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Abstract. The majority of online services continue their reliance on
text-based passwords as the primary means of user authentication. With
a growing number of these services and the limited creativity and mem-
ory to come up with new memorable passwords, users tend to reuse their
passwords across multiple platforms. These factors, combined with the
increasing amount of leaked passwords, make passwords vulnerable to
cross-site guessing attacks. Over the years, several popular methods have
been proposed to predict subsequently used passwords, such as dictio-
nary attacks, rule-based approaches, neural networks, and combinations
of the above. In this paper, we work with a dataset of 28.8 million users
and their 61.5 million passwords, where there is at least one pair of pass-
words available for each user. We exploit the correlation between the
similarity and predictability of these subsequent passwords. We build on
the idea of a rule-based approach but delegate rule derivation, classifi-
cation, and prediction to a Recurrent Neural Network (RNN). We limit
the number of guessing attempts to ten yet get an astonishingly high
prediction accuracy of up to 83% in under five attempts in several cate-
gories, which is twice as much as any other known models or algorithms.
It makes our model an effective solution for real-time password guessing
against online services without getting spotted or locked out. To the best
of our knowledge, this study is the first attempt of its kind using RNN.
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1 Introduction

Passwords remain the first and sometimes the only line of defense for most online
services. Having a strong, unique password is extremely important to keep users’
data safe. The government agencies, especially those storing users’ personally
identifiable information (PII), medical and legal records, follow the password
guidance of the National Institute of Standards and Technology (NIST). Dif-
ferent online services have independent definitions of secure passwords. They
also enforce different password composition, expiration, and reuse policies. This
puts a lot of responsibility on users to create and maintain a large number of
passwords. To cope with this burden, a user can either use a password man-
ager, create and remember a unique password for each account, or create a very
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strong but memorable password that follows all the guidelines and use it across
all platforms. According to a survey by a cybersecurity company NordPass, 50%
of the respondents in the UK find it extremely difficult to remember unique pass-
words for multiple accounts [21]. The problem worsens when a user is required to
change passwords due to password expiration or known security breaches. Based
on numerous studies, the majority of people reuse their passwords by modifying
them slightly every time a new password is required [5,9,20,28]. Since most of
these studies were conducted in academic institutions and involved participants
with higher education levels and better security awareness, the situation for the
rest of the Internet community is probably even worse.

The habit of password reuse is detrimental to account security due to the
increasing threat of cross-site password guessing attacks. In this form of attack,
an attacker leverages previously leaked password datasets to guess passwords
potentially used by the same user at different sites [4]. With an abundance of
password leaks and data breaches, there is a large pool of publicly available pass-
words for a swarm of users. Attackers have various tools at their disposal, such
as dictionary-based attacks, rule-based attacks, and machine learning models
for effective and automated guessing. Suppose each online service allows up to
three attempts to enter a password before locking down the account and con-
sider that each user has registered on at least five popular online services. An
attacker thus has at least 15 attempts to guess a password before being spotted
or flagged. The traditional brute-force attack and dictionary attack will not be
effective in this setting due to the rate limit. However, rule-based and neural
network-based predictions can still yield a high probability of successful guesses
with rate-limiting enforced [11,14,16,17].

In this paper, we leverage the rule-based approach and automate the guessing
process using a neural network model to derive modification patterns, complete
the classification, and generate a password guess. We resort to neural networks,
which outperform traditional classifiers like Näıve Bayes and k-nearest neighbors
(KNN) used in prior research [28] to solve the classification problem. We use a
character-based bidirectional long short-term memory (BiLSTM) model to gen-
erate passwords for each modification category. We then build an experimental
model that can make predictions without knowing the modification patterns.
We use the character-based LSTM encoder-decoder model as it is commonly
used when one sequence of characters (e.g., the original password) needs to be
transformed into another sequence of characters (e.g., a subsequent password).
This model delivers outstanding prediction results for a significant amount of
password pairs.

