

44. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation
(Addison-Wesley, Boston, 1979)

45. R.B. Howlett, Miscellaneous facts about Coxeter groups, Lectures given at the ANU Group
Actions Worshop, October 1993, Research Report 93–38 (1993)

46. G.C. Hruska, B. Kleiner, Hadamard spaces with isolated flats. Geom. Top. 9, 1501–1538 (2005)
47. J. Huang, D. Osajda, Large-type Artin groups are systolic. Proc. Lond. Math. Soc. 120(1),

95–123 (2020)
48. J. Huang, D. Osajda, Helly meets Garside and Artin (2019). arXiv:1904.09060

http://homepages.warwick.ac.uk/~mareg/download/kbmag2/


14 The Development of the Theory of Automatic Groups 473

49. J.E. Humphreys, Reflection Groups and Coxeter Groups Cambridge Studies in Advanced
Mathematics, vol. 29 (CUP, Cambridge, 1990)
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Chapter 15
Geometry and Combinatorics via
Right-Angled Artin Groups

Thomas Koberda

Abstract We survey the relationship between the combinatorics and geometry of
graphs and the algebraic structure of right-angled Artin groups. We concentrate
on the defining graph of the right-angled Artin group and on the extension graph
associated to the right-angled Artin group. Additionally, we discuss connections
with geometric group theory and complexity theory.
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15.1 Introduction

In this paper, we survey the interplay between the algebraic structure of right-angled
Artin groups, the combinatorics of graphs, and geometry. Throughout the paper, let
� be a finite simplicial graph, and we write V (�) and E(�) for the set of vertices
and edges of �, respectively. The right-angled Artin group on �, denoted by A(�),
is the group defined by

A(�) = 〈V (�) | [v,w] = 1 if and only if {v,w} ∈ E(�)〉.
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15.1.1 Scope of This Survey

Right-angled Artin groups interpolate between free groups and abelian groups,
and they exhibit a wide range of complex phenomena. Moreover, they are simple
enough that their structure is relatively tractable, and hence one can come to
understand these groups fairly well. They are prototypical examples of CAT(0)
groups, and they serve as toy examples that mirror many important properties of and
inform conjectures about more complicated groups, such as mapping class groups.
Some well-known and difficult conjectures about mapping class groups, such as
the characterization of convex cocompact subgroups, admit complete, tractable
analogues in the case of right-angled Artin groups; see [88] for a detailed discussion.

In this article, we will concentrate on some specific aspects of right-angled Artin
groups, which we will outline in the remainder of this section. For a survey of the
general properties of right-angled Artin groups, the reader is directed to [36].

Some of the basic questions we will discuss are as follows.

Question 15.1.1 What is the exact relationship between the group theoretic struc-
ture of the group A(�) and the combinatorial structure of �?

The reader will find that there are two answers to Question 15.1.1, the trivial one
and the nontrivial one. The trivial one will be a consequence of Theorem 15.2.6
below, which shows that � is completely determined by the cohomology algebra
of A(�), and in fact by the degree one and two parts together with the cup product
pairing. Thus, one can in principle recover � from A(�), so that any combinatorial
properties of � is automatically determined by the algebraic structure of A(�).
Conversely, the algebraic structure of A(�) is, in a sense that is so general as to
render it almost meaningless, “known” by the graph �.

There is a more interesting approach to Question 15.1.1 that seeks to find a dictio-
nary between the combinatorics of � and the algebra of A(�), by passing between
specific graph-theoretic and group-theoretic properties that are analogous. This line
of inquiry yields some otherwise nonobvious insights that have applications outside
of geometric group theory, such as in cryptography and complexity theory. Some
sample results we will discuss in the sequel are the following:

Theorem 15.1.2 ([51]) Let � be a finite simplicial graph. Then � admits a
nontrivial automorphism if and only if the outer automorphism group Out(A(�))
contains a finite nonabelian group.

Theorem 15.1.3 ([54]) Let � be a finite simplicial graph with n vertices. Then �
admits a k-coloring if and only if A(�) surjects to a product

Fn1 × · · · × Fnk ,
where Fni is a free group of rank ni , and

k
∑

i=1

ni = n.
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Theorem 15.1.4 ([55]) Let � be a finite simplicial graph. Then � admits a
Hamiltonian cycle if and only if the cohomology algebra of A(�) is a Hamiltonian
vector space.

In Theorem 15.1.4, Hamiltonicity of a vector space means that there is a
bilinear form satisfying certain “connectivity” conditions. We direct the reader to
Sect. 15.3.3 for precise definitions.

Whereas the graph � is evidently intimately related to the structure of A(�), the
graph � is not always ideally suited for the study of the internal structure of A(�),
since there is no natural interesting action ofA(�) on �. However, one can augment
� in the “smallest way possible” in order to get a graph on whichA(�) acts. The key
idea is to conflate a vertex v of � with an element of A(�). One can then consider
the set

V (�e) = {vg | v ∈ V (�), g ∈ A(�)} ⊂ A(�)

of all conjugates of vertices of �, where here we write vg = g−1vg. It is true though
largely irrelevant that V (�e) is not canonically defined as a subset of A(�), since
automorphisms of A(�) need not preserve the set of conjugates of given vertex
generators of A(�).

We build a graph �e, called the extension graph of � (cf. [78]), by putting an
edge {vg,wh} between vertices in V (�e) whenever [vg,wh] = 1 in A(�). The
group A(�) now acts in a canonical way on �e, i.e. by conjugation.

Question 15.1.5 What is the relationship between the structure of A(�) and the
structure of �e? What is the geometry of the action of A(�) on �e?

The graph �e, though algebraically defined, is very closely related to Hagen’s
contact graph [63], which encodes the intersection pattern between hyperplanes in
a natural CAT(0) cube complex on which A(�) acts. This, together with an analogy
between the extension graph and the curve graph associated to a hyperbolic surface
of finite type, is an entry point into the theory of hierarchically hyperbolic spaces
(HHSs) and hierarchically hyperbolic groups (HHGs) (see [15, 16], for instance).
We will largely avoid discussing that aspect of the theory in this paper.

The extension graph carries a large amount of data about the subgroup structure
of A(�). A sample result we will discuss is the following:

Theorem 15.1.6 ([78]) Suppose� has no triangles, and let� be an arbitrary finite
simplicial graph. Then A(�) occurs as a subgroup of A(�) if and only if � occurs
as a subgraph of �e.

The action of A(�) on �e by conjugation, though perhaps simple at first glance,
serves to unify the group theory of A(�), the geometry of �e, and the intrinsic
CAT(0) geometry of A(�). We state the following result that we will discuss in
some detail, and we will defer definitions of the terminology until then.
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Theorem 15.1.7 ([79]) The action of A(�) on �e is acylindrical. Moreover, the
following are equivalent.

(1) The element g ∈ A(�) acts loxodromically on �e.
(2) The element g ∈ A(�) acts as a rank one isometry of the universal cover of the

Salvetti complex of �.
(3) The element g ∈ A(�) is not conjugate into a join subgroup of A(�).

We will not give detailed proofs of most of the results in this survey. We will give
proof sketches where it is feasible, and we will strive to give complete references.
As already suggested above, we will omit large parts of the theory and neglect
various viewpoints. The specific topics discussed herein undoubtedly reflect the
idiosyncratic tastes of the author.

15.1.2 Notation and Terminology

Most of the notation and terminology used in this survey is standard or nearly
standard. All graphs will be undirected and simplicial unless otherwise noted, so
that in particular there are no double edges nor edges that start and end at a single
vertex. The complement of a graph � is the complement of � in the complete graph
on the vertices of �; that is, complete all the missing edges of � and then delete the
edges that were present in �. Two vertices are therefore connected by an edge in the
complement of � if and only if they are not connected by an edge in �.

A graph � is a join if its complement graph is disconnected. The join of graphs
�1 and �2 is written �1 ∗ �2, and every vertex of �1 is adjacent to every vertex of
�2. The join of two graphs mimics the geometric join in topology: if A and B are
topological spaces, then the join A ∗ B is the quotient of A × B × I that collapses
A × B × {0} to A and A × B × {1} to B. For us, a subgraph � of a graph � is
always full, which is to say � contains all edges that are present in �. A clique is
a complete graph, and a k-clique is a complete graph on k vertices. The set V (�),
viewed as a subset of A(�), is called the set of vertex generators of A(�). The link
of a vertex v ∈ V (�) is written Lk(v) and consists of the vertices that are adjacent
to v. If ∅ �= S ⊂ V (�) then

Lk(S) =
⋂

s∈S
Lk(s).

The star of v is given by St(v) = Lk(v) ∪ {v}. The degree of a vertex v is given by
|Lk(v)|. A vertex v is isolated if Lk(v) is empty. A graph is totally disconnected if
every vertex is isolated. A path in � is a tuple of vertices p = (v1, . . . , vk) in V (�)
such that {vi, vi+1} ∈ E(�) for all suitable indices. The parameter k is arbitrary, and
the length of the path p is k − 1. A cycle or circuit is a path for which v1 = vk and
for which vi �= vi+2 for all suitable indices. A graph is connected if for all pairs of
vertices v,w ∈ V (�), there is a path in � such that v = v1 and w = vk .
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The rank of a linear map is the dimension of its image, and the rank of a group
is the minimal number of generators of the group. The identity element of a group
is denoted 1 with an exception in the case of additive abelian groups when it is
written 0.

Let � be a (possibly infinite) graph. We build a graph �k , called the clique graph
of � as follows. We start with the vertices and edges of �. For every complete
subgraph K ⊂ V (�) with at least two vertices, we add a new vertex vK to V (�k).
IfK1 andK2 are cliques such that V (K1) ∪ V (K2) also spans a complete subgraph
of �, then we add an edge {vK1, vK2} to E(�k). Finally, we add an edge between
each vertex of the form vK and the vertices making up K . The resulting graph is
the clique graph. It is helpful to illustrate the clique graph with an example: if �
is a graph without triangles then the only cliques with two or more vertices are the
edges of �. In this case, the clique graph of � is just � with an extra vertex ve for
each edge e ∈ E(�), and two edges connecting ve to the two vertices of � spanning
e. Thus, �k is just a copy of � with a “fin” hanging off each edge.

15.1.3 A Remark About Generators

When we specify a right-angled Artin group, we will write A(�). Since A(�) as an
abstract group determines � up to isomorphism, the specification of � (viewed as
an abstract graph) does not constitute a choice of generators for A(�). However,
once we speak of particular generators of A(�), we have implicitly chosen an
identification of V (�) with a set of generators for A(�). The author has taken pains
to avoid ambiguities that could cause confusion for the reader.

15.2 The Cohomology Ring of a Right-Angled Artin Group

A central role in the dictionary between algebra and combinatorics is played by the
cohomology of a right-angled Artin group. Recall that the cohomology of a group
G is defined to be the cohomology of a K(G, 1), which is unique up to homotopy
equivalence (see [64], for instance). A right-angled Artin group has a very easy to
describe K(G, 1), and a large number of natural retractions allows for an efficient
calculation of the cohomology algebra. For the entirety of this section,R will denote
a commutative ring with a unit, unless otherwise noted.

15.2.1 The Topology of the Salvetti Complex

We will write S(�) for the Salvetti complex of �, and we construct it as follows
(cf. [36]). Let � be a graph with n = |V (�)|. We fix a bijection between V (�)
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and {1, . . . , n}. Consider now the unit cube [0, 1]n ⊂ R
n. We build a certain subset

S ⊂ [0, 1]n, cube by cube. For 1 ≤ i ≤ n, we write Ji for the unit segment in the ith

coordinate direction, emanating from the origin. We include Ji in S for all i. Now, if
K ⊂ {1, . . . , n} consists of a collection of vertices which span a complete subgraph
of �, then we include the subcube of [0, 1]n spanned by {Ji}i∈K in S.

Once S has been constructed in this way, we set S(�) to be the image of S in
R
n/Zn, where Zn acts on R

n by usual integer translations. Thus, the complex S(�)
is realized as a subcomplex of an n-dimensional torus.

Proposition 15.2.1 The following are properties of S(�).

1. The fundamental group of S(�) is isomorphic to A(�).
2. The universal cover of S(�) is contractible.

That the fundamental group of S(�) is isomorphic to A(�) is a straightforward
calculation using Van Kampen’s Theorem. That the universal cover of S(�) is
contractible is much less obvious, and follows from the fact that S(�) admits the
structure of a locally CAT(0) cube complex. To delve into the details would take
us far afield, and we shall content ourselves to direct the reader to some references,
such as [29, 62, 119]. The crucial point here is that the homology and cohomology
of S(�) are in fact a invariants of A(�), since S(�) is a K(G, 1) forG = A(�).

The homology of S(�) is easily calculated by a standard Mayer–Vietoris
argument. In our construction of S(�) above, we obtain a distinguished k-subtorus
of S(�) for every k-subclique of �. When two such distinguished subtori (corre-
sponding to subcliques K1 and K2 of �) meet, they meet along the distinguished
subtorus corresponding to the intersection K1 ∩ K2 (which is just the basepoint in
case this intersection is empty). Thus, we see that:

Proposition 15.2.2 Let R be a ring. Then Hk(A(�),R) ∼= RNk , where Nk denotes
the number of k-cliques in �.

Here and throughout, we always assume that the A(�) action on the ring of
coefficients is trivial, so that our homology and cohomology groups are always un-
twisted. Computation of the twisted groups is much more complicated; cf. [40, 73].
In particular, the rank of the abelianization of A(�) is the number of vertices of �,
and the dimension of the second homology coincides with the number of edges.

The cohomology groups of A(�) have the same ranks as the homology groups,
and the formal structure of A(�) (or of S(�)) allows one to give a satisfactory
description of the cohomology algebra of A(�). For this, we let Tk denote the k-
dimensional torus. As is standard, the cohomology algebra of Tk with coefficients
in R is

∧

(Rk), the exterior algebra of Rk .

Proposition 15.2.3 Let � ⊂ � be a subgraph. Then the map A(�) −→ A(�)

defined by the identity for vertices λ ∈ V (�) and by v 	→ 1 otherwise is a retraction
of groups.

