
Implementing Ethical Governors in BDI

Rafael C. Cardoso1(B) , Angelo Ferrando2 , Louise A. Dennis1 ,
and Michael Fisher1

1 Department of Computer Science, The University of Manchester, Manchester, UK
{rafael.cardoso,louise.dennis,michael.fisher}@manchester.ac.uk

2 Department of Computer Science, Bioengineering, Robotics and Systems
Engineering (DIBRIS), University of Genova, Genova, Italy

angelo.ferrando@dibris.unige.it

Abstract. Increasingly, BDI agents are being used not just for basic
decision-making, but for more abstract ethical decisions. Several authors
have built ad-hoc extensions of BDI systems that provide varying levels of
sophistication. In this paper, we introduce a general-purpose approach
for implementing ethical governors in BDI systems. With this we aim
to provide a broad, flexible and consistent framework for implementing
increasingly complex ethical reasoning. Our approach is based on a set
of domain-independent abstract agents (evidential reasoner, arbiter and
execution agent) that together represent an ethical governor. We discuss
the implementation of these abstract agents in the Jason agent pro-
gramming language and demonstrate how they can be used in practice
by instantiating agents in two different case studies, one using utilitari-
anism and the other deontic logic for reasoning about ethical decisions.

Keywords: Ethical governor · Implementing machine ethics · BDI ·
Jason

1 Introduction

Computational systems can be divided into those which are implicitly ethical
(in which the process of requirements capture, design and implementation are
assumed to guarantee ethical operation of the system), those which are explicitly
ethical (in which the machine uses some concept of right and wrong as part
of its reasoning), and those that are unethical [22]. In this paper we take an
explicit approach to ethical reasoning, in which a machine reasons about the
correct course of action by reference to judgements relating to specific ethical
principles such as safety, human autonomy and privacy and uses an ethical theory
(probably, but not necessarily, from philosophy) to select an appropriate course
of action based on those judgements. This is achieved through the use of an

Work supported by UK Research and Innovation, and EPSRC Hubs: EP/R026092
(FAIR-SPACE), EP/R026173 (ORCA), EP/R026084 (RAIN), and EP/V026801 (Ver-
ifiability Node). Fisher’s work is also supported by Royal Academy of Engineering.

c© Springer Nature Switzerland AG 2022
N. Alechina et al. (Eds.): EMAS 2021, LNAI 13190, pp. 22–41, 2022.
https://doi.org/10.1007/978-3-030-97457-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97457-2_2&domain=pdf
http://orcid.org/0000-0001-6666-6954
http://orcid.org/0000-0002-8711-4670
http://orcid.org/0000-0003-1426-1896
http://orcid.org/0000-0002-0875-3862
https://doi.org/10.1007/978-3-030-97457-2_2


Implementing Ethical Governors in BDI 23

ethical governor that arbitrates decisions, such as plan selection, concerning
competing ethical issues. It should not be assumed that in taking this approach
we treat the machine as a moral agent in its own right, in our view the morality
(and ultimate responsibility) for the machine’s behaviour remains with those
who commission, design and implement the behaviour – we mean only that
the machine’s programming explicitly refers to concepts of right and wrong on
occasion as part of its functioning.

Belief-Desire-Intention (BDI) [6,23] is a well known model for the imple-
mentation of autonomous agents. In this model, the reasoning cycle of an agent
revolves around three mental attitudes: beliefs, representing the knowledge that
the agent has about the world; desires, the goals (i.e., state of the world) that
the agent wants to achieve; and intentions, courses of action that the agent is
committed to achieve. In capturing decision-making at this high level of abstrac-
tion, the BDI model has the potential to be useful across a range of machine
ethics activities, particularly involving the ideas of implementing governors. In
particular, the complex reasoning cycle of BDI agents is well suited for perform-
ing ethical reasoning, as well as using multiple BDI agents to represent different
ethical entities (potentially with opposing/similar views). We use Jason [5], one
of the most popular BDI agent programming languages [4,10,20], to implement
our approach.

Our approach to implementing an ethical governor in BDI is separated into
two levels, abstraction and instantiation. Our main contribution is in the first
level, where we introduce three different types of agents (arbiter, evidential
reasoner, and execution agent) that implement a communication protocol and
together form an ethical governor system. The second level is an instantiation of
these types of agents, wherein agents implement the specific behaviours of the
application. To evaluate our approach we provide two examples of instantiation,
one using utilitarianism and the other using deontic logic as evidential reasoners.
Note that while we offer these two types of ethical reasoning by default, our goal
with this work is to offer a general-purpose implementation to be used as a basis
for experiments with ethical governors that can be further extended with other
types of ethical reasoning depending on the requirements of the application.

In this paper, we chose to represent an ethical governor as multiple agents.
Other alternatives include representing it as a single agent, or an organisation
of agents. Implementing it as multiple agents was more suitable for us given
the different types of reasoning that we create to represent the ethical gover-
nor (arbiter, evidential reasoners, and execution agent). Using multiple agents
allows us to have a clear separation between (potentially conflicting) evidential
reasoners (e.g., autonomy vs safety). Moreover, it makes instantiating the agents
(i.e., implementing case study specific behaviours) more straightforward, as we
can simply create agents that extend their abstract parent and implement only
the features necessary in their abstract representation.

This paper is organised as follows. In the next section we discuss some of
the background in machine ethics and the related work in implementing it using
agents. Section 3 introduces our general-purpose approach to implement ethical



24 R. C. Cardoso et al.

governors in the Jason BDI language, explaining its three main elements: eviden-
tial reasoner, arbiter and execution agent. In Sect. 4, we evaluate our approach
by applying it to two case studies, a remote inspection scenario with a human
and a robot cooperating to achieve some goals and a smart home scenario. The
paper concludes in Sect. 5 with a summary of our contributions and a discussion
about future work.