The main contributions of our study can be summarized as follows:

– We created a neural network-based classifier for password modification cate-
gory prediction.

– We built an LSTM based model for password generation for each category.
– We designed an LSTM based model that predicts a subsequent password

based on the original password with up to 83% accuracy in under five
attempts.



112 A. Nosenko et al.

– We quantified the vulnerability of password reuse based on Levenshtein dis-
tance, Jaro-Winkler distance, and modification patterns.

– We made recommendations for online services to enhance their password
security.

The remainder of this paper is organized as follows. We discuss the related
work in Sect. 2. We describe the original dataset, the pre-processing steps, and
the resulting datasets in Sect. 3. Section 4 elaborates the prediction process and
the model architecture. Section 5 presents our results and compares them with
the results from the existing models. Section 6 talks about the security recom-
mendations and key takeaways of this research. We conclude this study and
identify some future directions for this line of research in Sect. 7.

2 Related Work

The problem of password guessing is not new. And over time, there has been
an abundance of methods proposed to solve it. Among the most prominent
guessing approaches are dictionary-based attacks, rule-based attacks, and neu-
ral network-based attacks. While some methods train and test their prediction
models on the same dataset, other methods extract rules from one dataset and
try to guess passwords from another dataset. The first type of method is referred
to as the single-site password guessing attack, where attackers crack passwords
from a single password leak. The second type is known as the cross-site password
guessing attack, which exploits leaked passwords from multiple online services.
Our research falls into the second type, where we aim to guess users’ subsequent
passwords from their known passwords from the same or a different site.

Next, we will provide an overview of different password guessing methods,
including the most recent advance of using neural networks for this purpose.

2.1 Dictionary Attacks

Dictionary attacks depend upon the assumption that a password is either a
word that belongs to a pre-compiled word list or dictionary [9], a valid, com-
plete word (used in vocabulary attacks) or a valid passphrase (used by Markov
model-based methods). The first two attacks may need many attempts to make
a correct guess, require constant maintenance of dictionaries, and cost a tremen-
dous amount of time and resources. Markov model-based methods, on the other
hand, enable efficient password and passphrase cracking by only generating and
testing linguistically likely passwords [19] or linguistically correct phrases [24].
These methods are commonly used for single-site password guessing attacks but
can also instigate cross-site attacks with slight modifications. Unfortunately,
most of the passwords in our dataset do not fall under the category of valid
dictionary words or linguistically correct phrases. Thus, these methods are of
limited use in solving our problem.
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2.2 Rule-Based Attacks

Rule-based attacks rely on password creation and reuse patterns extracted from
previously leaked datasets or user surveys and are widely used for cross-site
attacks. Researchers conducted statistical analyses of leaked password datasets
and discovered that most users stick to simple and easily memorable patterns
[4,28–30,33]. Based on the patterns, researchers were able to build algorithms
and prediction trees that indicate the most probable modification categories and
the most likely transformations. These data-driven algorithms aim to minimize
the number of guesses and maximize prediction accuracy. Among the several
rule-based mechanisms is Probabilistic Context-Free Grammar (PCFG). This
method analyzes leaked datasets and existing wordlists to create grammars for
generating word-mangling rules [30]. The next generation of rule-based guess-
ing mechanisms is based on PCFG but leverages previously used passwords as
an additional input to help predict subsequent passwords. This targeted predic-
tion algorithm is known as TarGuess-II [29]. Zhang et al. developed a generic
algorithmic framework for searching out possible transformations that convert
a user’s previous passwords to future ones [33]. Their optimal search strategy
successfully cracked an average of 13% of the accounts in the experiment within
five online guesses and 18% within ten attempts. Wang et al. introduced the
next iteration of rule-based predictors by breaking a process into two steps [28].
The first step uses a Näıve Bayes classifier to guess a modification category, and
the second step applies the rule-based mechanism to guess the actual password.
This approach shows significant improvements in prediction, but the accuracy
within ten attempts is still below 30%.

