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Preface

The International Workshop on Engineering Multi-Agent Systems (EMAS) was
formed in 2013 as a merger of three long-running workshops: Agent-Oriented Software
Engineering (AOSE), Programming Multi-Agent Systems (ProMAS), and Declarative
Agent Languages and Technologies (DALT). This merger established EMAS as a
reference venue for work concerned broadly with the engineering of agents and
multi-agent systems.

The three parent events have a long history of association with the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), and since its
inception EMAS has been co-located at AAMAS: EMAS 2013 in St. Paul (with
post-proceedings published as Springer LNCS/LNAI volume 8245), EMAS 2014 in
Paris (LNCS/LNAI 8758, and a special issue in the International Journal of
Agent-Oriented Software Engineering, IJAOSE Vol. 5 No. 2/3, 2016), EMAS 2015 in
Istanbul (LNCS/LNAI 9318, and a special issue in IJAOSE Vol. 6 No. 2, 2018),
EMAS 2016 in Singapore (LNCS/LNAI 10093, and a special issue in the IJAOSE Vol.
6 No. 3/4, 2018), EMAS 2017 in São Paulo (LNCS/LNAI 10738), EMAS 2018 in
Stockholm (LNAI 11375, and a report in Software Engineering Notes), EMAS 2019 in
Montreal (LNAI 12058), and EMAS 2020 in Auckland (LNAI 12589).

EMAS 2021 aimed to build on this history by gathering researchers and practi-
tioners in the domains of agent-oriented software engineering, programming
multi-agent systems, declarative agent languages and technologies, artificial intelli-
gence, and machine learning to present and discuss their research and emerging results
in MAS engineering. The overall purpose of the workshop was to facilitate the
cross-fertilization of ideas and experiences in the various fields to

– enhance our knowledge of the theory and practice of engineering intelligent agents
and multi-agent systems, and advance the state of the art;

– demonstrate how MAS methodologies, architectures, languages and tools can be
used in the engineering of deployed large-scale and open MAS;

– define new directions for engineering MAS by drawing on results and recom-
mendations from related research areas; and

– encourage PhD and Masters students to become involved in and contribute to the
area.

As with previous editions, this edition of the EMAS workshop was intended to be
co-located with AAMAS, which was planned to be held in London, UK, in May 2021.
As AAMAS 2021 was a virtual event, EMAS 2021 was held as a virtual (online) event,
spanning two days. EMAS 2021 received 27 submissions, each of which was reviewed
(single blind) by three reviewers. In total, 25 papers were accepted (21 full papers and
four doctoral and demonstration papers). In addition to these 25 papers, EMAS 2021
also had two invited talks, “Agent Programming in the Cognitive Era: A New Era for
Agent Programming?” by Alessandro Ricci and “Explicitly Ethical Agent Reasoning”



by Louise Dennis. The keynotes were delivered synchronously over Zoom. Talks were
pre-recorded and available from the EMAS 2021 website, together with the slides and
the final workshop presentation version of the papers. Each talk also had a live Q&A
session on Zoom. The Q&A sessions were intended to allow interaction between
authors and participants. After a second review process, 21 papers were selected for
inclusion in this volume.

We would like to thank all individuals, institutions, and sponsors that supported
EMAS 2021, in particular TU Clausthal for hosting the website. We thank the authors
for submitting high-quality research papers. We are indebted to our Program Com-
mittee members and additional reviewers for spending their valuable time by providing
careful reviews and recommendations on the submissions, the members of the EMAS
Steering Committee for their valuable suggestions and support, Alessandro Ricci and
Louise Dennis for their inspiring keynotes, and finally the AAMAS workshop chairs,
Francesco Belardinelli and Matthijs Spaan, for all their work and support.

January 2022 Natasha Alechina
Matteo Baldoni

Brian Logan

vi Preface
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PanSim + Sim-2APL: A Framework
for Large-Scale Distributed Simulation

with Complex Agents

Parantapa Bhattacharya1(B), A. Jan de Mooij2, Davide Dell’Anna2,
Mehdi Dastani2, Brian Logan2, and Samarth Swarup1

1 University of Virginia, Charlottesville, VA 22904, USA
{parantapa,swarup}@virginia.edu

2 Universiteit Utrecht, Utrecht, The Netherlands
{A.J.deMooij,d.dellanna,M.M.Dastani,B.S.Logan}@uu.nl

Abstract. Agent-based simulation is increasingly being used to model
social phenomena involving large numbers of agents. However, existing
agent-based simulation platforms severely limit the kinds of the social
phenomena that can modeled, as they do not support large scale simula-
tions involving agents with complex behaviors. In this paper, we present
a scalable agent-based simulation framework that supports modeling of
complex social phenomena. The framework integrates a new simulation
platform that exploits distributed computer architectures, with an exten-
sion of a multi-agent programming technology that allows development
of complex deliberative agents. To show the scalability of our framework,
we briefly describe its application to the development of a model of the
spread of COVID-19 involving complex deliberative agents in the US
state of Virginia.

Keywords: Distributed simulation · Agent-based simulation · Social
simulation

1 Introduction

Social simulation [22] is increasingly being used to study complex social phenom-
ena such as the evolution of economic inequality, environmental pollution, sea-
sonal migrations, spreading of diseases, traffic, etc., and to train professionals
such as police and fire brigades when confronted with incidents involving a large
number of people. A key approach to studying such social phenomena is agent-
based modeling and simulation. State-of-the-art agent-based simulation platforms
are capable of supporting the synchronized execution of large numbers of agents
by exploiting the computing power of distributed computer architectures such
as computing grids. However, these platforms support only very simple agent
behavior models, which severely limits the kinds of social phenomena that can
be modeled [18,21,32]. On the other hand, existing multi-agent programming lan-
guages support the high-level social and cognitive concepts necessary to model the
c© Springer Nature Switzerland AG 2022
N. Alechina et al. (Eds.): EMAS 2021, LNAI 13190, pp. 1–21, 2022.
https://doi.org/10.1007/978-3-030-97457-2_1
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2 P. Bhattacharya et al.

complex agent behaviors required for social simulations. However, these multi-
agent programming languages and platforms are generally not designed to sup-
port the synchronized distributed execution of large numbers of agents.

In this paper, we present a novel simulation framework for the distributed
simulation of large-scale multi-agent systems consisting of intelligent autonomous
agents that can perform complex tasks such as sensing, reasoning, and planning.
To create this framework, we have developed a new discrete time distributed
agent-based simulation platform called PanSim, and Sim-2APL, an extension to
the 2APL Java-based multi-agent programming library that provides support for
the development of agent-based simulations.1 Sim-2APL supports the implemen-
tation of intelligent autonomous agents and multi-agent systems in terms of high-
level social and cognitive concepts. PanSim provides scalability by distributing
the execution of individual Sim-2APL agent programs over multiple computing
resources in a synchronized manner in order to scale the execution of large-scale
agent-based simulations. We present a synchronized execution model and state
some minimal constraints on the use of Sim-2APL necessary to allow integration
with PanSim and ensure the repeatability of simulations.

In order to demonstrate the applicability and scalability of the PanSim +
Sim-2APL simulation framework, we report on experiments involving an agent-
based simulation of the spread of COVID-19 in seven counties in the US state
of Virginia. The input to the simulation consists of a synthetic population with
realistic demographics, weekly activity schedules, and activity locations drawn
from real location data. In the chosen counties, the number of individuals ranges
from 20k to 180k and the number of weekly visits to locations ranges from
680k to about 6 million. Each individual in the synthetic population is rep-
resented by a Sim-2APL agent which reasons about whether to comply with
non-pharmaceutical interventions such as mask wearing and social distancing
that were introduced in Virginia between March and July 2020. In the current
paper, we focus on the engineering of the PanSim + Sim-2APL framework, and
we refer the reader to a companion paper for details of the simulation model [17].

Organization. The rest of the paper is organized as follows: In Sect. 2 we
discusses related work on large-scale simulation with complex agent models.
Section 3 and Sect. 4 present the design of PanSim and Sim-2APL respectively.
Section 5 describes an exemplar simulation that simulates COVID-19 epidemic
evolution jointly with a 2APL behavior model that we use to study the scaling
properties of PanSim + Sim-2APL. Section 6 presents the results of the scaling
experiments. Finally in Sect. 7 we end with concluding remarks.

2 Related Work

A number of platforms have been developed to address the challenges of scaling
simulations. Notable successes have been obtained by exploiting domain seman-
tics [4,6], or by using simplified models of agents. In the context of epidemic
1 Source code for PanSim is available at https://github.com/parantapa/pansim, and

that for Sim-2APL is available at https://bitbucket.org/goldenagents/sim2apl.

https://github.com/parantapa/pansim
https://bitbucket.org/goldenagents/sim2apl
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simulations, for instance, agent behavior is often characterized only by a simple
finite state machine which represents the progression of the disease. Bhatele et
al. [5] were able to demonstrate an epidemic simulation scaling up to the size of
the US population, which computed each simulated day in 57.8 ms on 655,360
cores of the Blue Waters supercomputer. The proposed simulator was heavily
optimized for the particular application and architecture, and the agents did not
model any complex cognitive behavior.

In [25] the authors presented an agent based model for epidemic simulation
using a synthetic population of agents representing the people in the City of
Chicago. Like the current work, this system created a realistic synthetic popu-
lation of the city, and used the Repast ABM framework to create a distributed
memory simulation to run on HPC systems. The CityCOVID simulator [14] also
presented a similar system targeted to run on HPC systems. Similar to our work
the authors used a realistic synthetic population and contact network, and ran a
detailed SEIR like COVID-19 disease model to understand the disease’s impact.
However, in contrast to our study the agent behavior models in both of these
systems is much simpler and doesn’t capture the complexity of human decision
making in presence of every varying injunctive and descriptive norms.

MATSim-Episim [29] is also a similar simulation platform, in that uses a
contact network generated using a mobility model and simulates progressing
of a SEIR like disease models on this network. Unlike the current system this
platform doesn’t support distributed memory simulations, and also uses simple
non-cognitive models for agent behavior modeling.

On the other hand, simulation platforms that support more complex agent
models are typically designed for ease of development, maintenance, and post hoc
analytics. For example, Barrett et al. [3] developed a large-scale disaster simu-
lation with a database-centric simulation architecture where different modules
compute various aspects of the simulation, such as transportation, communica-
tion, health states, behavioral choices, etc. The architecture allowed these mod-
ules to be separated and developed independently by multiple developers using
different programming languages, data structures, and parallelization schemes,
and to be plugged in and out as needed. The database-centric interaction between
modules also results in all intermediate states being stored systematically, which
facilitates debugging and later analysis. While this approach allows rapid devel-
opment and complex representations of agents, there is a price to be paid in
terms of scalability. The simulation needed over 16 h to compute 100 time steps
with ∼700,000 agents.

Other approaches to scaling include dynamically varying the resolution of
the simulation [30], and developing hybrid simulations that allow a mixture of
simple and more complex agent models [33].

Simulating individual agents whose behaviors depend on their observations
and internal states requires a decision making component that allows them
to reason, decide and plan their actions. Various theories of decision-making
have been proposed, from rational decision theories and BDI theory [15] to
more psychologically-based approaches such as the Theory of Planned Behavior
(TPB) [23].
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These theories propose various conceptualizations of decision-making behav-
ior in terms of motivational, informational and deontic attitudes, together with
a decision rule that determines which of an agent’s available actions will be
selected based on the agent’s attitudes [10].

To facilitate the development of autonomous agents based on these behav-
ioral theories, a number of dedicated programming languages have been pro-
posed where the agents’ decisions are directed by their beliefs, goals, plans,
and actions [7,8]. For example, Bordini and Hübner [9] show how complex BDI
agents programmed in Jason can be used for social simulation. In their approach,
the agents’ environment is implemented by extending a predefined Java class.
Caballero et al. [11] also implement agents in Jason, but use the simulation plat-
form Mason to simulate the environment. In both these approaches, the number
of agents that can be simulated is limited by the number of threads available in
the JVM.

COMOKIT [19] is a recent COVID-19 disease simulation system which simi-
lar to the current study also uses a realistic synthetic population on top of which
the epidemic progresses. This system is built using the GAMA [34] simulation
environment which support BDI agents. However, unlike the current study the
scalability of this system is limited to a single compute node.

For a comprehensive survey of the use of BDI agents and complex reasoning
in social simulations we refer the reader to the paper by Adam and Goudou [1].
Here, we note only that Adam and Gaudou identify scalability as a key issue
limiting the use of BDI agents in simulations, and state that the distribution of
a simulator over a network is “a very difficult problem that is far from being
solved” [1, p. 228].

3 PanSim Design and Implementation

The current framework is quite broadly applicable to social contagion-like phe-
nomena, such as the spread of behaviors, information, technologies, infectious
diseases, etc. In this section, we describe how PanSim is structured to allow
scalable computation of contagions through a population.

PanSim is a multi-contagion simulator, where two contagion processes
progress concurrently on top of a dynamic contact network. In PanSim’s design
we assume that one of these contagion processes is a simple contagion, that
is it can be fully described declaratively using a SIR like model [31]. PanSim
provides its own configuration language to describe this simple contagion. On
the other hand, very few assumptions are made about the nature of the other
contagion process, which is assumed to be complex.2 Authors of PanSim simu-
lations are expected to provide custom code that encapsulates the progression
and transmission logic for the complex contagion.

PanSim is a discrete time agent-based simulation framework. A simulation
in PanSim progresses in discrete timesteps, and within a given timestep the
2 Here we use the terms simple and complex contagions in their literal sense and not

specifically in the sense developed and popularized in [13].
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simulation progresses in multiple sequential phases. However, within any given
phase computations corresponding to different agents progresses concurrently.

The dynamic contact network in PanSim is specified in terms of a temporal
agent-location bipartite graph. In PanSim agents interact with each other at
specific locations. The locations visited by a given agent can change from one
timestep to the next. Agents that are at the same location at the same time come
into contact with each other. The contact network of agents thus formed is the
unipartite projection (on the agent set) of the dynamic bipartite agent-location
network.

In the following, to make the presentation more concrete, we describe the
implementation of a behavior-aware COVID-19 simulation as a running exam-
ple. Full details of the simulation can be found in a companion paper [17]. In
this scenario, a COVID-19 disease model serves as the simple contagion, while a
Sim-2APL-based socio-psychological behavior model takes the role of the com-
plex contagion. For the rest of this paper we use the terms disease model and
simple contagion model interchangeably. Similarly, we also use the terms socio-
psychological model and complex contagion model interchangeably.

An agent’s state comprises of two parts, its disease state and its socio-
psychological state. Further, behavior exhibited by the agents is categorized into
two classes: a) disease modifier behaviors and b) visible attribute behaviors. Dis-
ease modifier behaviors—such as wearing masks, social distancing, etc.—modify
disease transmission properties, while visible attribute behaviors—such as dis-
playing religious or political affiliations or symptoms of the disease—are used to
indicate the agent’s stance and influence other agents.

In this model, during a given simulation timestep the following steps are exe-
cuted. First, every agent in the system, based on their current socio-psychological
state, ‘decides’ which locations to visit, as well as how to ‘behave’ during each
of those visits. These behaviors include disease modifier behaviors, as well as
visible attribute behaviors. Second, when visiting a location the agents come
into contact with each other. During this step, disease transmission takes place
from infectious to susceptible agents. Also, the agents interact with other agents
and ‘see’ their visible attributes. Finally, for every individual agent their dis-
ease state progresses, and they update their socio-psychological state based on
their current disease state as well as their observations of other agent’s visible
attributes that they came into contact with.

3.1 Structure of a PanSim Simulation

From the perspective of PanSim, the structure of a PanSim simulation consists of
four major modules: the socio-psychological module, the social interaction mod-
ule, the disease transmission module, and disease progression module. Figure 1
shows the overall organizations of the modules and their communication patterns.

The socio-psychological module and the social interaction module together
represent the complex contagion component of a PanSim simulation, while the
disease transmission and progression modules together represent the simple con-
tagion component of the simulation. Another way of organizing the modules is
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Fig. 1. Structure of a PanSim simulation

to think of them from the perspective of the dynamic agent-location bipartite
graph that serves as network on which both contagions progress. In this view, the
socio-psychological and disease progression models encapsulate the computation
that happens on behalf of every agent/individual in the simulation, while the
social interaction and disease transmission modules encapsulate the computation
that happens on behalf of every location in the system.

To write a custom PanSim simulation, the simulation authors only need
to provide the code for the socio-psychological behavior module. The rest of
modules are provided by PanSim itself. For example, in the exemplar prob-
lem described above, the socio-psychological module is written using the Java
Sim-2APL library (described in Sect. 4). PanSim provides a generic language-
agnostic interface, written using Apache Arrow3, that can be used to write the
socio-psychological module in most popular programming languages, including
C, C++, Java, Python, and R.

3.2 Formal Description of a PanSim Simulation

Here we formally describe the structure of a PanSim simulation. A stochastic
discrete time simulation can be written as a stochastic function F : S → S
that, given the state of a system at timestep t, st ∈ S, computes the next state
of the system st+1 = F (st). The whole simulation can then be formulated as
an iterated application of the simulation function F , starting from the initial
state s0.

To use distributed system hardware, it is important to split this monolithic
function into parts that can be executed in parallel, with intermediate coordi-
nation. For this purpose we consider the following decomposition of the system
state at timestep t, st = (st1, s

t
2, . . . , s

t
n). Here, sti is the state of the ith agent

3 https://arrow.apache.org/.

https://arrow.apache.org/
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at time t. As described above, PanSim implements a two contagion model, that
we refer to as the socio-psychological model and the disease model. The state of
the agent then is split as sti = (bti, d

t
i) where bti and dti are the state of the agent

corresponding to the socio-psychological and disease models. Equations Eqs. 1–5
show the functional decomposition that is used in PanSim to compute the next
state of an agent given the current state.
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dt+1
i = σ(dti,Δdti) (4)

bt+1
i = γ(bti,Δbti, d

t+1) (5)

First, as part of the socio-psychological model, the locations to be visited by
the agent (Lt

i), the time duration of the visits (τ t
i ), the visual attributes displayed

by the agent during the visits (vt
i), and the disease modifier behaviors observed

by the agent (mt
i) are computed. In the formal model the socio-psychological

model is represented by the function ν() (Eq. 1). Second, for each pair of agents
visiting the same location, the social interaction updates, Δbti, and disease trans-
mission updates, Δdti, are computed using the interaction model β() (Eq. 2), and
disease transmission model ρ() (Eq. 3) respectively. Third, agent’s disease state is
updated to dt+1

i using the disease progression model σ(), based on their current
disease state dti and disease transmission update Δdti (Eq. 4). Finally, the agents
socio-psychological state is updated to bt+1

i using the socio-psychological update
model γ, based on their current socio-psychological state bti, their interaction
updates Δbti, as well as their updated disease state dt+1

i (Eq. 5).
Note, we intentionally do not describe the domain of the state and update

variables, bti, Δbti, etc. They can be modeled using a variety of structures that
support the required operations. In the experiments shown below, they are imple-
mented using real-valued vectors of appropriate lengths.

In classical multi agent AI system formulations, the agents in the system
directly transform the global system state. Influence/Reaction model (IRM) [28]
was proposed as a framework to address the practical issues arising from trans-
forming of the global system state, such as: ordering of these transformations,
handling conflicts in transformations, and parallelization of this global write pro-
cess. This idea was further developed for simulation of multi agent systems in [26]
and [27]. In the IRM framework agents do not directly transform the system. They
only ‘influence’ the system at a micro level. The system/environment accumulates
to all these micro level influences and produces a global macro level ‘reaction’.

Due to the generic and very high level semantics of the IRM formulation,
the formalism presented above can be seen as a special case implementation of
the IRM framework. At a high level, location visits generated by agents can
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be thought of as influences, while the rest of the process can be seen as the
system reaction. The contribution of the above formalism, beyond IRM, is in
decomposing the monolithic reaction into pieces that can be used to support
distributed parallelism.

3.3 Declarative Simple Contagion Model

In PanSim the simple contagion’s definition is written in a TOML4-based
domain-specific language. Table 1 shows the simple contagion model (a COVID-
19 disease model) used for the scaling studies described later in this paper. At
its core the model is a SEIAR model with five disease states: susceptible (succ),
exposed (expo), infected symptomatic (isymp), infected asymptomatic (iasymp)
and recovered (recov).

Disease transmission happens when a susceptible individual (susceptibility
> 0) comes in contact with an infectious individual (infectivity > 0). The prob-
ability of transmission is defined in terms of unit interaction times, specified in
the configuration in seconds. If an individual with susceptibility α comes in con-
tact with an individual with infectivity β, for unit time, then the probability of
disease transmission is given by α × β. In the given example (Table 1), if a sus-
ceptible individual is in contact with an infectious (symptomatic) individual for
300 s, and both have baseline behaviors, then the probability of the susceptible
individual getting infected is 4.81 × 10−5.

Table 1. Simple contagion model (Covid-19 disease model)

Category Parameter Value

unit time 300.0

states [succ, expo, isymp, iasymp, recov]

behaviors [base, mask, sdist, mask sdist]

exposed state expo

susceptibility succ 1

infectivity isymp 4.81e-05

iasymp 2.40e-05

progression expo {isymp = 0.6, iasymp = 0.4}
isymp {recov = 1.0}
iasymp {recov = 1.0}

dwell time expo {isymp = dist1, iasymp = dist1}
isymp {recov = dist2}
iasymp {recov = dist2}

distribution dist1 {dist = fixed, value = 6}
dist2 {dist = fixed value = 14}

behavior modifier base {base = 1.0, mask = 0.5, sdist = 0.5, mask sdist = 0.25}
mask {base = 0.5, mask = 0.25, sdist = 0.25, mask sdist = 0.15625}
sdist {base = 0.5, mask = 0.25, sdist = 0.25, mask sdist = 0.15625}
mask sdist {base = 0.25, mask = 0.15625, sdist = 0.15625, mask sdist =

3.906e-3}

4 https://github.com/toml-lang/toml.

https://github.com/toml-lang/toml
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Disease transmission probability is further affected by disease modifier behav-
iors. For example in the configuration shown in Table 1, four disease modifier
behaviors are defined: baseline (base), wearing masks (mask), social distancing
(sdist) and wearing masks as well as social distancing (mask sdist). If in the
above example a susceptible individual wearing masks interacts with an infec-
tious (symptomatic) individual wearing masks and social distancing, for 300 s,
then the probability of disease transmission for this case is given by 7.51×10−6.

An individual with a given disease state may move to a different disease
state, based on the progression of the disease inside the individual. In the given
example, three progressions are defined. An individual in the exposed state will
move to one of infectious states. Further there is a time—measured in simulation
timesteps, specified in days—after which the progression to a different state
occurs. In the given example (Table 1), infected individuals move to recovered
state after 14 simulation timesteps (or 14 days).

Some of the parameters used fix values in the model come from COVID-19-
related information shared by public health agencies, such as CDC [12]. The
rest of the parameters are obtained by calibration to data. The procedure for
calibration and details about how the model was arrived at can be found in our
companion paper [17].

3.4 Distributed Software System Implementation

PanSim is a MPI based distributed memory application that is implemented in
a mix of Python and C++. In PanSim a Python/C++ process (MPI rank) runs
on each CPU core available. If the socio-psychological module is not written
in Python, as is the case for the current study, then the socio-psychological
module is run as a separate process. The socio-psychological processes share the

Fig. 2. Partitioning of agents/individuals and locations for distributed processing on
PanSim.
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CPU cores with the PanSim processes5. In this scenario, data is shared between
PanSim processes and the socio-psychological module processes using Apache
Arrow specifications.

On PanSim the two contagions progress over a dynamic agent-location bipar-
tite graph. To be able to utilize distributed computing hardware, the nodes in
the agent-location bipartite graph are partitioned across the MPI ranks. Figure 2
shows the overall partitioning strategy. To partition the graph evenly across the
MPI ranks while keeping the cross-rank edges at a minimum, we use a two-step
greedy process. In the first stage, the locations in the bipartite graph are sorted
based on their maximum indegree. Next, the locations are assigned to the MPI
ranks in a round robin manner. Finally the agents are assigned to the rank of
the location that they are likely to visit the most frequently, which in most cases
is their home location6.

PanSim uses a bulk synchronous parallel design [20]. A PanSim simulation
progresses in discrete timesteps. Within a timestep the execution progresses in
five distinct phases, as described formally in Sect. 3.2. Figure 3 shows the differ-
ent phases of computation of a PanSim simulation for a single timestep. First, in
the socio-psychological decision phase (Eq. 1), every agent decides the locations
to visit, and how to behave during those visits. This is followed by data exchange
among MPI ranks to transfer information to the rank corresponding to the loca-
tion of the visits. Second, in the social interaction phase (Eq. 2), the interactions

Fig. 3. Different phases of computation in a single timestep of a PanSim simulation.

5 To ensure that the socio-psychological module processes and PanSim processes don’t
compete for CPU resources we use MPI implementation specific configuration to
make PanSim processes sleep during the execution of the socio-psychological module.
This configuration trades of some performance for ease of programming.

6 We experimented with using Metis and ParMetis [24] for this partitioning. However,
we found that our simple approach was much faster and produced adequately good
partitions.
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of the individuals at a every location is computed. Third, in the disease trans-
mission phase (Eq. 3), the probability of susceptible agents getting infected from
visits is computed. After the third phase, data is again exchanged among the
MPI ranks to send the social interaction and transmission updates back to the
agents they correspond to. Fourth, in the disease transmission phase (Eq. 4), the
disease state of the agent is updated based on the transmission and progres-
sion models. Finally, in the socio-psychological belief update phase (Eq. 5), the
socio-psychological agent state is updated based on the social interaction and
the updated disease state of the agent.

As shown in Fig. 3, the first, fourth, and fifth phases of the simulation are
collectively referred to as the individual phases. The computation of these phases
can progress concurrently for every agent. Similarly, the second and third phases
are location specific and can be executed concurrently for every location.

4 Sim-2APL

Sim-2APL is an extension of the agent programming library Java-2APL [16]
(2APL) which supports the development of complex reasoning agents for large-
scale simulations. 2APL defines the concepts of beliefs, goals, plans, and reason-
ing rules as Java interfaces, and dictates the interaction between these interfaces.
In 2APL, the Context captures the agent’s information or beliefs, the Triggers
capture events or goals the agent may react to, the Plans capture specific parts
of behavior that agents can perform, and the Plan Schemes match triggers to
a suitable plan to be executed. An agent’s behavior is generated through the
application of plan schemes to triggers. The execution of an agent is defined
in terms of pre-programmed execution steps, which are captured in the agent’s
deliberation cycle. The steps in the deliberation cycle allow plan schemes to be
applied in response to different types of triggers (see [16] for more details on
2APL).

In agent-based simulations, agents sense the environment and act upon it.
From the point of view of Sim-2APL, PanSim acts as the environment in which
agents sense and act. However, to allow the agents to effectively act and interact
in the environment, the action execution and deliberation cycle of 2APL must
be modified. In 2APL, the deliberation cycle of an agent is rescheduled as soon
as it ends. This means agents are executed continuously and independently, and
an agent does not have to wait for all other agents to finish their deliberation
cycle before acting. As a result, one agent may perform several deliberation
cycles – and thus act in the environment several times – while another agent is
still computing its first deliberation cycle. While this approach is appropriate
for many applications, it does not guarantee a synchronized execution of the
agents, which in turn may make simulations not repeatable. To address this, we
modified 2APL in two ways: first, the execution of agent actions is delegated
to the environment; second, we constrain the way agents are scheduled and
executed.



12 P. Bhattacharya et al.

Action Execution. In 2APL, the external actions in a plan are executed
directly through Java method calls. This means that agents have full control
over when actions are executed. However, many simulation platforms, including
PanSim, do not allow agents to change the state of the environment directly,
but rather update the state of the environment by calculating the subsequent
simulation state from the joint set of all agent actions. For example, in PanSim
this is represented by the stochastic function F in Sect. 3.2. Therefore, in the
framework, the execution of external actions is delegated to the environment.
In addition, we require that each plan executes at most one external action
per deliberation cycle.7 This is achieved by modifying the 2APL Plan interface
so that its execute() method (void in 2APL) returns to the environment an
identifier for the intended action that otherwise would be performed directly
through a method call. When actions are delegated to the PanSim environment,
the identifier is the tuple (Lt

i, τ
t
i , ε

t
i,m

t
i) from Eq. 1.

Agent Scheduling. As explained above, many simulation platforms require
agent execution to be synchronized to discrete-time steps. In Sim-2APL, discrete-
time synchronization of agents is achieved using three interfaces: StepExecutor,
StepGenerator, and EnvironmentInterface, the interaction of which is visu-
alized in Fig. 4. The StepExecutor interface defines the method doStep, which
is responsible for making each agent perform a single time step (deliberation
cycle), and a method reschedule, called by each agent to reschedule its deliber-
ation cycle for the subsequent time step. The StepGenerator interface specifies
how execution time alternates between the StepExecutor and the environment
responsible for storing and advancing the simulation state. This interface waits
for the environment to finish calculating the new state at each time step. Finally,
the EnvironmentInterface implements the communication layer with the envi-
ronment. In the following, we describe these three interfaces in more detail.

StepGenerator. The StepGenerator is responsible for initiating the next time
step in Sim-2APL. Each step is divided into three phases: preparation, delibera-
tion, and processing, each of which run on the main thread so that the next phase
only starts when the previous phase has finished. The process of phase transi-
tions in the StepGenerator is visualized at the top in Fig. 4. The StepGenerator
interface does not specify when a new step starts as this is initiated by an exter-
nal ‘driver’; in the framework, PanSim signals the StepGenerator to begin the
next time step. This ensures agents cannot deliberate while the state of the
environment is being updated. During the preparation phase, the stepStarting
method of the EnvironmentInterface is called to prepare for the next phase
of agent deliberation. The stepStarting method should perform all computa-
tions necessary to prepare for the agents’ deliberation at this time step, such
as processing or translating updates from the environment, creating Triggers for
belief updates, or calculating global resources or statistics. When the preparation
7 Since agents can execute multiple plans during one deliberation cycle, this approach

does not restrict the agent’s number of actions per time step.
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Fig. 4. The StepGenerator calls the appropriate methods on the StepExecutor and
registered EnvironmentInterfaces to initiate the preparation, deliberation, and pro-
cessing phases in each time step.

phase is complete, the deliberation phase for this time step is started by call-
ing the doStep method of the StepExecutor. When deliberation of all agents is
completed, the StepExecutor returns the actions generated by the agents. These
actions can then be ordered to ensure determinism (e.g., using agent names) and
are passed to the EnvironmentInterface to start the final processing phase. In
this phase, the environment realizes the effect of the actions generated by the
agents and calculates the next simulation state.

EnvironmentInterface. Sim-2APL is agnostic about what environment it is
connected to. In order for Sim-2APL to interact with an environment, the
EnvironmentInterface must be implemented. This interface is responsible for
encoding agent actions and sending them to the environment, and receiving
state updates from the environment and translating those for use by the agents.
The interface defines three methods: stepStarting and stepFinished, which
are called during the preparation and processing phases of the StepGenerator,
respectively, and simulationFinished which is called when the simulation ends.
This interface and its methods are shown in green in Fig. 4. Implementation
of the stepStarting method is optional. The stepFinished method receives
the set of actions produced by the agents as an argument, and should realize
the actions in the environment and produce the next simulation state. In the
framework, this is achieved by sending all agent actions to PanSim. However,
in a simulation where the environment is programmed in Java, one could use
the same methods that in 2APL are called on directly by the agents to realize
the effect of those actions. Finally, the simulationFinished method is called
when the simulation has ended. This method should implement any necessary
cleanup operations, such as closing the connection with the environment. Mul-
tiple EnvironmentInterfaces can register with the StepGenerator by calling
its registerEnvironmentListener method. The appropriate methods of each
EnvironmentInterface instance will be called sequentially in each of the three
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phases. Note that the only assumptions we make regarding the environment are
that, (i) there is some way for it to interface with Java so that actions can be
executed in it and the state can be requested by agents, and (ii) the simulation
state can be advanced one step at the time.

Step Executor. The StepExecutor is responsible for executing a single deliber-
ation cycle for each agent at the current time step. In our default implementa-
tion, the StepExecutor maintains a queue of the deliberation cycles of sched-
uled agents. As in 2APL, agents re-schedule themselves from within their own
deliberation cycle (unless they sleep). To ensure an agent is not executed twice
within the same time step, when the doStep method of the StepExecutor is
called by the StepGenerator, the queue is first copied into a temporary queue.
The deliberation cycles of all agents are executed from this temporary queue,
and rescheduled agents are placed on the original, now empty, queue. This pro-
cess is visualized in blue in Fig. 4. Execution is handled using a Java Executor
service, allowing the deliberation phase to run concurrently. Agents’ (external)
actions are then collected from the deliberation cycles and placed into a hash
map where the unique identifier of the agent producing those actions is the key,
and the value is the list of produced actions. This hash map is then returned to
the StepGenerator.

5 Sample Simulation

We now describe our simulation of the spread of COVID-19, instantiated using
PanSim + Sim-2APL. The simulation is built using a synthetic population of
several counties in the US state of Virginia. Agents are represented with detailed
demographic information from the US Census Bureau, along with detailed
weekly activity sequences, and appropriate locations assigned for the activities
from comprehensive location data [2]. The disease spread is driven by the inter-
actions between agents (due to physical collocation), as they go about their
weekly activity schedules and is handled by PanSim. In order to model changes
in activity patterns as various social distancing interventions were instituted,
we developed a normative reasoning model for the agents using Sim-2APL, as
briefly described below and detailed in another work [17].

The simulation proceeds as follows. On each simulated day, each agent
chooses which of its activities from its normal (pre-COVID) schedule it will
carry out. The deliberation process is informed by normative reasoning as we
describe below. For the activities the agent selects, it also chooses which behav-
ioral interventions (mask-wearing, physical distancing) it will comply with, while
carrying out each activity. Each activity results in a visit to a corresponding loca-
tion. Table 2 shows the number of persons, households, and visits in each county,
where the visit counts are based on pre-COVID activity schedules. During the
simulation period, as the agents reduce their mobility to comply with various
norms, the number of visits are lower.

For our sample simulation, we consider the behavioral interventions of official
institutes as norms which agents can reason about. We classify these norms as
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Table 2. The counties of the state of Virginia used for the experiments, along with the
number of persons, households, and weekly location visits in the synthetic population.

County Persons Households Visits

Goochland 20,923 8,240 680,571

Fluvanna 24,110 9,776 779,337

Louisa 32,938 13,398 1,066,179

Charlottesville 41,120 18,377 1,335,596

Albemarle 93,570 39,920 3,047,807

Hanover 98,435 38,149 3,204,317

Richmond 181,975 89,146 5,920,569

either regimented (R) – meaning that an agent has no choice but to comply,
or non-regimented (NR) – meaning an agent is expected to comply but has the
agency to violate. Examples of R norms are closure of schools and businesses,
while examples of NR norms are wearing a mask or staying home when sick.
Both NR and R norms operate on goals g, and are implemented in terms of the
functions applies : g �→ {true, false} and transform : g �→ g × ⊥, the former
specifies whether the norm n applies to the goal while the latter transforms
the goal g into a goal g′ that complies with the norm, or into ⊥ to not pursue
the goal for one deliberation cycle. NR norms specify one additional function
attitude : g × a �→ x ∈ (0, 1) ⊂ R, which also takes the agent a as a parameter
and, based on beliefs, observations and attitudes of the agent a, calculates its
motivation to comply with norm n as a probability p(n, g).

The normative reasoning process which we employ is as follows. If the plan
scheme of the agent a is triggered by a goal g, all norms that apply to g are
collected and iteratively applied to g by using the transform(g) function. After
this step, a plan is selected for the updated goal following the traditional 2APL
approach.

In our work, we interpret the daily activities in the activity schedules of an
agent directly as the agents’ (to-do) goals. The transformations applied by the
norms can change the modality of these activities (i.e. wear a mask, maintain
physical distance), change the time or duration of the activity, or cancel the
activity for that day.

For each location, PanSim computes the duration of overlap for each pair of
agents that visits that location on the current day. This duration, coupled with
whether the agents are complying with mask-wearing and physical distancing,
determines the probability of infection if one of the agents is infectious and the
other is susceptible. Based on these probabilities, PanSim computes disease state
changes for all the agents. These are communicated back to the agents in Sim-
2APL, along with the observations made by the agents of the visible attributes
of the other agents they encounter, as described in Sect. 3. Each agent then uses
this information in its decision-making procedure for the next simulated day.
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The computational burden of the simulation is thus divided between the two
components.

In the paper in which we describe the model in detail [17], we also report
how the model was calibrated using both COVID-19 case data (PanSim) and
cellphone based mobility data (Sim-2APL) using simulations spanning March to
June 2020 of the counties of Charlottesville, Fluvanna, and Goochland (Table 2).
The Sim2APL side of the model was calibrated by minimizing the Root-Mean-
Square-Error (RMSE) between mobility observed in those counties in that time
period, and the mobility of the agents in our model. A good overall fit was pro-
duced, but the model was not able to differentiate the differences in observed
mobility between the three counties. The PanSim side of the model was cali-
brated by minimizing the RMSE between the recorded number of cases in those
counties – multiplied with an arbitrary scaling factor (30 in this work) to account
for testing uncertainty at the onset of COVID-19 – on the one hand, and the
number of recovered agents in our model on the other. The calibration process
matched the shape of the curve, but significantly undershot the target, resulting
in a high RMSE of 2052.0222. We intend to address the issues with both cali-
bration processes in future work. We performed 10 counterfactual experiments
E0, . . . , E9 with the calibrated model to rank the effectiveness of the 9 Executive
Orders (EOs) implemented in Virginia in the simulated time period, counting
the number of infected or recovered agents at the end of the simulation. In E0

we ignored all norms, E1 ignored all but the first EO, E2 ignored all but the
first two EOs, etc. According to our model, the most effective measures were
the sixth EO (also restricting gatherings in private settings to 10 and closing
higher education), and the seventh EO (requiring employees wear masks) with
a 37.89% and 32.47% respective reduction compared to the previous EO. We
were not able to conclusively rank one of these two EOs above the other due to
overlapping confidence intervals.

As discussed earlier, prior work has either ignored individual behavioral com-
plexity in favor of scaling disease spread simulations, or has focused on creating
complex simulations with smaller agent populations. Our goal is to be able to
scale simulations with complex individual agents to large population sizes, so we
turn to scalability experiments with PanSim+Sim-2APL next.

6 Scalability Experiments

For the purposes of the scaling experiments, we chose synthetic populations of
seven counties in the state of Virginia, USA, with varying sizes. Table 2 shows the
number of persons, households and their weekly activity schedule (location visits)
in the synthetic populations. To understand the scalability of PanSim+Sim-
2APL we ran individual simulations for each of the seven counties, with each
simulation running for 180 timesteps representing 180 days starting from March
1, 2020. The simulations were run with 40, 80, 160, and 320 CPU cores on
compute nodes each having 2 Intel Xeon Gold 6148 CPUs with 20 CPU cores
each. The compute nodes used to run the experiments also had 384 GB of DDR4
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RAM Memory and were connected to each other with Mellanox ConnectX-5
network adaptors. Each simulation was run 10 times and their running time was
noted.

We study scaling in two ways. First, we keep the problem size fixed and
increase the number of CPU cores. This is done by running the simulation for
each county with the four levels of cores above. The expectation is that the
running time should decrease smoothly as the computational resources increase.

Second, we keep the computational resources fixed and increase the problem
size. This is done by comparing the running times for simulations of increasingly
larger counties, while keeping the number of CPU cores fixed. We carried out
this experiment for all four levels of CPU cores also. The expectation is that the
running time should not increase too sharply as the problem size increases.

In both cases, the resulting performance curves should ideally be linear.
However, communication overheads can make the curves nonlinear. There is
also inherent nonlinearity in the structure of the problem, as the disease spread
computation is quadratic in the number of agents simultaneously present at a
location. It is also expected that at some point, the overhead of communication
between distributed parts of the simulation becomes higher than the efficiency
gained by splitting the computation across multiple cores. For smaller problem
sizes (i.e., smaller counties), this should become apparent with fewer cores.

6.1 Complexity

To contextualize the results of the experiments, we will briefly address the com-
plexity of the integrated Pansim+Sim-2APL model. PanSim calculates the con-
tact points of agents based on overlap in the location and time of visits, which
is quadratic in the number of visits in the worst case. The deliberation imple-
mented in Sim-2APL matches norms to activities, and is therefor linear to the
number of active norms multiplied with the number of visits in the worst case
(although not all norms apply to all activities).

Timings show that in the overall simulation on one CPU core, delibera-
tion takes up ∼47–57% of computation time, where a larger number of agents
increases the relative time spent on this part. ∼40–50% of the time is spent in
PanSim, but this includes the transferal of encoded data frames of visits and
agent disease states, which we did not study separately as this varies by hard-
ware. Extracting and packaging these data frames in Sim-2APL uses ∼ 1% of
the processing time and the pre- and post processing phases (in which norms are
activated, and mobility is calculated from agent actions, see Sect. 4) consistently
makes up ∼ 0.5% of the computation time. These last two were not parallelized
in our implementation, so their relative computation time increases slightly when
increasing CPU cores to ∼3–4% for extracting and packaging, and consistently
using roughly ∼2.5% for pre- and post processing on 12 CPU cores. With that
number of cores, the deliberation phase goes down to ∼30–38%, and the envi-
ronment increases to ∼55%–65% (note again this includes constant time data
transferal). The computation time for the pre- and post processing and for pack-
aging does not depend on the number of active norms. On one CPU core, only
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∼6–11% of computation time is spent on deliberation when no norms are active,
with the environment taking ∼85–90%. As the number of norms increases, these
numbers gradually balance out to those reported for the overall simulation.

Fig. 5. The mean runtime of PanSim+Sim-2APL simulations for seven counties of the
state of Virginia compared with (a) the number of cores, and (b) the number of agents.

6.2 Results

Figure 5 shows the variance in the runtime of the simulations when run with
different number of CPU cores. We can see in Fig. 5a when the same simulation
is run with increasing number of CPU cores (strong scaling) for all the counties
the runtimes decrease almost linearly till 160 CPU cores on a log-log scale. For
smaller counties, such as Goochland and Charlottesville, increasing the number
of CPU cores to 320 actually increases the runtime due the communication
overhead becoming apparent, as discussed above. However, for a larger county
like Richmond, the strong scaling results hold even with 320 CPU cores.

A similar story can be seen when looking at Fig. 5b which shows the runtime
of simulations with increasing compute load (number of agents in the county sim-
ulated). We can see that for counties with more than 100,000 persons, increasing
the number of CPU cores to 320 shows definite benefits. However, for the rest of
the counties simulated, the benefits of increasing CPU cores are observed only
up to 160 CPU cores.

These results demonstrate that PanSim+Sim-2APL simulations integrate
well, and can be used to simulate large populations. More detailed simulation
results, investigating the effects of various non-pharmaceutical interventions, are
presented in the companion paper, which focuses on the data, design, calibration,
and analysis of the simulation [17].

7 Conclusion

In this paper, we presented a novel agent-based simulation framework for mod-
eling large-scale complex social phenomena. We presented Sim-2APL, a Java-
based multi-agent programming library that allows to model and simulate com-
plex reasoning agents through the BDI paradigm. We integrated Sim-2APL with
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PanSim, our novel platform for distributing large-scale agent-based simulations.
We reported on a scalability experiment using a COVID-19 epidemic simula-
tion with a population of BDI agents representing individuals from 7 counties
of the state of Virginia, with population size ranging from 20k to 180k agents.
Our results demonstrate that it is indeed possible to build an execute large-scale
realistic simulations with BDI based agent models with efficient and judicious
use of distributing computing platforms.

As we have seen with COVID-19 during 2020, epidemics (especially novel
ones) are driven by human behavior. Until vaccines became available, pub-
lic health authorities, institutions, and governments had to rely on non-
pharmaceutical interventions to try to mitigate the epidemic. However, we don’t
have a rigorous understanding of the effectiveness of these interventions, due, in
large part, to the complexity of human behavioral responses and their effects on
epidemic dynamics. Thus, while there have been numerous computational and
mathematical models of the COVID-19 epidemic that have been developed in the
past year, they have largely focused on disease dynamics and have either ignored
human behaviors or represented them in very simplistic ways, such as assuming
that people comply with interventions independently with certain probabilities.

Our goal in developing this framework has been to bring together the
strengths of MAS technologies for building normative reasoning agents with
large-scale data-driven distributed agent-based simulation technologies. The
scalability of this framework will now enable the development of more mean-
ingful simulations, which can properly address complex human behaviors and
allow reasoning about the effects of a larger class of interventions.
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Abstract. Increasingly, BDI agents are being used not just for basic
decision-making, but for more abstract ethical decisions. Several authors
have built ad-hoc extensions of BDI systems that provide varying levels of
sophistication. In this paper, we introduce a general-purpose approach
for implementing ethical governors in BDI systems. With this we aim
to provide a broad, flexible and consistent framework for implementing
increasingly complex ethical reasoning. Our approach is based on a set
of domain-independent abstract agents (evidential reasoner, arbiter and
execution agent) that together represent an ethical governor. We discuss
the implementation of these abstract agents in the Jason agent pro-
gramming language and demonstrate how they can be used in practice
by instantiating agents in two different case studies, one using utilitari-
anism and the other deontic logic for reasoning about ethical decisions.

Keywords: Ethical governor · Implementing machine ethics · BDI ·
Jason

1 Introduction

Computational systems can be divided into those which are implicitly ethical
(in which the process of requirements capture, design and implementation are
assumed to guarantee ethical operation of the system), those which are explicitly
ethical (in which the machine uses some concept of right and wrong as part
of its reasoning), and those that are unethical [22]. In this paper we take an
explicit approach to ethical reasoning, in which a machine reasons about the
correct course of action by reference to judgements relating to specific ethical
principles such as safety, human autonomy and privacy and uses an ethical theory
(probably, but not necessarily, from philosophy) to select an appropriate course
of action based on those judgements. This is achieved through the use of an
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ethical governor that arbitrates decisions, such as plan selection, concerning
competing ethical issues. It should not be assumed that in taking this approach
we treat the machine as a moral agent in its own right, in our view the morality
(and ultimate responsibility) for the machine’s behaviour remains with those
who commission, design and implement the behaviour – we mean only that
the machine’s programming explicitly refers to concepts of right and wrong on
occasion as part of its functioning.

Belief-Desire-Intention (BDI) [6,23] is a well known model for the imple-
mentation of autonomous agents. In this model, the reasoning cycle of an agent
revolves around three mental attitudes: beliefs, representing the knowledge that
the agent has about the world; desires, the goals (i.e., state of the world) that
the agent wants to achieve; and intentions, courses of action that the agent is
committed to achieve. In capturing decision-making at this high level of abstrac-
tion, the BDI model has the potential to be useful across a range of machine
ethics activities, particularly involving the ideas of implementing governors. In
particular, the complex reasoning cycle of BDI agents is well suited for perform-
ing ethical reasoning, as well as using multiple BDI agents to represent different
ethical entities (potentially with opposing/similar views). We use Jason [5], one
of the most popular BDI agent programming languages [4,10,20], to implement
our approach.

Our approach to implementing an ethical governor in BDI is separated into
two levels, abstraction and instantiation. Our main contribution is in the first
level, where we introduce three different types of agents (arbiter, evidential
reasoner, and execution agent) that implement a communication protocol and
together form an ethical governor system. The second level is an instantiation of
these types of agents, wherein agents implement the specific behaviours of the
application. To evaluate our approach we provide two examples of instantiation,
one using utilitarianism and the other using deontic logic as evidential reasoners.
Note that while we offer these two types of ethical reasoning by default, our goal
with this work is to offer a general-purpose implementation to be used as a basis
for experiments with ethical governors that can be further extended with other
types of ethical reasoning depending on the requirements of the application.

In this paper, we chose to represent an ethical governor as multiple agents.
Other alternatives include representing it as a single agent, or an organisation
of agents. Implementing it as multiple agents was more suitable for us given
the different types of reasoning that we create to represent the ethical gover-
nor (arbiter, evidential reasoners, and execution agent). Using multiple agents
allows us to have a clear separation between (potentially conflicting) evidential
reasoners (e.g., autonomy vs safety). Moreover, it makes instantiating the agents
(i.e., implementing case study specific behaviours) more straightforward, as we
can simply create agents that extend their abstract parent and implement only
the features necessary in their abstract representation.

This paper is organised as follows. In the next section we discuss some of
the background in machine ethics and the related work in implementing it using
agents. Section 3 introduces our general-purpose approach to implement ethical
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governors in the Jason BDI language, explaining its three main elements: eviden-
tial reasoner, arbiter and execution agent. In Sect. 4, we evaluate our approach
by applying it to two case studies, a remote inspection scenario with a human
and a robot cooperating to achieve some goals and a smart home scenario. The
paper concludes in Sect. 5 with a summary of our contributions and a discussion
about future work.

2 Machine Ethics

Machine ethics is the study of how to implement ethical reasoning in machines.
There are a number of approaches to machine ethics, in particular approaches
from symbolic artificial intelligence which generally take a philosophical theory
and operationalise it, and approaches from machine learning which attempt to
learn ethical behaviour from observation. Following [26], symbolic approaches
are generally classed as top-down and contrasted to machine learning approaches
which are considered bottom-up. There are a number of approaches that seek
to combine these, for instance, those in which philosophical theory provides
an over-arching framework within which details can be established via learning
(e.g., [1]).

Popular philosophical theories for the implementation of explicit machine
ethics include utilitarianism (in which the outcomes of actions are scored and the
action with the highest score is chosen), deontic logic (in which ethics is encoded
as rules that explicitly refer to actions that are permitted, obliged or prohibited
in specific situations) [15], and variants on virtue ethics which refer to extent to
which an action is in line with some set of desirable values. Many approaches
combine aspects of several philosophical theories—such as approaches which
evaluate the outcomes of actions with respect to values or ethical principles and
then use rules to select the preferred choice [1].

One of the earliest implementations of machine ethics is Arkin’s ethical gover-
nor [2]. In this system an ethical governor considers target selection suggestions
from autonomous weapon system and reasons about whether the suggestions
are compatible with the Law of War and the Rules of Engagement for a spe-
cific situation. The system then vetoes any suggestions that are unethical in
these contexts. Ethical governors form a popular class of explicit machine ethics
systems where they can act in tandem with more opaque autonomous systems
(e.g., deep neural networks) to provide confidence that selected actions are ethi-
cal. Among approaches taking inspiration from Arkin’s work are those based on
the concept of an ethical consequence engine [27], in which a simulation engine
is used to predict the outcomes of proposed actions which are then passed to a
governor style system for evaluation. This relates to Arkin’s work in which the
governor consists of an evidential reasoner and an application (which applies
either constraint or rule-based reasoning [25] to decide based on the evidence).
Further extensions of the ethical consequence engine work have included both
the use of BDI style reasoning to arbitrate between choices and the ability of
the governor “layer” to make its own suggestions for actions if it deems none
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of those from the underlying system to be acceptable [7]. The work of [7] is
here generalised and expanded, in particular to incorporate multiple streams of
evidence between which the governor must decide. Our work is more general in
comparison to [7], we do not have an explicit robot controller (our approach is
not limited to robotic applications), but such a component can be encoded in
our execution agent.

In [17], the authors propose an extended BDI architecture where the agent’s
reasoning is enhanced with case-based reasoning to implement casuistry and con-
sequentialist theories in BDI agents. This is obtained by making the agents use
past experiences to solve present problems. In more detail, if a past experience
exists, then the agent follows the same steps to solve the problem; otherwise, the
agent decides how to solve the problem following the standard BDI flow. Their
work is based on a hybrid BDI architecture that uses case-based reasoning while
ours solely comprises pure BDI agents. Another extension of the BDI model
with the notion of action consequences is proposed in [16]. This is obtained by
modelling a consequentialist approach of ethics which makes an agent choose
actions with consequences that are less evil. The authors formalise their app-
roach in both Answer Set Programming (ASP) and BDI frameworks. Differently
from the works in [16,17], we do not extend the BDI model, instead we present
a general-purpose approach to implementing ethical reasoning in (existing) BDI
systems without altering the BDI reasoning cycle or the languages and tools that
implement it.

The authors in [12] describe a mechanism for BDI agents to have a value-
based reasoning process. Such values are used to influence the agent’s decision-
making, and can relate to ethical aspects. Their approach is similar to ours in
the sense that both do not require modifications to the BDI model or to any
underlying tool/language. The difference is that in their case their mechanism
uses an external constraint solver while ours is directly implemented in the Jason
agent programming language. End even though we also have a value-based rea-
soning process (utilitarianism evidential reasoner), our main focus is in creating
the ethical governor system.

3 Ethical Governor in BDI

In [13], Dennis and Fisher note that while in questions of safety such as those
studied in the ethical consequence engine work, simulated physical outcomes are
effective in evaluating the risks of possible actions when other ethical principles
are considered, such as privacy or human autonomy. Evaluating the ethical status
of a proposed action might need to reference different processes such as reasoning
using rules about possible consequences, simulations of information flows, or
reference to stated preferences. Thus a suite of such reasoners is needed, one for
each of the ethical considerations in play, and the arbiter (called application in
Arkin’s work) layer of the evidential reasoner must decide between potentially
competing preferences/recommendations/evaluations from these reasoners.

An initial implementation of such a multiple evidential reasoner system using
BDI agents programmed in Jason was presented in [9] in which two evidential
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reasoners – one in the style of the ethical consequence engine that simulated
physical outcomes and made recommendations about safety, and one that used
its own past history in order to make recommendations about respecting human
autonomy – both submitted recommendations to an arbitration system that
used utilitarianism to select the desired action. While our previous work was
domain-specific, we now present a general approach for implementing machine
ethics through an ethical governor system.

Our implementation1 is written in the Jason [5] agent programming lan-
guage. Jason started as an implementation of AgentSpeak(L) [24], a theoretical
language for BDI systems, but has since seen many extensions such as its use in
the JaCaMo [3] multi-agent programming framework. Jason underlying code is
implemented in Java and has been shown to have some of the best performance
among agent programming languages [21], as well as achieving respectable per-
formance against actor programming languages, especially those that are also
implemented in Java [11].

Agents in our ethical governor system consist of:

– an execution agent, which is the agent responsible for managing and executing
actions that require further ethical reasoning in the system;

– a set of evidential reasoners, one or more agents that based on their main
characteristic (e.g., autonomy, safety, privacy, etc.) and given an input from
the execution agent (i.e., an existing action or a set of states) will suggest an
appropriate ethical action;

– and an arbiter, in case of two or more evidential reasoners it is necessary that
another agent be responsible for determining which action will be sent for
execution.

The ethical governor can be part of a larger multi-agent system, including other
agents that are not part of the ethical governor (these other agents are out of
scope for this paper and are domain-specific). To simplify the implementation
details, in this paper we only consider a single ethical governor. To execute
an action that requires ethical reasoning, the execution agent asks the evidential
reasoners to suggest actions. Actions that require ethical reasoning are identified
and defined by the developer of the system. Each evidential reasoner will choose
an action based on its instantiation, using epistemic reasoning and its set of
beliefs, plans, and Prolog-like rules. Finally, the arbiter collects all suggestions,
picks one of them based on an ethical reasoning strategy, such as utilitarianism,
and sends the selected choice to the execution agent. Our approach is split into
two levels: Abstraction and Instantiation, as represented in Fig. 1.

At the abstraction level, a communication protocol amongst the agents is
established. This protocol includes plans for the agents to be able to commu-
nicate their requests and replies (using both unicast and multicast), as well as
messages introducing the name of the agents that have been instantiated (using
broadcast). The code at this level does not require any information about the

1 Source code available at: https://github.com/autonomy-and-verification/ethicalgov.

https://github.com/autonomy-and-verification/ethicalgov
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Fig. 1. Overview of our approach for implementing an ethical governor in BDI.

scenario that is being implemented. The abstract level only concerns how agents
in the governor system interface with each other.

The instantiated agents include their parent abstraction. The internal include
action in Jason imports at runtime all of the beliefs, goals, and plans of the
specified agent source file into another agent source file. This is not the same
as the inheritance concept from object-oriented programming, since it is simply
loading a preexisting code instead of properly instantiating it. We note here
that if we were using the aforementioned JaCaMo multi-agent programming
framework [3] we would be able to use Moise [18] (responsible for the organisation
layer) to establish an organisation with the roles of arbiter, evidential reasoner,
and execution agent, which would allow us to drop the broadcast plans with the
name of the agents, since agents in the system would have access to the names of
the agents that are playing these roles. However, we opted to have a standalone
Jason implementation first since it provides a basic starting point, and leave a
JaCaMo extension as future work.

At the instantiation level, we find how the execution agent implements the
suggested actions, the implementation logic that the evidential reasoners use
to decide which actions to suggest, and finally, how the arbiter weights these
suggestions and the type of ethical reasoning that it uses to select the choice
that will be sent back to the execution agent.

Even though the abstraction level is at a higher-level and thus more general
than the instantiation, both refer to actual implemented code. The code at the
abstraction level is simply a parent code that is instantiated and further spe-
cialised depending on the application that we want to develop. The instantiation
level is further discussed in Sect. 4 when we instantiate the agents using two case
studies, but for now we continue to describe the details of the abstraction level.
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3.1 The Execution Agent

The execution agent is the agent that will carry out the execution of the action
that is selected by the arbiter. In Listing 1, we report the generalised execution
agent code. This corresponds to the abstract execution agent from Fig. 1.

The execution agent starts by introducing itself with the addition (repre-
sented by the syntax ! preceding a predicate) of a goal at line 1. When the
system starts, the addition of this goal generates an event (goal addition event
represented by the syntax +!) which triggers the execution of the plan at lines
2–4. The context of the plan (preceded by the : symbol) is used to test if the
plan is applicable (i.e., it is the precondition for the plan to be selected). The
context at line 3 is always true, since it is used simply to call an internal action
that returns the name of the agent and unifies it with the open term Me. The
plan body (preceded by the <- symbol) contains the steps required to achieve
a plan, this can be calls to an action, either internal for Jason existing actions
or external (provided by the user or the environment), or operations such as
goal/belief addition/removal where each call terminates with a semicolon, and
finally a dot in the end of the plan. Line 4 calls the internal action broadcast to
send a message to all agents in the multi-agent system using the tell speech act
performative, which adds the belief with the name of the execution agent.

1 !introductions .

2 +! introductions

3 : .my_name(Me)

4 <- .broadcast(tell , execution_agent (Me)).

5 +!act

6 <-

7 for (evidential_reasoner (Gov)) {

8 .send(Gov , achieve , suggest_action);

9 }.

10 +! choice(ActionList)

11 : .list(ActionList)

12 <-

13 !select_action (ActionList , action(Action , ReasonerType));

14 !execute_action (Action , ReasonerType).

15 +! choice(action(Action , ReasonerType))

16 <-

17 !execute_action (Action , ReasonerType).

Listing 1. Generalised execution agent code.

After this step, when the execution agent’s instantiation requires an action
to be selected by the ethical governor, it first has to call the act plan by adding
the !act goal (an example of such instantiation, as well as the other agents’
instantiation, is shown later in Sect. 4). This plan (lines 5–9) sends a request
for an action suggestion to all evidential reasoners through the achieve speech
act which works as a goal addition, thus triggering the plan +!suggest_action

in the evidential reasoners when the message is received. The plans shown at
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lines 10–14 and 15–17 are triggered by a message sent from the arbiter with the
action choice that was selected. It is possible for the arbiter to return a list of
action choices, in which case the plan at 10–14 is triggered and the instantiation
of the execution agent will pick the most appropriate action from the list, and
then calls a plan for performing the action where the corresponding callback plan
has to be implemented at the instantiation level. Otherwise, if a single action is
received the plan at lines 15–17 simply calls the plan for executing it.

It would be possible, with some minor modifications, to remove the execution
agent from the abstraction level, however, we would still require an agent to start
the process by asking for an action from the evidential reasoners. We have opted
to keep this abstraction because it allows the developer to quickly understand
which plans have to be implemented in their instantiation (i.e., plans that are
domain-specific), without having to resort to any external documentation. Our
current implementation of the abstraction level allows for only one instantia-
tion of the execution agent, however, with some minor modifications it should
be possible to extend this to allow multiple agents. Namely the communication
protocol would have to be extended to include the name of the requesting exe-
cution agent, and the evidential reasoners and the arbiter would have to be able
to reason about their choices in relation to the requesting agent so that multiple
requests could be handled concurrently.

3.2 The Evidential Reasoners

The evidential reasoners are agents that will decide which action to suggest using
domain-specific Prolog-like rules that can take into consideration the current
state of the system under execution to narrow down which action they believe to
be the most suitable for the current situation. When instantiated, these reasoners
will often favour diverging opinions, such as for example a safety reasoner in
contrast to an autonomy reasoner, as we will see in Sect. 4. In Listing 2, we
report the code for the generalised evidential reasoner. This corresponds to the
abstract evidential reasoner from Fig. 1.

1 !introductions.

2 +! introductions

3 : .my_name(Me)

4 <- .broadcast(tell , evidential_reasoner (Me)).

5 +! suggest_action

6 : arbiter(Arbiter) & type(Type)

7 <-

8 !make_choice(Action , Statement);

9 .send(Arbiter , tell , evidential_reasoner_choice(Type ,

Action , Statement)).

Listing 2. Generalised evidential reasoner code.
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Similar to the execution agent, the evidential reasoners also have an intro-
duction plan that works in exactly the same way. The names of the evidential
reasoners are necessary for the execution agent, since it needs to ask the evi-
dential reasoners for suggestions, and for the arbiter, since it has to wait each
evidential reasoner’s choice before selecting one. The plan for handling an exe-
cution agent request is defined at lines 5–9, and it is triggered by the message
from the execution agent that we have seen in Listing 1. We consult the agent’s
belief base in the context of the plan (line 6) to unify the name of the arbiter
and the type of the agent (which is set in the instantiation level, e.g., safety,
autonomy, etc.). The !make_choice goal is added at line 8 and it should be trig-
gered by a plan implemented in the instantiation of the evidential reasoner. Its
implementation depends on what are the objectives of the instantiated eviden-
tial reasoner, which will determine their action choice as well as a statement
(e.g., if we are dealing with a utilitarian system than this will be a utility value
for that action choice). Finally, at line 9, the evidential reasoner propagates its
selection, composed of the type of the evidential reasoner, the action choice, and
the statement, to the arbiter of the system. These are then used by the arbiter
to select the action to be executed.

3.3 The Arbiter

The arbiter (similar to the entity called application in Arkin’s original work) is
responsible for collecting the action suggestions from the various evidential rea-
soners and then selecting the most appropriate based on some ethical reasoning
such as utilitarianism. In Listing 3, we report the generalised arbiter code. This
corresponds to the abstract arbiter in Fig. 1. Line 1 contains a book-keeping
belief counter(0) that is used to keep track of how many action suggestions it
has received from the evidential reasoners. The introductions plan works the
same as in the previous execution agent and evidential reasoners, and it is used
by the arbiter to introduce its name to the rest of the agents.

Lines 6–11 and 12–16 contain two plans that receive those choices, both
triggered by the addition of the belief evidential_reasoner_choice. Both are
annotated (preceded by the @ symbol), a Jason feature that allows plans to
have extra information embedded in the plan. In this case, an identifier name
and an option that turns the plan into an atomic operation, meaning that the
usual concurrent execution of intentions in Jason is stopped once the plan is
triggered and will only resume after it has been completed (either with a fail
or a success). This is necessary in order to avoid any race condition that could
eventually cause the counter belief to be miscalculated. The default plan selection
in Jason goes top-down in the plan library of the agent and attempts to select
any plan matching the triggering event. Since both plans have the same trigger,
the first plan (6–11) will be selected first. Its context checks (using the .count

internal action which returns the number of times that a particular belief occurs
in the belief base) the number of evidential reasoners in the system (beliefs that
are obtained through the identification messages) and that the current counter
matches this number minus 1 (i.e., this is the last evidential reasoner to send
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its action choice). The _ symbol indicates variables which may match any value.
The body of this plan updates the counter to 0 so that it is ready to receive more
action choices in the future and adds the !arbiter_choice goal. If the context of
the first plan fails, the second one (12–16) will be triggered. Its context is always
true, since there will always be a count belief, and its body simply updates the
counter by an increment of 1.

1 counter (0).

2 !introductions .

3 +! introductions

4 : .my_name(Me)

5 <- .broadcast(tell , arbiter(Me)).

6 @receivelastchoice [atomic]

7 +evidential_reasoner_choice (Type , Action , Statement)

8 : .count(evidential_reasoner (_),N) & counter(N-1)

9 <-

10 -counter(_); +counter (0);

11 !arbiter_choice .

12 @receivechoice [atomic]

13 +evidential_reasoner_choice (Type , Action , Statement)

14 : count(N)

15 <-

16 -counter(N); +counter(N+1).

17 @utilitarian[atomic]

18 +! arbiter_choice : reasoning(utilitarian) & execution_agent

(Agent)

19 <-

20 +choice (0,0,0);

21 for (evidential_reasoner_choice (Type , Action , Utility)) {

22 -evidential_reasoner_choice (Type , Action , Utility);

23 if (type_multiplier (Type , TypeMultiplier) ) {

24 NewUtility = TypeMultiplier * Utility;

25 } else {

26 NewUtility = Utility;

27 }

28 ?choice(BestUtility , BestType , BestChoice);

29 if (NewUtility > BestUtility) {

30 -choice(BestUtility , BestType , BestChoice);

31 +choice(NewUtility , Type , Action);

32 }

33 }

34 ?choice(Utility , Type , Action);

35 -choice(Utility , Type , Action);

36 .send(Agent , achieve , choice(action(Action , Type))).

Listing 3. Generalised arbiter code.

Finally, we have the plan that triggers once all action choices have been
received. By default we provide two ethical reasoning mechanisms for the arbiter:
utilitarianism and deontic. Other mechanisms can be added in the instantiation
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of the arbiter as needed. For brevity, we only discuss utilitarianism here (lines 17–
36), but show the instantiation of deontic logic later on in our second case study.
The context of the plan makes sure that the plan corresponding to the desired
ethical reasoning will be selected (utilitarian in this case) and that we know the
name of the execution agent. The +choice belief is another book-keeping belief
to keep track of what is currently the best choice (initialised with 0). We iterate
over each choice, and retrieve the scale multiplier for the evidential reasoner (if
no multiplier is given in the instantiation of the arbiter, then the utility value
is preserved), and use it to update the utility value passed by the evidential
reasoner. The scale multiplier can be used to give more (resp. less) importance
to certain types of evidential reasoners (e.g., more value to safety rather than
autonomy). The best choice is retrieved at line 28, and at line 29 its utility
is compared with the utility of the action currently analysed. If the currently
analysed action has a greater utility, then the best action is updated (lines 30–
31). After all the evidential reasoners’ action choices have been evaluated, the
best action is retrieved (line 34) and sent to the execution agent (line 36).

4 Evaluation

To evaluate our general-purpose approach we have selected two case studies and
present the instantiation level for both, as well as some results from experiment-
ing with the multiplier scales for different types of evidential reasoners. The
choice of the agent to instantiate the execution agent as well as the actions that
require ethical reasoning is to be made by the developer of the system.

4.1 Remote Inspection Case Study

Our first case study, shown in Fig. 2, is a simulation where a human (represented
by H in the screenshots) and a robot (represented by R in the screenshots) move
around in a 2D grid environment. The human’s task is to keep visiting all goal
positions (green triangles) for as long as the system is running. The robot’s
objective is to protect the human from stepping into radiation cells; these are
the cells with low (yellow), medium (orange), and high (red) level of radiation.
The robot has two evidential reasoners which generate the ethical dilemma to
be solved by the ethical governor system, a safety reasoner and an autonomy
reasoner. In Fig. 2a and b, we report screenshots of the simulated environment.
Figure 2a shows the initial configuration. Figure 2b shows the case where the
robot is warning the human because the latter is in a dangerous area.

In this case study, we have one execution agent (the robot), two instantiated
evidential reasoners (one for safety and one for autonomy), and one instantiated
arbiter. The human is also an agent that is part of the simulation, however it
does not instantiate any of our abstracted agents. The safety evidential reasoner
gives importance to the human safety, preferring actions that will move the robot
closer to the human and actions that can warn the human of any imminent
danger of radiation. The autonomy evidential reasoner gives importance to the
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(a) Initial configuration of the map. (b) Robot warning human.

Fig. 2. Screenshots of the grid map for the remote inspection case study.

human autonomy, preferring actions that will move the robot away from the
human, especially when it believes that the human is “annoyed” by its close
proximity.

1 { include("evidential_reasoner .asl") }

2 type(safety).

3 ...

4 +! make_choice(Choice , Utility)

5 : inDanger(human , red) & not near(human , robot)

6 <- Choice = moveToward; Utility = 3.

7 ... // the same for orange and yellow but with utility 2

and 1 respectively

8 +! make_choice(Choice , Utility)

9 : inDanger(human , red) & near(human , robot)

10 <- Choice = prevent; Utility = 3.

11 ... // the same for orange and yellow but with utility 2

and 1 respectively

12 +! make_choice(Choice , Utility)

13 : not inDanger(human , _) & near(human , robot)

14 <- Choice = stayPut; Utility = 1.

Listing 4. Instantiation of the safety evidential reasoner.

In Listing 4, we report a snippet of the code for the safety evidential reasoner
as an instantiation of the abstract evidential reasoner (the Prolog-like rules such
as inDanger and near as well as some book-keeping beliefs and plans were omitted
for brevity). The abstraction of the evidential reasoner is included at line 1 (.asl
is the file extension for agents in Jason). At line 2, the belief containing the type
of the evidential reasoner is explicitly added (this information is required by the
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arbiter to set the scale multipliers). According to the abstraction in Listing 2,
the only plan required to be instantiated is !make_choice. This is the plan that
determines the action that will be suggested by the reasoner and sent to the
arbiter. At lines 4–14, the three main action options for the !make_choice plan
are reported. At lines 4–6 we have the action to move towards a human with
utility 3 if the human is in danger (close to a red radiation cell) and the robot
is not close to the human to intervene. The action for preventing the human to
step in a radiation cell (i.e., issue a warning to the human) is part of the plan at
lines 8–10, and it is chosen if the human is in danger (again in relation to a red
cell) and the robot is close to the human. There are two extra plans for each of
these two actions (move towards and prevent) which are the similar but instead
of the red cell the inDanger rule tests for orange and yellow cells and the utility
value assigned to these actions is lowered. The last available action for the safety
evidential reasoner is a skip action, an action for the robot to stay put (i.e., not
move). This is shown at lines 12–14, with the plan being selected if the human
is not in any danger and the human and the robot are near each other.

In Listing 5, we report a snippet of the code for the autonomy evidential
reasoner. This is similar to the previous code, except that the reasoner is now of
the autonomy type and it has two main actions.

1 { include("evidential_reasoner .asl") }

2 type(autonomy).

3 ...

4 +! make_choice (Choice , Utility)

5 : not near(human , robot) & not annoyed

6 <- Choice = stayPut; Utility = 1.

7 +! make_choice (Choice , Utility)

8 : not near(human , robot) & annoyed

9 <- Choice = stayPut; Utility = 3.

10 +! make_choice (Choice , Utility)

11 : near(human , robot) & inDanger(human , _) & not annoyed

12 <- Choice = moveAway; Utility = 1.

13 +! make_choice (Choice , Utility)

14 : near(human , robot) & not annoyed

15 <- Choice = moveAway; Utility = 2.

16 +! make_choice (Choice , Utility)

17 : near(human , robot) & annoyed

18 <- Choice = moveAway; Utility = 3.

Listing 5. Instantiation of the autonomy evidential reasoner.

At lines 4–6 and 7–9, we have the skip action (stay put) with utilities 1 and 3
respectively; utility 1 is set when the robot is not near the human and the human
is not annoyed, while utility 3 is set when the robot is not near the human and
the human is annoyed. Annoyed is a rule that checks a proximity belief that
indicates for how many consecutive steps has the robot been in a neighbouring
cell of the human (any of the 8 positions or even the same position as the human,
since there is no collision). If this number is greater than 3 (i.e., the robot has
been in close proximity to the human for at least 4 consecutive steps) then the
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human is considered annoyed. The proximity number is decreased when they
are not in close proximity, down to a minimum of 0. At lines 10–12, 13–15, and
16–18, we have the action for the robot to move away from the human with
utilities 1, 2, and 3; utility 1 is set when the robot is close to the human and the
human is in danger and not annoyed, utility 2 is set when they are near each
other and the human is not annoyed, and utility 3 when they are near and the
human is annoyed.

The instantiation of the arbiter for this case study is shown in Listing 6.
This is the most straightforward instantiation since it relies on the plans from
its abstract level representation. As usual, we include the code for the abstract
implementation at line 1. At line 2, the kind of reasoning used in the abstract
arbiter is set. Since utilitarianism is supported in the abstract implementation
we do not need to implement any plans for it. At lines 3 and 4, the utility scale
multipliers for the two types of instantiated evidential reasoners are given. In
this case, the utilities from the autonomy evidential reasoner are left unchanged,
while the utilities of the actions suggested by the safety evidential reasoner are
weighted more (20% more). The main idea here is that these values can be cus-
tomised in order to evaluate the effectiveness of the different evidential reasoners,
as we will show later in some of our results for this case study.

1 { include("arbiter.asl") }

2 reasoning(utilitarian).

3 type_multiplier(autonomy , 1).

4 type_multiplier(safety , 1.2).

Listing 6. Arbiter instantiation.

We do not report the execution agent code (instantiated by the robot) nor the
code for the human, since they are not relevant for the presentation of the general
technique. The robot contains domain-specific plans which specify how actions
such as move away are implemented (move away simply checks the positions of
the robot and the human and then selects a cell to move that would bring the
robot to be further away from the human) and the human contains plans for
moving around the grid efficiently and how to avoid (if possible) radiation cells
when warned by the robot. In general, the execution agent could evaluate the
arbiter’s suggestion, and decide whether to follow it or not. In this case study,
the robot executes the action passed by the arbiter without questioning the
suggestion. As shown in Listing 7, every different action requires its own plan to
be implemented, which could be as straightforward as calling the action directly
or could have some other logic such as figuring out which coordinates the robot
should move to.

1 +! execute_action(Action , ReasonerType) <- !Action.

Listing 7. Execution agent instantiation.
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Our approach is made not just as a proof-of-concept, but also to aid in the
experimentation of ethical governor systems. In particular, how to fine tune
the weights of choices from different types of evidential reasoners. To demon-
strate this feature, we have collected several measurements in this case study
and observed how they are impacted by changes in the scale multipliers of each
type of evidential reasoner. The results are listed in Table 1. For each configu-
ration of the scale multipliers, we ran a simulation cycle of 200 steps. A step is
an ordered execution cycle wherein first the robot acts, and then the human can
act.

Table 1. Different measurement results for the remote inspection case study when
altering the scale multipliers.

Scale

Multiplier

Warning Red

Radiation

Orange

Radiation

Yellow

Radiation

Annoyed Safety

Choices

Autonomy

Choices

Safety * 1.2

Autonomy * 1

79 0 1 12 4 166 34

Safety * 3

Autonomy * 1.5

77 0 1 12 10 168 32

Safety * 1

Autonomy * 3

13 0 1 18 3 13 187

Safety * 1

Autonomy * 3.5

0 3 4 11 1 0 200

The warning measurement represents how many times the action prevent
has been used by the robot. Red, orange, and yellow radiation indicates how
many times the human has stepped in one of these cells. The annoyed metric is
used to show the maximum number of consecutive steps for which the human
was annoyed (i.e., a result of 10 indicates that the human had 10 consecutive
steps in which the robot was in close proximity). Finally, safety and autonomy
choices are the number of times that choices from these evidential reasoners have
been selected by the arbiter. These results show that increasing autonomy has a
significant impact in the safety of the human, since it is more likely to step into
radiation cells (in particular the dangerous red radiation cells when autonomy
has full control). Likewise, increasing safety results in the human being annoyed
more frequently, since the robot attempts to follow the human more often, but
it does not result in less radiation. This happens because the safety choices for
giving out warnings already contain high utility values, thus increasing it has no
consequence on the amount of times it issues warnings. These results can then
be used to inform the developers in their choice for the most appropriate weights
depending on what are the desired outcomes of the system.

4.2 Smart Home Case Study

Our second case study is based on a smart home scenario adapted from the work
in [19]. The scenario consists of a smart family home controlled by an intelligent
agent. The agent has control over several pieces of smart technology around the



Implementing Ethical Governors in BDI 37

house, such as cameras, smart electronics, and an air conditioning system. This
system regularly checks the quality of the air in all of the rooms of the home. We
simulate a situation where the air conditioning system has detected that there
are signs of tobacco smoke in one of the teenager’s room. We use our ethical
governor system to help the agent come to a decision about what to do when
this occurs.

Instead of utilitarianism, we use a simple form of deontic logic wherein the
evidential reasoners use epistemic reasoning to select an action and then attach
a yes/no/maybe recommendation. The arbiter then vetoes the recommendations
and instead of sending only one choice as in the utilitarianism example, it sends
a subset of them to the execution agent. This behaviour more closely resembles
the classical ethical governor architectures found in the literature.

We show this extension of the arbiter in Listing 8, which is simply another
plan to be added in Listing 3. Note that this extension is not domain-specific,
we simply chose to present it here instead of in the arbiter section for the sake
of clarity. The code is straightforward, first the arbiter goes through all of the
choices attached with a yes recommendation and registers them as choices to
be sent to the execution agent by adding a belief +choice for each (lines 4–7).
If no choices have been added this way, then the arbiter iterates over all the
choices marked with a maybe recommendation and selects the one associated
with the evidential reasoner that has the best rank (i.e., higher priority) among
them (lines 8–22). Choices with a no recommendation are discarded (lines 23–
25) and if no choices were selected by the end then a choice is added with null
values (lines 26–28). Finally, the arbiter executes the .findall internal action
that simply collects all choice beliefs and add them to an action list that is then
sent to the execution agent.

In this second case study we use a much simpler simulation environment
that is used solely to demonstrate another ethical reasoning mechanism. We
instantiate six agents, four of which are the privacy, safety, legal, and reliability
evidential reasoners, as well as the house (smart home execution agent), and the
arbiter. The instantiation of the arbiter is almost identical to Listing 6, except
that it now uses deontic logic and type ranks. To run our simulation we used the
following ranks for the safety, legal, privacy, and reliability evidential reasoners
respectively: 1, 2, 3, and 4 (lower values mean higher priority). These values can
be further optimised as preferred by the developer.

Our simulation starts with the house asking the evidential reasoners what to
do after it has detected that there is a teenager smoking tobacco. Each eviden-
tial reasoner has one action that it can suggest, along with its recommendation
(yes/no/maybe). The legal evidential reasoner can suggest to warn the author-
ities with the recommendation: yes if tobacco consumption by minors is illegal
in the country it is located in and it is not the first time such event occurs and
the parents/guardian are not at home, no if tobacco is not illegal, and maybe if
the previous two recommendations fail to be selected. The privacy reasoner can
suggest to warn the teenager with: yes if this is the first time it has detected such
behaviour, no if this is a repeated occurrence and the parents are at home, and
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maybe if the other two fail. The safety reasoner can suggest to warn the parents
with: yes if the parents are at home, no if tobacco is not illegal for minors and
the parents are not at home, and maybe if the other two fail. The reliability rea-
soner can suggest to log the activity with: yes if the log feature is not disabled
and the quantity of smoke detected is greater than a certain threshold, no if the
log feature is disabled, and maybe if the other two fail.

1 @deontic[atomic]

2 +! arbiter_choice : reasoning(deontic) & execution_agent (

Agent)

3 <-

4 for (evidential_reasoner_choice (Type , Action , yes)) {

5 -evidential_reasoner_choice (Type , Action , yes);

6 +choice(action(Action , Type));

7 }

8 if (not choice(_)) {

9 for (evidential_reasoner_choice (Type , Action , maybe)) {

10 -evidential_reasoner_choice (Type , Action , maybe);

11 if (not choice(_) & type_rank(Type , Rank)) {

12 +rank(Rank);

13 +choice(action(Action , Type));

14 }

15 elif (rank(BestRank) & type_rank(Type , Rank) & Rank <

BestRank & choice(action(OldAction , OldType)))

16 {

17 -rank(BestRank); +rank(Rank);

18 -choice(action(OldAction , OldType));

19 +choice(action(Action , Type));

20 }

21 }

22 }

23 for (evidential_reasoner_choice (Type , Action , no)) {

24 -evidential_reasoner_choice (Type , Action , no);

25 }

26 if (not choice(_)) {

27 +choice(action(null , null));

28 }

29 .findall(action(Action ,Type), choice(action(Action , Type)

), ActionList);

30 .send(Agent , achieve , choice(ActionList)).

Listing 8. Deontic ethical reasoning plan for the generalised arbiter.

Finally, the execution agent will do nothing if it has received null, or it will
select an action from a list of suggestions (with the yes recommendation) and
execute the selected action, or if it received a single action it will simply execute
it. In our instantiation of the execution agent it selects the first action choice from
the list, however something more elaborate could be implemented depending on
the requirements of the system. Another option would be to allow the execution
of all the actions that have been received with a yes recommendation, but this
would require some minor modifications at the abstraction level of our approach.



Implementing Ethical Governors in BDI 39

Table 2. Actions and recommendations from an example run in the smart home case
study. Circled row is the action that the execution agent has chosen.

Reasoner Action Statement
privacy warn teenager yes

safety warn parents no

legal warn authorities no

reliability log activity maybe

To demonstrate the execution of our approach in the smart home case study
we report the results of running a sample configuration of the case study with
no control beliefs (e.g., preconditions that check if tobacco is illegal will fail,
conversely belief negations will succeed) in Table 2. In this configuration, since
the only yes recommendation comes from the privacy evidential reasoner, the
arbiter agent will discard the others and send that action to the execution agent.

5 Conclusions

In this paper we have described a general approach for implementing ethical
governor systems in BDI. Our approach is implemented in the Jason agent pro-
gramming language and it is divided into two levels: abstraction and instanti-
ation. The abstraction level is domain independent and specifies the standard
behaviour and plans of the execution agent, evidential reasoners, and arbiter.
Our evidential reasoners and arbiter come equipped with two ethical reasoning
mechanisms, utilitarianism and deontic logic. To evaluate our approach we have
shown the instantiation of these abstractions using two case studies.

As a future extension of our approach, we intend to modify the action choice
output of the evidential reasoners to include a formula containing some default
information that can then be used by the arbiter to further augment and inform
its selection, in a similar way to the work done in [8]. This formula would contain
elements such as why the evidential reasoner believes its choice to be a good
choice (i.e., why it has proposed it), the beliefs that it used to come to its
conclusion, and any required additional information. This formula would allow us
to use different types of reasoning for individual evidential reasoners, for example,
a safety evidential reasoner using utilitarianism and an autonomy evidential
reasoner using deontic logic. However, the arbiter would also have to be extended
to be able to analyse and select an action among these different streams of
suggestions, which is a topic that is just recently being researched [14].
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Abstract. One of the emerging trends in engineering multi-agent sys-
tems (MASs) is to use the Web as an environment. On the Web, hyperme-
dia is the guiding principle of agent perception and action. Web standards
allows agents to have a single uniform interface to their environment, be
it real or simulated. Most recent proposals for hypermedia MASs tend,
however, to introduce a coupling between agents or between agents and
their environment.

This paper introduces a framework based on Semantic Web technolo-
gies to formalize interactions between agents and a hypermedia environ-
ment. Semantic Web technologies and, more specifically Web ontologies,
guarantee interoperability on the Web and maximize uncoupling between
components. We show how existing ontologies can be used to make exist-
ing MAS prototypes fit our framework.

Our framework formalizes the guiding principle of agent-environment
interactions in hypermedia, state transfer, with respect to a reference for-
malism originally introduced by Genesereth and Nilsson. We also show
the equivalence between the two in the paper, under certain conditions.

Keywords: Semantic Web · Linked Data · Hypermedia · Multi-agent
system

1 Introduction

“On the Internet, nobody knows you’re an autonomous agent.” The quote1

emphasizes the fact that Web servers have no means to distinguish between
human agents and autonomous agents (or ‘bots’) that perform request accord-
ing to a predefined plan. Conversely, agents have no means to assert the origin

1 Originally about dogs, from a Peter Steiner cartoon published in The New Yorker
in 1993.
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of a resource, whether it was e.g. created by another agent in relation to physical
world events or simulated/forged.

Generally speaking, the architecture of the Web provides a uniform informa-
tion space that agents can manipulate, through hypermedia [12]. As such, the
Web has been seen as a good candidate architecture for building multi-agent
systems (MASs) since at least the 2000s [10]. At the time, it was envisioned that
autonomous agents could browse the Web as humans do and perform informed
actions, such as buying commercial goods online and negotiating prices. To that
end, preliminary work on Web ontologies and machine understanding started,
to eventually be standardized by the World Wide Web Consortium (W3C) as
Semantic Web technologies: RDF, SPARQL and OWL, the Web Ontology Lan-
guage. In 2010, James Hendler and Tim Berners-Lee underline the importance
of Semantic Web technologies to build “social machines” on the Web [11].

Meanwhile, Semantic Web technologies have evolved and deviated from the
original vision of autonomous Web agents. However, the Semantic Web is now
entering novel domains of applications that revive the need for agent-oriented
programming. The Web of Things2 (WoT) and the Social Web3, as standardized
by the W3C, are two such domains. The Web of Things allows for new forms
of industrial control that tend towards self-organization, a characteristic that is
often associated with agent-based modeling [21]. The Social Web allows for uni-
form human-to-human and human-to-machine interactions, e.g. with chatbots.
Most W3C standards for WoT and the Social Web reuse and extend Semantic
Web technologies, narrowing the gap between the original vision of autonomous
agents on the Web and available technologies.

In the MAS literature, various research prototypes with WoT and social
Web applications have been recently proposed, in particular among the work-
shop series on Engineering MASs (EMAS) [4–6,18]. However, most of these
proposals do not use Semantic Web technologies (only one proposal does [5],
although another includes Linked Data—a subfield of the Semantic Web—as
future work) [18].

Not using Semantic Web technologies such as RDF and OWL4, has a direct
consequence: agents can neither be developed independently from each other,
nor can their environment (which includes e.g. WoT ‘things’ or a social network-
ing platform) be developed independently from them. Such coupling between
agents and their environment go against the promise of hypermedia of unifying
information management. Yet, as we will see in Sect. 2, if one strictly applies
hypermedia principles to MAS architectures, certain architectures with direct
agent-to-agent interactions may not be realizable on the Web.