Of course, the fact that Salvetti complexes are classifying spaces for right-angled
Artin groups means that Proposition 15.2.3 admits a dual statement for spaces. That
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is, there are natural retractions S(�) −→ S(�) which induce the corresponding
maps on fundamental groups whenever� ⊂ � is a subgraph.

Specializing to the case where K ⊂ � is a k-clique, we get a natural surjective
map

A(�) −→ A(K) ∼= Z
k,

and thus an induced injective map on cohomology
∧

(Rk) −→ H ∗(A(�),R).
Suppose we have a decomposition of graphs � = �1 ∪ �2 and # = �1 ∩ �2.
For technical reasons, we suppose that every edge between �1 and �2 is realized
by an edge between �i and # for i ∈ {1, 2}. We obtain a natural commutative
diagram of retractions.

1)

2

Replacing the retractions by inclusions of groups, A(�) acquires the structure
of a graph of groups with vertex groups A(�1) and A(�2) and edge group A(#)
(cf. [105]). Without the assumption that every edge between �1 and �2 be realized
by #, this previous assertion would no longer be true.

Dualizing, we get a commutative diagram on cohomology.

In category theory language, H ∗(A(�),R) is the pushout of the corresponding
diagram. Again, the technical hypothesis on the decomposition of � is hidden in
this last assertion, since the assertion follows from the Mayer–Vietoris sequence
and would be false without this hypothesis (cf. for example when � is a complete
graph and�1 and�2 are both proper subgraphs).

These considerations show that one can describe the cohomology algebra of
A(�) entirely in terms of exterior algebras by inductively building up � from its
cliques. In particular, one can take an appropriate exterior algebra for each maximal
clique in �, and identify exterior subalgebras corresponding to intersections of
maximal cliques. The simplest cliques are the 1-cliques, and a retraction

A(�) −→ 〈v〉 ∼= Z

for v ∈ V (�) allows us to identify preferred generators {v∗ | v ∈ V (�)} for
H 1(A(�),R), which we will refer to as the dual 1-classes to the vertex generators.
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These dual 1-classes can be interpreted as dual to certain natural subspaces of S(�),
though we will not require this point of view here.

We clearly have that H ∗(A(�),R) is generated by its degree one part. Now let
v,w ∈ V (�) and let v∗ and w∗ be the corresponding dual 1-classes. There is a
retraction A(�) −→ 〈v,w〉, and the target group is either Z2 or F2, corresponding
to the cases where {v,w} ∈ E(�) and where {v,w} /∈ E(�) respectively. In the first
case, the cup product v∗ 1 w∗ is nontrivial and in the second case, the cup product
vanishes.

The most important consequence of the previous discussion for us in the sequel
is the following, which characterizes the degree one and degree two parts of the
cohomology of A(�) together with the cup product pairing:

Proposition 15.2.4 Let � be a finite simplicial graph with V (�) = {v1, . . . , vn}
and let E(�) = {e1, . . . , em}. Then there are bases {v∗1 , . . . , v∗n} and {e∗1, . . . , e∗m}
for H 1(A(�),R) and H 2(A(�),R) respectively, such that:

(1) v∗i 1 v∗j = 0 if {vi, vj } /∈ E(�).
(2) v∗i 1 v∗j = ±e∗� if {vi, vj } = e�.

The description of H 1(A(�),R) and H 2(A(�),R) furnished by Proposi-
tion 15.2.4 will be essential in describing many of the correspondences between the
group theoretic structure of A(�) and the combinatorics of �.

15.2.2 Vector Spaces with a Vector-Space Valued Pairing

In the sequel, it is sometimes convenient to consider vector spaces equipped with
a bilinear vector-space valued pairing. We will write q : V × V −→ W for such
a pairing, where V and W are both finite dimensional vector spaces over the same
field F . The pairing q is intended to generalize the cup product pairing

1 : H 1(A(�), F )×H 1(A(�), F ) −→ H 2(A(�), F ),

and so we will always adopt the assumption that q is either symmetric or anti-
symmetric unless otherwise noted. This assumption on q is mostly for convenience,
since relaxing some sort of symmetry assumption only adds unnecessary layers of
complication that do not enrich the underlying theory in a meaningful way.

We will say that the triple (V ,W, q) is pairing-connected, if for all nontrivial
direct sum decompositions V ∼= V0 ⊕ V1, there are vectors v0 ∈ V0 and v1 ∈ V1
such that q(v0, v1) �= 0. With this terminology, we can formulate and prove an entry
in the algebra-combinatorics dictionary.

Proposition 15.2.5 (See [53]) Let � be a finite simplicial graph, let

V = H 1(A(�), F ), W = H 2(A(�), F ),
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and let q be the cup product pairing. Then � is connected if and only if (V ,W, q) is
pairing-connected.

Connectedness of � has another, simpler characterization in terms ofA(�), as we
shall indicated below; namely, � is connected if and only if A(�) is freely indecom-
posable; see Theorem 15.3.2. The (mostly complete) proof of Proposition 15.2.5
will illustrate the principle that many results that related the algebra of A(�) with
the combinatorics of � have an easy direction and a less easy direction.

Proof of Proposition 15.2.5 Suppose first that (V ,W, q) is pairing-connected, and
let � = �0 ∪ �1 be a purported separation of �. Let Vi denote the span of the
vertices {v∗j | vj ∈ V (�i)} for i ∈ {0, 1}. Pairing connectedness implies that
there are vectors wi ∈ Vi such that q(w0, w1) �= 0. Writing w0 and w1 in terms
of the preferred basis vectors, we see that there are vertices xi ∈ V (�i) such
that q(x∗0 , x∗1 ) �= 0, which implies that {x0, x1} ∈ E(�) by Proposition 15.2.4,
a contradiction.

Suppose conversely that� is connected, and let V ∼= V0⊕V1 be a nontrivial direct
sum decomposition that witnesses the failure of (V ,W, q) to be pairing-connected.
Let {x1, . . . , xm} be a sequence of vertices of � such that every vertex of � appears
on this list, and such that for all suitable i we have {xi, xi+1} ∈ E(�). We allow this
list to have repeats.

Let

w0 =
n
∑

i=1

αiv
∗
i ∈ V0, w1 =

n
∑

i=1

βiv
∗
i ∈ V1

be expressions for nonzero vectors with respect to the standard dual basis for V . If
{vi, vj } ∈ E(�) then the expression q(w0, w1) = 0 implies that αiβj = αjβi . The
two sides of this last equation are either both zero or both nonzero, and in the latter
case we have that the pairs (αi , αj ) and (βi, βj ) are proportional. In this case, since
{v∗1 , . . . , v∗n} is a basis for V , we may perturb w0 or w1 within the respective vector
spaces V0 and V1 in order to obtain vectors for which the coefficients corresponding
to v∗i and v∗j are not proportional. Thus, the condition q(w0, w1) implies that

αiβj = αjβi = 0.

With these observations, we can complete the proof. Let w0 be as above.
Relabeling if necessary, we have v1 = x1 and v2 = x2. Without loss of generality,
we may assume that α1 �= 0. Now let w1 ∈ V1 be expressed as above. If β2 �= 0
then α1β2 �= 0, a conclusion that was ruled out by the considerations in the previous
paragraph. Thus, β2 = 0, and since w1 was arbitrary, the coefficient of x∗2 vanishes
for all vectors in V1. Then, we may find a vector in V0 whose coefficient α2 is
nonzero, and arguing symmetrically, we see that the coefficient β1 is zero for all
vectors in V1. By induction on m and using the fact every vertex of � occurs
on the list {x1, . . . , xm}, we see that V1 must be the zero vector space. This is a
contradiction. ��



484 T. Koberda

15.2.3 The Cohomology Ring of A(�) Determines �

We are now ready to state and prove a central fact about the cohomology of A(�),
namely that it determines the isomorphism type of �.

Theorem 15.2.6 Let � be a finite simplicial graph, let V = H 1(A(�), F ), let
W = H 2(A(�), F ), and let q be the cup product pairing. Then the triple (V ,W, q)
determines � up to isomorphism.

One essential point in Theorem 15.2.6 is that the triple (V ,W, q) is considered
abstractly, without any further data such as bases. Before giving a proof of
Theorem 15.2.6, we can make several observations about special instances of the
result. First, the dimension of V = H 1(A(�), F ) coincides with |V (�)|, and the
dimension of W = H 2(A(�), F ) coincides with |E(�)|, as is immediate from
Proposition 15.2.4. Moreover, the first and second cohomology of A(�) together
with the cup product pairing identify complete graphs. To see this, it is convenient
to introduce a map V −→ Hom(V ,W), defined by v 	→ fv , and where fv(v′) =
v 1 v′. The graph � is complete if and only if for all v ∈ H 1(A(�), F ), the rank of
the image of fv is dimH 1(A(�), F )− 1. We leave the verification of this last claim
as a straightforward exercise for the reader.

The fact that A(�) determines the graph � uniquely is well-known. See [44, 85,
102] for several perspectives. The proof offered here that gives uniqueness of � via
the cohomology algebra ofA(�) fits into the theory of cohomological uniqueness. In
the context of cohomological uniqueness, one is often concerned with the question
of whether or not a particular space (often decorated with adjectives such as p–
completeness, where p is a prime) is determined up to homotopy equivalence by its
cohomology (with various groups of coefficients). In our setting, Theorem 15.2.6
implies that among Salvetti complexes associated to finite simplicial graphs, the
integral (or rational) cohomology of the space determines the space up to homotopy
equivalence, and its defining graph up to isomorphism. Moreover, only the ring
structure on the cohomology algebra is required, and only in degrees one and two.
The reader is directed to [42, 101, 115, 116] for a more detailed discussion of
cohomological uniqueness.

Another perspective on the cup product pairing determiningA(�) and� uniquely
is given by the theory of 1-formality in the sense of D. Sullivan, a property which is
shared notably with Kähler groups, and into which we will not delve in deeply. The
reader is directed to Chapter 3 of [4], for instance.

Proof of Theorem 15.2.6 We will actually prove a stronger statement. Suppose
� −→ � is obtained by deleting vertices (so that � is a subgraph of �), with an
induced retractionA(�) −→ A(�) defined by sending the vertices V (�) \V (�) to
the identity. Thus, we obtain triples (V�,W�, q�) and (V�,W�, q�) corresponding
to the cohomologies of these groups, and a map of triples

i�,� : (V�,W�, q�) −→ (V�,W�, q�),
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which is injective on the level of vector spaces, and q� is extended by q� .

Claim The triple

{(V�,W�, q�), (V�,W�, q�), i�,�}

uniquely determines graphs� and �, together with an injection of graphs� −→ �.
The theorem will then follow from the special case where V (�) = ∅.

We proceed by induction on (|V (�)|, |V (�)|), ordered lexicographically, the
cases where |V (�)| ∈ {1, 2} being easy consequences of the remarks preceding
the proof. We now suppose the claim has been established for all graphs with at
most n vertices, and we suppose that � has n+1 vertices. We consider the (possibly
trivial) subspace

V0 ⊂ V = H 1(A(�), F )

spanned by vectors for which fv has rank zero. It is immediate from Proposi-
tion 15.2.4 that a vector w ∈ V0 is in the span on vectors dual to vertices of degree
zero in �. The quotient V/V0 is isomorphic to H 1(A(�′), F ), where �′ is the result
of deleting all the vertices of � that have degree zero.

The natural map A(�) −→ A(�′) given by sending isolated vertices to the
identity induces a map H 1(A(�′, F ) −→ H 1(A(�), F ), which identifies V/V0
with a subspace of V . The cup product on H 1(A(�), F ) restricts to

q : H 1(A(�′), F )×H 1(A(�′), F ) −→ W.

Thus, if V0 �= 0 then �′ satisfies the conclusion of the claim by induction, and �
is obtained from �′ by adding dimV0 many isolated vertices. We may therefore
assume that � has no isolated vertices.

We now consider a vector v ∈ V such that the rank of fv is minimized.

Case 1 Suppose first that the linear span U of v coincides with the span of a vector
dual to a vertex x of �, as furnished by Proposition 15.2.4. Then V/U coincides
with the first cohomology of A(�′), where �′ is obtained from � by deleting x. The
map V −→ V/U is induced by the inclusion �′ −→ � and the corresponding
injection A(�′) −→ A(�).

Writing Z for the image of fv , we have that W/Z coincides with the second
cohomology of A(�′), and the cup product pairing descends to a bilinear map

q : V/U × V/U −→ W/Z,

which coincides with the cup product pairing on the cohomology of A(�′). By
induction, the triple (V /U,W/Z, q) determines �′ uniquely.

Let N ⊂ V be the kernel of fv . Then N is spanned by the dual vector v
associated to the vertex x and the duals of the vertices which are not adjacent of



486 T. Koberda

x. If N = U then � is the join of x and �′. If not, then we pass to the quotient
V/N , which coincides with H 1(A(Lk(x)), F ). Again, the map V −→ V/N is
induced by the inclusion of A(Lk(x)) −→ A(�). Passing to a suitable quotient
W/Y ofW as above, we can recover the cup product pairing on the cohomology of
A(Lk(x)), and thus recover Lk(x), by induction. Finally, we use the full strength of
the induction hypothesis to obtain an injection ix : Lk(x) −→ �′. The graph � is
now reconstructed by attaching x to each vertex in the image of ix .

To complete the induction, let

{(V�,W�, q�), (V�,W�, q�), i�,�}
be a triple satisfying the hypotheses of the claim. We quotient out the degree one
part of the cohomologyV� and V� byU , and the map i�,� descends to the quotients
by hypothesis. By induction, we obtain an injection of graphs�′ −→ �′, where the
primed graphs are obtained by deleting the vertex x. The links of x in �′ and�′ can
be determined as above, whence we can reconstruct �.

