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Abstract. A first step to keeping the human ‘in the loop’ in the con-
text of developing intelligent multi-task interfaces is to be able to mon-
itor their attention. By combining eye tracking with agent monitoring
and decision making, we provide a basis for increasing the user’s atten-
tional bandwidth by offering bottom-up attention guidance. We develop
a modified implementation of the MATBII cockpit task simulator embed-
ded in an agent environment in which agents monitor events, including
eye tracking, and act to deploy visual cues to guide attention. We explore
how such a system may be useful for improving task performance, by also
simulating users with agents to demonstrate how the system might work
for some examples of user behaviour. We also discuss how our system can
act as an experimental platform to benefit future user experience research
focusing on attention guidance in complex multi-task interfaces.
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1 Introduction

Humans are often in complex, attention demanding situations, which require
them to process information from multiple sources at once. In an interface such
as an airplane cockpit many different information sources are present in the form
of instrument displays spatially distributed in front of the pilot. Many other such
examples exist from air traffic control to remote monitoring of autonomous vehi-
cles in case of a required emergency intervention [16]. Humans are limited in their
attentional capacity and thus sample parts of their environment sequentially over
time [11]. When humans ‘fail to notice’ it is because of sub-optimal sampling.
High information flow due to the number of displays, rapid information change in
displays and the dependence of information between displays challenges human
attention limits [43]. This may lead to poor decisions with serious consequences.
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Incorporating attention guidance with a complex multi-task interface is not
straightforward, both from a conceptual and an implementation perspective.
Existing approaches for building such systems, often focus on the conceptual
aspects of attention guidance e.g. [15,45], but little attention has been paid
to conceptual frameworks that also have a systematic implementation. Other
approaches, e.g. [50], use agents as cognitive assistants, they perform autonomous
situation assessment and take into account the limitations of human informa-
tion processing. Still, an important aspect remains open: how can we build an
agent system that considers how to convey information to users about ongoing
operations and environmental parameters within their attentional limits?

The aim of this work is to show how to rethink attention guidance in multi-
task interfaces using cognitive agents [7] that perceive where a user looks, and
formulate interaction of display objects as events happening in an agent environ-
ment [8]. By observing the state of the various interface objects and in-coming
user input data (including eye tracking data) and aggregating it to form beliefs,
we conjecture that cognitive agents will be able to provide useful guidance to a
user while making important considerations relating to their attention. The sys-
tem thus both measures the current location of attention (based on eye tracking
data) and alters attention by guiding the gaze tasks requiring input. Our spe-
cific objective is to exemplify the framework by developing the methods for
attention guidance in the MATBII cockpit task simulator [59], showing how to
organise guidance for a concrete application. We also wish to demonstrate how
the modularity of an agent-based approach eases the process of experimentation
and provides some unique benefits for creating a system that is extensible and
reproducible.

The contribution of our work is to provide a practical system that makes
use of gaze location (a proxy for spatial attention), allowing agents to use this
information to help users allocate their limited cognitive resources. To this end we
reproduce and improve some aspects of MATBII [59], producing our own simple
simulation of a cockpit-based task space. The resulting system, which we refer to
as ICU, allows for display changes and eye movements to be monitored externally
via an event-based API, making it suitable for experimental settings beyond
this work. We have also embedded ICU in a resource-light agent environment,
which re-implements in full a single GOLEM container [8]. This supports real-
time attention guidance mechanisms using cognitive agents to monitor where a
user looks and can support attention guidance in other domains, assuming they
provide an ICU like API.

The work is structured as follows. We begin by first outlining related work
in describing and measuring attention, its limitations, cognitive workload, the
use of agents as assistants, and assess to what extent MATBII has proved useful
as an example task space. In Sect. 3 we present ICU, an open source Python
implementation of the MATBII task space [59], which functions independently of
our agent system. We then describe the agent system ICUa (ICU with agents) we
have developed as an experimental platform for bottom-up attention guidance.
In Sect. 4 we test the system by simulating and exploring some simple potential
human behaviours. Finally in Sect. 5 we discuss the potential of our system,
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the ability of agents to monitor the environment and user (via eye tracking) to
provide useful attention guidance, and its suitability for future human testing
and use in further applications.