In this paper, we introduce a unifying framework, rooted in RDF, for agents
situated on the Web. This framework applies the usual Semantic Web abstrac-
tions (RDF triples, resources and datasets) to MAS architectures, to maxi-

2 https://www.w3.org/WoT/.
3 https://www.w3.org/Social/.
4 or, more generally, not providing guarantees as to shared message semantics across

agents in MAS prototypes.

https://www.w3.org/WoT/
https://www.w3.org/Social/
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mize decoupling between system components. We make no assumption as to
agent architectures but rather characterize interactions between agents and their
(hypermedia) environment in abstract terms. To that end, we base our frame-
work on a formalism first introduced by Genesereth and Nilsson [8], which is,
to the best of our knowledge, the most commonly accepted formalism of the
sort. We show how to reconcile hypermedia principles, a subset of the Repre-
sentational State Transfer (REST) principles [7], and MAS architectures, such
that any classical MAS (as defined by Genesereth and Nilsson) has an equivalent
hypermedia MAS.

In the next section (Sect. 2), we analyse recent EMAS prototypes with respect
to the REST principles and identify potential limitations to address in our for-
malism. We then move on to the main contribution of the paper: a MAS formal-
ism based on RDF (Sect. 3) and evaluate the feasability of implementing MASs
according to our framework, by providing examples of RDF and OWL ontologies
that the reviewed EMAS prototypes could leverage (Sect. 4). We conclude the
paper in Sect. 5.

2 Related Work

2.1 Cyber-Physical Systems on the Web and Hypermedia

Recent research initiatives demonstrate renewed interest for topics at the inter-
section of autonomous agents and the Web. A workshop on hypermedia MASs
took place at TheWebConf in 20195, followed by a Dagstuhl-Seminar on the
same topic in 20216.

Papers emanating from the EMAS series of workshops confirm this trend.
The Web appears in three papers, either as a scalable distributed system made
of Web services [4,18] or as a uniform interface to cyber-physical systems [5]. In
all three papers, WoT is invoked as a new domain of application for autonomous
agents. A fourth paper even makes use of WoT principles without naming them:
its prototype indeed involves controlling physical devices via a Web API [6].

Two of these EMAS prototypes insist on hypermedia as the main distinctive
feature of their approach [5,18]. Ciortea et al. insist on the fact that hypermedia
helps agents “discover at runtime other entities in a MAS and the means to
interact with those entities”. Runtime discovery is made possible by the inter-
linking of Web resources (via hyperlinks) such that agents can navigate from one
resource to the other. Web resources should further include pointers to potential
actions (via Web forms). These hypermedia design principles are part of the
REST architectural principles, which have conditioned much of the architecture
of the Web itself [7]. The recent WoT standards published by the W3C [13,16]
acknowledge the importance of hypermedia on the Web and define interactions
between a ‘thing’ (a Web server) and a WoT ‘consumer’ (a Web client) in terms
of links and forms.

5 https://www.hyperagents.org/.
6 https://www.dagstuhl.de/21072.

https://www.hyperagents.org/
https://www.dagstuhl.de/21072
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2.2 Autonomous Agents and Reprensentational State Transfer

The benefits of hypermedia as a mechanism unifying agent interactions only hold
if links and forms embedded in Web resources have shared semantics among
agents, as underlined in introduction. RDF, the Resource Description Frame-
work, allows agents to discover the semantics of hyperlinks at runtime as well,
by making link relation types themselves dereferenceable resources. As a result,
every statement about a Web resource is a hyperlink (an RDF triple), which
creates an interdependency between the representation of a resource (as a set of
RDF triples) and its location on the Web (via a URI).

This interdependency between representation and location on the Web makes
REST an important requirement in Semantic Web applications. In particular,
the REST constraint that a hypermedia system has to be layered ensures the
proper addressing of semantic resources by so called ‘origin servers’. This con-
straint, known as the ‘layered system’ constraint is one of the six architectural
constraints of REST. It implies that “the large-grain data flows of hypermedia
interaction can each be processed like a data-flow network, with filter compo-
nents selectively applied to the data stream in order to transform the content as
it passes” [7]. In REST, there is a sharp distinction between origin servers, which
provide data at one end of the data stream, and ‘user agents’, which collect data
at the other end of the stream.

In a hypermedia MAS, however, agents play both roles: they may in turn be
origin servers and user agents. As a result, the hypermedia system would not be
layered anymore, wherever data flows give form to cycles among components.
Figure 1 shows the different data flows that have been implemented in the four
EMAS prototypes previously mentioned. In the two prototypes featuring Web
services [4,18], an agent is a mixed component that includes both a server con-
nector (for perception and agent-to-agent interactions) and a client connector
(for action), enabling direct interactions with other agents (Fig. 1a). In the pro-
totype involving a Web API to physical devices [6], agents have a pure client
role while servers are purely reactive components translating remote control into
physical phenomena. In this application, servers are thus genuine origin servers
(Fig. 1b). Finally, the prototype by Ciortea et al. [5] does include origin servers
but it also uses WebSub [9] for agents to perceive their environment. WebSub
requires their agent platform to manage a Web server to receive notifications
from a WebSub hub (Fig. 1c).

Among the three patterns observed here, only one meets the layered system
constraint (Fig. 1b). In the two other patterns, there is no obvious distinction
between an agent space and an environment space among system components.
Indeed, if one considers an entire system component as an agent, then some
hypermedia agents are not strictly situated in some environment (due to the
absence of origin servers). Conversely, if one considers any RDF data as being
part of the environment, system components mix both agent behavior and envi-
ronmental resources. The word ‘servient’ emerged during standardization work
on WoT, as the contraction for ‘server and client’, to characterize such system
components [15].
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(a) Direct agent-to-agent interactions (b) Interactions with origin server (c) Interactions with hub

Fig. 1. Graphical representation of agent interactions on the Web; rounded rectangles
are components, circles are component connectors (S: server, C: client) [7]; hatched
components are purely reactive components

Because of this ambiguity, there is no obvious definitions for perception and
action on RDF data in the presence of interaction cycles. In this paper, we intend
to bridge that gap through a single abstract formalism that defines perception
and actions of agents with respect to a hypermedia environment defined as an
RDF dataset. We consider the following requirement: while preserving the usual
RDF abstractions used in the Semantic Web literature, our formalism shall cap-
ture all MAS architectures, including those involving servients.

3 Formalism

The main contribution of the paper is a hypermedia MAS formalism, in which
the environment and agent spaces are strictly separated, to maximize uncou-
pling. The formalism we now present will be evaluated in Sect. 4 by showing
that existing EMAS prototypes could be re-implemented with equivalent func-
tionalities but with existing W3C standards for representing agent resources
(including Linked Data Platforms and ActivityStream, both relying on Seman-
tic Web technologies).

3.1 Preliminaries

We start from a classical representation of agency (the ability of agents to act on
their environment) as functions on environmental states and actions, borrowed
from Genesereth and Nilsson (Chap. 13) [8] and Wooldridge (Chap. 2.5) [22]. To
the best of our knowledge, this representation has remained the most widely
known reference to study generic interactions between agents and their environ-
ment, without making assumptions on agent architectures.

In the following, we define abstract structures for an environment, an agent
and a multi-agent system.



A Unifying Framework for Agency in Hypermedia Environments 47

Definition 1 (environment). An environment definition E is a tuple

E = 〈E, e0, A, do〉
where

– E is a set of states
– e0 ∈ E is an initial state
– A is a set of actions
– do : A × E → 2E is an effectory function

Note that function do maps to subsets of E rather than to elements of
E. This choice allows for non-deterministic actions on the environment, as per
Wooldridge’s definition of E .

Definition 2 (agent). A stateful (or hysteretic) agent definition A is a tuple

A = 〈P, I, i0, see, internalize, act〉
where

– P is a set of percepts
– I is a set of internal states
– i0 ∈ I is an initial internal state
– see : E → P is a sensory function
– internalize : I × P → I is a memory function
– act : I → A is a decision-making function

The definition above includes the basic components of an agent’s cognitive
loop: the agent perceives its environment, changes its internal state of mind
accordingly and then acts. When multiple agent are situated in the same envi-
ronment, they form a MAS.

Definition 3 (system). A multi-agent system definition S is a tuple

S = 〈E ,A1,A2, . . .〉
where

– E is an environment definition
– every Ai is an agent definition

Together, agents change the state of their environment over time. We model a
MAS run as a sequence of environmental states obtained through agent actions.
Agent actions are themselves conditioned by what agents perceive and by their
internal state of mind. See Fig. 2a for an overview of how functions are chained
during a MAS run.

We now formally define MAS runs. In the following definition, we choose to
model time in the most abstract possible way, as a fully ordered set T of time
positions—a timeline—with lower bound tmin. We denote t− and t+ the (unique)
predecessor and successor of any point in time t ∈ T .
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Fig. 2. Graphical representation of abstract (hypermedia) multi-agent systems; rect-
angles contain function names, circles contain set names, dashed rectangles are REST
components (as presented in Fig. 1) and dotted rectangles are reusable software modules
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Definition 4 (system run). Let T be a timeline. A sequence 〈et〉t∈T of envi-
ronmental states is a system run for S = 〈E ,A1,A2, . . .〉 if for all t ∈ T

et =

{
e0 if t = tmin

e ∈ do(act(it), et−) for some it, otherwise

and if for all t ∈ T and all Ai = 〈P, I, i0, see, internalize, act〉

it =

{
i0 if t = tmin

internalize(it− , see(et)) otherwise

With this definition, we choose to deal with potentially conflicting actions
between agents by assuming that no two actions can be executed at the same
time. A MAS can however be defined such that an agent keeps choosing the
same action as long as it does not see its effects. As a result, concurrent actions
are in fact serialized in an arbitrary order by the environment.

Note that in our definition, it may be equal to it− if the two successive envi-
ronment states are indistinguishable by the agent. In this modeling, perception
is instantaneous. An agent always internalizes a state as soon as an action occurs
(as soon as function do() is applied). We will see how a hypermedia MAS differs
in that respect.

3.2 Dataset, Operations

As discussed in Sect. 2, the Web can be seen as a single open environment, which
agents browse through hypermedia. A common abstraction for the Web is to see
it as an RDF dataset, i.e. as a set of labeled graphs, each identified with a
URI [3]. If nodes of these graphs are themselves URIs, an edge can then be seen
as a hyperlink, which agents can follow to discover more data.

This abstraction (which is a formalization of the Linked Data principles)
slightly alters the nature of perception by autonomous agents. If everything on
the Web is made of URIs, an agent may universally interpret Web resources.
URIs are indeed unambiguous. As a result, agent situatedness in a hypermedia
environment does not depend on the individual sensory capabilities of agents
but rather on the fact they may only retrieve a finite set of resources at a time.
In the following, we formally introduce the RDF abstraction for the Web and
redefine the function see() in the context of a hypermedia environment.

We first briefly introduce the RDF data model7: U and L are respectively
the set of (internationalized) URI resources and literals. UL = U ∪ L is the set
of Web resources. T = U × U × UL is the set of RDF triples. The elements of
an RDF triple 〈s, p, o〉 ∈ T are respectively called its subject, its predicate and
its object. The set of RDF graphs is G = 2T . Finally, U × G is the set of named
graphs. The first element of a named graph is the name of the RDF graph given
as the second element.
7 We leave out ‘blank nodes’ in our definitions, for the sake of clarity.
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An RDF dataset is a set of named graphs. The Web is thus (at a given
time) an infinite set of named graphs d = {〈u1, g1〉, 〈u2, g2〉, . . .}. When an agent
performs a GET request on resource u1, what it gets as a response is g1. In the
definitions to come next, we will use the shorthand notation σu1(d) to denote
{〈u1, g1〉}. Moreover, we will denote O the set of operations to perform on Web
resources. O is defined as {GET, PUT, POST, DELETE} × U × G.

As discussed above, perception in a hypermedia environment consists in
retrieving a subset of the Web. We define the set of environmental states as
D, the set of all RDF datasets and the set of percepts as the set D′ ⊂ D of all
finite datasets. On this basis, we can now define a standard sensory function on
RDF datasets.

In a hypermedia environment, we only consider perception as resulting from
link traversal. On the Web, link traversal is initiated by the agent, not by the
server, via operations of the form 〈GET, u, ∅〉. We denote OGET the set of such
operations and define the function transfer : OGET × D → D′ such that

transfer(〈GET, u, ∅〉, d) = σu(d)

The name ‘transfer’ gets its name from the REST architectural principles, which
are oriented towards a ‘state transfer’ from servers to clients.

Similarly to the transfer() function, we can define a standard effectory func-
tion based on operations. We define update : (O \ OGET) × D → D such that

update(〈PUT, u, g〉, d) = d \ σu(d) ∪ {〈u, g〉}
update(〈POST, u, g〉, d) = d ∪ {〈u, g〉}

update(〈DELETE, u, g〉, d) = d \ σu(d)

This definition, along with that of transfer(), is aligned with the HTTP Graph
Store protocol, a W3C standard to manipulate RDF datasets over a REST
interface [17]. Operations with GET are said to be safe because they never lead
to any update in the environment.

While we’ve considered hyperlinks in the partitioning of D, there is another
important aspect of hypermedia that must be properly modeled as well: Web
forms. The environment should include forms, i.e. request templates to indi-
cate what operations are permitted in the environment. We can define another
function to map the state perceived by the agent to potential actions that the
environment offers or, in other words, affords. We define it as afford : D → 2O.

We now have everything at hand to redefine environments, agents and multi-
agent systems in a hypermedia context.

Definition 5 (hypermedia environment). A hypermedia environment Eh is
a tuple

Eh = 〈D, d0, O, transfer, update, afford〉
Note that the definition above defines a singleton, in the sense that there

exists only a single set D, a single set O, a single function transfer, etc.. Only
the definition of d0 could arguably be defined on an application basis.
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Definition 6 (hypermedia agent). A hypermedia agent Ah is a tuple

Ah = 〈I, i0, internalize, act〉

where

– I, i0 are as per Definition 2
– internalize : I × D′ → I is a memory function (on RDF datasets)
– act : I → O is a decision-making function (with respect to operations)

Definition 7. A hypermedia multi-agent system definition Sh is a tuple

Sh = 〈Eh,Ah,1,Ah,2, . . .〉

Figure 2b gives a comparison with generic MAS in terms of function chaining.
The main difference is in the position of the sensory functions transfer() vs.
see(). By defining a shared function for perception, agents can all be situated in
the same open environment. The downside of the approach is that perception
becomes an action on its own: the decision-making function act() outputs both
safe operations (for state transfer) and unsafe update operations. Transfer results
from a (GET) request/response exchange between an agent and a server.

Definition 8 (hypermedia system run). Let T be a timeline. A sequence
〈dt〉t∈T of datasets is a hypermedia system run for Sh = 〈Eh,Ah,1,Ah,2, . . .〉 if
for all t ∈ T

dt =

{
d0 if t = tmin

update(act(it), dt−) if act(it) ∈ afford(dt−), for some it

and if for all t ∈ T and all Ah,i = 〈I, i0, internalize, act〉

it =

⎧⎪⎨
⎪⎩

i0 if t = tmin

internalize(it− , transfer(act(it−), dt)) if act(it−) ∈ OGET

internalize(it− , ∅) otherwise

In this modeling, we assume that update() and transfer() are instantaneous.
Yet, one cannot build all MAS variants as hypermedia MASs. As discussed in
Sect. 2, the notion of servient is however sufficient to have an equivalence between
classically defined MASs and hypermedia MASs.

3.3 Servients

In hypermedia systems, the situatedness of an agent is primarily conditioned by
the hypermedia controls (links and forms) it finds in the environment. Hyper-
media controls do constrain the perception and action range of the agent. Yet,
in the various prototypes we have reviewed in Sect. 2, the perception of agents
also depends on another factor: the resources it owns as a Web server. As a
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servient, an agent has full access to the resources it owns and, in particular,
it gets immediately notified whenever these resources are updated (by another
agent).

We now incorporate the notion of resource ownership to Definition 6. In the
following definition, we use the shorthand notations δt as the difference dt \ dt−
and σR(d) as the union

⋃
u∈R σu(d).

Definition 9 (hypermedia servient). A hypermedia servient Ahs is a tuple

Ahs = 〈I, i0, R, internalize, act〉
where

– I, i0, transfer, internalize and act are as per Definition 6
– R ⊂ U is a set of resources owned by the agent

We also modify Definition 8 accordingly.

Definition 10 (hypermedia system run bis). A sequence 〈dt〉t∈T of datasets
is a hypermedia system run for Shs = 〈Eh,Ah,1,Ah,2, . . . ,Ahs,1,Ahs,2, . . .〉 if, in
addition to constraints of Definition 8, for all Ahs,i = 〈I, i0, R, internalize, act〉

it =

⎧⎪⎨
⎪⎩

i0 if t = tmin

internalize(it− , transfer(act(it−), dt) ∪ σR(δt)) if act(it−) ∈ OGET

internalize(it− , σR(δt)) otherwise

The modification allows us to assert an equivalence between classical MASs
and hypermedia MASs, as formally expressed below.

Theorem 1. Let τ : E → D be a bidirectional transformation that maps every
arbitrary environmental state (Definition 1) to some RDF dataset (Definition 5).

For every multi-agent system S, there is an equivalent hypermedia system
Shs. That is, for every run 〈et〉t∈T of S, there is an equivalent run 〈τ(et)〉t∈T of
Shs.

This equivalence only holds if servients are allowed in the hypermedia MAS.

3.4 Artifacts

Our formalism for hypermedia MASs is based on a generic abstraction for the
Web: the RDF data model. In practice, agents are likely not to recognize all
URIs they find in the environment. Rather, they would be programmed to rec-
ognize specific Web ontologies, which specify the structure of resources through
a vocabulary and the potential actions available on these resources. To that end,
the two EMAS prototypes dealing with hypermedia environments [5,18] make
use of the CArtAgO meta-model [19]: resources e.g. with a certain content type,
such as the Hypermedia Application Language (HAL), or a certain data struc-
ture, such as RDF triples with a specific vocabulary (EVE), are turned into
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software objects called ‘artifacts’, that agents use as proxies to manipulate the
origin Web resources.

In the context of a hypermedia environment, it is however not clear whether
artifacts should be part of the environment itself (i.e. modeled as resources) or
added to the formalism as their own kind of entity. In the former case, the notion
would be redundant with that of a Web resource, introducing again a coupling
between the environment and agent spaces.

Rather, we make the assumption here that artifacts are ‘translators’ between
datasets and operations, on the one hand, and more idiomatic representations of
states and actions, on the other hand. Artifacts would allow any existing agent
architecture to be used against a hypermedia environment. Formally, an artifact
can be modeled as a function that maps D to a higher-level state space (e.g. a
set of predefined beliefs) and a function that maps arbitrary actions (e.g. WoT
forms or social actions) to O. To be consistent with how CArtAgO is used in
practice, we also make artifacts stateful entities, as follows.

Definition 11 (artifact). An artifact (or proxy) definition is a tuple

P = 〈E′, A′, I ′, transfer′, update′, internalize′〉
where

– E′ is a set of proxy states
– A′ is a set of proxy actions
– I ′ is a set of proxy internal states
– transfer′ : D′ → E′ is a proxy transfer function
– update′ : A′ × I ′ → O is a proxy update function
– internalize′ : E′ × I ′ → I ′ is a proxy memory function

An illustration of the above definition is given in Fig. 2c. Our modeling is
consistent with the fact that artifacts are not autonomous agents. As proxies,
they do not include any act() function. Moreover, artifact definitions are not tied
to specific agents, they can apply to all agents sharing the same abstraction of
states and actions.

We do not model actual communication channels in our formalism. In prac-
tice, the HTTP communication channel is often between an artifact and the
environment rather than between the agent and its environment. The simplest
artifact for hypermedia agents is a Web client that turns local actions to HTTP
requests.

4 Ontologies for a Hypermedia Environment

In the following, we briefly introduce ontologies relevant for engineering hyperme-
dia MASs (see Table 1 for an overview). This review shows how to re-implement
the four EMAS prototypes in a framework including Semantic Web technologies,
as per our formalism. To illustrate how artifacts can help integrate existing agent
architectures with a hypermedia MAS, we introduce artifact definitions where
E′ and A′ are sets of AgentSpeak beliefs and actions [2].
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Table 1. Ontologies relevant for hypermedia MASs

Name Namespace URL Prefix

Brick schema http://brickschema.org/ brick:

Hypermedia Controls https://www.w3.org/2019/wot/hypermedia# hctl:

Thing Description (TD) https://www.w3.org/2019/wot/td# td:

Schema.org http://schema.org/ schema:

Linked Data Platform (LDP) https://www.w3.org/ns/ldp# ldp:

ActivityStream https://www.w3.org/ns/activitystreams# as:

4.1 Reasoning with Web Ontologies

All Web ontologies (should) follow the RDF Schema and OWL specifications.
These specifications provide means to declare a certain vocabulary to use in
other RDF graphs, as well as axioms associated with that vocabulary. An OWL
artifact could process all ontological definitions for the vocabulary found in an
RDF graph, materialize implicit triples stated through axioms and turn the
original RDF graph into a set of Prolog/AgentSpeak predicates.

For example, we assume the existence of resource <room> in an environment
d such that

transfer(〈GET, <room>, ∅〉, d) = {〈<room>, g1〉}

where

g1 = {〈<room>, rdf:type, brick:Room〉
〈<room>, brick:partOf, <floor>〉
〈<floor>, brick:partOf, <building>〉}

If an agent chooses to look up schema axioms defined in the Brick schema, at
location brick:8, it gets graph g2 defined as

g2 = {〈brick:Room, rdf:type, owl:Class〉,
〈brick:Zone, rdf:type, owl:Class〉,
〈brick:Room, rdfs:subClassOf, brick:Zone〉,
〈brick:partOf, rdf:type, owl:ObjectProperty〉,
〈brick:partOf, rdf:type, owl:TransitiveProperty〉}

After internalizing g1 and g2, an OWL artifact should take into account OWL
class and property definitions, as well as the sub-class and transitivity axioms.
It could e.g. return the following predicates for <room> (assuming the artifact’s
internal state i′ has already internalized g2):

8 We represent URIs either as relative URIs or as ‘compact URIs’ (prefix followed by
local name).

http://brickschema.org/
https://www.w3.org/2019/wot/hypermedia#
https://www.w3.org/2019/wot/td#
http://schema.org/
https://www.w3.org/ns/ldp#
https://www.w3.org/ns/activitystreams#
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transfer′({〈<room>}, g1〉, i′) = {room(’room’),
partOf(’floor’,’building),

zone(’room’),

partOf(’room’,’floor’),

partOf(’room’,’building’)}

Brick schema is an ontology for the domain of building automation. A Brick
representation of a building is e.g. relevant for autonomous agents controlling
vacuum cleaning robots navigating in the building, as in the case of the Neato
API [6]. It is also relevant for building automation systems to locate sensors and
actuators in the building. The Building on Linked Data (BOLD) benchmark9

includes various tasks to perform on a simulated building. The BOLD server,
exposing the simulation as RDF, closely follows the formalism we introduce in
this paper.

4.2 Resource Collections

A recurring pattern in hypermedia systems is to use resource collections. This
pattern is e.g. used by O’Neill et al. in their Multi-Agent Microservices (MAMS)
scenario [18]. Linked Data Platforms (LDPs) are a recent W3C standard to
implement the resource collection pattern. In LDPs, resource collections are
called ‘containers’, as in the following example:

g3 = {〈<coll>, rdf:type, ldp:BasicContainer〉,
〈<coll>, ldp:contains, <member1>〉,
〈<coll>, ldp:contains, <member2>〉}

LDP containers come with implicit affordances, e.g. to add a new item to the
collection:

afford(〈<coll>, g3〉) = {〈POST, <coll>, g〉 | g ∈ G}

An LDP artifact could implement the specification and provide an action to
AgentSpeak agents of the form add(’coll’, Item, ItemId) for all instances
of ldp:BasicContainer it would have internalized.

LDP is not the only standard to model resource collections. ActivityStream
(also part of a Social Web standard) can also be used, for the same result. The
following graph is semantically equivalent to g3:

g′
3 = {〈<coll>, rdf:type, as:Collection〉,

〈<coll>, as:items, <member1>〉,
〈<coll>, as:items, <member2>〉}

9 https://github.com/bold-benchmark/.

https://github.com/bold-benchmark/
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4.3 Social Activities

LDPs can be used for specific types of container, such as message inboxes. The
Linked Data Notification (LDN) specification standardizes how to use inbox con-
tainers. LDN and ActivityStream are both part of a series of W3C standards
meant for the Social Web10, which also includes WebSub. These standards allow
for direct agent-to-agent communication without requiring a dedicated commu-
nication channel. Instead, messages are placed in and retrieved from the envi-
ronment.

Another EMAS prototype based on JADE included a basic virtual assis-
tant to manage one’s agenda. We give below an example from the Activity-
Stream standard to represent agendas. The agenda itself is the named graph
〈<agenda>, g5〉 and individual events belonging to the agenda are each a resource,
for instance 〈<event>, g′

5〉, where g5 and g′
5 are defined as

g5 = {〈<agenda>, as:items, <event>〉, . . .}
and

g′
5 = {〈<event>, rdf:type, as:Event〉,

〈<event>, as:name, "Some agenda event"〉,
〈<event>, as:startTime, "2021-03-05T00:09:00Z"〉,
〈<event>, as:endTime, "2021-03-05T00:10:00Z"〉}

In this example, the agenda, modeled as a collection of events, offers the same
affordances as described in Sect. 4.2. Each event offers further affordances. For
instance, an autonomous agent can reschedule an event by removing the original
one from the collection with operation 〈DELETE, <event>, ∅〉, to then add the
rescheduled event to the agenda with a POST operation.

4.4 Affordances

Our formalism enforces agents to follow ‘affordances’ provided by the environ-
ment via the function afford(). We now show how Web forms can be embedded
in the environment through two ontologies: the Thing Description (TD) ontology
(which includes a module for hypermedia controls) and schema.org.

The TD ontology makes affordances explicit by specifying HTTP request
templates as RDF triples. For instance, graph g4 defined as the graph

g4 = {〈<lamp>, td:hasPropertyAffordance, <status affordance>〉,
〈<status affordance>, td:forProperty, <status>〉,
〈<status affordance>, td:hasForm, <status form>〉
〈<status form>, hctl:hasTarget, <target>〉
〈<status form>, hctl:forOperationType, td:readProperty〉}

10 https://www.w3.org/TR/social-web-protocols/.

https://www.w3.org/TR/social-web-protocols/
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includes one affordance to retrieve the on/off status of a lamp via a GET request:

afford({〈<lamp>, g4〉}) = {〈GET, <target>, ∅〉}

The TD ontology defines a small set of operations that are possible on ‘things’
(physical objects on WoT). A TD artifact could e.g. provide a high-level action
for the td:readProperty operation type. This approach has been implemented
with JaCaMo [1] for a summer school on Artificial Intelligence for industrial
applications11. In the JaCaMo implementation, a ThingArtifact object would
expose the following action for g4: readProperty(’lamp’, ’status’, Value).

As with resource collections, the TD ontology is not the only way to make
affordances explicit. The following graph embeds the same affordance as g4:

g′
4 = {〈<lamp>, schema:potentialAction, <status action>〉,

〈<status action>, schema:actionStatus, schema:PotentialActionStatus〉,
〈<status action>, schema:target, <status form>〉
〈<status form>, schema:httpMethod, "GET"〉
〈<status form>, schema:urlTemplate, "target"〉}

This graph uses the schema.org vocabulary for actions. The approach is being
used in another research project on agents in manufacturing [20]. Moreover,
schema.org actions are used by the Alexa virtual assistant, as a target represen-
tation of natural language commands [14].

4.5 Speech Acts

The MAMS scenario described by O’Neill et al. is based on FIPA’s Agent Com-
munication Language (ACL). We show here how to emulate ACL speech acts
with ActivityStream.

While WebSub does not recommend a particular vocabulary for the
exchanged messages, LDNs and ActivityPub (a third Social Web protocol)
encourage using ActivityStream activities. Activities have properties such as
actor, target, type, and object. By comparison, ACL messages include the anal-
ogous properties ‘sender’, ‘receiver’, ‘performative’ and ‘content fields’. Activities
could therefore be a substitute for ACL messages on the Social Web. Table 1 gives
a mapping from ActivityStream types to ACL communicative acts. Not all ACL
speech acts have a correspondance in RDF but the list is enough to implement
e.g. an auction, as in the MAMS scenario.

We give an illustration with the first two steps of an auction through LDNs:
the auctioneer announces its auction to a bidder with 〈POST, <bidder/inbox>,
g6〉, where

11 https://gitlab.emse.fr/ai4industry/hackathon/.

https://gitlab.emse.fr/ai4industry/hackathon/


58 V. Charpenay et al.

Table 2. Mapping from ActivityStream to FIPA ACL

Activity type (ActivityStream) Comunicative act (FIPA ACL)

as:Announce Inform, Call for Proposal

as:Offer Propose

as:Question Request

as:Accept Accept Proposal

as:Reject Reject Proposal, Refuse

as:Follow Subscribe

as:Undo Cancel

g6 = {〈<announce>, rdf:type, as:Announce〉,
〈<announce>, as:name, "Some announcement"〉,
〈<announce>, as:actor, <auctioneer>〉,
〈<announce>, as:target, <bidder>〉,
〈<announce>, as:object, <auction>〉}

to which the bidder submits the offer with 〈POST, <auctioneer/inbox>, g′
6〉,

where

g′
6 = {〈<bid>, rdf:type, as:Offer〉,

〈<bid>, as:inReplyTo, <announce>〉,
〈<bid>, as:name, "Some offer"〉,
〈<bid>, as:actor, <bidder>〉,
〈<bid>, as:target, <auctioneer>〉,
〈<bid>, as:object, <offer>〉}

The auctioneer can then accept or reject the offer. Auctioneer and bidder discover
each other’s inbox through hypermedia, as specified in LDN. Multi-agent proto-
cols can be further specified by using the W3C provenance ontology, PROV-O12,
as suggested by the LDN specification. PROV-O provides a vocabulary to relate
activities to entities used or produced by the activity and to agents involved in
the activity.

5 Conclusion

In this paper, we introduced a formalism for hypermedia MASs based on the
abstraction that the Web is equivalent to an RDF dataset. We were able to
show how four different prototypes recently presented at the EMAS series of
workshops could fit our formalism, although none of them uses RDF or other
Semantic Web technologies. In addition, we showed how other implementations
12 http://www.w3.org/ns/prov#.

http://www.w3.org/ns/prov#
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natively follow the formalism. With this paper, we have aimed at making MAS
and Semantic Web technologies converge again, as per the original 2000 vision
of autonomous agents on the Web.

Because it is based on Semantic Web technologies, our formalism should
allow for a scalable hypermedia environment, hosting many (physical or simu-
lated) resources and responding to many agents in parallel. Experimental proof
of the scalability of such an environment is yet to be provided, though. Imple-
mentation effort could be targeted towards designing reusable artifacts for W3C
standards, such as LDPs, ActivityStream and the TD ontology. More impor-
tantly, however, what remains to be proven is the ability of agents of different
origins of interacting in the same (unknown) environment. The BOLD bench-
mark is an attempt to tend towards that goal. Other MAS competitions around
hypermedia environments could be developed as well.

A Changelog

The changes that have been made compared to the EMAS submission are listed
below:

– removed ambiguous statement that “the Web is standardizing interactions
between agents”

– clarified the problem addressed in the paper (alignment of MAS architectures
with Semantic Web abstractions), its contribution (formalism with equiva-
lence with classical MASs) and how the contributed formalism is evaluated
(criterion: do existing EMAS prototypes fit in the formalism?)

– added figures to illustrate the analysis of hypermedia MAS w.r.t. REST
(Fig. 1)

– added figure for agent/artifact integration (Fig. 2c)
– moved section on agent/artifact integration to Sect. 3

Further notes:

– we make no claim whether FIPA ACL is outdated. In our evaluation, we
compare to it only because O’Neill et al. [18] refer to it in their 2020 paper.

– the term ‘agency’ is used numerous times in Wooldridge’s introductory book
on MASs, we would not have thought it was ambiguous in our paper. We
use ‘agency’ to refer to the ability of (autonomous) agents to act on their
environment (definition added at the beginning of Sect. 3).
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Abstract. Early works and retrospectives by the researchers who
founded the network protocols underlying current distributed systems
indicate they were aware of the importance of capturing application
meaning but didn’t know how to handle it programmatically. Therefore,
those researchers introduced simplifications in the protocols that violated
their own principle of the end-to-end argument in systems design.

The thesis of this vision paper is the following. First, the above-
mentioned simplifications, especially the reliance on reliable, ordered
communication protocols such as TCP have run their course. Modern
applications demand flexibility that can only be achieved through mod-
eling application meaning, and many applications (such as those based
on the Internet of Things) cannot pay TCP’s overhead. Second, the
multiagent systems community has developed alternative meaning-based
approaches that can provide a new foundation for distributed computing
at large.

1 Introduction

As originally conceived, a multiagent system (MAS) is decentralized [14]: Agents
in a MAS are autonomous computational entities that communicate and share
information with each other. In many applications of MAS, an agent represents
a real-world party, such as a human or organization, and the autonomy of the
agent reflects the autonomy of the party it represents. Distinctly from other
areas of computing (e.g., Web services, software engineering, and programming
languages), MAS research emphasizes modeling the meaning of interactions [19].
Broadly, meaning refers to the information in an engagement between principals
that is relevant to their decision making. The focus on meaning has led to a rich
body of work on declarative abstractions such as commitments between agents
[7,8,12,24,25]. The early work on commitments demonstrated that modeling
meaning is the key to enabling flexible interactions between agents, and thus the
key to accommodating their autonomy.

Pioneers in networked computing were aware of the importance of model-
ing distributed applications in terms of meaning [4]; however, they lacked the
abstractions to express meaning. Instead, to support programming, approaches
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in distributed computing focused on ordering and reliability guarantees in the
infrastructure. Being application-agnostic, such guarantees are meaningless from
the application perspective. But worse, the guarantees end up subverting auton-
omy by restricting the choices available to an agent in interacting with others.
And in doing so, modern approaches end up violating the end-to-end argument
(E2EA) [18], a fundamental principle of distributed systems. Indeed, Clark [11]
explains as much in a retrospective on Internet protocols and distributed sys-
tems.

We claim that the MAS community’s historical focus on autonomy and mean-
ing has the potential to address a central quest in distributed systems. In a
nutshell, the quest is for programming abstractions that enable programmers
to easily build high-performance distributed applications based on meaning in
a manner compatible with the E2EA. By applying ideas from MAS, we have
the opportunity to fundamentally reshape how practitioners build distributed
application.

2 The Dilemma Posed by Current Approaches

We discuss how each of the two major existing approaches (architectures) for
distributed applications fails to satisfy crucial architectural desiderata, thus pre-
senting developers with a dilemma (a situation with two equally bad choices).

2.1 Desiderata

Consider the two MAS architectures in Figs. 1 and 2. In both, the agents com-
municate via asynchronous messaging via a communication infrastructure that
offers an API for programming agents. Notice that there is no shared state
between the agents. In the architecture of Fig. 1, the communication infrastruc-
ture guarantees only that it delivers only sent messages. We refer to such an
infrastructure (and architecture) as bare-bones because no real infrastructure
guarantees less. In the architecture of Fig. 2, the infrastructure provides the
additional guarantee that all sent messages will be delivered and in FIFO order
between any pair of agents. We refer to such an infrastructure (and architec-
ture) as reliable. In practical systems, bare-bones and reliable infrastructures
are exemplified by UDP over IP and TCP over IP, respectively.

Accommodating Autonomy. The end-to-end argument (E2EA) [18] is a
guiding principle in the design of the Internet. The principle imagines a layered
system architecture and draws our attention to the fact that if implementing
some functionality fully and correctly requires knowledge only available at some
system layer, then that functionality cannot be implemented in a lower sys-
tem layer. Partial implementation of the functionality in a lower layer, however
tempting, should generally be avoided as the layer would impose a model upon
the higher layer (by constraining the choices available at the higher layer) and
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Unordered, Unreliable Communication Infrastructure

Agent Agent

API API

Fig. 1. MAS where agents communicate via a bare-bones infrastructure that guarantees
neither message ordering nor delivery. The API represents programming abstractions
offered by the infrastructure.

Ordered, Guaranteed Delivery Communication Infrastructure

Agent Agent

API API

Fig. 2. MAS where agents communicate via a reliable infrastructure that guarantees
message delivery and in FIFO order.

likely result in a performance hit as well. The E2EA famously argues against
reliable infrastructures (as defined above), among other things.

For example, suppose that we wanted to make a medical prescription applica-
tion reliable in the sense that a prescription written by the doctor in response to
a patient complaint should be fulfilled by the pharmacy in a timely manner. To
distinguish application reliability from reliability at the infrastructure level, let’s
refer to the former as a-reliability. We can imagine a few measures to increase
a-reliability. One, we could specify a contract that stipulates that the phar-
macy fulfill valid prescriptions in a timely manner. Further, we could support
reminders and acknowledgments between the parties. A reliable infrastructure
would be oblivious of such measures—they would necessarily have to be sup-
ported at the application level. In particular, no infrastructure-level retransmis-
sion or acknowledgment of messages can provide a-reliability, because it depends
on the cooperation of multiple higher-level endpoints (the agents).

More insidiously perhaps, FIFO delivery interferes with the application by
delaying the delivery of messages pending the arrival of an earlier message. For
example, if a doctor sends two prescriptions to the pharmacy, one after the other,
then until the first prescription is delivered to the pharmacy, the infrastructure
won’t deliver the second, thus interfering with the pharmacy’s fulfillment of its
commitments and its autonomy (the idea that infrastructures could interfere
with agent autonomy was first articulated in [5]). Consider another example
where the doctor can cancel a prescription after issuing it to the pharmacy.
FIFO delivery would mean that the pharmacy can’t process the cancellation
before receiving the prescription, even though handling cancellation first might
avoid wasting effort and so would be desirable from the pharmacy’s point of
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view. In essence, a-reliability does not require reliable infrastructure, but the
reliable infrastructure gets in the way of a-reliability.

From the application developer’s perspective, the E2EA promotes the idea
of representing application meaning (e.g., the meaning of a prescription and its
cancellation) and implementing agents based on such meaning rather than some
expected message ordering.

Programming Convenience. Historically though, reliable infrastructures
have been favored over bare-bones ones for building applications. The reason
is that in the mind of an application developer, the application is represented as
a unitary (as opposed to decentralized) state machine. For example, the devel-
oper implicitly models a state machine where the doctor’s cancellation of a pre-
scription happens after the prescription is issued (Fig. 3). A state machine is
a convenient abstraction from the point of view of programming. A reliable
infrastructure helps implement such a state machine in a distributed manner by
making it impossible for the pharmacy to observe and process the cancellation
before observing the prescription.

D P:Prescription D P:Cancel

Fig. 3. Fragment of a state machine representing a medical prescription scenario.

Imagine programming such an application over bare-bones infrastructure.
Now, the application developer must implement the pharmacy to deal with can-
cellation arriving before the prescription. In general, prevalent techniques offer no
alternative but to implement business logic for each possible message sequence,
a cumbersome and error prone task at best, especially when several messages
may be in transit at once.

In addition to preventing arbitrary message orders (or nondeterminism), a
reliable infrastructure also saves the application developer from writing logic
to recover from lost messages. Over bare-bones infrastructure, the developer
would have to implement acknowledgments, retransmissions, and the handling
of duplicates. It is no wonder then that application developers prefer reliable
infrastructures.

Loose Coupling. Loosely-coupled architectures are better because a compo-
nent can be replaced with fewer modifications to other components [17,23]. From
the point of view of loose coupling, the bare-bones architecture is better. This
is because the applications that work over a bare-bones infrastructure will also
work over the reliable infrastructure. However, the reverse is not true. If agents
relied on the reliability offered by the infrastructure, then switching to bare-bones
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infrastructure would result in errors. As we saw above, if the pharmacy were
implemented to expect Cancel after Prescription, then the pharmacy wouldn’t
work over a bare-bones infrastructure.

2.2 The Dilemma

From the foregoing discussion, it would seem that agent programmers are faced
with a dilemma.

1. Either build flexible applications in a manner compatible with the E2EA—
over bare bones infrastructure—but without the benefit of high-level,
meaning-based programming abstractions. In particular, programmers would
have to implement complex code to track the state of the interaction.

2. Or benefit from some programming convenience, but at the cost of violating
the E2EA and subverting autonomy.

Neither alternative is ideal since we really want both high-level communica-
tion abstractions and compatibility with the E2EA. Work in distributed systems,
however, has historically favored Alternative 2, as evidenced by work on middle-
ware. Message queues (e.g., MQTT) support reliable, FIFO messaging. Causal
delivery generalizes FIFO delivery to more than two endpoints. RPC (remote
procedure call), a technique whose limitations were laid bare decades ago, has
made a comeback with microservices.

3 Meaning-Based MAS Architecture

In contrast to traditional approaches for creating distributed applications, a
strand of MAS research has emphasized modeling a MAS in terms of the meaning
of interactions between agents. The motivation behind modeling meaning is to
support flexible decision-making by enabling flexible interactions between agents.

In current work, the meaning is usually modeled in terms of how mes-
sages affect the states of the normative expectations (norms, e.g., commitments)
between agents [7,8,12,24,25]. Recent work has demonstrated how the decentral-
ized computation of norms may be operationalized over information protocols
[16,20,21]. In a nutshell, agents compute the atoms of meaning, or base events,
by enacting information protocols. The base events an agent has observed are
materialized in its local state. Each agent computes higher-level meanings as
views on the local state.

Figure 4 describes a promising meaning-based MAS architecture schemati-
cally. Several things are notable about the architecture. One, the application is
specified by norms and information protocols; collectively, the interaction specifi-
cation. The specification would be jointly determined by application stakeholders
following some design process, e.g., [6]. Two, the interaction specification is the
extent of the coupling between the agents. There is no hidden coupling between
the agents. In particular, nothing is assumed of the communication infrastruc-
ture except that it respects physical causality; that is, the infrastructure delivers
only sent messages.
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Decision making

Meaning computer
(Generic)

Decision making

Meaning computer
(Generic)

Interaction
Specification

Agent Agent

API API

Asynchronous communication infrastructure

Comms Comms

Fig. 4. Meanings-based MAS. An agent’s local meaning computer computes meanings
based upon a specification of interactions, here, norms and information protocols. The
meaning computer offers a high-level API which a developer can use to plug in decision
making policies. The meaning computer is generic and interfaces with an asynchronous
communication infrastructure via a low-level communication interface (Comms).

Each agent consists of two components: Meaning Computer (MC) and Deci-
sion making. The MC is a generic component. It interprets the information
protocol and ensures that the agent is compliant with it. It also records the
incoming and outgoing messages, collectively the base events that the agent has
observed. Further, the MC interprets norm specifications over the base events
to infer the states of the norms. An agent developer would plug in the agent’s
decision making policies via an API to the MC.

Returning to the example of prescription cancellation, the architecture in
Fig. 4 enables the possibility of the pharmacy handling the prescription cancel-
lation before receiving the prescription if the cancellation is received first. As
modeled in the information protocol, the cancellation would refer to the pre-
scription being canceled via a unique identifier. If the cancellation is received
before the prescription, then the pharmacy’s MC disables the fulfillment of the
prescription (based on the information protocol) so that when the prescription
eventually arrives, there is nothing to do.

The information protocol approach represents a key breakthrough in proto-
col languages in that it supports meaning and flexible interaction far better than
choreographic (message ordering-based) approaches [5]. Remarkably, although a
choreography is an application-level abstraction, its reliance on message ordering
for correctness recreates the problems of reliable infrastructures at the applica-
tion level.

4 Directions

4.1 Specification

Natural language contracts (agreements) capture the high-level meaning of
engagements between parties by setting out the relevant norms, e.g., commit-
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ments, authorizations, prohibitions, and powers. The virtue of a contract is that
it supports both autonomy and correctness. That is, a party may decide to act
as it pleases; however, if it violates a norm, that would amount to an observable
violation.

Smart contracts (the blockchain variety) have caught the world’s attention
for not having that virtue. Their motivation is to cut out the social aspects of
decision making by touting inviolability [22]. Inviolability though is antithetical
to autonomy, which is probably one reason why smart contracts have not caught
on as a general purpose technology. Herein lies a great opportunity for MAS
research—declarative representations of violable contracts—to make a real-world
impact.

Our contributions include Cupid, a declarative language for specifying and
computing norms over a database of business events [7,8]. Clouseau [21] shows
how to leverage Cupid contracts in a decentralized setting with several agents,
each with its own local database. We also developed a proof-of-concept imple-
mentation of Cupid for the R3 Corda distributed ledger [22]. More is needed
for practical applications. In particular, a contract bundles norms and has its
own lifecycle (it enters into force upon parties signing up to it and it may be
amended, breached, and terminated). Further, contracts involve operations such
as delegation and assignment and notions such as jurisdictions that need to be
properly formalized.

We need methodologies for specifying and verifying contracts. One important
question is how may stakeholders starting from their requirements arrive at a
contract. Protos [6], a methodology for refining requirements into commitments,
offers some ideas. A broader question is that of governance, which requires tak-
ing into account the actual outcomes from enacting a contract in the process
of revising a contract. Further, contracts need to be to related to multiagent
organizations (institutions). An organization (itself an agent) would normally
serve as the arbiter of disputes and provide other services such as identity, dis-
covery, and reputation. An organization may further help enforce contracts by
sanctioning agents, e.g., by expelling an agent for repeated violations.

A related question is what constitutes a fair contract? Consider a contract
between a lender and borrower, whereas a notification sent by the lender counts
when the lender sends it, whereas a notification sent by the borrower counts
when the lender receives it. All other things being equal (e.g., they are using
the same communication infrastructure), such a contract seems unfair to the
borrower because all decisions are made from the lender’s perspective. Other
questions relate to the enactability of a contract. For example, a contract may
only be partially enactable or it may be enactable only in odd ways (e.g., a
commitment which comes into force only after it is already satisfied).

4.2 Programming Models

A challenge for any interaction-based approach of specifying applications is how
to facilitate the implementation of agents based on contracts and protocols. In
contrast to traditional approaches [1–3], a suitable programming model would
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be based on information, thus abstracting away the challenges of asynchrony. It
would also ensure that the interactions progress in decentralized yet consistent
manner. We have explored some initial ideas in Stellar [13] and PoT [10], which
demonstrate that an information-based programming model saves significant
programming effort and avoids errors. A yet uncharted area is how to support
programming based on contracts.

Early work on commitment machines identified semantic exception han-
dling as a benefit [25]. Exception handling naturally relates to the theme of
fault tolerance. The remarkable thing is that application-level fault tolerance is
not optional; any application must ensure that it achieves its own objectives.
Although properly addressing causes may reduce the probability of failure and
improve performance, what ultimately matters to an application is success. How-
ever, current approaches (following a long tradition) focus on handling faults as
close to their causes as possible, and thus encourage delegating fault tolerance
to the infrastructure. For example, in a paradigm as new as microservices, fault
tolerance is left to the underlying service mesh [15]. The focus on infrastructure
has meant that today we lack the tools to program fault tolerance effectively at
the application level. PoT and Bungie [9] present some initial ideas about how
to implement fault tolerance at the application level—in the agents.

Most future applications will be programmed to run in the cloud, possibly as
a composition of microservices. It would be timely for MAS researchers to con-
sider how their techniques could benefit from cloud-based mechanisms (e.g., for
scalability) and what they might in turn have to offer to application developers.
Programming models such as Function-as-a-Service (FaaS) intend to make pro-
gramming cloud applications easier. However, such models currently offer neither
any programming abstractions for managing state nor composition mechanisms
for building realistic applications. Meaning-based programming models can help
address these gaps and potentially enable highly concurrent agent implementa-
tions that can take advantage of scalability mechanisms in the cloud.

5 Conclusion

Current approaches for building distributed applications pose a dilemma: Either
build applications in violation of the E2EA or build them without any program-
ming support. A fundamentally multiagent approach based on meaning has the
potential to provide the way out: satisfy the E2EA by enabling the deploy-
ment of applications on bare-bones infrastructure, and facilitate programming
via high-level programming abstractions.

The multiagent systems community has long expressed angst about the lack
of direct impact on systems development practice. We suggest here that perhaps
it is because we have sought to make small incremental changes, which since
they don’t align well with traditional thinking are largely disregarded by practi-
tioners. We suggest that it would be worth (1) understanding the foundational
problems in distributed systems, that is, those that lie beyond the capacity of
current approaches and (2) showing how multiagent systems can address those
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problems in a natural manner. The history of distributed computing indicates
that the founders were quite aware of the simplifications, and revisiting those
design decisions could be a pathway toward introducing multiagent systems into
practice.

Acknowledgments. Grants from the NSF (IIS-1908374) and EPSRC (EP/N027965/
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Abstract. Logic has been proved useful to model various aspects of the reason-
ing process of agents and Multi-Agent Systems (MAS). In this paper, we report
about the last advances over a line of work aimed to explore social aspects of such
systems. The objective is to formally model (aspects of) the group dynamics of
cooperative agents. We have proposed and here extend a particular logical frame-
work (the Logic of “Inferable” L-DINF), where a group of cooperative agents
can jointly perform actions. I.e., at least one agent of the group can perform the
action, either with the approval of the group or on behalf of the group. We have
been able to take into consideration actions’ cost and the preferences that each
agent can have for what concerns performing each action. Our focus here is on:
(i) explainability, i.e., the syntax of our logic is especially devised to make it pos-
sible to transpose a proof into a natural language explanation, in the perspective
of trustworthy Artificial Intelligence; (ii) the capability to construct and execute
joint plans within a group of agents; (iii) the formalization of aspects of the The-
ory of Mind, which is an important social-cognitive skill involving the ability
to attribute mental states, including emotions, desires, beliefs, and knowledge to
oneself and to others, and to reason about the practical consequences of such
mental states; such capability is very relevant when agents have to interact with
humans, and in particular in robotic applications; (iv) connection between theory
and practice, so as to make our logic actually usable by a system’s designers.

Keywords: Epistemic logic · Agents and Multi-Agent Systems · Theory of
Mind

1 Introduction

The metaphor adopted in Artificial Intelligence (AI) to model societies whose members
are to some extent cooperative towards each other is that of agents and Multi-Agent
Systems (MAS). To achieve better results via cooperation, agents belonging to a MAS
must be able to reason about what a group of agents can do, because it is often the
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case that a group can fulfill objectives that are out of reach for the single agent. Each
participating agent is not in general able to solve a whole problem or reach an overall
goal by itself, but can only cope with a small subproblem/subgoal for which it has the
required competence. The overall result/goal is accomplished by means of cooperation
with other agents. In the course of the cooperation, an agent may have to bid for solv-
ing some aspect of the problem or perform some action instead of some other one, or
to negotiate with other agents for the distribution of tasks. Several agent-oriented pro-
gramming languages and systems exist, many of them based upon computational logic
(cf., e.g., [3,4,18] for recent surveys on such languages), and thus endowed (at least in
principle) with a logical semantics.

Many kinds of logical frameworks can be found in the literature which try to emu-
late cognitive aspects of human beings, also from the cooperative point of view. In
our past work [10,12] we defined the new Logic of “Inferable”, called L-DINF, as an
extension of an existing logic by Lorini & Balbiani [2], which considers an agent in the
context of cooperative group(s) of agents. We introduced conditions for the cooperative
executability of physical actions taking into account feasibility, costs and budget. In
this paper, we also consider preferences of single agents concerning their willingness
to execute actions that they are allowed to do, and joint intentions within a group.

A relevant feature of our approach is that the conditions concerning whether an
agent (and thus its group) is allowed to execute some action and to which extent it is
willing to perform it, are not specified in the logical theory defining an agent: rather, we
envisage separate modules from which the agent’s logical theory “inputs” the results.
Such modules might be specified in some other logic or also, pragmatically, via pieces
of code whenever, e.g., feasibility of actions should be verified according to agents’
environmental conditions.

The rationale of this approach can be exposed as follows. On the one hand, logic
is a good tool to express the semantics underlying (aspects of) agent-oriented program-
ming languages. To this aim however, it is important to keep the complexity of the
logic low enough to be practically manageable. Modularity is an important property to
ensure, as it allows programmers to better organize the definition of the application at
hand, and allows an agent-systems’ definition to be more flexible and customizable. As
notable examples, in [13] it is shown how an agent behaviour can significantly change
by leaving its ‘main’ definition unchanged, while modifying only its communication
modalities, i.e., which kind of messages and from/to whom the agent is available to
manage. In [21] it is shown that a different sequencing and duration of agent’s activities
determines a very different ‘external’ behaviour, again over the same main program.
Moreover, modularity can be an advantage for explainability, in the sense of making
the explanation itself modular.

So, our approach tries to join the rigour of logic and the flexibility of modularity.
We allow one to define in a separate way which actions are allowed for each agent to
perform at each stage, and with which degree of preference. A programmer will then be
able to define suitable pieces of code specifying where, when, and why each action is
indeed allowed, and, possibly, which is the ‘rationale’ of a certain degree of preference
of an agent in performing an action. So, modular changes to the conditions for actions
to be enabled and to the reasons for an agent’s preferences to perform or not an action,
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may affect in a relevant way the behaviour of both an agent and the group(s) to which
it belongs.

In the original formulation of L-DINF, we considered the notion of executability
of agents’ inferential actions (also called mental actions). When an agent belongs to a
group, if that agent is not actually able to perform an intended action which in principle
it should be able to perform, it may be supported by its group. The reason of not being
able could be that an action may require resource consumption (and hence involve a
cost). So, in order to execute an action the agent must possess the necessary budget, or
borrow it from the group. We then extended the logic by introducing further possibilities
of solidarity between the members of a cooperative group of agents, in particular to
support each other in performing actions in place of some other agent who is not enabled
or not wishing to do that itself. In this extension, the reason of not being able to perform
an action can be that the agent is not allowed to perform that action in the present state;
or the agent might be allowed and still not willing to execute that action.

‘Our’ agents are aware of themselves, of the group they belong to, and possibly of
other groups. Since we assume that agents belonging to a group are cooperative with
respect to action execution, an action can be executed by the group if at least one agent
therein is able and allowed and willing to execute it, and the group can bear (in some
way) the cost. In case more agents can perform an action, the one which is best willing
can be selected based on a notion of preference.

In [10] we have thoroughly discussed the relationship of logic L-DINF with related
work, emphasizing that this logic draws inspiration from concepts from Theory of Mind
[19] and Social Intelligence [20]. We are also indebted to [17], concerning the point of
view that an agent reaches a certain belief state by performing inferences, and that
making inferences takes time. We tackled the issue of time in previous work, discussed
in [9,11,22]. Differently from these works however, in L-DINF inferential actions are
represented both at the syntactic level, via dynamic operators in the DEL style, and
at a semantic level as neighborhood-update operations. Also, L-DINF, following [2],
enables an agent to reason on executability of inferential actions. In this paper, we
also try to introduce (even though the formalization is not complete yet) the concept
that actions may take a certain number of steps in order to be enabled or suitable for
execution.

One relevant aim of this work is to take into account the relationship between
the semantic and the practical aspects of agents’ specification and engineering, which
is often neglected. Therefore, we provide action-related reserved syntax, specifying
explicitly what an agent can do, does, and has done, or to which degree it is willing
to perform the feasible actions. For some of these expressions we assume a “semantic
attachment” to the external environment in which an agent will be situated, i.e., some
kind of sensor/actuator device which actually performs actions, which is opaque at the
logical level, but in our view still needs representation (we were inspired by the dis-
cussion, dated to a long time ago, by [24]). This approach is aimed at: making the for-
malization more complete and comprehensible for developers; improving explainability
of an agent’s operation, by translating logical proofs into natural language expressions
that are intelligible to human users also thanks to the explicit standard representation of
action-related aspects.
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A long-term goal is to formalize in our logic aspects of the “Theory ofMind” (ToM),
which is an important social-cognitive skill that involves the ability to attribute mental
states, including emotions, desires, beliefs, and knowledge both one’s own and those of
others, and to reason about the practical consequences of such mental states. Theory of
Mind, developed originally by Philosophers and Psychologists, is starting to be applied
to robotics, and some suitable logics are being developed [15]. In fact, with the arrival
of “service robots” devised to support users in their everyday tasks (e.g., in eHealth
robots support on the one hand patients, by reminding them to take their medicines and
by providing advice and reassurance, but on the other hand such robots also support
doctors, by constantly monitoring the user’s vital parameters, creating alerts whenever
necessary). In order to render these robots acceptable and even appreciated by users,
they will have to be programmed so as to mimic basic social skills and behave in a
socially acceptable manner, which means that their behaviour is to some extent pre-
dictable by the user, and conformant to social standards. Theory of Mind is linked to
affective computing (which is a set of techniques able to elicit a human’s emotional
condition from physical signs), to enable the system to respond intelligently to human
emotional feedback, and to enhance ToM activities by providing it with perceptions
related to the user’s emotional signs.

The paper is organized as follows. Section 2 introduces syntax and semantics of L-
DINF, together with an axiomatization of the proposed logical system. In Sect. 3 we
present an example of application of the new logic. Canonical models and strong com-
pleteness of the logic are discussed in Sect. 4. In Sects. 5 and 6 we introduce interesting
possible future developments: namely, in Sect. 5 we discuss the possibility of formal-
izing the fact that a goal is meant to be reached (or has been reached) within a certain
number of steps, and in Sect. 6 we outline how to extend our logic so as to model sig-
nificant aspects of the Theory of Mind. Finally, in Sect. 7 we conclude.

2 Logical Framework

L-DINF is a logic which consists of a static component and a dynamic one. The static
component, called L-INF, is a logic of explicit beliefs and background knowledge. The
dynamic component, called L-DINF, extends the static one with dynamic operators
capturing the consequences of the agents’ inferential actions on their explicit beliefs as
well as a dynamic operator capturing what an agent can conclude by performing some
inferential action in its repertoire.

2.1 Syntax

In this section we provide and illustrate the syntax of the proposed logic.
Let Atm = {p, q, . . .} be a countable set of atomic propositions. By Prop we

denote the set of all propositional formulas, i.e. the set of all Boolean formulas built
out of the set of atomic propositions Atm . A subset AtmA of the atomic proposi-
tions represent the physical actions that an agent can perform, including “active sens-
ing” actions (e.g., “let’s check whether it rains”, “let’s measure the temperature”). Let
d, dmax ∈ Int, where Int is the set of integer numbers equal or greater than zero,
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and 0 ≤ d ≤ dmax. Let Agt be a set of agents. The language of L-DINF, denoted by
LL-DINF, is defined by the following grammar in Backus-Naur form:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Bi ϕ | Ki ϕ |
doi(φA) | doP

i (φA) | can doi(φA) | pref doi(φA, d) |
doG(φA) | doP

G(φA) | can doG(φA) | pref doG(i, φA) |
intend i(φA) | intendG(φA) | execi(α) | execG(α) | [G : α]ϕ

α ::= �(ϕ,ψ) | ∩(ϕ,ψ) | ↓(ϕ,ψ) | �(ϕ,ψ)

where p ranges over Atm and i ∈ Agt . (Other Boolean operators are defined from ¬
and ∧ in the standard manner.) The language of inferential actions of type α is denoted
by LACT. The static part L-INF of L-DINF, includes only those formulas not having
sub-formulas of type α, namely, no inferential operation is admitted.

Notice the expression intend i(φA), where it is required that φA ∈ AtmA. This
expression indicates the intention of agent i to perform action φA in the sense of the
BDI agent model [23]. This intention can be part of an agent’s knowledge base from
the beginning, or it can be derived later. In this paper we do not cope with the formal-
ization of BDI, for which the reader may refer, e.g., to [16]. So, we will treat intentions
rather informally, assuming also that intendG(φA) holds whenever all agents in group
G intend to perform action φA.

The expressions can doi(φA) and pref doi(φA, d) (where it is required that φA ∈
AtmA) are closely related to doi(φA). In fact, can doi(φA) is to be seen as an
enabling condition, indicating that agent i is enabled to execute action φA, while instead
pref doi(φA, d) indicates the level d of preference/willingness of agent i to perform
that action. pref doG(i, φA) indicates that agent i exhibits the maximum level of pref-
erence on performing action φA within all group members. Notice that, if a group of
agents intends to perform an action φA, this will entail that the entire group intends to
do φA, that will be enabled to be actually executed only if at least one agent i ∈ G can
do it, i.e., it can derive can doi(φA).

The formula doi(φA), where again it is required that φA ∈ AtmA, indicates actual
execution of action φA by agent i, automatically recorded by the new belief doP

i (φA)
(postfix “P ” standing for “past” action). By precise choice, do and doP (and similarly
doG and doP

G ) are not axiomatized. In fact, they are realized by what has been called in
[24] a semantic attachment, i.e., a procedure which connects an agent with its external
environment in a way that is unknown at the logical level. The axiomatization concerns
only the relationship between doing and being enabled to do.

Unlike explicit beliefs, i.e., facts and rules acquired via perceptions during an
agent’s operation and kept in the working memory, an agent’s background knowledge
is assumed to satisfy omniscience principles, such as closure under conjunction and
known implication, and closure under logical consequence, and introspection. In fact,
Ki is actually the well-known S5 modal operator often used to model/represent knowl-
edge. The fact that background knowledge is closed under logical consequence is jus-
tified because we conceive it as a kind of stable reliable knowledge base, or long-term
memory. We assume the background knowledge to include: facts (formulas) known by
the agent from the beginning, and facts the agent has later decided to store in its long-
term memory (by means of some decision mechanism not treated here) after having
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processed them in its working memory. We therefore assume background knowledge to
be irrevocable, in the sense of being stable over time.

A formula of the form [G : α]ϕ, with G ∈ 2Agt , and where α must be an inferential
action, states that “ϕ holds after action α has been performed by at least one of the
agents in G, and all agents in G have common knowledge about this fact”.

Remark 1. If an inferential action is performed by an agent i ∈ G, the others agents
belonging to the same group G have full visibility of this action and, therefore, as we
suppose agents to be cooperative, it is as if they had performed the action themselves.

Borrowing from [1], we distinguish four types of inferential actions α which allow
us to capture some of the dynamic properties of explicit beliefs and background knowl-
edge: ↓(ϕ,ψ), ∩(ϕ,ψ), �(ϕ,ψ), and �(ϕ,ψ), These actions characterize the basic oper-
ations of forming explicit beliefs via inference:

• ↓(ϕ,ψ) is the inferential action which consists in inferring ψ from ϕ in case ϕ
is believed and, according to agent’s background knowledge, ψ is a logical con-
sequence of ϕ. I.e., by performing this inferential action, an agent tries to retrieve
from its background knowledge in long-term memory the information that ϕ implies
ψ and, if it succeeds, it starts believing ψ.

• ∩(ϕ,ψ) is the inferential action which closes the explicit belief ϕ and the explicit
belief ψ under conjunction. I.e., ∩(ϕ,ψ) characterizes the inferential action of
deducing ϕ ∧ ψ from the explicit belief ϕ and the explicit belief ψ.

• �(ϕ,ψ) is the inferential action that performs a simple form of “belief revision”,
i.e., removes ψ from the working memory in case ϕ is believed and, according to
agent’s background knowledge, ¬ψ is logical consequence of ϕ. Both ψ and ϕ are
required to be ground atoms.

• � (ϕ,ψ) is the inferential action which adds ψ to the working memory in case ϕ
is believed and, according to agent’s working memory, ψ is logical consequence
of ϕ. This last action operates directly on the working memory without retrieving
anything from the background knowledge.

Formulas of the forms execi(α) and execG(α) express executability of inferential
actions either by agent i, or by a group G of agents (which is a consequence of any
of the group members being able to execute the action). It has to be read as: “α is an
inferential action that agent i (resp. an agent in G) can perform”.

Remark 2. In the mental actions �(ϕ,ψ) and ↓(ϕ,ψ), the formula ψ which is inferred
and asserted as a new belief can be can doi(φA) or doi(φA), which denote the possi-
bility of execution or actual execution of physical action φA. In fact, we assume that
when inferring doi(φA) (from can doi(φA) and possibly other conditions) then the
action is actually executed, and the corresponding belief doP

i (φA) is asserted, possibly
augmented with a time-stamp. Actions are supposed to succeed by default; in case of
failure, a corresponding failure event will be perceived by the agent. The doP

i beliefs
constitute a history of the agent’s operation, so they might be useful for the agent to
reason about its own past behaviour, and/or, importantly, they may be useful to provide
explanations to human users.



78 S. Costantini et al.

Remark 3. Explainability in our approach can be directly obtained from proofs. Let
us assume for simplicity that inferential actions can be represented in infix form as
ϕn OP ϕn+1. Also, execi(α) means that the mental action α is executable by agent i
and is indeed executed. If, for instance, the user wants an explanation of why the action
φA has been performed, the system can respond by exhibiting the proof that has lead to
φA, put in the explicit form:
(execi(ϕ1OP1 ϕ2) ∧ . . . ∧ execi(ϕn−1OPn ϕn) ∧ execi(ϕnOPn can doi(φA)) ∧
intendi(φA) ∧ can doi(φA)) � doi(φA)
where each OPi is one of the (mental) actions discussed above. The proof can possibly
be translated into natural language, and declined either top-down or bottom-up.

As said in the Introduction, we model agents which, to execute an action, may have
to pay a cost, so they must have a consistent budget available. Our agents, moreover,
are entitled to perform only those physical actions that they conclude they can do. In
our approach, agents belong to groups (where the smallest possible group is the single
agent), and agents belonging to a group are by definition cooperative. With respect to
action execution, an action can be executed by the group if at least one agent in the
group is able to execute it, and the group has the necessary budget available, sharing
the cost according to some policy. The cooperative nature of our agents manifests itself
also in selecting, among the agents that are able to do some physical action, the one(s)
which best prefer to perform that action. We do not have introduced costs and budget,
feasibility of actions and willingness to perform them, in the language for two reasons:
to keep the complexity of the logic reasonable, and to make such features customizable
in a modular way.1 In fact, by making the assumption that agents are cooperative, we
also assume that they are aware of and agree with the cost-sharing policy. So, as seen
below, costs and budget are coped with at the semantic level. Variants of the logic
can be easily worked out, where the modalities of cost sharing are different from the
one shown here, where group members share an action cost in equal parts. Below, we
indicate which are the points that should be modified to change the cost-sharing policy.
Moreover, for brevity we introduce a single budget function, and thus, implicitly, a
single resource to be spent. Several budget functions, each one concerning a different
resource, might be plainly defined.

2.2 Semantics

Definition 1 introduces the notion of L-INF model, which is then used to introduce
semantics of the static fragment of the logic. As before let Agt be the set of agents.

Definition 1. A model is a tuple M = (W,N,R, E,B,C,A, P, V ) where:

– W is a set of worlds (or situations);
– R = {Ri}i∈Agt is a collection of equivalence relations on W : Ri ⊆ W × W for
each i ∈ Agt;

1 We intend to use this logic in practice, to formalize memory in DALI agents, where DALI is a
logic-based agent-oriented programming language [5,6,14]. So, computational effectiveness
and modularity are crucial. Assuming that agents share the cost is reasonable when agents
share resources, or cooperate to a common goal, as discussed, e.g., in [7,8].
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– N : Agt × W −→ 22
W

is a neighborhood function such that, for each i ∈ Agt ,
each w, v ∈ W , and each X ⊆ W these conditions hold:
(C1) if X ∈ N(i, w) then X ⊆ {v ∈ W | wRiv},
(C2) if wRiv then N(i, w) = N(i, v);

– E : Agt × W −→ 2LACT is an executability function of mental actions such that, for
each i ∈ Agt and w, v ∈ W , it holds that:
(D1) if wRiv then E(i, w) = E(i, v);

– B : Agt ×W −→ N is a budget function such that, for each i ∈ Agt and w, v ∈ W ,
the following holds
(E1) if wRiv then B(i, w) = B(i, v);

– C : Agt × LACT × W −→ N is a cost function such that, for each i ∈ Agt ,
α ∈ LACT, and w, v ∈ W , it holds that:
(F1) if wRiv then C(i, α, w) = C(i, α, v);

– A : Agt ×W −→ 2AtmA is an executability function for physical actions such that,
for each i ∈ Agt and w, v ∈ W , it holds that:
(G1) if wRiv then A(i, w) = A(i, v);

– P : Agt × W × AtmA −→ Int is a preference function for physical actions α such
that, for each i ∈ Agt and w, v ∈ W , it holds that:
(H1) if wRiv then P (i, w, α) = P (i, v, α);

– V : W −→ 2Atm is a valuation function.

To simplify the notation, let Ri(w) denote the set {v ∈ W | wRiv}, for w ∈ W .
The set Ri(w) identifies the situations that agent i considers possible at world w. It is
the epistemic state of agent i at w. In cognitive terms, Ri(w) can be conceived as the set
of all situations that agent i can retrieve from its long-term memory and reason about.

While Ri(w) concerns background knowledge, N(i, w) is the set of all facts that
agent i explicitly believes at worldw, a fact being identified with a set of worlds. Hence,
if X ∈ N(i, w) then, the agent i has the fact X under the focus of its attention and
believes it. We say that N(i, w) is the explicit belief set of agent i at world w.

The executability of inferential actions is determined by the functionE. For an agent
i, E(i, w) is the set of inferential actions that agent i can execute at world w. The value
B(i, w) is the budget the agent has available to perform inferential actions. Similarly,
the value C(i, α, w) is the cost to be paid by agent i to execute the inferential action α
in the world w. The executability of physical actions is determined by the function A.
For an agent i, A(i, w) is the set of physical actions that agent i can execute at world w.

The agent’s preference on executability of physical actions is determined by the
function P . For an agent i, and a physical action α, P (i, w, α) is an integer value d
indicating the degree of willingness of agent i to execute such action at world w.

Constraint (C1) imposes that agent i can have explicit in its mind only facts which
are compatible with its current epistemic state. Moreover, according to constraint (C2),
if a world v is compatible with the epistemic state of agent i at world w, then agent
i should have the same explicit beliefs at w and v. In other words, if two situations
are equivalent as concerns background knowledge, then they cannot be distinguished
through the explicit belief set. This aspect of the semantics can be extended in future
work to allow agents to make plausible assumptions. Analogous properties are imposed
by constraints (D1), (E1), and (F1). Namely, (D1) imposes that agent i always knows
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which inferential actions it can perform and those it cannot. (E1) states that agent i
always knows the available budget in a world (potentially needed to perform actions).
(F1) determines that agent i always knows how much it costs to perform an inferential
action. (G1) and (H1) determine that an agent i always knows which physical actions
it can perform and those it cannot, and with which degree of willingness.

Truth values for formulas of L-DINF are inductively defined as follows. Given a
model M = (W,N,R, E,B,C,A, P, V ), i ∈ Agt , G ⊆ Agt , w ∈ W , and a formula
ϕ ∈ LL-INF, we introduce the following shorthand notation:

‖ϕ‖M
i,w = {v ∈ W : wRiv and M,v |= ϕ}

whenever M,v |= ϕ is well-defined (see below). Then, we set:

– M,w |= p iff p ∈ V (w)
– M,w |= execi(α) iff α ∈ E(i, w)
– M,w |= execG(α) iff there exists i ∈ G with α ∈ E(i, w)
– M,w |= can doi(φA) iff α ∈ A(i, w)
– M,w |= can doG(φA) iff there exists i ∈ G with α ∈ A(i, w)
– M,w |= pref doi(φA, d) iff φA ∈ A(i, w) and P (i, w, φA) = d
– M,w |= pref doG(i, φA) iff M,w |= pref doi(φA, d) for d = max{P (j, w, φA)

| j ∈ G ∧ φA ∈ A(j, w)}
– M,w |= ¬ϕ iff M,w �|= ϕ
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
– M,w |= Bi ϕ iff ||ϕ||Mi,w ∈ N(i, w)
– M,w |= Ki ϕ iff M,v |= ϕ for all v ∈ Ri(w)

As seen above, a physical action can be performed by a group of agents if at least
one agent of the group can do it, and the level of preference for performing this action
is set to the maximum among those of the agents enabled to do this action. For any
inferential action α performed by any agent i, we set:

– M,w |= [G : α]ϕ iff M [G:α], w |= ϕ

where we put M [G:α] = 〈W ;N [G:α],R, E,B[G:α], C,A, P, V 〉, representing the fact
that the execution of an inferential action α affects the sets of beliefs of agent i and
modifies the available budget. Such operation can add new beliefs by direct perception,
by means of one inference step, or as a conjunction of previous beliefs. Hence, when
introducing new beliefs (i.e., performing mental actions), the neighborhood must be
extended accordingly.

A key aspect in the definition of the logic is the following, which states under which
conditions, and by which agent(s), an action may be performed.

enabledw(G,α) : ∃j ∈ G (α ∈ E(j, w) ∧ C(j,α,w)
|G| ≤ minh∈G B(h,w)).

This condition states when an inferential action is enabled. In the above particular
formulation (that is not fixed, but can be customized to the specific application domain)
if at least an agent can perform it; and if the “payment” due by each agent, obtained
by dividing the action’s cost equally among all agents of the group, is within each
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agent’s available budget. In case more than one agent in G can execute an action, we
implicitly assume the agent j performing the action to be the one corresponding to the
lowest possible cost. Namely, j is such that C(j, α, w) = minh∈G C(h, α,w). This
definition reflects a parsimony criterion reasonably adoptable by cooperative agents
sharing a crucial resource such as, e.g., energy or money. Other choices might be viable,
so variations of this logic can be easily defined simply by devising some other enabling
condition and, possibly, introducing differences in neighborhood update. Notice that the
definition of the enabling function basically specifies the “role” that agents take while
concurring with their own resources to actions’ execution. Also, in case of specification
of different resources, different corresponding enabling functions might be defined.

Our contribution to modularity is that functions A and P , i.e., executability of phys-
ical actions and preference level of an agent concerning physical action execution, are
not meant to be built-in. Rather, they can be defined via separate sub-theories, possibly
defined using different logics, or, in a practical approach, via pieces of code. This app-
roach can be extended to function C, i.e., the cost of mental actions instead of being
fixed (like in our previous work) may vary and computed upon need.

2.3 Belief Update

In this kind of logic, updating an agent’s beliefs accounts to modify the neighborhood
of the present world. The updated neighborhood N [G:α] resulting from execution of a
mental action α by a group G of agents is as follows.

N [G:↓(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||χ||Mi,w} if i ∈ G and enabledw(G, ↓(ψ, χ)) and
M,w |= Biψ ∧ Ki(ψ → χ)

N(i, w) otherwise

N [G:∩(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||ψ ∧ χ||Mi,w} if i ∈ G and enabledw(G,∩(ψ,χ))
and M,w |= Biψ ∧ Biχ

N(i, w) otherwise

N [G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) \ {||χ||Mi,w} if i ∈ G and enabledw(G,�(ψ, χ)) and
M,w |= Biψ ∧ Ki(ψ → ¬χ)

N(i, w) otherwise

N [G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||χ||Mi,w} if i ∈ G and enabledw(G,�(ψ,χ)) and
M,w |= Biψ ∧ Bi(ψ → χ)

N(i, w) otherwise

Notice that, after an inferential action α has been performed by an agent j ∈ G,
all agents i ∈ G see the same update in the neighborhood. Conversely, for any agent
h �∈ G the neighborhood remains unchanged (i.e., N [G:α](h,w) = N(h,w)). However,
even for agents in G, the neighborhood remains unchanged if the required precondi-
tions, on explicit beliefs, knowledge, and budget, do not hold (and hence the action is
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not executed). Notice also that we might devise variations of the logic by making differ-
ent decisions about neighborhood update to implement, for instance, partial visibility
within a group.

Since each agent inG has to contribute to cover the costs of execution by consuming
part of its available budget, an update of the budget function is needed. We assume
however that only inferential actions that add new beliefs have a cost. I.e., forming
conjunction and performing belief revision are actions with no cost. As before, for an
action α, we require enabledw(G,α) to hold and assume that j ∈ G executes α. Then,
depending on α, we have:

B[G:↓(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,↓(ψ,χ),w)
|G| if i ∈ G and enabledw(G, ↓(ψ, χ))

and M,w |= Biψ ∧ Ki(ψ → χ)
B(i, w) otherwise

B[G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,�(ψ,χ),w)
|G| if i ∈ G and enabledw(G,�(ψ,χ))

and M,w |= Biψ ∧ Bi(ψ → χ)
B(i, w) otherwise

We write |=L-DINF ϕ to denote that M,w |= ϕ holds for all worlds w of every
model M .

We introduce below relevant consequences of our formalization. For lack of space
we omit the proof, that can be developed analogously to what done in previous
work [10].

Property. As consequence of previous definitions, for any set of agents G and each
i ∈ G, we have the following:

• |=L-INF (Ki(ϕ → ψ)) ∧ Bi ϕ) → [G : ↓(ϕ,ψ)]Bi ψ.
Namely, if an agent has ϕ among beliefs and Ki(ϕ → ψ) in its background knowl-
edge, then as a consequence of the action ↓(ϕ,ψ) the agent and any group G to
which it belongs start believing ψ.

• |=L-INF (Ki(ϕ → ¬ψ)) ∧ Bi ϕ) → [G : �(ϕ,ψ)]¬Bi ψ.
Namely, if an agent has ϕ among beliefs andKi(ϕ → ¬ψ) in its background knowl-
edge (for ϕ,ψ ground atoms), then as a consequence of the action ↓(ϕ,ψ) the agent
and any group G to which it belongs stop believing ψ.

• |=L-INF (Biϕ ∧ Biψ) → [G : ∩(ϕ,ψ)]Bi(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the action
∩(ϕ,ψ) the agent and any group G to which it belongs start believing ϕ ∧ ψ.

• |=L-INF (Bi(ϕ → ψ)) ∧ Bi ϕ) → [G : �(ϕ,ψ)]Bi, ψ.
Namely, if an agent has ϕ among its beliefs andBi(ϕ → ψ) in its working memory,
then as a consequence of the action �(ϕ,ψ) the agent and any group G to which it
belongs start believing ψ.
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2.4 Axiomatization

Below we introduce the axiomatization of our logic. The L-INF and L-DINF axioms
and inference rules are the following:

1. (Ki ϕ ∧ Ki(ϕ → ψ)) → Ki ψ;
2. Ki ϕ → ϕ;
3. ¬Ki(ϕ ∧ ¬ϕ);
4. Ki ϕ → Ki Ki ϕ;
5. ¬Ki ϕ → Ki ¬Ki ϕ;
6. Bi ϕ ∧ Ki (ϕ ↔ ψ) → Bi ψ;
7. Bi ϕ → Ki Bi ϕ;
8. ϕ

Ki ϕ
;

9. [G : α]p ↔ p;
10. [G : α]¬ϕ ↔ ¬[G : α]ϕ;
11. execG(α) → Ki (execG(α));
12. [G : α](ϕ ∧ ψ) ↔ [G : α]ϕ ∧ [G : α]ψ;
13. [G : α]Ki ϕ ↔ Ki ([G : α]ϕ);
14. [G : ↓(ϕ,ψ)]Bi χ ↔ Bi ([G : ↓(ϕ,ψ)]χ) ∨ (

(Bi ϕ ∧ Ki (ϕ → ψ))
∧ Ki ([G : ↓(ϕ,ψ)]χ ↔ ψ)

)
;

15. [G : ∩(ϕ,ψ)]Bi χ ↔ Bi ([G : ∩(ϕ,ψ)]χ) ∨ (
(Bi ϕ ∧ Bi ψ)

∧ Ki [G : ∩(ϕ,ψ)]χ ↔ (ϕ ∧ ψ)
)
;

16. [G : �(ϕ,ψ)]Bi χ ↔ Bi ([G : �(ϕ,ψ)]χ) ∨ (
(Bi ϕ ∧ Bi (ϕ → ψ))

∧ Ki ([G : �(ϕ,ψ)]χ ↔ ψ)
)
;

17. [G : �(ϕ,ψ)]¬Bi χ ↔ Bi ([G : �(ϕ,ψ)]χ) ∨ (
(Bi ϕ ∧ Ki (ϕ → ¬ψ))

∧ Ki ([G : �(ϕ,ψ)]χ ↔ ψ)
)
;

18. intendG(φA) ↔ ∀i ∈ G intendi(φA);
19. doG(φA) → can doG(φA);
20. doi(φA) → can doi(φA);
21. ψ↔χ

ϕ↔ϕ[ψ/χ]
.

We write L-DINF � ϕ to denote that ϕ is a theorem of L-DINF. It is easy to verify that
the above axiomatization is sound for the class of L-INF models, namely, all axioms
are valid and inference rules preserve validity. In particular, soundness of axioms 14–
17 immediately follows from the semantics of [G:α]ϕ, for each inferential action α, as
previously defined. Notice that, by abuse of notation, we have axiomatized the special
predicates concerning intention and action enabling. Axioms 18–20 concern in fact
physical actions, stating that: what is intended by a group of agents is intended by them
all; and, neither an agent nor a group of agents can do what it is not enabled to do.
Such axioms are not enforced by the semantics, but are supposed to be enforced by
a designer’s/programmer’s encoding of parts of an agent’s behaviour. In fact, axiom
18 enforces agents in a group to be cooperative. Axioms 19 and 20 ensure that agents
will attempt to perform actions only if their preconditions are satisfied, i.e., if they can
do them. We do not handle such properties in the semantics as done, e.g., in dynamic
logic, because we want agents’ definition to be independent of the practical aspect, so
we explicitly intend to introduce flexibility in the definition of such parts.
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3 Problem Specification and Inference: An Example

In this section, we propose an example of problem specification and inference in L-
DINF. Consider a group of n agents, e.g., three, who are siblings or friends, who decide
to act together in order to renovate some property, e.g., a cottage where to spend week-
ends. In order to save money and time, they aim to contribute at practical work, to the
extent of their capabilities. Prior to starting the activities, they agree upon sustaining
costs in equal parts. They know that one of them is able to repair the roof, while the
other two are both able to redecorate the walls and replace the carpet, but one of the two
would clearly prefer the former task. Below we show how our logic is able to represent
the situation, and the proceedings of this work. For the sake of simplicity of illustration
and of brevity, the example is in “skeletal” form.

Each agent will initially have in its knowledge base the fact Ki(intendG
(renovate)) (implicitly, the cottage). The physical actions that agents can perform are
the following:

buy-material , redecorate-walls, repair -roof , replace-carpet . (1)

Assume that the knowledge base of each agent i contains the following rule, that
specifies how to reach the intended goal in terms of actions to perform:

Ki(intendG(renovate) → intendG(buy-material) ∧ intendG(repair -roof )∧
intendG(replace-carpet) ∧ intendG(redecorate-walls))

(2)

By axiom 18 listed in previous section, every agent will also have the specialized rule

Ki(intendi(renovate) → intendi(buy-material) ∧ intendi(repair -roof )∧
intendi(replace-carpet) ∧ intendi(redecorate-walls))

(3)

Therefore, the following is entailed for each of the agents (1 ≤ i ≤ 3):

Ki(intendi(renovate) → intendi(buy-material))
Ki(intendi(renovate) → intendi(repair -roof ))
Ki(intendi(renovate) → intendi(replace-carpet))
Ki(intendi(renovate) → intendi(redecorate-walls))

(4)

Assume now that the knowledge base of each agent i contains also the following
general rules, stating that the group is available to perform each of the necessary actions.

Ki(intendG(buy-material) ∧ can doG(buy-material)∧
pref doG(i , buy-material) → doG(buy-material))

Ki(intendG(repair -roof ) ∧ can doG(repair -roof )∧
pref doG(i , repair -roof ) → doG(repair -roof ))

Ki(intendG(replace-carpet) ∧ can doG(replace-carpet)∧
pref doG(i , replace-carpet) → doG(replace-carpet))

Ki(intendG(redecorate-walls) ∧ can doG(redecorate-walls)∧
pref doG(i , redecorate-walls) → doG(redecorate-walls))

(5)
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As before, by axiom 18 such rules can be specialized to each single agent 1, 2, 3.

Ki(intendi(buy-material) ∧ can doi(buy-material)∧
pref doG(i , buy-material) → doi(buy-material))

Ki(intendi(repair -roof ) ∧ can doi(repair -roof )∧
pref doG(i , repair -roof ) → doi(repair -roof ))

Ki(intendi(replace-carpet) ∧ can doi(replace-carpet)∧
pref doG(i , replace-carpet) → doi(replace-carpet))

Ki(intendi(redecorate-walls) ∧ can doi(redecorate-walls)∧
pref doG(i , redecorate-walls) → doi(redecorate-walls))

(6)

As previously stated, whenever an agent derives doi(φA) for any physical action
φA, the action is supposed to have been performed via some kind of semantic attach-
ment which links the agent to the external environment. However, doi(φA) will be
derived by means of some mental action based upon the available rules. Such mental
action can have a cost, that can be paid either by the agent itself or by the group (accord-
ing to the adopted policy of cost-sharing for this group). The reason to attribute the cost
to the mental action is exactly to avoid that some agent tries to execute physical actions
that it cannot support. According to the above rules, an agent can execute an action φA

if it is allowed to perform that action (can doi(φA)), and if it is the one most willing to
do it (pref doG(i, φA)). In our approach, such conclusion will be drawn on the basis of
the assessment performed in external modules. Such modules will provide the decision
according to some kind of reasoning process in some formalism, with respect to which
our logic is completely agnostic: they will add the corresponding facts to each agent’s
knowledge base.

In order to have our agents do the actions listed in (1) (note that one agent will have
to perform two of them, as there are three agents and four actions), four sequences of
mental actions will have to be executed, yielding, respectively, conclusions of the forms
doG(buy-material), doG(repair -roof ), doG(replace-carpet), doG(redecorate-walls),
and causing their addition to agents’ working memory. Such reasoning would consist in
mental actions of kind ∩ to form conjunctions from single facts, and mental actions of
kind ↓ to apply knowledge rule, i.e., given their preconditions, draw the conclusions. In
particular, given the initial general intention by the group, it will be possible to derive
the practical goal, in terms of the conjunction of actions to be performed by the group.
From its own specialized rules and the available facts about enabling and willingness,
the execution of each action by some agent i will be hopefully derived. Note that, there
can be unlucky situations where no agent is enabled to perform some action, or that the
one allowed is not willing, or that there is not enough budget. In this case, the goal fails.

Let α1–α4 be the last mental actions performed at the end of the mentioned four
sequences of mental inferences (that lead to derive the doi(φA), for some i ≤ 3 and for
φA among the actions in (1)), respectively. Assume, also, that the costs of α1–α4 are
the following (and, for simplicity, assume all other mental actions have no cost):

C(i, α1, w) = 18, C(i, α2, w) = 15, C(i, α3, w) = 3, C(i, α4, w) = 20,

and that αj ∈ E(i, w), j ≤ 3 holds, for each world w, each agent i, and each action αj .
Assume that in world w1 the three agents have the following budgets to perform

mental actions: B(1, w1) = 11, B(2, w1) = 21, B(3, w1) = 20.
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Assume, e.g., that all agents are enabled in w1 to go and buy material. Suppose that
agent 1 is the best wishing to go to buy, i.e., under the current model (which remains
implicit) w1 |= can do1 (buy-material) ∧ pref doG(1, buy-material). However, it
alone cannot perform the action, because it does not have enough budget. But, using
the inferential action [G:α1], with G = {1, 2, 3}, the other agents can devote part of
their budgets to share the cost, so the group can perform α1, because

C(1,α1,w1)
|G| ≤

minh∈G B(h,w1). Hence, Bi(doG(buy-material)) can be inferred by each agent i (in
consequence, the past event Bi(doP

G(buy-material)) will also be asserted). Indeed, the
inferential action is considered as performed by the whole group G, so each agent of G
updates its neighborhood. After the execution of the action the budget of each agent is
updated as well (cf., Sect. 2.2). The new budgets, given that we are assuming the policy
to divide expenses into equal parts, are: B(1, w2) = 5, B(2, w2) = 15, B(3, w2) =
14, where we name w2 the situation reached after executing the action.

