
Springer Series in Optical Sciences 238

Mário F. S. Ferreira   Editor

Dissipative 
Optical 
Solitons



Founding Editor
H. K. V. Lotsch, Nußloch, Baden-Württemberg, Germany

Springer Series in Optical Sciences

Volume 238

Editor-in-Chief

William T. Rhodes, Florida Atlantic University, Boca Raton, FL, USA

Series Editors

Ali Adibi, School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Toshimitsu Asakura, Toyohira-ku, Hokkai-Gakuen University, Sapporo, Hokkaido,
Japan

Theodor W. Hänsch, Max Planck Institute of Quantum Optics, Garching
b. München, Bayern, Germany

Ferenc Krausz, Max Planck Institute of Quantum Optics, Garching b. München,
Bayern, Germany

Barry R. Masters, Cambridge, MA, USA

Katsumi Midorikawa, Laser Tech Lab, RIKEN Advanced Science Institute,
Saitama, Japan

Herbert Venghaus, Fraunhofer Institute for Telecommunications, Berlin, Germany

Horst Weber, Berlin, Germany

Harald Weinfurter, München, Germany

Kazuya Kobayashi, Dept. EECE, Chuo University, Bunkyo-ku, Tokyo, Japan

Vadim Markel, Department of Radiology, University of Pennsylvania, Philadelphia,
PA, USA



Springer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes,
Florida Atlantic University, USA, and provides an expanding selection of research
monographs in all major areas of optics:

• lasers and quantum optics
• ultrafast phenomena
• optical spectroscopy techniques
• optoelectronics
• information optics
• applied laser technology
• industrial applications and
• other topics of contemporary interest.

With this broad coverage of topics the series is useful to research scientists and
engineers who need up-to-date reference books.



Mário F. S. Ferreira
Editor

Dissipative Optical Solitons



ISSN 0342-4111 ISSN 1556-1534 (electronic)
Springer Series in Optical Sciences
ISBN 978-3-030-97492-3 ISBN 978-3-030-97493-0 (eBook)
https://doi.org/10.1007/978-3-030-97493-0

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editor
Mário F. S. Ferreira
I3N-Institute of Nanostructures,
Nanomodelling and Nanofabrication
Department of Physics
University of Aveiro
Aveiro, Portugal

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

https://doi.org/10.1007/978-3-030-97493-0


Contents

1 Dissipative Optical Solitons: An Introduction . . . . . . . . . . . . . . . . . 1
Mário F. S. Ferreira

2 Dissipative Solitons in Passively Mode-Locked Lasers . . . . . . . . . . . 15
Philippe Grelu

3 Dissipative Soliton Buildup Dynamics . . . . . . . . . . . . . . . . . . . . . . . 37
Zhi-Chao Luo, Ze-Yu Zhan, Meng-Jun Feng, Ji-Xiang Chen,
Meng Liu, Ai-Ping Luo, and Wen-Cheng Xu

4 Dissipative Soliton Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Georges Semaan, Andrey Komarov, Mohamed Salhi,
and François Sanchez

5 Ultra-Short High-Amplitude Dissipative Solitons . . . . . . . . . . . . . . 79
Sofia C. Latas, Margarida V. Facão, and Mário F. S. Ferreira

6 Vector Dissipative Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Luming Zhao

7 Dynamics of Pulsating Dissipative Solitons . . . . . . . . . . . . . . . . . . . 131
Xiaoqing Wang, Jiangyong He, Baiwei Mao, Zhi Wang,
and Yan-ge Liu

8 Raman Dissipative Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Denis S. Kharenko, Anastasia E. Bednyakova, Innokentiy Zhdanov,
Vlad D. Efremov, Evgeniy V. Podivilov, Mikhail P. Fedoruk,
and Sergey A. Babin

9 L-Band Wavelength Tunable Dissipative Soliton Fiber Laser . . . . . 181
Qianqian Huang, Zinan Huang, Lilong Dai, Mohammed AlAraimi,
Zhijun Yan, Junjie Jiang, Aleksey Rozhin, and Chengbo Mou

v



vi Contents

10 Multiplexed Dissipative Soliton Fiber Lasers . . . . . . . . . . . . . . . . . . 205
Tianye Huang, Pan Huang, Bingye Zhan, Dazhong Zhang,
and Zhichao Wu

11 Multi-soliton Complex in Nonlinear Cavities . . . . . . . . . . . . . . . . . . 225
Chengying Bao and Xiaosheng Xiao

12 Dissipative Solitons in Microresonators . . . . . . . . . . . . . . . . . . . . . . 249
Cristina Rimoldi, Bennet Fischer, Luigi Di Lauro,
Mario Chemnitz, Alessia Pasquazi, David J. Moss,
and Roberto Morandotti

13 Vector Vortex Solitons and Soliton Control in
Vertical-Cavity Surface-Emitting Lasers . . . . . . . . . . . . . . . . . . . . . 273
T. Ackemann, T. Guillet, H. Pulham, and G. -L. Oppo

14 Discrete Solitons of the Ginzburg-Landau Equation . . . . . . . . . . . . 303
Mario Salerno and Fatkhulla Kh. Abdullaev

15 Noise-Like Pulses in Mode-Locked Fiber Lasers . . . . . . . . . . . . . . . 319
Grzegorz Soboń

16 Dissipative Rogue Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Lei Gao



Contributors

Fatkhulla Kh. Abdullaev Physical-Technical Institute, Uzbek Academy of Sci-
ences, Tashkent, Uzbekistan

T. Ackemann SUPA and Department of Physics, University of Strathclyde, Glas-
gow, Scotland, UK

Mohammed AlAraimi Higher College of Technology, Al-Khuwair, Sultanate of
Oman

Sergey A. Babin Institute of Automation and Electrometry SB RAS, Novosibirsk,
Russia

Novosibirsk State University, Novosibirsk, Russia

Chengying Bao State Key Laboratory of Precision Measurement Technology and
Instruments, Department of Precision Instruments, Tsinghua University, Beijing,
China

Anastasia E. Bednyakova Novosibirsk State University, Novosibirsk, Russia

Institute of Computational Technologies SB RAS, Novosibirsk, Russia

Mario Chemnitz INRS-EMT, Quebec, Canada

Ji-Xiang Chen Guangdong Provincial Key Laboratory of Nanophotonic Func-
tional Materials and Devices & Guangzhou Key Laboratory for Special Fiber
Photonic Devices and Applications, South China Normal University, Guangzhou,
Guangdong, China

Lilong Dai The Key Lab of Specialty Fiber Optics and Optical Access Network,
Shanghai University, Shanghai Institute of Communication and Advanced Data
Science, Joint International Laboratory of Specialty Fiber Optics and Advanced
Communication, Shanghai, China

vii



viii Contributors

Vlad D. Efremov Institute of Automation and Electrometry SB RAS, Novosibirsk,
Russia

Novosibirsk State University, Novosibirsk, Russia

Margarida V. Facão I3N-Institute of Nanostructures, Nanomodelling and
Nanofabrication, Department of Physics, University of Aveiro, Aveiro, Portugal

Mikhail P. Fedoruk Novosibirsk State University, Novosibirsk, Russia

Institute of Computational Technologies SB RAS, Novosibirsk, Russia

Meng-Jun Feng Guangdong Provincial Key Laboratory of Nanophotonic Func-
tional Materials and Devices & Guangzhou Key Laboratory for Special Fiber
Photonic Devices and Applications, South China Normal University, Guangzhou,
Guangdong, China

Mário F. S. Ferreira I3N-Institute of Nanostructures, Nanomodelling and
Nanofabrication, Department of Physics, University of Aveiro, Aveiro, Portugal

Bennet Fischer INRS-EMT, Quebec, Canada

Lei Gao Key Laboratory of Optoelectronic Technology & Systems (Ministry of
Education), Chongqing University, Chongqing, China

Philippe Grelu Laboratoire ICB UMR 6303 CNRS, Université Bourgogne –

Franche-Comté, Dijon, France

T. Guillet Laboratoire Charles Coulomb (L2C), University Montpellier, CNRS,
Montpellier, France

Jiangyong He Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, Nankai University, Tianjin, China

Pan Huang School of Mechanical Engineering and Electronic Information, China
University of Geosciences (Wuhan), Wuhan, China

Qianqian Huang The Key Lab of Specialty Fiber Optics and Optical Access
Network, Shanghai University, Shanghai Institute of Communication and Advanced
Data Science, Joint International Laboratory of Specialty Fiber Optics and Advanced
Communication, Shanghai, China

Tianye Huang School of Mechanical Engineering and Electronic Information,
China University of Geosciences (Wuhan), Wuhan, China

Wuhan National Laboratory Optoelectronics, Wuhan, China

Zinan Huang The Key Lab of Specialty Fiber Optics and Optical Access Network,
Shanghai University, Shanghai Institute of Communication and Advanced Data
Science, Joint International Laboratory of Specialty Fiber Optics and Advanced
Communication, Shanghai, China

Junjie Jiang The Key Lab of Specialty Fiber Optics and Optical Access Network,
Shanghai University, Shanghai Institute of Communication and Advanced Data



Science, Joint International Laboratory of Specialty Fiber Optics and Advanced
Communication, Shanghai, China

Contributors ix

Denis S. Kharenko Institute of Automation and Electrometry SB RAS, Novosi-
birsk, Russia

Novosibirsk State University, Novosibirsk, Russia

Andrey Komarov Institute of Automation and Electrometry, Russian Academy of
Science, Novosibirsk, Russia

Sofia C. Latas I3N-Institute of Nanostructures, Nanomodelling and
Nanofabrication, Department of Physics, University of Aveiro, Aveiro, Portugal

Luigi Di Lauro INRS-EMT, Quebec, Canada

Meng Liu Guangdong Provincial Key Laboratory of Nanophotonic Functional
Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic
Devices and Applications, South China Normal University, Guangzhou, Guang-
dong, China

Yan-ge Liu Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, Nankai University, Tianjin, China

Ai-Ping Luo Guangdong Provincial Key Laboratory of Nanophotonic Functional
Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic
Devices and Applications, South China Normal University, Guangzhou, Guang-
dong, China

Zhi-Chao Luo Guangdong Provincial Key Laboratory of Nanophotonic Func-
tional Materials and Devices & Guangzhou Key Laboratory for Special Fiber
Photonic Devices and Applications, South China Normal University, Guangzhou,
Guangdong, China

Baiwei Mao Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, Nankai University, Tianjin, China

Roberto Morandotti INRS-EMT, Quebec, Canada

David J. Moss Centre for Microphotonics, Swinburne University of Technology,
Hawthorn, VIC, Australia

Chengbo Mou The Key Lab of Specialty Fiber Optics and Optical Access Net-
work, Shanghai University, Shanghai Institute of Communication and Advanced
Data Science, Joint International Laboratory of Specialty Fiber Optics and Advanced
Communication, Shanghai, China

G. -L. Oppo SUPA and Department of Physics, University of Strathclyde, Glas-
gow, Scotland, UK

Alessia Pasquazi Emergent Photonics (Epic) Laboratory, Department of Physics
and Astronomy, University of Sussex, Brighton, UK



x Contributors

Evgeniy V. Podivilov Institute of Automation and Electrometry SB RAS, Novo-
sibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

H. Pulham SUPA and Department of Physics, University of Strathclyde, Glasgow,
Scotland, UK

Cristina Rimoldi INRS-EMT, Quebec, Canada

Aleksey Rozhin Aston Institute of Photonic Technologies (AIPT), Aston Univer-
sity, Birmingham, UK

Mario Salerno Dipartimento di Fisica “E.R. Caianiello”, and INFN, Gruppo
Collegato di Salerno, Università di Salerno, Salerno, Italy

Mohamed Salhi Laboratoire de Photonique d’Angers, Université d’Angers,
Département de Physique, Angers, France

François Sanchez Laboratoire de Photonique d’Angers, Université d’Angers,
Département de Physique, Angers, France

Georges Semaan Laboratoire de Photonique d’Angers, Université d’Angers,
Département de Physique, Angers, France

Grzegorz Soboń Faculty of Electronics, Photonics and Microsystems, Wrocław
University of Science and Technology, Wrocław, Poland

Xiaoqing Wang Institute of Modern Optics, Tianjin Key Laboratory of Micro-
scale Optical Information Science and Technology, Nankai University, Tianjin,
China

Zhi Wang Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, Nankai University, Tianjin, China

ZhichaoWu School of Mechanical Engineering and Electronic Information, China
University of Geosciences (Wuhan), Wuhan, China

Xiaosheng Xiao State Key Laboratory of Information Photonics and Optical Com-
munications, School of Electronic Engineering, Beijing University of Posts and
Telecommunications, Beijing, China

Wen-Cheng Xu Guangdong Provincial Key Laboratory of Nanophotonic Func-
tional Materials and Devices & Guangzhou Key Laboratory for Special Fiber
Photonic Devices and Applications, South China Normal University, Guangzhou,
Guangdong, China

Zhijun Yan School of Optical and Electronic Information, Huazhong University of
Science and Technology, Wuhan, China

Bingye Zhan School of Mechanical Engineering and Electronic Information,
China University of Geosciences (Wuhan), Wuhan, China



Contributors xi

Ze-Yu Zhan Guangdong Provincial Key Laboratory of Nanophotonic Functional
Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic
Devices and Applications, South China Normal University, Guangzhou, Guang-
dong, China

Dazhong Zhang School of Mechanical Engineering and Electronic Information,
China University of Geosciences (Wuhan), Wuhan, China

Luming Zhao Jiangsu Key Laboratory of Advanced Laser Materials and Devices,
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou,
Jiangsu, China

Innokentiy Zhdanov Institute of Automation and Electrometry SB RAS, Novosi-
birsk, Russia

Novosibirsk State University, Novosibirsk, Russia



Chapter 1
Dissipative Optical Solitons:
An Introduction

Mário F. S. Ferreira

Abstract In this chapter we provide an introduction to the topic of this book. After a
brief historical note on solitary waves, a special attention is paid to solitons in optical
fiber systems. The complex Ginzburg-Landau equation is presented as a main
equation describing different dissipative physical systems, namely optical transmis-
sion lines and passively mode-locked fiber lasers. Several types of dissipative optical
solitons are commented, as well as the formation of multi-soliton complexes. We
conclude with a review of recent experimental results on pulsating optical dissipative
solitons.

Keywords Optical solitons · Dissipative solitons · Nonlinear Schrödinger equation ·
Complex Ginzburg-Landau equation · Dissipative systems · Mode-locked fiber
lasers · Nonlinear dynamics · Vector dissipative solitons · Pulsating solitons · Soliton
molecules

1.1 Solitary Waves

The history of solitons (or solitary waves) began with the famous physical experi-
ments of the Scottish Engineer and Naval Architect John Scott Russell in the
Glasgow–Edinburgh Canal in 1834 [1]. This was followed by the mathematical
derivation of the Korteweg-de Vries (KdV) equation in 1895 for the propagation of
the great solitary wave of Scott Russell in one direction on the free surface of water
in a shallow canal. After that, the solitary wave remained during a long time mainly
as a simple curiosity in the area of nonlinear wave theory. The subject revived in
1955, when Fermi, Pasta, and Ulam (FPU) published a Laboratory Report on a
numerical model of a discrete nonlinear mass–spring system [2]. The FPU model
was described by a system of coupled nonlinear ordinary differential equations that,
under certain approximations, can be transformed into the KdV equation. Such work
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inspired M. Kruskal and N. Zabusky, which solved numerically the KdV equation.
They observed the formation of solitary waves that undergo nonlinear interaction,
after which they emerge without any change of shape and amplitude, but with only a
small change in their phases. Due to the particle-like behaviour of such solitary
waves, Kruskal and Zabusky called them for the first time “solitons” in a famous
1965 paper [3].
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In 1967, C. Gardner, J Greene, M. Kruskal and R Miura developed an ingenious
method for finding the exact solution of the KdV equation [4]. The integration of the
nonlinear Schrödinger equation (NLSE) was demonstrated in 1971 by V. Zakharov
and A. Shabat [5] using the same method. Since these pioneering theoretical works,
scientists tend to use the term “soliton” to describe the modes of nonlinear partial
differential equations that happen to be integrable by means of the “inverse scatter-
ing technique” [5, 6]. Based on such restrictive definition, solitons were usually
attributed, until the beginning of the 1990s, only to integrable systems. However, the
soliton concept was subsequently broaden when many physicists understood the
limitations of the theory. In fact, they observed that “solitary waves” do exist in a
variety of systems, though they do not behave exactly as the classical theory predicts
for “true” solitons. Actually, solitary waves have been found in many different fields,
including hydrodynamics, nonlinear optics, plasma physics, and biology [7–11]. In
optical context, solitonic behaviour can occur in time (temporal solitons) or in space
(spatial solitons), both in the simplest case described by a nonlinear Schrödinger
equation.

1.2 Solitons in Optical Fibers

Temporal solitons in optical fiber systems have a particularly interesting and suc-
cessful history. Such history begun in 1973, when A. Hasegawa and F. Tappert
suggested the existence of solitons in optical fibers [12]. Their formation was shown
to be the result of a balance between the negative (anomalous) group velocity
dispersion (GVD) of the glass fiber, which occurs for wavelengths longer than
1.3 μm in a standard fiber, and the Kerr nonlinearity. The soliton appeared as an
ideal solution to the problem of pulse spreading caused by fiber dispersion. How-
ever, solitons could do nothing against the attenuation that any propagating pulse
experiences due to the waveguide loss. In fact, at the time that paper was published,
there were no practical methods to solve the fiber loss problem and the soliton idea
remained nothing more than an elegant mathematical curiosity.

After many ingenious efforts, L. Mollenauer, R. Stolen and J. Gordon [13]
succeeded, in 1980, in observing for the first time the optical soliton in a fiber.
The experimental results proved that the properties of a nonlinear pulse propagating
in an optical fiber are described, to a remarkable degree, by the NLSE. However, few
people expected some practical importance of solitons because there were erroneous
beliefs that anything nonlinear would be too complicated.
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In spite of such beliefs, A. Hasegawa [14] suggested in 1983 that solitons could
be used in all-optical transmission systems based on optical amplifiers instead of
regenerative repeaters, which were considered standard until 1990. In particular, he
proposed using the Raman effect of transmission fiber itself for optical amplification.
In practice, the concept of all-optical transmission using the distributed Raman
amplification was changed by the inclusion of erbium-doped fiber amplifiers
(EDFAs) developed during the 1990s.

Meanwhile, J. Gordon and H. Haus [15] anticipated that the transmission of a
signal made of optical solitons could not be extended an unlimited distance when
optical amplification is used. In fact, the amplifiers needed to compensate for the
fiber loss generate also amplified spontaneous emission (ASE), and this noise is, in
part, incorporated by the soliton, whose mean frequency is then shifted. Due to
GVD, the arrival time of the soliton becomes then a random variable, whose variance
is proportional to the cube of the propagation distance. This is the so-called Gordon-
Haus effect.

In order to extend the limit set by such effect, some research groups have
suggested to use frequency filters [16–18]. However, it was observed that, using
this technique, the transmission distance was still limited by the growth of narrow-
band noise at the center frequency of the filters. Such noise results in a background
instability which can affect significantly and even destroy the propagating soliton.
To solve this problem, L. Mollenauer and co-workers, developed the sliding-guiding
filter concept [19–21]. Other proposals to achieve a stable soliton propagation in
fiber transmission links made use of amplitude modulators [22] or nonlinear optical
amplification [23–25]. The key property of nonlinear gain is to provide an effective
gain to the soliton and a suppression (or very small gain) to the noise.

1.3 The Complex Ginzburg-Landau Equation

The pulse propagation in optical fibers systems where narrow-band filters, linear and
nonlinear amplifiers are periodically inserted can be described by the following
generalized NLSE [11, 23–29]:

i
∂q
∂Z

þ D∂2q
2∂T2 þ qj j2q ¼ iδqþ iβ

∂2q
∂T2 iε qj j2qþ iμ qj j4q� ν qj j4q, ð1:1Þ

where Z is the normalized propagation distance, T is the retarded time, q is the
normalized envelope of the electric field, β stands for spectral filtering (β > 0), δ is
the linear gain or loss coefficient, ε accounts for nonlinear gain-absorption processes
(for example, two-photon absorption), μ represents a higher-order correction to the
nonlinear gain-absorption, ν is a higher-order correction term to the nonlinear
refractive index and D is the dispersion parameter, with D > 0 in the anomalous
regime and D < 0 in the normal regime.
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Equation (1.1) is known as the complex Ginzburg-Landau equation (CGLE)
[11, 26, 29] and becomes the standard nonlinear Schrödinger equation when
D ¼ +1 and the right-hand side is set to zero. The CGLE is rather general, as it
includes linear and nonlinear effects, in both conservative and dissipative forms. It is
known in many branches of physics and can describe several non-equilibrium
phenomena, such as convection instabilities, binary fluid convection and phase
transitions [30–32]. In the field of nonlinear optics, besides the area of all-optical
transmission lines, it has been used to describe optical parametric oscillators, free-
electron laser oscillators, spatial and temporal soliton lasers [26, 29, 33–38].

The CGLE provides also an adequate model do describe the main features of
passively mode-locked fiber lasers. Actually, the master equation approach to mode-
locked lasers, which was initiated by H. Haus in mid-1970s [39, 40], illustrated the
high relevance of Ginzburg-Landau equations and in particular the cubic-quintic
CGLE to model universal ultrafast laser dynamics [41–43]. The coefficients that
appear in the master equation were related in a phenomenological way to the
physical parameters of a mode-locked laser by Haus et al. [44].

Equation (1.1) includes all the main physical effects present in any mode-locked
laser. In particular, linear loss and nonlinear gain account for the required saturable
absorber effect. On the other hand, even if the correction to the nonlinear refractive
index is not imposed by most laser materials under common operation conditions, it
can be justified by the discrete nature of the laser cavity [45]. An explicit relation of
the cubic-quintic CGLE coefficients with regard to the physical parameters has been
derived in the case of fiber lasers mode-locked by means of the nonlinear polariza-
tion rotation technique [46–49].

Actually, Eq. (1.1) models the fiber laser as a distributed system, which is
reasonable if the pulse shape changes only slightly during each round-trip. There
are many advantages in using such distributed model, governed by a continuous
equation, since it allows, to some extent, an analytic study. However, when the
discrete nature of the laser cavity cannot be ignored, the cubic-quintic CGLE given
by Eq. (1.1) can be used such that the various parameters vary periodically with Z,
the period corresponding to a cavity round-trip.

In general, Eq. (1.1) is non-integrable, and only particular exact solutions can be
obtained. In the case of the cubic CGLE, exact solutions can be obtained using a
special ansatz [50], Hirota bilinear method [51] or reduction to systems of linear
PDEs [52]. Concerning the quintic CGLE, the existence of soliton-like solutions in
the case has been demonstrated both analytically and numerically [11, 26, 27,
53]. Exact solutions of the quintic CGLE, including solitons, sinks, fronts and
sources, were obtained in [54], using Painlevé analysis and symbolic computations.

Various techniques have been also applied to obtain approximate soliton solu-
tions of the CGLE. The soliton perturbation theory can be used for small valueε > 0s
of the parameters [25, 26]. Moreover, approximate expressions for some localized
solutions can be derived for arbitrary values of the CGLE parameters by reducing
this equation to finite-dimensional dynamical models. These reduced models can be
obtained using the variational approach [55–59] or the method of moments [60–63]
and they provide evolution equations for the pulse parameters, such as the peak



amplitude, pulse width, and chirp. A direct correspondence between attractors of the
finite-dimensional dynamical systems and localized waves of the dissipative system
can be found [63]. Moreover, the stability and other properties of a soliton pulse are
linked to the stability and characteristics of its attractor. For example, a stationary
soliton is associated to a fixed point. By tuning the system parameters, we can
transform such fixed point into a limit cycle, which is an oscillatory attracting state.
Thus, a previously stationary soliton becomes a pulsating soliton. Further changing
the system parameters may result in irregular and chaotic dynamics.

1 Dissipative Optical Solitons: An Introduction 5

To fully explore the CGLE, massive numerically simulations must be carried out.
Different types of soliton solutions have been obtained in this way, which can be
divided in two main classes: localized fixed-shape solutions and localized pulsating
solutions [26, 58, 59, 64]. Examples of localized fixed-shape solutions are the plain
stationary pulses, the flat-top pulses, the composite pulses and the moving pulses
[11]. Among the localized pulsating solutions, we may refer the plain pulsating and
the creeping solions, as well as the erupting solitons, which belong to the class of
chaotic solutions [65, 66]. Actually, the number of solutions to the CGLE is so large
that the sphere of this knowledge by itself has been called “the world of the
Ginzburg–Landau equation” [67, 68].

A discrete version of the complex Ginzburg-Landau equation (DCGLE) has been
used to model diverse physical systems, including arrays of waveguides with
amplification and damping, arrays of semiconductor lasers [69], arrays of exciton-
polariton condensates [70], frustrated vortices in hydrodynamics [71], dissipative
discrete nonlinear electrical lattices with nearest-neighbour interaction [72], etc. In
optics, the DGLE appears in problems of beam propagation in the array of the
nonlinear optical waveguides with Kerr and resonance nonlinearities. Chapter 14 of
this book, by M. Salerno and F. Abdullaev, provides a review of some recent results
on localized and extended solutions of the discrete complex Ginzburg-Landau
equation,

1.4 Dissipative Solitons

The soliton solutions of Eq. (1.1) are termed dissipative solitons (DSs) and they
differ significantly from conventional solitons. The conventional soliton concept
implies a single balance between nonlinearity and dispersion, whereas a dissipative
soliton arises as a result of a double balance: between nonlinearity and dispersion
and also between gain and loss [26, 29]. Concerning the second condition, even the
slightest imbalance will result in the solution either growing indefinitely, if gain
prevails, or disappearing completely because of the dissipation. One can define the
DS as a localized and stable structure emergent in a non-linear dissipative system
far from the thermodynamic equilibrium [29]. Actually, considering the primitive
mathematical definition, a DS is not a ‘true’ soliton. However, many properties of
DSs, in particular, their stable localization, robustness in the processes of scattering
and interaction, well-organized internal structure, etc., are similar to those of “true”
solitons.
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Even if it is a stationary object, a dissipative soliton shows non-trivial energy
flows with the environment and between different parts of the pulse. Hence the
dissipative soliton is an object which is far from equilibrium and which presents
characteristics similar to a living thing. In fact, we can consider animal species in
nature as elaborate forms of dissipative solitons. Actually, DSs are abundant in the
different natural systems ranging from optics and condensed-matter physics to
biology and medicine. In this sense, one may paraphrase that DSs “are around
us. In the true sense of the word they are absolutely everywhere” [73]. Chapter 2
of this book, by P. Grelu, provides a conceptual framework of dissipative optical
solitons, highlighting their general signatures and dynamics in passively mode-
locked lasers. Chapter 3, by Z.-C. Luo et al., presents a review of the recent advances
on the dissipative soliton buildup dynamics in fiber lasers, which can be well
characterized both in the temporal and spectral domains.

The energy of a CGLE dissipative soliton solution increases indefinitely when the
equation parameters converge to a given region of the parameter space [74]. Such set
of parameters was called a dissipative soliton resonance (DSR) and has been
frequently observed and reported [75–84]. DSR can occur in both anomalous and
normal dispersion regimes [75, 76] of a mode-locked fiber laser and enables an
almost infinite boost in the pulse energy without wave breaking [79]. The energy of a
DSR pulse increases mainly due to the increase of the pulse width, while keeping the
amplitude at a constant level. Chapter 4 of this book, by G. Semaan et al., describes
the generation and control of DSR pulses in fiber lasers under various mode-locking
mechanisms.

A different kind of high-energy ultrashort pulses are the very high amplitude
(VHA) soliton solutions of the CGLE found in Refs. [85, 86]. These VHA solutions
occur when the nonlinear gain saturation parameter tends to vanish. The increase in
energy of such pulses is mainly due to the increase of the pulse amplitude, whereas
the pulse width becomes narrower. VHA pulses with high energy were found mainly
in the normal dispersion region [86]. Chapter 5 of this book, by S. Latas et al.,
describes the region of existence, the propagation and the main characteristics of
ultrashort VHA solitons both in the normal and anomalous dispersion regimes.

The formation and dynamics of vector dissipative solitons in birefringent single-
mode fibers can be described by a set of coupled Ginzburg-Landau equations
[26]. The experimental generation of such vector solitons in passively mode-locked
fiber lasers has been intensively studied during recent years [87–98]. To generate the
vector solitons, all the fibers and passive components of the mode-locked fiber lasers
have to be polarization insensitive. The main challenge for achieving this objective is
to find an appropriate saturable absorber (SA) that has polarization insensitive
saturable absorption. In fiber lasers, semiconductor saturable absorber mirrors
(SESAMs), carbon nanotubes, graphene and graphene like 2D materials are SAs
which have a polarization independent saturable absorption. Depending on the
cavity birefringence and cross-polarization coupling strength, vector solitons formed
can be classified as polarization locked vector solitons (PLVS), polarization rotation
vector solitons (PRVS), group-velocity locked vector solitons (GVLVS), dark-bright



vector solitons, and so on. Chapter 6 of this book, by L. Zhao, describes various
forms of vector dissipative solitons and their real-time dynamics in passively mode-
locked fiber lasers.
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Actually, dissipative soliton generation has been explored mainly using lasers
with rare-earth-doped gain media, namely Yb-doped fiber or Er-doped fiber with
optical gain near 1 μm or 1.55 μm, respectively. An alternative approach is based on
pump-induced Raman gain in passive fibers, offering operation at almost any
wavelength. This configuration provides a novel approach to the generation of
high-energy ultrashort dissipative pulses. Chapter 8 of this book, by D. Kharenko
et al., offers an overview of recent experimental results on high-energy dissipative
solitons generated via stimulated Raman scattering.

The advent of widely wavelength tunable fiber lasers has unlocked diverse
applications ranging from fiber sensing, biomedical research, optical signal
processing, and high capacity optical transmission system. The wavelength tuning
operation is commonly achieved through filter control or by adjusting the effective
gain profile. Chapter 9 of this book, by Q. Huang et al., reports on the wavelength
tuning capability of fiber lasers when they emit dissipative solitons in the L band.

Among the different types of pulsating dissipative solitons, the erupting soliton
exhibits a rather interesting behaviour. It has been found numerically for the first
time in Ref. [99] and manifests itself as a chaotic and quasi-periodic process when
the dissipative system is in a meta-stable state. The soliton in the meta-stable
dissipative system erupts into pieces in temporal domain abruptly and gradually
recover its original state after the eruption, which is similar to exploding behavior
and thus regarded as the so-called soliton explosion [99, 100]. The erupting soliton
was experimentally observed for the first time by Cundiff et al. [101] in a solid-state,
Kerr-lens mode-locked Ti:sapphire laser. Later on, spectral and temporal signatures
of soliton explosions were experimentally observed in an all-normal dispersion,
all-polarization maintaining passively mode-locked Yb-doped fiber laser [102]].
Such explosions were observed when the laser was operating in a transition zone
between stable mode-locking [103] and noise-like emission [104, 105].

Dissipative optical solitons can also be found in other dissipative systems besides
fiber lasers, namely in vertical-cavity surface-emitting lasers (VCSELs). A VCSEL is a
semiconductor laser in which the emission is in the direction of the epitaxial growth,
which allows for a large Fresnel number, enabling self-organization and spatial solitons
independent fromboundary conditions. Chapter 13 of this book, by T.Ackemann et al.,
provides a review of the properties of vector vortex beams (VVBs) in VCSELs with
frequency-selective feedback. VVBs are interpreted as high-order vortex solitons with
a spatially non-uniform, but locally linear polarization state.

1.5 Dissipative Soliton Molecules

After finding the conditions for the existence of stable solitary-pulse solutions of the
CGLE, the next natural step is to consider their interactions and the eventual
formation of bound states. Dissipative soliton molecules correspond to bound states



arising from the interaction of initially separate single solitons. Phase-locked
two-soliton molecules were experimentally observed in 2002 using a stretched-
pulse fiber laser [106]. After that, they have been found numerically and experimen-
tally considering different laser configurations and dispersion regimes [107–
111]. The two-soliton molecule can be assumed as the building block to construct
various multi-soliton molecules [111].
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There have been during the recent years many reports on soliton molecules in
fiber lasers mode-locked with the carbon nanotubes, graphene, black phosphorus,
and so on [112–117]. Since these saturable absorbers may be polarization indepen-
dent, soliton molecules formed by vector solitons were also reported. The experi-
mental observation of tightly and loosely bound states of vector solitons in a carbon
nanotube mode-locked fiber laser in the anomalous dispersion regime was reported
in 2013 [118]. Localized interactions between vector solitons, vector soliton with
bound vector solitons, and vector soliton with a bunch of vector solitons were also
observed in a fiber laser passively mode locked by graphene [119]. The first
experimental observation of group-velocity-locked vector soliton (GVLVS) mole-
cules has been reported in 2017 in a SESAM mode-locked fiber laser using a
birefringence-enhanced fiber [120]. Chapter 11 of this book, by C. Bao and
X. Xiao, provides a review of soliton molecules and other multi-soliton complexes
in mode-locked fiber lasers and high-Q microcavities. The generation of dissipative
solitons and frequency combs in Kerr microresonator-based systems is discussed in
Chap. 12, by C. Romoldi et al., which provides also a review of actual applications
of these objects.

In order to realize multi-soliton co-existence inside one single mode-locked fiber
laser, it is desirable to introduce various multiplexed mechanisms. For example, if
there is no unidirectional component such as an isolator inside the laser cavity, it
would be a bidirectional oscillation that gives rise to a new dimension of
multiplexing. Real mode-locked materials such as SESAMs, graphene, and carbon
nanotubes contribute to the direction-multiplexed soliton generation. Chapter 10 of
this book, by T. Huang et al., discusses various types of multiplexed dissipative
soliton fiber lasers, including bidirectional multiplexing, wavelength multiplexing,
and polarization multiplexing, besides some other emerging multiplexed methods.

1.6 Recent Experimental Results on Pulsating Dissipative
Solitons

Actually, the mode-locked fiber laser constitutes an ideal test bed for investigating
the complex nonlinear dynamics associated to pulsating dissipative solitons. The
plain pulsating soliton was observed for the first time in 2004 by Soto-Crespo et al.
in a mode-locked fiber ring laser [121]. Nevertheless, the lack of a high-resolution
real-time diagnostic method has precluded a detailed characterization of the pulsat-
ing behavior of such pulses. This limitation has been broken recently through the
development of a novel powerful real-time spectra measurement technique called



dispersive Fourier transform (DFT) [122]. Using this technique, the spectrum of the
soliton could be mapped into a temporal waveform by using dispersive element with
enough group-velocity dispersion. Thus, the ultrafast spectral signals can be cap-
tured by a real-time oscilloscope with a high-speed photodetector. Actually, the DFT
technique has enabled the experimental observation in real time of transient dynam-
ics of diverse pulsating solitons and other complex ultrafast nonlinear phenomena in
fiber lasers [102, 123–138].
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Soliton self-organization and pulsation in a passively mode-locked fiber laser was
observed experimentally in 2018 [132]. The soliton pulsation process showed a
period corresponding to tens of the cavity round trip time. In another 2018 exper-
iment, pulsating dissipative solitons in a mode-locked fiber laser at normal disper-
sion were observed for the first time using the DFT technique [133]. In that
experiment, the artificial saturable absorbers, as well as the birefringent filter formed
by the nonlinear polarization rotation, made the polarization controller an effective
component to adjust the laser state from stationary to pulsating. The pulsating
dissipative solitons were accompanied with the spectrum breathing and oscillating
structures due to the nonlinear pulse propagation. Also in 2018, the first experimen-
tal evidence of the pulsating soliton with chaotic behaviour in an ultrafast fiber laser
was reported [134]. Using the DFT technique, the chaotic behaviour of soliton
pulsation was visualized by the fact that the mode-locked spectrum collapsed
abruptly in an unpredictable way during the pulsating process.

In a 2019 experiment, three types of soliton pulsations were observed in an
L-band normal-dispersion mode-locked fiber laser via the DFT technique
[136]. They were classified as single-periodic pulsating soliton, double-periodic
pulsating soliton and soliton explosion. These pulsations exhibited common features
such as energy oscillation, bandwidth breathing and temporal shift. However, the
pulse was repeated every two oscillations for double-periodic pulsating soliton. In
the case of soliton explosions, the spectrum was observed to crack into pieces at a
periodic manner. The motion dynamics of a creeping soliton in a passively mode-
locked fiber laser was also observed in 2020 using the DFT technique [138]. The
periodical variation of pulse width, peak power, and motion range could be observed
in real time, while the corresponding spectral evolution exhibited breathing
dynamics.

Most phenomena related to soliton pulsations have been observed in mode-
locked fiber lasers based on the nonlinear polarization rotation (NPR). Since a
polarizer is required for the implementation of the NPR technique, the polarization
degree of freedom is frozen, and pulsating solitons formed in these lasers are scalar
ones. In a 2020 experiment, the generation of pulsating group-velocity-locked vector
solitons (GVLVSs) in a net-normal dispersion fiber laser mode locked by nonlinear
multimode interference has been reported [139]. In another 2020 experiment, the
vector nature of various pulsating solitons in an ultrafast fiber laser with single-wall
carbon nanotubes has been investigated [140]. By virtue of the DFT technique, the
polarization-resolved spectral evolution of pulsating vector solitons was measured in
real time. Double-periodic pulsation in the cavity was also observed. Also in 2020,
the vector features of pulsating solitons were studied in an erbium-doped fiber (EDF)



laser [141]. Three categories of vector solitons with different polarization evolution
characteristics could be obtained by adjusting the pump power and polarization
controller, namely pulsating polarization-locked vector soliton (PLVS), pulsating
polarization-rotation vector soliton (PRVS) and progressive pulsating PRVS.
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..
The use of the DFT technique has boosted also the experimental investigations of

soliton explosions in mode-locked fibre lasers during recent years [102, 123, 131,
142–144]. The first investigation of soliton explosions in an ultrafast fiber laser in the
multi-soliton regime was reported in 2018 [131]. It was demonstrated that explosion
of one soliton could be induced by another one through the soliton interaction. In
another 2018 experiment, the periodic spectrum changing via soliton explosion in a
passively mode-locked fiber laser by a nonlinear polarization evolution was
observed for the first time [142]. Soliton collision induced explosions in a mode-
locked fibre laser were also reported in 2019 [144]. Up to seven nonlinear regimes
were observed successively in the laser by increasing the pump power, including
single-pulse mode locking, standard soliton explosions, noise-like mode locking,
stable double pulsing, soliton collision induced explosions, soliton molecules, and
double-pulse noise-like mode locking.

Weak to strong explosive behaviours of pulsating solitons were reported in
another 2019 experiment concerning soliton molecules [145]. The simultaneous
pulsations of energy, separation and relative phase difference were observed for
solitons inside the molecule, Other recent experiments have enabled the real-time
observation of internal motion within ultrafast optical soliton molecules [146–
152]. Chapter 7 of this book, by X. Wang et al., describes various kinds of pulsating
soliton dynamics, including single-period or double-period pulsating solitons, pul-
sating soliton molecules, synchronous and asynchronous pulsating solitons in multi-
soliton pulsation states.

Noise-like pulses (NLPs) have been observed in mode-locked fiber lasers over
two decades ago and still attract the interest of scientists because of its complexity
and chaotic nature. In the NLP regime, the laser generates sub-nanosecond-long
packets of randomly spaced sub-picosecond pulses, with random and uncontrollable
duration and peak power. The packets are equally spaced in time (resulting from the
cavity round-trip time), but the internal structure of the bunch is incoherent and
unstable. NLPs have been observed in many different types of lasers, regardless of
their emission wavelength, cavity net dispersion, or mode-locking mechanism.
Chapter 15, by G. Soboń, reviews the most recent research on NLPs, with emphasis
on the existing hypotheses explaining their formation, dynamics, and applications.

The generation of optical rogue waves during soliton explosions has been iden-
tified in recent years by several groups [153–155]. In two separate 2019 experiments,
the excitation of rogue waves resulting from soliton molecule dynamics was also
experimentally observed [145, 156]. Chapter 16 of this book, by L. Gao, provides a
review of optical rogue waves generation in dissipative systems far away from the
thermodynamic equilibrium, including ultrafast fiber lasers, microresonators, and
other extended systems.
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Chapter 2
Dissipative Solitons in Passively
Mode-Locked Lasers

Philippe Grelu

Abstract In this chapter, I present the conceptual framework of dissipative optical
solitons, shown to be particularly efficient to apprehend the diversity of ultrafast
laser dynamics, understand their salient features and stimulate the design of inno-
vative laser architectures. The chapter first unfolds the successive advances that built
up soliton and dissipative soliton laser concepts. Then, the general signatures of
dissipative soliton dynamics are highlighted. As a vivid illustration, a range of
nonlinear dynamics of dissipative soliton molecules is presented, following an
overview on the interaction processes among dissipative solitons within a laser
cavity. Finally, going beyond mode-locked laser dynamics, a generalization of
dissipative soliton concepts to incoherent and chaotic localized optical structures is
exposed.

Keywords Optical solitons · Dissipative solitons · Ultrafast lasers · Fiber lasers ·
Mode locking · Bifurcations · Chaos · Nonlinear dynamics · Pattern formation ·
Dissipative systems · Attractors · Ultrafast optics · Ultrashort pulse characterization ·
Artificial intelligence · Complexity

2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers

2.1.1 Early Advances Toward Soliton Lasers

A conventional description of the process of laser mode locking may unfold as
follows. Take a relatively long laser cavity endowed with a broadband inhomoge-
neous gain medium: such laser will generally emit multiple longitudinal modes.
These multiple lines will start beating in the time domain, occasionally producing
intensity fluctuations significantly higher than the overall noisy background. The
highest fluctuations will be promoted by the saturable absorber mechanism, which is
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at the heart of the design of a mode locked laser. At this crucial step, the Kerr
nonlinearity comes into play: four-wave mixing interaction transfers coherence
among the laser comb lines, and generates additional comb lines, yielding a signif-
icant spectral broadening. That spectral broadening is supportive of shorter pulses of
higher intensity, which travel round the cavity with fewer losses, owing to a more
favorable transmission through the saturable absorber. Naturally, saturation effects
soon come into play. The transmission through the saturable absorber has an
optimum – and beyond that optimum, the pulses experience either a plateau or a
decreased transmission. The gain medium also saturates. When the relaxation time
of the gain medium is longer than the cavity roundtrip time, the overall gain
saturation increases the competition between pulse precursors, possibly leading to
a single-pulse mode locked regime.
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This central scenario has variants, which justifies the renewed interest for exper-
imental investigations of the buildup of mode locked pulses, using the currently
available real-time ultrafast measurement techniques, see Sect. 2.4. Nevertheless, it
strikes the importance of the optical Kerr nonlinearity in the mode locking process.
Whereas the Kerr nonlinearity alone does not alter the pulse temporal profile, pulse
shaping takes place through the interplay with other physical effects.

From the above mode locking scenario, we also understand that dissipative
effects play a key role, whose magnitude hangs on the way they are emphasized
within a given laser architecture. The latter was identified by H. Haus in his seminal
1975 article “Theory of mode locking with a fast saturable absorber” [1]. However,
the 1975 paper adopted a perturbative approach, considering small pulse changes per
cavity roundtrip, and completely overlooked the roles of the Kerr nonlinearity and
that of chromatic dispersion. From the mid 1970s, while reaching sub-picosecond
mode-locked pulse durations, laser physicists became aware of the major influence
of the dispersive effects of chromatic dispersion and self-phase modulation (SPM).
Initially, the impact of chromatic dispersion was considered to be a major nuisance,
entailing the subsequent development of dispersion compensation schemes.

However, if the optical pulse propagates in the anomalous dispersion regime, the
combined effects of SPM and dispersion lead to a temporal compression of the pulse,
which is a contributive step in the mode locking scenario. Furthermore, the concept
of the optical soliton was exposed [2, 3], providing an elegant solution to the
handling of both anomalous dispersion and SPM that is particularly relevant when
the accumulation of these effects becomes large. However, in the mid 1970s,
ultrafast lasers were not yet operating in the infrared spectral region where the
anomalous dispersion takes place, such as above the wavelength of 1.3 μm in silica.
In addition, solitonic pulse shaping becomes significant after a propagation length
that is generally orders of magnitude beyond the length of the gain medium used in
bulk lasers. Exploiting solitonic propagation in the time domain calls for the use of
waveguides to suppress diffraction over the relatively long distances needed to
increase the linear and nonlinear dispersive interactions within a transparent propa-
gation medium.

Progress in both infrared ultrafast laser sources and single-mode optical fibers
allowed, in 1980, the first experimental demonstration of the optical soliton propa-
gation regime [4]. This soliton propagation experiment employed a complicated



cryogenically cooled color-center laser source to reach the 1.35–1.75 μm spectral
region and launch picosecond pulses into a 700-m long single mode fiber. The
experiment gave a clear signature of fundamental as well as high-order soliton
propagation. It provided incentive for a subsequent experiment that incorporated a
piece of optical fiber within the ultrafast laser cavity, to get solitonic pulse shaping
assist mode locking: in 1984, the soliton laser thus entered the scene [5]. The soliton
laser concept met instant success, as it triggered subsequent investigations of
coupled cavities enabling additive-pulse mode locking, which considerably eased
the generation of shorter pulses [6]. In other words, the effectiveness of nonlinear
interferences to create a virtual ultrafast saturable absorber was demonstrated. Such
efficient strategy has since matured and diversified into virtual saturable absorbers
using various schemes of nonlinear loop mirrors or nonlinear polarization evolution.
Most interestingly, the 1984 article fromMollenauer and Stolen predicted that, when
a suitable fiber gain medium would become available, the soliton laser would
probably take the form of a single loop of fiber closed upon itself. The simplicity
and low cost of such devices would make them most attractive [5].
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In parallel, decisive progress in ultrafast laser sources was made in the mid-1980s
with the invention of the titanium-sapphire (Ti:S) laser, and its fast-spreading use in
photonics laboratories. In the early 1990s, most mode-locked Ti:S lasers were then
operated with a dispersion-compensation scheme that placed the cavity in a slightly
anomalous regime, to fit a “solitonic” operation, characterized by a nearly chirp-free
hyperbolic-secant pulse profile [7]. The fiber laser revolution anticipated by
Mollenauer and Stolen had to wait till the beginning of the 1990s, with the advent
of the erbium-doped fiber amplifier that transformed the optical communication
industry and generalized fiber-integrated components [8], which could be used to
test various ultrafast fiber laser architectures at dwindling costs. The conceptual
advances that resulted from the investigations begun for ultrafast fiber lasers oper-
ated within the 1.5–1.6 μm wavelength region would then revive and boost the
development of their efficient counterparts at ~1 μm – with ytterbium-doped fibers,
then ~2 μm – with thulium- or thulium-holmium-doped fibers, for which multiple
applications followed.

2.1.2 Reconsidering the Value of Dissipation in Lasers

By the time ultrafast erbium-doped fiber lasers became successful, a few experi-
ments with coupled-cavity mode-locked lasers hinted that stable mode locked
operation could be obtained in the normal dispersion regime of the intracavity
fiber, thus exploiting SPM but ruling out solitonic pulse shaping within the optical
fiber [9, 10]. Such feature was investigated by H. Haus et al. in 1991 through an
important extension of the 1975 model, which included self-phase modulation and
group-velocity dispersion propagation effects within the cavity roundtrip [11]. This
led to a master equation for mode locking that included laser pulse solutions in the
normal dispersion regime. Laser pulse solutions in the normal dispersion regime



always require frequency chirping. Interestingly, the authors provided the clue to the
existence of such stationary laser pulses within the normal dispersion regime: “For
positive GVD, the chirp parameter can become quite large. (. . .) Gain dispersion,
instead of lengthening the pulse, shortens it. At first sight, this may seem paradox-
ical. However, if a pulse is chirped, then frequency filtering can, in fact, shorten it if
it shaves off the high- and low-frequency wings. The pulse is kept in balance by a
lengthening that is due to positive GVD. Of course, the gain dispersion also narrows
the pulse spectrum. This spectral narrowing is compensated for by SPM”

[11]. Within these few lines, all the key points to establish the concept of a
dissipative soliton are set, see Fig. 2.1. We have here the notion of a complex
balance where dissipation is crucial and combines with chromatic dispersion and
Kerr nonlinearity to enable new types of solitary wave solutions [12]. Such finding
was strongly echoed a decade later, with the detailed investigation of dissipative
solitons in all-normal dispersion fiber lasers, taking advantage of the large energy of
these highly chirped pulses [13]. Indeed, the generation of highly chirped pulses
within laser oscillators takes also the essence of chirped-pulse amplification,
invented in the mid-1980s by Strickland and Mourou [14].
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Fig. 2.1 A sequence of optical propagation effects requiring the interplay of strongly dissipative
ones to allows a self-consistent laser mode locking in the normal dispersion regime

To fully establish the concept of dissipative solitons for ultrashort laser pulses,
additional theoretical and numerical works were required. Indeed, the stability of the
pulse solutions under perturbations and their behaviors during collisions needed to
be investigated, in order to highlight the relevance of a new soliton concept. These
investigations started in the early 1990s, meeting some initial resistance [15]. Indeed,
for a few mathematical purists, the soliton terminology should be restricted to the
solitary wave solutions of integrable conservative systems. However, it was realized
that the solitary wave solutions of non-integrable dissipative systems displayed
appealing properties that could find immediate applications in multiple areas in
physics and beyond, leading to a wide acceptance of the dissipative soliton termi-
nology at the beginning of the new millennium [16]. Concerning the history of
optical soliton concepts, we can also draw two interesting parallels. The optical
soliton of the (conservative) nonlinear Schrödinger equation benefitted from a
transposition from earlier research in nonlinear plasma physics. Similarly, dissipa-
tive optical solitons received a significant theoretical background from the
“autosoliton” concept describing reaction–diffusion systems in the field of plasma
physics [17].
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The dissipative soliton concept was required to solve several puzzles in ultrafast
laser dynamics. Besides the case of bright laser pulses generated in the normal
dispersion regime, which was discussed above, peculiar features of laser pulses
produced by laser cavities in the anomalous dispersion regime could not be
explained in the frame of conventional solitons. To understand that, let us first depict
the NLS-soliton paradigm used to portrait the dynamics of ultrafast fiber lasers
operated at the wavelength around 1.5 μm where standard optical fibers are anom-
alously dispersive. The NLS-soliton paradigm assumes that the dynamics is domi-
nated by the propagation in passive optical fibers: stable pulses will be close to NLS
optical solitons. The pulse duration can be assessed by assuming that the mode-
locked pulses use the available gain bandwidth, and that they are sech-profiled chirp-
free pulses. Given the fiber dispersion and nonlinearity parameters, knowing the
pulse duration fixes the soliton energy. This is also known as the NLS-soliton area
theorem: the product of the soliton energy times the soliton duration is a constant
determined by the optical fiber. Such description was put forward as a convenient
explanation for multiple pulsing that was readily observed in ultrafast fiber lasers
[18]. However, the NLS-soliton picture is largely incomplete. Playing with the
dissipative cavity parameters such as with linear and nonlinear loss, spectral filtering,
etc., laser physicists realized that, within the anomalous dispersion regime, they
could generate chirped pulses with a wide range of pulse duration. Moreover, the
NLS soliton pulse shaping does not explain why all the pulses going round the cavity
should be precisely identical, as generally observed. Indeed, for given fiber param-
eters, the NLS solitons belong to a family of solutions, see Fig. 2.2a, as reported in
passive fiber cavities [19].

Thus, we need to introduce the notion of a dynamical attractor, which provides a
fixed pulse profile endowed with robustness and stability. The existence of such
attractor requires dissipation. Precisely, this attractor results from the composite
balance among dispersive and dissipative interactions and defines the dissipative
soliton, see Fig. 2.2b. Whereas the NLS-soliton can depict some features of the
ultrafast laser pulses, the latter are always dissipative solitons in essence. The
dissipative soliton concept for ultrafast lasers opens up numerous novel possibilities,
by allowing a large freedom in handling the balance between the major physical
effects, which has been reflected in the diversity of laser architectures and cavity
parameter ranges that have been explored since [20].

2.2 Signatures of Dissipative Soliton Dynamics

The concept of dissipative solitons combines several essential physical notions. The
soliton theory elaborates on the possibility that self-sustaining localized structures
arise from a balance between several physical effects, where at least one of these
effects should be nonlinear. The theory of self-organization in open systems far from
equilibrium stems from the pioneering works of A. Turing and I. Prigogine and
provides a conceptual framework to apprehend the growth and persistence of



localized structures from energy flow and dissipation [21, 22]. Note that the first
implementation of self-organization principles into laser optics dates back to the end
of the 1960s, with the theoretical advances made by H. Haken and R. Graham
[23]. Finally, the general theory of nonlinear dynamics allows to analyze these
structures as well as their transformations, through the powerful tools of attractors
and bifurcations. These are the conceptual roots of dissipative solitons [16]. They
connect to the specific signatures of dissipative soliton dynamics.
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Fig. 2.2 (a) Representation of the family of bright fundamental solitons of the nonlinear
Schrödinger equation, for propagation medium characterized by an anomalous dispersion coeffi-
cient β2 < 0 and an effective nonlinearity γ > 0. (b) The addition of dissipative nonlinear effects fixes
a unique solution, which is the dissipative soliton attractor characterized by a balance of all
dispersive and dissipative effects. (c) The dissipative soliton picture works as well in the normal
dispersion case, provided that gain/loss dispersion is added, which is represented by tilted vectors
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The existence of a dissipative optical soliton is based on that of a dynamical
attractor. There are several attractor types. A stable focus attractor guarantees that all
initial pulse conditions that belong to the attractor’s basin of attraction will converge
toward a fixed pulse profile. The convergence time decreases with the strength of
dissipation. Therefore, such attractor is by definition a noise eater. Indeed, for
unchanged system parameters, the focus point attractor dissipates the noise added
to the pulse – such as from amplified spontaneous emission – provided that this
added noise remains bounded so that it does not quick the pulse out of the basin of
attraction. This attractor explains why ultrashort laser pulses can propagate stably for
hours round the optical laser cavity, accumulating astronomical distances, a feat
beyond the reach of conventional NLS solitons. It also explains why multiple pulses
traveling round the laser cavity will generally share an identical profile, since being
all carved by the same attractor. As a matter of fact, the stronger the attractor, the less
the fluctuations of the dissipative soliton pulses induced by noise. A strong focus
attractor thus provides an efficient filtering of noise, bringing stability to the laser
pulse regime. It also brings robustness, meaning that it allows some amount of
system parameter change without disruption of the pulse regime. This is why
ultralow-noise mode locked lasers can be realized without active stabilization.
Nevertheless, we note that designing such stable lasers is not straightforward as it
requires considering intertwined propagation effects, with for instance a key role
acknowledged to the average chromatic dispersion [24, 25].

At this point, one should realize that in real laser cavities, namely composed of a
series of components and propagation media, the attracting state is
multidimensional. Instead of a single temporal pulse profile, we have a succession
of pulse profiles along the cavity spatial coordinate, which are propagated from one
to another. Thus, the dissipative soliton attractor consists in the whole internal cavity
dynamics, toward which field propagation converges in a self-consistent way over
successive cavity roundtrips. The experimental characterization is generally
conducted from a single laser output, thus missing this important feature, which
can be investigated through numerical simulations.

However, important dissipative optical solitons features can be explored theoret-
ically from averaged propagation equation models. This way, one can gain a general
insight more easily than through detailed and specific numerical simulations. Such
master equation approach, which was initiated by H. Haus for ultrafast lasers as
exposed in the previous section [11], illustrated the high relevance of Ginzburg-
Landau equations, with in particular the complex cubic-quintic Ginzburg-Landau
equation (CGLE) to model universal ultrafast laser dynamics [15, 26, 27].

The CGLE model shows that dissipative soliton attractors of focus type exist for a
wide range of system parameters – namely, effective average parameters – including
within the normal dispersion regime [28]. The amplitude pulse profile of the
dissipative soliton can vary widely according to the system parameters, spanning
for instance from ~hyperbolic-secant to ~gaussian and flat-top profiles. This is in
stark contrast with the hyperbolic-secant single shape adopted by stationary funda-
mental bright solitons within the NLS propagation model, whose duration and peak
amplitude depend on both system parameters and input conditions. More, frequency



chirping remains an essential feature of dissipative solitons, as opposed to the
constant nonlinear phase lying across the NLS fundamental soliton pulse profile.
The essential reason of that non-uniform phase across the dissipative soliton profile
is the following. To maintain a stationary pulse profile, dissipative solitons require
an internal energy redistribution among their various pulse parts, since due to
nonlinear dissipation, some parts will be amplified, whereas others (for instance,
pulse tails) will be attenuated. Remembering that energy flows through phase
gradients, such energy redistribution therefore maps with a non-uniform phase
profile, which will generally combine linear and nonlinear frequency chirping.
Dissipative solitons in highly dissipative media will generally feature major linear
and nonlinear frequency chirping. This precisely applies, though not exclusively, to
the stable bright dissipative solitons found within the normal dispersion regime. It is
also possible to find parameter sets in the anomalous dispersion regime where
dissipative solitons will bear major frequency chirping, for instance in the
so-called dissipative soliton resonance dynamics [29]. Interestingly, since dissipa-
tive solitons exist in both anomalous and normal dispersion regimes, we can find
dissipative solitons in the absence of linear dispersion, which for example happens
within a good approximation in the case of narrowband intense pulses in meter-long
laser cavities [30]. Whereas dispersion no longer represents a blocking issue for
mode-locked laser operation in general, the whole set of laser parameters needs to be
adapted to accommodate a given dispersion range.

22 P. Grelu

Dissipative soliton attractors of focus type also exist for more complex pulse
shapes and patterns, such as composite solitons. For instance, two laser pulses,
interacting through their pulse tails while they propagate round the laser cavity,
can reach a stable equilibrium consisting of a stationary pattern that is defined by a
multi-soliton attractor. This complex attractor can be reached from a suitable domain
of the two-pulse initial conditions, namely, from within the attractor’s basin of
attraction. The distributed CGLE model has proved to be particularly useful to
yield a common understanding on these multi-soliton attractors [31, 32]. Stable
multiple-light-pulse bound states have been dubbed soliton molecules [33], since
they allow interesting analogies with matter molecules. The central case for study is
that of two interacting pulses, which can form a stable dissipative soliton pair,
characterized by a stationary relative separation and a self-locked phase between
the two dissipative solitons. The topic of dissipative soliton molecules has driven
considerable fundamental interest, with more elements presented in Sect. 2.3.

A stable focus attractor can be subjected to bifurcations, when the laser control
parameters (such as pump power, cavity losses, dispersion etc.) are changed. For
instance, at a certain point in the parameter space, a Hopf-type bifurcation unfolds,
transforming the single focus attractor into a limit cycle attractor. In such as case, the
pulse solution will oscillate in time, with oscillation features that depend solely on
the system parameters. In the frame of distributed models, such as the CGLE model,
this represents an oscillation of the pulse profile with a given period in the spatial
coordinate of propagation. If we now consider the ultrashort pulse dynamics within a
realistic, non-uniform laser cavity – i.e., modelled by a parameter-managed propa-
gation model – at each location of the laser cavity, the pulse profile will oscillate



from one roundtrip to the next. Therefore, the cavity periodicity implies a discrete
oscillation, which can be N-periodic with respect to the cavity roundtrip (the
simplest one being a period-2 oscillation), or combine multiple periods, or become
incommensurate with the cavity roundtrip [34]. These are main possibilities among
others, as the bifurcation options for such nonlinear systems having an infinite
number of degrees of freedom appear limitless [35].
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In the frame of dissipative soliton dynamics, we can combine the complexity of
bifurcations with the multiplicity of pulses within a dissipative soliton pattern, such
as a soliton molecule. As a result, various types of pulsating soliton molecules have
been predicted numerically and observed in ultrafast laser experiments, see Sect. 2.3.

2.3 Dissipative Soliton Molecules

2.3.1 The Wealth of Soliton Interaction Processes Within
a Laser Cavity

As discussed in the previous sections, ultrafast lasers are prone to generate multiple
identical dissipative solitons, when driven at high pump power. This tendency is
exacerbated in fiber lasers operated in the anomalous dispersion regime, owing to the
lower pulse energy limitation: up to thousand pulses can be generated simulta-
neously within multi-watt pumped ultrafast fiber laser cavities [36, 37]. A handful
of dissipative solitons per roundtrip can be easily obtained under ~100 mW pumping
of an anomalous fiber laser cavity. These soliton pulses will always interact, as they
have virtually an infinite time to do so within the bounded cavity propagation path:
even faint interactions can be revealed, leading to specific multi-pulse patterns.

Fundamentally, we can make a distinction between short-range coherent interac-
tions and long-range incoherent interactions. The direct interaction through the pulse
tails is phase sensitive and leads to the formation of strongly bound soliton mole-
cules, within suitable domains of system parameters. This interaction range varies
according to the pulse specific profile but is typically limited to a few pulse widths:
such interaction is taken into account within distributed propagation models such as
in the CGLE, where dissipative soliton molecules were theoretically and numerically
predicted under the initial denominations of bound states [31] and multisolitons
[32]. A number of experimental observations using various laser architectures,
wavelengths and parameter ranges soon confirmed the universality of soliton mol-
ecules within dissipative nonlinear systems [38–42].

In real laser systems though, the discontinuities and inhomogeneities of the
propagation media can lead to an important amount of dispersive wave radiation
from the soliton pulses. Combined with the cavity periodicity, relatively coherent
dispersive waves can build up in the vicinity of the propagating pulses yielding in the
spectral domain the typical Gordon-Kelly sidebands [43, 44]. Such resonant disper-
sive waves may form an extended pedestal to the soliton pulses, allowing to mediate



phase sensitive interactions through increased pulse separations, up to more than two
orders of magnitude beyond the single-pulse width, thus allowing distant soliton
molecules [45] and soliton molecular complexes [46]. The numerical modelling of
the formation of such light pulse structures requires to take a lumped parameter-
managed laser cavity model [46–48].

24 P. Grelu

Long range interactions are not sensitive to the relative optical phase between
propagating solitons. Among them, the pulse interaction resulting from gain relax-
ation dynamics, namely from the depletion of the gain after the passage of a pulse
and its subsequent recovery, is usually the most substantial [49]. It yields an effective
repulsive force among laser pulses of moderate intensity, which therefore maximizes
the separation among all coexisting solitons, hence leading to passive harmonic
mode locking. That periodic pattern generally suffers an important timing jitter, as
the soliton pulses are not phase-locked one on another.

In between the tight soliton molecules and harmonic mode locking patterns, there
are other multi-pulse arrangements characterized by a relative stable pattern, such as
pulse bunching, a common phenomenon in ultrafast fiber lasers. Pulse bunching
forms packets of ultrashort pulses with an inter-pulse separation in the nanosecond
range, typically, which includes non-uniform temporal separations. Whereas the role
of gain dynamics cannot be ruled out, pulse bunching requires another type of
incoherent pulse interaction. Electrostriction in optical fibers is one possibility, as
it drives an optomechanical interaction that modulates the optical index in the wake
of an intense pulse, therefore offering the possibility to trap subsequent pulses at
specific distances in the moving reference frame [50]. The optomechanical interac-
tion is very weak in standard optical fibers, so that its effects are generally
overwhelmed by those of other interaction mechanisms in ultrafast lasers. However,
especially designed photonic crystal fibers can enhance the optomechanical interac-
tion by several orders of magnitude, leading to novel possibilities to control multiple
soliton patterns in fiber laser cavities, either in the form of multi-soliton complexes
[46] or high-harmonic mode locking, the latter obtained by matching cavity har-
monics to the optical index oscillation frequency [51].

Besides the optomechanical interaction, another incoherent interaction mecha-
nism was recently unveiled. In some pulsed laser regimes, particularly within fiber
lasers, soliton pulses can coexist with quasi-continuous waves, which combine with
dispersive waves to form a noisy optical background filling the entire cavity. This is
a condition where peculiar multi-pulse dynamics can be observed, such as the soliton
rain [52]. In such situation, the soliton pulses will undergo a random walk on the
fluctuating background. Due to the interplay between gain dynamics and cavity
losses, that background will be non-uniform, which leads to a relative pulse drift,
which is affected by the presence of other pulses. A weak attractive force results,
which bears an analogy with the Casimir effect in quantum electrodynamics
[53]. The magnitude of such Casimir-type interaction depends widely on the features
of the quasi-cw background, but it can dominate other long-range pulse interactions
over pulse separations up to tens of nanoseconds [54].

Therefore, whereas soliton molecules result from short-range coherent interac-
tions, there are numerous scenarios that involve long-range incoherent interactions
to get pulses drift toward one another up to the range where coherent interactions



will dominate. It all depends on the specific history of multiple pulse formation: in
the early stages of mode locking, multiple pulses can arise from the breakup of an
unstable high-energy pulse, or from various pulse precursors that are located far
apart within the cavity roundtrip. This justifies the recent interest for the experimental
investigation of the self-starting buildup of mode locking, using real time character-
ization techniques [55–58].
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The interplay among interactions is difficult to take into account numerically,
considering the large orders of magnitude in time and space that separate them.
Nevertheless, such interplay will affect the features of the soliton molecules. For
instance, the interplay between coherent short-range interactions and gain relaxation
dynamics was observed experimentally and explained theoretically and numerically.
For soliton molecules having more than two pulses, it yielded a monotonously
varying temporal separation between subsequent pulses, which was dubbed a
chirped soliton molecule pattern [59].

2.3.2 From Stationary to Pulsating Soliton Molecules

The optical characterization of ultrafast dissipative soliton molecules sets quite a few
challenges, which naturally increase along with their dynamical complexity. Early
experiments used mainly the output of multi-shot optical autocorrelators and optical
spectrum analyzers. The relevance of averaged measurements is assessed with a
recording of the integrated pulse energy in real time (via an oscilloscope), possibly
complemented with radiofrequency analysis, in order to confirm the observation of
stationary molecules. Whereas the photo-detected output pulses do not reveal the
picosecond temporal structure of the soliton molecule, a stable stationary soliton
molecule produces (i) a (symmetric) multi-peaked second-order autocorrelation
trace and (ii) a spectral interferogram containing the information about relative
pulse separation and phases within the soliton molecule. Through the processing
and comparison of these experimental data, the temporal structure of the soliton
molecule can be unveiled.

The two-soliton molecule is the central figure of investigation. Reported within
various laser architectures, operating wavelengths, and pulse energy ranges, it
illustrates the universal dynamical feature of multisoliton attractors. In the charac-
terization process, we generally make the assumption that the two pulses share the
same amplitude profile, being shaped by a common attractor. Thus, the optical
spectral intensity I(ω) of such soliton molecule reads:

I ωð Þ ¼ 2I0 ωð Þ 1þ cos ωτ � φð Þ½ �,

where τ is the temporal separation between the two pulses, φ is their phase differ-
ence, ω is the detuning from the central angular frequency ω0, and I0(ω) would be the
spectral intensity of a single pulse. Therefore, measuring the spectral interfringe
yields the pulse separation, while the offset of the fringe pattern with respect to the



central frequency yields the phase difference. Fourier transforming the spectral
intensity allows a more efficient processing of the experimental data, yielding a
first-order autocorrelation trace, or temporal coherence function, where τ and φ can
be readily extracted. Such procedure can be extended to a higher number of pulse
constituents, under some conditions [46].
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Highly contrasted spectral fringes are the signature for (i) a stable temporal
separation between the pulses constituting the soliton molecule and (ii) self-phase
locking of these pulses. Both are attribute of the soliton molecule attractor, seen in a
subspace of finite dimension – a tool of visualization and analysis named the
Poincaré section. The two-dimensional Poincaré section using both the temporal
separation and phase is called the interaction plane, which typically displays the
dynamical evolution of (τ cos φ, τ sin φ).

Based on the CGLE model, theoretical and numerical investigations revealed the
existence of a limited number of two-soliton molecule fixed-point focus attractors,
characterized by the self-locking of the pulses with a relative phase of either π [31],
or �π=2, the latter being associated with a high potential stability [32]. These soliton
molecule attractors were discovered experimentally [39, 40], but other relative phase
locking values have also been found, a fact attributed to the fundamental difference
existing between distributed and lumped periodic systems: the latter allow additional
focus attractors due to the contribution of dispersive waves in the dissipative soliton
interaction [47]. Recently, the high stability of some dissipative soliton molecules
was measured by using the technique of balanced optical cross correlation, yielding a
relative timing jitter within the two-soliton molecule down to the attosecond
level [60].

By changing one or several parameters of the laser cavity, one can move out from
the existence domain of fixed-point attractors and meet bifurcations. Among other
possibilities, the Hopf bifurcation is a widely spread one: it transforms the fixed-
point focus attractor into a limit-cycle. As stated in Sect. 2.2, a stable limit cycle
attractor is characterized by a quasi-stationary oscillating pulse feature, whose
periodicity can be commensurate or not with the cavity roundtrip time. In the
situation of the two-soliton molecule, the first evidence was produced in 2006
[61]: in that related work, the blurring of the experimentally recorded spectral fringes
and second-order cross-correlation peaks were attributed to an oscillation of the
relative phase and temporal separation between the two solitons, an interpretation
supported by numerical simulations. This topic of pulsating soliton molecules gained
further consideration a decade later, with the generalization of real-time spectral
measurements that provided a strong experimental confirmation [62, 63]. Dispersive
Fourier-transform has become the most popular real-time spectral measurement
technique. It consists of propagating a short pulse structure through a highly
dispersive line in the linear and far-field regime: this way, the pulse stretches
considerably to adopt an intensity profile that maps its spectral intensity profile
[64]. Several types of pulsating soliton molecule dynamics have therefore been
retrieved experimentally and validated numerically, such as oscillating-phase,
vibrating (both phase and separation), or sliding-phase soliton molecules [62]. The
anharmonic character of some oscillating soliton molecules has also been pointed



out, see Fig. 2.3 [65]. Finally, the formation and dissociation of unstable soliton
molecules was also observed, as well as transient multisoliton states accompanying
the formation of stable soliton molecules [56, 65].

2 Dissipative Solitons in Passively Mode-Locked Lasers 27

Fig. 2.3 Reconstruction of the oscillations of the relative separation (τ, in ps) and relative phase
(φ, in radian) between two dissipative solitons that form a compact soliton molecule self-assembled
within a thulium-doped fiber laser (adapted from [65]). (a) Recording of optical spectra over 200
successive roundtrips, employing the DFT measurement technique. (b) Processing of the spectral
data by Fourier transform, which enables (c) revealing the anharmonic oscillations of the internal
dynamical variables of the soliton molecule

Let us remark that the general assumption of identical pulse profiles does not hold
true when time-delayed dynamics become important, such as in the case of slow
saturable absorber effects [66]. The identical pulse profile assumption may also
break for non-stationary soliton molecules, as was recently investigated [67].

Now, considering that two-soliton molecules can behave as units within the
ultrafast laser cavity, these molecules will also interact [68]. The long-range repul-
sive interaction from gain relaxation dynamics will favor harmonic mode locking of
two-soliton molecules, which has indeed been confirmed in real-time spectrally
resolved experiments. It is also interesting to consider the possible formation of
soliton molecular complexes, where several two-soliton molecules bind through
attractive forces of intermediate range. This was recently investigated in the elemen-
tary case of 2 + 2 optical soliton molecular complexes (SMC) [46]. It consisted in



two identical soliton-pair molecules, each formed through a strong pulse-tail inter-
action, which were linked through a weaker dispersive wave mediated interaction.
Two main SMC dynamics were unveiled: SMC with sliding-phase dynamics and
SMC with oscillating-phase dynamics. These dynamics were retrieved from the
spectral analysis of successive laser output and confirmed by numerical simulations.
This opens up the investigation of the complex dynamics of intricate multiple pulse
patterns, whereas the multiple scales involved pose new challenges to the experi-
mental characterization.
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2.4 Toward Incoherent Dissipative Solitons

By moving the laser cavity parameters, we cross the successive boundaries of
stationary and regularly pulsating dissipative solitons, whose domains of existence
are bounded. Moving further will then end up with the complete disruption of the
mode-locked pulse operation. For instance, by reducing the pumping power down to
some amount, the nonlinearity no longer suffices to maintain the pulse localization,
entailing quasi-cw lasing instead. On the other way, by increasing the pumping
power, whereas the excess of nonlinearity is generally conducive to multi-pulsing
transitions, such excess can also disrupt the mode locking operation as well.
However, other abrupt bifurcations can take place, leading for instance to odd
chaotic-pulse dynamics. In such cases, a strong competition between instability
and localizing physical effects takes place to maintain a short pulse localized in its
average moving reference frame. As a matter of fact, despite the persistence of a
rather well-defined round trip time for the traveling pulse, the laser regime can no
longer be qualified as mode locked. This peculiar situation can take various forms,
which we have proposed to encompass within the notion of incoherent dissipative
solitons [69, 70]. Indeed, all the situations of long-lived chaotic laser pulses encoun-
tered so far are characterized by well-defined averaged features (namely, temporal
and spectral intensity profiles as recorded by an averaging instrumentation), which
can be measured over times scales that depend on the given chaotic dynamic – say,
in a typical range varying from 102 to 105 cavity roundtrips for most of them. The
meaningfulness of averaged pulse features is the clear signature of an underlying
chaotic attractor, which employs dissipative processes to limit the pulse excursions
inside of the dynamical system that has otherwise infinite dimensions.

Chaotic laser pulse attractors can be categorized by the amount of incoherence
attributed to the light pulses, as opposed to the high coherence that is assumed for
stable mode locked pulses. Incoherence first refers to the lack of a precise phase
relationship between pulses observed at successive cavity roundtrips. Note that even
in the case of “stable” mode locked laser regimes, phase noise and timing jitter
represent usual limitations of the laser coherence. These limitations are combatted in
highly stabilized mode-locked laser schemes by using cavity length stabilization and
phase-locked loops to attain, in the best case, the carrier-envelope phase stabilization



required in demanding metrological applications of the frequency comb generated
from such stable mode-locked lasers. On the opposite, some applications require
pulsed sources with a low degree of coherence, as in free-space communication and
lidar applications for dense networks, in order to limit crosstalk. These applications
could benefit from the utilization of incoherent dissipative solitons.
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Let us now depicts some of the most vivid illustrations of incoherent dissipative
solitons. Soliton explosions are defined by intermittent periods of pulse instability
followed by recovery, the pulse returning to a quasi-stationary coherent mode
locking before the next instability develops. A laser operating in that regime can
still be qualified as partially mode locked, since between explosive events, succes-
sive output pulses remain relatively close. Soon after being predicted numerically,
this unstable pulse regime was observed in a Ti:sapphire pulsed laser [71] and later
within fiber laser experiments [72, 73], hence confirming its universality.

Noise-like pulse emission, soliton liquids and dissipative rogue waves are termi-
nologies that relate to chaotic pulse dynamics bearing a large degree of incoherence,
since the related internal field structures behave chaotically at all times, from one
cavity roundtrip to the next and even within a given cavity roundtrip. A soliton liquid
consists in a bunch of dissipative solitons whose interactions induce chaotic relative
motions [52, 74]. The characterization of its internal structure requires ultrafast
measurements having adequate spectral and/or temporal resolution. It has been
observed as one of the three main field components of the soliton rain dynamics
[52]. More precisely, in the soliton rain, the presence of a noisy cw background
induces fluctuations which, when exceeding a certain threshold, excite the formation
of dissipative soliton pulses that subsequently drift toward a condensed liquid soliton
phase, the latter aggregating multiple interacting dissipative solitons in ceaseless
motions as well as radiating dispersive waves that feed the background. Such laser
dynamics illustrates well the amount of complexity which can arise in presence of
multiple pulsing and chaos yet displaying a distinct and vivid dynamical picture
embedding multiple time scales and field structures. A highly chaotic soliton liquid
is also conducive to the observation of dissipative rogue waves, namely, extreme
fluctuations of optical intensity or pulse density that occur in the course of multiple
pulse interactions and collisions [75].

Noise-like pulse emission in ultrafast lasers is characterized by the complete loss
of mutual coherence between successive pulses. It was discovered in 1997 [76], then
reported in numerous subsequent experiments [77–80]. This self-starting regime is
characterized by (i) a self-generated compact waveform, whose shape and duration
strongly depend on the laser scaling parameters (for instance, the duration can vary,
accordingly, from a few picoseconds to microseconds); (ii) a complex fine structure
consisting in a large collection of sub-picosecond chaotic pulses; (iii) stationary
averaged spectral and optical autocorrelation features in the long run, typically over
thousand cavity roundtrips. This regime stems from the competition between a
strong instability and dissipative processes favoring temporal localization. The
statistics of the spectral waveforms can also reveal rare events of extreme amplitude,
namely, spectral rogue waves [81].
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The features of noise-like pulse emission were revisited in a recent investigation
of the buildup dynamics of these incoherent pulses [70]. By combining experimental
and numerical approaches, the study brought insight on the similarities and differ-
ences of the noise-like pulses developing under either the normal or the anomalous
cavity dispersion regime. In the experiment, the laser output was spectrally charac-
terized in real time by using the dispersive Fourier-transform technique. These
buildup experiments highlighted the following. In the normal dispersion regime, a
few long-lived picosecond pulse precursors compete over a relatively long (thou-
sands of roundtrips) amplification stage, then a winning (largest energy) pulse
undergoes an exponential spectral broadening followed by an explosive spectral
broadening stage that sets in the chaotic dynamics (within a few tens of roundtrips),
while the other pulse precursors vanish. In the anomalous dispersion regime, the
pulse precursors propagate in higher numbers and the spectral broadening stage is
more gradual (hundreds of roundtrip), associated with a longer coexistence between
the growing chaotic pulse and the decaying pulse background. See also Fig. 2.4,
which displays the abrupt transitions in both dispersion regimes. In the long run
(quasi-stationary regime), the pulse fluctuations are larger in the normal dispersion
regime, nevertheless they are associated with a tighter temporal localization than in
the anomalous dispersion regime.