2 Related Work

2.1 Workload, Eye-Tracking and Attention Guidance

The concept of workload and the demand on the limited attention of the human
operator is important in human factors. Mental workload describes the demands
on attention made by a cognitive task [42]. Often behavioural and physiological
measures are used to try to classify situations as eliciting low or high mental
workload e.g. [5,17,32,66]. A high mental workload has the effect of decreasing
performance and increasing stress [42]. Often the aim of classifying high/low
mental workload is to arrive at a solution aimed at alleviating conditions when
high workload is detected, in the form of automation that can be introduced to
aid the human operator. However, since the earliest introduction of automation,
it has been suggested that in many situations it is important to keep the human in
the loop even when a task has been devolved to an agent. The evidence suggests
that at most levels of automation it is important that the human operator is
kept engaged whenever possible user response might be required e.g. in the case
of automation failure [21]. Thus even highly automated systems may need to
consider how to convey information is such a way that the user is able to react
- the basis of this work.

Multiple ongoing tasks lead to divided attention, which is particularly detri-
mental to performance [42]. There is a general trade-off between the need for
selective attention to solve a given task and the need to detect other tasks that
may require attention. In divided attention conditions with complex tasks, the
phenomenon of cognitive tunnelling is often observed [41]. In this case if a user
is focused on solving a particular task, even salient cues can be missed.

Warning lights and alerts are used in interfaces to capture the attention of
the user, but this may lead to a situation where several alerts are activated at
once leading to ‘misplaced saliency’ [6]. In this case the attempt to make an area
stand out more has in fact the opposite effect by highlighting several areas and
thus further overloading the human, as they have to decide which to attend to
first. Additionally, overuse of alerting can lead to ‘automation disuse’ where the
user comes to ignore the help that is being offered, seeing it as a nuisance [68].
These aspects of attention are key to understanding how to improve situation
awareness (SA). SA describes a person’s awareness of relevant aspects of their
environment, the comprehension of these aspects, and predictions of what these
will mean in the future [20]. Lacking situation awareness is one of the main
causes of accidents attributed to human error [61].

In the context of describing how human attention is allocated over multi-
ple displays, it is important to note that the spatial layout of these displays
plays part in how the human user represents them [68]. Spatial memory is a
key component in monitoring the work space, spatially reorganising parts of the
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display has been found to be detrimental to performance [25]. Hence, it is gen-
erally preferable for an attention guidance system to maintain the layout of the
interface to allow a spatial representation to form.

Eye tracking has proved an invaluable tool in attempting to measure work-
load, through indicators such as changes in pupil size or the duration of each
fixation [40]. The spatial specificity of eye tracking has also led to it being devel-
oped as a tool for interaction [39]. A recent example uses eye tracking information
to ascertain which screen the user is currently looking at in order to guide them
to another screen in multi-monitor displays [63]. We propose that the spatial
specificity of eye tracking could be used for more localised guidance.

2.2 Gaze Contingent Attention Guidance

There have been many proposals over the years on how to design ‘attention aware
systems’ [54]. Concepts such as gaze based notifications have been introduced
and evaluated according to their ‘noticeability’ vs ‘distractiveness’ [33]. A great
deal of work has been done on gaze contingent attention guidance in the field
of education and training where the learner’s gaze is directed in an attempt to
ensure optimal learning [56]. This is done by using online eye tracking to detect
where the learner is focusing on the wrong information and using changes in the
display to guide their attention - the same principles we intend to use in this
work. A recent system for air traffic guidance makes use of online eye tracking to
monitor the user’s attention and direct it according to a simple logic that decides
where the user should be looking [48]. This very specific implementation, with a
control system tailored to air traffic control uses peripheral and central cues to
guide attention to the necessary parts of the scene. Initial tests with five users
suggested some improvement in perceived workload, although clear performance
metrics relative to a baseline were not presented in this preliminary work. Earlier
work [52] directs the user attention to target locations using a moving dot. In
this work they do not consider rules for guiding attention, and the eye tracking
and performance results are again not compared to a baseline. However, users
reported positively on their interaction with the system, suggesting that this
type of display has potential.