2.3 Neural Network-Based Guessing

This relatively new neural network-based approach was surfaced in 2016 with a
premise that Recurrent Neural Networks (RNNs) can predict the next symbol
in a character string if provided with enough training data [17]. It presented
promising results in single-site and cross-site attacks and was used in combi-
nation with rule-based attacks [16] and Markov model [14]. It helped overcome
several previous limitations, such as the utilization of fixed-length context, by
using long short-term memory (LSTM) network. LSTM is a subset of RNNs
and can store features discovered over a longer period of time [22]. Genera-
tive Adversarial Networks (GANs), a subset of neural networks, were used as
a specific training approach for neural network models to eliminate the need
for learning modification patterns on a single-site attack [11]. Despite showing
good prediction rates, most of these studies did not limit the number of guessing
attempts and ran models until they exhausted every possibility. This assumption
makes these models impractical in online password guessing in the real world.

Our research is based on the understanding of password modification pat-
terns. We specifically focus on the subsequent password guessing problem, that
is, guessing future passwords from preceding ones. We propose an RNN-based
approach, which focuses on lowering the number of attempts used for cross-site
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password guessing. We generate two models, one with rules provided and the
other one that derives the rules itself, and explore the prediction accuracy of the
two models in under ten attempts.

3 Dataset

The dataset was provided by Wang et al. [28], which consists of 61,552,446 indi-
vidual passwords that belong to 28,836,775 users from 107 online services over
eight years. The dataset has been sanitized and anonymized to protect personally
identifiable information. Every user in the dataset has at least two passwords;
thus, we can form at least one pair of subsequently used passwords. Although
some users have more than two passwords, we only choose two passwords (i.e.,
one pair) for each user for simplicity.

We then pre-process the dataset to eliminate pairs of identical passwords and
those that appear more than once. The resulting dataset contains 17,133,333
unique pairs. This process helps us identify a set of the most common pass-
words for further analysis. Among the most popular passwords are “123456,”
“password,” “qwerty,” “111111,” “123123,” “dragon,” “monkey,” “shadow,” and
“love.”

When looking at the length of the passwords, we discover that 99% of the
passwords are 5–17 characters long, which seems to be consistent with the com-
mon password requirements enforced by online services as well as the general
human memory capacity [25]. The passwords that are longer than 17 characters
(hard to memorize) or shorter than 5 (not acceptable by most online services), as
well as the passwords that contain non-ASCII characters, are considered outliers
and are thus removed from further consideration.

We analyze the distribution of passwords based on two metrics, Levenshtein
distance and Jaro-Winkler distance.

The Levenshtein distance is the number of edits (e.g., substitution, insertion,
or deletion) needed to transform one string into another. For example, trans-
forming “rain” to “shine” requires three steps, consisting of two substitutions
and one insertion: “rain” → “sain” → “shin” → “shine.” These operations could
have been done in other orders, but at least three steps are needed [10]. In our
dataset, the Levenshtein distance between passwords ranges from 0 to 17, as
shown in Fig. 1. And the majority of password pairs have a Levenshtein distance
in the range from 1 to 11. The Levenshtein distance can help set up password
reuse rules that are easy for users to understand (e.g., make sure the subse-
quent password is different from the original by three characters). However, it
suffers from a major limitation. For example, the Levenshtein distance between
the words “password” and “password12345678” is 8, which is relatively high,
although both words exhibit an easy-to-guess pattern.

We then resort to the Jaro-Winkler distance for a more meaningful measure.
The Jaro-Winkler distance considers the substitution of two close characters
less important than the substitution of two characters that are far from each
other [7]. It computes the string similarity by returning a value that lies in the
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Fig. 1. Password distribution by Levenshtein distance

interval of [0.0, 1.0]. For instance, the Jaro-Winkler distance between the words
“password” and “password12345678” is 91.7%. Figure 2 shows the distribution of
password pairs in the dataset based on the Jaro-Winkler distance. The majority
of the password pairs fall in between 0.4 and 0.99.