2 Machine Ethics

Machine ethics is the study of how to implement ethical reasoning in machines.
There are a number of approaches to machine ethics, in particular approaches
from symbolic artificial intelligence which generally take a philosophical theory
and operationalise it, and approaches from machine learning which attempt to
learn ethical behaviour from observation. Following [26], symbolic approaches
are generally classed as top-down and contrasted to machine learning approaches
which are considered bottom-up. There are a number of approaches that seek
to combine these, for instance, those in which philosophical theory provides
an over-arching framework within which details can be established via learning
(e.g., [1]).

Popular philosophical theories for the implementation of explicit machine
ethics include utilitarianism (in which the outcomes of actions are scored and the
action with the highest score is chosen), deontic logic (in which ethics is encoded
as rules that explicitly refer to actions that are permitted, obliged or prohibited
in specific situations) [15], and variants on virtue ethics which refer to extent to
which an action is in line with some set of desirable values. Many approaches
combine aspects of several philosophical theories—such as approaches which
evaluate the outcomes of actions with respect to values or ethical principles and
then use rules to select the preferred choice [1].

One of the earliest implementations of machine ethics is Arkin’s ethical gover-
nor [2]. In this system an ethical governor considers target selection suggestions
from autonomous weapon system and reasons about whether the suggestions
are compatible with the Law of War and the Rules of Engagement for a spe-
cific situation. The system then vetoes any suggestions that are unethical in
these contexts. Ethical governors form a popular class of explicit machine ethics
systems where they can act in tandem with more opaque autonomous systems
(e.g., deep neural networks) to provide confidence that selected actions are ethi-
cal. Among approaches taking inspiration from Arkin’s work are those based on
the concept of an ethical consequence engine [27], in which a simulation engine
is used to predict the outcomes of proposed actions which are then passed to a
governor style system for evaluation. This relates to Arkin’s work in which the
governor consists of an evidential reasoner and an application (which applies
either constraint or rule-based reasoning [25] to decide based on the evidence).
Further extensions of the ethical consequence engine work have included both
the use of BDI style reasoning to arbitrate between choices and the ability of
the governor “layer” to make its own suggestions for actions if it deems none



Implementing Ethical Governors in BDI 25

of those from the underlying system to be acceptable [7]. The work of [7] is
here generalised and expanded, in particular to incorporate multiple streams of
evidence between which the governor must decide. Our work is more general in
comparison to [7], we do not have an explicit robot controller (our approach is
not limited to robotic applications), but such a component can be encoded in
our execution agent.

In [17], the authors propose an extended BDI architecture where the agent’s
reasoning is enhanced with case-based reasoning to implement casuistry and con-
sequentialist theories in BDI agents. This is obtained by making the agents use
past experiences to solve present problems. In more detail, if a past experience
exists, then the agent follows the same steps to solve the problem; otherwise, the
agent decides how to solve the problem following the standard BDI flow. Their
work is based on a hybrid BDI architecture that uses case-based reasoning while
ours solely comprises pure BDI agents. Another extension of the BDI model
with the notion of action consequences is proposed in [16]. This is obtained by
modelling a consequentialist approach of ethics which makes an agent choose
actions with consequences that are less evil. The authors formalise their app-
roach in both Answer Set Programming (ASP) and BDI frameworks. Differently
from the works in [16,17], we do not extend the BDI model, instead we present
a general-purpose approach to implementing ethical reasoning in (existing) BDI
systems without altering the BDI reasoning cycle or the languages and tools that
implement it.

The authors in [12] describe a mechanism for BDI agents to have a value-
based reasoning process. Such values are used to influence the agent’s decision-
making, and can relate to ethical aspects. Their approach is similar to ours in
the sense that both do not require modifications to the BDI model or to any
underlying tool/language. The difference is that in their case their mechanism
uses an external constraint solver while ours is directly implemented in the Jason
agent programming language. End even though we also have a value-based rea-
soning process (utilitarianism evidential reasoner), our main focus is in creating
the ethical governor system.

3 Ethical Governor in BDI

In [13], Dennis and Fisher note that while in questions of safety such as those
studied in the ethical consequence engine work, simulated physical outcomes are
effective in evaluating the risks of possible actions when other ethical principles
are considered, such as privacy or human autonomy. Evaluating the ethical status
of a proposed action might need to reference different processes such as reasoning
using rules about possible consequences, simulations of information flows, or
reference to stated preferences. Thus a suite of such reasoners is needed, one for
each of the ethical considerations in play, and the arbiter (called application in
Arkin’s work) layer of the evidential reasoner must decide between potentially
competing preferences/recommendations/evaluations from these reasoners.

An initial implementation of such a multiple evidential reasoner system using
BDI agents programmed in Jason was presented in [9] in which two evidential



26 R. C. Cardoso et al.

reasoners – one in the style of the ethical consequence engine that simulated
physical outcomes and made recommendations about safety, and one that used
its own past history in order to make recommendations about respecting human
autonomy – both submitted recommendations to an arbitration system that
used utilitarianism to select the desired action. While our previous work was
domain-specific, we now present a general approach for implementing machine
ethics through an ethical governor system.

Our implementation1 is written in the Jason [5] agent programming lan-
guage. Jason started as an implementation of AgentSpeak(L) [24], a theoretical
language for BDI systems, but has since seen many extensions such as its use in
the JaCaMo [3] multi-agent programming framework. Jason underlying code is
implemented in Java and has been shown to have some of the best performance
among agent programming languages [21], as well as achieving respectable per-
formance against actor programming languages, especially those that are also
implemented in Java [11].

Agents in our ethical governor system consist of:

– an execution agent, which is the agent responsible for managing and executing
actions that require further ethical reasoning in the system;

– a set of evidential reasoners, one or more agents that based on their main
characteristic (e.g., autonomy, safety, privacy, etc.) and given an input from
the execution agent (i.e., an existing action or a set of states) will suggest an
appropriate ethical action;

– and an arbiter, in case of two or more evidential reasoners it is necessary that
another agent be responsible for determining which action will be sent for
execution.