A simple parameter-managed numerical laser model was used to interpret the
spectral broadening in the buildup phase and the long run features. The normal
dispersion regime is indeed characterized by the largest fluctuations, owing to the
interplay between gain, self-phase modulation, and dispersion. The waveform
growth instability scatters sub-pulses of various magnitude. Inside that chaotic
waveform, small amplitude field parts diffuse rapidly and vanish outside the main
pulse extension, experiencing mostly the effects of normal dispersion and saturable

Fig. 2.4 Recording of the buildup of (noise-like) incoherent dissipative solitons, using the real-
time DFTmeasurement under (a) the normal cavity dispersion regime, and (b) the anomalous cavity
dispersion regime. (After Ref. [70])



absorption. In the anomalous dispersion regime, the contribution of a large self-
phase modulation favors high-order soliton pulse shaping that is regularized by
dissipative processes, hence maintaining the integrity of sub-pulse constituents
within the chaotic pulse over much longer times, whereas allowing extended excur-
sions of these sub-pulses within the chaotic pulse bunch. However, frequent pulse
collisions entail highly varying amplitudes, which induces a pulse discrimination
through the effects of nonlinear gain and loss. The existence of dissimilar physical
mechanisms leading to long-lived chaotic-pulse waveforms confirms that these
incoherent dissipative localized structures exist in a much wider subspace of cavity
parameters than initially anticipated. Akin to the assimilation of a variety of stable
ultrashort laser dynamics within the broad concept of dissipative solitons, it is fully
justified to include such noise-like pulse generation cases within the terminology of
incoherent dissipative solitons of ultrafast lasers. The notion of a chaotic attractor
explains why successive laser switch-on will yield the same average features in the
long run, though each buildup evolution will be unique.
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Observed within a wide range of laser cavity architectures, these chaotic-pulse
laser regimes clearly indicate the existence of universal strange attractors, whose
properties can be summarized as follows: (i) the dynamics is extremely sensitive to
initial conditions, which is the essence of chaos; (ii) the dynamics returns at finite
time intervals to similar field realizations, such localization being attribute of an
attracting state.

The incoherent dissipative soliton concept is fully applicable to other nonlinear
systems, for instance involving additional field dimensions, for instance polarization
or multiple transverse modes. Thus, vector dynamics of incoherent dissipative
solitons were reported in 2017, bringing additional pieces of nonlinear dynamics
complexity. For instance, polarization locking and polarization switching dynamics
of the incoherent soliton were reported [69], generalizing locking and switching
dynamics previously reported in the case of coherent vector solitons [82, 83]. In the
vicinity of polarization switching dynamics, intermittent behaviors were associated
with vector rogue waves bearing common features with the soliton explosion effect
[69]. Akin to the dissipative soliton concept, the notion of an incoherent dissipative
soliton will stimulate research in multiple areas of nonlinear science and favor
analogies between them [84].

2.5 Summary and Prospects

We started the journey of dissipative solitons in passively mode-locked lasers with a
sort of history capsule of the evolution and mutual enrichment of nonlinear dynam-
ical concepts for ultrafast lasers, which seems to have culminated in the concept of
dissipative solitons. Yet, the story is not over, since laser complexity has numerous
doors to break in, such as: additional field dimensions, which includes polarization
and spatio-temporal complexity [85–87], multiple-pulse interaction dynamics,
delayed response and multiple time scales.
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In Sect. 2.2, we have seen that the interplay of dissipative nonlinear effects has
opened up unsuspected possibilities for stable ultrashort laser pulse generation,
found in much wider laser parameter domains than initially anticipated and benefit-
ting from the strength and robustness of dissipative soliton attractors. Basically,
dissipative solitons will bear linear and nonlinear frequency chirping. Nevertheless,
some cavity designs, such as dispersion managed lasers, can feature nearly chirp-free
points where optimal ultrashort output pulses can be extracted. Finally,
non-stationary solitons obtained through bifurcations and multi-solitons bring a
glimpse of the wealth of nonlinear dynamics that can be generated within ultrafast
lasers and apprehended by the general concept of dissipative solitons.

Sections 2.3 and 2.4 developed some recent aspects of complex dissipative
dynamics. Optical soliton molecules display interesting analogies with their matter
counterparts. The real-time investigation of the two-soliton molecule, highlighting
stationary as well as various oscillating dynamics, has expanded the conceptual
background: this entices to revisiting soliton molecules comprising larger number of
dissipative soliton pulses, up to soliton complexes and macromolecules. We have
also exposed the generalization of the notion of dissipative solitons to incoherent and
chaotic pulses, which encompasses a variety of short-pulse dynamics that are not
mode locked but share the feature of being bound to an attractor of chaotic nature,
namely a strange attractor [88].

One upcoming challenge is to control such wealth of ultrafast dynamical behavior
with the powerful tools of artificial intelligence. This way, the full-fledged funda-
mental science of complex ultrafast nonlinear dynamics will travel another loop
toward demanding applications [89–92].
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Chapter 3
Dissipative Soliton Buildup Dynamics

Zhi-Chao Luo, Ze-Yu Zhan, Meng-Jun Feng, Ji-Xiang Chen, Meng Liu,
Ai-Ping Luo, and Wen-Cheng Xu

Abstract The development of ultrafast pulse fiber lasers has great impact on many
aspects of our life for their versatile applications in fields ranging from fundamental
sciences to industrial purposes. By virtue of passive mode-locking techniques, the
ultrashort pulse can be easily obtained from the fiber lasers. In addition to being an
ultrashort pulse source for practical applications, the passively mode-locked fiber
lasers are also actually the nonlinear optical systems which provide a good platform
for investigating various dissipative soliton nonlinear dynamics. As a fundamental
but important nonlinear dynamics of ultrafast fiber lasers, the buildup process of the
passive mode-locking can be used to describe how to form a soliton in the laser
systems. In this chapter, we review the recent advances on the dissipative soliton
buildup dynamics in passively mode-locked fiber lasers. The real-time dynamics of
dissipative soliton buildup can be well characterized in the temporal and spectral
domains based on the advanced experimental methodologies of spatio-temporal
reconstruction and dispersive Fourier transform. These findings will give some
new insights into the soliton transient dynamics as well as soliton formation dynam-
ics in ultrafast fiber lasers.
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3.1 Introduction

Since the physicists discovered the dissipative solitons that widely exist in
non-integral and non-conservative systems [1–3], the formation mechanisms and
characteristics of dissipative solitons in dissipative systems have attracted much
attention. The conventional soliton concept implies that the single balance between
nonlinearity and dispersion. But for dissipative soliton, a composite balance among
several effects, including nonlinear effect, dispersion, gain and loss, should be taken
into account. A notable point here is that the balance between gain and loss plays an
important role in the dissipative soliton dynamics [4]. Therefore, the dissipative
solitons present more complex dynamics than those of the conventional solitons
[2, 5, 6]. The ultrafast fiber lasers are essentially dissipative systems, which are
considered as good platforms for exploring the dissipative solitons dynamics [7–
11]. Figure 3.1 shows the experimental setup of a common passively mode-locked
fiber laser. Revealing the dynamics of dissipative solitons in fiber lasers is of great
significance to the investigation of nonlinear dynamics and the practical applications
of optical solitons. In recent years, extensive investigations have been conducted on
the nonlinear evolution and dynamics of dissipative solitons in passive mode-locked
fiber lasers, such as multi-soliton patterns [12–14], dissipative soliton rain [15–17],
and dissipative soliton resonance [18–22]. As a fundamental and important nonlinear
phenomenon in ultrafast fiber lasers, the investigation of dissipative soliton buildup
dynamics would be beneficial for us to understand the physical mechanism of
solitons as well as the improvement of laser performance.

Since the 1990s, the buildup dynamics of mode-locked fiber lasers have been
reported theoretically and experimentally [23, 24]. To date, the buildup time of
dissipative soliton as well as the evolution dynamics in the time domain with a large
timescale have been well understood. It has been shown that the buildup time is
related to the intracavity soliton power, and large soliton energy is beneficial to the
fast self-starting [25]. During the buildup process, the pulses exhibit relaxation
oscillations in the temporal domain, similar to the Q-switched mode-locking before
achieving the stable mode-locked operation. Since the soliton buildup process in
mode-locked fiber lasers can be understood as a non-repetitive and random process,

Fig. 3.1 Schematic of
passive mode-locked fiber
laser



it is actually a transient nonlinear phenomenon. With the great advances in high--
temporal-resolution measurement technology of ultrashort pulses, the investigation
on the transient dynamics of solitons has reached an unprecedented level. However,
the real-time spectral dynamics during the soliton buildup process in ultrafast fiber
lasers cannot be captured due to the scanning speed limitations of the conventional
optical spectrum analyzer (OSA). To solve this problem, researchers have proposed
a simple yet powerful real-time spectral measurement technique, namely the Dis-
persive Fourier Transform (DFT) technique [26–29], to resolve the buildup dynam-
ics of dissipative soliton in the spectral domain. The DFT method actually utilizes
chromatic dispersion to map the optical spectrum of a pulse to a temporal waveform
whose intensity envelope mimics its spectrum, allowing real-time spectral dynamics
to be measured by an oscilloscope. Therefore, it is expected that the DFT will be a
good tool for observing the real-time spectral dynamics of dissipative soliton buildup
in fiber lasers. By virtue of DFT technology, some complex soliton transient
dynamics have been observed in fiber lasers, such as rogue waves [30–32], soliton
explosions [33–36], pulsating solitons [37–39], vector solitons [40, 41], and bound-
state solitons [42].
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Recently, G. Herink et al. reported a detailed study of soliton buildup in femto-
second Kerr-lens mode-locking (KLM) Ti:sapphire laser by DFT [43]. During
the soliton buildup process, several critical phenomena were directly observed in
the spectral domain, including the birth of broadband spectrum, the transient inter-
ference patterns, and the spectral beating dynamics. However, owing to the different
physical mechanisms of pulse formation in the laser cavities, Ti:Sapphire lasers are
typically not self-starting ones and their mode-locking operation needs to be trig-
gered by external perturbations [44], while fiber lasers can be self-starting as long as
the cavity parameters are properly adjusted [45, 46]. In addition, in fiber lasers, the
light propagation is typically limited to the small area of single-mode fiber. When
combing the high peak power of mode-locked soliton, it is expected that the soliton
will experience more nonlinear effects and fruitful phenomena. Therefore, the
exploration of the soliton buildup dynamics in ultrafast fiber lasers will underpin
the understanding of soliton dynamics and nonlinear behavior in dissipative optical
systems.

In this chapter, we review recent results on the real-time buildup dynamics of
different soliton regimes in spectral and temporal domains in fiber lasers. We first
outline the buildup dynamics of conventional solitons in fiber lasers operating in the
anomalous dispersion regime, and the buildup dynamics of dissipative solitons in the
net-normal dispersion fiber lasers. Moreover, the physical mechanisms of spectral
beating behavior during the soliton buildup process are also discussed, and the
soliton buildup process is further qualitatively reconstructed by the results of numer-
ical simulations. Then we also discuss the buildup process of dissipative solitons in a
net-normal dispersion bidirectional fiber laser. Finally, the buildup dynamics of
dissipative soliton molecules are introduced to further explore the different proper-
ties presented in the soliton buildup dynamics.



40 Z.-C. Luo et al.

3.2 Conventional Soliton Buildup Dynamics
in an Anomalous Dispersion Fiber Laser

It is well known that conventional solitons in an anomalous dispersion fiber laser can
be formed by balancing group velocity dispersion (GVD) and self-phase modulation
(SPM) [47]. This type of soliton features that the Kelly sidebands can be seen on the
mode-locked spectrum [48]. Recently, Chen et al. experimentally observed the
buildup dynamics of conventional solitons in the fiber laser operating in anomalous
dispersion regime. They performed the temporal and spectral analysis of the soliton
buildup dynamics based on the experimental methods of spatio-temporal reconstruc-
tion and DFT [49].

The schematic diagram of the anomalous dispersion fiber laser used for the
experiment is shown in Fig. 3.2, which is a typical fiber ring laser mode-locked by
real saturable absorber (SA). A 4.1 m long erbium-doped fiber (EDF) is used as the
gain medium, and the carbon nanotube (CNT) is placed in the laser cavity as SA. A
mechanical chopper is placed between the pump laser and the wavelength division
multiplexer (WDM) to control the start or stop of the mode-locking operation. Two
polarization controllers (PCs) are placed in the laser cavity to adjust the polarization
state. The polarization-dependent isolator (PD-ISO) is employed for better

Fig. 3.2 Experimental setup of an anomalous dispersion ultrafast fiber laser. (Adapted from Ref.
[49])



optimization of the mode-locking state. By adjusting the PC, the nonlinear loss of the
laser cavity can be controlled. In order to measure the buildup dynamics in the
spectral domain by DFT method and temporal evolution simultaneously, an addi-
tional 10:90 coupler is connected to the laser output. One of the output ports is
directly connected to a high-speed real-time oscilloscope with a photodetector. Then
the other one is connected to ~14 km long single-mode fiber, which uses the DFT to
map the spectrum into a temporal waveform. In this case, the real-time spectral
dynamics can be directly recorded by the oscilloscope.
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When the fiber laser is operating in mode-locking state, the typical laser perfor-
mance is shown in Fig. 3.3. Figure 3.3a, b show the mode-locked spectrum centered
at 1558 nm and the pulse train with the fundamental repetition rate of 13.06 MHz,
respectively. As we can see, there are obvious Kelly sidebands on both sides of the
mode-locked spectrum, which is one of the characteristics of conventional solitons
in a fiber laser with anomalous dispersion regime. Figure 3.3c shows the autocorre-
lation trace, indicating the characterized pulse duration is 810 fs. The corresponding
radio frequency (RF) spectrum is presented in Fig. 3.3d with a signal-to-noise ratio
of ~55 dB, indicating the stability of the laser.

Fig. 3.3 Performance of anomalous dispersion fiber laser in mode locking state. (a) Spectrum of
conventional soliton. (b) Pulse-train. Inset: pulse-train with larger range. (c) Autocorrelation trace.
(d) RF spectrum. (Adapted from Ref. [49])
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Fig. 3.4 Conventional
soliton buildup dynamics in
(a) the spectral domain and
(b) the time domain for 1300
consecutive round-trips. (c)
Pulsed energy evolution.
(Adapted from Ref. [49])

When investigating the self-starting process of the conventional soliton, the
mechanical chopper was turned on to start or stop the mode locking periodically .
Note that if the pump power was too high, the multi-soliton regime could be
observed owing to the pulse splitting effect. In this case, the pump power needs to
be properly set to keep single-soliton starting. Figure 3.4 shows an overview of the
soliton buildup dynamics in the temporal and spectral domains. The temporal
dynamics of soliton buildup from the noise background shows a clear intensity
oscillation over large time scales of a few microseconds, which is similar to the
previous report in [25]. However, in this section, we only discuss the dynamics
around the mode-locking transition of the fiber laser.

Figure 3.4a shows the evolution of the lasing spectrum from a quasi-continuous
wave with a narrow bandwidth to a mode-locking state with a broadband spectrum.
It is worth noting that the real-time spectral dynamics show strong spectral intensity
oscillations in the transitional stage of the mode-locking process. At the beginning of
the pulse evolution, the duration of the spectral intensity oscillation is about



200 round-trips. When the fiber laser approached the stable mode-locking operation,
the period of spectral intensity oscillation tends to decrease. In fact, the initial cavity
parameters of the fiber laser system affect the duration of intensity oscillation.
However, from the experimental observation, the spectral oscillation behavior of
ultrafast fiber lasers operating in anomalous dispersion regime always exists in the
pre-mode-locking state. Accordingly, Fig. 3.4b presents the spatio-temporal dynam-
ics, indicating that the pulse intensity increases in the initial pre-mode-locking state.
Then the pulse intensity gradually decreases, evolving into the stable mode-locking
pulse-train eventually. Only single pulse was detected on the oscilloscope trace
during the evolution process. Note that the fine details of the spatio-temporal
dynamics measured experimentally is limited by the bandwidth of the oscilloscope,
because the pulse width is generally at femtosecond level for anomalous dispersion
fiber lasers. To further understand the pulse evolution, the calculated pulse energy is
depicted in Fig. 3.4c. It can be seen that the pulse energy first increases and then
decreases before approaching stability. Here, a stable mode-locking state was finally
reached, which shows a similar dynamic trend in Fig. 3.4b.
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However, as mentioned above, the profile and structure of the mode-locked
soliton cannot be analyzed experimentally because of the limited bandwidth of the
oscilloscope. In order to analyze the soliton buildup process qualitatively, Chen et al.
implemented the numerical simulation based on the extended nonlinear Schrödinger
equation [50]. The laser cavity is simplified to consist of the EDF, the SMF, a SA and
an output coupler (OC), by setting the appropriate parameters (see reference [49] for
specific parameter settings). An arbitrary weak pulse is set as the initial lightwave for
the simulation. The simulation results of the mode-locking operation of an anoma-
lous fiber laser are briefly shown in Fig. 3.5. Figure 3.5a shows the spectral
evolution, and it can be seen that the narrow spectral bandwidth at the beginning
evolves to a stable mode-locking spectrum with Kelly sidebands. In agreement with
the experimental results, the behavior of strong spectral intensity oscillation could be
clearly observed. When approaching the stable mode-locking state, the time period
of intensity oscillation decreased accordingly. Figure 3.5b plots the evolution of the
corresponding time-domain pulse from quasi-continuous wave to mode-locking, and
Fig. 3.5c shows the evolution of the pulse energy. According to the simulation of
pulse evolution, it can be seen that the intensity of pulse increases firstly, then tends
to stabilize. This process is similar to the pulse evolution measured in Fig. 3.4. The
overall features of the soliton buildup dynamics in the simulation results are in good
agreement with the experiment in both spectral and temporal domains.

As shown in Fig. 3.4, it is evident that the spectral intensity oscillation behavior is
observed before the stable mode-locking state is achieved. In order to analyze the
reasons for such oscillations, Chen et al. selected four transient profiles of starting
soliton corresponding to different round-trips, as shown in Fig. 3.6. It can be seen
that at the center part of the mode-locking spectrum, the number and distribution of
the spectral peaks and dips change with the soliton propagation in the laser cavity.
Moreover, the spectral interference pattern is also discovered. From the spectral
dynamics, it could be inferred that the evolving structural soliton was formed during
the soliton buildup process. Because of the pulse shaping effect in the transition
regime of passive mode locking, the pulse is not constant and evolves during the



buildup process. In this case, a particular structural soliton corresponds to a specific
spectral profile. Therefore, strong spectral intensity oscillations can be observed at
this stage until the soliton is stably formed.
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Fig. 3.5 Numerical
simulations of conventional
soliton buildup dynamics in
(a) the temporal domain and
(b) the spectral domain for
1300 consecutive round-
trips. (c) Pulse energy
evolution. (Adapted from
Ref. [49])

Correspondingly, the similar dynamics was observed for the simulation results.
Figure 3.7 provides the four transient spectra and the corresponding pulse profiles
during the soliton buildup process. In the central part of the mode-locked spectrum,
the peaks or dips alternately generated, as shown in the upper row of Fig. 3.7. The
corresponding pulse profile is plotted in the lower row of Fig. 3.7 to check the pulse
evolution in the time domain. During the pulse shaping process, it is evident that
there is a pedestal on the evolving pulse. Furthermore, the profile of the pulse
pedestal also changed with the cavity roundtrips, meaning that transient structural
solitons were observed during the simulations [51]. Thus, the spectral intensity
oscillation during the soliton buildup dynamics in an anomalous dispersion fiber
laser can be attributed to the formation of transient structural solitons owing to the
pulse shaping towards stable mode locking.
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Fig. 3.6 Four transient spectral profiles during soliton buildup process. (a) 324th round-trip. (b)
326th round-trip. (c) 328th round-trip. (d) 356th round-trip. (Adapted from Ref. [49])

Fig. 3.7 Numerical simulations of four transient spectral and pulse profiles during soliton buildup
process. (a) and (e) 121th round-trip. (b) and (f) 154th round-trip. (c) and (g) 174th round-trip. (d)
and (h) 270th round-trip. The upper right inset in (h) shows the structural soliton profile. (Adapted
from Ref. [49])
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3.3 Dissipative Solitons Buildup Dynamics in a Normal
Dispersion Fiber Laser

It is well known that the dynamics of pulse shaping is dependent on the cavity
dispersion of fiber lasers. Therefore, it is expected that the soliton buildup dynamics
in fiber lasers operating in the normal dispersion regime will be different from those
of the anomalous dispersion ones. In this case, it is also necessary to unveil the
buildup dynamics of dissipative soliton in fiber lasers with the normal dispersion
regime. In 2018, the buildup process of dissipative solitons was investigated in a
net-normal dispersion fiber laser [52]. Indeed, different soliton buildup dynamics
from the anomalous dispersion regime have been observed. Briefly, no spectral
intensity oscillation was found during the buildup of dissipative solitons, but there
were oscillations of the spectral bandwidth. Moreover, the highest structural peaks
are distributed on both sides of spectrum, unlike the conventional solitons whose the
highest spectral components are concentrated in the central region.

In order to obtain the dissipative soliton, Chen et al. constructed a net-normal
dispersion fiber laser. Being different from the anomalous dispersion fiber laser
shown in Fig. 3.2, the EDF gain medium with normal dispersion was increased to
10 m long, and the SMF in the cavity was shortened to 12 m long. Thus, the net
cavity dispersion was estimated to be ~0.3 ps2. Similar to the case of an anomalous
dispersion fiber laser, the self-started mode-locking could be easily achieved when
the pump power was set to 12.7 mW. To avoid appearing multiple pulses, the pump
power only needs to be slightly higher than the mode-locking threshold. The
properties of the dissipative soliton are shown in Fig. 3.8. A typical rectangular
spectrum centered at 1562 nm of the dissipative soliton is presented in Fig. 3.8a.
Figure 3.8b displays the pulse-train with the fundamental repetition rate of
9.27 MHz. The autocorrelation trace in Fig. 3.8c indicates that the pulse duration
is 16.21 ps. Besides, >50 dB signal-to-noise ratio of the RF spectrum was obtained,
suggesting that the dissipative soliton fiber laser was operating stably.

As mentioned in Sect. 3.1, by virtue of the DFT technique and high-speed
oscilloscope, the real-time spectral and temporal evolution of the dissipative soliton
buildup dynamics could be observed simultaneously, as shown in Fig. 3.9. Com-
pared to the conventional solitons [53, 54], the same phenomenon of spectral
broadening process could be seen during the bulidup process of dissipative solitons.
However, the real-time spectral dynamics shown in Fig. 3.9a indicates that the
highest structured spectral peaks of the dissipative solitons are distributed along
both sides, and oscillations of the spectral bandwidth could also be observed during
the dissipative soliton buildup. These oscillations of the spectral bandwidth are due
to the incomplete balance among dispersion, nonlinearity, gain and loss before
achieving stable mode-locking. Nevertheless, they can be tuned or even eliminated
by carefully adjusting the pump power. Figure 3.9b shows the spatio-temporal
dynamics of the dissipative soliton buildup process, in which the peak intensity of
the pulse has a tendency to increase firstly, with the appearance of an extremely high
amplitude, and then decreases sharply. Finally, it becomes a stable mode-locking



state. In addition, Fig. 3.9c provides the corresponding evolution of the pulse energy
in the dissipative soliton buildup process.
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Fig. 3.8 Performance of net-normal dispersion fiber laser in mode locking state. (a) Spectrum of
dissipative soliton. (b) Pulse-train. Inset: pulse-train with larger range. (c) Autocorrelation trace. (d)
RF spectrum. (Adapted from Ref. [52])

Again, the buildup dynamics of the dissipative soliton in the net-normal disper-
sion laser cavity was simulated with the extended nonlinear Schrodinger equation
further to reveal the fine details of the pulse profile. Figure 3.10 shows the simulation
results. In Fig. 3.10a, it can be seen that the laser first operates in a quasi-continuous
wave state, and then the spectral bandwidth broadens as the lightwave propagates
through the laser cavity. Similar to the experimental observations, structural peaks at
both edges of the mode-locked spectrum were also produced during the broadening
process. Figure 3.10b shows the pulse evolution for 2700 round-trips. We can see
that the pulse peak intensity first increases rapidly and then decreases until a stable
mode-locking operation is achieved. In addition, the energy evolution by integrating
the pulse profile is shown in Fig. 3.10c, which is in general agreement with the
experimental results.

During the buildup process of the dissipative soliton, the oscillations of the
spectral bandwidth can be observed. In order to get insight into the transient
dynamics of the dissipative soliton in the fiber laser, Chen et al. selected four typical
spectra corresponding to different round-trips during the buildup of the dissipative



soliton. It can be seen from Fig. 3.11 that the spectral bandwidth increases during the
evolution to a stable mode-locking state. At the same time, the spectrum shows an
evolving structured profile, where the highest interference peaks are usually located
at the two edges of the mode-locked spectrum. Specifically, two spectral spikes with
oscillation structures can be seen on both edges of the pulse spectrum near the stable
mode-locking state, as shown in Fig. 3.11c. Then, after a certain number of
round-trips, the spectral bandwidth still slowly expanded before reaching the stable
mode-locked state. Finally, the fiber laser delivered the mode-locked pulse with a
rectangular spectrum, which is the typical feature of dissipative solitons [55, 56], as
shown in Fig. 3.11d.
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Fig. 3.9 Dissipative soliton
buildup dynamics in (a)
spectral domains and (b)
time domains for 2700
consecutive round-trips. (c)
Pulse energy evolution.
(Adapted from Ref. [52])

Similarly, the numerical simulations were implemented to further investigate the
nonlinear behavior during the soliton buildup dynamics in both the spectral and
temporal domains. Here, four representative spectra and corresponding pulse pro-
files are plotted in Fig. 3.12. The upper row of Fig. 3.12 shows that as the number of
round-trip increases, the interference peaks appear on both sides of the evolving
spectrum. When the stable mode-locked operation was achieved, the interference



depth gradually decreased and disappeared. In addition, the spectral peaks with
oscillation structures at both edges of the evolution spectrum can be observed in
the simulation results before the stable mode-locked operation, which is in agree-
ment with the experimental results. The lower row of Fig. 3.12 shows the pulse
profile that varies with the cavity roundtrips in the temporal domain. Owing to the
net-normal dispersion regime, the pulse duration increased with the number of
roundtrips until it reached the limit of the effective gain bandwidth before stabilizing
[3]. In addition, two humps can also be observed at the two edges of the evolving
soliton, i.e., in Fig. 3.12g. These properties indicate that the dissipative soliton
evolved like a kind of structural soliton in the laser cavity. Here, the spectral pattern
appeared on the pulse spectrum [51]. Thus, the transient spectral behavior depends
on the pulse evolution in the temporal domain owing to the pulse shaping effect of
passive mode-locking.
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Fig. 3.10 Numerical
simulations of dissipative
soliton buildup dynamics in
(a) spectral domains and (b)
time domains for 2700
consecutive round-trips. (c)
Pulse energy evolution.
(Adapted from Ref. [52])

From the results of experimental and numerical simulations, it could be seen that
during the buildup process of the dissipative soliton, the highest spectral peaks
were distributed along both sides of the mode-locked spectrum. For the buildup of



the dissipative soliton, no spectral intensity oscillations were found. However,
during the starting process of conventional soliton in the anomalous dispersion
regime, the highest spectral components with strong spectral intensity oscillation
were concentrated in the central region of the soliton spectrum. The differences in
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Fig. 3.11 Four transient spectral profiles during dissipative soliton buildup process. (a) 535th
round-trip. (b) 602th round-trip. (c) 736th round-trip. (d) 965th round-trip. (Adapted from Ref.
[52])

Fig. 3.12 Numerical simulations of four transient spectral and pulse profiles of the dissipative
soliton buildup process. (a) and (e) 104th round-trip. (b) and (f) 163th round-trip. (c) and (g) 222th
round-trip. (d) and (h) 1700th round-trip. (Adapted from Ref. [52])



the spectral evolution of the two types of solitons can be attributed to differences in
the pulse shaping mechanisms. In addition, high amplitude waves could also be
observed during the buildup process of dissipative soliton, as shown in Fig. 3.9b,
which is also different from the buildup of conventional soliton.
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So far, we have discussed the soliton buildup process in the anomalous dispersion
and net-normal dispersion fiber lasers. However, other operation regimes of mode-
locked soliton buildup dynamics in fiber lasers have yet to be studied. For example,
the investigation of different operation modes such as bidirectional mode-locked
fiber lasers and multi-soliton fiber lasers also helps us to have a more comprehensive
exploration of the buildup dynamics of dissipative solitons.

3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional
Fiber Laser with Net-Normal Dispersion

Ultrafast fiber lasers can be mode-locked in a bidirectional structure by removing the
intracavity isolators [57, 58]. In this case, the lightwave propagates in two opposite
directions within the same laser cavity, sharing the same gain medium, saturable
absorber, and fiber dispersion. Recently, Yu et al. investigated the behavior of
dissipative solitons in a net-normal-dispersion bidirectional ultrafast fiber laser
[59]. Even though they may involve transient instabilities, the bidirectional dissipa-
tive solitons produced by such a fiber laser will always exhibit similar spectral and
temporal characteristics through a common modulation of gain and loss.

Figure 3.13 shows the schematic and measurement equipment of the CNT mode-
locked bidirectional fiber laser operating in the net-normal dispersion regime. The
gain medium is a segment of EDF. Since no isolator is placed in the cavity, the
mode-locked solitons can propagate in both directions. In order to avoid the colli-
sions of dissipative solitons in both directions in the measurement part, the output is
combined with a 50:50 coupler with appropriate delays. The two outputs were
measured by the same device. The DFT measurement was realized with a long
dispersion compensating fiber (DCF).

Fig. 3.13 Schematic of the net-normal dispersion bidirectional fiber laser. (Adapted from Ref.
[59])
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Fig. 3.14 Experimental performance in mode locking state of the net-normal dispersion bidirec-
tional fiber laser. (a) Spectrum. (b) Temporal evolution. (c) RF spectrum. (d) Spectral evolution.
(Adapted from Ref. [59])

By properly adjusting the pump power, the fiber laser was operating in stable
single soliton state in both directions. Interestingly, the dissipative solitons always
occur in pairs for both clockwise (CW) and counter-clockwise (CCW) directions.
Due to the same gain and loss modulation, both directions could always be mode-
locked simultaneously and have very similar characteristics in terms of parameters
such as repetition rate and spectral bandwidth. Figure 3.14a shows the spectra
measured in both directions. Note that the strong amplified spontaneous emission
(ASE) could be seen for the CCW direction pulse (red) with higher energy, which
could be attributed to the asymmetric pumping structure of EDF. Figure 3.14b shows
the pulse evolution of these two directions in the time domain. The invariable
interval between the CW and CCW solitons means that they had the same repetition
rates. Only one fundamental frequency was observed in the radio frequency spec-
trum, which further confirms the synchronization of the two solitons, as shown in
Fig. 3.14c. Furthermore, the real-time spectral evolution by DFT in Fig. 3.14d shows
that the dissipative solitons keep highly stable in both directions.

In particular, the solitons propagating in opposite directions collided with each
other in the laser cavity on each round-trip. Furthermore, it can be calculated that one
collision point in the cavity is the position of the CNT. In the stable mode-locking
state, the pulses propagating in opposite directions experience the same net



dispersion, nonlinearity, and net gain. The collision inside the CNT implies that the
solitons from two directions pass through the CNT at the same time, which leads to
equal loss modulation for two directional solitons. Thus, this fiber laser system
determines the similar performance of bidirectional dissipative solitons.
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To further investigate the features on the behavior of bidirectional dissipative
solitons, the DFT technique was employed to measure the real-time spectral dynam-
ics of the mode-locking buildup process, as plotted in Fig. 3.15. Figures 3.15a, b
show the pulse evolution in the time domain along with the CW and CCW

Fig. 3.15 Buildup dynamics of dissipative solitons in CW and CCW directions. Temporal evolu-
tion in (a) CW and (b) CCW directions. (c) Spectral evolution. (d) Energy evolution. (e) Net gain
evolution. (f) Spectral cross-correlation map. (Adapted from Ref. [59])



directions, respectively. It is worth noting that owing to the mutual loss modulation
of the CNT, once a seed pulse was formed in one direction, another seed pulse would
also be generated in the opposite direction. In this case, the temporal separation of
bidirectional solitons would be locked, and thus remains invariant. Figure 3.15c
shows the real-time spectral evolution in both directions, and it can be seen that they
both go through a narrowband noise pulse, an energy-increasing stage, and spectral
broadening to a stable mode-locking state. Figure 3.15d, e show the evolution of
normalized energy and net gain, respectively. Here, the energy evolution and net
gain in both directions follow the same trend. The buildup process in both directions
always start almost simultaneously, and bidirectional solitons collide in every
roundtrip at the position of the CNT mode locker. In addition, they share the same
gain fiber, so the net gain evolves in the same trend. Figure 3.15f calculates the cross-
correlation between the single-shot spectra in both directions and further shows their
similarity. However, the slight gain difference induced by the different pump
directions leads to the bending of the spectral cross-correlation diagram. The
above results indicated that the very similar buildup dynamics could be observed
in bidirectional mode-locked fiber laser with a net-normal dispersion regime.
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3.5 Buildup Dynamics of Dissipative Soliton Molecules

One of the well-known phenomena in ultrafast fiber lasers is that multiple solitons
will be generated if the pump power is high enough. Since multiple solitons can exist
simultaneously in a laser cavity, they can interact with each other. For example, if
several solitons coexist in a laser cavity, they can form the bound state, which is
commonly referred to as soliton molecules (SMs). The dynamics of complex soliton
interactions and observation of the motions within SM have been revealed by
analyzing the real-time spectral dynamics with DFT [42, 60]. Recently, Liu et al.
reported the buildup dynamics of SMs in a mode-locked fiber laser
[61]. Figures 3.16b and 3.17a show the recorded results of the buildup process of
SMs with and without DFT technique, respectively. It was found that the buildup
dynamics of stable SM experience five different stages, which are the raised relax-
ation oscillation stage, spectral intensity oscillation stage, transient single pulse
stage, transient bound state, and the stable SM state. From Fig. 3.16, the emergence
of a raised relaxation oscillation (RO) stage with six spikes before the 0 round-trip
could be observed. During the raised RO stage, multiple pulses were generated in the
laser cavity, but only the strong ones eventually survived, and the others finally
collapsed.

After the RO stage, the soliton evolution experienced a spectral intensity oscil-
lation stage, a transient single pulse stage with Kelly sidebands, then a transient SM
state and finally a stable SM stage, as shown in Fig. 3.17. Figure 3.17 redraws the
platform of Fig. 3.16, where Figs. 3.17b, c are enlarged views of regions A and B in
Fig. 3.17a, respectively. The apparent oscillation behavior could be observed
between the RO and transient single pulse stage. The obvious oscillation behavior



was also seen during the evolution of the transient single pulse to the transient SM
state. Through the second oscillation process, one soliton was breaking into two
solitons. Then the two newly-generated solitons strongly interacted with each other
and entered into the bound state, which eventually evolved into a stable SM state.
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Fig. 3.16 Real-time measurement of the buildup process of a SM in a mode-locked laser (a) with
TS DFT and (b) without the TS DFT technique, respectively. Insets in (a), (b) are the pulses profiles
at the �570th and � 590th round-trip (red curve) and at the time (blue curve) of 34.5 ns,
respectively. P0 to P5 represent a pulse appearing on six spikes at the time of 34.5 ns. (Adapted
from Ref. [61])
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Fig. 3.17 Buildup dynamics of a SM with oscillation. (a) Real-time experimental results. (b) and
(c) are enlargement for the A and B regions in (a). (Adapted from Ref. [61])

It was found that the process of dissipative soliton buildup was sensitive to
external perturbations such as changes of the polarization state and the fluctuation
of the pump power. More complex transient process may occur before the buildup of
stable SM by using the nonlinear polarization rotation mode-locking technique.
Besides, the fluctuating pump power would induce multiple RO stages. More



complex and detailed dynamics are still needed to be investigated. In addition, Peng
et al. also investigated the buildup dynamics of dissipative SM through different
soliton interactions. They concluded that the buildup process of closely- and well-
separated bound solitons consist of three nonlinear stages, including mode locking,
soliton splitting, and soliton interactions [62]. The observed results are essential for
a better understanding of the buildup dynamics of the localized structures in dissi-
pative systems.
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3.6 Conclusion

In this chapter, we review the recent results on the buildup dynamics of solitons in
fiber lasers operating in different regimes. Before introducing the dissipative soli-
tons, we presented the buildup process of conventional soliton in an anomalous
dispersion fiber laser. From the background noise to a stable mode-locking state, the
pulse profile changes periodically and the transient structural solitons appear,
corresponding to the intensity oscillations in the spectral domain. Then we described
the buildup process of the dissipative soliton in a net-normal dispersion fiber laser.
The dissipative soliton buildup is similar to the conventional soliton in some aspects.
However, it is important to note that the spectral bandwidth oscillations and high
amplitude waves could be seen in the dissipative soliton buildup process, which is
different from those of the conventional solitons. In addition, we also briefly
discussed the dissipative soliton buildup process of a bidirectional mode-locked
fiber laser with net-normal dispersion and buildup dynamics of the dissipative SM in
the anomalous dispersion fiber laser.

However, the buildup dynamics in the time domain of the dissipative soliton are
not shown in detail in this chapter due to the limitation of measurement methods.
Recently, some researchers used time-lens measurement to obtain the fine details of
pulse evolution in the time domain. For example, P. Ryczkowski et al. employed the
time-lens technology to completely characterize the temporal evolution of ultrashort
dissipative solitons [63]. Thus, it is expected that the combination of DFT and time-
lens techniques could be employed to reveal the full features of dissipative soliton
dynamics in the future. We hope the results shown in this chapter will provide deeper
insights into the communities of nonlinear optics and ultrafast lasers dealing with the
physical science and industrial applications.
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Chapter 4
Dissipative Soliton Resonance

Georges Semaan, Andrey Komarov, Mohamed Salhi, and François Sanchez

Abstract Mode-locked fiber lasers capable of producing nanosecond level pulses
with high energy have many advantages for various applications. An increase in the
mode-locked pulse’s energy can be achieved by carefully choosing the cavity
parameters. Dissipative soliton resonance (DSR) mechanism leading to high energy
mode-locking has been reported in different fiber laser configurations. In the anom-
alous dispersion regime, this energy is not limited by the soliton area theorem. Under
DSR regime, by increasing the pump power, the pulse clamps its peak power while it
broadens in the time domain. Since this phenomenon is wave breaking free, it can be
useful in designing fiber lasers generating pulses with relatively high energies. In this
chapter, we describe the generation and control of DSR pulses in fiber lasers under
various mode-locking mechanisms. We also demonstrate that a multi-pulsing can be
observed in the form of harmonic generation of square pulses.

Keywords Fiber lasers · Dissipative solitons · Dissipative soliton resonance ·
Nonlinear optics · Mode-locking · Energy scaling · Erbium · Stretched pulses ·
Ultrashort pulses · Optical Kerr effect

4.1 Introduction

During the propagation of light in mode-locked fiber lasers, the energy and the
temporal profile of the optical soliton-shaped pulses are preserved. Since the laser is
characterized by a continuous energy flow, a strong balanced relationship between
gain and loss must exist for the soliton formation to occur. Basically, dispersion
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spreads the pulse in the time domain, while nonlinearity broadens it in frequency
domain. Thus, to produce stationary state in fiber laser, the balance between gain and
loss, dispersion and nonlinearity is needed. This fact exposes the dissipative nature
of solitons formed in a fiber laser [1, 2]. As a consequence, the energy dissipation
associated to the dispersion and the nonlinearity in the cavity leads to an interaction
of solitons and formation of multi-soliton complexes such as bound solitons, bunch
of solitons and soliton rains [3–8].
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The generation of high-energy pulses from a laser oscillator is a challenging
process because the Kerr nonlinearity combined with the dispersion generally lead to
a pulse break-up after the accumulated nonlinear phase has exceeded a certain level.
Such effects can be circumvented by employing significant temporal stretching of
the pulse inside the cavity, thus reducing the peak power while maintaining a large
spectral content. This strategy essentially incorporates chirped-pulse amplification
inside the laser oscillator [9–12].

In the last decade, alternative cavity designs for achieving stable stretched-pulse
operation with higher pulse energies has been explored. This progress allowed, in
2004, the implementation of the self-similar propagation of chirped parabolic pulses
in the passive part of the laser cavity, and the report of an increased pulse-energy
performance around 10 nJ per pulse [13]. Technically, the incorporation of self-
similarity inside a cavity relies on a subtle balance between normal dispersion and
nonlinearity. These parameters, acting together in a passive fiber, must be balanced
by spectral filtering, nonlinear gain and anomalous dispersion in the laser cavity,
thus performing a precise self-consistent pulse reshaping process. Indeed, having
unusually large intracavity gain and losses through spectral filtering, is important
and seems to be the key to obtain specific pulse regimes e.g. self-similarity. Self-
similar pulses or similaritons, are expanding pulses and completely different in
nature than solitons. While the transition from similariton to soliton dynamics is
performed by a spectral filter, this truncates the pulse in both the spectral and
temporal domains. Spectral filtering of a highly chirped pulse has a significant
clipping effect on the temporal pulse wings. When the cavity dynamics become
dominated by the composite balance between spectral filtering on one side, and
nonlinearity, dispersion and gain on the other side, the tendency of emitting pulses
with double-lobe optical spectra is confirmed. Ytterbium-doped mode-locked fiber
lasers employing such designs can produce pulses with energies above 20 nJ using
standard fiber technology [14–16]. In these oscillators, the strong dissipative effects
per roundtrip are essential in the pulse’s formation and stability. Dissipative solitons
are reported in fiber lasers regardless the dispersion sign, revealing dynamics that are
unusual to Schrödinger solitons.

Currently, there exists several techniques in the development of high pulse energy
mode-locked fiber laser oscillators. Perhaps the most efficient of these relies on the
use of micro-structured optical fibers where microjoule-level pulse energies have
been achieved [17]. Another trend is to shift mode-locking operation further into the



normal dispersion regime, thereby increasing the pulse chirping effect [18, 19]. To
remain compatible with today’s interests and available pumping powers, such
strategies are usually supplemented with an increased cavity length to reduce the
pulse repetition rate.
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Recently, an alternative conceptual approach known as DSR was proposed in the
context of pulse energy scaling [20–23]. Found initially in the framework of a master
equation describing the field evolution in a fiber laser with distributed intracavity
medium, complex dispersion, nonlinear refractive index, and nonlinear losses [24–
27], DSR describes dissipative solitons that acquire theoretically infinite energy
when the equation parameters approach a specific hyper-surface in the parameter
space [21]. In practice, this implies that oscillators could be designed so that the
pulse energy could increase linearly with the pumping power without suffering pulse
break-up, within a narrow range of laser parameters. Pulses close to DSR region
share common features, such as a clamped peak power and a finite spectral band-
width, therefore, the boost in energy causes the duration of the chirped pulse to
increase [28, 29].

The experimental demonstration of high energy mode-locked pulses directly
from the laser cavity has been widely investigated. The variety of setups and
experiments reported have extended length cavities with low repetition rates and
relatively large value of net cavity dispersion. It has also been shown that the high
nonlinearity plays an important role in widening the pulse [30]. In the DSR region,
the generation of high energy square pulses has been demonstrated regardless the
sign of the dispersion or the mode-locking mechanism. Thus, DSR square pulses
have been documented in long cavities employing standard single mode amplifiers
[30–37]. However, due to the limited gain of purely single-mode active fibers in
these configurations, the output pulse energy is relatively low in the order of few to
hundreds of nanojoules. Therefore, the obvious solution to increase energies of
pulses generated in all-fiber lasers would be to use double-clad doped fibers, offering
high gain and efficiency. The first demonstration of double-clad Er:Yb laser operat-
ing in DSR regime was reported in a figure-of-eight (F8L) fiber laser with a pulse
energy of 2.12 μJ [38]. Later, highly energetic DSR pulses in fiber ring laser
achieving 2.27 μJ [39] and in a F8L double amplifier configuration with a record
pulse energy of 10 μJ energy [40] have been reported. Shortly after, a novel Figure-9
fiber laser setup was proposed [41].

In this chapter, we will use a numerical approach to verify the conditions of
generation DSR pulses in a laser cavity, then we will focus on the demonstration of
DSR square pulses and their dynamics in two main lasers configurations: the fiber
ring laser and the nonlinear amplifying loop mirror (NALM). We will also demon-
strate the possibility of pulse splitting in the DSR regime under certain
circumstances.
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4.1.1 Numerical Approach: Propagation in an Oscillator
with a Saturable Absorber (SA)

In the framework of isotropic fibers that exhibit optical Kerr nonlinearity, let us use
the modified scalar nonlinear Schrödinger equation to describe the evolution of the
field in the fiber laser:

∂A
∂z

þ i
2

i
g

Ω2
g

þ β2

 !
∂2A
∂t2

� 1
2

g� αð ÞA ¼ iγ Aj j2A

where A is the slowly varying electric field envelope, z is the propagation distance,
t is the pulse local time, γ is the fiber nonlinearity described as γ ¼ 2πn2

λAeff
(n2: the

nonlinear refractive index, λ: central wavelength and Aeff: effective mode area), β2 is
the group velocity dispersion, α is the linear loss coefficient of the fiber and Ωg is the
bandwidth of the laser gain. The gain function of the active medium is expressed as:

g ¼ g0
1þ Ep

Esat

where g0 is the small signal gain, Esat is the gain saturation energy which relates to
the pumping strength and Ep is the pulse energy given by:

Ep ¼
ZT=2

�T=2

Aj j2dt

where T is the cavity roundtrip time.
The SA used in the model is considered as a lumped element. The total nonlinear

transmission coefficient is expressed as:

T Ið Þ ¼ 1� α0
1þ I=Isat

� αns

where α0 is the modulation depth, αns is the non-saturable absorption, I is the
instantaneous pulse intensity and Isat is the saturation intensity of the SA.

Starting with random noise as an initial condition, steady state is achieved after
50 roundtrips. By appropriately choosing the cavity parameters, self-started mode-
locking can be achieved, and different pulse distribution can be obtained [42]. Fig-
ure 4.1 depicts the evolution of DSR characteristics as function of the pumping
power, for Esat ¼ 0.5 nJ and g0 varying from 0 to 3 m�1. In Fig. 4.1a, the Gaussian-
like pulse evolves into a square shaped pulse and its width gradually increases from
20 to 100 ps, whereas in Fig. 4.1b, Ep increases linearly from 0.2 to 6 nJ.
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Fig. 4.1 DSR evolution with small signal gain. (a) Pulse evolution, and (b) pulse energy evolution

Basically, when the pump power is high enough, the transmission of the SA
decreases as the peak power increases, which leads to larger losses encountered by
the pulse in the SA. Subsequently, when the peak power reaches a certain level, the
effective gain in the central region of the pulse becomes equivalent to the dynamical
loss that it experiences, and at this point the pulse peak power is clamped. Therefore,
further increase in the pump power leads to the increase of the pulse width rather
than its peak power. Meanwhile, the chirp is moderately low in the central region of
the pulse because of the small pulse power gradients variations near the center. So,
most of the pulse energy is accumulated near the central wavelength of the pulse
spectrum. Therefore, the spectral bandwidth of the pulse decreases as the small
signal gain increases and it is smaller than the bandwidth of the spectral filter as
exhibited in Fig. 4.2 [43, 44].
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Fig. 4.2 Optical spectra of the square pulses under different small signal gains for Esat ¼ 0.5 nJ.
(Figure reconstructed based on Ref. [42])

4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers

The numerical simulations were realized with a real SA model, but it could also be
done with nonlinear polarization evolution (NPE) or optical loops in order to obtain
DSR pulses. The generation of these pulses does not depend on the mode-locking
mechanism confirming their universality. Let us illustrate the observation of DSR
pulses in fiber lasers and discover their singular features.

4.1.2.1 Experimental Features of DSR Pulses

Intrinsically, DSR pulses are square-shaped mode-locked pulses with a pulse width
and energy scalable with the pump power whereas the peak power is clamped. Both
theoretical and experimental investigations suggest that parameters of generated
pulses should strongly rely on dispersion of the resonator and typically require
large values.

Each oscillator has a lasing and mode-locking threshold. By carefully setting the
adapted cavity parameters, the mode-locked square-wave pulses can be directly
obtained. Let us take the case of an NPE setup illustrated in Fig. 4.3, as an example
in this section for visualization purpose. If the polarization controllers are altered
during the experiment, the established distribution remains stable most of the time
till we have a pulse breaking and multiple square pulses appear. Figure 4.4 shows a
stable square-wave pulse emission of the laser obtained with 4.7 W of pumping



EYDFA

PC 2PC 1 IP

OC
ISO

SMF

power. It depicts a single wavelength emission centered around 1565 nm with a 3-dB
bandwidth of 4 nm. The pulse train in Fig. 4.4b shows a relatively large single pulse
per cavity roundtrip where the pulse width is about 416 ns [40].
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Fig. 4.3 Experimental
setup of a fiber ring cavity.
EYDFA Erbium-Ytterbium
doped fiber amplifier, OC
output coupler, PC
polarization controller, IP
inline polarizer, ISO
isolator, SMF single mode
fiber

Fig. 4.4 Square-wave pulse emission of the laser at a fundamental frequency of 133 kHz and with
4.7 W of pumping power. (a) Pulse train of the temporal trace. (b) Temporal profile of single
square-wave pulse

Fig. 4.5 Square-wave pulse emission of the laser. (a) Optical spectrum, and (b) Temporal profile of
single square-wave pulse

There has also been reports on the generation of DSR pulses in fiber lasers with
spectral doublet or dual-wavelength emission. Such two peaks spectrum has exper-
imentally observed in DSR regime [45] and numerically demonstrated in fiber lasers
[46]. In Fig. 4.5a, the first band is centered on 1566 nm with 8.5 nm of spectral



¼

bandwidth at �3 dB while the second band is centered on 1618 nm with 7 nm of
spectral bandwidth at �3 dB. The spectral distance between the spectral peaks is
45 nm. The output pulse is square shaped and has a width of around 190 ns as in
Fig. 4.5b.
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Fig. 4.6 Autocorrelation trace of the generated square-wave pulses: (a) large DSR pulse autocor-
relation trace. (Figure reconstructed based on the results in Ref. [49]), and (b) autocorrelation trace
of a ps range DSR pulse. (Figure reconstructed based on the results in Ref. [48])

When the pulses are very large, the low scanning range of the autocorrelator
compared to the pulse width exhibits a constant level trace as in Fig. 4.6a. It shows
there is not a coherent peak nor fine structures confirming that we are not in the
presence of noise-like square-wave pulses [47]. Whereas, when the pulse width is in
the picosecond range, the autocorrelator can produce a quasi-triangular profile
corresponding to a square pulse as in Fig. 4.6b [48].

Another intrinsic feature of DSR pulses is their stability and radiofrequency
profile. The signal to noise ratio is usually around 60 dB confirming that DSR pulses
are very stable in the cavity, whereas the RF profile is a cardinal-sine envelope
exhibiting characteristics modulation with periods corresponding to the width of the
generated pulses as in Fig. 4.7.

In contrast with conventional solitons and short pulses, square shaped DSR pulses
react differently to the increase of pump power in the cavity. Free from the soliton
area theorem, their energy and width increase linearly with the pump power.
Experimentally, most of the parameters should be fixed and only the power is kept
variable. This results in increasing the pulse width while the peak is being clamped
as in Fig. 4.8. The width of the pulse is related to the cavity roundtrip time, so the
longer the cavity the bigger the possibility of obtaining larger pulse width [50]. In
Fig. 4.8, pulse width is tuned from few nanoseconds to around 200 ns. The energy of
the pulse is related to the average power Paverage and the free spectral range f through
the relation E Paverage

f , so the longer the cavity, the higher the energy of the pulses.
These results confirm the theoretical prediction in [51] where it was reported that

when the peak power reaches the clamping region, the pulse width increases with the
pump power. This behavior is depicted in Fig. 4.9.
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Fig. 4.7 Radiofrequency
profile of a typical DSR
pulse
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Fig. 4.8 Evolution of the pulse characteristics versus pump power: (a) Pulse width and energy, (b)
Pulse width and peak power

Fig. 4.9 Figure reconstructed based on data appeared originally in [51]. (a) Temporal evolution of
the pulse vs. pump power. (b) Spectral evolution of pulse profile vs. pump power
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4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier
Configuration

Since the DSR operational mode does not depend on the mode-locking mechanism
nor the dispersion sign, experimental verification of this distinctive pulsed mode has
been provided for several configurations. In the NALM configuration, it was dem-
onstrated that the peak power clamping in the dissipative soliton regime can be
explained by investigating the NALM transmission as a function of peak pulse
power [34]. Conventionally in the DSR region, pulse width and energy can be
tuned in certain range whereas the peak power remains at a stable level. By adjusting
the gain in both loops, it was reported that the DSR pulse’s characteristics can be
controlled independently: the gain in the UR affects only the peak power by keeping
the pulse width unchanged, whereas the gain in the NALM allows the tuning of the
pulse width without altering the level of the peak power. In this section, the
experiment in [34] is reexamined by introducing double-clad amplifiers instead of
the standard amplifiers in both loops, and the results are compared to the previous
ones in [34].

The experimental setup sketched in Fig. 4.10 is based on an all-fiber figure-of-
eight laser cavity. It consists of a main unidirectional ring cavity (UR) connected to a
nonlinear amplifying loop mirror NALM by a 70/30 fused fiber coupler to have an
asymmetric light distribution in both paths of the NALM. The main cavity is
composed of a C-band double-clad co-doped Er:Yb 30 dBm fiber amplifier
(EYDFA1). The wideband polarization insensitive isolator (ISO) is inserted between
the amplifier and the output coupler to block the counter-clockwise wave. A 1 km
SMF coil (SMF1) is inserted after the output coupler to increase the nonlinearities
and the round-trip time of the cavity. The mode-locking is achieved thanks to the
intensity-dependent transmission of the NALM. The latter is composed of another
30 dBm C-band double-clad co-doped Er:Yb fiber amplifier (EYDFA2). A 500 m
SMF coil (SMF2) is inserted after the amplifier to increase the asymmetric nonlinear
phase shift between the clockwise and counterclockwise propagating light in the
NALM. The total cavity length is about 1536 m and the net cavity dispersion is about
33.23 ps2. The round-trip time is 7.65 μs corresponding to a free spectral range of

EY
D

FA
 1

PCOCISO SMF 1
EYDFA 2

PC

IC

SMF 2

UR                                         NALM

Fig. 4.10 Experimental setup of a figure-of-eight laser setup. EYDFA: Erbium-Ytterbium doped
fiber amplifier, OC: output coupler, PC: polarization controller, IC: intracavity coupler, ISO:
isolator, SMF: single mode fiber



133 kHz. The choice of cavity length and internal coupler is based on different
experiments to get a good compromise between the stability of the desired square-
wave distribution and the maximal energy per pulse [52].
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Fig. 4.11 Evolution of pulse characteristics EYDFA1: (a) temporal trace of the DSR pulse, and (b)
pulse energy and peak power scaling

The cavity parameters are fixed when the square wave pulse state is achieved and
only one pumping power is varied at a time in order to analyze the dependence of the
peak power and pulse width versus the pump power of both amplifiers. While
EYDFA2 is fixed to 1.7 W, amplifier EYDFA1 is tuned from 500 mW to its
maximum of 3 W. Experimental results given in Fig. 4.11 shows the dependence
of the pulse waveform versus EYDFA1. When the pump power is increased, the
output pulse width remains constant at about 416 ns, whereas the peak power
increases linearly. The output power of the laser increases from 250 mW to
1.333 W. Considering the output power, the laser’s repeating frequency and the
pulse width, the peak power of the square-wave pulse changes from 5 to around
24 W. EYDFA1 controls the pulse energy and peak power as shown in Fig. 4.11a, b.
By increasing the gain in the UR, the peak power of the pulses increases while the
pulse width remains constant in agreement with theoretical [42] and experimental
results [34].

To verify the effect of EYDFA2, the pump power of EYDFA1 is set to 3 W and
EYDFA2 is tuned from 150 mW to 1.7 W. With the increase of pump power, the
square-wave pulse width and energy per pulse start increasing linearly as presented
in Fig. 4.12. Note that, according to Fig. 4.12b, the peak power undergoes a slight
modification caused by the variation of the ratio of pulse energy to pulse width.

If EYDFA1 is turned off, pulse characteristics can be controlled independently
and the results are similar to [34], where the peak power remains nearly constant
while the pulse duration linearly increases with EYDFA2. This behavior has been
theoretically investigated in [42] where it was shown that the effect of the amplifiers
was independent even when EYDFA1 was operating. However, this result was
established by a specific set of parameters. Preliminary results of recent simulations
seem to demonstrate that for other sets of parameters the effects of the amplifiers are
not independent.
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Fig. 4.12 Evolution of pulse characteristics EYDFA2: (a) Temporal trace of the DSR pulse, and
(b) pulse energy and width scaling

4.2 Multi-pulsing Instabilities in DSR Regime

Although in the DSR regime pulses theoretically resist to perturbations, hence the
term wave-breaking free pulses, multipulse operation is still possible. Komarov et al.
have numerically demonstrated that an initial multipulse field with different ampli-
tudes can evolve into a steady-state multipulse operation in DSR regime, where the
number of pulses depends on the initial conditions [6]. In 2016, Armas-Rivera et al.
have observed that a single DSR pulse can be transformed to multiple trapezoid-
shaped pulses per roundtrip at high pump power [53]. In 2017, harmonic DSR pulses
in anomalous dispersion Er-doped fiber ring lasers were experimentally and numer-
ically investigated [49, 54, 55]. Similarly, DSR pulse splitting in normal dispersion
fiber lasers were observed and the dynamics were numerically investigated
[56, 57]. The entire splitting process from one single pulse to multiple DSR pulses
and its mechanism has been recently numerically demonstrated in Yb-doped fiber
laser [58].

The schematic of the proposed fiber ring laser based on NPE mode-locking
mechanism is the same used in previous experiments as shown in Fig. 4.3. The
total cavity length is 300 m, the net cavity dispersion is about �6.6 ps2. The round-
trip time of the cavity is 1.488 μs corresponding to a free spectral range of 672 kHz.
The laser can operate in different regimes by carefully adjusting the polarization
controllers through the variation of both the linear and nonlinear losses of the cavity.
Stable mode-locking in the square pulse DSR regime was achieved with proper
adjustment of the polarization controllers at 400 mW pump power. The pulse width
was tunable from 95 ns to 270 ns, the pulse energy from 140 nJ to 409 nJ by
increasing the pump power at fixed PC orientation while the peak power remains
clamped. The pulse duration and the pulse energy can be quasi-linearly increased



with the pumping power without significantly affecting the peak power. Under
specific rotation of polarization controllers’ paddles, the single square pulse packet
can split into two or more pulses having the same shape as the original square pulse
but with a smaller extent. Consequently, the laser evolves into a higher harmonic
DSR mode-locking as in Fig. 4.13.
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Fig. 4.13 Harmonic mode locked DSR square pulses train of different orders achieved by adjusting
the PC. Each color is assigned to different pumping power (red for 1.18W, blue for 1.6W and green
for 2.2 W). (Figure reconstructed based on data appeared in Ref. [49])

When the pump power is increased from 1.18 W to 2.2 W while carefully
controlling the polarization state inside the cavity, a harmonic distribution of square
pulses is generated and the order increases from 2nd to 13th. Above 2.2 W, no
increase in the harmonic order has been detected. The square pulse width ranged
from 102 ns at the fundamental frequency to 18 ns at the 13th harmonic order. The
characteristics of the harmonic distribution are in agreement with the DSR pulse
profile as shown in Fig. 4.14. The output energy per pulse at a fixed pump power of
1.18 W, follows a scaling law of 1/n where the pulse energy is inversely proportional
to the harmonic order. This is mainly since the average output power remains nearly
unchanged.
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Fig. 4.14 Evolution of the 4th order harmonic mode-locked square pulse’s characteristics: pulse
width, energy, and peak power versus pump power

4.3 Chapter Summary

We have discussed the generation of square pulses operating in the dissipative
soliton resonance regime in passively mode-locked fiber lasers. Different methods
of mode-locking have been considered which proves the universality of this emis-
sion. From a numerical perspective, we demonstrated the possibility of obtaining
square shaped DSR pulses in a laser cavity, and we presented the dynamics of such
pulses. We also reported experimentally the features of DSR pulses, and the possi-
bility of controlling the characteristics of the DSR square pulses by means of dual
amplification in a figure-of-eight. Apart from the emission of DSR pulses, we
demonstrated that even in the DSR regime, there exists instabilities depending on
the parameters of the laser cavity, which lead to a harmonic distribution of the square
pulses. The obtained results are records in energy scaling in a single fiber oscillator
thus demonstrating the keen interest of DSR regime in energy scaling process.
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Chapter 5
Ultra-Short High-Amplitude Dissipative
Solitons

Sofia C. Latas, Margarida V. Facão, and Mário F. S. Ferreira

Abstract Starting from a singularity found by Akhmediev and co-workers, very
high-amplitude (VHA) solitons of the cubic-quintic complex Ginzburg-Landau
equation are predicted by the soliton perturbation theory. The propagation and
the main characteristics of such VHA solitons are investigated numerically and
using the method of moments both in the normal and anomalous dispersion regimes.
The region of existence of these pulses is found numerically in the plane defined by
the dispersion and the nonlinear gain saturation parameters. In general, numerical
computations are in good agreement with the predictions based on the method of
moments when a quartic trial function is assumed. High-energy ultrashort pulses are
found mainly in the normal dispersion region, which agrees with the experimental
observations reported by other authors. The impact on VHA solitons of some of
higher order effects, namely, the intra-pulse Raman scattering (IRS) and the third-
order dispersion (TOD) has been studied. We have found that the singularity giving
origin to VHA pulses is no longer present if the intra-pulse Raman scattering effect is
considered and zero velocity pulses may be achieved in the presence of both IRS
and TOD.

Keywords Optical solitons · Dissipative solitons · High-energy solitons · Complex
Ginzburg-Landau equation · Soliton perturbation theory · Method of moments ·
Higher-order effects · Intrapulse Raman scattering · Third-order dispersion

5.1 Introduction

High-energy ultra-short optical pulses can be generated by passivelymode-locked fiber
lasers and they are of great importance for a variety of applications [1–5]. In particular,
they can be used to develop broadband supercontinuum light sources [2] that play a
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very important role in several biomedical andmedical applications [4–8]. They can also
be used, for example, in the acceleration of charged particles [9], in molecular finger
printing [10], fabrication of optical couplers [11] optical communications [12], and
optical microscopy [13].
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A common approach to describe passively mode-locked lasers is an average
model in which the effects of discrete laser components in the cavity are averaged
over one round trip [14–17]. The resulting master equation is the cubic-quintic
complex Ginzburg Landau equation (CGLE) or a generalized version of it.

The study of pulsed dynamics in the framework of the CGLE has provided an
adequate explanation of several unusual single and multiple-pulse phenomena that
have been observed in mode-locked lasers, such as self-pulsations [18], explosions
[19], and the formation of multi-soliton complexes [20]. Such studies have been also
of fundamental importance in the development of the concept of dissipative solitons
(DSs) [21, 22]. Generally, a DS implies a composite balance between dispersion,
nonlinearity, gain and loss [23, 24]. In addition to typical DS, the concept of
dissipative soliton resonance (DSR) has also been proposed to achieve high-energy
wave-breaking-free pulses [25–30]. With the increase of pump power, the energy of
a DSR pulse increases mainly due to the increase of the pulse width, while keeping
the amplitude at a constant level. In order to obtain high-energy ultrashort pulses, a
linear pulse compression technique has to be used outside the laser cavity.

In this Chapter we discuss a different kind of high-energy ultrashort pulses, which
correspond to the very high amplitude (VHA) soliton solutions of the CGLE
[31, 32]. These VHA solutions occur due to a singularity first predicted both
numerically and using the soliton perturbation theory in Refs. [33, 34], namely, as
the nonlinear gain saturation effect tends to vanish. The increase in energy of these
pulses is mainly due to the increase of the pulse amplitude, whereas the pulse width
becomes narrower. Using this approach, high-energy ultrashort pulses can be
obtained without using any additional pulse compression technique. High energy
pulses are found mainly in the normal dispersion region, which is in agreement with
the experimental observations. Indeed, the majority of observations of high energy
pulses from passively mode- locked lasers, both fiber and solid-state ones, are in the
normal dispersion regime of operation, [21, 22, 24].

This Chapter is organized as follows: In Sect. 5.2 we present the governing
equation, which corresponds to the cubic-quintic complex Ginzburg-Landau equa-
tion. In Sects. 5.3 and 5.4 we present the soliton perturbation theory and the method
of moments, respectively. In Sect. 5.5 we describe the very high amplitude (VHA)
solutions of the CGLE, whereas in Sect. 5.6 we analyze the effects of dispersion on
such pulses. Section 5.7 discusses the impact of some higher-order effects, namely
the intrapulse Raman scattering and the third-order dispersion, on VHA solitons.
Finally, Sect. 5.8 summarizes the main results.
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5.2 The Cubic-Quintic Complex Ginzburg-Landau
Equation

The cubic-quintic complex Ginzburg Landau equation can be written in the form
[35–37]:

i
∂q
∂Z

þ D
2

∂2q
∂T2 þ qj j2q ¼ iδqþ iβ

∂2q
∂T2 þ iε qj j2qþ iμ qj j4q, ð5:1Þ

where Z is the normalized propagation distance, T is the retarded time, q is the
normalized envelope of the electric field respect β stands for spectral filtering (β > 0),
δ is the linear gain or loss coefficient, ε accounts for nonlinear gain-absorption
processes (for example, two-photon absorption), and μ represents a higher-order
correction to the nonlinear gain-absorption. On the left-hand side, D represents the
cavity group velocity dispersion, with D > 0 in the anomalous regime and D < 0 in
the normal regime.

Equation (4.1) has been used to model the propagation of optical pulses in soliton
transmission systems [35–37]. It has been also used as a master equation to describe
the behavior of solid-state lasers [38] and mode-locked fiber lasers [39–41]. The
relations between the physical parameters describing a ring fiber laser mode locking
through nonlinear polarization rotation and the coefficients of CGLE have been
derived in [42].

Equation (5.1) becomes the standard nonlinear Schrödinger equation (NLSE)
when the right-hand side is set to zero. When this does not happen, Eq. (5.1) is
non-integrable, and only particular solutions can be obtained. The soliton perturba-
tion theory can be used in the anomalous dispersion regime (D > 0) for small values
of the parameters [37]. In the case of the cubic CGLE (μ¼ 0), exact solutions can be
obtained using a special ansatz [43], Hirota bilinear method [44] or reduction to
systems of linear PDEs [45]. Concerning the quintic CGLE, the existence of soliton-
like solutions in the case ε > 0, as well as sources, sinks and fronts with fixed velocity
have been demonstrated both analytically and numerically [36, 46]. Analytical
solutions can be presented explicitly only for certain relations between the param-
eters of the equation. Furthermore, so far, only stationary solutions of the CGLE are
known in analytical form. Actually, several types of localized pulsating solutions of
the CGLE have been also found numerically [47–53]. Approximate expressions for
some of these localized solutions can be derived for arbitrary values of the CGLE
parameters by reducing this equation to finite-dimensional dynamical models. The
reduced models can be obtained by applying the method of moments [54], or
Lagrangian techniques [55–59].
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5.3 Soliton Perturbation Theory

If all the coefficients in the right-hand side of Eq. (5.1) are small, the CGLE can be
considered as a perturbed NLSE of the form

i
∂q
∂Z

þ D
2

∂2q
∂T2 þ qj j2q ¼ iP qð Þ ð5:2Þ

where P(q) represents the various perturbations. Considering the case D ¼ +1
(anomalous dispersion regime), the soliton solution has the same form as the
fundamental bright soliton of the NLSE but with parameters evolving in Z, namely

q T , Zð Þ ¼ ηsech η T þ κZ � T0ð Þ½ � exp �iκT þ i
2

η2 � κ2
� �

Z þ iσ
�

: ð5:3Þ

This soliton solution is characterized by four parameters: the amplitude η (also the
pulse width), the frequency κ (also the pulse speed), the time position T0 and the
phase σ. The soliton amplitude and width are coupled in Eq. (5.3), such that there is
an inverse relationship between these two quantities.

The evolution of the four soliton parameters can be described using the soliton
perturbation theory (PT), which provides the following equations [37].

dη
dZ

¼ Re
Z1
�1

P qð Þq�dT ð5:4Þ

dκ
dZ

¼ �Im

�1
P qð Þ tanh η T � T0ðð Þq�dT ð5:5Þ

dT0

dZ
¼ �κ þ 1

η2
Re

�1
P qð Þ T � T0ð Þq�dT ð5:6Þ

dσ
dZ

¼ 1
2

η2 � κ2
� �þ T0

dκ
dZ

þ 1
η
Im

�1
P qð Þ 1� η T � T0ðð Þ tanh η T � T0ð Þ½ q�dT

ð5:7Þ

where Re and Im stand for the real and imaginary parts, respectively. Equations
(5.4), (5.5), (5.6) and (5.7) are used extensively in the theory of soliton communi-
cation systems [60–62].

In the case of Eq. (5.1), we have

P qð Þ ¼ δqþ β
∂2q
∂T2 þ ε qj j2qþ μ qj j4q ð5:8Þ



Substituting Eq. ( ) in Eqs. ( ), ( ), ( ) and ( ), we obtain the following5.75.65.55.45.8

dκ 4

dT

dσ 1 dκ

¼
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evolution equations for the soliton parameters:

∂η
∂Z

¼ 2δη� 2βη
1
3
η2 þ κ2

� �
þ 4
3
εη3 þ 16

15
μη5 ð5:9Þ

dZ
¼ �

3
βη2κ ð5:10Þ

0

dZ
¼ �κ ð5:11Þ

� �
dZ

¼
2

η2 � κ2 þ T0 dZ
ð5:12Þ

As can be seen from Eq. (5.10), the soliton frequency approaches asymptotically to
κ ¼ 0 (stable fixed point) if η 6¼ 0. Considering the case of cubic CGLE (μ ¼ 0), a
stationary soliton amplitude ηs ¼ 1 is achieved when the following relation is
verified:

3δþ 2ε� β ¼ 0 ð5:13Þ

The substitution of (5.13) into (5.9) leads to the following equation for the soliton
amplitude in the vicinity of the stationary point (κ 0):

dη
dZ

¼ 2δη 1� η2
� � ð5:14Þ

We can verify that the soliton amplitude is stable to small perturbations for δ > 0,
though the system returns to the steady-state more slowly when δ decreases.
However, the background is not stable when δ > 0, since the linear waves are also
amplified by the excess gain, leading to a destructive interference with the soliton
[37]. On the other hand, the pulse amplitude η ¼ 1 is no more a stable state when
δ < 0, since any perturbation would lead to the collapse or to the decayment of the
soliton. The final conclusion is that either the pulse or the background is unstable in
the case of a cubic CGLE.

In general, the stable fixed points for the soliton amplitude can be found by
looking for the minimums of the potential function ϕ defined by:

dη
dZ

¼ � dϕ
dη

ð5:15Þ

Considering the Eq. (5.9), we have the following expression for the potential
function:

φ ηð Þ ¼ �δη2 þ 1
6

β � 2εð Þη4 � 8
45

μη6 ð5:16Þ



For the zero-amplitude state to be stable, the potential function must have a mini-

� �

¼ �
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mum at η ¼ 0, in addition to a minimum at η ¼ ηs 6¼ 0. These objectives can be
achieved if the following conditions are verified [37, 63]:

δ < 0, μ < 0, ε > β=2, 15δ > 8μη4s ð5:17Þ

We can verify from the above conditions that the inclusion of the quintic term in
Eq. (5.1) is necessary to have the double minimum potential.

The stationary value for the soliton amplitude can be obtained from Eq. (5.9) and
is given by:

η2s ¼
�5 ε� β=2ð Þ � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε� β=2ð Þ2 � 24δμ=5

q
8μ

ð5:18Þ

From Eq. (5.18) it can be seen that, for ε > β/2, there are two real solutions for the
stationary amplitude. Moreover, we observe that the higher amplitude solution
grows to infinity when the nonlinear gain saturation parameter tends to zero. This
corresponds a singularity first reported in Refs. [33, 34], which provides the possi-
bility of observing the very high amplitude pulses discussed in this chapter.

Equation (5.18) shows that a stationary amplitude ηs ¼ 1 occurs when the
coefficients satisfy the relation:

15δþ 5 2ε� βð Þ þ 8μ ¼ 0 ð5:19Þ

The discriminant in Eq. (5.18) must be greater than or equal to zero for the solution
to exist. For given values of β, μ, and ε, the allowed values of δ to guarantee a stable
pulse propagation must satisfy the condition δmin δ 0, where

δmin
5 ε� εsð Þ2

24μ
ð5:20Þ

where εs ¼ β/2. When δ ¼ 0, the peak amplitude is found to achieve a maximum
value:

ηmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 5
4

ε� εsð Þ
μ

r
ð5:21Þ

For μ 0 and ε εs the peak amplitude becomes arbitrary.
On the other hand, for given values of β, μ, and δ, the minimum value of allowed

ε becomes

εmin ¼ εs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24δμ=5

p
ð5:22Þ
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5.4 Method of Moments

Approximate stationary solutions of Eq. (5.1) for arbitrary values of the parameter
can also be obtained using the method of moments (MM), [23, 26, 54, 64]. This
method provides a reduction of the complete evolution problem with an infinite
number of degrees of freedom to the evolution of a finite set of pulse characteristics
[23]. For a localized solution with a single maximum, these characteristics include
the peak-amplitude, pulse width, center-of-mass position, and phase parameters. A
full description of this method can be found in Refs [23, 26, 54] and references
therein.

The method of moments makes use of the integrals for the energy and the
momentum M, as given by

Q ¼
Z1

�1
qj j2dT ð5:23Þ

M ¼ 1
2
�1

q
∂q�

∂T
� q� ∂q

∂T
dT: ð5:24Þ

as well as of the higher-order generalized moments:

I1 ¼
Zþ1

�1
T qj j2dT ð5:25Þ

I2 ¼
�1

T � T0ð Þ2 qj j2dT ð5:26Þ

I3 ¼
�1

T � T0ð Þ q�qT � qq�TdT
� ð5:27Þ

where T0 I1/Q.
The energy and the momentum, as well as the above three higher-order moments,

are conserved quantities of the nonlinear Schrödinger equation. For Eq. (5.1), they
are not conserved but satisfy the following truncated set of first-order ordinary
differential equations [23, 26, 54]:

dQ
dZ

¼ i

Zþ1

�1
qR� � q�Rð ÞdT ð5:28Þ



Zþ1

Zþ1

Zþ1 � � Zþ1
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dM
dZ

¼ �i

Zþ1

�1
qTR

� þ q�TR
� �

dT ð5:29Þ

dI1
dZ

¼ iDM þ i

�1
T qR� � q�Rð ÞdT ð5:30Þ

dI2
dZ

¼ �iDI3 þ i

�1
T � T0ð Þ2 qR� � q�Rð ÞdT ð5:31Þ

dI3
dZ

¼ 2M
dT0

dz
þ i

�1
2D qTj j2 � qj j4 dT þ 2i

�1
T � T0ð Þ

� qTR
� þ q�TR

� �
dT þ i

Zþ1

�1
qR� þ q�Rð ÞdT ð5:32Þ

where qT represents the derivative of q relative to T, q� is the complex conjugate of
q and

R ¼ iδqþ iβ
∂2q
∂T2 þ iε qj j2qþ iμ qj j4q ð5:33Þ

Let us consider the following commonly used higher-order Gaussian trial function
[23]:

q T ,Zð Þ ¼ A exp � T2

w2 �
T4

w4

� �
exp iCT2

� � ð5:34Þ

where A is the soliton amplitude, w is the soliton width, and C is the soliton chirp.
Since the solutions we are looking for are symmetric, with zero (transverse) velocity,
some of the moments are identically zero, and the nonzero moments obtained for the
above trial function are:

Q ¼ 1:051A2w, I2 ¼ 0:145Qw2, I3 ¼ 4iCI2 ð5:35Þ

A second trial function is related to the previous one but it involves only a quartic
term, which is considered more appropriate for pulses with extremely values of high
energy [26]:

q T , Zð Þ ¼ A exp � T4

w4

� �
exp iCT2

� � ð5:36Þ



�

dw 2 142β 0 290Qε 0 325Q μ
�

dC 1 6 453D 1 237Q
�

�

dw 0 388 0 162Q 0 138Q
�

dC 1 3D 0 577Q
�
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The nonzero moments obtained for the above trial function are:

Q ¼ 1:524A2w, I2 ¼ 0:239Qw2, I3 ¼ 4iCI2 ð5:37Þ

Inserting (5.34) into the equations of the method of moments [23, 26], we obtain the
following evolution equations for the soliton parameters [26]:

dQ
dZ

¼ Q 2δ� 2:738β
w2 � 1:158C2w2β þ 1:433Qε

w
þ 1:146Q2μ

w2

�
ð5:38aÞ

2
�

dZ
¼ w 2CDþ :

w2 � 0:874C2w2β � :
w

� :

w2 ð5:38bÞ
�

dZ
¼

w2 �2C2w2Dþ :

w2 � :
w

� 19:624Cβ ð5:38cÞ

Considering the trial function given by Eq. (5.36), we obtain the following evolution
equations [32]:

dQ
dZ

¼ Q 2δ� 2:868β
w2 � 1:912C2w2β þ 1:103Qε

w
þ 0:654Q2μ

w2

�
ð5:39aÞ

2
�

dZ
¼ w 2CDþ : β

w2 � 1:136C2w2β � : ε
w

� : μ
w2 ð5:39bÞ

�
dZ

¼
w2 �2C2w2Dþ

w2 �
:
w

� 16:74Cβ ð5:39cÞ

It can be seen that both systems given by Eqs. (5.38) and (5.39) are structurally
similar, differing only in the values of the coefficients of each term.