Assume that only agent 3 is enabled in w2 to repair the roof. Suppose that agent
3 is wishing to go to repair, i.e., under the current model (which remains implicit)
w2 |= can do3 (repair -roof ) ∧ pref doG(3, repair -roof ). It alone however cannot
perform the action, because it does not have enough budget. But, using the inferential
action [G:α2], with G = {1, 2, 3}, the other agents can devote part of their budgets to
share the cost, so the group can perform α2, because

C(3,α2,w2)
|G| ≤ minh∈G B(h,w2).

Hence, Bi(doG(repair -roof )) can be inferred by each agent i (in consequence, also
Bi(doP

G(repair -roof )) will be asserted). Again, after the execution of the action the
budget of each agent is updated. The new budgets, given that we are assuming the policy
to divide expenses into equal parts, are: B(1, w3) = 0, B(2, w3) = 10, B(3, w3) = 9,
where we name w3 the situation reached after executing the action.

Assume that only agent 2 is enabled in w3 to replace the carpet. Agent 2 can
perform the action alone because it has enough budget. So, [G : α3], with G =
{1, 2, 3}, can be performed obtainingBi(doG(replace-carpet)) (and, as a consequence,
Bi(doP

G(replace-carpet))). Indeed, the inferential action is considered as performed by
the whole group G so each agent of G updates its neighborhood. After the execution of
the action only the budget of agent 2 is updated: B(2, w4) = 7. Summing up budgets:
B(1, w4) = 0, B(2, w4) = 7, B(3, w1) = 9, where we name w4 the situation reached
after executing the action.

There would be the last goal (intendG(redecorate-walls)) but no agent has the
necessary budget, so they cannot perform α4 so goal cannot be achieved, and therefore
the overall goal fails. Only some injection of new budget (maybe a loan from another
group) might save the situation. Interaction among groups is a subject of future work.

It is relevant to comment about the role of past events. If the set of past events, which
is a part of an agent’s short-term memory, is made available to the external modules
defining actions enabling and degree of willingness, such recordings might be used, for
instance, to define constraints concerning actions execution. For instance, referring to
our example, it would be reasonable to state that no repair can take place if the material
has not been bought yet, and then, e.g., that repairing the roof should be performed as
first thing.
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4 Canonical Model and Strong Completeness

In this section, we introduce the notion of canonical model of our logic, and we outline
the proof of strong completeness w.r.t. the proposed class of models (by means of a
standard canonical-model argument). As before, let Agt be a set of agents.

Definition 2. The canonical L-INF model is a tuple Mc = 〈Wc, Nc,Rc, Ec, Bc,
Cc, Ac, Pc, Vc〉 where:
• Wc is the set of all maximal consistent subsets of LL-INF;
• Rc = {Rc,i}i∈Agt is a collection of equivalence relations on Wc such that, for every

i ∈ Agt and w, v ∈ Wc, wRc,iv if and only if (for all ϕ, Ki ϕ ∈ w implies ϕ ∈ v)
• For w ∈ Wc, ϕ ∈ LL-INF let Aϕ(i, w) = {v ∈ Rc,i(w) | ϕ ∈ v}. Then, we put

Nc(i, w) = {Aϕ(i, w) | Bi ϕ ∈ w}.
• Ec : Agt ×Wc −→ 2LACT is such that, for each i∈Agt and w, v∈Wc, if wRc,iv then

Ec(i, w) = Ec(i, v);
• Bc : Agt × Wc −→ N is such that, for each i ∈ Agt and w, v ∈ Wc, if wRc,iv then

Bc(i, w) = Bc(i, v);
• Cc : Agt × LACT × Wc −→ N is such that, for each i ∈ Agt , α ∈ LACT, and

w, v ∈ Wc, if wRc,iv then Cc(i, α, w) = Cc(i, α, v);
• Ac : Agt × Wc −→ 2AtmA is such that, for each i ∈ Agt and w, v ∈ Wc, if wRc,iv
then Ac(i, w) = Ac(i, v);

• Pc : Agt × Wc × AtmA −→ Int is such that, for each i ∈ Agt and w, v ∈ W , if
wRc,iv then Pc(i, w, α) = Pc(i, v, α);

• Vc : Wc −→ 2Atm is such that Vc(w) = Atm ∩ w.

Note that, analogously to what done before, Rc,i(w) denotes the set {v ∈ Wc |
wRc,iv}, for each i ∈ Agt . It is easy to verify that Mc is an L-INF model as defined
in Definition 1, since, it satisfies conditions (C1), (C2), (D1), (E1), (F1), (G1), (H1).
Hence, it models the axioms and the inference rules 1–17 and 21 introduced before
(while, as mentioned in Sect. 2.4, axioms 18–20 are assumed to be enforced by the
specification of agents behaviour). Consequently, the following properties hold too. Let
w ∈ Wc, then:

– given ϕ ∈ LL-INF, it holds that Ki ϕ ∈ w if and only if ∀v ∈ Wc such that wRc,iv
we have ϕ ∈ v;

– for ϕ ∈ LL-INF, if Bi ϕ ∈ w and wRc,iv then Bi ϕ ∈ v;

Thus, Rc,i-related worlds have the same knowledge and Nc-related worlds have the
same beliefs, i.e. there can be Rc,i-related worlds with different beliefs.

By proceeding similarly to what done in [1], we obtain the proof of strong com-
pleteness. For lack of space, we list the main theorems but omit lemmas and proofs,
that we have however developed analogously to what done in previous work [10].

Theorem 1. L-INF is strongly complete for the class of L-INF models.

Theorem 2. L-DINF is strongly complete for the class of L-INF models.



88 S. Costantini et al.

5 Future Extension: Steps to Reach a Goal

We intend, in future work, to enhance our language by introducing the expression ♦ϕ,
which has to be read “the agent can ensure ϕ by executing some (inferential or physical)
actions in its repertoire”. Also, we intend to inductively define: ♦0ϕ = ϕ, ♦k+1 =
♦♦kϕ. In our aim therefore, the formula ♦kB ϕ represents the fact that the agent is
capable of inferring ϕ in k steps. We might easily extend the semantics by stating

M,w |= ♦ϕ ↔ ∃α ∈ E(w) s.t. Mα, w |= ϕ

(where E(w) denotes the executability function for the specific agent under considera-
tion). A tentative axiomatization could be:

– exec(α) ∧ [α]ϕ → ♦ϕ;
– p → ♦p;
– ♦(ϕ ∧ ψ) → ♦ϕ ∧ ♦ψ;
– ♦ϕ → ♦♦ϕ;
– ♦B ϕ → B ♦ϕ;
– ♦K ϕ → K ♦ϕ.
– ([α]ϕ) → ♦1ϕ.
– ([α1]([α2]ϕ)) → ♦2ϕ.
– ([α1]([α2]([α3]ϕ))) → ♦3ϕ

. . .

So far however, we are presently able to consider only a limited number of iterations of
the ♦ operator, in a specific (though analogous) way for each case.

Yet, even in the bounded form such operator may allow us to better formalize many
practical situations, including the one in the example discussed in Sect. 3. There, one
could take into account the expected duration of each action. For instance, the rule
expressing the goal of our group of agents could be reformulated for instance as follows,
where ♦vφA means that we expect action φA to take (at most) v steps for its completion:

Ki(intendG(renovate) → intendG(♦1 buy material) ∧ intendG(♦5 repair roof )∧
intendG(♦4 replace carpet) ∧ intendG(♦4 redecorate walls)).

6 Future Extension: Theory of Mind

Intelligent software agents are usually modelled and programmed (via available agent-
oriented programming languages) in terms of the BDI (Belief, Desire, Intention) modal
logic [23], that however is limited to the representation of the mental state of the agent
itself, but is too weak to represent Theory of Mind, which is understood as the ability
to attribute mental states not only to oneself but also to others. I.e., in humans, it is
the intuitive theory, developed during childhood, by which people understand others’
actions in terms of their beliefs, desires, emotions, and supposed intentions. Such ability
is crucial to interpret and predict other persons’ behavioural responses. Recent research
[15] has claimed that epistemic logic could be a suitable formalism for representing
essential aspects of ToM for an autonomous agent. In our logic, the capability of agents
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in a group to be aware of other agents’ (of the group) beliefs and intentions is already
an embryonic form of ToM.

In developmental psychology, one of the standard methods to test the capabilities
of a human child’s ToM is “false-belief tasks”. It is a class of tests in which the child is
told a story involving multiple characters, where one or more of the characters necessar-
ily develop, under the circumstances, some false belief. The child should then answer
questions indicating whether she has correctly modelled the mental states (beliefs) of
the characters, identifying the false beliefs and their motivation.

A common false belief task is the “Sally-Anne” task in which the child is shown a
story about two girls, Sally and Anne, who are in a room with a basket and a box. Sally
puts the marble into the basket, leaves the room, and then Anne moves the marble to
the box in her absence. The child is then asked: “where does Sally believe the marble
to be?”. To pass the test, the child must answer “in the basket”, since Sally did not see
Anne moving the marble, and therefore Sally has the false belief that the marble is still
in the basket.

In our logic, it is easy to model the consequences of actions, i.e., if moving an object
from a container to another one, the mental operations ↓ or � allow an agent to conclude
that the marble is in the second container, and the mental operation � can remove the
(no longer valid) belief that the marble is in the original container.

As seen before, what is inferred or removed from the working memory via a mental
action is common knowledge of all agents of any group to which the agent which does
the action belongs. So, the Sally-Ann task might be solved in our logic by reconfiguring
the group. I.e., Sally, Ann and the observer child can be assumed to belong to the group
called, e.g., “Room1”. So, all of them observe the action of Sally putting the marble into
the basket. However, when Sally leaves the room she can be assumed to leave the group
“Room1”. So, she cannot “observe” the action Anne moves the marble to the box, and
in consequence she still retains the belief that the marble is in the basket. Since all past
beliefs are common knowledge in a group, the child (that we consider as an agent in the
group) can answer the question correctly.

Therefore, we intend to extend our logic so as to model the fact that there are actions
that lead an agent to leave or join a group. For Sally, e.g., leaving the room accounts to
leave the group, and re-entering the room implies re-joining. So, all new beliefs formed
or removed by the group in the meanwhile are not known to her. To suitably cope with
these aspects a concept of time and time intervals might be needed, that we have already
treated in past work [9,22] and might therefore suitably exploit in this context.

7 Conclusions

In this paper, we have reported about a line of work concerning how to exploit a logi-
cal formulation for providing the semantics of MAS, covering not only single agents,
but also groups of cooperative agents. We aimed to consider to some extent practi-
cal aspects concerning actions’ executability. So, we introduced beliefs about physi-
cal actions concerning whether they could, are, or have been executed. These beliefs
proved then useful for explainability, but also to model complex group dynamics. We
introduced agents’ preferences in performing actions, and single agent’s and group’s
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intentions. So, a group of agent can devise a joint plan to reach a goal step by step,
taking into account agents’ capabilities and preferences, and the available resources.
We tried to make our semantics modular, thus allowing engineers to encode some cus-
tomizable aspects separately from the ‘main’ agent code. We have introduced dedicated
syntax to represent actions’ feasibility and preferences, aiming to introduce a connec-
tion among the ‘abstract’ agents and the external environment in which they will be
situated, and we have shown that the new syntax improves explainability, since natural-
language explanations can in principle be directly extracted from proofs.

We have proved some useful properties of the extended logic, among which strong
completeness. We have provided a significant example, and we have outlined a further
extension of the logic to better represent this and other examples, via modelling the
number of steps required to reach some conclusion or eventually perform some action.
The complexity of the extended logic has no reason to be higher than that of the orig-
inal L-DINF. So, we can safely claim that, in the proposed new logic, the satisfiability
problem is PSPACE-complete in the multi-agent case for L-INF, and it is decidable for
L-DINF (though there are conjectures that it might be PSPACE-complete as well).

In future work, we mean to extend our logic in the following directions: ability to
represent in a general way the number of steps needed to reach a goal (here we proposed
in fact a restricted formalization); ability to formally express relevant aspects of the The-
ory of Mind, so as to define agents able to cope with “false-belief tasks”, i.e., capable
of attributing correct mental states to other agents also in presence of ambiguous situa-
tions. To this aim, we intend to integrate temporal aspects, i.e., in which instant or time
interval an action has been or should be performed, and how this may affect agents’ and
groups’ awareness of actions and beliefs.
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Abstract. A first step to keeping the human ‘in the loop’ in the con-
text of developing intelligent multi-task interfaces is to be able to mon-
itor their attention. By combining eye tracking with agent monitoring
and decision making, we provide a basis for increasing the user’s atten-
tional bandwidth by offering bottom-up attention guidance. We develop
a modified implementation of the MATBII cockpit task simulator embed-
ded in an agent environment in which agents monitor events, including
eye tracking, and act to deploy visual cues to guide attention. We explore
how such a system may be useful for improving task performance, by also
simulating users with agents to demonstrate how the system might work
for some examples of user behaviour. We also discuss how our system can
act as an experimental platform to benefit future user experience research
focusing on attention guidance in complex multi-task interfaces.

Keywords: Agent environment · Eye-tracking · Interface · Workload

1 Introduction

Humans are often in complex, attention demanding situations, which require
them to process information from multiple sources at once. In an interface such
as an airplane cockpit many different information sources are present in the form
of instrument displays spatially distributed in front of the pilot. Many other such
examples exist from air traffic control to remote monitoring of autonomous vehi-
cles in case of a required emergency intervention [16]. Humans are limited in their
attentional capacity and thus sample parts of their environment sequentially over
time [11]. When humans ‘fail to notice’ it is because of sub-optimal sampling.
High information flow due to the number of displays, rapid information change in
displays and the dependence of information between displays challenges human
attention limits [43]. This may lead to poor decisions with serious consequences.
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Incorporating attention guidance with a complex multi-task interface is not
straightforward, both from a conceptual and an implementation perspective.
Existing approaches for building such systems, often focus on the conceptual
aspects of attention guidance e.g. [15,45], but little attention has been paid
to conceptual frameworks that also have a systematic implementation. Other
approaches, e.g. [50], use agents as cognitive assistants, they perform autonomous
situation assessment and take into account the limitations of human informa-
tion processing. Still, an important aspect remains open: how can we build an
agent system that considers how to convey information to users about ongoing
operations and environmental parameters within their attentional limits?

The aim of this work is to show how to rethink attention guidance in multi-
task interfaces using cognitive agents [7] that perceive where a user looks, and
formulate interaction of display objects as events happening in an agent environ-
ment [8]. By observing the state of the various interface objects and in-coming
user input data (including eye tracking data) and aggregating it to form beliefs,
we conjecture that cognitive agents will be able to provide useful guidance to a
user while making important considerations relating to their attention. The sys-
tem thus both measures the current location of attention (based on eye tracking
data) and alters attention by guiding the gaze tasks requiring input. Our spe-
cific objective is to exemplify the framework by developing the methods for
attention guidance in the MATBII cockpit task simulator [59], showing how to
organise guidance for a concrete application. We also wish to demonstrate how
the modularity of an agent-based approach eases the process of experimentation
and provides some unique benefits for creating a system that is extensible and
reproducible.

The contribution of our work is to provide a practical system that makes
use of gaze location (a proxy for spatial attention), allowing agents to use this
information to help users allocate their limited cognitive resources. To this end we
reproduce and improve some aspects of MATBII [59], producing our own simple
simulation of a cockpit-based task space. The resulting system, which we refer to
as ICU, allows for display changes and eye movements to be monitored externally
via an event-based API, making it suitable for experimental settings beyond
this work. We have also embedded ICU in a resource-light agent environment,
which re-implements in full a single GOLEM container [8]. This supports real-
time attention guidance mechanisms using cognitive agents to monitor where a
user looks and can support attention guidance in other domains, assuming they
provide an ICU like API.

The work is structured as follows. We begin by first outlining related work
in describing and measuring attention, its limitations, cognitive workload, the
use of agents as assistants, and assess to what extent MATBII has proved useful
as an example task space. In Sect. 3 we present ICU, an open source Python
implementation of the MATBII task space [59], which functions independently of
our agent system. We then describe the agent system ICUa (ICU with agents) we
have developed as an experimental platform for bottom-up attention guidance.
In Sect. 4 we test the system by simulating and exploring some simple potential
human behaviours. Finally in Sect. 5 we discuss the potential of our system,
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the ability of agents to monitor the environment and user (via eye tracking) to
provide useful attention guidance, and its suitability for future human testing
and use in further applications.

2 Related Work

2.1 Workload, Eye-Tracking and Attention Guidance

The concept of workload and the demand on the limited attention of the human
operator is important in human factors. Mental workload describes the demands
on attention made by a cognitive task [42]. Often behavioural and physiological
measures are used to try to classify situations as eliciting low or high mental
workload e.g. [5,17,32,66]. A high mental workload has the effect of decreasing
performance and increasing stress [42]. Often the aim of classifying high/low
mental workload is to arrive at a solution aimed at alleviating conditions when
high workload is detected, in the form of automation that can be introduced to
aid the human operator. However, since the earliest introduction of automation,
it has been suggested that in many situations it is important to keep the human in
the loop even when a task has been devolved to an agent. The evidence suggests
that at most levels of automation it is important that the human operator is
kept engaged whenever possible user response might be required e.g. in the case
of automation failure [21]. Thus even highly automated systems may need to
consider how to convey information is such a way that the user is able to react
- the basis of this work.

Multiple ongoing tasks lead to divided attention, which is particularly detri-
mental to performance [42]. There is a general trade-off between the need for
selective attention to solve a given task and the need to detect other tasks that
may require attention. In divided attention conditions with complex tasks, the
phenomenon of cognitive tunnelling is often observed [41]. In this case if a user
is focused on solving a particular task, even salient cues can be missed.

Warning lights and alerts are used in interfaces to capture the attention of
the user, but this may lead to a situation where several alerts are activated at
once leading to ‘misplaced saliency’ [6]. In this case the attempt to make an area
stand out more has in fact the opposite effect by highlighting several areas and
thus further overloading the human, as they have to decide which to attend to
first. Additionally, overuse of alerting can lead to ‘automation disuse’ where the
user comes to ignore the help that is being offered, seeing it as a nuisance [68].
These aspects of attention are key to understanding how to improve situation
awareness (SA). SA describes a person’s awareness of relevant aspects of their
environment, the comprehension of these aspects, and predictions of what these
will mean in the future [20]. Lacking situation awareness is one of the main
causes of accidents attributed to human error [61].

In the context of describing how human attention is allocated over multi-
ple displays, it is important to note that the spatial layout of these displays
plays part in how the human user represents them [68]. Spatial memory is a
key component in monitoring the work space, spatially reorganising parts of the
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display has been found to be detrimental to performance [25]. Hence, it is gen-
erally preferable for an attention guidance system to maintain the layout of the
interface to allow a spatial representation to form.

Eye tracking has proved an invaluable tool in attempting to measure work-
load, through indicators such as changes in pupil size or the duration of each
fixation [40]. The spatial specificity of eye tracking has also led to it being devel-
oped as a tool for interaction [39]. A recent example uses eye tracking information
to ascertain which screen the user is currently looking at in order to guide them
to another screen in multi-monitor displays [63]. We propose that the spatial
specificity of eye tracking could be used for more localised guidance.

2.2 Gaze Contingent Attention Guidance

There have been many proposals over the years on how to design ‘attention aware
systems’ [54]. Concepts such as gaze based notifications have been introduced
and evaluated according to their ‘noticeability’ vs ‘distractiveness’ [33]. A great
deal of work has been done on gaze contingent attention guidance in the field
of education and training where the learner’s gaze is directed in an attempt to
ensure optimal learning [56]. This is done by using online eye tracking to detect
where the learner is focusing on the wrong information and using changes in the
display to guide their attention - the same principles we intend to use in this
work. A recent system for air traffic guidance makes use of online eye tracking to
monitor the user’s attention and direct it according to a simple logic that decides
where the user should be looking [48]. This very specific implementation, with a
control system tailored to air traffic control uses peripheral and central cues to
guide attention to the necessary parts of the scene. Initial tests with five users
suggested some improvement in perceived workload, although clear performance
metrics relative to a baseline were not presented in this preliminary work. Earlier
work [52] directs the user attention to target locations using a moving dot. In
this work they do not consider rules for guiding attention, and the eye tracking
and performance results are again not compared to a baseline. However, users
reported positively on their interaction with the system, suggesting that this
type of display has potential.

2.3 Agents

Human-computer environments where software agents act on behalf of a user are
not a new idea e.g. [38], nor is automating tasks to reduce demands on human
attention, e.g. [39]. Often agent capabilities have also been developed to predict
intention or task state from behaviour i.e. overt responses and interactions, to
provide assistance e.g. [50,57], and although eye-tracking agent assistants have
been introduced, they still remain to be fully tested [65]. Adaptive interfaces
have also been developed to use human physiological markers, such as heart rate
and eye blinks to dynamically distribute tasks between agents and humans [28],
but access to their corresponding test-beds is not available.
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Cognitive assistants often use agent models to internalise perceptions as
beliefs about the environment’s state, actions to produce results (e.g. [37]) or use
the BDI model (e.g. see [60]) based on intentions for goals the agent can plan for.
Goal reasoning [2] allows goals to be achieved or maintained, including external
goals specified by user guidelines and norms [58]. Agent decisions are modelled
with preferences over planned goals using logic if there is certainty (e.g. [31]) or
probabilities if there is uncertainty (e.g. [22]). Agent decisions may be explained
(e.g. [44]) to build trust with the user - key to successfully working with a human
[23]. However, many cognitive agent models and their implementation platforms
(see [10,36]) are often resource heavy for real-time applications as demanding as
eye-tracking. Although, light-weight versions exist, they are still at a prototypical
stage [3]. In addition, the benefit of cognitive assistants for human performance
has yet to be thoroughly evaluated experimentally in terms of assessing objective
measures of performance compared to baseline - most evaluations rely on user
questionnaire data reflecting subjective experiences [50].

To address some of the above limitations, our work is intended as a resource-
light test-bed that combines agent environments and a teleo-reactive (TR) agent
model [47] to support experiments for attention guidance applications where eye-
tracking is a key requirement. TR agent models (e.g. [34]) and implementations
(e.g. [13]) exist, and their link with models such as BDI have been studied
(e.g. [14]). However, our work is the first to apply a resource-light TR model for
attention guidance applications developed as agent environments.

2.4 MATBII as a Use-Case

MATBII [59] is widely used in the human factors literature as a multi-tasking
space. It is comprised of clearly defined spatially separated sub-tasks often requir-
ing rapid switching of attention. Difficulty is understood in terms of how often
each sub-task needs attention, thus MATBII is often used to investigate low and
high workload by changing the level of task difficulty, e.g. [24]. As shown in
Fig. 1, the sub-tasks consist of a system monitoring task, checking for changes
in colours of lights or positions of scales that require a mouse click response to
return to correct state; a tracking task that requires keeping a target within a
set of crosshairs; and a resource management task that requires manipulating
pumps to keep fuel tanks at the right level. The pumps in the resource manage-
ment task can be set to fail for a set amount amount of time. Pump failure is
shown by a change in colour and the fuel level going out of range is also indicated
by change in colour. MATBII is set up in such a way that under high frequency
conditions the probability of ‘misplaced salience’ is high. A further important
observation found from response patterns on MATBII is the presence of ‘cogni-
tive tunneling’ as described above, manifesting itself as the inability to switch
from one sub-task to another [24]. This provides us with multitasking situations,
where it is objectively clear at any point what the user needs to look at.

There is not a great deal of literature on eye tracking users in MATBII [59].
Nelson et al. [46] report percentage time fixating on each task, Kim et al. [32]
report changes in pupil size with increasing workload, and Berthelot et al. [5]
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Fig. 1. The MATBII system with sub-tasks labelled. (Color figure online)

extract a property called ‘self affinity’ from eye movement statistics. There is
much yet to be explored in the spatial pattern of eye movements whilst complet-
ing the task, for instance the effects of misplaced salience and cognitive tunnelling
have only been inferred from behaviour, it would be useful to see these effects in
more detail by measuring the spatial allocation of attention, which our proposed
system allows for and at the same time uses this information to guide attention.

3 Integrated Cognitive User Assistance

3.1 ICU

Although an open source Python implementation of MATBII with eye-tracking
(and further) options available has been recently released [12], we found it better
suited to our purpose of combining the interface with an agent architecture to
develop our own version of MATBII. We have opted for implementing a stripped
down version of MATBII, essentially the same in functionality, using just a subset
of the tasks but with some functional improvements that we feel are essential
for experimentation. We call this system the Integrated Cognitive User (ICU1),
which forms the interface part of the complete ICUa - with agents. Our system
brings new scope for experiments in human factors research owing to more flexi-
ble manipulation of the task space, the ability to collect eye tracking data easily
and interface in real time and also enables our work.

ICU has a bi-directional event API that may be used to interface with external
programs and can be used in a number of ways, including monitoring the system
in real time; for us its main purpose is to facilitate interaction with our agent

1 https://dicelab-rhul.github.io/ICU/.

https://dicelab-rhul.github.io/ICU/
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system. We have also tried to provide an improved configuration format2, which
can be used to quickly configure experiments by specifying event schedules con-
cisely, and change aspects of the interface and task behaviours. Moreover, the
system has built-in support for various kinds of user input, from standard input
(e.g. keyboard/mouse) to eye tracking devices and could be easily extended to
incorporate devices providing further physiological measures such as EEG or gal-
vanic skin response. Devices are treated as part of the event system, device input
is therefore exposed by the event API.

In terms of functionality, ICU reproduces the ‘system monitoring’, ‘tracking’,
and ‘resource management’ tasks from MATBII [59] using Python 3, see Fig. 1.
These tasks function similarly to those described in detail in [59]. Briefly, the
system task involves responding to whether a green light switches off or a red
light switches on, lights switch on/off according to a schedule, requiring a mouse
click to reset to the correct state. It also includes a set of scales that change over
time and that need to be kept as close the mid-point as possible and can be reset
to mid-point by clicking on the scale level. The tracking task uses a joystick or
keyboard presses to keep a randomly drifting target centred, the extent of the
drift is configurable. The resource management task requires the user to switch
pumps on and off to maintain the top two fuel tanks at the correct level, the
pumps fail at certain times making them unusable, pump transfer rates, tank
capacity, burn rate, frequency and duration of each pump failure, among other
things can be configured.

To support eye-tracking, ICU provides a wrapper around the PsychoPy library
[51], which enables any eye-tracker supported by the library to be used with
ICU (we assume that the eye-tracker is already calibrated). The system was
tested using a USB screen based X2-30 Tobii eye-tracker, sampling at 30Hz on
average. Raw gaze coordinates are filtered using an I-VT filter with standard
moving average as specified in [49], coordinates are classed as fixation (eyes are
stationary) or saccade (eyes are moving and thus unable to take in information).

3.2 ICUa: ICU with Agents

Previous work demonstrates the effectiveness of software agents for monitoring
practical applications, e.g. see [9,35,55,67]. Here we extend these works concep-
tually, by introducing an agent environment that contains ICU as an internal
object, where different agents can monitor the state of ICU (including informa-
tion provided by an eye tracker) and perform actions on it to highlight parts of
the screen for the user’s benefit. Although our framework is demonstrated with
ICU it is not specific to it, as ICU is used here more as an example to integrate
any suitable multi-task interface.

An agent environments approach has some significant benefits from a soft-
ware engineering perspective, especially modularity, which allows us to develop
and swap out different objects and agent behaviours easily for experiments.
Additionally, an agent-based approach leaves room for expanding the scope for

2 https://dicelab-rhul.github.io/ICU/documentation/configuration/.

https://dicelab-rhul.github.io/ICU/documentation/configuration/
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more complex environments by relying on multi-agent communication and coor-
dination models, and as a way of integrating complex cognitive capabilities for
guidance e.g. reinforcement learning [4].

Fig. 2. ICUa reference architecture in PyStarWorlds showing the four agents deployed.
We assign one agent to each of the first three application simulator tasks: system
monitoring, resource monitoring and tracking. These agents subscribe to task specific
events enabling them to perceive relevant information about the simulator’s current
state, including eye-tracking information about saccade or fixation, and communica-
tions from other agents in the system. The agents’ actions have the effect of modifying
the application interface i.e. to draw an overlay. We consider actions with two kinds of
feedback (a) highlighting a particular sub-task and (b) draw an arrow at the current
gaze location that points in the direction of a component that needs urgent atten-
tion. The fourth agent, the evaluator, monitors the user’s performance using specific
performance metrics.

ICUa is ICU extended with agents implemented in PyStarWorlds [1], an agent
environment library that supports Python agent applications. The reference
architecture of ICUa, shown in Fig. 2, is based on a specialised single container
version of the GOLEM framework described in [7], which is implemented as an
event-processing system under a publish/subscribe model [8]. ICU is internalised
as an environment object by the API it exposes, so that its state can be perceived
and acted upon by agents. Agents have a mind and body [62], the mind controls
the agent behaviour, while the body relies on sensors and actuators to situate
the agent in the application environment. Agents perceive events with their sen-
sors, make decisions with their mind and attempt actions with their actuators. A
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type-based publish/subscribe mechanism routes events to/from the sensors/ac-
tuators [8], which is known to be scalable. The environment provides a Physics
module containing action execution rules where the semantics of each action are
defined. We assume that agents are aware a priori of action preconditions/effects
and so are able to decide which actions should be taken. ICUa is agnostic as to
which agent model is to be used, different models can be adopted depending on
the application domain.

For this domain, agents and their behaviours are specified in Python using
condition-action rules following the teleo-reactive (TR) execution model [47] for
goal directed behaviours (e.g. [18]). We assume a fixed perceive-revise-decide-
attempt control cycle [30] that allows an agent to perceive the latest environ-
ment changes via the sensors, revise its internal state modelling the environment
(or belief store), then decide about what action(s) to take, and finally attempt
these actions using the agents actuators. In this setting, the TR model helps us
structure the behaviours of the agent within the decide part of the agent’s cycle,
according to the goals the agent seeks to achieve. These behaviours are specified
as a set of condition/action rules of the form:

G : {C1 → A1;C2 → A2; . . . ;Ci → Ai; . . . ;Cn → An}
where G is a goal, Ci a condition over internal variables (beliefs), and Ai is either
a primitive action, or a sub-goal (giving rise to a sub-behaviour) that can itself
be a TR program of the form:

Ai : {Ci,1 → Ai,1;Ci,2 → Ai,2; . . . ;Ci,m → Ai,m}.
This gives rise to a significant simplification of a BDI-style planning layer that
manipulates a plan library in which plans are comprised of hierarchical, sus-
pendable and recoverable teleo-reactive programs [14]. The top-level goal G for
the agent is triggered inside the decide part of the agent’s cycle. The list of rules
is scanned top-down for the first rule whose condition is satisfied, to select an
intention and the corresponding action is attempted. It is important to note that
the conditions are continuously being evaluated at each cycle step, so that when
the first true condition changes due to new belief update, the intention changes
accordingly. In other words, an action/sub-goal is revised, only when its true
condition in the agent’s internal state ceases to be true.

It is straightforward to create a subset of the TR paradigm for developing
agent behaviours using Python, or a similar programming language. Assuming
a round-robin agent execution of an agent’s control cycle, there is a natural cor-
respondence between TR programs and most programming languages, as shown
in Fig. 3. An example of a simple monitoring behaviour that follows this model
is given in Fig. 4(a). This kind of programming is quite flexible and can support
more complex behaviours. For example, in principle an agent may be monitor-
ing multiple parts of a screen (e.g. multiple pumps for the resource management
task), it may attempt multiple actions in a single cycle (e.g. to highlight multiple
pumps). As a result, the top-level goal in such cases needs to operate on sets
of actions, simulating parallel execution of independent monitoring behaviours,
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each with the form of a TR program, as for example in the interpretation used
by [13], but in our case using PyStarWorlds. An example is given in Fig. 4(b).

Fig. 3. Mapping of a simple version of TR rules in Python, which in PyStarWorlds are
evaluated continuously. Sub-goals are method calls. C n = True forces the last rule to
always succeed if all other rules above fail to trigger.

Using the above architecture we implement a few simple rules for our agents
to adhere to. The agents’ goal is to shift the attention of the user to a sub-task
that requires action if the user appears to have ignored it. Each agent has a built
in grace period, which constitutes whether the sub-task is deemed to have been
ignored. If in this time the required action has not taken place and importantly
the gaze has not moved to the sub-task, then the agent responsible for the sub-
task displays a relevant highlight. A highlight can be configured to constitute
an outline of a sub-task, a transparent overlay, an arrow at the current fixation
point or a combination of these. This involves agents checking the current gaze
fixation position and whether it is in the required sub-task region of interest.
Thus, we ensure that guidance is not displayed unnecessarily if attention has
been transferred, but an action not yet produced. The agent also checks that no
other guidance is being displayed at the time, as the aim is to not introduce a
divided attention condition. So only one agent will be displaying guidance at any
given time. If the requirements are met, the agent will display guidance and this
will remain on display until the gaze position moves to the required sub-task or
the task is resolved. Again, once gaze has moved we take this as an indicator that
the task will be responded to as required. However, if the user moves their gaze
away whilst the task still requires attention, it will again become highlighted
after a second grace period, if the gaze has not returned. These simple rules are
designed to move the user’s attention on from a cognitive tunnelling situations
with minimal unnecessary competing visual additions to the display. We do not
assign differential importance to any of the sub-tasks, but such a hierarchy could
easily be implemented in future.
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Fig. 4. Agent monitoring examples in Python TR style. In (a) we show a simple single-
action monitoring behaviour that highlights a component (part of a task) if needed. In
(b), we operate over sets of actions. This enables the agent to highlight many compo-
nents if necessary. In practice we limit agents to highlighting a single component (to
avoid overloading the user), however the parallel execution of behaviours is useful for
our simulated human users outlined in Sect. 4.
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4 Simulating Simple Examples of Human Behaviour

(a) Resource (b) Scales (c) Warning Light

(d) Tracking (e) Highlight (f) Workload

Fig. 5. Graphs (a)–(e) show error of three simulated users according to the evaluation
metrics given in Sect. 4.1, lower error means better performance by the agent. The
‘stay’ user will ignore agents advice until a particular task is complete (there is not
more action to be taken for the moment). The ‘follow‘ user will always take the agents
advice and move to solve the recommended task (see Fig. 6 for details). Error is shown
as a function of the “delay” period introduced to each decision, a restriction on the
user’s ability. There is no delay parameter for the ideal (ideal) user, we mark this
minimal possible error as a horizontal line on the graphs for comparison. All results
are averaged over 10 runs of 1 min each and normalised in the [0–1] interval. The shaded
regions show 95% confidence intervals. Graph (f) shows the error for the ‘tunnelling’
user at two difficulty levels (medium and hard) on the resource management task. The
difficulty is set in the configuration file by specifying different event frequencies. For
all simulations grace periods until a highlight is displayed are set to 2 s.

To demonstrate the flexibility of our agent system and provide some insight into
how the system might perform with different user behaviours we have imple-
mented and evaluated four different kinds of ‘user’ agents, see Fig. 5. Each ‘user’
agent directly observes events from the ICU system and is able to provide fake
user input e.g. mouse clicks, key input and eye movement. This set up also pro-
vides a basis for future researchers wishing to simulate more complex human
behaviour.

The ideal user reacts immediately to MATBII events and is not constrained by
any input delay e.g. eye movement speed or response delay, it can simultaneously
observe and react to changes in all tasks. This ideal agent is used as a baseline
and achieves the highest possible performance (i.e. lowest error rate with no need
for guidance).
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We also model a worst case scenario with a user agent that never moves
their eyes from a sub-task (which in this case is the resource management task)
and only makes responses to that sub-task, a case of cognitive tunnelling (‘tun-
nelling’).

The final two users are imperfect, in that they only respond to a sub-task
once guidance is provided and they require some time to provide a response.
They will only attempt to solve a sub-task when looking (i.e. while fixated on
the sub-task area) and require time to act (including eye movement). In our
experiments an agent moves its eyes at a constant speed 1000px/s mimicking
the rapid saccades made my humans in between fixations, which we model here
as the gaze remaining static in a given location. The relevant part of the two
behaviours is presented in Fig. 6.

Fig. 6. Two exerts from the simulated imperfect users showing the key difference in
their behaviour. (a) The ‘follow’ user’s gaze always follows guidance when present
causing it to abandon its current, possibly unresolved task and move to another. (b)
the ‘stay’ user remains focused on a task until no further action can be taken to resolve
it then follows guidance to reach the next task.

The two follow/stay behaviours are set up to correspond to two extremes
of behaviour, we expect human behaviour to lie somewhere in-between the two.
With both, we vary the delay with which they are able to respond. With larger
delay times, it is more likely that the ‘follow’ user will abandon a sub-task before
it has been solved, while with the ‘stay’ user, other tasks will remain unsolved
for a longer period.
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4.1 Evaluation Metrics

To measure the performance of each user agent we use the following metrics,
which are normalised over time and averaged over components where applicable.
The metrics are representative of the user’s error when solving tasks, 0 being a
perfect score for each metric.

– Time that main fuel tanks are out of the acceptable range in the resource
management task.

– Deviation from acceptable state of the scales (L1/time) in the system moni-
toring task.

– Time that warning lights are in an incorrect state in the system monitoring
task.

– Deviation from the central acceptable box (L∞/time) in the tracking task.
– Time at least one warning (highlight or otherwise) is displayed on the overlay.

4.2 Simulation Results

The errors calculated using our evaluation metrics are shown in Fig. 5. The ideal
user (see Fig. 5) has minimal error, any small error that exists is a result of
the slight processing delay due to simulation speed (100 ms per agent cycle).
If we look at the performance measure associated with the length of time that
highlights are displayed, we see that this is zero for the ideal observer, reflecting
that our system does not display highlights when not required.

At the other extreme our ‘worst case’ tunnelling user (Fig. 5) provides an
upper bound level of error on tasks other than the resource management task
they are focusing on. The on/off nature of the warning lights is reflected in the
constant maximum error across delay, the scales and tracking are more variable
in their error as it is possible for them to randomly return within acceptable
parameters. For this user, after the first grace period, a highlight will always be
displayed. In the resource management task of course they perform best as this
is the task of focus. We can see the effect of delay in the responses making their
performance worse.

In the case of our imperfect users that are guided by the highlights (the follow
and stay users in Fig. 5), but do not respond otherwise, their performance is
somewhere between the two more extreme ideal and tunneling users, as expected.
This reflects that a human who makes use of the highlights to guide them, is
of course not a perfect user, but is likely to perform better than a user who
completely ignores the need for a response. With these users we can also see the
effects of a delay in the response, as the response slows, so we can see the error
generally increases. The advantage of staying on a task (‘stay’ user Fig. 5) until it
is ‘solved’ varies to some extent with the delay of the response. The warning lights
and scales parts of the system monitoring task suggest an initial small advantage
for always following the highlighting, which then disappears with delay. The
more continuous nature of the tracking task produces a different pattern, with
an apparent small initial advantage for the user who remains on task until solved,
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but with increased delay the user that follows the highlighting performs better.
The highlighting metric reflects these two behaviours in that the user that follows
the highlighting has less highlights on screen over time. Of course we also see that
following highlights will reduce performance relative to the tunnelling approach
on the single task chosen to focus on (resource management).

In Fig. 5 (f) we illustrate how task difficulty can be manipulated in our system
by changing the frequency of events. We show the results for our worst case
‘tunnelling’ user on the resource management task. With a short delay in the
user response there is a relatively small difference in performance between low
frequency and high frequency events, as they are able to respond quickly enough
to resolve the high frequency events. With increased response delay, in each
case the user performs worse, with a higher error for the more difficult case
consistently.

Our simulations have shown how attention guidance may in principle improve
performance for imperfect users in cases where users shift their attention immedi-
ately, compared to when they are unable to shift their attention due to cognitive
tunnelling. Our guidance agents’ behaviour has been tailored in an attempt to
provide the most useful feedback and avoid overloading the user. We have tested
only one class of guidance behaviour, based on the principles outlined in Sect. 2,
which works as a proof of concept. Our simulations also allowed us to visualise
the effect of increasing task difficulty by increasing event frequency and how this
depends on the delay in the user action.

In addition to our simulated user tests, we have tested the capacity of the
system and found that the ICUa was able to deal with up to a million events
per second without raising any performance issues (for reference, the event load
under normal operation does not exceed more than one thousand per second
with a high-throughput eye tracking device).

5 Discussion

We have successfully demonstrated, by modifying the widely used MATBII cock-
pit task simulator, how an information display and interface system can be mon-
itored by agents and how a human user may be incorporated into the agent
environment by monitoring of their eye movements and responses. Our agents
have been deployed to enact simple attention guidance in a simulated setting.
We have demonstrated this important test case as a proof of concept of the
architecture of such a system in a simple task space known to replicate some of
the problems that have been found with user inattention.

5.1 Simulation Summary

We used our agent system to build ‘user agents’ that are able to simulate some
simplified examples of human behaviour synthetically. This enabled us to demon-
strate the behaviour of the system by summarizing error patterns under different
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conditions. We can conclude that the system works as expected, and that fol-
lowing the guidance reduces the error from a worst case scenario where a user
is only paying attention to a single task. The different simulated users showed
different patterns across delay. Changing the rules we implemented for following
the highlights resulted in different performance error patterns. We also demon-
strated how the configuration can be set to manipulate the difficulty of a task
with a resulting change in performance.

The user agents are designed to demonstrate only upper and lower bound
performance, and the effect of following the attention guidance for improving
performance. We expect human behaviour to be some combination of our simu-
lated users. Under certain conditions humans will be able to respond with some
delay to a sub-task that required a response; sometimes they will only respond
when there is a highlight; and sometimes the highlight may cause them to move
their attention before they have solved a sub-task. This system is now suitable
for experiments with human users to explore these scenarios and to ascertain
optimal rules for the agents. For instance, the simulations suggest that high-
lights may not always be advantageous if the user follows them before they have
solved the current sub-task they are focusing on.

The inclusion of user agents opens up our system to further simulations using
more complex examples of human behaviours that may occur under different
conditions and to test how ideal display rules may vary with different examples
of human behaviour.

5.2 Future Experiments with Human Users

ICUa runs on a desktop PC with an eye tracker attached and can record the
performance of human participants under different specified conditions. A first
step would be to test the current system with the existing simple rules and
assumptions to determine if it is effective at guiding attention and thus improving
performance in humans. From the simulations it is already evident that there will
be certain conditions under which attention guidance is particularly useful. In a
low workload condition it may be that user guidance has lesser impact as there
are less demands on attention, although studies also show negative effects of low
expectancy - very infrequent unexpected events can also be missed, especially
if there are other tasks that require constant monitoring [68]. If the events are
happening too quickly for human users to successfully deal with them their may
be a floor effect where attention guidance no longer helps (as seen in the longer
delay times in our simulations).

Experiments would involve manipulating the frequency of events in our sys-
tem and also comparing highlighting alone vs arrows alone and the two presented
together, to examine the cost-benefit of single vs multiple and central vs periph-
eral cues. We expect to find a ‘sweet spot’ where attention guidance works best.
The system can be combined with subjective measures of workload such as the
NASA-TLX [26] as used within the original MATBII [59].

The modified ICU interface makes its suitable for measuring eye movements
during a task that is similar to MATBII, making it suitable for wider experimen-
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tation beyond our current set-up. This environment provides an ideal testing
ground, for different methods of attracting and maintaining attention. Attention
guidance could be varied by choosing different colours of highlights, or imple-
menting synchronous flashing between the highlight and the arrow [68] or by
blurring areas that are not of interest [27]. The current system allows for mea-
suring associated eye movements, responses and performance with such changes.
Moreover, by making use of the agent architecture, our simple rules for deploy-
ing attention guidance could be altered to observe the best effects on human
performance. The use of agents provides a useful way of manipulating rules for
changing displays.

5.3 Potential Further Extensions and Applications

As highlighted, one strength of the agent-oriented approach and our agent model
is that it is modular - extra modules can be added in terms of additional inter-
face tasks and associated inputs, but also in terms of physiological signals of
attention and other measures of the human mental state we may want to rep-
resent. Not just visual, but also auditory inputs for example are possible and
additional physiological measures can take us beyond tracking spatial visual
attention, including other measures that can be read from the eye tracker such
as pupil size. Pupil size has been a useful measure in terms of tracking vigilance,
fatigue and workload [53].

As more complex inputs are added, so the agent behaviour repertoire can be
expanded. More complex rules can be added, leading to the agents performing
more complex calculations that exceed human capacity, defining for example
what would be the best thing to attend to for the human, when this is no longer
intuitively clear, especially under a moment of high pressure, or taking over
some of the task and carrying out some of the required responses automatically.
This could be done in an adaptive way [29], incorporating workload in to the
agent model to enable adaptive processes, making the most of agents’ human-
like ability and explainability. The aim of the explainability is to help the human
interpret the environment and the actions of the agents. Using agent behaviour
that can be transparent to the human helps build trust, which is critical to
optimal human computer interaction [19]. There is no explicit user modelling in
the ICUa currently, however agents are particularly suited to more complex user
modelling such as those used to track learning through tutoring software [67]
and our system is suited for this kind of extension.

Agents can also provide the basis for a learning framework. Whilst agent
behaviour may in itself alter due to the ongoing conditions, such as ongoing
high workload or fatigue as a way of achieving goals under different conditions,
a further degree of individualisation to the user may be possible by enabling
agents to learn form the past behaviour of the user.

Mobile eye trackers can be used to map eye position in real time to the
surrounding environment recorded by a camera [64]. It has been suggested that
gaze based interactive displays could be useful in a cockpit setting [39], which
MATBII is set up to mimic some aspects of. Current AI cockpit applications
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involve automating many systems, which involves the human user handing over
control. A future application of our system may be providing a way to ensure
that human monitoring remains interactive, to keep the human in the loop in a
cockpit environment. Increasingly cockpits are augmented, often being displayed
in helmet in heads-up displays that can be moved around and tailored to the
user, something that could be incorporated in to the agent system. The system
we have developed aims to ensure that once a target for attention is known to
the system, it is successfully processed by the human user. This emphasis means
our work has applications in many systems where attention guidance might be
called for, such as in semi-autonomous vehicles, within the remote operator room
for automated vehicle systems, in air traffic control, or even alerts that may go
unnoticed or not fully comprehended in everyday office computer usage.

6 Conclusion

We have built an attention guidance system using agent environments as the
underlying framework. Central to our work is the notion that an interactive com-
puter system construed as an agent environment should represent the human user
as an entity providing continuing feedback, so that the system can ensure that
they can process information within their limited attentional resources in order
to produce the necessary human responses. Our proof of concept prototype aims
to keep the human in the loop, in this case primarily via their eye movements
and with feedback from agents. Our agent-based approach to attention guidance
presents some clear advantages, such as modularity, scalability and extensibility.
We propose that our approach, as exemplified by our system, is suitable for a
wide range of experimentation where humans interact with multi-display inter-
faces based on attention guidance, and this is our next step for continuing this
research.
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Abstract. To apply BDI agents to real-world scenarios, the reality-gap,
between the low-level data (perceptions) and their high-level represen-
tation (beliefs), must be bridged. This is usually achieved by a manual
mapping. There are two problems with this solution: (i) if the environ-
ment changes, the mapping has to be changed as well (by the developer);
(ii) part of the mapping might end up being implemented at the agent
level increasing the code complexity and reducing its generality. In this
paper, we present a general approach to automate the mapping between
low-level data and high-level beliefs through the use of transducers. These
transducers gather information from the environment and map them to
high-level beliefs according to formal temporal specifications. We present
our technique and we show its applicability through a case study involv-
ing the remote inspection of a nuclear plant.

Keywords: Agent programming · Stream processing · BDI model ·
Abstract environment

1 Introduction

Multi-agent systems (MAS) are a complex, yet general, research area involving
the design and construction of distributed intelligent systems. Software agents
are generally used to model one or multiple components of a system, and allow to
abstract away unnecessary implementation details. Agents are well-suited to be
used in applications involving distributed or concurrent computation, or when
communication between different components is required.

One of the most used models to formalise the internal architecture of cogni-
tive agents is the Belief-Desire-Intention (BDI) model. The BDI model [10,28]
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consists in a reasoning process that aids the decision-making of selecting an
appropriate action towards the achievement of some goal. The decision mak-
ing process is based on the three components: belief – knowledge that the agent
believes about its environment, itself, and other agents; desire – the desired states
that the agent wants to achieve; and intention – a sequence of steps towards the
achievement of a desire.

Usually, agents are situated in an environment. The environment can be seen
as the medium for an agent to live, or the first entity an agent interacts with
[22]. As we mentioned before, a BDI agent reasons on what it believes about
the environment. From an engineering perspective, beliefs help to simplify the
agent development by abstracting away technical details that are irrelevant for
the agent. In fact, all the aspects of multiagent systems that conceptually do
not belong to agents themselves should not be assigned to, or hosted inside the
agents [39]. A natural question is:

How are low-level environment perceptions transformed into high-level beliefs?
An abstraction level of the environment is a common solution in agent systems,
and it is supported in most agent platforms. The abstraction level bridges the
conceptual gap between the agent abstraction and low-level details of the deploy-
ment context [38], and it is a middleware between the real environment and the
agents. The abstract environment has the job of gathering information from the
real environment, and transforming it into beliefs. Its implementation is domain
dependent, and it is generally hard-coded. This means the developer has to man-
ually program the translation into the abstract environment. For small environ-
ments, this might be a valid solution; but, for bigger, more dynamic and complex
ones, an automatic (and more declarative) way to define the environment can be
more practical and efficient. Note that such a definition is still in a certain way
hard-coded, but, by using a customised and higher-level specification language
rather than a general-purpose one, we can help the user to write the abstraction
in a more compact and natural way. Examples of this are shown throughout the
paper.

In this work, we present StreamB, a Domain Specific Language (DSL) for
processing data streams in abstract environments. With StreamB it is possible
to guide the translation from low-level information (e.g. sensors) to high-level
concepts (e.g. beliefs). Thanks to its declarative nature, StreamB is much more
intuitive and helps the user to create abstract environments, by reducing the
amount of actual code to be produced; since the mapping process is automati-
cally synthesised by StreamB. In more detail, StreamB is built upon the notion of
Stream Processing, and allows the user for a flexible yet straightforward way to
map low-level environment data, to high-level agent beliefs. StreamB has been
fully instantiated, and all its features are thoroughly presented in this paper,
along with an example of an application to a challenging case study in a robotic
scenario.

The paper is structured as follows. Section 2 introduces the notion of stream
processing. An overview of our technique is presented in Sect. 3, followed by a
step-by-step explanation of StreamB’s syntax and semantics. Technical details
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on how StreamB has been implemented are discussed in Sect. 4. Section 5 shows
an application of StreamB to a realistic case study. In Sect. 6, we place our work
in the state-of-the-art. Conclusion and future works are presented in Sect. 7.

2 Stream Processing

The complexity of modelling a real-world scenario often results in the need of
an abstraction. What needs to be modelled in the abstraction, and how to do it
depend on the problem under consideration and the approach to be implemented.
This paper focuses on the part of the abstraction which allows us to decouple
the environment from the high-level decision making process of the agent. This
results in a simplified agent’s implementation, where the agent focuses on high-
level beliefs, without knowing how such beliefs have been generated and other
related technical details.

The main focus of our approach is on how to extract complex temporal
information from data streams, and transform them into high-level beliefs for the
agent. There are two fundamental aspects that need to be addressed in order to
achieve our goal. First, how we are processing the stream and what data streams
are composed of. Second, what language is used to express complex temporal
information.

Stream processing [34] is a software paradigm that focuses on the real-time
processing of continuous streams of data. Stream processing is generally obtained
by creating transducers that, given a stream of data in input, return an altered
stream of data in output. The output of one or multiple transducers can be
used as input to other transducers; this allows us to obtain complex behaviours.
Figure 1 shows an example of a transducer, which takes n data streams as input,
and returns a single data stream as output, which contains the result of the
transducer’s computation. The input of a transducer can be generated by the
system (e.g., by sensors), or by other transducers. The combination of multiple
transducers is in fact one of the most interesting features of stream processing.

Transducer

input1

output. . .
input2

inputn

Fig. 1. Transducer.

For a given sensor or transducer, we represent their stream of data as
sequences of triples of the form (τ, id, value), where τ denotes the time when
the data is produced, id is an identifier uniquely associated with the sensor or
transducer, and value represents the value of the data. In our modelling of data
streams, we adopt a discrete conception of time, where each timestamp τ ∈ N
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and there is a first timestamp τ0. One of the main implications of using such
a representation of time is that we need each component of the system to gen-
erate data at the same rate. For this reason, we assume the environment to be
equipped with a global clock. The global clock works as a barrier between the
system and the transducers, and it forces the data streams to produce data at
the same pace. Our framework enforces a global clock by sampling the data at
a fixed and customisable rate.

Another consequence of this representation of time is on how and which
temporal properties can be expressed. The formal language we use to express
temporal properties on the stream of data is a sublanguage of the first-order met-
ric temporal logic with aggregation presented in [4]. It is beyond the scope of this
paper to describe in detail the logical language behind our framework. Nonethe-
less, we briefly present the important aspects that are necessary to understand
it. First, the language can only refer to past events using time intervals, where
only the length of the interval is specified, and the starting point is based on
the time of evaluation (e.g., given a time τi and a length j, the relative time
interval is [i − j, i]). Second, we allow only for the aggregation operations of
average, minimum, maximum, and sigma (i.e., standard deviation) over a given
time interval. If the length of a time interval is greater than the length of the
stream, the interval is reduced accordingly. Finally, different components of the
language are dealt with at different stages of the hierarchy of transducer pre-
sented in the next section. The final output is a stream of Boolean values, which
represent agent’s beliefs.

3 StreamB

In this section, we show how to create abstractions by using transducers. The
resulting stream processing approach transforms the low-level data produced by
the real environment execution into high-level beliefs, which can be used by a
BDI agent. A general overview of the approach is sketched in Fig. 2. Specifically,
this section presents StreamB, a user friendly Domain Specific Language (DSL)
for automatically synthesising transducers mapping low-level data into high-level
beliefs. The synthesising process is based on the creation of a hierarchy of differ-
ent kind of transducers, and the section presents both their DSL specification,
and the corresponding synthesised transducer.

In our technique, the agent does not need to interact with the real-world
environment, but only with an abstraction of it. The complexity of how the
beliefs are created is hidden from the agent.

3.1 Data Types and Time

First, we need to introduce how the data streams and time are specified in
StreamB. The transducers work in a hierarchical way, from the lowest layer,
where the data from the real-world environment are gathered, up to the highest
layer, where the beliefs are generated and passed to the agent. In our framework,
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Environment
data belief

Agent

action

Abstract Environment

Fig. 2. Overview.

three data types are available: int, real and bool. That corresponds to their
standard notions.

Grammar 1.1 reports the StreamB grammar to define data streams.

〈data〉 ::= 〈ident〉 ‘:’ 〈type〉 ‘;’

〈type〉 ::= ‘int’ | ‘real’ | ‘bool’

Grammar 1.1. Data stream grammar.

In 〈data〉, a data stream is defined, where 〈ident〉 is an identifier (the name
of the stream), and 〈type〉 its type.

Example 1. Let us assume the real-world environment contains a sensor that
reports a stream of real values representing the current temperature of the envi-
ronment. Listing 1.1 shows how to define such a temperature data stream. Since
temperature is a floating point value, we use the real data type.

temperature: real;

Listing 1.1. Example of data stream definition.

As remarked in Sect. 2, since these streams are generated by the real-world
environment, there is no guarantee on the rate these data are produced. In
fact, different streams can be generated at a different rate. This may be an
issue when combining transducers. Because of this, a global clock is enforced by
StreamB, and its pace can be customised (see Grammar 1.2). Under the hood,
this is achieved by filtering data of streams with higher rate than the chosen
one, and by replicating data of streams with lower rate than the chosen one.
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〈time〉 ::= ‘time_unit’ ‘[’ 〈time-unit〉 ‘]’

〈time-unit〉 ::= ‘milliseconds’ | ‘seconds’

Grammar 1.2. Time unit grammar.

This is explained in detail in Sect. 4, where the transducers implementation is
presented.

Example 2. Let us assume we want to set the time unit to seconds. Listing 1.2
shows how this can be done.

time_unit[seconds]

Listing 1.2. Example of time unit definition.

Every time a transducer will define an interval of time, the time unit consid-
ered will be seconds (in this case).

By stating that the time unit is seconds, the pace of all data streams will be
of one event per second. Once the data streams and time unit have been defined,
transducers can be constructed on top of it.

3.2 Aggregation Transducers

The first layer of transducers is the Aggregation layer. As the name suggests,
the aggregation transducer’s job is to aggregate information. This information
can come from the real-world environment, or from other aggregation transduc-
ers. StreamB’s grammar for the aggregation transducers is presented in Gram-
mar 1.3.

Each line describes a different aggregation function. In the first line of
〈aggrT 〉, the min aggregation function is defined. It gets a stream of data and
outputs the minimum value observed. If no range is given (the number between
the square brackets), the minimum value is calculated considering all values
observed by the transducer (since the beginning of its execution). If a range is
given, the minimum value is evaluated only considering the values observed in
the interval defined by the range. The same reasoning can be applied to the other
aggregation functions, where we consider the maximum, average and sigma1 of
the observed values, respectively. Each aggregation transducer is assigned an
identifier name 〈aggrAssign〉, making it possible to reuse transducers inside the
definition of other transducers. This is stated in the last line of 〈aggrT 〉, where
the base cases are listed. Note that an identifier can relate to an aggregation
transducer (defined as 〈aggrAssign〉) or a data stream (defined as 〈data〉 in
Grammar 1.1).

1 It computes the standard deviation over the data stream.
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〈aggrAssign〉 ::= 〈ident〉 ‘=’ 〈aggrT 〉 ‘;’

〈aggrT 〉 ::= ‘min’ 〈aggrT 〉
| ‘min’ ‘[’ 〈number〉 ‘]’ 〈aggrT 〉
| ‘max’ 〈aggrT 〉
| ‘max’ ‘[’ 〈number〉 ‘]’ 〈aggrT 〉
| ‘avg’ 〈aggrT 〉
| ‘avg’ ‘[’ 〈number〉 ‘]’ 〈aggrT 〉
| ‘sigma’ 〈aggrT 〉
| ‘sigma’ ‘[’ 〈number〉 ‘]’ 〈aggrT 〉
| 〈value〉 | 〈ident〉

Grammar 1.3. Aggregation transducers grammar.

Example 3. Considering the same real-world environment of Example 1. We
could create a transducer that extracts the average temperature in the past
5 time units (5 s in this case). Listing 1.3 shows how this can be defined using
StreamB. In here, we can see how an aggregation transducer can use a previously
defined data stream, temperature in this case. This is obtained by the last line
of 〈aggrT 〉, where 〈ident〉 is matched.

time_unit[seconds]

temperature: real;

avgTemp5 = avg [5] temperature;

Listing 1.3. Example of aggregation transducer.

A graphical representation of the resulting transducer is shown in Fig. 3. Time
references τn−1, τn, τn+1 are added to indicate the time flow inside the stream,
and to make easier to connect the inputs with their corresponding outputs.

Fig. 3. Example of average transducer.
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3.3 Comparison Transducers

The second layer of transducers is the Comparison layer. The transducers defined
at this layer get data streams (layer 0), or aggregated streams (layer 1), and out-
puts a Boolean stream, representing the truth value of the associated evaluation.

StreamB’s grammar for the comparison transducers is reported in Gram-
mar 1.4.

〈combAssign〉 ::= 〈ident〉 ‘=’ 〈combT 〉 ‘;’

〈combT 〉 ::= 〈aggrT 〉 ‘<’ 〈aggrT 〉
| 〈aggrT 〉 ‘<=’ 〈aggrT 〉
| 〈aggrT 〉 ‘>’ 〈aggrT 〉
| 〈aggrT 〉 ‘>=’ 〈aggrT 〉
| 〈aggrT 〉 ‘==’ 〈aggrT 〉
| 〈aggrT 〉 ‘!=’ 〈aggrT 〉

Grammar 1.4. Comparison transducers grammar.

Each line describes a different comparison function. In the first line of
〈combT 〉, the less than function is defined. Such a function compares two streams
and outputs a stream with values either �, if the current value on the left stream
is less than the current value on the right stream, or ⊥ otherwise. Similar rea-
soning can be applied to all the other standard comparison operators. Each
comparison transducer is assigned an identifier 〈combAssign〉. As before, this
makes possible to reuse transducers inside other transducers.

Example 4. We can now extend Example 3 by using a comparison transducer
to check when the average temperature in the past 5 s goes under 4.0◦. The
corresponding definition is reported in Listing 1.4, while the resulting transducer
is shown in Fig. 4.

time_unit[seconds]

temperature: real;

avgTemp5 = avg [5] temperature;

thresholdLowTemp = avgTemp5 < 4.0;

Listing 1.4. Example of comparison transducer.

3.4 Past MTL Transducers

The third layer of transducers is the Past MTL (Past Metric Temporal Logic)
layer. The transducers defined at this layer get Boolean streams (either from
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Fig. 4. Example of comparison transducer (thresholdLowTemp is abbreviated to
thLowTemp).

comparison transducers or data streams), and outputs a Boolean stream, repre-
senting the truth value of the associated MTL property.

StreamB’s grammar for the MTL transducers is reported in Grammar 1.5.

〈mtlAssign〉 ::= 〈ident〉 ‘=’ 〈mtlT 〉 ‘;’

〈mtlT 〉 ::= ‘pre’ 〈mtlT 〉
| ‘once’ 〈mtlT 〉
| ‘once’ ‘[’ 〈number〉 ‘]’ 〈mtlT 〉
| ‘always’ 〈mtlT 〉
| ‘always’ ‘[’ 〈number〉 ‘]’ 〈mtlT 〉
| 〈mtlT 〉 ‘since’ 〈mtlT 〉
| 〈mtlT 〉 ‘since’ ‘[’ 〈number〉 ‘]’ 〈mtlT 〉
| ‘not’ 〈mtlT 〉
| 〈mtlT 〉 (‘&&’|‘||’|‘->’) 〈mtlT 〉
| 〈combT 〉
| 〈ident〉

Grammar 1.5. MTL transducers grammar.

Each line describes a different MTL operator. The pre operator states that
a predicate has to be true in the previous time step. The once operator states
that a predicate has to be true at least once in the past. If a range is given
(numbers inside brackets), the property is checked on that specific interval of
time (in the past). The always operator states that the predicate must always be
true in the past. As before, the property can be constrained to a specific interval
of time in the past. The since operator states that the right property is true in
the past, and since then, the left property is always true (potentially within an
interval). The remaining operators are standard Boolean operators. Each MTL
transducer is assigned an identifier 〈mtlAssign〉. As before, this makes possible
to reuse MTL transducers inside other transducers.
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Example 5. We extend Example 4 by using an MTL transducer to check if the
average temperature (sampled on a 5 s interval) is always less than 4.0◦2 in the
past 2 s. In Listing 1.5, we report how this can be defined in StreamB. In Fig. 5,
we graphically show the resulting transducer.

time_unit[seconds]

temperature: real;

avgTemp5 = avg [5] temperature;

thresholdLowTemp = avgTemp5 < 4.0;

lowTemp = always [2] thresholdLowTemp ;

Listing 1.5. Example of MTL transducer.

Fig. 5. Example of always transducer.

With respect to the other transducers, MTL ones are very expressive. In
fact, with MTL we can specify interesting temporal properties. This is impor-
tant because with a highly expressive formalism, we can represent complex
behaviours. This means having a higher coverage on the kind of beliefs we
can model. From an engineering perspective, an MTL property can be easily
specified; but, its implementation might not be trivial. Thanks to StreamB, the
translation of MTL properties to transducers is automatic and transparent. Oth-
erwise, these kind of beliefs could not be handled, or they would be handled by
hard-coding the abstract environment (with a non negligible amount of work).

3.5 Belief Transducers

The fourth layer of transducers is the Belief layer, and it is the final layer that
connects the stream processing to the agent. The transducers defined at this
2 It is important to note that instead of a number we may have a stream.
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level get comparison and MTL streams (layer 2–3), and outputs the high-level
beliefs used by the BDI agent.

StreamB’s grammar for the Belief transducers is reported in Grammar 1.6

〈belAssign〉 ::= 〈ident〉 ‘=’ 〈belT 〉 ‘;’

〈belT 〉 ::= 〈mtlT 〉
| 〈belT 〉 ‘and’ 〈belT 〉
| 〈belT 〉 ‘or’ 〈belT 〉

Grammar 1.6. Belief transducers grammar.

In the second and third lines of 〈belT 〉, belief transducers can be created
by combining Boolean streams. At this level, the combination can be achieved
through conjunction or disjunction. Since the first line recalls the grammar of
MTL transducers, a belief transducer can be the direct result of an MTL or
comparison transducers; as well as their combination. As for the other cases,
also here we have 〈belAssign〉 to assign an identifier to the belief transducer.
Since this is the final layer, the identifiers used in here are the ones which will
be used by the agent to identify the generated beliefs.

Example 6. We extend Example 5 by adding an additional data stream, called
swing, which reports the data gathered by a swing sensor (whose movement is
caused by the wind). This newly added information is used for defining the windy

belief, that captures whether or not it is windy. By using the newly added windy

belief, in combination with the previously defined lowTemp belief, we can define
the notion of cold; which derives by the combination of low temperatures and
presence of wind. Listing 1.6 reports the corresponding StreamB specification,
and Fig. 6 shows the resulting transducers. Note that, both lowTemp and windy

have been defined in one line, without splitting the definition of the nested
transducers. This does not change the semantics of the transducers. Indeed, the
use of identifiers only helps writing less, because the compiler automatically
recognises nested transducers and keeps track of them. So, in case of duplication
within the code, no duplicate transducer would be generated.

time_unit[seconds]

temperature: real;

swing: real;

lowTemp = always [2] (avg [5] temperature < 4.0);

windy = (avg [5] swing) > 10;

cold = lowTemp and windy;

Listing 1.6. Example of Belief transducer.
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Fig. 6. Example of windy and cold transducers.

4 Implementation

The results presented in this paper are general. In this section, we only present
a possible instantiation in a non-trivial scenario. Nonetheless, StreamB and,
above all, the transducers are not limited to the proposed implementation; whose
purpose is only to be a proof of concept in the robotic domain.

StreamB’s parser has been implemented in Python3 using ANTLR3

(ANother Tool for Language Recognition). The source code of our framework is
available as a GitHub repository4. Given a specification file, the parser gener-
ates an abstract syntax tree which is then translated into transducers. This part
has been obtained by implementing a customised visitor. Previously, for each
StreamB operator, we sketched the resulting transducer. At the implementation
level, the transducers are synthesised as ROS (Robot Operating System) [27]
nodes. ROS is an open-source set of software libraries and tools to build robotic
applications. It is modular, supported by a large community, and highly compat-
ible with many types of robots. We chose ROS because it is the de facto standard
for developing robotic applications, and its use to implement the transducers
shows a potentially wide impact of the approach. Moreover, robotic applications
are notoriously complex and prone to generate streams of data (usually produced
by sensors on the robot).

ROS is natively distributed and node based. Each component in ROS is rep-
resented as a node. Communication amongst nodes is achieved through message
passing, following a publish/subscribe paradigm. The communication channels
are called topics, and each node can subscribe to (resp. publish on) them.

StreamB’s transducers are mapped to ROS nodes. The transducer’s inputs
are retrieved by subscribing to the topics used by the nested transducers; while
the transducer’s output is published on a uniquely identified topic. From a
bottom-up perspective, the flow starts from the data stream transducers that
3 https://www.antlr.org/.
4 https://github.com/autonomy-and-verification-uol/StreamB.

https://www.antlr.org/
https://github.com/autonomy-and-verification-uol/StreamB
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subscribe to low-level topics, on which raw data are published (for instance by
sensors). Then, the flow continues by passing through the transducers, exactly
as we presented in the paper. Finally, the beliefs transducers publish their out-
put which represent the high-level beliefs. The agent needs only to subscribe on
those topics (called with the identifier given in StreamB), and update their belief
base. An example is shown in Sect. 5.

As we remarked in Sect. 2, to combine different transducers, we need to syn-
chronise the corresponding streams. This can be obtained by adding a global
clock. In more detail, StreamB adds a clock node, that sets the pace. This can
be achieved by making the clock node publish a message at a chosen rate, and
all data stream nodes subscribe to the same message. When a data stream node
receives the clock message, it publishes its latest value.

Note that, even though StreamB natively supports ROS, it is not limited to
it. In fact, the current implementation simply compiles StreamB specifications
into ROS; with transducers as nodes. Nonetheless, without changing the DSL,
we could seamlessly change the target framework. For instance, instead of ROS,
another interesting and useful target platform could be Akka5. Specifically, we
could compile StreamB into AkkaStream transducers. The advantage in using
Akka would be to have access to its rich library. Moreover, Akka is widely used
both in academia and industry, with a large community support and plenty of
documentation/tutorials. Thanks to protocols and mechanics for stream process-
ing natively supported by Akka, the implementation of the transducers would be
simpler than their counterpart in ROS. For instance, AkkaStream transducers
support by design a back-pressure protocol for reducing/increasing the pace of
the events over a stream, dynamically. This feature could be used to simplify the
logic of StreamB’s transducers. Nonetheless, we would still need to discretise the
events in order to preserve the meaning of the temporal intervals defined in the
specifications. In any case, to be used in ROS it would still require additional
work (probably by using ROSBridge to connect Akka transducers to the nodes).

5 Case Study

We tested our implementation on the MCAPL6 [7,17,18] framework, where BDI
agents are defined using the GWENDOLEN agent programming language [16].
Like Jason [8], JaCaMo [5,6], also MCAPL uses Java to specify the abstract
environment. The agents interact with the real-world environment only through
such an abstraction. To connect the Java environment to the belief transducers,
we used the ROSA library [12]. This library allows us to subscribe to ROS
topics from Java, by using ROSBridge7. Because of this, the integration of our
framework in MCAPL has been straightforward; it was enough to subscribe to
the belief topics inside the Java environment, and to update the belief base
accordingly.
5 https://www.akka-technologies.com/.
6 https://github.com/mcapl/mcapl.
7 http://wiki.ros.org/rosbridge.

https://www.akka-technologies.com/
https://github.com/mcapl/mcapl
http://wiki.ros.org/rosbridge
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Fig. 7. Simulation in Gazebo of the remote inspection of nuclear plant.

As a proof of concept, we applied our framework to a remote inspection
case study that uses the 3D simulator Gazebo and ROS (shown in Fig. 7). In
this simulation, a Jackal8 four-wheeled rover uses a sensor to take radiation
measurements. The rover’s goal is to patrol inside a nuclear storage facility. The
rover is controlled by an autonomous agent that makes decisions depending on
the radiation readings.

time_unit[seconds]

radiation: real;

yellow = always [10] ((avg [3] radiation) > 80);

orange = always [5] ((avg [3] radiation) > 120);

red = always [3] ((avg [3] radiation) > 250);

danger = yellow or orange or red;

Listing 1.7. Definition of danger belief in terms of radiation level.

8 https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/.

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
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// Java abs t r a c t environment
public class RosEnv extends DefaultEnvironment{

. . .
public RosEnv ( ) {
// connect to ROSBridge
br idge . connect ( ”ws :// l o c a l h o s t :9090 ” , true ) ;
// sub s c r i b e to danger b e l i e f
br idge . sub s c r i b e (
Subscr ipt ionRequestMsg . generate ( ”/danger” )
. setType ( ” stream/TimedBool” ) ,

new RosListenDelegate ( ) {
public void r e c e i v e ( JsonNode data , S t r ing str ingRep ) {
MessageUnpacker<TimedBool> unpacker = new

MessageUnpacker<TimedBool>(TimedBool . class ) ;
// ex t r a c t message
TimedBool msg = unpacker . unpackRosMessage ( data ) ;
// c r e a t e cor re spond ing l i t e r a l
L i t e r a l danger = new L i t e r a l ( ”danger” ) ;
i f (msg . va lue ) { // i f the b e l i e f i s t rue
addPercept ( danger ) ; // add i t to b e l i e f base

} else { // otherwi se
removePercept ( danger ) ; // remove i t

}
}

}) ;
}

}
Listing 1.8. Java environment in MCAPL to retrieve danger belief from the ROS node
transducer.

Listing 1.7 shows how to construct a high-level belief which states whether
the robot is in a dangerous area. Instead of manually coding this in Java, thanks
to our framework, we can directly and declaratively describe how the radiation
data stream is transformed into a danger high-level belief. Listing 1.8 shows how
to retrieve easily this information in the Java abstract environment. The danger
belief is specified as the combination of three different beliefs: yellow, orange

and red. These beliefs represent three different scenarios that may put the robot
in danger. In all three cases the level of radiation is sampled (considering the
average) and checked if greater than a threshold for a certain amount of time.
For lower radiation levels (80), a longer amount of time (10 s) is considered dan-
gerous for the robot’s integrity; while for higher radiation levels (120 and 250),
a shorter amount of time (5 and 3 s) is considered dangerous. The composition
of these three beliefs produces the high-level belief danger, which is used by
the agent (see Listing 1.9); in this case, by interrupting the mission and going
back to the starting point (the door) for decontamination procedures. Listing 1.9
reports the agent’s plan which is triggered when the danger belief is added by
the abstract environment. In such a plan, first, the agent retrieves the door’s
coordinates (using location coordinate book-keeping belief), then, it moves



A Language for Processing Data Streams in Abstract Environments 129

to that position (performing the move action). Note that, the agent does not
know about yellow, orange, or red radiation levels. Nonetheless, in a different
scenario, these information might be used by the agent as well. This would not
require any additional work, but only a subscription to the corresponding topics
in the abstract environment (similarly to what is done for danger in Listing 1.8).

...

+danger

: { B location_coordinate (door ,X,Y,Z) }

<-

print("Move to the door for decontamination."),

+going(door), move(X,Y,Z).

...

Listing 1.9. Snippet of GWENDOLEN agent which uses danger belief.

6 Related Work

To the best of our knowledge, there is no work that explicitly integrates stream
processing in the creation of abstract environments for MAS architectures.

The environment is an implicit part of MAS that is often dealt with in an
ad hoc manner [38]. This statement holds for the abstract environment as well.
In fact, the abstraction is usually created manually, as it happens in MCAPL
[7,17,18], Jason [8], JaCaMo [5,6], GOAL [23], and other frameworks. Instead,
in our work the abstract environment is fully9 synthesised from a high-level spec-
ification, and it can be used to enhance existing agent platforms when applied
to real-world environments, such as cyber-physical systems, and robotic appli-
cations. The greatest similarity with our work can be found in CArtAgO [30],
where sensors are described as perceptual memory, whose functionality accounts
for keeping track of stimuli arrived from the environment, possibly applying fil-
ters and specific kinds of “buffering” policy [29]. Following this definition, our
transducers can be seen as perceptual memory as well, and they could be inte-
grated in CArtAgO for enhancing artifacts with stream processing features.

From the point of view of stream processing systems, in [35] the high-level
idea of using stream processing in the development of agent infrastructures is
proposed, along with general guidelines. Differently from our work, they aim
to use stream processing to enhance agent reasoning in stream-based scenarios.
We instead focus on using stream processing as a tool to simplify the abstract
environment construction, and its link to the agent’s belief base. In [32] Intelli-
gent Sensor Agents (ISA) process data streams to find anomalies. The developed
architecture is used in nation-wide and city-level incident recognition scenarios.
Differently from our work, the agents are used to support stream processing, and

9 Or partially, in case we extend an existing abstract environment as we did for
MCAPL.
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not the other way around. This happens in [13,21,31] as well, where agents are
used to implement parts of the stream processing system.

From the point of view of DSLs, various alternatives exist. We report only
a relevant subset of the languages, since our objective is to point out the main
differences with StreamB. For a complete survey on the DSLs used in the stream
processing domain, the reader can find a thorough investigation in [24].

Stream processing languages can be classified into: Relational, Big data,
XML and RDF. In the first group [1,3,9,14,33], we find several DSLs which
are designed as SQL-based declarative languages for implementing continuous
queries against streams of data. With respect to StreamB, the specifications are
SQL query, in which selection, filter and merging operations are used to create
the low-level transducers. In the second group [25,26,36,40], the DSLs are based
on SPL (Stream Processing Language), developed by IBM. An SPL program
explicitly specifies a directed graph of stream edges and operator nodes. Opera-
tors are used to create/transform streams and are defined by users or libraries,
not built into the language. Differently from StreamB, SPL does not offer built-
in operators. High-level notions can be derived (e.g. MTL properties), but are
not straightforward. In the third group [20], we find YFilter and its deriva-
tives [15,19], which implement continuous queries over XML streaming data.
While in the fourth group [37], a continuous version of SPARQL is proposed
(C-SPARQL), along with its extensions [2,11].

We decided to design and develop StreamB because none of the previously
mentioned DSLs support temporal logics, natively. Moreover, none of these works
has been integrated in ROS. Since the temporal aspects allow us to describe
highly expressive streams in a declarative way, we opted for a DSL which natively
supports them. On the other hand, robotic applications are a natural candidate
where to use abstract environments, and none of the previously presented DSLs
support ROS (except by manually implementing necessary bridges).

7 Conclusions and Future Work

In this paper we presented StreamB, a stream processing technique to auto-
mate the translation from low-level data (environment’s perceptions) to high-
level beliefs, in a general and flexible way. We proposed a DSL to define high-
level beliefs in terms of different kind of streams; we presented each operator
of the language, and we showed the transducers deriving by their compilation.
Finally, we applied our technique to a realistic case study involving the remote
inspection of a nuclear plant.

This work is focused on BDI platforms, but it is not limited to them. Indeed,
the final layer of transducers, which is called Belief layer, could be considered
as a general Stimuli layer instead, where the high-level stimuli deriving from
low-level data are produced. The abstract environment would be the one giving
a domain specific meaning to the resulting stimuli. For instance, in this case
it would interpret them as beliefs, but in a different scenarios (not BDI), the
same stimuli might be interpreted in a different way by a different abstract
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environment. Nonetheless, we decided to present our work in the BDI context
because we think it is where our solution has larger and deeper implications.
In any case, from the point of view of the implementation, nothing needs to be
changed.

Concerning future work, StreamB currently offers four layers of transducers,
but more can be added. MTL was a natural choice, but it is not the only one,
indeed other temporal logics can be integrated as additional layers. We explored
a robotic scenario, where the transducers were compiled to ROS nodes. We
are planning to add support for additional target platforms. This work would
only concerns the compiler (i.e., the translation of StreamB specifications into
transducers), not the specification language, that would be preserved to allow
re-use of specifications in different target environments.

In this work, we only considered atomic beliefs. In a more general setting,
however, it might be much more useful to be able to generate compound beliefs.
This would be relevant in scenarios where information inside a data stream can
or need to be parametrised.

Finally, the current StreamB’s processing pipelines of transducers are hidden
to the agents (i.e., the agents are not aware of them), but if the pipelines them-
selves would become first-class abstractions in the environment (i.e., pipelines
that agents are aware of and can manipulate), this could open the door for some
interesting extensions, such as:

– To describe semantically the processing pipelines to let the agents discover
and use them at runtime; or,

– to guide the construction of data stream processing pipelines to fit the agents’
needs.

These aspects would be even more relevant in open, and heterogeneous, scenarios
in order to achieve context-aware access to the information/functionalities of the
environment.

A How Reviewers’ Comments Have Been Addressed

A.1 Review 1

Comment: The hypothesis of a global clock is unsuitable in real-world appli-
cations. Modern data streaming techniques (see for example AkkaStream) over-
come this limitation by implementing standard protocols (for instance see “back-
pressure”).
Answer: We added more explanations on this aspect (see Sect. 4). Briefly, it is
true that Akka would simplify the transducers’ implementation, but the global
clock generated by the clock node in StreamB does not only guarantee the same
pace over the events, but allows synchronising the events, so that the resulting
discretised sequence can be uniformly quantified by the MTL properties. In any
case, such a global clock is enforced by StreamB, not assumed.
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A.2 Review 2

Comment: One of the main arguments for StreamB used throughout the paper
is to avoid “manual mapping” (or “manual coding”) from low-level data streams
to beliefs, e.g. in the abstract: “if the environment changes, the mapping has
to be changed as well (by the developer)”. StreamB is a high-level DSL that
allows processing data streams using concise scripts/programs, which is great,
but the mapping is still manual. Transducers and pipelines are synthesized based
on StreamB programs, but this only hides away the complexity, I don’t see how
it removes the need to change the mapping if the environment changes. This
point should be better clarified.
Answer: The reviewer is right. We fixed this aspect and updated the text in
Sect. 1 accordingly. Indeed, the mapping is still manual, but achieved through a
higher-level specification (the DSL), which hopefully simplifies and improve the
engineering process.
Comment: It is a bit surprising that the environment abstraction creates beliefs
for agents, this blurs the separation of concerns between agents and the environ-
ment abstraction. Also, why limit this contribution to BDI agents? The impact
could be broader. To illustrate the point with an example, in CArtAgO (dis-
cussed in related work) this problem is solved by introducing a separation of
concerns between the agent mind and the agent body. The agent body keeps
track of stimuli from the environment, but how the stimuli are interpreted and
used is the concern of the agent mind and depends on the agent model (BDI or
other).
Answer: We added more explanations on this point in Sect. 7. It is true that the
work could be more general, and considering its implementation, it is actually the
case. Since no restriction is given on what the abstract environment should do
with the events generated by the fourth layer of transducers. Nonetheless, from
a presentation perspective, we preferred to keep it focused on BDI systems, since
we believe is the area in MAS which would gain more from our approach.
Comment: It could be misleading to say StreamB is a DSL for synthesizing
abstract environments. In my understanding, it is a solution to a more spe-
cific problem: processing data streams in abstract environments. The authors
also point this out and open the contribution to integration with existing MAS
frameworks as part of the environment dimension.
Answer: The reviewer is right. We updated the title and Sect. 1 accordingly.
StreamB does not completely synthesise an abstract environment, but it auto-
matically synthesises transducers that can be used to develop an abstract
environment. The development of the abstract environment though would be
extremely straightforward, since it would only need to subscribe to the corre-
sponding high-level events.
Comment: It is not clear to me why if the environment abstraction is designed
and programmed manually, then it is addressed in an ad-hoc manner: on the
contrary, it becomes a central part of the design of the overall system. Not a
criticism and not intended to minimize the contribution, but note that with
StreamB the design of the processing pipelines is also manual, only at a higher
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level of abstraction: the underlying machinery just executes what is written in
StreamB programs.
Answer: The reviewer is right, we updated Sect. 1 accordingly.
Comment: As a suggestion for future work, the StreamB processing pipelines
are currently hidden to agents (i.e., agents are not aware of the processing
pipelines), but if the pipelines themselves would become first-class abstractions
in the environment (i.e., pipelines that agents are aware of and can manipulate).
Answer: The reviewer pointed out very interesting future directions. We inte-
grated these suggestions in Sect. 7.
Comment: The paper could use another thorough reading.
Answer: We fixed all the reported typos.

A.3 Review 3

Comment: The literature (e.g., in the field of functional programming) is rich of
proposals for stream processing languages, including DSLs (e.g., various papers
in the PADL conference). It would be interesting to see a comparison between
StreamB and these other approaches and some discussion of why StreamB was
built independently instead of using one of such existing frameworkds.
Answer: We extended Sect. 6 to consider existing Stream Processing Languages.
We reported some of them, and compared with StreamB.
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Abstract. We explored how mobile Belief-Desire-Intention (BDI)
agents could navigate using path plans that are automatically generated
in AgentSpeak, asking if there could be any performance advantages
gained by having an agent’s path be automatically generated as a BDI
plan that can be monitored, suspended and resumed in case of contingen-
cies. To do the exploration, we used Jason BDI to design a framework to
test this premise with simulated mobile robots. We further explored the
navigation of mobile agents to see if such functionality should be imple-
mented within the agent in either AgentSpeak or as an internal action, or
externally in an environmental module. These agents navigated through
three environments of varying complexity: a simple synchronized grid,
an asynchronous grid connected via Robot Operating System (ROS),
and an autonomous car simulated with AirSim connected using ROS.
We demonstrated that our framework handles plan interruptions, such
as preventing collisions, managing consumable resources, and updating a
map when necessary while moving through an environment; that Jason
BDI agents are capable of controlling autonomous mobile robots; and
that the AgentSpeak language provides advantages for implementing the
navigation search behaviours.

1 Introduction

We are interested in how to program mobile robots while guaranteeing reliability,
resilience and explainability. As the Belief-Desire-Intention (BDI) paradigm was
developed for implementing autonomous agents, we are interested in exploring
its suitability for mobile robots. Focusing on navigation, specifically path gen-
eration in the form of waypoints, we asked what benefits are gained from this
paradigm since a navigation path can be conceived of as a plan that we would
like to monitor, execute, suspend and resume depending on changing contexts.
We also asked if there are performance issues in using AgentSpeak vs more
traditional languages to generate these paths. Certainly, there are navigation
approaches, such as move base [29] which is a main component of the Robot
Operating System (ROS) navigation stack [23,30], which use point cloud and
optometry data to navigate a robot toward a global destination while account-
ing for local obstacles using Simultaneous Localization and Mapping (SLAM).
These approaches, however, take the navigation problem outside of the agent,
c© Springer Nature Switzerland AG 2022
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removing opportunities for the agent to reason about its navigation solution. We
propose a different approach, one where the agent will perform as much of the
navigation as possible so that the agent’s plans can be monitored, suspended
and resumed in case of contingencies.

A common approach for navigation is the use of a search method, such as
A*, to find an appropriate path to a destination by moving between locations
on a map. We propose using this approach in a navigation framework for mobile
BDI agents with AgentSpeak. The framework includes three main components:

– The generation of a route as an AgentSpeak plan made of waypoint goals;
– A turn-by-turn module, guiding the agent between each waypoint; and
– The handling of plan interruptions as needed.

We compared three A* implementations for generating the route. These
included (1) having the navigation search in AgentSpeak using Jason’s A* imple-
mentation [17]; (2) using an internal action – a Java function internal to the
agent which used the AIMA3e library [39,40]; and (3) using an external nav-
igation node using Python’s A* search [20]. Agents with each of these imple-
mentations were tested in three environments ranging from a simplistic grid to
a car simulated with AirSim – an open source simulator developed by Microsoft
using the Unreal Engine [27,41]. The agents were benchmarked by comparing
the reasoning cycle length and the execution time of the navigation processes.
The tests resulted in the discovery of improved performance with the AgentS-
peak implemented routines. We also found that there were architectural benefits
to implementing the navigation in AgentSpeak as there was no need for extra
modules to perform logical search, which AgentSpeak performed more naturally.