The ethical governor can be part of a larger multi-agent system, including other
agents that are not part of the ethical governor (these other agents are out of
scope for this paper and are domain-specific). To simplify the implementation
details, in this paper we only consider a single ethical governor. To execute
an action that requires ethical reasoning, the execution agent asks the evidential
reasoners to suggest actions. Actions that require ethical reasoning are identified
and defined by the developer of the system. Each evidential reasoner will choose
an action based on its instantiation, using epistemic reasoning and its set of
beliefs, plans, and Prolog-like rules. Finally, the arbiter collects all suggestions,
picks one of them based on an ethical reasoning strategy, such as utilitarianism,
and sends the selected choice to the execution agent. Our approach is split into
two levels: Abstraction and Instantiation, as represented in Fig. 1.

At the abstraction level, a communication protocol amongst the agents is
established. This protocol includes plans for the agents to be able to commu-
nicate their requests and replies (using both unicast and multicast), as well as
messages introducing the name of the agents that have been instantiated (using
broadcast). The code at this level does not require any information about the

1 Source code available at: https://github.com/autonomy-and-verification/ethicalgov.

https://github.com/autonomy-and-verification/ethicalgov


Implementing Ethical Governors in BDI 27

Fig. 1. Overview of our approach for implementing an ethical governor in BDI.

scenario that is being implemented. The abstract level only concerns how agents
in the governor system interface with each other.

The instantiated agents include their parent abstraction. The internal include
action in Jason imports at runtime all of the beliefs, goals, and plans of the
specified agent source file into another agent source file. This is not the same
as the inheritance concept from object-oriented programming, since it is simply
loading a preexisting code instead of properly instantiating it. We note here
that if we were using the aforementioned JaCaMo multi-agent programming
framework [3] we would be able to use Moise [18] (responsible for the organisation
layer) to establish an organisation with the roles of arbiter, evidential reasoner,
and execution agent, which would allow us to drop the broadcast plans with the
name of the agents, since agents in the system would have access to the names of
the agents that are playing these roles. However, we opted to have a standalone
Jason implementation first since it provides a basic starting point, and leave a
JaCaMo extension as future work.

At the instantiation level, we find how the execution agent implements the
suggested actions, the implementation logic that the evidential reasoners use
to decide which actions to suggest, and finally, how the arbiter weights these
suggestions and the type of ethical reasoning that it uses to select the choice
that will be sent back to the execution agent.

Even though the abstraction level is at a higher-level and thus more general
than the instantiation, both refer to actual implemented code. The code at the
abstraction level is simply a parent code that is instantiated and further spe-
cialised depending on the application that we want to develop. The instantiation
level is further discussed in Sect. 4 when we instantiate the agents using two case
studies, but for now we continue to describe the details of the abstraction level.



28 R. C. Cardoso et al.

3.1 The Execution Agent

The execution agent is the agent that will carry out the execution of the action
that is selected by the arbiter. In Listing 1, we report the generalised execution
agent code. This corresponds to the abstract execution agent from Fig. 1.

The execution agent starts by introducing itself with the addition (repre-
sented by the syntax ! preceding a predicate) of a goal at line 1. When the
system starts, the addition of this goal generates an event (goal addition event
represented by the syntax +!) which triggers the execution of the plan at lines
2–4. The context of the plan (preceded by the : symbol) is used to test if the
plan is applicable (i.e., it is the precondition for the plan to be selected). The
context at line 3 is always true, since it is used simply to call an internal action
that returns the name of the agent and unifies it with the open term Me. The
plan body (preceded by the <- symbol) contains the steps required to achieve
a plan, this can be calls to an action, either internal for Jason existing actions
or external (provided by the user or the environment), or operations such as
goal/belief addition/removal where each call terminates with a semicolon, and
finally a dot in the end of the plan. Line 4 calls the internal action broadcast to
send a message to all agents in the multi-agent system using the tell speech act
performative, which adds the belief with the name of the execution agent.

1 !introductions .

2 +! introductions

3 : .my_name(Me)

4 <- .broadcast(tell , execution_agent (Me)).

5 +!act

6 <-

7 for (evidential_reasoner (Gov)) {

8 .send(Gov , achieve , suggest_action);

9 }.

10 +! choice(ActionList)

11 : .list(ActionList)

12 <-

13 !select_action (ActionList , action(Action , ReasonerType));

14 !execute_action (Action , ReasonerType).

15 +! choice(action(Action , ReasonerType))

16 <-

17 !execute_action (Action , ReasonerType).

Listing 1. Generalised execution agent code.

After this step, when the execution agent’s instantiation requires an action
to be selected by the ethical governor, it first has to call the act plan by adding
the !act goal (an example of such instantiation, as well as the other agents’
instantiation, is shown later in Sect. 4). This plan (lines 5–9) sends a request
for an action suggestion to all evidential reasoners through the achieve speech
act which works as a goal addition, thus triggering the plan +!suggest_action

in the evidential reasoners when the message is received. The plans shown at



Implementing Ethical Governors in BDI 29

lines 10–14 and 15–17 are triggered by a message sent from the arbiter with the
action choice that was selected. It is possible for the arbiter to return a list of
action choices, in which case the plan at 10–14 is triggered and the instantiation
of the execution agent will pick the most appropriate action from the list, and
then calls a plan for performing the action where the corresponding callback plan
has to be implemented at the instantiation level. Otherwise, if a single action is
received the plan at lines 15–17 simply calls the plan for executing it.

It would be possible, with some minor modifications, to remove the execution
agent from the abstraction level, however, we would still require an agent to start
the process by asking for an action from the evidential reasoners. We have opted
to keep this abstraction because it allows the developer to quickly understand
which plans have to be implemented in their instantiation (i.e., plans that are
domain-specific), without having to resort to any external documentation. Our
current implementation of the abstraction level allows for only one instantia-
tion of the execution agent, however, with some minor modifications it should
be possible to extend this to allow multiple agents. Namely the communication
protocol would have to be extended to include the name of the requesting exe-
cution agent, and the evidential reasoners and the arbiter would have to be able
to reason about their choices in relation to the requesting agent so that multiple
requests could be handled concurrently.

3.2 The Evidential Reasoners

The evidential reasoners are agents that will decide which action to suggest using
domain-specific Prolog-like rules that can take into consideration the current
state of the system under execution to narrow down which action they believe to
be the most suitable for the current situation. When instantiated, these reasoners
will often favour diverging opinions, such as for example a safety reasoner in
contrast to an autonomy reasoner, as we will see in Sect. 4. In Listing 2, we
report the code for the generalised evidential reasoner. This corresponds to the
abstract evidential reasoner from Fig. 1.