0.2 0.4 0.6 0.8 1

0

1

2

3

·105

Jaro-Winkler Distance

N
um

be
r
of

pa
ss
w
or
ds

Fig. 2. Password distribution by Jaro-Winkler distance

The passwords that exhibit the highest similarity will have the smallest
Levenshtein distance and the highest Jaro-Winkler distance and will be the
best candidates for performing cross-site guessing attacks. We use the NLTK
Python library for the Levenshtein distance and the StrsimPy library for the
Jaro-Winkler distance to implement both metrics.
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In prior research, several most common modification patterns were identified,
including Substring, Common Substring, Capitalized, Leet, and Sequential Keys
[28]. We label each password pair based on these five patterns to create a labeled
dataset. The pairs that do not fit into any of these rules are dropped. The labeled
dataset contains 3,006,871 unique password pairs.

Figure 3 demonstrates the number of password pairs for the original dataset
(“All passwords”), the set where an original password is not the same as its sub-
sequent password (“Unique pairs”), the set of unique pairs where each password
is between 5 to 17 characters long and contains only valid ASCII characters
that will be used for most of this research (“Working set”), and the labeled set
(“Known rules”).

0 0.5 1 1.5 2 2.5 3

·107

Known rules

Working set

Unique pairs

All passwords

3, 006, 871

14, 584, 115

17, 133, 333

28, 836, 775

Fig. 3. The number of password pairs in each dataset

4 Password Prediction Process

So far, we have reviewed the data pre-processing steps necessary for password
prediction. Next, we want to build a pipeline to take the resulting dataset, iden-
tify and tag modification patterns, classify passwords into appropriate buckets,
and generate predictions for each original password. We also seek to take a step
further by skipping tagging and classification and go straight to password pre-
diction. We will refer to this process as direct password prediction. This approach
will be especially beneficial when users combine multiple modification patterns
or no rules can be identified. To the best of our knowledge, this approach has not
been used for launching a single-user cross-site password guessing attack yet.

The prediction pipeline consists of four steps. During the first step, common
modification patterns are defined, and each password pair is analyzed and labeled
with a corresponding category. We use a neural network model to assign each
original password into a single modification category during the second step.
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This process is known as the single-label prediction problem. During the third
step, we build a second model to learn about possible modifications within each
category. With 90% accuracy on the test data, the model can understand and
generate all possible modifications for each category. Both models are then com-
bined, and the resulting pipeline is assembled in the last step. Our approach can
take just one original password as an input, classify it into a modification cat-
egory, and generate password guesses. We will now review each step in further
detail.

4.1 Tagging

Before tagging password pairs, let us first introduce the common password mod-
ification patterns we borrowed from [28]. Leet refers to any transformation of
alphanumeric characters to visually similar symbols and vice versa. The Sub-
string category includes password pairs where one password is a substring of
the other. Adding symbols to the head or tail of a string is the most common
modification of this category. Capitalization is where one or more symbols are in
uppercase. The Common Substring category contains password pairs that share
common letter combinations. The Sequential Keys category consists of pass-
words that contain alphabetically ordered letters (e.g., “abcd”), sequential num-
bers (e.g., “1234”), and adjacent keys on the keyboard (e.g., “qwert,” “asdfg,”
etc.). We define a function to identify which pattern each password pair fits in
and tag each pair with a corresponding modification pattern category. After the
tagging is completed, we drop the passwords that do not match any rules or con-
tain non-ASCII symbols. The resulting dataset has 3,006,871 pairs of passwords.
Figure 4 shows the distribution of each password modification category in the
tagged dataset. The most common patterns found in the dataset are Substring
and Common Substring. Together they cover 2,674,521 password pairs, which
are around 89% of the dataset. These password pairs provide sufficient training
data for our proposed model. The other three categories represent about 10%
of the dataset. Except for the Sequential Keys category, we still collect enough
training data from the categories of Capitalization and Leet.

4.2 Classification

Conventional classifiers have been used to solve the classification problem as
they are easy to use and do not require heavy data pre-processing. However,
neural networks have proven to deliver better prediction rates, especially on
larger datasets [23].