2 Background and Related Work

This paper discusses using BDI for controlling mobile robots. BDI agents main-
tain beliefs about themselves and their environment, desires that they wish to
achieve, and plans that they can run by setting intentions. The agent reasoning
cycle begins with the agent perceiving their environment and receiving messages,
reasoning about beliefs, selecting an applicable plan, and setting an intention.
Plans can include updating beliefs, adopting new goals, sending messages, or tak-
ing an action. Although there are several implementations of BDI, we focused
on Jason and AgentSpeak [3,18,19].

The BDI agent’s mind was connected to their simulated robotic body using
ROS, a popular robotics architecture [33]. ROS nodes communicate with each
other by publishing and subscribing to topics rather than other nodes; individual
nodes do not necessarily require knowledge of other nodes. ROS has a community
of robotics developers and users, therefore, by developing systems for ROS there
are opportunities to leverage other projects.

Among the variety of nodes available for ROS is the navigation stack, avail-
able for terrestrial robots [23,29,30]. The ROS navigation stack provides mobile
robots with guidance for moving to a destination while avoiding obstacles. There
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are four main components to the navigation stack. First, the module senses the
environment using point cloud data generated by a laser imaging, detection, and
ranging (LIDAR) sensor and the robot’s odometer. Using point cloud data, a
three-dimensional Voxel Grid representing the obstacles that the robot needs to
avoid in the environment is generated. The Voxel Grid is then projected onto
a two-dimensional cost map which provides the cost for the robot’s movement.
Secondly, a global planner, implemented using A*, generates a route to the
destination through the Costmap. The global planner does not incorporate the
dynamics of the robot, nor does it incorporate any unknown obstacles. Third
is the local planner, which controls the speed and steering of the robot. In the
event that the local planner is unable to continue, perhaps because the global
planner has generated a route which the robot cannot complete, a new global
plan is generated in the fourth step: the recovery.

There is a precedent for using BDI to control autonomous cars. An archi-
tecture for connecting autonomous cars using a simulated traffic model was dis-
cussed by Rüb and Dunin-Kȩplicz [38]. Their work focused on agent performance
in various driving specific tests and assessing how “human-like” the behaviour
was. Ehlert also used BDI for autonomous cars [10]. LightJason, another BDI
framework, was used to control an autonomous car in a browser-based game by
Aschermann et al. [2].

Beyond the focus on autonomous cars, BDI agents have been used in other
robotic applications. The Australian military used a JACK BDI agent to fly a
Codarra Avatar Unmanned Aerial Vehicle (UAV) [21,42]. Another drone was
flown using JaCaMo [24,25,31] and another using Jason and ROS [36,37].
There are several examples of Jason being connected to ROS, including
jason ros [35],rason [28], JaCaROS [26], and JROS [4]. An entry to the Eurobot
challenge, which used a warehouse with multiple uncooperative agents, demon-
strated the use of Agent Oriented Programming (AOP) using Python RObotic
Framework for dEsigning sTrAtegies (PROFETA) [12]. The ARGO project inter-
faced Jason agents with an Arduino board [22,34], and another project developed
a real-time BDI system connected to ROS 2 using a custom built reasoner for
soft real-time constraints [1,11]. The Simulated Autonomous Vehicle Infrastruc-
ture (SAVI) project sought to simulate Jason agents with their reasoning cycles
decoupled from the simulation time cycle [7,8]. The SAVI project has since
expanded to include a connection to ROS for controlling a prototype mail deliv-
ery robot [32]. Using the concept “abstraction engines” proposed by Denis et
al. [9], robotic agents implemented with GWENDOLEN and Jason have been
connected to ROS using rosbridge [5] and demonstrated with a simulation of
the Curiosity Rover using Gazebo [6]. In this simulation the robot was given
locations to visit while also avoiding excess radiation or wind.

In considering the state of the art, we have found that the feasibility of BDI
for driving and controlling autonomous vehicles has been demonstrated. These
projects have not generally focused on the details of the internal agent behaviour,
having not explored what behaviours should be implemented in the agent nor
what behaviours should be internal actions or in the environment. Generally,
the agent’s role seems to always be fairly limited, perhaps from an assumption
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that the BDI reasoner may not be suitable for such tasks. By contrast, our
work focused on getting the agent to do as much as possible, and observing any
advantages and drawbacks of doing so. We compared design approaches of using
AgentSpeak, internal actions, and environmental modules.

3 Architecture

We propose a framework for navigation of BDI agents with AgentSpeak. It
includes three main components:

– The generation of the route as an AgentSpeak plan made of waypoint goals;
– The turn-by-turn module which guides the movement of the agent between

each of those waypoints; and
– The handling of plan interruptions as needed.

These components are analogous to the steps that were part of the ROS
navigation stack. The generation of the route fills the role of the Global Planner,
the turn-by-turn module takes on the role of the Local Planner, and the handling
of plan interruptions relates to the navigation stack’s recovery step.

To evaluate using BDI for mobile robots and the choice of navigation app-
roach, we compared three route generation implementations using A*: one using
pure AgentSpeak, a second using an internal action, and a third using an environ-
mental module. Each implementation used third-party implementations of A*,
discussed in more detail in the next section. We anticipated that the AgentS-
peak option, being integrated with the agent, was simpler, however, we were
concerned it could be more costly in terms of performance than the internal
action method. We anticipated that the environmental module could have the
advantage of being decoupled from the reasoning cycle, allowing the agent to
reason about other things, however extra care may be needed to ensure that the
solution was not missed as it could compete with other perceptions.

We evaluated these methods in three environments to ensure that our assess-
ments were not dependent on our choice of environment. The simplest environ-
ment, a synchronous Jason grid similar to many Jason examples [18], is discussed
in Sect. 3.2. An asynchronous version of this environment, discussed in Sect. 3.3,
was used to expose differences that came from the environment’s timing. Lastly,
a car simulated with AirSim, which is discussed in Sect. 3.4. The simulated car
environment was used to highlight how our common approach for implementing
a mobile agent can be applied in a more realistic environment.

3.1 Framework for Autonomous Mobile Robot Navigation

As mentioned above, we are proposing a framework for mobile agent navigation
where we split the navigation problem into three main components: generating a
path as an AgentSpeak plan using A*, a turn-by-turn module, and the handling
of interruptions, where the navigation intention may need to be suspended and
later resumed. These interruptions could be for safety reasons, such as avoiding
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a pedestrian, for health of the agent such as recharging a battery, or handling
a map update to detour around a closed path. Looking back at our mail robot
prototype [32], navigation with turn-by-turn directions was an environmental
module. This module required constant updates from the sensors with respect
to the position and orientation of the robot and knowledge of how the agent
would move between locations. Although it was useful for the module to provide
turn-by-turn directions, thus eliminating the need for the agent to maintain map
knowledge, it increased the complexity of the navigation module and eliminated
any opportunities that the agent may have had to reason about the path and how
it would move to those locations. In effect, the agent was simply following the
directions from an external module. In this paper, we have revisited this design
choice. The navigation routine, in all three implementations, provides only a
sequence of locations leading to the destination with no assumption about what
actions the agent uses for maneuvering. The turn-by-turn functionality is now
the responsibility of the agent as part of the behaviour of maneuvering between
waypoints, generalizing the navigation approach for any type of mobile agent.

All three navigation methods used a map, written in AgentSpeak, which
provided the names, coordinates, and paths between points in the environment.
The location name and location format is locationName(Name,[X,Y]), which
provides the name and coordinates of the points of interest. The path definition
format is possible(A,B), meaning that the agent can travel from the location
name unified with A to the location name unified with B. For the AgentSpeak
navigating agent, this is loaded into the agent’s belief base. It is easily parsed
for the environment-based and internal action navigators. Defining the map this
way allowed the agent navigating purely with AgentSpeak to update the map
by simply adding or removing these items from its knowledge base with a single
line of code Whereas, in the case of internal actions or external modules, the
map update required modifying the graph data.

A key design feature of the framework was the choice of triggering the nav-
igation and turn-by-turn behaviours using achievement goals and the interrupt-
ing behaviours with beliefs, which can be adopted from perceptions. This allows
the developer to design their specific turn-by-turn behaviours without being con-
cerned about interruptions, but also having the confidence that these interrup-
tions will still be handled. The behaviour model, in pseudo-AgentSpeak, is pro-
vided in Listing 1. The first two lines of the listing show a sample interrupting
plan, which is triggered by the addition of a relevant belief. If necessary, this plan
can suspend intentions and adopt other achievement goals to address the interrup-
tion, before resuming the mission using stored mission beliefs. An example of this
is the handling of long-term obstacles with map updates. The plan is triggered by
!obstacle(.) when an obstacle is observed which contradicts the agent’s map
beliefs. When this occurs, the agent drops the belief that it is possible to move
between the two affected locations. The agent can then restart navigation. There
were two navigation plans used for generating the route. The first of the plans
addresses the case where the agent is already at the destination. The second is for
the generation of the route as a set of waypoint achievement goals using one of the
three implementation methods. Listing 1 shows the version which used AgentS-
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Listing 1. Navigation Framework Behaviour.

1 +interruptingBelief(Parameter) : ParameterContext

2 <- interruptingBehaviour.

3 +obstacle(Location) : position(Current) & possible(Current ,Location)

4 & destination(Destination)

5 <- -possible(Current ,Next); .drop_all_intentions;

6 -destination(Destination ); !navigate(Destination ).

7 +! navigate(Destination) : position(Destination)

8 <- -destination(Destination ).

9 +! navigate(Destination) : position(Location)

10 <- +destination(Destination );

11 ?a_star(Current ,Destination ,Solution ,Cost);

12 for (. member(op(_,NextPosition),Solution )){! waypoint(NextPosition );}

13 !navigate(Destination ).

14 +! waypoint(Location) : position(Location ).

15 +! waypoint(Location) : not (position(Location ))

16 <- movementAction; !waypoint(Location ).

peak for path generation. Additional details on path generation are provided in
Sect. 4.1. Separating the waypoint goals from the generation of the path ensured
that path generation was generic and not dependent on specific details of how
the agent moved. Our agent implementations all used identical route generation
routines, regardless of how they moved through the environment. Lastly, the turn-
by-turn directions, for moving the agent between waypoints, are provided using
the +!waypoint(Location) goal. These plans are responsible for the movement
of the agent using the actuators of that specific robot. This is implemented recur-
sively, so that the agent will continue to work toward moving to the waypoint until
it is successful. The movementAction is a domain specific action, or sub-goal for
the specific type of actuators that the agent has available. Also needed is how the
agent senses its position and orientation using its domain specific sensors.

3.2 Synchronous Grid Environment

The framework was tested in three different environments. The architecture of
the synchronous grid is in Fig. 1. The update of the environment’s state was
tied to the agent’s reasoning cycle, meaning that the agent received perceptions,
then reasoned about those perceptions, and then took action as needed, all in
a single thread of execution. The environmentally situated navigation support
was the ‘map’. The internal action navigation was provided using ‘getPath’. The
agent could move to adjacent free grid locations using the move(.) action, where
the dot represents the direction parameter. The agent perceived any adjacent
charging station, obstacles, and available grid locations. The agent had knowl-
edge of the charging station location and some, but not all, obstacle locations.
The agent could honk a horn to signal to pedestrians to move out of the way
if needed. The agent was equipped with a simulated battery, which was nearly
empty at the beginning of the scenario and reduced in charge over time, forcing
the agent to charge the battery.
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Fig. 1. Agent architecture for the synchronous grid environment.

3.3 Asynchronous Grid Environment

For the asynchronous grid architecture, SAVI ROS BDI1 was used for connecting
the agent to the environment using ROS, as shown in Fig. 2. As before, the agent
could perceive adjacent obstacles and locations and move to adjacent locations.
The difference was that the perception updates were not tied to the reasoning
cycle. The reasoner connected to ROS using the perceptions, actions, inbox,
and outbox topics. Also connected were the application nodes, including a per-
ception and action translator and a map for navigation support. The translator
subscribed to topics published by the environment and translated them to per-
ception predicates expected by the agent, publishing these to the perceptions
topic. The translator also subscribed to the actions topic, passing commands
to the environment or map. The user interface, which published to the inbox
topic, was how a user commanded the agent to navigate to a destination.

Fig. 2. Agent architecture for the asynchronous grid environment.

3.4 AirSim Car Environment

Our most realistic environment was a car simulated using Microsoft’s AirSim
simulator [27,41]. It provided a neighbourhood environment, sensors, actuators
and an control interface. As with the asynchronous grid, the agent was connected
using SAVI ROS BDI, as shown in Fig. 3. The agent perceived its location, ori-
entation, and speed using Global Positioning System (GPS), a magnetometer,
and a speedometer. The agent had the setSpeed(.) action for setting a cruise

1 SAVI ROS BDI is available at https://github.com/NMAI-lab/savi ros bdi.

https://github.com/NMAI-lab/savi_ros_bdi
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controller; steering(.), which could be set between one and negative one, and
where a higher magnitude value increased the rate of turn. There were also
internal actions calculating the range and bearing between two geographic coor-
dinates. An action translator and a perception translator performed similar roles
to the translator for the asynchronous grid, translating between AgentSpeak and
the format used by the environment.

Fig. 3. Agent architecture for the AirSim environment.

4 Agent Implementation

As was explained in the previous section, our framework for navigation of BDI
agents includes three main components. We provide excerpts of the implementa-
tion of these components in this section2. The navigation methods are explained
in Sect. 4.1, which was responsible for generating the route that the agent needed
to follow. This is followed by the handling of plan interruptions in Sect. 4.2.
Finally, Sect. 4.3 provides the details of how the agents move through the envi-
ronments, the turn-by-turn module, the only part of the implementations where
there were noteworthy differences between the grid and car agents. Default plans
needed to prevent the agent from prematurely dropping an intention, while wait-
ing for a sensor to update, have not been shown.

2 Synchronized grid: https://github.com/NMAI-lab/jasonMobileAgent.
Asynchronized grid: https://github.com/NMAI-lab/jason mobile agent ros.
AirSim car: https://github.com/NMAI-lab/AirSimNavigatingCar.

https://github.com/NMAI-lab/jasonMobileAgent
https://github.com/NMAI-lab/jason_mobile_agent_ros
https://github.com/NMAI-lab/AirSimNavigatingCar
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Listing 2. Sample AgentSpeak Navigation Successor and Heuristic: Grid.

1 suc(Current ,Next ,1,up) :- ([X2,Y2] = [X1,Y1 -1])

2 & possible(Current ,Next) & nameMatch(Current ,[X1,Y1],Next ,[X2,Y2]).

3 nameMatch(Current ,CurrentPosition ,Next ,NextPosition) :-

4 locationName(Current ,CurrentPosition)

5 & locationName(Next ,NextPosition ).

6 h(Current ,Goal ,H) :- H = math.sqrt (((X2-X1)*(X2-X1))+((Y2-Y1)*(Y2-Y1)))

7 & nameMatch(Current ,[X1,Y1],Goal ,[X2,Y2]).

4.1 Navigation

To achieve the navigation goal, !navigate(.), the agent has plans for when
it has arrived at the destination, for fetching a route, and for setting achieve-
ment goals for the route waypoints using !waypoint(.). Those achievement
goals were responsible for the turn-by-turn aspect of moving the agent through
the environment. Different versions of these plans utilize the various methods
of generating the route. The definition of !navigate(Destination) in list-
ing 1, in the previous section, generated the route using Jason’s A* implemen-
tation [17] in AgentSpeak. This was triggered with the use of ?a star (Cur-
rent,Destination,Solution,Cost). The internal action version used naviga-
tion.getPath(Current,Destination,Path) for generating the path using the
A* implementation from the AIMA3e library [39,40].

The AgentSpeak implementation of A* used rules for a heuristic, which
provided the Euclidean distance between locations, and for successor states,
which estimated the result of moving between locations. Samples of the succes-
sor, suc(CurrentState,NewState,Cost,Operation), and heuristic, h (Cur-
rentState,Goal,H), were provided for both the grid and car environments. List-
ing 2, for the grid environments, provides the successor state, in this case for the
up direction, defined by relative coordinate locations given that the movement
between those locations is possible using nameMatch(.,.,.,.). This predicate
is defined with a rule on the next line, which unifies with the location definitions
in the knowledge base. Lastly, the heuristic calculates the Euclidean distance
between the locations. The version for the car is provided in Listing 3, where the
successor state defines the possibility for the agent to move between the locations
with the distance cost, calculated with an internal action. The heuristic again
uses Euclidean distance, calculated with an internal action.

The environmentally supported implementation is in Listing 4. An action
in the environment generates a path for the agent to perceive and use. For
the synchronized environment, this was implemented using AIMA3e [39,40], as
was the case with the internal action. For the ROS environments it was imple-
mented using python-astar [20]. The first plan in the listing is for perceiving
a path, which is added to the knowledge base. The second plan, tied to !nav-
igate(Destination), adopts achievement goals for all the waypoints in the
route. Lastly, the plan for fetching the path with getPath(.,.), commands the
navigation node to generate the path.
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Listing 3. Sample AgentSpeak Navigation Successor and Heuristic: Car.

1 suc ( Current , Next , Range , d r i ve ) :− po s s i b l e ( Current , Next )
2 & locationName ( Current , [ CurLat , CurLon ] )
3 & locationName (Next , [ NextLat , NextLon ] )
4 & nav igat ion . range (CurLat , CurLon , NextLat , NextLon , Range ) .
5 h( Current , Goal , Range ) :− locationName ( Current , [ CurLat , CurLon ] )
6 & locationName (Goal , [ GoalLat , GoalLon ] )
7 & nav igat ion . range (CurLat , CurLon , GoalLat , GoalLon , Range ) .

Listing 4. Environment-Supported Navigation Plans.

1 +path(Path) : startTime(Start) <- -route(_); +route(Path).

2 +! navigate(Destination) : route(Path)

3 <- for (. member(NextPosition , Path)) {! waypoint(NextPosition );}

4 -route(Path); !navigate(Destination ).

5 +! navigate(Destination) : position(X,Y) & locationName(Current ,[X,Y])

6 <- +destination(Destination ); getPath(Current ,Destination );

7 !navigate(Destination ).

4.2 Mission Interruptions

There were three types of mission interruptions in our design: safety, health, and
map updates. The safety interruptions were the result of short-term obstacles,
such as pedestrians. The health interruptions were the result of a low battery.
The map updates were to handle longer-term obstacles such as closed roads.
The simplest and highest priority plan to avoid short-term obstacles is to honk
a horn when a pedestrian is in the way: +pedestrian( ) <- honk(horn).

The battery plans, which use beliefs for batteryMin(.) and batteryMax(.)
as thresholds, are in Listing 5. Also used, but not shown, are rules for deter-
mining if the battery state is low or full using lowBattery(State) and full-
Battery(State) and atStation for determining if the agent is at the charging
station. The addition of the battery(.) belief triggers the first plan. This is
applicable when the battery needs to be charged, forcing the agent to achieve
!chargeBattery before resuming the interrupted mission. Recursive plans for
getting the agent to the docking station, charge the battery, and then undock
the agent are shown.

4.3 Agent Movement

The agents achieved their waypoint goals with the turn-by-turn module. Sam-
ples of the agent movement plans and rules for the grid are in Listing 6. This
includes a plan for using move(.) for moving the agent on grid space. Lastly, a
supporting rule for determining the direction that the agent needs to move for
the up direction is provided.
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Listing 5. Battery Management Definitions.

1 +battery(State) : charging(false) & lowBattery(State)

2 & missionTo(Destination)

3 <- .drop_all_intentions; !chargeBattery; !missionTo(Destination ).

4 +! chargeBattery : lowBattery(_) & charging(false)

5 & chargerLocation(ChargeStation)

6 <- !navigate(ChargeStation ); station(dock); !chargeBattery.

7 +! chargeBattery : fullBattery(_) & charging(true) <- station(undock).

8 +! chargeBattery <- !chargeBattery.

Listing 6. Movement in the Grid Environment.

1 +!waypoint ( Direct ion , ) : i sD i r e c t i o n ( D i r e c t i on ) & map( Di r e c t i on )
2 & not ob s t a c l e ( D i r e c t i on ) <− move( D i r e c t i on ) .
3 d i r e c t i o n ( Current , Next , up ) :− po s s i b l e ( Current , Next )
4 & locationName ( Current , [ X,Y] ) & locationName (Next , [ X,Y−1 ] ) .

Plans for moving the car are in Listing 7. The !waypoint(.) plans move the
car toward locations specified with latitude and longitude coordinates. These use
rules, not shown, for assessing if the car is at or near a location and for finding
the nearest location, the destination range, and destination bearing. The plans
use internal actions for calculating the range and bearing between locations. The
first plan stops the car by setting the speed to zero when it has arrived. Next
is the plan for slowing the car as it approaches a location and then the plan
for driving toward the location, and lastly is a default plan which keeps the car
driving toward the location. These plans further adopt goals for controlling the
speed and the steering of the car.

The plans for controlling the car’s speed and steering plans are in Listing 8.
The first plan, for updating the speed, uses a mental note to avoid acting need-
lessly. The setSpeed(.) action commands the cruise controller node, which con-
trols the accelerator and brake for maintaining the car’s speed. Next is the cal-
culation of the car’s course correction angle followed by rules for the steering set-
ting, formatted as steeringSetting(TargetBearing,SteeringSetting). The

Listing 7. Car Waypoints.

1 +!waypoint ( Locat ion ) : atLocat ion ( Location , )
2 <− ! contro lSpeed ( 0 ) ; ! c on t r o l S t e e r i n g ( 0 ) .
3 +!waypoint ( Locat ion ) : nearLocat ion ( Location , )
4 & ( not atLocat ion ( Location , ) )
5 & des t ina t i onBear ing ( Location , Bearing )
6 <− ! c o n t r o l S t e e r i n g ( Bearing ) ; ! contro lSpeed ( 3 ) ;
7 ! waypoint ( Locat ion ) .
8 +!waypoint ( Locat ion ) : ( not nearLocat ion ( Location , ) )
9 & des t ina t i onBear ing ( Location , Bearing )

10 <− ! c o n t r o l S t e e r i n g ( Bearing ) ; ! contro lSpeed ( 8 ) ;
11 ! waypoint ( Locat ion ) .
12 +!waypoint ( Locat ion ) <− ! waypoint ( Locat ion ) .
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Listing 8. Car Speed and Steering Controller.

1 +! controlSpeed(Speed) : speedSetting(Old) & (Old \== Speed)

2 <- -speedSetting(_); +speedSetting(Speed); setSpeed(Speed).

3 courseCorrection(TargetBearing , Correction) :- compass(CurrentBearing)

4 & declanation(Declanation)

5 & (Correction = TargetBearing - (CurrentBearing + Declanation )).

6 steeringSetting(TargetBearing , 1) :-

7 courseCorrection(TargetBearing , Correction) & (Correction >= 20).

8 steeringSetting(TargetBearing , -1) :-

9 courseCorrection(TargetBearing , Correction) & (Correction <= -20).

10 steeringSetting(TargetBearing , Correction /180) :-

11 courseCorrection(TargetBearing , Correction) & (Correction < 20)

12 & (Correction > -20).

13 +! controlSteering(Bearing) : steeringSetting(Bearing , Steering)

14 <- steering(Steering ).

steering setting is set to the maximum magnitude when the course correction is
greater than 20◦. For smaller magnitudes, the setting is dampened by dividing
it by 180, a crude but effective way of controlling the car’s steering. Lastly, the
steering plan controls the steering using the rules.

5 Testing and Evaluation

The agents were tested using ROS Melodic on Windows 10 with an Intel Core i7-
5820K CPU @ 3.30 GHz, 64 GB of system RAM, and an NVIDIA GTX 970 with
4 GB of RAM. Logs from the inbox, outbox, actions, and reasoning cycle periods
for 10 runs of each agent in each environment were analyzed. Quantitative results
are in Sect. 5.1 and qualitative observations are in Sect. 5.2.

5.1 Quantitative Results

We assessed the behaviour and performance of the agents in terms of their time-
lines and the period of their reasoning cycles. The quantitative results can be
found in the plots below. In these plots, we represent AgentSpeak implementa-
tion as ‘ASL’, the environment-supported agent as ‘ENV’, and the agent which
uses internal actions as ‘IA’. The synchronous grid is labelled as ‘Grid’, the
asynchronous grid is ‘GridROS’, and the AirSim car simulation is ‘Car’.

Figure 4 shows the timelines for each agent, which are zoomed in in Fig. 5,
showing the early path planning. The timelines are separated into four segments:
(1) initialization of the agent, (2) obtaining a route, (3) loading the waypoint
goals, and (4) moving through the environment. The timelines represent the
entire run for each agent. The synchronized grid agents all performed naviga-
tion within milliseconds of each other, thus their performance was practically
equivalent. The asynchronous environments exposed larger performance differ-
ences, so we observed more dramatic changes in agent performance. In this case,
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the AgentSpeak navigator completed navigation the fastest. Although the dif-
ference in arrival times for each of the agents was likely negligible for most
applications, it highlights that AgentSpeak can outperform other implementa-
tion approaches, especially when applied to search or other symbolic logic prob-
lems. The asynchronous agents navigation was on a slower timescale than the
synchronous agents because the reasoner waits for a perception to be available
prior to continuing the reasoning cycle, tying the agent’s performance to the
sensor period.

(a) Timelines for the Synchronous Grid Agent.

(b) Timelines for the Asynchronous Grid Agent.

(c) Timelines for AirSim Car Agent.

Fig. 4. Timelines.

Violin plots of the reasoning periods are in Fig. 6. The main distribution of
the reasoning period was generally unaffected by the navigation method. Once
the agent had a navigation solution, it moved through the environment in a
similar way. The difference was found in the extreme cases. This was where the
navigation routine caused significantly longer reasoning cycles, although this was
a small component of the run overall. We therefore do not see a significant dif-
ference in the length of the average reasoning cycle. The internal action agent
had the longest outliers, followed by the AgentSpeak agent. The environmentally
supported agent had the shortest periods as the reasoner performed additional
reasoning cycles while the solution was generated. There were differences in
reasoning periods between the different environments caused by the reasoner
waiting for perceptions prior to continuing reasoning. The update frequency of
the sensors was a bottleneck in the reasoning cycle. The synchronous environ-
ment did not impose this bottleneck, meaning the agent reasoned faster. The
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(a) Zoomed Timelines for the Synchronous Grid Agent.

(b) Zoomed Timelines for the Asynchronous Grid Agent.

(c) Zoomed Timelines for AirSim Car Agent.

Fig. 5. Zoomed timelines.

synchronous AgentSpeak navigator had the longest reasoning cycle, followed by
the internal action agent and then the environmentally supported agent which
continued reasoning while the navigation node generated the route. The differ-
ences in reasoning period were small, however this may be more pronounced
with embedded computers.

5.2 Qualitative Observations and Discussion

All the route generation and environment combinations worked well, they all
performed their navigation functions and travelled to the destination. A human
observer would not likely have been able to tell which agent was running. Videos
of the agents navigating the environments are available on YouTube [13–16].

A developer can consider several features of the implementation paradigm
when selecting their approach. For example, the representation of the map in
AgentSpeak was such that the agent’s knowledge of the map was a set of beliefs.
Updating this map required merely adding or removing the needed beliefs with
a single line of code. The environmental support and internal action naviga-
tors, however, were slightly more complex. For the environmentally supported
navigator, this was accomplished with a map update action which updated the
map’s underlying data structure. The internal action version also required a map
update function, however this was implemented as a separate class.
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(a) Reasoning Period: Synchronous
Grid.

(b) Reasoning Period: Asynchronous
Grid.

(c) Reasoning Period: AirSim Car.

Fig. 6. Reasoning periods.

Inspection of the behaviour logs for each of the agents revealed an interesting
aspect of the agent behaviours. The AgentSpeak navigators only used movement
related actions whereas the environment-supported and internal action agents
used getPath(.,.), either externally or as an internal action, to retrieve the
route. When the environmentally supported agents were in asynchronous envi-
ronments, using ROS, they used getPath(.,.) twice rather than once because
these agents performed additional reasoning cycles while waiting for the result
from getPath(.,.). In our tests, this added a negligible number of additional
reasoning cycles, however, this could provide an opportunity for an agent to rea-
son about other beliefs, desires, or intentions while waiting for a long task to be
completed in the environment. Although not explored in this work, this presents
a possible advantage to the use of environmentally based processing if there are
other areas that could benefit from the agent’s attention.

Looking back at our mail robot prototype [32], where navigation with turn-
by-turn directions was an environmental module, there were several differences
between that approach and our approach in this paper. In this more recent work,
we separated the turn-by-turn directions from the generation of the route by our
navigation routine, allowing the agent to perform reasoning on the route. When
the navigation module provided turn-by-turn directions, the module was more
complex, requiring constant updates of the position and orientation of the robot
and knowledge of how the robot moves between locations. With the turn-by-turn
directions implemented within the agent, the reasoner had the opportunity to
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reason about the route. This did mean that the reasoner required map knowledge
to make those decisions, something that was not necessary when the turn-by-turn
directions were externally generated.

6 Conclusion

We questioned how BDI can be used as a means of performing agent naviga-
tion, proposing a framework which (1) generated a route for the agent to fol-
low in the form of AgentSpeak achievement goals, (2) a turn-by-turn module,
responsible for guiding the agent through the environment, and (3) a means for
handling plan interruptions. Using the path planning use case, we tested how
implementing such behaviours in the agent in AgentSpeak, as an internal action,
or outside of the agent in an environmental module impacted the agent’s perfor-
mance and design. We found that there were performance differences, although
negligible from the user’s perspective. The environmentally supported naviga-
tor took slightly longer, followed by the internal action method. The AgentS-
peak navigator was the fastest. The peak reasoning period was shorter for the
environmentally supported agents as they did not have reasoning cycles to the
navigation task; the agent could have performed other activities while the navi-
gation process was completed. We found that the AgentSpeak language provided
intrinsic advantages for implementing the navigation search behaviours, making
it attractive for use in mobile robotics.

7 Future Work

In future work, we plan to expand our navigation framework into a general
framework for implementing mobile robotic agents and test it in another domain,
further demonstrating our approach for different environments. This approach
has so far been used for a prototype mail delivery robot, grid environments, and
a simulated autonomous car. We plan further development of the mail robot and
the autonomous car, increasing the complexity of their environments, including
demonstrating dynamic obstacle avoidance. We are also planning a UAV exper-
iment to demonstrate that this method can be applied to this domain. Also of
interest is how this approach can be coupled with different types of sensors,
the use of sensor fusion, or even other path planning libraries, such as the ROS
navigation stack [30].

Our quantitative results highlighted that the reasoning period was tied to
the sensors refresh rate. The synchronized environment, which did not use ROS,
allowed the agent to reason much faster than when it waited for sensor updates.
We will explore the advantages of decoupling the reasoning cycle from the percep-
tion updates, allowing the reasoner to continue reasoning on internal knowledge
while waiting for sensor information.

The Jason interpreter prioritizes plans as intentions based on their order in
the plan base. We were therefore deliberate about how we ordered our plans in
our code. Although it was possible to implement the agent with this knowledge,
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we will improve this approach by updating Jason’s event, option, and inten-
tion selection functions to prioritize appropriately. This will reduce the risk that
future refactoring could have unintended effects on the agent’s behaviour unless
the developer considers how all the behaviours work together, which could com-
plicate implementing more complex behaviours.
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2019. LNCS (LNAI), vol. 11684, pp. 181–195. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-28374-2 16

39. Russell, S., Norvig, P.: AIMA3e-Java (JDK 8+). https://github.com/aimacode/
aima-java. Accessed 19 Feb 2021

40. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall Press, Hoboken (2009)

41. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical
simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and
Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-67361-5 40

42. Wallis, P., Ronnquist, R., Jarvis, D., Lucas, A.: The automated wingman - Using
JACK intelligent agents for unmanned autonomous vehicles. In: Proceedings, IEEE
Aerospace Conference, vol. 5, p. 5 (2002). https://doi.org/10.1109/AERO.2002.
1035444

https://www.ros.org/
https://doi.org/10.1007/978-3-319-50983-9_8
https://doi.org/10.1007/978-3-319-50983-9_8
https://github.com/jason-lang/jason_ros/
https://github.com/Rezenders/MAS-UAV
https://github.com/jason-lang/jason-ros
https://doi.org/10.1007/978-3-030-28374-2_16
https://doi.org/10.1007/978-3-030-28374-2_16
https://github.com/aimacode/aima-java
https://github.com/aimacode/aima-java
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1109/AERO.2002.1035444
https://doi.org/10.1109/AERO.2002.1035444


An Appraisal Transition System
for Event-Driven Emotions in Agent-Based

Player Experience Testing

Saba Gholizadeh Ansari1(B) , I. S. W. B. Prasetya1 , Mehdi Dastani1 ,
Frank Dignum2 , and Gabriele Keller1

1 Utrecht University, Utrecht, The Netherlands
s.gholizadehansari@uu.nl
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Abstract. Player experience (PX) evaluation has become a field of interest
in the game industry. Several manual PX techniques have been introduced to
assist developers to understand and evaluate the experience of players in com-
puter games. However, automated testing of player experience still needs to
be addressed. An automated player experience testing framework would allow
designers to evaluate the PX requirements in the early development stages with-
out the necessity of participating human players. In this paper, we propose an
automated player experience testing approach by suggesting a formal model of
event-based emotions. In particular, we discuss an event-based transition system
to formalize relevant emotions using Ortony, Clore, & Collins (OCC) theory of
emotions. A working prototype of the model is integrated on top of Aplib, a tac-
tical agent programming library, to create intelligent PX test agents, capable of
appraising emotions in a 3D game case study. The results are graphically shown
e.g. as heat maps. Visualization of the test agent’s emotions would ultimately help
game designers to produce contents that evoke a certain experience in players.

Keywords: Automated player experience testing · Emotional modeling of
game player · Formal model of emotion · Intelligent agent · Agent-based testing

1 Introduction

With the growing interest of industry and academia in assessing the quality in-use of
a system, product or service, the term User eXperience (UX), which refers to quality
characteristics related to internal and emotional state of a user, has emerged [19,22].
UX evaluations become essential for designers to predict how users would interact with
a system. In the context of computer games, evaluating player eXperience (PX) plays
an important role to design a well-received game according to players’ preferences
and expectations. PX has different dimensions such as flow [21], immersion [13] and
enjoyment [8] which need to be addressed in a game design to evoke certain experience.

To assess the UX quality of a game, relatively novel UX evaluation methods such as
questionnaire methods, psycho-physiological measurement and eye-tracking have been
used [4,22,28]. Currently, PX testing techniques not only impose excessive hours of
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testing but they might also not be representative enough to cover all player types and
their possible emotions towards the game. Despite some attempts towards automation,
most of these techniques are either costly or still manually demanding [4,22,28]. More-
over, similar to UX evaluations in non-game applications, most of PX testing methods
measure PX toward the end of the game development [2,4,28], so there is still a need for
more efficient techniques to do these evaluations in early stages of game development.
This allows PX problems to be addressed early during the development.

All of these factors led us to propose an automated approach for PX testing in com-
puter games; the envisaged main use case is to assist designers in early development
phases to develop their games more efficiently. To meet this aim, here, we proposes to
employ a computational model of players to automatically assess PX properties of a
computer game. Such a model is necessarily tied to cognition and emotion. Addition-
ally, emotions that a player can feel under certain conditions would eventually affect
their overall experience. We, therefore, suggest to deploy a well-known theory of emo-
tions called OCC [17] to facilitate modeling players with respect to their emotions.

We present a formal model of the appraisal for OCC emotions using an event-based
transition system to serve as the foundation of our automated PX testing approach. It
deviates from existing formalization e.g. [1,10,26]; they have never been used in the
software engineering (SE) domain. This might explain why these formal models have
not been utilized for UX/PX testing. A more fundamental reason is that these models
are given in the form of BDI1 logic [15]. Although expressive, BDI logic is more a rea-
soning model rather than a computation model. In contrast, our formalization is given in
terms of a transition system that directly specifies how to compute the emotional state.
Having a transition system provides an opportunity for developers to simply deploy
the model in their own systems, whereas a BDI-based formal model would also need a
BDI reasoning engine before it can be used for computing. Furthermore, discrete transi-
tion systems have been used to do model checking in software for decades. This opens
a way to express UX/PX properties in e.g. LTL or CTL [3] and verify them through
model checking or model checking related techniques.

A prototype implementation of the formal model is also presented in this paper,
along with a demonstration of what it can do on a small case study. The appraisal model
prototype is integrated with Aplib [20], a Java library for agent-based game testing, to
create an emotional test agent that uses the OCC theory for emotional appraisal to
assess PX requirements in games.

The paper is structured as follows: Sect. 2 introduces the OCC theory. Section 3
gives an overview of the proposed framework architecture as well as the role of
appraisal in PX evaluations. Section 4 details the formal model of appraisal for event-
based emotions. Section 5 explains the early results of the framework in a 3D case
study. Section 6 discusses some related work and finally Sect. 7 concludes the paper
and presents future work.

2 OCC Theory of Emotion

Ortony, Clore, and Collins [17] presented a cognitive structure of emotions which
characterizes 22 emotion types (e.g. joy, hope, disappointment, distress and fear).

1 Belief-Desire-Intention.
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According to their ‘OCC’ theory, emotions are valenced reactions which can be turned
on by outcome of events, outcome of agents’ actions, or attributes of objects. Event-
based emotions that are applicable to most game setups are highlighted in blue in Fig. 1.
We selected them to be the basis of our proposed event-based transition system for emo-
tions in our PX testing framework (further explanation in Sect. 3.1). Each of the emotion
types listed in Fig. 1 is specified as described in [17].

Fig. 1. OCC structure of emotions [17]. (Color figure online)

Table 1 summarizes OCC specifications of the highlighted emotion types; e.g. the
OCC theory defines joy as is being pleased about a desirable consequence of event.
For example, consider a maze game in which an agent is looking for gold. When the
agent finds a room with a gold pile, and it takes one step toward the gold, this has a
desirable consequence (the agent is certain that it gets closer to the gold), so the agent
feels pleased and as a result it starts to feel joy for the gold. However, satisfaction is
different. It is defined as being pleased about the confirmation of the prospect of a
desirable consequence. This emotion needs achievement confirmation whereas joy can
be triggered whenever the agent becomes certain that the goal is achievable, although
not fulfilled yet. In the above example, satisfaction is triggered when the agent actually
acquires the gold. Additionally, while joy affects satisfaction, the agent might not be
satisfied towards every goal which it is joyful about. In the earlier set-up, the agent,
when proceeding to collect the gold, faces guardians that need to be defeated first, and
ends up consuming a unique item to win the combat. Thus, despite reaching the goal that
it is joyful about, it would not be satisfied for failing to keep all its prized possessions.
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Table 1. Selected emotions specifications according to the OCC theory [17].

Joy: pleased about a desirable consequence of event

Distress: displeased about an undesirable consequence of event

Hope: pleased about the prospect of a desirable consequence of event

Fear: displeased about the prospect of an undesirable consequence of event

Satisfaction: pleased about the confirmation of the prospect of a desirable consequence

Disappointment: displeased about the disconfirmation of the prospect of a desirable consequence

In general, dealing with emotions involves appraisal and coping [17]. When an
agent receives an event, the appraisal process is triggered to form emotions. Afterward,
the agent responds to those emotions based on coping strategies which affects the agent
behavior towards the environment. In other words, emotions regulate the agent’s actions
during the coping process. In this paper, we focus on modeling of appraisal —the pro-
posed appraisal model of event-based emotions will be presented in Sect. 4.

3 Agent-Based Player Experience Testing Framework

In this section, we will explain the proposed framework architecture with their compo-
nents and demonstrate appraisal in PX testing with some examples.

3.1 The Framework Architecture

The general architecture of the proposed framework is presented in Fig. 2, showing
appraisal model of emotions, player characterization, Aplib and PX evaluation as the key
components. They are defined below.

Appraisal Model of Emotions. A test agent’s emotions are modeled based on the
OCC theory. Game dynamism can be mostly interpreted in terms of events in computer
games, so the framework needs to evaluate the emotions that are driven by the game
events for the start. To model these emotions, a transition system approach is proposed,
which is formalized in Sect. 4. It calculates the event-based emotions with their respec-
tive intensity. We will focus on a single test agent setup, thus we leave out emotions that
are only valid in multi-agent settings. Appearance of objects can also influence PX but
this is technically more challenging to deal with (e.g. how to interpret “appearance”).
However, there is a room for extending the model, in the future, to test aspects of PX
that are formed in social contexts and those influenced by object aspects.

Player Characterization. Some properties of the appraisal model of emotions need to
be specified by game designers with respect to the game under test as well as the player
characteristics. For example, the designers should specify what goals are relevant for
players (e.g. winning the game, collecting in-game money), what in-game events are
relevant to these goals, and in what way they are related to the goals (are they desired
towards reaching a goal, or else undesirable?). Additionally, the desirability of an event
might differ from one player character to another. Thus, player or set-up dependent
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Fig. 2. Automated PX testing framework architecture.

properties must be initially set in this part of framework, before running the model of
appraisal. Having such a component in our framework also provides an opportunity to
enhance it in the future with more advanced characteristics such as players’ moods and
play-style (e.g., exploratory or aggressive [25,29]).

Aplib2 [20].A Java library for programming intelligent agents. It provides an embedded
Domain Specific Language (DSL) to use all benefits of the Java programming language.
Aplib has a BDI architecture [12] with a novel layer for tactical programming to control
agents behavior more abstractly. Despite other use cases, the library has been developed
for testing tasks in highly interactive software like games.

PX Evaluation. Designers give test scenarios to the framework to check whether their
newly developed content indeed triggers the expected emotions. This part is responsible
for the visualization of the emotional state of the test agent as it pursues dedicated goals
in a game environment with a given test scenario. Generated emotion types with their
upward/downward trends during the test would assist designers to alter game parame-
ters to optimize the experience in a certain degree.

3.2 Appraisal Theory in PX Testing

As mentioned earlier, the appraisal process is an essential part of computational models
of emotions. So, to automatically test the player experience based on emotions, we need
to include this process in our framework for creating emotions. This would allow us to
check whether the designers’ expected emotions are as same as the triggered players’
emotions when exposed to certain situations in the game.

For instance, educational games are often evaluated based on the engagement level
of learners to promote learning. Traditionally, to do this, players’ emotions are tracked
using either self-reports or automated facial emotion detection during a game-based
task [16], Identifying positive and negative emotions plays an essential role in deciding

2 https://iv4xr-project.github.io/aplib/.

https://iv4xr-project.github.io/aplib/
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if some game-based conditions and tasks need to be changed to optimize learning. Our
proposed framework would help in performing this process automatically using model
of emotions to create emotions with respect to events.

Users of a more traditional, non-game, system typically need to feel higher levels of
positive emotions and low levels of negative emotions to reach a satisfactory experience,
while moderate levels of positive emotions and a high level of negative emotions such
as distress, fear and disappointment could end up in an unsatisfactory experience with
the system [18]. These negative emotions reflect users’ feelings when they are unable
or unsure of how to use the system in some situations. This lead to the poor usability of
the system [23]. However, computer games, e.g. those in the RPG and combat genres,
can be deliberately designed to invoke certain negative emotions for certain experience
in players because it can ultimately contribute to their enjoyment [5] or even lead to
high level of positive emotion when the player overcomes reasons that evoked negative
emotions like fear and frustration [14]. Thus, unlike UX testing, in PX testing designers
also need be able to analyze relations between positive and negative emotions. Our
proposed framework can automatically check whether these emotions are appraised
during playing the game. The prototype further refines this by also tracking when and
where these emotions occur, thus enabling refined analyses. If the patterns of these
emotions do not meet expectation, designers can change properties of the game and
iterate the emotional testing process to achieve the expected emotions.

Ultimately, modelling a player’s coping process improve the ability of the frame-
work in PX testing. This is discussed briefly in Sect. 7. However, being able to model
the coping behavior does not change the fact that the framework needs to also sup-
port the appraisal process of emotions in the first place. For this reason, our proposed
framework first focuses on the appraisal process.

4 Event-Based Formal Model of Emotion

Imagine that a software testing agent which takes the role of the player is deployed on
a computer game to do PX testing. The agent is modelled as an event-based transition
system which can appraise emotions to emulate the emotional state of a player. Its state
consists of its ‘belief’ (perception) over the game and its emotions which can even-
tually affect its behavior to resemble the player behavior. In this section, we describe
the essential part of the formalization of this event-based emotion transition system to
conduct an approach for formal modeling of automated PX testing.

In the following, we assume an agent to have beliefs and goals, based on which it
decides which actions should be taken in the environment. Being able to differentiate
between different goals is useful for PX testing, as games often offer various optional
plots and goals to players to improve their non-linearity and replay value. A goal g is
represented as a pair 〈id,x〉, with id as its unique identifier and x as its significance or
priority of the goal. Goals and their significance are static in this setup. We also assume
that an agent senses its environment by means of events. For simplicity, it is assumed
that the agent observes one event at a time, causing the agent to transition from one state
to another. Whereas the agent’s own actions are events, there are also events that arise
from environmental dynamism such as hazards and updates by dynamic objects. We
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also add the event tick to discretely represent the passing of time. We represent emotion
types as Etype = { Joy,Distress,Hope,Fear, ...}. In the sequel, etype ranges over this
set.

Definition 1. An emotional testing agent is represented by a transition system M,
described by a tuple:

〈Σ,s0,G,E,δ,Π,Thres〉
where:

– G is a set of the agent’s goals.
– Σ is the set of M’s possible states. Each state s in Σ is a pair 〈K,Emo〉 where:

• K is a set of propositions representing the agent’s beliefs. We additionally
require that for every g ∈ G, K includes a proposition representing the goal’s
confirmation or dis-confirmation status, and a proposition representing the like-
lihood of reaching this goal from the current state. The former is represented
by status(g, p) where p ∈ {achieved, f ailed, proceeding} and the latter by
likelihood(g,v) where v ∈ [0..1].

• Emo is a set containing the agent’s active emotions, each is represented by a
tuple 〈etype,w,g, t0〉 specifying the emotion type etype, its intensity w with
respect to a goal g, and the time t0 at when the emotion is triggered.

– s0 ∈ Σ is the initial state. It should specify the agent’s initial belief on the likelihood
of every goal, as well as initial prospect-based emotions (hope and fear). The ratio-
nale for the latter is that having an initial prospect towards a goal implies that there
is also hope for achieving it, as well as some fear of its failure.

– E is the set of events the agent experiences.
– δ : Σ×E → Σ is the state transition function that describes how M moves from one
state to another upon perceiving an event. The definition is rather elaborate, and will
be given separately in Definition 2.

– Π = 〈Des,Praisew,DesOther,Liking〉 is a tuple of appraisal dimensions according
to the OCC theory. This determines how an event is appraised in terms of its desir-
ability, praiseworthiness, desirability by others and liking.

– Thres is a set of thresholds, one for every type of emotion.

As an example, Fig. 3 illustrates first few transitions. We, additionally, assume the
agent maintains an emotional memory, called emhistory, which keeps the history of
active emotions (Emo) for a reasonable time window in the past:

emhistory =

time window d
︷ ︸︸ ︷

Emot−d , ... , Emot−1

where t is the current system time and d is the size of the memory’s time window.
Emot−i indicates the active emotional at time t− i in the past.

Before presenting the rest of the formal model, we feel the necessity to bring
more clarity into the concept of goals’ likelihood and status. The transition system
is defined in a way that there is a slight difference between likelihood(g,1) and
status(g,achieved). When an agent experiences likelihood(g,1), it is possible that the
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Fig. 3. An agent’s state transitions, as it receives an event e1 followed by e2.

goal g does not get confirmed in the same state. In other words, the agent comes to
believe that the goal is reachable with 100% certainty, but the achievement of the
goal has not been confirmed yet in the current state. A similar relation holds for
likelihood(g,0) and status(g, f ailed).

The next key point is the agent’s appraisal component Π, which has four dimen-
sions. They help in modeling how events are appraised with respect to every goal
in the corresponding dimension. Each appraisal dimension is described as a func-
tion over the agent’s beliefs, an event and a goal: Π Dim (K,e,g),where Dim∈{Des,
Praisew,DesOther,Liking}. For example, ΠDes(K,e,g) determines the desirability of
an event e with respect to the goal g, judged when the agent believes K; the latter
implies that this desirability might change when K changes. Depending on the emotion,
one or multiple appraisal dimensions might be triggered. Currently, Π Des is the only
dimension being actively used in our model because according to the OCC theory, the
only appraisal dimension which affects our selected emotion types is the desirability
function. However, we keep the structure in the general form for possible future exten-
sion of the emotion types.

Below we will explain how emotions will be calculated, but importantly we should
note that PX designers must provide some information as well, namely the follow-
ing components of the tuple in Definition 1: (1) the goal set G, along with the sig-
nificance and initial likelihood of each goal (likelihood(g,vinit)), (2) likelihood func-
tions modelling how events affect the agent’s belief towards goals’ likelihood, (3) the
appraisal dimensions, in particular Π Des(K,e,g), (4) the thresholds Thres and (5) decay
rate decayetype. In the simplest form, Π Des(K,e,g) can be described by a mapping that
maps events to the goals they are perceived as desirable/undesirable. In a more refined
description this can be a function that monotonically increases with respect to the goal
significance and likelihood. In terms of the architecture in Fig. 2, the above components
are described in the Player Characterization part.

Definition 2. Event-based Transition. As mentioned earlier, the agent’s state transition
is driven by one incoming event at a time. The transition function (δ in Definition 1) is
defined as follows. Let e be an occurring event:

〈K , Emo〉 e−−−→ 〈K′ ,

updated emotion Emo′
︷ ︸︸ ︷

newEmo(K,e,G) ⊕ decayedEmo(Emo)〉
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where:

– K′ = e(K) \ H, where e(K) is the agent’s new beliefs obtained by updating K
with event e; here, the event e is assumed to have a semantic interpretation
as a function that affects K, including the parts that concern goals’ likelihood
and status. H expresses likelihood information that can be removed from e(K),
because the corresponding goals are achieved or failed. More precisely, H is the
set { likelihood(g,v) | status(g, p) ∈ e(K), p ∈ {achieved, f ailed}, v ∈ {0,1} }.

– Emo′ = newEmo(K,e,G)⊕ decayedEmo(Emo) is the agent’s emotions updated
by the perceived event e and the agent’s new beliefs. Importantly, the
newEmo(K,e,G) specifies the newly triggered emotions (see Definition 3), whereas
decayedEmo(Emo) (see Sect. 4.1) is a set of active emotions that decay over time.
The operator⊕merges all these emotions after applying some constraints to have the
updated emotional state of the agent. The emotional update is explained in Sect. 4.3.

When an agent perceives an event (except tick event), new emotions may be trig-
gered. This is done by calculating a so-called’emotion function’ E for every emotion
type, as follows:

Eetype(K,e,g) = w

This function specifies the activation intensity w of the emotion etype towards the goal
g, as a consequence of the occurrence of e and having beliefs K. Importantly, note
that the function expresses goal oriented emotions, whereas the OCC theory includes
e.g. emotions towards events or objects. We focus on goal oriented emotions due to
the importance of goals, ranging from defeating monsters to getting the highest score,
for game players. A tick event is used to represent the passing of time. This event
would cause decays of active emotions in the transition system. The definition of newly
triggered emotion, mentioned in Definition 2, is given below. It is used whenever a new
emotion is triggered or an existing emotion reoccurs in the system. The way these new
emotions are merged with existing emotions in Emo, as mentioned in Definition 2, will
be explained in Sect. 4.3. We also need to remind that some hope and fear already exist
in the system at the beginning which can be re-triggered by this function. Their initial
values are set according to goals’ significance and initial likelihoods of goals.

Definition 3. New Emotions. The set of new emotions triggered by e is:

newEmo(K,e,G) = {〈etype,g,w, t〉 | etype ∈ Etype, g ∈ G, w= Eetype(K,e,g)> 0}

where t is the current system time that the emotion is triggered.

In the above definition Eetype is a so-called activation emotion function that calculates
the activation intensity for different newly triggered event-based emotion types. Each
activation emotion function has an activation potential and a threshold which form the
activation intensity of the newly triggered emotion (see Definition 4). The level of desir-
ability an event respecting a goal and the agent’s goal likelihood are the main variables
affecting the activation potential as hinted in the OCC theory. To trigger a new emotion
type, its activation potential value needs to pass the corresponding threshold. The con-
cept of threshold is needed if we want to support setups with different agent’s moods
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because the thresholds depend on the moods (e.g. Steunebrink et al. [26] pointed out
that with a good mood, the thresholds of negative emotions increase, hence bringing
about a lower degree of intensity in negative emotions when they are triggered). All
activation functions of emotions defined below have the same structure. However, the
potential part might differ. They are as follows3:

Definition 4. Joy

E Joy(K,e,g) =

activation intentsity
︷ ︸︸ ︷

Π Des(K,e,g)
︸ ︷︷ ︸

activation potential

− Thres(Joy)

provided g ∈ G, likelihood(g,1) ∈ e(K)4, and Π Des(K,e,g)> 0.

Definition 5. Distress

E Distress(K,e,g) = |Π Des(K,e,g)|−Thres(Distress)

provided g ∈ G, likelihood(g,0) ∈ e(K), and Π Des(K,e,g)< 0. Unlike Joy, Distress is
triggered when an event is deemed as undesirable towards the goal.

Definition 6. Hope

E Hope(K,e,g) = v′ ∗ x−Thres(Hope)

provided g= 〈id,x〉 ∈G, likelihood(g,v) ∈ K, likelihood(g,v′) ∈ e(K), and v< v′ < 1.
It is assumed that the increase in likelihood of a goal is only possible if the incoming

event is desirable towards the goal. Thus, with this assumptions, there is no need to
check the desirability of the event Π Des(K,e,g) for prospect-based emotions.

Definition 7. Fear

E Fear(K,e,g) = (1− v′)∗ x−Thres(Fear)

provided g= 〈id,x〉 ∈G, likelihood(g,v) ∈ K, likelihood(g,v′) ∈ e(K), and 0< v′ < v.

Definition 8. Satisfaction

E Satisfaction(K,e,g) = x−Thres(Satis f action)

provided g = 〈id,x〉 ∈ G, status(g,achieved) ∈ e(K), 〈Hope,g〉 ∈ emhistory, and
〈Joy,g〉 ⊂= emhistory.

Definition 9. Disappointment

E Disappointment(K,e,g) = x−Thres(Disappointment)

provided g = 〈id,x〉 ∈ G, status(g, f ailed) ∈ e(K), 〈Hope,g〉 ∈ emhistory, and
〈Distress,g〉 ⊂= emhistory.

3 For convenience, we only define the functions partially. The cases where they are undefined
will be ignored by Definition 3 anyway, where they are used.

4 Unlike prospect-based emotions, well-being emotions are certain. So, joy and distress towards
a goal only happen if the goal’s likelihood becomes 1 and 0 respectively. In particular, obtain-
ing certainty of achieving/failing the goal is seen as notable desirable/undesirable consequence
of an event to justify these emotions. There might other practical consequences, but we will
mostly focus on the aforementioned types of consequences.
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4.1 Decay of Emotions

Every emotion has a duration called emotion episode in which the peak of its intensity,
its decay rate, possible recurrences, and the time that the emotion is triggered are shown
[26]. As indicated earlier in Definition 1, tick is a time event to show the passing of time
in our transition system. We can reflect decays of emotions using this event:

〈K,Emo〉 e=tick−−−−−−→〈K′,Emo′〉

where K′ and Emo′ refer to the updated beliefs and updated active emotions after the
transition. The intensity of active emotions in Emo would decrease as follows:

decayedEmo(Emo) =
{〈etype,g,w′, t0〉 | 〈etype,g,w, t0〉 ∈ Emo, w′ = intensitydecay etype(w0, t0)> 0,

w0 = emhistory(etype,g, t0)}

wherew0 = emhistory(etype,g, t0) denotes the initial intensity of etypewith respect to g
which can be obtained from emhistory. There is not a unique quantitative formalization
for the decay function intensitydecay. This function can be defined in a way which
relates the usage and the interpretation of decay [6,27]. However the peak of intensity
(w0), the time at which the emotion is triggered (t0) and the decay rate (decayetype) are
essential parameters that must be taken into account. While an inverse sigmoid decay
function is proposed by [27] to reflect the gradual decrease of intensities, [6] is making
use of a negative exponential function with almost the ame parameters. We used the
latter decay function [6] in our model although the sigmoid decay function [27] can be
used as well.

intensitydecay etype(w0, t0) = w0 ∗ e c ∗ decayetype ∗ (t−t0),−1< c< 0

where t is the current system time and t0 is the time at which the emotion starts.

4.2 Inconsistent Emotions

Emotions are triggered regarding the goals, so technically the agent might have several
emotions towards the same goal. Nevertheless, the OCC theory states that some emo-
tions are mutually exclusive which means a human can not have them simultaneously
for the same goal [26]. These mutual exclusions, which should then also be held in
every state of our transition system, are as follows:

Emo′ � ¬(〈Hope,g〉∧ 〈Joy,g〉)
Emo′ � ¬(〈Fear,g〉∧ 〈Distress,g〉)

As it is explained in Sect. 2, whereas emotions such as hope and fear are prospect-based
emotions which means they are uncertain (likelihood(g,v)), emotions like joy and dis-
tress are certain [26], so it is illogical to have both in the system. For example, when
a player is joyful of acquiring the key to an in-game treasure room, because now the
treasure should certainly be within his/her reach, this joy would now replace what was
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merely hope for getting the treasure. In general, in case of happening a certain emo-
tion, it replaces the corresponding prospect-based emotion, so the mutual exclusions
are always maintained. We formulated our formal model in a way that in case of the
conflicting emotions, the new certain emotion would take the place of the prospect-
based emotion. However, the set of inconsistent emotions can be expanded based on
the test purpose or the game under test. The designer can specify these as assumptions
in the Player Characterization component. A notation as axiomset(〈etype,g〉) is used
to access every rule containing 〈etype,g〉.

4.3 Emotional State Update

To update the emotional state, newly triggered emotions, newEmo, need to be merged
with existing active emotions whose intensities are decreasing gradually, decayedEmo,
to yield the new emotional state Emo′. There are three cases to consider. Case-1 involves
existing emotion types that decay without having the same emotion type or the conflict-
ing type in the newEmo; these will be kept. Case-2 involves newly triggered emotion
types that do not exist in decayedEmo; these are added to Emo′. Case-3 involves emo-
tion types in decayedEmo that reoccurs in newEmo. Only emotions from these three
cases will be included in Emo′. In particular, this implies that in the cases of inconsis-
tent emotions, the newly triggered emotion takes precedence over the emotion which
has already existed by taking its place in order to uphold the mutual exclusions dis-
cussed before. The new one is added to Emo′ based on Case-2. This comes from the
rationale that new belief and perceptions convey more accurate information than past
information, and therefore the triggered new emotions have more weight for the player.
The last case, Case-3, is about existing emotions that get re-stimulated by the new per-
ceived event. To date there is no definitive answer to the question of how this should be
reflected to the intensity of the corresponding emotions. We decided to take the max-
imum intensity value of the emotion (the dominant value). However, a more proper
answer to the question would need further research. The update is formally shown
below, with the Cases indicated accordingly:

Emo′ =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1© {〈etype,g,w, t0〉 | 〈etype,g,w, t0〉 ∈ decayedEmo
∧ ¬∃ w′, t ′0. 〈etype,g,w′, t ′0〉 ∈ newEmo
∧ ¬∃ w′, t ′0. 〈etype,g,w′, t ′0〉 ∈ newEmo }

∪
2© {〈etype,g,w′, t ′0〉 | 〈etype,g,w′, t ′0〉 ∈ newEmo

∧ ¬∃w, t0.〈etype,g,w, t0〉 ∈ decayedEmo }
∪
3© {max(〈etype,g,w, t0〉,〈etype,g,w′, t ′0〉)| 〈etype,g,w, t0〉 ∈ decayedEmo

∧ 〈etype,g,w′, t ′0〉 ∈ newEmo}
where t0 is the time at which an emotion is triggered (starts) and the outcome of max
is the one with the higher intensity. An emotion that is in conflict with etype is referred
as etype. The above update scheme will uphold the axiom ¬(〈etype,g〉∧ 〈etype,g〉) ∈
axiomset(〈etype,g〉).
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4.4 Goal Chain

As indicated earlier, the beliefs K gets updated according to the new event. In particular,
this might affect the agent’s belief towards the likelihood of achieving certain goals.
Recall that this is modelled in the Player Characterization component in our approach,
e.g. by means of some update rules. However, modern games often offer multiple goals
that players can go after, and furthermore have dependency. E.g. obtaining a unique
item Excalibur might be an optional goal in a game, but achieving this might improve
the likelihood of defeating the end boss. To capture this, we can extend the Player
Characterization with ’chained’ rules, for example R = {e1 → g1, g1 → g2, g2 → g3}
to express that the event e1 affects the likelihood or status of the goal g1, which in turn
affects the likelihood of g2 and so on. We do not write down how exactly the likelihood
should be adjusted, but imagine that the rules also specify this. When the agent received
e1, it should now not only apply the rule/update e1 → g1, but also other rules in Rwhose
antecedent is transitively triggered by e1 → g1. While the rules in R above can indeed be
equivalently described by more direct rules of the form {e1 → g1, e1 → g2, e1 → g3},
the chained form arguably captures inter-goal dependency more intuitively.

5 Proof of Concept

We conducted our experiment on a game called Lab Recruits5 which we subject to the
combination of aplib and our implemented model of appraisal6 to provide the proof of
concept and show our early results in PX testing. Lab Recruits is a 3D game developed
in Unity which has different replayable levels. Each level is a laboratory building with
a number of rooms containing interactable objects, such as button and non-interactable
objects, such as desk and fire hazards.

Figure 4a shows the floor plan of the level exposed to PX testing using our approach.
It consists of four buttons, three doors, and some fire hazards. The goal is for the player
to escape the level by reaching the exit room circled in red. Access to this room is
guarded by a closed ‘final door’. The level contains some rooms with a puzzle (yellow
circle) that involves finding the buttons to open the final door and reopen the doors that
in the process become closed to entrap the agent. Figure 4b and 4c show two provided
setups with the different amount and locations of fire hazards. The agent will lose health
points by passing each fire hazard. These setups are examples of choices considered
by designers, although being currently simple, as to which one would lead to better
PX. There is also a baseline setup, in which no fire hazard exists in the game level, to
compare its emotional outcomes with the result of two mentioned setups.

As mentioned in Sect. 4, a developer sets needed inputs of the model such as the goal
set, initial likelihood of each goal, the desirability of events for each goal, the threshold
and decay rate of emotions in Player Characterization. A test agent is deployed, set
with multiple goals, though here we will only discuss the most significant one, namely
completing the level. Initially, the agent is assumed to believe that the likelihood of
achieving this goal is 0.5. The agent is given a program so that it can automatically

5 https://github.com/iv4xr-project/iv4xrDemo/tree/occDemoPrototype.
6 https://github.com/iv4xr-project/jocc.

https://github.com/iv4xr-project/iv4xrDemo/tree/occDemoPrototype
https://github.com/iv4xr-project/jocc
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(a) The floor plan of the level.
(b) Setup 1. (c) Setup 2.

Fig. 4. The level under the PX test in Lab Recruits.

explore the level. As the agent progresses, its belief on the likelihood of completing
the level changes, depending on the number of opened door as well as remained closed
doors. Opening each door is assumed to have a desirable consequence for the agent
because it increases the chance of the agent to complete the level.

The timeline of triggered emotions at the baseline setup in the agent with respect
to the goal “completing the level” is shown in Fig. 5, along with their intensity levels
at each time. The agent initially experience some hope and fear due to the assumed
initial belief that completing the game is possible, with the likelihood 0.5. This depends
on the agent’s mood which influences the degree of hope and fear the agent initially
has. When the agent pushes the button that opens the first door (time = 60)7, the agent’s
hope regarding completing the game starts to increase. It decays or gets re-stimulated
according to the events until time 110 when it is replaced by joy. The agent feels a level
of satisfaction, when completing the game.

Fig. 5. The emotions’ timeline in the baseline setup (no fire hazard).

The timeline of emotions in setup 1 and setup 2 in Fig. 6 shows that the trend of
positive emotions is actually quite similar to that of the baseline, although with a smaller
level of hope in the setup 2. However, comparing the result of setup 2 with setup 1

7 The system is event driven, so only events can change the likelihoods. All emotions decay
until an event is perceived. However, we can add an event type to the system to decay the
likelihoods when there is no event for some period of time to update the emotional state.
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and the baseline reveals something interesting. Fear shows a quite different trend in
setup 2 (Fig. 6b). It is stimulated multiple times during the execution, whereas the same
emotion, despite having numbers of fire hazards, has been never stimulated in setup 1
(Fig. 6a). In other words, having some fire hazards may not necessarily trigger fears in
the agent unless the agent passes the certain numbers of fire hazards. Such a comparison
can be useful for designers e.g. to determine the amount, and placement, of hazards to
induce certain degree of fear along with keeping the chance for satisfactory experience
of accomplishing the goal. In our case, setup 1 is less likely to thrill the player, whereas
setup 2 has a better balance of the quantity and placement of the fire, by generating fear
and even in relatively close time interval with a rise in hope, while still keeping the level
survivable.

(a) Setup 1 (b) Setup 2

Fig. 6. The emotions’ timelines correspond two setups of the game level in Figure. 4. (thresh-
old = 0, decay rate = 0.005)

Figure 7 shows some heat maps, providing spatial information of the agent’s emo-
tions in setup 2. Comparing the outcomes of Figs. 6b and 7a illustrates that the highest
level of fear is experienced when the agent is in a particular fire covered corridor (yel-
low in Fig. 7a). Fire intensifies the agent’s fear of failure, and moreover the agent has
to walk this corridor several times. The most drastic decline in fear is when the agent is
about to finish the level.

As can be seen in Fig. 7b, the agent feels a higher level of hope when progressing in
solving the buttons-doors puzzle in the puzzle rooms. After pushing the button that cor-
responds to the final door and reopening the door of puzzle room to escape it, the agent
becomes certain that passing the final door is achievable now. Thus, the hope suddenly
is replaced by the joy for reaching the final door to complete the game. At the end,
the agent feels satisfied when the achievement is confirmed. Having such information
would help Lab Recruits designers to adjust the puzzles and fire hazards in such a way
to induce certain emotions, at the right moments and the right places, which ultimately
affect a certain aspect of player experience like enjoyment. It is worth mentioning that
depending on the player profile designed in the player characterization such as the ini-
tial player mood and type of player (experienced or new player), the result might differ
to some degree. However, assessing the influence of these factors on PX is a future
work.



An Appraisal Transition System for Event-Driven Emotions 171

(a) Negative emotions: yellow= high fear,
dark red=low fear.

(b) Positive emotions: Mahogany red=hope,
Ruby red= joy, yellow= satisfaction.

Fig. 7. The heat maps of triggered emotions in setup 2. Black = very low intensity (or no emotion),
white =walls, gray = unexplored area. (Color figure online)

6 Related Work

PX researchers aim to understand the gaming experience to ultimately induce cer-
tain experience. Fernandez [9] outlines the influence of players’ emotional reactions
and their profile in enjoyment by extending the usability methods to uncover relation-
ships between game components and the degree of fun in players. Sanchez et.al [24]
explained that usability of games can be defined in the term of playablity. They present a
framework guided by attributes and properties of playability to characterise experience
for PX evaluation and observing the relation between the experience and the developed
elements of a commercial video game. Psycho-physiological methods is among tech-
niques to measure aspects of PX like flow and immersion. Jennett’s et al. [13] tries to
develop a subjective and objective measure for immersion using questionnaires and eye
movement tracking respectively. Drachen et al. [7] report a significant the correlation
between heart rate, electrodermal activity and the self-reported experience of players in
first-person shooter games. Zook and Riedl [30] introduce a temporal data-driven model
to predict the impact of game difficulty to player experience. Results of their empirical
study on a role-player combat game show the game, that tailors its difficulty to fit a
player abilities, improves the player experience.

Zhao et al. [29] create agents with human-like behavior to assist game designers to
evaluate their games. The study focuses on training agents based on style of in-game
play and skill. A variety of techniques are utilized in the provided case studies to train
play-testing agents to test logic of the game under development as well as game-playing
agents which interact with human players to mimic the game play experience for dif-
ferent play style. Stahlke et al. [25] also aim to use play-testing agents to test games
by following humans’ navigational behavior. They investigate the impact of play-style,
the experience level and cognitive process on modeling humans behavior. Most of PX
prediction techniques are data-driven which involve human players in the process and
as a result, they demand a high level of human labor. This led researchers to investigate
model-driven approaches. A computational model of motivation is presented in [11] to
predict PX without the need of human player using empowerment, the degree of con-
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trol an agent has over the game. The study measures empowerment by intelligent agents
to create levels with defined empowerment to induce different PX. This would help to
produce desired content characteristics during the procedural content generation.

Despite existing research on modeling the OCC theory, the theory has not been
employed in the context of PX testing. Having a proper formalization of emotion would
act as a bridge from psychological description of emotions to computational models of
emotions which are translatable to codes. Formalization of emotions has been mostly
done in the form of BDI logic. Steunebrink [26] deployed a formal model inspired
by the OCC theory to specify the influence of emotions, specifically hope and fear,
on a BDI agent’s decisions. Later, a full version of the model with all 22 emotions
is explained in [27]. Dias et al. [6] presents an OCC-based appraisal engine called
FAtiMA (Fearnot AffecTIve Mind Architecture) for creating autonomous agent char-
acters that can appraise events and behave based on socio-emotional skills. Its main use
case is to automate virtual characters in conversing with humans. FAtiMA is claimed
to be inspired by the OCC theory to simulate emotional skills in autonomous agents.
However, so far, no formal model has been introduced to evaluate the toolkit regarding
the OCC theory. A BDI-like probabilistic formalization is described in [10] for OCC
event-based emotions during the appraisal. The study evaluates the desirability of con-
sequences of an event based on the agent’s goal and the degree that the consequence
can improve the possibility of the goal achievement. Unlike other formalisations that
give a high level function for appraisal variables, it proposes a more refined logic-base
calculation for these variables and also tries to formalize ‘effort’ and ‘realization’ that
are involved in appraising some event-base emotions.

7 Conclusion and Future Work

This paper presented an automated PX testing approach using an emotional model.
An event-based transition system is introduced to model the appraisal for event-based
emotions according to the OCC theory which is then combined to a Java library for
tactical agent programming called aplib to create an agent-based PX testing framework.
Early results of our experiment with the prototype show that such a framework that can
emulate players’ emotions would let developers to investigate how emotions of players
would evolve in the game during the development stage. By providing e.g. heat-map
visualisations of triggered emotions and their timelines, designers gain insight on how
to alter parameters of their systems to evoke certain emotions.

We are currently doing more advanced experiments using the case study, Lab
Recruits, to investigate initial moods, emotions and their effect on certain aspects of
PX as a future work. There are also some concepts like emotional intensity after a
recurrence that are described with high level functions in the literature which need a
calculation mechanism. In particular, we want to do further research on how exactly an
emotion should regain its intensity level after a re-stimulation. Furthermore, the pro-
posed framework, if enhanced by the coping process, would be able to simulate the
effect of emotions on players’ behavior for further PX evaluations. However, this needs
extension in our event-based transition system to support the coping process formally
respecting the OCC theory. We ultimately plan to conduct research on validation of our
model by comparing our results with the data of human players.
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Abstract. In this paper, we propose the integration of approaches to
Engineering Multi-Agent Systems (EMAS) with the Developer Opera-
tions (DevOps) industry best practice. Whilst DevOps facilitates the
organizational autonomy of software teams, as well as the technological
automation of testing, deployment, and operations pipelines, EMAS and
the agent-oriented programming paradigm help instill autonomy into
software artifacts. We discuss the benefits of integrating DevOps and
EMAS, for example by highlighting the need for agent-oriented abstrac-
tions for quality assurance and test automation approaches. More gener-
ally, we introduce an agent-oriented perspective on the DevOps life-cycle
and list a range of research challenges that are relevant for the integration
of the DevOps and EMAS perspectives.

Keywords: Agent-oriented programming · Engineering Multi-Agent
Systems · Developer Operations

1 Introduction

On August 1, 2012, the financial technology venture Knight Capital Group,
Inc executed a malfunctioning update of their autonomous trading system that
caused the large-scale issuing of erroneous orders, leading to losses of more than
$450 million within less than one hour [24]. In the software engineering commu-
nity, the root cause of the error is ascribed to problematic software development
processes that do not ensure a sufficient degree of quality assurance automation
and testing at different development and deployment stages [5].

To address this and similar issues1, new software development practices have
emerged during the the last decade, most notably the Developer Operations
(DevOps) approach [18]. DevOps aims to reduce the time for deploying high-
quality (validated and verified) software artifacts (and their updates) to complex
1 We observe that Knight Capital’s system is one of numerous autonomous software

systems already in operation within socio-technically complex organizations [15].
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and heterogeneous production environments [5]. Desirable qualities of DevOps-
oriented software engineering are reliability, predictability and security [19]. For
example, DevOps facilitates the autonomy of teams and their individual mem-
bers to prevent, discover, and fix software bugs quickly and effectively [19]. How-
ever, one may say that even applying the best industrial-scale software engineer-
ing processes in combination with traditional programing paradigms cannot fully
prevent problems like the one that occurred during the Knight Capital incident.
Indeed, from an artificial intelligence perspective, an alternative root-cause is
the single-mindedness and lack of meaningful goal-orientation of the software
subsystem (or: agent) that kept issuing orders, without re-assessing over time
whether doing so is aligned with the overall objectives of the trading system.
From this perspective, it can be questioned whether the application of the cur-
rent conception of DevOps is sufficient to ensure quality, and to facilitate the
fast-paced development of highly autonomous software systems.

Consequently, one may call for the application of approaches to Engineering
Multi-Agent Systems (EMAS) that treat the agency of autonomous software
artifacts, as well as the environments and organizations these artifacts act in, as
first-class abstractions. Along these lines, this paper proposes a bridge between
DevOps and EMAS, with the aim to address the need for a robust method
for delivering autonomous software artifacts faster and safer. Nevertheless, this
paper attempts to maintain a critical perspective on the mainstream-readiness
of EMAS. Indeed, the lack of industry-scale tools for engineering autonomous
software curbs EMAS adoption in practice [26,27], and we argue that the appli-
cation of EMAS should always consider efforts to mature EMAS tooling as a
prerequisite.

2 DevOps

Developer Operations (DevOps) describes the industry best practices that inte-
grate software development, quality assurance and operations teams, from both
organizational and technological perspectives [18]. DevOps can be considered a
continuation of the trend towards iterative software development, which started
at the turn of the century with the publication of the Agile Manifesto [17]. In par-
ticular because iterative software development approaches require a fast-paced
transition between requirement adjustments, software changes, tests, and deploy-
ments, handovers across traditional organizational and technological boundaries
become increasingly impractical. To address this issue, DevOps recommends the
integration of software developers, Quality Assurance (QA) engineers, and sys-
tem administrators into autonomous cross-functional teams that are in charge of
developing, testing, deploying, and operating a system or system component [8].
This stands in contrast to traditional approaches that segment functional spe-
cializations and hence require frequent handovers between teams or even depart-
ments, all of which are in charge of one specific task [33]. To support cross-
functional teams with the broad range of tasks that fall into the DevOps scope,
a plethora of tools exists, many of which have found wide-spread adoption. For
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example, continuous integration tools and services allow for the configuration
of automated tests and deployments using simple declarative specification and
script languages [29], whereas containerization [28] and container orchestration
tools [11] help speed up and automate the deployment and scaling of complex
IT systems across heterogeneous infrastructure.

The DevOps development life-cycle (illustrated in Fig. 1) can be described as
follows:

Plan and code. DevOps development teams implement features in fast, incre-
mental iterations, which is facilitated by the organizational structure and
technological setup. As a consequence, DevOps reduces the overhead of QA,
releases, and deployments.

Build and test. Each update of the code base triggers the automated execution
of one or several test suites. Ideally, all technical aspects of software artifact
generation (build) and quality assurance are executed automatically; passing
tests and builds imply that the software artifact works reliably and can be
released without concerns. This requires the development team to treat QA
as a key responsibility.

Release and deploy. After tests and builds have been successfully executed,
deployments (for example to cloud environments) and/or releases (e.g.,
to package management services) are triggered in an automated or semi-
automated manner.

Operate and monitor. During operations, a key feature of DevOps is the
automation of many system administration tasks, like the provision of addi-
tional resources if the load on the system increases. To reduce the overhead
of system administration, teams often rely on cloud-based service offerings
that abstract away technical details.

Figure 1 depicts the DevOps life-cycle.
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Fig. 1. DevOps life-cycle, based on [18].

3 EMAS

During the past decades, the EMAS sub-field has emerged as a research direction
within the field of artificial intelligence [34]. One of the key lines of work within
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EMAS is the refinement of the Agent-Oriented Programming (AOP) paradigm,
which provides abstractions for implementing autonomous and social software
artifacts (agents). However, the scope of EMAS entails more than AOP, in partic-
ular because EMAS is concerned with the holistic software engineering perspec-
tive and not only programming. With the increase in prevalence of (somewhat)
autonomous software systems in distributed information system landscapes [15],
it was initially a reasonable expectation that EMAS would gain attention from
the software engineering mainstream. However, EMAS approaches have not seen
wide-spread adoption in practice, neither directly, nor as derivations that are
implemented in industry-scale programming language ecosystems.

One focus area of EMAS is concerned with the design and development of
methods and tools for AOP, examples of which are the Java-based Jade [6]
and JACK [37], and the Belief-Desire-Intention (BDI)-based Jason [9] frame-
works2. Indeed, the EMAS community has experimented with a broad range of
abstractions for solving diverse problems using agents. However, no major suc-
cess stories with regards to the establishment of industry-level tools, languages,
or standards have been achieved; in their current state, the concepts and re-
usable software libraries and frameworks provided by EMAS are still detached
from the software engineering mainstream. According to an EMAS community
report [27], one of the key points of criticism of the state of affairs of EMAS is
the lack of integration between EMAS and more widespread software engineer-
ing approaches. Some recent works aim to address this issue, for example by
integrating agent-oriented programming and modern “high-level” programming
languages like JavaScript [10,22,23], and by providing resource-oriented abstrac-
tions to interact with autonomous agents and multi-agent systems [13]. These
(and similar) tools help push the frontier of modern agent-oriented program-
ming towards practicality. However, no holistic agent-oriented perspectives on
the complete software engineering life-cycle seem to exist. An example of a defi-
ciency that affects several steps of the life-cycle and that even the most mature
AOP frameworks have, is a lack of facilities for testing goal-oriented software
artifacts. Seeing EMAS and AOP through the eyes of DevOps can potentially
help identify new solution approaches to address such deficiencies.

4 Integrating EMAS with DevOps

Let us highlight that the main objective of DevOps is not automation, which
could also be achieved with traditional, homogeneous team constellations, but
rather autonomy of teams within a software development organization, which is
achieved by relying on automation technologies. From the description provided
in Subsect. 2, one can see that DevOps is, in the way it is currently practiced,
concerned with autonomy on three levels:

1. On the organization level, DevOps facilitates team autonomy by avoiding
the necessity of hand-overs between development, QA, and operations teams.

2 For an overview of some agent-oriented programming languages and frameworks, see
(for example) Cardoso and Ferrando [12].
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2. On the integration level, DevOps allows for continuous integrations and
deployments, avoiding manual steps and hand-overs in the pipeline from code
check-in to system deployment.

3. On the operations level, DevOps provides abstractions that allow opera-
tors to specify high-level infrastructure requirements and handles lower-level
details like exact resource allocation and machine provisioning autonomously.

In contrast, EMAS focuses on the autonomy of the agents, as software arti-
facts, that a software engineering team or organization creates, i.e., it adds a
fourth autonomy level to the three-level perspective DevOps provides. Table 1
shows an overview of the four levels and explains them by example.

Table 1. Autonomy levels, examples, and relevant approach.

Autonomy
level

Example Approach

Organization
autonomy

Avoid handovers: one team is in charge of all steps in
the life-cycle

DevOps

Integration
autonomy

Avoid manual deployments and QA: run all tests
before a merge and auto-deploy if all tests pass

DevOps

Operations
autonomy

Avoid manual resource provisioning: auto-scale
systems when load increases

DevOps

Artifact
autonomy

Avoid manual low-level business decisions: approve
(financial) transactions without humans interference

EMAS

At this point, it is worth highlighting that even when developing “tradi-
tional” software artifacts with little or no autonomy, it is widely acknowledged
that total global supervision and coordination of all software design steps is
practically not possible, even if the scope of the project is confined to a single
organization. Hence, DevOps approaches try to integrate changes frequently in
a controlled manner in order to discover unknown dependencies and unexpected
behavior early on. The autonomy levels (Table 1) allow teams of engineers to
dynamically respond to challenges that arise and to minimize the effect these
challenges have on the broader organization. When developing autonomous soft-
ware artifacts, one can expect that there will be even more problems that can-
not be identified at design-time and hence the continuous integration approach
requires even more attention; i.e., on the organizational level, the implementa-
tion of highly autonomous artifacts implies that the intensity of dependencies
between teams that develop different sub-systems is not always apparent before
these sub-systems are integrated. These emerging dependencies then need to be
managed on the integration and operations levels, for example to ensure that
in case of the deployment of sub-systems that have “hidden” incompatibilities,
communication failures do not lead to disastrous consequences. Because of their
dynamic nature, agents cannot be developed into mature software artifacts with-
out exposing them to the environment they are supposed to act in [38]. Regarding



180 T. Kampik et al.

this distinguishing characteristic of agents, the integration of agent-orientation
and developer operations can be considered a methodological response to this
issue. To allow for a gradual exposure of an agent to a progressively more real-
istic environment that increases the likelihood of catching critical errors early
on, an agent-oriented variant of the DevOps life-cycle may require the following
features:

– Goal-oriented test-driven development. The behavior of social and
goal-oriented software artifacts like agents is typically complex and non-
deterministic [14]. Hence, the common testing levels (unit tests, functional
tests, and integration tests) usually are not satisfactory to cover agents’
possible behaviors. Some approaches have been proposed to address this
issue [7,14,31], but a comprehensive solution has still not been devised [39].
Goal-oriented tests can provide an extra test level that should be able to
assess whether an agent’s inference process from goals and beliefs to actions
(and explanations of these actions) behaves as expected or not.

– Sandbox for real-time collaboration. Development teams can move
agents that have passed static code analysis, unit tests, goal-oriented tests,
and low-level integration tests (which may or may not be goal-oriented)3 to
a sand-boxed environment that allows for the collaborative development of
agents and multi-agent systems in (near) real-time. This makes it easier for
developers to consider their current development work in the context of other
ongoing changes. Each sand-box features a fully-fledged multi-agent system,
as well as version control and continuous integration support (automated test-
ing and deployments). From a practical perspective, one can assume that the
scope of a sandbox is restricted by organizational boundaries. For example,
given a commercial enterprise A and a government organization B who both
work on the same multi-agent system, it is safe to assume that the engineers
of A cannot align in real-time with the engineers of B; a change made by
organization A during development should not immediately (before verifica-
tion and validation) affect the system organization B is developing against.
The EMAS community has presented an initial prototype addressing part of
this issue [3].

– Cross-organizational staging system. To ensure quality across organi-
zational boundaries, stable versions of local agents, artifacts, and environ-
ment updates that have been developed and thoroughly tested in a sand-
boxed environment can be deployed to cross-organizational staging systems.
To these staging systems, organizations that depend on each other’s work in
a particularly critical manner (if not all organizations that contribute to the
multi-agent system) have access and use it as a second-level testing environ-
ment; i.e., any run-time issue that may occur on the staging system does not
affect system end-users. Still, errors are potentially more costly when they
occur on the staging system and not in the sand-box, as their root-cause

3 We assume that these tests can be executed relatively quickly when the developer
logs a change, which is – in the case of standard approaches to static code analysis
(often called linting), unit tests, and some integration tests like micro-service handler
tests – a common capability of development tool-chains.
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needs to be traced back – in a more complex environment – to a particular
organization and then to a team. Cross-organizational staging systems can
potentially make use of concepts and tools the EMAS community provides
for managing multi-agent organizations (e.g., MOISE+ [21]).

– Beta agents in production environments. When the tests have passed in
the cross-organizational staging environment, a step-wise production deploy-
ment can be executed. As a first step, agent instances can be exposed to
“sense” the production environment, without being able to act upon it. Then,
some agent instances can be fully deployed to the production environment,
but at limited scale, analogously to the way beta-feature roll-outs are han-
dled in many software-as-a-service environments (so-called canary deploy-
ments [5]). Still, in contrast to typical canary deployments, which only affect
a small portion of a system’s users, beta agent deployments are potentially
more critical because of the interconnectedness of multi-agent systems. Only
if these beta agents pass all tests after extensive monitoring, the full update
of the production environment is executed. This step reflects tests on real
traffic scenarios used by the automotive industry [20,35]4.

– Explainable Monitoring. Given the complex and non-deterministic behav-
ior of multi-agent systems, it can be assumed that traditional monitoring
facilities provide only limited utility. New ways of filtering and aggregating
log entries for human or machine interpretation need to be devised. To address
this issue, one can draw from an emerging body of works on explainable agents
and multi-agent systems [4], and in particular from research that investigates
the filtering of event data to generate human-digestible explanations [30].

Table 2 list these features and provides an overview of how they relate to main-
stream software engineering practices. In the Fig. 2 we present a more compre-
hensive view of the development cycle of agents based on DevOps life-cycle.
Besides the mentioned features, the referred picture also illustrates the place for
goal-oriented/agent-oriented model-driven development and programming tools,
well-covered subjects of a range of studies produced by EMAS community (e.g.,
[6,9,16,36,37]).

Let us highlight that the list of features is primarily an initial starting point,
and each feature comes with limitations and trade-offs that may only emerge in
industrial application scenarios (and may be specific to a given domain, tech-
nology stack or DevOps-variant). Consequently, it can make sense to consider
a step-wise introduction of agent-oriented approaches to DevOps, focusing on
the controlled assessment of a minimally viable agent-oriented abstraction5. For

4 In Vehicle-in-the-loop (VEHIL) simulations, domain-specific concepts similar to the
sandbox for real-time collaboration and the cross-organizational staging system are
employed.

5 In his Agent Programming Manifesto, Logan calls for modular approaches to
AOP [26]. We argue that the notion of a minimally viable abstraction goes a step fur-
ther, as it suggests a focus on one particular benefit AOP can bring to mainstream
software engineering approaches such as DevOps, and hence a radical simplifica-
tion that may deliberately disregard many aspects of AOP to minimize technology
overhead and learning curve when introducing a single abstraction.
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Fig. 2. The DevOps life-cycle and agent orientation.

example, autonomous software systems that are not developed using an academic
EMAS approach can potentially still be evaluated by goal-oriented tests.