Case 2 Suppose that v ∈ V is arbitrary such that the rank k of fv is minimized, and
suppose that v is supported on the duals of two or more vertices, so that

v =
m
∑

i=1

αix
∗
i ,

where all indices have nonzero coefficients and m ≥ 2. It is clear that for all i, the
degree of xi must coincide with k, by an easy application of Proposition 15.2.4.
Consider the vertices x1 and x2. Observe that Proposition 15.2.4 again implies that
there cannot be a vertex that is distinct from both x1 and x2 and that is adjacent to
x1 but not to x2. Thus, every vertex that is adjacent to x1 and distinct from x2 is also
adjacent to x2. By symmetry, the same statement holds after switching the roles of
x1 and x2. The argument now bifurcates into two subcases, according to whether x1
and x2 are adjacent or not.

Subcase 1 Suppose first that x1 and x2 are adjacent, and suppose that m ≥ 3.
Suppose that x3 is not adjacent to x1. Then since the degrees of x2 and x3 are the
same and coincide with the rank k of fv , we have that

|Lk(x2) ∪ Lk(x3)| ≥ k + 1.

This violates the minimality of the choice of v, since then Proposition 15.2.4 implies
that the rank of fv is at least k + 1. It follows that x1 and x3 are adjacent, and
by symmetry we have that x2 and x3 are adjacent. By a straightforward induction,
we have that {x1, . . . , xm} form a clique, and for all i, a vertex y /∈ {x1, . . . , xm}
adjacent to xi is adjacent to all the vertices {x1, . . . , xm}. Observe that if

v′ =
m
∑

i=1

βix
∗
i
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is another linear combination of dual vectors, then nonzero linear combinations w
of v and v′ also satisfy that the rank of fw is equal to k. We set Vmin to be a maximal
vector subspace of V that contains v and such that for all 0 �= w ∈ Vmin, the rank of
fw is equal to k.

It is straightforward now to show that Vmin is generated by {x∗1 , . . . , x∗� }, where
{x1, . . . , x�} form an �-clique such that

Lk(xi) \ {xj } = Lk(xj ) \ {xi}
for all i and j .

We may now proceed as in Case 1 above, treating {x1, . . . , x�} as a single vertex,
and replacing the subspace U by the subspace Vmin.

Subcase 2 We now have that x1 and x2 are not adjacent. If m ≥ 3, then the
argument in Subcase 1 above implies that x3 is adjacent to neither x1 nor x2. We
thus conclude that {x1, . . . , xm} form a totally disconnected subgraph of �, and
Lk(xi) = Lk(xj ) for all i and j . We construct a vector space Vmin as in Subcase 1
and conclude that it is generated by {x∗1 , . . . , x∗� }, where {x1, . . . , x�} form a totally
disconnected graph and such that the links of any two vertices on this list coincide.
We again reduce to Case 1.

��
Some remarks about Theorem 15.2.6 are in order. For one, one need only

consider the degree one and degree two parts of the cohomology and not the full
cohomology algebra, and this is not surprising since a graph is determined by its
vertices and its edges, and a graph determines the corresponding right-angled Artin
group. Second, in Case 2 of the proof, the vertices {x1, . . . , x�} are indistinguishable
from each other, in the sense of graph automorphisms. That is, every permutation of
{x1, . . . , x�} is realized by a graph automorphism of �, and therefore it is reasonable
that one can treat this collection of vertices as a single vertex. Moreover, in the
two subcases, {x1, . . . , x�} generates either an abelian or a free subgroup of A(�).
The full group of automorphisms of Z� or of F� embeds in the group Aut(A(�))
(cf. Sect. 15.3.5 below). Finally, in the proofs of Subcases 1 and 2, we obtain
a vector space Vmin, which either comes from a clique or a totally disconnected
subgraph. These two cases can be checked linear algebraically by whether the cup
product pairing is trivial or not on Vmin.

15.3 Translating Between Group Theory and Combinatorics

In this section, we will describe some of the results and ideas that go into translation
between the algebraic structure of A(�) and the combinatorics of �. As we have
remarked already, the abstract structure of A(�) determines completely the nature
of �, passing perhaps through cohomology (Theorem 15.2.6). We will seek clean,
definitive results characterizing aspects of the combinatorial structure of � in terms
of the algebra of A(�). In the process, we will gain insight into both structures.
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15.3.1 Elementary Properties

We begin with some of the first properties of graphs, and how these properties are
reflected in A(�). In Proposition 15.2.5, we have that pairing-connectedness of the
triple (V ,W, q) characterizes the connectedness of �. One can characterize the
connectedness of � and its complement directly from the group theory of A(�),
without reference to the cohomology algebra, as follows.

Theorem 15.3.1 ([106]) The groupA(�) splits as a nontrivial direct product if and
only if � splits as a nontrivial join.

Recall that a graph � splits as a nontrivial join if and only if the complement of
� is disconnected. Dually, we have the following fact:

Theorem 15.3.2 ([26]) The group A(�) splits as a nontrivial free product if and
only if � is disconnected.

Both Theorems 15.3.1 and 15.3.2 are easy in one direction. If � is disconnected,
then A(�) admits a presentation of the form

A(�) = 〈V (�1) ∪ V (�2) | R1 ∪ R2〉,

where �1 and �2 are nonempty and disjoint subgraphs of �, and where Ri only
contains generators from �i for i ∈ {1, 2}. It follows then immediately that A(�) ∼=
A(�1) ∗ A(�2).

If � splits as a join �1 ∗ �2, then every vertex of �1 is adjacent to every vertex
of �2. We have that A(�1) and A(�2) are subgroups of A(�), and together generate
the whole group. Moreover, they normalize each other and have trivial intersection
(this last point is not completely trivial and requires some argument if one wishes to
be pedantic, but we shall sweep it under the rug). It follows that A(�1) and A(�2)

generate a direct product.
The converse directions are more complicated, and we outline the main ideas for

the convenience of the reader.

Sketch of Proof of Theorem 15.3.2 We use the characterization of free products
that follows from the work of Stallings [109, 110]. Let G be a finitely generated
group with Cayley graph X. Recall that the set of ends of G is the inverse limit
of π0(X \ K), where K ranges over all compact subgraphs of X. A group has
zero, one, two, or infinitely many ends. As right-angled Artin groups are torsion-
free (as follows from Proposition 15.2.1 for instance), we have that a right-angled
Artin group A(�) splits as a nontrivial free product if and only if it has infinitely
many ends. It thus suffices to argue that a connected graph � yields a group with
finitely many ends. For a graph with a single vertex, we have A(�) is Z and hence
has two ends. A straightforward argument shows that if G and H are both infinite
groups then G × H has one end. Thus, we have that all nontrivial joins of graphs
yield right-angled Artin groups with one end, and by induction we suppose that all
connected graphs with at most n vertices yield groups with at most two ends. Let
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v ∈ V (�). Then there is a proper subgraph� of � such that

� = � ∪Lk(v) St(v).

We have that Lk(v) is not empty since � is connected. Thus, we have that

A(�) = A(�) ∗A(Lk(v)) A(St(v)).

If � is connected then A(�) is an amalgamated product of two finite-ended groups
over an infinite subgroup (cf. [105]), whence one can prove directly that A(�) is
one-ended. If � is disconnected, then one can argue component-by-component of
� to obtain the same conclusion. ��

For Theorem 15.3.1, we require a basic result about the structure of centralizers
of elements in A(�). Let w be a word in the vertices of � and their inverses. We say
that w is reduced if w cannot be shortened by applications of free reductions and
moves of the form [v±1

1 , v±1
2 ] for {v1, v2} ∈ E(�). We say that w is cyclically

reduced if it remains reduced after allowing cyclic permutations of the letters
occurring in w. It is true but not trivial that the moves of free reduction and
commutation solve the word problem in right-angled Artin groups, and that cyclic
reduction solves the conjugacy problem (see especially [39], cf. [31, 65, 114, 120]).

The support ofw is written supp(w) and is defined to be the set of vertices which
are required (possibly inverted) to expressw. It is not completely trivial but true that
the support of w is well-defined in the sense that for reduced words, w1 = w2 in
A(�) implies that supp(w1) = supp(w2).

Theorem 15.3.3 ([106]) Let 1 �= w ∈ A(�) be cyclically reduced. Then the
centralizer of w lies in 〈supp(w) ∪ Lk(supp(w))〉. If the centralizer of w is not
cyclic then either Lk(supp(w)) is nonempty, or supp(w) decomposes as a nontrivial
join.

Armed with Theorem 15.3.3, we can illustrate the other direction of Theo-
rem 15.3.1.

Proof of Theorem 15.3.1 Suppose thatA(�) ∼= G×H for nontrivial groupsG and
H . Then since A(�) is torsion-free, we have that every nontrivial element of A(�)
contains a copy of Z

2 in its centralizer. Writing V (�) = {v1, . . . , vn}, we have
that w = v1 · · · vn is cyclically reduced and has noncyclic centralizer. Moreover,
Lk(supp(w)) = ∅, so that Theorem 15.3.3 implies that supp(w) = � splits as a
nontrivial join. ��

Theorem 15.3.3 has several other important consequences that relate the alge-
braic structure of A(�) to the combinatorics of �. First, we have the following.

Theorem 15.3.4 The cohomological dimension of A(�) coincides with the size of
the maximal clique in �.
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Theorem 15.3.4 follows from standard ideas about cohomological dimension
(cf. [30]), using the description of the Salvetti complex as a union of tori together
with the fact that it is aspherical by Proposition 15.2.1. We have that the maximal
dimensional cells in S(�) have the same dimension as the maximal size of a
clique in �, say k. Moreover, this k-cell is the top dimensional cell in a subtorus
of dimension k, which has nontrivial cohomology in degree k. Finally, the retraction
S(�) −→ (S1)k implies that the degree k cohomology of S(�) is also nontrivial.
It follows that k is also the cohomological dimension of A(�).

The cohomological dimension and maximal clique size also describe the rank of
a maximal abelian subgroup.

Theorem 15.3.5 The maximal clique size of � coincides with the rank of a maximal
abelian subgroup of A(�).

Theorem 15.3.5 is also a consequence of general facts about cohomological
dimension. Clearly, if the maximal clique size of � is k then A(�) contains a
copy of Zk . Since S(�) is k-dimensional and aspherical, it follows that no cover
of S(�) can have fundamental group Z

k+1, so there are no abelian subgroups of
rank exceeding k.

For another perspective, suppose � is connected and G < A(�) is an abelian
subgroup of rank k ≥ 2. Conjugating if necessary, at least one nontrivial element of
G is cyclically reduced, so that Theorem 15.3.3 implies that all nontrivial elements
of G are supported on a subgraph J of � that splits as a nontrivial join. Writing
A(J ) ∼= A(J1)×A(J2), we may restrict the projectionsA(J ) −→ A(Ji) for each i
to G.

Now, suppose first that � has no triangles (i.e. 3-cliques). Then J1 and J2 cannot
have any edges, since otherwise � would have a triangle. It follows then that A(Ji)
is free for i ∈ {1, 2}, and so the image of G in A(Ji) is cyclic for each i. It follows
thatG has rank at most two. Thus, we may assume by induction that if the maximal
clique size of � is at most k ≥ 2 then the maximal abelian subgroup has rank at most
k. Supposing � has maximal clique size k + 1, then J1 and J2 have maximal clique
sizes k1 > 0 and k2 > 0, which satisfy k1+ k2 ≤ k+ 1. It follows by induction that
the ranks of the images of G in A(J1) and A(J2) are at most k1 and k2, so that G
has rank at most k + 1. This gives an alternate proof of Theorem 15.3.5.

The final elementary combinatorial property of graphs we will discuss is the
maximal degree of a vertex. This property is essential in the theory of expander
graphs, which will be discussed below. In the sequel we will use a different
characterization of the maximal degree that is understood through cohomology,
though the following is a significantly cleaner statement.

Proposition 15.3.6 Let � be a graph and let d denote the maximum valence of a
vertex of �. Then the rank of the centralizer of a nontrivial element of A(�) is at
most d + 1. Conversely, if for all elements 1 �= g ∈ A(�) the centralizer of g has
rank at most d + 1, then the maximum degree of a vertex of � is at most d .

The proof of Proposition 15.3.6 is a fairly straightforward application of Theo-
rem 15.3.3, and we leave it as an exercise for the reader.
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15.3.2 k-Colorability

From the point of computational complexity, one of the most basic and difficult
questions one can pose about a graph � is about its colorability. A (vertex) coloring
of a graph � is a function κ : V (�) −→ X, where X is a finite set of colors, and
where {v,w} ∈ E(�) implies that κ(v) �= κ(w). A classical result of Brooks [43]
says that the minimal size of X is at most the maximal degree of a vertex of � plus
one. If � is not an odd length cycle or a clique then the bound can be improved to the
maximal degree of a vertex. The minimal size of X is called the chromatic number
of �, and we say that � is |X|-colorable.

A graph that is 2-colorable is called bipartite. Determining if a graph is bipartite
is easy from a computational point of view, and can be accomplished by a sorting
algorithm that runs in a period of time that is bounded by a polynomial in the size
of the set of vertices. However, the problem of determining if a graph is 3-colorable
is extremely difficult from a computational standpoint, and is NP-complete (see
Sect. 15.3.7 below).

We remark that there is a related notion of edge coloring, which is a function
ε : E(�) −→ X such that if v ∈ V (�) is incident to both e1 and e2, then ε(e1) �=
ε(e2). It is clear that the minimal size of X for a valid edge coloring is bounded
below by the maximal degree of a vertex of �. A result of Vizing [43] shows that
� admits an edge coloring with |X| the maximal degree of a vertex of � plus one.
Thus, giving sharp or almost sharp estimates on edge colorability of a graph is an
essentially local problem, whereas determining vertex colorability is an essentially
global problem.

Let � be a k-colorable graph. Choose a k-coloring of �, and add an edge to � for
every pair of vertices with different colors, naming the result �. Observe that the
vertices of� are partitioned as

V (�) = V1 ∪ · · · ∪ Vk,
where there are no edges between vertices in Vi for each i, and where for i �= j ,
each vertex of Vi is adjacent to each vertex of Vj . It follows thatA(�) is a product of
free groups, and that A(�) is a quotient of A(�). It turns out that these elementary
considerations characterize k-colorable graphs.