We build a 4-layer LSTM classifier using the Keras Python library, as shown
in Fig. 5. The Input Layer takes a single sequence of characters with the same
length as the longest password in the dataset, which is 17 characters long. The
One-Hot Encoder processes every password as a sequence of characters and trans-
forms those sequences into a one-hot numeric array. It assigns the value of 1 if the
character is present in a given word or 0 if otherwise. The encoding is passed to
the LSTM units. We use a character-level Bidirectional LSTM (BiLSTM) Layer,
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Fig. 4. Category distribution of the tagged dataset

which is an extension of traditional LSTMs and can improve the model perfor-
mance on sequence classification problems. The BiLSTM Layer runs inputs in
two directions, one from the past to the future and the other from the future to
the past. Unlike unidirectional LSTM, BiLSTM uses two hidden states and can
preserve information from both past and future at any point in time. Because of
these qualities, BiLSTM can better understand the context around each char-
acter in the sequence [31]. The output of the BiLSTM cells is fed to a dense
Activation Layer. The Activation Layer contains an activation function, which
defines how the weighted sum of the input is transformed into an output. To
ensure that a model learns features and does not converge prematurely, we use
the Adam optimizer with a small learning rate [12]. This optimizer is used to
update network weights during each training iteration.

As a result of this step, we build a neural network classifier to predict pass-
word modification patterns.

4.3 Password Generation

In this step, we train a 7-layer character-level BiLSTM model to generate pass-
words within each modification category. The model shown in Fig. 6 has two
input streams. The left stream includes Input Layer #1, the One-Hot encoder,
and the BiLSTM layer. These three layers act similarly to what is described in
Sect. 4.2. The right input stream includes Input Layer #2 and a Repeat Vector
Layer, which are both used to add a list of modification patterns to the model as
each prediction is generated within a single category. The Concatenation Layer
combines the outputs of both streams and feeds the combined outputs into the
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Input Layer

One-Hot Encoder

BiLSTM Layer

Activation Layer

Fig. 5. Classification model architecture

Activation Layer. The Activation Layer acts the same as described in Sect. 4.2.
The resulting model can generate password guesses for each modification cate-
gory with high accuracy.

To generate password guesses for all categories, we put the classification
model and the password generation model together into one prediction pipeline,
namely Pipeline Prediction Mechanism (PPM). As an original password enters
the pipeline, the first model predicts the modification category. Then, the pre-
dicted category, along with the original password, is fed into the second model,
which generates password candidates and chooses the top 10 candidates with the
highest probability. Once the prediction is completed, we verify if a password is
guessed correctly.

4.4 Direct Password Prediction

To the best of our knowledge, RNN has never been used to solve cross-site pass-
word guessing for the same user before. This problem, however, is similar to
the problem of machine translation. In both problems, the source may vary in
length and character dictionary. The model architecture consists of at least two
LSTM layers, encoder and decoder. The encoder takes the input sequence and
summarizes the information into a context vector or hidden states of LSTM [3].
The outputs are not important and thus are dropped, but the hidden states are
saved. This context vector encapsulates the information for all input elements
and will be used by the decoder to generate predictions. The decoder is also
an LSTM layer that takes the encoder output as an initial state and produces
an output sequence. We use the Softmax layer from the Keras library as an
Activation Layer in our model. The Softmax function is based on normalized
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Fig. 6. Password generation model

exponential function and is used as the last layer on a neural network to normal-
ize the output to a probability distribution over predicted output classes [13]. In
our model, it will determine the output modified password.

Since a model can generate multiple predictions with different degrees of con-
fidence, we need an algorithm to choose the top 10 most probable outputs. We
use the Beam search algorithm, one of the most widely used for sequence-to-
sequence machine translation problems [32], to help us identify the most prob-
able predictions. Direct password prediction proves to be the most promising
approach as it eliminates the need for constant rule derivation and distribution
analysis and eases dataset pre-processing. The resulting model, namely Direct
Prediction Mechanism (DPM), is rule-independent and delivers high prediction
rates.