2.3 Agents

Human-computer environments where software agents act on behalf of a user are
not a new idea e.g. [38], nor is automating tasks to reduce demands on human
attention, e.g. [39]. Often agent capabilities have also been developed to predict
intention or task state from behaviour i.e. overt responses and interactions, to
provide assistance e.g. [50,57], and although eye-tracking agent assistants have
been introduced, they still remain to be fully tested [65]. Adaptive interfaces
have also been developed to use human physiological markers, such as heart rate
and eye blinks to dynamically distribute tasks between agents and humans [28],
but access to their corresponding test-beds is not available.
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Cognitive assistants often use agent models to internalise perceptions as
beliefs about the environment’s state, actions to produce results (e.g. [37]) or use
the BDI model (e.g. see [60]) based on intentions for goals the agent can plan for.
Goal reasoning [2] allows goals to be achieved or maintained, including external
goals specified by user guidelines and norms [58]. Agent decisions are modelled
with preferences over planned goals using logic if there is certainty (e.g. [31]) or
probabilities if there is uncertainty (e.g. [22]). Agent decisions may be explained
(e.g. [44]) to build trust with the user - key to successfully working with a human
[23]. However, many cognitive agent models and their implementation platforms
(see [10,36]) are often resource heavy for real-time applications as demanding as
eye-tracking. Although, light-weight versions exist, they are still at a prototypical
stage [3]. In addition, the benefit of cognitive assistants for human performance
has yet to be thoroughly evaluated experimentally in terms of assessing objective
measures of performance compared to baseline - most evaluations rely on user
questionnaire data reflecting subjective experiences [50].

To address some of the above limitations, our work is intended as a resource-
light test-bed that combines agent environments and a teleo-reactive (TR) agent
model [47] to support experiments for attention guidance applications where eye-
tracking is a key requirement. TR agent models (e.g. [34]) and implementations
(e.g. [13]) exist, and their link with models such as BDI have been studied
(e.g. [14]). However, our work is the first to apply a resource-light TR model for
attention guidance applications developed as agent environments.

2.4 MATBII as a Use-Case

MATBII [59] is widely used in the human factors literature as a multi-tasking
space. It is comprised of clearly defined spatially separated sub-tasks often requir-
ing rapid switching of attention. Difficulty is understood in terms of how often
each sub-task needs attention, thus MATBII is often used to investigate low and
high workload by changing the level of task difficulty, e.g. [24]. As shown in
Fig. 1, the sub-tasks consist of a system monitoring task, checking for changes
in colours of lights or positions of scales that require a mouse click response to
return to correct state; a tracking task that requires keeping a target within a
set of crosshairs; and a resource management task that requires manipulating
pumps to keep fuel tanks at the right level. The pumps in the resource manage-
ment task can be set to fail for a set amount amount of time. Pump failure is
shown by a change in colour and the fuel level going out of range is also indicated
by change in colour. MATBII is set up in such a way that under high frequency
conditions the probability of ‘misplaced salience’ is high. A further important
observation found from response patterns on MATBII is the presence of ‘cogni-
tive tunneling’ as described above, manifesting itself as the inability to switch
from one sub-task to another [24]. This provides us with multitasking situations,
where it is objectively clear at any point what the user needs to look at.

There is not a great deal of literature on eye tracking users in MATBII [59].
Nelson et al. [46] report percentage time fixating on each task, Kim et al. [32]
report changes in pupil size with increasing workload, and Berthelot et al. [5]
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Fig. 1. The MATBII system with sub-tasks labelled. (Color figure online)

extract a property called ‘self affinity’ from eye movement statistics. There is
much yet to be explored in the spatial pattern of eye movements whilst complet-
ing the task, for instance the effects of misplaced salience and cognitive tunnelling
have only been inferred from behaviour, it would be useful to see these effects in
more detail by measuring the spatial allocation of attention, which our proposed
system allows for and at the same time uses this information to guide attention.

3 Integrated Cognitive User Assistance

3.1 ICU

Although an open source Python implementation of MATBII with eye-tracking
(and further) options available has been recently released [12], we found it better
suited to our purpose of combining the interface with an agent architecture to
develop our own version of MATBII. We have opted for implementing a stripped
down version of MATBII, essentially the same in functionality, using just a subset
of the tasks but with some functional improvements that we feel are essential
for experimentation. We call this system the Integrated Cognitive User (ICU1),
which forms the interface part of the complete ICUa - with agents. Our system
brings new scope for experiments in human factors research owing to more flexi-
ble manipulation of the task space, the ability to collect eye tracking data easily
and interface in real time and also enables our work.

ICU has a bi-directional event API that may be used to interface with external
programs and can be used in a number of ways, including monitoring the system
in real time; for us its main purpose is to facilitate interaction with our agent

1 https://dicelab-rhul.github.io/ICU/.

https://dicelab-rhul.github.io/ICU/
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system. We have also tried to provide an improved configuration format2, which
can be used to quickly configure experiments by specifying event schedules con-
cisely, and change aspects of the interface and task behaviours. Moreover, the
system has built-in support for various kinds of user input, from standard input
(e.g. keyboard/mouse) to eye tracking devices and could be easily extended to
incorporate devices providing further physiological measures such as EEG or gal-
vanic skin response. Devices are treated as part of the event system, device input
is therefore exposed by the event API.