5.5 Very-High Amplitude CGLE Solitons

Figure 5.1 shows the stationary amplitudes, ηS, given by Eq. (5.18), against the
nonlinear gain saturation parameter, μ, for δ ¼ �0.1, ε ¼ 0.35, and four different
values of the filter strength: β ¼ 0.05, 0.1, 0.2, and 0.5. For each set of parameter
values, two different solutions are obtained: small amplitude (SA) solutions, i.e.,
ηS ≲ 1, and very high amplitude (VHA) solutions, i.e., ηS � 1. As μ ! 0� the SA
solution remains almost unchanged, whereas the amplitude of the VHA solution
tends to infinity, i.e., shows a singularity. In general, the amplitude of the VHA
solution is higher for a lower value of the filter strength.

Figure 5.2 shows the stationary amplitude against the nonlinear gain parameter, ε,
for two different values of nonlinear gain saturation, μ. In each case, four different
values of the filter strength, β, are considered.
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Fig. 5.1 Stationary amplitude, ηS, against the nonlinear gain saturation parameter, μ, for different
values of the filter strength: β¼ 0.05 (thin solid curve), β¼ 0.1 (thick solid curve), β¼ 0.2 (dashed-
dotted curve) and β ¼ with per0.5 (dashed curve). The other parameter values are δ ¼ �0.1 and
ε 0.35. (Reprinted with permission from [31] © The Optical Society)

It follows from Fig. 5.2 that, for each value of the spectral filtering parameter, β,
there is a minimum value of the nonlinear gain, ε0, below which there are no
solutions (ε0 	 β/2). For values of ε above this threshold, a bifurcation occurs and
both SA and VHA solutions exist. As in the case of Fig. 5.1, the VHA solution
exhibits higher amplitude for weak spectral filtering. The amplitude of the VHA
solutions grows with ε, assuming higher values when the magnitude of μ is reduced.

The numerical simulation of pulse propagation is illustrated in Fig. 5.3 consider-
ing (a) μ ¼ �0.00001) and (b) μ ¼ �0.0001. Figure 5.3c, d show the temporal and
the spectral density final profiles, respectively, for the cases presented in (a) (solid
curves) and (b) (dashed curves). When the magnitude of μ is lower the pulse
amplitude is higher and its width is smaller, which means the possibility to achieve
an effective pulse compression. As predicted by the perturbation theory, the simu-
lations also reveal that there is no limit for the pulse amplitude.

5.6 Effects of Dispersion

In this section we consider the effects of dispersion on the propagation of the very
high-amplitude solitons. Since the soliton perturbation theory is only valid in the
anomalous dispersion regime, an approach based on the method of moments will be
used for this purpose.
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Fig. 5.2 Equilibrium
amplitudes, ηS, versus
nonlinear gain parameter, ε,
for two different values of
the nonlinear gain
saturation: (a)
μ ¼ �0.00001 and (b)
μ ¼ �0.0001. A linear gain
δ ¼ �0.1 and four different
values of the spectral
filtering parameter were
considered, namely,
β ¼ 0.05 (thin solid curve),
β ¼ 0.1 (thick solid curve),
β ¼ 0.2 (dashed-dotted
curve) and β ¼ 0.5 (dashed
curve), respectively.
(Reprinted with permission
from [31] © The Optical
Society)

Figure 5.4 shows the stationary amplitudes against the nonlinear gain saturation
parameter, μ, considering six different values of dispersion parameter D. These
results were obtained by solving numerically the system of Eq. (5.39), but similar
results are provided by the system of Eq. (5.38). The remaining parameter values are
the same as in previous section, namely: δ ¼ �0.1, β ¼ 0.2, and ε ¼ 0.35. We
observe from Fig. 5.4 that, as μ ! 0�, the pulse amplitude tends to infinity, i.e., a
singularity is found, for all the values of D considered. However, pulse decay is
observed for D 0.

Figure 5.5 shows (a) the stationary pulse amplitude and (b) the energy against the
dispersion parameter, D, considering four different values of nonlinear gain satura-
tion parameter, μ. The results were obtained using the dynamical system given by
Eq. (5.38).

From Fig. 5.5a it can be seen that the pulses equilibrium amplitude evolve with D
in a similar fashion for all the different values of μ considered. In general, as the
magnitude of D decreases, the amplitude also decreases and a minimum is found
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Fig. 5.3 Pulse evolution for two different values of the nonlinear gain saturation parameter: (a)
μ ¼ �0.00001 and (b) μ ¼ �0.0001. Temporal (c) and spectral density (d) profiles for the cases
presented in (a) (solid curves) and in (b) (dashed curves). The other parameter values are: δ¼�0.1,
β 0.2, and ε 0.35. (Reprinted with permission from [31] © The Optical Society)

Fig. 5.4 Stationary pulse amplitude against the nonlinear gain saturation parameter, μ, for six
different values of dispersion parameter: D ¼ 0.5 (thick solid curve), D ¼ �0.5 (dotted curve),
D ¼ 1 (dashed-dotted curve), D ¼ �1 (medium solid curve), D ¼ �2 (thin solid curve) and D ¼ 2
(dashed curve). The other parameter values are: δ ¼ �0.1, β ¼ 0.2, and ε ¼ 0.35. (Reprinted with
permission from [32] © The Optical Society)
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nearby D 	 +0.1. Each curve looks almost symmetric relatively to this minimmum,
such that for symmetric values of D the amplitude looks nearly the same.
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Fig. 5.5 Pulse stationary amplitude, (a) and energy (b), versus dispersion parameter, D, for
different values of the nonlinear gain saturation: μ ¼ �0.00001 (thin solid curve), μ ¼ �0.00005
(thick solid curve), μ ¼ �0.0001 (dotted curve), and μ ¼ �0.001 (dashed-dotted curve). The other
parameter values are: δ ¼ �0.1, β ¼ 0.2, and ε ¼ 0.35. These results were obtained using the
dynamical system (5.38). (Reprinted with permission from [32] © The Optical Society)

Concerning the pulse energy, Fig. 5.5b shows that it decreases with the magni-
tude of D, until a minimum is reached nearby D 	 +0.1. However, the energy is not
symmetric around this minimum, since it reaches much higher values in the normal
than in the anomalous dispersion regimes. For example, the pulse energy for D¼�2
is higher by one order of magnitude than for D +2.

Figure 5.6 shows (a) the stationary pulse amplitude and (b) the energy against the
dispersion parameter, D, for the same cases considered in Fig. 5.5, but using the
system of Eq. (5.9). We observe that, in general, the amplitude and the energy
depends on D in a similar fashion. However, a main difference occurs in the range
0.1 < D < 0.4, where no stationary solutions are found in Fig. 5.6.
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Fig. 5.6 Pulse stationary amplitude, (a) and energy (b), versus dispersion parameter, D, for
different values of the nonlinear gain saturation: μ ¼ �0.00001 (thin solid curve), μ ¼ �0.00005
(thick solid curve), μ ¼ �0.0001 (dotted curve), and μ ¼ �0.001 (dashed-dotted curve). The other
parameter values are: δ ¼ �0.1, β ¼ 0.2, and ε ¼ 0.35. These results were obtained using the
dynamical system (5.39). (Reprinted with permission from [32] © The Optical Society)

In order to clarify which of dynamical systems (5.38) or (5.39) are more accurate,
Eq. (5.1) was numerically solved. The region of existence of stationary pulses (SPs)
of the CGLE in the plane (μ, D) is illustrated in Fig. 5.7.

The region of existence of SPs shown in Fig. 5.7 is not as large as that predicted
by the method of moments in Fig. 5.6. In the normal dispersion regime, front’s
expansion was observed for D <�1.65. On the other hand, on the upper right corner
(anomalous dispersion regime), instability was found. Furthermore, for the assumed
values of μ, stationary pulses were not found for D between�0.5 and 0.1. This result



¼ � ¼ � ¼ ¼

is in good qualitative agreement with the predictions of the method of moments, as
given by the system of Eq. (5.39). However, comparing with Fig. 5.6, we observe
that the region of nonexistence of SPs in Fig. 5.7 is slightly shifted to the normal
dispersion regime.
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Fig. 5.7 Region of existence of stationary pulses (SPs) of the CGLE in the plane (μ, D). The other
parameters are δ ¼ �0.1, β ¼ 0.2, and ε ¼ 0.35. The circles and squares correspond to SPs profiles
represented in Fig. 5.8a, c. The triangles (down and up) correspond to SPs profiles represented in
Fig. 5.9a, c, respectively. (Reprinted with permission from [32] © The Optical Society)

Figures 5.8 and 5.9 illustrate some of the VHA stationary solutions found
numerically in the plane (μ, D). In Fig. 5.8 several values of D were considered,
and the nonlinear gain saturation parameter was kept constant, with a value
μ 0.0001. The other parameter values are δ 0.1, β 0.2, and ε 0.35.

Figure 5.8a, c illustrate the pulse profiles in the normal (D < 0) and anomalous
(D > 0) dispersion regimes, respectively, for D ¼ �1.5, �1, �0.5. The pulse width
changes significantly with D in the normal dispersion regime, whereas it remains
almost unchanged in the anomalous dispersion regime. In general, pulses are wider
in the first case when compared with second one. The pulse power spectral density is
represented in Fig. 5.8b, d, for D < 0 and D > 0, respectively. One main feature is that
the spectral range is almost the same for all cases in both regimes. On the other hand,
the spectra peak power achieves higher values when increasing the magnitude of D,
which corresponds to higher values of the pulse energy.

Figure 5.9 presents several pulse amplitude profiles and the respective power
spectral density, for different values of the nonlinear gain saturation parameter and
for two values of the dispersion parameter: D ¼ 0 and D ¼ �1.5. The other
parameter values are similar to those in Fig. 5.8.

Figure 5.9a, b show that the peak amplitude increases and the pulse becomes
narrower as μ! 0�, which is more evident in the case D¼�1.5 (normal dispersion
regime). The pulses power spectra are represented in Fig. 5.9b, d for D ¼ 0 and
D ¼ -1.5, respectively. We observe that both the peak values and the spectral range
of such pulses increase as μ! 0�. Once more, the spectral range seems to be almost
independent of D and strongly dependent of the nonlinear gain saturation parameter,
μ. Decreasing the magnitude of this parameter allows the pulses in the normal



�

¼ ¼

dispersion regime to reach very high energies. For instance, in the case D¼�1.5 the
pulse energies are Q ¼ 2487, 3469, and 7870, for μ ¼ �0.0001, �0.00005, and
0.00001, respectively.
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Fig. 5.8 Amplitude profiles, (a and c), and power spectral density, (b and d), in the normal (D < 0)
and anomalous (D > 0) dispersion regimes, respectively, for D ¼ �1.5 (dashed curves), D ¼ �1
(dashed-dot curves) and D ¼ �0.5 (solid curves). The other parameter values are: δ ¼ �0.1,
β 0.2, and ε 0.35. (Reprinted with permission from [32] © The Optical Society)

It is important to recognize a significant difference between the VHA pulses
discussed in this chapter and the high energy pulses found numerically in Ref.
[25]. Actually, it has been found numerically that the energy of a dissipative soliton
solution of the CGLE increases indefinitely when the equation parameters converge
to a given region of the parameter space. Such set of parameters was called a
dissipative soliton resonance (DSR) [26]. Found in the normal dispersion regime,
it initially required a positive quintic reactive nonlinearity to appear [25, 26], but
then DSR was also revealed in the chromatic dispersion-free (D ¼ 0) regime, along
with negative quintic reactive nonlinearity [27]. The concept of dissipative soliton
resonance has soon been proposed to achieve high-energy wave-breaking-free
pulses [25–30].

The energy of a DSR pulse increases mainly due to the increase of the pulse
width, while keeping the amplitude at a constant level [25, 26]. Nevertheless, as the
DSR pulse is highly chirped, this can be used to compress the pulse [65] and hence



obtain high energy ultrashort pulses. Experimental demonstrations for the existence
of the DSR phenomenon have been reported [66–71].
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Fig. 5.9 Amplitude profiles, (a and c), and power spectral density, (b and d), for D ¼ 0 and
D¼�1.5, respectively. The nonlinear gain saturation parameter assumes the values: μ¼�0.00001
(dashed curves), μ ¼ �0.00005 (dashed-dot curves) and μ ¼ �0.0001 (solid curves). The other
parameter values are: δ¼�0.1, β ¼ 0.2, and ε¼ 0.35. (Reprinted with permission from [31]© The
Optical Society)

In contrast with the DSR pulse, the increase in energy of the pulses discussed in
this chapter, which occurs when the absolute value of μ decreases, is mainly due to
the increase of the pulse amplitude, whereas the pulse width becomes narrower.
Clearly, high-energy ultrashort pulses can be obtained in this case without using any
additional linear pulse compression technique. It might be noted, from Fig. 5.1, that
there is no limit for the pulse amplitude. However, a limitation could be imposed by
some higher-order effects, as seen in the next section.

5.7 Impact of Higher-Order Effects

The propagation of ultrashort optical pulses in fibers must take into account several
higher-order effects, namely the intra-pulse Raman scattering (IRS) and the third-
order dispersion (TOD). Considering these effects, the propagation equation is given



dκ 4 8

dT

dσ 1 dκ

¼ ¼

2

by a generalized version of the cubic-quintic CGLE given by Eq. (5.1), which
assumes then the following form [37]:
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i
∂q
∂Z

þ D
2

∂2q
∂T2 þ qj j2q ¼ iδqþ iβ

∂2q
∂T2 þ iε qj j2qþ iμ qj j4qþ iβ3

∂3q
∂T3

þ τRq
∂ qj j2
T

ð5:40Þ

where the parameters β3 and τR, govern, respectively, the effects of TOD and IRS,
respectively.

5.7.1 Results of the Soliton Perturbation Theory

Assuming that all the coefficients on the right-hand side of Eq. (5.40) are small and
considering the anomalous dispersion regime (D ¼ +1), we can use the adiabatic
soliton perturbation theory to get the following set of ordinary differential equations:

dη
dZ

¼ 2δη� 2βη
1
3
η2 þ κ2

� �
þ 4
3
εη3 þ 16

15
μη5 ð5:41Þ

dZ
¼ �

3
βη2κ �

15
τRη

4 ð5:42Þ
� �0

dZ
¼ �κ þ β3 η2 þ 3κ2 ð5:43Þ

� � � �
dZ

¼
2

η2 � κ2 þ T0 dZ
þ β3κ 3η2 þ κ2 ð5:44Þ

The steady-state solutions, ηs and κs, of Eqs. (5.41) and (5.42) are obtained consid-
ering dη

dZ
dκ
dZ 0 and satisfy the conditions:

δ� βκ2s þ
1
3

2ε� βð Þη2s þ
8
15

μη4s ¼ 0 ð5:45Þ

βκs þ 5
τRη

2
s ¼ 0 ð5:46Þ

Substituting Eq. (5.46) in Eq. (5.45) we find that the stationary pulse amplitude is
given by:

ηs ¼ A� A2 � B
	 
1=2h i1=2

ð5:47Þ

where



β 2ε

3δ

τ




p

ivð Þ B ¼ 0 and A > 0 ð5:55Þ
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A ¼ �
2W

ð5:48Þ

B ¼
W

ð5:49Þ
2

W ¼ 8
5
μ� 12

25
R

β
ð5:50Þ

The steady-steady value of the amplitude must be real and positive. This is the case
only for ε ε0, where ε0 is a threshold value of nonlinear gain, given by:

ε0 ¼ β
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3δ
5

8μ� 12
5

τ2R
β

� �s
ð5:51Þ

We find from Eq. (5.47) that there are two steady-state solutions in the case:

ið Þ A >
ffiffiffi
B

p
> 0: ð5:52Þ

On the other hand, there is only one steady-state solution in the following cases:

iið Þ B < 0 ð5:53Þffiffiffi
iiið Þ A ¼ B > 0 ð5:54Þ

In the absence of nonlinear gain (ε ¼ μ ¼ 0) there is one steady-state solution
corresponding to case ii). Considering that β > 0, the linear gain δmust be positive in
this case, which will lead to instability of the background. On the other hand, in the
presence of nonlinear gain proportional to the square of the amplitude of such that
(μ ¼ 0), there is one steady-state solution if δ > 0 (case ii)) and eventually two
solutions if δ > 0, corresponding to case i).

5.7.2 Linear Stability Analysis

Linearizing Eqs. (5.41) and (5.42) around the steady-state solution, we can write the
system of equations describing the evolution of the small deviations Δη and Δκ in
the following matrix for

dΔη
dZ
dΔκ
dZ

2
64

3
75 ¼ a11 a12

a21 a22

� �
Δη
Δκ

� �
ð5:56Þ

where



16

a ¼ �4βκ η ð5 58Þ
8 32

4

� �

τ

)
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a11 ¼ 2δ� 2βκ2s þ 4ε� 2βð Þη2s þ 3
μη4s ð5:57Þ

12 s s :

a21 ¼ �
3
βκsηs � 15

τRη
3
s ð5:59Þ

a22 ¼ �
3
βη2s ð5:60Þ
� �

rix
a11 a12

The two eigenvalues (λ1, λ2) of the mat
a21 a22

satisfy the characteristic

equation:

λ2 � 8
15

η2s 5 2ε� βð Þ þ 8μη2s
	 


λ� 16
9
βη4s 2ε� β þ 16

5
μþ 24

25
τ2R
β

�
η2s

�
¼ 0

ð5:61Þ

The steady-state solution (ηs, κs) is linearly stable if the real parts of the two
eigenvalues are negative. This is the case if the following conditions are verified:

8μη2s þ 5 ε� βð Þ < 0 ð5:62Þ
2� �

2ε� β þ 16
5
μ� 24

25
R

β
η2s < 0 ð5:63Þ

Inserting the equilibrium solutions, ηs and κs, into Eq. (5.43) we obtain:

dT0

dZ
¼ 2

5
τR
β
η2s þ β3 η2s þ

2
ffiffiffi
3

p
5

τR
β

� �2

η4s

" #
ð5:64Þ

whose direct integration gives:

T0 Zð Þ ¼ T0 0ð Þ þ 2
5
τR
β
η2s þ β3 η2s þ

2
ffiffiffi
3

p
5

τR
β

� �2

η4s

" #(
Z ð5:65Þ

or

T0 Zð Þ ¼ T0 0ð Þ þ vZ ð5:66Þ

where v is a constant velocity defined by the equation parameter values. As a
consequence, T0(Z ) varies linearly with Z. From Eq. (5.65) we observe that negative
TOD can compensate the effects of IRS, allowing us to obtain a solution with
reduced or even zero velocity.
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The above results obtained using the perturbation theory should be a good
approximation of the actual solution for small values of the parameters. Neverthe-
less, they are in general a good starting point to predict solutions and their stability
even for parameters that are not as small.

5.7.3 Numerical Results

Figure 5.10 illustrates the equilibrium amplitude, ηS, as a function of the nonlinear
gain saturation parameter, μ, in the presence of IRS (τR ¼ 0.01), as obtained from
Eq. (5.47). Four different values of the spectral filtering were considered: β ¼ 0.05
(thin solid curve), β ¼ 0.1 (thick solid curve), β ¼ 0.2 (dashed-dotted curve), and
β ¼ 0.5 (dashed curve), while the other parameter values were the following:
δ ¼ �0.1, ε ¼ 0.35, and β3 ¼ 0 (absence of TOD). Similarly to the results obtained
in Sect. 5.5, both SA and VHA solutions are obtained. Moreover, we observe that the
amplitude of the VHA solutions increases when μ ! 0�, which is more significant
for stronger spectral filtering. However, such increase is limited, which means that
the singularity is no longer observed in the presence of IRS.

Figure 5.11 shows the numerical results for (a) the amplitude evolution and
(b) the stationary profile of a VHA pulse in the presence of IRS (τR ¼ 0.01),
considering the following parameter values: δ ¼ �0.1, β ¼ 0.2, ε ¼ 0.35,
μ ¼ �0.0001, and β3 ¼ 0 (absence of TOD). The numerical result for the peak

Fig. 5.10 Equilibrium amplitude, ηS, versus nonlinear gain saturation parameter, μ, in the presence
of IRS (τR ¼ 0.01), as obtained from Eq. (5.47). Four different values of the spectral filtering were
considered: β ¼ 0.05 (thin solid curve), β ¼ 0.1 (thick solid curve), β ¼ 0.2 (dashed-dotted curve),
and β ¼ 0.5 (dashed curve), while the other parameter values were the following: δ ¼ �0.1,
ε ¼ 0.35, and β3 ¼ 0 (absence of TOD). (Reprinted with permission from [31] © The Optical
Society)



¼

amplitude for the VHA solution is 35.95, whereas the perturbation theory predicts
35.35 (a difference <2%). Comparing with Figs. 5.3 and 5.11 shows that IRS
determines both a reduction of the pulse amplitude and a deceleration of the pulse.

100 S. C. Latas et al.

Fig. 5.11 Numerical results for (a) the amplitude evolution and (b) the stationary profile of a VHA
pulse in the presence of IRS (τR ¼ 0.01), considering the following parameter values: δ ¼ �0.1,
β ¼ 0.2, ε ¼ 0.35, μ ¼ �0.0001, and β3 ¼ 0 (absence of TOD). (Reprinted with permission from
[31] © The Optical Society)

From Eq. (5.63), we have T0 (Z¼ 1)’ 25, a value that agrees with the position of
the pulse after propagation up to Z ¼ 1, as can be seen from Fig. 5.11a. The
eigenvalues obtained from the linear stability analysis applied to this stationary
solution are λ1, λ2 ¼ �8.31 � 10�1 � i7.6 � 102. Since the real part of both
eigenvalues is negative, the stationary solution is stable and the pulse propagates
steadily.

Considering that the nonlinear gain saturation parameter is μ ¼ �0.00001 and
keeping the remaining parameter values, the perturbation theory predicts a VHA
solution with an amplitude peak of 44.2 and λ1, λ2 ¼ 3.1 � 102 � i 7.6 � 102. Since
the real part of both eigenvalues is positive, the solution is unstable is such case.

Figure 5.12 shows the (a) amplitude evolution and (b) the stationary amplitude
profile for a VHA pulse in the presence of negative TOD (β3¼�0.005), considering
the following values for the remaining parameter: δ ¼ �0.1, β ¼ 0.2, ε ¼ 0.35,
μ ¼ �0.0001, and τR ¼ 0 (absence of IRS). In Fig. 5.12b we observe a pulse
distortion, which occurs mainly on the leading edge of the pulse. On the other hand,
the pulse peak amplitude is slightly higher than that observed in Fig. 5.3b. This result
is good agreement with the prediction of the perturbation theory, since Eqs. (5.41)
and (5.42) do not depend on β3, and τR 0 was assumed.

Figure 5.13 shows the propagation of VHA pulses in the presence of both IRS
(τR ¼ 0.01) and TOD: (a) β3 ¼ �0.0041 and (b) β3 ¼ �0.005375. The other
parameter values are: δ ¼ �0.1, β ¼ 0.2, ε ¼ 0.35, and (a) μ ¼ �0.00001 and
(b) μ¼�0.0001, respectively. The values of β3 have been chosen in order to provide
a reduced pulse velocity. Figure 5.13a demonstrates the stable propagation of the
VHA pulse in the case μ¼�0.0001 and τR ¼ 0.01, which is only possible if TOD is
also considered. Figure 5.13c, d show the pulse amplitude profiles and their spectral
densities for both values of μ and β3. Once more, the pulse peak amplitudes of both
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Fig. 5.12 (a) Amplitude evolution and (b) the stationary amplitude profile for a VHA pulse in the
presence of negative TOD (β3 ¼ �0.005). The remaining parameter are: δ ¼ �0.1, β ¼ 0.2,
ε ¼ 0.35, μ ¼ �0.0001, and τR ¼ 0 (absence of IRS). (Reprinted with permission from [31] © The
Optical Society)

Fig. 5.13 Propagation of VHA pulses in the presence of both IRS (τR ¼ 0.01) and TOD: (a)
β3 ¼ �0.0041 and (b) β3 ¼ �0.005375. The other parameter values are: δ ¼ �0.1, β ¼ 0.2,
ε ¼ 0.35, and (a) μ ¼ �0.00001 and (b) μ ¼ �0.0001. (c and d) show the amplitude and spectral
density profiles for the pulses presented in (a) (solid curves) and in (b) (dashed curves), respec-
tively. (Reprinted with permission from [31] © The Optical Society)



	

pulses are smaller than those in Fig. 5.3, which is mainly due to the IRS effect. The
amplitude profiles are asymmetric, with a major distortion occurring on the pulses
leading edge. The spectral profile also becomes asymmetric as a consequence of both
higher-order effects. The spectral range of the higher amplitude pulse is Δf 	 50,
whereas for the smaller amplitude pulse is Δf 30.
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5.8 Conclusions

In this chapter, very high amplitude (VHA) pulses of the CGLE are presented, due to
a singularity predicted by the soliton perturbation theory when the nonlinear gain
saturation parameter (μ) tends to zero. Their existence is also predicted by the
method of moments and confirmed numerically. They are pulses with zero (trans-
verse) velocity, with symmetric temporal and spectral profiles.

A region of existence of these VHA pulses was found numerically in the plane
defined by the nonlinear gain saturation parameter and the dispersion parameter,
D. A good agreement was found between the numerical simulations and the method
of moments predictions, considering a trial function with a quartic term only. For a
fixed value of the nonlinear gain saturation parameter, the pulse amplitude decreases
almost symmetrically as |D| ! 0, for |D| > 0.5. However, the pulses have higher
energies in the normal dispersion regime than in the anomalous dispersion regime.
The pulse width decreases significantly as D increases, for D < 0, and increase
slightly with D, for D > 0.

The increase in energy of the pulses discussed in this work, found in the normal
dispersion regime when the magnitude of μ decreases, is mainly due to the increase
of amplitude, whereas the pulse width becomes narrower. This is a different mech-
anism of the one observed in DSR, were the growth of energy is mainly due to the
increase of the pulse width, while pulse amplitude and spectral range remain
constant.

The singularity giving origin to the VHA pulses is no longer present if the intra-
pulse Raman scattering (IRS) effect is considered, as predicted by the soliton
perturbation theory. In this case, the pulses exhibit asymmetric temporal and spectral
profiles, have nonzero velocities, and their amplitudes are still high but finite for
μ ¼ 0. In the presence of third-order dispersion (TOD) only, the amplitude remains
almost unaffected, as predicted by the perturbation theory. Even so, the pulse
velocities and their temporal profiles are strongly affected. The combined effect of
IRS and negative TOD allows us to find pulses with almost zero velocity, for a
proper choice of the parameter values.
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Chapter 6
Vector Dissipative Solitons

Luming Zhao

Abstract Dissipative solitons (DSs) as localized waves outgrow their remarkable
theory and applications in passively mode-locked fiber lasers. Composite balance of
nonlinearity, dispersion, laser gain and loss jointly spread profound framework for
unveiling the pulse dynamics in presence of continuous energy flows between
environment and soliton structures. Birefringence of optical fiber reminisces the
polarization nature of light. Thereby the physical models of oscillators are intrinsi-
cally vectorial, serving as an optimal platform for gaining insight into vector
dissipative solitons (VDSs) composing of two orthogonally polarized components.
This chapter focuses on the following three subjects: DS trapping in fiber lasers,
various forms of VDSs, and their real-time dynamics. The outcomes of soliton
trapping in birefringent fibers facilitate the investigation on the polarization evolu-
tion of DSs in passively mode-locked fiber lasers. Various forms of VDSs highlight
the universality in fiber lasers. By using the dispersive Fourier transform (DFT)
technique, real-time polarization evolution and pulsation of VDSs are observed. All
these findings highlight the potential application scenarios of increasing the data-
carrying capacity beyond traditional binary coding of the scalar counterparts in
optics communication systems.
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6.1 Introduction

The term ‘soliton’ was introduced in 1965 [ ], referring to the localized solutions in
varieties of nonlinear systems such as fluids, plasma physics, Bose-Einstein con-
densates, and optics. Particularly, optical fibers serve as a classical system for optical
conservative solitons. Ultrashort pulses can propagate without distortion due to
presence of the balance between fiber nonlinearity and dispersion [ ]. The conser-
vative solitons are natural bit units and can carry binary coding optical information,
which is set for the application scenarios of optical soliton communications. Beyond
the simple balance between nonlinearity and dispersion/diffraction in integrable
systems, additional nonlinear gain and loss can be also involved in a composite
balance for an extended theory of DSs [ , ]. Passively mode-locked fiber lasers are
extremely attractive for the application prospect of ultrashort pulse emission. As a
dissipative system, they have been also serving as an optimal platform for unveiling
dynamics of DSs.
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When the freedom of vectorial nature of light is released, the framework of vector
solitons is founded beyond their scalar counterparts. Governed by the coupled
Ginzburg-Landau Equation (GLE), the VDS is essentially a multi-pulse complex
at polarization directions [5]. The two orthogonally polarized components can trap
each other and propagate as a non-dispersive unit in the laser cavity by oppositely
shifting their central frequencies with respect to the net birefringence [6–8]. The
VDSs not only possess much more plentiful behaviors and richer dynamics than
their scalar counterparts, but also pave a promising way for numerous applications
from nano-optics to high-capacity fiber optic communications. Since the first report
on vector solitons in 1997 [9], varieties of vector solitons with vivid polarization
dynamics such as polarization locked vector solitons [10–12], polarization rotating
solitons [12, 13], high-order vector solitons [14] and dark-bright VDSs [15], have
been observed in polarization non-discriminated mode-locked fiber lasers. Besides,
group-velocity locked vector solitons (GVLVSs) were demonstrated by L. M. Zhao
in 2008 [16]. Two sets of Kelly sidebands are interpreted as the distinct spectral
feature for this kind of vector solitons. Accompanying with the development of
dispersion management and the goal of ultrashort pulses with high energy, scientific
interest of mode-locking operation is gradually shifted into normal-dispersion
regime, where spectral filtering gets involved in the composite balance [17–
20]. DSs formed in normal-dispersion regime are distinctly characterized by steep
spectral edges and large frequency chirp, as well as possessing much larger pulse
energy and broader spectral bandwidth [21–24]. Therefore, the investigations on
VDSs in normal-dispersion regime is twofold motivated by both the novel dynamics
from conventional solitons and the improved performance for practical applications.

Indeed, the vectorial nature of DSs is universal with respect to different self-
assembled forms of pulses. In particular, the emergence of soliton molecules and
vectorial nature of light spreads a new concept of vector soliton molecules that
inspires us to reveal more interesting behaviors and underlying dynamics of these
compound multi-soliton complexes formed at both time domain and polarization



directions. Apart from the operation regime of regular pulses, passively mode-locked
fiber lasers can also deliver the so-called noise-like pulse (NLP), which is essentially
a pulse envelope consisting of a bunch of randomly evolving femtosecond ultrashort
pulses [25, 26]. It is of great interest to shed new light on the dynamics of NLPs
beyond the scalar model.
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More recently, time-stretch dispersive Fourier transform (TS-DFT) technique
[27] has been developed to trace the buildup of mode-locking in ultrafast lasers
[28–30]. Therefrom, single-shot spectral views bring about profound insights into
the transient dynamics of ultrafast pulses through mapping the spectral information
into the time domain. In particular, exotic dynamics of soliton explosion was studied
and an abrupt collapse of soliton structure was recorded by virtue of the shot-to-shot
spectra [31, 32]. Dynamically evolving soliton molecules are also experimentally
resolved to feature the vivid scenarios of pulse interactions, including the formation
of soliton molecules [33, 34] and their internal dynamics [35–39]. The shot-to-shot
spectral views can also enable the insights into the transient polarization dynamics of
vector solitons. Both polarization locking and polarization rotation of these two
orthogonally polarized components have been experimentally verified.

In this chapter, we present the vectorial nature of DSs in passively mode-locked
fiber lasers. In Sect. 6.2, DS trapping is introduced, which manifests the polarization
evolution from the scalar model to the vectorial one. In Sect. 6.3, various forms of
VDSs such as high-order VDSs, dark-bright VDSs, vector soliton molecules and
vector noise-like pulses are presented to highlight the universality of vectorial nature
in fiber lasers. In Sect. 6.4, dispersive Fourier transform (DFT) technique is utilized
to reveal the real-time polarization evolution and pulsation of VDSs. All these
findings can facilitate the understanding towards the framework of DS dynamics.

6.2 DS Trapping in Fiber Lasers

Solitons could be nonlinear pulses that propagate without dispersing in the anoma-
lous dispersion regime of single-mode optical fibers. However, single-mode fibers
are really bimodal because of the existence of birefringence, which may lead to a
substantial splitting of the two orthogonally polarized components. It is found that
the effect can be eliminated by the Kerr nonlinearity. It refers to the phenomenon of
soliton trapping that two solitons formed along each of the two orthogonal polari-
zation directions of a weakly linear birefringent fiber can trap each other and
co-propagate as a non-dispersive unit despite of their intrinsic group velocity
difference. Soliton trapping in optical fibers was first theoretically predicted by
Curtis Menyuk et al. [6]. To analyze the mechanism, coupled nonlinear Schrodinger
equation is introduced. If u and v are the electric fields along the two polarized axes
of the fiber, then the equations normalized in soliton units can be expressed as:
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where t is the local time on the pulse and z is the normalized distance along the fiber.
The terms on the right-hand side correspond to group-velocity dispersion, self-phase
modulation, and cross-phase modulation, respectively. The pulses create an attrac-
tive potential well along the orthogonal axis through cross-phase modulation, and
this coupling mechanism is independent of the phase between the two pulses.
Birefringence is included through the term with δ, where D is the dispersion
parameter and δn is the index difference between the two orthogonally polarized
components.

When we shift to the optical solitary waves formed in fiber lasers, additional laser
gain and loss jointly play roles in the soliton formation, which is dissipative in
nature. Except the polarization maintaining fiber being used, the cavity of a fiber
laser is weakly birefringent. Therefore, the DS generation and propagation in a fiber
laser cavity are always subjected to the influence of the cavity birefringence. For
fiber lasers mode-locked by the nonlinear polarization rotation technique, because a
polarizer is inserted in the cavity for achieving the artificial saturable absorption
effect, it defines the soliton polarization at the position. The situation is changed
when using a real saturable absorber such as the semiconductor saturable absorber
mirror (SESAM), Graphene and carbon nanotube etc. for achieving mode locking. In
particular, the mechanism of VDSs is governed by the coupled GLE as expressed as
follow:
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where u and v are the normalized envelopes of the optical pulses along the two
orthogonal polarizations. 2β ¼ 2πΔn/λ is the wave-number difference between the
two modes. 2δ ¼ 2βλ/2πc is the inverse group velocity difference. k

00
and k

000
are the

second and third order dispersion coefficients, respectively. γ is the fiber nonlinear
coefficient. g and Ωg represent the gain coefficient and gain bandwidth of the active
fiber.
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Fig. 6.1 Optical spectrum of the GVLVS with soliton trapping [16]

Group-velocity-locked vector solitons (GVLVS) and the phase locked vector
solitons (PLVS) could be formed in a linear cavity fiber laser. In particular, the
PLVS could maintain its polarization during propagation in the cavity, while the
GVLVS is characterized by its polarization rotation during the propagation. Fig-
ure 6.1 shows the optical spectrum of a GVLVS [16]. On its optical spectrum apart
from the polarization sidebands, two sets of soliton sidebands were observed.
Slightly changing the orientations of the paddles of the polarization controller shifted
the separation between the two sets of sidebands as well as the central wavelength of
the soliton spectrum. Polarization resolved measurement is used to verify the
formation mechanism of the extra set of spectral sidebands. The measurement
procedure was as the following: the output of the laser pass through an external
linear polarizer, through orienting the polarizer the direction of maximum pulse
intensity transmission is first determined, and the optical spectrum is recorded along
the polarization direction. Then rotating the polarizer by 90�, the soliton spectrum
along the orthogonal polarization direction is recorded. After the polarization
resolved measurement of the soliton spectrum, it turned out that the soliton compo-
nents along each of the two orthogonal directions have much different central
frequencies. Solitons along one polarization direction form one set of soliton side-
bands. As shown in Fig. 6.1, one set of sidebands disappeared in the polarization
resolved spectra, and the separation between the two sets of sidebands is exactly the
soliton central frequency shift.

Numerically simulation also elucidates the influence of birefringence on the
formation of the GVLVS. Figure 6.2 shows the optical spectrum of the stable pulses
when the cavity beat length was selected as (a) Lb L/2, (b) Lb L/20, and
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(c) Lb ¼ L/200, respectively. When the cavity birefringence is small, for example L
b ¼ L/2, the solitons formed along the two orthogonal polarization directions have
only slight central wavelength shift. Consequently, no double sets of soliton side-
bands could be observed. While as the cavity birefringence becomes large,
e.g. Lb ¼ L/20, the central wavelength shift between the orthogonally polarized
solitons is obvious. The solitons along each of the polarization directions generates
its own sidebands, therefore, resulting in double sets of sidebands on the spectrum.
When the birefringence of the cavity is too strong, the stable solitons formed are
linearly polarized along one polarization direction.
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Fig. 6.2 The optical spectrum of the numerically obtained vector soliton with same parameters
except that (a) Lb L/2; (b) Lb L/20; (c) Lb L/200 [16]

Fig. 6.3 (a) Spectrum and corresponding autocorrelation trace of a polarization rotating DVS
emission state of the laser; (b) Oscilloscope trace of (a) after passing through a polarizer [40]

Formation of VDS has also been demonstrated in normal dispersion regime
[40]. By managing the net cavity dispersion, the fiber lasers can emit the DSs with
rectangle spectral shape and large chirp. Figure 6.3a shows a typical optical spectrum
and autocorrelation trace of the DSs at a large net normal dispersion regime.
Different from the DSs formed in the fiber lasers mode-locked with the NPR
technique, the soliton consists of two orthogonal polarization components. To
highlight the vectorial nature of the soliton, a rotatable external cavity polarizer is
utilized to compared the features of the pulse train before and after passing through
the polarizer, either with a high-speed oscilloscope or a RF spectrum analyzer. It is
found that the VDS shown in Fig. 6.3a was a polarization rotating one. Polarization
rotation of the soliton could be easily identified by the oscilloscope trace measure-
ment. Without passing through the external polarizer, the soliton pulse had identical



pulse intensity on the oscilloscope trace for each cavity roundtrip, while after passing
through the polarizer it became varying with the cavity roundtrips as shown in
Fig. 6.3b. It indicates that the polarization of the soliton rotated along the cavity.
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Fig. 6.4 (a) Optical spectrum and (b) oscilloscope traces of pulse train of the GVLVDS [41]

The net cavity birefringence has played a crucial role on the coupling of the two
polarization components and the property of the formed stable DSs. When the cavity
birefringence is weak, coherent coupling between the polarization components
occurs; consequently, either the polarization-rotating or polarization-locked vector
DSs could be formed. At moderate cavity birefringence, the formed DSs along each
of the cavity principal polarization directions have large central wavelength differ-
ence, incoherent coupling between them occurs, and eventually the group-velocity-
locked vector DS (GVLVDS) is formed, as presented in Fig. 6.4 [41]. It reminisces
the mechanism of DS trapping in net normal dispersion regime. Whereas when the
cavity birefringence is too large, no group velocity locking is possible, and DSs
along different polarization axes propagate independently.

Indeed, scalar model is just an approximation. Solitons generated in fiber lasers
are vector pulses and exhibit periodic parameter change including polarization
evolution even when there is a polarizer inside the cavity [42]. Figure 6.5 presents
the period doubling eigenstates of polarization components of the soliton solitons
generated in a NPR fiber laser. From the numerical simulations results, it is found
that each polarization component of the soliton could show independent behavior of
period doubling while there exists interaction between the two orthogonal polariza-
tion components and the polarization was normalized every time when the soliton
periodically passes the polarizer. Depending on the detailed parameters, either
synchronous evolution or asynchronous development between the two polarization
components of the generated soliton under period doubling appearance can be
achieved. Specifically, period doubling of one polarization component while the
other polarization component maintaining period-one can as-well be achieved. The
discovery above great enriches our understanding on soliton dynamics in fiber lasers
and highlights the vectorial eigenstates of DSs formed in ultrafast fiber lasers with or
without a polarization discrimination component.
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Fig. 6.5 Detailed period doubling eigenstates of period doubling solitons. (a and b) synchronous;
(c and d) the horizontal component is period one while the vertical component is period doubling;
(e and f) asynchronous [42]

6.3 Various Forms of VDSs

Vectorial nature is universal for DSs formed in fiber lasers without polarization
discrimination. In this section, we will introduce four different forms of VDSs or the
deformable unities from both the experimental and numerical points of view.

6.3.1 High-Order VDSs

Back in 1988, Christodoulides and Joseph first theoretically predicted a form of
phase-locked vector soliton in birefringent dispersive media [43], which is now
known as a high-order phase-locked vector soliton in SMFs. The fundamental form
of the phase-locked vector solitons was recently experimentally observed



[44]. Numerical studies have shown that the high-order phase-locked vector solitons
are unstable in SMFs [45]. However, stable phase-locked high-order VDS in a
mode-locked fiber laser were experimentally observed. Multiple high-order VDSs
with identical soliton parameters coexisting in a laser cavity and harmonic mode
locking of the high-order VDSs were also observed. Moreover, based on a coupled
Ginzburg-Landau equation model, phase-locked high-order VDSs are stable in
mode-locked fiber lasers.
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Through splicing a fiber-pigtailed optical isolator between the output port and the
external cavity measurement apparatus, which serves to suppress the influence of
back reflections on the operation of the laser, the high-order phase-locked VDSs
could be indeed obtained. Figure 6.6 shows, for example, the optical spectra and
autocorrelation traces of the DS observed. Polarization locking of the DS is identi-
fied by measuring the polarization evolution frequency (PEF) of the DS pulse train
[46]. No PEF could be detected. As the VDS has a stationary elliptic polarization,
one could use an external polarizer to separate its two orthogonal polarization
components. The optical spectra of the components are shown in Fig. 6.6a. The
spectra have the same central wavelength and about 10 dB peak intensity difference.
Both spectra display Kelly sidebands. In contrast to the polarization resolved spectra
of the fundamental phase-locked VDSs, there is a strong spectral dip at the center of
the spectrum of the weaker component. No such dip appears in the spectrum of the
stronger component. To identify the cause of the spectral dip, the autocorrelation
traces of each of the DS components were further measured. It turned out that the
weak component of the VDS had a double-humped intensity profile as shown in
Fig. 6.6b. The pulse width of the humps is about 719 fs if a sech2 profile is assumed,
and the separation between the humps is about 1.5 ps. The strong component of the
VDS is a single-hump soliton. It has a pulse width of about 1088 fs if a sech2 profile
is assumed. The components of the VDS have pulse intensity profiles exactly like
those predicted by Akhmediev et al. [48] and Christodoulides [43] for a high-order
phase-locked vector soliton. Based on the autocorrelation traces, obviously the
spectral dip is formed due to the spectral interference between the two humps, and
the strong dip at the center of the spectrum indicates that the two humps have 180�

phase difference, which is also in agreement with the theoretical prediction.
To confirm the experimental observations, the coupled Ginzburg-Landau equa-

tions were used to describe the pulse propagation in the weakly birefringent fibers in
the cavity and numerically simulate the operation of the laser. The standard split-step
Fourier technique was employed to solve the equations and a so-called pulse tracing
method to model the effects of laser oscillation [47]. the simulations were always
started with an arbitrary weak light input. Figure 6.7 shows one of the typical results
obtained. With a cavity linear birefringence of Lb ¼ 3 L, a stable high-order phase-
locked VDS state was obtained. The weak polarization component of the VDS
consists of two bound solitons with pulse separation of ~1 ps, while the strong
polarization component of the VDS is a single-hump soliton. It is found that the
pulse of the strong component is only temporally overlapped with one of the two
pulses of the weak component. Because of the strong cross-phase coupling between
the temporally overlapped pulses, the two pulses of the weak components have



different pulse widths and intensities. Propagating within the cavity, obvious coher-
ent energy exchange between the two temporally overlapped DSs is visible.
Figure 6.7b further gives the calculated spectra of the VDS components, which
also show that the phase difference between the two bound solitons of the weak
component is 180�.
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Fig. 6.6 Polarization resolved soliton spectra and autocorrelation traces of the VDS observed. (a)
Soliton spectra. (b) Autocorrelation traces [14]

Depending on the laser parameters selected, other high-order phase-locked
VDSs, such as the one with both soliton components having a double-humped
structure, can be numerically obtained. Noted that similar high-order vector solitons



were also predicted for pulse propagation in weakly birefringent fibers, but they are
unstable. However, it is found that all the high-order phase-locked VDSs obtained
numerically were stable in the laser. The differences in stability of the high-order
phase-locked vector solitons between fiber and fiber lasers could be traced back to
their different soliton natures. While the soliton formed in a SMF is essentially a
Hamiltonian soliton, the one formed in a fiber laser is a DS, which is in fact an
attractor of the laser system.
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Fig. 6.7 A stable high-
order phase-locked VDS
state numerically calculated.
(a) Soliton intensity profiles
of the two orthogonally
polarized components. (b)
The corresponding optical
spectra of (a) [14]

6.3.2 Dark-Bright VDSs

Two types of vector solitons have been predicted from the coupled GLEs [15]. The
first type has a close relation to their scalar counterparts, namely bright vector
solitons. It is just the aforementioned VDSs. In this subsection, another type of
VDSs will be discussed. Different from the VDSs with the characteristic that each of
their polarization components can exist as a scalar soliton even when there is no



coupling, the second type of vector solitons has no scalar, one-component counter-
parts. Examples of these solitons are the polarization-domain wall solitons [48] and
the dark-bright vector solitons [49]. Formation of these vector solitons is purely a
result of cross-polarization coupling. They therefore constitute a fundamentally new
type of optical solitons. Previously, S. Pitois et al. have reported the experimental
observation of the polarization domain wall solitons by mixing two intense counter-
propagation laser beams in a spun fiber [50]. Polarization-domain wall solitons in a
single mode fiber laser was also shown in a previous study [51].
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However, the experimental demonstration of this type of vector solitons is
challenging. Considering the standard single mode fiber to generate these vector
solitons at 1.55 μm, to form a soliton with 1 ps pulse width, the fiber birefringence
would need to be as small as�3� 10�9, and the CW beam power at least�20 W to
support the dark soliton [15]. In practice, it is difficult to find fibers with such small
birefringence over long lengths. An innovative approach is introduced to solve this
problem. Instead of traversing light over a long fiber length, light can be circulated in
an active fiber ring cavity. It can be theoretically shown that under suitable condi-
tions the average dynamics of light circulating in an active fiber ring cavity is
equivalent to light propagation along an endless fiber [52]. Moreover, the approach
has the advantage that the average dynamics of the light is governed by the averaged
cavity dispersion and birefringence. By using cavity dispersion and birefringence
management, one can fine-tuning the effective cavity dispersion and birefringence
and even make them close to zero. Using this technique, phase locked and polari-
zation rotation bright vector solitons were successfully demonstrated experimen-
tally, whose formations also require coherent cross-polarization coupling of light in
weakly birefringent fibers [13, 14].

The fiber ring laser is constructed as shown in Fig. 6.8 for the experiment. Briefly,
it comprises 3.0 m erbium-doped fiber with a group velocity dispersion (GVD)
coefficient of 63.6 ps2/km, a 13.4 m long standard single mode fiber (SMF28) with a
GVD coefficient of�23.8 ps2/km, and 12.9 m of dispersion-shifted fiber (DSF) with
a GVD coefficient of 5.3 ps2/km. A fiber pigtailed polarization insensitive isolator
was used to force the unidirectional operation of the fiber ring. A polarization
controller (PC) was used in the cavity to finely adjust the cavity net birefringence.
The output was obtained through a 10% fiber output coupler. A fiber pigtailed
polarization beam splitter was used to separate the two polarizations of the laser
emission.

The fiber laser cavity had very small net birefringence, as reflected by the fact that
the laser emission along the two orthogonal polarization directions of the cavity had
a very small wavelength difference of less than 1 nm. Consequently, incoherent
cross-polarization coupling always occurred with the laser emission alternating
between the two orthogonal polarization modes [52]. Starting from such an initial
laser operational state, the pump power was fixed, and the net cavity birefringence
was then carefully reduced through appropriately setting the intra cavity PC. Phase
locking between the two orthogonal polarization-modes was eventually achieved,
which switched the mode coupling to the coherent regime.
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Fig. 6.8 Schematic of the
fiber laser setup. EDF
erbium-doped fiber, DSF
dispersion shifted fiber,
SMF single mode fiber, PC
polarization controller, PBS
polarization beam splitter,
OSC oscilloscope [15]

Fig. 6.9 Coupled dark-bright pulse pair emission of the fiber laser measured at an estimated net
cavity birefringence of Δn < 10�10. The intra cavity beam power: 700 mW [15]

Experimentally, a number of interesting laser operation states were obtained
under coherent polarization coupling. Figure 6.9 shows one of such states observed
with a cavity that had an averaged dispersion coefficient of�2.1 ps2/km and close to
zero net birefringence [15]. The two traces shown are the polarization resolved laser
emissions. It clearly demonstrates that while along one polarization direction the
laser emitted bright soliton pulses, along the orthogonal polarization direction it



�

emitted simultaneously a dark soliton pulse. Many coupled dark-bright pulse pairs
were formed in the cavity, and in particular, all the pairs had almost identical pulse
parameters.
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Fig. 6.10 Dark-bright pulse pair emission of the fiber laser measured at a relatively larger net
cavity birefringence than the state shown in Fig. 6.7; (a) Polarization resolved laser emissions; (b)
Optical spectra; (c) Autocorrelation trace of the bright solitons; The intra cavity beam power:
700 mW [15]

The features of the dark-bright pulse pairs were experimentally characterized at
relatively large net cavity birefringence where the pulse width is insensitive to small
net cavity birefringence change. Figure 6.10a shows again the polarization resolved
emissions of the laser. Five pairs of the dark-bright pulses coexisted in the cavity,
and they repeated with the cavity roundtrip time. Figure 6.10b is the corresponding
optical spectra. Both the Kelly sidebands and the coherent energy exchange spectral
sidebands are obviously observable in the spectra, which clearly shows that both the
bright and dark pulses are solitons. The FWHM of the autocorrelation of the bright
pulses was 1.53 ps with the assumption of a sech2 profile, and its width was
estimated to be 990 fs, as shown in Fig. 6.10c. Due to the low repetition rate of
the pulses, the width of the dark solitons could not be measured with the autocor-
relation method. However, the Kelly sidebands of the dark solitons had the same
positions as those of the bright solitons, indicating that they should have the same
pulse width.
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6.3.3 Vector Soliton Molecules

The emergence of soliton molecules and vectorial nature of light spreads a new
concept of VDS molecules formed at both time domain and polarization directions in
a unique testbed [53–55]. It is found that VDSs as a non-dispersive unit can also
attract or repel each other to form the VDS molecules, which provide a possibility for
twofold increasing the optical communication capacity.

In the presented study [56], by carefully manipulating the intra-cavity polariza-
tion state, the separate particle-like solitons can be bound together to form DS
molecules due to internal interaction, which are interpreted as another type of
multi-soliton complexes formed in time domain. As shown in Fig. 6.11a, the distinct
indicator of GVLVSs, namely two sets of Kelly sidebands, is also observed from the
optical spectrum of the formed DS molecules. It implies that these DS molecules
stem from the interaction of two GVLVSs, and still have the vector features. The
unique feature of the DS molecules is expressed by the strongly modulated spectral
fringes. And the 3.5-nm modulation period manifests that the two GVLVSs are
closely spaced. Moreover, the DS molecules can be further verified by the double-
humped intensity profile, as shown in Fig. 6.11b. The pulse width of the individual

Fig. 6.11 Group-velocity-locked VDS molecules. (a) Optical spectra of the GVLVSs and GVLVS
molecules (dashed blue line and solid red line, respectively); (b) autocorrelation trace and (c) RF
spectrum of the GVLVS molecules; (d) oscilloscope trace of the triple-pulse state [56]



DS is about 0.81 ps if a sech2 pulse shape is assumed; the soliton separation is
estimated to be 2.3 ps, exactly matching the modulation period of the spectral
fringes. The soliton separation is approximately 2.8 times of the pulse width, and
the height ratio of the three peaks of the autocorrelation trace is around 1:2:1. Thus it
can be seen that two GVLVSs of identical intensity are tightly bound together to
form the GVLVS molecule. Figure 6.11c presents the corresponding RF spectrum.
The fundamental repetition rate maintains at 9.6 MHz. Apart from the fundamental
mode-locking state of GVLVS molecules, these compound multi-soliton complexes
as a unit can also rearrange themselves in a high-pump regime. In particular, triple-
pulse state is confirmed by the oscilloscope trace as shown in Fig. 6.11d, where three
GVLVS molecules, essentially six GVLVSs coexist in the fiber laser.
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Furthermore, polarization-resolved measurement is adopted to get insight of the
vectorial nature of these GVLVS molecules. Figure 6.12a shows the polarization-
resolved spectra. ‘Total’ refers to the direct output of the fiber laser; ‘Horizontal axis’
and ‘Vertical axis’ refer to the polarization-resolved output after the PBS, respec-
tively. The polarization-resolved spectra are all strongly modulated with the same
period of 3.5 nm. Each of the components along the two orthogonally polarized axes
respectively corresponds to an individual set of Kelly sidebands, which is in

Fig. 6.12 Polarization-resolved measurement of GVLVS molecules. (a) Polarization-resolved
spectra of the GVLVS molecules; (b) autocorrelation traces and (c) oscilloscope traces of the two
orthogonally polarized components of the GVLVS molecules [58]



accordance with the GVLVSs. The slight residual of the sidebands from the other
polarization direction results from the low polarization extinction ratio of the PBS.
Figure 6.12b depicts the autocorrelation traces of the polarization-resolved compo-
nents of the GVLVS molecule. The double-humped intensity profiles suggest that
the two orthogonally polarized components could be both considered as DS mole-
cules. They possess almost the same pulse width of 1.08 ps with the assumption of a
sech2 pulse shape, and soliton separation of 2.3 ps. Compared to the pulse width of
the individual DS presented in Fig. 6.12b, the pulse width of the corresponding
polarization-resolved component is broadened from 0.81 ps to 1.08 ps. It is most
likely ascribed to the extra dispersion introduced by the pigtails of the PBS.
Figure 6.12c presents the polarization-resolved oscilloscope traces of fundamental
GVLVS molecules. The pulse intensity of each orthogonally polarized component is
identical.
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6.3.4 Vector Noise-Like Pulses

As one of the special soliton states, the noise-like pulses could be frequently
observed in fiber lasers. The noise-like pulse is found to be a localized wave packet
that consists of many chaotic pulses with high peak powers [57]. Moreover, the
noise-like pulses possess broadband and smooth mode-locked spectrum. Therefore,
considering the unique characteristics of noise-like pulse both in time and spectral
domains, it would be interesting to investigate the vectorial nature of noise-like
pulses in fiber lasers.

Figure 6.13a shows the spectral components of the two orthogonal polarization
states [58]. Notably, it can be seen that the two orthogonal polarization components
located at different wavelengths (1564.9 nm and 1568 nm) with a separation of
3.1 nm, which is much larger than that of conventional soliton trapping. The
corresponding pulse-trains of the two orthogonal polarization states are shown in
Fig. 6.13b. Apart from the intensity difference of the two pulse-trains, they are
similar to each other. The autocorrelation traces of the polarization resolved com-
ponents are presented in Fig. 6.13c, indicating that both of them operated in noise-

Fig. 6.13 Noise-like pulse trapping. (a) Polarization-resolved spectra; (b) Corresponding pulse
trains; (c) Corresponding autocorrelation traces [58]



like mode-locking states. The comparative experiments demonstrated that although
the fiber laser was constructed by SMF with moderate cavity birefringence, the two
polarization components of the noise-like pulse still could trap each other, which is
similar to the case of conventional solitons. It should be also noted that if the cavity
birefringence is too large to be compensated, the soliton trapping would not
occur [59].
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It is well known that the wavelength separation of soliton trapping could be
influenced by the cavity birefringence due to the compensation of the birefringence-
induced polarization dispersion [59]. To investigate this issue, the PCs were further
adjusted to purposely change the cavity birefringence. It was found that the wave-
length shift of noise-like pulse is sensitive to the cavity birefringence. Meanwhile,
the wavelength shift of noise-like pulse trapping is much larger than that of a
conventional soliton trapping. It has been shown that the tiny pulses inside the
noise-like pulse packet possess high peak power, which could be used for
supercontinuum generation in optical fiber laser [60]. In this case, the nonlinear
birefringence induced by the noise-like pulse could be larger than that induced by the
conventional solitons. Therefore, in the case of noise-like operation regime in the
fiber laser, the frequency shift of the two polarized components needs to be large
enough to compensate the fiber birefringence-induced polarization dispersion. Then,
they could trap each other as a group velocity locked vector soliton. Because of the
high peak power of the noise-like wave packet, it is expected that the wavelength
shift would be sensitive to the cavity birefringence, which was also verified by our
experimental results. However, note that the individual pulse inside the noise-like
wave packet could not be resolved by the autocorrelator. Therefore, the precise peak
powers of the noise-like pulses could not be calculated. Moreover, in order to better
quantifiably relate the cavity birefringence to the wavelength shift of pulse trapping,
the adjustment of cavity birefringence by coiling the fiber sections could be intro-
duced in the laser cavity to control the cavity birefringence. It was demonstrated that
the spectral bandwidth of noise-like pulse is related to the average cavity birefrin-
gence. Thus, it is expected that larger spectral bandwidth of noise-like pulse as well
as the larger wavelength shift could be observed by properly optimizing the cavity
birefringence [61].

6.4 Real-Time Dynamics of VDSs

In recent years, the dispersive Fourier transform (DFT) technique opens a promising
opportunity for unfolding the transient dynamics of ultrafast lasers. In this section,
we will present the real-time polarization dynamics and pulsation of VDSs by using
the DFT technique.
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6.4.1 Dispersive Fourier Transform Based Polarization
Resolved Analysis

DFT technique is an emerging measurement that overcomes the speed limitations of
traditional optical instruments and enables fast continuous single-shot measurements
in optical sensing, spectroscopy and imaging. Using chromatic dispersion, disper-
sive Fourier transformation maps the spectrum of an optical pulse to a temporal
waveform whose intensity mimics the spectrum, thus allowing a single photodetec-
tor to capture the spectrum at a scan rate significantly beyond what is possible with
conventional space-domain spectrometers [62].

Polarization-resolved measurement is always adopted to explore the vectorial
nature of the VDSs. In particular, to get insight into the two orthogonally polarized
components, a polarization beam splitter (PBS) is connected to the output port of the
output coupler (OC). The incoming branch of the PBS is made of SMF, while its two
outgoing branches are made of PMF. To avoid influence of the fiber birefringence
introduced by the fiber segments between the OC and the measurement devices, a
fiber-based PC is employed to compensate the extra birefringence. Combining the
DFT technique and polarization-resolved measurement, we can get insight into the
transient polarization dynamics of the VDSs. The schematic of DFT based polari-
zation resolved measurement is illustrated in Fig. 6.14.

6.4.2 Real-Time Polarization Dynamics of VDSs

In this sub-section, we present the real-time polarization dynamics of the GVLVSs
formed in the anomalous-dispersion regime [63]. Figure 6.15a depicts the
corresponding linear optical spectrum of the GVLVSs. The 2D contour plots of
the shot-to-shot spectra with 860 roundtrips is provided in Fig. 6.15b. It is found that

Fig. 6.14 Schematic of the DFT based polarization resolved measurement
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Fig. 6.15 (a) Linear optical spectrum measured by OSA before PBS; (b) 2D contour plots of the
shot-to-shot spectra before PBS and (c) horizontal axis and (d) vertical axis after PBS; (e) averaged
spectrum over all roundtrips; (f–h) single-shot spectra of the first roundtrip respectively correspond
to (b–d)

the two sets of Kelly sidebands agree well with the time-averaged linear spectrum.
Figure , respectively present the 2D contour plots of the shot-to-shot spectra
along the two orthogonally polarized axes. Each component corresponds to one set
of the Kelly sidebands of the total spectra. The two bright fringes remaining
unchanged indicate that the two orthogonally polarized components are of stationary
relations. Moreover, it can be seen that the central wavelength of these two compo-
nents are different. They oppositely shift their central wavelengths to compensate the
polarization dispersion, further stabilizing the conventional soliton trapping state.
The averaged spectrum over all roundtrips of the GVLVSs is depicted in Fig. ,
which agrees well with the time-averaged spectrum in Fig. Meanwhile, the
single-shot spectra of the GVLVSs and their two polarized components are respec-
tively presented in Fig. . It is found that the transient spectrum of only one
roundtrip also show the same polarization dynamics of the GVLVSs as the time-

6.15f–h

6.15a.
6.15e

d6.15c

[63]



averaged measurement. For the first time, the DFT based polarization resolved
measurement was employed to get insight into the vectorial nature of GVLVSs in
real time.
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Fig. 6.16 Stationary GVLVDSs: (a) Polarization resolved time-averaged optical spectra; (b–d)
total and polarization resolved pulse trains; (e–g) 2D contour plots of the total and the polarization
resolved shot-to-shot spectra, insets show the corresponding single-shot spectra of the first roundtrip
[65]

Apart from the soliton trapping in the anomalous-dispersion regime, DS trapping
[41] has also been demonstrated in the normal-dispersion regime in previous sec-
tions. In contrast to the GVLVSs with two sets of Kelly sidebands, gradient edges of
the rectangle spectrum are interpreted as the indicator of the group-velocity-locked
VDSs (GVLVDSs) [64]. The typical polarization resolved spectra are shown in
Fig. 6.16a. In particular, the two orthogonally polarized components possess differ-
ent central wavelengths and spectral shapes. Their spectra are not entirely
overlapped. The 3-dB bandwidths of the vertical and horizontal spectra are
5.86 nm and 7.92 nm, respectively. The total spectrum is the superposition of
these two spectra, thus inducing the gradient spectral edges or the aforementioned
spectral spikes. Accordingly, the corresponding pulse trains are of uniform pulse
intensity as depicted in Figs. 6.16b and 6.3d and the two orthogonally polarized
components own the different output power of 1.80 mW and 5.20 mW. To gain
insight into the real-time spectral information, DFT based polarization resolved



measurement is also utilized for the GVLVDSs. Figures 6.16e and 6.3g present the
2D contour plots of the shot-to-shot spectra before and after the polarization resolved
measurements with 1735 consecutive roundtrips. The corresponding single-shot
spectra of the first roundtrip are illustrated as the insets in Fig. 6.16e–g, which are
highly in accordance with the polarization resolved time-averaged spectra, as
depicted in Fig. 6.16a. It is found that no obvious variations of the spectral profiles
are observed for the total and the polarization resolved shot-to-shot spectra; the
intensities are uniform along roundtrips. Hence, the two orthogonally polarized
components are stably trapped together to form GVLVDSs with polarization locking
state. Meanwhile, the formed vectorial complexes are stationary GVLVDSs without
pulsating manners in terms of the mainly invariable spectral profile.
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6.4.3 Pulsation of VDSs

As a complex nonlinear phenomenon, soliton pulsation is generally verified by the
periodic evolution of the spectral profile and pulse energy with respect to nanosec-
onds even microseconds timescales. The time-stretch dispersive Fourier transform
(TS-DFT) technique also provides an optimal method to capture the transient
evolution of the pulsating manners. Consecutive recordings of the shot-to-shot
spectra enable insight into the periodic spectral breathing. Indeed, the emergence
of pulsating manners and vectorial nature will shed a new light on the transient
ultrafast dynamics of multi-soliton complexes in polarization directions.

As presented in [65], Fig. 6.17a presents the time-averaged spectra before and
after the polarization resolved measurement. The total spectrum and the polarization
resolved spectra are all characterized by the similar features to the stationary ones.
Obvious central wavelength shift of the two orthogonally polarized components
manifests the generation of GVLVDSs. By using the polarization resolved measure-
ment, two orthogonally polarized components are obtained. The corresponding
output powers are measured as 1.3 mW and 4.2 mW. Furthermore, the DFT process
is introduced to illustrate the real-time pulsating manners. It is noted that, in these
multiple-pulse states, all pulses are of similar pulsating manners and one pulse was
chosen as a representative to illustrate the soliton dynamics. Accordingly, the 2D
contour plots of the shot-to-shot total spectra with 1735 consecutive roundtrips are
respectively displayed in Fig. 6.17b–d. It is found that the spectra of the GVLVDSs
pulsate periodically evolved along roundtrips. The energy and bandwidth variations
versus to roundtrips of the total spectra are extracted in Fig. 6.17e, f. Both the
spectral profile and pulse energy oscillate with a period of 280 roundtrips,
corresponding to 16.15 μs. The oscillations are almost harmonic with small changing
amounts. This pulsating manner is regarded as a quasi-stationary state considering
that the pulse can recover its original spectrum after specific roundtrips. Particularly,
the recurrent broadening of the spectral profile principally derives from the enhanced
self-phase modulation (SPM) induced by the increasing pulse energy. Inversely, the



intra-cavity filtering effect will clamp the spectral profile to the minimal bandwidth.
Figure 6.17g–i respectively present the single-shot spectra of the GVLVDSs and two
polarized components at roundtrip 730, 800 and 870. The spectral oscillations are
restricted in a small range. This slightly pulsation state is just nearby the bifurcation
point. By finely adjusting the settings, the pulsating GVLVDSs may approach into
the stationary states or other severer pulsating states with large diverging values of
the energy and spectral profile. Additionally, the 2D contour plots of the polarization
resolved shot-to-shot spectra indicate that the two orthogonally polarized compo-
nents synchronously inherit the pulsating manners. They are characterized by both
oscillating energy and breathing spectral profile with the identical period of
280 roundtrips.
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Fig. 6.17 Pulsating GVLVDSs: (a) Polarization resolved time-averaged optical spectra; (b–d) 2D
contour plots of the total and the polarization resolved shot-to-shot spectra; (e–f) energy and
bandwidth variations versus to roundtrips of the total spectrum; (g–i) single-shot spectra of the
GVLVDSs and two polarized components at roundtrip 730, 800, and 870 [65]

Previous works demonstrated that pulsating manners of DSs can transform the
steep spectral edges into gradient ones, which is interpreted as a distinct indicator of
the pulsating DSs [64]. However, it seems inconspicuous for the observations
depicted in Fig. 6.17. The time-averaged spectrum of the pulsating GVLVDSs still
possesses steep edges. It is deemed that this phenomenon should be ascribed to the
small oscillating amount of the spectral profiles. The slight spectral differences of the
pulsating pulses will not notably reshape the edges in the time-averaged spectra.
Furthermore, recurrent oscillation in the shot-to-shot spectra becomes more compli-
cated for the two orthogonally polarized components. In our case, polarization
locking state of the GVLVDSs excludes the polarization evolution induced spectral
oscillation of these two components. Especially, polarization rotation of the



GVLVDSs can also bring about similar shot-to-shot spectral evolution with respect
to the pulsating manners. The observed spectral oscillation may be the superposition
of both the pulsating manners and the polarization rotation. Moreover, the synchro-
nization of the pulsating manners is related to the soliton trapping and formation
mechanisms. XPM can balance the polarization-mode dispersion.
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6.5 Conclusions

In conclusion, we have discussed the VDSs composing of two orthogonally polar-
ized components in ultrafast fiber lasers. DS trapping is numerically predicted and
experimentally demonstrated, which highlights the vectorial eigenstates beyond the
approximate scalar model. Particularly, various forms of VDSs such as high-order
VDSs, dark-bright VDSs, vector soliton molecules and vector noise-like pulses are
presented to manifest the universality of the vectorial eigenstates in fiber lasers. By
using the DFT based polarization resolved measurement, both real-time polarization
evolution and pulsation of VDSs are revealed. All these findings can facilitate the
understanding towards the framework of DS dynamics, as well as highlight the
potential application scenarios of increasing the data-carrying capacity beyond
traditional binary coding of the scalar counterparts in optics communication systems.
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Chapter 7
Dynamics of Pulsating Dissipative Solitons

Xiaoqing Wang, Jiangyong He, Baiwei Mao, Zhi Wang, and Yan-ge Liu

Abstract Pulsating soliton is an important local structure of dissipative nonlinear
system and a transition state of multi-pulse operation, which is characterized by
periodic oscillation of pulse parameters, including the spectrum, temporal profile,
pulse energy, etc. Based on the numerical and semi-analytical analysis of the
Ginzberg Landau equation, the essence of the pulsation corresponds to the Hopf
bifurcation of the system in the parameter space. In recent experiments, various
kinds of pulsation dynamics are observed at higher resolution due to the real-time
detection technique, including single-period or double-period pulsation soliton,
pulsation soliton molecule, synchronous and asynchronous pulsation soliton in
multi-soliton pulsation state. Especially, the periodic soliton explosion phenomenon
is observed, which is related to the extreme soliton pulsation. As a result, to further
researching the multi-soliton dynamic, it’s of great significance to regard pulsating
solitons as fundamental interaction elements. In this chapter, a summary of pulsating
soliton dynamics is provided, mainly introducing the corresponding theories and
recent observations about pulsating soliton interaction.

Keywords Dissipative soliton · Pulsation soliton · Cubic-quintic Ginzburg Landau
equation · Moment method · Variational method · Mode-locked fiber laser ·
Dispersive Fourier transform · Synchronous pulsation · Asynchronous pulsation ·
Soliton molecule

7.1 Introduction

Passively mode-locked fiber lasers have long been the focus of basic scientific
explorations and diversified applications. For one thing, they offer a unique oppor-
tunity to implement optically a Poincaré mapping in the phase space of a variety of
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complex dissipative dynamical systems operating far from the equilibrium [1]. For
another, as a simple and economic ultra-short pulse source, mode-locked fiber laser
has various applications ranging from spectroscopy and medicine to metrology and
telecom. Understanding of such complex optical dynamical systems revealing, for
instance, ultrafast dynamics of the dissipative solitons (DSs) and more complex
regimes is important for advancing specification and performance of the mode-
locked lasers used in a vast number of applications.
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As a part of the localized structures in nonlinear systems, pulsating solitons show
fascinating periodicity [2], and play an important role in the dynamics of the laser
multi-pulse transition (N pulses to N + 1 pulses) [3–6].This metastable state is no less
important than the stable soliton in the self-organization of laser energy. Based on
the theoretical analyses and numerical simulations, various complicated pulsating
behaviors of solitons and their corresponding existence regions in the parameter
space have been found [7–10]. Benefit from the advantages of real-time detection
technology, diverse pulsation phenomena of dissipative solitons have also been
observed experimentally [11–15]. Unlike the constant pulse in stable regime, it is
demonstrated that the spectrum, temporal profile, pulse energy and group velocity of
the pulsating soliton may evolve periodically along with the cavity round trips.
Continuous adjustment of one or more parameters continuously and crossing the
borders of different regions may result in the transitions between different pulsation
solutions or even the three major classes of solutions (stationary, pulsating, and
chaotic solutions).

In this chapter, the pulsating dynamics will be introduced firstly in the view of
numerical method based on cubic-quintic Ginzburg Landau equation (CQGLE). It’s
easy to obtain the evolution of solitons under given parameters. Nevertheless, the
solution to this problem usually requires massive numerical simulations with differ-
ent sets of parameters and initial conditions. For finding simplified models, several
analytical methods with proper approximation are proposed, like moment method
and variational method, which will be introduced soon. Then, several pulsating
soliton results unveiled by virtue of the dispersive Fourier transform (DFT) tech-
nique [16] on the experimental platform of an L-band normal-dispersion mode-
locked fiber laser will be discussed.

7.2 Theory of Pulsating Dissipative Solitons

In general, the average dynamic process in the laser can be described by the CQGLE
[17–19]:

i
∂U
∂z

þ D
2

∂2U
∂t2

þ Uj j2U ¼ iδU þ iβ
∂2U
∂t2

þ iε Uj j2U � ν Uj j4U þ iμ Uj j4U þ HOE
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HOE ¼ iβ3
∂3U
∂ t3

� is
∂
∂t

Uj j2U
� �

þ γ U
∂
∂t

Uj j2
� �

ð7:1Þ

Here, U is the electric field envelope, D is the group velocity dispersion coefficient,
where D > 0 represents the abnormal dispersion regime and D < 0 represents the
normal dispersion regime; δ is the linear gain/loss coefficient, and β is the spectral
filter coefficient, ε is the nonlinear gain or absorption coefficient (the nonlinear gain
comes from saturation absorption), μ is generally negative, indicating the saturation
of the nonlinear gain; similarly, the negative value of ν corresponds to the saturation
of the nonlinear refractive index. HOE is other higher-order linear and nonlinear
effects, mainly including higher-order dispersion, self-steep effect and Raman effect.
More complex models need to consider the gain dynamics, the most important of
which is the gain saturation effect. At this time, the linear gain coefficient δ will be
rewritten as [20]:

δ ¼ g0

1þ Uj j2h i
Is

� r ð7:2Þ

Here, the parameters are linear gain coefficient g0, linear losses r, saturation intensity

Is, and average intensity U 2 1 þ1 U 2dt, where T is the round-trip time.T

CQGLE provides a clear physical picture for understanding the influence of laser
parameters on pulse dynamics, providing convenience in both numerical analysis
and analytical analysis. Based on the analysis of CQGLE, dynamic processes such as
soliton molecule [21, 22], soliton rain [23, 24] and soliton pulsation [2, 25] have
been explained.

7.2.1 Numerical Analysis of Pulsation Dynamics

Numerical analysis is the main way to understand most of the dynamics in a laser. In
fact, the existence of the pulsation solution can be found in the parameter space of
different numerical models. The pulsation structure is an energy effect, embodied as
the energy of the pulse changing periodically, in sync with the pulsation. Therefore,
the properties of pulsation are strongly related to the parameter of the CQGLE
equation.

N. Akhmediev and J. M. Soto-Crespo have done a lot of key work on the
numerical analysis of pulsating soliton [2, 8, 9, 25, 26]. They accurately divided
the parameter regions of the stable soliton and the soliton of different pulsating
states, and gave the path of the soliton from the stable state to the chaos through the
period-doubling bifurcation of energy under the specific CQGLE parameters.
Figures 7.1a–c show the numerical results, consisting of temporal, spectral and
energy evolutionary process, of a pulsation in CQGLE under the parameter (D, ν,
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Fig. 7.1 Numerical analysis of pulsation. (a) Temporal evolution of pulsation; (b) Spectral
evolution of pulsation; (c) Energy evolution of pulsation. (d) Bifurcation diagram vs μ. The minimal
Qm (dotted blue curve) and maximal QM (dashed red curve) values of Q quickly diverge with the
increase of μ. (e) Bifurcation diagram vs D. Only the maxima of the energy QM are plotted in this
diagram. (Reprinted with permission from Ref.

ε, μ, δ, β) ¼ (�1, 0.1, 0.95, �0.002, 0.1, 0.125). From Fig. , it can be found that
the pulse energy Q oscillates in a single period during transmission, for which reason
this pulsation structure is called single-period pulsation. Corresponding to this
energy oscillation, both the temporal structure and the spectral structure of the
pulse exhibit the property like breath, which is attributed to the self-phase modula-
tion and spectral filter effect. The generation of the pulsation structure can be
characterized by the energy bifurcation path in Fig. . By fixing the other
parameters of the equation, with the increase of μ, the pulse energy will take
bifurcation near μ ¼ � 0.002. Behind the bifurcation point, the pulse energy may
be located at either of two possible positions QM and Qm. Thus, the soliton becomes
unstable, leading to the generation of a pulsating soliton. Moreover, the interval of
these two possible positions are further enlarged along with the value of μ, embodied
as a more violent pulsation soliton. Under specific parameter conditions, there can be
some extreme cases [ , ]: pulsation possesses extremely high energy ratios, which
is related to the periodic soliton explosion. Besides the change of μ, the generation of
pulsating structure can also be triggered by the change of any other parameter in
Eq. ( ) [ , , , ]. Figure shows the energy bifurcation path produced by
changing the dispersion parameter D (Here, the change in the maximum value of
energy is used as the investigation of the pulsating structure change). When
D ¼ -0.5032, the pulse has a single-period pulsation, which corresponds to a single
energy maximum value. When D increases to �0.5030, the energy takes period

7.1e292826257.1
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7.1c

[9] © American Physical Society)



doubling bifurcation and two energy maxima are produced, so the pulsation changes
to a double-period pulsation. Further, the energy continues to undergo period-
doubling bifurcation with the increase of D, resulting in multiperiod pulsations
and eventually turning into chaos. This path from period-doubling bifurcation to
chaos is the Feigenbaum path [30].
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The formation and characteristic of pulsation can be better understood by describ-
ing the evolution of pulse parameters. Before introducing that, a concept named
attractor is introduced first. Attractor is a structure that any initial point in the phase
plane tends to converge as the evolution, divided into fixed point (FP) and limit cycle
(LC), etc. A stable soliton corresponds to a stable FP in the phase plane. As a result,
for any initial pulse (corresponding to a specific point in the phase plane), it will
eventually converge to a FP on the phase plane as the pulse evolves. As comparison,
a pulsating structure corresponds to LC in the phase plane [31]. As shown in
Fig. 7.2b, there is just a closed loop in the LC structure (the blue solid loop) for a
single-period pulsation. When the pulse takes (σF,Q) ¼ (0.36, 4) as the initial value
(point A), where σF is the pulse spectral width and Q is the pulse energy. As
evolution, the initial point gradually converges to the LC structure. Similarly, with
point B as the initial value, the evolutionary trajectory will eventually converge to
the LC along a different path. Once falling to the LC, the point will always cycle on
that if there is no enough turbulence. The corresponding temporal evolution is
depicted in Fig. 7.2a, which is a single-period pulsation of single soliton. Different
from a single-period pulsation, a double-period or multiperiod pulsation means that
the LC structure contains more closed loops. For example, Fig. 7.2d depict a
two-dimensional phase plane composed of pulse spectral width σF and pulse energy
Q. Further, Fig. 7.2c show the temporal evolution of Fig. 7.2d, which is also a
pulsation soliton, but with two periods. It should be pointed out that in some
parameter areas, the system has a multi-stable solution [10, 25]. At this time, the
attractor structure is local, that is, the final steady state is related to the initial value.
In a word, the essence of pulsation is stable LC. In Figs. 7.1d, e, as the system
parameters change, the energy bifurcation actually corresponds to the change of the
attractor structure caused by the system parameter changes. For a nonlinear system,
when the attractor structure changes from a stable FP to a stable LC, it means that the
system has experienced Hopf bifurcation, so the transformation from a stationary
soliton to a pulsating soliton is the result of Hopf bifurcation.