5 Implications for EMAS

Traditionally, EMAS is primarily concerned with the implementation of theoreti-
cal perspectives, such as belief-desire-intention reasoning-loops, that the artificial
intelligence scientific literature provides on the design of autonomous agents and
multi-agent systems. In contrast, the approach outlined in this paper is prag-
matically targeted at moving EMAS closer to modern industry practices for soft-
ware development, and at identifying gaps in mainstream software development
approaches and frameworks that EMAS can fill. Hence, the approach depends
on the exposure of EMAS and AOP works to the context of mainstream software
development tools and pipelines, and in particular to the technology ecosystem
that has risen to popularity alongside with DevOps. First prototypes that work
towards this goal by treating continuous integration, collaboration features, and
distributed version control as first-class citizens in the context of agent-oriented
programming exist [2,3].

Consequently, the whole technology ecosystem that makes up the DevOps
tool-chains needs to be thoroughly analyzed, and methodologies and re-usable
software frameworks (or framework extensions) for identifying and addressing
the specific requirements for the DevOps-oriented management of goal-oriented,
autonomous software artifacts need to be developed. Logging, monitoring, and
debugging facilities need to be devised that address the challenge of identifying
anomalous behavior in a highly dynamic and heterogeneous environment, and
facilitate the identification of software bugs that may be caused by intractable
state and software version dependencies between autonomous software agents
that are developed by different organizations.



DevOps and EMAS 183

Table 2. Integrating AOP and DevOps: example features in comparison to existing
practices.

Feature Existing practice Similarities Differences

Goal-oriented
test-driven development

Test-driven
development (unit
tests)

Testing before/while
implementing

Higher declarative
abstraction level at
the intersection of
unit and integration
testing

Sandbox for real-time
collaboration

Sandbox for
exploratory
development

Rapid prototyping
support

Near-real-time
interactive and
collaborative
programming
support

Cross-organizational
staging system

Traditional staging
system

Production-like
environment

Continuous
deployments by
different
organizations

Beta agents in
production
environments

Beta-features in
production
environments

Pilot beta-features in
production
environment

Interaction between
beta-agents and
stable agents

Explainable monitoring Operations
monitoring systems

Explanation/analysis
of a running system

System-centered
versus agent-centered
perspectives

Nevertheless, let us highlight that the integration of EMAS and DevOps can-
not only draw from AOP research, but also apply other fundamental research on
autonomous agents and multi-agent systems, for example by considering funda-
mental theoretical research on topics like belief revision [25], goal reasoning [1],
or agreement technologies [32]. Still, EMAS and EMAS-related research that is of
immediate relevance necessarily has a focus on technologies, software engineer-
ing processes and/or practical aspects of socio-technical systems. In contrast,
research that primarily provides formal contributions would first need to be
implemented as a generic and re-usable abstraction for a particular technology
ecosystem, or be presented as a solution to a particular software engineering
problem. In this context, the notion of a minimally viable abstractions may –
again – serve as a guiding design principle; e.g., when devising a new formal app-
roach to belief revision, it may not be necessary to provide a holistic integration
with a full-fledged MAS conceptual meta-model and technology like JaCaMo.
Instead, a small library for managing belief revision could be implemented and
presented in a way that enables re-usability in software stacks and tool-chains
that do not necessarily include other agent-oriented concepts or technologies.

6 Conclusion

In this paper, we have proposed the integration of approaches to engineering
multi-agent systems with the DevOps software engineering practice. The inte-
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gration expands the scope of the agent-oriented programming paradigm to cover
the full life-cycle of modern software engineering, from initial specification via
implementation and continuous integration to operation and monitoring. View-
ing EMAS from the perspective of modern software engineering approaches that
cover the whole engineering life-cycle can facilitate the development of more
practice-oriented perspectives on EMAS and AOP. The integration of EMAS
and DevOps can draw from the breadth and depth of research on agents and
multi-agent systems, and motivate future work at the intersection of theory and
practice, for example on goal-oriented testing and goal reasoning.
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Abstract. The Cyber-Physical Systems (CPS) are complex, multi-
disciplinary, physically-aware future’s paradigms which are integrat-
ing embedded computing technologies (cyber part) into the physical
world (physical part). The interaction requirement with the physical
world makes the CPS unpredictable because of the real-world’s dynamic
behaviours. So a CPS needs to reason these changes and adapt its
behaviour accordingly. Moreover, a CPS can cooperate with multiple
CPSs to establish cyber-physical system-of-systems (CPSoS). This cre-
ates a distributed and heterogeneous environment where we are chal-
lenged by unpredictability. To address the challenges of the CPSoS, new
methodologies and new approaches need to be developed. One way to
tackle these challenges is by making them smart with intelligent agents
and modelling them explicitly. To make intelligent decisions it is needed
to do reasoning and to use decision-making mechanisms. In this way,
they can handle the unpredictable changes encountered both internally
and externally. Nevertheless, suitable reasoning, smartness, and aware-
ness mechanisms must be studied, implemented, and applied to achieve
smart CPSoS.

Keywords: Software Agents · Intelligent Agents · Multi-agent
Systems · Smart Cyber-physical system of systems · sCPSoS

1 Introduction

The advancement of networked systems has introduced new design challenges in
embedded systems. Naturally, Cyber-Physical Systems (CPSs) are more com-
plex compared to their pioneered paradigm embedded systems. This complexity
is inherited both from embedded software that is covered by the cyber part and
physical phenomena which have to be monitored and/or interacted with. Dur-
ing the interaction with the physical world, there are phenomena that have to
be reacted by the cyber part, which causes a state change in the system, after
which feedback information is sent. The computational part of these systems
plays a key role and needs to be developed to handle uncertain situations with
their limited resources. Since in a distributed CPS, unpredictable change in a
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component or the environment can affect the rest of the system and even the
whole infrastructure that contains the CPS, it is highly required to perform
intelligent behaviours and reasoning mechanisms. This intelligent mechanism
needs to react according to the dynamic changes, control the physical part, and
adapt the unpredictable behaviour of the system to a reasonable limit. The rea-
soning mechanism should start with sensor data gathering, extracting the key
information from this data, and proving knowledge out of this information to
adapt the system’s behaviour to control the components. According to the [33],
the success of the current approaches have the following gaps i) awareness and
adaptation of behaviours are considered as system smartness, but they cannot
be achieved by traditional approaches, ii) model-based and component-based
approaches insufficiently support the development of reasoning mechanisms for
smart CPSs (sCPS), iii) frameworks for the development of smart CPS should
support compositional model-based design. Inspired by these research gaps, we
are motivated to initialize this research as well as pointing the need for intelli-
gence to establish a smart cyber-physical system of systems (sCPSoS).

2 Related Work

This study proposes an agent-based integrated methodology for the design and
development of (sCPSoS), including modelling and reasoning mechanisms, to
support the life-cycle of these distributed, complex and mobile systems. In the
literature, there are surveys, projects, and research papers that partially pro-
vide solutions for the challenges of CPS and CPSoS. The study [12] addresses
Industrial Internet-of-Things (IIoT) and CPS common features and provides
methodologies for the application of IoT-enabled solutions to Cyber-physical
production systems. Their study points to the interoperability of IoT and CPS
paradigms. Additionally, they also present modelling approaches for IIoT sys-
tems as well as architectures that can be reused for our goal, while the study [26]
provides IoT-based layered solutions using software agents. These studies show
that IoT based solutions and modelling approaches [15] can also be applied for
the sCPSoS. These studies show that smartness, organisation, and networking
requirements can be addressed using intelligent agents and the complexity of
sCPSoS can be reduced using model-driven approaches. In [20], agents’ capabil-
ities for CPS are discussed. Generally, agents are good at creating collaboration
and integrity when they are distributed, providing smart decisions when unpre-
dictability exists. The study [26] mentions the cognitive requirement of CPS and
presents the necessity of the distributed intelligence and envisions Multi-Agent
Systems’ (MAS) usefulness as they fit the CPS. Their autonomous decisions
in a decentralised way can address the CPS challenges. They benefit from lay-
ered IoT architecture to enable organised decentralisation of data acquisition,
actuation, monitoring, analysing, planning, and decision-making at the Fog and
Edge levels. A survey [6] reports the uncertainty in self-adaptive systems [36].
The participants in the survey agree on implementing self-adaptation mecha-
nisms to cope with unanticipated changes in a system. They also suggest that
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uncertainty can be represented using runtime models (e.g. MAPE-K loop). In
the study [11], ontological classification is made considering past, present, and
future CPS technologies emphasising the requirement of intelligence. The study
focuses on today’s sCPSoS requirements while showing the research gaps in this
domain.

In [35], the authors provide a Model-based System Engineering (MBSE) per-
spective to manage heterogeneity in CPS. They propose to use various domain-
specific views for each subsystem. According to this study, the system model
should be represented by different levels of abstraction for each subsystem. The
study in [32] discusses how an agent development framework called SEA ML++
is used for the design and implementation of a CPS garbage collection system.
The authors apply Model-driven Development (MDD) techniques to synthesise
a part of the agent-based software. These studies are in the scope of interest
to this study as they map different parts of sCPSoS. They mostly cover model-
based development of sCPSoS and partly reasoning mechanisms, but not smart
agents and agent-CPSoS integration.

3 Problem Statement

A CPSoS inherently have both CPS and system-of-systems (SoS) characteristics
that increase the complexity and challenges. They are brought together within
the SoS umbrella to achieve specific tasks that cannot be achieved by a single
CPS. This increases the necessity of high-level modelling and solution finding
to address the complexity of CPSoS while ensuring each CPS is self-sustainable
within itself. Here, self-sustainable refers to having a degree of autonomy, intelli-
gence and adaptive reasoning. They require decentralised supervision and man-
agement for each subsystem because decisions that are taken at a cyber level
should influence the physical part (also vice-versa) and the result of the effect
should be sensed and given as feedback to the system.

As mentioned in [1], today’s practice of CPS system design and implemen-
tation is unable to support the level of complexity, scalability, security, safety,
interoperability, and flexible design and operation that will be required to meet
future needs. Moreover, as surveyed and research gap showed in [39], most of the
published papers in the literature on CPS focused on design, architecture, func-
tionality, performance, security, reliability, and scalability. However, one impor-
tant criterion has not received enough attention is self-adaptation despite the
fact that it is a must to achieve next-generation CPS. Considering research gaps
and needs in the literature and CPSoS requirements, new methodologies and
solutions should be researched.

This study aims to improve the lifecycle of sCPSoS development by using
Model-driven Development (MDD), Agent-based System Engineering (ABSE)
and intelligent agents. This multi-paradigm approach aims to solve the chal-
lenges of creating and sustaining CPSoS by providing adaptive behaviour for
environmental uncertainty, distributed cooperation for decentralised topology,
and reasoning for intelligence requirements while integrating self-awareness and
self-adaptation capabilities.
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CPSoSs are complex as they consist of various distributed and heterogeneous
CPSs where each of them has unique capabilities, critical operations, priorities
and pursued goals. However, from a CPSoS perspective, all CPSs must also har-
monically pursue their own goals and global goals while collaborating with each
other. Considering that a CPSoS consists of many CPSs, finding the methodol-
ogy to achieve such an intelligent, adaptive, aware, dynamic, automatical, dis-
tributed, and cooperative is not an easy task. In Table 1, CPSoS requirements,
challenges and the explanations are summarized. In the following paragraphs
correlation between them are mentioned.

Because of their distributed topology and heterogeneous instances, each of
them produces various dense data that need to be refined in such a way that
only the important information is extracted and forwarded to other CPSs and
the overall system. The data has to be handled in a distributed way to extract
cognitive patterns and to detect abnormalities that can be emerged because of
uncertainty. Therefore each CPS has to be context-aware and adapt according
to the internal and environmental changes.

During their operation, human factors can intervene in a system or may
decide to interact with it. Therefore, each CPS should monitor both itself and
human behaviours. These dynamic behaviours should be reasoned by the CPS
to change its behaviour dynamically as well.

Because of the intelligence requirements, each CPS should have a tightly cou-
pled (integrated) intelligence mechanism and distributed/layered approaches can
be applied externally, in cases that the computation power is not enough to han-
dle the changes by a single CPS. In this way, data can be analyzed at the upper
levels by a more powerful computer. As CPSoS are complex distributed and
heterogeneous systems, they may need to have cognitive capabilities where this
cognition should be achieved both in CPS and CPSoS level (between multiple-
instances).

Table 1. CPSoS requirements, challenges and reasons.

CPSoS Requirement CPSoS Challenges Reason/Explanation

Data Handling/Filtering/Processing Distributed/Heterogeneous Data
Density

Large amount of data related to
systems and the environment.

Preventing/Predicting
Uncertainty/Emergent
Behavior/Anomalies

Self-awareness/Self-adaptation Each system should have
autonomous decision making and
behaviour for robust operation.

Human System Interaction Behavior Dynamicity/Reasoning The user’s behaviour and goals
must be reasoned
intelligently and system
behavior should be changed
dynamically to prevent
user-oriented anomalies.

Integrated/External Intelligence Distributed and Layered AI The smartness requirement should
be provided by AI techniques
from the cyber-side.

Distributed/Heterogeneous/Cognitive
Instances

Interoperability/Negotiation/
Coordination

Collaborative, cognitive, and
consensus-based mechanisms
should be integrated
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As a result, AI approaches can be used to integrate intelligence into these
systems to tackle some of the discussed challenges of CPSoS while satisfying
the requirements. Our approach is to match the requirements and challenges of
CPSoS with the capabilities of AI methodologies and expand suitable formalisms
and paradigms in a multi-paradigmatic approach [7]. Specifically, applying multi-
paradigm modelling principles to create such a method to provide an agent-based
CPSoS modelling framework can be a solution to address the aforementioned
challenges. The reason is that it advocates the explicit modelling of all parts of
a system at different abstraction levels using multiple formalisms. At the centre
of the approach, agents and organizations of agents can be used as the main
abstractions orthogonally integrated with model-driven techniques.

4 Proposed Solution and Methodology

The first goal is to gain the smartness feature for cyber-physical systems. As
a methodology, intelligent agents and CPS integration need to be established
at the cyber part. This smartness mechanism can benefit from agent archi-
tecture such as belief-desire-intention (BDI) architecture using their adaptive
capabilities. Because BDI architecture allows choosing and adopting different
plans to achieve the same goal depending on the context. This makes it pos-
sible for agents to decide themselves to adapt by being aware of the environ-
mental changes and current context. In this way, it becomes handy to develop
context-aware behaviour for agents and CPS. For this reason, BDI architec-
ture for agents is a well-fit architecture for this goal [3]. As mentioned in [24],
there are various ways to create a self-adaptive system. We use the Multi-Agent
System approach to tackle CPSoS challenges benefiting from their well-known
features as well as using BDI architecture to emerge self-adaptive and self-aware
skills. Alternatively, there are Prolog-based agent programming approaches to
create CPS [30]. To reach this goal, an agent development environment that
is empowered by various integration of logic-based approaches is preferred. As
Jason [5] is a high-level agent-oriented programming language that benefits from
the BDI model. The language is based on logic programming and is exemplified
by Prolog. To support agent-based programming using agent beliefs and deduc-
tive reasoning mechanisms, Jason includes a Prolog interpreter. Moreover, the
JaCaMo framework provides additional advantages by including CArtAgO and
Moise to support organisational and environmental aspects [4]. In our perspec-
tive, JaCaMo is a best-fit development framework for CPSoS since each CPS has
organisational requirements where coordination should be established because
of the environmental challenges.

This integration can also be enhanced using fuzzification methodology to
cope with the uncertainty of the environment while selecting fuzzified plans for
executing multiple actions. In this way, self-awareness and self-adaption can be
improved and flexibility can be gained into the system. Because the uncertainties
are caused by the limitation of the agent’s perception abilities and environmental
dynamics, beliefs should be considered as fuzzy [17,38]. In the case of BDI agents,
they should be able to handle a certain degree of uncertainty.
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Alternatively, there are probability-based techniques such as Bayesian,
Markov Chain, Monte Carlo simulation, spectral methods and statistics to
tackle the uncertainty. However, these probabilistic approaches depend upon the
assumption of a probability distribution of failure when obtained failure data is
sufficient. Moreover, these approaches are supported by simulation techniques
[14] which are not suitable for a volatile environment where states and conditions
change instantly. As another disadvantage, simulation-based approaches require
high computation power there it is not applicable for each application domain
considering resource constraints of the CPS. Therefore, fuzzy approaches can be
applied in system/component-level [27,31].

The second goal is to create a model-based framework to support the devel-
opment of CPSoS so that a higher-level abstraction can be provided for the
end-user [13,15]. In this way, the user can create sCPS and sCPSoS using model
elements in a user-friendly manner and generate target system codes, including
agent software, embedded software, reasoning codes encapsulated by intelligent
agents.

The last goal is defining a methodology encapsulating the embedded device’s
software into agent software. In this way, the agents will have full control over
system inputs, outputs, networking, and configuration. Because agents can man-
age the embedded device’s features to interact with the environment. However,
before achieving this, wrapper libraries between device-specific code and agent
behaviours should be implemented to achieve Agent-CPS integration. A method-
ology needs to be defined to standardize this encapsulation.

Fig. 1. High-level view of the proposed solution (adapted from [24])
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However, before implementing all of these three goals, shown in Fig. 1, a
design model should be established. To achieve this, MAPE-K control loop for
self-adaptive systems are presented in the literature [2]. Firstly, in the physical
layer, real-world data is monitored and analyzed by sensors for collecting data.
Then, the system can develop awareness about the context it deployed in using
this data. To achieve this, the system Monitors the environment all the time.
In this state, some preprocessing of the raw data can be applied to remove
noise. While the system monitoring the environment, if any Symptom (contextual
change) occurs, then data and change are delivered to Analyze phase. In parallel,
this Context Data and related state change are interpreted as Event. In the
Communication Layer, this Event is notified and broadcast to other CPS (or
related instances). In Proxy Layer, smart agents establish organisations to inform
each other about changes in their internal states and external events.

In the Analyze state, the system analyzes to decide and interpret relevant
information for the purpose of anticipating events and making decisions in
response. Analyzing assesses utilization of the system to determine whether there
is a need for adaptation. If so, then Adaptation Request is delivered. Because,
if any violations occur against the system’s robustness, this problem is rea-
soned to select an adaptation plan. Then, the compensation process should be
initialized. In the application layer, these requests should be defined and han-
dled. Moreover, embedded code should be integrated into agents’ behaviours, so
agents can control the embedded device’s I/O. Adaptive Reasoning is required
to decide that how much reactive the system should be. Therefore, plans for
actions should be made. This can be achieved by taking all the information that
has been processed and deciding the best action based on the most applicable
plan. Therefore, Planning state runs to organise adaptation goals and strategies
using previous system knowledge. If a previously applied plan can be re-used,
then the same strategy can be applied again. If not, the system should generate
a new strategy by adapting its goals. Lastly, Fuzzified Plans are executed as
actions. These Actions are actually I/O operations in the physical layer. When
an action is realized by an Actuator, the environmental change which is caused
by that actuator is sensed by a sensor as Actuation Feedback. Therefore, the
consistency between the cyber-part and physical part can be satisfied once the
actuation state is known by and in sync with the cyber part. While this process is
ongoing, the knowledge-based is updated and a general solution scheme towards
similar cases are generated benefiting from these run-time experiences [29]. In the
service layer, the Knowledge Base should store the information about the phys-
ical and cyber context of CPS related to sensor data, actuation operations, and
process steps regarding time. Moreover, the knowledge base should also contain
goals, general scheme plans, states and past experiences of the system. Learning
Agents should cooperate with Prediction Agents for future-predictions about
system state. Learning agents provide extensions considering long-term machine
learning techniques while prediction agents apply statistical and probabilistic
predictions. Moreover, prediction agents also play a role in providing knowledge
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for adaptation. In this way, goals and plans can be executed not only in awareness
of the current state but also in future states.

To reach these three goals and to apply the proposed solution, it is aimed
to benefit from study [9]. As study [9] mentions, integrating agent-based system
engineering [8,10] with model-driven approaches is considered while referring to
the use of proper paradigms/formalisms with the philosophy of modelling dif-
ferent aspects/phases of sCPSoS lifecycle explicitly in an appropriate level of
abstraction (in design and/or run time). These systems are highly complex from
both structural and behavioural points of view, which can be addressed with
well-known techniques of Model-based System Engineering (MBSE) to cover the
lifecycle of sCPSoS This raises the need to integrate MBSE and ABSE processes
for the development of sCPSoS, which is an open issue. Therefore, this study
aims to improve the lifecycle of sCPSoS development by using MDD, ABSE and
intelligent agents in a multi-paradigm manner. Our approach seeks to solve the
challenges of creating and sustaining CPSoS by providing adaptive behaviour for
environmental uncertainty, distributed cooperation for decentralised topology,
and reasoning for intelligence requirements while integrating self-awareness and
self-adaptation capabilities. Therefore, this study, it is aimed to define new meth-
ods using intelligent agents [22], and modelling techniques [18,34] to overcome
the current challenges of CPSoS while considering self-adaptation for CPSoS
sustainability and providing a tool that facilitates the lifecycle of CPSoS. The
underlying idea is the integration of agent-based system engineering (ABSE) and
model-driven development (MDD) techniques.

To evaluate the proposed study, we established a LEGO technology-based
smart production system [37] and a line follower robot with an adaptive cruise
control robot [28] to establish a production management system. We established
agent-based communication and ran reactive agents on these sub-systems. We
aim to advance this case study to achieve an industrial-like CPSoS, then apply
industrial requirements to test the adaptiveness of the system. During the evalu-
ation, the goal is to achieve a fully-fledged production system and product trans-
portation system. The system should adapt itself and sustain its operation while
dealing with dynamic requirements (e.g. more production or lack of sources),
recognizing the process failures (stuck of materials etc.) and being aware of the
unexpected or faulty interplay between sub-CPS. Lastly, we will apply MDD
techniques to create a modelling framework [15].

5 Conclusion

The adaptation of MAS to CPS is an open research domain. The evolution of
industrial paradigms and communication technology provided solutions but also
created new challenges. While communication technology is evolving, this creates
distributed and decentralized systems where traditional control methodologies
cannot be used anymore. As discussed, the necessity of intelligence in CPS is
underlined and proposed as a solution. In this regard, intelligent software agents
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are selected as one of the best-fit solutions. It is necessary to develop new solu-
tions while adapting current standards such as IoT [16,21,25], Distributed AI,
and Embedded technology[19] as well as model-based engineering techniques[23].
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5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason, vol. 8. Wiley, Hoboken (2007)

6. Calinescu, R., Mirandola, R., Perez-Palacin, D., Weyns, D.: Understanding uncer-
tainty in self-adaptive systems. In: IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), pp. 242–251. IEEE (2020)

7. Challenger, M., Eslampanaha, R., Karadumanb, B., Denila, J., Vangheluwe, H.:
Development of an IoT and WSN based cps using MPM approach: a smart fire
detection case study. In: Multi-Paradigm Modelling Approaches for Cyber-Physical
Systems, p. 245 (2020)

8. Challenger, M., Tezel, B.T., Alaca, O.F., Tekinerdogan, B., Kardas, G.: Develop-
ment of semantic web-enabled BDI multi-agent systems using SEA ML: an elec-
tronic bartering case study. Appl. Sci. 8(5), 688 (2018)

9. Challenger, M., Vangheluwe, H.: Towards employing ABM and MAS integrated
with MBSE for the lifecycle of sCPSoS. In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, pp. 1–7 (2020)

10. Demirkol, S., Getir, S., Challenger, M., Kardas, G.: Development of an agent based
e-barter system. In: 2011 International Symposium on Innovations in Intelligent
Systems and Applications, pp. 193–198. IEEE (2011)
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27. Rosales, R., Castañón-Puga, M., Lara-Rosano, F., Evans, R.D., Osuna-Millan, N.,
Flores-Ortiz, M.V.: Modelling the interruption on HCI using BDI agents with the
fuzzy perceptions approach: an interactive museum case study in mexico. Appl.
Sci. 7(8), 832 (2017)

https://doi.org/10.1007/978-3-030-25693-7_4
https://doi.org/10.1007/978-3-319-56345-9_13


Smart CPSoS Using Intelligent Agents and MAS 197

28. Schoofs, E., Kisaakye, J., Karaduman, B., Challenger, M.: Software agent-based
multi-robot development: a case study. In: 2021 10th Mediterranean Conference
on Embedded Computing (MECO), pp. 1–8. IEEE (2021)

29. Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive
workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2017).
https://doi.org/10.1007/s10270-017-0639-0

30. Semwal, T., Jha, S.S., Nair, S.B.: Tartarus: A multi-agent platform for bridging the
gap between cyber and physical systems. In: Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, pp. 1493–1495 (2016)

31. Suresh, P., Babar, A., Raj, V.V.: Uncertainty in fault tree analysis: a fuzzy app-
roach. Fuzzy Sets Syst. 83(2), 135–141 (1996)

32. Tekinerdogan, B., Blouin, D., Vangheluwe, H., Goulão, M., Carreira, P., Amaral,
V.: Multi-Paradigm Modelling Approaches for Cyber-Physical Systems. Academic
Press (2021)
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Abstract. Communication is a critical part of enabling multi-agent sys-
tems to cooperate. This means that applying formal methods to proto-
cols governing communication within multi-agent systems provides useful
confidence in its reliability. In this paper, we describe the formal verifica-
tion of a complex communication protocol that coordinates agents merg-
ing maps of their environment. The protocol was used by the LFC team
in the 2019 edition of the Multi-Agent Programming Contest (MAPC).
Our specification of the protocol is written in Communicating Sequen-
tial Processes (CSP), which is a well-suited approach to specifying agent
communication protocols due to its focus on concurrent communicating
systems. We validate the specification’s behaviour using scenarios where
the correct behaviour is known, and verify that eventually all the maps
have merged.

Keywords: Multi-Agent Programming Contest · Communicating
Sequential Processes · Formal Verification · Agents Assemble · JaCaMo

1 Introduction

The Multi-Agent Programming Contest1 (MAPC) is an annual challenge to fos-
ter the development and research in multi-agent programming. Every couple of
years a new challenge scenario is proposed, otherwise, some additions and exten-
sions are made to make the scenario from the previous year more challenging.

The 2019 edition of MAPC [1] introduced the Agents Assemble scenario,
where two teams of multiple agents compete to assemble complex block struc-
tures. Agents have incomplete information about their grid map environment.

1 https://multiagentcontest.org/
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They are only able to perceive what is inside their limited range of vision.
Therefore, building a map of the team’s environment must be done individu-
ally at the start; each agent believes its starting position is (0,0), and the agents
merge their maps when they meet, adjusting the coordinates accordingly.

This paper describes the formal specification and verification of the map
merge protocol that was used by the winning team from MAPC 2019, the Liv-
erpool Formidable Constructors (LFC) [8]. One of the major challenges in the
MAPC is making sure all critical parts of the team work reliably. Without a
coherent map, the agents cannot coordinate to assemble the block structures, so
the map merge protocol is critical to the team’s mission. The complexity of the
different challenges in the scenario, as well as the presence of another interfering
team, can cause unforeseen problems. Before MAPC 2019 the LFC team had
limited time to perform tests to validate the code, which due to its complexity
meant that it was very hard to efficiently prevent or detect bugs.

In this paper we build a formal specification of the map merge protocol
from its implementation and previous description in [8], and formally verify the
specification to provide evidence of the protocol’s reliability. Our specification is
written in the process algebra Communicating Sequential Processes (CSP) [16],
which is designed for specifying concurrent communicating systems. We view
each agent in the system as a process, which is communicating with the other
agents (processes) to achieve the system’s overall behaviour.

To verify properties about our specification we use model checking, which
can automatically and exhaustive check the state space for a formal model for
satisfaction of a given property. If a property is violated, a model checker usually
gives a counterexample, which can aid debugging. In CSP, model checking uses
the idea of refinement. If we have two specifications P and Q , then P is refined by
Q (P � Q) if every behaviour of Q is also a behaviour of P . This can be thought
of as Q implementing P , like a software component implementing an interface.
We use the CSP model checker Failures-Divergences Refinement (FDR) [14] to
show that the system behaves according to some required properties. This can
be thought of as checking that the system correctly implements an interface.

The work presented in this paper is motivated in two directions. First, the
verification provides extra confidence that the protocol works. The protocol was
difficult to test because of the dynamic environment and the amount of agent
communication, but model checking is a useful approach to finding corner cases.
Second, the MAPC provides an interesting example application to explore the
utility of CSP for modelling this kind of problem. This is of lesser importance
than the first motivation, but useful nonetheless.

The rest of this paper is organised as follows. A brief background on JaCaMo
(the language the agent system is developed in) and CSP is presented in the next
section, Sect. 2. Section 3 describes how we used CSP to specify and verify the
map merge protocol used by the LFC team in the MAPC 2019. It contains a
detailed description of how the protocol works (Sect. 3.1), the CSP specification
of the protocol (Sect. 3.2), and how the specification was validated and verified
(Sect. 3.3). The related work is discussed in Sect. 4, with a variety of similar
approaches that have been applied to the specification and verification of multi-
agent systems. Finally, Sect. 5 presents our concluding remarks.
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2 Background

The LFC team uses the JaCaMo multi-agent programming platform to develop
their agents for the MAPC 2019. In this section we briefly explain JaCaMo
and highlight the relevant parts that were used in the map merging protocol
(Sect. 2.1). We also give an overview of CSP and the notation used throughout
the paper, and introduce model checking (Sect. 2.2).

2.1 JaCaMo

JaCaMo2 [4,5] is a multi-agent development platform that combines three dimen-
sions that are often found in agent systems (agent, environment, and organisa-
tion), and provides first-class abstractions that enable a developer to program
these dimensions in unison. JaCaMo is a combination of three different tech-
nologies that were developed separately and then linked together: the Jason [6]
Belief-Desire-Intention (BDI) [25] agent programming language for the agent
dimension, CArtAgO [26] for programming environments using artefacts, and
Moise [19] for the specification of organisation of agents. An additional first-
class abstraction has been developed that provides an interaction dimension for
JaCaMo in [32], but this is not yet fully integrated.

The merge protocol as implemented by LFC [8] is comprised of message
passing between agents and updating information. The agent communication is
implemented solely in Jason, while some of the information updates are done
in a shared artefact (called the TeamArtifact). In this paper we focus on the
communication, which is the critical part of the protocol.

In Jason, communication between agents is based on speech-act theory, where
agents send a performative such as tell (sends a belief to an agent, causing a
belief addition event) or achieve (sends a goal to an agent, causing a goal addition
event). The formal semantics of speech-act theory for Jason can be found in [29].

2.2 CSP

CSP is a formal language for specifying the behaviour of concurrent commu-
nicating systems. We use the FDR [14] model checker to both manually and
automatically check specifications. Manual checks use FDR’s Probe tool, which
enables a user to step through the system’s behaviour. Automatic checks are
written as assertions.

A CSP specification is built from (optionally parameterised) processes. A
process describes behaviour as a sequence of events; for example, a → b → Skip
is the process where the events a and b happen sequentially, followed by Skip
which is the terminating process. An event3 is a communication on a channel.
Channels enable message-passing between processes, but a process can perform

2 http://jacamo.sourceforge.net/.
3 Note that events in CSP are different from Jason BDI events, the former are com-

munication events while the latter are plan triggering events.

http://jacamo.sourceforge.net/
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Table 1. Summary of CSP operators used in this paper.

Action Syntax Description

Skip Skip The terminating process

Simple Prefix a → Skip Simple synchronisation on a with
no data, followed by Skip

Input Event a?in Synchronisation that binds a the

input value to in

Output Event b!out Synchronisation outputting the
value of out

Parameter Event c.value Synchronisation matching the
given value

Sequence P ; Q Executes processes P then Q in
sequence

External Choice P � Q Offers a choice between two
processes P and Q

Replicated External Choice � x : Set • P(x) Offers an external choice of the
process P(x)
with every value x in the set Set

Parallelism P |[ chan ]|Q P and Q run in parallel, synchronising
on the channels in chan

Parallelism P |[ pChan | qChan ]| Q P and Q run in parallel, synchronising
on the channels common
to the sets pChan and qChan

Interleaving P ||| Q P and Q run in parallel with no
synchronisation

Replicated Interleaving ||| x : Set • P(x) Interleaves a copy of the process
P(x) for every value x in the set
Set

an event (communicate the event on the channel) even if there is no other process
to receive the event. Where two processes agree to perform a set of events in
parallel (synchronise on a set of events) both processes must perform the event(s)
synchronously.

By convention CSP process names are written in upper-case, and channels or
events in lower-case. A CSP process is often composed of several ‘subprocesses’,
which is the term we use to refer to other processes called by a process. Here,
a subprocess helps to structure the specification and encapsulate behaviour,
similarly to an object and its methods. We adopt the convention of using a
double underscore to separate a process name from the ‘main’ process to which
it belongs (e.g., MAIN PROCESS SUBPROCESS ). Below, we describe the
CSP operators used in this paper, which are also summarised in Table 1.

Channels may declare typed parameters. If a channel is untyped, then we
get ‘simple’ events like a and b from the above example; the events of a typed
channel must contain parameters matching those types. For example, if channel
c takes one integer parameter, then an event might be c . 42. Parameters may be
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inputs (c?in), outputs (c!out), or match a given value (c.value). Inputs can be
restricted (c?p : set) to only accept a parameter (p) that is the given set (here,
a set of integers). Processes can occur in sequence; for example, P ; Q describes
a process where process P runs, then process Q .

A choice of processes can be offered; for example P � Q offers the choice
of either P or Q , once one process is picked the other becomes unavailable.
Processes can also run in parallel. CSP provides three parallel operators; in
P |[ chan ]|Q , processes P and Q run in parallel, and agree to communicate on
the channels in the set chan; in P |[ pChan | qChan ]| Q , processes P and Q run
in parallel, and agree to communicate on the channels common to the pChan
and qChan sets; and in P ||| Q , the processes P and Q run at the same time
with no synchronisation.

CSP does not have variables, so if a specification needs a variable that will
be accessed by several processes, a ‘state process’ is often used. This is where a
process is used to store, and control access to, some values. The values are stored
as process parameters and channels are provided to get and set the values. Other
processes communicate with the state process using these get and set channels.
While this requires more channels and internal communication, it can lead to
cleaner communication between the processes that need to use the variable(s).

3 Specification and Verification of the Map Merge
Protocol

The map merge protocol played a major role in LFC’s victory4 [8] in MAPC 2019.
It overcomes one of the main challenges that has to be solved before trying to
assemble structures and deliver tasks. Even though LFC won, there were many
failures during the matches due to limited testing and no formal verification
prior to the contest. Although the origin of most of the failures is still unknown,
we aim to provide confidence about the reliability of the map merge protocol.

In this paper we specify and verify the map merge protocol as used by LFC
[8]. Section 3.1 describes the protocol, in particular the communication between
the agents. Then, Sect. 3.2 presents our CSP specification of the protocol and
describes how it models two agents merging their maps. Finally, Sect. 3.3 dis-
cusses the validation and verification of the specification using the FDR model
checker.

3.1 Map Merge Protocol

The communication in the map merge protocol consists of message passing
between a group of agents, triggering plans that reason about the message
received and send the required reply if applicable. Figure 1 shows an overview

4 Source code of the team is available at (the main plans for the map merge protocol
are located in “src/agt/strategy/identification.asl”): https://github.com/autonomy-
and-verification-uol/mapc2019-liv.

https://github.com/autonomy-and-verification-uol/mapc2019-liv
https://github.com/autonomy-and-verification-uol/mapc2019-liv
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of the protocol. At the start of the simulation, every agent has its own map
(referred to as being the leader of its own map, or being a map leader). As
the simulation progresses, agents meet each other and merge their maps. Each
map leader coordinates a map for itself and any other agents whose maps it has
merged with. This means that there can be a minimum of two and a maximum of
four agents directly involved in one instance of the merge protocol. For example,
only two agents will be involved if both agents are the leaders of their own map.

Fig. 1. UML Sequence diagram for the map merge protocol. A1 represents Agent1 with
a map M1, A2 is Agent2 with a map M2. The solid arrow heads represent synchronous
messages, open arrow heads asynchronous messages, dashed lines represent reply mes-
sages, and rectangles represent processes [8].

Each agent has a name, or ID; in Fig. 1 we use A1 and A2. Because of
the (intentionally challenging) communications restrictions of the MAPC, when
agents meet they do not know each other’s ID, so they cannot directly com-
municate. Therefore, before agents can exchange useful information about their
maps, some kind of identification process is needed. In LFC’s strategy for iden-
tification, when one agent sees another it sends a broadcast to all the agents in
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its team requesting information about what they can see around them. Upon
receipt of all of the replies, the agent that sent the request will compare the
replies to what it can see, to try to identify the agents that it has met. The
specifics of LFC’s identification strategy can be found in [8].

The merge protocol starts as part of the identification strategy, after one
agent successfully identifies another. The identification process is reflexive but
asynchronous. For example, if A1 identifies A2, then A2 will (eventually) identify
A1; but they each perform the identification process separately, so they might
not both identify each other at the same time. In this example each agent will
then start its own merge process, but as we will see later on only one merge will
go through. In Fig. 1 the protocol is seen from A1’s perspective, but it works
exactly the same for all agents.

Once the map merge protocol starts, the agent that is requesting the merge
(the requesting agent) sends a message to its map leader (now, the requesting
map leader) containing a list of agents that it wants to merge with, that is,
all agents that it has successfully identified. Requests are dealt with one at a
time, so each request constitutes a new instantiation of the protocol. As previ-
ously mentioned, messages in Jason trigger events which will enable plans that
match the triggering event to be viable for selection5. The requesting agent’s map
leader will start the plan that handles the request to merge, when it receives the
request merge message; if the requesting agent is its own map leader it will
simply trigger the appropriate plan internally.

To proceed with the merge the requesting map leader must get the name of
the other agent’s map leader (for example, in Fig. 1 agent A1 wants to merge
maps with A2). After receiving the name of the other map leader, the requesting
map leader will use a priority order among both map leaders to determine if the
merge will continue. This is necessary because the other agent may also have
started the map merge process , however, only one of these merges can proceed.
The priority is determined using the number in the agent’s name, the agent with
the lowest number has priority. For example agent A1 has priority over A2.

After the priority check, if the merge is continuing then the requesting map
leader sends a message to the other map leader asking it to confirm the merge.
This is necessary because it is possible that the other map leader is already in
the middle of a merge, which could result in it losing its position as a map leader.
If this happens and the original merge continues, then the map information from
this merge will be wrong. Thus, if the other map leader is no longer the leader
of that map it will send a reply cancelling the merge. Another attempt to merge
these two maps can be made in the next step.

The plans for both leaders are atomic, so concurrent intentions are not in
effect (normally in Jason agents alternate between their intentions). This means
that leaders are not able to start multiple merge processes simultaneously, nor
can they enter a deadlock waiting for information indefinitely (we assume that
eventually all agents reply).

5 A plan still has to succeed its context check (i.e., meet its preconditions) before being
selected for execution.
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If the merge is confirmed, then the map information (such as the coordinates
of points of interest in the MAPC scenario) is updated. Finally, a message is
sent to the other map leader letting it know that the merge has been completed,
and thus releasing the lock from the atomic plan that it was in. A final update
is made to the list of agents that are part of the new merged map, which is sent
to each agent in the list.

In summary, the main goal and requirements of the map merge protocol are:

GOAL: If agent A1 merges its map with agent A2, A1’s map leader will be the
map leader for A1, A2, and any agents that either of them shared their map
with before the merge.

REQ1: The map leader of A1 has priority over the map leader of A2, otherwise
A1 should cancel the merge.

REQ2: If A2’s map leader loses control of its map by the time it processes the
request to merge from A1’s map leader, it will cancel the merge.

In the next section we describe how we model the map merge protocol, while
Sect. 3.3 describes how we verify that the protocol preserves these properties.

3.2 CSP Specification

Our CSP specification6 was built by one person, part-time over the course of
about 12 months. The specification was built by manually interpreting and trans-
lating the English-language description of the protocol [8] and the Jason imple-
mentation. The specification is ∼440 lines in total, though this includes com-
ments. Despite the small number of lines, the specification contains 1,597,190
states and 6,334,936 transitions7 .

In the specification of the map merge protocol, each agent is modelled by
an AGENT process, if the agent is a map leader then it will also be repre-
sented by a MAP LEADER process. As mentioned in Sect. 3.1, at the start
of a match each agent is also its own map leader, so each agent will begin
as a cooperating pair of AGENT and MAP LEADER processes The ‘main’
processes, AGENT and MAP LEADER, are decomposed into subprocesses
that structure the specification and encapsulate behaviour. We remind the
reader that we use a double underscore to separate a subprocess name from
the ‘main’ process to which it belongs. For example, the subprocess named
MAP LEADER REQUEST MERGE is the REQUEST MERGE processes
which belongs to the MAP LEADER process.

Our specification only uses three agents. This was a conscious choice to keep
the specification’s state space small, while still enabling us to check that a pair
of agents can merge their maps in the presence of an interfering agent. We define
AgentName, the set of all the agent IDs as:

datatype AgentName = A1 | A2 | A3

6 The CSP files are available at: https://doi.org/10.5281/zenodo.4624507.
7 Reported states from a check for freedom from non-determinism using FDR 4.2.7.

https://doi.org/10.5281/zenodo.4624507
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The top-level process of our specification is a parallel composition ( |[ chan ]| ) of
all the AGENT and MAP LEADER processes. This takes the form:

LFC = AGENTS |[ interface ]|MAP LEADERS

where AGENTS is an interleaving (|||) of an AGENT process for each
ID in AgentName; and MAP LEADERS is a parallel composition of a
MAP LEADER process for each ID in AgentName, so the map leaders can com-
municate. In this top-level process, the AGENT and MAP LEADER processes
agree to synchronise (cooperate) on any events in the set of events interface.

MAP LEADERS composes the MAP LEADER processes in a way that
allows them to synchronise on some events, because they communicate to control
the map merge. But AGENTS simply interleaves the AGENT processes because
they do not need to communicate for the merge protocol. Other behaviours
require agents to communicate, but this is abstracted away in our specification.

The IDs in AgentName (for example A1) are used to synchronise communica-
tions between a MAP LEADER and the AGENT processes that it coordinates,
and between it and other MAP LEADER processes. The messages in Fig. 1 are
represented in our specification by CSP channels. The processes in the specifica-
tion also make use of other internal channels to describe the required behaviour.

As mentioned in Sect. 3.1, a map merge happens between two agents and their
respective map leaders (note that an agent may be its own map leader). Unlike
the description in Sect. 3.1, there will always be four processes involved in a map
merge in our specification: two AGENT processes and two MAP LEADER pro-
cesses. This is because we model the behaviours common to all agents separately
from the behaviours specific to a map leader. As in Sect. 3.1, we refer to the
agent that requests the merge and its map leader as the ‘requesting agent’ and
the ‘requesting map leader’, respectively.

We use the example from Fig. 1 to describe how our model captures the
scenario. We have split this into three phases:

1. Requesting Merge and Leader: initial communication to obtain informa-
tion that will be used during the map merge and used to check the viability
of the merge;

2. Confirming Merge: use the information obtained in the previous phase to
determine if the merge can proceed or if it should be cancelled;

3. Merge and Update: perform the map merge and update all agents involved.

As in Fig. 1, agent A1 is requesting that agent A2 merges maps with it, and both
agents are their own map leader. Because we do not include the maps themselves
in our specification, we do not use the map IDs (M 1 and M 2).

Phase 1: Requesting Merge and Leader
In the first phase of the protocol, an agent sends a request to its map leader to
merge with one or more other agents, then the map leader requests the name
(ID) of the mad leader of each of the agents it has been requested to merge
with. When one of the other agents replies, the requesting map leader begins
negotiating the map merge with the other map leader.
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Fig. 2. Excerpt from MAP LEADER REQUEST MERGE showing the paral-
lel composition of MAP LEADER HANDLE REQUEST MERGE , which handles
requests to merge; and MAP LEADER BEGIN MERGE , which allows the map
leader to begin a merge. The processes synchronise on the beginMerge event. Me is the
ID of the MAP LEADER process, and AgentSet is the set of agents this map leader
is coordinating.

In our example, A1’s AGENT process sends a message to its map leader
(which is itself) requesting that it merges with A2. This is represented by an
event on the channel request merge, which is sent from the AGENT (A1) process
to the MAP LEADER(A1) process and triggers the MAP LEADER to start
its map merging process. In the requesting MAP LEADER, this is handled by
the MAP LEADER REQUEST MERGE process, part of which is shown in
Fig. 2

The MAP LEADER HANDLE REQUEST MERGE process listens for
request merge events from any agent it currently coordinates (any agent in its
AgentSet). The request merge event contains a parameter mergeSet , which is
the set of agents that the map leader should try to merge with. In our example,
merge set only contains A2, but it can contain the IDs of any agents that are
not in the AgentSet of the requesting map leader (as explained in Sect. 3.1).

When a request merge event is received, the beginMerge event is used to
start the merge. This is an event introduced purely for our specification. The
MAP LEADER BEGIN MERGE process sends request leader events to each
agent in the mergeSet and waits for a reply leader event from one of these agents,
acting on the first of these events to arrive. The reply leader event contains a
parameter that is the ID of the agent’s map leader. In our example, A2 sends
the reply that its map leader is A2.

The MAP LEADER BEGIN MERGE process, triggered by A1 receiving
the reply leader event from A2, checks if the map leader for A1 has priority over
the map leader for A2. As mentioned in Sect. 3.1, the agent with the lowest ID
number takes priority, so A1 has priority over A2, which has priority over A3. If
the requesting map leader does not have priority, then the map merge attempt
ends here. In our example, the map leader is the same as the requesting agent,
A1, and A1 does have priority over A2 (the other map leader), so it moves on
to confirming the merge with the other MAP LEADER process.

Phase 2: Confirming Merge
The requesting map leader asks the other map leader to confirm that the merge
can proceed. As explained in Sect. 3.1, this allows a map leader to cancel a merge
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Fig. 3. Excerpt from MAP LEADER CONFIRMING MERGE , which handles the
requesting map leader confirming the merge with the other map leader. The parameter
Me is the ID of the MAP LEADER process, RequestingAgent is the ID of the agent that
requested the merge, OtherAgent is the agent the RequestingAgent wanted to merge
with, OtherMapLeader is the ID of the other map leader (the leader of OtherAgent ’s
map), and the AgentSet is the set of agents that this map leader is coordinating.

request if it has completed a (concurrent) merge with a different map leader. In
our example, the requesting map leader is A1 and the other map leader is A2.

The requesting MAP LEADER (A1) handles this phase using the pro-
cess MAP LEADER CONFIRMING MERGE (excerpt in Fig. 3). The first
event in this process, confirm merge.Me.OtherMapLeader , is a request from
map leader A1 (here, the value of Me) to map leader A2 (here, the value of
OtherMapLeader), to confirm that the merge can go ahead. As we can see
from Fig. 3, the other map leader (A2) can reply with either merge cancelled
or merge confirmed .

When the map leader A2 receives the confirm merge event, it ‘consid-
ers’ the eligibility of the merge. If it is no longer a map leader, it replies
merge cancelled , and the merge process will terminate after replying to any
pending confirm merge events. The merge confirmed event signals that the
merge can continue. Either of these events passes control back to the requesting
map leader (A1), which will: SKIP (terminate) if the reply was merge cancelled ;
or move on with the merge and update step if the reply was merge confirmed .

Phase 3: Merge and Update
This phase is split into two stages: merging the maps, and updating the agents.
First, the requesting map leader uses the MAP LEADER MERGE MAPS
process, shown in Fig. 4, to merge the maps. The process is triggered by the
merge confirmed event, as shown in Fig. 3.
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Fig. 4. The MAP LEADER MERGE MAPS , which controls the merging of maps
between two map leaders (abstracted to the merge maps event. Me is the ID of the
MAP LEADER process and MyAgentSet is its agent set. Similarly, otherMap is the
ID of the other MAP LEADER process and OtherAgentSet is its agent set.

Since the map is not captured in our specification, merging the maps is
abstracted to the event merge maps. The requesting MAP LEADER updates
the AgentSet (the set of agents it coordinates). It then tells the other map leader
that the merge is completed, using the merge completed event, which also sends
the union of the two agent sets.

After the merge completed event, control returns to the MAP LEADER
CONFIRMING MERGE process (Fig. 3), which calls the MAP LEADER
UPDATE AGENTS process to update all the agents in its new AgentSet . This
involves a sequence of communications between the requesting map leader and
each AGENT in the new AgentSet .

This phase closely corresponds to the description in [8], summarised as fol-
lows:

1. Build new list of identified agents: in our specification, this is simply the
union of the requesting and other map leader’s AgentSets.

2. Send update to the leader of M 2 (A2): as shown in Fig. 4, the
merge completed .Me.otherMap.union(MyAgentSet ,OtherAgentSet) event
sends the new (merged) AgentSet to the other map leader.

3. Send update to all agents of M 1 (A1): here a recursive process sends
update identified same group to each agent in the agent set of the requesting
map leader (A1). This event passes the new AgentSet to each of these agents.

4. Send update to all agents of M 2 (A2): here a recursive process sends
update identified to each agent in the AgentSet of the other map leader. This
event passes the new agent set to each of these agents and is also used to
update each agent’s map leader to the requesting map leader, A1.

After the updates are completed, the requesting map leader recurses back to the
MAP LEADER REQUEST MERGE process (Fig. 2) ready to begin another
merge. If there are no more agents to merge with from this request, it waits for
the next merge request. The other map leader process no longer represents an
agent that is a map leader, so it will only reply merge cancelled if it is asked to
merge. This handles requests to merge that may already be in progress.
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Table 2. Summary of the verification (Scenarios 1–5) and validation (done reachable)
assertions applied to the map merge protocol. The requirement, or goal, that each
assertion covers is presented in brackets.

Name Type Description

Scenario 1

(REQ1)

has trace A1 merging with A2, A1 has priority, A2 merges into A1

Scenario 2

(REQ2)

has trace A1 merging with A2, but A2 cancels the merge

Scenario 3

(REQ1)

has trace A2 merging with A1, denied because A2 does not have priority

Scenario 4a

(REQ1)

has trace A2 requests a merge with A3, then A1 requests a merge with A3. A1

merges with A3 first, then A3 replies that its Map Leader is now A1.

A2 now tries to merge with A1, which is denied because A2 does not

have priority

Scenario 4b

(REQ2)

has trace A2 requests a merge with A3, then A1 requests a merge with A3. A1

merges with A3 first, then A3 replies that its Map Leader is still A3.

A2 tries to merge with A3, which is cancelled because A3 is not a Map

Leader any more

Scenario 5

(REQ1)

has trace A1 merges with A2, then A3 tries to merge with A2, which replies that

its Map Leader is now A1. A2 tries to merge with A1, which is denied

because A3 does not have priority

done

Reachable

(GOAL)

refinement Can the LFC process reach the state where any of the agents can call

done (showing that it is coordinating all the agents)

3.3 Specification Validation and Verification

After specifying the map merge protocol, we validate that it performs the proto-
col’s required behaviour and then verify that all the maps are eventually merged.
The validation step is used to check that the specification conforms with the
protocol’s implementation. The verification step is used to check that the spec-
ification is correct. For both of these steps, we use the assertions and in-built
tools of the CSP model checker, FDR. The assertions are described in Table 2
and the time that FDR took to check the assertions is summarised in Table 3.

Validation. For the validation step, first we used FDR’s Probe tool to manually
step through the model one event at a time. This was useful when debugging the
specification, especially after adding or updating behaviour. For more substantial
verification, we also checked how the agents behaviour in six different scenarios
(see Table 2). These scenarios were based on the implementation’s behaviour
in LFC’s matches during MAPC 2019, so the correct behaviour is known. The
specification was checked to see that it would perform each of the scenarios
correctly, showing that it corresponds to the implemented protocol.

The scenarios were developed alongside the specification, and were useful for
checking that it continued to meet the requirements while behaviour was being
added. Hence, Scenarios 1 to 3 describe the requirements of a pair of agents;
while Scenarios 4a, 4b, and 5 check the requirements with the interference of a
third agent; mirroring the specification’s development. Scenario 1 is the example
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in Fig. 1, where agent A1 meets agent A2 and requests they merge maps, A1 has
priority so A2’s map is merged into A1’s; and Scenario 2 shows A2 cancelling
the merge instead. Scenario 3 is A2 trying to merge with A1 and not having the
priority to do so. Scenarios 4a and 4b check the two situations that can occur
when an agent stops being a Map Leader after a third agents has started merging
with it. Finally, Scenario 5 checks the combination of an agent that stops being
a Map Leader and an agent that doesn’t have priority for a merge.

While the six scenarios are not an exhaustive list, they cover both of the
protocol’s requirements (Sect. 3.1). REQ1, that the merge will be denied if the
requesting map leader does not have priority, is checked by Scenarios 1 and 3
(for two agents) and Scenarios 4a and 5 (for three agents). REQ2, that an agent
will cancel a merge if it loses control if its map, is checked by Scenario 2 (for two
agents) and Scenario 4b (for three agents). The GOAL is checked by the done
reachable assertion, described below alongside the other verification checks.

Each scenario is described as a trace of the relevant events in the scenario.
We used FDR’s in-built [has trace] check, to explore the model’s state space to
see if it can perform the scenario trace (though this does not show that it will
always perform the scenario trace). In the assertion check we hide all the events
that are not in the scenario trace. This takes the form:

assert LFC \ (diff (Events, trace events)) : [has trace]; < trace events >

where LFC is the specification’s top-level process, Events is the set of all events,
and trace events is a sequence of events. The diff () function in the hiding oper-
ator \(diff (Events, trace events)) hides only the events not in trace events.

The [has trace] checks act like tests of the specification. They are run auto-
matically by FDR, so they are easily repeatable They also provide useful regres-
sion tests, which ensures that a change to the specification during this validation
and debugging step has not introduced a bug somewhere else.

Verification. For verification, we use FDR’s in-built assertions to show (by
exhaustive model checking) that our specification of the merge protocol is free
from divergence and non-determinism. Divergence (livelock) is where the spec-
ification performs infinity many internal events, refusing to offer events to the
environment. Non-determinism is where the specification may perform several
different events, after a given prefix.

Finally, we check that the specification can reach a state where all the maps
have merged. To get to this state shows that the specification performs the cor-
rect behaviour and that it does not deadlock before reaching the ‘done’ state.
If the specification reaches this state, it shows that the GOAL and require-
ments REQ1 and REQ2 are obeyed by the specification. This check required the
addition of the if . . . else . . . construct to the MAP LEADER process (shown in
Fig. 5) which is not part of the map merge protocol. The check happens inside
the MAP LEADER REQUEST MERGE subprocess, after a merge has been
either confirmed or cancelled. The event get agentSet retrieves the agent set
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Fig. 5. Excerpt from MAP LEADER REQUEST MERGE , checking that all the
maps have merged. This follows on from the excerpt in Fig. 2.

(the set of agents that this Map Leader is coordinating) from the map leader’s
internal state process; which is named gotAgentSet here, to avoid a name clash.

The gotAgentSet is compared to the set of all agent IDs (AgentName),
using an if . . . then . . . else . . . construction that is not part of CSP but is avail-
able in the input language of FDR. If the sets are equal (meaning that this
MAP LEADER is now coordinating all the agents) then the process synchro-
nises on the done event. In our specification, the done event can happen after a
minimum of two successful map merges (agent A1 merging with agents A2 and
A3 in either order) but there could be more, depending on the interleaving of
events. This means that the done event represents several successful instances
of the protocol, each of which must have obeyed the GOAL and requirements
REQ1 and REQ2. We can also see in Fig. 5 that after done, the MAP LEADER
waits for the terminate event, which tells it to terminate. This is also only part
of our specification, not a part of the merge protocol.

To check if the state where a MAP LEADER can call done is reachable, we
use the following assertion:

assert LFC \ (diff (Events, {| done |}))[FD =
� agent : AgentName • done.agent → SKIP

which checks if the specification (LFC ) is refined by ([FD =) the process that
offers the external choice (�) of any MAP LEADER calling done. Again, we
use \(diff (Events, {| done |})) to hide all the events in LFC other than done,
because it is the only event pertinent to this check. Here, the replicated external
choice (see Table 1) offers the done event with each ID agent in the set of all agent
IDs, AgentName. The particular refinement check used here (in CSP’s failures-
divergences model) means that the LFC processes cannot refuse the done event
(as this would be a failure) and it cannot diverge. As previously mentioned, this
shows that LFC does not deadlock before the done event occurs.

Discussion. Table 3 shows a summary of the times (in seconds) taken to
complete the has trace checks on each scenario trace, the divergence and non-
determinism checks, and the check that the done event is reachable. These results
are from using FDR 4.2.7, on a PC using Ubuntu 20.04.2, with an Intel Core i5-
3470 3.20 GHz × 4 CPU, and 8 GB of RAM. The table reports the compilation
time, which is how long it took FDR to build its internal representation of the
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Table 3. Summary of times (in seconds) taken to check each scenario trace (has trace),
divergence, non-determinism, and that the Done event is reachable. The times shown
are for a single run using FDR 4.2.7, showing how long it took to compile and check
each assertion. The total time is the sum of the compilation and checking time.

Name Compiled (s) Checked (s) Total (s)

Scenario 1 0.84 0.15 0.99

Scenario 2 0.89 0.10 0.99

Scenario 3 0.89 0.10 0.99

Scenario 4a 0.94 0.08 1.02

Scenario 4b 0.95 0.06 1.01

Scenario 5 0.86 0.10 0.96

Divergence 0.71 2.41 3.12

Non-Determinism 6.19 2.69 8.88

done Reachable 4.72 0.02 4.74

specification; checking time, which is how long it took FDR to actually check
the assertion; and the total time, which is simply the sum of the previous two
times.

The total times for these verification and validation checks were small enough
to not be a barrier to quick re-checking of the properties after updates to the spec-
ification. The scenario traces provided quick regression tests, each being checked
in ∼1s. Even the longest of the three exhaustive checks (non-determinism) was
still relatively fast, at only 8.88s in total.

As mentioned in Sect. 3.2, our model only uses three agents, which helps keep
the state space of the specification small. To provide a comparison, we added a
fourth agent to AgentName (the set of all agent IDs, mentioned in Sect. 3.2):

datatypeAgentName = A1 | A2 | A3 | A4

The model was not specifically designed for more than three agents, but it
adapts to the number of agent IDs (for example, it runs one AGENT process
for each ID in AgentName). Then, we rechecked the scenario traces in FDR. For
three agents they each took ∼1s (Table 3); for four agents they took between 89s
and ∼107s longer, an average increase of 9788.94% (97.20s). We did not compare
the times for the exhaustive checks because they used used all the RAM on the
test PC, which will artificially increase the checking time. If we add more agents
to the model, other elements may need to be altered to reduce the state space.
However, this is left for future work.

4 Related Work

A recent survey [3] identified that the main validation and verification approaches
being applied to agent systems are: model checking, theorem proving, runtime
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verification, and testing. Testing has been shown to be less effective in the valida-
tion and verification of BDI-based agent systems when compared to traditional
procedural programs, encouraging the use of formal methods [30].

Various other approaches for model checking multi-agent systems exist in
the literature. MCMAS [22] and MCK [18] are two symbolic model checkers for
agent systems, and AJPF [10] is a program model checker for agents written in
the Gwendolen [9] language. Runtime verification has also been used to verify
agent interaction protocols specified as trace expressions in [13].

However, these approaches work best when applied top-down, and to the
whole system. The LFC system was already implemented in JaCaMo, which has
been used by several winning teams in past editions of the contest. Our goal in
this work was to verify a specific part of the system; the map merge protocol.
Both of these things contributed to our exploration of using a CSP specification
of the protocol. However, this does not preclude its integration with other types
of formal methods applied to the LFC system, which can provide greater con-
fidence in the correctness of the system (as well as guiding the development of
new functions) [12].

CSP has been used in other approaches for multi-agent systems. Examples
include an approach that combines a CSP encoding of agent communications
with a first-order logic framework [20]; a CSP framework for a Java-based “cog-
nitive agent architecture” called Cougar [15], where the model is used to ver-
ify properties about the code generated from the Cougar system; and a timed
CSP model of a multi-agent manufacturing system [31]. However, each of these
approaches is (like ours) specific to its example application.

Another approach [21] for multi-agent systems that involves CSP presents
a translation from CSP-Z (a combination of CSP and Z [27]) to Promela, the
input language of the SPIN [17] model checker. This translation appears to be
needed to side-step some inadequacy with a previous version of FDR. They
demonstrate their approach using a CSP-Z specification of an air traffic control
system. Our work makes use of ‘pure’ CSP, and doesn’t require the specification
to be translated into a different language for model checking, so we can be more
confident of our results. However, updating this approach for the current versions
of FDR and SPIN could be useful if the protocol had specification temporal
properties that needed checking.

Finally, there is work on the Agent Communication Programming Language
(ACPL) [11], which is a process algebra that takes some inspiration from CSP’s
approach to concurrency to model the basics of agent communication. ACPL was
also used as the basis for a formal compositional verification framework for agent
communication [28]. While the map merge protocol tackled in our work does use
agent communication, we are verifying the protocol not the communication itself.

Other process algebras have been used to specify and verify multi-agent sys-
tems [23]. For example, in [2] the process algebra Finite State Processes (FSP)
and π calculus combined with ADL (πADL) are used to specify safety and live-
ness properties for a multi-agent system, The multi-agent program is checked for
satisfaction of these properties, as is the agent architecture (which is written in
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πADL). Looking further afield, process algebras have been applied to similarly
distributed, cooperative systems. For example, the Bio-PEPA process algebra
has been used to model robot swarms [24], specifying behaviour that enables
the swarm to perform a foraging task. They found that their approach enabled a
wider range of analysis methods, when compared to other modelling approaches.

5 Conclusion

This paper describes the application of formal specification and verification tech-
niques (in CSP) to an existing communication protocol used to merge maps in
a multi-agent system. The protocol was used by the LFC team in the MAPC
2019. This work provides extra confidence that the LFC team’s map merging
protocol works correctly, which was difficult to check using testing alone. The
work also explores the utility of CSP for modelling multi-agent systems.

The merge protocol is critical to the performance of the multi-agent system,
all of the information needed for the agents to participate effectively in the
competition is stored in the agent’s maps. Without a coherent map, the agents
would not have been able to cooperate to achieve their mission.

Using the model checker FDR, our CSP specification of the protocol was
validated (through checking that it could perform traces representing scenar-
ios drawn from the MAPC 2019) and verified to be free of divergences, and
non-determinism, and that it could eventually merge all the maps without dead-
locking. We conclude that CSP’s focus on concurrent communicating systems
makes it well suited to specifying this kind of communications protocol.

Although the merge protocol is the most complex communication protocol
used in the LFC system, other behaviours also require some form of validation
and verification. The identification process (mentioned in Sect. 3.1) could be
specified in CSP either as an addition to the specification presented in this
paper, or separately. CSP is useful for modelling concurrent communication,
but there may be other formal method techniques that are more appropriate
for the remaining behaviours. As indicated by the results in [7], different parts
of the system may require distinct verification techniques. The use of CSP for
modelling agent interaction protocols that make use of the interaction dimension
in JaCaMo also requires further investigation. These are left for future work.
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Abstract. This paper takes a look at the execution time of the Jason
reasoning cycle combining an examination of general algorithms and code
analysis to determine the timing complexity of its parts. It also exper-
imentally confirms the analysis through the use of profiling tools and
agents specifically designed to exploit factors found to affect the exe-
cution time. It is found that the reasoning cycle executes within a rea-
sonable time frame give that increasing the number of beliefs or plans
leads to a linear increase of execution time (less than 0.1 s at 10 000
beliefs/plans in our setup), but increasing the number of percepts results
in a polynomial increase in execution time (approximately one second at
10 000 percepts in our setup).
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1 Introduction

Jason [12] is an advanced implementation of a Belief-Desire-Intention (BDI)
engine written in Java, interpreting AgentSpeak(L) [9]. This engine is a method
by which a rational agent can be created. Such an agent will gather beliefs from
its environment and infer upon those beliefs to generate more beliefs. It will have
a set of desires (or goals) that it wishes to achieve, and finally, it will have a set
of intentions which it will use to complete its goals by using its beliefs about the
world around it. With the increased prevalence of embedded systems and single
board computers (such as the Raspberry Pi), we feel it would be beneficial
to study the execution time of the Jason reasoning cycle to determine if it is
suitable to be run on these systems given that we would expect a high frequency
of belief updates and decisions. In general, we find that Jason performs well
for a large number (10 000) of beliefs and plans, with an execution time of the
related function (applyFindOp()) to be less than 0.1 s at the worst case in our
setup. However, a large number (10 000) of percepts results in an approximately
one second execution time in our setup, which, depending on the particular
embedded system, may or may not be an appropriate execution time.

This paper will provide an in-depth analysis of the timing complexity of
the Jason reasoning cycle, identifying the parameters which would increase the
execution time. We will also experimentally confirm this initial analysis through
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the use of a profiler and artificially generated agents, designed to manipulate the
identified parameters.

2 Related Work

There have been two main avenues of development in enhancing the performance
of the Jason framework:

1. Using the lessons learned by Jason to develop an alternate BDI implemen-
tation: Most notably, LightJason [3] aims to re-imagine Jason into a more
modular and scalable language, via the use of modern Java features (such
as lambda expressions and streams). It is also based on AgentSpeak(L++),
which is an extension to what Jason is based on, AgentSpeak(L). As this
implementation is not built upon Jason, but a different implementation alto-
gether, we will not take LightJason into account during our analysis.

2. Using the knowledge of Jason to develop workarounds to known inefficiencies:
We will highlight [10] and [8], both of which have already done some analysis
on the Jason reasoning cycle and have identified the effect of perceptions on
the execution time of the reasoning cycle. We also see that [1] proposes ways
to use features of Jason to reduce the complexity of belief revision. Finally
[2] looks at caching queries that are done over multiple reasoning cycles in an
attempt to improve performance.

As part of our analysis, we will profile the reasoning cycle (using JProfiler
[14]), but will not limit ourselves to only perceptions. We will not provide any
thoughts on how to mitigate any bottlenecks in the reasoning cycle we find as
part of this paper. Also, while many other languages have been written that
implement the BDI engine (such as GOAL [4] or 2APL [6]), we will not provide
any sort of comparison between languages, focusing solely on Jason.

3 Analysis of the Reasoning Cycle

The reasoning cycle is the heart of the BDI engine. It is, in essence, how an agent
decides what actions it should take. In general, a BDI agent takes input from
sensors, runs that data, along with its current belief base through some sort of
belief revision, which then updates that belief base. It then generates options
using these beliefs as well as the available intentions, which results in a set of
desires. These desires, beliefs and intentions get filtered to generate new (and
update existing) filters. Finally, these intentions result in a single action output
for that cycle [11].

Jason implements this cycle by taking input from sensors (via perceive())
as well as from other agents (using checkMail() and socAcc(), although this
input gets stored directly in the belief base). Jason will update its belief base
through a light-weight version of belief revision in the form of belief update, but
will perform belief revision later during the cycle, if required. Valid desires (or
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goals) will be generated through the event selection function, which will lead to
filtering, which is implemented starting with unification of events with the plan
library, checking the relevance of these plans, and finishing with option selection
and intention selection functions. Finally, Jason executes the selected intention.

3.1 Time Complexity of the Jason Reasoning Cycle

A large variety of Java data structures are used to store the data needed to
run the reasoning cycle. This allows Jason to leverage well defined and well
understood algorithms when storing and manipulating beliefs, perceptions, etc.
In order to get an idea of the complexity of the reasoning cycle, we will need to
look in depth at the data structures used. As the Jason implementation of the
reasoning cycle has 10 steps, we will also break down our analysis into the same
10 steps. We should note that the Jason framework provides a lot of flexibility
in the form of being able to extend classes and override default implementation
of some of the steps of the reasoning cycle. For our analysis, we will stick to the
default behaviour with a notable exception, which will be elaborated on near
the end of this section. While we are focusing on Jason for this paper, these
algorithms have been abstracted into pseudo-code, in an attempt to generalize
the results.

Algorithm 1: Perceive
Input: Pglobal : Set of perceptions available to all Agents
Input: Pagent : Set of perceptions available only to an Agent
Output: P : Set of perceptions that have been perceived by an Agent

P ← Pglobal ∪ Pagent

return P

Step 1 - Perceive. Looking at Algorithm1, we see that in general, updating
the perceptions in this step is a simple union of two sets.

Jason stores both of these sets as Arrays of Literals. For our case, the union
of these two sets will be either O(|Pglobal|) or O(|Pagent|). This means that the
timing complexity for this function will be linear, given by MAX(O(|Pglobal|),
O(|Pagent|)). This set will be directly provided to the belief update function, seen
in step 2.

Step 2 - Belief Update Function. The belief update function shown in
Algorithm 2 does two things; deletes perceptions that are no longer perceived
and adds perceptions that have been perceived, as given to it by perceive()
seen in step 1.

In order to understand the Jason implementation a little more clearly, we
will look at the second portion of the algorithm first (the addition of percepts),
which will provide some clarity as to how the percept is stored within the belief
base and consequently why the deletion happens the way it does.

To add the percepts to the belief base, the list of perceptions will be iterated
over, taking O(|P|) time, and will be added to the belief base in two locations,
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Algorithm 2: Belief Update Function
Input: P : Set of perceptions that have been perceived this reasoning cycle
Input: Pbelief : Set of perceptions that exist within the belief base from the previous reasoning cycle
Output: n : The number of additions and deletions that have taken place
Output: Pbelief : Set of updates perceptions that exist within the belief base as of this reasoning cycle

foreach p : perception in Pbelief do
if p /∈ P then

Pbelief ← Pbelief � {p}
n++

end

end
foreach p : perception in P do

add percept annotation to p
Pbelief ← Pbelief ∪ {p}
n++

end
return (n, Pbelief)

once in a HashSet of perceptions, and once in the belief base itself. Within the
belief base, this perception is stored in two forms, a LinkedBlockingDeque (in
order to maintain the order of the beliefs), as well as a HashMap (in order to
utilize a faster search). The “percept” annotation will be added to the percept,
to represent where the belief came from.

To delete from the belief base, the Jason implementation of this algorithm
will first iterate over the HashSet of perceptions, taking O(|Pbelief |) time, and
determine if the perception needs to be deleted, by comparing it to the set of
perceptions passed into the belief update function (P). If it needs to be deleted,
then it deletes the perception from the HashSet being iterated over and from
the belief base. This means that, because a belief is stored in two forms, two
delete actions must happen: a deletion from the HashMap as well as a deletion
from the LinkedBlockingDeque, which, because it needs to search for the specific
perception to delete, takes O(|Pbelief |) time.

Overall, this function would be expected to take a worst case of O(|Pbelief |2)
time. This is due to the deletion of percepts that are no longer perceived, as the
set Pbelief must be iterated over once to see if the percept is still in P. If a given
percept is found to no longer be in P, then it must be deleted from Pbelief , which
requires a second, nested iteration over Pbelief , as the percepts here are stored
as a LinkedBlockingDeque.

Step 3 - Check Mail. The check mail function simply moves messages from
the messaging implementation to the agent implementation. By default, Jason
implements this by moving messages from one ConcurrentLinkedQueue to a
different Queue, taking constant time. Any messages that exist in the agent’s
queue will be examined by socAcc(), shown in step 4.

Step 4 - Determining if a Message is “Socially Acceptable”. To deter-
mine if a message is “socially acceptable”, shown in Algorithm 3, a message is
selected from the queue of messages generated by checkMail() (step 3), and
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Algorithm 3: Socially Acceptable
Input: m : Message to be checked, which has been sent to an Agent
Input: Fn : Set of n predicates, taking a message as input, such that f : m → true, false
Output: s : Whether or not Message m is appropriate to be acted upon

s ←
n∧

j=1
Fj(m)

return s

run through a set of provided predicates (represented by Fn) to determine if the
message is appropriate to be acted upon. In general, this function will have a
time complexity of MAX(O(F1), O(F2), ... , O(Fn)).

Jason does not provide a default implementation of this, and considers all
messages to be acceptable, and as such has constant time complexity.

Algorithm 4: Select Event
Input: E : Set of events that can potentially be selected this reasoning cycle
Input: f : Selection function, such that f : E → ε
Output: ε : Event that has been selected to act upon this reasoning cycle

ε ← f(E)
return ε

Step 5 - Selecting an Event. The select event function shown in Algorithm 4
takes a set of events and selects one event to be acted upon. As such, the time
complexity of this function is expected to be dependent on the selection function,
f. It should be noted that other selection functions (used in steps 8 and 9) are
extremely similar in concept, so do not have algorithms assigned to them.

The Jason implementation will, by default, take the first event present in E,
which will take constant time. The selected event will be passed to step 6 and
used to generate relevant plans.

Algorithm 5: Relevant Plans
Input: tε : Triggering event
Input: Π : Set of plans that are available to an Agent
Output: Optrelevant : Set of relevant options (Note that an option is a plan, as well as the unifier that

makes it relevant and applicable)

foreach π : plan in Π do
/* See algorithm 6 for unifies */
u ← π.unifies(tε)
if u /∈ ∅ then

Optrelevant ← Optrelevant ∪ {(π, u)}
end

end
return Optrelevant
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Algorithm 6: Unifies
Input: t1 : Literal to unify
Input: t2 : Literal to unify
Output: u : Unifier that unifies t1 and t2

if t1.isVariable() ∧ t2.isVariable() then
/* Get the variable portion of Literal t1 and t2 */
vt1 ← t1.variable()
vt2 ← t2.variable()
/* Recursively calling unifies */
return vt1.unifies(vt2)

end
if t1.isVariable() then

vt1 ← t1.variable()
return vt1

end
if t2.isVariable() then

vt2 ← t2.variable()
return vt2

end
return ∅

Step 6 - Collecting Relevant Plans. Algorithm 5 takes the entire plan
library and filters it down to a smaller set of plans that unify with the provided
triggering event (which was selected in step 5). This smaller set is stored as a set
of options, which represents a plan as well as the result of the unification of the
plan and triggering event. This is expected to have a time complexity of O(|Π|).

The Jason implementation of this step happens in two parts. First, the plan
library is narrowed down to a set of candidate plans, by getting plans that
match the arity of the triggering event. Due to the plan library being stored
as a HashMap, this is expected to take constant time. This will result in a set
Πcandidate : |Πcandidate| ≤ |Π|. Once this set has been generated, it is iterated
over while being unified with the trigger to determine if the plan is relevant. This
will take O(|Πcandidate|). It should be noted, that in the unification algorithm
(Algorithm 6), it is possible for the time complexity to be O(2n), where n is the
number of nested variables that make up a complex literal. This is due to the
fact that unifies will recursively call itself for each nested variable. In our case,
we are limiting ourselves to only one level, since our unification is limited to
triggering events and beliefs. This leaves us with a constant time complexity.
If the plan is relevant, then it will be placed into a second ArrayList, which is
presented as the list of relevant plans. This list of relevant plans is then provided
to step 7, which will further narrow the list down.

Step 7 - Collecting Applicable Plans. The applicable plan function shown
in Algorithm 7 takes the set of options provided in step 6, and generates a
set of options based on the logical consequences of the plan, the unifier and
the belief base of the agent. This function is expected to have a complexity of
O(|Optrelevant| × O(logicalConsequences)). The logical consequences (shown in
Algorithm 8), however, end up being more complicated. This function will iterate
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Algorithm 7: Applicable Plans
Input: Optrelevant : Set of relevant options (Note that an option is a plan, as well as the unifier that

makes it relevant and applicable)
Input: B : Set of beliefs which comprise the belief base of an Agent
Output: Optapplicable : Set of options that are logical consequences of the belief base

foreach opt : option in Optrelevant do
π ← opt.plan()
c ← π.context()
if c ∈ ∅ then

Optapplicable ← Optapplicable ∪ {opt}
else

/* See algorithm 8 for logicalConsequences */
LC ← logicalConsequences(c, opt.unifier(), B)
foreach u : unifier in LC do

optlc = (π, u)
Optapplicable ← Optapplicable ∪ {optlc}

end

end

end
return Optapplicable

Algorithm 8: Logical Consequences
Input: l : Literal to calculate the logical consequences of
Input: u : Unifier to get the logical consequences for
Input: B : Set of beliefs contained within the Belief Base of an Agent
Output: LC : Set of logical beliefs from the belief base for unifier u

foreach bel : belief in B do
if bel.equals(l) then

Bcandidate ← Bcandidate ∪ {bel}
end

end
foreach b : belief in Bcandidate do

if b.isRule() then
/* See algorithm 6 for unifies */
urule ← u.unifies(b)
if urule /∈ ∅ then

/* See algorithm 8 for logicalConsequences */
LCrule ← logicalConsequences(b, urule, Bcandidate)
foreach lrule : logical belief in LCrule do

Bcandidate ← Bcandidate ∪ {lrule}
end

end

else if b.hasAnnotations() then
Bannotations ← b.annotations()
foreach bannotations : belief in Bannotations do

Bcandidate ← Bcandidate ∪ {bannotations}
end

else
/* See algorithm 6 for unifies */
ulc ← l.unifies(b)
if ulc /∈ ∅ then

LC ← LC ∪ {ulc}
end

return LC
end
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over the belief base and attempt to unify the provided Literal with each belief.
In the case of more complicated beliefs, we can have the following:

– If the belief is a rule, it will get the logical consequences of that rule (this is
recursive, so can be polynomial)

– If the belief has annotations, those annotations are added to the Iterator (this
is linear)

In general, it is expected that this function will have a time complexity of
O(|B|n), where n is the number of belief rules (the length of Bcandidate in Algo-
rithm8).

Overall, the Jason implementation of these functions will have a timing com-
plexity of O(|Optrelevant| × |B|n).

This set of options will be provided to step 8, so that a single option can be
selected.

Step 8 - Selecting an Option. The select option function takes a set of
options and selects one option to be acted upon. As such, the time complexity
of this function is expected to be dependent on the selection function.

By default, the first option in Optapplicable is selected. This takes constant
time, as no array manipulation is occurring.

Step 9 - Selecting an Intention. The intention selection function takes a
set of intentions and selects one intention to be acted upon. As such, the time
complexity of this function is expected to be dependent on the selection function.

By default, the Jason implementation will take the first element of I, which
has a constant time complexity. This intention will be provided to step 10 to be
executed.

Step 10 - Executing the Intention. The execution of the intention that was
selected as part of step 9 is presented in Algorithm 9. This function will take the
intention that has been selected and perform different actions based on what
the selected intention is. In the case of the intention being an action, the action
will simply be executed and removed from the set of available intentions. The
expected time complexity of this is expected to be O(fι), which represents the
complexity of the action itself. If the intention is checking a constraint, then
the timing complexity will be similar to the complexity presented as part of
the logical consequences function in Algorithm 8 (O(|B|n)). Finally, if beliefs are
to be added or deleted, then belief revision will have to be run. By default,
Jason doesn’t implement any sort of real belief revision, leaving that up to the
programmer to implement. It should be noted, that in general, belief revision
is considered to be NP-complete [7]. That said, [1] proposes ways to utilize the
features of Jason that could potentially result in a belief revision function that
could have a time complexity of O(n log(n) + |B| × |Π|), where n represents
the number of literals within the belief base.
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Algorithm 9: Apply and Execute Intention
Input: ι : Current intention
Input: B : Set of beliefs which comprise the belief base of an Agent
Input: I : Set of intentions available to an Agent
Output: I : Set of updated intentions available with either intention ι executed and removed from I, or

modified and added back into I

switch ι do
case action do

execute ι.action()
I ← I � {ι}

end
case constraint do

c ← ιcurrent.context()
u ← ιcurrent.unifier()
/* See algorithm 8 for logicalConsequences */
LC ← logicalConsequences(c, u, B)
if LC /∈ ∅ then

ι.unifier = {lc1}; lc1 ∈ LC
I ← I ∪ {ι}

end

end
case delete belief and/or add belief do

Badd ← Beliefs to add
Bdel ← Beliefs to delete
beliefRevisionFunction()
I ← I � {ι}

end

end
return I

Algorithm 10: Apply and Find Option
Input: tε : Triggering event
Input: Π : Set of plans that are available to an Agent
Input: B : Set of beliefs which comprise the belief base of an Agent
Output: opt : Selected option that unifies with triggering event tε will be selected for an Agent

foreach π : plan in Π do
tπ ← π.trigger()
if tπ.equals(tε) then

Πcandidate ← Πcandidate ∪ {π}
end

end
foreach π : plan in Πcandidate do

/* See algorithm 6 for unifies */
u ← π.unifies(tε)
if u /∈ ∅ then

if π.context() ∈ ∅ then
opt ← {(π, u)}
return opt

else
/* See algorithm 8 for logicalConsequences */
LC ← logicalConsequences(π.context(), u, B)
if LC /∈ ∅ then

opt ← {(π, lc1)}; lc1 ∈ LC
return opt

end

end

end

end
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Step X - Combine Step 6 Through Step 8 into One Action. The Jason
implementation also provides a bit of a short-cut, in that steps 6, 7, and 8
can be skipped if selectOption() has not been overridden by a custom Agent
class. Shown in Algorithm 10, instead of generating entire sets of relevant and
applicable plans, the entire set of plans is converted into a set of candidate plans
(plans that have the same arity as the triggering event). This set is then iterated
over to find the first plan that is both relevant and applicable. We see that this
operation still has a worst case timing complexity of O(|Optrelevant| × |B|n), but
we expect the actual timing to be much less than this, as the first relevant and
applicable plan will cause the function to end.

Table 1. Summary of timing complexity per step of the Reasoning Cycle

Step Function Complexity

Step 1 perceive() O(|P|)
Step 2 buf() O(|Pbelief |2)
Step 3 checkMail() O(1)

Step 4 socAcc() O(1)

Step 5 selectEvent() O(1)

Step 6 relevantPlans() O(|Πrelevant|)
Step 7 applicablePlans() O(|Optrelevant| × |B|n)
Step 8 selectOption() O(1)

Step 9 selectIntention() O(1)

Step 10 applyExecInt() O(|B|n)
Step X applyFindOp() O(|Optrelevant| × |B|n)

Looking at the summary of complexities given by Table 1, we see that five of
the default implementations are constant, so we will exclude them from the rest
of out analysis. We will also replace steps 6, 7, and 8 with step X, as we have a
default implementation of selectOption(). This means that we have four steps
to look into: step 1 (perceive()), step 2 (buf()), step 10 (applyExecInt())
and step X (applyFindOp()).

Our expectation is that the execution time of perceive() will scale linearly
as the percepts received from the environment increase. The execution time of
buf() should increase polynomially as the percepts received from the environ-
ment increase, but linearly as the number of plans present in the agent’s .asl file
increase. The execution time of applyExecInt() and applyFindOp() should
increase linearly as the number of beliefs in the belief base increase and finally,
the execution time of applyFindOp() should increase linearly as the number of
relevant plans increase.
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4 Profiling of the Reasoning Cycle

In order to experimentally determine the execution time, we will write code
to artificially ensure the number of the parameter we are interested in is at the
specified value. This means that we will write agents that have a specified number
of beliefs, agents that have a specified number of plans, and an environment
that generates a specified number of perceptions. These agents will be run on
a system containing an Intel i5-8265U, running at 1.60GHz with eight GB of
installed RAM. We will run the reasoning cycle for 50 s, in order to give the
system an opportunity to settle into a steady state. At this time, we will take
a series of snapshots of the system (using JProfiler) at 50, 60, 70, 80 and 90 s.
We will then look at the four 10-second intervals between each snapshot. This
will give us an idea of the execution time of the reasoning cycle over a 10-
second period, and will allow us to see if there is any effect due to the passage
of time (i.e.:, do we see four distinct groupings of data). It is our expectation
that there should be no significant grouping of data points and that each of the
10-second intervals should be mostly identical (ignoring any variance generated
by background operating system processing).

4.1 Modification of Beliefs

In order to get a good idea of the execution time of applyExecInt() and
applyFindOp(), we will need to vary the number of beliefs in our belief base.
To do this, we can write a number of identical agents with the same plans and
initial goals, but only change the initial beliefs. For our purposes, we will write
an agent that contains 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1 000, 5 000,
and 10 000 beliefs, of which a sample is shown below:

belief(0).
belief(1).
/* Number of Beliefs vary from 10 to 10 000 */

!plan(100000).

+!plan(N) : belief(N) <- .wait(100); !plan(N).
-!plan(N) : true <- .wait(100); !plan(N).

As seen, the agent will contain two plans, one success and one failure plan
which will both just wait for 100ms then re-add the same goal. Finally, there
is an initial goal which it will not be able to meet, thereby always choosing the
failure plan (thus forcing the reasoning cycle to attempt to unify the context
with all the beliefs in its belief base). It is the expectation that as the number
of beliefs increase, the execution time of applyExecInt() and applyFindOp()
will increase.

We see that in Fig. 1 that as the number of beliefs increases, the execution
time of applyFindOp() increases significantly compared to the other functions
execution times. Since the increase is so large in this function, when compared to
the others, we will focus our efforts on the effect that increasing the number of
beliefs has on this function. Given that we see effectively no change in execution
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Fig. 1. Trend of Execution Time as the number of beliefs increase

time when we change the number of beliefs, we can conclude that with respect
to applyFindOp(), there is no appreciable change to applyExecInt(), and as
such, we will not do any further analysis on the function.

Now that we have collected a wider range of data, we can plot the execution
time with respect to how many beliefs are within the belief base to visually get an
idea of the relationship between the execution time and number of beliefs. Recall
that we have stated that the time complexity of this function is O(|Optrelevant| ×
|B|n). Since we are not taking into account complex belief rules (we are setting
n = 1), we can simplify this to be O(|Optrelevant| × |B|). This means that we
expect there to be a linear relationship between the change in the number of
beliefs and the execution time. It should be noted that this will be the worst
case execution time, as the agent always had to iterate over all the beliefs within
its belief base before executing the failure plan.

Looking at Fig. 2, we see that as the number of beliefs increases, the execution
time of the reasoning cycle linearly increases.

4.2 Modification of Perceptions

Since perceive() and buf() both rely on the number of percepts present in a
given reasoning cycle (at least partially, in the case of buf()), we can similarly
force a specific number of percepts to be present each reasoning cycle. In order to
do this, we will need to create a customized environment, which will extend the
default Environment class and override the default executeAction class. Instead
of doing nothing, the extended class will add the desired number of percepts
every cycle.

!plan.
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Fig. 2. applyFindOp(): Execution time vs Number of Beliefs

+!plan : true <- generateFakePercepts;
.wait(100);
!plan.

The agent in this case will generate an action event, causing the environment to
attempt to execute that action, which will always just add a specific number of
percepts, specified by the .mas2j file, as seen below:

MAS parameter_test {
infrastructure: Centralised
environment: PerceptEnvironment(‘‘10")
/* Customized environment class

specifies the number of percepts */

agents: percept_test;
}

We can then follow the same steps as in Sect. 4.1 and collect execution time
data for an agent that has 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1 000, 5
000, and 10 000 percepts per reasoning cycle.