In terms of functionality, ICU reproduces the ‘system monitoring’, ‘tracking’,
and ‘resource management’ tasks from MATBII [59] using Python 3, see Fig. 1.
These tasks function similarly to those described in detail in [59]. Briefly, the
system task involves responding to whether a green light switches off or a red
light switches on, lights switch on/off according to a schedule, requiring a mouse
click to reset to the correct state. It also includes a set of scales that change over
time and that need to be kept as close the mid-point as possible and can be reset
to mid-point by clicking on the scale level. The tracking task uses a joystick or
keyboard presses to keep a randomly drifting target centred, the extent of the
drift is configurable. The resource management task requires the user to switch
pumps on and off to maintain the top two fuel tanks at the correct level, the
pumps fail at certain times making them unusable, pump transfer rates, tank
capacity, burn rate, frequency and duration of each pump failure, among other
things can be configured.

To support eye-tracking, ICU provides a wrapper around the PsychoPy library
[51], which enables any eye-tracker supported by the library to be used with
ICU (we assume that the eye-tracker is already calibrated). The system was
tested using a USB screen based X2-30 Tobii eye-tracker, sampling at 30Hz on
average. Raw gaze coordinates are filtered using an I-VT filter with standard
moving average as specified in [49], coordinates are classed as fixation (eyes are
stationary) or saccade (eyes are moving and thus unable to take in information).

3.2 ICUa: ICU with Agents

Previous work demonstrates the effectiveness of software agents for monitoring
practical applications, e.g. see [9,35,55,67]. Here we extend these works concep-
tually, by introducing an agent environment that contains ICU as an internal
object, where different agents can monitor the state of ICU (including informa-
tion provided by an eye tracker) and perform actions on it to highlight parts of
the screen for the user’s benefit. Although our framework is demonstrated with
ICU it is not specific to it, as ICU is used here more as an example to integrate
any suitable multi-task interface.

An agent environments approach has some significant benefits from a soft-
ware engineering perspective, especially modularity, which allows us to develop
and swap out different objects and agent behaviours easily for experiments.
Additionally, an agent-based approach leaves room for expanding the scope for

2 https://dicelab-rhul.github.io/ICU/documentation/configuration/.

https://dicelab-rhul.github.io/ICU/documentation/configuration/
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more complex environments by relying on multi-agent communication and coor-
dination models, and as a way of integrating complex cognitive capabilities for
guidance e.g. reinforcement learning [4].

Fig. 2. ICUa reference architecture in PyStarWorlds showing the four agents deployed.
We assign one agent to each of the first three application simulator tasks: system
monitoring, resource monitoring and tracking. These agents subscribe to task specific
events enabling them to perceive relevant information about the simulator’s current
state, including eye-tracking information about saccade or fixation, and communica-
tions from other agents in the system. The agents’ actions have the effect of modifying
the application interface i.e. to draw an overlay. We consider actions with two kinds of
feedback (a) highlighting a particular sub-task and (b) draw an arrow at the current
gaze location that points in the direction of a component that needs urgent atten-
tion. The fourth agent, the evaluator, monitors the user’s performance using specific
performance metrics.

ICUa is ICU extended with agents implemented in PyStarWorlds [1], an agent
environment library that supports Python agent applications. The reference
architecture of ICUa, shown in Fig. 2, is based on a specialised single container
version of the GOLEM framework described in [7], which is implemented as an
event-processing system under a publish/subscribe model [8]. ICU is internalised
as an environment object by the API it exposes, so that its state can be perceived
and acted upon by agents. Agents have a mind and body [62], the mind controls
the agent behaviour, while the body relies on sensors and actuators to situate
the agent in the application environment. Agents perceive events with their sen-
sors, make decisions with their mind and attempt actions with their actuators. A
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type-based publish/subscribe mechanism routes events to/from the sensors/ac-
tuators [8], which is known to be scalable. The environment provides a Physics
module containing action execution rules where the semantics of each action are
defined. We assume that agents are aware a priori of action preconditions/effects
and so are able to decide which actions should be taken. ICUa is agnostic as to
which agent model is to be used, different models can be adopted depending on
the application domain.