1 !introductions.

2 +! introductions

3 : .my_name(Me)

4 <- .broadcast(tell , evidential_reasoner (Me)).

5 +! suggest_action

6 : arbiter(Arbiter) & type(Type)

7 <-

8 !make_choice(Action , Statement);

9 .send(Arbiter , tell , evidential_reasoner_choice(Type ,

Action , Statement)).

Listing 2. Generalised evidential reasoner code.



30 R. C. Cardoso et al.

Similar to the execution agent, the evidential reasoners also have an intro-
duction plan that works in exactly the same way. The names of the evidential
reasoners are necessary for the execution agent, since it needs to ask the evi-
dential reasoners for suggestions, and for the arbiter, since it has to wait each
evidential reasoner’s choice before selecting one. The plan for handling an exe-
cution agent request is defined at lines 5–9, and it is triggered by the message
from the execution agent that we have seen in Listing 1. We consult the agent’s
belief base in the context of the plan (line 6) to unify the name of the arbiter
and the type of the agent (which is set in the instantiation level, e.g., safety,
autonomy, etc.). The !make_choice goal is added at line 8 and it should be trig-
gered by a plan implemented in the instantiation of the evidential reasoner. Its
implementation depends on what are the objectives of the instantiated eviden-
tial reasoner, which will determine their action choice as well as a statement
(e.g., if we are dealing with a utilitarian system than this will be a utility value
for that action choice). Finally, at line 9, the evidential reasoner propagates its
selection, composed of the type of the evidential reasoner, the action choice, and
the statement, to the arbiter of the system. These are then used by the arbiter
to select the action to be executed.

3.3 The Arbiter

The arbiter (similar to the entity called application in Arkin’s original work) is
responsible for collecting the action suggestions from the various evidential rea-
soners and then selecting the most appropriate based on some ethical reasoning
such as utilitarianism. In Listing 3, we report the generalised arbiter code. This
corresponds to the abstract arbiter in Fig. 1. Line 1 contains a book-keeping
belief counter(0) that is used to keep track of how many action suggestions it
has received from the evidential reasoners. The introductions plan works the
same as in the previous execution agent and evidential reasoners, and it is used
by the arbiter to introduce its name to the rest of the agents.

Lines 6–11 and 12–16 contain two plans that receive those choices, both
triggered by the addition of the belief evidential_reasoner_choice. Both are
annotated (preceded by the @ symbol), a Jason feature that allows plans to
have extra information embedded in the plan. In this case, an identifier name
and an option that turns the plan into an atomic operation, meaning that the
usual concurrent execution of intentions in Jason is stopped once the plan is
triggered and will only resume after it has been completed (either with a fail
or a success). This is necessary in order to avoid any race condition that could
eventually cause the counter belief to be miscalculated. The default plan selection
in Jason goes top-down in the plan library of the agent and attempts to select
any plan matching the triggering event. Since both plans have the same trigger,
the first plan (6–11) will be selected first. Its context checks (using the .count

internal action which returns the number of times that a particular belief occurs
in the belief base) the number of evidential reasoners in the system (beliefs that
are obtained through the identification messages) and that the current counter
matches this number minus 1 (i.e., this is the last evidential reasoner to send



Implementing Ethical Governors in BDI 31

its action choice). The _ symbol indicates variables which may match any value.
The body of this plan updates the counter to 0 so that it is ready to receive more
action choices in the future and adds the !arbiter_choice goal. If the context of
the first plan fails, the second one (12–16) will be triggered. Its context is always
true, since there will always be a count belief, and its body simply updates the
counter by an increment of 1.

1 counter (0).

2 !introductions .

3 +! introductions

4 : .my_name(Me)

5 <- .broadcast(tell , arbiter(Me)).

6 @receivelastchoice [atomic]

7 +evidential_reasoner_choice (Type , Action , Statement)

8 : .count(evidential_reasoner (_),N) & counter(N-1)

9 <-

10 -counter(_); +counter (0);

11 !arbiter_choice .

12 @receivechoice [atomic]

13 +evidential_reasoner_choice (Type , Action , Statement)

14 : count(N)

15 <-

16 -counter(N); +counter(N+1).

17 @utilitarian[atomic]

18 +! arbiter_choice : reasoning(utilitarian) & execution_agent

(Agent)

19 <-

20 +choice (0,0,0);

21 for (evidential_reasoner_choice (Type , Action , Utility)) {

22 -evidential_reasoner_choice (Type , Action , Utility);

23 if (type_multiplier (Type , TypeMultiplier) ) {

24 NewUtility = TypeMultiplier * Utility;

25 } else {

26 NewUtility = Utility;

27 }

28 ?choice(BestUtility , BestType , BestChoice);

29 if (NewUtility > BestUtility) {

30 -choice(BestUtility , BestType , BestChoice);

31 +choice(NewUtility , Type , Action);

32 }

33 }

34 ?choice(Utility , Type , Action);

35 -choice(Utility , Type , Action);

36 .send(Agent , achieve , choice(action(Action , Type))).

Listing 3. Generalised arbiter code.

Finally, we have the plan that triggers once all action choices have been
received. By default we provide two ethical reasoning mechanisms for the arbiter:
utilitarianism and deontic. Other mechanisms can be added in the instantiation



32 R. C. Cardoso et al.

of the arbiter as needed. For brevity, we only discuss utilitarianism here (lines 17–
36), but show the instantiation of deontic logic later on in our second case study.
The context of the plan makes sure that the plan corresponding to the desired
ethical reasoning will be selected (utilitarian in this case) and that we know the
name of the execution agent. The +choice belief is another book-keeping belief
to keep track of what is currently the best choice (initialised with 0). We iterate
over each choice, and retrieve the scale multiplier for the evidential reasoner (if
no multiplier is given in the instantiation of the arbiter, then the utility value
is preserved), and use it to update the utility value passed by the evidential
reasoner. The scale multiplier can be used to give more (resp. less) importance
to certain types of evidential reasoners (e.g., more value to safety rather than
autonomy). The best choice is retrieved at line 28, and at line 29 its utility
is compared with the utility of the action currently analysed. If the currently
analysed action has a greater utility, then the best action is updated (lines 30–
31). After all the evidential reasoners’ action choices have been evaluated, the
best action is retrieved (line 34) and sent to the execution agent (line 36).