In fact, in addition to the pulsating behavior of single soliton, the pulsating
structure of multi-soliton also has different forms under different system parameters,
which are mainly divided into synchronous pulsation and asynchronous pulsation.
Figures 7.3a, b show respectively the temporal evolution and energy evolution of
two synchronous pulsating solitons, which corresponds to the system parameters (D,
ν, ε, μ, δ, β) ¼ (1, �0.1, 0.7, �0.12, �0.1, 0.01). These two solitons breathe
synchronously and periodically. Figures 7.3c, d correspond to the temporal and
energy evolutions of two asynchronous pulsating solitons, under the system param-
eters (D, ν, ε, μ, δ, β)¼ (1,�0.1, 0.76,�0.12,�0.1, 0.125) respectively. Figure 7.3d



shows that the asynchronous pulsating solitons undergone periodic evolution, but
the energy of each soliton does not reach the highest or lowest at the same time. The
asynchronous pulsation can also be described by the LC structure. Asynchronous
pulsating solitons with the same energy oscillation curve are due to the same LC but
different initial value. Various soliton solutions can coexist in certain parameter
areas [25]. The LC structure of different soliton solutions caused by parameter
changes is different, the coexistence of these different forms of pulsation structures
will result more complex forms of asynchronous pulsation.
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Fig. 7.2 Pulsation evolution and the corresponding phase diagrams. Temporal evolution of stable
(a) single-period and (c) double-period pulsation; (b) Evolution trajectory in (σF,Q) space. A and B
are the different initial point. The blue solid loop is the stable LC of pulsation. (d) Evolution
trajectory for stable double-period pulsation. (Reprinted with permission from Ref. [10] © The
Optical society)
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Fig. 7.3 Evolution of multi-soliton pulsation. Temporal evolution of (a) synchronous and (c)
asynchronous pulsating soliton; energy evolution of (b) synchronous and (d) asynchronous pulsat-
ing soliton (the blue curve for the left soliton, the red curve for the right soliton)

7.2.2 Semi-Analytical Analysis of Pulsation Dynamics

Unlike the integrable nonlinear Schrodinger equation (NLSE), CQGLE does not
exist an accurate soliton solution by inverse scattering method, so when dealing with
CQGLE, it is necessary to assume a proper form of solution or additional approx-
imate conditions. The moment method [32–35] and the variation method [36, 37] are
two common analytical methods. The main idea of these two methods is to transform
the problem of infinite dimensions into finite dimensions by designing the form of
pulse solutions in advance. Through these two methods, the stability of the pulse can
be analytically related to the system parameters, thus providing a simple model for
understanding the pulsation.

The moment method was applied to the field of nonlinear optics as early as 1971.
Five moments are generally introduced in the moment method [32]:

Q ¼
Z þ1

�1
Uj j2dt

P ¼ 1
2
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I3 ¼
Z þ1

�1
t � t0ð Þ UUt

� � U�Utð Þdt

Here t0 ¼ I1/Q is the position of the centroid of the pulse. The integrals Q and
P indicate the energy and momentum of soliton, I1, I2 and I3 are the other three
higher-order distribution moments related to the properties of soliton. When high-
order effects are not considered, CQGLE can be expressed as:

i
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2
∂2U
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þ Uj j2U ¼ iδU þ iβ
∂2U
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þ iε Uj j2U � ν Uj j4U þ iμ Uj j4U ¼ R U½ �
ð7:4Þ

Here, R[U] is the perturbation of NLSE, which is the left side of Eq. (7.4). Com-
bining Eqs. (7.3) and (7.4), the evolution equation of moments can be obtained:
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The evolution of the pulse parameters is obtained by combining the proposed pulse
solution and Eq. (7.5). Generally, there will be different forms of the pulse solution
in different dispersion regions, but in order to simplify the problem, the Gaussian
solution or the hyperbolic secant solution is used. For matching with Eq. (7.5), the
hyperbolic secant pulse should be:

U t, zð Þ ¼ Asech
t � t0
w

� �
exp i ϕþ b t � t0ð Þ þ c t � t0ð Þ2

hn
ð7:6Þ

where A(z), w(z), ϕ(z) and t0(z) are the amplitude, width, phase and position of the
pulse, respectively, b(z) is the angular frequency of the pulse, and c(z) is the chirp
parameter. Substituting Eq. (7.6) into Eq. (7.3) and Eq. (7.5) respectively, the
evolution equations about the pulse parameters are obtained [33, 34]:
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The parameter space is defined by five parameters, that is Q, w, c, t0 and b. FPs of the
dynamical system can be found from the set of algebraic equations Fj¼ 0 ( j¼ 1� 5).
The stability of these FPs is determined by the eigenvalue λj of the Jacobian matrix
Mij ¼ ∂Fi

∂p j
, where pj ¼ (Q,w, c, t0, b). When the real part of arbitrary λj is positive, the

FP is unstable. Figure 7.4a obtained by Eq. (7.7) shows the characteristic of FPs in
(ν, ε) plane, where (D, δ, β, μ) ¼ (1,�0.1, 0.08,�0.1) are constants. When the value
of the gain ε is small, there are no stable or unstable FPs (no stationary solitons) in
the system because of the threshold for FP existence. Curve 1 in Fig. 7.4a is the
bifurcation boundary (threshold) where the stable FP turns into an unstable one.
Below Curve 1, the eigenvalues λj meet

Fig. 7.4 Phase plane derived from different theoretical methods. The region of FP and limit cycles
in the parameter space (ν, ε) derived from (a) the moment method and (b) the numerical method
based on CQGLE. (Reprinted with permission from Ref. [33] © Elsevier BV)
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Re½λ1,2,3� < 0 ð7:8Þ

Thus, this area corresponds to a stable FP, indicating a stable soliton. For the region
above Curve 1, the eigenvalues λj meet:

Re½λ1,2� < 0, Re½λ3� > 0 ð7:9Þ

It means that a stable FP is transformed into an unstable FP, and the topology of
attractor are transformed from a FP to a LC. Further, there is no stable LC above
Curve 2, the soliton energy Q and width w increase monotonically with evolution in
this area. When the value of v is fixed at �0.09 (the Red dotted line), as ε gradually
increases, the solitons are stable at first. When ε reaches the value on Curve 1, the
Hopf bifurcation occurs, resulting in pulsating soliton. For exhibiting the
corresponding relationship, the numerical simulation of CQGLE under the same
parameter plane (ν, ε) can obtain the interval of different soliton state as shown in
Fig. 7.4b. The pulsating soliton region based on the numerical simulation directly
from CQGLE is enclosed by Curve 1 and Curve 2. Figures 7.4a, b are obtained in
moment method and numerical method respectively but show a dramatic consis-
tence. It proves the reliability of the dynamic model established by Eq. (7.7).

Fig. 7.5 provides two examples of stable LC in (Q, w, c)-space based on the
calculation of Eq. (7.7), which reveals the characteristic of the pulsating structure
changes along with the parameters. By comparing the LC structure in Figs. 7.5a, b, it
can be found that when keep other parameters unchanged and increases the nonlinear
gain ε from 0.66 to 0.72, the oscillation interval ofQ also increases, which means the
intensity of the pulsation increased.

Fig. 7.5 Two examples of stable limit cycle in (Q,w, c)-space. (a) Stable limit cycle structure under
parameter ε ¼ 0.66 and (b) ε ¼ 0.72 when (ν, δ, β, μ) ¼ (�0.09,�0.1, 0.08,�0.1). (Reprinted with
permission from Ref. [33] © Elsevier BV)
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In addition to the moment method, the analysis of pulsation dynamics using the
variational method has also been studied [38, 39] In general, both the moment
method and the variation method are based on the assumption that dissipative
perturbation does not affect the pulse shape function, so the evolution of pulse
parameters can be characterized by a set of nonlinear differential equations and
directly related to the system parameters (such as linear gain/loss δ or nonlinear
gain ε).

In summary, through the evolution dynamic equations of the pulse parameters,
the pulsation can be qualitatively defined as: under specific laser parameters, due to
the Hopf bifurcation, the unstable FP of the dynamic equation lead to the generation
of stable LC. It means the periodic evolution of the pulse, indicating a pulsating
structure.

7.3 Transient Behaviors of Pulsating Dissipative Solitons

In recent years, significant advances have been made in the real-time measurement
of fleeting transient dynamics [40, 41]. The most widespread is the DFT technique,
by which the spectral information is mapped in time domain by using group velocity
dispersion [16]. This relatively simple but powerful technique has been extensively
used in revealing the sophisticated dynamics in ultrafast lasers, such as soliton rain
[24], soliton molecules [42–45], soliton pulsations [11, 14, 46–48], soliton explo-
sions [49–51], etc. In experiment, the changes of pump power and polarization
settings correspond to the adjustments of the coefficients in theoretical simulations
to some extent. However, not all pulsating dynamics predicted theoretically can be
easily observed in experiment for the experimental parameters cannot be flexibly
adjusted. In this section, several types of typical pulsating dynamics, which are
unveiled by virtue of DFT technique on the experimental platform of an L-band
normal-dispersion mode-locked fiber laser, will be discussed.

The schematic diagram of the L-band dissipative soliton fiber laser is shown in
Fig. 7.6. It has a ring cavity configuration. As gain medium and dispersion manage-
ment component, a segment of 9.5 m long normal-dispersion erbium-doped fiber
[EDF, Fibercore, I-25(980/125)] is forward pumped by a 976 nm laser diode
(LD) through a 980/1550 nm wavelength division multiplexer (WDM). Nonlinear
polarization rotation technology with a polarization dependent isolator (PD-ISO)
sandwiched by two polarization controllers (PCs) produces an artificial saturable
absorber effect for laser mode locking. In addition, the PCs are employed to adjust
the polarization states of light for mode-locking optimization and the PD-ISO is
employed to ensure unidirectional operation. An output coupler (OC) is utilized to
extract 79% of the intracavity pulse energy. The dispersions of device pigtails
(single-mode fiber, ~9 m in total) and EDF are �23 and 40 ps2/km at 1550 nm,
respectively. The net cavity dispersion is estimated to be 0.19 ps2. The total cavity
length of ~18.5 m entails the single roundtrip (RT) time of ~89.2 ns. As shown in
Fig. 7.6, the laser output is split into three branches for synchronously monitoring of



average spectra, temporal and spectral evolutions. An optical spectrum analyzer
(OSA, Yokogawa, AQ6370D), a high-speed real-time oscilloscope (33-GHz band-
width, 100 Gsamples/s, Tektronix, DPO75902SX) and two photodetectors (PD1,
45-GHz bandwidth, DiscoverySemi, DSC10H; PD2, 50-GHz bandwidth, Finisar,
XPDV2320R) are employed. The temporal evolution is obtained when the signal is
directly captured (undispersed) by a photodetector and sent to a real-time oscillo-
scope. The real-time spectra of the laser pulse are measured by the DFT technology,
where the signal is fed into a 1.5 km long dispersive compensation fiber (DCF,
YOFC DM1010-D, �131.34 ps/(nm�km) @ 1545 nm) to stretch the pulses and then
detected via a photodetector and a real-time oscilloscope, thus yield the spectral
evolution. As a result, the real-time spectral resolution is estimated to be 0.152 nm.
The time series recorded by the oscilloscope are segmented according to the single
roundtrip (RT) time, and then the transient dynamics of solitons can be depicted by
the single RT time and the RT number.
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Fig. 7.6 Schematic of the L-band normal-dispersion mode-locked fiber laser and its detection
system. (Reprinted with permission from Ref. [52] © The Optical society)

7.3.1 Stationary Soliton

The stationary soliton state could be easily achieved in properly parameter space by
adjusting the pump power and the PCs of the L-band laser. For a pump power of
178.8 mW, the steady-state output characteristics are presented by the
OSA-measured spectrum (black curve) and the average of 7006 consecutive real-
time spectra (red curve) concurrently. As shown in Fig. 7.7a, the mode locked
spectra with the central wavelength of 1598.3 nm and a 3 dB bandwidth of
41.0 nm possess extremely steep edges and relatively flat tops, which is the typical
output of the L-band normal-dispersion regime laser [53]. The corresponding pulse



train with uniform intensity is illustrated in Fig. 7.7b and the real-time spectra over
7006 consecutive RTs are presented in Fig. 7.7c, indicating that the fiber laser is
operating in a stable, time-invariant mode-locking state.
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Fig. 7.7 Characteristics of stationary soliton state. (a) Optical spectrum directly recorded by the
OSA (black curve) and the average of 7006 consecutive single-shot spectra (red curve). (b) Spatio-
temporal dynamics. (c) Spatio-spectral dynamics
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7.3.2 Single-Period Pulsating Soliton

In general, the constant pulse energy may bifurcate under certain parameter condi-
tions, and the working state of the laser will change from steady state to pulsating
state [8, 9]. Figure 7.8 shows an example of a pulsating soliton found experimen-
tally, which embodies energy bifurcation and periodic behavior. The spectrum
directly recorded by the OSA and the one by averaging the DFT data are compared
and plotted in Fig. 7.8a. Different from the extremely steep spectral edges for
stationary solitons, the spectra of pulsating solitons show arcuate edges. The radio-
frequency (RF) spectrum is shown in Fig. 7.8b, the frequency difference between the
first-order satellite peak caused by pulsation and the main peak representing the
fundamental frequency is 138.8 kHz, which is equivalent to ~808 RTs when
converted to time. The spatio-temporal and spatio-spectral dynamics of 7006 con-
secutive RTs are recorded by the real-time oscilloscope, as shown in Figs. 7.8c, d,
respectively. Figure 7.8e provides the pulse energy evolution by summing the
intensity of all sampling points of a roundtrip. For the pulse evolution in the time
domain, the amplitude fluctuates periodically. In addition, the pulse oscillates back
and forth relative to its average position, demonstrating a periodical temporal shift.
The spectral evolution exhibits an interesting breathing characteristic: repeated
broadening and contraction, which echoes the arcuate edges of the average spectra.
Note that the periodic temporal shifts are attributed to the periodic changes in group
velocity caused by spectral breath and the drifts of the central wavelength [10]. The
growth (decline) of the pulse energy is in sync with the expansion (contraction) of
the spectrum. In a word, the pulse varies in adjacent roundtrip but it recovers its exact
initial shape periodically after multiple roundtrips, indicating that the fiber laser is
operating in pulsating regime. The pulsating period is ~808 RTs, consistent well
with the frequency difference in the RF spectrum.

To further illustrate the pulse evolution, Fig. 7.9 shows eight typical spectra
within a pulsating period. Due to the incomplete balance among the dispersion,
nonlinearity, gain and loss within one roundtrip, spectral breath and amplitude
pulsation can be observed. As shown in Figs. 7.9a–e, modulation peaks arise at
the edges of the spectra, then increase and enhance during the spectrum widening
interval, and finally decay rapidly before the bandwidth reaches the wide extreme
point, showing almost the same process as the dissipative soliton buildup dynamics
in the normal-dispersion fiber laser. Subsequently, as shown in Figs. 7.9e–h, the
spectrum gradually shrinks. Herein, the spectral broadening effect is attributed to the
increase of the self-phase modulation effect with the pulse energy increasing, while
the spectral contraction can be explained that the high energy pulse is susceptible to
dissipative effects such as spectral filtering. It is worth mentioning that, owing to the
pulse shaping mechanism in the normal dispersion regime, the spectrum of high
energy pulses will gradually evolve to the M-shape when the mode-locked fiber
lasers operate at high nonlinearity. C. Lecaplain et al. proposed a generic explanation
for the formation of these M-shaped spectra that the large fringes appearing at the
edges of the spectrum are caused by discontinuities in the spectral phase [54]. Gen-
erally, spectral phase jumps appear as soon as the gain saturation becomes large
enough.



Fig. 7.8 The pulsating soliton with single period (pumping power: 174.9 mW). (a) Optical spectrum
directly recorded by the OSA (black curve) and the average of 7006 consecutive single-shot spectra
(red curve). (b) RF spectrum. (c) Spatio-temporal dynamics. (d) Spatio-spectral dynamics. (e) Pulse
energy evolution. (Reprinted with permission from Ref. [14] © The Optical society)
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Fig. 7.9 Typical spectra within a pulsating period. (a) 190th RT. (b) 230th RT. (c) 270th RT. (d)
285th RT. (e) 300th RT. (f) 600th RT. (g) 800th RT. (h) 980th RT. (Reprinted with permission from
Ref. [14] © The Optical society)

It has been demonstrated theoretically that pulsating solitons do exist whether the
net dispersion in the cavity is normal or anomalous [2, 9]. Furthermore, experimental
examples of pulsating solitons in the region of anormal-dispersion have also been
presented successively. In 2017, the real-time evolutions of soliton self-organization
and pulsation were observed in an anomalous-dispersion mode-locked fiber laser
[11]. The authors demonstrated that the periodic radiation dispersion waves are in
sync with the pulsation. Soon after, Wei et al. provided an experimental observation
of the pulsating soliton with chaotic behavior [46]. Later, a novel type of soliton
pulsation in an anormal-dispersion ultrafast laser is unveiled. The pulsating behavior
features that the soliton experiences periodic peak power variation but with almost
invariable pulse energy [48].

7.3.3 Double-Period Pulsating Soliton

It is found that the appearance of the soliton pulsation is sensitive to the pump power
level [14, 48]. Mode-locked lasers generally present an important hysteresis with
respect to the pumping power [55], which was applied in the experiment of gener-
ating double-periodic pulsations. On the basis of single-periodic pulsation shown in
Fig. 7.8, the pump power was attenuated slowly and the PCs was fine-tuned to get
further bifurcation of pulse energy. Meanwhile, the spectral evolution was monitored
through DFT technology. Finally, a pulsation dynamic phenomenon corresponding
to the energy evolution of the pulse form two loops connected in numerical analysis
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Fig. 7.10 The pulsating soliton with double period. (a) Spatio-temporal dynamics. (b) Spatio-
spectral dynamics. (c) Pulse energy evolution. (Reprinted with permission from Ref.

[ ], namely the double-period pulsation soliton, was captured at the pump power of
173.3 mW. The corresponding output performances are shown in Fig. .
Figures show the temporal evolution, the spectral evolution and the
corresponding energy evolution within 7006 RTs, respectively. It can be observed
that the double-periodic pulsation has almost all the features of the single-periodic
pulsation described above, such as energy oscillation, spectral breath, temporal shift,
etc. The difference is that the pulse repeats itself every two oscillation intervals. The

7.10a–c
7.10

8

[14] © The
Optical society)



adjacent oscillations with unequal period exhibit different extrema of both energy
and spectral bandwidth, and the larger energy (spectral) modulation corresponds to
the longer oscillation period.

148 X. Wang et al.

Essentially, the double-period pulsation is caused by the doubled bifurcation of
energy based on the single-period pulsation, that is, the period doubling phenome-
non. Numerical results demonstrated that the form of the bifurcation diagram
depends on the path in the parameter space for the simulations and any imaginable
combination of periods in the dynamics can be realized with a proper choice of the
system parameters. Furthermore, higher-order bifurcations may generate infinite
periods and the fiber laser steps to chaotic operation regime, which is exactly
Feigenbaum type route to chaos [8, 56]. Surely, the above example with two periods
in pulsations is only the first step in this direction, which cannot represent the whole
complexity of possible bifurcation dynamics. As a matter of fact, other forms of
bifurcation phenomena or periodic combinations have also been reported. In 2004,
the first experimental observation of the laser output pulses combining period
doubling and long period (�33) pulsations was demonstrated based on temporal
pulse sequence measured by oscilloscope [8]. In 2020, similar phenomena were
observed in real-time, where the DFT data demonstrated that the spectra of odd RTs
and even RTs have their own periodicity [48, 57].

7.3.4 Periodic Soliton Explosion

Another class of pulsating solitons which suffers erupting instabilities can be called
as periodic “exploding” or “erupting” solitons [2]. Due to the energy oscillation, the
intracavity nonlinear effect oscillates near the boundary between the stationary and
chaotic regimes, resulting in “exploding’ at a periodic manner. In other words, the
periodic soliton explosion is a transition state between the pure pulsation and the
chaos. Figure 7.11 summarizes the performances of the periodic soliton explosion at
the pump power of 168.2 mW. Figure 7.11a demonstrates the spatio-temporal
dynamics within 6800 roundtrips. The corresponding spectral evolution and energy
evolution are reflected in Figs. 7.11b, c, respectively. “Exploding” soliton evolution
starts from a relatively stationary localized solution that has a perfect spectral profile
[25]. After a while, the spectrum experiences a sharp shrink followed by a dramatic
expansion, and very soon, cracks into pieces like an explosion. These completely
chaotic, but well-localized spectral structures restore the original relatively stable
mode-locked profile after about 160 RTs, presenting analogies with the “cooling
process” in real explosions. For temporal evolution, there are shifts and fractures.
The former is attributed to the group velocity disturbances caused by the changes of
spectral range. The latter is due to the extremely low pulse energy and the insuffi-
cient detection dynamic range. Because of the limited memory of the oscilloscope,
less than three explosions could be recorded at a time without sacrificing resolution.
Actually, the periodic explosion may last quite a while, although the duration and
interval of “eruptions” fluctuate slightly.
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Fig. 7.11 The periodic soliton explosion. (a) Spatio-temporal dynamics. (b) Spatio-spectral
dynamics. (c) Pulse energy evolution. (Reprinted with permission from Ref. [14] © The Optical
society)

To illustrate the explosion behavior of the pulses in more detail, the typical
spectra over an explosion period are presented in Fig. 7.12. As can been seen, the
exploding evolution is approximate to the pure pulsating process. However, the
amplitude of the pulse energy oscillation is much larger than that of pure pulsation.
Correspondingly, the spectral modulation peaks caused by spectral phase distur-
bance are stronger. In the later stage of energy growth, as shown in Fig. 7.12e, the



overdriven nonlinear effect leads to an abrupt spectral collapse. Eventually, the
spectral fragments of the burst gradually return to a smooth profile with the dissipa-
tion of energy, approaching its pre-explosion state. Even though the exploding
behavior seems to be similar to chaos, it shows periodic characteristic, which falls
in the criterion of the soliton pulsation. In this sense, this periodic soliton explosion
can be called as soliton pulsations. In 2018, similar spectral periodicity of soliton
explosions was unveiled in a broadband mode-locked Yb fiber laser by using time-
stretch spectroscopy [58]. However, not all periodic soliton explosions are associ-
ated with pulsation. In 2020, M. Liu et al. report the periodic soliton explosions
induced by intracavity soliton collisions in a dual-wavelength mode-locked
Yb-doped fiber laser [51].
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Fig. 7.12 Typical spectra over an explosion period. (a) 3000th RT. (b) 3400th RT. (c) 3520th
RT. (d) 3550th RT. (e) 3560th RT. (f) 3570th RT. (g) 3600th RT. (h) 3700th RT. (Reprinted with
permission from Ref. [14] © The Optical society)

7.3.5 Multi-Soliton Synchronous Pulsation

Among diverse dynamics, multi-pulse operation has long been a hotspot on both
theory and experiment [59–61]. With the increase of the laser pumping power,
multiple pulses can be generated routinely due to the accumulation of excessive
nonlinear phase during a cavity round trip [62]. Furthermore, the intertwined
physical effects promote a variety of unusual self-organized structures, from stable
pulse patterns to pulsating or chaotic distributions [11, 24]. An important character-
istic of the stable multi-soliton patterns is that the solitons all have exactly same
pulse properties when they are far apart, namely, soliton energy quantization effect



[63]. However, in nonstationary regime, the enhancement or attenuation of any
signal will affect all other signals, multi-soliton follows various fascinating internal
dynamics, such as soliton rain [24], mutually ignited soliton explosions [49]. dual--
color-soliton collision [64], etc. This section reveals the simplest case of the multi-
soliton pulsating dynamics: the multiple solitons execute periodic evolution syn-
chronously and constitute merely a periodic solution.
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Figures 7.13a, b show the spectral evolution and the corresponding energy
evolution of triple-soliton pulsation at the pumping power of 261.8 mW, respec-
tively. There are three dissipative solitons arranged from 1 to 3 according to their
temporal positions in the cavity, whose spectra evolve like breathing, indicating that
the laser operates in pulsating state. An enlarged energy evolution is plotted in
Fig. 7.8c, the insets show two representative real-time spectra at the 763th and
800th RTs. Obviously, the evolutions of the three solitons in the process of energy

Fig. 7.13 The pulsating soliton in the triple-soliton regime. (a) Spatio-spectral dynamics. (b) Pulse
energy evolutions. (c) Pulse energy evolutions with higher resolution. The insets are spectra at
763th and 800th roundtrips, respectively. (Reprinted with permission from Ref. [14] © The Optical
society)



rise are out of sync while the paces of energy decline are almost the same. At higher
power levels, solitons pulsation with more pulses can be observed.
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In addition, the period-doubling phenomena for multi-soliton are also observed at
higher power levels taking advantage of the pumping power hysteresis. One of these
cases is shown in Fig. 7.14, the mode-locked fiber laser operates in double-soliton
double-periodic pulsation regime when the pump power is 210.7 mW. As can be
seen, it has all the characteristics of the single soliton double-periodic pulsation,
including spectral breath, time domain shift and energy bifurcation.

Fig. 7.14 The double-soliton pulsation with double period. (a) Spatio-temporal dynamics. (b)
Spatio-spectral dynamics. (c) Pulse energy evolution. (Reprinted with permission from Ref. [14]
© The Optical society)
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However, no matter how the PCs and the laser pumping power are adjusted, the
multi-soliton synchronous explosion similar to above pure pulsation cannot be
implemented in the L-band dissipative soliton fiber laser. Generally, the fluctuation
of pulse energy in pure pulsation is relatively moderate, whereas the soliton explo-
sion means violent oscillation of energy. In the multi-pulse state, the violent fluctu-
ation of the energy of a certain pulse is bound to cause a chain reaction of other
pulses. Therefore, the synchronous explosion of multiple solitons is difficult to
achieve. Nevertheless, the possibility of this dynamics cannot be ruled out without
sufficient evidence.

7.3.6 Pulsating Soliton Molecule

In synchronous pulsating pattern, the interactions between solitons separated by a
couple or dozens of pulse widths typically result in bound states, that is, pulsating
soliton, whose spectrum has breathing characteristics and interference fringes
[52]. For an appropriate setting of PCs, soliton bunch state with more than 5 pulsating
solitons was obtained at a high pump power above 400 mW. Subsequently, solitons
could be annihilated one by one by decreasing the pump power and pulse self-
assembly took place during this process. Meanwhile, the spectral and temporal
evolution of pulse were monitored by real-time oscilloscope in order to capture
pulsating soliton molecules in time. Figures 7.15a–g summarize the performances of
pulsating soliton molecules at the pump power of 362.2 mW. The real-time spectra
of 2000 consecutive RTs are mapped in Fig. 7.10a, showing bandwidth pulsating
property with a period of ~200 RTs. Correspondingly, the energy and temporal
evolutions are presented in Figs. 7.15b, c. For pulsating solitons, the changes in
group velocity induced by the variety of spectral composition generally lead to

Fig. 7.15 Characteristics of pulsating soliton molecules. (a) Spatio-spectral dynamics. (b) Energy
evolutions of Molecules 1 (black curve) and 2 (red curve), respectively. (c) Spatio-temporal
dynamics. (d) and (e) Autocorrelation traces calculated from the real-time spectra of Molecules
1 and 2, respectively. (f) and (g) Close-ups of the data from the A and B regions of Fig. 7.10a,
respectively. (Reprinted with permission from Ref. [52] © The Optical society)



periodical temporal shifts, which are invisible in this case due to the insufficient
detection resolution. Combining Figs. 7.15a–c, there are 5 synchronous pulsating
solitons self-assembling into two soliton molecules, where the trailing molecule is
accompanied by an unbound soliton. The leading molecule is defined as Molecule
1 and the trailing one is defined as Molecule 2. Figures 7.15d, e show autocorrelation
traces obtained by performing the fast Fourier transformations of the real-time
spectra of Molecules 1 and 2, respectively. The distance between the central peak
and the satellite peaks in the autocorrelation trace refers to the temporal separation
inside a molecule. As can be seen, the separations inside both the two molecules
jitter over time, slightly, chaotically and asynchronously. For better displaying the
spectral fringes arising from interference between bound pulsating solitons, the
spectra close-ups are drawn in Figs. 7.15f and 7.15g, respectively for Molecules
1 and 2. The irregular fringes indicate that the temporal separations and phase
differences between the molecule constituents irregularly evolve with RT time. In
addition, it is procurable to induce pulsating bound triplet states by identical pump
power adjustment manner.
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As shown in Fig. 7.16a, the average spectrum measured by the OSA presents
arcuate edges, which is typical for pulsating solitons. Note that no interference
pattern can be observed on the average spectrum due to the chaotic evolutions of
both temporal separations and phase differences inside the two molecules. For better
characterizing the pulsating soliton molecules, Figs. 7.16b, c illustrate the real-time
spectra corresponding to the extrema of the oscillations of Molecules 1 and 2, respec-
tively. The spectral fringes corresponding to the interference inside molecules are
clearly visible. The spectral modulation period of both molecules is close to
0.304 nm, well consistent with the temporal separations in autocorrelation traces
(shown in Figs. 7.15d, e.

7.3.7 Multi-Soliton Asynchronous Pulsation

As a matter of fact, soliton pulsation is essentially a metastable state with likelihood
of asynchronous evolution in multi-pulse situation. From this perspective, different
types of pulsating solutions can coexist in laser cavity, this is, each soliton may
evolve periodically in different ways under certain parametric conditions. Here, three
types of multi-soliton asynchronous pulsation phenomena are revealed in the L-band
dissipative soliton fiber laser.

At the pump power of 364.5 mW, the first type of pulsating dynamics was
captured, as shown in Figs. 7.17a–d. The real-time spectra of 7006 consecutive
RTs and corresponding temporal evolutions are mapped in Figs. 7.17a, b. There are
four dissipative solitons arranged from 1 to 4 according to their temporal positions in
the cavity, whose spectra evolve like breathing, indicating that the laser operates in
pulsating state. The ratio of the widest to the narrowest spectral bandwidth within a
pulsating period is defined as spectral breathing ratio. Note that the time intervals
among the leading three solitons are less than 1 ns, resulting in heavily overlapped



real-time spectra. Further, the evolutions of the Solitons 1, 2 and 3 follow the same
periodic solution with comparatively small spectral breathing ratio. For Soliton
4, the evolution abides by another periodic solution and the spectral breathing
ratio reaches up to 6. Notably, the above two evolutionary paths have the same
period of ~1280 RTs. The evolution of the pulse temporal profile, especially the peak
intensity, is also periodic, with the highest (lowest) peak intensity naturally occur-
ring in the vicinity of the position where the spectrum reaches the largest (narrowest)
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Fig. 7.16 Spectral characteristics of pulsating soliton molecules. (a) Optical spectrum directly
recorded by the OSA. (b) and (c) Real-time spectra of Molecules 1 and 2, respectively;
corresponding to the cross sections at the RT 151 (black curve) and 256 (red curve) of
Fig. 7.10a. (Reprinted with permission from Ref. [52] © The Optical society)



width. Moreover, the changes in group velocity induced by spectral variations lead
to periodical temporal shifts, and the shift degree corresponds to the ratio of spectral
breath. By piecewise integration of the spectral power density, the energy evolutions
of pulsating solitons are calculated and plotted in Fig. 7.17c. The growth (decline) of
the pulse energy is in sync with the expansion (contraction) of the spectrum.
Correspondingly, the amplitude of the energy oscillation echoes the spectral breath-
ing ratio. Note that the energy oscillations of the two pulsating solutions are
complementary, thus mitigating the fluctuations of the total energy in cavity. For
further characterizing the above asynchronous pulsation phenomenon, Figs. 7.17d
illustrate four representative real-time spectra corresponding to the roundtrip of
points A, B, C and D in Fig. 7.17a, respectively. Obviously, the spectral breathing
ratio of Soliton 4 is much larger than those of the leading three. In addition, due to
the discontinuity of the spectral phase at high nonlinearity [33], modulation peaks
arise gradually at the spectral edges of Soliton 4 as its energy increases. While the
other solitons do not have this feature. In a word, there are four dissipative solitons in
the cavity, which follow two pulsating solutions with the same period, exhibiting
simultaneous but unsynchronized pulsation of multi-soliton.
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Fig. 7.17 Characteristics of simultaneous but unsynchronized pulsation of multi-soliton. (a)
Spatio-spectral dynamics. (b) Spatio-temporal dynamics. (c) Energy evolutions. (d) Real-time
spectra corresponding to the roundtrip of points A, B, C and D in Fig. 7.12a. (Reprinted with
permission from Ref. [65] © The Optical society)

By finely tuning the PCs, another multi-soliton asynchronous pulsation phenom-
enon was observed at the same pump power. Figure 7.18a shows the spectral
evolution of this fascinating transient dynamics. Corresponding temporal evolution
is presented in Fig. 7.18b. It is a pity that the energy evolution of individual soliton
cannot be plotted precisely because of the spectral overlaps. However, the spectral
and temporal evolutions suffice to summarize most dynamic characteristics. Similar
to the asynchronous pulsation phenomenon in Figs. 7.17a, b, there are still four
dissipative solitons evolving along two periodic solutions. But here, the evolutions
of the leading two solitons follow the same periodic solution with smaller spectral
breathing ratio, whose period is ~1090 RTs; whereas Solitons 3 and 4 evolve along
the other periodic solution with larger spectral breathing ratio, whose period, ~2180
RTs, is exactly twice of the former’s. For further illustrating the dynamics of the



latter two solitons, the spectral evolution contours of Solitons 3 and 4 over a period
with full line and dotted lines is outlined respectively in Fig. 7.18a. Combining
Figs. 7.18a, b, the drastic spectral contraction of Soliton 3 or 4 is complementary
with the expansions of all the others (ignoring slight, synchronous energy fluctua-
tions). In other words, although following the same periodic solution, Solitons 3 and
4 evolve asynchronously with energy rising (falling) alternately, which alleviates the
fluctuations of the total energy in cavity. Further, the leading two solitons undergo
two periods synchronously during each sharp energy oscillation of soliton 3 or 4.
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Fig. 7.18 Characteristics of multi-soliton asynchronous pulsation with energy rising (falling)
alternately. (a) Spatio-spectral dynamics. (b) Spatio-temporal dynamics. (Reprinted with permis-
sion from Ref. [65] © The Optical society)

The nonlinear phenomenon of soliton explosion accompanied by violent energy
oscillations is not peculiar in ultrafast fiber laser. Here, the experimental observation
of the multi-soliton asynchronous pulsation containing periodic soliton explosions
are demonstrated. Figures. 7.19a, b illustrate the real-time spectra and corresponding
temporal evolution of this pulsating dynamics at the pump power of 245.8 mW,



respectively. As can be seen, three dissipative solitons evolve simultaneously but
asynchronously in the cavity, following two different periodic solutions (including a
periodic explosion solution) and exhibiting the same period of ~660 RTs. The
evolutions of Solitons 1 and 2 follow a pure pulsation solution. Their spectral breaths
are so weak that the temporal profile variations and periodic temporal shifts are
invisible. When it comes to Soliton 3, the evolution conforms to the criterion of
periodic soliton explosion. The erupting evolution starts from a metastable state with
narrow spectral bandwidth. After a while, the spectrum experiences a violent
expansion, and very soon, bursts to pieces like an explosion. Then these completely
chaotic but well-localized spectral structures gradually recover to a smooth profile
after ~50 RTs, concurrently, the spectral width decreases sharply. Eventually, the
spectrum shrinks to its pre-explosion state. It’s worth mentioning that the spectral
breathing ratio of Soliton 3 is up to 8. For temporal evolution, there are shifts and
fractures. The former is attributed to the group velocity disturbances caused by the
changes of spectral range. The latter is due to the extremely low pulse energy and the
insufficient detection dynamic range.
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Fig. 7.19 Characteristics of multi-soliton asynchronous pulsation containing periodic soliton
explosions. (a) Spatio-spectral dynamics. (b) Spatio-temporal dynamics. (Reprinted with permis-
sion from Ref. [65] © The Optical society)
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The above experimental results reveal the diversity of soliton pulsation dynamics
in dissipative systems. Although far from covering the numerous and complicated
pulsation dynamics, it is helpful for a more comprehensive understanding of the
soliton pulsation phenomenon and to promote further theoretical and experimental
research.
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Abstract In this chapter, we give an overview of high-energy dissipative solitons
generation via Raman gain. Such pulses have been proven to be a new kind of
solitons—Raman dissipative soliton (RDS). Two basic configurations of the laser
cavity with intra- and extra-cavity formation of the RDS are presented and the
properties specific to each of them are discussed. Intra-cavity configuration provides
a mutual coherence between the Raman and pump pulses generated in common
cavity. Their mixing in a highly-nonlinear fiber results in cascaded generation of
clones of the input DSs, forming a comb of highly chirped pulses in the spectral
domain. Extra-cavity configuration gives more freedom in Raman cavity design, as
net cavity dispersion together with the external pump pulse energy, duration and
spectral width can be adjusted independently. As a result, it becomes possible to
generate intensive laser radiation beyond the emission spectrum of typical active
media, namely around 1.3 μm region, by using phosphosilicate fibers with the large
Stokes shift. Thus, RDSs generation undoubtedly reveals new possibilities for
numerous applications.
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8.1 Introduction

Dissipative soliton (DS) generation is a powerful technique for producing high-
energy femtosecond pulses in fiber lasers [ , ]. However, it has been explored
mainly for lasers with rare-earth-doped gain media, such as Yb-doped fiber (YDF)
and Er-doped fiber (EDF) with optical gain near 1 μm [ , ] and 1.55 μm [ , ]
correspondingly. An alternative approach is based on pump-induced Raman gain in
passive fibers offering operation at almost any wavelength. Previously reported
techniques of mode-locking in Raman fiber lasers exhibit low efficiency and/or
rather long pulses. This is the main reason why pulsed Raman lasers keep great
attention over decades. Starting from the single-mode optical fibers placed into the
synchronously-pumped external linear cavity [ ], Raman lasers were gradually
evolving with the development of fiber optics technologies [ – ]. The interest
was also sparked by great success of the continuum wave (CW) Raman fiber lasers
[ – ] that encourages researchers to apply similar principles for the pulsed lasers.1512
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A novel approach to the generation of high-energy ultrashort pulses by stimulated
Raman scattering (SRS) was demonstrated recently in different laser schemes [16–
19]. The pulse at a Stokes-shifted wavelength generated by SRS process was proved
to be a new kind of solitons—Raman dissipative soliton (RDS) [16, 20]. Relatively
high (up to 20 nJ) RDS energy could be achieved at different wavelengths, as far as
pump and Raman lasers can be optimized independently and different passive fibers
could be used to produce Raman shift [18]. Besides single-pulse RDS generation,
cascaded generation of the first- and second-order RDS in the common cavity of an
ytterbium fiber laser oscillator was obtained [21]. All the generated pulses (DS, first-
and second-order RDS) are coherent, linearly chirped (instantaneous frequency
linearly changes in time), and can be externally compressed to 200–300 fs durations.
As the result of combining technology of synchronously pumped Raman fiber lasers
[22] with the new concept of Raman dissipative solitons [16, 23], 18 nJ RDS has
been demonstrated in a passive fiber cavity synchronously pumped by an external
pulsed laser [17].

In this chapter, we give an overview of our results on high-energy dissipative
solitons generation via Raman gain. We describe main principles of RDS generation
in two basic configurations of the laser cavity. The first one is an intra-cavity scheme
when Raman pulse formation is reached by a small feedback and additional delay
line at the Stokes wavelength to compensate the group velocity difference. The
second one is an extra-cavity configuration in which the Raman pulse forms in an
independent fiber cavity and only exact matching between the repetition rate of
pump pulses and the roundtrip frequency is necessary. We demonstrate, that the
Raman and conventional dissipative solitons, generating in the common cavity, are
mutually coherent [23], which results in formation of soliton complexes with high
energy, broad spectrum, and short duration [24]. Extra-cavity configuration gives
more freedom in cavity design, as net cavity dispersion together with the pump pulse
energy, duration and spectral width can be adjusted independently. It made possible
to generate RDS in the region of 1.3 mkm using phosphosilicate fibre, attractive for
biomedical applications [18].
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8.2 Principle of Generation

Energy of highly chirped DS (ΔtΔν� 1) generated in fiber lasers may exceed a
threshold of SRS, leading to formation of a noisy Raman pulse (RP). As it was
demonstrated recently, a feedback realized by re-injection of the RP into the laser
cavity could yield formation of RDS with characteristics similar to DS both in the
intra- and extra-cavity configurations [16, 17]. The process of the RDS formation
(as well as its amplification) can be described in a following way (Fig. 8.1). Initial
wavelength-shifted pulse starts from the noise and amplifies due to SRS gain, while
DS pulse serves as a pump. Pulses have a limited length of interaction because of the
temporal walk-off effect, but the energy conversion can be efficient at high peak
powers. So, in a case of the adjusted repetition rates the pump pulse and the signal
pulse become synchronized and the stable generation regime can be achieved. The
spectral width of the signal pulse, on the one hand, is limited by the pump bandwidth
and by the Raman gain bandwidth of the used propagation media. But on the other
hand, it could be broadened significantly by self-phase modulation effect. In fact
there is dynamic balance between spectral filtering on one side, and nonlinearity,
dispersion and gain on the other side, that leads to the formation of highly-chirped
dissipative solitons in all-normal-dispersion fibre lasers [1, 2].

Figure 8.2 shows the conceptual difference between the intra- (left dashed block)
and extra-cavity (right dashed block) schemes, realized around a ring fiber Raman
cavity. In the first one the Raman cavity is a part of DS fiber laser, where a small
feedback is introduced at the Stokes wavelength. A precise time delay is provided by
the delay line (DL) to compensate the group velocity difference between the Stokes
and pump pulses. The DS, amplified in the YDFA, serves as a pump for the RDS,
and both pulses circulate inside a common laser cavity. The RDS spectrum acquires
characteristic soliton shape with steep edges at the cavity feedback �1% (Fig. 8.3a).
Under optimal conditions, the DS (1030 nm) and RDS (1070 nm) have similar
parameters: �10 nJ energy, �40 ps duration dechirped to 200–300 fs by a grating
compressor. Additionally, the pulses can be combined coherently, thus resulting in
interference pattern with 75 fs period [23].

In the second scheme the fiber Raman cavity is an external passive cavity pumped
synchronously by a high-energy picosecond laser. In this case only exact matching
between the repetition rate of pump pulses and the roundtrip frequency in the
external Raman cavity is necessary for successful RDS generation. In combination
with the optimal output coupling (85%) such laser generates RDS with energy up to
18 nJ [17] and compressible down to 150 fs (in accordance with a broad RDS optical

Fig. 8.1 Mechanism of the SRS amplification and pulse formation



spectrum depicted in Fig. 8.3b). The additional benefit is that net cavity dispersion
together with the pump pulse energy, duration and spectral width could be adjusted
independently. This makes it possible to generate RDS near 1.3 μm [18] by using a
new type of P2O5 polarization maintaining (PM) fiber (FORC, Moscow) [25]. Thus,
the second scheme offers shorter duration and higher pulse energy (with 88%
efficiency with respect to pump radiation in the case of GeO2 silica fiber), whereas
the first scheme keeps nearly equal parameters of DS and RDS, demonstrating
mutual coherence.

166 D. S. Kharenko et al.

PM fiber
Raman laser LMA 

YDFAFF

RDSDS

DS YDFL

DS loop DS MOPA Laser

PBSYDFAFF
SESESESESESSSSSAAAAAMMMMM CFBGCFBGCFBGCFBGCFBG

DLPC

((a) (b)
Intracavity Extracavity

Fig. 8.2 PM-fiber Raman laser in two configurations: (a) synchronous generation of dissipative
soliton and Raman dissipative soliton in a common cavity with DS loop involving YDF amplifier,
polarization controller (PC) and beam splitter (PBS); (b) external pumping by MOPA laser
consisting of YDF laser and amplifier
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Fig. 8.3 Measured spectra for intra- (a) [16] and extra-cavity (b) [17] generation schemes with the
ACF of the compressed RDS in the corresponding insets

In both cases the level of feedback plays a crucial role in RDS formation. A
standard GeO2 fiber has a high Raman gain that results in rapid energy conversion.
In the intracavity scheme it could lead to destabilization of the mode-locking regime.



Thus, a very small feedback of only 0.01% is enough to provide RDS generation
with comparable energy and to preserve pump pulse for the next roundtrip
(Fig. 8.4a). In the case of external cavity the pump pulse can be depleted completely
and the value of feedback could be as high as 10%, keeping the output coupling ratio
high enough. The situation is changing for P2O5-doped fiber, where competition
between germanium and phosphorous amplification peaks takes place. In this case
40% feedback is not strong enough to support RDS recirculation inside the external
cavity. The reason is that the phosphorous gain is lower and a stochastic Raman
pulse appears at the germanium-shifted wavelength (see Fig. 8.4b). Only if the
feedback is greater than 80%, it becomes possible to generate pulses with the
steep edges in the optical spectrum, typical for highly-chirped dissipative soliton
operation.
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Fig. 8.4 The optical spectra measured at the output of fiber oscillators with the common GeO2

cavity (a) and external P2O5 cavity (b) at different feedback ratio

As the generated Raman pulses are highly-chirped dissipative solitons it can be
used as a pump for second-order RDS. So the generation can be iterative. Such
possibility was demonstrated both experimentally and numerically for the first time
in [21]. The main DS centered at 1020 nm transfers its energy to the first Raman DS
at 1065 nm and the second Raman DS at 1115 nm. Numerical results show that hard
filtering holds the promise for extending the spectral range to 1200 nm and further.
Two 10 nJ Raman DSs can be coherently combined with DS, increasing thus
threefold the energy of the cascade.

Summarizing the above, the proposed approaches enable femtosecond Raman
lasing at new wavelengths, which are not available from the rare-earth-doped fiber
lasers. Mutual coherence of DS and RDS results in formation of multi-color soliton
complexes with higher energy, broader spectrum and shorter duration. At the same
time, RDS generation in the external cavity allows to use nonstandard fibers to
produce large frequency shift. Numerous applications can benefit from this
approach, including frequency comb spectroscopy, transmission lines, parametric
amplifiers, CARS or multi-photon fluorescence microscopy.
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Next we provide details about numerical simulations of RDS generation inside fiber
cavities, based on GeO2 and P2O5-doped fibers, exhibiting different Stokes shifts.
The laser scheme used in numerical simulations coincides well with the experimen-
tal one presented in Fig. 8.2. We have taken a discreet approach based on the
Nonlinear Schrödinger equation (NLSE) to observe the RDS formation inside the
cavity. The optical field consequently propagates through the elements inside the
cavity, the key of which is a Raman gain fiber. The discrete elements, such as optical
filter and polarization beam splitter, are described by their transmission functions
(see details in [16]. The signal propagation along the fibers is described by the
generalized NLSE.

Raman Gain Fiber
SRS leads to generation of the Stokes wave whose frequency is determined by the
peak of the Raman gain. In the case of GeO2-doped fiber, Raman gain reaches its
maximum for the frequency component that is downshifted from the pump fre-
quency by about 13.2 THz. The Raman gain of P2O5-doped fiber can be expressed as
the linear superposition of the Raman gain due to SiO2 and the Raman gain due to
P2O5, corresponding to large 39 THz Stokes shift (see Fig. 8.5a).

To model pulse propagation in the Raman gain fibers we used generalized
Nonlinear Schrödinger equation:

∂A
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¼ �i
β2
2
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þ β3
6
∂3A
∂t3

þ iγ 1þ i
ω0

∂
∂t
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where A(z, t) is the electric field envelope, β2 and β3 are the second- and third-order
dispersion coefficients at the central frequency ω0, γ¼ n2ω0/(cAeff) is the Kerr
nonlinearity coefficient with the nonlinear refractive index n2 and effective fibre
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Fig. 8.5 Calculated Raman gain spectrum (a) and dispersion curves (b) of P2O5 and GeO2 fibers
used in different schemes



cross-section area Aeff for the fundamental mode. We neglect such effects as self-
steepening and optical shock formation. The response function R(t)(1� fR)δ(t)
+ fRhR(t) includes both instantaneous electronic and delayed Raman contributions,
where fR represents the fractional contribution of the delayed Raman response to the
instantaneous nonlinear polarization.
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Special attention should be paid to calculation of the Raman response function
hR(t), which defines the Raman gain spectrum given by gR(Δω)¼ 2γfRIm[hR(Δω)].
To model signal propagation inside conventional GeO2-doped fiber, we use the
multiple-vibrational-mode model for the Raman response, described in [26]. This
model provides a simple analytical expression for the Raman response function
using convolutions of Lorentzians with Gaussians, the parameters in which were
chosen in such way that the model’s Raman gain spectrum and Raman response
function both fit well with experiment.

In the case of the P2O5-doped fiber the Raman response function was derived
from the Raman gain spectrum through a sine Fourier transform [27]:

f ðsÞ � 2
π

Z 1

0
dΩN 00

2ðΩÞ sin ðΩsÞ , ð8:2Þ

, N 00
2 Ωwhere s¼ t� t

0
—time delay, Ω—frequency ð Þ—imaginary part of third-order

susceptibility, which is proportional to the Raman gain. Note, the Raman response
function of phosphosilicate fiber can be also approximated by a superposition of six
phase-shifted under-damped functions [28]. Parameters for the fitting functions of
phosphosilicate fiber are given in the paper for 9.1 mol% of P2O5.

The Raman gain spectrum of phosphosilicate-doped fiber, used in numerical
simulations, is shown in Fig. 8.5a (red dashed line) and agrees well with the typical
experimentally measured gain spectrum of the P2O5 fiber [25]. Blue solid line in the
same figure shows the Raman gain spectrum of standard Germanium-doped fiber.

Dispersion Curve
The considered in simulations spectral window should be relatively high to take into
account the influence of high-order Stokes waves. For the cavity comprised of
standard GeO2 fiber the shortest wavelength was about 860 nm and the longest
one was 1260 nm. Such a wide spectral range requires appropriate dispersion curve,
so the third order dispersion term was introduced in the equation (blue solid line on
Fig. 8.5b). However, the Stokes shift for P2O5 fiber is much larger and requires to
extend the considered spectral window proportionately: from 700 nm to 2000
nm. The corresponding dispersion curve has been obtained by fitting the experimen-
tally measured points near 1, 1.3 and 1.55 μm (red dashed line on Fig. 8.5b). All this
allowed us not only to achieve agreement between the existing experimental data
and simulation results, but also to make predictions about attainable absolute
maximum ratings of the generated pulses. It should be noted that a novel efficient
numerical model which uses a pair of meshes (for pump and Stokes waves) can be
used to improve a calculation speed and memory consumption at the expense of
about 10% inaccuracy [29].
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Fig. 8.6 Intracavity dynamics for the cascaded RDS generation in GeO2 fiber cavity (a) and
far-detuned first-order RDS generation in P2O5 fiber cavity (b)

Pump and Raman Pulse Temporal Synchronization
The difference in the group velocities of DS and RDS generated in a common cavity
can be compensated by the delay line for the Raman pulse. If RDS generation takes
place in the external cavity, exact matching between the repetition rate of pump
pulses and the roundtrip frequency is required. In simulation temporal delay of the
pump pulse in the both considered configurations can be compensated by multipli-
cation of the optical field, corresponding to the Raman pulse, on the term
exp ðidshiftωÞ in Fourier domain, where dshift is the temporal mismatch between
the pulses, acquired after one round-trip.

The equation (8.1) was solved by using the symmetrized split-step Fourier-
transform method. The simulations are run until the pulse field reaches the steady
state after a certain number of cavity roundtrips, taking into consideration the
contributions of the point-action intracavity devices. it is noteworthy, that once an
agreement with the experiment has been reached in terms of spectral shape, pulse
duration and power, we can take a look inside the laser cavity. For example,
evolution of the temporal shape reveals typical interaction lengths between the
pump and Raman pulses (Fig. 8.6). Here points ‘1’ and ‘2’ show the propagation
length with intensive energy exchange between the DS and RDS, while along the
fiber confined by the points ‘2’ and ‘3’ they propagate independently.

8.4 Brief Theory

Why is the Raman pulse a dissipative soliton? In fact, it is not easy to describe RDS
evolution analytically to show relationships and properties inherent to dissipative
solitons. The nonlinear Raman gain is the main issue. If the pump pulse is coherent
and chirped, it serves not only as an amplification profile but also as a self-amplitude
modulation (SAM) mechanism. The resulted Raman pulse is chirped, which means
an internal re-distribution of its energy as the consequence of the energy interchange
with the environment. The main manifestation of high chirp for the Raman pulse in



the experiment is its typical M-shaped (“Batman”-type) spectrum just like for DS
[1, 30]. Experimental demonstration of dechirping was also shown clearly
[16, 17]. So, the generated pulse looks exactly like a highly-chirped dissipative
soliton, solution of the complex Ginzburg-Landau equation (CGLE) that includes
both spectral filtration (β) and SAM (E, μ) terms [1, 31]:
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iψ x þ Dψ tt=2þ jψ j2ψ ¼ iδψ þ iβψ tt þ iEjψ j2ψ þ iμjψ j4ψ , ð8:3Þ

where ψ is the normalized optical field envelope, t is the retarded time in the frame
moving with the pulse, x¼ z∕L—the propagation distance normalized on the cavity
length L. It should be noted that Raman cavity does not contain spectral filtering and
SAM elements, which have to be exist according to equation (8.3). So, its action can
be attributed to coherence of the pump pulses together with the Raman gain. This
point is also supported by recent investigation in which noise-like pulses (so-called
double-scaled or incoherent) can produce coherent pulses only if spectral filtering
and SAM elements exist in the Raman laser cavity [32].

For a more rigorous proof we can compare solutions of equations (8.3) and (8.1),
which is actually used in numerical simulations. As the CGLE incorporates the main
physical ingredients in a distributed way instead of considering point-action com-
ponents used in a real laser system, we have to relate, albeit in an approximate way,
all its coefficients to the physical parameters of the laser. We assume that RDS
evolution consists of a long distributed part (nonlinearity and dispersion terms) and
short point-action part (all other terms). So, split the roundtrip into two parts and
define the fields between them as A2 and A3 (according to Fig. 8.6a). In this way the
distributed evolution results in field transformation from the point A2 to A3, and the
point-action return it back to the initial state. The nonlinearity Γ and dispersion
D considered in their cumulative values over the distributed part Γ¼ γL and
D¼�β2L where L is the cavity length. We neglect the third and further dispersion
orders terms and consider that the Raman response function hR(t) can be attributed to
point-action terms, since the interaction of DS and RDS takes place only in a
relatively short part of the cavity. The point-action terms include also the effects
of spectral filtering, gain, loss and SAM. The last one results in reshaping and
shortening of the pulse. In phenomenological way it could be written as ΔA3

ffiffiffi
Γ

p ¼
ðEjψ j2 þ μjψ j4 þ δÞψ, where coefficients E and μ can be related to the critical power
Pcr. Amplification (with the net Raman gain coefficient G) is A2¼GA1, where
G �R’ 1 means loss compensation during the roundtrip. Filtering is ΔA2

ffiffiffi
Γ

p ¼
β∂2

t ψ . The RDS spectrum in the point A2 has the parabolic profile (βω
2) is defined

by the Gaussian gain profile near the gain maximum (Ge�βω2
, see supplementary in

[16]).
After making such distribution of the point-action terms, we solved the CGLE

using numerical methods for simulation of chirped DS [31]. Then we compared the
CGLE solutions with the local solutions of the NLSE at points A2 and A3 and made
the arithmetic mean of them supposing that the solution of the CGLE based on
average coefficients should be close to the mean solution of the NLSE covering most



of the pulse evolution in the cavity. The results of comparison are summarized in
Fig. 8.7. The parameters of point-action therms were extracted by fitting resulted
pulse duration and spectra. As a result, the averaged pulse optical spectrum, temporal
shape and chirp are in agreement with the solution of CGLE that allows us to
attribute the generated Raman pulses to a pure DSs. For more details you could
see the supplementary materials in [16].
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8.5 Applications

Demonstrated way to generate stable chirped Raman dissipative solitons in the fiber
cavity undoubtedly reveals new possibilities for numerous applications. There are
two key properties of RDS. The first one is the mutual coherence between the
generated Raman and pump pulses. So, a wide range of nonlinear conversion
processes is possible in all fiber schemes including parametric four-wave mixing
[33] or spectral comb of highly chirped pulses generation [24]. The second one is the
shift of a carrier frequency of ultrashort pulses. The frequency shift is not so high in
standard GeO2 fiber but in case of P2O5 fibers it becomes possible to generate
intensive laser radiation beyond the emission spectrum of typical active media
[18]. In this section we discuss the most exciting examples in both cases.

Mixing of two frequency-shifted dissipative solitons in a highly-nonlinear fiber
with dispersion close to zero results in generation of chirped pulses at new wave-
lengths. This process can be described as cascaded generation of clones of the input
DSs, forming a comb of highly chirped pulses in the spectral domain. The FWM
plays here a key role and a simple analytical model could be developed for a
nonlinear non-dispersive medium [24]. For a single pulse with a high peak power,
propagating in a highly-nonlinear fiber, significant spectral broadening is observed.



It can be interpreted as FWM between internal frequency components (laser modes)
with spacing δ between them, resulting in generation of new components separated
by δ. The corresponding qualitative picture in the time-frequency plane is shown in
Fig. 8.8a. When we mix two mutually coherent solitons, overlapped in time, which
carrier frequencies are separated by Δst, additional components separated by Δst

appear after propagation through PCF. The processes of new components generation
(� Δst) and pulse broadening (�δ) occur simultaneously, finally leading to forma-
tion of a continuously broadened frequency comb. In the case of chirped dissipative
solitons with the same spectral width Δ, the picture is principally different. If the
pulses are similarly chirped, they overlap in time by different spectral components:
low-frequency parts at the leading edges and high-frequency parts at the trailing
edges (Fig. 8.8b). In terms of the FWM process, it means that the mixing between
intra-pulse components (δ) is suppressed, because they do not overlap in time,
whereas corresponding Stokes-shifted (Δst) parts of the pulses are effectively mixed.
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Fig. 8.8 Nonlinear mixing in a PCF of two solitons (a) and two equally chirped dissipative solitons
(b) with frequency separation Δst, each of which consisting of laser modes with separation δ

Figure 8.9a shows the results of numerical simulation of the frequency-shifted
DSs propagation in a nonlinear medium, gradually taking into account the effects of
Raman scattering and dispersion. The full dispersion curve is shown by the Y-axis
on the right side. One can see that dispersion could significantly decrease the number
of spectral satellites (clones), generated during DS-RDS propagation in a nonlinear
fiber, while the influence of Raman effect is not so strong. In the experiment, we use
the DS/RDS generator producing highly-chirped pulses centered at 1025 nm and
1070 nm. New spectral components appear at >1100 nm and <1000 nm, the most
eminent from which are the first Stokes and anti-Stokes pulses at 1110 and 980 nm
with 1.6 and 1.7 nJ energies, respectively. We observe up to eight equidistant
components in the >300-nm interval in total (Fig. 8.9b). Their coherence was proved
by the FROG and interferometric ACF measurements together with dechirping by
diffraction grating compressor. The results are shown in Fig. 8.10a, b for the first
anti-Stokes (�990 nm) and Stokes (�1110 nm) satellites, demonstrating nearly a
linear chirp within its spectral width of 10–15 nm for a duration of 10–15 ps
compressible to 300–800 fs. The parameters are similar to the input pulses: linewidth



of �15 nm and duration of �20 ps dechirped to 230–400 fs. In spite of some
difference in values, the satellites can be treated as clones of the input dissipative
solitons having nearly the same chirp, whereas their number is limited by dispersion.
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Note that the mixing of chirped pulses in a long PCF with high integral dispersion
is defined by the phase matching condition enabling generation of only one narrow
(�1 nm) Stokes component tunable within a �20-nm range by varying the delay
between the input pulses [33]. A short PCF placed in a cavity of optical parametric
amplifier or oscillator also generates only one component (Stokes or anti-Stokes),
see e.g. ref. [34] and citation therein. Further increase of input pulse energies and/or
using a PCF with a broader low-dispersion window may result in an octave-spanning
comb of equidistant chirped pulses. The comb period may be adjusted by means of
the frequency difference variation between the DS and RDS or doubling it in the
second-order RDS scheme [21]. This approach can be also transferred to other
spectral regions by using other types of fiber lasers for generation of DS/RDS
pump pulses, e.g. Er (1.55 μm) or Tm, Ho (2 μm) [35], as well as to microresonators,
which also exhibit different Raman effects such as Raman self-frequency shift of
Kerr solitons [36], Raman frequency comb formation [37], and synchronous Stokes
soliton generation in presence of the main soliton [38].
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Another area of practical interest for RDS applications is related to a large
frequency shift. It can be highly demanded for biomedical applications such as
multiphoton fluorescence microscopy. This is because one of so-called water trans-
parency windows exists around 1.3 μm and effective attenuation length in biomed-
ical tissue is quite long [34]. So, significantly greater penetration depth can be
reached without damaging of an object. The soliton self-frequency shift is one of
the widely used methods for obtaining femtosecond pulses at new wavelengths. It
requires fibers with an anomalous dispersion, which is possible at 1.3 μm only for
special fibers supporting high-order modes, and huge power pump lasers [39]. The
cost of such device is too high for practical applications. Alternatively,
phosphosilicate (P2O5) fiber gives a great advantage to a far-detuned Raman gener-
ation due to the large Stokes frequency shift of 39 THz. In particular, it is possible to
obtain generation of highly-chirped dissipative solitons near 1.3 μm, compressible
down to 570 fs (see Fig. 8.11a) in one cascade by using well-developed pulsed
Ytterbium-doped fiber sources near 1.1 μm as a pump.

The significant benefit of RDS generation technique is the all-fiber design
providing stability and high beam quality [18, 19, 40]. The limitation of this
technique consists in the relatively low output pulse energy. In the first experiments
the energy reached 1.6 nJ [18] and was increased further up to 2.5 nJ by managing
the length and dispersion of the external cavity (Fig. 8.11b) [40]. Higher energies
(more than 9 nJ) can be obtained by incorporating the last stage of the pump
amplifier into the external Raman cavity [19]. However, it is still far from 30–50
nJ energies required for practical applications. What’s interesting is that the numer-
ical simulations did not show a possibility to obtain pulses with sufficiently high
energy from the RDS oscillator [41]. The energy grows with the pump power
increase but is limited by the next order SRS threshold, which is related to germa-
nium amplification peak and lower in the long cavity (Fig. 8.12a). So much higher
energy (up to 6 nJ) can be obtained from the 5-m long cavity (Fig. 8.12b). At the
same time, the spectrum width reaches 50 nm which corresponds to 100 fs duration



of the transform limited pulse. Such duration is comparable to the best one obtained
to date [42].
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Fig. 8.12 Calculated areas of stable RDS generation in the 30-m long cavity comprised of 10-m
P2O5 fiber and standard fiber with the same dispersion curve (a) and 5-m long P2O5 cavity (b).
Color shows the RDS energy

Finally, the one way to make RDS more suitable for further applications is an
amplification. One of the native ideas was to separate pump and signal pulses after
every roundtrip of the external cavity and then mix them again in the phosphosilicate
fiber at the output of the laser. The first attempts have shown only �3 dB increase
[43]. Another idea is to use continuous wave pump at the P2O5 or GeO2 Raman peak
or use special bismuth-doped phosphosilicate fiber [44]. Further investigation will
reveal an optimal scheme, new properties and possibilities of RDS generation.

Conclusion
We believe, that the observed new kind of soliton, namely Raman Dissipative
Soliton, offers wide possibilities for numerous applications. So far, the first-
and second-order RDS generation inside the intra- and extra-cavity configu-
rations have been demonstrated both numerically and experimentally. Numer-
ical simulations based on the nonlinear Schrödinger equation with the Raman
gain is a powerful tool not only for reproducing the experimental results, but
also for predicting new lasing regimes and complex optimization of the
experimental schemes.

Together with the contribution to fundamental science, the proposed
approach to generation of ultrashort pulses at Stokes-shifted wavelengths
opens up new possibilities for practical applications. A proper phase correction
and coherent combination of the comb components may be used for generation
of high-energy few-cycle pulses and/or for arbitrary waveform synthesis, in a
similar manner to conventional continuous frequency comb (coherent
supercontinuum) or several synchronized mode-locked lasers operating in

(continued)



different spectral ranges. In comparison with the use of independent sources,
the method of the coherent chirped-pulses comb generation is intrinsically
stable and much simpler in realization. Such a comb, centered at 1.55 μm, can
be implemented in ultra-broadband transmission lines with new coherent
modulation/demodulation formats. Other applications can also benefit from
this approach, including frequency comb spectroscopy, mid-IR and THz
generation. At the same time a far-detuning in the phosphosilicate fiber can
be used to build low-cost and stable sources of ultrashort pulses at specific
wavelengths (e.g. 1.3 μm) for applications in nonlinear optical bioimaging—
multiplex coherent anti-Stokes Raman scattering microscopy, multiphoton
fluorescence microscopy, and optical coherence tomography.
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Chapter 9
L-Band Wavelength Tunable Dissipative
Soliton Fiber Laser

Qianqian Huang, Zinan Huang, Lilong Dai, Mohammed AlAraimi,
Zhijun Yan, Junjie Jiang, Aleksey Rozhin, and Chengbo Mou

Abstract We have compared the wavelength tuning capability of filter-controlled
fiber laser with cavity loss-controlled fiber laser when they emit dissipative soliton in
L band. Two types of typical tunable filters (birefringence filter and fiber taper filter)
and variable attenuators (a taper-type attenuator and commercial mechanical atten-
uator) are selected and incorporated in a fiber laser, respectively. It is observed that
tunable filter control is preferred to dissipative soliton wavelength tuning operation,
exhibiting wider continuous spectral tunability, more wavelength switchable poten-
tial, no forbidden region, less pulse variation and easier implementation. As long as
the tunable filter is controlled suitably, the wavelength tuning can be achieved
without variation of other cavity parameters, namely, pump power. Also, it is pivotal
to choose a suitable tunable filter. Filter with broad operating wavelength range,
large free spectral range, high extinction ratio as well as favorable controllability is
more desirable in wavelength tunable dissipative soliton fiber laser. Our work may
open the door to extend the tuning range of dissipative soliton in fiber laser.
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9.1 Introduction

Recently, the advent of widely wavelength tunable fiber laser has unlocked diverse
applications ranging from fiber sensing [ ], biomedical research [ ], optical signal
processing [ ], and high capacity optical transmission system [ ]. Therefore, inten-
sive researches have been attracted to explore the wavelength tunable fiber laser.
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Conventionally, the wavelength tuning operation can be achieved by controlling
the effective gain profile. As shown in Fig. 9.1, in a filter-less fiber laser, the
foremost factor influencing the effective gain profile is certainly the intrinsic gain
spectrum. The broad gain bandwidth creates a basis for wide wavelength tunability.
The intrinsic gain spectrum in fiber laser is not immutable, which shows great
dependence on gain fiber length [5–7], rare earth doping concentration [8], cavity
loss [9–11] as well as pumping scheme [12, 13]. These cavity parameter changes
lead to the variation of population inversion level in the gain fiber, which directly
connects with the profile of gain spectrum. Early in 2001, A. Bellemare et al and
S. Yamashita et al declared that the gain bandwidth was largely conditional on the
length of gain fiber [5, 6]. It was shown that short Er-doped fiber (EDF) length
leaded to the reduction of long wavelength emission while long EDF length intro-
duced the limitation of short wavelength emission, thus placing restrictions on
wavelength tuning range. By proper selection of EDF length, they realized contin-
uous wave (CW) wavelength tuning operation from 1520 to 1600 nm and from 1480
to 1620 nm, respectively. When the gain fiber is selected, cavity loss change
becomes one of the most efficient and easiest ways to modify the intrinsic gain
profile. The cavity loss control can be obtained by inserting a variable optical
attenuator (VOA) or tunable-ratio output coupler (OC). In 1994, P. Franco et al
theoretically and experimentally provided the first investigation of cavity loss impact
on the wavelength selection by embedding a VOA in laser [9]. Hereafter substantial
wavelength tuning operations were realized by adjusting VOA [11, 14–16].
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Fig. 9.1 Influences of wavelength tunability in fiber laser



However, taking advantage of tunable-ratio OC to realize wavelength tuning is
comparatively rare and firstly achieved in 2006 [17]. This report provided the
experimental demonstration of CW wavelength tuning operation from 1567 to
1625 nm and pointed out that the upper limit of tuning range can be extended if
the cavity loss greatly reduced, indicating wavelength tuning range extension. One
year later, the pulse wavelength tuning operation between 1567 and 1625 nm was
obtained in the similar laser scheme where additional Mach-Zehnder modulator was
applied [18]. Furthermore, the systematic study about the influence of pump power
on wavelength tunability in cavity loss-controlled fiber laser was bought out [12]. It
was displayed that the higher pump power could decline the lower limit of wave-
length tuning range, permitting wider wavelength tunability. Also, S. Lin et al
confirmed that different pumping scheme including pump configuration and pump
power could give rise to different population inversion distribution, thus resulting in
different wavelength emission [13].
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When there is an optical tunable filter in the fiber laser, the effective gain profile
eventually hinges on the optical tunable filter. Conventionally, optical tunable filter
exploited in wavelength tunable fiber laser is mainly divided into bulky-type tunable
filter and fiber-type tunable filter. Bulky-type tunable filter contains Mach-Zehnder
interferometer [19], Fabry-Perot interferometer [20] and commercial mechanical
tunable filter [16]. Despite the fact that bulky-type tunable filter is operational
ease, the incorporation will inevitably introduce large insertion loss and break the
all-fiber laser construction, leading to integration problem. As an alternative, the
fiber format tunable filter is more desirable considering its inherent merits such as
simple manufacture, low cost, low insertion loss, miniature dimension as well as
good fiber compatibility. The classic examples of fiber-type tunable filters are
chirped fiber Bragg grating [21], W-shaped long period grating (LPG) [22],
few-mode fiber filter [23], fiber taper [24], birefringence filter [25], etc. Worthy of
mentioning, the wavelength tuning range and generated pulse performance are
susceptible to the features of tunable filter including operating wavelength range,
free spectral range (FSR) and extinction ratio. Therefore, great attention must be
devoted to choose a reasonable optical tunable filter. Up to now, all previously
reported wavelength tuning operations have been achieved by controlling effective
gain profile via regulating some specific cavity parameters (gain fiber properties,
cavity loss and pumping scheme) or adjusting the well-suited intracavity optical
tunable filter.

When wavelength tuning range covers L band, some potential applications of
wavelength tunable fiber laser can be extended such as spectroscopy [26], biomed-
ical diagnosis [27], most importantly, enlarging the optical communication capacity
further [28]. Consequently, it is of great practical interest to explore L-band wave-
length tunable fiber laser. In principle, L-band laser emission can be achieved if the
gain spectrum locates at L-band region. In practice, one could employ long EDF
length [29] or cascading different type EDFs [30] or reduce the cavity loss to some
extent [14] to enable the occurrence of intra-band absorption in EDF, which con-
tributes to the red shift of gain spectrum. As a result, L-band emission can be
realized. In order to achieve the combined operation of L-band emission and



wavelength tunability, some attempts have been made in last few years. J. Luo et al
successfully realized wavelength tuning operation from 1575 to 1603 nm by incor-
porating long EDF and an intrinsic nonlinear polarization rotation (NPR) related
birefringence filter in fiber laser [31]. One year later, the achievement of widely
spectral tuning range covering conventional band and L band was reported, where
the NPR-related birefringence filter together with cavity loss control were introduced
in the laser [15]. At the same year, another effective approach employing W-shape
LPG as a tunable band-pass filter was adopted in the realization of wavelength
tuning [22]. The center wavelength of the generated pulse could be shifted from
1553 to 1597 nm. Recently, the continuous tuning within the range of
1524–1602 nm has been obtained by rotating a diffraction grating in fiber laser [32].
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Nevertheless, the above-mentioned reports center upon the conventional soliton
(CS). And multiple CSs could appear sometimes during the wavelength tunable
process due to the limited pulse energy, challenging the practical use of these
wavelength tunable fiber lasers [15, 31]. On the contrary, dissipative soliton
(DS) is more resistant to pulse breaking thanks to relatively high pulse energy and
giant pulse chirp, making it useful for some applications that require high energy
pulse [33]. DS has been known as the result of fine balance among gain, loss,
dispersion and nonlinear effect [34]. Despite these appreciable DS characteristics
and potential applications, to date there are only few researches investigating the DS
L-band wavelength tunable fiber laser. The first demonstration of DS L-band
wavelength tunable fiber laser was proposed by H. Zhang et al, where graphene
was exploited as a whole band saturable absorber (SA) [35]. Then, DS fiber lasers
with wavelength tuning range from 1566 to 1594 nm and from 1581 to 1602 nm
were demonstrated by D. Han et al [36] and D. Yan et al [29], respectively. Very
recently, by optimizing the applied EDF length, our group demonstrated a DS
widely wavelength tunable fiber laser in which center wavelength could be tuned
from 1567 to 1606 nm [37]. It is the widest tuning range obtained in L-band DS fiber
laser. However, all of the wavelength tuning operations are realized by using an
artificial birefringence fiber. As mentioned above, cavity loss control is also one of
the most efficient ways to realize wavelength tuning operation. However, it has not
yet been applied in the achievement of DS wavelength tuning. Since DS exhibits
some specific characteristics compared with CS, one may wonder whether it have an
effect on the effectiveness of this wavelength tuning method. And will different
types of VOA affect wavelength tunability? Furthermore, there is no systemic
comparison about the influence of different wavelength tuning methods, i.e. tunable
filter control and cavity loss control, on the wavelength tuning capability and the
generated DS performance, which needs in-depth investigation.

In this chapter, we make a comparison between the effects of different wave-
length tuning methods, including tunable filter control and cavity loss control, on the
wavelength tunability and pulse performance in L-band DS wavelength tunable fiber
laser. Two different optical tunable filters including birefringence filter and taper-
type filter and two different VOAs including commercial mechanical VOA and
taper-type VOA are applied in a laser cavity, respectively. It is turned out that the
relatively wider continuous wavelength tuning operation can be obtained by merely



controlling the tunable filter appropriately while simultaneously suitable adjustments
of VOA and pump power lead to narrower continuous wavelength tuning range.
Therefore, it is identified that for DS wavelength tunability, the tunable filter control
is more favorable if a suitable tunable filter is selected. First of all, this wavelength
tunable pattern is simple to operate, which need no additional adjustment of other
cavity parameters. Especially, it provides greater possibility for the extension of
continuous wavelength tuning range due to the absence of forbidden region. Fur-
thermore, it shows less variation of DS performance versus operating wavelength.
Moreover, since characteristics of tunable filter have great implications on wave-
length tunability and the generated pulse performance, it is important to choose a
reasonable filter with broad operating wavelength range, large FSR, high extinction
ratio, particularly operation handiness. Our investigation offers a great reference for
the construction of DS wavelength tunable fiber laser not just operating in L-band
region.
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9.2 Laser Design

The proposed laser employs conventional ring cavity format, as illustrated schemat-
ically in Fig. 9.2a. It is organized by a commercial wavelength-division multiplexer
(WDM), an isolator (ISO), a 30:70 OC, a SA provided by single walled carbon
nanotubes (SWCNTs) film, 2.86 m EDF (OFS EDF 80), a section of single mode
fiber (SMF), and most importantly, the key component of wavelength tunability. The
net cavity dispersion is always managed to be positive to allow the generation of
DS. It is noteworthy that the EDF length has been optimized to ensure wide gain
spectrum covering L band, creating a basis of widely L-band wavelength tunability.
The corresponding amplified spontaneous emission (ASE) spectra in log scale and
linear scale under 70 mW pump power are shown in Fig. 9.2b. It is seen that they
cover the whole L-band region with a peak of 1574 nm, which is attributed to intra-
band absorption occurrence when EDF length is long [31]. Figure 9.2c displays the
nonlinear transmission of SWCNTs-SA with a home-made L-band fiber laser,
indicating the modulation depth of 3.15%, saturation fluence of 1.34 μJ/cm2 and

Fig. 9.2 (a) The schematic configuration of L-band wavelength tunable fiber laser. (b) The ASE
spectra in log scale and in linear scale (inset) under 70 mW pump power. (c) The measured
nonlinear transmission of SWCNTs-SA



nonsaturable loss of 23.85%. It manifests that the SWCNTs-SA is capable of mode
locking in L band. In general, the cavity loss is supposed to be reduced so as to
increase the long wavelength extremity of tuning range [17]. In this sense, OC with
small output ratio is more favorable. However, given that the small saturation fluence
of SWCNTs-SA is conducive to pulse splitting [38], the OC with appropriate output
ratio (30:70) is carefully chosen. Besides, in our experiment, we only replace
different key components of wavelength tunability while maintaining similar cavity
structure.
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9.3 Methods of Wavelength Tuning

9.3.1 Wavelength Tuning Based on Spectral Birefringence
Filter with 45�Tilted Fiber Grating

9.3.1.1 Laser Setup and Device Characteristics

The spectral birefringence filter generally involves a pair of polarizers and a section
of birefringence fiber [39]. Only one polarizer is required thanks to the ring cavity
configuration, where the applied fibers can be deemed as birefringence medium.
Apart from its structural simplicity, it possesses other appealing virtues such as low
expense, low loss, good fiber compatibility, wide operating wavelength range, great
robustness and high flexibility. In our experiment, a 45 degree tilted fiber grating
(45�TFG) utilized as a desired fiber-type polarizer [40] is introduced in the ring fiber
laser, as depicted in Fig. 9.3a. Typical characteristics of the 45�TFG are shown in
Fig. 9.3b, where the peak of polarization dependent loss (PDL) value is up to 48 dB
locating at 1593 nm. We should stress that such 45�TFG is designed specifically to
make the PDL response spread over the whole L band. Also, it can be seen that a
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Fig. 9.3 (a) The L-band wavelength tunable fiber laser configuration based on birefringence filter.
(b) The transmission curve and PDL response of 45�TFG



clear dip lies at 1581 nm attributed to the existence of second order Bragg resonance.
The cavity length is designed to 8.71 m and net dispersion is calculated to +0.06 ps2/
km.
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(a) (b)

Fig. 9.4 The simulation transmission curves with (a) different ω1 and ω2 and (b) different
birefringence strengths

The transmission curve of the spectral birefringence filter can be stimulated easily
if the cavity parameters are plugged into the transmission function of this type filter,
which has been described detailly in Ref. [41]. Transmission curves with different
angles of polarizer and analyzer with respect to the fast axis of fiber (ω1 and ω2) and
with different birefringence strengths are plotted in Fig. 9.4, respectively. It is clear
that different ω1 and ω2 result in the variations of peak location and extinction ratio
while the change of birefringence strength is able to alter the FSR value. In practice,
adjusting PC can cause the alternation involving ω1, ω2 and birefringence strength,
which has a great effect on gain distribution. As a result, wavelength selection can be
realized.