Theorem 15.3.7 Let � be a finite graph with N vertices. Then � is k-colorable if
and only if there is a surjective map

A(�) −→
k
∏

i=1

Fni ,

where for each i the group Fni is free of rank ni , and where

k
∑

i=1

ni = N.
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We have already established the “only if” direction, which is easy. The reverse
direction is somewhat more substantial, owing to the fact that the surjective
homomorphism need not send vertex generators of � to a free factor of one of the
free groups occurring on the right hand side.

Sketch of Proof of Theorem 15.3.7 We identify the product of free groups
with A(�), where � is a k-fold join of completely disconnected graphs, say
{�1, . . . ,�k}. If g ∈ A(�), then g can be written uniquely as a product of
g1 · · ·gk , where gi ∈ A(�i). One then shows that if g = g1 · · · gk and h = h1 · · ·hk
are elements of A(�) that commute, then for each i, the images of gi and hi in the
abelianization of A(�i) are rational multiples of each other.

Now, the surjective map A(�) −→ A(�) induces an isomorphism

φ : H1(A(�),Q) −→ H1(A(�),Q),

which can be expressed as a matrix A with respect to the vertex generators of both
graphs. We will view the rows of A as expressions for φ(v) for v ∈ V (�), in terms
of the vertex generators of �. We arrange the columns so that the first |V (�1)|
columns correspond to vertices of �1, followed by the vertices of �2, and so on.

Write A = (A1 | · · · | Ak), where the columns of Ai correspond to the vertices
of�i , and therefore the column space ofAi has dimension |V (�i)|. Note that since
A is invertible, the row space of A1 has dimension |V (�1)| = n1.

It is an exercise in linear algebra to show that there is an n1 × n1 minor B1 of A1
and a (N − n1)× (N − n1) minor C of (A2 | · · · | Ak) such that both B1 and C are
invertible.

By induction, one permutes the rows of A to obtain a block matrix B = (B1 |
· · · | Bk) such that the diagonal ni × ni blocks {C1, . . . , Ck} of B are invertible.
This row permutation is simply a permutation of the vertices of �. One defines a
coloring of the vertices by setting κ(vi) = j if in the matrix expression B of φ, we
have that the row φ(vi) meets the block Cj . That is, the vertices corresponding to
the first n1 rows are assigned color 1, the next n2 are assigned color 2, and so on.

To check that this is a valid coloring, suppose v and w are adjacent in �. Then
[v,w] = 1 in A(�). For each block Bi , we may consider the restriction of the rows
φ(v) and φ(w) to the columns in Bi . In Bi , these two rows are rational multiples
of each other. If v and w were assigned the same color then in some block Bi , the
rows both meet Bi in the diagonal sub-block Ci . Since Ci is invertible, this is a
contradiction. Thus, we see that adjacent vertices of � are assigned different colors,
and so the coloring of � is valid. ��

Unpacking the final check that κ is a valid coloring in the proof of Theo-
rem 15.3.7, it is not difficult to see that in fact one can relax the condition that the
homomorphismA(�) −→ A(�) be surjective, and replace it with the condition that
it be surjective on the level of rational homology. From a practical point of view, this
is a useful observation. Indeed, checking that a linear map is surjective is relatively
easy, but maps to direct products of free groups are much less well-behaved, since
the subgroup structure of the latter is very complicated [97].
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15.3.3 Hamiltonicity

In addition to computing the chromatic number of a finite graph, a classical NP-
complete problem in graph theory is deciding whether a given connected graph
admits a Hamiltonian cycle. Here, a Hamiltonian cycle is a circuit in � that visits
every vertex of � exactly once. A graph that admits a Hamiltonian cycle is simply
called Hamiltonian. Much like vertex colorability versus edge colorability, there is
a notion of a circuit in � that traverses every edge exactly once, called an Eulerian
cycle. It is a standard fact that a connected graph admits an Eulerian cycle if and
only if each vertex has even degree. Thus, determining whether a graph admits an
Eulerian cycle is a purely local question, and the existence of a Hamiltonian cycle
is a global question, impervious to local methods. We direct the reader to [43] for
background on Eulerian and Hamiltonian paths and cycles in graphs.

Let (x0, . . . , xn) denote a Hamiltonian cycle in �, and let

{x∗0 , . . . , x∗n} ⊂ V = H 1(A(�), F )

denote the corresponding dual classes. Proposition 15.2.4 implies that

x∗i 1 x∗i+1 �= 0

for all i, where the indices are considered cyclically modulo n. This is the
fundamental observation when it comes to characterizing Hamiltonicity of � in
terms of the intrinsic algebra of A(�).

Let (V ,W, q) be a triple consisting of a vector space V equipped with a vector-
space-valued (i.e.W -valued) (anti)-symmetric bilinear pairing. We will assume that
V is finite dimensional. We say that (V ,W, q) is Hamiltonian if for all bases
{v0, . . . , vn} of V , there is a permutation σ ∈ Sn+1 such that for all i, we have
q(vσ(i), vσ(i+1)) �= 0.

Setting

V = H 1(A(�), F ), W = H 2(A(�), F ), q =1,

suppose that (V ,W, q) is Hamiltonian. Then there is a basis {x∗0 , . . . , x∗n} consisting
of classes dual to the vertices of �. The Hamiltonicity of the triple immediately
implies the existence of a permutation σ such that

x∗σ(i) 1 x∗σ(i+1) �= 0

for all relevant indices, which immediately implies that � admits a Hamiltonian
cycle.

Theorem 15.3.8 (See [55]) Let � and (V ,W, q) be as above. Then � admits a
Hamiltonian cycle if and only if (V ,W, q) is Hamiltonian.
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The reader may check as an easy exercise that the Hamiltonicity of a triple
(V ,W, q) implies that the triple is in fact pairing-connected, so that if (V ,W, q)
is Hamiltonian then � is automatically connected by Proposition 15.2.5.

Establishing Theorem 15.3.8 is tricky, and requires significantly more insight
than Theorem 15.3.7, for instance. We will attempt to briefly convey the main ideas
to the reader in the remainder of this subsection. The reader is directed to [55] for
a full account.

In order to establish Theorem 15.3.8, it is clearly sufficient to show that if �
is Hamiltonian then the triple (V ,W, q) is also Hamiltonian. One may begin with
the standard dual basis {x∗0 , . . . , x∗n} for V and hope to bootstrap it to show that
(V ,W, q) is Hamiltonian. One can begin with a change of basis matrix A, which
transforms {x∗0 , . . . , x∗n} to a given basis {v0, . . . , vn} for V . We write A = (a

j
i ),

where the subscript refers to the row and the superscript refers to the column of a
given entry.

We leave it as an easy exercise for the reader to show the following:

Lemma 15.3.9 The triple (V ,W, q) is Hamiltonian if for all A ∈ GLn+1(A), there
is a permutation σ ∈ Sn+1 such that for all 0 ≤ i ≤ n, there exists a 0 ≤ j ≤ n
such that

A
j
i =

(

a
j

σ(i)
a
j+1
σ(i)

a
j

σ (i+1) a
j+1
σ(i+1)

)

is invertible, where all indices are considered cyclically.

Lemma 15.3.9 gives rise to a natural definition that one can associate to matrices
(which need not be invertible, or even square). The two-row graph G(A) of a matrix
A is a graph whose vertices are the rows {r0, . . . , rn} of A, and whose columns are
given by the relation {ri, rj } ∈ E(G(A)) if the matrix

Aki,j =
(

aki a
k+1
i

akj a
k+1
j

)

is invertible for some k.
It is clear from Lemma 15.3.9 that (V ,W, q) is Hamiltonian provided that G(A)

is itself Hamiltonian for all suitable matrices A. To get a feel for G(A), the reader is
encouraged to prove directly that G(A) is connected whenever A is invertible. The
heart of the proof of Theorem 15.3.8 is the following:

Lemma 15.3.10 Let A be an invertible matrix. Then G(A) is Hamiltonian.

Lemma 15.3.10 is a curious fact in its own right, and its proof is fairly involved.
Producing a Hamiltonian cycle directly in G(A) appears to be a difficult problem
itself, and which has the feel of an NP-complete problem (though this is by no means
a theorem). Thus, one needs to use more indirect methods to find a Hamiltonian
cycle in G(A).
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The key idea is to analyze block submatrices of a matrix A which consist of
nonzero entries with one-dimensional row spaces. One can consider maximal such
blocks, which give rise to a partition of the products of entries ofAwhich contribute
to the determinant of A, according to the standard Leibniz formula. Using certain
symmetries, one can then argue that if no Hamiltonian cycle exists in G(A) then all
summands in the determinant of A cancel in pairs, and hence the determinant of A
is zero.

15.3.4 Graph Expanders

In this subsection, we leave behind individual graphs, and concentrate on families
of graphs known as graph expanders. Graph expanders are sequences of connected
graphs that are uniformly sparse and uniformly difficult to separate. Expander
families find applications in a myriad of different fields, such as knot theory, spectral
graph theory and spectral geometry, probabilistic computation, and network theory.
We direct the reader to [3, 23, 24, 67, 89, 92–94] for references relevant to this
section.

A sequence of finite graphs {�i}i∈N is called a graph expander family if the
following conditions are satisfied:

(1) There is a d such that for all i, the maximum degree of a vertex of �i is at most
d .

(2) We have |V (�i)| −→∞.
(3) The Cheeger constant of �i is uniformly bounded away from zero, indepen-

dently of i.

Here, the Cheeger constant of a graph � is defined by considering subsets A ⊂
V (�) such that |A| ≤ |V (�)|/2, and by looking at ∂A, which is defined to be the set
of vertices of V (�)\A that are adjacent to a vertex ofA. The isoperimetric constant
of A is defined to be

cA = |∂A|
|A| ,

and the Cheeger constant c is the minimum of cA as A ranges over all admissible
subsets of V (�). From this point of view, it is clear why the Cheeger constant
measures the difficulty in separating �: in order to completely cut a set A ⊂ V (�)
out of �, one has to sever at least c · |A| edges. The reader may check that if {�i}i∈N
forms a graph expander family then the Cheeger constant inequality implies that
each graph in the family is connected.

By associating the standard cohomology triple

Vi = H 1(A(�i), F ), Wi = H 2(A(�i), F ), qi =1,
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some of the defining properties of graph expanders translate almost immediately.
Namely, we have |V (�i)| −→∞ if and only if dimVi −→∞, and �i is connected
if and only if (Vi,Wi, qi) is qi-pairing-connected.

The remaining conditions for defining graph expanders require some new
ideas. The degree of a vertex is already characterized in terms of centralizers
via Proposition 15.3.6 above. Since centralizers of elements are less transparently
cohomological objects, we first translate this notion of degree into linear algebra.
Let (V ,W, q) be a vector space with a vector-space-valued bilinear pairing. If
∅ �= S ⊂ V and B is a basis for V , we write

dB(S) = max
s∈S |{b ∈ B | q(s, b) �= 0}|.

To get rid of the dependence on B, we set d(S) to be the minimum of dB(S), taken
over all possible bases. To get rid of the dependence on S, we set d(V ) to be the
minimum of d(S), taken over all S which span V . The quantity d(V ) is called the
q-valence of V .

A reader who has understood the ideas in the proof of Theorem 15.2.6 will have
no trouble proving the following fact:

Proposition 15.3.11 Let (V ,W, q) be the usual cohomological triple associated to
A(�), and let d be the maximum degree of a vertex of �. Then d(V ) = d .

It remains to properly define the Cheeger constant of the triple (V ,W, q). Again,
a reader who has absorbed the ideas in the proof of Theorem 15.2.6 could probably
guess the definition. Let Z ⊂ V be a vector space with 0 �= dimZ ≤ (dimV )/2.
We will write C for the orthogonal complement of Z, which is to say the set of
vectors v ∈ V such that q(v, z) = 0 for all z ∈ Z. The isoperimetric constant of Z
is defined to be

cZ = dimV − dimZ − dimC + dim(C ∩ Z)
dimZ

.

The Cheeger constant cV of the triple (V ,W, q) is taken to be the infimum of cZ as
Z varies over all nonzero subspaces of V of dimension at most half of that of V .

Let {x1, . . . , xn} denote the vertices of � and {x∗1 , . . . , x∗n} be the dual generators
of H 1(A(�), F ). If B ⊂ {x1, . . . , xn}, write B∗ for the corresponding subset of
{x∗1 , . . . , x∗n}. The following is an exercise for the reader:

Proposition 15.3.12 Let ∅ �= B ⊂ V , and let Z ⊂ V be generated by B∗. Then

cZ = |∂B|
|B| .

Thus, the Cheeger constant of � is bounded below by cV . A priori, there are
many more subspaces of V than there are subgraphs of �, so that in principle cV
could be strictly smaller than the Cheeger constant of �.
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Theorem 15.3.13 (See [53]) Let {�i}i∈N be a sequence of graphs, and let

{(Vi,Wi, qi)}i∈N
be the corresponding cohomological triples. We have that {�i}i∈N forms a family of
expanders if and only if:

(1) There is a d such that the qi-valence of Vi is bounded above by d .
(2) We have dimVi −→∞.
(3) There is an ε > 0 such that for all i, we have cVi ≥ ε.

As in the case of graph expander families, pairing-connectedness in the sequence
of cohomological triples may be assumed but is actually redundant since it is
a consequence of the Cheeger constant bound. An abstract sequence of triples
{(Vi,Wi, qi)}i∈N is called a family of vector space expanders (not to be confused
with dimensional expanders, cf. [23, 24, 93]). In light of the preceding discussion, in
order to establish Theorem 15.3.13, it suffices to show that for each i, the Cheeger
constant cVi coincides with the Cheeger constant of �i . Unfortunately, the author
does not know a conceptually simple proof of this fact. The proof given in [53]
involves a rather technical sorting argument, and so we will not comment on it any
further.

15.3.5 Graph Automorphisms

One of the most basic questions one can ask about a graph (and indeed about
a relation) is how symmetric it is. Symmetry is measured by the richness of the
automorphism group, and the smaller the size of the automorphism group, however
it is measured, the less symmetric the object.