4.5 Prediction on a Reversed Dataset

To increase the number of password pairs, Wang et al. [28] switched source and
target passwords and attempted a prediction of original passwords based on
the subsequent ones. We decide to replicate the same experiment providing a
model with modified passwords as a source and asking it to predict the orig-
inal passwords. This adds additional 3.1M password pairs to our experiment.
No changes to the model are necessary to run this experiment, which exhibits
another advantage of using neural networks to solve the password guessing prob-
lem. We realize that predicting the original password can be easier for the DPM
model since most users tend to use simpler passwords to begin with and add
complexity (e.g., Leet, Capitalization, String, etc.) as they change them. Addi-
tionally, we try to reverse the order of characters in the original password before
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passing it to the model for prediction. This approach was used by Sutskever et al.
[26], where the authors reversed the word order in the source sentence before
passing it to an RNN model, which ultimately yields better prediction results.

5 Experimental Results

5.1 Hardware Requirements

Most of this project was executed on Google Colab Pro, which is a cloud-based
Jupyter notebook environment. The hosted runtime environment uses Tesla
P100-PCIE-16 GB GPU, Intel(R) Xeon(R) CPU @ 2.20 GHz processor, 25 GB
of RAM, and 109 GB of disk space. The most hardware demanding parts of the
experiment were dataset pre-processing, model training, and direct password
prediction. Direct password prediction was the most computationally expensive.
Based on Google Colab measurements, it took 13 GB of RAM to train a model
on 400k records and 20 GB for 500k records. Even though it might sound like a
significant amount of resources, it is not unreachable for a sophisticated attacker.
Better hardware resources will yield better performance results since we can train
the model on a larger dataset and make faster predictions with higher accuracy.

5.2 Results

We first compared the results of an LSTM classifier and a Näıve Bayes classi-
fier. Table 1 shows that the LSTM based model delivers better results than the
Näıve Bayes classifier, especially in underrepresented categories, such as Leet
and Common Substring.

Table 1. LSTM model vs. Näıve Bayes classifier

Precision Recall F1-score

LSTM Capitalized 0.65 0.58 0.61

Common substring 0.58 0.31 0.4

Leet 0.49 0.23 0.31

Seq-Key 0 0 0

Substring 0.73 0.91 0.81

Näıve Bayes Capitalized 0.6 0.39 0.48

Common substring 0.38 0.05 0.08

Leet 0.14 0.01 0.01

Seq-Key 0 0 0

Substring 0.66 0.9 0.79
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LSTM outperforms traditional classifiers because it captures and preserves
the sequential order (i.e., the order in which the characters appear in a password),
while the classical models do not. For example, “abac” is different than “aabc”
for LSTM, while it is the same for a classical model as it only considers the
frequency of the featured characters ‘a,’ ‘b,’ ‘c,’ which are the same for both
strings.

We then evaluated the performance of our password generation model. Since
our approach is novel, we do not have an exact baseline to make a one-to-
one comparison with the existing work. The closest studies are the ones that
estimate how many guesses are needed to predict a password correctly [4,28,
29]. All of these papers published their prediction rates within the first ten
attempts. Therefore, we use ten attempts as part of the experiment parameters.
We compared the results of our Pipeline Prediction Mechanism (PPM) and
Direct Prediction Mechanism (DPM) with three existing algorithms from [28]
(referred to as “Domino” hereafter), [29] (referred to as “TarGuess-II” hereafter),
and [4] (referred to as “Tangled” hereafter).