For this domain, agents and their behaviours are specified in Python using
condition-action rules following the teleo-reactive (TR) execution model [47] for
goal directed behaviours (e.g. [18]). We assume a fixed perceive-revise-decide-
attempt control cycle [30] that allows an agent to perceive the latest environ-
ment changes via the sensors, revise its internal state modelling the environment
(or belief store), then decide about what action(s) to take, and finally attempt
these actions using the agents actuators. In this setting, the TR model helps us
structure the behaviours of the agent within the decide part of the agent’s cycle,
according to the goals the agent seeks to achieve. These behaviours are specified
as a set of condition/action rules of the form:

G : {C1 → A1;C2 → A2; . . . ;Ci → Ai; . . . ;Cn → An}
where G is a goal, Ci a condition over internal variables (beliefs), and Ai is either
a primitive action, or a sub-goal (giving rise to a sub-behaviour) that can itself
be a TR program of the form:

Ai : {Ci,1 → Ai,1;Ci,2 → Ai,2; . . . ;Ci,m → Ai,m}.
This gives rise to a significant simplification of a BDI-style planning layer that
manipulates a plan library in which plans are comprised of hierarchical, sus-
pendable and recoverable teleo-reactive programs [14]. The top-level goal G for
the agent is triggered inside the decide part of the agent’s cycle. The list of rules
is scanned top-down for the first rule whose condition is satisfied, to select an
intention and the corresponding action is attempted. It is important to note that
the conditions are continuously being evaluated at each cycle step, so that when
the first true condition changes due to new belief update, the intention changes
accordingly. In other words, an action/sub-goal is revised, only when its true
condition in the agent’s internal state ceases to be true.

It is straightforward to create a subset of the TR paradigm for developing
agent behaviours using Python, or a similar programming language. Assuming
a round-robin agent execution of an agent’s control cycle, there is a natural cor-
respondence between TR programs and most programming languages, as shown
in Fig. 3. An example of a simple monitoring behaviour that follows this model
is given in Fig. 4(a). This kind of programming is quite flexible and can support
more complex behaviours. For example, in principle an agent may be monitor-
ing multiple parts of a screen (e.g. multiple pumps for the resource management
task), it may attempt multiple actions in a single cycle (e.g. to highlight multiple
pumps). As a result, the top-level goal in such cases needs to operate on sets
of actions, simulating parallel execution of independent monitoring behaviours,
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each with the form of a TR program, as for example in the interpretation used
by [13], but in our case using PyStarWorlds. An example is given in Fig. 4(b).

Fig. 3. Mapping of a simple version of TR rules in Python, which in PyStarWorlds are
evaluated continuously. Sub-goals are method calls. C n = True forces the last rule to
always succeed if all other rules above fail to trigger.

Using the above architecture we implement a few simple rules for our agents
to adhere to. The agents’ goal is to shift the attention of the user to a sub-task
that requires action if the user appears to have ignored it. Each agent has a built
in grace period, which constitutes whether the sub-task is deemed to have been
ignored. If in this time the required action has not taken place and importantly
the gaze has not moved to the sub-task, then the agent responsible for the sub-
task displays a relevant highlight. A highlight can be configured to constitute
an outline of a sub-task, a transparent overlay, an arrow at the current fixation
point or a combination of these. This involves agents checking the current gaze
fixation position and whether it is in the required sub-task region of interest.
Thus, we ensure that guidance is not displayed unnecessarily if attention has
been transferred, but an action not yet produced. The agent also checks that no
other guidance is being displayed at the time, as the aim is to not introduce a
divided attention condition. So only one agent will be displaying guidance at any
given time. If the requirements are met, the agent will display guidance and this
will remain on display until the gaze position moves to the required sub-task or
the task is resolved. Again, once gaze has moved we take this as an indicator that
the task will be responded to as required. However, if the user moves their gaze
away whilst the task still requires attention, it will again become highlighted
after a second grace period, if the gaze has not returned. These simple rules are
designed to move the user’s attention on from a cognitive tunnelling situations
with minimal unnecessary competing visual additions to the display. We do not
assign differential importance to any of the sub-tasks, but such a hierarchy could
easily be implemented in future.
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Fig. 4. Agent monitoring examples in Python TR style. In (a) we show a simple single-
action monitoring behaviour that highlights a component (part of a task) if needed. In
(b), we operate over sets of actions. This enables the agent to highlight many compo-
nents if necessary. In practice we limit agents to highlighting a single component (to
avoid overloading the user), however the parallel execution of behaviours is useful for
our simulated human users outlined in Sect. 4.
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4 Simulating Simple Examples of Human Behaviour