Looking at the trend as the number of percepts increase from 10 to 10 000,
we get the graph shown in Fig. 3. We see that the execution time of buf() dom-
inates the other functions. Since the execution time of perceive() doesn’t sig-
nificantly change as the percepts increase, we will, similarly to applyExecInt()
in Sect. 4.1, conclude that the change in the number of percepts does not signif-
icantly affect the execution time of perceive(), especially when compared to
its effect on buf(). We will focus our efforts there.
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Fig. 3. Trend of Execution Time as the number of percepts increase

Looking closely at Fig. 3, we see that the execution time looks to be increas-
ing faster than linear. Plotting the execution time vs the number of percepts
generated per reasoning cycle in Fig. 4, we see that the relation does in fact
seem to be potentially polynomial. This result agrees with our initial analysis of
buf, that the time complexity of this function is along the lines of O(|Pbelief |2).

We would like to look at the results put forth in [10], in which they also
look at the execution time of buf(), under a range of percepts. Table IV in [10]
(recreated in Table 2) shows the original data presented, as well as converting the
log time (in ns) into actual time (in us), so that we can highlight the polynomial
relationship between execution time and number of percepts and easily compare
to our gathered data.

Table 2. Log of execution time and execution time presented in Table IV of [10]

Percepts Log time in ns Time in us

40 6.90 7 940

80 7.20 15 800

120 7.81 64 600

160 8.12 132 000

200 8.42 263 000

240 8.64 437 000

280 8.77 589 000

320 8.92 832 000

360 8.99 977 000
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Fig. 4. buf(): Execution time vs Number of Percepts

Fig. 5. Graph of Table IV, as seen in [10]

Comparing Fig. 5 and Fig. 4 we see a similar polynomial trend, which provides
a manner of validation towards our gathered data.

4.3 Modification of the Number of Plans

In order to see what the effect of the number of plans is on the execution time
of buf(), we will keep with the same general idea as the last two sections. We
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Fig. 6. Trend of Execution Time as the number of plans increase

will generate an agent that contains 10, 20, 40, 60, 80, 100, 200, 400, 600, 800,
1 000, 5 000, and 10 000 plans in it.

!plan(100000).

+!plan(N) : belief(0) <- .wait(100); !plan(N).
+!plan(N) : belief(1) <- .wait(100); !plan(N).
/* Number of plans vary from 9 to 9 999 */

-!plan(N) : true <- .wait(100); !plan(N).
/* Last plan, for a total of 10 to 10 000 */

In each agent, there will be one failure plan, and the rest will be plans that
the reasoning cycle will try to determine if they have the correct context. This
will force the reasoning cycle to look at all the plans (and always select the failure
plan). Looking at the trend of increasing plans shows something surprising: the
execution time of applyFindOp() increases significantly with the increase of
plans, as seen in Fig. 6.

We also see that the execution time of buf() does not increase significantly as
shown in Fig. 6, when compared to applyFindOp(). Again, we will conclude that
there is no significant effect on the execution time of buf() when the number of
plans are increased. We will, however, further analyze the effect of the increase
of the number of plans on applyFindOp().

Looking at the execution time of applyFindOp, we see that there is an
increase in execution time, which is unexpected, as we had hypothesized that
the execution time would increase with an increase of relevant plans. However,
upon further reflection, this does make sense. As the number of plans increases,
we would expect the time it takes to determine which plans are relevant (in this
case, it is always the last plan) to increase as well, so increasing the number of
plans should overall increase the execution time.
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Plotting the execution time against the number of plans in Fig. 7, we confirm
that there is a linear relationship between them.

Fig. 7. applyFindOp(): Execution time vs Number of Plans

4.4 Relevant Plans

Further investigation of how the increase of relevant plans affects the execu-
tion time of the reasoning cycle cannot be done as part of this exercise. Due
to the optimization of the reasoning cycle (using applyFindOp() instead of
relevantPlan(), applicablePlan(), and selectOption()), the first plan that
is deemed relevant will always be used. This means that there can only be one or
zero relevant plans, regardless of how many plans available to the agent are actu-
ally relevant. However, the analysis done in Sect. 4.3, where the number of plans
have been modified, should give an approximate idea of the effect of increasing
the relevant plans available to the reasoning cycle.

5 Concluding Remarks and Future Work

In this paper, we have analyzed the Jason reasoning cycle and experimentally
provided data that corroborates this analysis. Alongside of this, we also looked at
some of the values provided by [10] and validated them against our data. We have
seen that as the number of beliefs or plans increase, the execution time of the
reasoning cycle (specifically applyFindOp()) grows linearly. We have also seen,
that as the number of percepts increase, the execution time of the reasoning cycle
(specifically buf()) increases in a polynomial fashion. While we do not provide
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a specific mathematical model for these relationships, this is a good starting
point for additional work in this area. To this end, the following future work is
planned:

1. Experimentation of embedded hardware: It would be beneficial to re-run the
experiment outlined in this paper in order to determine the overall execution
time of the reasoning cycle on real world hardware (i.e.: a Raspberry Pi). This
would allow us to determine if it would be possible to use this implementation
of the BDI engine in a more widespread application.

2. Development of a mathematical model to predict the execution time: In order
to determine what type of hardware might be needed for a practical use of the
Jason reasoning cycle, a model in which we could predict the execution time
for a given set of hardware (or, conversely, determining values of parameters
that would result in a specified execution time) would be extremely beneficial.

3. Addition of case studies: While it is appropriate to design agents to specif-
ically test the limits of Jason, analysis should be done to determine what
are reasonable ranges for these parameters, through the use of actual agents
written using Jason.

4. Exploration of solutions to mitigate bottlenecks: While this paper has iden-
tified some bottlenecks of varying severity, it doesn’t attempt to present any
ways to mitigate or solve these issues. It would be beneficial to either develop
some strategies to mitigate or solve some of these bottlenecks, or at least
identify other’s efforts to do this.
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Abstract. The Internet and the services delivered via it are increasingly cen-
tralised on a few monopolistic platforms. Today’s web frameworks are conceived
to cater for increasing returns to scale and winner-takes-all business models with
a built-in asymmetry between users and services. Existing multi-agent and agent
architectures have seen no significant adoption outside niche applications. We
propose a novel agent framework which is designed to allow for a decentralised
digital economy to manifest where each individual and organisation is repre-
sented by an autonomous economic entity with its own agency. The framework
bridges the old and new web and employs distributed ledger technologies as core
parts of its construction. We introduce the framework, discuss the performance
characteristics of its current implementation and demonstrate several application
areas.

Keywords: Autonomous economic agents · Agent framework · Multi-agent
system framework · Distributed ledger technology

1 Introduction

1.1 Web 2.0 and Its Short-Comings

Nowadays, digital services are highly centralised. By some estimates [15], over 43% of
web-traffic volume incorporates one of the FAANMG1 platforms. In the process, they
extract a significant amount of rent [41] indicating low competition.

The increasing monopolisation is partially caused by unsuited or outdated regula-
tion [42]. However, it is argued that the design of the Web 2.0 [16] itself contributes to
this outcome. In particular, the dominant client-server architecture favours a centralised
ownership of servers (monolithic or micro-service implementation) [4], causes a lack
of interoperability [6], and leads to centralisation of economic control and data [5].

1 Facebook, Apple, Amazon, Netflix, Microsoft and Google.
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1.2 Two New Trends

With the recent rise of the decentralised Web 3.02 [46] and distributed ledger tech-
nologies (DLT)3 [48] - in particular Bitcoin [31] and Ethereum [12] - it is evident that
alternative, decentralised systems can be technologically and economically sustained.

We introduce an agent framework for autonomous economic agents (AEAs), which
embraces this technological shift and which we demonstrate is capable of allowing
multi-stakeholder multi-agent systems (MAS) to finally find wide-spread production
deployment. Our novel approach is chiefly enabled by two drivers: the first is the trust-
less, non-intermediated exchange of wealth and public code execution in smart con-
tracts4 mediated by DLT, which thereby provides a financial and contracting layer for
the MAS [13]; the second, is the readiness of businesses to cooperate on the design
of custom on-chain (i.e. DLT enabled) and off-chain (e.g. MAS) stateful protocols that
permit industry-wide competition without a winner-takes-all market dynamic [7,32].

In Sect. 5 we discuss concrete use cases where the framework finds application
today.

1.3 Contribution

The core contribution of the framework is that it enables wide-spread and scalable real-
world deployment of multi-stakeholder MAS utilising DLT as evidenced in Sect. 5. This
contribution is facilitated by the framework’s innovation in five key areas: developer
experience, software engineering, artificial intelligence, economics, and user experi-
ence.

The main benefit of the framework for the software developer is that it allows them
to re-use existing code to a much larger degree than in other agent frameworks (e.g. [8,
20]) and client-server oriented web frameworks (e.g. [17,38]). Re-use is not restricted
to libraries but extends to application specific components encapsulating subsets of the
agent’s business logic.

An actor-like framework design leads to software components that are loosely cou-
pled, allowing for concurrency without requiring shared state which enables additional
complexity to be incorporated by adding modules to the agent. Interaction between
components occurs mostly via asynchronous message passing. This provides a consis-
tent and scalable approach to communication within and across agents. Hence, an AEA
can itself be viewed as a small MAS.

From the AI perspective, a developer is offered the flexibility to combine different
approaches, such as reinforcement learning [44], deep learning [19] and symbolic AI
approaches [21] in one framework.

2 As discussed in [25] not to be confused with the Semantic Web [24].
3 A distributed ledger is a consensus of replicated, shared, and synchronised data where process-

ing nodes are geographically and organisationally - no central control - spread across multiple
entities. Bitcoin network is a permissionless DLT in the form of a blockchain, with proof of
work as the consensus algorithm and Bitcoin as the cryptocurrency.

4 Smart contracts are computer programmes which are executed by nodes of a DLT, usually a
blockchain, and can, similar to objects, hold their own state. They can be used to automate
enforcement of contract terms, reduce the need for trusted intermediaries and allow for reuse
and encapsulation to create interoperable on-chain protocols like decentralised exchanges [2].
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Fig. 1. Diagrammatic representation of an AEA-based MAS. AEAs run off-chain, on heteroge-
neous devices controlled by their stakeholders. They can use DLTs for settlement and commit-
ments and various (agent-based) services for communication as well as search and discovery.

The native integration with DLT is novel relative to other agent and multi-agent
frameworks (e.g. JADE [8], SPADE [20], Jason [10]). It provides a financial settle-
ment and commitment layer, enabling the framework to support deployment of multi-
stakeholder systems. In particular, it is possible for anyone to write software for deploy-
ment into decentralised and permissionless markets and therefore provides explicit eco-
nomic benefit to its user and allows for new economic organising principles.

Finally, the framework enables developers to distribute agents as finished products
to end-users, lowering barriers to wide-spread adoption of MAS. For instance, through
encapsulating complicated interaction flows with DLT and delegation to AEAs, the
framework improves the user-friendliness of DLT [28].

2 Definition and Environment Requirements

In reference to [39] we define an autonomous economic agent (AEA) as

an intelligent agent operating on an owner’s behalf, with limited or no interfer-
ence of that ownership entity, and whose goal is to generate economic value for
its owner;

where the economic aspect is realised through exchange and commitments facil-
itated primarily by DLT. The literature contains related definitions as machines that
obtain their own agency through being equipped with crypto-currency wallets [35].
This definition is so-far helpful as it puts the focus on the wallet which the agent main-
tains and which provides an explicit financial metric of the agent’s economic value.

The preceding definitions imply a set of requirements for the environment an AEA
operates in (stylised in Fig. 1). In particular, AEAs and MAS more generally require:

1. a means to interact with other AEAs, agents and services in a structured way,
2. a delivery mechanism of messages via the Internet,
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Fig. 2. Simplified illustration of the AEA framework. Connections executed in the Multi-
plexer receive messages in AEA and third-party protocols. The AgentLoop calls Handlers and
Behaviours in Skills based on messages and configurable ticks, respectively. The DecisionMaker
manages the (crypto) Wallet. Dark corners indicate (non-core, agent-specific) packages kept in
Resources.

3. access to a financial settlement system, and
4. access to a search and discovery system.

The AEA framework makes use of a protocol framework for bilateral dialogue-
based interactions to aid 1 [22]. For message delivery (2) AEAs utilise a peer-to-peer
permissionless agent communication system [36], which supports arbitrary message-
based interaction protocols (1). Currently, a custom centralised search and discovery
system for agents is used to satisfy 4. Thanks to the modular nature of AEAs this can
easily be replaced with a fully decentralised alternative in the future. Finally, AEAs—
unlike other agent types—form part of the second layer to distributed ledgers [28]. They
use ledgers and smart contracts [33] to perform financial transactions and make com-
mitments (3). Crucially, AEAs are not run on a ledger (i.e. they are not a smart contract),
they are executed on any host with the necessary resources and Internet access.

3 Framework Architecture

The architecture described in this paper is currently implemented as open-source in
the Python programming language.5 However, the framework could be implemented in
any object-oriented programming language that supports asynchronous programming.
An illustration is provided in Fig. 2.

5 The AEA framework’s repository can be found at https://github.com/fetchai/agents-aea.

https://github.com/fetchai/agents-aea
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3.1 Actor-Like Design and Modularity

The AEA framework is designed as an actor-like [3] asynchronous message passing
system [23]. As such, it allows for a high degree of modularity and components largely
communicate via messages.

The framework can be divided into two parts: the core developed by the authors and
external contributors, and packages implementing agent-specific business logic. These
can be developed by anyone using the framework. There are four types of packages that
can be readily added to the framework:

– Skills: primary business logic modules (CPU bound),
– Protocols: messages and dialogue rules,
– Connections: networking related (I/O bound) logic and translations between AEA

and third-party protocols,
– Contracts: wrappers for smart contract logic.

Furthermore, the framework allows straightforward inclusion of additional APIs to
third-party DLTs via framework plugins and supports the use of readily available soft-
ware packages in the target programming language.

From the perspective of the framework, packages consist of code and configuration.
The framework loads the specified packages and then places them with respect to each
other and executes them where appropriate (cf. inversion of control). Before we explore
the packages in turn, we discuss the core framework components.

3.2 Core Components of an AEA

The central framework class is the AEA class which houses three core components:
Resources, Runtime and Wallet.

Runtime and Resources. Resources is a collection of packages available to the AEA.
In particular, it contains the Skills, Protocols, Connections and Contracts the AEA uses
in code form as well as their configurations. Resources acts as a registry for code to
be executed by the Runtime. Packages in Resources are immutable. However, addi-
tional packages can be dynamically added at runtime. Dynamically added packages are
removed from Resources once the AEA tears down.

The Runtime is responsible for executing the code in the packages. It consists of
three abstractions:

– a Multiplexer executes the Connection packages,
– an AgentLoop executes Skill packages, as well as the DecisionMaker, a unique type

of Skill discussed below, and
– an optionally enabled TaskManager executes long running and CPU bound tasks.

The Runtime deals with two types of primitive concepts: scheduled tasks and events
or messages. All messages or events are processed atomically by the AEA components.

The Multiplexer and the Connections that it contains continuously listen for
events on pipes, sockets and queues. External communication arriving at one of the
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AEA’s Connections is, where necessary, translated to framework-specific messages.
For instance, HTTP requests are translated to messages in a HTTP Protocol. The Mul-
tiplexer then passes these messages to an AEA-internal queue, the InBox, for process-
ing by the AgentLoop. Similarly, the Multiplexer continuously monitors another AEA-
internal queue, the OutBox, for outgoing messages and passes those to the relevant
Connection for processing.

The AgentLoop is responsible for proactive execution of periodic tasks like
Behaviours (discussed in detail below) in Skills, and processing removal and addition
of new components, as well as reacting to new messages appearing in the InBox and
handling them with a corresponding Handler in Skills. It is the responsibility of the
AgentLoop to fetch the appropriate component responsible for processing a given mes-
sage from the Resources and passing the message to the component.

A feature that arises from the framework’s implementation in Python is that the Run-
time can be configured in two modes: the threaded mode, where the AgentLoop and the
Multiplexer are run in their own threads (i.e. the tasks scheduled by a given component
are cooperatively scheduled in the same thread), and the async mode, where all the
tasks scheduled by the components are run asynchronously on a single event loop. This
allows the developer to configure the trade-off between cooperative multitasking used
in the event loop implementation (async mode) and pre-emptive scheduling used for
thread scheduling (threaded mode) [43].

Wallet. The Wallet is a simple data structure. It contains the private keys of the AEA,
and therefore allows for the public key and address to be computed and for the agent to
append digital signatures to transactions.

3.3 Packages

The four packages make up the core mechanism via which the AEA is extensible and
composable by design.

Communication (Connections and Protocols). The Protocol and Connection pack-
ages enable AEAs to communicate with other AEAs as well as internally.

Connections wrap APIs or SDKs to in-process services or services external to the
agent like a user interface, a peer for inter-agent communication or a DLT. They can
be though of as both the sensors and the actuators of an AEA, as they provide an inter-
face to the outside world. A Connection is responsible for providing the translation
between framework communication languages (see Protocols below) and external lan-
guages, if needed. A Connection can be developed by anyone and the base Connection
class defines a stable interface to the Multiplexer. The interface consists of four pri-
mary methods: ‘connect’ and ‘disconnect’, ‘send’ for sending via the Connection and
‘receive’ for receiving via it.

To communicate with each other and for communication between AEA components
including Skills and Connections, AEAs use Envelopes which act as an outer agent
communication language (ACL) [34] wrapping specific ACLs (cf. [18]). An Envelope
has five fields:
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– sender and to: the Address6 of the sender/receiver;
– protocol id: the identifier of the Protocol used;
– message: a bytes field for the serialized message;
– context: an optional field for routing, containing a URI.

The ‘protocol id‘ references a specific ACL or other language, and the ‘message‘
field contains the serialized Message in that Protocol (cf. interaction protocol [45]),
for instance FIPA [14] ACL. This setup guarantees that all AEAs can communicate
with each other on the Envelope level via a standard format. However, they can only
decode the content of a message if they have an implementation of the Protocol. For
the delivery of the Envelope various (third-party) protocols and services can be used
(e.g. [36]). By adopting this layered approach to communication we avoid reinventing
the wheel: any existing message-based agent architecture could be connected by simply
writing a translator that encodes/decodes an Envelope and still ensures interoperability.
We also make it possible to have a consistent language inside the framework whilst
being compatible with external changes.

The Protocol framework is adopted from [22]. Along with the Message class, which
deals with representation, and the Serializer class which deals with decoding and encod-
ing, a Protocol specifies a set of Rules over the message sequence.

Skills. Skills implement the business logic of an agent. They allow encapsulation of
(almost) any kind of code and are reusable across AEAs.

Skills are made up of three core abstractions:

– a Handler is responsible for handling messages in a registered Protocol, thereby
implementing the AEA’s reactive behaviour. Each Handler is responsible for a single
Protocol, but can send messages of any type of Protocol. The AgentLoop calls a
‘handle’ method and passes it the message as it appears in the InBox.

– a Behaviour encapsulates actions resulting from internal logic rather than as direct
reactions to messages. They implement the proactiveness of the agent. Behaviours
come in different types (e.g. cyclic/one-shot/finite-state-machine/etc. [8,28]) and are
scheduled tasks from the perspective of the Runtime. The AgentLoop calls a defined
‘act’ method in the behaviour at the time specified in the Skill configuration.

– a Model is a data class. It is used to maintain shared state within a Skill.

With these abstractions7, and the ability to call arbitrary code from them, Skills can
implement logic ranging from very basic to extremely advanced. As such they might
wrap simple conditional logic to complex deep learning models.

The framework does restrict the execution time of calls to both ‘act’ and ‘handle’.
For CPU-bound and long-running logic (e.g. machine learning and other AI workloads),
a Task can be created and submitted to a thread- or subprocess-based TaskManager.

6 AEAs use Addresses for identification and for communication purposes. The Address is
derived from the public key of a public-private key pair generated from the elliptic curve as
specified by, for instance, the standard SECP256k1 [11].

7 An analogy to the Model-View-Controller architecture prevalent in many web frameworks can
be observed: Handlers have similarities to Controllers, and Messages can be considered the
equivalent to Views.
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A Skill shares state via the SkillContext which is accessible from any Handler,
Behaviour and Model in the Skill. Additionally, SkillContext, modules within a Skill
have read access to a limited number of objects exposed on the AgentContext, which
contains agent-specific information, such as its public keys and addresses, and utilities,
such as the OutBox for messages. Importantly, however, a Skill does not have access
to the context of another Skill and it also does not have access to the agent’s Wallet.
To interact with other components, specifically Skills, Connections and the Decision-
Maker, the Skill needs to use messages.

Contracts. Contracts wrap smart contracts [47] for third-party distributed ledgers. In
particular, they provide wrappers around the application binary interface (ABI) of a
smart contract. They expose an API that is compatible with the framework to abstract
away the implementation details of the ABI from the agent’s Skills.

Contracts usually contain the logic to create smart contract transactions and make
smart contract calls. As such they require network access to the underlying ledger. Con-
tract packages are therefore executed in Connections. Skills communicate via messages
with the Contract.

3.4 Economic Control

DecisionMaker. The DecisionMaker is a specialised type of Skill and the only com-
ponent in the AEA with access to the Wallet.

The role of the DecisionMaker is limited to considering internal messages from
Skills and making economically relevant and safe decisions. It does not directly interact
with other AEAs. Instead, it mediates the competing Skills and restricts their capabili-
ties.

The goals and preferences of an agent are managed by the DecisionMaker. It is the
only object capable of updating the agent’s ownership state (as represented on-chain
in the form of tokens or off-chain) and preferences (cf. utility function) by signing
transactions, and hence accepts or rejects the Skills’ proposed transactions.

The framework provides a basic reference implementation of a DecisionMaker with
a closed form representation of preferences, ownership and goals which is internally
closed. The developer is free to extend it to their needs.

Crypto and Ledger APIs. The DecisionMaker makes heavy use of Crypto APIs and—
via Skills and Connections—of Ledger APIs. Framework-side, these consists of abstract
classes: the former defines a set of abstract methods to create and handle DLT identities
(i.e. public/private key pair for specific ledgers) as well as signing transactions, whilst
the latter defines the abstract methods to interact with the ledger (e.g. get the current
balance, send a transaction etc.). Crypto APIs are stored in the Wallet, and Ledger APIs
can be called through the Ledger Connection, a default Connection that acts as access
point to any ledger that the application supports. By default, the supported ledgers are
Ethereum [12] and Cosmos [26], as well as any compatible ledger architectures. The
framework allows for loading new types of Crypto and Ledger APIs types at runtime,
through a global shared registry and plugin mechanism, hence achieving a high degree
of extensibility and interoperability with other DLT systems.
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3.5 Persistence

Certain parts of the agent’s state, like for instance completed dialogues and their mes-
sages as well as other data accumulated at runtime, should be stored to avoid a contin-
uous growing memory requirement at runtime and to be able to (automatically) recover
the state from a crash. The current reference implementation provides an optionally
configurable storage backend.

3.6 Dynamic Adaption and Security

AEAs are designed to dynamically add additional packages at runtime. To ensure
integrity of the packages is maintained as they are shared and used in the AEA, the
framework deploys a hashing strategy. All code is hashed using IPFS [9] multi-hashes.
This ensures that an AEA can verify the integrity of a package at runtime.

3.7 Relationship to Other Agent Architectures

The AEA architecture attempts to combine deliberative and reactive components and
can hence be seen as a hybrid agent: Handlers deal with reactive elements as representa-
tive of deductive reasoning agents. Behaviours and Tasks can deal with the deliberative
elements of the belief-desire-intention (BDI) model and are more generally representa-
tive of features found in practical reasoning agents [49].

Furthermore, the AEA framework splits the deliberative and reactive elements into
both vertical and horizontal layering. Skills are by default horizontally layered. Each
Skill is connected to input (i.e. messages) so several Skills can act on the same input
and produce suggestions (i.e. transactions) to the DecisionMaker. This means, Skills
effectively compete as they consume the same messages but do not necessarily commu-
nicate. Within Skills, Handlers are vertically layered. Each type of input is dealt with at
most one layer (one Handler).

The separation into Behaviours, Handlers and Tasks within Skills shows similarity
to Turing Machines: Their planning layer is matched by our Behaviours. Their reactive
layer is mirrored by our Handlers. Their modelling layer can be seen to relate to either
our Behaviours or Tasks [27].

The Java-based JADE multi-agent framework [8] provides similar programming
abstractions of ours regarding communication and execution model. The main differ-
ences specifically to JADE are: (i) each agent lives in its own Java thread, and must be
associated to a JADE container (i.e. a Java process); our framework gives more flexibil-
ity by letting users run AEAs in different processes, in the same process but on different
threads, or in the same process but using asynchronous programming; (ii) the proactive
and reactive components are conflated into the single Behaviour abstraction, whereas
we make a clear distinction by introducing the Handler abstraction; (iii) the schedul-
ing of behaviours is cooperative, whereas ours is pre-emptive, either thread-based or
asynchronous with configurable timeouts. Being a more mature framework, JADE pro-
vides features that the AEA framework does not currently support, e.g. ontology-based
content, agent persistence, agent mobility services, and others.
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SPADE [20] is a lightweight MAS library for agent development. Its major fea-
tures are asynchronous execution based on Behaviours, a communication system built
on the XMPP protocol [40], and a message dispatching mechanism based on message
templates. The AEA framework almost completely covers the SPADE features in a
modular and effective way: indeed, the AEA framework gives much more flexibility on
the execution model to adopt and the transport layer to use (the XMPP protocol can be
implemented as a custom Protocol-Connection pair of an AEA); and the same features
of message templates can be achieved by relying on a Handler that based on certain
attributes of the message spawns new Behaviours dynamically.

Jason [10] is a Java-based implementation of an extended version of the AgentS-
peak programming language [37]. Jason is heavily based on the BDI agent architecture
and logic programming, with reasoning cycles “sense-plan-act” that allows agents to
evaluate which plans are triggered for execution each time an event occurs. Instead,
the agent abstraction of our framework is closer to JADE’s and SPADE’s (agent loop
that executes behaviours and handlers code), hence less declarative and succinct than
Jason. This also reflects the different foci: where Jason has strong theoretical founda-
tions and lends itself to implement BDI-type agents, our framework is general purpose
(i.e. not tied to a specific agent-type), production-ready and with a focus on wide-spread
adoption for DLT enabled consumer and industrial applications.

Unlike any other framework, the AEA framework provides a number of unique fea-
tures: (a) native integration with DLTs for transacting and use of smart contracts, as well
as economic control oriented design; (b) developers can package and re-use business-
level functionality; (c) developers can distribute agents as finished products to end-users
for deployment, for instance by using the AEA registry (https://aea-registry.fetch.ai) or
IPFS [9]. Developers and researchers can leverage existing agent frameworks in the
AEA framework by developing Connections and Protocols to bridge them.

4 Benchmark

We demonstrate a number of benchmark results of the Python implementation. These
highlight that the framework is capable to serve a significant message load both in the
single- and multi-agent per-process case.

All benchmarks use the same resource. A 2.2GHz Intel R© Xeon R© CPU with 15 GB
of RAM and 4 cores is used. The benchmarks are run on a freshly provisioned machine.
The scripts are available in the project codebase.8

4.1 Single-Agent: Reactiveness

We first measured the latency (milliseconds) and throughput (Envelopes processed per
second) of an AEA, both in ‘async‘ and ‘threaded’ runtime modes. The AEA has only
one Connection and one Skill with a single Handler. The Connection continuously
produces an Envelope containing a Message, deposits it in the InBox and waits for
a response. The Handler simply echos received Messages back to the sender, the Con-
nection itself. The experiment is run 100 times, and each run lasts for 10 s.

8 Details on reproducability are provided in Appendix A.

https://aea-registry.fetch.ai
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Table 1. Benchmarks for both ‘async’ and ‘threaded’ runtime mode. The experiment is run 100
times, 10 s for each run. Latency and throughput are measured in milliseconds and envelopes per
second, respectively.

Mode Latency (ms) Throughput (env/sec)

async 0.526 ± 0.521 1630.32 ± 16.211

threaded 0.800 ± 0.147 1106.762 ± 18.864

(a) Reactiveness

Mode Throughput (env/sec)

async 6158.846 ± 516.349

threaded 4587.775 ± 820.525

(b) Proactiveness

The results shown in Table 1a demonstrate that the AEA is capable of processing
in excess of 1630 envelopes per second in the async mode and 1106 in the threaded
mode. Moreover, on average, the latency in the async mode is lower than the one in the
threaded mode.

4.2 Single-Agent: Proactiveness

We next measured the latency and throughput of an AEA with a single Skill implement-
ing a single Behaviour and a single Connection. The Behaviour continuously produces
Messages. The Connection simply records receipt of a Message.

The results, reported in Table 1b, show that the AEA is capable to produce 34%
more envelopes in async relative to threaded mode.

Given the architecture, it is to be expected that the async runtime mode dominates
threaded in both reactive and proactive case. The tasks are well coordinated by the
framework, hence cooperative multitasking should not pose a problem and the event
loop implementation causes less context switching than threading.

4.3 Multi-agent, Single Process

We next measure the throughput when multiple agents are connected in a complete net-
work and send each other envelopes. All agents are executed in the same process.9 The
individual agents are run in their own threads and each agent is run with the designated
runtime mode. Each agent’s OutBox is pre-populated with 100 envelopes which are
then continuously circulated by the agents.

The round-trip times (RTT) are comparable for low numbers of AEAs in both run-
time modes. For higher numbers of AEAs the async mode shows significantly lower
RTT. A similar picture emerges for memory consumption. AEAs, irrespective of their
runtime mode, are run in different threads and therefore multi-threading guarantees
some form of non-starvation property and relatively equally distributed time slices
across AEAs.

9 The AEA framework is primarily targeting stand-alone AEA deployment matching its primary
application as a multi-stakeholder MAS agent framework. This benchmark demonstrates that
nevertheless multiple AEAs can be run in a single process.
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Table 2. Multi-agent benchmark for both ‘async’ and ‘threaded’ runtime mode. The experiment
is run 100 times, 10 s for each run. Initially 100 envelopes are deposited in each AEA’s OutBox.

Agents RTT (ms) Memory (mb)

async threaded async threaded

2 0.340± 0.006 0.339± 0.012 54.928± 0.236 54.89± 0.152

4 2.108± 0.033 1.998± 0.046 56.715± 0.676 56.672± 0.617

8 7.935± 0.538 8.170± 0.371 62.062± 0.846 62.447± 1.038

16 16.757± 1.824 25.966± 3.45 76.881± 1.868 80.422± 2.014

Fig. 3. Leaderboard of Agent World 4 (January and February 2021). Points equal transactions.

5 Use Cases

We ourselves and third parties have developed AEAs targeting a number of different
use cases with the framework. We provide a short overview to demonstrate the breath
in scope:

– Trading Agent Competition: [29,30] demonstrate how a population of AEAs can
replicate an exchange economy. Each AEA maintains a basket of digital assets and
aims to increase its utility by executing bilateral trades autonomously. Agents nego-
tiate using a FIPA-like [14] Protocol and settle trades atomically on a blockchain.

– Decentralised Delivery Network (DDN)10: AEAs represent drivers, passengers
and packages in a delivery network. Humans interact with AEAs via user inter-
faces similar to those found in centralised solutions. The AEAs negotiate directly
with each other to establish the fare terms and use escrow mechanisms deployed on

10 Code not public at point of publication. Video: https://youtu.be/VAVZALKAVlA.

https://youtu.be/VAVZALKAVlA
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a distributed ledger to ensure a secure exchange. Similar to their centralised coun-
terpart, the AEA-based solution addresses the problem of non-co-location of supply
and demand. It does so via a decentralised matching algorithm. This is implemented
on the protocol layer utilising the framework’s Protocols.

– Autonomous Supply Chain: [50] demonstrate the feasibility of an autonomous sup-
ply chain using MAS—powered by the AEA framework—and Internet of Things.
The scenario showcases a perishable food products supply chain mechanism. Five
types of agents were implemented for this demonstration: retailer, wholesaler, sup-
plier, logistics agent, and third-party logistics agent.

– Agent Worlds 1 to 4: We have demonstrated the production readiness of the frame-
work and AEAs developed with it in the context of an online and public agent com-
petition which took place in four stages from October 2020 until February 2021. Any
participant could download a finished AEA from the registry (https://aea-registry.
fetch.ai), connect it via configuration to a public weather or mobility API for various
cities across the world, and then run it as a seller of public weather or mobility data.
The AEA would register itself for the competition, provided the participant staked
a small amount of crypto-currency on a smart contract deployed on the Ethereum
blockchain.11 An AEA created and run by the authors acted as a buyer of this data.
At multiple time points throughout the day, it would search for one of the data types
in one of the specified cities and then purchase the data from all sellers offering it
which were registered for the competition. Figure 3 shows the results from Agent
World 4. In excess of 2’000 agents competed over two months and performed a
total of more than 110’000 transactions. Each transaction was settled on a Fetch.ai
test-net blockchain and resulted in a micro-reward for the participants.

– Autonomous Option Traders: [1] use an AEA to maintain a portfolio of put and
call options deployed on the Ethereum ledger. The AEA allows the user to manually
submit option order requests via a graphical user interface. The AEA translates the
HTTP requests into a sequence of actions which ultimately result in the order being
executed on the ledger and being stored in local persistent storage. The AEA then
monitors the option holdings of the user and exercises them when they are in-the-
money (ITM) and due to expire within 5 min. This removes the possibility of ITM
options expiring worthless and ensures users take profitable positions.

– Rail-network Simulation12: each station and train in the UK rail-network is repre-
sented by an AEA. Station AEAs maintain their arrival and departure boards. Trains
display information about their journey, destination and origin. All information is
live and obtained from third-party APIs. The project demonstrates how a large pop-
ulation of AEAs (several hundreds) can be run on a single machine as a simulation.

6 Discussion

6.1 Architecture Choices and Limitations

The reference implementation of the AEA framework in the Python programming lan-
guage imposes an overhead at runtime relative to compiled programming languages.

11 This acts as a spam protection and as an incentivisation mechanism.
12 Code not public at point of publication. Video: https://youtu.be/TGZ6AX-KqCk.

https://aea-registry.fetch.ai
https://aea-registry.fetch.ai
https://youtu.be/TGZ6AX-KqCk
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This was a conscious choice at the start of the development cycle to enable rapid iter-
ation and prototyping. It means that in practice running an AEA on devices with less
resources than a Raspberry Pi is a challenge. However, as the benchmark demonstrates,
environments with a Python interpreter and moderate networking, CPU and storage
requirements can make full use of the framework. The listed use cases the framework
supports are more than satisfiable with these minimal requirements. Furthermore, with
increased adoption, a lightweight AEA library can be implemented in a compiled pro-
gramming language like Golang.

Over time, we hope to provide, in the core of the framework, generic implementa-
tion(s) of the DecisionMaker component which permit increasingly powerful configu-
ration or ‘training’ by the user. For simple use cases, where the utility of an agent can
be easily represented and evaluated, this is already possible as we demonstrate in our
use cases.

Further limitations are discussed in the framework’s documentation.

6.2 Value Add

We identify five innovations which underpin our main contribution discussed in Sect. 1.
From a developer perspective the key benefit the framework provides are its modu-

larity and composability. Unlike for other web and agent frameworks the componentisa-
tion and reusability extends to arbitrary application-specific business logic through the
encapsulation in Skills. This flexibility does not necessarily lower the integrity of the
system as the package hashing strategies deployed ensure that components are uniquely
identified and tamper-proof.

From a software engineering perspective, all the software components are loosely
coupled and an actor-like design approach maintained. Only a minimal amount of
shared state exists and interactions between components is almost entirely via asyn-
chronous message passing.

The generality of Skills presents another core contribution of the framework design.
In particular, it means the agent framework does not prescribe the type of AI tools
used, it is agnostic to whether the developer uses a deep learning model, reinforcement
learning or traditional AI approaches.

The openness in the design approach is also maintained for Protocols. Unlike other
agent framework we do not prescribe usage of a particular application or agent protocol
(e.g. FIPA), instead developers have access to a generic protocol framework which can
be adjusted to the relevant use case.

One of the biggest differentiators relative to existing agent and multi-agent frame-
works is the native integration with distributed ledgers and the associated crypto-
economic security concepts. This allows AEAs to be fully autonomous economic enti-
ties with an ability to transact and make commitments. It also allows arbitrary coordi-
nation mechanisms to be implemented.

The other big differentiator is offered on the user experience: agents can be dis-
tributed as finished products to end-users. This enables developers to share arbitrary
agent-based solutions directly with their user base.
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7 Conclusion

The AEA framework presented in this paper is the only production-ready framework
we are aware of that unifies MAS and DLT. It is designed and built for production
and in parallel to the development of real-world applications by ourselves and third
parties. Arguably, several aspects of the framework, in particular the DecisionMaker,
are underdeveloped. However, in the spirit of open-source development and to grow a
community of AEA developers and researchers we believe it is crucial to start with an
initial, useful implementation and iterate from there. We welcome contributions to the
framework design and its implementation.

Acknowledgments. We thank Fetch.ai for supporting this research and the release of its imple-
mentation.

A Experiments

In this section, we provide instructions to reproduce the experiments.

A.1 Requirements

The framework can be used on any major platform (GNU/Linux, macOS, Windows).
However, to run the benchmark, we suggest using UNIX-like systems (e.g. GNU/Linux
or macOS).

Make sure your platform has the following software installed and the associated
binaries accessible from the system path of your operating system:

– Python 3.8. This can be downloaded from here: https://www.python.org/downloads/
release/python-380/.

– Make sure you have Pip installed: https://pip.pypa.io/en/stable/installing/. Also, the
script requires that the CLI tool pip should point to pip3. Note that on some
platforms this is not the default configuration.

– Git. This can be downloaded from here: https://git-scm.com/downloads.

A.2 Steps to Reproduce the Experiments

– Download the following script in your working directory to reproduce results:
https://raw.githubusercontent.com/fetchai/agents-aea/v0.10.1/benchmark/run from
branch.sh. (Alternatively, for the latest version use: https://raw.githubusercontent.
com/fetchai/agents-aea/main/benchmark/run from branch.sh.)

– Assign execution permissions to the script. For example, on UNIX systems:
> chmod u+x run_from_benchmark.sh

– Run the script:
> ./run_from_benchmark.sh

https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-380/
https://pip.pypa.io/en/stable/installing/
https://git-scm.com/downloads
https://raw.githubusercontent.com/fetchai/agents-aea/v0.10.1/benchmark/run_from_branch.sh
https://raw.githubusercontent.com/fetchai/agents-aea/v0.10.1/benchmark/run_from_branch.sh
https://raw.githubusercontent.com/fetchai/agents-aea/main/benchmark/run_from_branch.sh
https://raw.githubusercontent.com/fetchai/agents-aea/main/benchmark/run_from_branch.sh
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Abstract. Testing undeniably plays a central role in the daily prac-
tice of software engineering, and this explains why better and more effi-
cient libraries and services are continuously made available to developers
and designers. Could the MAS developers community similarly benefit
from utilizing state-of-the-art testing approaches? The paper investigates
the possibility of bringing modern software testing tools as those used
in mainstream software engineering into multi-agent systems engineer-
ing. Our contribution explores and illustrates, by means of a concrete
example, the possible interactions between the agent-based program-
ming framework ASC2 (AgentScript Cross-Compiler) and various testing
approaches (unit/agent testing, integration/system testing, continuous
integration) and elaborate on how the design choices of ASC2 enable
these interactions.

Keywords: Multi-agent systems · Multi-agent systems engineering ·
Testing · Continues integration

1 Introduction

Software testing is attracting increased interest in industry [1] and it is one of
the most used methods of software verification. One of the reasons of this success
lies in the advancement and popularization in the software engineering commu-
nity of methodologies commonly known as DevOps, in particular of techniques
of automated testing in continuous integration (CI). Generally, CI refers to the
facilitation provided by third-party tools for automating the build/test process
of a software. In recent years, online DevOps services such as TravisCI1 and
CircleCI2 have been increasingly used by software engineers to improve the effi-
ciency of their testing process, a practice which plausibly resulted in increased
quality of the developed software.

Very recently, Fisher et al. [18] have suggested that testing approaches would
be an important complement to formal approaches to MAS verification, if they
could be automated and integrated in a seamless way into MAS development.

1 https://travis-ci.com/.
2 https://circleci.com/.
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In our view, seamless integration does not mean only that agent programmers
are able to use the vast amount of software testing tools available to main-
stream languages like Java or Python, but, more importantly, that they are
also able to use (almost) language- and framework- agnostic online services as
those used for CI. This paper explores this idea, aiming to illustrate what the
MAS community could gain by using industry standard testing tools and dis-
cussing what would be the theoretical and practical trade-offs for this choice. We
investigate possible interactions of testing with agent-based programming, and
its relation with other verification techniques. More concretely, we demonstrate
various approaches to enhance the productivity of MAS development cycle in
the AgentScript Cross-Compiler (ASC2) framework [27] via mainstream soft-
ware testing and integration tools, and elaborate on the design choices of ASC2
that affect the testability of agent-programs with the mentioned tools. Then, we
explore on how this approach can be generalized for other MAS frameworks.

The motivation for this work arises from research conducted on data-sharing
infrastructures (e.g. data marketplaces). At functional level, a data-sharing appli-
cation corresponds to a coordination of several computational actors distributed
over multi-domain networks. Those actors generally include certifiers, auditors,
and other actors having monitoring and enforcement roles, ensuring some level
of security and trustworthiness on data processing [42]. Typically distributed
across several jurisdictions, networks may be subjected to distinct norms and
policies, to be added to various infrastructural policies provided at domain level
and ad-hoc policies set up by the users. Some of these norms, as for instance the
GDPR, bind processing to conditions and specific purposes, but, more in gen-
eral, all compliance checking on social systems requires to know and to infer (in
case of a failure on expectations) why an actor is performing certain operations.
Agent-based programming, and particularly the Belief-Desire-Intention (BDI)
model [35], by looking at computational agents as intentional agents, provides
the “purpose” level of abstraction available by design, and for this reason it is a
natural technological candidate for this application domain.

The BDI model been extensively investigated as basis to represent com-
putational agents that exhibit rational behaviour [19] and multiple program-
ming languages and frameworks have been introduced based on it, as AgentS-
peak(L)/Jason [6,34], 3APL/2APL [11], and GOAL [22]. Recent works as
e.g. [23,27] investigated various issues holding when mapping logic-oriented
agent-based programs into an operational setting. In contrast, this paper focuses
instead on the development practice aspect: as soon as we attempted to program
data-sharing applications as agents, we experienced the lack of mature soft-
ware engineering toolboxes, thus hindering a continuous integration with the
infrastructural-level components developed in parallel by our colleagues.

The document proceeds as follows: Sect. 2 provides a background and related
works on verification of MAS, in Sect. 3 we introduce our approach on MAS
testing in ASC2 framework with mainstream tools. An illustrative example of
this approach is presented in Sect. 4. Finally, Sect. 5 provides the discussion and
comments on possible extensions and future developments.
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2 Verification of (Multi-)Agent Systems

Verification is a crucial phase in any software (and system) development process,
and as such it has been addressed also by the Multi-Agent Systems (MAS)
community. The survey presented in [2] provides an empirical review of over 230
works related to verification of MAS.

At higher level, approaches for the verification of autonomous systems fall
into five categories [18]: (a) model checking, (b) theorem proving, (c) static anal-
ysis, (d) run-time verification, and (e) (systematic) testing. While the first four
approaches (a-d) are considered formal or at least semi-formal, testing (e) is
deemed to be an informal approach to verification. Further, MAS verification can
be targeted at different levels, varying from fine-grained verification of agents at a
logical level [3] to verification of emergent properties in a system [12]. Ferber [16]
identifies three levels: (i) Agent level considers internal mechanisms and reason-
ing of an agent (ii) Group level consists in testing coordination mechanisms and
interaction protocols of agents, and (iii) Society level checks for emergent prop-
erties or if certain rules and/or norms are complied within the society. In general,
the choice of a verification method depends on the required level of verification,
as e.g. formal methods may not be applicable for the verification of a large MAS
with non-deterministic characteristics at the society level.

Most of the works on MAS verification point out that testing agent pro-
grams is far harder than testing normal software, on the grounds that agents
tend to have more complex behaviors, and deal with highly dynamic and often
non-deterministic environments (including other agents), on which they have
only partial control [30]. A series of recent empirical results [37,38] was used to
conclude that, with respect to certain distinct test criteria, testing BDI agents
can be practically infeasible. The all-paths criterion requires the test suite to
cover all the paths of the agent’s goal-plan graph; its application shows that
the number of tests needed to run is intractable [38]. In subsequent work, the
same authors study the minimal criterion of all-edges, requiring all edges of the
goal-plan graph to be covered. While not per se infeasible, results show that
even this criterion requires a (too) high number of tests [37].

These observations can explain why much of the work in verification of
autonomous systems and specifically of BDI agents have been towards the for-
mal verification of agent programs, a mathematical process for proving that the
system under verification matches the specification given in formal logic [4]. One
of the most successful formal methods for verification of software agents has been
model checking [9]. Model checking of BDI agents can be done as e.g. in [5] by
translating a simplified version of AgentSpeak(L) to Java programs and using the
Java Path Finder (JPF) verification tool. Probably the most notable works that
adopt a (semi-)formal model checking approach are those of the AJPF/MCAPL
framework [13,17]; AJPF/MCAPL also relies on JPF to perform program model
checking on agent programs developed in multiple JVM-based BDI frameworks
by utilizing an implementation of the target language’s interpreter. Nevertheless,
although formal verification techniques as model-checking provide a high level
of guarantee, they are typically both complex and slow to deploy [39].
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A number of approaches to testing (that is, informal verification) have also
been considered in the MAS literature. Some of those utilize model-based test-
ing [33,41] and rely on design artifacts such as Prometheus design diagrams [32]
to generate tests and automate the testing process. Others consider a more
fine-grained approach to verify intentional agents [15,31], focusing on white box
tests involving in the testing process the inner mechanisms of BDI agents (like
plans and goals). This method of testing has however been criticized in [25]
as being “too fine-grained”, proposing instead to perform testing at a module
level, that is, considering a set of goals, plans, and/or rules as a single unit. Still
other works refer to software testing techniques applied on MAS development,
focusing on testing agents and their interaction patterns as the main level of
abstraction [10,24]. At implementation level, such unit testing is performed in a
Jade multi-agent system via the JUnit library. The distinct agent-roles that are
present in the MAS are tested by means of mock agents that communicate with
the implemented Jade agents to verify their behavior.

Levels of Testing. Software testing is generally categorized in four levels or
activities: (a) Unit testing is done to verify different individual components of
the software system in focus, (b) Integration testing verifies the combination of
different components together, (c) System testing is done to test the system as a
whole, and (d) Acceptance testing is done to check the compliance of the software
with given end-users’ and/or relevant stakeholders’ requirements.

A categorization for MAS testing from a development-phase activity perspec-
tive has been proposed in [28], consisting of five levels: (i) Unit testing targets
individual components of an agent, (ii) Agent testing aims at the combination of
the components in an agent including capabilities like sensing its environment,
(iii) Integration or Group testing includes the communications protocols and the
interactions of the agent with its environment or other agents, (iv) System or
Society testing considers the expected emergent properties of the system as a
whole (v) Acceptance testing for a MAS stays the same as their counterpart in
software testing.

All these categorizations can be seen as guidelines to draw a conceptual line
between what should be tested for what purpose and when, in the different
phases of software development. This means that for each project it is up to the
designer to decide e.g. what counts as units, what interactions are considered
group and what are the properties of the system/society. Indeed, testing libraries
like JUnit or online continuous integration services like TravisCI or CircleCI stay
relatively agnostic on what type of tests are being done. We will follow here the
same principle by allowing the designer to create each test suite with different
scenarios containing one or multiple agents with varying types and allowing for
flexible success/failure criteria.
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Coverage. An important measure giving insights on the quality of a certain
test suite in a given system is coverage. Software engineering proposes differ-
ent criteria for coverage [29], varying from simple line coverage (denoting the
percentage of the code that is covered by the test cases), to more sophisticated
metrics like cyclomatic complexity [26], more commonly known as branch cover-
age. Intuitively, the more a program is covered by a test suite the more confident
the designer can be about the behavior of the software. In fact it is a common
approach to set a minimum coverage boundary for software projects and if cov-
erage is below this limit the build chain is considered a failure even if the code
compiles correctly.

Several works have studied criteria for testing in Agent-Oriented Software
Engineering, and particularly in BDI-based agent programming [31]. However,
the abstract mechanisms underlying any BDI-based reasoning cycle concerning
e.g. treatment of plan context conditions, plan selection and failure handling,
alongside the procedural specifications given in one agent’s script (e.g. the agent’s
plans), result in complicated branching in the agent’s effective code, a fact that
makes defining what is actually covered by a test suite difficult [37,38].

3 Approach

Instead of investigating dedicated tools for testing BDI agents, our motivation
is to study under what conditions and how we can take advantage of existing
software testing coverage tools, so as to enable an integration of BDI agent-
based development with other types of development, occurring concurrently on
a production-level system. This practical (and unavoidable) necessity motivated
us to overlook or put aside the warnings and issues indicated in the literature.

Our study focuses in particular on the BDI framework AgentScriptCC
(Cross-Compiler) [27], here denoted ASC2. A short overview of ASC2 is pre-
sented in Sect. 3.1, whereas Sect. 3.2 presents our approach to testing.

3.1 AgentScript Cross-Compiler (ASC2)

The ASC2 framework is a BDI agent programming framework centred around a
cross-compiler performing a source-to-source translation of a high-level Domain
Specific Language (DSL) inspired by AgentSpeak(L)/Jason [6,34] into exe-
cutable JVM-based programs. Cross-compilation is not unique to ASC2 and
has been used by other recent agent-oriented frameworks such as Astra [14] and
Sarl [36]. ASC2 consists of: (1) a logic-based Agent-Oriented Programming DSL;
(2) an abstract execution architecture; (3) a translator that generates executable
models from models specified by the DSL; (4) tools that support the execution
of models.

AgentScript DSL. The AgentScript DSL has a very close syntax to AgentS-
peak(L)/Jason [6,34]. The main components of the DSL are (1) initial beliefs,
(2) inferential rules, (3) initial goals, and (4) plan rules. The initial beliefs and
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goals express the mental state of the agent at the start of the execution. Initial
beliefs are a set of Prolog-like facts, and the initial goals designate the first inten-
tions to which the agent commits. Inferential rules are potentially non-grounded
declarative rules (Prolog-like), used to infer beliefs from beliefs. Plan rules are
potentially non-grounded reactive rules in the form of e : c ⇒ f in which f is a
sequence of executable steps called the plan body that the agent has to perform
in response an internal (e.g. goal adoption, belief-update) or external (e.g. mes-
sage reception, perception) event e, if a context condition c is believed to be true
by the agent.

While the AgentScript DSL is very close to Jason, the translation-based
nature of ASC2 produces some disparities with respect to execution. An impor-
tant characteristic of this approach is how ASC2 agents access and perform
primitive actions [27]. Typically, in interpreter-based BDI frameworks primitive
actions need to be properly defined before they can be used by the agent. In ASC2
such redefinitions are not needed and the agent program can directly access any
entity on the JVM’s class path. An example of this would be the .print function
in Jason, defined in the standard agent library and that underneath calls Java
print. In contrast, in an ASC2 program there is no need to define the primitive
action; the agent program can call Java/Scala’s print function by simply using
#print (where # is the prefix for calling any primitive action).

AgentScript Translator. The ASC2 translator generates concurrent programs in
a lower-level executable language from agent scripts written in AgentScript DSL.
The reasoning cycle of ASC2 follows the same principles of what is proposed for
AgentSpeak(L) and further extended by Jason. This reasoning cycle generally
includes steps to iterate over internal and external events, find relevant and
applicable plans to react to these events, creating intentions to perform the plans
and executing the intentions. But, while Jason and many other BDI frameworks
implement an interpreter and a reasoning engine to drive the execution the of the
agent programs as run-time, in ASC2, all the mechanisms needed for execution
with the exception of the externalized plan selection function are generated as
part of the agent’s executable code in form of control flow statements.

AgentScript Execution Architecture. The ASC2 implements an abstract exe-
cution architecture that is used as a template for the Translator to generate
the concurrent agent programs. The architecture introduced in [27] defines each
agent as a modular and extendable actor-based micro-system. The Actor model,
introduced in [21], is a mathematical theory that treats actors as the primitives
of computation [20]. Actors are essentially reactive concurrent entities, when
an actor receives a message it can send messages to other actors; spawn new
actors; modify its reactive behavior for the next message it receives. In the cur-
rent implementation of ASC2, the underlying language is Scala and the agents
utilize the actor model implementation of Akka3. The ASC2 architecture also

3 https://akka.io.

https://akka.io
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Fig. 1. Compile/Test process of an ASC2 program with sbt

defines multiple components of the agents like their belief base and commu-
nication layer as external dependencies, enabling modularity with respect e.g.
automated reasoning or transportation functions.

3.2 Testing Approach

In a typical unit or integration test of a computational entity under test (e.g. a
class, a web service), the designer sets up an initial setting (e.g. one or multiple
object instances, web services, a client), and then, based on certain invocations
(e.g. function calls, access/service requests), a set of assertions are checked to
verify the internal state, or some observable behavior of the tested entity, or its
effect on the environment (e.g. function results, service responses, modifications
of other entities).

Internal attributes (of objects or services) are generally harder to access and
therefore to verify. Best practices of Test-Driven Development (TDD) address
this issue by means of Dependency Injection (DI): the dependencies of each
entity should be instantiated from outside the entity and then passed to it e.g. as
parameters (typically to the class constructor in object-oriented programming).
This allows the tester to isolate and observe the internal mechanisms of the entity
under test by using “mocked” dependencies. To enhance testability, multiple
components of ASC2 agents, including their belief base and communications
layer, are injected as external dependencies.

In any certain situation, we can look at a single agent or multiple agents
(a MAS) as a computational entity under test, and this entity has also a set
of internal attributes, observable behavior, and possible interactions with its
environment. The single agent or multiple agents under test can be instantiated
from one or more scripts. The setting could include any other types of entities
e.g. other possibly mocked agents, external objects, etc. The initial state of the
agent(s) and of the other related entities defines the initial setting of the test,
the invocation/probing action of a test suite is typically a series of messages
sent to the agents. The expected effect(s), behavior(s) or state(s) of an entity
rely heavily on the entity under test. For a small system including one or only
a few agents, each message or the beliefs of the agent(s) may be needed to be
verified, whereas in a complex system, the designer may only need to verify
emergent pattern in the interactions of the agents or major shifts in the state of
the system.
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1 +!init(W) : W > 1 =>

2 Nbr = "worker" + ((#name.replaceAll("worker","").toInt % W) + 1);

3 +neighbor(Nbr).

4

5 +!token(0) =>

6 #coms.achieve("master", done).

7

8 +!token(N) : neighbor(Nbr) =>

9 #coms.achieve(Nbr, token(N - 1)).

Listing 1: Token ring worker script in AgentScript DSL

In our approach, we aim to allow the designer to utilize any off-the-shelf
testing tool (library, service, etc.) directly into their development chain, even
more so to enable the designer to test their program via any standard build
chain. In the case of the ASC2 framework, its current implementation is based
on Scala, and we considered as target build tool sbt4, which enables us to also
use JVM/Scala testing libraries like JUnit or ScalaTest. We have then developed
a sbt plugin5 that —as part of the compile task—iterates over the scripts written
in AgentScript DSL in the project sources and uses the AgentScript Translator to
generate Scala implementations of the agents. Code generation is a standard part
of build tools like sbt or maven, therefore, the generated sources are also managed
by the build tool and are immediately available to rest of the project. The general
overview of the Compile/Test cycle of an agent-based system developed via ASC2
and built by sbt is presented in Fig. 1. Note that this process is fully automated
by sbt.

A MAS of this type can be started in two ways. After bootstrapping it as an
empty instance of the MAS infrastructure, the designer can either use configu-
ration files (e.g. JSON) to specify the agents of the system or alternatively, use
lower-level code (e.g. Scala/Java) to manually spawn agents via their respective
class in the generated code. In this work, we preferred the latter approach, as it
provides better control over the test scenarios.

To complete our Compile/Test process, in addition to the ScalaTest library,
we also used the Akka Testing library: at run-time, ASC2 agents are essentially
Akka actor micro-systems and this library provides many convenient tools for
testing actors. Both libraries are used out of the box and no modifications have
been done to adapt them to the framework. With this configuration, each sce-
nario to be verified can the written as a test suite in ScalaTest to test whether
one or multiple agents behave as expected.

4 Illustrative Example

To illustrate an application of our testing approach we consider a MAS con-
structed around a Token Ring system, commonly used in both distributed sys-
4 https://scala-sbt.org/.
5 https://github.com/mostafamohajeri/sbt-scriptcc.

https://scala-sbt.org/
https://github.com/mostafamohajeri/sbt-scriptcc
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tems and MAS [8,27]. This system consists of one master agent and W worker
agents; at the start of the program the master sends an init(W ) message to all
worker agents to inform them of the total number of the workers in the ring,
each worker upon receiving this message finds its neighbor, forming a closed ring.
Then, T tokens are distributed among the workers, each token has to be passed
N times in the ring formed by workers. When all T tokens have been passed N
times and this was reported to the master, the program ends.

4.1 Unit/Agent Testing

We will focus in particular on the script of the worker agents shown in listing 1.
We perform the tests taking the standpoint of a whitebox test engineer, meaning
that we test the script of the agent knowing its internal workings; nevertheless,
the tests are still performed externally, we do not modify the script in order to
test it6.

Testing Successful Scenarios. By viewing the script in listing 1, we can see
that the agent has a total of 3 plans for 2 separate goals. Theoretically, we need
at least 3 tests to cover the successful execution of all the plans. However, while
the success criteria for plans is simple (completion of execution), achievements
of goals can be more complicated and the testing framework needs to provide
the flexibility to define them. The success criteria for the init(W) and token(N)
goals are quite different. In the latter the expected behaviour in both plans is
an observable event, i.e. a certain achieve message sent by the agent to another
specific agent. In the former case there is no observable behavior and the success
criterion is a specific update of the agent’s belief base.

The test specification we used for the worker agent can be seen in listing 2.
In line 3 an empty MAS object is created. The criterion of success for init(W)
plan depends on the agent’s beliefs, therefore we need to be able to verify the
internal state of agent’s belief base. First we create an instance of BeliefBase
class (line 4) and when the agent under test (worker1) is being instantiated (line
10), this object is injected in the agent as its belief base; with this approach at
any point in the tests we can simply access the agent’s beliefs to query them for
verification purposes or even modify the agent’s belief base for setting up test
scenario states.

Only one agent (worker1) is under test and the other agents present in the
suite can be mocked. As ASC2 agents are actor micro-systems, an agent can be
mocked by a single actor. In lines 5 and 6, two probe actors are created to be the
stand-ins for the master agent and (worker1)’s neighbor in the tests and they
are then registered to the system (lines 11 and 12). This type of mocking gives
us the ability to verify all the interactions that the agent under test may have
had with these probe actors.

The rest of the test suite contains 3 tests, in the first test in line 18 a goal
event init(50) is sent to the worker1 agent and it is expected that after this
6 https://github.com/mostafamohajeri/agentscript-test.

https://github.com/mostafamohajeri/agentscript-test
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1 class TokenRingWorkerSpec extends ... {

2

3 val mas = new MAS()

4 val verifiableBB = new BeliefBase()

5 val mockedMaster = testKit.createTestProbe[IMessage]()

6 val mockedNeighbor = testKit.createTestProbe[IMessage]()

7 val worker

8

9 override def beforeAll(): Unit = {

10 mas.registerAgent(new worker(bb = verifiableBB), name = "worker1")

11 mas.registerAgent(mockedMaster, name = "master")

12 mas.registerAgent(mockedNeighbor, name = "worker2")

13 worker = mas.getAgent("worker1")

14 }

15

16 "A worker agent" should {

17 "have its neighbor in its belief base after ‘!init(N)‘" in {

18 worker.event(achieve,"init(50)").send()

19 mockedMaster.expect(GoalAchievedMessage())

20 assert(verifiableBB.query("neighbor(worker2)") == true)

21 }

22

23 "send a ‘!done‘ to master on ‘!token(0)‘" in {

24 worker.event(achieve,"token(0)").send()

25 mockedMaster.expect(event(achieve,"done").source(worker))

26 }

27

28 "send a ‘!token(N-1)‘ to its neighbor on ‘!token(N)‘" in {

29 worker.event(achieve,"token(10)").send()

30 mockedNeighbor.expect(event(achieve,"token(9)").source(worker))

31 }

32 }

33 }

Listing 2: Test suite for the worker agent

goal is achieved (line 19), the belief base of the agent contains the belief defined
by the term neighbor(worker2) which is verified in line 20. In the next test, a
goal message token(0) is sent to the agent (line 24) and then it is verified that
the agent sends a done message to the master (line 25). The final test follows the
same pattern by sending a goal message token(10) (line 30) and the verification
includes a token(10--1) message to its neighbor (line 30). Note that in all the
tests, the messages sent to the worker1 agent do not specify any source, this
is because in the script in listing 1, the source of the messages is not checked
meaning it is not necessary to specify the source. As these tests are written
in a standard testing library, build tools such as sbt can execute them in their
build chain. By running the tests in the sbt shell we are able to see the output
presented in listing 3 that indicates our program has passed this test.
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[info] A worker agent should

[info] - have its neighbor in its belief base after ‘!init(N)‘

[info] - send a ‘!done‘ to master on ‘!token(0)‘

[info] - send a ‘!token(N-1)‘ to its neighbor on ‘!token(N)‘

...

[info] All tests passed.

Listing 3: Output of the worker agent test suite

1 "A worker agent" should {

2 "send a ‘NoApplicablePlan()‘ on ‘!init(-1)‘" in {

3 worker.event(achieve,"init(-1)").source(mockedMaster).send()

4 mockedMaster.expect(NoApplicablePlan())

5 }

6

7 "send a ‘NoRelevantPlan()‘ on ‘!unknown‘" in {

8 worker.event(achieve,"unknown").source(mockedMaster).send()

9 mockedMaster.expect(NoRelevantPlan())

10 }

11 }

Listing 4: Failure tests for worker agent

Testing Failure Scenarios. Successful executions are only a part of the full
story. Indeed, in software testing it is acknowledged that covering failures is both
more important and challenging, and thus requires more critical thinking by the
test engineer [29]. Interestingly, failure tests are especially important in agent-
based programming because failing under certain conditions may sometimes be
the correct behavior for an agent.

Two failure tests are presented in listing 4. The first test sends a init(W)
goal message to the agent with W=-1 (line 3) but the first plan is applicable only
for W > 1 and the expected behavior of the agent in this situation is a failure
which is verified by expecting a NoApplicablePlan message. In the second test,
a goal message unknown is sent to the agent (line 8) for which the agent does
not have any plans and it should reply with a NoRelevantPlan (line 9). Note
that failure of a goal is not only reflected by the absence of an applicable plan
or more generally failure in execution of a plan; similar to the success scenarios,
the designer can define any other arbitrary criteria for a failure scenario.

Although we acknowledge that testing an agent program for every possible
failure can easily become an infeasible task [37,38], certain failures may be par-
ticular important for the designer to test, therefore there is value in enabling
this possibility.
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4.2 Coverage

We explore at this point whether and how off-the-shelf coverage tools such as
scoverage7 can be used for code coverage analysis of agent programs written
in ASC2, considering both statement and branch coverage aspect. To perform
this we simply add the scoverage plugin to our project and generate a coverage
report.

The coverage report produced for the worker agent by means of the previ-
ous tests is presented in Table 1. The worker.Agent row shows the coverage
for the internal mechanisms of the agent, like e.g. event handling, while the
other rows show the coverage report for each separate event, as an example, the
worker.token 1 refers to an event token in worker agent with 1 parameter. The
branch coverage report mainly concerns conditional statements in the generated
Scala code of the agent and should be regarded only as informal information
about the coverage of the main script.

These results show that our tests indeed covered most of the behaviors that
the agent might have. In fact, by exploring the coverage analysis we can see the
reason for which the worker.token 1 has less coverage: the missed branch can
be explained by the fact that the tests did not include any scenario in which the
token(N) plan fails. Also note that while the example script did not contain any
sub-goals or conditional statements in the plans, ASC2 Translator generates sub-
goal adoptions as function calls and translates conditional statements to their
counterpart in the underlying language, therefore, coverage tools like scoverage
are able to calculate the correct number of covered and total possible branches
for deeper goal-plan trees.

Table 1. Coverage analysis of the worker agent

Component Statement coverage % Branch coverage (covered/total)

worker.Agent 93.5 6/6

worker.init 1 93.5 2/2

worker.token 1 80.2 3/4

4.3 Integration/System Testing

Even following the guidelines on categorizing different levels of testing in
MAS [28], there is no definite technical distinction in place. Typically test
libraries provide mechanisms such as annotations for the designer to label test
suites with its (their) related level(s) to orchestrate their execution. As illustra-
tion, we consider an integration test to verify a token ring MAS system consisting
of the previously mentioned worker agents and a master agent. The test suite
is reported in listing 5.
7 http://scoverage.org/.

http://scoverage.org/
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1 class TokenRingIntegrationSpec extends ... {

2

3 //a communication layer that records a trace of the interactions

4 object recordedComs extends AgentCommunicationsLayer { ... }

5

6 val token_pattern = "token\\([0-9]+\\)".r

7 val done_pattern = "done".r

8

9 "A token ring MAS with W = 100, T = 50 and N = 4" should {

10 "have 250 ‘token(X)‘ and 50 ‘done‘ message" in {

11 // create the agents

12 mas.registerAgent(new worker(coms = recordedComs), num = 100)

13 mas.registerAgent(new master(coms = recordedComs), name = "master")

14 // invoke the system

15 mas.getAgent("master").event(achieve, "start(50,4)").send()

16 // verify the interactions

17 watchdog.expectTerminated( mas, 10.seconds )

18 assert(recordedComs.trace.count(token_pattern.matches) == 250)

19 assert(recordedComs.trace.count(done_pattern.matches) == 50)

20 }

21 }

22 }

Listing 5: Integration test suite for the token ring system

The test will be centered around the interactions between agents and the
state of the system in a specific setting of our token ring. The token ring is
defined with 100 worker agents and 1 master agent (lines 12–13), and, to be
able to verify the exhibited interactions, we use dependency injection to initialize
all the agents by means of an overridden instance of the communication layer
(line 4), created to record every message passed in the system into a list.

To invoke the system, a start(T,N) is sent to the master agent (line 15).
We are interacting with the master from a black box perspective: although the
event start(T,N) is exposed, the internal mechanisms of this agent are assumed
to be unknown.

Three criteria are verified for this system. Firstly, we consider a system level
performance based criteria as we expect the system to be terminated under 10 s
(line 17). Next, we use two known expectations from a token ring system to verify
the correct execution of the system: at the end of execution, there should be (a)
T number of done messages and (b) T × (N + 1) number of token(X) messages
in the trace. The interaction verification statements are presented respectively
in lines 18–19. Recalling the flexible definitions of testing levels, note that these
integration/system test could be considered from the perspective of master agent
as a unit/agent level test possibly with mocking the worker agents. Similar to
previous tests, running this suite via sbt yields the output in listing 6.
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[info] A token ring MAS with W = 100, T = 50 and N = 4 should

[info] - have 250 ‘token(X)‘ and 50 ‘done‘ message

...

[info] All tests passed.

Listing 6: Output of the token ring integration test suite

Fig. 2. Continuous integration applied on a Token ring program whose master and
worker agent scripts are located on other repositories.

4.4 Continuous Integration

The proposed approach for testing can be easily combined with online CI ser-
vices. This process generally includes utilizing source repositories like Github8,
CI services like TravisCI and code analysis services like Coveralls9. The only
step needed to set the CI cycle for an ASC2 project is to configure the source
repository of the project in a way that the automated CI cycle is triggered on
every push to the repository. This can be done by adding a configuration file
that provides information for the CI service how to compile and test the project
via sbt.

Following this method, a MAS project does not need to be only located in a
single source repository. For instance, different types of agents can be developed
in different projects by separate teams and only be used as dependencies in the
development of the system. We believe this is an interesting practical innovation,
improving the scalability of MAS projects with respect to their development.

An overview of an example CI process for the token ring is presented in
Fig. 2 in which the sources of worker and master agents are located in separate
repositories, and a third token ring repository uses them as dependencies. When
the system designer pushes the project to the repository, the CI service fetches
the source and compiles and tests it via sbt and records the results10. Then, the
code coverage report is committed to the code analysis service11.

8 https://github.com/.
9 https://coveralls.io/.

10 https://travis-ci.com/github/mostafamohajeri/agentscript-test.
11 https://coveralls.io/github/mostafamohajeri/agentscript-test.

https://github.com/
https://coveralls.io/
https://travis-ci.com/github/mostafamohajeri/agentscript-test
https://coveralls.io/github/mostafamohajeri/agentscript-test
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5 Discussion and Future Developments

Despite the critical points/observations concerning MAS testing raised in the lit-
erature, in this paper we provide several support arguments for using mainstream
testing tools for MAS and agent-based programming, by means of a concrete use
case. We implemented a multi-agent system reproducing a token ring benchmark
with the framework ASC2, and then we run tests (success, failure, coverage) at
unit/agent level as well as at integration/system level.

At the unit and agent level (unit testing) we performed tests concerning
events, plans and goals. The somehow unexpected result of the experiment is
that such an approach does not neglect the theoretical complexity of BDI agents
but it truly offers a complementary tool for their development. We were able to
test successful (plan) completions, internal states and the belief base, failures,
and fine-grained interactions. These possibilities can be seen as offering con-
structs mapping e.g. to declarative and procedural goals in BDI agents [40]: the
designer can define the achievement/failure of a goal not only in terms of com-
pletion/exception of a plan, but also as determined by any arbitrary indicator
internal or external to the agent. This showed that testability of agent programs
defined in a framework is closely related to the design choices of that framework.

At the integration/group and system/society level (integration testing) we
performed tests with simple verification criteria, but these criteria can easily be
extended to more sophisticated and realistic interaction analysis and verification
methods developed by the MAS community [7]. Additionally, we illustrated how
the proposed approach enables the MAS designer to take advantage of continuous
integration (CI) services without extra effort. This is particularly important for
MAS designers that require to integrate and test their work continuously with
other projects.

There is an additional benefit of using mainstream test tools for BDI agents,
and especially for frameworks that are based on higher-level logic-based DSLs.
Those frameworks generally map primitive actions to constructs specified in a
lower-level programming language like Java. By using a testing process compat-
ible with both higher level models and lower level implementations, the testing
process can be more efficient and seamless for the designer specially if the agent
models are only a part of a project that includes other computational entities
that are being developed alongside the agents.

An issue in using mainstream test libraries for a BDI framework with a logic-
based DSL is the disparity between the high-level agent DSL and the lower-
level language used for the tests. This can be addressed by either developing
approaches to write tests in the high-level DSL or creating interfaces for the low-
level language to enable the test engineer to implement tests at a proper level of
abstraction. In this work we have taken the latter approach. The intuition behind
this choice was that frameworks based on cross-compila-tion [14,36] produce
source codes that can be directly integrated within standard build tools.
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Can our results be generalized to other agent programming frameworks?
Motivated by the success of works like AJPF/MCAPL [13] that provides model
checking for multiple BDI frameworks, as a future study we intend to explore
how to apply this approach to a wider range of MAS frameworks. Yet, we can
already trace some higher-level considerations. The answer, at the unit/agent
level, depends on compilation and the execution model of those frameworks.
For frameworks like Jade and JS-son [23], that use mainstream programming
languages to define agents, these tools should be compatible out of the box with
minor effort [24]. For cross-compilation-based frameworks like Astra [14] and
ASC2 [27] it is only the matter of tooling (e.g. build tool plugins) to allow them
to use mainstream testing tools. For interpreter-based frameworks like Jason [6]
and GOAL [22], because they require their own dedicated reasoning engines and
execution environment, testing via such tools may prove to need more work and
possibly modifications to the framework. This issue may be not so problematic,
as there are already many works that propose dedicated testing and debugging
approaches for interpreter-based frameworks [25].

At the integration and system level, and also with respect to compatibility
with CI services, generally externalized to the execution of the tested entity, we
believe it is possible to consolidate other frameworks regardless of their com-
pile/interpret model. This could lead to seamless integration testing of systems
defined in each framework with mainstream software testing tools or dedicated
ones.

In perspective, our overarching research concerns socio-technical and complex
multi-domain infrastructures; we believe that Agent-Oriented Software Engi-
neering can be a powerful technical tool with robust theoretical foundations for
designing, modelling, implementing and testing such systems. Enhancing their
development cycle goes with a seamless integration of multi-agent systems into
modern infrastructures. This is a critical requirement to utilize the full potential
of MAS in a real production-level setting.
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Dutch Commit-to-Data initiative (http://www.dutchdigitaldelta.nl/big-data/over-
commit2data) (grant no: 628.009.001).
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15. Ekinci, E.E., Tiryaki, A.M., Çetin, Ö., Dikenelli, O.: Goal-oriented agent testing
revisited. In: Luck, M., Gomez-Sanz, J.J. (eds.) Agent-Oriented Software Engineer-
ing IX, AOSE 2008. Lecture Notes in Computer Science, vol. 5386, pp. 173–186.
Springer, Berlin, Heidelberg (2009)

16. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. USA, 1st edn. (1999)

17. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and
validating autonomous systems: towards an integrated approach. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 263–281. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 15

https://doi.org/10.1007/s10472-008-9092-7
https://doi.org/10.1007/s10472-008-9092-7
https://doi.org/10.1007/978-3-540-25936-7_4
https://doi.org/10.1007/978-3-540-25936-7_4
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1007/0-387-26350-0_1
https://doi.org/10.1007/11875581_143
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/3-540-36483-8_7
https://doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1007/978-3-030-03769-7_15


Seamless Integration and Testing for MAS Engineering 271

18. Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B.-H., Winikoff, M., Yorke-
Smith, N.: Towards a framework for certification of reliable autonomous systems.
Auton. Agent. Multi-Agent Syst. 35(1), 1–65 (2020). https://doi.org/10.1007/
s10458-020-09487-2

19. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures:
old problems, new perspectives. KI - Künstliche Intelligenz 31(1), 73–83 (2016).
https://doi.org/10.1007/s13218-016-0457-5

20. Hewitt, C.: Actor model of computation: scalable robust information systems
(2010)

21. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artifi-
cial intelligence. In: Proceedings of the 3rd International Joint Conference on Arti-
ficial Intelligence, IJCAI 1973, pp. 235–245. Morgan Kaufmann Publishers Inc.,
San Francisco (1973)

22. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-89299-3 4

23. Kampik, T., Nieves, J.C.: JS-son - a lean, extensible JavaScript agent programming
library. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS
(LNAI), vol. 12058, pp. 215–234. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51417-4 11

24. Khamis, M.A., Nagi, K.: Designing multi-agent unit tests using systematic test
design patterns (extended version). Eng. Appl. Artif. Intell. 26(9), 2128–2142
(2013)

25. Koeman, V.J., Hindriks, K.V., Jonker, C.M.: Automating failure detection in cog-
nitive agent programs. In: Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS pp. 1237–1246 (2016)

26. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320
(1976)

27. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, agent, run! archi-
tecture and benchmarking of actor-based agents. In: proceedings of Programming
based on Actors, Agents, and Decentralized Control (AGERE 2020), pp. 11–20
(2020)

28. Moreno, M., Pavón, J., Rosete, A.: Testing in agent oriented methodologies. In:
Omatu, S., Rocha, Miguel P.., Bravo, José, Fernández, Florentino, Corchado,
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Abstract. Explainability has become one of the most important con-
cepts in Artificial Intelligence (AI), resulting in a complete area of study
called Explainable AI (XAI). In this paper, we propose an approach for
engineering explainable BDI agents based on the use of argumentation
techniques. In particular, our approach is based on modelling argumen-
tation schemes, which provide not only the reasoning patterns agents use
to instantiate arguments but also templates for agents to translate argu-
ments in an agent-oriented programming language to natural language.
Thus, using our approach, agents are able to provide explanations about
their mental attitudes and decision-making not only to other software
agents but also to humans. This is particularly useful when agents and
humans carry out tasks collaboratively.

1 Introduction

Explainability is pointed out as an essential characteristic in artificial intelli-
gence applications so that users can effectively understand, trust, and manage
such applications [18]. The need for explaining a decision/reasoning/actions was
discussed as early as the 1970s, starting with the development of expert systems
and the need for those systems to explain their decisions not only with traces but
also with justifications [1]. These needs have become an essential characteristic
in Multi-Agent Systems (MAS) [49], given that MAS are one of the most pow-
erful paradigms to implement complex distributed systems powered by artificial
intelligence techniques.

In this paper, we propose an approach for engineering explainable agents
using argumentation-based techniques. In particular, we propose an approach in
which a set of argumentation schemes (reasoning patterns for argumentation)
provide means for agents to instantiate, reason, and communicate arguments as
well as templates to translate those instantiated arguments into natural language
arguments. Those arguments can be used to provide explanations, in computa-
tional and natural languages, about the agents’ mental attitudes and the decision
they make.

Argumentation schemes are patterns for arguments (or inferences) represent-
ing the structure of common types of arguments used both in everyday discourse
c© Springer Nature Switzerland AG 2022
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as well as in special contexts such as legal and scientific argumentation [46]. Dif-
ferent social contexts enable the use of various different argumentation schemes,
based on the state of the environment (e.g., a university, a court, a hospital),
the roles played by the participating actors, and the relations between their roles
(e.g., professors and students, judges and lawyers, doctors and patients, etc.). In
this work, we propose the use of argumentation schemes as a tool for modelling
explanation, using the already-known interpretability of computational argu-
ments plus a natural language representation of arguments. Thus, an agent is
able to explain itself to another agent using computational arguments as well as
it is able to explain itself to a human user using natural language arguments. We
argue that our work contributes towards the development of AI systems capable
of sophisticated interactions between humans and software agents.

The main contributions of this work are: (i) we propose an approach for engi-
neering explainable agents based on the modelling of argumentation schemes.
Using our approach, agents are able to explain their mental attitudes and deci-
sion making not only to other agents, using a computational representation of
arguments, but also to human users, using a natural language representation of
such arguments; (ii) we demonstrate our approach through a hospital scenario
in which agents explain their mental attitudes not only to other agents but also
to humans; and (iii) we discuss the potential of our approach in the context
of emerging research in areas such as Hybrid Intelligence [1] and Explainable
Artificial Intelligence [17,18].

This work is organised as follow. In Sect. 2, we describe an overview of
agent-oriented programming languages and argumentation schemes, which con-
sist of the background of our work, including, in Sect. 2.3, an approach for
argumentation-based reasoning and argumentation-based dialogues in multi-
agent systems using argumentation schemes, based on our previous work pub-
lished in [25,26,28,32]. In Sect. 3, we present our approach for engineering
explainable agents using argumentation, introducing argumentation templates
in natural languages and a set of argumentation schemes that allow agents to
explain their beliefs. In Sect. 4, we present an example in the domain of health-
care, based on an application we are currently developing. In Section 5, we discuss
the work we found related to our approach, and in Sect. 6, we conclude this work
with some final remarks also pointing out future work.

2 Background

2.1 Agent Oriented Programming Languages

Among the many AOPLs and platforms, such as Jason, Jadex, Jack, AgentFac-
tory, 2APL, GOAL, Golog, and MetateM, as discussed in [3], we chose the Jason
platform [4] for our work. Jason extends the AgentSpeak language, an abstract
logic-based AOPL introduced by Rao [37], which is one of the best-known lan-
guages inspired by the BDI architecture.

Besides specifying BDI agents with well-defined mental attitudes, the Jason
platform [4] has some other features that are particularly interesting for our work,



Engineering Explainable Agents: An Argumentation-Based Approach 275

for example, strong negation, belief annotations, and (customisable) speech-act
based communication. Strong negation helps the modelling of uncertainty, allow-
ing the representation of things that the agent: (i) believes to be true, e.g.,
about(paper1, tom); (ii) believes to be false, e.g., ¬about(paper2, tom); (iii) is
ignorant about, i.e., the agent has no information about whether a paper is about
tom or not. Also, Jason automatically generates annotations for all the beliefs
in the agents’ belief base about the source from where the belief was obtained
(which can be from sensing the environment, communication with other agents,
or a mental note created by the agent itself). The annotation has the following
format: about(paper1, tom)[source(reviewer1)], stating that the source of the
belief that paper1 is about the topic tom (theory of mind) is reviewer1. The
annotations in Jason can be easily extended to include other meta-information,
for example, trust and time as used in [24,30]. Another interesting feature of
Jason is the communication between agents, which is done through a predefined
(internal) action. There are a number of performatives that can be used in that
internal (communicative) action, allowing rich communication between agents
in Jason, as explained in detail in [4]. Furthermore, new performatives can be
easily defined (or redefined) in order to give special meaning to them1, which is
an essential characteristic for this work.

2.2 Argumentation Schemes

Besides the familiar deductive and inductive forms of arguments, argumentation
schemes represent forms of arguments that are defeasible2. This means that an
argument may not be strong by itself (i.e., it is based on disputable inferences),
but it may be strong enough to provide evidence that warrants rational accep-
tance of its conclusion [45]. Conclusions from argumentation schemes can be
inferred in conditions of uncertainty and lack of knowledge. This means that we
must remain open-minded to new pieces of evidence that can invalidate previ-
ous conclusions [46]. These circumstances of uncertainty and lack of knowledge
are, inevitably, characteristics of multi-agent systems, which deal with dynamic
environments and organisations [49].

The acceptance of a conclusion from an instantiation of an argumentation
scheme is directly associated with the so-called critical questions. Critical ques-
tions may be asked before a conclusion from an argument (labelled by an argu-
mentation scheme) is accepted, and they point out to the disputable information
used in that argument. Together, the argumentation scheme and the matching
set of critical questions are used to evaluate a given argument in a particular
case, considering the context of the dialogue in which the argument occurred [46].

Arguments instantiated from argumentation schemes, and properly evaluated
by means of their critical questions, can be used by agents in their reasoning and
communication processes. In both situations, other arguments, probably instan-
tiated from other argumentation schemes, are compared in order to arrive at an
1 For example, new performatives for argumentation-based communication between

Jason agents were introduced in [31,33].
2 Sometimes called presumptive, or abductive as well.
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acceptable conclusion. After an argument is instantiated from an argumentation
scheme and evaluated by its set of critical questions, the process follows the
same principle of any argumentation-based approach, where arguments for and
against a point of view are compared until eventually arriving at a set of the
acceptable arguments.

In regards to conflict between arguments, we can consider the existence of
two types, according to [46]: (i) a strong kind of conflict, where one party has
a thesis to be proved, and the other part has a thesis that is the opposite of
the first one, and (ii) a weaker kind of conflict, where one party has a thesis
to be proved, and the other part doubts that thesis, but has no opposite thesis
of their own. In the strong kind of conflict, each party must try to refute the
thesis of the other in order to win. In the weaker form, one side can refute the
other, showing that their thesis is doubtful. This difference between conflicts are
inherent from the structure of arguments, and can be found also in the work of
others, e.g. [36].

To exemplify our approach, we adapted the argumentation schemes Argument
from Position to Know from [47] to a multi-agent (organisational) platform, so
that for example roles that agents play in the system can be referred to within
the scheme. Consider the Argument from role to know in multi-agent systems
(role to know for short) :

“Agent ag is currently playing a role R (its position) that implies knowing
things in a certain subject domain S containing proposition A (Major
Premise). ag asserts that A (in domain S) is true (or false) (Minor
Premise). A is true (or false) (Conclusion)”.

The associated critical questions are: CQ1: Does playing role R imply know-
ing whether A holds? CQ2: Is ag an honest (trustworthy, reliable) source? CQ3:
Did ag assert that A is true (or false)? CQ4: Is ag playing role R?

The argumentation scheme introduced above can be represented in the Jason
multi-agent platform as a defeasible inference as follows (based on [25,27]):

def_inf(Conclusion,[role(Agent,Role), role_to_know(Role,Domain),
asserts(Agent,Conclusion),about(Conclusion,Domain)])
[as(role_to_know)].

where the agents are able to instantiate such argumentation schemes with the
information available to them in their belief bases and to evaluate the accept-
ability of the conclusion based on the interactions among such instantiated argu-
ments [25].

Formally, in our framework, an argumentation scheme is a tuple 〈sn, C,P,
CQ〉 with SN the argumentation scheme name (which must be unique in
the system), C the conclusion of the argumentation scheme, P the premises,
and CQ the associated critical questions. Considering the example above,
the corresponding components are SN = role to know, C = Conclusion,
P = asserts(Agent,Conclusion), role(Agent,Role), role to know(Role,
Domain) and about(Conclusion,Domain), CQ = 〈cq1, role to know(Role,
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Conclusion)〉, 〈cq2, reliable(Agent)〉, 〈cq3, asserts(Agent, Conclusion)〉
and 〈cq4, role(Agent, Role)〉.

2.3 Argumentation-Based Reasoning and Communication Using
Argumentation Schemes

Formally, in our approach, an argument is a tuple 〈S, c〉θ
sn, where 〈sn,C ,P ,CQ〉

is the argumentation scheme used to instantiate that argument, θ is a most-
general unifier for the premises in P and the agent’s current beliefs, S is the set
of premises and the inference rule of the scheme used to draw c (the conclusion
of the argument). That is, S includes all instantiated premises from P—i.e., for
all p ∈ P , pθ ∈ S—and the inference rule corresponding to the scheme (P ⇒ C );
the conclusion c is the instantiation C θ such that S |= c (c can be inferred
from S).

For example, considering the argumentation scheme role to know, imag-
ine that an agent ag knows that john (another agent in the system) is play-
ing the role of doctor—role(john, doctor)—within the organisation of the
multi-agent system. Further, ag knows that doctors know about cancer—
knows(doctor, cancer). Therefore, if john asserts that “smoking causes cancer”
—asserts(john, causes(smoking, cancer)), and given that causes of can-
cer are a subject matter related to cancer—about(causes(smoking, cancer),
cancer), ag is able to instantiate the argumentation scheme role to know, which
allows ag to conclude that smoking causes cancer—causes(smoking, cancer).

Arguments are evaluated both individually and collectively in order to deter-
mine which ones are acceptable arguments. Individually, the validity of an argu-
ment is evaluated through the critical questions pointed out in the argumentation
scheme used to instantiate that argument [28]; in our example, an argument is
individually acceptable by an agent if that agent is able to answer positively
the critical questions CQ1 ,CQ2 ,CQ3 , and CQ4 . After evaluating arguments
individually, conflicts/attacks between arguments are verified, and only those
arguments that are not attacked by any other argument, or arguments that
are defended by other arguments when attacked, remain; this leads to a set of
acceptable arguments under some particular argumentation semantics (see [10]).

In reasoning, agents take the conclusions from the acceptable arguments as
justified decisions, beliefs, actions, etc. In communication, agents use acceptable
arguments to justify their position, reevaluating the set of acceptable arguments
whenever they receive new information (possible new arguments) from other
agents. Also, the critical questions from argumentation schemes provide a sys-
tematic way to evaluate disputable information used in arguments from other
agents during dialogues [28].