On average, both of our models exhibited a 5% improvement of overall pre-
diction rates comparing to “Domino” and three times more accurate predictions
than TarGuess-II and “Tangled” as shown in Fig. 7. Although the improvement
does not seem drastic, if we can predict 5% more passwords out of 6 million,
that is around 300,000 more compromised accounts.
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Fig. 7. Model comparison at ten attempts

A larger difference in prediction rates between “Domino,” PPM, and DPM
can be observed in the first four attempts, as shown in Fig. 8, where our model
is 100% more effective. This is especially surprising considering that DPM was
only provided with the original password and no other prior information. It can
also be observed that the DPM model makes most of the predictions during
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the first few attempts, and then its confidence decreases as well as the number
of predicted passwords (see Fig. 9). On the other hand, traditional approaches
exhaust all possible combinations and thus predict more as they try more. This
reveals a fundamental difference between our method and those traditional ones.
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Fig. 8. Model comparison under ten attempts
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Fig. 9. DPM prediction rate for each attempt

Next, we zoomed in on the results of the DPM predictions to quantify for
the first time the correlation between password predictability and Levenshtein
distance for subsequent passwords. The prediction rates, as shown in Fig. 10,
are broken down by the Levenshtein distance on the x-axis (x-coordinates corre-
spond to the distance values 1, 2, 3, 4, 5, and 6, respectfully). The y-axis refers
to the percentage of guessed passwords. We found that it is 6–8 times harder
to predict a subsequent password when the Levenshtein distance is 4 compared
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to the same task when the distance is 1. Changing only one character in subse-
quent passwords does almost nothing to improve the overall password strength
since the prediction rate is as high as 83%. In other words, almost 8 out of 10
subsequent passwords can be predicted regardless of modification patterns if the
two passwords only differ in one character.
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Fig. 10. Prediction rate vs. Levenshtein distance

We also examined the association between password predictability and Jaro-
Winkler distance by running a DPM model on each distance interval, as shown in
Fig. 11. Passwords with less than 0.7 Jaro-Winkler distance result in a prediction
rate of below 1% under five guesses, comparing to passwords with the same
metric of above 0.9, which have a prediction rate of around 50%.

We then investigated the prediction results to see how specific modification
patterns contribute to the overall password predictability as most of the pre-
dicted passwords exhibit some sort of pattern. The unrelated password pairs
that do not have any syntactic or semantic similarity proved to be the hardest
to predict. Figure 12 shows that Capitalization along with having a subsequent
password being a substring or containing a substring of the original are the eas-
iest categories to break and are at least 20%–50% less secure. Considering how
easy it is for a user to remember a password with a few added characters or some
capitalization changes, it is as easy for the model to guess it. Since Substring is
the most represented category in the original dataset, it is not surprising to see
that DPM is well trained in this category and is thus able to make a successful
guess around 50% of the time, as shown in Fig. 12. However, the interesting fact
is that Capitalization represents only around 9% of the dataset, yet a model
successfully predicts around 64.5% of those passwords. It is also worth noticing
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Fig. 11. Prediction rate vs. Jaro-Winkler distance

that DPM is able to predict around 7.4% or 25,000 of passwords that do not
follow any known modification patterns.

Overall, both models demonstrated great prediction rates, beating the close
competitors 2:1 in scenarios where only a small number of guessing attempts
is allowed. Our models adopt a more fine-grained prediction approach and are
capable of predicting 83% of passwords in certain common modification cate-
gories. With more data available, the performance of our models improves. But
our models can also work well on a smaller training set (e.g., 50k size).

6 Discussion

Predicting slightly modified subsequent passwords is getting easier. With more
data breaches occurring each year, there is an abundance of leaked passwords,
including subsequent passwords for the same users. This allows us to extract
more fine-grained modification patterns and train more robust prediction models.
Our experiment showed that having the original password alone is enough to
predict a subsequent password with a high probability in just a few attempts.
With most online services allowing up to ten attempts [1], an attacker can use
the proposed mechanisms and models to generate subsequent passwords and
try to compromise an account without raising the alarm. With the availability
of more powerful computational resources and companies delaying the public
release of data breach details, an attacker can re-train the models to account for
newly acquired data and enhance the chance of success.