4 Evaluation

To evaluate our general-purpose approach we have selected two case studies and
present the instantiation level for both, as well as some results from experiment-
ing with the multiplier scales for different types of evidential reasoners. The
choice of the agent to instantiate the execution agent as well as the actions that
require ethical reasoning is to be made by the developer of the system.

4.1 Remote Inspection Case Study

Our first case study, shown in Fig. 2, is a simulation where a human (represented
by H in the screenshots) and a robot (represented by R in the screenshots) move
around in a 2D grid environment. The human’s task is to keep visiting all goal
positions (green triangles) for as long as the system is running. The robot’s
objective is to protect the human from stepping into radiation cells; these are
the cells with low (yellow), medium (orange), and high (red) level of radiation.
The robot has two evidential reasoners which generate the ethical dilemma to
be solved by the ethical governor system, a safety reasoner and an autonomy
reasoner. In Fig. 2a and b, we report screenshots of the simulated environment.
Figure 2a shows the initial configuration. Figure 2b shows the case where the
robot is warning the human because the latter is in a dangerous area.

In this case study, we have one execution agent (the robot), two instantiated
evidential reasoners (one for safety and one for autonomy), and one instantiated
arbiter. The human is also an agent that is part of the simulation, however it
does not instantiate any of our abstracted agents. The safety evidential reasoner
gives importance to the human safety, preferring actions that will move the robot
closer to the human and actions that can warn the human of any imminent
danger of radiation. The autonomy evidential reasoner gives importance to the



Implementing Ethical Governors in BDI 33

(a) Initial configuration of the map. (b) Robot warning human.

Fig. 2. Screenshots of the grid map for the remote inspection case study.

human autonomy, preferring actions that will move the robot away from the
human, especially when it believes that the human is “annoyed” by its close
proximity.

1 { include("evidential_reasoner .asl") }

2 type(safety).

3 ...

4 +! make_choice(Choice , Utility)

5 : inDanger(human , red) & not near(human , robot)

6 <- Choice = moveToward; Utility = 3.

7 ... // the same for orange and yellow but with utility 2

and 1 respectively

8 +! make_choice(Choice , Utility)

9 : inDanger(human , red) & near(human , robot)

10 <- Choice = prevent; Utility = 3.

11 ... // the same for orange and yellow but with utility 2

and 1 respectively

12 +! make_choice(Choice , Utility)

13 : not inDanger(human , _) & near(human , robot)

14 <- Choice = stayPut; Utility = 1.

Listing 4. Instantiation of the safety evidential reasoner.

In Listing 4, we report a snippet of the code for the safety evidential reasoner
as an instantiation of the abstract evidential reasoner (the Prolog-like rules such
as inDanger and near as well as some book-keeping beliefs and plans were omitted
for brevity). The abstraction of the evidential reasoner is included at line 1 (.asl
is the file extension for agents in Jason). At line 2, the belief containing the type
of the evidential reasoner is explicitly added (this information is required by the



34 R. C. Cardoso et al.

arbiter to set the scale multipliers). According to the abstraction in Listing 2,
the only plan required to be instantiated is !make_choice. This is the plan that
determines the action that will be suggested by the reasoner and sent to the
arbiter. At lines 4–14, the three main action options for the !make_choice plan
are reported. At lines 4–6 we have the action to move towards a human with
utility 3 if the human is in danger (close to a red radiation cell) and the robot
is not close to the human to intervene. The action for preventing the human to
step in a radiation cell (i.e., issue a warning to the human) is part of the plan at
lines 8–10, and it is chosen if the human is in danger (again in relation to a red
cell) and the robot is close to the human. There are two extra plans for each of
these two actions (move towards and prevent) which are the similar but instead
of the red cell the inDanger rule tests for orange and yellow cells and the utility
value assigned to these actions is lowered. The last available action for the safety
evidential reasoner is a skip action, an action for the robot to stay put (i.e., not
move). This is shown at lines 12–14, with the plan being selected if the human
is not in any danger and the human and the robot are near each other.

In Listing 5, we report a snippet of the code for the autonomy evidential
reasoner. This is similar to the previous code, except that the reasoner is now of
the autonomy type and it has two main actions.

1 { include("evidential_reasoner .asl") }

2 type(autonomy).

3 ...

4 +! make_choice (Choice , Utility)

5 : not near(human , robot) & not annoyed

6 <- Choice = stayPut; Utility = 1.

7 +! make_choice (Choice , Utility)

8 : not near(human , robot) & annoyed

9 <- Choice = stayPut; Utility = 3.

10 +! make_choice (Choice , Utility)

11 : near(human , robot) & inDanger(human , _) & not annoyed

12 <- Choice = moveAway; Utility = 1.

13 +! make_choice (Choice , Utility)

14 : near(human , robot) & not annoyed

15 <- Choice = moveAway; Utility = 2.

16 +! make_choice (Choice , Utility)

17 : near(human , robot) & annoyed

18 <- Choice = moveAway; Utility = 3.

Listing 5. Instantiation of the autonomy evidential reasoner.

At lines 4–6 and 7–9, we have the skip action (stay put) with utilities 1 and 3
respectively; utility 1 is set when the robot is not near the human and the human
is not annoyed, while utility 3 is set when the robot is not near the human and
the human is annoyed. Annoyed is a rule that checks a proximity belief that
indicates for how many consecutive steps has the robot been in a neighbouring
cell of the human (any of the 8 positions or even the same position as the human,
since there is no collision). If this number is greater than 3 (i.e., the robot has
been in close proximity to the human for at least 4 consecutive steps) then the



Implementing Ethical Governors in BDI 35

human is considered annoyed. The proximity number is decreased when they
are not in close proximity, down to a minimum of 0. At lines 10–12, 13–15, and
16–18, we have the action for the robot to move away from the human with
utilities 1, 2, and 3; utility 1 is set when the robot is close to the human and the
human is in danger and not annoyed, utility 2 is set when they are near each
other and the human is not annoyed, and utility 3 when they are near and the
human is annoyed.