3 Argumentation Scheme for Explainable Agents

We propose a general agent architecture in which agents use a computational
and natural language representation of argumentation schemes. In our approach,
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Fig. 1. Explainable agent architecture based on argumentation schemes.

agents instantiate arguments from the computational representation of argumen-
tation schemes, using arguments for reasoning and communication (with other
software agents). When communicating with human agents, they translate those
arguments using the corresponding natural language representation of that rea-
soning pattern (argumentation scheme), as shown in Fig. 1.

3.1 Argumentation Templates in Natural Language

An essential part of our approach is modelling argumentation schemes in nat-
ural language, also considering the different instantiations for those reasoning
patterns. We aim to model argumentation templates to translate arguments
instantiated from argumentation schemes to their corresponding natural lan-
guage representation.

Essentially, an argumentation template in natural language 〈NLA〉sn for an
argumentation scheme sn is a structure that concatenates natural language text
and variables from sn. An argument in natural language 〈nla〉θ

sn is an instance of
an argumentation template in natural language 〈NLA〉sn which uses the unifica-
tion function from the corresponding computational argument (being translated)
to instantiate the template. That is, an argumentation scheme sn is used by
agents to instantiate arguments 〈S, c〉sn, being 〈S, c〉θ

sn a particular argument (in
its computational representation) from the argumentation scheme sn according
to the unification function given by θ. Also, being the argumentation template
in natural language 〈NLA〉sn a natural language template for sn, then a natural
language argument is obtained instantiating the corresponding argumentation
template, in which ∀ϕ ∈ NLA, ϕθ ∈ nla, using the unification function from
the computational representation of that particular argument being translated,
given by θ.
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For example, considering the argumentation scheme role to know introduced
in the Sect. 2.2, we can create the following argumentation template to translate
arguments instantiated from that argumentation scheme to natural language
arguments:

〈 “<Agent> is a <Role>, and <Role>s know about <Domain>. <Agent> asserts
<Conclusion>, therefore we should believe that <Conclusion>”.〉[as(role to know)]

with its corresponding computational representation from [25,28] in Jason [4]
agent-oriented programming language as follows:

def_inf(Conclusion,[role(Agent,Role), role_to_know(Role,Domain),
asserts(Agent,Conclusion),about(Conclusion,Domain)])
[as(role_to_know)].

Together, the computational representation of the argumentation scheme role
to know and the template to translate arguments instantiated from it to nat-
ural language arguments, provide means for agents to communicate with both
software and human agents.

For example, considering the scenario introduced in Sect. 2.3, an agent named
John asserts that smoking causes cancer. John is a doctor, and doctors are in a
position to know whether smoking causes cancer or not. Thus, any agent aware
of John’s assertion is able to construct an acceptable3 argument concluding that
smoking causes cancer based on the argumentation scheme argument from role
to know.

When an agent needs to communicate that argument to another software
agent, it is able to use the computational representation of that argument instan-
tiated from the argumentation scheme role to know, as follows:

def_inf(causes(smoking,cancer),[role(john,doctor),
role_to_know(doctor,cancer),
asserts(john,causes(smoking,cancer)),
about(causes(smoking,cancer),cancer)])
[as(role_to_know)].

When an agent needs to communicate that argument to a human agent, it
is able to use the natural language representation of that argument instantiated
from the natural language template of that argumentation scheme, as follows:

〈“john is a doctor, and doctors know about cancer. john asserts
smoking causes cancer, therefore we should believe that smoking causes
cancer”.〉[as(role to know)]

Note that the unification function θ = {Agent �→ john, Role �→ doctor,
Domain �→ cancer, Conclusion �→ causes(smoking, cancer)} is used in both
3 Here, we assume that the agent is able to answer the critical questions related to

that argument instance.
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instances, to instantiate a computational argument and its corresponding natural
language argument, in which the predicate causes(smoking, cancer) is trans-
lated to “smoking causes cancer”.

3.2 Explaining Beliefs

Explaining beliefs relies on what kind of beliefs an agent is going to explain.
According to [6], there exists some tension between the formation of some epis-
temic attitudes in agents and the way they access their available arguments.
When analysing agent beliefs, two principles are mentioned in [6]:

(P1) Beliefs of an agent that should be partially determined by evaluating its
available arguments. That means, given a predicate ϕ, an agent should first
access its available arguments about ϕ and then form a belief based on
the evaluation of those arguments, i.e., belief formation by argument eval-
uation [6].

(P2) The evaluation of arguments should take into account beliefs with respect
to the premises of those arguments. That means, argument evaluation is
conditioned by belief formation [6].

Clearly, using both principles together leads to infinite regress, in which argu-
ments are used to form beliefs that are the basis to build and evaluate arguments
that support beliefs, and so on. Thus, the authors in [6] propose to solve the ten-
sion between those two principles distinguishing basic-explicit beliefs (principle
(P2)) and argument-based beliefs (principle (P1)).

Basic beliefs can be understood as agent beliefs whose justification is not
inferential, i.e., it comes from other phenomena, such as observation or reli-
able communication. Argument-based beliefs can be understood as the conclusion
of an acceptable argument according to a particular argumentation semantics
(see [10]).

In order to explain an argument-based belief ϕ, agents simply communi-
cate the argument supporting such belief, 〈S, ϕ〉θ

sn to another software agent
and 〈nla〉θ

sn to a human agent, according to our approach presented early in
this section. For example, when an agent believes that “smoking causes cancer”
because it has an acceptable argument concluding that “smoking causes cancer”,
then it will explain that particular belief using that argument. In our scenario,
an agent will explain that “smoking causes cancer” using the argument that
‘’john is a doctor , and doctor s know about cancer . john asserts smoking

causes cancer , therefore we should believe that smoking causes cancer ”.
In order to explain a basic belief, we propose three argumentation schemes, as

follows. The first argumentation scheme, the argumentation scheme from percep-
tion – as(perception) – basically states that if an agent has perceived something
from the environment it also believes so:

“I have perceived Info, therefore I believe Info.”

Its corresponding computational representation in the Jason platform is given
by the following defeasible inference rule:
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def_inf(believe(Me,Info),[perceived(Me,Info)])[as(perception)].

Also, in Jason, the predicate perceived(Me, Info) can be easily implemented
through the following inference rule, using the source annotation percept and
the internal action .my name(Me) which unifies the variable Me with the agent’s
name:

perceived(Me,Info) :- .my_name(Me) & Info[source(percept)].

Further, the argumentation template in natural language for this argumen-
tation scheme is represented as follows:

〈“I have perceived <Info>, therefore I believe <Info>.”〉[as(perception)]

The second argumentation scheme, the argumentation scheme from reliable
source – as(rel src) – states that if an agent consult a source of information it
trusts, it will believe the response to that queried information:

“I have consulted source S about Info and I trust source S,
therefore I believe Info is true.”

Its corresponding computational representation in Jason is given by the fol-
lowing defeasible inference rule:

def_inf(believe(Me,Info),[source(S,Info),trust(Me,S)])[as(rel_src)].

Further, the argumentation template in natural language for this argumen-
tation scheme is represented as follows:

〈“I have consulted source <S> about <Info> and I trust source <S>, therefore
I believe <Info> is true.”〉[as(rel src)]

The third argumentation scheme, argumentation scheme from reliable com-
munication – as(rel com) – states that if an agent has received a piece of infor-
mation from another agent it trusts, it will also believe that information:

“Agent Ag has told me Info and I trust agent Ag , therefore I believe Info is true.”

Its corresponding computational representation in Jason is given by the fol-
lowing defeasible inference rule:

def_inf(believe(Me,Info),[asserts(Ag,Info)],trust(Me,Ag))[as(rel_com)].

Also, in the Jason platform, the predicate asserts(Ag, Info) can be easily
inferred by agents through the following inference rule, using the source anno-
tation on agents’ beliefs:

asserts(Ag,Info) :- Info[source(Ag)].
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Further, the argumentation template in natural language for this argumen-
tation scheme is represented as follows:

〈“<Ag> has told me <Info> and I trust agent <Ag>, therefore I believe <Info>
is true.”〉[as(rel com)]

Note that there is a subtle difference between the argumentation scheme
from reliable communication and the argumentation scheme from reliable source.
Here, we are considering the agent’s attitude on searching for a particular piece
of information against the information to be given to it. While consulting an
agent about a particular piece of information depends mostly on how credi-
ble/trustworthy that source is regarding that particular information, receiving
such information from a source, without asking for it, relies on the intentions of
the speaker besides the trust in it.

Feeding information to other agents, in the context of autonomous intelligent
agents, relies on what are the intentions behind feeding that information, which
might represent a deceptive attitude from those agents [34,41]. We believe that
this aspect of communication (understand that a piece of information has been
given instead of searched for) will play an important role in accountability in
these systems, thus we believe it is important to consider that difference when
an agent is providing an explanation about its beliefs.

Furthermore, note that we used the concept of trust, which has been applied
to multi-agent systems in order to take into account different kinds of social rela-
tionship between agents [39]. Following [20,39], trust can arise from two views:
(i) the first is a subjective property assessed particularly by each individual, in
which an agent directly or indirectly undertakes interactions with other agents.
This point of view describes the trust of an individual x from the point of view
of an individual y ; (ii) the second is a societal view of trust, which consists of
observations by the society over past behaviour of agents (which is called rep-
utation) that are made available to agents who have not interacted previously.
This point of view can be seen as common-sense knowledge, in which the society
agrees about the reputation of each individual in that society [39]. Here, both
views fits into our approach, and they could be used without any discrimination.

4 Example

We present here an example in the domain of healthcare, inspired by a hospi-
tal scenario, which faces several challenges. One of the main challenges in this
domain is related to maximising resource usage and avoiding hospital overcrowd-
ing. To address these challenges, it is necessary to improve the use of hospital
resources and maintain high occupancy rates without creating chaos in the emer-
gency room or long queues [16]. However, the current demands on hospitals and
the growing financial constraints make planning and efficient allocation of hos-
pital beds (and other resources) increasingly difficult [23].

Hospital beds are a scarce resource, and therefore allocating them optimally
plays an important role in the overall planning of hospital resources [44]. Also,
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the staff responsible for bed allocation are concerned with several rules while
carrying out bed allocations, such as the type of medical speciality, whether the
patient is surgical or clinical, patient gender, age, etc. [35]. For allocating patients
to hospital beds efficiently, it is necessary to consider many variables that make
it difficult for a human to reach optimal solutions without any assistance. On
the other hand, fully automated solutions are usually not acceptable, as the
staff in charge would not trust an allocation if they did not participate in the
decision-making process.

We are interested in applying multi-agent technologies in such domain in
order to face those challenges, including resource allocation [12–14,29,42]. Our
investigation moves towards the development of multi-agent systems, in which
intelligent software agents are capable of assisting multiple tasks, and agents
are able to interact with humans through sophisticated dialogues, where they
eventually need to explain the recommendations they make.

Here, we will focus on a hospital scenario in which agents interact with other
agents and humans, bringing to light the need for explanations. Our scenario
starts with a nurse requesting a free bed to a multi-agent system that supports
decision-making on bed allocation. However, at the moment of the request, there
are no beds available, so the system commits itself to notify the nurse when a
bed becomes available.

In our scenario, we consider an agent specialised in databases
(database expert) that has access to the hospital database and perceive changes
in beds and patient status. We also consider an assistant agent (assistant ag)
who reasons and communicates with other agents. Moreover, there is an agent
that specialises in communication (communication expert), in particular it com-
municates through natural language with nurse users (nurse usr) to assist in
bed allocation.

Agent database expert has access to the hospital database (database), which is
a source of information for agents to check information about beds and patients.
The database expert agent believes that information in the database is cor-
rect and up to date, so it can trust the database. When the database expert
queries the database and finds that a specific bed is empty, it comes to believe
that the specific bed in question is free based on the second argumentation
scheme as(rel src)

The corresponding computational representation in Jason of this argument
is given below:

def_inf(believe(database_expert,bed(202b, free)),
[source(database,bed(202b, free)),
trust(database_expert,database)])[as(rel_src)].

Furthermore, the instance generated by the argumentation template in nat-
ural language is as follow:
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〈“I have consulted source database about bed 202b being free and I trust
source database, therefore I believe bed 202b being free is true.”〉[as(rel src)]

After finding a free bed, which is a current goal in the system, database expert
communicates this information to the assistant ag using the computational rep-
resentation of this argument to explain that it has acquired that information from
the database – source(database, bed(202b, free) – and it trusts that source of
information – trust(database expert, database) – therefore it believes that
bed 202b is free – believe(database expert, bed(202b, free).

The assistant ag is aware that the agent database expert has access to
the hospital’s database, as well as it trusts database expert. Therefore, when
database expert communicates to assistant ag that a specific bed is free, based
on the third argumentation scheme – as(rel com) – assistant ag also believes
that bed 202b is free.

The corresponding computational representation in Jason of this argument
is given below:

def_inf(believe(assistant_ag,bed(202b, free)),
[asserts(database_expert,bed(202b, free))],
trust(assistant_ag,database_expert))[as(rel_com)].

The instance of the predicate asserts(Ag, Info) is given below:

asserts(database_expert, bed(202b, free)):-
Info[source(database_expert)]

Furthermore, the instance generated by the argumentation template in nat-
ural language is as follow:

〈“database expert has told me bed 202b is free and I trust agent
database expert, therefore I believe bed 202b is free is true”.〉[as(rel com)]

Note that the database expert becomes the source of the information that
bed 202b is free. That is, after being able to query a trustworthy source of
information (i.e., the database), database expert believes that information is
true and asserts it to the assistant ag, which takes database expert as the
source of that information. In case that the trace for the origin of that infor-
mation was needed, it could be asked for assistant ag why it believes on that
information, and it would explain that database expert asserted that, then it
could be asked for database expert why it believes on that information and
it would assert that it has queried the database. Thus, for example, if there
is any mistake on that information, it would be made by who introduced the
information into the database.

Continuing our example, before communicating that bed 202b is free to the
nurse, assistant ag must check whether the nurse is online or not. The agent
assistant ag is aware that the agent that can perceive whether nurse ag is online
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or not is the communication expert, so it asks that agent whether the nurse is
online.

The communication expert can perceive when the nurse (nurse usr) is
online in the system to initiate a conversation with them or to inform
another agent about this. Using its perception, based on the first argumen-
tation scheme as(perception), the communication expert agent believes that
nurse usr is online.

Its corresponding computational representation in Jason is given by the fol-
lowing defeasible inference rule:

def_inf(believe(communication_expert,online(nurse_usr)),

[perceived(communication_expert,online(nurse_usr))])[as(perception)]

Considering the information communication expert has perceived – online
(nurse_usr)[source(percept)] – it is able to infer believe(communication_
expert,online(nurse_usr) using the inference rule perceived(Me,Info):-
.my_name(Me) & Info[source(percept)] with the unification function {Me �→
communication expert, Info �→ online(nurse usr)}.

Furthermore, the instance generated by the argumentation template in nat-
ural language is given below:

〈“I have perceived nurse usr is online, therefore I believe nurse usr is
online”.〉[as(perception)]

The communication expert informs the assistant ag that the nurse is online,
justifying that information using the computational representation of the argu-
ment supporting that belief. Now, being aware that the nurse is online, the
assistant ag informs communication expert agent that bed 202b is free, becom-
ing the source of that information for communication expert agent, which as in
the previous examples believes that bed 202b is free, according to the argument
below:

def_inf(believe(communication_expert,bed(202b, free)),
[asserts(assistant_ag,bed(202b, free))],
trust(communication_expert,assistant_ag))[as(rel_com)].

After, it provides that information to the nurse, justifying it with
the natural language representation of the argument supporting the belief
believe(communication expert, bed(202b, free)), i.e.:

“assistant ag has told me bed 202b is free and I trust agent

assistant ag, therefore I believe bed 202b is free is true′′.

5 Related Work

In [40], the authors have reviewed the literature on explainable goal-driven agents
and robots, and claim that most of the approaches to XAI have focused on
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data-driven XAI, and studies approaching goal-driven agents and robots are
still missing.

In [19] and [5], the authors present a model for explainable BDI agents that
enables agents to explain their behaviour in terms of underlying beliefs and
goals in virtual training systems. Furthermore, considering that agent can gen-
erate different types of explanations, the authors proposed four different expla-
nation algorithms, evaluating them with trainee users, and concluding which
explanation types are more adequate for each condition. While [5,19] present
an interesting approach to explainability in BDI agents, that work does not use
argumentation.

In [22], the authors say that with the increasing use of robots in complex
settings in which humans and robots work together, there is a growing need
for effective methods of interacting with artificial agents. Among the needs, the
authors are interested in querying agents about reasons for decision making, i.e.,
the capability of agents to explain their decision making. In [22], the authors
are not concerned with having natural language explanation but in some format
that could be easy for humans to understand.

In [11], the authors say that many of the challenges in designing and evalu-
ating AI systems depends on who is the human in the loop. Thus, they present
a case study with non-experts users to understand how they perceive differ-
ent styles of generated rationales by an AI system in a simulated scenario of
autonomous self-driving cars.

In [15], the authors introduce an argument-based system for enhancing
human-computer dialogues in the medical domain, more specifically, in medical
training. The proposed system uses ASPIC rules and argumentation schemes
based on clinician argumentation. The user interacts with the chatbot using
buttons.

In [2], the authors developed a coach agent to improve health and well-
being using a multi-agent system and argumentation. They used argumentation
schemes following the Argument Interchange Format (AIF) and a domain ontol-
ogy to retrieve the topics of the dialogues. The user interacts with the chatbot
using predefined buttons.

In [21], the authors developed a system called CONSULT, which is a collabo-
rative decision-support tool to help patients suffering from chronic diseases self-
manage their treatment plans. For this domain, a specific argumentation scheme
was used. In a metalevel argumentation framework, the system uses an argumen-
tation reasoning engine based on ASPIC+. Using the predefined argumentation
schemes and attack relations, it instantiates arguments from the received data.
The system has a conversation interface with the user, in which the user can
make utterances in natural language.

In [48], the authors use an argument mining approach to infer an argumenta-
tion structure from an annotated corpora of hotel reviews The annotated phrases
serve as a model for Natural Language Generation (NLG). To determine the
polarity of each review, they compare negative and positive annotated phrases.
Using linear Euler-based restricted semantics, they are able to predict the user



Engineering Explainable Agents: An Argumentation-Based Approach 287

preferences based on bipolar weighted argument graphs (BWAGS). They present
arguments to user via a multimodal output.

In [43], the authors used a Fuzzy Cognitive Map based on an argumentation
model to construct an intelligent tutoring system, with an intelligent agent to
conduct argumentative dialogues helping children learn ecosystems and adults
to gain knowledge on diabetes risk factors. The user interacts with the chatbot
using pre-defined buttons.

In [7], the authors created a recommendation system using pragmatic argu-
mentation to check if this has the potential to affect the decision making of the
elderly and help them pursue a healthier lifestyle. The system only makes rec-
ommendations; it does not support free conversation. The system was evaluated
by 21 volunteers who interacted with the robot.

In [8], the authors discussed an approach to dialogue management using
chatbots in combination with social practices and argumentation theory. Their
future system will provide for the use of an avatar that expresses emotions and
the user will be able to make utterances in natural language.

In [9], the authors described an XAI system that supports the monitoring
of users’ behavior and persuades them to follow healthy lifestyles, using logical
reasoning. The user does not communicate with the chatbot in natural language.
They evaluated the system in two steps. First with domain experts and then
with 120 users that used a mobile application based on their platform. This
application monitored the user and generated recommendations.

As it can be noted, most of that work focuses on a particular scenario, con-
structing an approach, tools, and interfaces to treat that particular problem. We
propose an approach in which intelligent agents are able to explain themselves
not only to humans but also to other agents, using a modular representation of
argumentation schemes and argumentation templates in natural language. Our
approach is more general than the work discussed above. When developing a
new application, we only need to model the argumentation schemes, and argu-
mentation templates in natural language, necessary for that particular applica-
tion domain. We argue that by providing a representation of the argumentation
schemes created by others, for example [15,21], agents using our approach would
be able to generate those same explanations.

6 Conclusion

The use of AI systems in our daily lives is becoming mature and ubiquitous,
resulting in a growing emergence of systems where agents and humans work
together [38], from which new concepts such as Hybrid Intelligence [1] also
emerge. However, there are many challenges related to how humans and agents
will interact in those systems, and how agents will explain their decisions and
internal mental states so that they become more transparent and trustwor-
thy [17,18].

We believe that the use of argumentation in agent technologies can play an
important role in facing these challenges, not only because it promotes explain-
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ability but also because it represents a sophisticated form of interaction com-
monly found in dialogues between humans. Thus, bringing such technologies to
the context of Hybrid Intelligence [1] and Explainable AI [17,18] will allow us
to develop AI systems that reflect natural interactions with which humans are
already familiar.

In this paper, we contribute towards bringing argumentation technologies,
such as argumentation schemes and natural language templates, to explainable
agents. We showed how agents are able to explain themselves by communicating
arguments. Further, our agents use computational arguments when communicat-
ing with other agents, and translate those arguments into natural language argu-
ments when communicating with humans. That is possible given our approach
for using both computational and natural language representation of reasoning
patterns that agents can use to instantiate arguments.

In future work, we intend to apply such an approach in the scenario described
in this paper, developing AI systems to support human expert tasks and decision
making. Also, we intend to model argumentation schemes agents use to provide
explanations about the domain rules, for example, constraints related to bed
allocation, as well as goals, plans, actions, etc. that they have adopted. Thus,
for example, agents would be able to explain to human users why a particular
allocation violates a hospital norm that the user has failed to consider, or why
a particular (re)allocation is needed.

Acknowledgements. The authors gratefully acknowledge partial funding from CNPq
and CAPES.
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Abstract. We present TPO, a type system designed to support the
type-based modeling of the architectural structure of agent societies. The
basic concepts of TPO are presented. The TPO-typing of the multia-
gent system model supported by the multiagent programming framework
JaCaMo is presented to illustrate the scope of application of TPO.
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1 Introduction

1.1 Motivation

The concept of type is an optional feature in the definition of computational
languages, and may appear implicitly or explicitly in them. But its introduction
in the theory of programming languages represented a crucial step in the devel-
opment and consolidation of methods and techniques of Software Engineering
because types are one of the formal bases upon which the essential computational
concepts of object and module are founded [1].

We think that the development of type systems for agents and agent systems
is a crucial step that is still generally lacking in the multiagent systems pro-
gramming area, possibly being the main reason for the lack of a sound notion of
modularity in those systems.

In fact, the latter seems to be also the main reason for the conceptual diffi-
culties that arise in attempts to integrate, on principled bases, conventional and
agent-based system models. In [2–4], we tried to tackle such issue by proposing
a notion of modularity for multiagent systems on the basis of which both multi-
agent organizations (more precisely, organization units) and full agent societies
may serve as software components for general multi-agent systems and conven-
tional software systems.
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1.2 Objective

We present TPO, a societal type system, designed to support the type-based
modelling of the architectural components of agent societies. TPO is a simple
set-based type system. The types of TPO are observational, in the sense that
they can type just the structural and operational features that observers of agent
societies may grasp when they adopt an externalist point of view, i.e., when they
refrain from examining the agents’s minds. In this respect, TPO adheres to the
classical modularity requirement of information hiding [5].

We consider only the principles and main concepts of TPO. Its full definition
is given in [6], where SML, a TPO-based agent society modeling language, is
also defined1.

Notice that the issue of type checking (or type inference) algorithms for TPO
are out of the scope of the paper.

1.3 Organization of the Paper

In Sect. 2, we informally indicate the basic architectural components of agent
societies typed by TPO, as well as the main general type features of the system.
In Sect. 3, the basic typing rules of TPO are formally presented.

In the case study given in Sect. 4, the TPO-typing of the basic elements of the
JaCaMo multiagent system model [10], showing TPO as a basic type system for
the modeling of agent societies, which can be systematically extended by building
on the already defined types, whenever needed2.

Section 5 is the Conclusion.

2 Basic Concepts

2.1 Agent Societies

Table 1 shows the main components of the architecture of agent societies that
we take into account in the present work [9]: the populational structure (Pop),
the sociability structure (Soc), the organizational structure (Org), the material
environment (MEnv) and the symbolic environment (SEnv).

TPO provides a system of types to support the formal expression of the core
features of such components: their structure, functioning and interaction.

1 The acronym TPO is of a historical origin, meaning Type System for the PopOrg
model, where PopOrg was the previous version [7,8] of our current Agent Society
model [9].

2 See [6] for other experiments in the TPO-typing of organizational models, regarding
models like AGRE, Electronic Institutions, and OperA.
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Table 1. The main elements of the architecture of agent societies.

Component Main elements

Pop Agents, agent networks

Soc Socσ Sociability roles

SocΣ Sociability networks

Org Orgω Organizational roles

Orgμ Organization units

OrgΩ Social subsystems

MEnv Material objects

SEnv Symbolic objects

2.2 Material and Symbolic Environments

TPO distinguishes between material and symbolic environments. Material envi-
ronments are usual in models of multiagent systems, to organize the set of mate-
rial objects handled by the agents.

Symbolic environments, separate from material environments, are not so com-
mon. They are taken here to model the cultural aspects of agent societies [11–13].
In particular, they support the modeling of the ideological notions that regulate
the way agents, organization units and societies behave and interact with each
other [14].

Clearly, of the symbolic objects, norms are of particular importance, since
they are the main means through which the regulation of behaviors and interac-
tions is carried on.

2.3 Events, Processes and Exchange Processes

Processes are the fundamental dynamic elements in TPO. Any societal structure
constructed according to TPO types may realize, internally or externally, one or
more processes.

Processes are constituted by time-indexed sequences of sets of events. That
is, we assume that at each time instant, the set of components of the society
that can cause processes may perform a set of events at that time, in each of
the processes that it realizes, not just one event.

Informally, an exchange process is a process realized by two societal com-
ponents (agents, roles, organizational units, social subsystems) whose elements
are pairs of sets of events, each set of events performed by one of the societal
components participating in the exchange process.

But, notice that, formally in TPO, exchange processes are not a subtype of
processes.
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2.4 Animate and Inanimate Objects

TPO categorizes objects either as animate or as inanimate. Animate objects
are objects (like agents and organization units) that are capable of driving their
own behaviors. Inanimate objects (like most objects in the material and symbolic
environments) are those that are unable of driving their own behaviors and are
mostly handled by animate objects.

For each such kind of objects, TPO defines a set of observational features
compatible with that kind:

– Animate objects may be typed with the following observational features:
– Properties: the qualities that the animate objects may present;
– Behaviors: the processes that they may cause;
– Interactions: the composed processes that they may cause, together with

other animate objects;
– Relations: the non-interactive relationships they may have with other

animate or inanimate objects;
– Inanimate objects may be typed with the following observational features:

– Properties: the qualities that inanimate objects may present;
– Relations: the non-interactive relationships they may have have with

other inanimate objects.

Table 2 lists the main animate and inanimate types of TPO objects.

Table 2. Animate and inanimate TPO objects.

Animate objects Inanimate objects

Material objects Time instants

Agents Properties

Sociability roles Relations

Sociability role networks Symbolic objects

Organizational roles Processes

Organizational role networks Exchange processes

Organization units

Organization unit networks

Agent societies

Inter-societal agent systems

2.5 Externalism and Internalism

It is usual to consider that the typing of the structure of agents requires an
internalist point of view, where mental concepts play central roles (as compo-
nents of the agents’ intentionality), while in the typing of organization units and
agent societies it is often enough to adopt an externalist point of view, focusing
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on their structure, functioning and interaction, and where mental concepts play
only a complementary role, in the form of the objectified cultural features of
those components3.

TPO allows for the combined internalist and externalist approaches to the
modeling of agents, organization units and agent societies.

2.6 Extensibility and Modularity

We take that the proper concept of modularity of agent systems is to be located,
at two different levels, in organization units and in agent societies (see, e.g., [2]).

Organization units, structured as suggested by the TPO type system,
together with an explicitly declared interface (e.g., input and output ports) to
regulate their exchanges with the outside, may well operate as organizational
modules for the internal constitution of agent societies.

Agent societies with appropriate interfaces (e.g., import and export chan-
nels), seem to be the appropriate level of modularity to be taken when integrat-
ing whole agent systems with conventional software systems.

TPO can easily accommodate such interfaces as extensions of its set of types
(see [6]). Thus, using the type constructors provided by TPO, and others that
can be systematically incorporated into it, TPO can be extended to account for
inter-societal agent systems, which are systems of interacting agent societies (see
e.g. [18])4.

2.7 Internal and External Types

All types defined on the basis of the basic TPO types and operations are called
internal types. Types imported from modules or systems that are externally
connected to modules and systems defined on the basis of TPO are called external
types.

That is, external types are parameters of TPO especifications. For instance,
what is an event (i.e., an object of the type Event), in a given agent society, is
to be defined externally to TPO.

3 The TPO Type System Formally Defined

The following is a revised and abridged formal definition of the type system TPO
(see [6] for the full draft presentation). In particula:,

– we present only the type construction rules, not the type destruction ones;
– we omit the typing of the sociability structure Soc (see Table 1), which

accounts for the variety of the agents’ ways of conviviality, amity, etc., that
are often developed through tradition.

3 An externalist perspective, but set in much more strict terms, was proposed by
Jacques Ferber and colleagues, in their seminal works [15–17].

4 The technical report [6] does not contemplate multisocietal agent systems.
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3.1 Type Constructors

TPO types are sets. The following are the main type constructors:

Sub-type: T ⊆ T ′ means that type T is a subtype of type T ′;
Powerset: ℘(T ) is the powerset of the type T ;
Function space: T → T ′ is the set of functions between types T and T ′;
External type: [E...]T where E is an external object constructor, compatible

with type T , used to define objects of the external type T .

The external object constructor [E...]T builds on an expression E of an exter-
nal language, which is expected to have been made interoperable with the pro-
gramming language in which the agent society is programmed.

3.2 The Basic Types

Time: The objects of the type T are called time instants, or simply times. Type
T is an inanimate internal type.

t ∈ N RTimet : Time

Property: The objects of the type Prop are called property expressions. Type
Prop is an inanimate external type.

[prop...]Prop RPropprop : Prop

Event: The objects of the type Event are called events. The type Event is an
inanimate external type.

[ev ...]Event REventev : Event

Agent: The objects of the type Agent are called agents. The type Agent is an
animate external type.

[ag ...]Agent RAgentag : Agent

Organizational role: The objects of the type OrgRo are called organizational
roles. Type OrgRo is an animate external type.

[or ...]OrgRo ROrgRoor : OrgRo
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Symbolic object: The objects of the type SymbObj are called symbolic objects.
The type SymbObj is an inanimate external type.

[so...]SymbObj RSymbObjso : SymbObj

Material object: The objects of the type MatObj are called material objects.
The type MatObj is an animate external type.

[mo...]MatObj RMatObjmo : MatObj

For the sake of space, we omit here the presentation of the construction rules
(of the form TProp, TBeh, TInter, and TRel, for the type T) that support the
attachment of properties, behaviors, interactions, and relations to basic types
(see [6] for their definitions). Also, we omit the indication of the constraints that
certain types have to satisfy.

3.3 The Predefined Constructed Types

The set of predefined constructed types presented here were designed to fit our
Agent Society model [9]. When the target is some other multiagent system orga-
nizational model, another set of constructed types may be required.

For the sake of space, we present here only the main predefined constructed
types. The understanding of the auxiliary types that compose them should be
straightforward. Also, we omit the set of meta-level type constructors, which
allow for the creation of new types (see [6]).

Process: The objects of the type Proc are called processes. The type Proc is an
inanimate internal type.

proc : T → ℘(Event)
RProcproc : Proc

Exchange process: The objects of the type ExchProc are called exchange pro-
cesses. The type ExchProc is an inanimate internal type.

ep : T → ℘(Event) × ℘(Event)
RExchProcep : ExchProc

Populational structure: The objects of the type Pop are called populational
structures. Type Pop is an animate internal type.

AG : ℘(Ag)
AP : ℘(AgProp)
AB : ℘(AgBeh)
AI : ℘(AgInter)
AR : ℘(AgRel)

RPop〈AG ,AP ,AB ,AI ,AR〉 : Pop
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Organizational micro-level structure: The objects of the type OrgMicro are
called organizational micro-level structures. Type OrgMicro is an animate
internal type.

RO : ℘(OrgRole)
ROProp : ℘(OrgRoProp)
ROBeh : ℘(OrgRoBeh)

ROInter : ℘(OrgRoInter)
RORel : ℘(OrgRoRel)
RONet : ℘(OrgRoNet)

ROrgMicro〈RO ,ROProp,ROBeh,ROInter ,RORel ,RONet〉 : OrgMicro

where OrgRoNet is the animate internal type of the organizational role net-
works, given by:

OR : ℘(OrgRole)
ORProp : ℘(OrgRoProp)
ORBeh : ℘(OrgRoBeh)

ORInter : ℘(OrgRoInter)
ORRel : ℘(OrgRoRel)

ROrgRoNet〈OR,ORProp,ORBeh,ORInter ,ORRel〉 : OrgRoNet

Organizational meso-level structure: The objects of the type OrgMeso are
called organizational meso-level structures. Type OrgMeso is an animate
internal type.

OU : ℘(OrgUn)
OUProp : ℘(OrgUnProp)
OUBeh : ℘(OrgUnBeh)

OUInter : ℘(OrgUnInter)
OURel : ℘(OrgUnRel)
OUNet : ℘(OrgUnNet)

ROrgMeso〈OU ,OUProp,OUBeh,OUInter ,OURel ,OUNet〉 : OrgMeso

where OrgUn is the animate internal type of the organization units, given by:

〈OR,ORProp,ORBeh,ORInter ,ORRel〉 : OrgRoNet
Inp : ℘(InpPort)
Out : ℘(OutPort)

ROrgUnit〈〈OR,ORProp,ORBeh,ORInter ,ORRel〉, Inp,Out〉 : OrgUnit
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Organizational macro-level structure: The objects of the type OrgMacro are
called organizational macro-level structures. Type OrgMacro is an animate
internal type.

SSUB : ℘(SSub)

SSUBProp : ℘(SSubProp)

SSUBBeh : ℘(SSubBeh)

SSUBInter : ℘(SSubnInter)

SSUBRel : ℘(SSubRel)

SSUBNet : ℘(SSubNet)
ROrgMacro〈SSUB ,SSUBProp,SSUBBeh,SSUBInter ,SSUBRel ,SSUBNet〉 : OrgMacro

where SSub is the animate internal type of the social subsystems, given by:

OU : ℘(OrgUn)
OUProp : ℘(OrgUnProp)
OUBeh : ℘(OrgUnBeh)

OUInter : ℘(OrgUnInter)
OURel : ℘(OrgUnRel)

RSSub〈OU ,OUProp,OUBeh,OUInter ,OURel〉 : SSub

Organizational structure: The objects of the type Org are called organiza-
tional structures. Type ORg is an animate internal type.

OrgMicro : OrgMicro
OrgMeso : OrgMeso
OrgMacro : OrgMacro

ROrg〈OrgMicro,OrgMeso,OrgMacro〉 : Org

Symbolic environment: The objects of the type SEnv are called symbolic
environments. Type SEnv is an inanimate internal type.

SO : ℘(SymbObj)
SOProp : ℘(SymbObjProp)
SORel : ℘(SymbObjRel)
SONet : ℘(SymbObjNet)

RSEnv〈SO ,SOProp,SORel ,SONet〉 : SEnv

where SymbObjNet is the inanimate internal type of symbolic object networks,
given by:

SO : ℘(SymbObj)
SOProp : ℘(SymbObjProp)
SORel : ℘(SymbObjRel)

RSymbObjNet〈SO ,SOProp,SORel〉 : SymbObjNet
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Material environment: The objects of the type MEnv are called material envi-
ronments. Type MEnv is an animate internal type.

MO : ℘(MatObj)
MOProp : ℘(MatObjProp)
MOBeh : ℘(MatObjBeh)

MOInter : ℘(MatObjInter)
MORel : ℘(MatObjRel)
MONet : ℘(MatObjNet)

RMEnv〈MO ,MOProp,MOBeh,MOInter ,MORel ,MONet〉 : MEnv

where MatObjNet is the animate internal type of material object networks,
given by:

MO : ℘(MatObj)
MOProp : ℘(MatObjProp)
MOBeh : ℘(MatObjBeh)

MOInter : ℘(MatObjInter)
MORel : ℘(MatObjRel)

RMatObjNet〈MO ,MOProp,MOBeh,MOInter ,MORel〉 : MatObjNet

Agent society: The objects of the type AgSoc are called agent societies. Type
AgSoc is an animate internal type5.

Pop : Pop
Org : Org

SEnv : SEnv
MEnv : MEnv
IMP : ImpRel
ACC : AccRel RAgSoc〈Pop,Org ,SEnv ,MEnv , IMP ,ACC 〉 : AgSoc

Figure 1 illustrates the structure of objects of the type AgSoc (cf. Table 1).
The figure omits, however, the division of the organizational structure (of type
Org) into its three organizational sub-levels (Orgω, Orgμ, and OrgΩ , of types
respective OrgMicro, OrgMeso and OrgMacro), and the sociability structure Soc,
as mentioned before. The dashed arrows represent the implementation relations
(IMP), the continuous arrows, the access relations (ACC )6.

5 For the sake of space, we omit here the typing of the ports and channels that con-
stitute the interfaces of the meso-level or macro-level architectural components (see
[6] for details).

6 For the sake of space we omit here the definitions of the types ImpRel and AccRel

(see [6]).
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Fig. 1. The structure of the objects of type AgSoc.

4 An Example: JaCaMo Typed with TPO Types

This section presents the typing of some of the central elements of the JaCaMo
model [10] with TPO types. The example illustrates the flexibility of TPO
through the definition of several new types, defined specially for the typing of
JaCaMo.

Recall that JaCaMo model articulates three component models:

– the Jason agent model [19];
– the Moise+ organizational model [20];
– the CArtAgO environment model [21].

4.1 The Jason Model

Jason is an agent platform whose agent model evolved from the BDI agent
model. The essential components of an agent, from the JaCaMo perspective,
are [10](p. 751):

– Beliefs: the set of information that the agent assumes to be true about the
state of its exterior, as well as about the state of its interior;

– Goals: the set of states (exterior as well as interior) that the agent intends
to achieve;

– Plans: the set of structured sets of actions that the agent may put to work
to achieve its goals;



TPO : A Type System for the Architecture of Agent Societies 303

– Actions: the set of either internal or external primitive plans that the agent
may execute to achieve basic goals, that is, goals that do not decompose
into simpler goals;

– Events: the set of possible changes either in the current set of belief s or in
the current set of goals, which trigger the execution of plans.

An agent action is a one-shot, concrete behavior that an agent may realize,
at any time. Events, being changes in sets of beliefs or sets of goals, are relations
between sets of beliefs, or relations between sets of goals. All the other elements
are of a symbolic character and may be taken as properties that agents may
have, at each time.

Taken as a whole, the set of agents running on a Jason platform constitutes
the population of the agent system.

We type the Jason agent model with TPO types7 as shown in Fig. 2.

Fig. 2. The basic elements of the Jason component of the JaCaMo model, typed with
TPO types.

4.2 The MOISE+ Model

MOISE+ [22] is a MAS organization model, proposed by Jomi Fred Hübner
and partners, that allows the separate specification of three aspects of a MAS
organization:

– the structural aspect, corresponding to the so-called structural dimension of
the organization, and captured by its structural specification;

– the functional aspect, corresponding to the so-called functional dimension of
the organization, and captured by its functional specification;

– the link between those two aspects, corresponding to the so-called deontic
dimension of the organization, and captured by its deontic specification.

7 The symbol “↪→” denotes the typing operation. Thus, E ↪→ T means that the element
E gets the TPO type T . The names of the types and sub-types are supposed to be
immediately readable, in an intuitive way.
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The structural and functional dimensions are allowed to be specified inde-
pendently of each other. The deontic dimension is to be specified on the bases
of the latter two specifications.

The Structural Dimension. The structural dimension of MOISE+ adopts the
basic pattern first introduced by the Aalaadin model [15], namely, constituting
the organizational structure of a MAS as a set of roles and groups.

As in the Aalaadin model, in the MOISE+ model a role is just a name for
one or more agents that undertake certain tasks and relations to other agents,
in the organization.

However, while Aalaadin relates roles to each other by means of interac-
tion processes (determined by protocols), MOISE+ relates roles to each other by
means of certain types of role relations, which do not necessarily involve inter-
action processes, but which may restrict the behaviors that the agents that play
those roles may perform in the organization.

In addition, MOISE+ defines a special type of role, called abstract role, whose
purpose is to support a specialization relation, and a corresponding operation of
inheritance of properties, between roles.

Besides that specialization relation, three other types of role relations are
defined in MOISE+ are:

– acquaintance relation, which allows the agents that play roles that are related
by that relation to represent information about each other (identifiers, etc.);

– communication relation, which allows the agents that play roles that are
related by that relation to communicate with each other;

– authority relation, which establishes a relation of authority between the agents
that play roles that are related by that relation.

Clearly, although treated just as “links” between the agents that they relate,
such relations also impose norms on the agents: for instance, norms of permission
of communication and norms of authorization.

In addition, the MOISE+ model defines a compatibility relation between
roles, restricting the set of roles that an agent may play, simultaneously, in the
organization.

Regarding groups: although a group is presented conceptually as capable of
“operating as if it was a single entity” [22](p. 44), what happens is that, in their
formal definition, groups are construed to be just sets of roles, without explicitly
defined behaviors and interactions of their own.

Differently from the concept of group in Aalaadin, however, groups in
MOISE+ can be recursively structured in terms of other groups. But, accord-
ingly, the sub-groups of a group do not constitute explicit operational units
inside that group, due to their also being without explicitly defined behaviors
and interactions of their own.
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Formally, a group is a structure: G = (R,SG , Lintra , Linter , Cintra , Cinter ,
np,ng) where:

– R is the set of roles that constitute the group;
– SG is the set of sub-groups of the group;
– Lintra and Linter are the sets of internal and external relations (links) of the

group, respectively;
– Cintra and Cinter are the sets of internal and external relations of compatibility

of roles, intra and inter groups, respectively (the latter called, here, simply
group compatibility);

– np is a function determining the cardinality of the set of agents allowed to
implement each role of the group;

– ng is a function determining the cardinality of sub-groups of each group.

Clearly, given the sets of external relations Linter and Cinter , the set of groups
constitutes a network of groups.

The typing of the MOISE+ structural dimension with TPO types is shown
in Fig. 3(a).

The Functional Dimension. The functional dimension of the MOISE+ orga-
nizational model deals with the aims that a multiagent system has to attain.
It specifies such aims by means of a set of so-called social schemes, each social
scheme being a set of goals, structured as a compound plan. The goals of a social
scheme are taken to be goals of the whole multiagent system.

Goals are assigned to roles through ordered sets of goals, called missions.
The goals that constitute a mission assigned to a role may be present in any of
the locations of the social scheme, so that the assignment of missions to roles
amounts to a distribution of the compound plan of the social scheme among
the roles that participate in its execution. Goals assigned to roles by means of
missions become individual goals, that is, goals of the agents that play those
roles. The agents that are assigned gsoc get the right to start the execution of
the scheme.

Social schemes are structured in terms of goal trees, with a single goal as
the root of the tree, said to be the social goal of the scheme, which we denote
by gsoc . Sub-trees of the social schemes constitute plans for the realization of
their particular top goals. Goals that occupy the leaves of a plan do not have
indications, in the social scheme, of how to be achieved. It is up to the agents
committed to such goals to find ways to satisfy them.

Three operators, which allow the composition of goals, and two properties
constitute the structure of social schemes:

– sequential composition: g1 = g2, g3;
– choice: g1 = g2 | g3;
– parallelism: g1 = g2 || g3;
– success probability : the expected probability of success of the plan;
– success rate: the historical rate of success of the plan, updated each time the

plan is executed.
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Formally, a social scheme is a structure Sch = (G,P,M,mo,nm) where:

– G: the set of all goals of the scheme, including a root goal (gsoc);
– P : the set of plans that structure the scheme, one plan for each goal;
– M : the set of missions, spread over the set of goals, with a mission msoc ,

corresponding to the achievement of the social goal gsoc ;
– mo: the function that assign sets of goals to missions;
– nm: the function that determines the minimum and maximum number of

agents that may commit to a given mission.

A preference order (≺) may be imposed on missions that are committed
to the same agent. That is, if an agent commits to two missions, and one of
them is preferred, in comparison to the other, then the agent is supposed to give
preference to the goals of the more preferred mission, whenever possible.

Formally, a functional specification is given, then, by a structure FS =
(Sch,≺) where:

– Sch is a social scheme;
– ≺ is a preference order imposed on the missions of Sch.

The typing of the functional dimension of MOISE+ with TPO types proceed
as follows:

– social schemes and plans are typed as symbolic object nets, related to each
other by appropriate symbolic object relations;

– goals are typed as symbolic objects;
– missions are typed as sets of symbolic objects;
– success probabilities and success rates of goals, and commitment cardinalities

of missions are typed as symbolic object properties;
– preference orders between missions are typed as symbolic object relations.

The typing of the MOISE+ functional dimension with TPO types is shown
in Fig. 3(b).

The Deontic Dimension. The deontic dimension links the structural dimen-
sion with the functional dimension by specifying, for each role, which missions
an agent that plays the role has to achieve, or is permitted to achieve.

Both permissions and obligations to achieve goals may be qualified by tem-
poral constraints, in the form of time intervals in which those permissions are
valid, or those obligations should be completed.

Formally, a deontic specification is a structure of the form D = (P,O) where:

– P ⊆ R × M × TI is a set of permissions, where R is the set of roles of the
structural dimension, M is the set of missions of the functional dimension
and TI is the set of possible time intervals;

– O ⊆ R × M × TI is a set of obligations, defined on the same domain as P ,
containing at least one obligation, namely, obl(Rsoc ,msoc).

The typing of the MOISE+ deontic dimension with TPO types as shown in
Fig. 3(c).
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4.3 The CArtAgO Model

CArtAgO supports the development of environments for agent systems, by
means of the reification of environments’ objects in terms of the so-called arti-
facts. From the perspective of the agents, artifacts are characterized by the
following features [23]:

– properties, which agents can observe in them;
– operations, which agents can perform on them;
– events, which are messages they may send to agents, informing the realization

of some operation on the artifact by some agent.

Artifacts may be used to model not only material and symbolic objects, thus
implementing the material and the symbolic environments of agent societies,
but they be used also to model organizational objects, thus implementing the
organizational structure of agent societies, as is the case in the JaCaMo frame-
work [24].

We type the main elements of CArtAgO, the artifacts, with TPO types as
shown in Fig. 4. Notice that both operations and events typed as transformations
of properties of artifacts.

4.4 The Articulation of the Three Models

A core of JaCaMo is the articulation of the three models, of agents (Jason), envi-
ronments (CArtAgO) and organizations (MOISE+). This is done by mapping
concepts from each model into concepts of the other models.

The main mappings are the following:

– operations that can be performed on artifacts are made available as actions
that agents may perform (the so-called external actions);

– observable events that artifacts may generate are allowed to produce events
in agents, concerning the activation of plans;

– observable properties that artifacts can expose are made available as beliefs
in agents that deliberate to focus their attention on such artifacts through a
specific focus operation;

– organizational goals that belong to the social scheme of the organization are
mapped into individual goals that agents may attempt to achieve.

We type such conceptual mappings with TPO types by subsuming types, that
is, by making a type, which is mapped into another, a sub-type of the latter.
This shown in Fig. 5. where it should be noticed that the types ArtBeh, ArtEv
and ArtProp subsume the corresponding types for every type of artifact and so
subsume, in particular, the corresponding types for organizational artifacts [10].
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Fig. 3. The basic elements of the MOISE+ component of the JaCaMo model, typed
with TPO types.
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Fig. 4. The CArtAgO artifacts, typed with TPO types.

Fig. 5. The conceptual mapping between JaCaMo components, typed with TPO types.

5 Conclusion

This paper presented the TPO type system, with its basic types, type construc-
tors and constructed types for the Agent Society model.

TPO was applied to the typing of the main elements of the JaCaMo model,
illustrating the possibility of TPO being applied to other organization models,
besides Agent Society.

To the best of our knowledge, this the first work dealing with organizational
type systems for agent societies and multiagent systems. The only two works
that we know have made extensive use of the concept of type for multiagent
systems are [25–27], but they are what we have called first-order type systems,
that is, type systems concerned with typing basic societal elements (agents,
organizational roles, environmental artifacts), not the higher-level organizational
components of agent societies. The same consideration applies to works like
[25,28], for instance.

More specifically, the external object constructor mechanism makes of TPO
a parameterized type system, i.e., a type system whose basic types (except for
the type Time) are parameters that should be explicitly defined for each par-
ticular application. In other words, TPO is a second-order type system [1] for
agent societies, whose main first-order types are the external types (of agents,
roles, interaction protocols etc.), with respect to which TPO is neutral. That is
precisely what accounts for TPO ’s wide range of applicability, as exemplified in
Sect. 4 and, more generally, in [6].
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The flexibility and general applicability of TPO seems to indicate that the
research on typing systems for languages dedicated to the specification and devel-
opment of multiagent systems in general, and agent societies in particular, is an
effort that can effectively add to the state-of-art of the engineering of those
systems.

Acknowledgments. The author thanks the anonymous reviewers for their very help-
ful comments.
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Abstract. For autonomous agents and services to cooperate and interact in multi-
agent environments they require well-defined protocols. A multitude of proto-
col languages for multi-agent systems have been proposed in the past, but they
have mostly remained theoretical or have limited prototypical implementations.
This work proposes a practical realisation of a general framework for defin-
ing dialogue-based bilateral interaction protocols which supports arbitrary agent-
based interactions. Crucially, this work is tightly integrated with a modern frame-
work for the creation of autonomous agents and multi-agent systems, making it
possible to go from protocols’ specification to their implementation and usage
by agents, and enables evaluation of protocols’ effectiveness and applicability in
real-world use cases.

Keywords: Interaction protocols · Dialogues · General protocols

1 Introduction

Motivation Multi-Agent System (MAS) is recognised as a promising paradigm for
decentralised and ubiquitous computing that involves embedded and distributed devices
interacting with each other [30]. The increasing complexity and scale of these sys-
tems necessitates the development of abstractions and tools that simplify their develop-
ment and deployment. This demand gives rise to interaction protocols as a key mecha-
nism that enables cooperation amongst agents while recognising their individuality in a
decentralised environment and accommodating their competing interests [14].

Interaction protocols are a useful abstraction which not only help the process of
agent design by limiting the space of all possible states and actions in specific interac-
tions, but also enable analysis of agent-based systems to assess specific properties, for
example checking whether a system could arrive at a deadlock [49].

There are a multitude of protocol languages in the MAS literature based on vari-
ous formal abstractions and mathematical constructs, for example, based on UML [25],
state machines [22,49], trace expressions [13,18], and session types [52]. However, to
the best of our knowledge, they either remain theoretical (e.g. [13]), or have limited
prototypical implementations (e.g. [6,49,52]). As a result, the applicability and effec-
tiveness of interaction protocol systems, as part of agent-based solutions to real-world
problems, are not fully explored.
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Requirements. There are two fundamental requirements that guide this work. Firstly,
(Req. 1) we are interested in environments which are fully decentralised, a property
often considered integral to MAS itself [14]. Decentralisation refers to the absence of
central authorities that imperatively control aspects of the system (e.g. decision mak-
ing, communication, authorisation, coordination, etc.). In decentralised environments,
interactions are primarily peer-to-peer, without reliance on third-party facilitators. This
assumption immediately distinguishes this work from proposals such as [6,21] in which
interaction protocols are enforced via mediators and middleware.

Secondly, (Req. 2) the framework must be practically realised by an implementa-
tion that is accessible, enabling its application and evaluation in real-world use cases.
We believe that not paying attention to implementation leads to unexplored aspects of
the system design, or in some cases major oversights. For example, a number of pro-
tocols in the literature are defined with reference to private elements of an agent (e.g.
mental state) [3] and it is not entirely clear how such protocols may be implemented
and enforced in practice under standard MAS assumptions.

Contribution and Structure. This work resides in a larger body of work by the authors
([32–35,40]) to bring agent technologies to production by taking advantage of strategic
integration with distributed ledger technologies (DLTs) [47].

In this paper, we propose a general framework for dialogue-based bilateral interac-
tions that use protocols to govern the behaviour of interaction participants. The frame-
work is formally defined and its implementation facilitates its application in real-world
problems. The implementation is integrated into the AEA framework; a modern frame-
work for the development and deployment of agents [34].1 This allows interactions and
protocols to be specified then implemented and used by agents.

After informally describing the setting and highlighting key design issues in Sect. 2,
we formalise the framework in Sect. 3 and instantiate it to capture a specific interaction:
bilateral negotiation. We then shift our attention in Sect. 4 to implementation, discussing
the main components of the framework and the major implementation issues involved.
Section 5 provides a discussion of related works. Finally, Sect. 6 concludes and outlines
future work.

2 Dialogue-Based Bilateral Interactions

We define Bilateral interactions as well-defined high-level interactions between exactly
two players that serve a clear purpose. In the kinds of environment we focus on, players
could be agents, services or humans. Some example are, bilateral negotiations [4], state
channels [31], information-seeking [27] and HTTP request/responses.

The decentralised nature of multi-agent systems, the autonomy of agents, and the
heterogeneity of their designs have all contributed to the established practice of mod-
elling events and interactions amongst agents as messages [9,12,15,20,50]. A dialogue
then structures and encapsulates a series of messages exchanged as part of a single
interaction [38]. There are many dialogue-based approaches [2,4,11,37,39] to various
types of interactions (e.g. negotiation, persuasion, inquiry) [46].

1 The AEA framework’s repository can be found at https://github.com/fetchai/agents-aea.

https://github.com/fetchai/agents-aea
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The peer-to-peer nature of communication in fully decentralised environments (see
Req. 1) motivates our focus on bilateral interactions. Of course, it also simplifies the
system design and helps us focus our attention on achieving an end-to-end solution in
line withReq. 2. The bilateral primitives can later be used as foundation for multilateral
extensions of this proposal.

Any interaction serves a particular (set of) goal(s), called the interaction’s goal(s).
This is what all participant’s aim to achieve by taking part in the interaction. For
instance, the goal of a negotiation is dividing scarce resources amongst multiple par-
ties [46]. All players in an interaction also have personal goals which may not neces-
sarily be the same as the interaction’s goal. For instance, in negotiations, each player
aims to maximise its share of the resources.

2.1 Protocols

Protocols specify the bounds within which players in an interaction may operate to
ensure an interaction’s goal(s) are fulfilled [19,28].

A key issue to consider, when designing a concrete implementation of agent inter-
actions, is how players’ adherence to protocols is verified. In particular, anyone who
is observing an interaction must be able to confirm whether or not the players’ actions
conform to the protocol. This idea underpins proposals such as [6,21] which introduce
middle-layer moderator agents that coordinate communications and enforce protocols
on players. However, in decentralised environments, where the absence of such mid-
dleware is entailed, this responsibility may be reliably assigned only to the players
participating in the interaction themselves.

A consequence of the above is that protocols are restricted, in design, to making
reference only to public elements of an interaction [44]. For example, proposals (such
as [3]) which make references, either in syntax or semantics of their protocols, to e.g.
agents’ mental states, private strategies, etc., are in our experience not straightforward to
implement under standard MAS assumptions. Therefore, in this framework, protocols
can only be defined with reference to public elements of an interaction and protocol
adherence is verified by the players of the interaction themselves.

Another key design issue to consider is the assumption of (a)synchronicity in mes-
sage delivery [23]. Many proposals for interaction protocols in the literature assume
synchronous communication for simplicity [22,25]. However, we argue that the uncer-
tainty associated with the communication infrastructure, coupled with agents’ auton-
omy, and the possibility of agents engaging in parallel interactions make synchronous
communication, which blocks some or all other agent processes, detrimental to the
continuity and successful operation of a decentralised MAS. Therefore, in this frame-
work, we do not take the synchronicity assumption on board and address the problems
it causes on the framework level.

3 Framework

We now give a formal description of a general framework for bilateral dialogue-based
interactions and then provide an instantiation that captures bilateral negotiations.
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3.1 Bilateral Interactions

The environment is inhabited by players. In practice, a player might be an agent, service,
human, or other entity.

Definition 1 (Player). A finite set A is defined where each a ∈ A is a player.

A role is a logical actor in the context of an interaction identified by a name (e.g.
bidder, seller). Players participating in a dialogue are assigned roles (see Definition 11).
This is how protocols apply to specific players in a dialogue instance.

Definition 2 (Role). A set R is defined where any r ∈ R is a role and |R| ∈ {1, 2}.

|R| = 2 means each player has a distinct role and |R| = 1 indicates that both
players have identical roles.

Dialogues progress by players exchanging messages. Before defining a message,
we define the notions of speech-act (see [7]) and their reply structure:

Definition 3 (Speech-act). A set S of speech-acts {s1, . . . , sn} is defined where each
speech-act si is of the form P(c1, . . . , cn) where P is an element of a set P of perfor-
matives, and c1, . . . , cn is a sequence of contents.

Example 1. Examples of speech-acts are inform(φ), offer(ψ), commit(ω), request(ρ1,
. . . , ρ4)where inform, offer, commit, request are performatives and φ, ψ, ω (some infor-
mation) and ρ1, . . . , ρ4 (some resource descriptions) are contents.

Definition 4 (Reply). A function Reply : S −→ 2S specifies the valid replies to each
speech-act.

Example 2 (Running Example). Consider a simple request and response dialogue. Let
S = {req(φ), res(ψ)} where the speech-acts respectively represent a request and
response involving some information φ and ψ. We can define two alternative reply
structure as follows:

Reply1(req(φ)) = {res(ψ)} Reply2(req(φ)) = {res(ψ)}
Reply1(res(ψ)) = ∅ Reply2(res(ψ)) = {req(φ)}
In both Reply1 and Reply2, a request is replied to by a respond. However, in Reply1, a
respond does not have a reply and effectively ends a request/respond dialogue, whereas
in Reply2 a respond may be replied to by a follow up request which in turn can be
replied to by a follow up respond and so on.

Definition 5 (Message). The set M of messages is defined as {〈id , pl , sa, ta〉 | id ∈
N, pl ∈ A, sa ∈ S, ta ∈ N} such that the four elements of a message m are
respectively denoted by:

– id(m): the identifier of the message
– player(m): the player sending the message
– speech-act(m): the speech-act in the message
– target(m): the target of the message (i.e. the id of the message it replies to)
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Note how each message targets another in a dialogue. This is how protocols (defined
later) use the notion of reply.

Definition 6 (Dialogue). The set of dialogues, denoted D, is the set of all finite
sequences m1, . . . ,mn from M such that each ith message in the sequence has identi-
fier i. Given a dialogue d, the set of players participating in d is denoted by Ad, and
for every message mi ∈ d, player(mi) ∈ Ad.

A dialogue is thus a sequence of messages exchanged between a set of participating
players, as viewed by any player. A dialogue is bilateral if messages are exchanged
between exactly two players:

Definition 7 (Bilateral Dialogue). A dialogue d is bilateral iff Ad = {a, b} for some
players a, b ∈ A where a �= b.

Remark 1. The above definitions for dialogues specify the structure that each dialogue
participant maintains and not a construct globally shared between them. Due to the
asynchronous message exchange, the order of messages in dialogues on either side may
be different. This is discussed more in Sect. 4.1.

Notation 8. Let d = m1, . . . ,mi, . . . ,mn be some arbitrary dialogue. Then:

– d0 represents an empty dialogue.
– di represents m1, . . . ,mi.
– d,m represents the continuation of dialogue d with message m.
– dn′ is a sub-dialogue of dn iff n′ ≤ n and the first n′ messages in dn is the same as

those in dn′ .

An interaction must specify how a dialogue commences by describing the speech-act(s)
which can be used to start a dialogue:

Definition 9 (Commencement). A non-empty subset C ⊆ S of speech-acts S is
defined as initial. Any dialogue dn is commenced at 1 and speech-act(m1) ∈ C.

In some cases, it is useful for an interaction to define dialogue termination criteria
so the participating agents have prior agreement as to when their dialogue is terminated.
These criteria are defined in our framework via speech-acts.

Definition 10 (Termination). A subset T ⊆ S of speech-acts S is defined as terminal.
A dialogue dn is terminated at n, iff speech-act(mn) ∈ T and it is not the case that d
is terminated at an earlier point n′ < n.

Note that ifT = ∅, an interaction does not impose dialogue termination, and it is up
to the participants to decide the criteria for recognising when a dialogue is terminated
(e.g. after a period of inactivity).

Example 3 (Example 2 continued). We define one set C of initial and two alternative
sets T1 and T2 of terminal speech-acts where they correspond with the two reply func-
tions Reply1 and Reply2 in Example 2 (although any combination is possible).

C = {req(φ)}
T1 = {res(ψ)}
T2 = {}
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The role of a player in a dialogue is decided based on the initial message of the
dialogue. For example, a player a who sends a request message in a simple negotiation
dialogue is the buyer, and the player who receives the request message is the seller.

Definition 11 (Role Assignment). A partial function R : A×M 
−→ R assigns a role
to a player a given a message m iff:

1. speech-act(m) ∈ C

2. player(m) ∈ {a, a′} and {a, a′} ∈ Ad for some dialogue d and where a′ �= a is
some player.

If any of the above conditions are not met, i.e. m is not an initial message (condition 1)
or player a is not a participant in a dialogue with the initial message m (condition 2),
then R(a,m) = undefined.

Example 4 (Example 3 continued). Let R = {inquirer, respondent}, speech-acts
from Example 2, and initial speech-acts from Example 3. We define roles of players
in request/response dialogues as follows:

R(a,m) =

{
inquirer iff player(m) = a

respondent otherwise

A turn-taking function defines how turns shift in a dialogue:

Definition 12 (Turn-Taking). A turn-taking function is Turn : D −→ 2A where
Turn(d) ∈ Ad, specifying the player(s) who have the right to send the next message in
a dialogue.

Example 5 (Example 4 continued). We define two alternative turn-taking functions for
our simple request/response dialogues. Turn1 imposes a more rigid structure where
players alternate to send a message, and Turn2 being a more liberal definition, effec-
tively allows any participant to send a message at any point in a dialogue. Let x, x′ ∈ A

such that x �= x′:

Turn1(di) =

{
{x} iff i is even

{x′} otherwise
Turn2(di) = {x, x′}

We now define the notion of well-formed dialogues:

Definition 13 (Well-Formed Dialogue). A subset of dialogues Dw ⊆ D are well-
formed with the condition that a) d0 is always in Dw, and b) iff dn ∈ Dw so are all of
dn’s sub-dialogues dn′ where n′ < n.

Any terminated well-formed dialogue has an outcome that determines the state in
which the dialogue is terminated. A partial function Outcome assigns an outcome to
any such dialogue. This function can be utilised by dialogue participants as part of their
particular strategies. For example, a learning-based agent aiming to optimise its negoti-
ation strategy can use this function to keep track of the outcomes of its negotiations and
update its model accordingly.
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Definition 14 (Outcome). A non-empty finite set O is defined where each o ∈ O is
a dialogue outcome. A partial function Outcome : Dw −→ O maps any terminated
dialogue d to an outcome and Outcome(d) = undefined if d is not terminated.

Protocols define the legality of a message with reference to a dialogue:

Definition 15 (Protocol). A protocol is a labelling function Legal : Dw × M −→
{True, False} which satisfies protocol rules R1 − R6 below:

For any dn ∈ Dw and m ∈ dn, Legal(dn,m) = True iff:

– R1: player(m) ∈ Turn(dn)
– R2: speech-act(m) ∈ S.
– R3: id(m) = n + 1
– R4: target(m) = 0 iff id(m) = 1, otherwise 1 ≤ target(m) < id(m).
– R5: if m replies to m′ ∈ dn, then speech-act(m) ∈ Reply(speech-act(m′)).
– R6: dn is not terminated at n.

Protocol rules R1 and R2 respectively ensure that messages are sent by the ‘right’
players in a dialogue, as specified by the turn-taking function, and that they have the
correct speech-acts (per Definition 3). Protocol rule R3 ensures that each message is
correctly placed right after the last message in the dialogue. R4 and R5 regulate replies
by stating that only the first message replies to no other message (target(m1) = 0),
and any other message targets another one in the dialogue while respecting the reply
structure of speech-acts (Definition 4). Finally, R6 states that once a dialogue is termi-
nated, no other message can be legally added.

Together, the above rules define a lower bound on message legality. Of course, addi-
tional rules may be defined in specific interactions, for example, in the protocol that will
be described in the next section.

Definition 16 (Well-Formed Dialogues Against Protocols). A dialogue dn is well-
formed against a protocol Legal, iff Legal(dn−1,mn) = True.

Remark 2. Note that dialogues, well-formed under any protocol, are recursively well-
formed on their sub-dialogues due to Definition 13.

Proposition 1. Let I be an interaction dialogue system where s /∈ C and �s′ ∈ S such
that s ∈ Reply(s′). There is no well-formed dialogue d in I that contains a message
m where speech-act(m) = s.

Proof. Let us assume any well-formed dialogue d.

– speech-act(m1) �= s from s /∈ C and Definition 9.
– For any i > 1, mi targets some earlier message mj due to R4 and
speech-act(mi) ∈ Reply(speech-act(mj)) due to R5. However, because s does
not reply to any speech-act, speech-act(mi) �= s.

An interaction dialogue system can now be defined:

Definition 17 (Interaction Dialogue System). An Interaction Dialogue System is a
tuple 〈R,S, Reply,C,T, R, Turn, Outcome, Legal〉 where R is a set of roles, S is
a set of speech-acts, Reply is a reply function, C is the initial speech-acts, T is the
terminal speech-acts, R is a role assignment function, Turn is a turn-taking function,
Outcome is an outcome function, and Legal is a protocol.
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3.2 Framework Instantiated: Bilateral Negotiation

The framework presented above is abstract and needs to be instantiated to capture
specific interactions. In this section, we present a simple two-party negotiation as an
instance of the framework. A bilateral negotiation [3,4,43] is an interaction between
two agents that negotiate over a set of resources.

Definition 18 (Negotiation Dialogue System). An interaction dialogue system
for bilateral negotiation is an interaction dialogue system 〈Rn,Sn, Replyn,
Cn,Tn, Rn, Turnn, Outcomen, Legaln〉 where:

– (Negotiation Roles) Rn = {b, s} where b stands for buyer and s seller
– (Negotiation Speech-acts) Sn={cfp(e), propose(e, p), accept(), decline()} where

e is a non-empty set of resources and p ∈ R�0 denotes a price
– (Negotiation Reply)

Replyn(cfp(e)) = {propose(e, p), decline()}
Replyn(propose(e, p)) = {propose(e, p′), accept()}
Replyn(accept()) = Reply(decline()) = ∅

– (Negotiation Commencement) Cn = {cfp(e)}
– (Negotiation Termination) Tn={accept(), decline()}
– (Negotiation Role Assignment) Let m be an initial message and x ∈ A:

R(x,m) =

{
b iff player(m) = x

s otherwise

– (Negotiation Turn-Taking) Let x, x′ ∈ A such that x �= x′:

Turnn(di) =

{
{x} iff i is even

{x′} otherwise

– (Negotiation Outcome) On = {a-r, a-u} where a-r stands for agreement-
reached and a-u for agreement-unreached:

Outcomen(di) =

{
a-r iff speech-act(mi) = accept()
a-u otherwise

– (Negotiation Protocol) Legaln : Dw × M −→ {True, False} is a protocol, that
in addition to R1,R6, satisfies the negotiation rule N1 below: For any di ∈ Dw and
m ∈ di, Legaln(di,m) = True iff:

• N1: if speech-act(m) = propose(e, p) or speech-act(m) = accept(), and
m replies to m′ then player(m) �= player(m′).
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4 Implementation

In line with Req. 2 in the introduction, we developed a technical implementation of the
formalism we proposed in Sect. 3. In what follows, we describe its major components
and highlight important implementation issues.

4.1 Practical Considerations

Asynchronisation. Recall from Sect. 2 that in this work, we do not assume commu-
nication between agents to be synchronous. The asynchronisation means that the two
dialogue structures (see Definition 6), held by each participant in a dialogue, may not
necessarily be identical. Consider an example interaction with the following turn taking
function:

Turn(d) = {a, b} for any d, where a, b ∈ Ad

Let us assume a dialogue dn between a and b. At point n, agent a sends message m
while simultaneously b sends m′ (note the turn-taking function essentially allows any
participant to send a message at any point in the dialogue). After these moves, a’s
dialogue is d,m,m′ and b’s is d,m′,m.

This discrepancy entails that in addition to the explicit dialogue structures held by
each participant in a dialogue, there exists an implicit structure, which crucially no
participant has access to, that could represent the global state of the dialogue. This
structure, unlike local dialogues, is not a sequence, rather a poset (i.e. partially ordered
set) where only some of the messages are ordered and some are incomparable.

Definition 19 (Global Dialogues). A global dialogue is a tuple 〈M,≺〉 where M ⊂ M

is a set of messages and ≺ is a partial order.

Note that mi ≺ mj means mi precedes mj in both participants’ dialogues, and
having mi ⊀ mj and mj ⊀ mi means mi and mj are incomparable and thus ordered
differently in the two dialogues.

In the implementation, this means that messages are not uniquely identified only
by their id (e.g. when identifying which message is being replied to). Instead, id and
player combined are used to uniquely identify each message. This is achieved in the
implementation by splitting the set of non-zero integers into Z

+ and Z
−, assigning the

former to the player starting the dialogue (let us call it a) and the latter to the other
player (let us call it b). As a result, a continuously increments and b decrements the id
of the messages they send (replacing R3 in Definition 15). The second part of R4 then
is replaced with the condition that target(m) is between the smallest negative and
largest positive id excluding 0.

The incomparability of certain messages in an implicit global dialogue, and hence
the discrepancy of orders between local dialogues is not, in and of itself, a problem.
In some use cases, this incomparability does not matter, especially when taking into
account that the reply mechanism, strictly enforced in protocols, can cover causal order-
ing (e.g. a speech-act s which is strictly required to be after s′ can be defined as its
reply). It is however an issue that must be considered when designing specific interac-
tions.
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Moreover, there are interaction designs with specific reply structures and turn-taking
functions that guarantee total ordering over messages in the global dialogue. These
results are beyond the scope of this work and will be presented in future work on the
properties of interaction designs.

Parallel Dialogues. In practice, agents may be engaged in multiple interactions and dia-
logues at the same time. Therefore, an agent x who is having two simultaneous negoti-
ations with an agent y, should be able to recognise the correct dialogues y’s messages
belong to. To address this, each dialogue in the implementation is assigned a reference
by its two players. Thus, in addition to the four elements in Definition 5, each message
includes a reference to the dialogue to which it belongs.

4.2 Protocol Specification

The decentralised nature of multi-agent systems means agents may be designed and
developed independently. Any implementation of interaction protocols must therefore
support agents with heterogeneous technical requirements (e.g. hardware, platform, or
programming language) and diverse implementations.

For this reason, we have created a format for describing interactions and proto-
cols according to the formalism in Sect. 3.1, while being independent of specific pro-
gramming languages in which agents may be implemented. The format is based on
YAML [10], itself a language for structured data that is both machine and human-
readable (and as such, easy to edit with any standard text editor).

An example protocol specification corresponding with the bilateral negotiation
example of Sect. 3.2, as well as technical description of specification’s format can be
found in Sect. A in the appendix.

4.3 From Specification to Code

A protocol specification is only a high-level description of an interaction protocol and is
designed to be independent of agents’ implementations. For agents to engage in an inter-
action however, they need to have access to the protocol’s definitions in the language
they use. For instance, an agent developed in Python who wants to negotiate using the
protocol in Sect. 3.2 with another agent developed in Go, each require an interpretation
of the same specification in their own language.

The framework thus includes a protocol generator, which for any agent, given a
protocol specification, produces the protocol package in the language this particular
agent uses. Currently, the generator only takes into account the programming language
that agents use. This architecture however allows for other agent constraints to be added
later for consideration by the generator (e.g. an agent with limited resources may receive
a more resource-bounded interpretation of a protocol’s data structures).

Any generated protocol package consists of a) the technical definitions of the under-
lying concepts, e.g. a message, speech-acts and the reply structure, b) verification
checks on messages according to the protocol, and c) description of how messages
may be serialised and deserialised. Instructions on how to generate a protocol package
from a specification is given in Sect. C in the appendix.
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4.4 Serialisation

The messages agents exchange in dialogues may contain arbitrary contents with local
representations (i.e. objects). However, in order to send these messages over a net-
work, their local representations must be serialised by the sender and deserialised by
the receiver. The framework uses Protocol Buffers [29] as the serialisation mechanism
for cross-platform support.

Upon generating a protocol, the generator produces a protocol buffer schema,
describing serialised models, as well as encoding and decoding logic corresponding
with the protocol’s specification. The protocol buffer schema generated for bilateral
negotiations specification can be found in Sect. B of the appendix.

4.5 Protocol Adherence Verification

A protocol package, generated to meet the needs of an agent, provides all the definitions
needed for this agent to know “what can be done in these interactions?”. The question,
“what to do in an interaction?”, naturally arising, must be addressed for agents to par-
take in and benefit from interactions.

The framework places a separation of concerns with a clear distinction between
the roles of a protocol designer and an agent developer. The former designs an inter-
action protocol whose constructs are publicly accessible (e.g. what is a valid reply to
any speech-act). The latter designs the agent, most likely independent of the protocol
designer, and has access to constructs privately owned by its agent (e.g. the agent’s
utility function). The second question is addressed by agent developers, who create
strategies for their agents to engage in specific interactions.

The peer-to-peer nature of communication between agents, a direct consequence of
the environment’s decentralised nature, also means that in any interaction, the partici-
pating players’ adherence to the protocol is verified only by the players themselves. Any
message m is thus verified by its sender before being sent and by its receiver right after
it is received. The dialogue-based design of interaction protocols enables the resolution
of errors and failures of compliance via dialogues themselves [24].

5 Related Work

One of the most widely used notations for designing interaction protocols is Agent
UML (AUML) [26]. AUML is an extension of UML 2.0 [42] with additional agent-
specific features. AUML is a graphical notation and for relatively simple interactions
is intuitive. However, it is one of the most complex notations [36] with 17 distinct
graphical constructs compared with 11 for Statechart [22], and 5 or fewer for other
graphical notations [1,41,49].

AUML assumes message delivery is synchronous, therefore protocols suffer from
the enactability problem [18] which has to be addressed externally. The reliance on
UML also presents a major issue for AUML in that it is a semi-formal language. There
are no formal semantics for Interaction Diagrams and some of its elements make use
of unstructured text (e.g. guards). This means ambiguities and misunderstandings are
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possible, which in turn makes the realisation of tools and implementations of AUML
Interaction Diagrams difficult. Therefore, AUML is not considered a precise language.

Statechart is another popular and highly influential notation for agent interaction
protocols [22]. Similar to AUML, Statechart is a graphical notation, but unlike AUML,
it supports variables and parallel protocols, allowing them to model information-driven
interactions. Also similar to AUML, interaction protocols in statecharts are designed
with the synchronicity assumption, which means Statechart protocols are prone to the
same enactability problem.

Compared to FSMs and Petri nets, Statechart’s notation is fairly complex, both
graphically (with 11 distinct graphical elements) and due to unstructured text in cer-
tain elements (e.g. guards and effects). Furthermore, there are more than twenty seman-
tics, of differing types proposed for Statecharts. This means the same statechart can be
interpreted completely differently under different semantics [17,45].

Statecharts were designed from the outset for reactive event-driven distributed
systems, and not multi-agent systems. Therefore, they do not support the notion of
roles, and transitions represent events rather than messages. This means that message
attributes such as sender/receiver are not specified.

Hierarchical Agent Protocol Notation (HAPN) is a relatively more recent pro-
posal [49]. HAPN focuses on addressing the problems its authors found in prior pro-
posals, namely, a) flexible data-driven protocols, b) role representation and mapping to
agents, and c) hierarchical modularity.

HAPN is a graphical notation, with some structured textual elements, and uses Hier-
archical Finite State Machines [1] as its underlying conceptual model. It allows mod-
elling parallelism and exceptions, supports information-driven interactions by adding
flexibility on order of messages, and has some support for protocols with multiple role
instances.

Similar to the other two notations above, HAPN assumes synchronous message
delivery and the authors acknowledge the problems with this assumption, but argue that
this is a standard and long-standing assumption in protocol design notations and suggest
external processes for addressing them, e.g. [18].

Other research strands less closely related to our proposal include, commitment-
based [8,48,51] and norm-based [5,16] interaction protocols, and BSPL [44]. They are
all promising proposals, though some have fundamentally different assumptions than
ours (e.g. norm-based methods are usually applied in organisational settings which are
not entirely decentralised). However, none of these proposals has yet matured into a
widespread practical methodology.

6 Conclusion

In this work, we propose a general framework for dialogue-based bilateral interactions
that use protocols to govern their participants’ behaviours. There are many proposals in
the literature that focus on one or some aspects of the above problem. What sets this
work apart is its end-to-end approach, from formalisation and specification of interac-
tions to implementation and deployment as part of agent solutions.



324 S. A. Hosseini et al.

The multi-agent and strictly decentralised nature of the environments we focus on
(seeReq. 1) requires that protocols are verifiable by interaction participants and support
asynchronous message delivery. The practicality requirement (see Req. 2) means the
framework has to be formal and precise to be computational, and easy to use to be
practical. Although it is straightforward to verify the former via practical use, the latter
is harder to measure.

Our end-to-end approach means that we focused on a minimal complete proposal.
It can be further improved and extended in various directions:

– The replying nature of messages in dialogues lends itself nicely to a graph-
theoretical interpretation. This, in turn, enables studying the properties of interac-
tions under graph-theoretical assumptions and facilitates the creation of tools for
visualising protocols during design-time and easily analysing dialogues during run-
time. A graph-based characterisation further provides a natural way of defining pro-
tocol modularity (i.e. sub-protocols) via sub-graphs.

– A logical extension of this work is supporting multi-lateral interactions. A key prob-
lem we expect to encounter is staying within the true decentralisation assumption
where communication continues to be peer-to-peer and asynchronous. To overcome
this problem, exploring the use of specific cryptographic methods such as digital
signatures in messages could prove useful.

– Although the framework is fully formalised and practically accessible, the properties
of its interaction instances are left unspecified. It would be useful to present these
properties and highlight the effects of different interaction designs, including best
practices, on the characteristics of the resulting interactions.

– Drawing in-depth comparisons between our proposed formalism and others in the
literature, identifying conditions under which protocols expressed under each are
equivalent, and creating translations is another potential line of research. Once for-
mal connections are made, existing formalisms enjoy access to a practical frame-
work allowing them to be applied in and evaluated against real-world use cases.

– Another line of work could focus on increasing the expressiveness of the proto-
col specification language and the cross-platform support of the protocol generator,
covering more programming languages and platforms, and meeting other technical
requirements by agents, thus increasing support for more heterogeneous agents.

Acknowledgments. We thank Fetch.ai for supporting this research and the release of its imple-
mentation.

A Protocol Specification

Listing 1 shows the protocol specification corresponding with bilateral negotiation in
Sect. 3.2. Protocol specifications are formatted in YAML.2 and consist of three YAML
documents (enclosed between − − − and ...):

2 See https://yaml.org.

https://yaml.org
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---
name: negotiation
author: EMAS_authors
version: 0.1.0
description: 'A protocol for bilateral negotiations.'
license: Apache-2.0
aea_version: '>=1.0.0, <2.0.0'
protocol_specification_id: EMAS_authors/negotiation:1.0.0
speech_acts:

cfp:
e: ct:Resources

propose:
e: ct:Resources
p: pt:float

accept: {}
decline: {}

...
---
ct:Resources: |

bytes resources_bytes = 1;
...
---
initiation: [cfp]
reply:

cfp: [propose, decline]
propose: [propose, accept, decline]
accept: []
decline: []

termination: [accept, decline]
roles: {b, s}
end_states: [agreement_reached, agreement_unreached]
keep_terminal_state_dialogues: true
...

Listing 1: Protocol Specification for Bilateral Negotiation

– The first document contains basic information about the protocol as well as its
speech-acts. Speech-acts are each listed as key-values, where the key is the per-
formative and the value is a dictionary of its contents specifying their name and
type. For example, cfp has one content, named e whose type is ct : Resource. The
specification also comes with a language-independent type system. A summary of
the types are in Table 1.

– The second document contains protocol buffer schema snippet of any custom types
defined for speech-act contents.

– The third document contains the dialogue definitions where the fields are self-
explanatory and correspond with definitions in Sect. 3.1.
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syntax = "proto3";

package aea.EMAS_authors.negotiation;

message NegotiationMessage{

// Custom Types
message Resources{

bytes resources_bytes = 1;
}

// Performatives and contents
message Cfp_Performative{

Resources e = 1;
}

message Propose_Performative{
Resources e = 1;
float p = 2;

}

message Accept_Performative{}

message Decline_Performative{}

oneof performative{
Accept_Performative accept = 5;
Cfp_Performative cfp = 6;
Decline_Performative decline = 7;
Propose_Performative propose = 8;

}
}

Listing 2: Protocol Specification for Bilateral Negotiation

B Protocol Buffer Schema

An example of the protocol buffer schema that the protocol generator produces from
the specification in Listing 1 is given in Listing 2.

C Instructions on Using the Framework

Note that detailed and up-to-date instructions can be found at https://github.com/fetchai/
agents-aea.

https://github.com/fetchai/agents-aea
https://github.com/fetchai/agents-aea
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– Ensure you have Python 3.7 installed on your machine.
– Install the AEA framework using pip (python package installer):

> pip install aea[all]
– You many need to create a registry account (this is so you can publish your agent’s
packages on a registry):

> aea init
Then follow the on-screen instructions.

– Create an agent:
> aea create agent

– Enter the newly created agent directory:
> cd agent

– Generate the protocol:
> aea generate protocol <path>

where 〈path〉 is the path to the protocol specification file.
– The protocol package can now be found under . . . /agent/protocols/

negotiation.
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Abstract. We present an extension of the semantics for action execution
in the Gwendolen BDI programming language. This extension firstly
explicitly assumes that actions have durations and, moreover, that the
reasoning cycle of the agent can not be stopped while such an action
is executing but needs to continue in order to monitor for important
external events. Secondly, the extension assumes that actions may often
fail and this needs to be detected. This forms part of a larger project to
develop a framework plan/action adaptation within BDI agents in order
to enable long-term autonomy. We have implemented the extension and
demonstrate its operation in a simple case study.

Keywords: Engineering MAS · Action failure · Knowledge
representation

1 Introduction

We are interested in the use of Belief-Desire-Intention (BDI) agent programming
languages [23,26] for the high-level control of autonomous robotic systems and
particularly in support at the agent level for long-term autonomy . Agents are fre-
quently considered a suitable paradigm for decision-making in autonomous sys-
tems because of their encapsulation of the Sense-Reason-Act cycle. BDI agents,
with their high-level and declarative representation of concepts such as beliefs
and goals, are an attractive paradigm where such control needs to be amenable
to analysis (e.g., for assurance purposes). BDI agents have been deployed to con-
trol an array of cyber-physical autonomous systems such as autonomous vehicles,
spacecraft and robot arms (e.g., Mars Rover [7], Earth-orbiting satellites [12] and
robotic arms for nuclear waste-processing [1]).

Most BDI languages typically operate within a reasoning cycle that captures
the agent Sense-Reason-Act cycle. Within this cycle, the agent selects program-
mer supplied plans for execution based on the agent’s current beliefs and goals.
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These plans may change the agent’s mental state, but often also contain actions
(or capabilities) that are executed by the agent and have some effect on the out-
side world (with these effects being perceived by the agent in the Sense phase of
its reasoning cycle).

In [15], Dennis and Fisher highlight two problems with the way BDI lan-
guages typically handle actions: Firstly, it is claimed that in some languages,
that “execution of the BDI program waits for the action to complete before pro-
cessing other intentions, goals and plans”—in robotic systems, where an action
such as moving between two waypoints in a map, may take some time to com-
plete preventing the agent from monitoring the environment for other events
(for instance the need to avoid obstacles during movement). It should be noted
that this is only true for some BDI languages and there are notable exceptions
to this assumption [2,27]. Secondly, many languages lack principled mechanisms
within their semantics for detecting whether an action has succeeded and react-
ing appropriately to failure if it has not. Dennis and Fisher propose a generic
BDI semantics based on the concept of goal lifecycles to allow for actions with
durations and failure but provide no implementation of this semantics.

We are particularly interested in the latter, with the matter of failure detec-
tion. Robotic autonomous systems operating in real-world environments may
encounter intermittent failures of actions. Sometimes these failures will be tran-
sitory and can be ignored in terms of the long term operation of the system, in
other situations failures may be persistent indicating some change in the robot or
its environment which must be compensated for. Stringer et al. [33] propose an
action lifecycle in which actions are paired with descriptions of their operation
that may be deprecated in the event of repeated action failure and integrated
with mechanisms for repairing the descriptions and/or plans that involve those
actions (e.g., as proposed in [6]). This paper adapts the semantics from [15] to
integrate with this concept of action lifecycles and implements it in the Gwen-
dolen agent programming language with a view to ultimately implementing the
full action lifecycle and reconfigurability process from [33].

The rest of this paper is structured as follows. Section 2 contains a brief
description of BDI agents, how actions are normally treated in BDI-based lan-
guages, and the basics of the action theory in the Gwendolen agent program-
ming language. Next, in Sect. 3 we present how we have extended the afore-
mentioned Gwendolen’s action theory to support durative actions with failure
detection and share an illustrative example. The implementation of such adapta-
tion is discussed in Sect. 4 and evaluated through the use of a practical case study.
To conclude the paper we discuss related work and its similarities and differences
with our proposed approach (Sect. 5) and present our concluding remarks along
with a summary of future work (Sect. 6).

2 Background

An ‘agent’ is an abstraction developed to capture autonomous behaviour within
complex, dynamic systems [35]. It is defined in [29] as something that “can be
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viewed as perceiving its environment through sensors and acting upon that
environment through effectors”.

Cognitive agents [5,26,36] have explicit reasons for the choices they make.
These are often described in terms of the agent’s beliefs and goals, which in turn
determine the agent’s intentions. This view of cognitive agents is encapsulated
within the BDI model [25,26]. Beliefs represent the agent’s (possibly incomplete,
possibly incorrect) information about itself, other agents, and its environment,
desires represent the agent’s long-term goals while intentions represent the goals
that the agent is actively pursuing (the representation of intentions often includes
partially instantiated and/or executed plans and so combines the goal with its
intended means).

There are many different agent programming languages and agent platforms
based, at least in part, on the BDI approach [4,8,22]. Agents programmed in
these languages commonly contain a set of beliefs, a set of goals, and a set of
plans. Plans determine how an agent acts based on its beliefs and goals and form
the basis for practical reasoning (i.e., reasoning about actions) in such agents.
As a result of executing a plan, the beliefs and goals of an agent may change
and actions may be executed.