9.3.1.2 Experimental Results and Discussions

When pump power is set at 55 mW, single pulse oscillation is obtainable immedi-
ately. The wavelength tunability within the range of 1570.81–1602.03 nm is
achieved under pump power of 57 mW by merely manipulating the intracavity
PCs, as presented in Fig. 9.5a. The operating wavelength locates in L band,
benefiting from the effective optimization of EDF as well as the suitable properties
of the birefringence fiber. The pulse spectra sustain rectangular-like profiles over the
whole tuning range, taken as an indication of DS generation. The corresponding
pulse bandwidth and duration at different center wavelength are shown in Fig. 9.5b.
The 3 dB bandwidth varies from 5.2 to 12.2 nm while the pulse duration varies from
8 to 25 ps. Clearly, DS within range of 1575–1593 nm exhibits wider pulse duration
and narrower pulse bandwidth. The variation of pulse performance under different
operating wavelength is attributed to different pulse shaping effect, which is greatly
dependent on intracavity polarization state, gain intensity and cavity dispersion.



Figure 9.5c displays pulse energy and time bandwidth product (TBP) versus center
wavelength, suggesting little variations except for the points on both sides of the
wavelength tuning range.
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Fig. 9.5 (a) Optical spectra over the entire wavelength tuning range from 1602.03 to 1570.81 nm.
(b) 3 dB bandwidth and pulse duration at different center wavelength. (c) Pulse energy and TBP as a
function of center wavelength

      

   

-60
-30

-60
-30

-60
-30

-60
-30

-60
-30

-60
-30

-60
-30

1580 1590 1600 1610 1620

-60
-30

 1601.47 nm

 1600.87 nm

 1599.47 nm

 1598.51 nm

 1597.51 nm

)
mBd(ytisnetnI

 1596.39 nm

 1595.71 nm

 1593.17 nm

Wavelength(nm)

(a)

1592 1594 1596 1598 1600 1602

8

12

16

 3dB bandwidth

)
mn(htdi

wdnab Bd3

Center Wavelength(nm)

(b)

8

10

12

14

16

18
 Duration

D
ur

at
io

n(
ps

)

1592 1594 1596 1598 1600 1602

0.4

0.6

0.8

1.0

1.2  Output power

)
W

m(re
wop tuptu

O

Center Wavelength(nm)

20

30

40

50 Energy

En
er

gy
(p

J)

(c)

1592 1594 1596 1598 1600 1602
40

44

48

52

56

)Bd(
R

NS

Center wavelength(nm)

(d)

Fig. 9.6 The evolutions of DS performances with continuous wavelength tuning of
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pulse energy, (d) and SNR at different center wavelength

It should be noted that the continuous wavelength tuning only occurs at the range
of 1593–1601 nm by rotating a PC in a single direction, as described in Fig. 9.6a.
Considered that DS is a result of delicate balance among gain, loss, dispersion and
nonlinearity, it is easy to upset the balance when adjusting intracavity PC, resulting
in disappearance of mode locking or transformation to noise-like pulse. As a result,
the continuous tuning range is narrower compared to wavelength tunability of



CS. The pulse performances within the continuous wavelength range are illustrated
in Fig. 9.6b–e. As shown in Fig. 9.6b, the DS with broader bandwidth shows
narrower pulse duration. And the shortest pulse is 9.43 ps under the status of
1599.47 nm center wavelength. The 3 dB bandwidth varies from 6.5 to 14.5 nm,
and the pulse duration changes from 9.34 to 15.2 ps. The changes of output power
and pulse energy are displayed in Fig. 9.6c. From it, we can see that both of them are
relatively lower at the long wavelength end of wavelength tuning range (1600 nm
and 1601 nm) due to the smaller gain intensity, while pulses within the range of
1593–1599 nm show relatively stable output power and pulse energy. The notable
pulse stability is verified by the facts that all of the signal-to-noise ratios (SNRs) are
better than 42 dB and the mode locking under different center wavelength can
maintain for a few hours in good working order.
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Fig. 9.7 The dual-wavelength spectra with different wavelength spacings under different PCs
settings

In addition, the wavelength switchable and dual-wavelength operations appear
frequently provided that the PCs are set at appreciate states, reflecting excellent
wavelength switchable potential of the birefringence filter-based laser. The dual
wavelength spectra with different wavelength spacings are depicted in Fig. 9.7,
where there is always a dip at 1581 nm resulting from the existence of second
order Bragg resonance.

As mentioned above, the achievement of wavelength tunability stems from the
alternative of the birefringence filter transmission by adjustment of intracavity PCs.
Proceeding from our experiment, the tunable filter-controlled method of wavelength
tuning based on birefringence filter offers the merits including simple operation,
convenient installation, low expense and excellent wavelength switchable potential.
However, filter features including FSR, peak location and extinction ratio are related
to PCs settings, which results in the difficulty of precise wavelength control,
relatively narrow continuous wavelength tuning range, poor reversibility as well as
repeatability. In our experiment, the restraint of wavelength tuning range is imposed
by the low delivered pump power. On the one hand, the applied SWCNTs-SA
featuring low saturation fluence is advantageous to pulse breaking. To avoid this,
the pump power must be reduced. On the other hand, NPR exists not only as a mere
birefringence filter but also as a mode-locking element if high pump power is
launched. It gives rise to DS generation with broad bandwidth, making implemen-
tation of wavelength tuning complex. Therefore, if the SWCNTs-SA is removed and
the cavity dispersion is managed to be more positive simultaneously, the wavelength
tuning range is expected to be extend dramatically with high pump power, similar to
Ref. [37]. But the continuous wavelength tuning range will be reduced instead.
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9.3.2 Wavelength Tuning Based on Tunable Filter
with Fiber Taper

9.3.2.1 Laser Setup and Device Characteristics

Fiber taper has been a sought-after device in many applications such as fiber sensing
[42], supercontinuum generation [43], and fiber coupler fabrication [44]. Interest-
ingly, it is also found that fiber taper can function as an effective tunable filter applied
in wavelength tunable fiber laser [24]. Conventionally, fiber taper is fabricated by
heating and stretching SMF, where the coating is peeled off. When the fiber diameter
is reduced to some extent, the single mode light is allowed to couple into different
modes, which interfere mutually in the waist zone, leading to periodic oscillation in
the transmission curve. As expected, stretching fiber taper without heating causes the
change of interaction length, subsequently blue-shifting the spectral response
[24]. The phenomenon reflects the key property of tunable filter. The taper-type
filter shows conspicuous advantages including low insertion loss, simple manufac-
ture, ease of integration and high miniaturization.

In our experiment, a fiber taper is connected after SWCNTs-SA, as shown in
Fig. 9.8a. It is mounted between two precision 3-axis micro-positioning stages
(Max312D, Thorlabs), where both pigtails are fixed by a pair of fiber fixtures. The
rotation of micrometers with minimum precision of 1 μm attached to the micro-
positioning stages enables fiber taper stretched or unstretched. The stretch displace-
ment can be obtained from the micrometer reading. Benefiting from the precious
micrometers, the taper-type filter features convenient operation, strong controllabil-
ity with good accuracy. Figure 9.8b displays the spectral responses with different
tensile strength, indicating sinusoidal oscillations with FSR of 24.5 nm and extinc-
tion ratio of 1 dB. Notably, the obvious beating behavior is blue-shifted along with
the increasing of stretch displacement. The waist zone of applied fiber taper with
7.54 μm taper diameter and about 3 mm taper length is detected by a microscope, as
shown in Fig. 9.8c. The cavity length is managed to be 7.62 m and net dispersion is
+0.085 ps2/km. Emphasis should be given that the cavity length is shorter than that
of birefringence filter-based laser due to the higher nonlinearity imposed by the fiber
taper, which is favorable to single pulse operation.
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9.3.2.2 Experimental Results and Discussions

Under the initial status of fiber taper, the self-started mode locking with stable DS
operating at 1606.25 nm is obtained easily under the pump power of 44 mW. The
center wavelength can be tuned continuously by stretching fiber taper while
maintaining PC and pump power invariable. Figure 9.9a shows the spectral evolu-
tion over the entire wavelength tuning range. From it, we can see that the generated
DS with different operating wavelength has similar spectral profile, reflecting a
fascinating aspect of admirable wavelength tunable fiber laser. Figure 9.9b summa-
rizes the operating wavelength of DS versus stretch displacement of fiber taper. The
center wavelength is shifted from 1606.25 to 1590.65 nm continuously while the
corresponding stretch displacement increases from 0 to 60 μm monotonously.
Obviously, the relationship between them possesses perfectly linear, reflecting
fascinating controllability. If the stretch displacement is enlarged further, the oper-
ating wavelength jumps from 1590 to 1606 nm and the wavelength tuning is
obtained in a recurrent mode. The reason is attributed to cyclical oscillation in the
transmission curve of the used fiber taper. The changes of corresponding pulse
characteristics are plotted in Fig. 9.9c–e. The 3 dB bandwidth ranges from 4.6 to
7.5 nm and pulse width changes from 11.8 to 19.5 ps. At the short wavelengths of the
tuning range, it exhibits wider pulse duration. And the output power and pulse
energy vary from 0.3 to 0.78 mW and from 10.7 to 28.4 pJ, respectively. The
operation stability is proved by high SNRs (>45 dB). Also, it should be noted that
the presented laser can run sustainably for several hours regardless of the operating
wavelength.
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Fig. 9.11 (a) Variations of center wavelength when increasing and decreasing displacement of
fiber taper. (b) The dual-wavelength spectrum

Specifically, benefitting from high stretching sensitivity of fiber taper and high
precision of micrometers, the operating wavelength can be tuned with great accu-
racy. Figure 9.10a visualizes the precise wavelength tuning process over the range of
1595.87–1594.61 nm with 1 μm stretch interval. It is found that accompanying with
center wavelength changed, the pulse performances including spectral profile, spec-
tral bandwidth and pulse duration remain almost constant, having positive effect on
use of the proposed wavelength tunable fiber laser. The linear dependence of
operating wavelength on stretch displacement is manifested in Fig. 9.10c, where
the estimate of tuning resolution is 0.25 nm/μm. Remarkably, the fiber taper shows a
certain degree of flexibility and elasticity, thus leading to potential reversibility of
wavelength tuning. The reversibility is examined in Fig. 9.11a. It is seen that the
operating wavelengths almost coincide under the same stretch displacement of fiber
taper. Furthermore, the laser permits the generations of wavelength switching and
dual-wavelength operation. The dual-wavelength spectrum is shown in Fig. 9.11b.
The wavelength spacing is un-adjustable, which determined by FSR of taper-type
filter.
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As discussed above, taking advantages of fiber taper with intermodal interference,
the continuous wavelength tuning is implemented with stretching fiber taper. Con-
sidering that the transmission just blue-shifts with invariable FSR and extinction
ratio when stretching fiber taper, it will not break conditions of DS generation easily,
consequently resulting in long continuous wavelength tuning range. Apart from that,
the tunable filter-controlled method based on fiber taper provides favorable proper-
ties of simple operation, high precision, good controllability and reversibility.
However, one pronounced shortcoming is the easy brittleness of fiber taper, which
restricts its practicability. In our experiment, the continuous wavelength range is
constrained to FSR and extinction ratio of fiber taper. It is expected that the
continuous wavelength tuning range can be scaled up if fiber taper is further
optimized [45]. Besides, another effective solution may be to cascade several fiber
tapers.

9.3.3 Wavelength Tuning Based on Cavity Loss Control
with Commercial Mechanical VOA

9.3.3.1 Laser Setup and Device Characteristics

As we know, mechanical VOA has been a mature product long time ago, where a
blocking component is plugged between two collimators generally to cause optical
attenuation. It possesses some appealing merits such as small volume, light heft,
robust structure, good portability, reliable stabilization and convenient use. In our
experiment, a commercial rotary VOA (MVOA Series, AFR) is exploited in laser to
control the cavity loss, as shown in Fig. 9.12a. The picture in Fig. 9.12b displays its
outward appearance. The insertion loss is also measured over the range of
1520–1620 nm under the initial state of VOA, which is illustrated in Fig. 9.12c. It
implies the VOA features fairly wide and flat working band as well as low initial
insertion loss of 0.41 dB. The proposed laser with 8.76 m cavity length and net
dispersion of +0.059 ps2/km is similar to that described in Sect. 9.3.3.1.
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Fig. 9.12 (a) Experimental setup of L-band wavelength tunable fiber laser with a commercial
mechanical VOA. (b) The outward appearance of the applied commercial mechanical VOA. (c) The
measured insertion loss
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9.3.3.2 Experimental Results and Discussions

Initializing mode locking with stable DS operation easily under pump power of
44.7 mW when no additional loss is induced by VOA. When merely adjusting VOA
to add cavity loss gradually, the DS spectrum evolves with progressive decreasing of
3 dB bandwidth but nearly constant center wavelength firstly, then transforms into
CW or ASE spectrum. The wavelength tuning is achieved by adjusting VOA and
pump power simultaneously. The wavelength tuning process ranging from 1600.26
to 1570.43 nm is vividly displayed in Fig. 9.13a. It is clearly seen that under
precondition of growing intracavity loss, increasing pump power from 50 to
96.1 mW simultaneously leads to continuous operating wavelength tuning from
1600.26 to 1593.27 nm, while decreasing pump power from 66 to 53 mW simulta-
neously leads to continuous operating wavelength tuning from 1574.72 to
1570.43 nm. The different variation trends of pump power are attributed to different
maximum energy that a single DS can withstand under different operating wave-
length. It is noteworthy that when DS works at 1593 nm, the center wavelength
switches to 1574 nm directly with occurrence of pulse splitting if the cavity loss is
enlarged further. That is to say, there is always a forbidden region where the
operating wavelength can’t be selected whatever the settings of PC and pump
power. It is postulated that the present of large cavity loss results in complete
population inversion of EDF, which makes the gain profile similar to ASE spectrum
described in Fig. 9.2b [9]. The gain peak is shifted from 1593 to 1574 nm directly,
which is consistent with the fact that DS is switched from 1593 to 1574 nm.
Figure 9.13b, c display the pulse performances within the entire wavelength tuning
range. The pulse duration and TBP at 1570.43 nm can’t be obtained due to the low
pulse energy and sensitivity limitation of autocorrelator. DS working in the range of
1600.26–1593.27 nm exhibits wider spectral bandwidth and narrower pulse duration
overall than those working in the range of 1574.72–1570.43 nm. Figure 9.13c shows
that the varying tendency of pulse energy is similar to that of TBP, implying
potential connection between pulse energy and pulse chirp [46]. Obviously, the
pulse energy increases from 52.4 to 110.6 pJ with center wavelength tuning from

Fig. 9.13 The wavelength tuning process ranging from 1600.26 to 1570.43 nm: (a) the output
spectra and inserted numbers showing the center wavelength and corresponding pump power. (b)
3 dB bandwidth and pulse duration versus center wavelength. (c) Pulse energy and TBP versus
center wavelength



1600.26 to 1593.27 nm while it decreases from 51.3 to 9.7 pJ with center wavelength
tuning from 1574.72 to 1570.43 nm, which is in accordance with the change of pump
power.
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Fig. 9.14 The evolutions of DS performances with continuous wavelength tuning of
1600.26–1593.27 nm: (a) Output spectra, (b) 3 dB bandwidth, pulse duration, (c) output power,
pulse energy, (d) and SNR at different center wavelength

The DS evolution with continuous wavelength tuning of 1600.26–1593.27 nm is
described detailly in Fig. 9.14. It is found that DS at different operating wavelength
shows similar spectral profile. Considering the phenomenon that DS spectrum
exhibits variable bandwidth and almost constant center wavelength along with the
change of cavity energy, the effective control of pulse spectral bandwidth at each
operating wavelength can be realized to some extent by managing pump power and
cavity loss. In our experiment, the spectral bandwidth is controlled within the range
of 15.3–16 nm while the corresponding pulse duration increases monotonously from
10.3 to 19 ps as the decreasing of operating wavelength. Furthermore, the variations
of output power, pulse energy resemble the trend of pulse duration variation. The
noteworthy pulse stability is verified by high SNR values (>52.5 dB) and the laser is
able to work uninterruptedly for several hours, providing a solid evidence of long-
term stability. Moreover, the realizations of wavelength switching and dual-
wavelength operation with fixed wavelength spacing are demonstrated by careful
adjustment of VOA. The dual-wavelength spectra are illustrated in Fig. 9.15. It is



plain to see that some small spikes appear in the spectra, making an indication of
instability state. Worthy of mentioning, the energy distribution between two pulses
at different center wavelength can be regulated by manipulating VOA carefully.
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Fig. 9.15 Dual-wavelength spectra with fixed wavelength spacing and different energy distribution

It is well known that manipulating cavity loss can cause the change of population
inversion level, resulting in the modification of intrinsic gain profile and conse-
quently tuning the operating wavelength [9, 12, 14, 15]. It has been checked in many
CS wavelength tunable fiber lasers [14, 15]. Hence, in the first instance, we expect to
realize DS wavelength tunability easily by merely adjusting VOA. However, in
practice, increasing cavity loss enables DS to narrow spectral bandwidth but main-
tain constant center wavelength, subsequently making DS turn into CW or ASE
spectrum. On the one hand, the phenomenon is associated with an intrinsic feature of
DS, namely, the increasing of cavity energy causing no pulse splitting but wider
spectral bandwidth and invariable center wavelength [47]. It is speculated that due to
the distinct DS property, the spectrum possesses narrower bandwidth and constant
center wavelength inversely when decreasing cavity loss by adding cavity loss
through VOA. On the other hand, further decline of cavity energy can’t provide
enough energy to generate DS, thus turning into CW or ASE spectrum. Therefore,
only the combined operation of adjusting VOA and pump power can tune DS center
wavelength, accompanying with control of DS spectral bandwidth. However, the
combined operation is complicated. And most importantly, there is always a forbid-
den region in which operating wavelength can’t be selected, imposing conspicuous
limitation of laser use. Furthermore, the additional cavity loss is unknown and can’t
be controlled precisely, because the applied VOA is mechanical rotation, making the
wavelength tuning process lack of reproducibility. In addition, the VOA with spatial
structure breaks all-fiber structure of laser. In this experiment, the wavelength
tunability is constrained by relatively large original cavity loss and low pump
power. As mentioned in Sect. 9.3.2, SWCNTs-SA with small saturation fluence is
the main restraint. As a consequence, one solution is to choose a suitable SA and
reduce output ratio.
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9.3.4 Wavelength Tuning Based on Cavity Loss Control
with Taper-Type VOA

9.3.4.1 Laser Setup and Device Property

Fiber taper, found to be particularly susceptible to bend, has been a great candidate
for a fiber-type VOA [16, 48, 49]. It is preferred to conventional commercial VOA
mentioned in Sect. 9.3.3 since it features low insertion loss, all-fiber format, simple
manufacture, low cost, reading availability, accurate controllability and easy oper-
ation. The proposed laser structure is same as that of Sect. 9.3.2, as shown in
Fig. 9.16a, where fiber taper is bent by controlling micrometers attached to the
micro-positioning stages. The difference is the characteristics of applied fiber taper.
It is seen from Fig. 9.16b that the insertion loss increases along with the curvature
increased. When there is no bending of fiber taper, the original insertion loss is
0.74 dB at 1601 nm. Figure 9.16c displays the microscope image of taper waist zone,
suggesting taper waist diameter of 30.66 μm and taper waist length of 0.7 mm. The
laser length and net dispersion are designed identically with those described in Sect.
9.3.3.

9.3.4.2 Experimental Results and Discussions

Under the original state of fiber taper, the mode locking with stable DS operation is
achieved automatically by inputting pump power above 41 mW. The low threshold
is mainly attributed to additional nonlinearity introduced by fiber taper. The exper-
imental phenomena are quite close to those described in Sect. 9.3.3. including DS
evolutions with just controlling additional cavity loss and with controlling cavity
loss and pump power at the same time. Likewise, the combined operation of
adjusting cavity loss and pump power is carried out to realize DS wavelength
tunability. The spectral evolution and the changes of DS characteristic over the
entire wavelength tuning range are plotted in Fig. 9.17. The center wavelength is
shifted continuously from 1601.07 to 1593.7 nm with pump power increased from
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Fig. 9.16 (a) The schematic diagram of L-band wavelength tunable fiber laser with a taper-type
VOA. (b) The insertion loss responses along with the increasing of curvature. (c) The microscope
image of the applied taper



41.2 to 82 mW and additional loss increased from 0.74 to 3.71 dB while when center
wavelength is tuned from 1574.03 to 1570.92 nm with increasing additional loss
from 4.13 to 5.55 dB, the corresponding pump power is decreased from
58 to 50.7 mW. Notably, the operating wavelength undergoes a jump from 1593.7
to 1574.03 nm with pulse splitting when additional loss is only enlarged from 3.71 to
4.13 dB, meaning the existence of a forbidden region. Apart from the wavelength
switching from 1593.7 to 1574.03 nm, the relation between center wavelength with
insertion loss of taper exhibits approximately linear slope, as depicted in the inset of
Fig. 9.17b. Worthy of mentioning, the insert taper loss is enlarged exponentially with
respect to increasing bend displacement of fiber taper [16]. The 3 dB bandwidth and
pulse duration vary from 4 to 14.3 nm and from 12 to 20.2 ps, respectively. The
variation trends of energy and TBP are alike, showing the inherent link between
them. The pulse energy changes from 10 to 85 pJ while the TBP changes from 12.5
to 32.
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Fig. 9.17 The wavelength tuning process ranging from 1601.07 to 1570.92 nm: (a) the output
spectra and inserted numbers showing the center wavelength and corresponding pump power. (b)
Center wavelength and insertion loss of fiber taper along with the increasing displacement. Inset:
center wavelength as a function of insertion loss of fiber taper. (c) 3 dB bandwidth and pulse
duration versus center wavelength. (d) Pulse energy and TBP versus center wavelength

The continuous wavelength tuning ranges from 1601.07 to 1593.7 nm plotted in
Fig. 9.18. Due to the fact that taper-type VOA features readable additional loss and
accurate loss controlling, the center wavelength can be tuned more delicately. The
center wavelength is shifted almost linearly with insertion loss of taper and pump



power. The 3 dB bandwidth varies from 11.7 to 14.3 nm and the corresponding pulse
duration increases monotonously along with the decreasing of center wavelength.
Similarity, the spectral bandwidth can be controlled to some extent benefiting from
the distinct DS spectrum changing versus the change of cavity energy. The varia-
tions of output power and pulse energy show monotonous increasing trends with
decreasing of center wavelength. The measured SNR values are over 42 dB regard-
less of operating wavelength, reflecting outstanding stability. And the long-term
stability is also tested by a few hours continuous work of the proposed fiber laser.
Furthermore, the wavelength switching and dual-wavelength operation are similar to
those described in Sect. 9.3.3. The dual-wavelength spectrum is illustrated in
Fig. 9.19, where there is no spike implying relatively stable state.
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Fig. 9.18 (a) Continuously tunable spectra with range of 1601.07–1593.7 nm by bending fiber
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Regarding the fact that increasing curvature of taper results in enlargement of
taper insertion loss, the fiber taper employed as VOA can be used to tune operating
wavelength. It not only maintains all-fiber laser structure, but also leads to more
precise wavelength tunability with good repeatability. It mainly benefits from some
instinctive features of taper-type VOA including all-fiber format, readable additional
loss, accurate loss controlling and easy manipulation. Taking full advantages of the
distinct DS spectrum changing versus the change of cavity energy, DS operation
with a degree of spectral bandwidth controllability can be realized. However, this DS
property also leads to necessity of simultaneous control of pump power and cavity
loss for the purpose of wavelength tuning, which increases operation complexity.
Besides, the obtained wavelength tunability still remains the inherent shortcoming of
cavity loss-controlled method, namely, the existence of forbidden region.



Additionally, the fiber taper is inherently fragile, making it easy to be broken. Similar
to the discussion in Sect. 9.3.3, it is believed that the wavelength tuning range is
limited by the initial cavity loss and limited pump power. Besides the improvements
mentioned in Sect. 9.3.3, another solution is to choose better fiber taper which
possesses lower initial insertion loss and higher bending sensitivity.
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Fig. 9.19 Dual-wavelength
spectrum with fixed
wavelength spacing
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9.3.5 Comparison with Different Wavelength Tuning
Methods

Table 9.1 summarizes the properties of the four L-band DS wavelength tunable fiber
lasers mentioned above. For comparison of different filters influence on wavelength
tunability, the first two lines show the wavelength tunability and pulse performance
in a birefringence filter-based laser and a taper-type filter-based laser, respectively.
The high nonlinearity provided by taper-type filter has a contribution to lower the
pump threshold. Clearly, the birefringence filter-based laser features wider wave-
length tuning range but narrower continuous wavelength tuning range. It means that
the wavelength tunability is closely interrelated with filter selection. On the one
hand, in our experiment, the birefringence filter presents larger and more flexible
FSR than taper-type filter, thereby leading to wider wavelength tuning range. On the
other hand, the adjustment of PC in birefringence filter-based laser can introduce
many filter parameter changes including FSR, extinction ratio and peak location,
which impairs the delicate balance among dispersion, nonlinearity, gain and loss,
resulting in disappearance of DS. Alternatively, the taper-type filter can sidestep this
drawback, whose transmission curve shifts without changing FSR and extinction
ratio via stretching the fiber taper, thus possessing wider continuous wavelength
tuning range. Furthermore, this unique property allows smaller range of pulse
performances changes, which is favorable to practical applications. Furthermore,
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the taper-type filter possesses inherent advantage of good controllability with high
accuracy, making the wavelength tuning become precisely controllable, reversible
and repeatable. Also, it is pointed out that the DS generated from taper-type filter-
based laser shows narrower spectral bandwidth, wider pulse duration, lower pulse
energy and smaller pulse chirp. It primarily results from lower pump power and
larger positive dispersion rather than different properties of the chosen filters since
FSRs of two filters are too large to limit the DS spectral bandwidth. Therefore, a filter
having combined advantages from the two filters, viz. broad operating wavelength
range, large FSR, high extinction ratio as well as favorable controllability, is an
optimal choose to realize wide wavelength tuning.
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In order to compare the effect of different VOAs on wavelength tunability, the
last two lines show the wavelength tunability and pulse performance in a commercial
mechanical VOA-based laser and a taper-type VOA-based laser, respectively. Like-
wise, the laser with a fiber taper has lower pump threshold due to the induced
additional nonlinearity. It comes to our attention that there is no obvious difference
in wavelength tuning range, continuous wavelength tuning range as well as pulse
performances variation. It suggests that the VOA properties have little effect on
wavelength tunability and pulse performance variation. In particular, considering the
instinctive merits of taper-type VOA such as all-fiber format, readable additional
loss, accurate loss controlling and easy manipulation, the wavelength tuning process
exhibits better controllability, accuracy and reproducibility. In addition, it is seen
that the obtained DS in the taper-type VOA-based laser with narrower spectral
bandwidth, wider pulse duration, lower pulse energy and smaller pulse chirp is
mainly because of the lower pump power (the cavity dispersions are same).

Comparatively, Table 9.1 gives the impression that tunable filter control is
superior to cavity loss control in terms of DS wavelength tunability. Firstly, regard-
ing the remarkable phenomenon that DS spectrum shows decreasing spectral band-
width but invariable center wavelength when only increasing cavity loss, the
collaborative adjustment of pump power and cavity loss is supposed to be carried
out in cavity loss-controlled fiber laser. Fortunately, in tunable filter-controlled fiber
laser, it is only necessary to control the applied filter, verifying the effectiveness and
manipulability of this method. Moreover, there is no forbidden region in which
center wavelength can’t be selected in tunable filter-controlled fiber laser, providing
more possibility for the realization of wider continuous wavelength tuning. The
reason is that the effective gain profile is decided by intrinsic gain spectrum together
with the filter property. Benefitting from it, the wavelength switchable operations
with different wavelength spacings are possible to be realized. Particularly, the
variations of pulse performance in tunable filter-controlled laser are seemed to be
smaller than those of cavity loss-controlled laser. On the one hand, only filter is
needed to be adjusted without changing pump power. On the other hand, the
existence of filter can reduce the sensitivity of pulse performances from cavity
parameter change to some extent, such as dispersion, gain intensity [9]. However,
as for the cavity loss control, the only virtue is a degree of DS spectral bandwidth
controllability. Therefore, the tunable filter control is more favorable to realized DS
wavelength tunability in fiber laser.
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9.4 Conclusion

We have evaluated the usability of tunable filter control and cavity loss control on
DS wavelength tunability in L-band fiber laser. Two typical filters—birefringence
filter and taper-type filter, and two typical VOAs—commercial mechanical VOA
and taper-type VOA, are served as key components incorporated in laser, respec-
tively. Through symmetric comparison and analysis, it is identified that the tunable
filter control outperforms cavity loss control in terms of DS wavelength tuning. First
of all, wavelength tuning requires only adjustment of the applied filter, highlighting
operation simplicity. More importantly, the obtained wavelength tuning operation
features wider continuous tuning range, more wavelength switchable potential, no
forbidden region, less pulse variation. Furthermore, it is found that the wavelength
tunability is closely bound up with filter property. If the applied filter features broad
operating wavelength range, large FSR, high extinction ratio, and outstanding
controllability with good accuracy, the wavelength tuning operation is able to
possess wide wavelength tuning range, high tunable resolution, great reversibility
as well as repeatability. In this regard, exploration of fiber-type tunable filter with
miniaturization, highly-integration and high performance is forecasted to be one of
the most potential future trends. Reciprocally, the development of fiber-type filter
can accelerate the advance of wavelength tunable laser sources. Our research not
only enables deeper understanding of wavelength tunable mechanism, but also
provides guidelines to construct DS wavelength tunable fiber laser, not just working
in L band. From the applied perspective, wavelength tunable fiber laser with
attractive characteristics such as wide wavelength tuning range, high tunable reso-
lution, great reversibility and repeatability is advantageous to expand application
scope.
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Chapter 10
Multiplexed Dissipative Soliton Fiber
Lasers

Tianye Huang, Pan Huang, Bingye Zhan, Dazhong Zhang, and Zhichao Wu

Abstract In this chapter, the multiplexed dissipative soliton fiber lasers including
bidirectional multiplexing, wavelength multiplexing, polarization multiplexing are
discussed. In bidirectional multiplexed soliton lasers, the features of various satura-
ble absorbers are introduced. For wavelength multiplexed ones, balancing the gain
competition by filter, attenuation or other methods is essential. Additionally, the
polarization multiplexed ones are often used as the light sources for dual-comb
spectroscopy. Finally, we discussed the emerging multiplexed methods such as
mode multiplexing and orbital angular momentum multiplexing.

Keywords Bidirectional multiplexing · Wavelength multiplexing · Polarization
multiplexing · Mode multiplexing · Orbital angular momentum multiplexing · Dual-
comb · Fiber laser · Nonlinear polarization rotation · Graphene · Carbon nanotube

10.1 Introduction

Since first experimentally observed in single mode fibers (SMFs) by Mollenauer in
1980, solitons as stable localized nonlinear waves, have been investigated in various
physical systems, especially in fiber lasers. Apart from dispersion and Kerr nonlinear
effect during propagation in SMFs that form the laser cavity, a pulse propagating in a
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fiber laser is also subject to actions of the laser gain and loss of cavity components,
which makes the laser cavity a dissipative system so that Ginzburg-Landau
(GL) equation is often used to describe the soliton evolution and dynamics. Since
the optical soliton formed in fiber lasers is a result of mutual interaction among the
cavity dispersion, fiber nonlinearity, laser gain saturation and gain bandwidth filter-
ing and so on, it is desirable to introduce various multiplexed mechanisms to realize
multi-soliton co-existence inside one single mode-locked fiber laser, which can
further extend its potential applications.
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Firstly, if there is no unidirectional component such as isolator inside laser cavity,
it would be a bidirectional oscillation that gives rise to a new dimension of
multiplexing. In this type of fiber lasers, the pulses can circulate along either the
clockwise or counterclockwise direction as long as the laser gain on the two
directions are both efficient. Also, the recovery time of the used mode-locker
needs to be quite short in order to support mode-locked operation on both directions.
Therefore, artificial mode-lockers based on Kerr nonlinearity are normally used to
realize bidirectional mode-locking. Recently, together with relatively long cavity
structure, real mode-locked materials such as saturable absorber mirror (SESAM),
graphene, carbon nanotube(CNT) also contribute to the direction-multiplexed soli-
ton generation.

Secondly, by utilizing wavelength selection mechanisms and components, such
as Mach-Zehnder (MZ) interferometer, chirped fiber Bragg grating (CFBG), Sagnac
fiber filter, nonlinear polarization rotation (NPR) filter and so on, dual- or triple-
wavelength solitons can be generated in the laser cavity. Compared to those solitons
that operate at single wavelength, these wavelength-multiplexed fiber lasers can
simultaneously emit pulse-trains at different central wavelengths. Such type of fiber
lasers has attracted much interest as ultrafast laser technologies develop rapidly, and
they can be used wavelength division multiplexing (WDM) transmission, optical
signal processing and precision spectroscopy.

Thirdly, without polarization restriction mechanism, the laser cavity can support
two orthogonal polarization modes owing to the fiber birefringence. Vector soliton is
a typical form of polarization-multiplexed output which refers to solitons that have
mutually coupled polarized components. Consider that vector solitons have been
investigated in detail in previous chapters, here we mainly focus on group velocity
unlocked polarization-multiplexed fiber lasers. Different from vector solitons that
are normally generated in weakly birefringent SMFs, these polarization-multiplexed
solitons need manipulation of the optical path along two orthogonal polarized axes to
generate two pulses with different repetition rate and less interaction.

In the following sections, we will separately introduce the above three
multiplexing methods of generating multi-solitons in dissipative laser cavities.
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10.2 Bidirectional Multiplexed Dissipative Soliton Fiber
Lasers

For most conventional fiber ring lasers, normally there is an isolator inside the cavity
to ensure the unidirectional operation of the laser, thereby reducing the spurious
cavity reflection and decreasing the mode-locked threshold. However, the isolator in
a ring cavity results in a less compact laser structure and only unidirectional
operation of the pulse trains. There have been revived interests in the bidirectional
oscillation in fiber-based lasers without an intracavity optical isolator to realize
another dimension of multiplexing, i.e. the directional multiplexing. In the bidirec-
tional mode-locked fiber laser, pulses can circulate in either the clockwise (CW) or
counterclockwise (CCW) direction, and the CW and CCW pulse trains can be
emitted and separated by using a 2 3 2 output coupler (OC). With more complex
cavity designs that enable different optical paths for the CW and CCW pulses, the
characteristics of the two output pulses can be different and adjustable.

In 1967, the first bidirectional mode-locked laser was demonstrated by Buholz
and Chodorow as a gyroscopic sensor [1]. Later, various gyroscopes based on mode-
locked lasers were reported. In 2008, Kieu and Mansuripur designed the first stable
all-fiber bidirectional passively mode-locked ring laser [2]. Since then, different
types of nonlinear elements have been proposed to achieve passive mode-locking,
such as the SESAM, NPR, nonlinear optical loop mirrors (NOLM), CNT and
graphene. The mode-locked elements of bidirectional mode-locked fiber lasers
mainly include CNT, SESAM, NPR, graphene and hybrid elements as shown in
Fig. 10.1. Here, hybrid elements refer to more than one mode-locked mechanism in a
laser cavity.

Fig. 10.1 Types of bidirectional mode-locking according to different mode-locked elements
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10.2.1 SESAM

Among these mode lockers, SESAM has been widely used for passive mode locking
over the past decades. An all-fiber bidirectional passively mode-locked soliton laser
with a four-port circulator and two different SESAMs were inserted into the laser
cavity to enable bidirectional mode locking as shown in Fig. 10.2a [3]. Two
independent countercirculating pulse trains with repetition rates of 21.3 and
15.2 MHz were obtained simultaneously, which also could be adjusted by varying
the SESAM pigtail length. The output pulse profiles in the time and frequency
domains are illustrated in Fig. 10.2b. Output pulse in the CW direction has a 3-dB
bandwidth of 4.1 nm centered at 1558.3 nm, while the pulse in the opposite direction
has a 3 dB bandwidth of 2.4 nm centered at 1559.8 nm. Their corresponding pulse
durations are 378 and 681 fs, respectively. These different characteristics for the CW
and CCW pulses can be explained by the asymmetry of the cavity, which mainly
derives from the unidirectional pumping configuration, different cavity lengths and
dynamics of the countercirculating pulses. It is worth mentioned that by controlling
the intracavity loss imposed on these two pulse trains, either one of the two pulse
trains can be independently switched on or off. In Ref. [5], W. Zhou et al. reported on
a novel polarization switching laser from a bidirectional passively mode-locked
thulium-doped fiber oscillator for the first time. Different from the conventional
ring-shaped and linear lasers, the laser was constructed by folding two “overlapped”
linear lasers, which simultaneously generated lasers with two directions of CW and
CCW. The switching laser was created by combing two orthogonally stable vector
solitons, which were found to be wave-breaking-free pulses in the all-anomalous-

Fig. 10.2 Bidirectional mode-locked fiber laser based on SESAM. (a) Experimental setup of the
all-fiber bidirectional passively mode-locked soliton laser with a four-port circulator and incorpo-
rated two different SESAMs into the laser cavity, (b) output optical spectra and the corresponding
autocorrelation traces of the mode-locked pulses in the CW and CCW directions. (Figures (a) and
(b) reprinted with permission from The Optical Society.: C. Ouyang et al., Opt. Letter
36, 2089–2091 (2011) [3])



dispersion regime. The measured repetition rates of switching laser and the
corresponding vector solitons were 49.596 MHz, 24.798 MHz, and 24.798 MHz.
By controlling wave plates, either of the polarized pulse trains can be switched on or
off. The spectra of Ix, Iy and Itotal nearly share the same central wavelength of
~2002 nm and the 3-dB bandwidth of ~0.9 nm. And the relatively smooth peaks
of the spectrum indicated a stable mode-locked operation.
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10.2.2 CNT

SESAM always has distinct drawbacks of small tuning range and cost-
ineffectiveness. Currently, single-wall carbon nanotubes (SWNTs) have been widely
investigated for mode locking due to their advantages of the ultrafast recovery time,
wide operation ranges and polarization insensitivity. In the first stable all-fiber
bidirectional passively mode-locked ring laser, a short segment of a fiber taper
embedded in carbon nanotubes/polymer composite, acting as a saturable absorber,
was used to enable bidirectional mode locking [2]. It must be noticed that most of the
CNT-based bidirectional mode-locked ring lasers have similar structure as the fiber
cavity Kieu and Mansuripur proposed [4]. A bidirectional soliton laser based on a
SWNT-PVA mode-locker consists of erbium-doped fiber (EDF) for gain amplifica-
tion, a polarization controller (PC) for optimizing the mode-locking conditions and
other basic elements including SMF, 2 3 2 OC, WDM and pump [4]. Two stable
pulse trains with different central wavelengths, pulse durations and repetition rates in
opposite directions are delivered simultaneously from the ring cavity. Changing the
pump power and adjusting the PC state can achieve the adjustment for the central
wavelength of the two pulses. Moreover, by appropriately adjusting the PC and
designing the cavity length, the pulses in opposite directions have the same central
wavelength at 1559.7 nm, which illustrates that the nonidentical central wavelengths
contribute to different repetition rates of two pulses. The unique features of the
bidirectional pulses mainly result from the cavity asymmetry and fiber birefringence.
There are many reports on ring bidirectional mode-locked fiber lasers like this [4–7],
and most of them have demonstrated the potential of application in dual-comb
spectroscopy [8–10]. Unlike common ring cavity, a nanotube-mode-locked
dispersion-managed Er-fiber laser with an ultra-simple linear cavity was reported
in Ref. [11]. The all-fiber linear cavity is constructed by a pair of homemade fiber
end-facet mirrors (M1 and M2). What’s important is that this is the first demonstra-
tion of such compact bidirectional soliton fiber laser with the sub-200 fs pulses.
Interestingly, the bidirectional operations can show the different bound states, i.e. the
forward bound solitons with phase difference of + π/2, and the backward ones with
phase difference of -π/2.
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10.2.3 Graphene

Recently, graphene, a two-dimensional atomic layer of carbon atoms, has been
proved to be a novel saturable absorber (SA) for the development of ultrafast lasers.
The gapless linear dispersion of Dirac electrons allows broadband saturable absorp-
tion in graphene. Additionally, graphene has the intrinsic advantages of an ultrafast
recovery time, higher damage threshold, lower saturation intensity and the ability to
operate in transmission, reflection, and bidirectional modes. All of these factors
make graphene an ideal SA for mode-locked lasers over an ultra-wide spectral range
from the visible to the far-infrared. Graphene-based SAs are preferred over SESAMs
and CNTs as they do not require band-gap design and diameter control to improve
their performance. The first all-fiber bidirectional passively mode-locked soliton
laser with a graphene-based saturable absorber is shown in Fig. 10.3a [12]. This
cavity design includes a four-port circulator to introduce different sections of cavity
for the two counter-propagating pulses, so they have distinct output characteristics.
The two sub-paths consist of a PC and a graphene based SA which is mated to a
highly reflective fiber mirror. The combination of a graphene-based SA and fiber
mirror serves as a reflective SA, which here is called the combination a Graphene
Saturable Absorber Mirror (GSAM). Simultaneous bidirectional operation is
achieved by appropriately adjusting the net cavity birefringence and loss. As
shown in Fig. 10.3b, in the CW direction, the laser emits ~750 fs pulses at

Fig. 10.3 Bidirectional mode-locked fiber laser based on graphene. (a) The experimental setup of
the graphene-based passively mode-locked bidirectional fiber laser, GSAM: combination of
graphene-based SA with fiber mirror; (b) The upper row: output optical spectrum of the CW pulses
and the CCW pulses under the condition of unidirectional pumping, insets are the corresponding RF
spectra, the bottom row: autocorrelation traces of the CW pulses and the CCW pulses under the
condition of unidirectional pumping, insets are the oscilloscope traces. (Figures (a) and (b)
reprinted with permission from The Optical Society.: V. Mamidala et al., Opt. Express
22, 4539–4546 (2014) [12])



1561.6 nm, with a repetition rate of 7.68 MHz. In the CCW direction, the central
wavelength, pulse width, and repetition rate are 1561.0 nm, ~850 fs, and 6.90 MHz,
respectively. GSAM in Fig. 10.3a is a liquid-phase exfoliation prepared graphene-
based SA with a pump threshold of 150 mW. However, in order to obtain high-
efficiency operation of a fibre laser, it is necessary to ensure a low laser threshold
where a high-performance SA becomes essential. A passively mode-locked femto-
second erbium-doped bidirectional fiber laser with low pump threshold using chem-
ical vapour deposition grown graphene SAs was also demonstrated [13]. This fiber
laser can simultaneously produce two synchronised stable output soliton pulse trains
with a similar fundamental repetition rate of�10.38 MHz at a pump power as low as
56 mW from a single-pump laser diode.
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10.2.4 NPR

Apart from the above real materials, artificial mode lockers also receive lots of
attentions due to their easy configuration and high damage threshold. A bidirectional
fiber laser scheme for validating the possibility of a multiplexed laser system, which
is passively mode-locked by NPR technique, configured by a polarizer and three PCs
respectively inserted in the main cavity and two branches with different dispersion
distributions was reported in Ref. [14]. Thus, different formation mechanisms are
introduced into the lasing oscillator. By this means, stable conventional solitons
(CSs) and dissipative solitons (DSs) are respectively formed in the CW and CCW
directions of the same lasing oscillator. Moreover, attributing to the strong birefrin-
gence filtering effect, the wavelength selection mechanism is induced. Through the
proper management of intra-cavity birefringence, wideband wavelength tuning and
switchable multi-wavelength operations can be observed. The central wavelength of
CS can be continuously tuned from 1560 nm to 1602 nm. Benefiting from the
multiplexed laser scheme, bidirectional lasing oscillation, multi-state soliton emis-
sion, wavelength tuning and multi-wavelength operations are synchronously real-
ized in a single laser cavity. Also based on the NPR mold-locking technology, a
θ-shape auxiliary cavity based on chirped fiber Bragg grating (CFBG) is proposed to
simultaneously introduce large anomalous and normal dispersion into the lasing
oscillator [15]. Thus, CSs and DSs also can be emitted from the counter-propagation
directions. Recent discovery on scalar-vector features of ultrashort pulses sheds new
light on the polarization dynamics of ultrafast fiber lasers. A NPR-based bidirec-
tional mode-locked fibre laser emitting scalar and vector solitons from the counter-
propagation directions is proposed [16]. Through introducing different polarization
evolving mechanisms into the counter-propagation branches, the fiber laser respec-
tively approaches the scalar-soliton regime and vector-soliton regime in the CW and
CCW directions.
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10.2.5 Hybrid

The introduction of hybrid mode-locked mechanism brings more possibilities for the
regulation of bidirectional mode-locked fiber lasers. The Erbium-doped fibre ring
laser hybrid mode-locked with SWNT and nonlinear polarization evolution (NPE)
realized by polarizing optical fiber and a pair of PCs without an optical isolator is
presented in Ref. [17]. The SWNT-PVA, refereed in this case as to comparatively
slow SA (relaxation time is 300–700 fs), is used for mode locking initiation. The
NPE features relaxation time in order of 10 fs and therefore, ensures efficient pulse
narrowing and stabilization. The switching between regimes with different genera-
tion directions can be achieved by adjusting the intracavity birefringence. In the
bidirectional operation regime, a laser pumped with 75 mW power at 980 nm
generates almost identical 790 and 570 fs soliton pulses with an average power of
1.17 and 1.11 mW. It is also mentioned that based on a laser cavity configuration
similar to that in Ref. [17], depending on the total intracavity dispersion value, the
laser emits conservative solitons, transform-limited Gaussian pulses, or highly
chirped stretched pulses with almost 20 nm wide parabolic spectrum in both CW
and CCW directions of the ring [18]. And a study on the gyroscopic effect in the
bidirectional ultra-short pulse erbium-doped all-fiber ring soliton laser is also
reported [19]. Such as, a thulium-doped bidirectional fiber laser mode-locked by a
combination of SESAM and nonlinear NPR, which is another popular hybrid mode
locker [20]. The laser outputs from two directions have significant spectral overlap,
the FWHM spectral bandwidths of CW and CCW signals are 3.2 nm and 1.8 nm,
respectively. The difference in spectral profiles is caused by the different polarization
events experienced in each path as well as the amount of gain and losses each path
experiences. For autocorrelation traces, pedestals extending over the entire autocor-
relation window indicate that the laser operates in a multiple-pulse regime. It is
should be stressed that output wavelengths are tunable by 35 nm around a central
wavelength of 1.917 μm and the repetition rate difference can be arbitrarily adjusted
using a tunable optical delay line placed on one of the cavity paths. What makes
sense is that a bidirectional mode-locked Er-fiber laser based on two saturable
absorber mirrors (SAMs) and NPR was proposed to generate high-coherence ultra-
broadband frequency combs by nonlinear spectral broadening [21].

10.3 Wavelength Multiplexed Dissipative Soliton Fiber
Lasers

Wavelength multiplexing is another dimension for laser multiplexing, which is
manifested in fiber lasers that can output multi-wavelength soliton. Until now,
different methods have been reported, such as adjusting the intensity loss of the
cavity or changing the birefringence intensity of the cavity as summarized in
Fig. 10.4.
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Fig. 10.4 Methods of wavelength multiplexing

Fig. 10.5 (a) Structure of all-normal dispersion multi-wavelength ytterbium-doped fiber laser with
periodic birefringence fiber filter. (b) Dual-wavelength dissipative soliton output of the laser in (a).
(c) The generation of dual-wavelength ultrafast Tm3 + �doped fiber laser at 2 μm region based on
GSA, insert is an image of GSA structure based on microfiber. (d) The dual-wavelength solitons
output spectrum and pulse trains of the laser in (c). Figures (a) and (b) reprinted with permission
from The Optical Society.: Z. X. Zhang et al., Opt. Express 20, 26736–26742 (2012)
[23]. (Figures (c) and (d) reprinted from Optics & Laser Technology, 105, G. Yang et al.,
76–79., Copyright (2018), with permission from Elsevier [26])

Adjusting the birefringence of the cavity is a common method to realize
wavelength-multiplexing. The generation of multi-wavelength DS in an all-normal
dispersion mode-locked fiber laser based on SESAM was reported in Ref.
[22]. Although no polarizing components were used in the cavity, the slight residual
polarization asymmetry of the components used, such as the SESAM and the
circulator, could still cause the formation of a linear artificial birefringent filter in
the cavity. Single/dual/triple-wavelength spectra obtained through rotating
PC. Similarly, an all-normal-dispersion multi-wavelength DS Ytterbium-doped
fiber (YDF) laser with a periodic birefringence fiber filter was reported as shown
in Fig. 10.5a [23]. The mode-locked operation with NPR can effectively induce the



intensity and wavelength-dependent loss, so as to reduce the mode competition
caused by uniform gain broadening. By adding a length of polarization-maintaining
fiber (PMF) into the cavity, the birefringent fiber filter is formed, which can play the
role of wavelength selection. The tunable dual-wavelength DS output is realized by
adjusting the PC as shown in Fig. 10.5b. And the filter bandwidth can be changed by
PMF length. In addition, the triple-wavelength DSs output can be realized by this
structure as well [24]. There is also an all-normal-dispersion mode-locked ytterbium-
doped fiber laser based on graphene oxide saturable absorber (GOSA) [25]. The
induced cavity birefringence through over bending the single-mode fibers is respon-
sible for the multi-wavelength filtering. Tunable and switchable single-, dual-, and
triple-wavelength DSs can be output. The dual-wavelength ultrafast Tm3+-doped
fiber laser at 2 μm region based on graphene saturable absorber is shown in
Fig. 10.5c [26]. A section of graphene film is transferred on a microfiber, which
allows light-graphene interaction via the evanescent field. The graphene interacting
with optical evanescent light can generate a polarizing effect as a weak polarizer.
The graphene-induced polarizing effect combined with the cavity birefringence
constructs an artificial birefringent filter, and the filter together with the thulium-
doped fiber determines the effective laser gain. By tuning the pump power and the
PC, the transmission of the artificial birefringent filter can be effectively changed,
and the multi-wavelength mode-locking can be realized as shown in Fig. 10.5d.
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Among these techniques for dual-wavelength or multi-wavelength mode-locking,
Lyot-filter (birefringence-induced spectral filter) is a common approach because of
its compact structure and broadband operation property [27, 28]. A typical dual-
wavelength mode-locked fiber laser based on Lyot-filter was reported as shown in
Fig. 10.6a [29]. By bending the single-mode fiber, dual-wavelength mode-locking

Fig. 10.6 (a) Configuration of dual-wavelength mode locked fiber laser based on Lyot-filter. (b)
The dual-wavelength output spectrum and time waveform of the laser in (a) are obtained by
adjusting PC. (c) Configuration of the all-fiber linear cavity mode-locked laser based on SESAM.
The components on the left of the broken line are polarization-maintaining and those on the right are
non-polarization-maintaining. (d) the spectrum of dual-wavelength mode-locking at 1557.7 nm and
1562.7 nm, and corresponding RF spectrum around the first harmonic and (inset) local view of a
subsidiary peak. (e) Schematic configuration of the multi-wavelength mode-locked TDFL, insert is
an image of cross-section of the hollow-core fiber (HCF). (f) The output spectrum of dual/triple-
wavelength mode-locking of the laser in (e) by changing the PC. (Figures (e) and (f) reprinted with
permission from IOP Publishing © Astro Ltd.: M. Wang et al., Laser Physics Letters 15, 085110
(2018) [31])



can be achieved, as shown in Fig. 10.6b. Figure 10.6c is also a mode-locked laser
based on the Lyot-filter [30]. Periodic Lyot-filtering effect appears because of the
polarization-dependent loss of the PM WDM combined with the PM fibers in the
laser cavity. By properly setting the state of the polarization, stable dual-wavelength
synchronized mode-locked pulse trains with the repetition rate difference of hun-
dreds of Hertz can be achieved, as shown in Fig. 10.6d. In addition, the filter based
on the mode interference mechanism can also realize wavelength multiplexing. In
Fig. 10.6e, an all-fiberized multi-wavelength mode-locked thulium-doped fiber laser
(TDFL) based on fiber-optic Fabry–Perot interferometer (FPI) and NOLM was
reported [31]. The fiber-optic FPI played the roles of wavelength selective filter
and output mirror, which constructs by a single mode-hollow core-single mode fiber
structure (SMF-HCF-SMF). A NOLM with wavelength-dependent cavity loss was
employed to alleviate the mode competition in thulium-doped fiber and enabled the
multi-wavelength mode-locking. With proper manipulation of the PC and the pump
power, besides the single-wavelength fundamental, switchable dual-wavelength and
stable triple-wavelength mode-locked operations are obtained as shown in
Fig. 10.6f.
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Using fiber grating as a spectral filter in the laser cavity, wavelength-multiplexing
can be realized. A switchable dual-wavelength and passively mode-locked ytter-
bium-doped fiber laser in the all-normal-dispersion regime was reported in Ref.
[32]. Using a phase-shifted long-period fiber grating (PS-LPFG) as an all-fiber
format spectral filter in the laser cavity, a stable and switchable dual-wavelength
mode-locked operation is achieved by NPE. The wavelength position of the dual-
wavelength output is determined by the passbands of the PS-LPFG filter. The mode-
locked dual-wavelength laser can further be switched by adjusting the polarization
states of the waveplates in the cavity. The output wavelength of the mode-locked
pulse is very consistent with the passband wavelength of PS-LPFG. Moreover, the
tunable dual-wavelength and triple-wavelength mode-locked pulse output can be
realized based on PS-LPFG [33]. A nanotube-mode-locked all-fiber ultrafast oscil-
lator emitting triple-wavelengths at the central wavelengths of about 1540, 1550, and
1560 nm, which are tunable by stretching fiber Bragg gratings were reported in Ref.
[34]. Three chirped fiber Bragg gratings (CFBG) in the cavity are used as wave-
length selectors to select the mode-locked wavelength, and the laser output wave-
length is separated by the other three CFBGs to represent a single wavelength. Thus,
the triple-wavelengths output of the laser can be realized. Moreover, based on the
cascade of CFBGs, the laser system with more than triple-wavelengths (e.g. four and
five wavelengths) can be achieved in principle.

By adjusting the intracavity loss, the gain profile of the homogeneous-doped fiber
laser is effectively controlled, wavelength multiplexing can then be realized. The
operating status and the output wavelength of the laser can be controlled by adjusting
an attenuator in the fiber ring in Ref. [35]. By adjusting the cavity loss and pump
power, the output spectrum is changing from single-wavelength mode-locking to
dual-wavelength mode-locking. In Fig. 10.7a, a nanotube/microfiber-mode-locked
fiber laser where the operation wavelength depends on the intracavity loss was
reported [36]. With the appropriate pump power and intracavity loss, dual-



wavelength solitons are achieved simultaneously as shown in Fig. 10.7b. The center
wavelengths of mode-locked are 1531 nm and 1557 nm. In addition, a wavelength-
tunable and coherent dual-wavelength mode-locked operation are realized in an
all-fiber EDF laser using a hybrid NCF-GIMF structure-based SA as shown in
Fig. 10.7c [37]. The switching of single wavelength or dual-wavelength mode-
locked can be realized by changing the cavity loss, and the tunable dual-wavelength
mode-locking can also be realized as shown in Fig. 10.7d.
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Fig. 10.7 (a) Configuration of a nanotube/microfiber-mode-locked fiber laser. (b) By adjusting the
intracavity attenuator, the dual-wavelength mode-locked spectrum of the laser in (a) obtained. (c)
Configuration of dual-wavelength mode locked laser. Using a hybrid no-core fiber graded-index
multi-mode fiber as the saturable absorber. (d) By adjusting the attenuator in the cavity, the tunable
dual-wavelength mode-locked spectrum of the laser output in (c) is obtained. Figures (a) and (b)
reprinted from Optics Communications, 347, C. Zeng et al., 44–49., Copyright (2015), with
permission from Elsevier [36]. (Figures (c) and (d) reprinted with permission from CLP Publish-
ing.: T. Zhu et al., Photonics Research 7, 853 (2019) [37])

The dual-wavelength soliton pulse can be realized by placing a special SA in the
cavity. An Er-doped fiber laser with single and dual-wavelength mode-locked output
based onWS2 was reported in Ref. [38]. Few-layer WS2, as a novel two-dimensional
(2D) material, has been discovered to possess both the saturable absorption effect



and the huge nonlinear refractive index. The single- and dual-wavelength soliton
pulses by properly adjusting the pump strength and the polarization state. That WS2-
based fiber taper can be operated as both a promising SA for ultrafast pulse
generation and a promising high nonlinear photonic material for generation multi-
wavelength. In Fig. , A dual-wavelength soliton fiber laser based on the use of
tin disulfide (SnS2) as SA was reported [ ]. A dual-wavelength soliton was
obtained at a relatively low threshold pump power of 75 mW. The two peaks of
the dual-wavelength soliton are located at 1536.7 nm and 1562.6 nm with a pulse
width of 5.3 ps as shown in Fig. . Other materials were used to achieve multi-10.8b

39
10.8a
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Fig. 10.8 (a) Configuration of dual-wavelength mode-locked erbium-doped fiber laser based on tin
disulfide thin film as SA. Inset: schematic diagram of SA in laser. (b) The dual-wavelength soliton
spectrum and autocorrelation trace of the laser in (a). (c) Configuration of the monolayer-MoTe2-
film-based mode-locked fiber laser. Insert: Side and front schematics of fiber connector with
monolayer MoTe2 film coating on the pinhole of the pigtail. (d) The tunable dual-wavelength
mode-locked spectrum and oscilloscope trace of the laser in (c). Figures (a) and (b) reprinted with
permission from AIP Publishing.: S. Li et al., Journal of Applied Physics 125, 243,104 (2019)
[39]. (Figures (c) and (d) reprinted with permission from Taylor & Francis Ltd., http://www.
tandfonline.com.: A. Yasim, Journal of Modern Optics 67, 367–373 (2020) [40])
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wavelength mode-locked. As shown in Fig. 10.8c, the erbium-doped fiber laser
based on MoTe2 achieved dual-wavelength soliton output [40]. By tuning the state
of PC, another single-wavelength mode-locking state can be obtained in the fiber
laser, as shown in Fig. 10.8d.
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10.4 Polarization Multiplexed Dissipative Soliton Fiber
Lasers

In this section, we will focus on the polarization-multiplexed dissipative soliton fiber
lasers. Polarization-multiplexed solitons means that when the solitons propagate in
the birefringent fiber, they are decomposed into two solitons with orthogonal
polarization states, so that the two polarization states can be used independently
because of their weakly interference. Vector soliton is a typical form of polarization-
multiplexed soliton. Because it has been introduced in detail in the previous chapter,
here, group velocity unlocked polarization-multiplexed solitons will be discussed.

The mode-locked elements of polarization-multiplexed mode-locked fiber lasers
mainly include nonlinear amplifying loop mirror (NALM) [44, 47], SWNT [41, 43,
48], graphene-based saturable absorber (GSA) [45], nonlinear multimode interfer-
ence (NL-MMI) [45] and others [42].

In order to easily adjust the repetition frequency, Y. Nakajima et al. introduced a
spatial light structure. They developed an all-PM, polarization-multiplexed, dual-
solitons fiber laser with a NALMmode-locked mechanism [44]. Owing to the use of
the slow and fast axes of PMF, the dual-solitons with slightly different repetition
rates from the single-laser cavity are generated at the same center wavelength
without extra-cavity nonlinear spectral broadening. The narrow relative beat note
between the two frequency combs is obtained with a full-width-at-half-maximum of
~1 kHz in the optical frequency domain. The repetition rate ( frep) for both the
outputs was 21.2 MHz, and Δfrep was 8.9 kHz. Both the frep values could be varied
independently by the position of each collimator in the free-space section of linear
arm. In Fig. 10.9 the dual-solitons generation from an all PM dual-color ytterbium
(Yb) fiber laser was reported, in which spectral overlap of the two pulse trains is
achieved outside the laser cavity by amplifying the 1030-nm pulses and broadening
them in a nonlinear fiber [47]. Two pulse trains with center wavelengths at 1030 nm
and 1060 nm respectively are generated within the same laser cavity with a repetition
rate around 77 MHz.

Z. Zheng et al. proposed and demonstrated that polarization-multiplexed single-
cavity dual-comb source (SCDCS) by a mode-locked fiber laser with non-negligible
birefringence [43]. The repetition rates are 44.102951 and 44.103377 MHz respec-
tively. Furthermore, it is observed that the repetition rate difference Δfrep can be
varied by tuning the intracavity PC. Under different dispersion regimes, dual-
solitons sharing the same spectral window could be generated with different optical
bandwidths and pulse widths. It could be possible to further explore direct



generation of dual-solitons with further increased bandwidths through intracavity
dispersion design. In Ref. [48], the multi-solitons generation which could be realized
by tapping into the multidimensional joint parameter space was reported. Up to four
wavelength/polarization multiplexed, asynchronous ultra-short pulse sequences can
be generated with good stability from an all-fiber, mode-locked ring-cavity
laser. A. Sterczewski et al. further simplified the structure of the laser cavity and
they showed for the first time that by employing polarization multiplexing in an
all-fiber single-cavity dual-solitons laser composed of just a few basic fiber compo-
nents [45]. One can perform high-resolution broadband molecular spectroscopy with
tooth-resolved RF lines using a completely free-running system characterized by low
power consumption and compact size.
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Fig. 10.9 (a) Overview of the all-PM NALM mode-locked single-cavity dual-comb setup. Due to
the mechanical spectral fliter, the laser oscillator emits two pulse trains with different repetition
around 77 MHz and center wavelengths around 1030 nm and 1060 nm, respectively. The output of
the dual-color laser is spectrally separated using a dichroic filter: The pulse centered around
1030 nm is amplified and nonlinearly broadened. The pulse centered around 1060 nm is delayed
using a passive fiber. Subsequently, spatial overlapping in a 50:50 fiber splitter/combiner leads to
the generation of a dual-comb interferogram. Bandpass filtering of the light is applied to avoid
spectral aliasing. The feasibility of spectral measurement is demonstrated by measuring the
transmission of different etalons. The light is detected by a simple photodiode and measured with
an oscilloscope (b) Output spectrum of the dual-comb laser before spectral separation and spectrum
of the broadened 1030-nm pulse recorded with an optical spectrum analyzer. (b) Spatially
overlapped dual-comb output after amplification and spectral broadening after filtering the light
using 3-nm bandpass filter. The modulations on the spectrum are caused by the bandpass filter

In Fig. 10.10a simple and low-cost approach to generate dual-solitons from a
single fiber-ring cavity based on nonlinear multimode interference was reported
[46]. A single-mode fiber-graded-index multimode-single-mode fiber structure
serves as an all-fiber saturable absorber for mode-locking. A pair of solitons with
different repetition rate are generated by dual-wavelength and polarization-
multiplexed mechanisms. The two pulse trains exhibit repetition frequencies of
24.83345 MHz and 24.834083 MHz, respectively.

Figure 10.11a shows a robust fiber laser in the eye-safe thulium wavelength
regime which did not use a mode-locked device like CNT or SWNT. A polarization
soliton operation in a frequency-halved state with orthogonally polarized interlaced
pulses is demonstrated without requiring any free-space alignment [42].
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Fig. 10.10 (a) Schematic of the mode-locked fiber laser (right) Polarization-resolved measure-
ment; (b) RF spectrum of the horizontal axis output (inset, optical spectrum); (c) RF spectrum of the
vertical axis output (inset, optical spectrum). (Figures (a) and (b) reprinted with permission from
The Optical Society.: K. Zhao et al., Opt. Letters, 44(17), 4323–4326 (2019) [46])

Fig. 10.11 (a) Schematic of set-up for optical interference of the individual pulse trains. (b)
Schematic of set-up for optical interference of the individual pulse trains. (b) The optical spectrum
of LP at the angle of α and LP at the angle of α + 90�. (Figures (a) and (b) reprinted with permission
from The Optical Society.: E. Akosman et al., Opt. Express 25, 18592–18602 (2017) [42])

10.5 Conclusion and Outlook

In this chapter, we have discussed various approaches for multiplexed dissipative
fiber laser. These schemes are highly related to the degree of freedom of the
lightwave such as propagation direction, wavelength, and polarization. Recently,
due to the strong demand on the transmission capacity, mode demultiplexing which
employs various higher-order modes (HOMs) for information distribution has
attracted wide attention. These HOMs are orthogonal in nature and can be a potential
dimension for multiplexed fiber laser. Currently, mode-locked fiber lasers which can
emit HOMs such as LP11 based on mode selective coupler was reported
[49]. Transverse-mode-selected mode-locked fiber lasers can also be realized by
using few-mode fiber Bragg grating (FBG). By properly inscribing Bragg grating in
few-mode fibers, different Bragg reflection peaks will selectively generate different
modes which satisfy phase-matching conditions [50]. Based on this principle, mode-
locked fiber lasers are able to produce transverse-mode-selected pulses
[50, 51]. Orbital angular momentum (OAM) is another representation for the
transverse mode. Benefiting from the helix wavefront of the OAM mode, it is



regarded as a useful tool to manipulate nano- and micro-particles and offers a new
approach to boost the communication capacity. Like the HOMs in optical fiber, the
OAM modes are orthogonal as well. Normally, the OAM modes can be formed by
the combination of special HOMs with π/2 phase shift. Therefore, femtosecond
pulses carrying OAM mode can be produced by the transverse-mode-selected fiber
laser [51–54]. It should be noted that although these lasers can emit various HOMs
and OAMs, they cannot be named as multiplexed fiber lasers. This is because the
light oscillating in the laser cavity is still in the fundamental mode state except at the
mode-selective devices such as mode coupler and FBG. To achieve the real HOM-
or OAM-multiplexed fiber laser, the special fibers which can carry and amplify these
modes are essential. With the rapid development of these devices, HOM and OAM
will be promising degree of freedoms for future multiplexed dissipative fiber laser.
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Chapter 11
Multi-soliton Complex in Nonlinear Cavities

Chengying Bao and Xiaosheng Xiao

Abstract Dissipative nonlinear cavities can accommodate multiple solitons. When
there are more than one soliton in the cavity, these multiple solitons could inter-act
with other solitons, leading to various new phenomena. In this chapter, we will
discuss the multi-soliton complex in dissipative Kerr cavities mainly including
mode-locked fiber lasers and high-Q microcavities. Dissipative solitons in these
systems can interact via tails of the solitons, dispersive waves or active gain
dynamics in the system. Multi-soliton complex such as soliton molecules, soliton
crystals, vibrating solitons, rogue waves have been observed in dissipative cavities.
Multi-soliton complex has also been used in applications such as optical buffers and
frequency comb generation. These phenomena highlight the particle-like features of
solitons and greatly enrich the soliton dynamics.

Keywords Soliton · Mode-locked fiber lasers · Microresonators · Kerr nonlinearity ·
Soliton trapping · Microcavity solitons · Dispersive wave · Soliton interactions ·
Multi-soliton complex · Soliton molecules · Soliton crystals · Spatio-temporal mode-
locking

11.1 Introduction

Solitons are particle like wavepackets that can interact. When there are multiple
solitons in a dissipative cavity with gain either from active gain or parametric gain,
these solitons can interact via various mechanisms. For example, for shortrange
interaction, the solitons can interact via their overlapping waveform tails [1]. For
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long range interaction, the solitons can interact via acoustic-optical effects [2], gain
medium dynamics [3], dispersive waves [4] etc. These interactions contribute to
different nonlinear attractors and various multi-soliton complex. Besides
co-propagating multi-soliton complex in the cavity, counter-propagating multi-sol-
iton complex can also exist in dissipative cavities, adding a new dimension to host
multi-soliton [5, 6]. Furthermore, novel measurement techniques such as dispersive
Fourier transform (DFT) [7] has been used to measure the real time dynamics of the
multi-soliton complexes, which gives new insights into the dissipative soliton
dynamics. In addition to mode-locked lasers, multi-soliton state in high-Q
microcavities also offers a way to generate coherent microcavity based frequency
combs (microcombs) with high output power [8, 9] and enables new applications. In
the following, we discuss the recent advances of the multi-soliton complex studies in
mode-locked lasers and microcavities.
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11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers

Considering its compactness, mode-locked fiber lasers have become an attractive
method to generate ultrashort pulses and dissipative solitons. Due to the confinement
of light with high peak power in the fibers with small area, the nonlinearity is
prominent in mode-locked fiber lasers, which also makes them an ideal platforms
to investigate dissipative soliton dynamics [10]. Among these various nonlinear
dynamics, multi-soliton complex is one of the most commonly observed phenom-
ena. Herein, recent progress of the investigation of multi-soliton complex in mode-
locked fiber lasers are introduced. The discussion includes the latest observations
related to multi-soliton states, rapid measurements of multi-soliton dynamics, and
the phenomena of multi-soliton in an emerging type of fiber lasers, i.e., the spatio-
temporal mode-locked multi-mode fiber lasers [11].

11.2.1 Multi-soliton States in Mode-Locked Lasers and Their
Interaction

The general architecture of passively mode-locked fiber lasers is shown in
Fig. 11.1a. The gain medium is an active fiber, whose operation wavelength (typical
wavelength of 1, 1.5, 2 μm) is determined by the doped ion in the gain fiber. There
may be passive fibers which are used for dispersion/nonlinearity management or
control of the repetition rate of output pulse train. The net dispersion of the cavity
could be negative, positive, or near-zero. A saturable absorber (SA) is used for
initiating and stabilizing the mode-locking. It could be material-based real SA (e.g.,
graphene [12]) or artificial SA based on nonlinear effects (e.g., nonlinear polariza-
tion rotation technique [13], nonlinear loop mirror [14]).
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Fig. 11.1 Multi-soliton in passively mode-locked fiber lasers. (a) General scheme of passively
mode-locked fiber lasers. SA: saturable absorber. (b) Generation of multi-soliton (e.g., soliton
molecule) in fiber lasers through various interactions mediated by different mechanism. For
example, two solitons with a same phase, their overlapping part will induce an attractive force
between them, while two out-of-phase solitons will experience repulsive force. (c) Approaching
different attractors with different initial states. (d) Examples of different patterns of multi-soliton in
temporal domain

There are several explanations for the generation of multi-soliton in mode-locked
fiber lasers [15–22]. In general, the amount of nonlinear phase shift which the cavity
pulse could tolerate is limited [23]. When the nonlinear phase shift experienced by
the pulse is too large, wave-breaking will occur and multi-soliton appear [15]. This is
also referred to as the area theorem, which was not only proposed in anomalous
dispersion regime [16] but also in normal dispersion regime [17]. Peak-power-
limiting effect has also been proposed to explain the multi-soliton generation in
lasers mode-locked by nonlinear polarization rotation [18]. Spectral filtering
resulting from the birefringence of the cavity components or from the limited gain
bandwidth could also cause multi-soliton [19].

As shown in Fig. 11.1b, the laser cavity is a dissipative system, and the generation
of multi-soliton is determined by the cavity structure and parameters [24], including
the dispersion, nonlinearity (e.g., the optical Kerr and Raman effects in the fibers, the
nonlinear loss of SA and the nonlinear gain of active fiber), gain, and loss (including
the loss induced by optical filters). The final output multi-soliton is a balanced state
mediated by various interactions among the solitons [24], including short-range
(order of pulse duration) interactions and long-range (much larger than pulse dura-
tion) interactions. The former could result from the fiber nonlinearity (e.g., cross-
phase modulation, Raman scattering) [25], time-dependent loss of SA [24], and the
latter could be mediated by continuous-wave (e.g., dispersive wave) [26],
photoacoustic effect [27], dynamics of the gain medium [3].
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There are numerous parameters and interactions in the fiber cavity, leading to the
rich dissipative soliton dynamics. Depending on the spatial distributions of multi-
solitons in the cavity, we can roughly classify the multi-soliton into soliton molecule,
pulse bunching, and harmonic mode-locking [28], as shown in Fig. 11.1d. In the
case of soliton molecules (also termed as bound state of solitons), the distance of
multi-soliton is usually small and comparable to the pulse duration so that the short-
range interaction among them can be important [10]. For the state with longer
distance among the solitons [29], we call it as pulse bunching. Especially, if all the
pulses within a single round-trip are equally separated, it is called harmonic mode-
locking and the pulse repetition rate is multiple of the fundamental repetition rate
[30]. For the latter two states, the long-range interactions among the pulses dominate
the formation of the multi-soliton complex.

An interesting phenomenon usually observed in these multi-soliton states is the
quantization of the output parameters. For instance, the energies of the multiple
pulses are identical [17–19, 29]. Another interesting phenomenon of multi-soliton is
that the final output states of a fixed cavity may be different when shutting down and
then turning on the laser again, since the steady state of multi-soliton depends on the
initial state of the laser [20, 24]. This also suggests that there may be several
attractors in a mode-locked fiber laser [20], as shown in Fig. 11.1c. Depending on
the initial condition, the final attractors, as well as the evolution paths, can be
different. Aside from the steady attractors, there are attractors with periodically
vitiation, or even unstable attractor, and the corresponding multi-soliton could
periodically evolve (e.g., soliton rain [31]) or be unstable (noise-like pulses/rouge
wave), as shown in Fig. 11.1d. In mode-locked lasers, pulses with different wave-
length/polarization/propagation directions, can exist in a single cavity simulta-
neously [32–34]. The propagation velocity of these pulse trains could be different
due to different group velocity [34, 35], or they are locked by internal interactions
and propagate with the same velocity [36, 37]. We will discuss these phenomena in
details in the following.

11.2.1.1 Soliton Molecule

Soliton molecule is a common multi-soliton phenomenon in mode-locked fiber
lasers, exhibiting strong short-range interaction and specific phase relation among
the sub-pulses (a sub-pulse is an individual soliton within a soliton molecule). In
1991, soliton molecule was theoretically predicted to exist in nonlinear systems
described by Schrödinger-Ginzburg-Landau equation [38]. In 2001, soliton mole-
cule was experimentally observed in a passively mode-locked fiber laser [39]. Since
then the soliton molecule has been extensively investigated, which could refer to the
review papers [24, 40]. Soliton molecule has been observed in cavities with different
dispersion distribution, including anomalous dispersion regime, normal dispersion
regime, and nearly zero net-cavity dispersion regime, with different operation
wavelength including 1, 1.5 and 2 μm, with different laser types including traditional
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soliton, stretched-pulse, all-normal-dispersion, self-similar fiber lasers, and with
different mode-locking techniques including various real SAs and effective SAs
[24]. These results show that soliton molecule is an intrinsic state in mode-locked
fiber lasers.
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Sub-pulses usually have identical pulse energies, and the phase difference and
temporal separation between the sub-pulses within the soliton molecule are quan-
tized [24, 41–45]. For example, the phase difference is usually equal to multiple π/2
for typical solitons [24, 45–47]. However, the phase relationship may change when
considering other perturbations to the soliton. For example, when the net group
velocity dispersion of the cavity is near zero and the third-order dispersion results in
asymmetric Kelly sidebands, the phase difference of the sub-pulses could differ from
a multiple of π/2 [24, 26]. The Kelly sidebands also leads to quantized separations
between the sub-pulses [44, 45]. Other types of soliton molecules like vibrating
soliton pair will have time-varying pulse separation, phase difference [48–50];
soliton molecule with flipping phase also exists [51].

Moreover, the number of sub-pulses in soliton molecule could be two or more
[43], and soliton molecular complex composed of several soliton-pair molecules has
also been observed [43, 52]. Recently, vortex soliton molecule was generated by use
of a mode selective coupler [53]. The relative timing jitter and phase jitter between
the sub-pulses of soliton molecule have been measured [54, 55]. Since the pulses in
soliton molecule are deformable, a theoretical study revealed the dynamics of
distorted and undistorted soliton molecules [56]. Sub-pulses are usually closely
spaced in a soliton molecule, but widely spaced soliton molecule with separation
( 60 ps) up to 100 times of pulse duration has also been reported [57].

11.2.1.2 Pulse Bunching and Harmonic Mode-Locking

Pulse bunching and harmonic mode-locking are states with multi-soliton well
separated; hence, the short-range interaction can be negligible in these states. The
long-range interaction (see the beginning of Sect. 11.2.1) determines the multi-
soliton state and usually results in an identical energy and relative separation for
pulses. Several mechanisms of harmonic mode-locking have been proposed, includ-
ing the photoacoustic effect [27], gain depletion and recovery [3]. It was pointed
that, for different cavities, the interaction of harmonic mode-locking maybe different
[58]. Recently, harmonic mode-locking in fiber lasers with novel SAs were inves-
tigated. For instance, harmonic mode-locking with pulse repetition rate up to several
giga-hertz using topological insulator-based SA has been reported [59, 60]. Associ-
ated with the dissipative Faraday instability, harmonic mode-locking (with repetition
rate up to �100 GHz) in thulium-doped Mamyshev fiber lasers was numerically
predicted [61].
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11.2.1.3 Other States

Aside from the multi-soliton states mentioned above, there are numerous other
multi-soliton patterns in mode-locked fiber lasers. Herein some examples are listed,
and part of them are illustrated in Fig. 11.1d. For example, soliton rains have been
observed in both anomalous and normal dispersion regimes [31, 62, 63]. In this state,
multi-soliton includes main pulse (condensed phase) and drifting solitons, which
will continuously move towards the main pulse. In addition, noise-like mode-
locking comprising lots of incoherent sub-pulses [64–66] can also exists in mode-
locked fiber lasers, and rogue wave was found to originate from the state of noise-
like mode-locking [67]. Mixed states with multi-soliton were also observed, e.g.,
harmonic mode-locking of soliton molecule [68], bidirectional operation of bound
solitons [69], asynchronized dual-wavelength mode-locking with harmonic mode-
locking [34].