The instantiation of the arbiter for this case study is shown in Listing 6.
This is the most straightforward instantiation since it relies on the plans from
its abstract level representation. As usual, we include the code for the abstract
implementation at line 1. At line 2, the kind of reasoning used in the abstract
arbiter is set. Since utilitarianism is supported in the abstract implementation
we do not need to implement any plans for it. At lines 3 and 4, the utility scale
multipliers for the two types of instantiated evidential reasoners are given. In
this case, the utilities from the autonomy evidential reasoner are left unchanged,
while the utilities of the actions suggested by the safety evidential reasoner are
weighted more (20% more). The main idea here is that these values can be cus-
tomised in order to evaluate the effectiveness of the different evidential reasoners,
as we will show later in some of our results for this case study.

1 { include("arbiter.asl") }

2 reasoning(utilitarian).

3 type_multiplier(autonomy , 1).

4 type_multiplier(safety , 1.2).

Listing 6. Arbiter instantiation.

We do not report the execution agent code (instantiated by the robot) nor the
code for the human, since they are not relevant for the presentation of the general
technique. The robot contains domain-specific plans which specify how actions
such as move away are implemented (move away simply checks the positions of
the robot and the human and then selects a cell to move that would bring the
robot to be further away from the human) and the human contains plans for
moving around the grid efficiently and how to avoid (if possible) radiation cells
when warned by the robot. In general, the execution agent could evaluate the
arbiter’s suggestion, and decide whether to follow it or not. In this case study,
the robot executes the action passed by the arbiter without questioning the
suggestion. As shown in Listing 7, every different action requires its own plan to
be implemented, which could be as straightforward as calling the action directly
or could have some other logic such as figuring out which coordinates the robot
should move to.

1 +! execute_action(Action , ReasonerType) <- !Action.

Listing 7. Execution agent instantiation.



36 R. C. Cardoso et al.

Our approach is made not just as a proof-of-concept, but also to aid in the
experimentation of ethical governor systems. In particular, how to fine tune
the weights of choices from different types of evidential reasoners. To demon-
strate this feature, we have collected several measurements in this case study
and observed how they are impacted by changes in the scale multipliers of each
type of evidential reasoner. The results are listed in Table 1. For each configu-
ration of the scale multipliers, we ran a simulation cycle of 200 steps. A step is
an ordered execution cycle wherein first the robot acts, and then the human can
act.

Table 1. Different measurement results for the remote inspection case study when
altering the scale multipliers.

Scale

Multiplier

Warning Red

Radiation

Orange

Radiation

Yellow

Radiation

Annoyed Safety

Choices

Autonomy

Choices

Safety * 1.2

Autonomy * 1

79 0 1 12 4 166 34

Safety * 3

Autonomy * 1.5

77 0 1 12 10 168 32

Safety * 1

Autonomy * 3

13 0 1 18 3 13 187

Safety * 1

Autonomy * 3.5

0 3 4 11 1 0 200

The warning measurement represents how many times the action prevent
has been used by the robot. Red, orange, and yellow radiation indicates how
many times the human has stepped in one of these cells. The annoyed metric is
used to show the maximum number of consecutive steps for which the human
was annoyed (i.e., a result of 10 indicates that the human had 10 consecutive
steps in which the robot was in close proximity). Finally, safety and autonomy
choices are the number of times that choices from these evidential reasoners have
been selected by the arbiter. These results show that increasing autonomy has a
significant impact in the safety of the human, since it is more likely to step into
radiation cells (in particular the dangerous red radiation cells when autonomy
has full control). Likewise, increasing safety results in the human being annoyed
more frequently, since the robot attempts to follow the human more often, but
it does not result in less radiation. This happens because the safety choices for
giving out warnings already contain high utility values, thus increasing it has no
consequence on the amount of times it issues warnings. These results can then
be used to inform the developers in their choice for the most appropriate weights
depending on what are the desired outcomes of the system.

4.2 Smart Home Case Study

Our second case study is based on a smart home scenario adapted from the work
in [19]. The scenario consists of a smart family home controlled by an intelligent
agent. The agent has control over several pieces of smart technology around the



Implementing Ethical Governors in BDI 37

house, such as cameras, smart electronics, and an air conditioning system. This
system regularly checks the quality of the air in all of the rooms of the home. We
simulate a situation where the air conditioning system has detected that there
are signs of tobacco smoke in one of the teenager’s room. We use our ethical
governor system to help the agent come to a decision about what to do when
this occurs.

Instead of utilitarianism, we use a simple form of deontic logic wherein the
evidential reasoners use epistemic reasoning to select an action and then attach
a yes/no/maybe recommendation. The arbiter then vetoes the recommendations
and instead of sending only one choice as in the utilitarianism example, it sends
a subset of them to the execution agent. This behaviour more closely resembles
the classical ethical governor architectures found in the literature.

We show this extension of the arbiter in Listing 8, which is simply another
plan to be added in Listing 3. Note that this extension is not domain-specific,
we simply chose to present it here instead of in the arbiter section for the sake
of clarity. The code is straightforward, first the arbiter goes through all of the
choices attached with a yes recommendation and registers them as choices to
be sent to the execution agent by adding a belief +choice for each (lines 4–7).
If no choices have been added this way, then the arbiter iterates over all the
choices marked with a maybe recommendation and selects the one associated
with the evidential reasoner that has the best rank (i.e., higher priority) among
them (lines 8–22). Choices with a no recommendation are discarded (lines 23–
25) and if no choices were selected by the end then a choice is added with null
values (lines 26–28). Finally, the arbiter executes the .findall internal action
that simply collects all choice beliefs and add them to an action list that is then
sent to the execution agent.