(a) Resource (b) Scales (c) Warning Light

(d) Tracking (e) Highlight (f) Workload

Fig. 5. Graphs (a)–(e) show error of three simulated users according to the evaluation
metrics given in Sect. 4.1, lower error means better performance by the agent. The
‘stay’ user will ignore agents advice until a particular task is complete (there is not
more action to be taken for the moment). The ‘follow‘ user will always take the agents
advice and move to solve the recommended task (see Fig. 6 for details). Error is shown
as a function of the “delay” period introduced to each decision, a restriction on the
user’s ability. There is no delay parameter for the ideal (ideal) user, we mark this
minimal possible error as a horizontal line on the graphs for comparison. All results
are averaged over 10 runs of 1 min each and normalised in the [0–1] interval. The shaded
regions show 95% confidence intervals. Graph (f) shows the error for the ‘tunnelling’
user at two difficulty levels (medium and hard) on the resource management task. The
difficulty is set in the configuration file by specifying different event frequencies. For
all simulations grace periods until a highlight is displayed are set to 2 s.

To demonstrate the flexibility of our agent system and provide some insight into
how the system might perform with different user behaviours we have imple-
mented and evaluated four different kinds of ‘user’ agents, see Fig. 5. Each ‘user’
agent directly observes events from the ICU system and is able to provide fake
user input e.g. mouse clicks, key input and eye movement. This set up also pro-
vides a basis for future researchers wishing to simulate more complex human
behaviour.

The ideal user reacts immediately to MATBII events and is not constrained by
any input delay e.g. eye movement speed or response delay, it can simultaneously
observe and react to changes in all tasks. This ideal agent is used as a baseline
and achieves the highest possible performance (i.e. lowest error rate with no need
for guidance).
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We also model a worst case scenario with a user agent that never moves
their eyes from a sub-task (which in this case is the resource management task)
and only makes responses to that sub-task, a case of cognitive tunnelling (‘tun-
nelling’).

The final two users are imperfect, in that they only respond to a sub-task
once guidance is provided and they require some time to provide a response.
They will only attempt to solve a sub-task when looking (i.e. while fixated on
the sub-task area) and require time to act (including eye movement). In our
experiments an agent moves its eyes at a constant speed 1000px/s mimicking
the rapid saccades made my humans in between fixations, which we model here
as the gaze remaining static in a given location. The relevant part of the two
behaviours is presented in Fig. 6.

Fig. 6. Two exerts from the simulated imperfect users showing the key difference in
their behaviour. (a) The ‘follow’ user’s gaze always follows guidance when present
causing it to abandon its current, possibly unresolved task and move to another. (b)
the ‘stay’ user remains focused on a task until no further action can be taken to resolve
it then follows guidance to reach the next task.

The two follow/stay behaviours are set up to correspond to two extremes
of behaviour, we expect human behaviour to lie somewhere in-between the two.
With both, we vary the delay with which they are able to respond. With larger
delay times, it is more likely that the ‘follow’ user will abandon a sub-task before
it has been solved, while with the ‘stay’ user, other tasks will remain unsolved
for a longer period.
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4.1 Evaluation Metrics

To measure the performance of each user agent we use the following metrics,
which are normalised over time and averaged over components where applicable.
The metrics are representative of the user’s error when solving tasks, 0 being a
perfect score for each metric.

– Time that main fuel tanks are out of the acceptable range in the resource
management task.

– Deviation from acceptable state of the scales (L1/time) in the system moni-
toring task.

– Time that warning lights are in an incorrect state in the system monitoring
task.

– Deviation from the central acceptable box (L∞/time) in the tracking task.
– Time at least one warning (highlight or otherwise) is displayed on the overlay.

4.2 Simulation Results

The errors calculated using our evaluation metrics are shown in Fig. 5. The ideal
user (see Fig. 5) has minimal error, any small error that exists is a result of
the slight processing delay due to simulation speed (100 ms per agent cycle).
If we look at the performance measure associated with the length of time that
highlights are displayed, we see that this is zero for the ideal observer, reflecting
that our system does not display highlights when not required.

At the other extreme our ‘worst case’ tunnelling user (Fig. 5) provides an
upper bound level of error on tasks other than the resource management task
they are focusing on. The on/off nature of the warning lights is reflected in the
constant maximum error across delay, the scales and tracking are more variable
in their error as it is possible for them to randomly return within acceptable
parameters. For this user, after the first grace period, a highlight will always be
displayed. In the resource management task of course they perform best as this
is the task of focus. We can see the effect of delay in the responses making their
performance worse.