A special and interesting multi-soliton state is that pulse trains with different
repetition rates exist in a single cavity simultaneously. A bidirectional mode-locked
fiber laser without intracavity isolator was proposed, and counter-propagating pulse
trains with different repetition rates were achieved due to the asymmetry of the two
directions in the cavity [70]. Birefringence induced asynchronous pulse trains with
different polarization states were also proposed. Pulse trains with orthogonal polar-
izations was achieved in a unidirectional fiber laser, where the repetition rate
difference is induced by a segment of polarization-maintaining fiber [71]. In fiber
lasers, the group velocities of pulses at different wavelength are different due to the
cavity dispersion, thus the pulse trains can be asynchronous. By adjustment of
intracavity loss and controlling the gain peaks, a dual-wavelength mode-locked
fiber laser was demonstrated [33]. Based on a Sagnac loop filter, an all-polarization-
maintaining dual-wavelength mode-locked fiber laser was demonstrated [72]. This
state of multiple pulse train with different repetition rates can be used as a promising
dual-comb source, without complex frequency stabilization systems [35, 73,
74]. Sharing the same cavity, the two pulses are inherently coherent which preserves
the repetition rate difference between them passively.

11.2.2 Rapid Measurements of Multi-soliton Dynamics
in Mode-Locked Fiber Lasers

The pulses in a mode-locked fiber laser usually has a sub-picosecond duration,
which are too short for direct photodetection. In recent years, with the emerging
techniques such as DFT (also called as time-stretch method) [7], and time lens [75–
77], the fast evolution and internal motions of the pulses could be observed in real
time. For the DFT technique, the output pulse from mode-locked lasers propagates
through an optical element (e.g., a spool of fiber of tens kilometers long) with very
large accumulated dispersion. Neglecting the nonlinearity, higher-order dispersion



of the dispersive element, the pulse output from the element will be significantly
broadened (e.g., the duration in the order of nanosecond). Thus, the temporal details
could be detected by fast photodetector and oscilloscope. This propagation process
could be analogue with the Fourier transform, and the temporal profile of the
broadened pulse reflects the single-shot spectrum of the pulse. The formation and
dynamics of multi-soliton, including the internal motion among the sub-pulses, have
been revealed in recent years using this technique.
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The internal dynamics of various soliton molecule, including vibrating soliton
pairs, have been experimentally observed by the DFT technique [78, 79]. The build-
up processes of soliton molecules in different laser systems through diverse soliton
inter-actions were also reported [80–82]. Molecular complex with two soliton
molecules has been real-time observed and the difference between intra- and inter-
molecular bonds was discussed [52]. The DFT technique has also been applied to the
2 μm band to resolve the transient soliton molecule dynamics in a thulium-doped
fiber laser [83]. Dynamics of soliton molecules in the normal-dispersion regime was
investigated, and a periodical evolutions of the sub-pulses in a soliton molecule was
observed [84]. The dynamics of breathing soliton molecules and breathing pulse
bunching were observed [85]. Multi-soliton (including two-molecule complex) in
pulsating regime was reported, and the dissociation dynamics within these solitons
were observed [86]. Shaking soliton molecules was also observed, where multiple
oscillatory motions are jointly involved in the internal dynamics [87]. Full-field
(both amplitude and phase) characterization of the build-up and internal collision of
multi-soliton was achieved by combining DFT and time lens [75]. The detailed
build-up dynamics of harmonic mode-locking was also observed by DFT technique
[58, 88].

DFT technique has also been used to reveal other complicated multi-soliton
dynamics. The transition dynamics between consecutive multi-pulsing states (e.g.,
a two-pulse and a three-pulse states) was recorded [89]. Asynchronous build-up of
multi-soliton in an all-polarization-maintaining fiber laser was observed [90]. The
dynamics of various assembling forms of multi-soliton, including the combination of
soliton singlets and molecules, were traced and characterized [91–93]. Soliton
explosion is a striking nonlinear phenomenon, where the pulse intermittently
explodes but return to its original state [94]. The entire process of soliton interaction
or collision induced soliton explosion was observed [95, 96]. Generation of optical
rogue waves during random multi-soliton build-up was revealed [97].

The decaying evolution dynamics of multi-soliton was also observed [98]. It has
been discovered that, during the birth of stable single pulse from noise or other state,
multiple pulses will be generated then decay, and eventually only one pulse survives
[99, 100]. For the cavity hosting two asynchronous pulse trains simultaneously, the
build-up dynamics and the intracavity collision of the asynchronous pulses were also
been investigated [101, 102]. These new observed real time dynamics could improve
our understanding of multi-soliton complex to another level.
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11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers

The multi-soliton complex discussed above is all investigated in fiber lasers com-
prising a single transverse (spatial) mode. There is great significance in studying
nonlinear spatiotemporal dynamics in ultrafast lasers. And spatiotemporal mode-
locking (or multimode mode-locking), in which both the longitudinal and transverse
modes were locked simultaneously, was proposed and demonstrated in lasers
com-posed of multimode fibers recently [11]. By use of graded-index multimode
fibers with small modal dispersion, the walk-off of different transverse modes can be
balanced by intracavity spatial filter. The mechanism of spatiotemporal mode-
locking was analyzed, and several distinct forms of spatiotemporal dynamics
which have no analogues in single-mode lasers were predicted [103].

Multi-soliton states were also observed in spatiotemporal mode-locked (STML)
lasers. In a typical STML fiber laser, double-cladding gain fiber (with 10 μm core,
core and cladding NA of 0.08 and > 0.48, respectively) and passive multimode fiber
with 50 μm core were used to build the laser cavity [104]. Nonlinear polarization
rotation was used for mode-locking [13]. The injection of signal light into gain fiber
with smaller core size would cause loss of some transverse modes, which serves as
aspatial filter. In conjunction with an intracavity spectral filter, spatiotemporal mode-
locking can be initialized. Soliton molecule [104], harmonic mode-locking and pulse
bunching [28] were reported, some of which are shown in Fig. 11.2. Figure 11.2a
gives the results about three states of soliton molecule with different separations,
which can be controlled by tuning intracavity waveplates used for nonlinear polar-
ization rotation. The distributions of transverse modes for these soliton molecules are
different, with the beam profiles shown in the inset of Fig. 11.2a. Figures 11.2b–d
give typical outputs of pulse bunching and harmonic mode-locking in a STML laser,
respectively. For the harmonic mode-locking state, the interval of output pulses is
8.2 ns, half of the cavity round-trip time. In order to investigate the spatial charac-
teristics of this state, the output is spatially-sampled at different positions, illustrated
by the black circles in the inset of Fig. 11.2d. The average powers sampled at
different positions are presented in Fig. 11.2d, reflecting the intensity distribution
of the beam. Moreover, the pulse intervals of the pulse trains sampled by the moving
sampler stays the same as shown in Fig. 11.2d. The results of spatial sampling
measurement show that the multiple pulses are multimodal. Furthermore, various
dual-soliton states, including the pulsating dual-soliton, were observed in STML
fiber lasers [105]. Single- and multi-soliton states with switchable central wave-
lengths were observed in an all-fiber STML laser [106]. Replacing the quasi-single-
mode active fiber with multimode step-index active fiber, it was found that spatio-
temporal mode-locking could also be supported in these lasers [107], where multi-
soliton states were observed recently. The investigations of nonlinear spatiotemporal
dynamics in STML multimode fiber lasers are still in the early age, and we expect
that more nonlinear dynamics of multi-soliton will be revealed.



11 Multi-soliton Complex in Nonlinear Cavities 233

Fig. 11.2 Multi-soliton states observed in spatiotemporal mode-locked multimode fiber lasers. (a)
Soliton pairs with different separations. The measured autocorrelation traces are given. Inset of (a):
beam profiles corresponding to soliton pair states depicted with blue, red and black lines, respec-
tively. (b) Pulse bunching state. Pulse train measured by oscilloscope is given. Inset of (b): the
corresponding beam profile. (c–d) Harmonic mode-locking state. (c) Pulse train measured by
oscilloscope; (d) Pulse intensities and pulse intervals of the pulse trains sampled at different
position. Inset of (d): beam profile of the whole output, with black circles represented the spatial
sampling positions (one sampler fixed at the center, and another sampler moving along the direction
of arrow). Panel (a) is adapted from ref. [104], OSA; Panels (b–d) are adapted from ref. [28], OSA

11.3 Mutli-soliton Complex in Microcavities

Temporal soliton generation in coherently pumped Kerr resonators has provided a
new way to obtain dissipative optical solitons in cavities [9, 108–110]. These
solitons are a train of pulses sitting atop a coherent background that provides
parametric gain via the Kerr effect. Such coherently pumped temporal solitons
were first investigated and demonstrated in passive fiber cavities (unlike fiber lasers,
there is no active gain fiber in the cavity) [108, 111]. Then its demonstration in
microcavities have fueled the progress of microcavity based frequency combs
(microcombs) [9]. Microcombs are an array of equidistantly spaced optical frequen-
cies generated in microcavities that can be linked to microwave frequencies; each
frequency can be written as νN¼ Nfr + f0 where fr is repetition rate of the solitons and
f0 is the carrier-envelope offset frequency [9, 112]. When the pumping field is a
continuous wave laser, the soliton number generated in a coherently pumped cavity
is usually random and larger than one [109]. This feature makes coherently pumped
cavities a new platform to study multi-soliton complex. Since there is no active gain



medium in the cavity, soliton interaction via gain saturation dynamics will not occur
incoherently pumped cavities. However, perturbations such as spatial-mode-inter-
action is more prominent in microcavities, which adds new freedoms to control the
soliton interaction dynamics in microcavities. In this section, we discuss the multi-
soliton complex in coherently pumped Kerr resonators and their applications to
frequency microcombs.
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11.3.1 Basic Principle of Coherently Pumped Solitons

The coherently pumped cavity solitons are governed by the Lugiato-Lefever equa-
tion (LLE) [113–115]. The equation can be written as
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where A is the envelope of the intracavity field, T is the slow time, t is the fast
co-moving time frame for the solitons, β2 is the group velocity dispersion, γ is the
nonlinear coefficient of the cavity, L is the cavity length and TR is the round-trip
time, δω is the frequency detuning between pump and cavity resonance, Pin is the
pump power, κ and κe are the total and coupling loss rate, respectively. This equation
was firstly introduced to model spatial cavity solitons [113, 116–118] and it works
equally well for temporal cavity solitons. This equation includes the basic soliton
dynamics impacted by the group velocity dispersion and the Kerr nonlinearity as
well as gain and loss. As a dissipative soliton, stable propagation of the soliton in a
cavity requires the double balance between dispersion and nonlinearity as well as
gain and loss. For the requirement of dispersion and nonlinearity balance, the soliton
pulse will have a sech-like shape and peak power and duration needs to satisfy the
following relationship, γPs ¼ β2j j=τ2s where Ps is the peak power of the soliton and
τs is the pulse-width of the soliton [15]. For temporal cavity solitons, the coherent
pumping nature results in the following relationship between Ps and δω [109, 111,
119, 120],

γPsL � 2δωTR ð11:2Þ

Thus, the properties of a dissipative soliton in a coherently pumped cavity can be
accurately controlled by the pump-resonator frequency detuning δω.

Equation 11.1 can be used to simulate the intracavity soliton dynamics in
coherently pumped systems using the split-Fourier algorithm [15]. And it has been
revealed that the intracavity field can operate at different regimes depending on δω/κ
[109, 121–123]. We show a typical intracavity dynamics numerically simulated
using the LLE in Fig. 11.3. The simulation starts from noise, and intracavity



power increases when scanning the pump-resonance detuning δω from blue-detuned
to red-detuned. With the increase of the intracavity power, stable modulation
instability [15] is initiated (regime I). When further tuning the laser to the red side,
the intracavity field becomes chaotic (regime II). Then there is a drop of the
intracavity power and pulses emerges from the chaotic state. Pulses in this state
are unstable and exhibit periodic change of the duration and peak power, which are
referred to as breather solitons (regime III) [124]. Stable solitons can be generated
when further increasing δω (regime IV). The simulated soliton stream comprises
6 solitons in one round-trip as shown in Fig. 11.3a. Solitons only exists in a limited
range of detuning and will annihilate when the detuning is too large (regime V).
From Fig. 11.3, we can see that the detuning δω usually needs to be much larger than
the cavity linewidth κ to obtain a well developed soliton. Furthermore, the simulated
intracavity dynamics for microcavity solitons have also been experimentally mea-
sured [125]. Equation 11.1 can also be easily extended to include the effects of high-
order dispersion, stimulated Raman scattering, Kerr shock [126], which can be
critical for modeling ultrashort solitons.
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Fig. 11.3 Intracavity soliton dynamics when scanning the pump-resonator frequency detuning
simulated using the LLE. (a) Intracavity field dynamics when scanning δω from blue-detuned to
red-detuned. Multiple solitons are generated at a larger detuning. (b) Change of the intracavity
power when δω is scanned. The operation regimes of the microcomb generation can be categorized
into 5 regimes, I stable modulation instability, II chaotic state, III breather soliton, IV stable soliton,
V out of resonance
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11.3.2 Multi-soliton States and Their Interactions
in Microcavities

Since the pumping background is uniform, usually multiple solitons are supported
(see also Fig. 11.3). Typically, the solitons generated in coherently pumped macro-
scopic fiber cavities hosts many solitons, which can be written from external triggers
and used as optical buffer [108]. Since the temporal solitons in fiber cavities are
usually widely spaced, their interaction is usually weak when there is no resonant
emission in the system. However, these solitons can also interact weakly via the
acoustic effects in the fibers [2], similar to solitons in mode-locked fiber lasers.
When moving from fiber cavities to microcavities whose round-trip time is usually
only hundreds picosecond to picoseconds, the soliton separation between the soliton
decreases substantially. The multi-soliton state can be interact stronger and exhibit
new phenomena, especially when considering dispersive wave emission in
microcavities [127, 128].

11.3.2.1 Dispersive Wave Emission in Microcavities

Dispersive wave emission (also known as Cherenkov radiation) was first investi-
gated for ultrashort pulses propagation under the perturbation of third-order disper-
sion in optical fibers [127, 128]. When the phase-matching is satisfied (e.g., β2ω

2/
2 + β3ω

3/6 � 0), powers around the corresponding frequency band will be enhanced
and known as dispersive wave emission (see the green line in Fig. 11.4a). For
microcavity solitons, the emission was first observed in soliton generation in silicon
nitride cavities [129]. This high-order dispersion (not limited to third order disper-
sion) enabled dispersive wave emission has been used to extend the microcomb
bandwidth to octave spanning that can be used self-referencing [112, 130, 131]. For
multi-spatial-mode microcavities, another type of dispersive wave emission can arise
from spatial mode-interaction [132–136]. Spatial mode-interaction can modify the
local dispersion and shift the resonances of two interacting mode families [132, 133]
(see the blue line in Fig. 11.4a). This local dispersion change can lead to enhance-
ment of the comb line powers which can be interpreted as dispersive wave emission
[134], see Fig. 11.4b for an example. Such an emission is used to be thought to be
detrimental for soliton generation in microcavities [132]. However, it also facilitates
interaction of the multi-soliton and the emergence of multi-soliton complex.

If the pumping background is homogeneous, multiple solitons will be randomly
spaced in the microcavity. In the presence of dispersive waves, the background is no
longer uniform, since the emission manifests as an oscillating tails for microcavity
solitons (see Fig. 11.4c). The nonuniform background can act as a refractive index
trapping potential that traps the solitons, a phenomenon known as soliton trapping
[137]. It has been shown theoretically and experimentally (first in fiber cavities)
[4, 138] that resonant emissions can stabilize the relative spacing of coherently



pumped cavity solitons (similar to the quantized spacing in soliton molecules in
mode-locked lasers [44, 45]). For example, if there is a dispersive wave emission at
the frequency of νdw from the pump, the solitons will be spaced by m/|νdw| where
m is an integer number. Therefore, multi-soliton states in microcavities tend to have
a regular spacing in microcavities. Moreover, unlike dispersive wave induced by
high-order dispersion or Kelly sidebands in mode-locked fiber lasers, the spatial
mode-interaction induced dispersive wave emission may only include a small
number of cavity modes. The oscillating tail and the refractive potential can be
sine-like and not decaying (see Figs. 11.4a, b). Thus, dispersive wave mediated
interaction can last from a long range temporal separation.
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Fig. 11.4 Dispersive wave emission in microcavities. (a) An illustration of group delay dispersion
and dispersive wave emission enabled by mode-interaction and high-order dispersion. (b) An
example of the experimentally measured and numerically simulated optical spectrum of a soliton
microcomb comprising dispersive wave emission. (c) The temporal waveform of the simulated
soliton which has an oscillating tail from the dispersive wave emission. Panels (b), (c) are adapted
from ref. [136], OSA

The soliton interaction and regular spacing can also provide a passive mechanism
to induce deterministic single soliton generation in microcavities [136]. Due to the
regular spacing, dispersive wave power can be enhanced when the soliton number
increases. The optical spectrum of a multi-soliton complex can be written as,

Sn ωð Þ ¼ F
X j¼n

j¼1
A1 τ � τ j

� �n o
¼ S1 ωð Þeiωτ1

X j¼n

j¼1
eiω τ j�τ1ð Þ ð11:3Þ

Fwhere denotes Fourier transform, ω is the frequency relative to the pump, A1 is the
envelope of a single soliton with S1 being its spectrum, and τj is the location for the
j th soliton. In deriving Eq. 11.3, we use the property that multiple solitons have the



same phase because they share a same phase offset with respect to the pump
[136]. Since the solitons are spaced by m/|νdw|, the power of the dispersive wave
will be Sn(νdw) ¼ n2S1(νdw) for a soliton stream consisting n solitons in the cavity
(the actual dispersive wave power can be lower than this considering the spectral
recoiling effect [128]).Since dispersive wave emission can be considered as a
nonlinear loss for a soliton [128], n-soliton-state will experience a larger nonlinear
loss than a single-soliton state. Therefore, to sustain the multi-solitons with a strong
dispersive wave emission, a higher pump power is needed. It has been shown
theoretically that dispersive wave emission can set an upper limit soliton number
for a given pump power [136]. When the upper limit number is 1, deterministic
single solitons can be possible via the interaction between the solitons via the
dispersive wave emission. The smooth spectrum for a single-soliton state can be
desired for many applications.
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11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities

As the simplest multi-soliton state, two-soliton state or soliton molecules widely
exist in microcavities. Reliable generation of the two-soliton state can be achieved
by controlling the comb power via feedback [139] or backward tuning of the pump
(from low frequency to high frequency) after solitons with a larger number is
generated [140]. This two-soliton state is stabilized by dispersive waves and can
also be compared to soliton molecules similar to mode-locked lasers. The relative
separation between the two solitons can only be some discrete values as discussed
above. Such two-soliton microcombs have also been used for microwave filtering
[141]. The microwave frequency passband can be tuned by controlling the relative
separation between the two solitons [141].

Other soliton number can also be possible. Indeed, a large soliton number can be
useful to mitigate the thermal instability for soliton generation [140, 142]. Moreover,
multi-soliton states can be a way to increase to increase the output comb power and
the pump-to-comb conversion efficiency [143]. However, it should be noted that the
multi-soliton states will result in a structured microcomb spectrum, and some lines
may be quite weak (see Eq. 11.3). Moreover, the structure is not deterministic but
depends on the relative separation of the solitons which is randomly determined
(despite being discrete) when the solitons are triggered. Hence, it can be difficult to
reproduce the spectrum. These features can make multi-soliton state undesirable for
some applications.

A special case of the regular spacing is that multiple solitons in a microcavity can
form the soliton crystal state [144–148] (see Fig. 11.5). A soliton crystal state in a
microcavity comprises multiple solitons that are equidistantly spaced (Fig. 11.5a).
Dispersive waves have been known to be responsible for this regular spacing
[145]. The soliton crystal state can have some defects (with some solitons missing
from the crystal); for example there can be X solitons spaced by TR/(X + X0) in the
cavity (X0 is the number of defects or missing solitons) [145, 146] (Fig. 11.5c). In the



frequency domain, the comb lines will be spaced by a free-spectral-range (FSR) of
the cavity due to the defects. However, comb lines spaced by X� FSR from the pump
will be much stronger than other lines. Perfect soliton crystals without defects can
also be formed that is a state with X solitons spaced by TR/X in the cavity
[144, 147]. The corresponding microcomb has comb lines spaced by X� FSR of
the cavity and there are no other lines in the spectrum. It has also been revealed that
there is a threshold pump power below which perfect soliton crystal can be generated
[144]. Such perfect soliton crystal can be used to generate soliton streams with
ultrahigh repetition rates (more than THz) from microcavities. The soliton crystal
can be used for microwave-to-THz-wave links. Soliton crystal microcombs have
also been used for microwave photonics enabling application including (but not
limited to) RF channelizer [148] and Hilbert transformer [149]. Furthermore, soliton
crystals have also been demonstrated in a silicon nitride cavity around 780 nm
[150]. Also, the perfect soliton crystal generation dynamics is deterministic without
the chaotic regime [144]. This soliton generation route was also theoretically
investigated [151]. Similar to soliton crystals, cnoidal waves or Turing rolls
consisting of multiple equidistantly spaced pulses can also be generated in
microcavities [152].
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Fig. 11.5 Soliton crystals in microcavities. (a) When pumping a microcavity with a single
frequency laser, X-soliton equidistantly spaced can be generated in the microcavity and a comb
with a large line spacing of X-FSR can be obtained. (b) Picture of the microcavites and the generated
perfect soliton crystal spectra. (c) Optical spectrum and temporal waveform of a soliton crystal with
one defect (one missing soliton). Due to the defect, the spectrum has a line spacing of a FSR. Panels
(a), (b) are adapted from ref. [144], NPG; panel (c) is adapted from ref. [145], NPG



240 C. Bao and X. Xiao

11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes

The multi-soliton states in the above section only corresponds to one microcomb in
the frequency domain. In other words, the solitons cannot be controlled indepen-
dently. In addition to pumping the microcavity by a single laser, multi-soliton can
also be generated using advanced pumping schemes (see Fig. 11.6). For example,
when counter-pumping a cavity in two directions, counter-propagating solitons can
be generated from the cavity [6, 153]. The counter-pumps can be derived by splitting
a single pumps and using two acoustic-optical modulators (AOMs) to control their
relative frequencies [6]. Therefore, the pump conditions in two directions can be
controlled independently. As a result, the offset frequencies and the repetition rates
of the soliton microcombs can be controlled to be different, i.e., two combs can be
generated from a single cavity. Multi-soliton generated from a single cavity can
enjoy the common noise suppression. Hence, such comb sources can be useful for
applications like dual-comb spectroscopy [73], as the counter-propagating pulses in
mode-locked lasers [5, 70] introduced in the above section.

Two counter-propagating solitons generated in this way can interact via the
Rayleigh backscattering of the cavity. When the two counter-pumps are frequency
detuned by ΔνP (e.g., several MHz for silica microcavities) and the two soliton
streams have a repetition rate difference of Δfr, there can be a pair of lines in two
directions whose comb line number with respect to the pump is M that are close in
comb frequency or ΔνP � MΔfr ~0. The comb line pair can be locked via backscat-
tering and injection locking [6]. This interaction can stabilize the repetition rate
difference of two counter-propagating soliton streamsΔfr¼ΔνP/M. In this way, two
mutually coherent soliton microcombs can be obtained (two line pairs are correlated,
i.e., the pump pair and the injection locked pair). Indeed, counter-propagating soliton
microcombs in this configuration have been used for range measurements [155] and
Vernier spectrometer [156].

Fig. 11.6 Generation of solitons using multiple pumps. (a) Picture of a MgF2 microcavity. (b)
Simulated intensity profile of different spatial modes. (c) Different pumping schemes.
Figure adapted from ref. [154], NPG
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When the two pumps are only slightly detuned (e.g., less than hundreds of kHz
for silica microcavities), the two counter-propagating soliton will mutually trap each
other via the Kerr-mediated soliton trapping [137]. In a typical trapping case, two
interacting solitons will have an identical group velocity and fixed relative delay.
However, the presence of coherent pumping for microcavities will periodically
modulate the spectral center frequencies of the counter-propagating solitons. There-
fore, the group velocities and their relative position (after coupling out from the
cavity) of the counter-propagating solitons will experience oscillatory modulation in
this case [157]. Note that different from the above interaction that stabilizes Δfr via a
single line, this interaction involves two soliton wavepackets as entities. This
interaction highlights the importance of coherent pumping to microcavity solitons
dynamics.

Multiple solitons can also be generated in a microcavity when pumping different
spatial modes in one direction [154]. In this case, the two pumps can be obtained by
modulating a single laser via single-sideband modulation (the residual seed and the
modulated sideband acts as two pumps). Since different mode families have different
FSRs, the corresponding combs differ in the repetition rate and can also be used for
dual-comb spectroscopy. In this scheme, up to 3 soliton microcombs
(2 co-propagating and 1 counter-propagating) can be generated from a single
microcavity [154]. Different from pumping multiple spatial modes in one direction,
a two-soliton state can also be generated by pumping one cavity mode with two
slightly frequency detuned pumps (frequency detuning on the cavity linewidth scale)
in one direction [158]. In this case, soliton interaction and trapping can lock their
group velocities to a same value, forming a soliton molecule. Since the pumping
source is different, this type of soliton molecule is referred to as heteronuclear soliton
molecules [158]. Different from the soliton molecules formed by dispersive waves,
the hetronuclear soliton molecule is usually closely separated (a separation compa-
rable to the soliton duration) and can interact directly via the Kerr cross-phase-
modulation. Two solitons’ peak power and duration can be quite different for a
heteronuclear soliton molecules. Co-propagating pumping two different resonances
of a single mode family by two lasers can also form multi-soliton complex
[159]. When the two pumps are only detuned by a small number of FSR and δω
for two resonances are close, the generated multiple solitons can be locked and form
soliton molecules. When the pumps are far detuned or δω differs significantly, the
generated solitons can have different traveling group velocities and collide in the
cavity [159]. In such a way, it also provides a method to study the soliton collision
dynamics experimentally.

11.4 Summary and Discussions

The multi-soliton complex in nonlinear cavities including mode-locked fiber lasers
and coherently pumped microcavities have been discussed. In addition to dispersion
and the Kerr effect, other effects including active gain, SA dynamics and spectral/



spatial filtering (for lasers) and coherent pumping, spatial mode-interaction (for
microcavities) lead to a wide range of soliton phenomena. These solitons can interact
via short range and long range effects. Both stable multi-soliton complex and
unstable multi-soliton complex exist in these nonlinear resonators. Although the
balance between dispersion and nonlinearity in these two systems is quite similar,
the gain-loss balance in the two systems is quite different (mode-locked pulses are
regenerated via amplification from the gain medium while microcavity solitons are
regenerated via the parametric gain). Such differences also help to reveal the
dissipative nature of multi-soliton states, and results in the different phenomena
discussed above. In addition to multiple soliton travelling with a same group
velocity, multi-soliton with different group velocities can also be generated in a
single cavity. The inherent coherence between these asynchronous pulses makes
them appropriate for dual-comb applications. Advanced pulse characterization tech-
niques are being developed. We anticipate that more powerful tools can be used to
investigate the multi-soliton dynamics in the near future. With these new tools and
observations, we can improve the understanding of the multi-soliton complex and
harness them for applications.

242 C. Bao and X. Xiao

References

1. Gordon, J. Interaction forces among solitons in optical fibers. Opt. Lett. 8, 596–598 (1983).
2. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of

solitons observed over astronomical distances. Nature Photonics 7, 657–663 (2013).
3. Kutz, J. N., Collings, B., Bergman, K. & Knox, W. Stabilized pulse spacing in soliton lasers

due to gain depletion and recovery. IEEE J. Quantum Electron. 34, 1749–1757 (1998).
4. Wang, Y.et al. Universal mechanism for the binding of temporal cavity solitons. Optica

4, 855–863 (2017).
5. Ideguchi, T., Nakamura, T., Kobayashi, Y. & Goda, K. Kerr-lens mode-locked bidirectional

dual-comb ring laser for broadband dual-comb spectroscopy. Optica 3, 748–753 (2016).
6. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in

microresonators. Nature Photonics 11, 560–564 (2017).
7. Goda, K. & Jalali, B. Dispersive fourier transformation for fast continuous single-shot

measurements. Nature Photonics 7, 102–112 (2013).
8. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
9. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in

optical microresonators. Science 361, eaan8083 (2018).
10. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature photonics

6, 84–92 (2012).
11. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in

multimode fiber lasers. Science 358, 94–97 (2017).
12. Zhang, H., Tang, D., Zhao, L., Bao, Q. & Loh, K. Large energy mode locking of an erbium-

doped fiber laser with atomic layer graphene. Optics Express 17, 17630–17635 (2009).
13. Matsas, V., Newson, T., Richardson, D. & Payne, D. N. Self-starting, passively mode-locked

fibre ring soliton laser exploiting non-linear polarisation rotation. Electronics Letters
28, 1391–1393 (1992).

14. Doran, N. & Wood, D. Nonlinear-optical loop mirror. Opt. Lett. 13, 56–58 (1988).
15. Agrawal, G. P. Nonlinear fiber optics (Academid Press, 2006).



11 Multi-soliton Complex in Nonlinear Cavities 243

16. Nelson, L., Jones, D., Tamura, K., Haus, H. & Ippen, E. Ultrashort-pulse fiber ring lasers.
Appl. Phys. B65 (1997).

17. Renninger, W. H., Chong, A. & Wise, F. W. Area theorem and energy quantization for
dissipative optical solitons. J. Opt. Soc. Am. B27, 1978–1982 (2010).

18. Tang, D., Zhao, L.-M., Zhao, B. & Liu, A. Mechanism of multisoliton formation and soliton
energy quantization in passively mode-locked fiber lasers. Phys. Rev. A72, 043816 (2005).

19. Haboucha, A., Komarov, A., Leblond, H., Sanchez, F. & Martel, G. Mechanism of multiple
pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers.
Optical Fiber Technology 14, 262–267 (2008).

20. Komarov, A., Leblond, H. & Sanchez, F. Multistability and hysteresis phenomena in passively
mode-locked fiber lasers. Phys. Rev. A71, 053809 (2005).

21. Weill, R., Vodonos, B., Gordon, A., Gat, O. & Fischer, B. Publisher’s note: Statistical light-
mode dynamics of multipulse passive mode locking [phys. rev. e 76, 031112 (2007)]. Phys.
Rev. E76, 059903 (2007).

22. Liu, X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively
mode-locked fiber laser. Phys. Rev. A81, 023811 (2010).

23. Wise, F. W., Chong, A. & Renninger, W. H. High-energy femtosecond fiber lasers based on
pulse propagation at normal dispersion. Laser & Photonics Reviews 2, 58–73 (2008).

24. Gui, L.et al. Soliton molecules and multisoliton states in ultrafast fibre lasers: Intrinsic
complexes in dissipative systems. Applied Sciences 8, 201 (2018).

25. Olivier, M., Roy, V. & Piché, M. Influence of the raman effect on bound states of dissipative
solitons. Opt. Express 14, 9728–9742 (2006).

26. Olivier, M., Roy, V. & Piché, M. Third-order dispersion and bound states of pulses in a fiber
laser. Opt. Lett. 31, 580–582 (2006).

27. Pilipetskii, A., Golovchenko, E. & Menyuk, C. Acoustic effect in passively mode-locked fiber
ring lasers. Opt. Lett. 20, 907–909 (1995).

28. Ding, Y., Xiao, X., Wang, P. & Yang, C. Multiple-soliton in spatiotemporal mode-locked
multimode fiber lasers. Opt. Express 27, 11435–11446 (2019).

29. Grudinin, A., Richardson, D. & Payne, D. Energy quantisation in figure eight fibre laser.
Electronics Letters 28, 67–68 (1992).

30. Grudinin, A. & Gray, S. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc.Am.
B14, 144–154 (1997).

31. Chouli, S. & Grelu, P. Rains of solitons in a fiber laser. Opt. Express 17, 11776–11781 (2009).
32. Cundiff, S. T.et al. Observation of polarization-locked vector solitons in an optical fiber. Phys.

Rev. Lett. 82, 3988 (1999).
33. Zhao, X.et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based

on a single-wall carbon nanotube mode locker and intracavity loss tuning. Opt. Express
19, 1168–1173 (2011).

34. Huang, X. & Xiao, X. Harmonic mode-locking of asynchronous dual-wavelength pulses in
mode-locked all-fiber lasers. Opt. Comm. 126079 (2020).

35. Zhao, K.et al. Free-running dual-comb fiber laser mode-locked by nonlinear multimode
interference. Opt. Lett. 44, 4323–4326 (2019).

36. Zhang, Z., Xu, Z. & Zhang, L. Tunable and switchable dual-wavelength dissipative soliton
generation in an all-normal-dispersion yb-doped fiber laser with birefringence fiber filter. Opt.
Express 20, 26736–26742 (2012).

37. Tang, D., Zhang, H., Zhao, L. & Wu, X. Observation of high-order polarization-locked vector
solitons in a fiber laser. Phys. Rev. Lett. 101, 153904 (2008).

38. Malomed, B. A. Bound solitons in the nonlinear schrödinger/ginzburg-landau equation. In
Large Scale Structures in Nonlinear Physics, 288–294 (Springer, 1991).

39. Tang, D., Man, W., Tam, H. & Drummond, P. Observation of bound states of solitons in a
passively mode-locked fiber laser. Phys. Rev. A64, 033814 (2001).

40. Li, L.et al. Various soliton molecules in fiber systems. Appl. Opt. 58, 2745–2753 (2019).



244 C. Bao and X. Xiao

41. Komarov, A., Komarov, K. & Sanchez, F. Quantization of binding energy of structural
solitons in passive mode-locked fiber lasers. Phys. Rev. A79, 033807 (2009).

42. Grelu, P., Belhache, F., Gutty, F. & Soto-Crespo, J.-M. Phase-locked soliton pairs in a
stretched-pulse fiber laser. Opt. Lett. 27, 966–968 (2002).

43. Zhao, L., Tang, D., Wu, X., Lei, D. & Wen, S. Bound states of gain-guided solitons in a
passively mode-locked fiber laser. Opt. Lett. 32, 3191–3193 (2007).

44. Wang, P., Xiao, X. & Yang, C. Quantized pulse separations of phase-locked soliton molecules
in a dispersion-managed mode-locked tm fiber laser at 2μm. Opt. Lett. 42, 29–32 (2017).

45. Soto-Crespo, J. M., Akhmediev, N., Grelu, P. & Belhache, F. Quantized separations of phase-
locked soliton pairs in fiber lasers. Opt. Lett. 28, 1757–1759 (2003).

46. Akhmediev, N., Ankiewicz, A. & Soto-Crespo, J. Stable soliton pairs in optical transmission
lines and fiber lasers. J. Opt. Soc. Am. B15, 515–523 (1998).

47. Akhmediev, N., Ankiewicz, A. & Soto-Crespo, J. Multisoliton solutions of the complex
ginzburg-landau equation. Phys. Rev. Lett. 79, 4047 (1997).

48. Grapinet, M. & Grelu, P. Vibrating soliton pairs in a mode-locked laser cavity. Opt. Lett.
31, 2115–2117 (2006).

49. Zaviyalov, A., Iliew, R., Egorov, O. & Lederer, F. Multi-soliton complexes in mode-locked
fiber lasers. Appl. Phys. B104, 513 (2011).

50. Soto-Crespo, J. M., Grelu, P., Akhmediev, N. & Devine, N. Soliton complexes in dissipative
systems: Vibrating, shaking, and mixed soliton pairs. Phys. Rev. E75, 016613 (2007).

51. Zavyalov, A., Iliew, R., Egorov, O. & Lederer, F. Dissipative soliton molecules with inde-
pendently evolving or flipping phases in mode-locked fiber lasers. Phys. Rev. A80, 043829
(2009).

52. Wang, Z., Nithyanandan, K., Coillet, A., Tchofo-Dinda, P. & Grelu, P. Optical soliton
molecular complexes in a passively mode-locked fibre laser. Nature communications
10, 1–11 (2019).

53. Wang, Y.-E.et al. Vortex soliton molecule in a fiber laser. Opt. Express 28, 9666–9676 (2020).
54. Shi, H., Song, Y., Wang, C., Zhao, L. & Hu, M. Observation of subfemtosecond fluctuations

of the pulse separation in a soliton molecule. Opt. Lett. 43, 1623–1626 (2018).
55. Tian, H., Zou, O., Zhao, Y., Song, Y. & Hu, M. Power spectral density analysis of relative

phase jitter in a twin-soliton molecule. In 2019 Conference on Lasers and Electro-Optics
(CLEO), 1–2 (IEEE, 2019).

56. Igbonacho, J.et al. Dynamics of distorted and undistorted soliton molecules in a mode-locked
fiber laser. Phys. Rev. A99, 063824 (2019).

57. Gui, L., Li, X., Xiao, X., Zhu, H. & Yang, C. Widely spaced bound states in a soliton fiber
laser with graphene saturable absorber. IEEE Photonics Technology Letters 25, 1184–1187
(2013).

58. Wang, X., Peng, J., Huang, K., Yan, M. & Zeng, H. Experimental study on buildup dynamics
of a harmonic mode-locking soliton fiber laser. Opt. Express 27, 28808–28815 (2019).

59. Luo, Z.-C.et al. 2 ghz passively harmonic mode-locked fiber laser by a microfiber-based
topological insulator saturable absorber. Opt. Lett. 38, 5212–5215 (2013).

60. Jin, L.et al. 3 ghz passively harmonic mode-locked er-doped fiber laser by evanescent field-
based nano-sheets topological insulator. Opt. Express 26, 31244–31252 (2018).

61. Wang, P., Yao, S., Grelu, P., Xiao, X. & Yang, C. Pattern formation in 2-μm tm mamyshev
oscillators associated with the dissipative faraday instability. Photonics Research
7, 1287–1295 (2019).

62. Chouli, S. & Grelu, P. Soliton rains in a fiber laser: An experimental study. Phys. Rev.
A81,063829 (2010).

63. Bao, C., Xiao, X. & Yang, C. Soliton rains in a normal dispersion fiber laser with dual-filter.
Opt. Lett. 38, 1875–1877 (2013).

64. Horowitz, M., Barad, Y. & Silberberg, Y. Noiselike pulses with a broadband spectrum
generated from an erbium-doped fiber laser. Opt. Lett. 22, 799–801 (1997).



11 Multi-soliton Complex in Nonlinear Cavities 245

65. Huang, Y.-Q., Qi, Y.-L., Luo, Z.-C., Luo, A.-P. & Xu, W.-C. Versatile patterns of
multiplerectangular noise-like pulses in a fiber laser. Opt. Express 24, 7356–7363 (2016).

66. Zhou, R., Liu, X., Yu, D., Li, Q. & Fu, H. Versatile multi-soliton patterns of noise-like pulses
in a passively mode-locked fiber laser. Opt. Express 28, 912–923 (2020).

67. Lecaplain, C. & Grelu, P. Rogue waves among noiselike-pulse laser emission: an experimental
investigation. Phys. Rev. A90, 013805 (2014).

68. Wang, Y.et al. Harmonic mode locking of bound-state solitons fiber laser based on mos2
saturable absorber. Opt. Express 23, 205–210 (2015).

69. Li, L., Ruan, Q., Yang, R., Zhao, L. & Luo, Z. Bidirectional operation of 100 fs bound solitons
in an ultra-compact mode-locked fiber laser. Opt. Express 24, 21020–21026 (2016).

70. Kieu, K. & Mansuripur, M. All-fiber bidirectional passively mode-locked ring laser. Opt. Lett.
33, 64–66 (2008).

71. Zhao, X., Li, T., Liu, Y., Li, Q. & Zheng, Z. Polarization-multiplexed, dual-comb all-fiber
mode-locked laser. Photonics Research 6, 853–857 (2018).

72. Li, R.et al. All-polarization-maintaining dual-wavelength mode-locked fiber laser based on
sagnac loop filter. Opt. Express 26, 28302–28311 (2018).

73. Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426
(2016).

74. Zhao, X.et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.
Opt. Express 24, 21833–21845 (2016).

75. Ryczkowski, P.et al. Real-time full-field characterization of transient dissipative soliton
dynamics in a mode-locked laser. Nature Photonics 12, 221–227 (2018).

76. Wei, X.et al. Unveiling multi-scale laser dynamics through time-stretch and time-lens spec-
troscopies. Opt. Express 25, 29098–29120 (2017).

77. Tikan, A., Bielawski, S., Szwaj, C., Randoux, S. & Suret, P. Single-shot measurement of phase
and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography.
Nature Photonics 12, 228–234 (2018).

78. Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry
probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

79. Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P. & Grelu, P. Real-time observation
of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett.
118, 243901 (2017).

80. Liu, X., Yao, X. & Cui, Y. Real-time observation of the buildup of soliton molecules. Phys.
Rev. Lett. 121, 023905 (2018).

81. Peng, J. & Zeng, H. Build-up of dissipative optical soliton molecules via diverse soliton
interactions. Laser & Photonics Reviews 12, 1800009 (2018).

82. Lapre, C.et al. Real-time characterization of spectral instabilities in a mode-locked fibre laser
exhibiting soliton-similariton dynamics. Scientific reports 9, 1–12 (2019).

83. Hamdi, S., Coillet, A. & Grelu, P. Real-time characterization of optical soliton molecule
dynamics in an ultrafast thulium fiber laser. Opt. Lett. 43, 4965–4968 (2018).

84. Peng, J. & Zeng, H. Dynamics of soliton molecules in a normal-dispersion fiber laser. Opt.
Lett. 44, 2899–2902 (2019).

85. Peng, J., Boscolo, S., Zhao, Z. & Zeng, H. Breathing dissipative solitons in mode-locked fiber
lasers. Science advances 5, eaax1110 (2019).

86. Wang, X.et al. Real-time observation of dissociation dynamics within a pulsating soliton
molecule. Opt. Express 27, 28214–28222 (2019).

87. Xia, R.et al. Experimental observation of shaking soliton molecules in a dispersion-managed
fiber laser. Opt. Lett. 45, 1551–1554 (2020).

88. Liu, X. & Pang, M. Revealing the buildup dynamics of harmonic mode-locking states in
ultrafast lasers. Laser & Photonics Reviews 13, 1800333 (2019).

89. Zeng, J. & Sander, M. Y. Real-time transition dynamics between multi-pulsing states in a
mode-locked fiber laser. Opt. Lett. 45, 5–8 (2020).



246 C. Bao and X. Xiao

90. Liu, X., Han, X. & Zhang, Y. Observation of multi-soliton asynchronous buildup dynamics in
all-pm mode-locked lasers. arXiv preprint arXiv: 1905.02333 (2019).

91. Luo, Y.et al. Real-time access to the coexistence of soliton singlets and molecules in an
all-fiber laser. Opt. Lett. 44, 4263–4266 (2019).

92. Yu, Y.et al. Spectral-temporal dynamics of multipulse mode-locking. Appl. Phys. Lett.
110, 201107 (2017).

93. Lapre, C., Billet, C., Meng, F., Genty, G. & Dudley, J. M. Dispersive fourier transform
characterization of multipulse dissipative soliton complexes in a mode-locked soliton-
similariton laser. OSA Continuum 3, 275–285 (2020).

94. Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Experimental evidence for soliton
explosions. Phys. Rev. Lett. 88, 073903 (2002).

95. Yu, Y., Luo, Z.-C., Kang, J. & Wong, K. K. Mutually ignited soliton explosions in a fiber
laser. Opt. Lett. 43, 4132–4135 (2018).

96. Peng, J. & Zeng, H. Soliton collision induced explosions in a mode-locked fibre laser.
Communications Physics 2, 1–8 (2019).

97. Luo, Z.-C.et al. Optical rogue waves by random dissipative soliton buildup in a fiber laser.
IEEE Photonics Technology Letters 30, 1803–1806 (2018).

98. Wang, G., Chen, G., Li, W., Zeng, C. & Yang, H. Decaying evolution dynamics of double-
pulse mode-locking. Photonics Research 6, 825–829 (2018).

99. Liu, X., Popa, D. & Akhmediev, N. Revealing the transition dynamics from q switching to
mode locking in a soliton laser. Phys. Rev. Lett. 123, 093901 (2019).

100. Pu, G.et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted
real-time spectral analysis. Light: Science & Applications 9, 1–8 (2020).

101. Wei, Y., Li, B., Wei, X., Yu, Y. & Wong, K. K. Ultrafast spectral dynamics of dual-color-
soliton intracavity collision in a mode-locked fiber laser. Appl. Phys. Lett. 112, 081104 (2018).

102. Zhao, K., Gao, C., Xiao, X. & Yang, C. Buildup dynamics of asynchronous vector solitons in a
polarization-multiplexed dual-comb fiber laser. Opt. Lett. 45, 4040–4043 (2020).

103. Wright, L. G.et al. Mechanisms of spatiotemporal mode-locking. Nature Physics 16, 565–570
(2020).

104. Qin, H., Xiao, X., Wang, P. & Yang, C. Observation of soliton molecules in a spatiotemporal
mode-locked multimode fiber laser. Opt. Lett. 43, 1982–1985 (2018).

105. Ding, Y., Xiao, X. & Yang, C. Spatiotemporal dynamics of dual-soliton states in a multimode
fiber laser. InCLEO: QELS_Fundamental Science, JW2A–87 (Optical Society of America,
2019).

106. Wu, H.et al. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal
mode-locked laser. Appl. Phys. Express 13, 022008 (2020).

107. Ding, Y.et al. Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev.
Lett. 126, 093901 (2021).

108. Leo, F.et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical
buffer. Nature Photonics 4, 471 (2010).

109. Herr, T.et al. Temporal solitons in optical microresonators. Nature Photonics 8, 145 (2014).
110. Wang, W., Wang, L. & Zhang, W. Advances in soliton microcomb generation. Advanced

Photonics 2, 034001 (2020).
111. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett.

18, 601–603 (1993).
112. Cundiff, S. T. & Ye, J. Colloquiu Femtosecond optical frequency combs. Rev. Mod. Phys.

75, 325 (2003).
113. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys.

Rev. Lett. 58, 2209 (1987).
114. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr

frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39
(2013).



11 Multi-soliton Complex in Nonlinear Cavities 247

115. Chembo, Y. K. & Menyuk, C. R. Spatiotemporal lugiato-lefever formalism for kerr-comb
generation in whispering-gallery-mode resonators. Phys. Rev. A87, 053852 (2013).

116. Barland, S.et al. Cavity solitons as pixels in semiconductor microcavities. Nature
419, 699–702 (2002).

117. Firth, W. & Scroggie, A. Optical bullet holes: robust controllable localized states of a
nonlinear cavity. Phys. Rev. Lett. 76, 1623 (1996).

118. Ackemann, T., Firth, W. & Oppo, G.-L. Fundamentals and applications of spatial dissipative
solitons in photonic devices. Advances in Atomic, Molecular, and Optical Physics
57, 323–421 (2009).

119. Coen, S. & Erkintalo, M. Universal scaling laws of kerr frequency combs. Opt. Lett.
38, 1790–1792 (2013).

120. Bao, C. & Yang, C. Carrier-envelope phase dynamics of cavity solitons: scaling law and
soliton stability. Phys. Rev. A92, 053831 (2015).

121. Godey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotem-
poral Lugiato-Lefever model for kerr optical frequency combs in the anomalous and normal
dispersion regimes. Phys. Rev. A89, 063814 (2014).

122. Leo, F., Gelens, L., Emplit, P., Haelterman, M. & Coen, S. Dynamics of one-dimensional Kerr
cavity solitons. Opt. Express 21, 9180–9191 (2013).

123. Lamont, M. R., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband
microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

124. Bao, C.et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an
optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

125. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical
microcavities. Nature Communications 9(2018).

126. Bao, C., Zhang, L., Kimerling, L. C., Michel, J. & Yang, C. Soliton breathing induced by
stimulated raman scattering and self-steepening in octave-spanning Kerr frequency comb
generation. Opt. Express 23, 18665–18670 (2015).

127. Wai, P., Menyuk, C. R., Lee, Y. & Chen, H. Nonlinear pulse propagation in the neighborhood
of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464–466 (1986).

128. Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers.
Phys. Rev. A51, 2602 (1995).

129. Brasch, V.et al. Photonic chip–based optical frequency comb using soliton Cherenkov radi-
ation. Science 351, 357–360 (2016).

130. Li, Q.et al. Stably accessing octave-spanning microresonator frequency combs in the soliton
regime. Optica 4, 193–203 (2017).

131. Pfeiffer, M. H.et al. Octave-spanning dissipative kerr soliton frequency combs in si 3 n
4microresonators. Optica 4, 684–691 (2017).

132. Herr, T.et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys.
Rev. Lett. 113, 123901 (2014).

133. Liu, Y.et al. Investigation of mode coupling in normal-dispersion silicon nitride
microresonators for kerr frequency comb generation. Optica 1, 137–144 (2014).

134. Matsko, A. B., Liang, W., Savchenkov, A. A., Eliyahu, D. & Maleki, L. Optical Cherenkov
radiation in overmoded microresonators. Opt. Lett. 41, 2907–2910 (2016).

135. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive
waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

136. Bao, C.et al. Spatial mode-interaction induced single soliton generation in microresonators.
Optica 4, 1011–1015 (2017).

137. Menyuk, C. R. Stability of solitons in birefringent optical fibers. I: equal propagation ampli-
tudes. Opt. Lett. 12, 614–616 (1987).

138. Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D71,
153 (2017).

139. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal
solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).



248 C. Bao and X. Xiao

140. Guo, H.et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in
optical microresonators. Nature Physics 13, 94–102 (2017).

141. Hu, J.et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs.
Nature Communications 11, 4377 (2020).

142. Bao, C.et al. Direct soliton generation in microresonators. Opt. Lett. 42, 2519–2522 (2017).
143. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared

frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).
144. Karpov, M.et al. Dynamics of soliton crystals in optical microresonators. Nature Physics

15, 1071–1077 (2019).
145. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr

resonators. Nature Photonics 11, 671 (2017).
146. Wang, W.et al. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett.

43, 2002–2005 (2018).
147. He, Y., Ling, J., Li, M. & Lin, Q. Perfect soliton crystals on demand. Laser & Photonics

Reviews 14, 1900339 (2020).
148. Xu, X.et al. Photonic rf channelizer based on 49ghz soliton crystal microcombs. TechRxiv.

Preprint (2020).
149. Tan, M.et al. Microwave photonic fractional hilbert transformer with an integrated optical

soliton crystal micro-comb. arXiv preprint arXiv:1910.06282 (2019).
150. Zhao, Y.et al. Visible nonlinear photonics vi a high-order-mode dispersion engineering.

Optica 7, 135–141 (2020).
151. Jaramillo-Villegas, J. A., Xue, X., Wang, P.-H., Leaird, D. E. & Weiner, A. M. Deterministic

single soliton generation and compression in microring resonators avoiding the chaotic region.
Opt. Express 23, 9618–9626 (2015).

152. Qi, Z.et al. Dissipative cnoidal waves (turing rolls) and the soliton limit in microring resona-
tors. Optica 6, 1220–1232 (2019).

153. Joshi, C.et al. Counter-rotating cavity solitons in a silicon nitride microresonator. Opt. Lett.
43, 547–550 (2018).

154. Lucas, E.et al. Spatial multiplexing of soliton microcombs. Nature Photonics 12, 699–705
(2018).

155. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887
(2018).

156. Yang, Q.-F.et al. Vernier spectrometer using counterpropagating soliton microcombs. Science
363, 965–968 (2019).

157. Bao, C.et al. Oscillatory motion of a counterpropagating Kerr soliton dimer. Phys. Rev. A103,
L011501 (2021)

158. Weng, W.et al. Heteronuclear soliton molecules in optical microresonators. Nature Commu-
nications 11, 2402 (2020).

159. Weng, W., Bouchand, R. & Kippenberg, T. J. Formation and collision of multistability-
enabled composite dissipative Kerr solitons. Phys. Rev. X10, 021017 (2020).



Chapter 12
Dissipative Solitons in Microresonators

Cristina Rimoldi, Bennet Fischer, Luigi Di Lauro, Mario Chemnitz,
Alessia Pasquazi, David J. Moss, and Roberto Morandotti

Abstract In this Chapter we will illustrate the state-of-art in the generation of
dissipative solitons in Kerr microresonator-based systems. After a brief introduction
on the origin of this field of research, we will discuss the modeling of these
microcavities using the generalized Lugiato-Lefever equation. Further, we will
discuss the different techniques used for dispersion engineering in these systems.
We will then focus on the description of the frequency combs generated by
microring resonators in the Kerr soliton regime and illustrate different schemes
that have been developed in this context to grant better control of the microcavity
dynamics. Finally, we will review the large number of applications that these objects
have originated in several fields of optics.

Keywords Dissipative solitons · Kerr media · Integrated photonics · Microring
resonators · Comb generation · Soliton combs · Soliton crystals · Quantum combs ·
Radio-frequency microcombs · Soliton control · Self-injection locking · Dispersion
engineering

12.1 Introduction

In the past 10 years, microresonators have revolutionized the field of optics with
several applications in sensing [1–3], spectroscopy [4, 5], communication [6–9],
astronomy [10, 11], and quantum optics [12–20]. These devices, generally featuring
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a high quality (Q) factor, can be realized under many forms, such as micro-toroids
[21], spheres [22, 23], disks [24], rods [25], and integrated ring resonators
[26, 27]. Further, they have been studied in many different materials, such as calcium
[28] and magnesium [29] fluorides (CaF2, MgF2, respectively), lithium niobate
(LiNbO3) [30], aluminum nitride (AIN) [31], tantalum pentoxide (Ta2O5) [32], silica
glass [33], diamond [34], silicon [26, 35], silicon nitride (Si3N4) [36], oxynitrides
(SiOxNx) [37], and high-index glass [38, 39], each offering specific advantages (and
disadvantages) depending on the considered application. While these devices and
materials have since been thoroughly investigated for the generation of frequency
combs [40–42], the first direct demonstration of dissipative solitons in
microresonators only dates back to 2014 [29], building upon the first experimental
observation of Kerr solitons in a fiber cavity [43]. Kerr solitons arise from the mutual
interplay of, on the one hand, dispersion and nonlinearity, and on the other hand,
gain and losses. The resulting broadband frequency combs exhibit a high level of
coherence, which is of fundamental importance for applications in spectroscopy,
communications, and quantum measurements, as illustrated later in this Chapter.
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Frequency combs, generated through cascaded four-wave mixing (FWM) in the
microresonator blue-detuned regime, can exhibit either an aperiodic temporal wave-
form, due to arbitrary and constant phases of the comb lines, or coherent sidebands
with a low repetition rate and reduced bandwidth [28, 44]. In contrast, soliton
frequency comb lines display synchronized phases with higher repetition rates and
bandwidths, thus resulting in an extremely narrow pulsed temporal shape [29, 45,
46]. Differently from solitons generated through mode-locked laser techniques
exploiting incoherent pumping schemes, Kerr soliton frequency combs present the
pump frequency within their spectrum and their generation does not make use of
saturable absorbers for stabilization [47, 48]. The first experimental demonstration of
dissipative Kerr solitons (DKSs) in microresonators [29] was performed in an MgF2
crystal driven by a continuous wave (CW) pump laser. Here, solitons were observed
when the optical system undergoes the transition between the effectively blue- and
red-detuned regimes. In particular, while scanning for decreasing values of pump
frequency, the system first displays primary sidebands in the frequency domain due
to FWM, which are then followed by secondary lines. When the broadband radio-
frequency (RF) signal transitions to a low-noise beatnote, a series of discrete steps in
the transmission is observed and identified as a clear sign of the generation of Kerr
solitons, which were then temporally characterized by the authors through
frequency-resolved gating (i.e. FROGmeasurements). While for the general descrip-
tion of the microresonator system dynamics we refer the reader to [49], in the
following we are going to discuss the details of the most used modeling approaches.
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12.2 Modeling

The generation of dissipative Kerr solitons in microresonators can be described by
means of the Lugiato-Lefever equation [50, 51] (LLE). This model was first devel-
oped for the description of pattern formation in the transverse plane (i.e., the plane
orthogonal to the propagation direction) of a Kerr medium, contained in a high-
finesse cavity [50]. It is derived from Maxwell’s equations considering nonlinear
contributions, under paraxial, slowly varying amplitude, and mean-field approxima-
tions in the low-transmission limit [52, 53].

Years after its original formulation, the model was then adapted towards its
highly successful temporal/longitudinal version [51] by Haelterman et al., where
the diffraction is replaced by the group velocity dispersion term and two independent
temporal variables are introduced, the time t and the retarded time t � z/vg, where vg
represents the group velocity and z is the propagation direction. Such a formulation
describes a field that is uniform in the transverse plane while propagating along the
cavity. A form equivalent to the temporal/longitudinal LLE, with quantities related
to the parameters of a microring resonator (MRR), is the following

∂E
∂t

¼ F � E � iδE þ i Ej j2E � i
β
2
∂2E

∂θ2

where E is the electric field and F is the optical injected field amplitude. The
detuning term δ between the cavity frequency ω0 and the closest input frequency
ωp is normalized to the cavity decay rate and β is proportional to the group velocity
dispersion ∂vg=∂ω

� �
ω¼ω0

,while the time variable t is normalized to the cavity decay

time. The azimuthal angle is defined as θ ¼ z/R, where R is the MRR radius, and z is
the propagation variable [54, 55]. Note that for any solution of the LLE in the above
form with periodic boundary conditions in �π < θ < π, θ will then need to be
substituted by θ � (vg/R)t [52].While most early descriptions of Kerr frequency
comb generation have often employed coupled mode theory (CMT) for the descrip-
tion of FWM in the frequency domain, the LLE, which can also be derived from
CMT [54, 56], was later used to give a picture of the mean field in the temporal
domain [57]. Indeed, although CMT equations offer an easy control of frequency-
dependent absorption and coupling terms, they do not give direct access to the
information in the time domain, which is instead easily obtained through the LLE
[56]. Further, the LLE, which can be easily described as a driven, detuned, and
damped nonlinear Schrödinger equation, allows for the straightforward inclusion of
additional terms for Raman scattering and higher-order dispersion, as we will discuss
in more detail in the following sections. On the other hand, thermo-optic effects,
which can represent a limitation for Kerr combs in MRRs [58], have been success-
fully modeled in some systems through coupled mode equations [59, 60] as well as
using the LLE [29]. For the modeling of resonator dynamics through CMT, we refer
the reader to [40, 61].
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12.2.1 Higher-Order Dispersion

In some experimental cases, solitons with sufficiently short temporal duration
exhibit a spectral bandwidth that extends towards the normal dispersion region.
Such solitons cannot be properly described through the LLE in the above-mentioned
form, which in fact needs to be adjusted (in its temporal version [40, 51]) through the
addition of higher-order dispersion terms of the form [62]

Dn ¼ inþ1 βn
n!

∂nE
∂τn

for n > 2, where βn is the n-th order dispersion coefficient and τ is a time variable,
proportional to the previously mentioned retarded time. These additional terms allow
for the modeling of soliton bandwidth restrictions in realistic cavities as well as
dispersive wave generation [55], where the soliton repels a fraction of its energy into
a radiant mode, an effect that can be interpreted as the optical analog of Cherenkov
radiation. Additionally, higher-order dispersion mediates the interplay between
FWM and dispersive wave formation, in turn giving rise to a spectral recoil, where
the soliton spectral peak shifts from the original pump frequency [62, 63]. Finally,
we would like to point out that higher-order dispersion terms are often accompanied
by a self-steepening effect, as described in [64].

12.2.2 Raman Effect

The Raman effect in microresonators has been demonstrated to be non-negligible in
specific materials, such as Si3N4 and silica [65]. This effect is usually modeled in the
LLE as a fraction of the cubic nonlinearity of the form [66]

f RhR � Ej j2 � f R Ej j2 � f RτR
∂ Ej j2
∂τ

often approximated to first order [65], where fR is the Raman fraction, hR represents
the Raman response function, and τR is the Raman shock time. In microresonators,
the effect of Raman scattering implies the development of a self-frequency shift,
where the soliton peak frequency is redshifted with respect to the CW pump laser
frequency. The compensation of this shift through the spectral recoil generated by
higher-order dispersion has been studied in [65]. Additionally, a new type of soliton,
called Stokes soliton, has been demonstrated in the presence of Raman gain [67]. In
terms of Kerr frequency comb generation, it is important to note that stimulated
Raman scattering can ultimately limit the temporal and spectral width of dissipative
Kerr solitons [68].
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12.3 Dispersion Engineered Cavity Dynamics

One of the key advantages of waveguide-integrated MRRs is the large variety of
wavelength dispersion properties determining the linear propagation characteristics
of the optical modes. In contrast to the unilateral geometries of whispery-gallery
mode and photonic belt resonators [69, 70], the bilateral optical mode confinement in
MRR opens a large variety of possibilities to adjust the dispersion properties of the
circumventing modes. These include (a) adjusting the dimensions of the waveguide
cross-section [71–73] or geometry (e.g. split or “race-track” waveguide) [14, 74], as
well as (b) altering the composition of the waveguide core (see e.g. the recent works
about Kerr combs in LiNO3 [75], SiOxNy [44, 76, 77], Si3N4 [78], Diamond, Si) or
the coating/cladding materials [36, 72]. While a very detailed overview of emerging
materials for integrated microcavities is given in the comprehensive reviews by
Kovach et al. [79] and Kippenberg et al. [47], here we aim to summarize the
essentials of dispersion engineering in waveguide-based MRRs and its advantages
for altering the temporal dynamics of DKSs.

12.3.1 Capabilities of Dispersion Engineering

The key for dispersion engineering in optical waveguides is a careful balance
between material- and mode-specific waveguide dispersion. The choice of appro-
priate core, cladding, and cover layer materials alters the modal dispersion, while
defining the guidance and dispersion constraints given by the individual material
refractive indices. However, the waveguide geometry (i.e., cross-section and dimen-
sions) may significantly change the modal confinement, increase the field overlap to
the surrounding material (i.e. cladding [36] or cover layer [72]), and thus vary the
dispersive properties of the mode. Moreover, the lithographic fabrication of photonic
on-chip waveguides allows for the incorporation of gaps or slot layers, which add
even more free parameters towards tailoring both dispersion and nonlinearity
[80, 81]. In general, an appropriate choice of the waveguide materials, geometry,
and dimension enables a plethora of dispersion landscapes, ranging from flat normal
(i.e. without zero-dispersion) to anomalous dispersion with one, two, or even more
zero-dispersion wavelengths in the vicinity of the pump field [81–83]. Commercially
available numerical finite-element solvers are required to find the eigenmodes of the
Maxwell’s equations in the boundary problem imposed by the rectangular wave-
guide cross-sections of the MRRs. However, limitations in the fabrication processes,
such as material inhomogeneity, stress built-up, and lithographic mask imperfec-
tions, usually limit the range of accessible design parameters. On the positive side,
recent years have seen a considerable improvement in the fabrication processes (e.g.,
hybrid material systems, stress release patterns, mask improvements) [47, 79]
enabling ever more access to novel dispersion regimes.
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12.3.2 Advanced Control of Dissipative Soliton Dynamics

Dispersion engineering allows waveguide-integrated optical MRR to unlock unprec-
edented application capabilities. Transferring operation concepts such as controlled
dispersive wave emission [84–86], tailored higher-order mode coupling [87–89],
and soliton molecule formation [90–93] from nonlinear fibers to MRR has enabled
the observation and advanced control over the dynamics of many different cavity
soliton states in recent years. In the following, we are going to highlight a few of
these advances.

Beyond theoretical modeling, physical limitations in the microcavity design, such
as higher-order dispersion or dispersive nonlinearity, severely impact the formation
of solitons in terms of bandwidth, power, and mode order. Multiple numerical and
experimental studies propose practical approaches in order to optimize Kerr comb
properties. In silicon nitride systems, for example, changes as small as a few hundred
nm in the waveguide dimension can lead to a significant extent of the anomalous
dispersion region causing a fivefold spectral extension of the Kerr comb [94]. The
same study also demonstrated the selection of a suitable pump wavelength as a
practical tool to alter the Kerr comb spectral extent and power after device fabrica-
tion. If pump wavelength tuning remains inaccessible, fine detuning of the free
spectral range (FSR), bandwidth, and number of DKS through controlled heating
of the MRR can offer an attractive alternative [95]. Similar advantages at faster
tuning rates might be offered in the near future by second-order nonlinear materials
such as LiNO3-based MRRs [75]. Another promising approach on the fabrication
side are multi-layer (slot) waveguides [81, 96] and non-uniform MRRs [97] that
allow for the accurate adjustment of the cavity net-dispersion and nonlinearity,
ultimately granting precise control over higher-order dispersion terms.

Such terms (i.e. βn > β2) have been demonstrated to significantly boost the comb
bandwidth through one-sided or two-sided dispersive wave generation [36, 81,
98]. Dispersive wave generation is a nonlinear optical conversion process that
requires a soliton-like optical pump with a flat phase in order to fulfill the phase-
matching condition [62, 99]

Δβ ¼ β� βs � ω� ωsð Þβ1,s � 1
2
γ0Ps ¼ 0:

liton βs 1
2 γThe condition compares the flat phase of a so þ 0Ps (with nonlinear

parameter γ0 and soliton peak power Ps) with the propagation constant of a linear
wave β(ω) in the moving frame of the soliton (ω � ωs)β1, s (with ω and ωs angular
frequencies of the linear wave and soliton respectively, and β1, s the group dispersion
of the soliton), which accounts for the group velocity mismatch. The broadband
spectra generated by the interplay of dispersive wave and soliton are of fundamental
use for optical metrology [36, 100] as well as future spectroscopic applications
similar to [4, 101, 102]. However, due to the nature of this radiation, the dispersive
part of the spectrum does not contribute to the pulsed waveform of the Kerr soliton



and thus constitutes a considerable energy loss to the soliton. Moreover, it causes the
soliton to spectrally shift in order to compensate for the momentum loss (known as
the soliton recoil effect). Depending on the application of the comb system, these
effects might be detrimental and worth being reduced through proper dispersion
design.
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Finally, we like to highlight an unprecedented consequence of dispersion engi-
neering in microcavities, which is the reduction of thermal noise in so-called quiet
soliton combs [103, 104]. A comprehensive study recently revealed that operating in
a cavity-specific ideal dispersion domain can reduce the thermal instabilities of
soliton states up to 60 dB (with 15 dB improvement experimentally shown), thus
drastically stabilizing the comb repetition rate and long-term stability [104].

12.3.3 Novel Phenomena in Dispersion-Tailored Microring
Resonators

Advanced access to waveguide properties also enables the observation of a few
unique effects of which no real equivalent exists in optical fiber systems. One of
these effects is dispersive wave generation induced by avoided mode-crossing.
Avoided mode-crossings may occur in waveguides with relatively large dimensions,
which support more than one (fundamental) transversal mode per polarization (i.e.,
usually TE00 and TM00) within the bandwidth of the optical source. Here, the
avoided intersections of two transversal modes cause a significant change of the
individual mode dispersions (see Fig. 12.1a), which can be a few orders of magni-
tude stronger than any other waveguide-intrinsic dispersion change and perturb
soliton formation. Similar effects were observed between two different polarization
modes [105].

Since larger waveguide sizes are a necessity for anomalous dispersion and power
scaling of DKSs [78], intermodal crossings are very likely to occur in MRRs.
However, for the purpose of favorable power scaling of cavity solitons, energy
leakage due to non-solitonic radiation is largely undesired. Efforts to decrease the
impact of higher-order modes include the incorporation of tapered sections into the
MRRs [78, 97] as well as higher-order mode isolation couplers [106].

On the contrary, it is noteworthy that mode-crossings, in turn, host the unique
capability to steer dispersive-wave formation, since they provide a strong variation
of the dispersion. Thus, such crossings eventually provide a set of well defined, very
narrow wavelength regions of perfect phase-matching between a soliton pump
(in the transversal mode 1) and a dispersive wave (in the transversal mode 2)
[103, 107]. Hence, the involvement of avoided mode-crossings imposes advantages
on (i) the tuneability of the overall comb bandwidth, (ii) the accurate spectral
relocation of dispersive wave energy, as well as (iii) refining the temporal charac-
teristics of the dispersive radiation. Most notably, tailored narrow-band mode-
crossings were utilized for the highly efficient generation of dispersive radiation



into a single resonator mode (see Fig. 12.1b) [103]. The study reports further on
hysteresis-like interaction between this strong mode and the spectro-temporal behav-
ior of the soliton as well as on the ability of repetition rate stabilization (so-called
quiet states), which clearly hosts advantages for switching and long-term stable
applications.
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Fig. 12.1 (a) Dispersion of a cavity soliton with avoided mode-crossing. (b) Spectrum of soliton
comb featuring a single-mode dispersive wave (blue). (a-b) adapted (labels, font size and line
widths) from [103] under CC BY 4.0 license. (c) Illustration of a soliton crystal state and (d)
respective measured spectrum. (c-d) adapted (font size) from [108] under CC BY 4.0 license

A further specialty of MRRs is the greater ability to reach stable control over the
formation of multi-soliton states. Here, mastering of cavity stability through a
balance of dispersion, nonlinearity, gain and loss, allows for the formation of
multiple cavity solitons. In particular, the fine control over the dispersive properties
of the cavity via thermal tuning as fast as 100 μs ultimately enables an on-demand
increase of the soliton number and the controlled study of multi-soliton behavior
[95]. These achievements resulted in the observation and active control of soliton
crystals [33, 109]. Here, nonlinear nearest neighbor interactions allow phase-locked
multi-photon states distributed over an equidistant temporal grid. The robustness of
this highly ordered temporal alignment, in combination with the control over spacing
and the existence of vacancies (i.e. Schottky defects) in the temporal grid, gives rise
to the name soliton crystals in analogy to solid-state atomic crystals. The narrow
spacing of the solitons in the MRR allows for a very practical indirect read-out
through their spectra. For instance, through straight-forward Fourier transform rules,
the number of solitons in the crystal can be read from the FSR of the most dominant
cavity modes, while the number and positions of vacancies become apparent from
the underlying modulation structure of the secondary modes (see Fig. 12.1c,d). The



manifold of crystal states and their robustness open up unique and unprecedented
applications, among which we can mention background-free soliton lasers with GHz
repetition rates [110], ultra-dense data transmission for telecommunications [111], as
well as activation functionalities for photonic neural networks [108].
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12.4 Soliton Comb Generation Schemes

Although Kerr frequency combs promise a powerful alternative to fiber-based
frequency comb systems, they come with certain limitations that prevent their
widespread use. Indeed, the generation of Kerr combs and their reliable long-term
stabilization is currently one of the major bottlenecks that prevent a successful
commercialization. In particular, DKSs (a subgroup of Kerr combs) are of high
interest for a variety of applications due to their inherent GHz [112] to THz [113]
repetition rates, short pulse durations, as well as their high phase stability between
comb lines. In order to reach stable soliton operation, several different techniques
have been developed in recent years and are briefly described below. For a more
thorough review of soliton comb generation schemes, see for example refs. [16, 40,
47, 114].

In general, the majority of developed schemes rely on a tunable narrow linewidth
CW laser source that is swept into the microcavity to reach the red-detuned soliton
operation point. In 2013, Matsko et al. theoretically showed how to achieve DKSs
through continuous scanning of the pump frequency, from blue-detuned to
red-detuned values (i.e. from a higher optical frequency to a lower optical frequency
with zero detuning from the center of the resonance) [115], as was also reported in
later works [29, 64, 116]. When an MRR reaches a regime that allows for the
propagation of stable DKSs, the intra-cavity energy experiences a sudden drop in
intensity. The understanding of this behavior led to the demonstration of DKSs in
microresonators in 2014 by Herr et al. [29]. These were previously observed in 2013
by Saha et al. under the form of femtosecond stable pulses in Si3N4 MRRs [117].

In 2009, Strekalov and Yu proposed a pumping scheme based on the use of a
bi-chromatic source to produce frequency combs in MgF2 MRRs, exploiting cas-
caded FWM rather than optical parametric generation [118, 119], leading to highly
efficient DKS generation. Similarly, an electro-optic pumping scheme was exploited
by Papp et al. [120, 121], which has experimentally shown the realization and
control of extremely precise equidistant comb lines, essential for achieving ultra-
stable solitons.

Additionally, techniques adapted from classical metrology such as the locking of
the carrier-envelope-offset (CEO) frequency via self-referencing (i.e. f-2f interfer-
ometry [122]) of the generated comb have been investigated in order to obtain fully
stabilized frequency combs in a compact footprint [123, 124]. Towards long-term
stabilization, several techniques such as Pound-Drever-Hall feedback control sys-
tems [103], servo feedback loops [125], or sideband modulation [126, 127] have
been explored.
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12.4.1 Frequency Scanning

Initial schemes have utilized a simple, yet effective technique in order to overcome
the issue of thermal cavity drifts [29, 115]: By shifting the CW laser source from the
blue- to the red-detuned regime, an intracavity thermal equilibrium can be reached,
allowing the stable generation of soliton combs. Here, the sweeping speed of the
laser is crucial for the generation of the soliton combs and should match the
microcavities photon and thermal lifetime, which can be difficult to achieve for
some material platforms. As described earlier, the detuning of the pump starting
from the blue side leads first to a primary frequency comb, formed through the intra-
cavity power build-up, which in turn seeds FWMwithin the cavity. Further detuning
of the pump laser results in to the generation of ‘subcombs’ and unstable combs
formed by modulation instabilities (MI). The common feature of these combs in the
blue-detuned regime is high noise in the RF-domain, due to multiple and broad RF
beatnotes arising from MI. Once the red-detuned regime is reached, the intracavity
power shows an abrupt decline in power and the so-called soliton steps can be
observed, which show characteristic step sizes depending on the chosen material
platform. Here, the generated solitons feature very narrow RF beatnotes as well as
stable optical comb outputs. At the beginning of this regime, multi-soliton states are
generated and, with increased detuning, they subsequently break down until a single
soliton-state is reached. The goal of the frequency scanning method is, to stop the
frequency detuning of the laser, once the single soliton state is obtained, which is
easier achievable if the soliton step-sizes feature longer time durations (~ms for
e.g. MgF2 [29]).

12.4.2 Power Kicking

The power-kicking method [36, 128] is a widely used technique that allows for the
generation of soliton combs in materials that feature a high thermo-optic coefficient.
In these materials (such as Si3N4), the observed soliton steps exhibit very short time
durations (~μs), which prevent the effective use of the frequency scanning method
(i.e. to precisely stop the laser frequency on one of the soliton steps). Instead of using
only a single tunable CW laser, two intensity modulators (acousto-optic and electro-
optic modulators, AOM and EOM, respectively) are included before the
microcavity. The use of the EOM is necessary to obtain the required speed, which
cannot be provided by the AOM alone. Here, the AOM reduces the pump power of
the source before tuning into the resonance, allowing to quickly reach the soliton
steps. Subsequently, the AOM increases the pump power in order to stabilize the
reached soliton step. After the AOM, an EOM helps diminishing thermal instabilities
by effectively reducing the pump power right before the zero-detuning point (i.e. the
resonance center), which also ensures a fast transition to the soliton steps. When the



settings (and timings) for the laser frequency sweeping and both modulations are
correctly chosen, this method allows for the reliable generation of soliton combs in
materials featuring higher thermo-optic coefficients.
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12.4.3 Thermal Tuning

A more inexpensive method can be realized with on-chip resistive heaters on top of
the microcavities [95, 129]. In this scheme, the tunable CW laser is replaced by a
fixed frequency CW laser diode and the cavity resonance is thermally tuned by
inducing a refractive index change caused by the thermo-optic effect. This can be
realized through, for example, an electrode on top of the microcavity, which is
current controlled. This allows for relatively fast speeds (given the small structure
and thermal mass of the electrode) as well as for the fine tuning precision (deter-
mined by the bit-depth of the used digital-to-analog converter) required to directly
obtain the short (~μs) soliton steps. Furthermore, although similar to the frequency
scanning scheme, the thermal tuning technique offers advantages due to the use of
single frequency lasers with lower RF noise as well as narrower linewidths (com-
pared to tunable lasers), resulting in combs with lower noise. However, for use in
more complex photonic integrated circuits (PICs), local heating of the chip might
pose additional restrictions as other integrated elements would need to be shielded
from any temperature gradients and effects (i.e. thermal crosstalk), thus potentially
limiting the scope of this technique [130].

12.4.4 Self-Injection Locking and Laser-Based
Configurations

The previously reported schemes rely on the use of CW lasers for pumping, which
are far from being monochromatic sources (with linewidth shifts of tens of kHz),
suffer from instabilities due to noise, and require extensive optical pump power (~
Watt level), as well as elaborate feedback control systems. Additionally, thermal
instabilities can strongly affect the ability to generate and stabilize coherent states,
since solutions may experience thermal drifting, hence, leading to the destruction of
the coherent soliton regimes.

Thermo-optical nonlinearity, originating from the thermal capacitance of the
microresonator material, modifies the steady-state solutions of the intra-cavity
field, by creating a slow dependence of the refractive index from the temperature.
This, in turn, induces an additional detuning with respect to the pump frequency,
which competes with the ultra-fast Kerr red-shift, resulting in a variety of
non-solitonic nonlinear regimes, such as self-pulsing and deterministic chaos
[49, 60, 85, 115, 131–134].
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In order to address stabilization issues, Yi et al. [125] proposed an active
approach by employing a feedback loop for the self-adjustment of the output
power. Such a configuration allowed to achieve coherent states that are robust
against thermal instabilities over long times. This in turn led to the development of
even more efficient schemes that allow for the generation of stable solitons through
passive driving and control of the cavity parameters, known as passive self-injection
locking. This technique was proposed in an initial work by Liang et al., to narrow the
linewidth of a distributed feedback laser with an MRR [135].