In this second case study we use a much simpler simulation environment
that is used solely to demonstrate another ethical reasoning mechanism. We
instantiate six agents, four of which are the privacy, safety, legal, and reliability
evidential reasoners, as well as the house (smart home execution agent), and the
arbiter. The instantiation of the arbiter is almost identical to Listing 6, except
that it now uses deontic logic and type ranks. To run our simulation we used the
following ranks for the safety, legal, privacy, and reliability evidential reasoners
respectively: 1, 2, 3, and 4 (lower values mean higher priority). These values can
be further optimised as preferred by the developer.

Our simulation starts with the house asking the evidential reasoners what to
do after it has detected that there is a teenager smoking tobacco. Each eviden-
tial reasoner has one action that it can suggest, along with its recommendation
(yes/no/maybe). The legal evidential reasoner can suggest to warn the author-
ities with the recommendation: yes if tobacco consumption by minors is illegal
in the country it is located in and it is not the first time such event occurs and
the parents/guardian are not at home, no if tobacco is not illegal, and maybe if
the previous two recommendations fail to be selected. The privacy reasoner can
suggest to warn the teenager with: yes if this is the first time it has detected such
behaviour, no if this is a repeated occurrence and the parents are at home, and



38 R. C. Cardoso et al.

maybe if the other two fail. The safety reasoner can suggest to warn the parents
with: yes if the parents are at home, no if tobacco is not illegal for minors and
the parents are not at home, and maybe if the other two fail. The reliability rea-
soner can suggest to log the activity with: yes if the log feature is not disabled
and the quantity of smoke detected is greater than a certain threshold, no if the
log feature is disabled, and maybe if the other two fail.

1 @deontic[atomic]

2 +! arbiter_choice : reasoning(deontic) & execution_agent (

Agent)

3 <-

4 for (evidential_reasoner_choice (Type , Action , yes)) {

5 -evidential_reasoner_choice (Type , Action , yes);

6 +choice(action(Action , Type));

7 }

8 if (not choice(_)) {

9 for (evidential_reasoner_choice (Type , Action , maybe)) {

10 -evidential_reasoner_choice (Type , Action , maybe);

11 if (not choice(_) & type_rank(Type , Rank)) {

12 +rank(Rank);

13 +choice(action(Action , Type));

14 }

15 elif (rank(BestRank) & type_rank(Type , Rank) & Rank <

BestRank & choice(action(OldAction , OldType)))

16 {

17 -rank(BestRank); +rank(Rank);

18 -choice(action(OldAction , OldType));

19 +choice(action(Action , Type));

20 }

21 }

22 }

23 for (evidential_reasoner_choice (Type , Action , no)) {

24 -evidential_reasoner_choice (Type , Action , no);

25 }

26 if (not choice(_)) {

27 +choice(action(null , null));

28 }

29 .findall(action(Action ,Type), choice(action(Action , Type)

), ActionList);

30 .send(Agent , achieve , choice(ActionList)).

Listing 8. Deontic ethical reasoning plan for the generalised arbiter.

Finally, the execution agent will do nothing if it has received null, or it will
select an action from a list of suggestions (with the yes recommendation) and
execute the selected action, or if it received a single action it will simply execute
it. In our instantiation of the execution agent it selects the first action choice from
the list, however something more elaborate could be implemented depending on
the requirements of the system. Another option would be to allow the execution
of all the actions that have been received with a yes recommendation, but this
would require some minor modifications at the abstraction level of our approach.



Implementing Ethical Governors in BDI 39

Table 2. Actions and recommendations from an example run in the smart home case
study. Circled row is the action that the execution agent has chosen.

Reasoner Action Statement
privacy warn teenager yes
safety warn parents no
legal warn authorities no
reliability log activity maybe

To demonstrate the execution of our approach in the smart home case study
we report the results of running a sample configuration of the case study with
no control beliefs (e.g., preconditions that check if tobacco is illegal will fail,
conversely belief negations will succeed) in Table 2. In this configuration, since
the only yes recommendation comes from the privacy evidential reasoner, the
arbiter agent will discard the others and send that action to the execution agent.

5 Conclusions

In this paper we have described a general approach for implementing ethical
governor systems in BDI. Our approach is implemented in the Jason agent pro-
gramming language and it is divided into two levels: abstraction and instanti-
ation. The abstraction level is domain independent and specifies the standard
behaviour and plans of the execution agent, evidential reasoners, and arbiter.
Our evidential reasoners and arbiter come equipped with two ethical reasoning
mechanisms, utilitarianism and deontic logic. To evaluate our approach we have
shown the instantiation of these abstractions using two case studies.

As a future extension of our approach, we intend to modify the action choice
output of the evidential reasoners to include a formula containing some default
information that can then be used by the arbiter to further augment and inform
its selection, in a similar way to the work done in [8]. This formula would contain
elements such as why the evidential reasoner believes its choice to be a good
choice (i.e., why it has proposed it), the beliefs that it used to come to its
conclusion, and any required additional information. This formula would allow us
to use different types of reasoning for individual evidential reasoners, for example,
a safety evidential reasoner using utilitarianism and an autonomy evidential
reasoner using deontic logic. However, the arbiter would also have to be extended
to be able to analyse and select an action among these different streams of
suggestions, which is a topic that is just recently being researched [14].