The length and complexity requirements recommended by the NIST guideline
[2] are outdated in practice today. Having a long password that consists of various
symbols might add extra security only when it comes to single-site dictionary
attacks and eavesdropping [8]. Making slight modifications based on an original
password provides little to no additional security in cross-site attacks. It may
even give users a false sense of security as these changes seem to align with
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the characteristics of “strong passwords” defined by the guideline. Our studies
showed that we need to consider the similarity between an original password and
its successors as a new requirement in a future edition of user authentication
guidelines. The less similarity there is between subsequent passwords, the more
secure user data is [18]. Even with sufficient training data, neural network-based
guessing algorithms require much more attempts to crack passwords that are
distant in terms of similarity metrics. For example, we observed that passwords
that are four edits away are at least three times harder to break than those with
just one modification away. Having completely unrelated passwords can mitigate
cross-site attacks in the presence of a password breach.

Updating user authentication guidelines also helps standardize web frame-
works and development tools include libraries that support similarity-based
proactive password checking. A proactive password checker can prevent users
from choosing an easy-to-guess subsequent password, especially when it is simi-
lar to the used ones. This process, however, should not have a detrimental effect
on user experience and may include a system to suggest a secure password if a
user struggles to come up with one.

The use of passwords alone should be re-considered by service providers
in favor of two-factor authentication, biometrics, and other alternative means.
Users’ creativity, memory capacity, or the level of education in computer secu-
rity should not be the decisive factors of data security. Most survey partici-
pants involved in the password guessing studies represent a younger and higher
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educated cohort compared to the general population [4,27]. The safe guess would
be that a general population would have even more insecure password habits.
It is hard to change users’ habits as we consistently see users reusing the same
passwords or modifying them slightly. As users entrust their data and private
information to more and more online services, these services should step up and
carry more responsibilities to ensure that users’ negligence or lack of education
does not jeopardize the safety of their data.

Password managers are considered by many as an appealing substitute for
alleviating password fatigue. However, password managers usually require a local
or cloud-based password storage, and the access to such storage relies on a master
password. An insecure implementation or a lost master password adds a single
point of failure to authentication. Prior studies showed that most popular pass-
word managers in use suffered from various kinds of vulnerabilities [6,15]. The
widespread adoption of password managers will not overshadow the efforts on
making passwords stronger. In fact, the advances in both directions complement
each other.

7 Conclusion and Future Work

In this research, we investigated the problem of subsequent password prediction.
We built a password prediction pipeline to automate password categorization and
password generation using Recurrent Neural Networks. The prediction results
were superior to the ones delivered by traditional classification and guessing
algorithms. The performance boost was especially significant when we limit the
number of guessing attempts to five. We combined the understanding of rule-
based prediction algorithms and the power of LSTM neural networks to solve
the problem of cross-site prediction for passwords created by the same user.
It is a relatively new approach and perhaps one of the very first attempts to
use Recurrent Neural Networks for this specific task. We were able to quantify
the correlation between the similarity, modification patterns, and predictability
of subsequent passwords. In addition, we demonstrated the ease of prediction
and high accuracy of the most common modification strategies, such as adding
head or tail symbols to the original password or capitalization. We showcased
that such a prediction process could be facilitated by affordable hardware or
online computing resources, such as Google Colab, due to the low complexity
and shallow nature of the RNN model used. The efficiency of prediction allows it
to run on platforms where five or fewer attempts are allowed before an account
gets locked. We also discussed the concrete steps the online services should take
to improve the security of the authentication process.

In the future, we would like to apply the model to a single-site attack scenario
to see how well it can perform compared to the other models. We would also like
to investigate password pairs that are not syntactically but semantically similar
(e.g., synonyms, associated words). The prediction of these passwords was out
of the scope of this research. We may also improve the password prediction by
training the model on a synthetic balanced dataset that contains various under-
represented modification patterns found in this research (e.g., common names).
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Lastly, we would like to build a neural network model to classify the passwords
that involve more than one type of modification pattern (e.g., Capitalization and
Leet, Substring and Leet, etc.).
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