The automorphisms of graphs are of great interest in graph theory [17, 43, 58],
and in complexity theory as well [7]. Many finite graphs are highly symmetric.
For instance, the automorphism group of a k-clique is the full symmetric group
on k letters. Many other graphs have no nontrivial automorphisms. For instance,
take a path of length five, with vertices labeled linearly as {a, b, c, d, e, f }, and add
another vertex g which is adjacent only to d . The resulting graph � has no nontrivial
automorphisms, as is readily verified by an exhaustive check. See Fig. 15.1.

Observe that a nontrivial automorphism of a graph � gives rise to a non-inner
automorphism ofA(�). Moreover, if v ∈ V (�), then the function v 	→ v−1 extends
to a non-inner automorphism of A(�) via the identity on the remaining vertices. It

Fig. 15.1 A graph that has
no nontrivial automorphisms
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is easy to see that the group Aut(A(�)), and in fact Out(A(�)), contains a subgroup
isomorphic to

Aut(�)� (Z/2Z)|V (�)|.

Thus, if � admits a nontrivial automorphism, then Out(A(�)) contains a nonabelian
finite subgroup.

Theorem 15.3.14 (See [51]) Let � be a finite simplicial graph. We have that
� admits a nontrivial automorphism if and only if Out(A(�)) contains a finite
nonabelian subgroup.

The “only if” direction follows from the discussion preceding Theorem 15.3.14.
The converse is significantly harder and requires a more careful analysis of
Out(A(�)).

A result of M. Laurence ([90], cf. [106]) says that Aut(A(�)) is generated by
automorphisms of the following type.

(1) Vertex inversions.
(2) Graph automorphisms.
(3) Partial conjugations.
(4) Dominated transvections.

Graph automorphisms have already been discussed, and vertex inversions have
been mentioned above as arising from the map v 	→ v−1 for some v ∈ V (�). A
partial conjugation is given by considering a vertex v ∈ V (�) whose star St(v)
separates �. The automorphism acts by conjugation by v on one component of � \
St(v) and by the identity on the remaining components of �.

To define dominated transvections, we say that a vertex v ∈ V (�) dominates
a vertex w ∈ V (�) if Lk(w) ⊂ St(v). Then, the map w 	→ wv extends to an
automorphism of A(�) via the identity on the remaining vertices. Domination is
clearly a relation on vertices of � that can be determined from the combinatorics of
�.

Sketch of Proof of Theorem 15.3.14 We suppose that � admits no nontrivial au-
tomorphisms. A theorem of Toinet [113] implies that if φ ∈ Aut(A(�)) has
finite order then φ acts nontrivially on H1(A(�),Z) ∼= Z

|V (�)|. Thus, it suffices
to consider the action of automorphisms on H1(A(�),Z), and the effect of partial
conjugations is then trivial.

Next, one shows that if there is a cycle {v1, v2, . . . , vk, v1}k≥2 where vi
dominates vi+1 (with the indices considered cyclically), then � admits a nontrivial
automorphism, specifically an automorphism that exchanges two vertices of �. It
follows that no such cycles exist. We may therefore order the vertices of � in
such a way that if vi < vj then vj cannot dominate vi . If we then write the
image of Out(A(�)) in GLn(Z) with respect to the corresponding ordered basis for
H1(A(�),Z), the result is a group of upper triangular integer matrices. Such a group
has only abelian finite subgroups (coming from diagonal matrices with entries ±1).
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Thus, if � has no automorphisms then Out(A(�)) has only abelian finite subgroups.
��

We remark that in the proof of Theorem 15.3.14, one of the key observations
is that a graph with a domination cycle admits a nontrivial automorphism. The
converse of this statement is false. The 5-cycle C5 admits many automorphisms,
but no two vertices dominate each other.

15.3.6 Some Further Entries in the Combinatorics–Algebra
Dictionary

There are a number of other results relating the combinatorics of graphs to the
algebraic structure of groups which we will not discuss in detail for the sake of
space. We briefly mention two results appearing in [66]. Recall that a group G is
poly-free if there is a finite length subnormal filtration of G by subgroups such
that successive quotients are free. Hermiller–Šunić proved that a right-angled Artin
group is always poly-free, and that the length of the poly-free filtration is bounded
above by the chromatic number of the defining graph. In the same paper, they
established that A(�) is a semidirect product of two finitely generated free groups
if and only if � is a tree or a complete bipartite graph, which is to say a join of
two completely disconnected graphs. Moreover, for a connected graph � with at
least two vertices, the poly-free length of A(�) is exactly two if and only if there
is a subset D ⊂ V (�) such that no pair of elements of D spans an edge, and every
circuit in � meets D in at least two vertices. It is an interesting direction for future
research to investigate the relationship between the normal structure of A(�) and
the combinatorics of �, and it appears that this subject is largely unexplored.

15.3.7 Usefulness Beyond Group Theory and Combinatorics

The various correspondences between combinatorics of graphs and algebraic
structures of groups have theoretical and practical applications beyond the structural
framework of Question 15.1.1 and its refinements. Here, we record some specific
examples.

15.3.7.1 Complexity of Problems in Combinatorial Group Theory

One of the main applications of the foregoing discussion is in the domain of
complexity theory, which is hardly surprising in light of the fact that many
computationally difficult problems (i.e. NP-complete problems, cf. [6, 56, 98]) are
formulated in a finitistic way, with reference to only combinatorial structures.

Consider a right-angled Artin group A(�), and a homomorphism
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φ : A(�) −→ Fn1 × Fn2 × Fn3 ,

where Fni denotes a free group of rank ni , and where

n1 + n2 + n3 = |V (�)|.
If � is specified (e.g. by a list of vertices and pairs of adjacent vertices) and φ is
specified in terms of the image of each vertex of � with respect to a fixed free basis
of each of the free group factors in the target of φ, then it is easy to check if φ is a
homomorphism that is surjective on the level of first rational homology. Indeed, it
suffices to check first that φ is well-defined, meaning that adjacent vertices in � are
sent to commuting elements of Fn1 ×Fn2 ×Fn3 , which can be performed efficiently.
The latter claim results from the fact that centralizers of elements in Fn1 × Fn2 ×
Fn3 are straightforward to describe, and because the word problem is efficiently
solvable. Then, one must check that φ is surjective on the level of first rational
homology, which is an easy linear algebra problem. In light of Theorem 15.3.7, the
data specifying the homomorphism φ forms a (short) certificate of the fact that � is
3-colorable. Since the 3-colorability of � and the existence of this homomorphism
are equivalent, the problem of deciding whether such a homomorphism exists is
NP-complete. To state this conclusion formally:

Proposition 15.3.15 Let � be a finite graph with |V (�)| = N , and let

{Fn1, . . . , Fnk }
be free groups such that

k
∑

i=1

ni = N.

Write G =∏

i Fni .

(1) If k = 2 then the problem of deciding whether or not there exists a homomor-
phism A(�) −→ G that is surjective on first rational homology is in P.

(2) If k = 3 then the problem of deciding whether or not there exists a homomor-
phismA(�) −→ G that is surjective on first rational homology is NP-complete.

(3) The problem of finding the minimal k for which there exist free groups
{Fn1 , . . . , Fnk } as above and a homomorphism A(�) −→ G that is surjective
on first rational homology is NP-complete.

Finding explicit examples of NP-complete problems is always of interest in com-
plexity theory, and given the profusion of them in graph theory, Proposition 15.3.15
is just a taste of the richness of the available theory arising in the context of groups.
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15.3.7.2 Hamiltonicity Testing

Continuing in the theme of NP-complete problems, it is well-known that deciding
if a finite graph admits a Hamiltonian path or Hamiltonian cycle is NP-complete,
as we have mentioned above. The ideas surrounding Theorem 15.3.8 can be used to
certify that certain graphs are not Hamiltonian, in a purely finitistic linear algebraic
way.

To expand on this a bit, first note that the field over which cohomology is
considered is arbitrary. In particular, we may assume that the underlying field is just
the field with two elements. Under this assumption, all the relevant vector spaces
become finite sets, and are hence amenable to combinatorial techniques.

Consider then the standard cohomological triple (V ,W, q) for a right-angled
Artin group A(�). In order to show that � is not Hamiltonian, it suffices to find
a single basis for V which witnesses the claim that (V ,W, q) is not Hamiltonian.
Thus, such a basis can be used as a short certificate that a graph contains no
Hamiltonian circuit.

15.3.7.3 Linear Algebraic Detection of Graph Expanders

Considering cohomology with coefficients in a field with two elements allows a
finitary and algebraic way to check if a sequence of graphs is a family of expanders.
Moreover, it is shown in [53] that there are families of vector space expanders that
do not arise from the cohomology of families of graph expanders. Thus, the theory
of vector space expanders is a priori richer than the theory of graph expanders.
Some practical applications of expanders can be found in [35, 59], for instance.

15.3.7.4 Interactive Proof Systems

Many interactive proof systems function as a way for a prover to demonstrate a
proposition to a skeptical verifier. Using an unbiased random bit sent by the verifier,
the prover sends a response that is conditioned on the value of the random bit. In
this way, the verifier’s ignorance of the prover’s private information is balanced by
the prover’s ignorance of the value of the bit that will be sent by verifier, and this
balance can be used to communicate the existence of knowledge without revealing
its content. This is, for instance, the idea behind zero-knowledge proof protocols,
in which the prover holds a certificate for an instance of an NP-complete problem,
and convinces the verifier of the fact that she is in possession of a valid certificate
without revealing the certificate itself. Any NP-complete problem can be used as a
platform. Thus, linear algebraic versions of Hamiltonicity as in Theorem 15.3.8 and
Proposition 15.3.15 are suitable for formulating a zero-knowledge proof protocol.
A detailed explanation of a platform using Theorem 15.3.8 is given in [55]. For
general background on interactive proofs and zero-knowledge proof protocols, we
refer the reader to [6, 8, 22, 60, 100].
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15.3.7.5 Group-Based Cryptosystems

Many cryptosystems rely on computational problems that are difficult to solve
directly, which is why many modern cryptographic protocols assume P �= NP .
The theme of this section has been the translation of combinatorial properties of
graphs, and especially computationally interesting ones, into algebraic language.
This immediately suggests numerous potential group-based cryptosystems, a topic
which has been developing rapidly in recent decades. Explicit cryptosystems using
right-angled Artin groups as a platform have been proposed in [50], for example.
Translating the graph homomorphism problem (which is NP-complete) into an
instance of the subgroup homomorphism problem for right-angled Artin groups, one
can formulate a secure authentication scheme, for instance. For further discussion of
specific cryptosystems and for a biased sample of the literature, we direct the reader
to [49, 51, 52, 75, 84, 99].

15.4 The Extension Graph and Its Properties

We now leave the world of the finite graph � and its relationship with A(�), and
turn to the (usually) infinite extension graph �e. We recall that �e is a development
of � into a graph on which A(�) acts by conjugation. So, we fix an identification of
the vertices of � with generators for A(�), set the vertices of �e to be the collection
of all conjugates of V (�) by elements of A(�), and set the edge relation to be
commutation inside of A(�). The reader will find that the ideas here, though still
fundamentally relating combinatorics to algebra, are quite different from those in
Sect. 15.3.

15.4.1 Basic Properties of the Extension Graph

Some properties of the extension graph are easy to prove. For instance:

Proposition 15.4.1 The extension graph �e is finite if and only if � is complete.

Others are somewhat less obvious. We note some which will be useful in the
sequel, and which otherwise will give the reader a better idea of how the extension
graph functions.

Proposition 15.4.2 (See [78]) The extension graph �e enjoys the following prop-
erties:

(1) The graph �e is connected if and only if � is connected.
(2) The graph �e is connected and of infinite diameter if and only if � is connected,

has at least two vertices, and is not a join.
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(3) The size of a maximal clique in � and �e coincide.
(4) If � is a subgraph of � then �e is a subgraph of �e.
(5) The graph �e is k-colorable if and only if � is k-colorable.

The proof of item (2) of Proposition 15.4.2 we will provide probably illustrates
the diversity of methods that can be used in investigating right-angled Artin groups.

Sketch of Proof of Proposition 15.4.2, (2) Consider a collection of disjoint com-
pact annuli {Av | v ∈ V (�)}, one for each vertex of �. Glue two such annuli Av
and Aw together along a disk if the vertices v and w are not adjacent in �. We
do this in such a way that the result is an orientable surface � with boundary. A
key observation is that since � is not a join, its complement graph X is connected.
Therefore,� is a connected surface. Since � was built out of at least two annuli, an
easy Euler characteristic computation shows that� is of hyperbolic type (i.e. admits
a complete hyperbolic metric of finite volume). We will name the core curves of the
annuli in the construction {γ1, . . . , γn}.

The (isotopy class of the) homeomorphism of � given by cutting � open along
γi and re-gluing with a full right-handed twist is called a (right-handed) Dehn twist
about γi , and is denoted by Ti . Recall that the group of isotopy classes of (orientation
preserving) homeomorphisms of � is called the mapping class group of �, and is
written Mod(�) [47]. A result of the author [85] shows that there is an N > 0
such that for all k ≥ N , the subgroup of Mod(�) generated by {T k1 , . . . , T kn } is
isomorphic to A(�).

The surface� has an associated curve graph C(�), which is of infinite diameter.
This curve graph consists of isotopy classes of embedded, essential, nonperipheral
loops on �, with the edge relation being disjoint realization. There are certain
mapping classes ψ which have the property that for any vertex c of C(�), the graph
distance between c and ψk(c) tends to infinity as k tends to infinity [112]. These
mapping classes are called pseudo-Anosov, and are typical inside of Mod(�).

In particular, realizing A(�) < Mod(�) as above, there is an element g ∈ A(�)
whose realization as a mapping class is pseudo-Anosov. Moreover, the realization
A(�) < Mod(�) is compatible with a realization of �e ⊂ C(�). Specifically, if
v ∈ V (�) is associated to a Dehn twist about γi and if h ∈ A(�) corresponds to the
mapping class group ψh, then the vertex vh is sent to ψh(γi).