Injection-locking schemes based on free-running diode lasers have gained
increased interest for the use in simplified, small footprint turn-key soliton genera-
tors [136–139]. Here, instead of using a tunable CW laser for pumping (which needs
to be optically isolated from the microcavity – a difficult task for monolithic
integration), the microcavity is directly attached to a semiconductor laser diode
(e.g. a distributed feedback laser, DFB), which is operated in a free-running mode.
Small back-reflections inside the microcavity are being utilized to lock the free-
running diode to the microcavity resonance, which subsequently allows for stable
soliton generation.

In 2020, Shen et al. demonstrated a turn-key soliton comb generator based on a
DFB laser coupled to a Si3N4 microresonator chip packaged inside a commercially
available butterfly package [138]. The authors showed reliable soliton comb gener-
ation with an FSR of 40 GHz spanning 30 nm, requiring only 30 mW of optical
pump power. Remarkably, the demonstrated system not only allows for reliable turn-
key operation (meaning that repeated on and off switching results in the same comb
output) but it also exhibits much lower noise figures than other monolithic integrated
lasers and even off-the-shelf tunable external cavity lasers.

In 2019, Bao and coauthors used a nested cavity configuration scheme for
producing Kerr solitons [110, 133, 140], based on a nested configuration where an
MRR is embedded in an external fiber cavity, which allows for signal reinjection into
the ring.

This setup, illustrated in Fig. 12.2, is inspired by a passive laser mode-locking
setup, first demonstrated by Pasquazi, Peccianti et al. in 2012 [40, 141–146], which
embeds an MRR in an active laser loop. The result is a mode-locking almost
insensitive to thermally-induced fluctuations. Remarkably, Bao et al. recently dem-
onstrated a new class of DKSs that can be generated upon a free-CW background,
with a tunable repetition rate of megahertz, sustained by the gain of the lasing
medium, with a mode efficiency of 75% at average powers that are one order of
magnitude lower than the energy threshold for soliton generation predicted by the
LLE [110].
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Fig. 12.2 Nested cavity setup for soliton generation. (a) The setup consists of a high-doped index
silica glass (Hydex) MRR (Microcavity) nested in an external feedback fiber cavity, composed of a
short-length erbium-ytterbium co-doped fiber amplifier (EYDFA), an optical isolator to ensure
unidirectional propagation, a tunable optical bandpass filter (BPF), a tunable delay line, a polarizer
(PBS), a waveplate (λ/2) for polarization control and three optical collimators (OCs). The external
propagation cavity modes sustain the microcavity pulses, which are broadened by the Kerr
nonlinearity over the gain bandwidth. This setup allows to reach stable soliton states with a variable
repetition rate in the order of megahertz. (b) Soliton generation for two equidistant solitons per
round-trip, with 150 mW output power from the amplifier and 30mW output from the MRR. The
experimental (blue) and theoretical (red) values of the spectrum measured with an optical spectrum
analyzer (OSA) and autocorrelation trace are shown in the left and right insets, respectively. The
temporal intensity output from the fiber cavity is monitored with a photodiode (PD) and a fast
oscilloscope (c) Intracavity spectrum (blue), showing the mode lasing within each microcavity
resonance. Adapted (cropped with modified font size and labels) with permission from figures (3,
S6) in Bao et al. Nature Photonics 13: 384–389 [110]

12.5 Nonlinear Dynamics of DKS

Cavity solitons in MRRs can exhibit a rich variety of nonlinear dynamical regimes
and intriguing nonlinear effects that have been exploited in a plethora of practical
applications in spectroscopy, sensing, and telecommunications (see the following
section for more details). Some examples of the available regimes are bright and dark



solitons states [147], soliton Cherenkov radiation [62], Stokes solitons [67], as well
as soliton crystallization [109, 111, 148], switching [149], and breather states
[150, 151].
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Bright and dark solitons can coexist in Kerr media that undergo third-order
dispersion in the normal regime, as studied by Parra-Rivas et al. [152]. Indeed,
Xue and coauthors have shown that dark soliton states can be observed in the normal
dispersion regime [153]. Moreover, as outlined earlier, Brasch et al., reported that
higher-order dispersion terms in silicon nitride MRRs, while inducing a spectral
broadening of the coherent states, can enable Cherenkov radiation associated to DKS
propagation [36]. Stokes solitons have been also observed in MRRs, where their
generation is mediated by the compensation process between Raman interaction and
dispersion, which supports stable soliton propagation [47]. This is achieved through
the exchange of energy with a primary DKS, formed via Kerr nonlinearity, and
Stokes states, belonging to a distinct mode family.

Remarkably, in 2019, Karpov et al. demonstrated the generation of deterministic
soliton crystal states in MRRs for a critical pump power value, corresponding to a
stable defect-free lattice of optical pulses, sustained by the modulated driving field of
a CW source [154]. The investigation of soliton crystals revealed the interesting
dynamical features stemming from the switching of these states into transient chaos
and the formation of breathers via a melting and recrystallization process.

12.6 Applications

Since their first introduction in 2007 [155], Kerr frequency combs (incl. soliton
combs) have gained increased interest as a powerful, small-scale alternative to
traditional frequency combs [122, 156], arising from their potentially low power
consumption [113] as well as their cost-efficient, mass producible integration
through the same CMOS-processes and infrastructure of the semiconductor industry
[80]. Moreover, as outlined earlier, the generated Kerr frequency combs can even-
tually span, depending on the chosen material platform and dispersion engineering,
the ultraviolet [157, 158], the visible [159], the mid-infrared [160], up to the THz
regimes [161], offering great opportunities for many fields of application. Further,
the capability of precisely adjusting the dispersion allows for the generation of
combs that can intrinsically cover more than one octave (where a frequency and
its double both exist within the generated spectrum, e.g. 150 THz (~2 μm) and
300 THz (~1 μm)), avoiding the need for further broadening in a preceding nonlinear
device, which is important for comb stabilization [98, 124] and crucial for most of
their intended applications. As a result of this versatility, Kerr soliton frequency
combs have already revolutionized many applications, including classical frequency
comb adaptions such as dual-comb spectroscopy [4]. Moreover, due to the small
structures of microcavities, high FSRs (ranging from GHz to THz) can be achieved,
which makes these platforms interesting for telecommunications applications. In
fact, the FSRs of microcavities can be finely adjusted to match the WDM



(wavelength division multiplexing, 100 GHz) and DWDM (dense WDM, 50 GHz)
telecom grids, thus allowing for massively parallel and high-bandwidth transmission
schemes obtained by exclusively using a single optical source [9, 111]. Other novel
concepts and demonstrations include optical clockworks/gears, which are able to
coherently link different electromagnetic domains, e.g. from hundreds of THz to
MHz. This in turn allows the optical frequency of an atomic reference (e.g. Rb) to be
counted by standard electrics [162–164]. Besides, promising applications including
optical frequency synthesizers [165], RF processing [166], ultra-fast and multicolor
optical ranging (i.e. LIDAR, light detection and ranging) [167–169], the generation
of THz radiation [161], as well as astrocombs [10, 11, 170] have been all demon-
strated, to only name a few.
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More recently, advanced ‘hybrid’ approaches such as the combination of
microcavities with piezo-electric materials [169], opto-mechanical designs [171],
and integrated MRRs in electro-optic materials [75] have been investigated, offering
new possibilities and functionalities for these powerful microcavity platforms.

Finally, it is noteworthy that besides the aforementioned soliton applications,
microcavities have attracted significant attention for utilization outside the soliton
regime in applications such as biosensing [172, 173], narrow-linewidth lasers
schemes [174], optical machine-learning [108, 175–178], and quantum technologies
[13, 15, 17, 18, 179–184].
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Chapter 13
Vector Vortex Solitons and Soliton Control
in Vertical-Cavity Surface-Emitting Lasers

T. Ackemann, T. Guillet, H. Pulham, and G. -L. Oppo

Abstract The properties of vector vortex beams in vertical-cavity-surface emitting
lasers with frequency-selective feedback are investigated. They are interpreted as
high-order vortex solitons with a spatially non-uniform, but locally linear polariza-
tion state. In contrast to most schemes to obtain vector vortex beams relying on
imprinting the polarization structure, vector vortex solitons form spontaneously due
to the near polarization degeneracy in vertical-cavity devices. We observe radially,
hyperbolic and spiral polarization configurations depending on small residual anisot-
ropies in the system and multi-stability between different states. In addition, we
demonstrate flip-flop operation of laser solitons via in principle local electronic
nonlinearities. Combining the two themes might open up a route for a simple device
enabling fast switching between different vector vortex beams for applications. The
investigations connect nicely the fields of nonlinear science, singular optics, struc-
tured light and semiconductor laser technology.

Keywords Vector vortex beams · Vector solitons · Vortex solitons · High-order
spatial solitons · Cavity solitons · Dissipative optical solitons · Switching dynamics ·
Bistability · Multistability · Flip-flop operation of solitons · VCSEL · Vertical-cavity
surface-emitting laser · Semiconductor laser solitons

13.1 Introduction

In this chapter, we will review and provide new results on high-order spatial lasers
solitons which have the non-trivial polarization characteristics of vector vortex
beams. They provide a fascinating bridge between nonlinear science and singular

T. Ackemann (*) · H. Pulham · G. -L. Oppo
SUPA and Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
e-mail: thorsten.ackemann@strath.ac.uk; g.l.oppo@strath.ac.uk; harry.pulham@strath.ac.uk

T. Guillet
Laboratoire Charles Coulomb (L2C), University Montpellier, CNRS, Montpellier, France
e-mail: Thierry.Guillet@umontpellier.fr

© Springer Nature Switzerland AG 2022
M. F. S. Ferreira (ed.), Dissipative Optical Solitons, Springer Series in Optical
Sciences 238, https://doi.org/10.1007/978-3-030-97493-0_13

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97493-0_13&domain=pdf
mailto:thorsten.ackemann@strath.ac.uk
mailto:g.l.oppo@strath.ac.uk
mailto:harry.pulham@strath.ac.uk
mailto:Thierry.Guillet@umontpellier.fr
https://doi.org/10.1007/978-3-030-97493-0_13#DOI


optics, both thriving research fields on their own. Solitons or solitary waves are
shape-stable waves for which the dispersive or diffractive spreading typical of linear
waves is counteracted by nonlinearities. The first observation of a shape-stable
‘wave of translation’ was done by the Scottish engineer Scott Russell in the Union
Channel in 1834 [1]. In optical context, solitonic behaviour can occur in time
(temporal soliton [2, 3]) or in space (spatial soliton [4, 5]), both in the simplest
case described by a Nonlinear Schrödinger Equation (NLSE) [6]. In the spatial case,
self-localization can be understood by the concept of a self-induced nonlinear
waveguide. The beam induces a refractive index distribution in a nonlinear medium
with an intensity dependent refractive index, which—for a medium in which the
refractive index is increasing with intensity, i.e. a self-focusing medium—will
counteracts the linear diffractive spreading. For the soliton solution, the beam
writing the refractive index distribution is the fundamental mode of the induced
waveguide in a self-consistent way. If the concept of a single-humped fundamental
soliton is already intriguing, it is the more remarkably that more complex wave
distributions can propagate as high order solitons. Nevertheless, high-order fibre
solitons were observed already in the first experiments of Mollenauer [3]. For spatial
solitons, the analogy with linear modes suggests that a suitably nonlinear adaption of
the ring-shaped doughnut as the first-order Laguerre-Gauss mode might be a suitable
candidate for a high-order soliton. However, it turns out that their propagation is
unstable resulting in the break-up to two fundamental solitons as the ring-shaped
intensity structure is subject to a modulational instability [7–9] in the same way as a
plane wave is modulationally unstable in a self-focusing medium [6].
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One way to stabilize this high-order soliton is by adding dissipation and driving.
In optics, this is usually achieved by placing the medium into a cavity. The resulting
states are an attractor of the dissipative dynamics and referred to as dissipative
solitons, cavity solitons or localized structures [10–13]. Dissipative systems support
a wider range of solitary waves or localized structures than the conservative NLSE.
Examples are the stability of spatial solitons in two spatial dimensions in the
Lugiato-Lefever equation [14] (the dissipative extension of the NLSE describing a
coherently driven cavity with an intra-cavity Kerr medium [15]), the existence and
stability of fundamental solitons in lasers [16–18] and coherently driven cavity
systems [15] with absorptive media, and, relevant for this chapter, the stabilization
of vortex solitons in lasers. These were predicted in lasers with saturable absorbers
[19, 20] and observed in coupled vertical-cavity surface-emitting lasers (VCSELs),
one operated as a gain device, one as saturable absorber [21]. A VCSEL is a
semiconductor laser in which the emission is in the direction of the epitaxial growth
[22]. This allows for a large Fresnel number [23, 24] enabling self-organization and
solitons independent from boundary conditions (see Sect. 13.3.2). Vortices in self-
focusing Ginzburg-Landau models were predicted in [25, 26]. Refs. [27, 28]
predicted stable vortex solitons with a saturable or cubic (i.e. Kerr-like) self-focusing
nonlinearity coupled to an additional linear filter. This system provides a minimal
model for a VCSEL with frequency-selective feedback [29–31]. The experimental
observation of vortex solitons in such a system was reported in [32].
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These vortex solitons were homogeneously linearly polarized and can be
described in a quasi-scalar theory. However, light is in general a vector wave
providing many additional degrees of freedom for soliton formation. It is not
possible to give a full account of the literature but we refer to [33–35]. Typically,
these vector solitons consists of localized patches of one polarization state embedded
in another one with a polarization domain wall in between. Interestingly, to our
knowledge the first observation of stable high-order dissipative solitons were vector
solitons in this sense [36]. What we are investigating here are structures in which the
polarization is continuously spatially varying. They are usually referred to as ‘vector
vortex beams (VVBs)’ [37, 38] and possess a circularly symmetric intensity structure
combined with a spatially non-uniform polarization field and a polarization singu-
larity. We will review their properties, generation and applications in Sect. 13.3.1.
For the moment the important point to note is that there are usually created by a
bespoke, potentially complex, setup imposing the polarization structure onto the
beam (see Sect. 13.3.1 for examples). In contrast, VVBs form spontaneously in the
VCSEL with frequency-selective feedback discussed here [39]. This is enabled by
the high circular symmetry of a VCSEL in the transverse plane of the microcavity.
This is known to allow a degeneracy or near-degeneracy of polarization states but
investigations were focused on linearly polarized states and switching between them,
see e.g. [40–44]. One paper predicted the possibility of VVBs in free-running
VCSELs already in 1997 [45] and thus established an early link between singular
optics and VCSEL technology, but, appearing before the great upsurge in interest in
vector vortex states, did not obtain the attention due and was not backed up by
experiments.

The main contribution of this chapter (Sect. 13.3) is to review the properties of
VVBs and solitons in VCSELs with frequency-selective feedback, and to report on
experimental progress and new insights compared to Ref. [39]. In particular, we will
argue in Sect. 13.3.6 why these states have been observed now in the VCSEL with
feedback but not in free-running VCSELs as predicted in Ref. [45]. As a disclaimer,
we would like to caution that we are using here the phrase vector vortex solitons for
the vector vortex structures observed and we will argue in Sect. 13.3.6 for this
interpretation. However, to our knowledge, there is no detailed theory demonstrating
their stability in VCSELs with frequency-selective feedback. We hope that this
review might instigate theoretical investigations to this effect. A recent prediction
of vector vortex solitons in a laser with saturable absorption was made in Ref. [46]. It
is important to note that vector vortex solitons in single-pass propagation schemes
are known to be unstable for self-focusing media [47], similar to the quasi-scalar
case [7–9], although less unstable than their quasi-scalar counterparts [48]. Vector
vortex solitons in single-pass propagation schemes are predicted to exist for self-
defocusing nonlinear media [49], but to our knowledge there is no experimental
observation.

The final subject we are going to cover in this chapter is the all-optical control of a
laser soliton as a memory element [50–53]. This property is intrinsically linked to
dissipative soliton representing localized states. They can be present or absent under
the same conditions and are hence necessarily bistable (see Sect. 13.2). This makes



optical solitons attractive for all-optical processing and storage schemes and moti-
vated some of the research in semiconductor lasers [52, 53]. One of the advantages
of laser cavity solitons is that they do not need to be sustained by a coherent holding
beam with high spatial and temporal coherence but can draw their energy from an
incoherent optical or electrical input. However, for the prospects of soliton control,
this also removes an obvious and easy source for the control beams. We will review
aspects of laser cavity soliton switching in Sect. 13.4.1 in more detail, but although
already the first experiments on VCSEL lasers solitons demonstrated bistability and
some control [29, 54, 55], switch-on and switch-off of laser cavity solitons had been
only obtained in situation involving thermal and/or non-local effects for one of the
two directions of switching [29, 55, 56]. In Sect. 13.4, we will demonstrate flip-flop
operation, i.e. the setting and re-setting of an optical memory element by external
optical pulses directed directly on the memory element, using a two-colour control
scheme exploiting only local electronic nonlinearities.
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13.2 Mechanism of Bistability in Lasers
with Frequency-Selective Feedback

The experiment relies on the interaction of VCSEL with a frequency-selective
element. A VCSEL is a semiconductor laser based on a high-Finesse plano-planar
microcavity, e.g. [22]. The technical details are presented in Sect. 13.3.2. The cavity
is very short (on the order of 1.2 μm) and hence it runs in single longitudinal mode,
but the transverse aperture can be very large (about 200 μm) [23, 24] so that it has a
very high Fresnel number and can run in many transverse modes or, in the present
context, form self-localized structures which are independent from each other. The
basic observation is illustrated in Fig. 13.1a and an experimental example is given in
the inset of Fig. 13.9. If the current is slowly increased from zero, first only
low-amplitude spontaneous emission is observed until there is a an abrupt transition
to a localized high-amplitude state, the soliton. The soliton stays for a certain range
of current, if the current is increased further, but more importantly it also stays on if
the current is decreased again below the switch-on point μ". Switch-down takes
place only at a lower current μ# creating a hysteresis loop. Within this hysteresis loop
the soliton can be manipulated by external control beams that will be the subject of
Sect. 13.4.

Figure 13.1b indicates what is happening with the carrier density at the position of
the soliton during the process. Increasing the current in the non-lasing situation
increases the carrier density. At the switch-on threshold there is a sudden drop of
carrier density due to the onset of stimulated emission. Beyond threshold, for the
operating laser soliton, carrier density is clamped and will stay approximately
constant over the existence range. At the switch-off point, the carrier density is
abruptly switching back to the unsaturated value. A free-running laser, in contrast to
coherently driven passive cavity or optical feedback systems [52, 57–59], amplifiers
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Fig. 13.1 Schematic drawings of hysteresis loops (solid black lines) for optical intensity (a), carrier
density (b) and effective detuning Θeff (c) if the injection current is slowly increased and decreased.
Panel (b) illustrates also the unstable branch (dashed black line) working as separatrix. Somewhere
around the centre of the hysteresis loop there is the Maxwell point (dashed green line) at which the
on- and off-states of the soliton have equal stability. Flip-flop operation in Sect. 13.4 is obtained
around this point. Injected pulses around 980 nm (red line) will be amplified, decrease carrier
density and hence work as writing beam. Injected pulses around 915 nm (blue line) increase carrier
density via optical pumping and hence work as erasure beam. As the detuning varies (c), the carrier
density is not totally constant even under lasing condition (as assumed in b), but this is a
quantitative, not qualitative consideration



[53] or lasers with injection [60], does not require an external holding beam. On the
one hand, this is a major advantage, on the other hand this implies that there is also
no option to derive control beams from the holding beam and to implement coherent
soliton control via the optical hysteresis loop. In contrast, soliton control takes place
via the carrier density as will be discussed in detail in Sect. 13.4.
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For an understanding of the origin of the hysteresis loop it is important to realize
that the main effect of the current sweeping the hysteresis loop is not changing the
gain but the detuning condition between the VCSEL cavity resonance ωc and the
VBG resonance ωVBG, at least once sufficient gain is achieved to allow lasing for
overlapped or close resonances. For consistency with the terminology used in
[61, 62], we define

Θ :¼ ωc − ωVBG

κ
¼ ωc

κ
¼ Θ0 − ζμ, ð13:1Þ

where κ is the cavity linewidth (HWHM) for the field, ωVBG¼ 0 is used as reference
frequency, Θ0 is the detuning for zero current and ζ is the proportionality factor
between current and resonance shift due to Ohmic heating (ζ¼ 5.23 in [62]). This is
the ‘cold’ cavity resonance. In a semiconductor laser, the refractive index depends on
carrier density N and in first approximation this phase-amplitude coupling is
described by a simple proportionality constant, the so-called Henry’s alpha-factor
α [63]. Hence we define an effective detuning

Θeff :¼ Θ0 − ζμþ αN, ð13:2Þ

which is depicted in Fig. 13.1c. For zero current, the cavity resonance is blue-
detuned to the VBG resonance, Θeff > 0. Increasing the current red-shifts the cavity
resonance via the heating and blue-shifts it via the carrier injection, but the former
effect is prevailing ( [62] assumed α¼ 5 as a reasonable value for the alpha-factor)
and the detuning is decreasing. If the detuning is sufficiently small, the reduced
losses will favour an increase of (amplified) spontaneous emission, which in turn
will decrease carrier density, increase refractive index and hence further decrease the
detuning leading to a further decrease of losses and hence a tendency to higher
intensity. At the spontaneous switch-on point, the non-lasing state becomes unstable
to fluctuations due to this positive feedback and the system switches abruptly to an
high amplitude state in which the resonances of VCSEL and VBG are (approxi-
mately) aligned. This high-amplitude state can be maintained to some extent (till the
switch-off point) even if the cold cavity detuning is increased again via a reduction
of current. This means that the laser with frequency-selective feedback works via a
form of dispersive optical bistability [64]. The stability of the non-lasing state
surrounding the soliton is achieved because it is off-resonant [28, 65] and not
because it has higher losses as in lasers with saturable absorbers [16–18]. Laser
solitons in semiconductor-based devices were realized first in [29] based on the
dispersive effect. The counterpart relying on absorptive optical bistability can be



realized by coupling two VCSELs face-to-face [55], one more strongly pumped than
the other, although dispersive components might be important in that
configuration also.
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The cold cavity resonance offset Θ0 can be adjusted by adjusting the ambient
temperature of the device. Hence a situation can be realized in which effective zero
detuning is obtained for elevated temperature and low currents. In this situation, the
first structure appearing at threshold is the fundamental soliton [31, 62]. This is the
situation investigated in Sect. 13.4. Alternatively, at low ambient temperature a
much higher Ohmic heating and hence current is needed to reach the effective
zero detuning condition. In this situation, the spontaneous switch-on is to more
complicated structures and in particular high-order solitons as vortices and vector
vortices [39, 62]. As high threshold current implies high threshold gain, this ten-
dency towards high-order structures is reasonable. This is the situation to be inves-
tigated in Sect. 13.3.

However, before turning to this subject, it should be mentioned as a final caveat
that in an ideal, homogeneous system there would not be a spontaneous switch-on to
a soliton but to a spatially extended modulated state, a spatial pattern, as the system
would remain in the non-lasing or homogeneous state until the threshold for
modulational instability (MI). Bistable solitons exist below the MI point down to
the switch-off point. For experimental realizations using semiconductor
microcavities this ideal situation cannot be realized in spite of these microcavities
being marvels of vacuum-deposition technology as a growth error of a single
monolayer is enough to change the detuning significantly due to the high cavity
Finesse. Hence the solitons are pinned to certain positions in which the detuning
conditions are favorable [53]. For the situation considered here these are the most
red-shifted part of the cavity as investigated in detail in [66]. However, a huge body
of experimental and numerical investigations indicate that within the hysteresis loop
the solitons keep their important solitonic features except the mobility to move freely
within the transverse aperture of the device and hence the community regards them
as solitons [53, 67, 68].

13.3 Vector Vortex Solitons

13.3.1 What Are Vector Vortex Beams?

Vector vortex beams are a subset of beams with complex intensity, phase and
polarization structure investigated in the field of ‘structured light’ [69–72]. In
contrast to ‘full Poincaré beams’ utilizing the full Poincaré sphere [73], ‘vector
vortex beams’ (VVBs) [37, 38, 74] have a spatially non-uniform, but locally linear,
polarization field. Although in general other configurations are possible, the beams
investigated in practice possess a circular symmetric intensity structure in form of a
doughnut. Figure 13.2 shows the states relevant for our considerations. For these first
order VVBs four basis modes are needed. The first option is to construct them from
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Fig. 13.2 (a–d) Illustration of different vector vortex beams as obtained from different superpo-
sitions of orthogonally polarized first order in a linearly polarized basis (or of circularly polarized
Laguerre–Gaussian modes). Intensity in pseudocolour scale ranging dark blue (low intensity) to
dark red (high intensity). (e, f) If the centre of the two orthogonal Hermite modes are slightly
displaced by a fraction of x0 of the beam waist of the fundamental mode, the ring is perturbed to a
three spot structure. (a) Azimuthal vortex. (b) Radial vortex. (c) Anti-vortex. (d) Rotated anti-
vortex. (e) 3-lobes vortex. (f) 3-lobes vortex

the two first-order Hermite-Gaussian modes (H10, H01) with horizontal (H) and
vertical (V) polarization. Figure a, b show the azimuthally and radially polarized
states, where the polarization structure possesses cylindrical symmetry (‘cylindrical
vector beams’ [ , ]). Beams with hyperbolic polarization structure are referred to
as ‘anti-vortices’ [ ] or ‘π-vortices’ [ ]. They exist in two versions (Fig. c, d)
with principal axes rotated by 45∘. These beams do not have a phase singularity in
the centre (an unique optical phase is ill defined with two polarization components

13.23776
7537

13.2



anyway) and hence do not carry orbital angular momentum, but they contain a
singularity in the polarization field, respectively in the relative phase between the
polarization components. Any projection onto a linearly polarized state yields a first-
order Hermite-Gaussian modes with an orientation depending on the direction of the
projection (see Sect. 13.3.3).
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An alternative construction can be done in the Gaussian-Laguerre basis LG0,�1

and using the circular polarization basis (L, R). In this representation, it is apparent
that VVBs contain orbital and spin angular momentum in a correlated manner. After
projection on circular polarization basis, the resulting fields carry orbital angular
momentum.

VVBs have intrinsic appeal and beauty, provide novel fundamental aspects in
quantum optics and enable new applications or enhance existing ones in engineering
and science. Examples are tight focusing [77], micro-machining [78], optical trap-
ping [72, 79, 80], simultaneous spectroscopy of multiple polarization channels [81]
and beam transformation in nanophotonics [82]. Particularly exciting is the realiza-
tion that the correlation between spatial and polarization degrees of freedom resem-
bles entanglement and might open up novel schemes for the use in quantum optics
[83–85] and sensing [86].

Hence, considerable effort was spent on creating these unusual polarization states
[70, 75, 87], relying on a substantial engineering effort based on specialized equip-
ment as tailored laser resonators [88–91], meta-surfaces and spatially varying wave
plates [92–94], Mach-Zehnder interferometers [80], modal control in few-mode
fibers [95, 96], spatial light modulators [71, 72, 76], tailored Fresnel reflection
from glass cones [97], and polariton microcavities [98–100]. In contrast, we dem-
onstrate the spontaneous emergence of these structures in a conceptually simple
system, a highly symmetrical vertical-cavity surface-emitting lasers (VCSEL) with
frequency-selective feedback [39]. To our knowledge, this was the first experimental
observation of the spontaneous formation of a vector vortex beam from spontaneous
symmetry breaking. A more recent observation in a polariton laser is described in
Ref. [101].

As a final remark before turning to the experiment, one can perturb the intensity
distribution of VVB without destroying the polarization structure by providing a
slight offset between the centres of the two orthogonal Hermite-Gaussian modes
forming the VVB. In that case the intensity along doughnut ring becomes modulated
(Fig. 13.2f) and becomes a ‘3-spot structure’ at larger shifts (Fig. 13.2e).

13.3.2 Experimental Setup

The setup for the cavity soliton laser and the VCSEL devices used are described in
detail in [23, 24, 31, 102] and reviewed in [103, 104]. The VCSELs used are broad-
area electrically pumped devices. Three InGaAs quantum wells are serving as gain
medium leading to emission in the 980 nm range. The quantum wells are surrounded
by passive AlGaAs spacer layers with a total thickness of one wavelength. The
cavity is closed by high reflectivity distributed Bragg reflectors (DBR) with 33 layers



AlGaAs/GaAs on the top side (p-contact) and 22 layers on the bottom side
(n-contact). The laser has an emission wavelength around 975 nm at room temper-
ature. The emission takes place through the n-doped Bragg reflector and through the
transparent substrate. In this so-called bottom-emitting geometry a reasonable uni-
formity of carrier injection can be achieved over fairly large apertures. A 200 μm
diameter circular oxide aperture provides optical and current guiding. This active
diameter is much larger than the effective cavity length of about 1.2 μm. As a result,
the VCSEL has a large Fresnel number allowing for the formation of many trans-
verse cavity modes of fairly high order and of solitons which are independent of
boundary conditions.
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Fig. 13.3 Setup for measuring spatially resolved Stokes parameter in a VCSEL with frequency-
selective feedback. fi: lenses, VBG: volume Bragg grating (the inscribed grating is tilted by an angle
< 1∘ with respect to the surface in reality), BS: beam sampler, NPBS: non-polarizing beam splitter,
λ
2: half-wave plates, PD: amplified, slow photodiode (in reality there is a whole detection branch here
but only the photodiode is used in these investigations), LP: linear polarizer, CCD: charge-coupled
device cameras. The two folding mirror on the right are included for compactness of the drawing.
The actual beam path is straight

The optical setup is illustrated in Fig. 13.3. Frequency-selective feedback is
provided by an external volume Bragg grating (VBG). The VBG has a reflection
peak of about 95% at 978 nm and a bandwidth of slightly larger than 0.1 nm
(FWHM). The VCSEL is collimated by f1¼ 8 mm focal length plano-convex
aspheric lens. The second lens is a f2¼ 50 mm focal length plano-convex lens and
is used to focus the light onto the VBG. The lenses are arranged as an afocal
telescope giving a 6.25 : 1 magnification factor onto the VBG. This external cavity
is self-imaging, i.e. every point of the VCSEL is imaged at the same spatial position
after each round trip therefore maintaining the high Fresnel number of the VCSEL
cavity and ensuring local feedback compatible with self-localization.
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In the standard experimental scheme the output is monitored via the Fresnel
reflection from a wedged intra-cavity beam sampler BS (front uncoated, back
AR-coated). The cavity is isolated from the detection setup by an optical isolator.
In this experiment, it is mainly used for monitoring the light-current
(LI) characteristic by an amplified, slow photodetector. In addition, the output
intensity distributions are monitored for alignment and analysis by charge-coupled
device cameras (CCD) after suitable optics, in near field and far field (CCD1, CCD2
depicted in Fig. 13.9). The outcoupling is relying on Fresnel reflection and therefore
is polarization dependent. The reflectivity is on the order of 10% for s-polarized light
and 1% for p-polarized light and hence the polarization state of the intra-cavity is not
adequately represented in this detector arm.

Hence, for the polarization resolved measurements presented here, we are ana-
lyzing the spatially resolved Stokes parameter in the field transmitted by the VBG.
As the VBG is used at nearly normal incidence, the polarization state of the
transmitted field is preserved. The image of the soliton on the VBG facet is relayed
by a telescope ( f¼ 150 mm for both lenses) to an intermediate image plane. In this
plane, a part of the VCSEL aperture can be selected for analysis via a movable
circular aperture. This plane is imaged by a further telescope (typically f¼ 50 mm for
both lenses, but the second one can be adapted to serve different imaging needs) onto
CCD cameras. The beam path is split by a non-polarizing beam splitter (Coherent,
T¼ 0.33, R¼ 0.67). The transmitted arm is folded by a highly reflective mirror and
traverses a half-wave plate (HWP) and Wollaston prism before creating an image on
a CCD-camera. This allows for the simultaneous monitoring of the linear polariza-
tions components at 0∘ and 90∘ to calculate the spatially resolved Stokes parameter
S1 or the linear polarizations components at + 45∘ and − 45∘ to calculate the Stokes
parameter S2. In the reflected arm, there is either an amplified, slow photodetector to
monitor the polarization resolved total power or, more often, another CCD-camera
monitoring the polarization at + 45∘. In that case, both Stokes parameters S1 and S2
can be measured simultaneously, which is not only convenient but sometimes
important, if structures change quite rapidly with changing current. As there is
some jitter between different realizations of the experiment (see, e.g. Fig. 13.6),
combining the measurements from different runs to calculate Stokes parameters
introduces potentially some artifacts. If both arms in the VBG branch are used with
CCD-cameras, the LI-curve of the system is monitored via the intra-cavity beam
sampler (a rough correction can be done for the anisotropic Fresnel reflection). For
the experiments reported in Fig. 13.5, a Mach-Zehnder interferometer is introduced
into the beam path to confirm the phase properties of the vector vortex beams.

It should be noted that the intra-cavity beams sampler preserves the polarization
state in transmission (0.99 vs. 0.9, ratio 1.1) much better than in reflection
(0.1 vs. 0.01, ratio 10). Nevertheless, it will introduce a dichroism into the system,
which breaks the (nominal) polarization degeneracy and is hence expected to
influence the formation of vector vortex beams. Hence, in some experiments, the
intra-cavity beam sampler is removed and detection takes place only via the VBG.
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13.3.3 Principle Observations

Figure 13.4 gives an overview on the scenario for the formation of vector vortex
solitons. We report on new and more complete results obtained without a beam
sampler in the external cavity. However, the principal behaviour is identical to the
situation with this beam sampler reported in Fig. 2 of [39]. Increasing the current, the
output remains low, on spontaneous emission level, till there is a sudden switch-on
to a high-amplitude lasing structure. This occurs at a quite large current of 641 mA
since for the VCSEL submount temperature most of the thermal tuning to match
VCSEL and VBG resonance comes from Ohmic heating (see discussion of
Eq. (13.1)). Hence, the gain at threshold is quite large and fairly complex extended
structures form which are not shown here but are reported in Fig. 8 of [62] and Fig. 2
of [39]. Reducing the current again, the output power reduces, mainly as the lasing

Fig. 13.4 LI-curve projected on a suitable, but arbitrary linear polarization state chosen to have
good discrimination between structures. Up-scans of current are denoted by red dotted lines, down-
scans by solid, black lines. We did not distinguish the down scans by different colours because we
do not believe that the variations contain useful information but that the ensemble demonstrates
robust behaviour. Insets show total intensity S0 of structures in pseudo-colour (from low intensity
black via blue and red to high intensity yellow-white) with polarization streamlines reconstructed
from the polarization resolved Stokes parameters superimposed. Temperature of VCSEL submount:
17.5 ∘C



amplitude reduces, but partially also because the size of the lasing area reduces.
However, typically a change of size and complexity of the lasing structures involves
an abrupt sudden transition in modal shape and emitted total power. At a level of
about 616 mA one reaches the vortex states. We will discuss these later.
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Reducing the current further, the system switches at 613 mA to a single humped
peak, the fundamental soliton, which is linearly polarized. The fundamental soliton
shows a spontaneous switch to the orthogonal polarization at 609 mA (see also
[105]). Polarization switching is a typical behaviour observed in VCSELs [40–
44]. Further reducing the current, the fundamental soliton switches off at 604 mA.
If the down-scan is stopped at 605 mA, and the current is increased again, one moves
along the fundamental branch (with a polarization switch at 616 mA) until a switch
to a very-high amplitude state occurs at 640 mA. If the scan is stopped before and
reversed, the hysteresis loop of the polarization switch of the fundamental soliton
can be explored.

If the original down-scan is stopped at 616 mA, the spatial structure of the total
intensity, i.e. S0 encountered has an approximate ring-shape with three dominant
peaks along the ring. The polarization streamlines obtained from measuring the
polarization resolved Stokes parameters are superimposed on the intensity image and
show a radial polarization structure. This constitutes a radially polarized vector
vortex beam where the deformation of the ring to three spots can be explained by
spatial disorder in the VCSEL resonance (see discussion of Fig. 13.2). Increasing the
current, there is an abrupt transition (at 619 mA) to a vortex structure with nearly the
same intensity distribution but it is now linearly polarized. These structures were
identified as vortex solitons in [32]. Reversing the current sweep, coexistence
between the linearly and the radially polarized vortex is demonstrated. Increasing
the current further, the system switches from vortex states to larger states at 629 mA
and to even larger structures at 631 mA.

The final switch-up occurs to roughly the same branch for all situations, i.e. from
the non-lasing state, the fundamental soliton branch, and, although typically via
intermediaries, from the vortex branch. We kept all three realizations from the down-
scan from these complex states in the figure to illustrate on the one hand robustness
of the phenomena but also the importance of fluctuations. The main issues are
thermal fluctuations and drifts leading to a variation of switch-on and switch-off
points and a slight variations of amplitudes. Small spikes and jumps within one
branch correspond usually to longitudinal mode hopes. We gave concrete numbers
for the switching points in the discussion above in order to allow an easy identifi-
cation of the points in the figure, but one should not put to much emphasis on the
concrete numbers. However, we stress that the overall scenario is robust. In partic-
ular, there is an amazing amount of multi-stability in the system. For example, from
613–618 mA the off-state, the fundamental solitons, the vortex solitons and an even
more complex state coexist, possibly even in several polarization configurations.

For the situation with the intra-cavity beam sampler placed within the cavity, the
dominantly observed vector vortex is the anti-vortex with a hyperbolic polarization
structure (see Fig. 13.5a). LI-curves and further details are reported in Ref. [39]. Its
phase structure is analyzed further in Fig. 13.5. In subfigures (d–g) the VVB is



projected on linear polarization states and then interfered with itself in a Mach-
Zehnder interferometer. After projection, the intensity structure is dominated by two
elongated lobes. In between these lobes there is a nodal line with a π-phase jump
across it as demonstrated by the staggered discontinuities of the interference fringes.
This implies that the observed vector vortex beams are very close to the ‘ideal’ ones
whose construction from first order Hermite-Gaussian modes is reported in
Fig. 13.2. Obviously, there are differences from pure Hermite-Gaussian modes in
the wings of the beams. Inspection of Fig. 13.5d and f yields that the vortex under
study is a superposition of a horizontally polarized H10 and a vertically polarized
H01-mode. In order to obtain the hyperbolic polarization structure aligned (roughly)
to the horizontal and vertical axes (see Fig. 13.2d) the relative phase between them
needs to be π. Projection on polarization states at� 45∘ (Fig. 13.5e and g) yields first
order Hermite modes with the nodal axis orthogonal to the polarization axis as
expected for the anti-vortex. The supplementary material [106] of [39] contains a
movie which shows this continuous counter-rotation of the spatial structure, if the
angle of the polarizer analyzer is rotated, clearly.
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Fig. 13.5 Mach-Zehnder interferometry of an anti-vortex: (a) Total intensity S0 (pseudo colours),
and polarization streamline. (b, c) Polarization-resolved interferograms projected on circular polar-
ization states (assignment of RCP and LCP arbitrary). Dashed circles indicate the forks evidencing
the phase singularity. It should be noted that we are looking at the self-interference of two doughnut
beams and not of one doughnut beam with a plane reference wave. Hence two forks indicate the
presence of only one phase singularity. (d–g) Polarization-resolved interferograms projected on
linear polarization states in 45∘ steps. Dashed lines indicate the nodal line evidencing the π phase
shift. (a) S0 and pol. streamline. (b) RCP. (c) LCP. (d) 0 deg. (e) 45 deg. (f) 90 deg. (g) 135 deg

After projection on a circular polarization state (Fig. 13.5b and c), the intensity
structures are approximately circular and the phase structure contains now forks,
i.e. evidence of phase singularities and not nodal lines. These are of opposite sign
(opposite branching direction in the interferograms) for the two circular



polarizations. This reveals that the constituent modes are doughnuts themselves,
i.e. carry orbital angular momentum, as expected if one calculates the corresponding
transformations (e.g. [99]). VVBs carry spin and orbital momentum degrees of
freedom in a correlated manner.
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13.3.4 Complex Hysteresis Loops

After having established the principal observations in the previous section, we return
to a more detail of the system without the intra-cavity beam sampler in Fig. 13.6. It
shows the hysteresis loop between the radially polarized vortex and the linear
polarized one, if the current is only swept up and down in a small vicinity of the
transition. Repeated measurements done over a time scale of a few minutes show a
robust coexistence on the one hand and some jitter of switching points and slight
changes of amplitude. These are partially due to technical noise as current fluctua-
tions and mirror vibrations, but mainly due to thermal fluctuations influencing the
detuning between VCSEL and VBG being the most important and sensitive control

Fig. 13.6 LI-curves and inset illustrating bistability between the radially and uniformingly linearly
polarized vortex. The four realizations shown give an indication of the stability of the system on the
time scale of several minutes. Temperature of VCSEL submount: 19.5 ∘C



parameter (see the discussion on Fig. 13.1c). In particular, the switching point will be
influenced by where the comb of the external cavity modes is with respect to the
VBG and VCSEL resonances as this will render the spectrum of favourable soliton
states discontinuous. Thermal drifts are limiting the long term stability.
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Figure 13.7 provides an example of the complex switching behaviour possible,
now again for the system containing the intra-cavity beam sampler. Figure 13.7a is a
large scale view. Switch-on from the off-state occurs here directly to the vector
vortex states. This behaviour is observed frequently, although the more typical
behaviour is the switch-on to larger states at even higher currents (Fig. 13.4 and
Fig. 2 of [39]). This behaviour might be related to minute misalignments of the retro-
reflection angle of the VBG. Reducing the current, one obtains a two-lobe structure.
The fact that the laser does not seem to find a doughnut (or three-spot) shaped locked
state, but remains spatially symmetry broken might support the assumption of a
small misalignment. This structure then switches to the fundamental soliton which in
turn undergoes polarization switching. Interestingly, the two-lobe structure exists
also in two polarization configurations. It can be linearly polarized (at about
621 mA) or consists of four domains of which the two adjacent have approximately
orthogonal polarization and the opposing ones the same polarization (at 624 mA).
The polarization principle axes of these domains are very similar to the ones of the
two fundamental soliton ones with orthogonal polarization. This is not a vector
vortex state as the polarization direction is not varying gradually over the beam.
Instead, it seems to be related to the well-known polarization bistability of VCSELs
along their principal axis but here realized in a spatially varying manner. It should be
noted that also the approximately doughnut shaped three-spot structure can exist
with such a polarization structure (Fig. 3 of [39, 106] and inset of Fig. 13.8a below).
It is also interesting to note that the transition between the vector vortex beams and
this structure can be gradual in the resolution of the experiment, whereas all
transitions between vector vortex beams and from vector vortex to homogeneously
linearly polarized ones are abrupt.

Figure 13.7b concentrates on the smaller range of currents above 626 mA.
Between 626 mA and 630.5 mA the dominant structure is the anti-vortex. At
630.5 mA there is an abrupt transition to the linearly polarized vortex. In this case
the hysteresis width is smaller than the jitter. For higher currents, the dominant
structure is the linearly polarized vortex switching between different longitudinal
modes and slightly different polarization directions. In the lower part, on the
backward scan, a further novel structure is encountered, a vortex with a spiral
polarization structure. It can be thought of as a superposition of radially and
azimuthally polarized vortices or of all four Hermite-Gaussian basis modes
(Fig. 13.2a, b). It exists only in a very small range and not necessarily in all scans
(e.g. it is in the green, but not the red-dashed down-scan in Fig. 13.7b). The
difference between the two realizations here is the scan speed. The spiral vortex
occurs only for small enough current steps and can be easily missed. It is typically
embedded in the existence range of the anti-vortex (see green curve in Fig. 13.7b).
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Fig. 13.7 (a) LI-characteristic of system with intra-cavity beam sampler with typical structures
observed. Black line: up-scan, red dashed line: down scan at 0.1 mA per step and a waiting time of
500 ms waiting time per step. The dashed grey line and green solid are another realization of an
up-scan and down-scan covering only the high current area at 0.02 mA per step and 500 ms waiting
time per step. (b) Blow-up of region beyond 626 mA. Temperature of VCSEL submount: 19.6 ∘C



Minute adjustments, i.e. much smaller ones that the angular width of the vector
vortex beams, influence whether the spiral vortex—and on a more relaxed level the
other vortices—can be obtained. This indicates that the vector vortices are degener-
ate in a perfectly symmetric system but that small anisotropies and/or fluctuations
select between them.
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Fig. 13.8 Influence of an intra-cavity HWP on polarization direction of fundamental solitons ψ (b)
and selection of VVB or domain structures (a). The reference axis for the angles is vertical. (a)
Indication of which type of VVB is observed, insets show S0 and polarization streamlines. We
report the VVB obtained in the current range before switch-down to the fundamental soliton occurs,
but checks were carried out via additional, smaller LI-curve, whether other VVBs might be
accessible from other initial conditions (b) Red dots denote the main polarization direction of the
fundamental soliton occurred at lower currents, blue of the one at higher current. The green
rhombus indicates the selected polarization without HWP. The slope of polarization
angle vs. HWP angle is 2 as a HWP turns the polarization by two times the deviation from its
principal axis. The BS is present in the cavity
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13.3.5 Influencing Polarization Selection by Intra-Cavity
Waveplates

Although desirable, it is not straightforward to include means for controlling weak
anisotropies in our setup, but we can introduce a strong anisotropy via a half-wave
plate (HWP). This is introduced into the external cavity between the telescope
lenses. First, we investigated the influence on the polarization properties of the
fundamental solitons (Fig. 13.8b). It is obvious that the direction of polarization of
the fundamental solitons is rotated in the same way as the HWP is rotated, which can
be expected for such a large phase anisotropy like the HWP. Over most of the range
both polarization states can be obtained with the exception of a region centred
around a polarization angle ψ �−10∘, which is interestingly roughly in between
the two polarization state of the two fundamental solitons without the introduction of
the HWP. This seems to be the least favourable orientation with only the intrinsic
anisotropies, and hence only the favoured polarization state might survive.

Figure 13.8a summarizes the observations at what angle of the HWP which type
of VVB or domain structure is observed. In addition, linearly polarized vortex beams
have been observed along some point of the hysteresis loop at most angles of the
HWP. It is hard to recognize a pattern behind the selection but it is interesting to note
that only a single type of VVB was found for each angle. The second observation is
that the spiral vortex is a robust feature at the appropriate anisotropy, whereas it had
been very difficult to obtain in the experiments discussed before. At the angles where
no VVB or domain structure is reported, the linearly polarized vortex has a vertical
polarization i.e. orthogonal to the horizontal one for which only one fundamental
soliton exists. This reenforces the impression that vertical/horizontal polarization
corresponds to some maximum polarization anisotropy. Apart from these observa-
tions, the figure mainly supports the notion that all or at least many kind of VVB
exist in the system and the anisotropies decide whether are stable and accessible via
LI-curves. We will discuss ideas how to develop these investigations in Sect. 13.5.

13.3.6 Interpretation

From the observation reported, it appears that small anisotropies in the system decide
which VVB is stable and can be observed. This is in line with the theoretical analysis
in [45] for a free running VCSEL predicting the existence and stability of the three
types of VVB that we observe (anti-vortex, spiral vortex and radially polarized
vortex). Perfect cylindrical symmetry is best for a large existence range, but they
survive modest anisotropies. No detailed analysis of their stability against linear
polarized vortices or between different kind of vector vortex beams is however given
in Ref. [45]. It might be even possible that a VVB we did not observe is stable but
cannot be accessed by conventional LI-curves.
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The VVB states share many properties with high-order dissipative solitons as the
localization to a small region in a broadly pumped plano-planar cavity, their coex-
istence with the non-lasing zero background and the abrupt emergence. The induced
waveguide should be similar to the linearly polarized ones investigated in [32] as it
depends on total intensity S0. For these, theoretical investigations support the soliton
interpretation [27, 28]. This supports the notion that the solitonic behaviour comes
from quasi-scalar guiding (S0) and the polarization structure forms spontaneously
under the conditions of polarization degeneracy or near-degeneracy. The deforma-
tion of the doughnut rings to 3-spots is no counter-argument against solitonic
character, although poorly understood. Corresponding generalized vortex solitons
were predicted [107] and indications observed [108] in single-pass conservative
systems and termed azimuthons. Theoretical predictions exists also for dissipative
systems [19, 109] including a simplified model for a VCSEL with frequency-
selective feedback [110]. A detailed theoretical treatment is currently beyond our
resources but we hope that this contributions triggers theoretical efforts to this effect.

Coming back to why VVB as predicted by [45] were not observed in free-running
VCSELs, it is important to realize that in all real VCSEL the polarization degeneracy
will be lifted to some extend by the electro-optical effect in electrical pumped
devices [111] and elasto-optical effects introduced via uncontrolled strain in the
growth process [112]. This leads to birefringence and possibly dichroism. In addi-
tion, even monolayer fluctuations will influence detuning conditions. Typically these
fluctuations will not have rotational symmetry, thus lifting the degeneracy between
H10- and H01-modes (or better to say between nonlinear counterparts for the soliton
states). Thus it might be that locking to a VVB is not possible. However, even
minute tilts of the VBG will influence the feedback phase significantly and in a
slightly different way across an extended structure like a doughnut. We demon-
strated frequency tuning of fundamental solitons and differential frequency detuning
between spatially separated solitons before [103, 113]. Hence, we conclude that
minute alignment changes of the VBG, which are much smaller than the angular
width of the soliton, can provide the necessary frequency fine tuning to allow the
compensation of small intrinsic anisotropies and the formation of VVB. Tilting the
VBG away from the condition used will destroy these states and favour linearly
polarized ones or irregular domain structures. On the other hand, we stress that the
observation of VVB is robust. Otherwise, we would not have discovered them as the
observation reported in [39] was not anticipated.

13.4 Flip-Flop Operation of Laser Cavity Solitons

13.4.1 Soliton Control in Systems with and Without Holding
Beams

As indicated in the introduction, a major advantage of a cavity soliton laser is that it
does not need a broad coherent driving (or holding beam, HB) but can draw all its
energy out of incoherent pumping. However, for soliton manipulation, the holding



beam provides actually the nice feature that a beam can be split off easily forming a
focused addressing beam (AB) which can be used to switch solitons up and down in
a conceptually simple way [50, 52, 53]. By controlling the phase between HB and
AB and thus locally the driving intensity, the system can be switched from one of the
bistable states to the other, up for constructive and down for destructive interference.
In contrast, there is no beam before a cavity soliton switches on, but switch-on can be
initiated by an external beam in the vicinity of the soliton frequency (ignition beam,
IB). This has been achieved in various VCSEL laser systems relying on dispersive
[29, 54, 114] or absorptive nonlinearities [55, 56, 115] or possibly a combination of
them [55]. Inspection of Fig. 13.1b yields that the switch-on is related to a drop in
carrier density which then shifts the detuning via phase-amplitude coupling. Simi-
larly, in the system based on saturable absorption [55], reduction of carrier density
caused by the IB leads to an increase in cavity finesse and hence soliton switch-on.
For both systems, an erasure would demand adding carriers which cannot be
achieved with optical injection close to the laser frequency but demands optical
pumping at higher energies at which the semiconductor is absorptive. Such an
experiment has not been performed for solitons in electrically pumped VCSELs,
yet, but the switch-off of solitons has been obtained in [29, 31, 55] with an erasure
beam (EB) aimed at the side of the solitons. This method utilizes that the detuning
conditions vary over the cross-section of the wafer and hence of the broad-area laser.
The EB drags the solitons out of their preferred positions in the centre of the traps
providing the best detuning condition. They do not recover, if the EB is switched off.
However, a two-colour flip-flop operation scheme has been demonstrated before for
bistable states in edge-emitting semiconductor amplifiers [116]. Interesting experi-
ments have been also performed using a mode-locked TiSa-laser in the absorptive
regime of VCSEL amplifiers [117, 118] and VCSEL with integrated saturable
absorber [56] demonstrating flip-flop operation with a single colour providing
optical pumping. Here the switch-down can be understood via the mechanism
discussed above but the up-switch is not fitting the expectation. The up-switch
involves substantial delays and it is argued in [56, 117, 118] that the possibility of
up-switching is due to a combination of thermal and non-local effects. Flip-flop
operation relies on hitting a sweet spot in parameter space. Hence we are addressing
below the question of robust two-colour flip-flop operation of laser cavity solitons.
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13.4.2 Experimental Setup

The optical setup is illustrated in Fig. 13.9. A laser at 980 nm is used for the IB beam
and a laser at 915 nm for the EB. Acousto-optical modulators (AOM) allow for a fast
pulsing of the beams (minimal pulse duration about 25 ns for the IB, 200 ns (100 ns
with a strong reduction of efficiency) for the EB). The beams are launched into
single-mode fibres and combined in a 2� 2 fibre-coupler with a nominal coupling
rate of 50%. The output of one arms is monitored by a DC-coupled photodetector
with 50 MHz bandwidth. The beam from the other output is collimated and then
focused onto the VBG, size-matched to the soliton image at the VBG and hence to



the soliton in the VCSEL. The beam is then aligned to be on axis and hitting the
soliton via the cameras monitoring near and far field. The output of the VCSEL is
monitored by an AC-coupled avalanche photodiode (APD) operated in the linear
regime with a bandwidth of 1.7 GHz. For some measurements, it was replaced by a
DC-coupled photodetector with 50 MHz bandwidth. A delayed switching sequence
of the AOMs was coordinated via a digital delay generator. Peak powers after the
fibre are 2 mW for the 980 nm laser and 14 mW for the 915 nm laser.
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Fig. 13.9 Setup for flip-flop operation of laser cavity solitons. AOM: Acousto-optical
modulator, MMF: multi-mode fibre, DDG: digital delay generator, APD: avalanche photodiode,
CCD1(2): charge-coupled device cameras monitoring near and far field of the VCSEL. VBG:
volume Bragg grating. The inset shows a LI-curve obtained at a VCSEL temperature of 47 ∘C for
the fundamental soliton

The submount temperature of the VCSEL was put to 40–47 ∘C. As a result, the
detuning position for soliton switching (Fig. 13.1c) is met at considerably lower
currents than discussed in the previous sections and the first structure appearing is a
fundamental soliton [62]. Its hysteresis loop is depicted in the inset of Fig. 13.9.

13.4.3 Experimental Results

In a first experiment, the laser is biased within the hysteresis loop, but close
(‘detuning’ 1 mA) to the spontaneous switch-on point. Figure 13.10 demonstrates
successful switch-on for pulse lengths of 100, 200 and 500 ns. The initial peak signal
is from the IB itself. After a delay between 80 ns and 200 ns, there is a very fast and
abrupt switch-on of the soliton. This stays on after the IB is switched off. The delay
increases with increasing detuning from the spontaneous switch-on point and longer



�

pulses are required (at constant amplitude, e.g. �500 ns at �2 mA, tens of micro-
seconds at �3 mA detuning). The jitter of the delay is related to fluctuations. These
results match the observations and their numerical reproduction discussed in [114]
and can be interpreted by the necessity to pass the separatrix indicated in Fig. 13.1b
in Sect. 13.2. The separatrix represents the unstable soliton solution separating the
basins of attraction of the two stable states.
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Fig. 13.10 Three independently performed switch-on events (offset on time axis for clarity), with
pulse widths of 500, 200, and 100 ns from left to right. The right-axis gives the WB amplitude
(black lines) of the three pulses detected in the 50 MHz bandwidth photodiode. The left axis is the
signal from the APD (coloured lines). Temperature of VCSEL submount: 40 ∘C

Switch-off events close to the spontaneous switch-off point are documented in
Fig. 13.11. For this, the current is increased until spontaneous switch-on occurs, and
then reduced close to the point of spontaneous switch-off. The initial increase in the
detector signal is due to the detection of the EB. The fast reduction of signal is then
due to the switch-off of the soliton, which occurs within the duration of the EB. The
final tail is the decay of the EB. As for the switch-on, the minimum pulse width
needed to induce switching at constant amplitude increases with increasing detuning
to the microsecond range (at 3 mA).

The scheme in Fig. 13.1b indicates that somewhere typically close to the centre of
the hysteresis curve, upper and lower state have an equal stability and roughly equal
distance to the separatrix. This so-called Maxwell point is hence the point to aim for
flip-flop operation. As time scales are then in the tens of microseconds range the
AC-coupled APD is not working well for monitoring the signal. The DC monitor
provides evidence of flip-flop operation but due to its low bandwidth demands
millisecond pulses. Hence a DC coupled detector with 50 MHz bandwidth but



much lower amplification is used. Figure 13.1b shows a realisation of a flip-flop
event with input pulses of 50 μs width. The soliton switches on with the arrival of the
980 nm IB (it is unclear why the IB did not register in the detector in these
experiments) and stays on until it is hit by the 915 nm EB. Further experiments
indicate that the minimum pulse duration needed at the switching amplitudes
available can be 10 μs, but switching is no longer robust.
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Fig. 13.11 Three independently observed switch-off events, with pulse widths of 200, 500,
1000 ns from left to right (see Fig. 13.10 for explanations). Note that, as the APD is AC-coupled,
initially the soliton is on even if the signal is zero, which can be confirmed from examining the bias
monitor output

A simulation demonstrating flip-flop operation of fundamental VCSEL solitons
was performed using the model presented in [62] (a simplified version, without the
external-cavity delay, of the model [61] used to reproduce the switch-on events in
[114]) and is displayed in Fig. 13.13. No detailed investigation or matching of
parameters is intended at this point, just a qualitative demonstration. Similar to
Fig. 13.12, the sequence is initiated by an optical pulse close to the soliton frequency
at t¼ 0 (Fig. 13.13). This causes a strong burst in the intra-cavity field, followed by a
sudden drop as the end of the IB. Then the system approaches the steady-state in an
oscillatory fashion. This kind of transient is typical of relaxation oscillations in
semiconductor lasers but is not resolved in the current experiment as it takes only
a few nanoseconds in the simulations. It should be noted that the actual switch-on
transients observed experimentally and reproduced numerically in Ref. [114] are
even more complex than this due to the external-cavity dynamics. However, these
complex transients still die out within tens of nanoseconds. At the end (at t¼ 1800),
a pulse is added to the current parameter to simulate the incoherent optical pumping.
This is followed by a rapid switch-down of the soliton.
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Fig. 13.12 Successful flip-
flop event. The black trace
shows the two input pulses
(not to scale), the red trace
the response. The red trace
has been smoothed over 1 μs
to remove high frequency
noise. The offset of 10 mV
is an electronic bias.
Temperature of VCSEL
submount: 47 ∘C

Fig. 13.13 Amplitude at
centre of soliton during a
numerically simulated flip-
flop sequence. Optical
injection takes place from
t¼ 0 to t¼ 200 (amplitude
0.3), current injection from
t¼ 1800 to t¼ 2000
(amplitude 0.7). Parameters
(see [62]): Θ¼−2.3, α¼ 5,
γ¼ 0.01, λ¼ 0.0271,
σ¼ 0.6 and μ¼ 0.55. Time
unit is the inverse of the
cavity lifetime, about 10 ps

Obviously, more work is needed to explore and to optimize parameters but the
results presented here are a proof-of-principle of flip-flop operation of laser cavity
solitons via the carriers and not via parasitic thermal or non-local effects in both
experiment and theory.

13.5 Conclusions and Outlook

We demonstrated in this contribution vector vortex solitons with spatially inhomo-
geneous polarization forming spontaneously from symmetry breaking. The current
experiment uses the full vector properties of light except helicity yielding a beautiful
connection between nonlinear science and singular optics (or structured light).
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Another motivation to investigate optical solitons, in particular dissipative solitons,
is their use in all-optical processing and memory applications. We reported on the
flip-flop operation of laser cavity solitons via an in principle all-electronic process.
Although it seems that applications of spatial solitons for parallel information
storage are limited due to the sensitivity to detuning fluctuations, using a VCSEL
(or, for power scaling, an optically pumped semiconductor disk laser) to create VVB
might be a simple and cost-effective option. In particular, such a system might be
able to switch between different VVB on time scales of hundreds of nanoseconds in
response to internal parameter changes or external stimulus, whereas spatial light
modulators have typically responses on the millisecond time scale. We note that not
only the time scale for flip-flop operation of fundamental solitons can be improved
by parameter optimization, but that switching between different vortex states might
be faster as it does not involve a significant change of S0 and hence carrier number in
the semiconductor. This adaptability might be useful in polarization modulated
spectroscopy, quantum optics or sensing applications. Obviously, some work is
needed to achieve robustness in addition to flexibility.
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Apart from potential applications, it is fascinating to think about the options of
using external stimuli for switching between VVB for fundamental investigations.
We floated the idea before that maybe VVB states we do not observe in an
experimental situation might be still stable, but not accessible via the conventional
LI-curves. This could be investigated by the injection of ‘structured light’. B
coupling the cavity to a spatial light modulator [91] it would be also possible to
change the anisotropies in a controlled way and thus to understand the selection
between different VVB. Another option is to use controlled strain to change the
intrinsic anisotropies of the VCSEL [119–121], although the bending methods used
in [120, 121] are probably not directly suitable for broad-area VCSELs. As the
information on the polarization direction is not expected to be stored directly in the
semiconductor electron-hole plasma, memory and hysteresis effects are likely to be
related to differences in detuning conditions for nearly degenerate VVB. It will be
interesting to include the spin degrees of freedom in the consideration as some
memory of them is stored in the semiconductor and found not only to be important to
understand some aspects of polarization switching in VCSELs [41–44] but also
enabling novel spintronic applications [121]. There are indications that the helicity
becomes nonzero and spatially varying in the VCSEL with frequency-selective
feedback [39] but systematic investigations are lacking.

In summary, the results arguably support the notion of nonlinear optics being an
excellent workhorse for investigations on conservative as well as dissipative soli-
tons. Optical systems are not only highly controllable in parameters and have
reasonably fast time scales to allow repeated experiments, but also—via the polar-
ization degrees of freedom—many degrees of freedom to play with, provide an easy
interface for outside control via beams and the options to tailor settings via feedback,
coupled cavities, spatial light modulators and polarization changing elements.
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Chapter 14
Discrete Solitons of the Ginzburg-Landau
Equation

Mario Salerno and Fatkhulla Kh. Abdullaev

Abstract In this chapter we review recent results concerning localized and
extended dissipative solutions of the discrete complex Ginzburg-Landau equation.
In particular, we discuss discrete diffraction effects arising both from linear and
nonlinear properties, the existence of self-localized dissipative solitons in the pres-
ence of cubic-quintic terms and modulational instability induced by saturable non-
linearities. Dynamical stability properties of localized and extended dissipative
discrete solitons are also discussed.

Keywords Discrete Ginzburg-Landau equation · Nonlinear waveguides arrays ·
Bose-Einstein condensates · Complex band structure · Dissipative solitons · Cubic-
Quintic nonlinearity · Modulational instability · Plane waves · Saturable
nonlinearity · Nonlinear periodic waves

14.1 Introduction

The complex Ginzburg-Landau equation (GLE) is a fundamental equation of phys-
ics which appears in many different contexts, including phase transitions, supercon-
ductivity, nonlinear optics, non-equilibrium fluid dynamics, Bose-Einstein
condensates, etc. [1–5]. Being intrinsically nonlinear the GLE displays a very
reach dynamical range of behaviors ranging from chaotic motion to regular struc-
tures as vortex and dissipative solitons.

Properties of dissipative solitons of the continuous GLE equation have been
largely investigated in the past decades [6]. They were predicted by Pereira-Stenflo
in [7] (see also [8]), where the exact soliton solution of the one-dimensional cubic
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Ginzburg-Landau equation with filter was obtained for the first time. In contrast with
solitons of Hamiltonian systems that usually appear as one-parameter families of
solutions and whose existence relies on the balance between nonlinearity and
dispersion, the existence of dissipative solitons of GLE requires two conditions to
be simultaneously satisfied e.g. the equilibrium between nonlinearity and dispersion
and the equilibrium between dissipation and amplification. Moreover, dissipative
solitons do not appear in families but exist just for specific values of the parameters
appearing in the equation. Dissipative solitons and breathers can also appear in the
nonlinear Schrödinger equation in the presence of different types of complex
periodic potentials [9].

304 M. Salerno and F. K. Abdullaev

Quite recently a great deal of attention has been devoted also to the study of
nonlinear discrete optical systems modeled by a discrete version of the GLE (DGLE)
[10–18], which is similar to the discrete nonlinear Schrödinger equation (DNLSE)
but with dissipative and amplification effects included. The DGLE has been used to
describe a number of physical systems, including arrays of waveguides with ampli-
fication and damping, arrays of semiconductor lasers [19], arrays of exciton-
polariton condensates [20], frustrated vortices in hydrodynamics [21], dissipative
discrete nonlinear electrical lattices with nearest-neighbor interaction [22], etc. In
particular, in optics the DGLE appears in problems of beam propagation in the array
of the nonlinear optical waveguides with Kerr and resonance nonlinearities [23–
25]. The Kerr medium is assumed active and with intrinsic, saturable gain and
damping. The existence of a variety of nonlinear localized modes in these systems,
including moving discrete dissipative breather-solitons [23] and vortex dissipative
solitons [26], was demonstrated.

Similarly to the continuous case, discrete solitons require the balance both of
dispersion and nonlinearity and of dissipation and amplification. In this context
discrete dissipative solitons have been investigated for power law [13] and saturable
[18] nonlinearities, for complex extensions of the Ablowitz-Ladik equation [14, 27],
for DNLS-type equations with cubic-quintic nonlinearities [28–31].

In the case of saturable nonlinearities, the study of solitons has been restricted
mainly to the conservative case. In particular, discrete solitons of DNLSE with
saturable nonlinearity were investigated in Refs. [32, 33] and discrete breathers for
the same type of equation in Ref. [34]. In spite of the relevance of this type of
nonlinearity for optics, existence and stability of dissipative solitons in the presence
of a saturable nonlinearity are poorly investigated. In the continuum case saturable
nonlinearities have been considered in the one-dimensional complex Ginzburg-
Landau equation both for scalar and vectorial cases [35]. Modulational instability
and stopping of Kerr self-focusing induced by nonconservative effects have also
been investigated in the multidimensional continuous complex GL type equation
with nonlinear saturation [36, 37].

In this chapter we review some recent results on localized and extended dissipa-
tive solutions of the discrete complex Ginzburg-Landau equation. In particular, we
discuss discrete diffraction effects arising both from linear and nonlinear properties,
the existence of self-localized dissipative solitons in the presence of cubic-quintic
terms and the existence and stability of dissipative solitons of the DGLE with



saturable nonlinearity. In this last case we consider the problem of the instability of
nonlinear plane waves solution under weak modulations, i.e. the modulational
instability (MI) problem, which allows to define the region of parameters where
solitons and train of solitons can be formed. For this we also construct discrete
dissipative solitons and nonlinear periodic waves of DGLE with saturable
nonlinearity. In particular, we provide explicit analytic expressions for periodic
dissipative solitons solutions in the form of elliptic functions both on a zero and
on a finite background. Stability properties of these solutions are investigated both by
means of MI analysis and by direct numerical simulations of their propagation under
the DGLE. As a result, we show that while discrete periodic waves and solitons on a
zero background are stable, they become modulationally unstable on a finite back-
ground. The effect of a linear ramp potential on the dynamics of stable localized
dissipative solitons is also considered.
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14.2 The Model and Linear Dispersion Relation

The cubic-quintic DGLE can be obtained from a corresponding space-periodic
continuous model in the tight binding approximation [38], and in normalized units
can be written in full generality as [39].

i
dψn

dz
¼ �Γðψnþ1 þ ψn�1Þ þ iγ1ψn þ ðγ3 þ γ5jψnj2Þjψnj2ψn ð14:1Þ

with γ1 real and Γ ¼ ΓR + iΓI, γ3 ¼ γ3R + iγ3I, γ5 ¼ γ5R + iγ5I complex parameters. In
the optical context Eq. (14.1) arises in connection with semiconductor laser arrays
and optical amplifiers [39, 40] but it can be also used to model mean field properties
of open Bose-Einstein condensates (BEC) trapped in deep optical lattices [41, 42]. In
the optical context (resp. in the BEC context) z denotes the propagation length (resp.
the time), ψn the amplitude of the electromagnetic wave on site n (resp. the
condensate wavefunction at site n), Parameters ΓR and ΓI are the real and imaginary
parts of the complex discrete diffraction in the paraxial approximation (resp. inter-
well tunneling constant in BEC), γ3R, γ5R denote the strengths of the cubic and
quintic nonlinearity (two and three body interaction terms in BEC) while γ1, γ3I, γ5I
are real coefficients related to the gain/loss mechanisms present in the optical system
(resp. in open BEC). In the following we adopt the notation appropriate for the
optical context.To investigate nonlinear property of this equation it is convenient to
start with the band structure of the underlying linear system, this being important, at
least for not too large nonlinearities, to understand the types of localized dissipative
structures one can have in the system. For this we set γ3 ¼ γ5 ¼ 0 in Eq. (14.1) and
look for plane wave solutions of the type ψn ¼ exp i(kn � Ωz) with k 2 R denoting
the lattice quasi-momentum and Ω complex, i.e. Ω � ΩR + iΩI, denoting the
propagation wave number (in nonlinear Schrödinger lattices z plays the role of



b

time and Ω corresponds to the complex energy, in ħ units). Direct substitution of the
above wave in Eq. (14.1) leads to the following dispersion relations:
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a

Fig. 14.1 Typical real (continuous blue curves) and imaginary (dotted red curves) linear bands in
Eq. (14.2). Parameter values are fixed as ΓR ¼ 1.0, ΓI ¼ � 0.2, γ1 ¼ � 0.4, in the left panel and as
ΓR ¼ 0.1, ΓI ¼ � 0.5, γ1 ¼ � 0.3123246628 in the right panel. The dot-dashed green curve in the
left panel refers to the imaginary band obtained for ΓI ¼ 0.2, with real band and all other parameters
unchanged

ΩR ¼ 2ΓR cosðkÞ,ΩI ¼ γ1 � 2ΓI cosðkÞ, ð14:2Þ

and the periodicity of the lattice (lattice constant being fixed to 1) permits to restrict
the resulting real and imaginary bands to the first BZ, e.g. k 2 [�π, π]. In Fig. 14.1
are shown typical linear bands for different γ1, Γ parameters.

While the real band has a direct correspondence in closed nonlinear lattices, the
imaginary band is typical of open (i.e. dissipative) systems, playing an important role
for stability of the stationary solutions in the system. Thus, for example, from
Eq. (14.2) it follows that any zero amplitude solution in the Brillouin zone
(BZ) can be stable if ΩI(k) < 0 for k, this implying that γ1 � 2ΓI. On the other
hand stationary Bloch states of a given k can be stable under z-propagation only if
the corresponding ΩI(k) is exactly zero. As example, in the left panel of Fig. 14.1 we
shown band structures for the cases in which ΩI becomes zero at k ¼ 0 (red dotted
curve) or at the edges of the BZ k ¼ � π (green dot-dashed curve) corresponding to
the cases ΓI ¼ � 0.2 and ΓI ¼ 0.2, respectively. Note that the other parameters are
fixed the same way so that the ΩR band of the two

Thus, the ground state of theΩR band (i.e. the Bloch state at k¼ 0) is stable in the
first case (e.g. ΓI ¼ � 0.2) but not for second case (e.g. ΓI ¼ 0.2), as one can see
from Fig. 14.2 where the z-propagation for the uniform ground state
| ψn | ¼ 0.185695, is reported for both cases. As it is evident from the left panel of
Fig. 14.1, the opposite will be true for the highest excited Bloch state at the edge k¼ π



of the BZ (not shown for brevity). All other k-Bloch states in the bands depicted in
Fig. 14.1 will either grow, if their ΩI(k) > 0, or decay into the zero amplitude
background if their ΩI(k) < 0. From this it is clear that the balance between
dissipation and gain is very crucial for the existence of stable solutions.
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Fig. 14.2 Numerical z-evolution of the uniform Bloch state of the band structure depicted in the
left panel of Fig. 14.1 at k ¼ 0, for parameters values ΓI ¼ � 0.2 (left panel) and ΓI ¼ 0.2 (right
panel). Other parameters are fixed as in the left panel of Fig. 14.1. In the figures are depicted the
modulo jψnj (black continuous curve), the real (dashed blue curve) and imaginary (red dot-dashed
curve) parts of ψn at a generic site n of the lattice

14.3 Dissipative Solitons of the DGLE

In analogy with the usual nonlinear Schrödinger lattices one can expect that dissi-
pative localized states occur from instabilities of the Bloch states either at the center
or at the edges of the BZ, depending on the signs of the nonlinearities. For the NLS
equation with periodic potentials (optical lattices) this was indeed proved in the
small amplitude limit, starting from exact stable Bloch states of the underlying linear
problem and using perturbation theory. The mechanism for the creation of nonlinear
excitations in the band gaps was then ascribed to the MI of Bloch states [43]. In the
complex case this is more complicated due to the further requirement of the gain/loss
balance needed for stationarity, but conceptually the mechanism is the same. This
means that nonlinear localised modes can fork from the extremes of the real band
and move into the band-gaps as the nonlinearity is increased. In the small amplitude
limit they can be viewed as superpositions of Bloch states with k values centered
around either k¼ 0 or k¼� π, depending on the signs of γ3R, γ5R, with corresponding
imaginary band values ΩI(k) appropriate for stability. The MI will be discussed in
more detail in the next section for the case of a saturable nonlinearity.
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Although it is possible to obtain for some specific case exact solutions of the
DGLE, in general one must recourse to numerical methods. This can be done by
substitution the stationary ansatz ψn(z) ¼ (un + ivn) exp (�iΩz) into Eq. (14.1) and
solving the resulting algebraic system for un, vn either by Newton iterations or by
self-consistent diagonalizations of the non-hermitian and nonlinear eigenvalue prob-
lem [44]. Typical examples of dissipative discrete solitons obtained numerically are
depicted in Figs. 14.3 and 14.4. Notice that the band structure of the underlying
linear problem corresponding to the unstable inter-site symmetric dissipative soliton
reported in the right panels of Fig. 14.4 is depicted in the right panel of Fig. 14.1
from which we see that the soliton instability under the z-propagation correlates with
the existence of a wide k-interval around k ¼ 0 for which ΩI(k) > 0 and
the corresponding linear Bloch states are unstable.

14.4 Saturable Nonlinearity and MI Analysis

As is well known, the MI is a fundamental dynamical phenomenon responsible for
soliton and pattern generation in nonlinear systems [45]. In comparison to the
continuous (non periodic) case, the MI in the discrete case displays novel properties
since the discrete diffraction makes possible to have MI also for defocusing
(e.g. repulsive) nonlinearity. Since the parameter region where plane waves become
modulationally unstable coincides with the existence region of solitons, one has that
nonlinear lattices can support solitons also for defocusing interactions. This fact is
true also in the continuous case, if a periodic potential is present [43]. Different
discretizations of the same continuous nonlinearity can have different effects on the
MI and, correspondingly, can lead to different conditions for the existence of soliton
solutions [46]. We also remark that in the DNLSE for small wavenumbers of the
nonlinear plane wave, all modulations become unstable if the power excess a
threshold value [34]. For DNLSE with a saturable nonlinearity the gain and critical
frequency are decreased in comparison with the Kerr nonlinearity model [29]. Exper-
imentally discrete MI has been observed in the array of nonlinear optical waveguides
[47] and in photovoltaic crystals [48].

In this and in the next section we study MI and exact solutions of DGLE with
saturable nonlinearity and saturable gain/loss which appear when one considers the
propagation of beams in the array of nonlinear optical waveguides with active Kerr
medium and resonant interaction. The general form of the model for this was
introduced in Refs. [23, 24] as

i
dψn

dz
þ Γðψnþ1 þ ψn�1Þ � ½jψnj2 � i f dðjψnj2Þ�ψn þ Q f isðjψnjÞ ¼ 0 ð14:3Þ

where fd(x), x � |ψn|
2, is a real function that describes the amplification and

absorbtion of each waveguide of the array of the form [24, 25, 49].
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a

c

Fig. 14.3 Typical onsite-symmetric dissipative solitons (top panels) and their z-propagations
(in corresponding bottom panels) obtained from direct numerical diagonalization and integration
of Eq. (14.1). The soliton in the top left panel has ΩR ¼ � 2.68251 located below the linear real
band at the center (k ¼ 0) of the BZ. The corresponding z-propagation is depicted in the bottom left
panel. Parameter values for this case are fixed as: Γ ¼ 1.0, γ1¼ � 0.1, γ3 ¼ � 2.847313757 + 0.3i,
γ5 ¼ � 0.6i. The soliton in the top right panel has ΩR ¼ 2.72421 located above the linear real band
at the edge (k ¼ π) of the BZ. The corresponding z-propagation is shown in the bottom right panel.
Parameter values for this case are fixed as: Γ ¼ 1.0� 0.01i, γ1 ¼ � 0.447102453, γ3 ¼ 2.52 + 0.3i,
γ5 ¼ 0.6 � 0.28i. In top panels the continuous black lines with diamonds, blue dashed lines with
dots, and red dotted lines with squares, correspond to the modulo square, and real and imaginary
parts of ψn, respectively
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a

c

Fig. 14.4 Same as in Fig. 14.3 but for inter-site symmetric dissipative solitons. Parameter are fixed
for the left panels as: Γ ¼ 1.0, γ1 ¼ � 0.4573, γ3 ¼ � 3.8 + 0.3i, γ5 ¼ 2.6 � 0.4i, and for the right
panels as Γ ¼ 0.1� 0.5i, γ1¼ � 0.312325, γ3¼ � 4.0� 0.6i, γ5¼ � 0.5� 0.1i. In both cases the
solitons have real part of the propagation wave-number below the bottom edge of the linearΩR band
at k 0
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f d xð Þ ¼ �δþ
1þ x

�
1þ bx

, ð14:4Þ

while the function fis(x) and the strength Q are related to the inter-site Kerr nonlinear
refractive index (see [23, 24] for details). The parameters δ describe the linear non
resonant losses while g, a are the strengths of the saturable gain and absorption,
respectively, and b is the ratio between the gain and absorption saturation intensities.
For simplicity in the following we restrict to the case Q ¼ 0, b ¼ 1 and rewrite
Eq. (14.3) in the form

i
dψn

dz
¼ �Γðψnþ1 þ ψn�1Þ þ iγ1ψn þ γ3

jψnj2
1þ μjψnj2

ψn, ð14:5Þ

where we replaced the Kerr nonlinearity with the saturable nonlinearity, and denoted
γ1 ¼ δ and μ the parameter controlling the nonlinearity saturation (note that in
Eq. (14.3) the field ψn is normalized according to the gain saturation intensity and the
strength, while in Eq. (14.5) the nonlinearity saturation has been made explicit).
Moreover, without loss of generality, we fix Γ ¼ 1 � iα, γ3 ¼ � ν + iγ.To study the
MI we notice that Eq. (14.5) supports nonlinear plane wave solutions of the form
ψn ¼ A exp (i(kn � ωt)), with amplitude A, wave numbers k and frequency ω
satisfying the following nonlinear dispersion relation:

A2 ¼ � δþ 2α cos kð Þ
δμþ γ þ 2μα cos kð Þ , k 6¼ � arccos

δμþ γ
2μα

� �
� π,

ω ¼ 2 cos kð Þ
γ
� 1 þ

γ
: ð14:6Þ

For ω > 0 there are two possibilities for plane wave existence, e.g. i) for ν/μ > 0, the
frequency must vary in the interval 2 � ν/μ < ω < 2; ii) for ν/μ < 0, the frequency
must vary in the interval 2 < ω < 2 + j ν/μj. In the case ω < 0 we find that the
frequency must be varied in the interval 2 � ν/μ < ω < 0, with ν/μ > 2. Taking into
account that ω is defined by Eq. (14.6), one can easily derive restriction on
parameters for the existence of plane waves at special points of k-space: at k ¼ 0
(unstaggered solution) and at k ¼ π (staggered solution). For the staggered solution
we find the restriction δ � 2α, while for the unstaggered k ¼ 0 solution we find that
ν(2α + δ)/γ 4 must be satisfied.