In the case of our imperfect users that are guided by the highlights (the follow
and stay users in Fig. 5), but do not respond otherwise, their performance is
somewhere between the two more extreme ideal and tunneling users, as expected.
This reflects that a human who makes use of the highlights to guide them, is
of course not a perfect user, but is likely to perform better than a user who
completely ignores the need for a response. With these users we can also see the
effects of a delay in the response, as the response slows, so we can see the error
generally increases. The advantage of staying on a task (‘stay’ user Fig. 5) until it
is ‘solved’ varies to some extent with the delay of the response. The warning lights
and scales parts of the system monitoring task suggest an initial small advantage
for always following the highlighting, which then disappears with delay. The
more continuous nature of the tracking task produces a different pattern, with
an apparent small initial advantage for the user who remains on task until solved,
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but with increased delay the user that follows the highlighting performs better.
The highlighting metric reflects these two behaviours in that the user that follows
the highlighting has less highlights on screen over time. Of course we also see that
following highlights will reduce performance relative to the tunnelling approach
on the single task chosen to focus on (resource management).

In Fig. 5 (f) we illustrate how task difficulty can be manipulated in our system
by changing the frequency of events. We show the results for our worst case
‘tunnelling’ user on the resource management task. With a short delay in the
user response there is a relatively small difference in performance between low
frequency and high frequency events, as they are able to respond quickly enough
to resolve the high frequency events. With increased response delay, in each
case the user performs worse, with a higher error for the more difficult case
consistently.

Our simulations have shown how attention guidance may in principle improve
performance for imperfect users in cases where users shift their attention immedi-
ately, compared to when they are unable to shift their attention due to cognitive
tunnelling. Our guidance agents’ behaviour has been tailored in an attempt to
provide the most useful feedback and avoid overloading the user. We have tested
only one class of guidance behaviour, based on the principles outlined in Sect. 2,
which works as a proof of concept. Our simulations also allowed us to visualise
the effect of increasing task difficulty by increasing event frequency and how this
depends on the delay in the user action.

In addition to our simulated user tests, we have tested the capacity of the
system and found that the ICUa was able to deal with up to a million events
per second without raising any performance issues (for reference, the event load
under normal operation does not exceed more than one thousand per second
with a high-throughput eye tracking device).

5 Discussion

We have successfully demonstrated, by modifying the widely used MATBII cock-
pit task simulator, how an information display and interface system can be mon-
itored by agents and how a human user may be incorporated into the agent
environment by monitoring of their eye movements and responses. Our agents
have been deployed to enact simple attention guidance in a simulated setting.
We have demonstrated this important test case as a proof of concept of the
architecture of such a system in a simple task space known to replicate some of
the problems that have been found with user inattention.

5.1 Simulation Summary

We used our agent system to build ‘user agents’ that are able to simulate some
simplified examples of human behaviour synthetically. This enabled us to demon-
strate the behaviour of the system by summarizing error patterns under different
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conditions. We can conclude that the system works as expected, and that fol-
lowing the guidance reduces the error from a worst case scenario where a user
is only paying attention to a single task. The different simulated users showed
different patterns across delay. Changing the rules we implemented for following
the highlights resulted in different performance error patterns. We also demon-
strated how the configuration can be set to manipulate the difficulty of a task
with a resulting change in performance.

The user agents are designed to demonstrate only upper and lower bound
performance, and the effect of following the attention guidance for improving
performance. We expect human behaviour to be some combination of our simu-
lated users. Under certain conditions humans will be able to respond with some
delay to a sub-task that required a response; sometimes they will only respond
when there is a highlight; and sometimes the highlight may cause them to move
their attention before they have solved a sub-task. This system is now suitable
for experiments with human users to explore these scenarios and to ascertain
optimal rules for the agents. For instance, the simulations suggest that high-
lights may not always be advantageous if the user follows them before they have
solved the current sub-task they are focusing on.

The inclusion of user agents opens up our system to further simulations using
more complex examples of human behaviours that may occur under different
conditions and to test how ideal display rules may vary with different examples
of human behaviour.

5.2 Future Experiments with Human Users

ICUa runs on a desktop PC with an eye tracker attached and can record the
performance of human participants under different specified conditions. A first
step would be to test the current system with the existing simple rules and
assumptions to determine if it is effective at guiding attention and thus improving
performance in humans. From the simulations it is already evident that there will
be certain conditions under which attention guidance is particularly useful. In a
low workload condition it may be that user guidance has lesser impact as there
are less demands on attention, although studies also show negative effects of low
expectancy - very infrequent unexpected events can also be missed, especially
if there are other tasks that require constant monitoring [68]. If the events are
happening too quickly for human users to successfully deal with them their may
be a floor effect where attention guidance no longer helps (as seen in the longer
delay times in our simulations).