Now, since we have a map �e −→ C(�) which respects the edge relation, gen-
eral facts about graph homomorphisms imply that it cannot be distance increasing.
Thus, if dC(�)(γi, ψ

k
h(γi)) tends to infinity then d�e(v, vh

k
) also tends to infinity.

The conclusion now follows. ��
It turns out that mapping class groups of surfaces are extremely useful tools for

probing right-angled Artin groups, and that many of their properties can be paired
analogously. This is a theme that will recur in this section, and we will comment
more on it below.
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15.4.2 The Extension Graph and Subgroups

One useful property of the extension graph, and for which it was developed in the
first place, is that the extension graph classifies right-angled Artin subgroups of a
right-angled Artin group. Classically, we know that subgroups of finitely generated
free abelian groups are again free abelian (by the classification of finitely generated
modules over a principal ideal domain) and subgroups of free groups are always
free (by the Nielsen–Schreier Theorem). Since right-angled Artin groups interpolate
between these two extremes, it is therefore a natural question whether (finitely
generated) subgroups of right-angled Artin groups are again right-angled Artin
groups, and if so what sorts of right-angled Artin groups they are.

It is not true that subgroups of right-angled Artin groups are again right-angled
Artin groups. There are many different subgroups of right-angled Artin groups,
ranging from surface groups [38, 107] to hyperbolic 3-manifold groups [1, 2, 117–
119] to many arithmetic lattices in rank one Lie groups [18], all the way to groups
with various exotic finiteness properties [19]. It is in fact known that every finitely
generated subgroup of A(�) is again a right-angled Artin group if and only if �
has no subgraph isomorphic to a square or to a path of length three, by a result of
Droms [45].

It is difficult to characterize all subgroups of right-angled Artin groups, even
finitely presented ones (see [28]). Some general known facts are that every
nonabelian subgroup of a right-angled Artin group contains a nonabelian free group
by a result of Baudisch [10], and in fact any such subgroup surjects to a nonabelian
free group by a result of Antolín–Minasyan [5]. A nonabelian subgroup of a right-
angled Artin group must surject to Z

2 [46, 87]. Solvable subgroups of right-angled
Artin groups are automatically finitely generated and free abelian, by the Flat Torus
Theorem [29].

Given the difficulty of understanding general subgroups of right-angled Artin
groups, it is therefore interesting and natural to wonder which subgroups of A(�)
are of the form A(�), and what sorts of graphs � can occur. To the author’s
knowledge, there is no clean, complete answer available, though the partial answers
are satisfying and useful for many applications.

Theorem 15.4.3 Let � < �e be a finite subgraph. Then there is an injective
homomorphismA(�) −→ A(�).

The injection in Theorem 15.4.3 is quite explicit; one simply views vertices of
� as elements in A(�) and passes to a sufficiently high power. Theorem 15.4.3
first appeared in a paper of Kim and the author [78], though apparently this fact
was already known to experts in combinatorial group theory. One approach to
proving Theorem 15.4.3 does not require ideas beyond those that go into item (2)
of Proposition 15.4.2. Once the extension graph has been embedded in the curve
graph in a way that preserves both adjacency and non-adjacency, the author’s result
from [85] about powers of mapping classes applies and gives the desired result.
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Fig. 15.2 The square

Unfortunately, Theorem 15.4.3 does not admit an easy converse. The first
examples disproving the obvious naïve converse appeared in the work of Casals-
Ruiz–Duncan–Kazachkov [33], and a large class of examples was produced by
Kim and the author [81]. With some further assumptions on �, one can formulate a
converse to Theorem 15.4.3.

Theorem 15.4.4 (See [78]) Suppose � has no 3-cliques, and suppose thatA(�) <
A(�). Then � is a subgraph of �e.

Theorem 15.4.4 is a corollary of a more general result, which is the most general
converse to Theorem 15.4.3 that is known to the author.

Theorem 15.4.5 (See [78]) Suppose that A(�) < A(�). Then � is a subgraph of
the clique graph (�e)k.

The basic idea behind Theorem 15.4.5 is again to use mapping class groups,
though it is significantly more complicated than Theorem 15.4.3 and Proposi-
tion 15.4.2. One builds certain “partial” pseudo-Anosov mapping classes in the
image ofA(�) and builds an embedding of a larger graphX into �e, which contains
� in its clique graph. Incidentally, Theorem 15.4.5 has a natural analogue for
mapping class groups: if a right-angled Artin group A(�) embeds in a mapping
class group Mod(�), then � embeds as a subgraph of C(�)k , the clique graph of
the curve graph ([80], cf. [82]). We will avoid giving further details here.

Theorem 15.4.5 admits several other corollaries that can serve as converses to
Theorem 15.4.3, and also allows one to prove many results that relate the combi-
natorics of � to the structure of A(�). Given the conclusion of Theorem 15.4.5,
we leave the following result (originally due to Kambites [76], who offered a
combinatorial argument that is very different in flavor from the ideas expounded
here) as an exercise for the reader:

Proposition 15.4.6 Let � be a finite graph. Then � contains a square if and only if
F2 × F2 < A(�).

Here, by square we mean a graph with four vertices and a cyclic adjacency
relation (Fig. 15.2).

15.4.3 A Characterization of Cographs via Right-Angled Artin
Groups and the Geometry of the Extension Graph

An important class of graphs that occurs naturally in graph theory is the class
of cographs, or P4-free graphs (see [74, 103, 111] for some early references



506 T. Koberda

Fig. 15.3 The graph P4

Fig. 15.4 The graph X6

introducing cographs). These are simply the graphs that do not have the path P4
of length three as a subgraph (Fig. 15.3).

Right-angled Artin groups on cographs can be characterized algebraically, and
right-angled Artin groups provide a perspective on cographs that insight into one of
their most fundamental properties, i.e. recursive definition.

Theorem 15.4.7 ([78]) Let � be a finite connected graph. The following are
equivalent:

(1) The graph � has no (full) subgraph isomorphic to P4.
(2) The graph �e has no (full) subgraph isomorphic to P4.
(3) The graph � is either a single vertex or splits as a nontrivial join.

Corollary 15.4.8 The graph � is a cograph if and only if A(�) does not contain a
copy of A(P4).

In particular, Theorem 15.4.7 shows that a right-angled Artin group cannot
contain “hidden” copies of A(P4). If A(�) contains A(P4) then one can decide
simply from looking at the graph �. This is in contrast to other classes of graphs.
For instance, A(P4) contains a copy of A(P5), where P5 denotes the path of length
four. Thus, there can be hidden copies of A(P5). For a more striking example,
one may consider X6, the complement graph of the hexagon, also known as the
triangular prism. This graph contains no cycle C5 of length 5, though Kim proved
that A(C5) < A(X6) [77]; also, C5 is a subgraph of the extension graph Xe6, and so
Kim’s result follows from Theorem 15.4.3 (Fig. 15.4).

We leave the proofs of Theorem 15.4.7 and Corollary 15.4.8 as an exercise for the
reader, as they follow from Proposition 15.4.2 and some elementary combinatorial
group theory considerations.

Let � be a connected graph such that �e has finite diameter. By Theorem 15.4.7
(or even just by Proposition 15.4.2), the graph � splits as a nontrivial join. If � is a
cograph and � is a join factor of �, then � must also be a cograph and hence �e

also has finite diameter, whence it follows that�must also split as a nontrivial join.
Let K0 denote a singleton vertex. For i > 0, we set K2i−1 to be the collection

of all finite graphs obtained as (possibly trivial) joins of elements of K2i−2. We set
K2i to be the collection of all finite graphs obtained as disjoint unions of elements
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of K2i−1. Clearly for i ≤ j we have Ki ⊂ Kj , and we set

K =
⋃

i≥0

Ki .

Clearly, if � ∈ K then � is a cograph. Conversely, the preceding remarks and an
easy induction on |V (�)| show that if � is a cograph then � ∈ K. This coincides
with the recursive description of cographs.

Since K is built up recursively, we can give the following characterization of
A(�) for � ∈ K, which results immediately from the preceding discussion:

Corollary 15.4.9 We have � ∈ K if and only if A(�) is an element of the smallest
class of groups that:

(1) Contains Z;
(2) Is closed under finite direct products;
(3) Is closed under finite free products.

For example, note that � ∈ K0 if and only if A(�) ∼= Z. We have � ∈ K1 if
and only if A(�) ∼= Z

n for some n. We have � ∈ K2 if and only if A(�) is a free
product of free abelian groups. A graph � lies in K3 if and only if A(�) is a direct
product of free products of free abelian groups. The following characterizes Ki for
i ≤ 3:

Proposition 15.4.10 (See [83]) A graph � lies in Ki for i ≤ 3 if and only if A(�)
has no subgroup isomorphic to (F2 × Z) ∗ Z.

As an aside, we note that the hierarchy K and the associated right-angled Artin
groups is closely related to the theory of right-angled Artin group actions on the
interval and on the circle. It turns out that A(P4) does not act faithfully by C2

diffeomorphisms on I or S1 [9], so any right-angled Artin group admitting such an
action must have its underlying graph in K. By a result of Kim and the author [83],
a right-angled Artin group A(�) admits a faithful C2 action on I or S1 if and only
if it admits a faithful C∞ such action, if and only if � ∈ K3.

15.4.4 More on the Geometry of the Extension Graph

As we have suggested in this section, and in particular in the discussion about
Proposition 15.4.2, the extension graph of � plays a role analogous to that of the
curve graph C(�) of a surface, with the role of the mapping class group in the latter
context played by the group A(�) in the former context.

The graph C(�) is very complicated in both its local and its global structure.
One of the most important foundational results about the global structure of C(�)
is a result of Masur and Minsky which asserts that C(�) is δ-hyperbolic [96], see
also [57, 61]. That is, there is a δ ≥ 0 so that in any geodesic triangle in C(�), a
δ-neighborhood of two of the sides of the triangle contains the third.
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Perhaps the easiest example of an infinite diameter δ-hyperbolic metric space is
an infinite diameter tree, which is 0-hyperbolic. There are many other examples of
δ-hyperbolic spaces that are not trees, such the usual hyperbolic spaces. For most
surfaces, the curve graph C(�) is far from being a tree; it has one end, whereas for
example a locally finite tree that admits a proper and cocompact action by an infinite
group will have at least two ends, as follows from Bass–Serre Theory [105].

The geometry of the extension graph is something in between the curve graph
and a tree. To state a precise result, we need the notion of a quasi-isometry. Let
f : X −→ Y be a function between metric spaces. Then we say that f is a quasi-
isometry if there are constants λ ≥ 1 and C ≥ 0 such that for all x, z ∈ X, we
have

1

λ
· dX(x, z)− C ≤ dY (f (x), f (z)) ≤ λ · dX(x, z)+ C,

and where for all y ∈ Y there exists an x ∈ X such that

dY (f (x), y) ≤ C.

Here, the distance functions are all interpreted in the relevant spaces. A quasi-
isometry can be thought of a function that is bi-Lipschitz on a large scale. For
instance, the integers equipped with the metric induced from the real line are
quasi-isometric to the real line, and any two finite-diameter metric spaces are quasi-
isometric to each other, but an infinite-diameter metric space is not quasi-isometric
to a finite-diameter metric space.

The relation induced by quasi-isometry is an equivalence relation on metric
spaces, and so one often speaks of the quasi-isometry class of a metric space. The
quasi-isometry class of a finitely generated group is the quasi-isometry class of
its Cayley graph, equipped with the graph metric; see [41] for more details, for
example.

In coarse geometry, one often searches for properties of metric spaces that are
invariant under quasi-isometry. Examples of such properties include δ-hyperbolicity
and the number of ends.

A metric space is called a quasi-tree if it contains a 0-hyperbolic metric space
in its quasi-isometry class. Whereas simplicial trees are 0-hyperbolic, the converse
is not quite true: a geodesic metric space is 0-hyperbolic if and only if it is an R-
tree. We will not discuss R-trees any further, since they are not necessary for our
discussion. We specialize the definition of a quasi-tree slightly: if � is a graph
equipped with the graph metric, we call it a quasi-tree if it contains a simplicial
tree in its quasi-isometry class.

Theorem 15.4.11 (See [78]) Let � be a connected graph. Then �e is a quasi-tree,
and is in particular δ-hyperbolic. More precisely:

(1) If � splits as a nontrivial join, then �e has finite diameter and is hence quasi-
isometric to a point.
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(2) If � does not split as a nontrivial join then �e is quasi-isometric to a regular
simplicial tree of countable degree.

More interesting than the mere description of the quasi-isometry type of the
extension graph is the interaction between group elements in A(�) and �e. Here,
the analogy between the mapping class group and A(�) develops further, with the
natural isometric action of A(�) on �e mirroring many of the properties of the
natural isometric action of Mod(�) on C(�).

The classical Nielsen–Thurston classification [47, 112] says that a mapping class
is either finite order, reducible (i.e. some power fixes the homotopy class of an
essential nonperipheral loop on the surface �), or pseudo-Anosov. As discussed
around Proposition 15.4.2, this lattermost type of mapping class is characterized
by the fact that every orbit of its action on C(�) is unbounded. Finite order and
reducible mapping classes are characterized by every orbit in C(�) being bounded
(and in fact having a periodic point in C(�)). Algebraically, a reducible mapping
class has a copy of Z2 in its centralizer [21], whereas a pseudo-Anosov mapping
classes have virtually cyclic centralizers [48].

Further insight into the action of Mod(�) is provided by a result of Bowditch
[25], which says that the action of Mod(�) on C(�) is acylindrical. Acylindricity
is a notion of proper discontinuity for group actions on non-proper metric spaces
which are not properly discontinuous. Following Bowditch (cf. [86, 104]) we say
that an action of a groupG on a metric space X is acylindrical if for all r > 0 there
exist constants R and N such that for all pairs of points x, y ∈ X with d(x, y) ≥ R,
we have

|{g ∈ G | d(gx, x), d(gy, y) ≤ r}| ≤ N.