To analyze MI in Eq. (14.5) we look for solutions of the form

ϕn zð Þ ¼ Aþ ϕn zð Þð Þ exp i kn� ωzð Þð Þ,ϕ � A: ð14:7Þ

By substituting into Eq. (14.5) we get



�
A

4 1 4 4 , 14 11

¼

G ¼ 4Sα 2Δþ νDð Þ: ð14:13Þ
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iϕn,t þ 1� iαð Þ ϕnþ1e
ik þ ϕn�1e

�ik � 2 cos kð Þϕn

� þ
2

ν� iγð Þ
1þ μA2
� �2 ϕn þ ϕ�

n

� � ¼ 0: ð14:8Þ

By looking for solutions of Eq. (14.8) of the form

ϕn ¼ Bei Qn�Ωtð Þ þ C�e�i Qn�Ω�tð Þ, ð14:9Þ

with B, C,Ω complex numbers, one readily obtains the following dispersion relation
is obtained

Ω2 � Λ1Ω� Λ2 ¼ 0, ð14:10Þ

where

Λ1 ¼ 2 2Sþ i 2αΔþ γDð Þð Þ,
2 2 2Λ2 ¼ þ α

� �
Δ � S
� �þ DΔ νþ αγð Þ þ i αν� γð ÞDS ð : Þ

and

Δ ¼ cos kð Þ cos Qð Þ � 1ð Þ,D ¼ A2

1þ μA2
� �2 , S ¼ sin kð Þ sin Qð Þ:

From these equations the MI gain g(Q, k) Im[Ω(Q, k)], is readily obtained as

g Q, kð Þ ¼j 2αΔþ γDð Þ þ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ F2

pq
j , ð14:12Þ

with the functions F, G given by

F ¼ 4S2 � 2αΔþ γDð Þ2
� �

þ 4 1þ α2
� �

Δ2 � S2
� �þ 4DΔ νþ αγð Þ,

In Fig. 14.5 we show typical dependence of the MI gain on wavevectors Q, k for the
focusing case. Notice that the white open regions visible in the figures correspond to

the lines k ¼ � cos �1 γþδμ
2αμ

� �
þ π on which the wavevector k is not defined (see

Eq. (14.6)). From this analysis the existence of nonlinear localized and extended
solutions of Eq. (14.5) is expected. In the next section we shall confirm the existence
of dissipative solitons and cnoidal wave solutions by providing few exact solutions
and by investigating their stability by means of numerical integrations.



14.5 Exact Dissipative Discrete Soliton Solutions

Exact dissipative discrete soliton solutions of different types were obtained in [18]
by assuming specific ansatzes that involve elliptic functions [50]. Few of them are
listed below.
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Fig. 14.5 MI gain g(Q, k) in
Eq. (14.12) versus
wavenumbers Q, k for
parameter values ν ¼ �3,
μ ¼ 1, α ¼ 0.01/3,
δ ¼ � 0.01, γ ¼ 0.012.
Reprinted from Ref. [18]

(i) Single dissipative discrete soliton. It can be search in the form

ψn ¼
sinh βð Þ
cosh βnð Þ e

�iωz: ð14:14Þ

Using the relation

sech aþ βð Þ þ sech a� βð Þ ¼ 2
cosh að Þ cosh βð Þ

cosh 2 að Þ þ sinh 2 βð Þ , ð14:15Þ

we obtain that it is the exact solution of Eq. (14.5) if

β ¼ cosh �1 γ
2α

� �
,ω ¼ � γ

α
, μ ¼ 1,ω ¼ �ν, γ ¼ �δ: ð14:16Þ

Nonlinear periodic solution. We assume the ansatz form

ψn ¼
sn β,mð Þ
cn β,mð Þ e

iωzdn βn,mð Þ: ð14:17Þ

Taking into account the relation for the cnoidal functions

dn aþ βð Þ þ dn a� βð Þ ¼ 2
dn að Þdn βð Þ

1� m2sn2 að Þsn2 βð Þ , ð14:18Þ

we find that the solution parameters should be taken as:



δ dnβ γ
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ω ¼
α
¼ �ν,

cn2 βð Þ ¼ 2α
, γ ¼ �δ: ð14:19Þ

A second type of the nonlinear periodic solution can be obtained from the ansatz

ψn ¼
ffiffiffiffi
m

p sn β,mð Þ
dn β,mð Þ cn βnð Þeiωz: ð14:20Þ

Taking into account the relation

cn aþ βð Þ þ cn a� βð Þ ¼ 2
cn að Þcn βð Þ

mcn2 að Þsn2 βð Þ þ dn2 βð Þ : ð14:21Þ

we find that in this case the parameters must satisfy

ω ¼ δ
α
¼ �ν,

cnβ
dn2 βð Þ ¼

γ
2α

, γ ¼ �δ: ð14:22Þ

We remark that for the periodic solutions the above parameter relations must be
complemented with the periodicity condition βNp ¼ Xp where Np is the number of
points per spatial period (Xp ¼ 2K(m) for Eq. (14.17) and Xp ¼ 4K(m) for
Eq. (14.20), with K(m) the complete elliptic integral of first kind).

The stability of the above exact solutions dissipative can be checked by direct
numerical integrations of Eq. (14.5) taking as initial conditions the exact solutions
with a small noise component added in order to accelerate the emergence of eventual
instabilities. In the top left panel of Fig. 14.6 we show the time evolution of the
periodic dissipative soliton trains in Eqs. (14.17) and (14.20). We see that while the
cn solution remains stable over a long time, the dn solution display modulational
instability at the propagation length z 	 200 out of which two single humps
dissipative solitons are created.

Note from the top right panel of Fig. 14.6 that the dn solution is unstable. This
correlates with the fact that it can be seen as an uniform k ¼ 0 background with
superimposed a plane wave of wavenumber Q ¼ 0.628 in correspondence of which
the analysis of the previous section predicts instability with a MI gain of 	0.561.
Moreover, we see that out of the instability emerge bright solitons as it is expected
for attractive (focusing) nonlinearity.

In the left bottom panel of Fig. 14.6 we show the propagation of the single hump
dissipative soliton in Eq. (14.14) which is the limit of an infinite period (m ! 1) of
the soliton trains in Eqs. (14.17) and (14.20). We see that this soliton is also very
stable under long propagation distances. We remark that this soliton can exist only
due to the perfect balance between the linear damping (δ < 0) and the nonlinear
amplification a condition which can be realized only in the stationary case.

As soon as one deviate from stationarity, as for example is the case when external
forces or potentials try to put the soliton in motion, the soliton may become
dynamically unstable under time evolution. To investigate this dynamical instability



b

d

¼
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a

c

Fig. 14.6 Top panels. Z-propagation of the modulo square of the periodic dissipative soliton trains
in Eq. (14.20) (top left) and in Eq. (14.17) (top right) as obtained from direct numerical integration
of Eq. (14.5). Parameter values are fixed as in Eq. (14.22) with α ¼ 0.001, m ¼ 0.5, β ¼ 2K(m)/Np

for the top left panel and as in Eq. (14.19) with α ¼ 0.01, m ¼ 0.32, β ¼ 4K(m)/Np for the top right
panel. In both cases the number of lattice points per period is Np¼ 10 and the total number of points
along the line is 30. The cn-solution remain stable and dn-solution display MI. Bottom left panel.
Time evolution of the modulo square of the dissipative soliton in Eq. (14.14) as obtained from direct
numerical integration of Eq. (5), for parameter values γ ¼ 0.01, ν ¼ 3, δ ¼ � 0.01. Other
parameters are derived from Eq. (14.16) as β ¼ 0.962424, α ¼ 0.01/3. Bottom right panel.
Time evolution of a dissipative soliton of Eq. (14.5) in presence of a linear ramp potential Enψn

of strength ε 0.0002. Other parameters are fixed as in bottom left panel. Reprinted from Ref. [18]



we add a linear ramp potential of the type Enψn in the right hand side of Eq. (14.5)
which can be implemented in an optical context through curved optical fibers. The
resulting dynamics of the dissipative soliton is depicted in the bottom right panel of
Fig. 14.6. We see that, a part for small oscillations, the soliton can survives for a long
time the acceleration process without significative changes in its shape. By reducing
the strength of the linear potential, pinning phenomena can also become possible,
this occurring in the figure at z 	 1200. In this case the onsite symmetric soliton
becomes pinned to a lattice site in a state for which the perfect balance between
damping and amplification is not realized, this leading to the instability of the state.
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14.6 Conclusion

In this chapter we have reviewed some of the linear and nonlinear properties of
localized and extended dissipative states of the discrete complex Ginzburg-Landau
equation. In particular, we discussed the linear band structure in presence of gain and
loss and the existence of onsite and inter-site symmetric discrete solitons for specific
and typical parameters. The modulational instability problem of the nonlinear plane
waves in the presence of a saturable nonlinearity was also considered and analytical
expressions for exact localized and periodic solitons in the (cnoidal waves) derived.
It was shown that in the region of the parameter space where the MI gain is positive,
generation of solitons and nonlinear periodic wave structures is possible. By taking
specific parameters in these regions we found that while discrete soliton and cnoidal
waves of cn-type are stable, solutions of dn-types on finite backgrounds are
modulationally unstable. We also considered the effect of a linear ramp on a stable
localized dissipative soliton and showed that the soliton could propagate under such
a disturbance for relatively long distances.
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Chapter 15
Noise-Like Pulses in Mode-Locked Fiber
Lasers

Grzegorz Soboń

Abstract The noise-like pulse (NLP) regime is one of the most fascinating phe-
nomena occurring in mode-locked fiber lasers. Observed over two decades ago, still
arouses the interest of scientists because of its complexity and chaotic nature. The
Chapter reviews the most recent and important research on NLP lasers, with
emphasis on the existing hypotheses explaining the formation mechanism of this
phenomenon, the dynamics of noisy pulses, and the reported applications of NLP
lasers.

Keywords Noise-like pulse lasers · Fiber lasers · Mode-locked laser · Nonlinear
optics · Ultrafast phenomena

15.1 Introduction

Mode-locked fiber lasers might operate in a variety of regimes, depending on the
chromatic dispersion and nonlinearities of the resonator. One can distinguish three
fundamental regimes occurring in anomalous, normal and near-zero dispersion:
conventional solitons, dissipative solitons (DS), and stretched-pulses [1], respec-
tively. Among more exotic regimes one should mention like self-smilaritons [2],
dissipative soliton resonances (DSR) [3], quartic solitons [4], and others. One of the
interesting and not yet fully understood mechanisms is so-called noise-like pulse
(NLP) generation, which may occur in the presence of both normal and anomalous
dispersion.

In the NLP regime the laser generates sub-nanosecond-long packets of randomly
spaced sub-picosecond pulses, with random and uncontrollable duration and peak
power. The packets are equally spaced in time (resulting from the cavity round-trip
time), like in conventionally mode-locked lasers. Nevertheless, the internal structure
of the bunch is incoherent and unstable. Such laser behavior was firstly reported in
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1997 by Horowitz et al. [5]. Interestingly, the presence of NLPs was observed in
many different types of lasers, regardless of their emission wavelength, cavity net
dispersion, or mode-locking mechanism.
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In general, the NLP regime manifests itself by several characteristic features:
(1) A broad and smooth optical spectrum, very often even broader than the gain
bandwidth of the medium (e.g., 120 nm width in an Erbium-doped fiber laser [6]);
(2) Intensity autocorrelation of the pulse consisting of a very narrow peak (usually
tens/hundreds of femtoseconds) located on top of a much longer pedestal (tens of
picoseconds) [7]; (3) A radio-frequency (RF) spectrum with a significant noise
pedestal and a significantly worse signal-to-noise ratio in comparison to a stable
mode-locked laser [8]; (4) Output pulse train with a high pulse-to-pulse amplitude
variation [9]. Usually, all these four features observed in a laser behavior suggest
operation in the NLP regime. Due to the smooth and broad spectrum, owing a short
coherence length, such sources have found several applications in optical imaging,
spectroscopy, metrology, and nonlinear optics, which will be described later in this
chapter.

Figure 15.1 illustrates examples of an optical spectrum (a), pulse autocorrelation
(b), RF spectrum (c), and oscilloscope trace (d) of a laser generating NLPs. In this
example, the laser was a Tm-doped fiber laser with a graphene-based saturable
absorber [10]. The optical spectrum (a), has a broad and smooth shape (sharp

Fig. 15.1 Typical NLP laser output: (a) a very broad optical spectrum (the visible sharp dips result
from the water vapor absorption lines in air); (b) pulse autocorrelation with an ultrashort coherent
artifact on top of a wide pedestal; (c) radio frequency spectrum with a pronounced noise pedestal
and low signal to noise ratio; (d) unstable pulse train with significantly varying pulse amplitudes



peaks represent the water absorption lines present in this spectral region). The full
width at half maximum (FWHM) width is 63 nm, which is much broader than in
typical, conventionally mode-locked, stable Tm-doped fiber lasers. The intensity
autocorrelation shown in (b) consists of a broad pedestal with a sharp spike. Here,
the FWHMwidths of the pedestal and spike are 26 ps and 282 fs, respectively. There
were multiple numerical and experimental studies on the autocorrelation character-
istics of NLPs. The short spike (often called the “coherent artifact”) originates from
the short non-random coherent component of the unstable pulse train (i.e., the
average duration of the ultrashort sub-pulses in the bunch), while the broad back-
ground results from the average overall bunch length [11]. It has been shown that
increasing the number of sub-pulses in the NLP bunch leads to a smaller spike-to-
pedestal intensity ratio in the AC trace, but without a noticeable change in their width
[12]. One of the most characteristic features of NLP lasers is their spectrum in the
radio frequency domain, containing a significant noise pedestal around the har-
monics. As shown in Fig. 15.1c, the signal to noise ratio (SNR) in the RF signal is
at the level of 55 dB, which is significantly less than in the case of stable mode-
locking of fiber lasers (where SNR >70 dB is easily achievable at any dispersive
regime [1, 8]). The origin of the noise visible in the RF spectrum is mostly the
amplitude noise (i.e., fluctuation of the pulse amplitude) and frequency modulation
due to the variation of the temporal spacing between the sub-pulses in the bunch. The
amplitude fluctuation can be nicely visualized with a fast oscilloscope (d). In the
presented case, the amplitude fluctuation is larger than 10% while observing only
60 consecutive pulses, while conventionally mode-locked lasers (even without any
active stabilization) achieve output power stability better than 1%.
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15.2 Examples of NLP Lasers

The design of a NLP laser is exactly the same as a typical, state-of-art mode-locked
fiber laser. The majority of the reported NLP lasers were based on nonlinear
polarization rotation (NPR) mode-locking mechanism, in which the cavity transmit-
tance might be easily tuned. It is very often underlined that it is possible to achieve
both stable mode-locking (e.g., soliton) and NLPs in the same cavity, but under
different pumping conditions or different settings of the polarization controller/
waveplates of the NPR. Figure 15.2 illustrates a Thulium-doped fiber laser mode-
locked via NPR, which could operate in both dissipative soliton and NLP regime,
as reported by Soboń et al. [8]. The laser consisted of the following components: a
hybrid component which comprises an output coupler, isolator, and wavelength
division multiplexer in one integrated package, a polarization controller (PC), a
polarization beam splitter (PBS), the gain fiber (TDF), and a segment of dispersion
compensating fiber (DCF). The laser was pumped by an amplified 1566 nm laser
diode. The net dispersion of the resonator was normal (0.021 ps2). At a pump power
of 900 mW the laser generated dissipative solitons, with characteristic steep-edged



optical spectrum, plotted with dashed line in Fig. 15.2b. If the pump power was
increased to 1.1 W, the laser switched to NLP, and emitted extremely broad spectra
(solid line in Fig. 15.2b), much broader compared to the DS regime.
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Fig. 15.2 Example of a Thulium-doped fiber laser operating in both dissipative soliton and NLP
regime. Experimental setup (a) and generated spectra (b) [8]

Since the first demonstration in 1997 [5], there have been numerous reports on
NLP generation from lasers with various cavity architectures. Table 15.1 summa-
rizes the recent achievements in the field of NLP lasers, indicating the wavelength
(and used gain medium), net cavity dispersion, mode-locking mechanism, the NLP
pulse duration (both the spike and pedestal), and the spectral width. The summary
takes into account lasers operating at the most common wavelengths: 1 μm, 1.55 μm,
2.0 μm and 2.1 μm, based on Ytterbium-, Erbium-, Holmium-, and Thulium-doped
fibers as gain media, respectively. The NLP lasers reported in the literature used
different mode-locking mechanisms: nonlinear polarization rotation (NPR),
nonlinear optical loop mirror (NOLM), nonlinear amplifying loop mirror
(NALM), and saturable absorbers: graphene, single-walled carbon nanotubes
(SWCNTs), semiconductor saturable absorber mirror (SESAM), and molybdenum
disulfide (MoS2). Highlighting the most prominent and record-breaking results: the
broadest optical spectrum (considering FWHM) generated from an NLP laser to date
was 203 nm by X. Wang et al. [13]. The shortest spike duration of 14.5 fs was
reported by R.Q. Xu [7], while the shortest pedestal of 920 fs was achieved by C. Xu
et al. [14]. Amplification of NLPs was also reported, with the highest power so far of
13.1 W [15].

15.3 Mechanisms of NLP Formation

The summary shown in the previous section shows that NLPs can be obtained from
lasers with completely different resonator architectures (ring, linear, figure-eight,
both PM and non-PM), mode-locking mechanism (NPR, NOLM, NALM, saturable
absorber: SESAM, graphene, CNTs, MoS2), net cavity dispersion (anomalous,
normal, near-zero), and gain medium (Yb-, Er-, Tm-, and Ho-doped fibers). There-
fore, what is the mechanism responsible for such laser behavior? There are several
hypotheses explaining this phenomenon, and they will be briefly introduced in this
chapter.
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Table 15.1 Examples of NLP lasers reported in the literature

Gain medium
and wavelength

Cavity
dispersion

Mode-
locking
mechanism

Spectral
width

1 Yb:fiber
1070 nm

Normal
(+4.6 ps2)

NPR τspike ¼ 100 fs
τpedestal 100 ps

35 nm [16]

2 Yb:fiber
1070 nm

Near-zero NPR τspike ¼ 30 fs
τpedestal 4.6 ps

131 nm [17]

3 Yb:fiber
1100 nm

Normal
(+1.5 ps2)

NOLM τspike ¼ 100 fs
τpedestal 57 ps

165 nm [18]

4 Yb:fiber
1100 nm

Normal NPR τspike ¼ 92 fs
τpedestal 63 ps

42 nm [19]

5 Er:fiber
1585 nm

Anomalous NPR τspike ¼ 63 fs
τpedestal > 50 ps

120 nm [6]

6 Er:fiber
1560 nm

Anomalous SESAM τspike ¼ N/A
τpedestal 62 ps

4.8 nm [20]

7 Er:fiber
1570 nm

Normal
(+0.33 ps2)

SWCNT τspike ¼ N/A
τpedestal 34.8 ps

15.6 nm [21]

8 Er:fiber
1560 nm

Anomalous NPR τspike ¼ 450 fs
τpedestal > 200 ps

15 nm [22]

9 Er:fiber
1560 nm

Anomalous NPR τspike ¼ 383 fs
τpedestal 51.8 ps

13 nm [15]

10 Er:fiber
1590 nm

Anomalous NPR τspike ¼ N/A
τpedestal 750 ps

203 nm [13]

11 Er:fiber
1580 nm

Near-zero
(+0.004 ps2)

NPR τspike ¼ 92 fs
τpedestal 2 ps

75 nm [23]

12 Tm:fiber
1955 nm

Anomalous NPR τspike ¼ N/A
τpedestal > 120 ps

60 nm [24]

13 Tm:fiber
1925 nm
(tunable)

Anomalous SESAM τspike ¼ 378 fs
τpedestal 250 ps

18.9 nm [25]

14 Tm:fiber
1977 nm

Anomalous NPR τspike ¼ 260 fs
τpedestal > 100 ps

15 nm [26]

15 Tm:fiber
2017 nm

Anomalous
( 13.09 ps2)

NOLM τspike ¼ 498 fs
τpedestal > 150 ps

20.7 nm [27]

16 Tm:fiber
1948 nm

Normal
(+1.63 ps2)

SWCNT τspike ¼ N/A
τpedestal 150 ps

5.1 nm [28]

17 Tm:fiber
1930 nm

Normal
(+0.011 ps2)

Graphene τspike ¼ N/A
τpedestal N/A

63 nm [10]

18 Tm:fiber
2000 nm

Normal
(+0.021 ps2)

NPR τspike ¼ 130 fs
τpedestal 5 ps

120 nm [8]

19 Tm:fiber
1900 nm

Anomalous NPR τspike ¼ 227 fs
τpedestal 272 ps

23.46 nm [29]

20 Tm:fiber
1990 nm

Anomalous
( 0.991 ps2)

NALM τspike ¼ 672 fs
τpedestal >200 ps

14.48 nm [30]

21 Tm:fiber
2003.2 nm

Anomalous
( 1.425 ps2)

NPR τspike ¼ 406 fs
τpedestal >250 ps

23.2 nm [31]
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Table 15.1 (continued)

Gain medium Cavity
Mode-
locking
mechanism

Spectral

22 Tm:fiber
1950 nm

Anomalous
( 3.82 ps2)

MoS2 τspike ¼ 2.7 ps
τpedestal >160 ps

4.2 nm [32]

23 Tm:fiber
1993.6 nm

Anomalous
( 0.711 ps2)

NALM (PM) τspike ¼ 232 fs
τpedestal N/A

32.6 nm [33]

24 Ho:fiber
2133 nm

Anomalous NPR τspike ¼ 3.5 ps
τpedestal 370 ps

18.3 nm [34]

25 Ho:fiber
2075 nm

Anomalous NOLM τspike ¼ N/A
τpedestal > 200 ps

15 nm [35]

15.3.1 Effect of Cavity Birefringence

In their early work, Horowitz et al. explained the formation of unstable pulses by an
interplay of large normal dispersion and high birefringence of the fiber cavity
[5]. Their numerical calculations confirmed that strong birefringence induces a
large polarization-dependent delay (PDD), which prevents from formation of stable
ultrashort pulses. The only stable solution in such system is the formation of noise-
like bursts composed of pulses with varying widths and peak intensities. Such
explanation was somewhat confirmed by further experiments: note that most of
NLPs are generated from long-cavity lasers (>10 m), usually based on nonlinear
polarization rotation mechanism. An NPR-based laser always contains a
polarization-sensitive component and a set of polarization controllers. Such arrange-
ment favors the formation of a birefringent filter inside the cavity, which in combi-
nation with a large anomalous dispersion might lead to formation of noisy pulses.
However, it was found later that the birefringence does not play a crucial role in the
formation of NLPs.

15.3.2 Soliton Collapse Due to Reverse Saturable Absorption

Amore general explanation was proposed in 2005 by D. Y. Tang et al. [36], valid for
lasers with weak birefringence. The formation of NLPs might be caused by the
soliton collapse effect combined with an effect called by the authors “positive cavity
feedback” of the laser. The “positive cavity feedback” means that the losses of the
cavity decrease with the peak power of the pulses, which is true in pulsed lasers with
a saturable absorber. The “negative cavity feedback regime”means the opposite (and
happens if there is reverse saturable absorption in the laser). A typical NPR trans-
mittance curve has a sinusoidal shape and can be described by a function [37]:
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Fig. 15.3 (a) Typical transmittance curve of the NPR according to [37]; (b) typical model of a NLP
fiber laser used for numerical modeling

T Pð Þ ¼ T0 þ ΔT sin 2 π
2

P
PA

þ φ

� �
, ð15:1Þ

where T0 denotes the transmittance offset (linear transmittance of the NPR), ΔT is
the modulation depth (difference between the minimum and maximum transmit-
tance), P is the instantaneous peak power inside the cavity, φ is the phase bias, and
PA is a parameter which can be referred to saturable power, i.e., power required to
fully saturate the NPR. An example of an NPR transmittance curve with zero phase
bias is plotted in Fig. 15.3a. At low powers (i.e., lower than PA), it behaves similarly
to a conventional real saturable absorber (providing positive cavity feedback).
Above the critical point (instantaneous power of PA), the transmittance rolls over,
resulting in a negative cavity feedback. Further increase of the pump power will
eventually lead to peak power clamping and pulse break-up. The newly formed
multiple pulses are then amplified and they break up again. Multiple of such
processes occurring sequentially lead to the formation of a NLP. The phase bias
might be introduced by changing the setting of the waveplates in the nonlinear
polarization rotation setup. Therefore, in a properly designed cavity it is possible to
switch between stable mode-locking and NLP by tuning the waveplates. A typical
schematic of a modeled NLP laser for numerical simulation purposes is depicted in
Fig. 15.3b. The laser roundtrip starts at an arbitrarily chosen point (here marked with
a circle). The cavity consists of three main components: the saturable absorber (SA),
the gain fiber (G) and the output coupler (OC), each separated with a segment of
single-mode fiber (SMF).

The soliton collapse was predicted years earlier by Chernykh and Turitsyn
[38]. They have found a solution of the Haus model [39], in which a quasi-stable
train of pulses is formed due to the limited response of the saturable absorber at high
pulse intensities. As an interplay of the gain, loss, saturable absorption, and a proper
cavity phase delay bias, the solitons in the laser are constantly generated and
collapsed. Under strong pumping, multiple of such process might coexist without
any synchronization, which is observed as noise-like pulse operation [36]. Further



works confirmed the role of soliton collapse in the formation of NLPs [40]. Never-
theless, since a soliton is a phenomenon typical for all-anomalous dispersion lasers
(as a balance of negative GVD and nonlinearities), the soliton collapse model still
did not explain how NLPs are formed in all-normal dispersion lasers [8, 10, 16, 18,
19] where solitons do not exist.
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Z. Cheng et al. [37] performed numerical simulations on dissipative soliton,
dissipative soliton resonance and NLP generation in fiber lasers mode-locked with
NPR. It was found that all three regimes might be obtained in exactly the same cavity
configuration, while switching between different modes is possible only by tuning
the polarization controller in the laser cavity (i.e., changing the transmittance of the
saturable absorber) and the pump power (i.e., changing the laser gain). It was also
observed that NLP can be generated under similar cavity conditions as DSR.
However, NLP is the dominant regime in systems with high gain saturation energy,
which activates the reverse saturable absorption and leads to pulse break-up
[37]. This observation directly proves that the main mechanism behind NLP forma-
tion is related to peak power clamping of the pulse [41, 42] and its break-up caused
by reverse saturable absorption at high intensities. The role of reverse saturable
absorption and peak power clamping in NLP formation was later confirmed by
another studies, in both anomalous and normal-dispersion fiber lasers [43, 44].

15.3.3 Raman-Driven NLP

Another but completely different mechanism of NLP formation can be observed in
long-cavity lasers as a consequence of Stimulated Raman Scattering (SRS). The SRS
can destabilize the laser leading to NLP generation, but might also assist in obtaining
ultra-broad bandwidths.

The phenomenon of Raman-assisted NLP formation was firstly observed and
reported by C. Aguergaray et al. in 2013 [45] in an 200-m-long ytterbium-doped
fiber mode-locked laser. They have shown that the output of the laser might be
destabilized by the emergence of a frequency-downshifted Stokes signal, leading
to the formation of NLPs. The Stokes signal present in the spectrum is downshifted
by 13 THz from the pump and originates from SRS, which is additionally strength-
ened by the amount of single-mode fiber in the cavity (200 m). Right after the
demonstration of the presented Yb-doped fiber laser, Raman-induced NLPs were
observed in an Er-doped fiber laser with anomalous dispersion as well [46]. Proper
cavity design with the use of optical fibers favoring SRS led to various record-
breaking results in terms of spectral bandwidth (like 200 nm-broad NLP generation
by X. Wang [13]). The bandwidth was maximized by a tailored cavity design based
on dispersive fibers supporting strong SRS.

SRS-assisted NLP generation usually requires long (>100 m) cavities. [13, 45–
48], since the power threshold for SRS (Pth) directly depends on the fiber length,
according to formula [49]:
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Pth ¼ eff

gRLeff
, ð15:2Þ

where Aeff is the effective mode area of the fiber, gR is the Raman gain coefficient,
and Leff is the effective length of the optical fiber. However, in the presence of high
gain and small mode-field area fibers it is possible to obtain broadband SRS-assisted
NLP generation even without any specialty fibers or additional SMF. For example,
61 nm broad spectra were generated from an Yb-doped fiber laser with an all-normal
dispersion cavity [50], based on standard single-mode fibers, with only 11.7 m
length.

15.3.4 NLP Formation in Amplifiers

Interestingly, noise-like pulses may be formed not only in oscillators but also in
amplifiers [7, 51]. This very intriguing and non-intuitive phenomenon was firstly
reported in 2018 [7] and is also related to SRS and Stokes wave generation. In the
experiment done by R.-Q. Xu et al., a conventional Yb-doped fiber amplifier was
seeded by a ring-cavity Yb-doped fiber laser. The seed operated in the all-normal
dispersion regime, and generated dissipative solitons at 1036 nm wavelength with
approx. 12 ps duration. When these dissipative solitons were injected into the
amplifier, pulse break-up into NLPs was observed. The autocorrelation of the
generated pulse had a very narrow coherent spike of 108 fs on top of a 19.5 ps
envelope. The pulses were afterwards compressed down to 14.5 fs and 3.7 ps spike
and pedestal duration, respectively. A very detailed mathematical description of the
transformation of dissipative solitons into noise-like pulses during amplification is
provided in [7]. The formation of NLPs is connected with the generation of a noisy
Stokes wave during nonlinear amplification of the 1036 nm seed pulses. The Stokes
wave originates from white noise, which later evolves into spontaneously scattered
Raman noise and is amplified into pulse bundles. These bundles collapse into
sub-pulses forming a NLP. Interestingly, the NLPs might be easily compressed
using a standard grating-based compressor. Further studies have shown the possi-
bility of pedestal compression down to 920 fs [51].

15.4 Dynamics, Coherence and Stability of NLP Lasers

Typical characterization techniques like optical spectrum analysis or intensity auto-
correlation measurements provide only averaged information about the spectral
shape and temporal profile of NLPs. They do not give any insight into the statistics
and dynamics of the NLP generation process. Investigation of so-called “shot-to-
shot” dynamics of NLPs was the subject of several numerical [52] and experimental



studies [9, 22, 53]. Measurements of real-time fluctuations of NLPs generated from
fiber lasers have provided significant insights into fundamental aspects of NLP
dynamics, statistics, and coherence.
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Fig. 15.4 Two experimental techniques allowing for direct characterization of NLP dynamics and
coherence: (a) the dispersive Fourier transform for shot-to-shot retrieval of the spectral shape, (b)
unequal-path Michelson interferometer for pulse-to-pulse coherence measurement

A very convenient method of investigating the shot-to-shot spectral fluctuations
of laser sources is the Dispersive Fourier Transform (DFT) technique, firstly pro-
posed by D.R. Solli et al. to characterize of spectral fluctuations in nonlinear
processes [54]. Later this technique was widely implemented for the characterization
of shot-to-shot stability of supercontinuum sources [55–57] and mode-locked oscil-
lators [22]. In the DFT setup, schematically depicted in Fig. 15.4a, the ultrashort
pulses from a laser are transmitted through a highly dispersive medium, e.g., a long
piece of optical fiber, and recorded in the time domain using a photodiode and a fast
oscilloscope [55–57]. Due to the dispersion of the fiber, the pulses are significantly
stretched (e.g., to several nanoseconds). The temporal profile of the stretched pulse
directly corresponds to its spectral shape. Since an oscilloscope measurement is
intrinsically single-shot, the DFT setup can be considered as an ultrafast, single-shot-
resolved optical spectrum analyzer. The temporal signal can be afterward easily
re-mapped to the wavelength domain by knowing the dispersion of the used
stretching fiber. The resolution of the measurement is directly related to the
stretching factor (i.e., more dispersion – better resolution). The DFT is, therefore a
powerful tool for detailed diagnostics of the pulse-to-pulse spectral shape stability
and statistics. However, DFT measurement provides only information about the
temporal stability without any information about the phase coherence. The pulse-to-
pulse phase coherence can be retrieved by another simple measurement technique
based on so-called unequal-path Michelson interferometer, in which the interference
between two consecutive pulses of the train is observed [22]. The setup illustrated in
Fig. 15.4b comprises a simple fiber-based Michelson interferometer, in which one of
the arms is longer by half of the pulse spacing. The interference is observed on the
optical spectrum analyzer (OSA). The visibility of the amplitude modulation in the
interference signal directly corresponds to the degree of coherence of the measured
pulses [57, 58]. The fringe visibility function V(λ) is defined as:

V λð Þ ¼ Imax λð Þ � Imin λð Þ
Imax λð Þ þ Imin λð Þ , ð15:3Þ



where I and I are the maximum and minimum intensities in the spectral
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max min

interference signal, respectively. Visibility equal to 1 suggests perfect degree of
coherence, while no visible modulation suggests no phase coherence between two
consecutive pulses generated by the laser.

Both techniques were used to analyze the coherence and shot-to-shot fluctuations
of a noise-like pulse laser [22]. The measurements revealed absolutely no phase
correlations between consecutive pulses in the NLP train. The NLP laser was
compared to a conventionally mode-locked laser in the soliton regime, in which
fringe visibility of >0.98 was observed across the entire spectrum, suggesting almost
total pulse-to-pulse coherence. Figure 15.5 presents the DFT measurement results

Fig. 15.5 Results of DFT analysis of a soliton (left) and NLP (right) laser performed by
A. F. J. Runge et al. Top panel: solid curves represent the mean spectrum from the DFT
measurement and the dashed curve shows a single-shot spectrum. Bottom panel: single-shot spectra
over 1000 consecutive laser roundtrips plotted as a density map. Reprinted with permission from
[22] © The Optical Society



obtained by A. F. J. Runge et al. [22]. In this measurement, 1000 consecutive pulses
were analyzed when the laser operated in the soliton and NLP regime. It can be
clearly seen that each individual NLP spectrum is structured, and the spectral shape
varies from pulse to pulse. The red dashed line represents a single shot spectrum
(picked up arbitrarily from the 1000 recorded shots). The mean spectrum calculated
from the averaging of all 1000 DFT spectra is in good agreement with the measure-
ment performed with the optical spectrum analyzer. However, if the OSA scan takes,
for example, one second, then the measured spectrum is averaged over millions of
pulses (assuming a ~ MHz-level repetition rate). We can conclude that the OSA
measurement is insufficient to characterize an NLP laser fully. A quantitative
analysis done by A. F. J. Runge et al. revealed that the spectral with (defined as
FWHM) of NLPs fluctuates 25 times more than the solitons.
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A similar analysis, leading to the same observations, was performed by Lecaplain
and Grelu [9]. Additionally, they extended their study to a more quantitative analysis
of the spectral peak intensity distribution in the NLP train, depending on the net
dispersion sign of the laser. Surprisingly, it was found that the statistical distributions
are non-Gaussian, regardless of the dispersion regime of the laser. However, the
histograms showing the peak spectral intensity distribution demonstrated a more
substantial deviation from Gaussian statistics for the anomalous dispersion cavity.
The obtained heavy-tailed statistics, exceeding the Gaussian distribution, suggests
extreme fluctuations of the spectral peaks. Moreover, Lecaplain and Grelu suggested
a clear relationship between the NLPs and rogue waves [59]. It is even suggested that
such NLP events should be called “spectral rogue waves” [9]. Such behavior was
later also confirmed numerically by Donovan [52].

The investigations presented above focused on the statistics or single-shot spec-
trum of the whole NLP bunch. The question is: what is the distribution of the
ultrashort sub-pulses inside the bunch? O. Pottiez et al. proposed a new technique
of statistical characterization of the internal structure of NLPs based on a so-called
nonlinear optical loop mirror (NOLM) [53]. So far, NOLM has been used as an
artificial saturable absorber for mode-locking of fiber laser, since it manifests a
power-dependent transmission [60]. The study revealed a strongly asymmetric,
heavy-tailed distribution of the peak intensity of the ultrashort sub-pulses. This
suggests the existence of highly-intense sub-pulses in the NLP bunch, which con-
firms the connection between NLPs and rogue waves.

From the presented research on the dynamics of NLP lasers, we can
conclude that: (1) the spectral intensity distribution in the NLP wave packet is
randomized and unstable, and the distribution of the peak intensity represents a
non-Gaussian statistics, regardless of the cavity dispersion regime; (2) some of the
NLP events might be considered as optical rogue waves; (3) the internal structure of
the NLP bunch is also non-uniform, and shows a non-Gaussian distribution of the
peak intensities inside the bunch; (4) the NLPs are incoherent, and there is no fixed
phase relationship between consecutive pulses in the train.
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15.5 Applications of NLP Lasers

Despite the great number of reports on NLP lasers, they still did not find many real-
life applications. The architecture of a NLP laser is exactly the same as any other
mode-locked laser. The NLP state might be often obtained in the same cavity,
sometimes as an unwanted side-effect. Significantly more real-life applications
benefit from a stable mode-locked laser output, with well-defined, phase-coherent
ultrashort pulses. Nevertheless, NLPs might be considered as a substitution of
broadband ASE sources, Globars, or superluminescent sources in applications that
do not require a high coherence or perfect pulse-to-pulse stability. These include
microscopy, optical coherence tomography (OCT), fiber-based sensors, metrology,
component testing, or Fourier-transform infrared spectroscopy (FTIR). For example,
reported Tm-doped NLP sources around 2 μm [8, 10, 23–33] nicely overlap with the
strong absorption bands of trace gases like NO, H2O, NH3, CO2 and HCl, while
1.55 μm Er-doped NLP lasers might be used for targeting CO2, HCN, or C2H6. This
paragraph summarizes the recent reports on applications of NLP lasers.

15.5.1 Metrology

In [61], Keren and Horowitz presented a method for real-time interrogation of fiber
Bragg gratings (FBGs) using a NLP laser, based on low-coherence spectral inter-
ferometry. The laser source delivered NLPs with 70 nm of bandwidth and a pulse
bunch duration of 2 ns. The method enables the detection of non-uniform regions
inside tested gratings and characterization of both uniform and chirped gratings.
Later, the same NLP source was used for optical data storage and reconstruction in
optical fibers [62], with the predicted maximum theoretical reconstruction rate of
10 Tbit/s, and for real-time monitoring of the temperature profile in an optical
fiber [63].

15.5.2 Spectroscopy

NLP lasers have also been used for laser-induced breakdown spectroscopy (LIBS). It
is a spectroscopic technique that enables non-contact measurement of atomic com-
position of different materials (e.g., iron ores, chemicals, archeological artifacts,
etc.). In [64], the authors used an Yb-doped fiber laser delivering 70 ps noise-like
clusters, consisting of 50–100 fs-short sub-pulses, with 35 nm of spectral bandwidth
centered at 1070 nm. The laser was successfully used in a LIBS spectrometer for
the determination of the chemical composition of metals (brass, copper, aluminum
alloys) and rocks [64] with excellent sensitivity using a low pulse energy (320 nJ).
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15.5.3 Spectral Broadening and Supercontinuum Generation

Supercontinuum generation is a phenomenon in which an interplay of multiple
nonlinear effects occurring in the medium (like self-phase modulation and four-
wave mixing) causes significant spectral broadening of the input light. One of the
most straightforward approaches is to use highly nonlinear optical fibers as medium
and ultrashort (femtosecond) pulses as pump light. NLPs, despite their varying
length and unstable amplitude, can be used for the generation of broadband, inco-
herent supercontinuum in optical fibers [23, 65–69], leading to significant spectral
broadening even up to one octave width [68].

J. C. Hernandez-Garcia et al. [65] studied the spectral broadening of 50-nm-wide
noise-like pulses generated from an Er-doped fiber laser, after propagation in long
segments of single-mode fiber. They observed the generation of a continuum
spanning up to 1750 nm. Next, A. Zaytsev et al. demonstrated SC generation by
NLPs originating from an Yb-doped fiber laser operating at 1070 nm. The NLPs
were propagating through a 100 m-long segment of single-mode fiber with normal
dispersion, resulting in a flat SC spanning over 1050–1250 nm [66]. Much wider
spectral coverage was achieved using highly nonlinear fibers (HNLFs) instead of
SMFs. S.-S. Lin et al. pumped a 1-m long HNLF with noise-like pulses from an
Erbium-doped fiber laser with 202 mW of average power. As a result,
supercontinuum spanning from 1200 to 2100 nm was generated [67] (see Fig. 15.6).

In further experiments, the power of the NLPs was boosted to 13 W via two-stage
amplification, which enabled the generation of SC spanning from 950 to 2500 nm
and 3.62 W of average power [69]. Interestingly, the SC width obtained with NLP
pumping was comparable to that obtained while pumping using well-defined, stable
pulses.

Fig. 15.6 Optical spectra of
supercontinuum generated
in a highly nonlinear fiber
pumped by amplified NLPs,
measured at different power
settings. (Reprinted with
permission from [67] © The
Optical Society)
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15.5.4 Optical Coherence Tomography

Optical coherence tomography (OCT) is a technique that uses low-coherence light
sources for optical imaging of scattering media, e.g., biological samples. So far, a
variety of light sources were used for OCT, e.g., superluminescent diodes [70],
supercontinuum [71, 72] or Fourier-domain mode-locked lasers (FDMLs)
[73, 74]. The low coherence and broad spectral coverage of NLP sources make
them useful in OCT, as demonstrated by C.-L. Pan et al. [75, 76]. In their experi-
ment, NLPs from an Yb-doped fiber laser with an average power of 200 mW were
amplified to 4.5 W and launched into a 50-m-long piece of standard SMF. A flat SC
at central wavelength of 1320 nm with a spectral bandwidth of 420 nm and average
power of 560 mW was generated. Such pulses were then used to image different
biological samples using the spectral-domain OCT (SD-OCT) technique with a the-
oretical axial resolution limit of 1.8 μm [75]. The performance was comparable to
that obtained with a commercially-available swept-source OCT (SS-OCT)
system [76].

15.5.5 Nonlinear Microscopy

A 1.3 μm NLP source based on cascaded Raman scattering was used for
photoluminescence measurements [47]. The laser delivered NLPs with either
1212.1 or 1304.2 nm central wavelength and 106.1 and 108.5 nm of bandwidth,
respectively. The duration of the coherent spikes were 174 and 167 fs, respectively.
Due to the near-infrared wavelength, the source enabled three-photon absorption
(3PA) luminescence measurement of the CH3NH3PbBr3 perovskite with improved
penetration depth compared to one-photon absorption [47].

15.6 Summary

The noise-like pulse regime is undoubtedly one of the most fascinating and surpris-
ing regimes occurring in mode-locked fiber lasers. Its uniqueness comes from the
fact that it might be observed in almost every laser configuration, regardless the
wavelength, dispersion, and mode-locking mechanism. Besides a number of reports
on NLP lasers, there have been several comprehensive numerical and advanced
experimental studies on the formation, dynamics, and statistics of NLPs, which
enabled an almost complete understanding of this regime. Most of the studies treated
the NLP bunch as a whole, but there were also studies on its internal structure. They
confirmed the existence of highly-intense sub-pulses in the NLP bunch, which
suggests a clear connection between NLPs and optical rogue waves. Despite
a two-decade history of the NLP regime, there are still some aspects that need to
be solved, e.g., the temporal structure of the sub-pulses (i.e., real-time measurement
of the duration of single sub-pulses inside the NLP bunch).
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Chapter 16
Dissipative Rogue Waves

Lei Gao

Abstract In this chapter, the history and main characteristics of rogue waves in the
oceans are introduced. Due to phenomenological and physical analogies between
extreme events in optics and hydrodynamics, the concept of optical rogue waves is
extended into optics, associated with a long-tailed intensity histogram in the long-
wavelength range of fiber optical supercontinuum spectra. Then, we discuss the real-
time techniques for observing optical rogue waves. Namely, the well-known disper-
sive-Fourier-transform-based ultrafast spectroscopy and the time magnifier based on
space-time duality. Further, the optical rogue waves in dissipative systems that often
referred as open systems far away from the thermodynamic equilibrium, are
reviewed briefly, including ultrafast lasers, microresonators, extended systems, and
optical polarization rogue waves. These dissipative optical systems can be described
by the Ginzburg-Landau equations, and various dynamical processes of fluctuation,
pulsing, bifurcation, turbulence, and chaos are expected to be observed. Finally, two
possible interpretations, and the predictabilities of dissipative rogue waves are also
discussed.
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16.1 Introduction

16.1.1 Rogue Waves in the Oceans

Rogue waves (RWs) are known as extremely large amplitude waves, which propa-
gate in open oceans. Such rare events emerge with unexpectedly large probabilities,
deviating from the power law wave-amplitude statistics which are typical for random
processes, and leave without a trace [1–7]. As depicted in Fig. 16.1, these events
constitute water walls as high as 20–30 m, which impose a threat for ships and ocean
liners. From both the matters of physics and industrial applications, huge efforts
have been devoted to explore the rogue waves.

RWs can be experimentally identified by the presence of heavy-tailed statistics,
typically L-shaped, describing the appearance of rare events [9]. Several models
have been developed based on the weak nonlinear interactions between thousands of
waves, through the nonlinear Schrödinger equations (NLSEs), where both numerical
simulation and analytical solutions such as breathers or turbulence have been carried
out. Different RWs mechanisms have been proposed so far: from the simple linear
random superposition of independent weak waves, to nonlinear effects such as
modulation instability (MI) and the subsequent formation of localized breathers.
When the coherence of a physical system is deteriorated, RWs with diverse param-
eters may occur in different dimensions [10–12]. However, the steep profile during
the extreme events seems to be too freak to be captured. Other efforts have been
devoted to the experimental observations on the directional oceans or laboratory.
The debate about the origin of rogue waves continues, and, in my opinion, it will be
long as far as concerning the great gulf between the theory and experiments.

Fig. 16.1 Huge wave on the Bay of Biscay. (Reproduced from NOAA Photo Library) [8]
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16.1.2 Introduction of Optical Rogue Waves

Given the harsh conditions, studying RWs in their natural environment is problem-
atic. The term of RWs has been expanded to other domains. Examples include: the
fluence profiles of multi-filaments, liquid helium, and high intensity pulses in
supercontinuum generation in optical fibers [13–18]. In 2007, due to phenomeno-
logical and physical analogies between extreme events in optics and hydrodynamics,
D. R. Solli et al. introduced the concept of optical RWs, associated with a long-tailed
intensity histogram in the long-wavelength range of fiber optical supercontinuum
spectra [14]. As shown in Fig. 16.2, using a real-time detection based on dispersive
Fourier transformation (DFT), they observe optical RWs in soliton-fission
supercontinuum based on a micro-structured optical fiber. Their results high light
the energy coupling between the solitons and other wave packets, and the charac-
teristic lifetime during the formation of optical RWs.

Since then, much effort has been dedicated to finding RW solutions of the
nonlinear Schrödinger equation in different physical systems: various kinds of
breathers have been proposed as examples of optical RWs [15, 19–21]. Recently,
real-time detection techniques, such as the DFT and time-lens, have been utilized to
identify the presence of coherent pulses with extremely high intensities. An abrupt
phase change across the pulse profile was found to be associated with optical RWs
[22, 23]. The presence of a RWs is identified by a trough-to-crest height larger than

Fig. 16.2 (a) Schematic of experimental setup. (b) Histograms of filtered intensities for average
power of 0.8μW (red), 3.2μW(blue), and 12.8μW(green) [14]



2 times the significant wave height (SWH). Moreover, the occurrence of RWs in
optics can be identified in different domains: for example, in the pulse intensity for
the time domain [14], in the spectral width for the frequency domain [24], in the
spatial intensity in a two-dimensional camera image [13, 25], the depth of dark
pulses [26], and the presence of spectrally narrowband pulses with a right-skewed
distribution [27]. One example is given in Fig. 16.3, where the concept of rogue
rather than the intensities is taken seriously. For a comprehensive investigation of
optical RWs, additional dimensions can be introduced.
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Fig. 16.3 The dark RWs in the depth of dark pulses [27]

16.1.3 Real-Time Techniques for Observing Optical
Rogue Waves

For capturing the ultrafast and transient rogue waves, there are two fundamental
challenges within any real-time techniques. One is the trade-off between the speed
and the detection sensitivity of the optoelectronic detectors because fewer photons
are collected during the short integration time [28]. The other is the trade-off
between the measured dynamic range and the speed of the real-time analog-to-digital
converter. The two shortcomings restrict the direct characterization of optical
ultrafast pulses with durations in picosecond and sub-picosecond order. Specially,
for these non-repetitive and transient RWs events, the insufficient sampling rate and
detecting bandwidth distort the measured optical signals. Until now, two kinds of
real-time characterization of ultrafast pulse have been well developed, namely, the
dispersive-Fourier-transform-based ultrafast spectroscopy [29], and the time-lens-
based time magnifier [30].
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16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy

The DFT technology stems from the spatiotemporal duality [31]: the transmission of
a temporal pulse in a dispersive element with a sufficiently large dispersion is
analogous to the diffraction of a beam passing through a lens in the far-field
approximation. The frequency-domain spectral information of the pulse is thus
mapped into the temporal pulse waveform, and the stretched light pulse has the
same shape as the spectral intensity envelope, as shown in Fig. 16.4. According to
NLSE, the amplitude envelope evolution of output pulse from the dispersion com-
ponent without the consideration of gain and loss can be expressed by [32]:
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euswhere represent the amplitude envelope of the tested device and pulse source,
respectively. ω is the light frequency, ω0 is the center frequency, β2 is the second-
order dispersion coefficient, z is the propagation distance, and T is the time in the
reference frame of the pulse propagating with the group velocity given by T-
(ω) ¼ β2z(ω � ω0) the intensity profile of the temporally dispersed pulse then
becomes proportional to:

u z,Tð Þj j2 ¼ 2
πβ2z

us
~

0,
T
β2z

� �����
����
2

, ð16:2Þ

Therefore, the wavelengths and stretched time relation, Δτ ¼ |D|zΔλ, where
D denotes the total amount of temporal dispersion, Δτ is the stretched time duration
into which the optical spectrum is mapped. Via this technique the sub-picosecond
pulses are stretched into nanoseconds. However, such real-time ultrafast spectros-
copy technology can only obtain the spectrum information of a single pulse. It is
impossible to clearly and accurately measure the time when the RWs appear.

Fig. 16.4 Principle of dispersive Fourier transform
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16.1.3.2 Time Magnifier

Inspired by space-time duality and temporal imaging [33], the narrow-band disper-
sion (time domain) of a plane-wave light in a dielectric medium exhibits a behavior
similar to the paraxial diffraction (space) of a monochromatic beam in free space.
Mathematically, the propagation distance in the space domain is a direct analog of
group delay dispersion (GDD) in the time domain. The ideal time imaging system
requires GDD to be independent of frequency. The following Fig. 16.5 shows the
principle of time magnifier.

Analogous to the space-lens magnification system, in time-lens based time
magnifier system, the temporal imaging condition satisfy the following formula [30]:
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fWhere the an are the GDD of input output and time lens. Herein, the
function of time-lens part of Fig. 16.6a is to induce quadratic spatial phase modu-
lation to input pulse. Such the temporal phase modulation can be expressed as [30]:
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Fig. 16.5 Principle of time magnifier. (a) Spatial analog of time magnifier. (b) Schematic diagram
of a time magnifier



Where the focal GDD φ00
f can be induced by phase modulator [ ] or nonlinear34
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Fig. 16.6 (a) The single-shot spectra of 100 consecutive pulses with the laser operating in the
transition regime. (b) Example spectra for a particular explosion event [40]. (Reprinted with
permission from Ref. [40] © The Optical Society)

parametric process [35]. Therefore, a magnifier ultrafast pulse replica will be gen-
erated from the input waveform with a magnification ratio:

M ¼ φ00
2

φ00
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����
����, ð16:5Þ

Eventually, combining a real-time oscilloscope and high-speed photodetector, the
round-trip evolution of ultrafast temporal structures will be experimentally resolved
at sub-ps resolution, and RWs can be identified [36], directly.

16.2 Dissipative Rogue Waves

16.2.1 Rogue Waves in Dissipative Systems

Considering both the fundamental and possible industrial applications, the RWs in
optical systems have been under huge investigations. Examples include the MI,
supercontinuum. All those freak events appear in the conservative and integrable
systems, which can be described by the nonlinear Schrödinger equations.

In fact, all the real physical systems tend to be dissipative. A dissipative system is
often referred as an open system that far away from the thermodynamic equilibrium,



while its balance can be sustained via exchanges of energy, matter, or entropy.
Ultrafast laser system is a typical dissipative optical system, where sustained energy
supply and dissipation factors, such as loss, are continuously undergo within the
resonator. Together with the nonlinearity, dispersion, et al., such a kind of dissipative
optical system can be described by the Ginzburg-Landau equations.
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Where A is the field envelope, z is the propagating distance, t is the frame time
moving at the signal velocity, β2 is the GVD parameter, γ is the self phase modu-
lation coefficient, g is the saturated gain coefficient, and ωg is the gain bandwidth.
Depending on the specific parameters of the optical dissipative systems, one would
expect to observe the dynamical processes of fluctuation, pulsing, bifurcation,
turbulence, and chaos. RWs, which are extremely sensitive to initial conditions
and perturbations, are always anticipated in those dynamics. They are identified in
ultrafast laser systems, microresonator, or other extended systems, utilizing the
single-shot techniques based on DFT and Time-lens effects.

16.2.2 Dissipative Rogue Waves in Ultrafast Lasers

The coherent structures and patterns are generally arising from the composite
balance between conservative and dissipative effects in various areas of physics,
ranging from quantum mechanics to astrophysics. Therein, the dissipative solitons
are highly coherent solutions of nonlinear wave equations, and provide an ideal
platform for study of nonlinear optical dynamics. So far, numerous striking soliton
dynamics have been investigated in dissipative soliton fiber lasers, including dissi-
pative soliton molecules [37], dissipative soliton rain [38], noise-like pulses (NLPs)
[39], dissipative soliton explosions [40], buildup of dissipative solitons [41] and so
on. All of these nonlinear processes are frequently accompanied by energy oscilla-
tion in laser cavity, as well as the generation of high amplitude waves.

Thanks to the development of real-time measurement, which offers a powerful
tool to characterization the transient nonlinear dynamics in ultrafast laser. In 2015,
researchers from university of Auckland identify clear explosion signatures of a
Yb-doped mode-locked fiber laser that is operating in a transition regime between
stable and noise-like emission [40]. This transition between these two regimes can be
achieved by increasing the pump power. Meanwhile, in the noise-like regime the
Raman scattering is stimulated by the huge energy oscillations during soliton
explosions process. The single-shot experimental results are shown in following
figure. Where after, two groups have identified the optical rogue waves during
soliton explosions in coherent and incoherent dissipative ultrafast laser cavity
[42, 43].



16 Dissipative Rogue Waves 347

Fig. 16.7 Intensity histograms of the three mode-locking regimes. (a) Stable dissipative solitons.
(b) Breathing dissipative solitons. (c) Breathing dissipative soliton explosions. The black line
denotes the SWH [44]

Fig. 16.8 (a) Real-time spectra of soliton molecules. (b) The field autocorrelation trace calculated
from the spectra. (c) The corresponding temporal intensity evolutions measured by a photodetector.
(d) Spectral intensity histogram of the soliton molecule [45]. (Reprinted with permission from Ref.
[45] © The Optical Society)

One more interesting found is that the researchers have discovered that akin to
solitons, breathing dissipative solitons can also exhibit explosions. And such breath-
ing dissipative solitons and breathing dissipative solitons explosions also induce
optical rogue waves, as shown in following Fig. 16.7 [44].

The soliton molecules may also excite RWs. In 2019, a group in China have
experimentally investigated the dynamics of soliton molecules in the normal-
dispersion regime [45]. They show that the separation between two bound dissipa-
tive solitons (DSs) evolves aperiodically. An additional modulation on the spectra is
observed suggesting that the DSs split aperiodically. Such a splitting occurs when
the DSs exchange energy. Moreover, rogue waves are present in the soliton molecule
(Fig. 16.8).

For characterizing the rogue waves among the noise-like pulses or soliton rain,
the dispersive Fourier transform based single-shot measurement is not accurate
enough. As the rogue waves appear among the pulses cluster more randomly, the
DFT based real-time spectroscopy to hardly capture the intensity peaks of pulse
waveform. The time magnifier based on time-lens effect has been utilized to capture
the temporal waveform for NLPs or soliton rain [36]. To enable self-triggering, a



¼

pump signal is produced from the signal under test. As can be seen in Fig. 16.9, the
NLPs output from laser cavity is broaden spectrally and amplified. The reproduced
the synchronous pump laser undergoes parametric process with signal, thereby
achieving a self-triggered time magnifier with sub-picosecond resolution. Using
this powerful technique, real-time observation of NLPs structures has been realized,
and RWs were also observed under a sub-ps timescale. The ORWs in NLPs might
have been resulted from the interaction of noise-like temporal structures and the
energy convergence toward a single coherent pulse [36].
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Fig. 16.9 (a) Schematic diagram of synchronized time magnifier for NLPs. (b) Detailed temporal
structure of the NLPs. (c) Pulse intensity histogram of the NLPs waveforms. (d) A Typical example
of a rogue event. (e) Pulse evolution over 100 consecutive round trips [36]. (Reprinted with
permission from Ref. [36] © The Optical Society)

16.2.3 Dissipative Rogue Waves in Microresonators

In addition to the ultrafast laser systems, in recent years, RWs in microresonators
have been also extensively reported [46–50]. The whispering-gallery-mode (WGM)
resonator can be made from a glass microsphere, a crystal disk, or an integrated
resonator. Dissipative RWs appear in WGM resonators, due to the chaotic interplay
between Kerr nonlinearity and anomalous group-velocity dispersion. Researchers
have observed freak events associated with non-Gaussian statistics, and theoretical
evidence of RWs in WGM resonators by investigating the nonlinear dynamics in the
resonator with the Lugiato-Lefever equation (LLE), resulting from the collision of
soliton breathers in the process of hyperchaotic Kerr comb generation.

Figure 16.10 depicts the evolution of the optical field in the WGM resonator
pumped by a continuous-wave laser via the evanescent field of a tapered fiber
[46]. This figure displays a snapshot of the numerical simulations that shows a
rogue wave, which is characterized by extreme amplitude and very rare occurrence.
For the color-coded map of the evolution of the field intensity with time, for F2 ¼ 6
and 8, stable solitons and soliton breathers emerge. As the pump is increased to
F2 10 and 20, rare, and extremely high amplitude waves are encountered.
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Fig. 16.10 The evolution of the optical field in the WGM resonator. F2 denotes the square of the
dimensionless pump term F in the LLE, which is proportional to the laser power [46]

The corresponding spatial distribution of the optical field along the azimuthal
direction of the cavity is in the left column of Fig. 16.11. In the right column, the
statistical distribution of the wave heights is shown with a logarithmic scale. For
higher pump powers (F2 ¼ 10), the soliton breathers start to interact with one
another. And the statistical distribution of the peak heights becomes continuous.
The feature of an exponential decay of the distribution characterizes the threshold
value, the SWH. When wave height is at least twice the SWH, a rogue wave occurs.

16.2.4 Dissipative Rogue Waves in Extended Systems

Apart from the systems mentioned above, rogue waves can be observed in other
extended systems, including nonlinear optical cavity [47, 51–53] or even linear
regime [25, 54], where RWs with non-Gaussian probability distribution occur.
Take the multimode optical fiber for example, RWs result from interference between
multiple transverse modes.
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Fig. 16.11 Left column: Spatial distribution of the optical intensity in the cavity when the highest
wave occurs for different pump powers. Right column: The intensity histograms of the optical
pulses for different F2 [46]

Figure 16.12 also depicts a ring cavity consists of three high-reflectivity dielectric
mirrors, together with a liquid crystal light valve (LCLV) composed of a liquid
crystal cell with one of the walls made of a slice of the photorefractive crystal. The
LCLV is pumped by a plane-wave optical beam provided by a solid-state laser at
532 nm. The light amplification in the cavity is based on wave mixing with the pump
beam. The PDFs of the cavity field intensity are obtained from large number of
images and thereafter the histograms of the intensity value are performed. It is
known that an exponential trend corresponds to a Gaussian statistics for the field
amplitude. In other words, an exponential intensity PDF is characteristic of a
speckles pattern, where many uncoupled modes independently contributed to each



point. At low pump, the behavior is Gaussian. However, when the pump increases,
the increasing nonlinear coupling results in a complex space-time dynamic. When
PDF exhibits a large deviation from Gaussian distribution, rogue events occur.
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Fig. 16.12 (a) schematic of the experimental setup. (b) PDF of the cavity field intensity with
different pump intensities [53].

16.2.5 Optical Polarization Rogue Waves

Until now, all the RWs are identified based on the probability distributions of the
temporal intensities within specific filtered wavelength range, or the integrated
intensities of the obtained single-shot spectra. Namely, the RWs are identified in
the temporal and in the spatial domains based on the SWH method. Yet another



�

inherently fundamental parameter of the laser emission, its state of polarization
(SOP), has received relatively less attention [43, 55, 56]. In particular, the dynamics
of the laser SOP has not been fully demonstrated. Yet, the corresponding SOPs
would behavior rather complex trajectories, especially in the dissipative laser
systems.
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Figure 16.13 depicts the evolving SOP distributions for a filtered wavelength in
the laminar-turbulent transition of the PMLs at different pump powers [57]. It is clear
that the corresponding SOPs for wavelengths far away from the laser center line
bifurcate into a cross-like shape on the Poincaré sphere. The multiple wave mixing
processes generate new frequencies with separately evolving output SOP azimuth
and ellipticity angles, resulting in perpendicular lines aligning with either a meridian
or a parallel curve on the Poincaré sphere, respectively. The onset of SOP turbulence
is accompanied by the loss of system coherence. Irregular polarization states locating
outside of the main polarization directions emerge when the pump power exceeds
250 mW. This scattering of SOPs aggravates when the intracavity power is further
increased. This result seems natural when we consider the usual road map for chaos,
resulting from a cascade of successive period-doubling bifurcations. Whenever the
pump power is larger than 600 mW, the cascaded four wave mixing (FWM) leads to
a fully developed turbulent evolution, and the SOPs of filtered wavelengths appears
as totally random.

The irregular polarization state of laser emission is associated with the emergence
of a new kind of optical rogue waves in randomly-driven mode-locking systems,
namely optical rogue waves in polarization domain. Different from the temporal or
spatial rogue waves, RWs in polarization domain are vector, and a new method is
introduced for their characterization. The SOPs can be expressed as Ŝ ¼ (s1, s2, s3).
Therefore, the relative distance, r, between two SOPs is defined by

r ¼ Sm � Snj j

¼ 2 sin �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sm1 � Sn1ð Þ2 þ Sm2 � Sn2ð Þ2 þ Sm3 � Sn3ð Þ2

q
=2

�
ð16:7Þ

The probabilities of the distance between various SOPs under different pump powers
for filtered wavelengths are depicted in Fig. 16.14 [58]. A mere cross-like bifurcation
of the SOP results in a distorted Gaussian function, while that for the total turbulence
trends to be Gaussian shaped. During the laminar-turbulence transition of the SOP,
L-shaped probability density function (PDF) distributions deviating from the Gauss-
ian statistics prove that photons with large excursions of their SOP obey their own
PDF, which is a characteristic property of extreme events in the polarization domain
rather than the temporal or spectral domains. Considering the similarities, we
referred it as polarization rogue waves (PRWs).

The PRWs is a phenomenon that is universal in any nonlinear dissipative optical
systems undergo coherence deterioration. It is attributed to the stochastic mixing of
its longitudinal modes, where vector FWM cascades with nonlinear chaotic phase-
matching conditions. In fact, even for a high coherent ultrafast laser system, when



perturbated by excessive energy or phase, new frequencies with freak SOPs can be
excited by the possible FWMs. Figure schematically shows a normal-
dispersioned fiber ring cavity mode-locked by a saturable absorbing film made by
single-wall-carbon-nanotubes, where dissipative solitons (DSs) are produced. DSs

16.15
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Fig. 16.13 Experimentally measured polarization states for filtered wavelengths under various
pump powers for PMLs [57]
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Fig. 16.14 Optical polarization rogue waves in the polarization laminar-turbulent transition for
NLPs [58]. (Reprinted with permission from Ref. [58] © The Optical Society)

Fig. 16.15 Schematic of the fiber laser cavity and measurement methods [59]



are high coherent solutions of nonlinear wave equations, and arise from a balance
between nonlinearity, dispersion, and loss/gain. At variance with NLSE solitons in
integrable fiber systems operating in the anomalous dispersion regime, DSs in
dissipative fiber laser systems operating in the normal dispersion regime exhibit
extremely complex and striking dynamics.
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For such a laser cavity, stable DS can be observed with a pump power threshold
of 55 mW, where the rectangle-shaped optical spectrum with a FWHM of 13.6 nm is
shown. For pump powers between 55 mW and 65 mW, the laser operates in a stable
DS regime. For a pump power of 70 mW, regular DSs with neatly rectangle-shaped
optical spectra are frequently detected. Yet, much broader optical spectra persisting
near the square spectrum may also be occasionally encountered, exhibiting two
extremely high peaks. This DS explosion. For soliton explosions, the balance of
nonlinearity, dispersion, and loss/gain for the DS is perturbed by the surplus cavity
gain at large pump powers. Part of the DS energy dissipates into CWs via the
explosion, and the DS maintains its property of a highly coherent pulse.

The PRWs are identified during the DS explosion. Figure 16.16 illustrates the
corresponding SOP distributions. It is clear from the distribution of points on the
Poincaré sphere that the corresponding SOPs for each wavelength are evolving from
a random cloud into a fixed narrow domain as the pump power grows larger. When a
stable DS is formed, a well-defined SOP trajectory vs. frequency is observed on the
Poincaré sphere. Whereas for pump powers above 66 mW, the SOPs of unstable DSs
exhibit fluctuations (Fig. 16.16d). For even stronger pump powers (Fig. 16.16e),
these intense fluctuations trend to be spreading more on the Poincaré sphere,
especially for frequencies locating on the two spectral edges. The instability and
fluctuations of SOPs on the two edges of the spectrum reveal a new aspect of the
complex dynamics in DS formation, which so far has been largely unnoticed.

Fig. 16.16 Evolution of SOPs for various filtered wavelengths and different pump powers [59]
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Fig. 16.17 Histograms of
the relative distance
between points on the
Poincaré sphere for 70 mW
pump power [59]

Figure 16.17 depicts the PDF of r when the DS is deteriorated at high pump
powers. As can be seen, the PDF has a quasi-Gaussian shape at the 1568 nm
wavelength (in the center region of the DS spectrum). Howbeit, for wavelengths
far away from the DS spectral center, a trend develops towards the generation of
L-shaped PDFs, which characterize the emergence of extreme events in the polar-
ization domain, rather than in time or frequency domains. In other words, the
irregular SOP of a deteriorated DS is associated with the emergence of a new type
of optical rogue waves in the polarization dimension, namely PRWs. Such rogue
events appear with both unexpected SOP values and relatively large probabilities of
occurrence. From a statistical point of view, the occurrence of polarization rogue
waves can be testified by the emergence of a heavy tail in the measured histogram.
As shown for the 1568 nm wavelength, 1.8% of the events have a value that is larger
than the twice of the SWH. Whereas rogue events represent about 3.8% of the events
at the 1564 nm wavelength.

Similarly, the PRWs can be identified by any supercontinuum generation under
nonlinear optical processes. The DS from Fig. 16.15 is compressed and amplified by
a commercial high gain erbium-doped fiber amplifier, and injected into 20 m of
highly nonlinear fiber with zero dispersion at 1550 nm. The commercially available
ZDF has an effective diameter of 3.86μm and a nonlinear coefficient of
10 W�1 km�1. Such a fiber facilitates phase matching of FWM over an ultra-
broad frequency range, and octave-spanning spectrum can be easily obtained. In
our experiment, primary sidebands are generated by MI. Next, new frequencies are



generated by cascaded FWM among those sidebands and the DS spectrum. Namely,
all FWM procedures are possible. Primarily, we observe the MI with a degenerate
FWM process. During supercontinuum generation (SCG), a transition from high to
low spectral coherence may be controlled by varying the pump pulse peak power.
Consequently, RWs in temporal, spectral, and polarization domains emerge in the
SCG process.
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Fig. 16.18 SOPs and histograms at the pump power of 100 mW [60]. (Reprinted with permission
from Ref. [60] © The Optical Society)

To characterize the emergence of PRWs in SCG, we calculate the PDFs of SOP
for wavelengths ranging from 1541 nm to 1557 nm. Figure 16.18a illustrates their
SOPs values, for a fixed pump power of 100 mW. As can be seen, SOPs emerging at
1557 nm are scattered within a single domain. Whereas, as the wavelength is blue-
shifted, the SOPs evolve into two separate domains. For wavelengths situated even
farther away from the DS pump, the corresponding SOPs scatter within three
different domains, which are continuously interchanging their energy. Those wave-
lengths are generated by vector FWM processes, which occur among all possible
polarization interactions in a nonpolarization maintaining fiber. For wavelengths
between 1543 nm and 1547 nm, the corresponding histograms in Fig. 16.18b–f
clearly denote the existence of optical PRWs. The histograms are highly sensitive to
the specific filtered wavelength. For example, at 1543 nm and 1547 nm, SOPs with
rogue positions are observed on the Poincaré sphere, as denoted by the heavy tails at
large r values. However, double PDFs, and even triple PDFs may appear, depending
on the wavelength selected.

Polarization rogue waves are quite different from the intensity distributions for
conventional RWs. Quantitatively, PRWs are identified based on the PDF of relative
distance, r, between any two points on the Poincaré sphere for the single frequency,



while conventional RWs denote the emergence of ultrahigh intensities within wide
frequencies. The corresponding temporal intensities for PRWs may not be large
enough, even may be ultrasmall when we consider the forming procedure. The
PRWs are more than the polarization aspect of the conventional RWs. However,
we also believe that there is a connection between the PRWs and conventional RWs,
as they are both formed only under high nonlinear process. A more convincing and
reliable investigation between them requires single-shot measurement of the inten-
sity and polarizations simultaneously, together with more rigorous theoretical
analysis.
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16.3 Generating Mechanisms of Dissipative Rogue Waves

16.3.1 Two Interpretations

The recent years have witnessed a growing interest for RWs in optics. While great
debates on the classification of different kinds of RWs are clear in this community. In
the pioneer works, the optical filtering has been taken seriously by the following
researchers [14, 17, 24]. Based on different experimental systems, there are mainly
two possible interpretations have been, not completely, partially accepted. While
the two groups both admit the two main phenomenological features. The first one is
the deviations of wave amplitude statistics from the Gaussian behavior. The other is
the coherent build up in an extended spatio-temporal system. For optical fibers, the
parameter is mainly limited to the dispersion, where time-frequency structures are
formed. While for spatially extended optical systems, the two-dimensional structures
are formed on the transverse wave front. Therefore, a reliable model should be
described by partially differential equations, where either dispersion or nonlinearity
leads to a coherent build-up of giant waves [9]. While, we have to admit that the
chaotic behaviors or noise-induced intermittency, which described by ordinary
equations, have to be considered for the RWs classification [61]. The later care
about the probability of the RWs, which arise a fundamental question: the predict-
ability of RWs. The researchers found that the RWs do not necessarily appear
without a warning, but often preceded by a short phase of relative order [62–
64]. The predictability can only be understood by the turbulence language.

The well-known theoretical model is the breathers for high nonlinear optical
system. In fact, it lies on the ocean-optics analogy. Both the dynamics of ocean
waves and pulse propagation in optical fibers can be modeled by the NLSE. For a
more complex system, an extended version for the Ginzburg-Landau equation. For
optics, the NLSE describes the pulse envelope modulating an electric field, while for
water it represents the envelope modulating surface waves. Certain analogy does
exist. Yet, such an analogy shall not be extended for the different higher order
perturbations.
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Fig. 16.19 Various kinds of solitons and breathers [15]

The most interesting phenomenon associated with the RWs in optical fibers are
the formation of breathers [65–70]. These high coherent structures can be regards as
a kind of solitons on finite background. They have certain analytical solutions. This
is easy to understand: the optical system always tends to be loss, and the pure soliton
is out-of-balanced by the mismatch of nonlinearity and dispersion. There are several
kinds of breathers: the Akhmediev breathers, the Kuznetsov-Ma solitons, the Pere-
grine soliton. More higher orders of solutions are possible with even stronger
localization and higher intensities. Figure 16.19 shows the properties of the breathers
with spatial and temporal localization structures. These different breathers are
frequently be used as the interpretation of RWs, both in the MI, the fiber resonator,
or supercontinuum generation.

Despite of the success in interpreting RWs as a coherent structure, either in the
soliton or breather, controversy still exists. This originate the experiment observation
of incoherent soliton, which firstly found in photorefractive crystals [71]. It results
from the spatial self-trapping of incoherent light in a highly noninstantaneous
response nonlinear medium. The noninstantaneous photorefractive nonlinearity
averages field fluctuations when its response time is much longer than the correlation
time of the beam. More achievements have been made, such as, the existence of
incoherent dark solitons [72], the modulation instability of incoherent waves
[73, 74], the incoherent solitons in resonant interactions [75], or spectral incoherent
solitons in optical fibers [76]. For all the statistical nonlinear optics, the kinetic
waves theory provides a nonequilibrium thermodynamic description of turbulence.
Recent experiments provide general physical insights of the RWs in the optical
turbulence [77]. Depending on the amount of incoherence, different regimes are
identified. Figure 16.20 depicts the probabilities for three regimes: the coherent
rogue quasi-solitons, the intermittent-like rogue quasi-solitons that appear and
disappear erratically, and the sporadic RWs that emerge from the turbulent
fluctuations.
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Fig. 16.20 Average of the
maximum intensity peak as
a function of the
Hamiltonian density [77]

16.3.2 Are the Dissipative Rogue Waves Predictable?

As soon as the discovery of RWs, a fundamental question arises: Are the RWs
predictable? The answers are just controversial as the interpretations of the RWs.
When we follow the first explanation: RWs are rare extreme localized waves, which
can be modeled by high order solitons, breathers, or their continuously coupling
superpositions, and exact analytical solutions of NLSE with perturbations can be
founded at prescribed conditions [62]. In this sense, predictable RWs are rational.
One example is the second-order breathers based on NLSEs with a quadratic
potential modulated spatially [78]. By controlling the modal parameter or spatial
frequencies, the giant waves can be manipulated by overlapping the Kuznetsov-Ma
breathers and Peregrine soliton, as depicted by Fig. 16.21. For this case, the
simulations hold true, although partially, as both the boundary conditions and
simulation accuracy will deteriorate their predictabilities.

While another question occurs: are the RWs formed in dissipative systems
predictable? After all, the basic nature of dissipative system is the spontaneous
formation of symmetry breaking and complex, even chaotic structures. The dissipa-
tive factors make the NLSE unsuitable for describing unintegrable systems, but only
Ginzburg-Landau equations. And in most cases, there are only numerical simula-
tions, and analytical solutions are hard to find as the dissipative dynamics are
extremely sensitive to the initial perturbations. This behavior resembles to the very
beginning of “disappearing without the slightest trace” of RWs [14], thus challeng-
ing the prediction of dissipative RWs. This is especially true in highly nonlinear
optical systems, such as the PRWs in PML, or supercontinuum generation: the
probabilities of finding freak SOP is decreasing when the coherence is deteriorated.
In this sense, the prediction of RWs in dissipative systems is similar to the prediction
of trajectory of system undergoing from laminar to turbulence, you can find the
difference when the fluctuations and even bifurcations occur, yet it is far away to
figure it out when the system is fully chaotic.
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Fig. 16.21 RWs as second-order breathers, which are superpositions of Kuznetsov-Ma breathers
and Peregrine solitons [78]. (Reprinted with permission from Ref. [78] © The Optical Society)
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