Experiments would involve manipulating the frequency of events in our sys-
tem and also comparing highlighting alone vs arrows alone and the two presented
together, to examine the cost-benefit of single vs multiple and central vs periph-
eral cues. We expect to find a ‘sweet spot’ where attention guidance works best.
The system can be combined with subjective measures of workload such as the
NASA-TLX [26] as used within the original MATBII [59].

The modified ICU interface makes its suitable for measuring eye movements
during a task that is similar to MATBII, making it suitable for wider experimen-
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tation beyond our current set-up. This environment provides an ideal testing
ground, for different methods of attracting and maintaining attention. Attention
guidance could be varied by choosing different colours of highlights, or imple-
menting synchronous flashing between the highlight and the arrow [68] or by
blurring areas that are not of interest [27]. The current system allows for mea-
suring associated eye movements, responses and performance with such changes.
Moreover, by making use of the agent architecture, our simple rules for deploy-
ing attention guidance could be altered to observe the best effects on human
performance. The use of agents provides a useful way of manipulating rules for
changing displays.

5.3 Potential Further Extensions and Applications

As highlighted, one strength of the agent-oriented approach and our agent model
is that it is modular - extra modules can be added in terms of additional inter-
face tasks and associated inputs, but also in terms of physiological signals of
attention and other measures of the human mental state we may want to rep-
resent. Not just visual, but also auditory inputs for example are possible and
additional physiological measures can take us beyond tracking spatial visual
attention, including other measures that can be read from the eye tracker such
as pupil size. Pupil size has been a useful measure in terms of tracking vigilance,
fatigue and workload [53].

As more complex inputs are added, so the agent behaviour repertoire can be
expanded. More complex rules can be added, leading to the agents performing
more complex calculations that exceed human capacity, defining for example
what would be the best thing to attend to for the human, when this is no longer
intuitively clear, especially under a moment of high pressure, or taking over
some of the task and carrying out some of the required responses automatically.
This could be done in an adaptive way [29], incorporating workload in to the
agent model to enable adaptive processes, making the most of agents’ human-
like ability and explainability. The aim of the explainability is to help the human
interpret the environment and the actions of the agents. Using agent behaviour
that can be transparent to the human helps build trust, which is critical to
optimal human computer interaction [19]. There is no explicit user modelling in
the ICUa currently, however agents are particularly suited to more complex user
modelling such as those used to track learning through tutoring software [67]
and our system is suited for this kind of extension.

Agents can also provide the basis for a learning framework. Whilst agent
behaviour may in itself alter due to the ongoing conditions, such as ongoing
high workload or fatigue as a way of achieving goals under different conditions,
a further degree of individualisation to the user may be possible by enabling
agents to learn form the past behaviour of the user.

Mobile eye trackers can be used to map eye position in real time to the
surrounding environment recorded by a camera [64]. It has been suggested that
gaze based interactive displays could be useful in a cockpit setting [39], which
MATBII is set up to mimic some aspects of. Current AI cockpit applications
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involve automating many systems, which involves the human user handing over
control. A future application of our system may be providing a way to ensure
that human monitoring remains interactive, to keep the human in the loop in a
cockpit environment. Increasingly cockpits are augmented, often being displayed
in helmet in heads-up displays that can be moved around and tailored to the
user, something that could be incorporated in to the agent system. The system
we have developed aims to ensure that once a target for attention is known to
the system, it is successfully processed by the human user. This emphasis means
our work has applications in many systems where attention guidance might be
called for, such as in semi-autonomous vehicles, within the remote operator room
for automated vehicle systems, in air traffic control, or even alerts that may go
unnoticed or not fully comprehended in everyday office computer usage.

6 Conclusion

We have built an attention guidance system using agent environments as the
underlying framework. Central to our work is the notion that an interactive com-
puter system construed as an agent environment should represent the human user
as an entity providing continuing feedback, so that the system can ensure that
they can process information within their limited attentional resources in order
to produce the necessary human responses. Our proof of concept prototype aims
to keep the human in the loop, in this case primarily via their eye movements
and with feedback from agents. Our agent-based approach to attention guidance
presents some clear advantages, such as modularity, scalability and extensibility.
We propose that our approach, as exemplified by our system, is suitable for a
wide range of experimentation where humans interact with multi-display inter-
faces based on attention guidance, and this is our next step for continuing this
research.
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