In other words, the r-quasi-stabilizer of R-separated points is uniformly finite.
Bowditch showed that if X is a δ-hyperbolic graph and G acts isometrically and
acylindrically on X then each g ∈ G is either elliptic or loxodromic. The former
of these means that some (equivalently every) orbit of G on X is bounded. A
loxodromic element is characterized by having a positive asymptotic translation dis-
tance in X. Moreover, the asymptotic translation length is bounded away from zero
by a constant that depends only on the hyperbolicity and acylindricity constants.
The Nielsen–Thurston classification can be thus recast in terms of acylindricity: a
mapping class is pseudo-Anosov if and only if it is loxodromic as an isometry of
C(�).

For extension graphs, one has a picture that is analogous to curve graphs.

Theorem 15.4.12 (See [79]) Let � be a connected graph with at least two vertices.
The action of A(�) on �e is acylindrical. An element 1 �= g ∈ A(�) is elliptic if
and only if g is conjugate into a subgroup A(J ), where J is a subgraph of � that
is a nontrivial join. Equivalently, g is elliptic if and only if its centralizer in A(�) is
noncyclic.
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An element 1 �= g ∈ A(�) is loxodromic if and only if its centralizer is cyclic.
An element g is cyclically reduced and loxodromic if and only if supp(g) is not
contained in a subgraph of � that splits as a nontrivial join.

The join/non-join dichotomy for graphs and their associated right-angled Artin
groups runs deep, and analogies between A(�) and �e with Mod(�) and C(�) are
extensive. Many (but not all; see [88]) of the instances of these analogies can be and
have been incorporated into the theory of hierarchically hyperbolic groups.

A further equivalence in Theorem 15.4.12 is given by a result of Behrstock–
Charney [11], which asserts that a nontrivial element of A(�) is loxodromic if and
only if, when viewed as a deck transformation of the universal cover of the Salvetti
complex S(�), it acts as a rank one isometry. That is, the corresponding deck group
element has an axis that does not bound a half-plane (cf. [29]).

15.4.5 The Extension Graph as a Quasi-Isometry and
Commensurability Invariant

A basic problem in geometric group theory is to sort groups into quasi-isometry
classes. For right-angled Artin groups, the natural question is to decide when two
right-angled Artin groups A(�) and A(�) are quasi-isometric. Much progress on
understanding the quasi-isometric classification of right-angled Artin groups has
been made, for instance by Behrstock–Neumann [12], Behrstock–Januszkiewicz–
Neumann [13], Bestvina–Kleiner–Sageev [20], Huang [70], and Margolis [95] (see
also [32, 71]). Thus, we can consider the following equivalence relation on finite
graphs: � is equivalent to � if A(�) and A(�) are quasi-isometric to each other.
Other than the cases we have cited, understanding this equivalence relation in full is
still unresolved.

Certainly two right-angled Artin groups that are isomorphic to each other will be
quasi-isometric to each other, and from Theorem 15.2.6, we know that if A(�) and
A(�) are isomorphic to each other then � and � are isomorphic as graphs. There
is yet another equivalence relation on finite graphs that is coarser than isomorphism
and yet finer than quasi-isometry.

If H < G are groups with G finitely generated and [G : H ] < ∞, then with
respect to any finite generating sets for G and H , the inclusion of H into G is
a quasi-isometry on the level of Cayley graphs, as is readily verified. It follows
that if G and H are finitely generated groups, and both G and H contain a finite
index subgroup isomorphic to K , then G and H are quasi-isometric. In this case,
we say that G and H are commensurable. Like quasi-isometry, commensurability
is an equivalence relation on groups. It is well known that commensurability of
groups is a strictly finer equivalence relation than quasi-isometry. For instance, one
can take closed hyperbolic 3-manifolds whose volumes are not rational multiples of
each other. Then, the corresponding fundamental groups are both quasi-isometric to
hyperbolic space, but are not commensurable [57]. Even among right-angled Artin
groups, commensurability is a strictly finer equivalence relation (see [34, 70]).
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It is easy to produce pairs of non-isomorphic graphs which give rise to com-
mensurable right-angled Artin groups. For instance, consider a graph � and v ∈
V (�). There is a surjective homomorphism A(�) −→ Z/2Z that sends v to the
nontrivial element in Z/2Z and sends the remaining vertices to the identity. It is
an exercise in combinatorial group theory for the reader to prove that the kernel
of this homomorphism is isomorphic to A(�), where � is obtained by taking two
copies of � and identifying them along St(v). If v is not central in A(�) then it
is easy to see that � and � fail to be isomorphic graphs, but A(�) and A(�) are
clearly commensurable. This construction can be repeated ad infinitum, generally
producing infinite families of non-isomorphic graphs whose associated right-angled
Artin groups are all commensurable.

There are pairs of graphs which give rise to commensurable right-angled Artin
groups, but for which a commensuration between them is less obvious. The reader
is challenged to prove for themself that the groups A(P4) and A(P5) are commen-
surable, where as before P4 and P5 denote the paths of length three and length
four respectively (cf. [34]). The fact that A(P4) and A(P5) are commensurable
also shows that the extension graph is hopeless as a complete commensurability
invariant. Again, the reader is encouraged to convince themself that the extension
graphs of P4 and P5 are not isomorphic to each other. It turns out that in both cases,
the corresponding extension graphs are trees, and what distinguishes them in their
isomorphism type is the location of degree one vertices.

So, let us consider a connected graph � with no degree one vertices. In order
to identify the extension graph algebraically and in an unambiguous way, it would
help to be able to identify vertices and their conjugates, up to powers. For this, it
helps to assume that � is connected, has no triangles, and has no squares. Under
these assumptions, if v is a vertex of � then v contains a nonabelian free group in
its centralizer. Conversely, suppose that g ∈ A(�) has a nonabelian free group in
its centralizer. Then, since � has no triangles and no squares, every nontrivial join
in � is merely the star of a vertex of �, and the structure of such a star is the join
of a single vertex and a completely disconnected graph. It follows that if g has a
nonabelian free group in its centralizer, then g is conjugate to a nonzero power of
a vertex generator of �. It follows that maximal cyclic subgroups of A(�) whose
centralizers contain nonabelian free groups are in bijection with conjugates of vertex
generators ofA(�). Since the adjacency relation in �e is just commutation in A(�),
we immediately obtain:

Theorem 15.4.13 (See [79]) Let � be a finite connected graph with no degree
one vertices, no triangles, and no squares. Then the extension graph �e is a
commensurability invariant for A(�). That is, if A(�) is commensurable with A(�)
then �e ∼= �e.

Incidentally, the analogy between right-angled Artin groups and mapping class
groups persists here as well, since the curve graph can be obtained from the mapping
class group in the same way that the extension graph is obtained from A(�).
Specifically, let T be a Dehn twist about a simple closed curve on �. Then T is
centralized by two maximal rank torsion-free abelian subgroups of Mod(�) which
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intersect in a copy of Z. This can be used to algebraically characterize a (nonzero
power of a) Dehn twist as an element of Mod(�). A Dehn twist unambiguously
identifies the homotopy class of a simple closed curve on �, and the adjacency
relation in C(�) coincides with commutation of Dehn twists in Mod(�). Thus, the
curve graph can be recovered algebraically from Mod(�). It follows in particular
that automorphisms of Mod(�) induce automorphisms of C(�), a fact which can
be used to prove various rigidity results (see [27, 72, 91], for instance).

As we have seen, we can have commensurable right-angled Artin groups with
non-isomorphic extension graphs. It is also possible to have two right-angled Artin
groups whose extension graphs are isomorphic and yet the groups are not quasi-
isometric to each other (see Example 5.22 in [68]). So, there is similarly no hope that
extension graphs form a complete quasi-isometry invariant for right-angled Artin
groups.

Recall from Sect. 15.3.5 that a full set of generators for Aut(A(�)) is known, and
from the description of these generators, it is immediate that Out(A(�)) is finite if
and only if Aut(A(�)) admits no nontrivial partial conjugations and no dominated
transvections. Graphs for which Out(A(�)) is finite can thus be identified through a
finitary combinatorial analysis, since it suffices to check that there are no separating
stars of vertices and no pairs of vertices where one dominates the other (see [37] for
a discussion of the genericity of this phenomenon).

The following result was established by Huang [69]:

Theorem 15.4.14 Suppose � is a graph for which Out(A(�)) is finite. The
following are equivalent:

(1) The group A(�) is quasi-isometric to A(�).
(2) The group A(�) is isomorphic to a finite index subgroup of A(�).
(3) The graphs�e and �e are isomorphic.

Thus, in the case of finite groups of outer automorphisms, quasi-isometry,
commensurability, and isomorphism of extension graphs are equivalent conditions
to place on a right-angled Artin group. Here again, the analogy with mapping
class groups persists. If two mapping class groups of surfaces are quasi-isometric,
then except for some sporadic cases, the resulting mapping class groups are in
fact isomorphic to each other [14]. Thus again excluding some sporadic cases,
quasi-isometry, commensurability, and isomorphism of mapping class groups are
equivalent. Finally, aside from some sporadic cases, isomorphism of curve graphs
is equivalent to isomorphism of mapping class groups [108].

15.5 Further Directions

Much remains to be understood in the relationship between combinatorics and
algebra via the lens of right-angled Artin groups. As the reader has certainly come
to understand, it is not just some property of groups that one seeks to analogize a
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property of graphs; one wants it to be a clean and natural statement about groups
that reflects the particular flavor of the property in question. Therefore, it is not likely
one could produce a satisfactory omnibus result, since some subjective notions of
beauty and philosophical considerations enter into the picture.

With these musings, we close by giving some particular open questions of
interest. Some are well-known open problems, and we make no claim to having
been the first to pose them.

Question 15.5.1 What is the full quasi-isometric classification of right-angled
Artin groups? What about the commensurability classification of right-angled Artin
groups? What sorts of combinatorial objects serve as complete invariants for these
equivalence relations?

Some specific natural combinatorial properties we have not discussed are of
interest in graph theory.

Question 15.5.2 What algebraic property of A(�) is equivalent to the planarity of
�?

Closely related to Question 15.5.2 is the problem of determining whether a graph
� is a subdivision of a graph � by examining the relationship between the groups
A(�) and A(�), which to the knowledge of the author is also open.

A graph is self-complementary if it is isomorphic to its complement graph. A
singleton vertex is self-complementary, as are the path P4 of length three and the
cycle C5 of length five. A question that is a particular favorite of the author is the
following:

Question 15.5.3 What algebraic property of A(�) is equivalent to the statement
that � is self-complementary?

Following the remarks in Sect. 15.3.6 above and the results of [66], we have the
following.

Question 15.5.4 What is the relationship between the normal subgroup structure
of A(�) and the combinatorics of �?

Finally, we have the following more open-ended question.

Question 15.5.5 Is there a synthesis between the ideas in Sect. 15.3 and algebraic
graph theory? How can one formulate spectral graph theory in terms of right-angled
Artin groups?

Some of the discussion in this survey is a step towards an answer to Ques-
tion 15.5.5. For one, the Cheeger constant c of a graph can be viewed as a spectral
invariant of a graph, as it controls the spectral gap of the graph via the Cheeger
inequality due to Dodziuk and Alon–Milman (see [89] for a detailed discussion): if
λ2 is the second largest eigenvalue of a d–regular connected graph � then

1

2
(d − λ2) ≤ c ≤

√

2d(d − λ2).
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The content of Theorem 15.3.13 is that the Cheeger constant of a graph � can be
read off from the cohomology algebra of A(�). It is natural to ask how one might
recover more information about the eigenvalues of the adjacency matrix of � from
the group theory of A(�).

We hope that this survey will encourage further investigations in these directions.
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Cheeger–Gromov convergence, 100, 101
Chromatic number, 491
Circle packing, 282, 365

contact graph, 365
theorem, 365

Circuit, 478
Classification

of cubic Newton maps, 423
of postcritically finite Newton maps,

422–424
of postcritically finite polynomials, 422
of postcritically fixed Newton maps, 423,

424
Clique, 478

separating, 286
Clique graph, 479
Closed convex hull, 12

Cograph, 505
Cohomological dimension, 489
Cohomological uniqueness, 484
Coin graph, 282
Combable group, 455, 457
Combination theorem, 331

virtually special, 355
Combinatorial data (of a half-space

decomposition), 78
Combinatorial data (of a Möbius disk

decomposition), 66
Combinatorial triangulation, 261
Combing, 455
Commensurable, 510
Complement graph, 478
Complete bipartite graph, 499
Complex circle, 10
Complex connected sum, 225
Complex geodesic, 10
Complex hyperbolic

distance, 9
Kleinian group, 14
orbifold, 15
space, 8, 275
subspace, 10

Complex projective structure, 56, 64
Complex reflection, 13
Composition, 110
Cone angle

of a singularity, 272
Cone-injectivity radius, 128
Cone manifold, 119

geometric convergence, 129
link, 118
singular locus, 120
topological type, 125
underlying manifold, 125

Cone surface, 117
cone angle, 117
cone point, 117

Cone topology, 84
Conformal mating, 359
Conical

convergence, 19
limit point, 19

Conical singularity, 316
Conifold, 119
Conjugacy problem, 451, 455, 458, 462, 464,

470
Connected graph, 478
Contact graph, 477
Contraction, 231
Contravariant functor, 111
Convergence maps, 100
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Convergence property, 13
Convex core, 18, 340
Convex hull, 340
Convexity (of half-space decomposition), 80
Convexity (of Möbius disk decomposition), 71
Convex triangulation, 315
Correspondence on moduli space, 388
Covariant functor, 111
Coxeter diagram, 467, 469
Coxeter group, 466, 467, 469

2-dimensional, 470
Critical exponent, 23
Cube complex, 355, 466

CAT(0) cube complex, 355
special cube complex, 332

Curtain surface, 102
Curvature

apex, 272
Curvature of distance, 72
Curve graph, 503
Cusp, 131
Cut locus, 121
Cutting and gluing operation, 307
Cyclically reduced word, 489

D
David homeomorphism, 361
Davis complex, 287
Degree of a vertex, 478
Dehn filling, 122
Dehn function, 455, 456
Dehn–Sommerville equations, 264

for closed manifolds, 264
Dehn surgery, 203

exceptional, 209
orbifold, 206

Dehn twist, 503
Deltoid, 368
Developable hyperbolic end, 77
Developable Möbius surface, 59, 65
Developed Möbius surface, 59
Developing map (of a hyperbolic end), 77
Developing map (of a Möbius surface),