References

1. Anderson, M., Leigh Anderson, S.: GenEth: a general ethical dilemma analyzer.
In: Proceedings of AAAI 2014 (2014)

2. Arkin, R., Ulam, P., Duncan, B.: An ethical governor for constraining lethal action
in an autonomous system. Technical report. GIT-GVU-09-02, Georgia Tech (2009)



40 R. C. Cardoso et al.

3. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-agent oriented program-
ming: programming multi-agent systems using JaCaMo. In: Intelligent Robotics
and Autonomous Agents series. MIT Press (2020). https://books.google.com.br/
books?id=GM tDwAAQBAJ

4. Bordini, R.H., El Fallah Seghrouchni, A., Hindriks, K., Logan, B., Ricci, A.: Agent
programming in the cognitive era. Auton. Agent. Multi-Agent Syst. 34(2), 1–31
(2020). https://doi.org/10.1007/s10458-020-09453-y

5. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-agent Systems
in AgentSpeak using Jason. Wiley, Hoboken (2007)

6. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press
(1987)

7. Bremner, P., Dennis, L.A., Fisher, M., Winfield, A.F.: On proactive, transparent
and verifiable ethical reasoning for robots. In: Proceedings of the IEEE Special Issue
on Machine Ethics: The Design and Governance of Ethical AI and Autonomous
Systems, vol. 107, pp. 541–561 (2019)

8. Bringsjord, S., Sundar, G.N., Thero, D., Si, M.: Akratic robots and the computa-
tional logic thereof. In: 2014 IEEE International Symposium on Ethics in Science,
Technology and Engineering, pp. 1–8 (2014). https://doi.org/10.1109/ETHICS.
2014.6893436

9. Cardoso, R.C., Ene, D., Evans, T., Dennis, L.A.: Ethical governor systems viewed
as a multi-agent problem (2020). https://doi.org/10.5281/zenodo.3938851

10. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021). https://doi.org/10.3390/computers10020016

11. Cardoso, R.C., Zatelli, M.R., Hübner, J.F., Bordini, R.H.: Towards benchmarking
actor- and agent-based programming languages. In: Workshop on Programming
Based on Actors, Agents, and Decentralized Control, Indianapolis, Indiana, USA,
pp. 115–126 (2013). http://dl.acm.org/citation.cfm?id=2541339

12. Cranefield, S., Winikoff, M., Dignum, V., Dignum, F.: No Pizza for you: value-based
plan selection in BDI agents. In: IJCAI, pp. 178–184 (2017)

13. Dennis, L.A., Fisher, M.: Practical challenges in explicit ethical machine reason-
ing. In: International Symposium on Artificial Intelligence and Mathematics. Fort
Lauderdale, USA (2018). http://isaim2018.cs.virginia.edu/papers/ISAIM2018
Ethics Dennis Fischer.pdf, also available as arXiv pre-print 1801.01422

14. Ecoffet, A., Lehman, J.: Reinforcement learning under moral uncertainty. CoRR
abs/2006.04734 (2020). arXiv:2006.04734

15. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications, London
(2013)

16. Ganascia, J.-G.: Non-monotonic resolution of conflicts for ethical reasoning. In:
Trappl, R. (ed.) A Construction Manual for Robots’ Ethical Systems. CT, pp.
101–118. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21548-8 6

17. Honarvar, A.R., Ghasem-Aghaee, N.: Casuist BDI-Agent: a new extended BDI
architecture with the capability of ethical reasoning. In: Deng, H., Wang, L., Wang,
F.L., Lei, J. (eds.) AICI 2009. LNCS (LNAI), vol. 5855, pp. 86–95. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-05253-8 10

18. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)

https://books.google.com.br/books?id=GM_tDwAAQBAJ
https://books.google.com.br/books?id=GM_tDwAAQBAJ
https://doi.org/10.1007/s10458-020-09453-y
https://doi.org/10.1109/ETHICS.2014.6893436
https://doi.org/10.1109/ETHICS.2014.6893436
https://doi.org/10.5281/zenodo.3938851
https://doi.org/10.3390/computers10020016
http://dl.acm.org/citation.cfm?id=2541339
http://isaim2018.cs.virginia.edu/papers/ISAIM2018_Ethics_Dennis_Fischer.pdf
http://isaim2018.cs.virginia.edu/papers/ISAIM2018_Ethics_Dennis_Fischer.pdf
http://arxiv.org/abs/2006.04734
https://doi.org/10.1007/978-3-319-21548-8_6
https://doi.org/10.1007/978-3-642-05253-8_10


Implementing Ethical Governors in BDI 41

19. Liao, B., Slavkovik, M., van der Torre, L.: Building Jiminy cricket: an architecture
for moral agreements among stakeholders. In: Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, AIES 2019, New York, NY, USA, pp.
147–153. Association for Computing Machinery (2019). https://doi.org/10.1145/
3306618.3314257

20. Logan, B.: An agent programming manifesto. Int. J. Agent-Oriented Softw. Eng.
6(2), 187–210 (2018)

21. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, agent, run! archi-
tecture and benchmark of actor-based agents. In: Workshop on Programming based
on Actors, Agents, and Decentralized Control (AGERE 2020). ACM (2020)

22. Moor, J.H.: The nature, importance, and difficulty of machine ethics. IEEE Intell.
Syst. 21(4), 18–21 (2006). https://doi.org/10.1109/MIS.2006.80

23. Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: Proceedings of 1st
International Conference on Multi-Agent Systems (ICMAS), San Francisco, USA,
pp. 312–319 (1995)

24. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

25. Shim, J., Arkin, R.C.: An intervening ethical governor for a robot mediator in
patient-caregiver relationships. In: Ferreira, M.I.A., Silva Sequeira, J., Tokhi, M.O.,
Kadar, E.E., Virk, G.S. (eds.) A World with Robots. ISCASE, vol. 84, pp. 77–91.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46667-5 6

26. Wallach, W., Allen, C.: Moral Machines: Teaching Robots Right from Wrong.
Oxford University Press Inc., USA (2008)

27. Winfield, A.F.T., Blum, C., Liu, W.: Towards an ethical robot: internal models,
consequences and ethical action selection. In: Mistry, M., Leonardis, A., Witkowski,
M., Melhuish, C. (eds.) TAROS 2014. LNCS (LNAI), vol. 8717, pp. 85–96. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10401-0 8

https://doi.org/10.1145/3306618.3314257
https://doi.org/10.1145/3306618.3314257
https://doi.org/10.1109/MIS.2006.80
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-3-319-46667-5_6
https://doi.org/10.1007/978-3-319-10401-0_8

	Implementing Ethical Governors in BDI
	1 Introduction
	2 Machine Ethics
	3 Ethical Governor in BDI
	3.1 The Execution Agent
	3.2 The Evidential Reasoners
	3.3 The Arbiter

	4 Evaluation
	4.1 Remote Inspection Case Study
	4.2 Smart Home Case Study

	5 Conclusions
	References