59, 64
Dimensional expander, 497
Dirichlet domain, 121
Discontinuity domain, 16
Domain of discontinuity, 357
Dominated transvection, 498
Double circle packing theorem, 283
Double limit theorem, 332
Droplet, 363

E
Edge coloring, 491
Eisenstein lattice, 321
Elliptic isometry, 509
Elliptic Möbius surface, 65
End, 44

convex, 21
cuspidal, 22
of a hyperbolic manifold, 55
isolated, 44
of an immersed surface, 59, 94
isolating neighborhood of, 44
neighborhood of, 44

End functor, 95
End of a group, 488
Epstein zeta function, 324
Equilateral triangulations, 275
Equivalence (of Möbius surfaces), 61
Equivalent

abstract extended Newton graphs, 442
Thurston, 428

Essential simple closed curve, 429
Euler relation, 264
Eulerian cycle, 493
Exceptional components, 222, 254
Exceptional Dehn surgery, 209
Extended Newton graph, 425

abstract, 434
Extension, 57
Extension functor, 87
Extension graph, 477
Extrinsic curvature, 58

F
Face lattice, 263
Facet, 265
Face vector, 263
Fatou set, 357
Fellow travel, 453

asynchronously, 454
constant, 453

Finite element method, 262
Finite global attractor, 388
Finitely presented, 455
First fundamental form, 58
Fixed point

attractive, 13
repulsive, 13

Flag number, 266
Flaring condition, 348

flares in all direction, 354
Flat cone surfaces, 272
Flat conformal structure, 56, 64



522 Index

Flat disk, 294
Framed link, 204
Free critical point, 424
Free product with amalgamation, 334
Fricke space, 211
f -stable multicurve, 429
Fuchsian group, 332
Full subgraph, 478
Functional maximality (of a hyperbolic end),

88
Fundamental domain, 334

partial, 334
Fundamental group of orbifold, 43
Fundamental theorem of surgery theory, 204
Fundamental tile, 363

G
Gauss image, 285
Gauss lift, 102
Generalized Dehn filling coefficient, 206
Generalized height functions, 77
Geodesic arc (between overlapping disks), 70
Geodesic arc (between overlapping

half-spaces), 80
Geodesic arc (between overlapping Möbius

disks), 70
Geodesic lamination, 339
Geodesic simplex, 261
Geodesic triangulation, 261
Geometrically finite, 54
Geometric convergence, 336
Global Sobolev space, 227
Grand orbit equivalence

of Newton ray, 441
Graph expander, 495
Graph (in a hyperbolic end), 91
Graph join, 478
Graph map, 431

weak, 432
Graph (over a surface), 101
Gromov boundary, 38
Gromov–Hausdorff topology, 336
Gromov-hyperbolic

group, 38
space, 38

Group-based cryptography, 502
Group cohomology, 480

H
Hadamard manifold, 10

negatively pinched, 10
strictly negatively curved, 10

Haken manifold, 207, 332
Half-space, 78
Half-space decomposition, 78
Hallway, 346
Hallways flare condition, 345
Hamiltonian cycle, 493
Hamiltonian triple, 493
Head’s theorem, 423
Height function, 55, 76
Helly

graph, 466
group, 466, 468

Hermitian form, 298
Hermitian matrix, 298
Higgs bundle, 218

hybrid, 234, 253
parabolic, 223

Higher Bowen-Series map, 333
Higher Teichmüller space, 213, 215
Higher Teichmüller theory, 211
Hitchin component, 214, 238

parabolic, 241
Hitchin equation, 219, 239

approximate solution, 227, 229, 250
linearized operator, 231
model solution, 226

Hitchin operator, 230
HNN extension, 335
Holomorphically convex manifold, 46
Holomorphic dynamics, 356

rational dynamics, 357
Holonomy, 65
Horizon map, 59, 96
Horoball, 37
Horoboundary, 36
Horofunction compactification, 36
Horosphere, 37
Hubbard tree, 425
Hurwitz space, 411
Hybrid group, 26
Hybrid Higgs bundle, 234, 253
Hybrid representation, 221
Hyperbolic
δ, 286

Hyperbolic component, 377
Hyperbolic Dehn filling theorem, 207
Hyperbolic end, 55, 76
Hyperbolic group, 332, 450, 451, 456, 457,

460, 461, 466
geometrically finite, 461
relatively, 461, 470
semihyperbolic, 461

Hyperbolic Möbius surface, 65
Hyperbolic reflection cube, 281
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Hyperbolic von Dyck group, 39
Hyperbolization, 332

I
Ideal boundary (of a developable hyperbolic

end), 84
Ideal boundary (of a quasi-Fuchsian manifold),

56
Ideal visual boundary, 11
Identity, 110
Immersed surface, 58, 94
Incompressible, 207
Incompressible surface, 340
Infinitesimal strict convexity (ISC), 58, 94
Injectivity radius, 128
Integer Heisenberg group, 24
Integral slope, 204
Integral surgery, 204
Interactive proof, 501
Isolated vertex, 478
Isometry

elliptic, 13
hyperbolic, 13
parabolic, 13

Isomorphism problem, 455
Isoperimetric constant, 495
Isoperimetric function, 456

higher dimensional, 457, 459

J
Join (of combinatorial data), 67
Join relation (of a half-space decomposition),

78
Join relation (of a Möbius disk decomposition),

66
JSJ decomposition, 356
Julia set, 357

filled, 358

K
Kähler form, 9
Kirby move, 205
Kleinian group, 331

geometrically finite, 377
necklace reflection group, 365
reflection group, 333

Kodaira fibration, 27
k-surface, 60, 102
Kulkarni–Pinkall form, 71
Kulkarni–Pinkall metric, 71

L
Ladder, 348
Lambert cube, 140
Language, 452, 453

indexed, 462
regular, 452

Lattice, 275
Length function, 343
Level set foliation, 76
Levels (of a hyperbolic end), 76
Lightlike geodesic, 69
Limit set, 15, 333
Link, 478

combinatorial, 263
metric, 264

Lobachevsky function, 319
Local conformality, 62
Localisation (of a hyperbolic end), 81
Localisation (of a Möbius surface), 73
Local isotropy group, 41
Local Kulkarni–Pinkall form, 73
Locally CAT(κ), 284
Loxodromic isometry, 509

M
Möbius disk, 66
Möbius disk decomposition, 66
Möbius structure, 56, 64
Möbius surface, 56, 64
Mandelbrot set, 357

conjugate limb, 360
Manifold, 54
Mapping class group, 467, 468, 503
Markov map, 372
Mateable, 371

canonical extension, 374
combinatorially, 359
conformally, 359
piecewise Fuchsian, 373
piecewise Fuchsian Markov, 373

Mating, 333, 407
polynomial, 332

Maximal hyperbolic end, 57
Maximal representation, 214
Measurable Riemann mapping theorem, 338
Measured lamination, 339
Menger curve, 37
Meridian, 125
Metric bundle, 346

metric graph bundle, 347
Metric cone, 118
Minkowski metric, 69
Mixed 3-manifold, 356
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Modular group, 333
Moduli space, 333, 403
Montesinos link, 137
Moore obstruction, 361
Morphism, 110
Multicurve, 429
f -stable, 429

Multicurve matrix, 429
Multicurve obstruction, 429, 443
Multiplier automaton, 454, 462–464

N
Nearly Euclidean Thurston map, 388
Neck, 130
Negative definite Hermitian form, 299
Newton graph, 423–425

abstract, 433
abstract extended, 425, 434
extended, 425

Newton map, 360, 422
classification, 423
postcritically finite, 423–425
postcritically fixed, 423

Newton ray, 425
abstract, 434

Newton ray grand orbit, 437
Nielsen kernel, 55
Nielsen map, 333
Nielsen–Thurston classification, 509
Non-abelian Hodge correspondence, 220
Non-escaping set, 363
Non-positive curvature, 466
No wandering domain theorem, 357
NP-complete, 499

O
Obstruction

multicurve, 429, 443
Thurston, 429

Obtuse
strongly, 286

Octahedron, 317
One-relator group, 355
Orbi-bundle, 43
Orbi-covering, 43
Orbifold, 41

bad, 43
closed, 41
good, 43
very good, 43

Orbifold Dehn surgery, 206
Orbit equivalence, 333

Orthogonal complement, 299
Overlap (of disks), 70
Overlap (of Möbius disks), 70
Overlapping half-spaces, 80

P
Pairing-connectedness, 482
Parabolic Higgs bundle, 223

stable, 224
Parabolic Möbius surface, 65
Parabolic structure, 223
Parabolic Teichmüller component, 241
Partial conjugation, 498
Path, 478
Piecewise Möbius map, 333
Piecewise reflection map, 333
Pleated surface, 339
Pleating locus, 340
Pointed Riemannian manifold, 100
Polar dual, 263
Poly-free group, 499
Polygon-group, 27, 39
Polynomial laminations, 377
Polytope, 263

simple, 264
Positive definite Hermitian form, 299
Positive structure

Theta, 215
Positivity

total, 213
Postcritically finite, 422, 424, 425, 428
Postcritically finite map, 422
Postcritically finite Newton map, 423–425
Postcritically finite polynomial, 422
Postcritically fixed Newton map, 423
Postcritical set, 428
Pseudo-Anosov mapping class, 503
Pullback, 59
Pullback map, 403
Pullback relation on curves, 387
Pullback structure, 64

Q
Qi section, 347
Quadrature domain, 333

simply connected, 363
Quasicomplete, 58
Quasicompleteness, 94
Quasiconformal, 332

map, 337
Quasiconstant map, 14
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Quasiconvex, 354
Quasi-Fuchsian manifold, 54
Quasi-Fuchsian representation, 54
Quasigeodesic, 455
Quasi-isometry, 508
Quasi-tree, 508
q-valence, 496

R
Rank, 479
Rank of a Hermitian form, 298
Rank one isometry, 510
Rational map, 332

hyperbolic, 358
postcritically finite, 358
Thurston’s theorem, 332

Reduced word, 489
Regular extension, 435

of graph map, 431
Regular point, 117
Relative hyperbolicity, 350
Representation

Anosov, 214
hybrid, 221
maximal, 214
Theta positive, 217

Representation variety, 211
Riemann surface, 338
Right-angled Artin group, 355, 475
Right-angled Coxeter group, 285
Rigidity, 125, 126, 132

global rigidity, 132
infinitesimal rigidity, 126
local rigidity, 125
of Newton maps, 426

S
Salvetti complex, 355, 479
Schläfli’s formula, 127
Schottky group, 24
Schottky-type group, 24
Schrödinger operator, 262
Schwarzian derivative, 62
Schwarz reflection, 333
Second fundamental form, 58
Seifert-fibered piece, 356
Self-complementary graph, 513
Semi-conjugacy, 367
Semihyperbolic group, 461
Shape operator, 58

Siegel fixed point, 360
Sierpinski carpet, 37
Signature of a Hermitian form, 300
Simple closed curve

essential, 429
Simple polytope, 264
Simplex

geodesic, 261
Simplicial, 264
Simultaneous uniformization theorem, 332
Singular flat surface, 294
Singular locus, 41
Singular point, 117, 120
Slanted hyperbolic cube, 281
Slope, 204

integral, 204
Small action, 343
Small cancellation, 465, 466
Solution to the asymptotic Plateau problem, 60
Space of polygons, 300
Spacelike geodesic, 69
Square graph, 505
Square-norm, 298
Star, 478
Stein manifold, 46
Straightening map, 270
Strictly Levi-convex submanifold, 45
Strict negative curvature, 10
Strong convergence, 337
Strongly CAT(1), 285
Strongly pseudoconvex manifold, 45
Structure

parabolic, 223
Subgroup

AGG, 26
complex-Fuchsian, 26
of convergence type, 23
convex-cocompact, 21
discrete, 14
of divergence type, 23
elementary, 17
geometrically finite, 20
nonelementary, 17
real quasi-Fuchsian, 25
real-Fuchsian, 25

Sullivan dictionary, 332
Support, 489
Surface, 54
Surgery

integral, 204
Systolic

complex, 466, 468
group, 466
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T
Tangent hull, 12
Teichmüller space, 210, 336, 403

higher, 213, 215
Teichmüller theory

higher, 211
Theta positive representation, 217
Theta positive structure, 215
Thick part, 20
Thick-thin decomposition, 20
Thin part, 20
Third fundamental form, 58
3-manifold, 450, 462
Thurston equivalence, 359
Thurston equivalent, 428

combinatorial formulation, 442
Thurston linear transform, 429
Thurston map, 385, 402
Thurston matrix, 429
Thurston obstruction, 405, 429
Thurston’s characterization theorem, 406
Thurston’s rigidity theorem, 404
Thurston’s theorem (on rational maps),

429
Tiling set, 363
Timelike geodesic, 69
Toledo invariant, 214
Topological orbit equivalence rigidity,

333
Totally disconnected graph, 478
Total positivity, 213
Tree of spaces, 345
Triangulations, 315

combinatorial, 261
equilateral, 275
geodesic, 261

Tricorn, 370
Tube, 20
Tunnel, 135

Turnover, 118
Two-bridge link, 135
Two-row graph, 494

U
Unbounded geodesic rays, 83
Underlying Riemann surface (of a Möbius

surface), 64
Uniformization theorem for Haken manifolds,

208
Unmating, 360

V
Van Kampen diagram, 456
Vector space expander, 497
Vertex coloring, 491
Vertex generator, 478
Vertex inversion, 498
Vertical line foliation, 76
Vertical line projection, 86
Vertical lines (in hyperbolic ends), 76
Vertical projection, 76
Virtual endomorphism, 388
Visibility property, 12

W
Waldhausen theorem, 207
Weak differential inequalities, 82, 88
Weak graph map, 432
Welding, 368
Whitehead link, 136
Word acceptor, 453, 462–464, 469
Word difference, 463

machine, 454, 463, 464
Word problem, 451, 455, 462, 467
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