2.1 Actions in BDI Programs

Many BDI languages represent environmental interaction as an atomic action.
When an action is invoked it executes some low-level code invisible at the BDI
level or interacts directly with the external world. Such an action is often a
ground atomic command, and its effect is judged via agent perception, though
it may have an explicit return value (typically, ‘success’ or ‘failure’). Languages
that treat interaction in this way include Jason [4] and Gwendolen [13].

Interaction may also be modelled as capabilities. These have explicit pre- and
post-conditions such that the interaction is executed only if the pre-conditions
are true and, after the interaction has concluded, the post-conditions are asserted
explicitly by the language. Other effects may be subsequently observed via per-
ception mechanisms. It is possible that a capability executes no low-level code,
particularly when an agent is executing in some simulated setting where it is
considered sufficient to use just the post-conditions to represent the result of
the interaction. Languages that treat interaction in this way include GOAL [20]
and 3APL [11].

While some of these action representations contain mechanisms for the detec-
tion of action failure, this is generally not reflected in the language semantics
where little attention has been paid to how these failures should be handled.
Moreover, when we consider robotic systems, we also need to account for actions
that have durations while typical BDI language semantics generally assume a
near-instantaneous return after an action command is executed.

In [15], Dennis and Fisher propose a generic framework for integrating dura-
tive actions with failure modes into BDI programming languages. This proposal
builds on work on Goal life-cycles for BDI languages [18] that have active, sus-
pend and abort stages. They propose that actions be associated with success,
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failure and abort conditions; the abort condition is intended to handle situa-
tions where the action execution is deemed to have continued for “too long”
without either success or failure being detected. When an action is executed as
part of a plan, the goal the plan was to achieve is suspended pending comple-
tion of the action. This suspended state allows the processing of other goals to
occur. If the action’s success condition is met then the goal is returned to the
active state and the plan continues processing, otherwise the goal is returned to
a pending state for re-planning.

Stringer et. al [33] consider what happens when the performance of actions
in a BDI program change over time – for instance as hardware performance
degrades. They introduce the concept of an action lifecycle in which an action
is introduced into the system as Functional, may move into a Suspect state if
it is failing and finally becomes Deprecated following repeated failures. Cardoso
et al. [6] assumes a framework along these lines and builds upon it to outline a
mechanism that allows reconfiguration of a BDI agent’s plans in order to continue
functioning as intended if some action has become Deprecated. Our work here
is intended to integrate with such a framework by implementing a process by
which action degradation can be detected prior to designating an action as either
Suspect or Deprecated.

2.2 The Gwendolen Programming Language

We use the Gwendolen language for our implementation in part because of its
use to provide a high-level agent reasoner in a number of autonomous robotic
applications [1] and because of its link to the Agent Java Pathfinder (AJPF)
model-checker [14] since we have an interest in the assurance of autonomous
robotics.

A full operational semantics for Gwendolen is presented in [13], but its
key components are, for each agent, a set, B , of beliefs that are ground first-
order formulae and a set, I , of intentions that are stacks of deeds associated
with some event. Deeds can be the addition or deletion of beliefs, the adoption
of new goals, and the execution of primitive actions. A Gwendolen agent may
have several concurrent intentions and will, by default, execute the first deed
on each intention stack in turn. Gwendolen is event-driven and events include
the acquisition of new beliefs (typically via perception), messages and goals. A
programmer supplies plans that describe how an agent should react to events by
extending the deed stack of the relevant intention. These plans contain actions
for execution.

Action Theory in Gwendolen
The actions in Gwendolen exist as atomic actions. When an action appears
in a plan and is placed on an intention then, when processing of the intention
reaches the action, it is executed and all other processing ceases until execu-
tion has completed. As a result of the issues with this style of action execution
(particularly that no further perception takes place and so new events can not
be reacted to), it has become typical in Gwendolen programs to treat the
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execution of actions as the initiation of the action. A specialised “wait for” con-
struction is then used to suspend the intention containing the action until some
success criterion is perceived. This is analogous to the “suspend” state in the
Goal-lifecycle literature [15,18] since intentions are often created by the acquisi-
tion of a goal. Thus, Gwendolen loosely supports the concept of actions with
durations by making use of this “wait for” command.

In the Gwendolen operational semantics [13], action execution is repre-
sented by Eq. (1). The equation has been simplified by removing all reference to
unifiers, edge cases and some specialised action types. The state of the system
is represented by an environment, ξ, coupled with a large tuple containing the
components required by the agent to function of which we are primarily inter-
ested in the current intention, i . As noted above intentions represent a stack of
deeds to be executed in order to handle some event (e.g., to achieve a goal). We
use hd(i) to represent the top (head) deed on this stack and tl(i) to represent
the tail of the stack after the top deed is removed1.

hd(i) = a ξ
do(a)−−−−→ ξ′

〈ξ, 〈. . . i . . .〉〉 →action 〈ξ′, 〈. . . tl(i) . . .〉〉 (1)

Thus (1) states that when the top deed on the intention is flagged as action,
hd(i) = a, and the outcome of that action is to change the environment, ξ, to

become ξ′, represented by ξ
do(a)−−−−→ ξ′, then performing the action transforms

the pair of the environment and the tuple of agent components by changing the
environment and removing the top of the current intention, i , (i becomes tl(i)).
The other items in the agent’s tuple remain unchanged (represented by . . .).

The “wait for” command is governed by Eqs. (2) and (3) (again these have
been simplified to remove unifiers, edge cases and references to Prolog-style rea-
soning rules). Here ∗ . . . b represents the instruction “wait for b to become true”,
B |= b, expresses that the formula b is a logical consequence of the agent’s belief
base, B . While suspend(i) suspends intention i .

hd(i) = ∗ . . . b B |= b
〈ξ, 〈. . . i . . .B . . .〉〉 →wait for 〈ξ, 〈. . . tl(i) . . .B . . .〉〉 (2)

hd(i) = ∗ . . . b B �|= b
〈ξ, 〈. . . i , . . . ,B . . .〉〉 →wait for 〈ξ, 〈. . . suspend(i), . . . ,B . . .〉〉 (3)

So if the top deed on an intention is the instruction to wait for b to become
true (∗ . . . b) and that belief is believed to have become true, B |= b, then the
intention continues processing (2). If not, the intention is suspended (3).

Lastly, existing intentions are unsuspended when new beliefs are added. This
can happen either as a result of perception or as deeds that appear in plans, in
both cases the new beliefs appear on the top of some intention:

1 For simplicity of presentation, we here treat the intention as a stack of deeds but
it should be noted that more information, such as the goal to be achieved, is also
included in the full semantics.



Implementing Durative Actions with Failure Detection in Gwendolen 337

hd(i) = +b
〈ξ, 〈. . . i , I ,B . . .〉〉 →add belief

〈ξ, 〈. . . tl(i),unsuspend(I , b) ∪ new(+b, ε),B ∪ {b}, . . .〉〉
(4)

Here unsuspend(I , b) unsuspends all suspended intentions in I (the agent’s
intention set) that are waiting for b to become true. Whilst new(e, d) creates a
new intention from an event and a deed2. Therefore this rule adds a new belief,
+b, to the belief base, B, and a new intention noting the appearance of the new
belief. At the same time, all intentions that are waiting for b to be achieved as
part of their suspend condition are unsuspended.

3 Adapting Gwendolen’s Action Theory

Following [15] we associate actions with three terminating conditions: Success,
Failure, and Abort. These conditions are represented in an extended action nota-
tion as a : (φs, φf , to) where φs is the success condition, φf is the failure condition
and to is a time out period after which the action should be aborted. Whilst a
time period has been used as an abort condition in this example, it must be noted
that this condition is not limited to solely time-based criteria. We assume that
the agent can perceive from the environment the length of time an action, a, has
been executing as a percept, time(a, t). We also extend our agent to maintain
two action logs that track action failures and aborts. In future work, we intend
to use these logs to determine when an action is Suspect or Deprecated [33].

When an action is executed either it is an instantaneous action (in which
case one of its termination conditions is either instantly or trivially true), or it
has a duration and the current intention is suspended. This follows [15] where
the goal is suspended since, as already noted, Gwendolen’s intention life-cycles
map onto the goal-lifecycles of [18] and [15].

We consider first the case in which one of the termination conditions is true
when the action executes—i.e., it is instantaneous. Equation (5) shows the case
where the success condition is true. This behaves as (1) since this situation is
analogous to action execution in the existing Gwendolen semantics.

hd(i) = a : (φs, φf , to) ξ
do(a)−−−−→ ξ′ B |= φs

〈ξ, 〈. . . i ,B , . . .〉〉 →action 〈ξ′, 〈. . . tl(i),B , . . .〉〉 (5)

Where the failure condition is encountered this is logged and the action is
retried (6). We represent our two action logs as a mapping, Li : A → N (where
i ∈ {failure, abort}) from the set of actions, A, to the number of times the action
is failed/aborted. We use the notation Li(a) ← n to indicate that the value of
Li(a) has been changed to the number n. We include this rule for completeness,
though it is difficult to think of a situation where an action is presumed to be a

2 This process of creating a new intention is not of relevance to this paper, but allows
a Gwendolen agent to react to changes in its beliefs – e.g., to avoid an obstacle.
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failure at the point of execution3. The current intention, i , is unchanged. Next
time the intention is selected the action will be attempted again.

hd(i) = a : (φs, φf , to) ξ
do(a)−−−−→ ξ′ B |= φf

〈ξ, 〈. . . i ,B . . . , Lfailure〉〉 →action 〈ξ′, 〈. . . i ,B . . . , Lfailure(a) ← Lfailure(a) + 1〉〉
(6)

Note that we do not have a case here for the abort conditions. Since we are
treating aborts explicitly as time outs in this notation and this makes no sense
in the case of instantaneous action completion.

We now consider the case where none of the termination conditions hold
when the action is executed. In this case intention is suspended with the action
marked as executing (7). We use : to indicate the concatenation of a deed to
the top of an intention stack.

hd(i) = a : (φs, φf , to) ξ
do(a)−−−−→ ξ′ B �|= φs B �|= φf

〈ξ, 〈. . . i ,B . . .〉〉 →action 〈ξ′, 〈. . . suspend(executing(a) : tl(i)),B . . .〉〉 (7)

The transition rule (4) is left unchanged. It unsuspends the intention if any
of the termination conditions are perceived. We then use (8), (9) and (10) to
either process the rest of the intention (if the action has terminated with success)
or to update the log and attempt the action again (if we have terminated with
failure) and, in the case of an abort to explicitly abort the action execution in
the environment.

hd(i) = executing(a : (φs, φf , to)) B |= φs

〈ξ, 〈. . . i ,B . . .〉〉 →action 〈ξ, 〈. . . tl(i),B . . .〉〉 (8)

hd(i) = executing(a : (φs, φf , to)) B |= φf

〈ξ, 〈. . . i ,B . . . Lfailure〉〉 →action

〈ξ, 〈. . . a : (φs, φf , to) : tl(i),B . . . , Lfailure(a) ← Lfailure(a) + 1〉〉
(9)

hd(i) = executing(a : (φs, φf , to)) B |= time(a, t) ∧ to ≤ t

ξ
do(abort(a)−−−−−−−→ ξ′

〈ξ, 〈. . . i ,B . . . Labort 〉〉 →action

〈ξ′, 〈. . . a : (φs, φf , to) : tl(i),B . . . , Labort (a) ← Labort (a) + 1〉〉
(10)

We also need a rule to resuspend an intention if it transpired that none of the
termination conditions had been met. This was because the process for detecting
when an intention should unsuspend was based on identifying individual ground
predicates and, in particular, did not identify abort time outs well and so we
adapted it to unsuspend the intention whenever a new stamp was perceived.

3 It is possible the failure conditions could be used here a bit like pre-conditions in
capabilities, but that would really be an abuse of the notation.
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This is shown in (11).

hd(i) = executing(a : (φs, φf , to))
B �|= φs B �|= φf ¬(B |= time(a, t) ∧ to ≤ t)

〈ξ, 〈. . . i ,B . . .〉〉 →action 〈ξ, 〈. . . suspend(executing(a) : tl(i)),B . . .〉〉 (11)

3.1 Example

To illustrate the operation of this semantics we consider a simple example of
a wheeled inspection robot tasked to navigate around a space represented as a
topological map and take images at specific locations in that map. We consider
a specific example where the robot is moving through a hallway to the fire exit,
where it is supposed to log an image of the fire exit (for later human inspection
to verify that the fire exit is clear). However, the hallway is constructed in such
a way that, particularly at times when many people are moving through it, the
obstacle avoidance behaviour of the robot means it sometimes ends up at the
wrong location—the entrance door and sometimes the movement takes far longer
than the expected duration (5 min) of the move.4

We are therefore considering two actions one with a duration (move to
fire exit) and one without (take image):

move to fire exit : (at(fire exit), at(entrance), 5) (12)

take image : (�,⊥, 0) (13)

We represent the agent’s intention stack as a stack of deeds, ignoring some of
the other information Gwendolen stores in intentions which is irrelevant here.
At the point where it starts traversing the hallway, it has two deeds on the stack
– the action to move to the fire exit, followed by the action to take an image.

deed
move to fire exit
take image

The agent attempts to execute move to fire exit. At this point the agent
is neither at the fire exit nor at the entrance so the intention is suspended and
move to fire exit is marked as executing (according to (7)). The intention
becomes:

Suspended:
deed
executing(move to fire exit)
take image

Three things may now happen.
4 Many robot path planning algorithms will reach their target events but when inte-

grated with high level decision-making it is often announced that the robot has
reached another waypoint.
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1. Firstly, the robot may reach the fire exit. The agent perceives at(fire exit)
and the intention is unsuspended. At this point the agent makes a transition
in accordance with (8) and the intention becomes:

deed
take image

The agent may then execute take image. This is an instantaneous action
with a trivial success condition. A transition occurs according to (5) and the
intention becomes:

deed

This intention is now complete and will be cleared away as part of the rest
of the reasoning process.

2. Secondly, the robot may reach the entrance. The agent perceives at(entrance)
and the intention is unsuspended. At this point the agent makes a transition
in accordance with (9) and the intention becomes:

deed
move to fire exit
take image

At the same time the failure log is updated to note the failure of
move to fire exit. We are now back in our original state and the action
will be re-attempted.

3. Thirdly, after five minutes the robot may have reached neither the fire exit nor
the entrance and may still be attempting to move through the hallway. The
agent perceives time(move to fire exit, n) where n ≥ 5 and the intention
is unsuspended. At this point the agent makes a transition in accordance
with (10). The agent performs the action, abort(move to fire exit) and
the intention becomes:

deed
move to fire exit
take image

At the same time, the abort log is updated to note the abort of
move to fire exit. We are now back in our original state and the action
will be re-attempted.

It should be noted that, particularly in the case of an abort, we might not want
to simply re-attempt the action. For instance, we might want to wait until the
hallway was less crowded before attempting to move again. Providing a richer
set of tools for reacting to failures and aborts, ideally involving analysis of the
logs, is future work (see Sect. 6).
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4 Implementation

We implemented the extended semantics for Gwendolen5. Gwendolen is
implemented using the Agent Infrastructure Layer (AIL), a Java framework that
contains support for implementing interpreters for agent programming languages
by representing the operational semantics directly. The key tasks, therefore, were
to extend the class representing Gwendolen actions to contain the termina-
tion conditions and time outs and then integrate our new rules into the existing
Gwendolen interpreter which we did by extending the existing action execu-
tion rule (1) with additional cases. The tuple representing the agent state also
had to be extended to include the abort and failure logs.

The new rules that have been integrated in top the existing Gwendolen
interpreter are represented by a set of algorithms (Algorithms 1, 2, 3 and 4).
They are separated for clarity: Algorithm 1 represents the operational rule that
handles durative actions, making use of the other three algorithms within that
handle the terminating conditions (Algorithms 2, 3 and 4). The original rule
for handling actions also appears in Algorithm 1 to account for actions without
durations.

Algorithm 1: Handle Durative Action
1 Function handleDurativeAction(Agent)
2 Environment ←− get environment(Agent);
3 Intention ←− get intention(Agent);
4 Action ←− get topdeed(Intention);
5 if Action instanceof DurativeAction then
6 if Action is not executing then
7 execute action(Action);
8 ActionStatus = executing;

9 check success(Agent);
10 check failure(Agent);
11 check abort(Agent);

12 else
13 handle action(Agent);

As previously stated, Algorithm 1 represents the new operational rule for
handling durative actions. The agent is required as a parameter for the rule in
order to initialise the environment and intention variables from which the appro-
priate action is identified (lines 1–4). After establishing that the following action
is a durative action and should have terminating conditions and a duration,
the agent executes the action (if the action is not already being executed) and
the status of that action is changed to executing (lines 5–8). As any duration
5 The implementation can be found in https://github.com/peterstringer/mcapl/tree/

dev.

https://github.com/peterstringer/mcapl/tree/dev
https://github.com/peterstringer/mcapl/tree/dev
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of action is accepted, the checks for terminating conditions begin immediately
(lines 9–11) and continue to be checked every time this rule is called for that
action. If the action is not considered to be a durative action, the regular action
handling rule is called (lines 12–13).

Algorithm 2: Handle Action Success
1 Function checkSuccess(Agent)
2 Action ←− get action(Agent);
3 SuccessCondition ←− get success conditions(Action);
4 if agent believes(SuccessCondition) then
5 drop top deed;
6 get next deed;
7 ActionStatus = notExecuting;

The Handle Action Success rule is described in Algorithm 2. The action
in question is retrieved from the agent, and in turn the success conditions for
that action are also retrieved (lines 1–3). The agent now considers whether the
expected success conditions have been reached or not, by attempting to find
those conditions in the belief base. If the conditions are believed then the top
deed is dropped and the next deed on the stack is set as the new top deed, whilst
the status of the action is set to notExecuting.

Algorithm 3: Handle Action Failure
1 Function checkFailure(Agent)
2 Action ←− get action(Agent);
3 FailureCondition ←− get failure conditions;
4 if agent believes(FailureCondition) then
5 ActionStatus = notExecuting;
6 log fail(Action);
7 drop top deed;
8 get next deed;
9 print failure message;

Algorithm 3 represents the Handle Action Failure rule. Similarly to the Han-
dle Action Success Rule, the action is retrieved from the agent before getting the
failure conditions for that action. If the agent then believes the failure conditions
have been met, the action status is changed to notExecuting and the action is
marked on the log as failed. Next, the top deed is dropped and replaced by the
next deed on the stack before printing a failure message.



Implementing Durative Actions with Failure Detection in Gwendolen 343

Algorithm 4: Handle Action Abort
1 Function checkAbort(Agent)
2 Action ←− get action(Agent);
3 AbortCondition ←− get abort conditions(Action);
4 if agent believes(AbortCondition) then
5 if Action = Executing then
6 execute action(abort(Action));

7 ActionStatus = notExecuting;
8 log abort(Action);
9 drop top deed;

10 get next deed;
11 print abort message;

Lastly, in Algorithm 4, we describe the operational rule for Handle Action
Abort. The action is retrieved from the agent and the action’s abort conditions
are also retrieved, before checking if the agent believes that these conditions have
been met. If so, an abort action is created using the action as an argument, and
immediately executed. Next, the status of the action is changed to notExecuting,
and the action abort is logged in the abort log. The top deed is then dropped
and the next deed on the stack is set as the new top deed, before printing a
message to note the abort.

Case Study
To show our extended action theory in practice, we have deployed an agent into
an environment containing four waypoints represented in a topological map at
the agent level (this could be easily integrated into a robotic system using the
approach described in [9]). The goal for the agent is to navigate through four way-
points within an expected time allowance between each point. Whilst an agent
struggling to achieve this simple goal consistently is not likely to be deployed
in a remote environment, for the following examples our agent is assumed to
be functional and capable of achieving this goal routinely with any failures and
aborts having been constructed to show the operation of our extended action
theory. To simulate the dynamic nature of a real-world environment, the action
outcomes were occasionally randomised.
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1:name : Rover
2

3: I n i t i a l B e l i e f s :
4at (0 )
5

6: I n i t i a l Goals :
7gotowaypo in t
8

9: Plans :
10+!gotowaypo in t :
11{ � }
12←
13+!goto01 ,
14+!goto02 ,
15+!goto03 ,
16+!goto04 ;
17

18+!goto01 : {B at (0 ) } ← move to1 ;
19+!goto02 : {B at (1 ) } ← move to2 ;
20+!goto03 : {B at (2 ) } ← move to3 ;
21+!goto04 : {B at (3 ) } ← move to4 ,
22+at waypo i n t ;
23

24+at (4 ) : {B at waypo i n t } ← p r i n t ( a r r i v e d a t w a y p o i n t ) ;

Listing 1. Gwendolen Agent: Rover

4.1 The Gwendolen Agent

This case study makes use of a Gwendolen agent, called Rover, with the initial
belief that it is at(0), the starting position, and has an initial goal of performing
the gotowaypoint goal. The body of this goal is detailed in the Plans section of
the Gwendolen agent. We use a standard BDI syntax to describe this: where
!g indicates a goal, and +!g indicates the commitment to perform that goal.

The plan for the addition of the gotowaypoint goal contains a list of sub-
goals denoting a route through three waypoints, appropriately named 1, 2, and
3, before reaching the final waypoint, 4. Each sub-goal contains a guard (e.g.,
{B at(0)} ) containing a belief to ensure the agent believes it is at the required
location before attempting the subsequent action. The subgoal +!goto04 differs
only by the addition of a belief (+at_waypoint) that the agent has reached the
final waypoint. Finally, once the agent believes it has arrived at waypoint 4, a
print action is executed to mark the end of the journey.

4.2 Durative Actions and Their Terminating Conditions

To allow the agent to recognise the expected outcomes of each action, a record is
kept containing the action with a success and fail condition. The record of actions
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required for this case study are shown in Listing 2, in the format: {success-
condition} action-name {failure-condition}.

1{ at (1 ) } move to1 { at (0 ) , a t (2 ) , a t (3 ) , a t (4 ) }
2{ at (2 ) } move to2 { at (0 ) , a t (1 ) , a t (3 ) , a t (4 ) }
3{ at (3 ) } move to3 { at (0 ) , a t (1 ) , a t (2 ) , a t (4 ) }
4{ at (4 ) } move to4 { at (0 ) , a t (1 ) , a t (2 ) , a t (3 ) }

Listing 2. Durative Actions

Action Success. The success condition for each action in this case study is a
single belief that the agent is at the expected waypoint. If the agent believes this
condition, the action has succeeded. The expected output for an action success
is shown in Listing 3.

1INFO : Execu t i ng a c t i o n : move to (1 )
2INFO : Rover done move to (1 )

Listing 3. Action Success Log Output

Action Failed. Similarly to the success condition, the fail condition for an
action in this case study is the belief that the agent is at a waypoint that isn’t
listed as the expected waypoint. The expected output for an action failure is
shown in Listing 4.

1INFO : Execu t i ng a c t i o n : move to (1 )
2INFO : Rover done move to (1 )
3ACTION FAILED − RETRYING

Listing 4. Action Failure Log Output

After which the failed action will be executed again until successful or aborted.

Action Abort. Whilst the abort condition for actions has not yet been explic-
itly stated, for this example the action aborts as a result of a “time out”. An
action is considered to “time out” if the time passed in the environment during
execution exceeds the expected duration of the action. The expected output for
an action abort is shown in Listing 5.

1INFO : Execu t i ng a c t i o n : move to (2 )
2INFO : Rover done move to (2 )
3ABORTING ACTION − TIMED OUT
4INFO : Rover done abo r t ({ at (2 ) } move to2 { at (0 ) , a t (1 ) ,

a t (3 ) , a t (4 ) } )

Listing 5. Action Abort Log Output
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4.3 Results

If the rover executed each move_to action and managed to achieve their success
conditions, the output in the log would be as shown in Listing 6.

1INFO : Execu t i ng a c t i o n : move to (1 )
2INFO : Rover done move to (1 )
3INFO : Execu t i ng a c t i o n : move to (2 )
4INFO : Rover done move to (2 )
5INFO : Execu t i ng a c t i o n : move to (3 )
6INFO : Rover done move to (3 )
7INFO : Execu t i ng a c t i o n : move to (4 )
8INFO : Rover done move to (4 )
9INFO : Execu t i ng a c t i o n : p r i n t ( a r r i v e d a t w a y p o i n t )
10INFO : Execu t i ng a c t i o n : p r i n t l o g s
11INFO : Rover done p r i n t l o g s
12a r r i v e d a t w a y p o i n t
13Proce s s f i n i s h e d wi th e x i t code 0

Listing 6. Success Log Output

Whilst deploying the rover into an environment with occasional randomisa-
tion of action outcomes returns a log similar to Listing 7.

1INFO : Execu t i ng a c t i o n : move to (1 )
2INFO : Rover done move to (1 )
3ACTION FAILED − RETRYING
4INFO : Execu t i ng a c t i o n : move to (1 )
5INFO : Rover done move to (1 )
6INFO : Execu t i ng a c t i o n : move to (2 )
7INFO : Rover done move to (2 )
8ABORTING ACTION − TIMED OUT
9INFO : Rover done abo r t ({ at (2 ) } move to2 { at (0 ) , a t (1 ) ,

a t (3 ) , a t (4 ) })
10INFO : Execu t i ng a c t i o n : move to (2 )
11INFO : Rover done move to (2 )
12INFO : Execu t i ng a c t i o n : move to (2 )
13INFO : Rover done move to (2 )
14INFO : Execu t i ng a c t i o n : move to (3 )
15INFO : Rover done move to (3 )
16INFO : Execu t i ng a c t i o n : move to (4 )
17INFO : Rover done move to (4 )
18INFO : Execu t i ng a c t i o n : p r i n t ( a r r i v e d a t w a y p o i n t )
19INFO : Execu t i ng a c t i o n : p r i n t l o g s
20INFO : Rover done p r i n t l o g s
21a r r i v e d a t w a y p o i n t
22F a i l u r e s : :{ at (1 ) } move to (1 ) { at (3 ) } −− 1
23Abort s : : { at (2 ) } move to (2 ) { at (4 ) } −− 1
24Proce s s f i n i s h e d wi th e x i t code 0

Listing 7. Log Output with Randomness
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In this instance, the rover experienced one action abort and one action failure.
The rover has aborted the move_to(2) action after it had timed out, which was
the action’s current abort condition. After aborting the action, the agent notes
the completion of the abort in the log, stating the capability that has timed
out before attempting to execute the action again. Once the rover completes
the task, the log of aborts and failures is printed with a tally of how many
times each has occurred. Failures are logged similarly to aborts but only occur
once an action has completed rather than terminating during execution. In this
case, the move_to(1) action does not achieve the expected post-condition and
instead satisfies the failure condition of the action, the agent subsequently logs
this failure and retries the action. At this stage of implementation, if an agent
encounters a failure or abort condition it is logged then the action is retried until
successful. Further analysis of this log could determine the optimal solution for
an action that is not performing as expected, as mentioned previously this will
be considered in future work.

5 Related Work

In general BDI languages do not explicitly treat actions as having durations. A
notable exception is the Brahms language [31] in which actions, called activities,
explicitly involve durations. Brahms was originally developed as a simulation lan-
guage and its focus was upon answering questions about whether human-agent
teams could complete tasks within particular times. In its original presentation,
Brahms had no formal semantics. However, one was later provided [32] though
this focuses primarily on the effect of duration on simulation without any formal
framework for activity failure or monitoring.

The field of AI Planning has invested considerable effort in the modelling of
actions and capabilities with durations and stochastic outcomes, both theoreti-
cally as variants on Markov Decision Procedures [24,37] and practically captur-
ing such concepts in planners (e.g. [10]) and domain description languages such
as the PDDL 2.1 extension of PDDL [17]. In planning the effect of the action
duration is of most importance during the generation of the plan, rather than its
execution. Executable plans are represented as sequences of actions and lack the
manipulation of mental states that is the defining feature of BDI approaches.

The modelling of actions with durations has been considered in logics for
agency. Troquard et. al [34] represent these using continuations within STIT
logic. The logic does not explicitly link the issue of durations with aborts, nor
does it adequately account for the need to suspend working on a goal while
waiting for an action to complete. As such this work was less attractive as a
starting point for our Gwendolen implementation than that in [15].

The modelling of actions with durations has also been considered in recent
versions of the GOAL programming language [21], although there is no support
for failures and dealing with failures.

The task of defining and deploying durative actions for use beyond a simplis-
tic atomic perspective has also been well explored in the research area [16,19,28].
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A formalism for modelling dynamic environments is proposed in [19] with specific
consideration for actions that might not be achieving expected outcomes. Whilst
the research considers many of the issues encountered whilst deploying an agent
into a dynamic environment, it focuses specifically on defining a formalism for
multi-agent simulation (as intended by the authors) rather than implementation.
Work in [28] critiques the modelling of actions in BDI languages, outlining not
only the inadequacy of current action theory for use in a dynamic environment
but also the additional facets of feedback for actions that can be exploited whilst
using a dynamic environment. Specifically the ability to consider an action’s suc-
cess or failure from environment perceptions. The focus of [28] is to provide an
improved action and perception model for complex endogenous environments,
and takes a different research direction to that which is considered in our work
(see 6).

In [16], poor domain specification is highlighted as an issue and an extension
of action theory is considered to account for a more dynamic environment. How-
ever, BDI languages were deemed inappropriate for the endeavour, although for
reasons that have since been rectified.

There has been a great deal of work on plan failure in BDI programming
languages (e.g., [3,30]). This has not distinguished goal failure from action/ca-
pability failure. This is understandable, when an action fails its most important
effect is on the goal which may need to be dropped or re-planned. As a result,
work has focused on goal dropping and re-planning mechanisms which are cap-
tured in the work on BDI goal life-cycles in [18] upon which much of our work
is also based. Clearly, integration of our action failure logs with mechanisms for
goal dropping and re-planning is an important future step and we anticipate
drawing upon this research then.

6 Conclusions and Future Work

In this paper, we have adapted the abstract semantics from [15] to the question
of failure detection and logging. In [15], when an action fails or is aborted, the
goal/intention moves back to a pending state for re-planning and it is clearly
anticipated that mechanisms such as those outlined in [3] would be employed
at that point to drop or re-plan the goal. However, since we are working in an
application area where sometimes actions fail without the need to replan, we
have replaced this concept with the idea of failure logs and action re-attempts
which will, in future, need to be integrated into a process for goal re-planning.

We also needed to implement an explicit abort call from the agent to the
action executing in the environment, where [15] implicitly assumes this has hap-
pened externally and the agent just detects an abort has taken place. This would
appear to be an oversight in the abstract semantics—while an action can be
expected to complete execution itself (either in a successful or failure state), it
is less reasonable to assume that responsibility for decisions to abort an action
should be external to the high-level agent.

Finally, we have implemented this adaptation to Gwendolen and demon-
strated its functioning on a simple inspection example.
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This work is a step towards realising the process for BDI agent reconfigurabil-
ity outlined in [33]. Their action behaviour is monitored and actions are marked
first suspect and then deprecated if a judgment is made that their behaviour has
changed as a result of either hardware degradation or changing environmental
conditions. Once an action is deprecated techniques outlined in [6] could be used
to replace the appearance of the action in an agent’s plans with suitable alter-
natives. Ultimately we also want to investigate the learning of “new” actions
that can replace deprecated ones by updating some description of the action’s
behaviour that appears in an internal self-model for the agent. The integration
of failure detection and logging in a principled way into an agent programming
language was an important first step towards this goal but there is clearly more
work to be done.
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Abstract. We present algorithms for computing definitions and con-
cept descriptions that agents can use to restrict and adapt their knowl-
edge with respect to signature shared with other agents. This ensures
that knowledge shared is understood by the communication partners. We
focus on agents that make use of description logic ontologies to represent
their expertise. We have implemented and evaluated the performance of
the algorithms in the form of a case study and on a freely accessible
ontology. Our evaluation suggests that definition extraction can reduce
the amount of messages exchanged by agents, thus optimising the com-
munication time and effort of the agents.

Keywords: Agent · Ontologies · Approximation · Definitions

1 Introduction

One of the appealing characteristics of agents and multi-agent systems MAS(s)
is that each agent can provide distinct services and likewise have a distinct set
of facts about the world. This avoids the need for massive upfront coordina-
tion and various sorts of integration but introduces fundamental communica-
tion challenges including the determination of common knowledge and potential
increasing amount of knowledge shared between any set of agents.

Establishing common knowledge for communicating agents is non trivial,
and has been studied in the literature as part of the topics of agent negotia-
tion and ontology alignment [7]. Ontology alignment rises from the need to find
correspondences between related entities of different ontologies and has several
applications including agent communication, ontology engineering, and ontol-
ogy versioning. The correspondences may be one of several semantic relations
including equivalence, consequence, subsumption, or disjointness, between ontol-
ogy entities [7]. Beyond the establishment of common ground, agents require
the ability to communicate and convey knowledge in their ontologies in terms of
common knowledge or established correspondences. Humans have the ability to
approximate knowledge naturally, for example, doctors approximate diagnoses
into terms patients can understand without using any complex medical terms.
Often, either the agent knowledge representations or the messages exchanged
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are expressed entirely in a language restricted to atomic predicates (especially
monadic predicates a.k.a “classes” or “concepts”). That is, the correspondences
are between terms and not more complex expressions and this can limit the
efficiency and efficacy of communication.

We focus on agents that use description logics DL(s) to model the expertise
in their domain of specialisation in the context of the ANEMONE framework
[21]. A framework comprising of dynamic communication protocols that agents
may use to convey concepts to each other depending on varying levels of their
common vocabulary. ANEMONE’s application to free and accessible ontologies
(such as those found on the BioPortal [22] and typically modelled using the
OWL [2] language) is limited because it is designed using a less 1 expressive lan-
gauge. The methods we investigate are designed for use on OWL ontologies and
intended to be compatible with ANEMONE thus make its application to OWL
ontologies more suitable. The implicit hypothesis is that expressive languages
such as those found in naturally occuring languages enable rich descriptions of
unshared concepts and thus reduce the amount of messages exchanged between
the agents.

We study definitions in the context of ANEMONE and DL(s) and how they
may be extracted and used for conveying meaning and concepts. Definitions in
the DL sense (DL-definitions) do not always exist, as such, we introduce and
study concept descriptions an alternative to conventional definitions in DL that
can be used to characterise concepts based on restricted vocabularies. We com-
pare DL-definitions, concept descriptions, and definitions in the ANEMONE
sense (ANEMONE-definitions) and evaluate their performance on a case study
adopted from [21]. We show that DL-definitions are optimal in terms of size
and interpretation compared to concept descriptions and ANEMONE-definitions
thus making DL-definitions the more suitable candidates for efficient communi-
cation. Concept descriptions tend to be bulky in size, and thus suboptimal, as a
result, we introduce minimal concept descriptions as an alternative to concept
descriptions and demonstrate that they are smaller in terms of size compared to
concept descriptions and ANEMONE-definitions, but larger than DL-definitions
(when they exist).

Our contributions are as follows:

1. A method for extracting definitions in ALC ontologies (ALC is formally
described in Sect. 1.1).

2. A method for extracting concept descriptions.
3. A case study of how definition extraction and concept descriptions can

enhance ANEMONE for use with expressive DL(s).
4. An experimental evaluation of ANEMONE-definitions and DL-definitions on

an ALC ontology.

The rest of this paper is organised as follows: Preliminaries are described in
Sect. 1.1, Sect. 2 discusses the ANEMONE system in detail, Sect. 3 discusses
conventional definitions in DL and our method for extracting definitions in ALC
1 Relative to free and accessible occuring ontologies.
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ontologies, Sect. 4 discusses concept descriptions, an overview on related work is
provided in Sect. 5, and finally, Sect. 6 provides a case study and experimental
evaluation of how the methods presented can be applied to the ANEMONE
system.

1.1 Preliminaries

We refer to monadic predicates as concepts, and binary predicates as roles (some-
times also referred to as properties) in the usual logical sense. Let NC be a set
of atomic concepts, NR a set of atomic roles, and NI a set of individuals (or
instances). ALC-concepts have one of these forms: � | a | A | ¬C | C �D | C �D
| ∀r.C | ∃r.D, where a ∈ NI , A ∈ NC , r ∈ NR, C and D are arbitrary ALC
concepts. An ALC ontology consists of axioms which either belong to the TBox
or ABox. TBox axioms are of the form C � D or C ≡ D which can be expressed
by two general inclusion axioms C � D and D � C. ABox axioms are of the
form C(a) called concept assertions or r(a, b) called role assertions.

The language AL is a restricted form of ALC that only allows for atomic
negation (¬A), concept intersection (C � D), universal restrictions (∀r.C) and
limited exisential quantification (∃r.D).

The function sig() returns the set of concepts, roles, and individuals occurring
in a given ontology, concept or axiom.

For ALC, an interpretation I over NC , NR, and NI is a pair 〈ΔI , ·I〉, where
ΔI is a non-empty set representing an interpretation domain, and ·I is an inter-
pretation function that maps every A ∈ NC to a subset AI of ΔI ; every r ∈ NR

to a binary relation rI over ΔI , to every individual a in NI to element aI ∈ ΔI .
The interpretation function ·I is extended to concepts as follows:

⊥I = ∅ (¬C)I) = ΔI \ CI (C � D)I = CI ∪ DI (C � D)I = CI ∩ DI

(∀r.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ rI → y ∈ CI}
(∃r.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

A concept name A is called cyclic if O |= A � C such that A �= C, and
A ∈ sig(C)2. An ontology O is said to be acyclic if it contains no cyclic concept
names.

2 The ANEMONE System

The purpose of communication in the ANEMONE system is mainly to share
assertional knowledge. Intuitively speaking, an agent A1 conveys a concept C to
an agent A2 so that A2 can share instances of C under its knowledge.

The ontology semantics in ANEMONE differs from those in OWL ontolo-
gies which makes its application to such ontologies limited. We find that the

2 It is worth noting that this definition of cyclicity is simplified here for brevity. For a
more comprehensive description, refer to [10].
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closest adaptation of the ontology semantics in ANEMONE to OWL semantics
[2] is AL without concept intersection, negation, universal restrictions, and lim-
ited existential quantification. In addition, a non-standard overlap operator ⊕
is introduced which is interpreted as follows:

C ⊕ D iff CI �⊆ DI ,DI �⊆ CI , and CI ∩ DI �= ∅

Note, that by this definition, equivalent classes do not overlap. It is also worth
noting that the ⊕ operator is inconsequential to retrieving and sharing instances,
for example, adding C ⊕ D to the ontology {C(a), C(c), D(b), D(a)} does not
affect the query for instances of C.

ANEMONE has three design objectives: (i) Minimal and effective commu-
nication, (ii) Laziness, (iii) Decentralised communication. The minimal and
effective objective ensures communicated knowledge is not superfluous and can
be processed optimally. The laziness objective ensures knowledge sharing only
occurs on a as-need basis, i.e., knowledge should only be exchanged when strictly
necessary. The decentralised objective ensures there is no central control or loca-
tion of the knowledge.

The laziness objective of ANEMONE is realised through the use of commu-
nication layers. There are three layers of communication: (i) normal communi-
cation protocol (ii) concept definition protocol (iii) concept explication protocol.
All conversations start by assuming that there are no misunderstandings and
occur in the normal communication protocol which is the uppermost layer. If
any misunderstanding occurs, the agents switch to the concept definition pro-
tocol where they may attempt to resolve the misunderstandings by exchanging
definitions of concepts that may have caused the misunderstanding (ideally in
terms of concepts that are shared by both agents.). If misunderstandings persist
in the concept definition protocol, the agents switch to the concept explication
protocol where agents convey the meaning of a concept by exchanging positive
and negative examples of the misunderstood concept. The communication pro-
tocols help realise the as-need requirement of the laziness objective: agents only
resort to using complex communication mechanisms only when needed.

ANEMONE specifies two performatives to be used in communication, the
Inform and ExactInform performatives. Let X be a concept an agent is
attempting to convey, if X or an equivalent concept C is communicated to the
other agent, the ExactInform performative is used, however, if some other
concept that is not equivalent to X is conveyed to the hearer agent, then the
Inform performative is used. The use of these performatives dictates whether
the conversation should switch from the normal communication protocol to the
concept definition protocol: the use of the Inform performative hints at some
loss in communication and often suggests that the agents have to switch to the
concept definition protocol. When the agents are communicating in the concept
definition protocol (attempting to resolve the meaning for some concept X),
they switch to the concept explication protocol if the definition extracted for X
is perceived as inadequate by the hearer agent. A definition is deemed inade-
quate if the hearer agent can not infer the relation of the definition with every
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other concept in the hearer agents ontology. Intuitively speaking, the notion of
adequacy in ANEMONE is motivated by expecting the hearer agent to be able
to place an unshared concept in an exact point in the hierarchy of its ontology,
however, as we demonstrate, OWL ontologies may have multiple hierarchies on
concepts which results in this notion of adequacy being moot.

The concept explication protocol is underpinned by ensuring the ontologies
of the communicating agents are grounded, meaning that the domain of dis-
course contains all the objects the agent may wish to speak about, e.g. the
set of URLs on the internet. The use of grounded ontologies enables agents to
realise the intended interpretation of concepts that are used in communication.
Grounded knowledge bases, contain classifiers (intended to be realised using
machine learning techniques) in addition to symbolic descriptions to ensure the
agents can classify objects in the domain of discourse. In a more traditional
sense, these classifiers can be considered as the sensors of the agent.

Terminological negotiation [18] and related approaches to concept explica-
tion can be adopted to realise the concept explication protocol, as such we
focus our efforts on the Normal Communication and concept definition protocols
which can benefit from known knowledge approximation techniques in DL, this
is where our primary contribution lies. ANEMONE provides a specification of
how ANEMONE-definitions should be extracted.

Computing Definitions in the ANEMONE System. ANEMONE specifies
that an ANEMONE-definition for a concept X w.r.t a signature Σ should be
constructed by extracting all the relations X has with the concepts in Σ under
O. Let X be concept-name, Σ a signature and O an ontology that conforms to
the semantics of those in [21] such that Σ ⊆ sig(O), a definition for X following
[21] is defined as {X � A | O |= X � A ∧ A ∈ Σ} ∪ {A � X | O |= A � X ∧ A ∈
Σ}∪{A ≡ X | O |= A ≡ X ∧A ∈ Σ}∪{A�X � ⊥ | O |= A�X � ⊥∧A ∈ Σ}.

Example 1. The example is adapted from [21]. In it, we have two agents A1 and
A2 which are both personal news agents that classify news articles according to
the ontologies provided in Table 1.

Table 1. Ontologies of agents A1 and A2 used throughout the paper.

Ontology O1 of agent A1 Ontology O2 of agent A2

LawnTennis � BallAndRacquetGames,
Wimbledon � LawnTennis,
UKNews � RegionalNews,
SoftwareAgents � ComputerScience,
ComputerScience � ScienceNews,
BallAndRacquetGames � RegionalNews � ⊥ ,
BallAndRacquetGames � ScienceNews � ⊥ ,
RegionalNews � ScienceNews � ⊥

LawnTennis ≡ Tennis
Tennis � RacquetGames,
RacquetGames � BallAndRacquetGames,
BallAndRacquetGames � Sports,
EuropeNews � RegionalNews,
SoftwareAgents � ScienceNews,
Sports � RegionalNews � ⊥,
Sports � ScienceNews � ⊥,
RegionalNews � ScienceNews � � ⊥



Concept Description and Definition Extraction for the ANEMONE System 357

Let Σ = sig(O1) ∩ sig(O2) = {LawnTennis, RegionalNews, SoftwareAgents,
ScienceNews, BallAndRacquetGames}. A definition for Wimbledon w.r.t. Σ
under O1 would be: {Wimbledon � BallAndRacquetGames, Wimbledon �
LawnTennis, Wimbledon � RegionalNews � ⊥, Wimbledon � SoftwareAgents
� ⊥ , Wimbledon � ScienceSubjects � ⊥ }.

In OWL ontologies, concepts may be defined using rich concept descrip-
tions that allow the usage of OWL constructs and therefore may include con-
structs such role restrictions and disjunctions (which the semantics ANEMONE
currently does not allow). The increased expressivity of OWL ontologies sug-
gests that there may be equivalent concepts that can not be expressed using the
semantics of ANEMONE. When communicating in the normal communication
protocol, agents must only use concepts in the common vocabulary or concepts
equivalent to concepts not in the common vocabulary provided such equivalent
concepts are expressed in the common vocabulary. The requirements of commu-
nication in the normal communication protocol suggests that an ANEMONE
system with agents that have ontologies modelled using OWL may unneces-
sarily switch to the concept definition or explication protocols, thus potentially
increasing the cost of communication and possible errors in communication. This
problem also extends into concept definition protocol and to concepts without
any equivalent concepts because the higher expressivity3 of ontologies modelled
using OWL implies that rich concept descriptions can exist in such ontologies,
thus ANEMONE definitions for concepts in such ontologies may result in some
information loss.

OWL allows the modelling of ontologies that have the DL ALC which allows
for role restrictions (∀r,∃r), negation (¬), and disjunctions (�) making it have
semantics more expressive than the semantics of ANEMONE ontologies. The
methods we present in this paper aim to curtail this issue by adopting a knowl-
edge summarisation technique called uniform interpolation that can help agents
extract equivalent concepts w.r.t. restricted vocabularies in ALC ontologies.

The next section provides background on DL-definitions which are used char-
acterise equivalent concepts in ALC ontologies.

3 Explicit and Implicit Definitions

In DL, concepts are defined using equivalance class axioms of the form C ≡ D.
Following the DL Handbook [3], a TBox O defines a concept A if O entails some
axiom of the form A ≡ C where the A is the defined concept name [3]. Thus, a
DL-definition C for a concept-name A may only exist in one of two forms: (i)
Explicitly via a syntactic TBox axiom of the form A ≡ C such that A �∈ sig(C),
or (ii) Implicitly via a set of general inclusion axioms in O such that for any
model of O, the interpretation of A is uniquely determined by the interpretation
of the symbols in sig(C). In this paper explicit and implicit definitions are to be
considered forms of DL-definitions. Intuitively, if a concept is explicitly defined
3 Higher relative to ANEMONE ontologies.
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in an ontology, its equivalent concept is obvious and easy to extract, however, if
it is implicitly defined, its equivalent concept is not so obvious. It is worth noting
that a concept that is explicitly defined may become implicitly when considered
under a subset signature of the ontology.

A logical language is said to be definitorially complete if a concept that is
defined implicitly can also be defined explicitly (formal definitions can be found
in [19]). Intuitively speaking, this means an obvious definition can be extracted
for every implicitly defined concept. Languages that are definitorially complete
are said to have the Beth Definability property, and ensure that the interpretation
of a defined concept is equivalent to the interpretation of its DL-definition thus
are suitable for instance-sharing applications (such as that of ANEMONE). The
DL ALC is shown to have the Beth Definability property in [19] Finding concepts
that are defined over a given signature is paramount for agents conversing in the
normal communication protocol of ANEMONE as this dictates whether they
may have to switch to lower protocols.

A result of [19] is a test for determining implicit definability for a concept
over a given signature and ontology. Let X be a concept, O an ontology, O′

a copy of O, and Σ a subset signature of O such that X ∈ sig(O), X �∈ Σ,
Σ ⊆ sig(O), and O′ is O with every concept-name and role symbol A �∈ Σ
replaced by a copy A′, X is implicitly definable using symbols from Σ under O
iff O ∪ O′ |= X ≡ X ′. This can be easily performed using a reasoner such as
Hermit [8].

3.1 Extracting DL-Definitions for Implicitly and Explicitly Defined
Concepts

After detecting an implicitly definable concept, agents also need to be able to
extract a DL-definition or concept that is equivalent. Strongest necessary condi-
tions SNCs can be used to compute DL-definitions for concepts that are implic-
itly or explicitly defined in an ontology [6]. The primary contribution of this
paper is a practical method to compute Strongest Necessary Conditions using
uniform interpolation in DL.

Definition 1 ((Strongest) Necessary Conditions). Let Σ be a set of
concept names and role symbols, X a concept, and O an ontology, such that
Σ ⊆ sig(O), we define a necessary condition of X over Σ relative to O to be
any concept α such that sig(α) ⊆ Σ and O |= X � α. It is a strongest necessary
condition denoted SNC(X;O;Σ), if for any other necessary condition α′ of X
over Σ relative to O we have that O |= α � α′.

Definition 2 (Forgetting and Uniform Interpolation). Given an ontology
O, a set of symbols Σ such that Σ ⊂ sig(O), a uniform interpolant for O over
Σ is an ontology V such that O |= V and V is a strongest such entailment for
Σ, i.e., for any other entailment V ′ of O (i.e., O |= V ′) and sig(V ′) ⊆ Σ, then
V |= V ′. The ontology V is called a uniform interpolant of O for signature Σ.
We refer to Σ as the uniform interpolation signature. We also call V the result
of forgetting Σ̄ from O, where Σ̄ denotes sig(O) \ Σ.
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A consequence of Definition 2 is that for every axiom ψ with sig(ψ) ⊆ Σ such
that O |= ψ, V |= ψ.

Algorithms for computing strongest necessary conditions exist in the propo-
sitional logic [6,13] and first order logic (FOL) [6]. Since DL is a fragment of
FOL, we have adapted the SNC algorithm presented in by Doherty et al. [6]: for
any first-order formula X, set of relation symbols Σ, and closed theory O, the
SNC is the uniform interpolant (Definition 2) computed for O ∧ X over Σ. As
such, in DL we can compute the SNC for a concept name X over a signature
Σ and ontology O by computing the uniform interpolant for O,X4 over Σ and
there are known practical implementations of the uniform interpolation methods
provided in [11]. This method does compute an SNC for X, however, it is not
suitable for our purposes as the result may contain axioms unrelated to X, we
call such axioms redundant. Consider the ontology O1 as discussed in Example
1, to compute the SNC for Wimbledon w.r.t. O1 and Σ we compute the uniform
interpolant over O1,Wimbledon w.r.t. Σ which is {LawnTennis � BallAndRac-
quetGames, BallAndRacquetGames � ¬ RegionalNews, BallAndRacquetGames
� ¬ ScienceSubjects, RegionalNews � ¬ ScienceSubjects, SoftwareAgents � Sci-
enceSubjects, LawnTennis}. Observe that the result still satisfies Definition 1,
however, as can be seen, there are axioms in the result not related to Wimbledon,
the TBox axiom SoftwareAgents � ScienceSubjects for example, is not related
to Wimbledon.

Proposition 1 lets us deal with such redundant axioms. Let O be an ontology,
Σ a subset signature of O, a a fresh individual such that a �∈ O and X a concept
name for which we wish to compute an SNC for w.r.t. O and Σ, we compute a
uniform interpolant V over Σ for O,X(a) and solve the issue of redundancies in
the result by returning a conjunction of concepts of the form C(a) in the uniform
interpolant: it follows from Proposition 1 that all such concepts C are necessary
conditions of X, and thus their conjunction satisfy Definition 1. This approach
used in Algorithm 1.

Proposition 1. Let O be an acyclic ontology, X a concept, Σ ⊆ sig(O), and a
a fresh individual, such that a /∈ sig(O), sig(X) �⊆ Σ. Suppose O �|= X(a). Let
V be a uniform interpolant for Σ relative to O,X(a), we have that V |= C(a) iff
O |= X � C, where C is an arbitrary ALC-concept such that sig(C) ⊆ Σ.

Proof. If V |= C(a), then O |= X � C: Since V is a uniform interpolant for Σ of
O,X(a), O,X(a) |= V. Given that V |= C(a), we have that O,X(a) |= C(a). This
implies O,X(a),¬C(a) is unsatisfiable and hence O |= X � C, since O |= X � C
iff O,X(a′),¬C(a′) |= ⊥ for some fresh individual a′.

If O |= X � C, then V |= C(a): Because O |= X � C, for every interpretation
I such that I |= O, we have that: x ∈ XI implies x ∈ CI for any individual
x ∈ ΔI . Therefore, given a fresh individual a not occuring in sig(O), O,X(a) |=
C(a). Since V is a uniform interpolant for Σ ∪ {a} of O,X(a), V is a strongest
entailment for Σ ∪ {a} of O. Since sig(C(a)) ⊆ Σ, it follows from Definition 2
that V |= C(a).

4 We use the notation O, α as a shorthand to denote O ∪ {α}.
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A consequence of Proposition 1 and Definition 2 is that �C(a)∈VC is a
strongest necessary condition of X.

Algorithm 1: SNC Extraction

Input: An ontology O, a definiendum X, a signature Σ, an individual a
where Σ ⊆ sig(O), X ∈ sig(O), X /∈ Σ, a /∈ sig(O).
Output: An ALC concept C which is a SNC of X.

Step 1: Add X(a) to O to get O′.

Step 2: Add a to Σ to get Σ′ and compute a uniform interpolant denoted
V over O′ w.r.t. Σ′. I.e. forget Σ

′
from O′.

Step 3: Return �C(a)∈VC as SNC(X;O;Σ).

Proposition 2. Let O be an acyclic ontology, Σ a subset of sig(O), C a concept
such that sig(C) �⊆ Σ. If there exists a concept D such that O |= C ≡ D,
and sig(D) ⊆ Σ, then (i) O |= C ≡ SNC(C;O;Σ), and therefore, (ii) C ≡
SNC(C;O;Σ) is an explicit DL-definition of C in O.

Proof. If O |= C ≡ D, then it follows that O |= C � D. Since sig(D) ⊆ Σ, it
follows from Definition 1 that O |= SNC(C;O;Σ) � D. If O |= C ≡ D, then it
also follows that O |= D � C, and since O |= SNC(C;O;Σ) � D, it follows that
O |= SNC(C;O;Σ) � C. Thus, O |= SNC(C;O;Σ) � C,C � SNC(C;O;Σ)
which means that O |= C ≡ SNC(C;O;Σ) and (i) holds. If there exists a
concept D such that O |= C ≡ D and sig(D) ⊆ Σ then C is explicitly defined,
thus (ii) holds.

It follows from Proposition 2 that computing strongest necessary conditions can
be used to extract DL-definitions from an ontology.

ANEMONE does not provide any specification for testing whether a con-
cept is implicitly definable, presumably, it is intended to be used with explicit
definitions only. This means that not only does a concept have to be explicitly
defined, but the signature of the definition must be expressed in the common
signature of the agents. ANEMONE can be enhanced using Algorithm 1 when
applied to agents with OWL ontologies. If agent A1 wants to convey a concept
X that is not explicitly defined under the common signature of the agents, it
may simply perform an implicit definability check and compute a definition for
X using Algorithm 1. It is worth stressing that if a DL-definition exists for a
concept, then communication remains in the normal communication protocol.
Given a concept X that is implicitly or explicitly defined under an ontology O1,
extracting an explicit or implicit definition φ will enable an agent A1 use the
ExactInform performative to convey φ in place of X and thus ensure that con-
versation stays in the normal communication protocol. If X is neither implicitly
or explicitly defined, the agents may attempt to use concept descriptions as an
alternative to definitions, which we discuss next.
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4 Concept Descriptions

We propose Concept Descriptions (CDs) are an alternative to standard defini-
tions in DL that address the ANEMONE objective of stating the relation of a
defined concept with other concepts in an ontology under a given subset signa-
ture. Let X be a concept name, for the agent communication context of this
paper, we say X is described w.r.t. an ontology O if either there is a concept D
such that O |= D � X or a concept C such that O |= X � C or a concept S
such that O |= X ≡ S where C,D, S are concepts and X is an atomic concept.

Given a concept name X, a signature Σ and an ontology O, such that X �∈ Σ
and Σ ⊆ sig(O), a mechanism for extracting concept descriptions should satisfy
the following requirements.

1. Comprehensiveness: Let φ be a description for X w.r.t. O and Σ, we say
φ is comprehensive for X if for any concept C such that O |= X � C and
sig(C) ⊆ Σ, we have that φ |= X � C and for any concept D such that
O |= D � X and sig(D) ⊆ Σ, we have that φ |= D � X and for any concept
E such that O |= X ≡ E and sig(E) ⊆ Σ, we have that φ |= X ≡ E.

2. Description-specificity : Let φ be a description for X w.r.t. O and Σ, we say
φ is description-specific for X if for every axiom ψ in φ, we have that either
ψ = X � C or ψ = C � X or ψ = X ≡ C where C is a concept such that
sig(C) ∈ Σ.

Concept descriptions may be extracted using the notions of compiled supercon-
cept and compiled subconcept formally defined in Definitions 3 and 4.

Definition 3 (Compiled Superconcept). Let O be an ontology, A a concept
name and C a concept. We call C an compiled superconcept of A if O |= A � C
and for any other concept C ′ such that O |= A � C ′ and O �|= � � C ′, we
have that |= C � C ′. We denote the compiled superconcept by CSP (A;O) and
CSP (A;O;Σ) if it is restricted to a signature Σ.

Definition 4 (Compiled Subconcept). Let O be an ontology, A a concept
name and C a concept. We call C an compiled subconcept of A if O |= C � A
and for any other concept C ′ such that O |= C ′ � A and O �|= C ′ � ⊥, we
have that |= C ′ � C. We denote the compiled subconcept by CSB(A;O) and
CSB(A;O;Σ) if it is restricted to a signature Σ.

Algorithm 2: Concept Description Extraction

Input: An ontology O, a definiendum X, a signature Σ, where
Σ ⊆ sig(OB), X ∈ sig(OB), X /∈ Σ.
Output: An ontology φ which is a concept description for X

Step 1: Compute CSP (X;O;Σ).
Step 2: Compute CSB(X;O;Σ).
Step 3: Return {X � CSP (X;O;Σ), CSB(X;O;Σ) � X} as a concept
description for X.
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Our approach to extracting concept descriptions is presented in Algo-
rithm 2. Algorithm 2 satisfies the requirements for comprehensiveness and
description-specificity : any superconcept C of X such that O |= X � C and
sig(C) ⊆ Σ would be a superconcept of CSP (X;O;Σ), as such, the axiom
X � CSP (X;O;Σ) would entail axioms of the form X � C that follow from
O, similarly, CSB(X;O;Σ) is a subconcept of any subconcept D of X where
O |= D � X and sig(D) ⊆ Σ, as such, the axiom X � CSB(X;O;Σ) would
entail axioms of the form D � X that follow from O.

4.1 Minimal Concept Descriptions

Concept descriptions may end up being too large and violate the minimal objec-
tive of ANEMONE. To curtail this, we introduce minimal concept descrip-
tions (MCDs). Given a concept C, an ontology O and a signature Σ such that
Σ ⊆ sig(O) and sig(C) �∈ Σ a minimal concept description for C should capture
the closest summarisation of C in terms of Σ. Let φ be a concept description for
X w.r.t. O and Σ, we say φ is minimal if the following conditions hold:

1. φ |= X � C such that sig(C) ⊆ Σ and for any other concept C ′ such that
O |= X � C ′ and sig(C ′) ⊆ Σ, we have that O |= C � C ′.

2. φ |= D � X such that sig(D) ⊆ Σ and for any other concept D′ such that
O |= D′ � X and sig(D′) ⊆ Σ, we have that O |= D′ � D.

3. If it description-specific as discussed above.

Definition 5 ((Weakest) Sufficient Conditions). Let Σ be a set of concept
names and role symbols, X a concept, and O an ontology, such that Σ ⊆ sig(O),
we define a sufficient condition of X over Σ relative to O to be any concept β
such that sig(β) ⊆ Σ and O |= β � X. It is a weakest sufficient condition
denoted WSC(X;O;Σ), if for any other sufficient condition β′ of X over Σ
relative to O we have that O |= β′ � β.

Minimal concept descriptions can be computed using strongest necessary
conditions and weakest sufficient conditions. An algorithm to compute a minimal
concept description is provided in Algorithm 3.

Algorithm 3: Minimal Concept Description Extraction

Input: An ontology O, a definiendum X, a signature Σ, where
Σ ⊆ sig(OB), X ∈ sig(OB), X /∈ Σ.
Output: An ontology φ which is a minimal concept description for X

Step 1: Compute SNC(X;O;Σ).
Step 2: Compute WSC(X;O;Σ).
Step 3: Return {X � SNC(X;O;Σ),WSC(X;O;Σ) � X} as a mini-
mal concept description for X.

Weakest sufficient conditions are an inverse of strongest necessary condi-
tions, as such an algorithm for computing strongest necessary conditions can
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be tweaked to compute weakest sufficient conditions. Let O be an ontology, X
be a concept name, for any concept C such that O |= C � X, we have that
O |= ¬X � ¬C, hence, if we compute the strongest necessary condition for
¬X the result obtained is a negation of the weakest sufficient conditions for
X: in order to compute an weakest sufficient conditions for X, we compute the
strongest necessary condition of ¬X and negate the result.

5 Related Work

Terminological negotiation [18] implements the ontology negotiation framework
specified in [20]. It aims to solve the problem of communication amongst agents
with overlapping signatures by generating translations and mappings between
symbols in the different ontologies. Our approach differs in the sense that it aims
to solve the problem by extracting DL-definitions or descriptions for concept
names as opposed to direct one-to-one mappings between concepts. It is possible
for both systems to coexist: concepts with mappings can be considered as part
of the common signature when extracting DL-definitions or descriptions.

In [5] a framework is provided for agents to learn new concepts based on the
assumption that the agents share some minimal common ground. Learning con-
cepts in ontologies is investigated in [1] from a corporation perspective and uses
a similar approach to [20]: both methods utilize positive and negative examples
of concepts to find mappings between concepts.

Ontology alignment is employed in reducing misunderstanding between com-
municating agents. One approach to constructing alignments is learning map-
pings through examples. This approach assumes a closed world of agents and
relies on the agents exchanging positive and negative examples of concepts they
wish to align. This is employed in efforts such as [1,20]. Similar applications to
agent communication include [12,16,17].

6 Evaluation of Concept Descriptions and Definitions

6.1 Case Study

The data used is that of the agents and ontologies in Table 1. We evaluate
ANEMONE-definitions, DL-definitions, concept descriptions, and minimal con-
cept descriptions for the unshared concepts, Wimbledon, RacquetGames, and
UKNews. All forms of definitions and concept descriptions are extracted using
the methods discussed in the previous sections. The hypotheses we evaluate are
as follows: H1 : DL-definitions are the most optimal in terms of axiom size and
still convey the same amount of information as ANEMONE-definitions, con-
cept descriptions, and minimal concept descriptions. H2 : (Minimal) Concept
descriptions are as effective as ANEMONE-definitions in conveying information
about a concept. H3 : Minimal Concept Descriptions are smaller (in terms of
axioms) than ANEMONE-definitions and Concept Descriptions. H4 : Expres-
sive languages allow for richer descriptions which help avoid the descent into
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lower communication protocols. Recall from Sect. 2 that if a DL-definition (or
equivalent concept) exists for an unshared concept, communication may remain
in the normal communication protocol. For each unshared concept, we list the
possible inferences regarding the unshared concept that can be derived from all
methods combined and highlight the specific axioms in the corresponding tables
(Tables 2, 3 and 4).

Case Wimbledon A1 attempts to convey Wimbledon to A2.

1. Wimbledon � BallAndRac-
quetGames

2. Wimbledon � SoftwareAgents� ⊥
3. Wimbledon � ScienceNews � ⊥
4. Wimbledon � RegionalNews � ⊥

5. Wimbledon � EuropeNews � ⊥
6. Wimbledon � Sport
7. Wimbledon � RacquetGames
8. Wimbledon � Tennis
9. Wimbledon � LawnTennis

Table 2. Case Wimbledon: axioms and inferences of definitions and descriptions as
computed w.r.t O1 and O2. ANEMONE-D stands for ‘ANEMONE-definition’. The row
labelled ‘axioms’ displays the axioms that are in the definition or description from O1

w.r.t Σ the common vocabulary for the corresponding description or definition method
in each column. The row labelled ‘inferences’ displays the inferences that are derived
from the O2 w.r.t the description or definition of the corresponding axioms in each
column.

ANEMONE-D CD MCD DL-definition

Axioms 1, 2, 3, 4, 9 1, 2, 3, 4, 9 9 –

Inferences 5,6,7,8 5,6,7,8 1,2,3,4,5,6,7,8 –

Case Racquet Games A1 attempts to convey RacquetGames to A2.

1. RacquetGames � BallAndRac-
quetGames

2. RacquetGames � UKNews � ⊥
3. RacquetGames � ComputerScience

� ⊥
4. RacquetGames � ScienceNews � ⊥

5. RacquetGames � SoftwareAgents �
⊥

6. RacquetGames � RegionalNews �
⊥

7. LawnTennis � RacquetGames

Table 3. Case RacquetGames

ANEMONE-D CD MCD DL-definition

Axioms 1, 4, 5, 6, 7 1, 4, 5, 6, 7 1, 7 –

Inferences 2, 3 2, 3 2, 3, 4, 5, 6 –
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Case UKNews A1 attempts to convey UKNews to A2.

1. UKNews � RegionalNews
2. UKNews � Sport � ⊥
3. UKNews � Tennis � ⊥
4. UKNews � RacquetGames � ⊥
5. UKNews � ScienceNews � ⊥

6. UKNews � SoftwareAgents � ⊥
7. UKNews � BallAndRacquetGames

� ⊥
8. UKNews � LawnTennis � ⊥

Table 4. Case UKNews

ANEMONE-D CD MCD DL-definition

Axioms 1, 5, 6, 7, 8 1, 5, 6, 7, 8 1 –

Inferences 2, 3, 4 2, 3, 4 2, 3, 4, 5, 6, 7, 8 –

Size evaluation: In all cases, we can see that the minimal concept description is
also the smallest in terms of size, which supports H3 and all inferences follow from
the axioms extracted by all methods, thus supporting H2. We also observe that
DL-definitions do not exist in those cases, further highlighting the importance
of concept descriptions.

Descent evaluation: None of the cases involve a defined concept, thus the descent
evaluation here is focused on switching from the concept definition protocol
to the concept explication protocol which is guided by the adequacy of the
extracted definition or description. Observe that in the cases for Wimbledon
and RacquetGames all definitions and descriptions are adequate in the sense
that the hearer agent can relate the unshared concept to all terms in its ontol-
ogy. However, in the case of UKNews, none of the extracted definitions or
descriptions are adequate. Tennis is the only unshared defined concept in O1

and O2, futhermore, its case is trivial and does not let us test H4 as a result, we
have extended the ontologies with axioms in Table 5.

Table 5. Extensions to the ontologies in Table 1. The first column contains the axioms
added to O1 for agent A1, and the second column contains the axioms added to O2 for
agent A2

Extensions to O1 Extensions to O2

Tournament ≡ KnockoutTournament �
LeagueTournament,
Wimbledon � KnockoutTournament,
KnockoutTournament � Elimination-
Competition,
LeagueTournament � GroupCompeti-
tion,
EliminationCompetition � ¬ Group-
Competition

USOpen � Tournament,
PremierLeague � GroupCompetition
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Now Σ = sig(O1) ∩ sig(O2) = {LawnTennis, RegionalNews, Software-
Agents, ScienceNews, BallAndRacquetGames, KnockoutTournament,
GroupCompetition}. O1 now has the disjunctive axiom Tournament ≡ Knock-
outTournament � LeagueTournament thus making it an ALC ontology.
The defined concepts in O1 are now {Tournament, KnockoutTournament,
LeagueTournament}. KnockoutTournament and LeagueTournament are the
only defined unshared concepts and we evaluate the definition and description
methods on both concepts (Tables 6 and7).

Case League Tournament A1 attempts to convey LeagueTournament to A2.

1. LeagueTournament ≡ Tournament
� GroupCompetition

2. LeagueTournament � Tournament
� GroupCompetition

3. Tournament � GroupCompetition
� LeagueTournament

4. LeagueTournament � GroupCom-
petition

5. LeagueTournament � Tournament

Table 6. Case LeagueTournament

ANEMONE-D CD MCD DL-defintion

Axioms 4, 5 2, 3 2, 3 1

Inferences 2 1, 4, 5 1, 4, 5 2, 3, 4, 5

Case KnockoutTournament Possible Inferences of KnockoutTournament
w.r.t O2

1. KnockoutTournament ≡ Tourna-
ment � ¬GroupCompetition

2. Tournament � ¬GroupCompetition
� KnockoutTournament

3. KnockoutTournament � Tourna-
ment � ¬GroupCompetition

4. KnockoutTournament � Tourna-
ment

5. KnockoutTournament � ¬Group-
Competition

Table 7. Case KnockoutTournament

ANEMONE-D CD MCD DL-defintion

Axioms 4, 5 2, 3 2, 3 1

Inferences 3 1, 4, 5 1, 4, 5 2, 3, 4, 5

In both cases, observe that without Algorithm 1, equivalent concepts (DL-
definitions) for KnockoutTournament and LeagueTournament can not be
extracted and thus conversation will switch to the concept description protocol,
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which supports H4. Futhermore observe that H1 is further supported as the
DL-definition (extracted using Algorithm 1) has only one axiom. These cases
also highlight a weakness of ANEMONE-definitions: the information conveyed
by the ANEMONE-definition is incomplete, however, the information captured
by concept descriptions and minimal concept descriptions is complete.

6.2 Experimental Evaluation

Agents may convey concepts using ANEMONE definitions or MCDs, and what
is conveyed depends on whether the concept is definable or not. Our evaluation
assumes the perspective of an agent attempting to convey a concept that is not
included in the common signature using only terms in the common signature. A
clear limitation of this evaluation thus follows: the interpretation of the conveyed
concept is not evaluated, this is due to a lack of data but will be addressed in
future work. The experiments were performed on the Cancer Care Treatment
Outcome Ontology [14] (CCTOO). CCTOO is an ALC ontology consisting of
4,494 axioms, 1,133 concept-names, and six roles. We compare the ability of
ANEMONE-definitions and MCDs methods in their ability to convey concepts,
however, using the frameworks as is would conflate and confound several mea-
sures of evaluation. To simplify things, we use the following measures: (1) Ability
to extract a definition for a concept. (2) Ability to extract a superconcept or a
subconcept for a concept. Measure (1) applies to the case where the concept to
be conveyed is defined, measure (2) applies to the case where the concept to
be conveyed is not defined. Using these measures, we evaluate the ANEMONE-
definitions and MCDs over varying common signature sizes ranging from 10% to
70% of the ontology’s signature (using an interval of 10%), these signature sizes
determine the portion of the ontology’s signature that are randomly selected to
serve as the common signature. For example, if the ontology’s signature had a
size of 70, for the 50% sample, thirty-five symbols are randomly chosen to serve
as the common signature. We repeated this process three times, resulting in
three samples for each subset signature.

Intuitively speaking, the ANEMONE-definition specification requires testing
whether a concept is equivalent, disjoint, a subsumer of, or subsumed by concept-
names in the common signature of the agents. We implemented this specifica-
tion using the Hermit reasoner [8] which we henceforth refer to as ANEMONE-
prototype. We also implemented the DL-definition extraction algorithm (Algo-
rithm 1) using LETHE [11] and extended it to implement Algorithm 1 and 3. All
experiments were run on a mac-mini (late 2014) with operating system MacOS
Catalina, Dual-Core Intel Core i5 2.6 GHz processor, and eight gigabytes of RAM
(1600 MHz DDR3).

Evaluation of Ability to Extract Definitions. For each sample signature we
iterated over each concept-name that was not in the sample signature which we
call the unshared concept. For every concept-name not within the common signa-
ture, we determine if it is defined (in the DL sense) using the implicit definability
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test discussed in Sect. 3 (implemented using Hermit and the OWL-api [9]), if it
is, we evaluate ANEMONE-definition ability to extract a DL-definition. Defini-
tion extraction is deemed successful if the signature is a subset of the sample
signature and if and the ontology entails that the unshared concept is equivalent
to the definition. For the ANEMONE-prototype, we iterate over the concept
names in the sample signature and use Hermit to check if it is equivalent to
the unshared concept. We use Algorithm 3 to extract an MCD, if either the
strongest necessary condition or weakest sufficient condition is equivalent to the
unshared concept, and either of the conditions is a subset of the sample sig-
nature, we deem the MCD successful in extracting a DL-definition. Given the
outcome of the case-study and the fact that SNCs and WSCs are not restricted
to atomic concepts and can extract more expressive concepts, we expect MCDs
to be more successful on average than the ANEMONE-definition. The results
are in Table 8. These show that Algorithm 1 failed in some cases, this may be
due to the signature of the extracted definition not being a subset of the sample
signature. This hints at the unshared concept being cyclic as defined in Sect. 1.1;
LETHE introduces definer symbols5 to represent cyclic concept-names that need
to be eliminated. An interesting observation from Table 8 is that minimal concept
descriptions are more succesful than strongest necessary conditions in extracting
DL-definitions, this is probably due to the weakest sufficient condition satisfying
the requirements as opposed to the strongest necessary condition. Observe that
for all samples, minimal concept descriptions and strongest necessary conditions
extract more definitions than the ANEMONE prototype, which matches our
expectations and supports hypothesis H2 from Sect. 6.1.

Evaluation of Ability to Extract Superconcepts and Subconcepts. Sim-
ilar to the previous evaluation we only focus on sharing concept-names not in
the common signature, the main difference being we restrict this evaluation to
concept without any DL-definitions (determined using the implicit definability
test). For such concepts we only extract an ANEMONE-definition and a minimal
concept description. The extraction is deemed successful if it extracts a descrip-
tion or ANEMONE-definition that is non trivial (i.e., not � or ⊥) and whose
signature is a subset of the sample signature. The results are in Table 9 and we
observe that in overall, the minimal concept description is more successful than
the ANEMONE-prototype, but not by a large magnitude (for cases outside the
10% signature).

6.3 Discussion of ANEMONE Framework

Reliance on Assertional Knowledge. Given agent A1 requesting for
instances of B, a shared concept-name, from agent A2, all that is expected is that
A2 returns instances of B w.r.t O2. This is problematic because O1 may inter-
pret B differently than O2 w.r.t. the TBox, it is not difficult to imagine a case
where B is interpreted differently. This implies that the queries results returned
5 Symbols not in the signature of the ontology.
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Table 8. Successful definitions and descriptions extracted for signature samples of
CCTOO. Each column (apart from the first) displays the percentage of the CCTOO
signature that forms the simulated common vocabulary. The ‘ANEMONE’ row displays
the definitions successfully extracted using the ANEMONE-prototype. The ‘MCD’ row
displays the definitions successfully extracted using Algorithm 3. The ‘SNC’ row dis-
plays the definitions successfully extracted using Algorithm 1.

10 % 20 % 30 % 40 % 50 % 60 % 70 %

Sample 1

Defined concepts 0 1 4 8 6 4 5

ANEMONE 0 0 1 1 2 1 0

Algorithm 3(MCD) 0 0 1 2 4 2 2

Algorithm 1(SNC) 0 0 0 2 0 2 2

Sample 2

Defined concepts 0 0 3 6 2 2 2

ANEMONE 0 0 2 2 0 1 0

Algorithm 3(MCD) 0 0 3 6 2 2 2

Algorithm 1(SNC) 0 0 3 0 2 0 2

Sample 3

Defined concepts 0 0 1 2 1 2 3

ANEMONE 0 0 1 0 0 1 1

Algorithm 3(MCD) 0 0 1 2 1 2 3

Algorithm 1(SNC) 0 0 0 2 1 2 3

Table 9. Successful definitions and descriptions extracted for signature samples of
CCTOO. Each column (apart from the first) displays the percentage of the CCTOO
signature that forms the simulated common vocabulary. The ‘ANEMONE’ row displays
the concept-descriptions successfully extracted using the ANEMONE-prototype. The
‘MCD’ row displays the concept-descriptions successfully extracted using Algorithm 3.

10 % 20 % 30 % 40 % 50 % 60 % 70 %

Sample 1

Undefined concepts 1133 1132 1129 1125 1127 1129 1128

ANEMONE 106 891 760 678 541 455 342

Algorithm 3(MCD) 987 896 768 678 546 449 342

Sample 2

Undefined concepts 1133 1133 1130 1127 1131 1131 1131

ANEMONE 1020 891 790 573 554 443 342

Algorithm 3(MCD) 1020 900 790 668 564 445 342

Sample 3

Undefined concepts 1133 1133 1132 1131 1132 1131 1130

ANEMONE 102 797 760 671 565 456 341

Algorithm 3(MCD) 997 893 772 677 565 456 341
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by the agents can be potentially irrelevant and faulty making some interactions
of the agents ineffective and useless. Let O2 be {A � B,A(a), B(c), B(d)} and
O1 be {B � ¬D,D(a)}, then A2 would return a as an instance of B to A1, and
this information clearly contradicts A1’s knowledge. In the current framework,
this condraction can not be handled and is not discussed. Observe that this can
be mitigated by imposing a constraint stating that all shared concepts must be
query inseparable [4] over all common instances, or at the very least that one of
the agents ontology should be a conservative extension [15] of the other over the
common signature.

Adequacy for ANEMONE-Definitions. ANEMONE specifies a descrip-
tion as adequate if every symbol in the hearers ontology has a relation to the
description. This is not practical in DL ontologies as not all concepts in DL
have relations to one another. Furthermore, given that the speaker agent will
utilise the information returned to the hearer agent, the speaker agent has to
also evaluate the adequacy of a description it generates for an unshared con-
cept. Adequacy should be measured relative to the communication objective
which is to exchange assertional knowledge, however, stating the relation of an
unknown concept to other concepts has little to no effect on the assertional
knowledge that may be associated with the unknown concept. Consider agent
A1 with ontology {A � D,F � ¬A,F (a), A(d)} and agent A2 with ontology
{E � B,B � F, F (b), E(c)}. Consider the description {F � ¬A} which relates
A to every concept in A2’s ontology, this description although deemed adequate
gives A2 no information on how find assertions of A in its ontology thus making
it irrelevant for communication.

7 Conclusion

We have demonstrated methods for extracting DL-definitions and concept
descriptions in the context of the ANEMONE framework. Our results sug-
gest that the definition extraction methods presented can potentially reduce
the amount of descent into lower communication protocols, thus reducing the
amount of messages exchanged between agents. We have also proposed con-
cept descriptions and minimal concept descriptions as alternatives to describe
concepts that are not defined. Experiment results suggest that minimal con-
cept descriptions are more portable than ANEMONE-definitions but yet just as
effective for communication. Computing concept descriptions relies on comput-
ing compiled superconcepts and compiled subconcepts as discussed in Sect. 4.
Future work will focus on developing ways of using uniform interpolation to
compute compiled superconcepts and compiled subconcepts.
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Abstract. Deciding “what to do next” is a key problem for BDI agents
with multiple goals, which is termed the intention progression problem
(IPP). A number of approaches to solving the IPP have been proposed in
the literature, however, their evaluations are all taken in different forms.
The lack of standard benchmarks and testbeds for evaluating the IPP
makes it difficult for researchers to contribute to this topic. To foster
research around the IPP and BDI agents, this paper proposes a way to
generate test cases in the form of goal-plan trees which can be used to
represent the agent’s intentions in various agent languages and platforms.

Keywords: BDI Agents · Intention progression problem · Goal-plan
tree generator

1 Introduction

The Belief-Desire-Intention (BDI)[5] agents select plans to achieve the goals
based on their mental states (beliefs, goals and intentions) is one of the most
popular approaches to developing intelligent systems. Beliefs are the agent’s
information about the environment and itself, goals are the state of affairs the
agent is aiming to bring about, and the lists of execution steps the agent has
committed to achieving its goals form its intentions. BDI model is popular for
building inteligent agent in complex environment where the agents are usually
required to pursue multiple goals in parallel. A key problem for BDI agents is
to decide “what to do next”. That is, at each deliberation cycle a BDI agent
needs to decide which of its intentions should be executed, and if the next step
of the selected intention is a goal, which plan should be used to achieve it. This
problem is termed the intention progression problem (IPP) [4].

The problem of intention progression is critical for BDI agents, as poor
choices can give rise to conflicts which may result in a failure to achieve the goals.
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A number of approaches to solving the IPP have been proposed in the literature
[6–10,12–16], all of which have shown that they outperform the basic Round-
Robin (RR) and First-In-First-Out (FIFO) strategies. However, the evaluations
of these techniques are all taken in different forms and none of the programs to
generate the test cases is available online.1 The lack of the standard benchmark
and testbed for evaluating IPP makes it difficult for researchers to contribute
to this topic, especially it is very difficult for researchers to fairly evaluate their
own approaches. To foster research around the IPP and BDI agents, this paper
proposes a way to randomly generate synthetic goal-plan trees (GPTs) of dif-
ferent shapes and difficulties. These GPTs can be used to represent the agent’s
intentions in different languages and platforms and hence to provide general test
cases for evaluating IPP approaches.

2 Synthetic Goal-Plan Trees

In the BDI model, each agent has a library of pre-defined plans to achieve its
goals. Each plan consists of a sequence of execution steps which are either prim-
itive actions that can directly change the state of the environment or subgoals
that are in turn achieved by subplans. This relationship naturally forms a tree
structure termed a goal-plan tree (GPT) [6–8,17]. The root of a GPT is a top-
level goal, and its children are the plans to achieve it. As the agent only need
to select one plan to achieve its goal, the plan-nodes are viewed as “OR” nodes.
The children of the plans are a sequence of actions and subgoals, all of which
must be performed if the plan is selected for execution. Hence, these nodes are
viewed as “AND” nodes. Subgoals are in turn have the subplans to achieve them
as their child nodes, giving rise to a tree structure representing all the ways an
agent can achieve its top-level goals.

We represent an agent’s intentions as a tuple I = (T, S), where T =
{t1, . . . , tn} are GPTs for each top-level goal gi, and S = {s1, . . . , sn} are a
set of current step pointers for each GPT. All the successor steps of si together
form the agent’s intention to achieve gi. Representing intentions using the GPT
structure has the advantage that it is totally language-independent. Intentions
in most of the popular agent languages and platforms like Jason [1] and JACK
[11] can be easily translated into GPTs. Hence, developers no longer need to
worry about which agent language and platform they should use to test their
approaches. Moreover, the GPT structure has already been widely used in solv-
ing IPP in the literature and in the Intention Progression Competition [4].

We therefore focus on the problem: “How we generate GPTs to evaluate
approaches to the IPP?”. Real-world examples like the elevator domain [3] can be
a well-suited case study for IPP approaches, but it may suffer from the limitations
of the problem itself, i.e., some approaches may work well for specific problem
domains but fail to apply to the others. Thus, in the interests of generality,
we propose to use randomly-generated GPTs as the basis for evaluating the
IPP approaches. To generate random GPTs we need to decide not only the
1 There is a very brief discussion on generating synthetic goal-plan trees in [2].



GenGPT: A Systematic Way to Generate Synthetic Goal-Plan Trees 375

shape of the tree but also a set of conditions in the GPTs including the pre-
and postcondition of each action, the precondition of each plan and the goal-
condition of each goal. The action’s pre and postconditions are respectively a set
of literals that must be true for the action to begin execution and another set
of literals that are made true by executing the action. The plans’ precondition
(or context condition) specifies the situation when the plan is applicable, and
the goal-condition specifies a set of literals that need to be satisfied to achieve
the goal. These conditions decide the executability of each plan, hence define
the rationality and correctness of each GPT. Ideally, the random GPTs should
satisfy the following properties:

1. Each plan is well-formed. That is, if the precondition of a plan is satisfied
then it must be executed successfully in some environment.2 Otherwise, the
plan itself is faulty.

2. Taken individually, there is at least one way to achieve the top-level goal of
each GPT in some environment.

3. The shape of GPTs can be precisely controlled and are not always balanced,
i.e., plans to achieve the same goal may require a different number of steps.

3 GenGPT

Here, we present GenGPT, a package to generate synthetic GPTs. GenGPT can
be used in a standalone fashion using the bundled Java application to generate
sets of GPTs (in XML format) as input to another program. Alternatively, the
source code provided can be integrated directly into another program. In the
following, we briefly describe how GenGPT works and shows it can solve all the
challenges mentioned in Sect. 2.3

First of all, the shape and properties of the randomly-generated GPTs are
controlled by a set of input parameters. These parameters are: the random seed
s, the maximum depth of the tree d, the number of subgoals in each plan g, the
number of plans to achieve each goal p, the number of actions in each plan a,
the probability that a plan being a leaf plan l, the total number of environment
variables v, the number of variables selected for each intention e, the number
of trees we are going to generate t, and finally the output file path f .4 The
parameters d, g, p, a and l decide the shape of the trees, i.e., how many goals
and actions in each plan and how many plans to achieve a goal. We assume the
achievement of a single top-level goal can only affect a subset of the variables
in the environment.5 Thus, the parameters v and e together can be seen as the
likelihood of conflicts between intentions.

2 Here, we ignore the changes caused by the execution of other intentions.
3 The source code and a detailed instruction manual can be found at the following

url: “https://github.com/yvy714/GenGPT.git”.
4 We omit all these static parameters in the input of the algorithm for legibility.
5 This assumption is reasonable, as there is very few real world plans will affect all

the environment variables.

https://github.com/yvy714/GenGPT.git
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Before start generating GPTs, a set of v variables V s representing the current
state of the environment are generated with random initial values, i.e. true or
false. For each GPT, e variables are randomly selected from V s, which forms
a set Es, and we use Rs to represent the set of all remaining variables such
that V s = Es ∪ Rs. That is, the execution of each GPT can only affect the
values of the variables in its corresponding set of Es. For legibility, we omit
the appearance of Es and Rs in the input of all the algorithms below, as they
will be used all the time during the generation of GPT. The generation process
starts from the root node all the way down to the leaf action nodes. We use two
algorithms to generate goal nodes and plan nodes in each GPT.

Algorithm 1. Generate a goal with specified goal-conditions
1: procedure GenGoal(dp,Pc,Gc)
2: n ← a goal node with goal-condition Gc
3: for i ← 1 , p do
4: Prec ← Pc ∪ {a variable randomly selected from Rs}
5: pl ← GenPlan(dp,Prec,Gc)
6: n.Add(pl)

return n

Algorithm 1 is used to generate a single goal node in the GPT which requires
three parameters as its input: the depth of the goal in the GPT, dp, the set
of conditions that are required by all plans to achieve the goal, Pc, and the
goal-condition Gc. The algorithm first generates a goal node n with the given
goal-condition Gc (line 2), and then generates p plan nodes to achieve this goal
and adds them as the children of node n (lines 3–6). Finally, the goal node
n is returned as the output of this algorithm. For each plan to achieve the
goal-node n, their preconditions Prec consist of two parts (line 4). The first
part Pc represents the preconditions that are common to all the plans, which
are usually set up by previous steps of this plan. While the second part is a
variable randomly selected from Rs, which could be seen as purely environmental
conditions representing different applicable situations for the plans. For example,
the plans for an agent to move from the office room to the library all require that
the agent is currently in the office room (which is the Pc part). Depending on
the weather condition and the amount of money the agent has, the agent could
choose to walk to the library or take a taxi to the library.

The plan nodes are generated by Algorithm 2 which also requires three
parameters as its input: the depth of the plan in the tree, dp, the precondi-
tion of the plan, Pc, and the goal condition this plan is going to achieve Gc.
In Algorithm 2, we first decide if the plan we are going to generate is a leaf
plan (i.e., plans that only contain actions). A plan is a leaf plan if it reaches the
maximum depth of the tree or a randomly generated number is less than the
threshold l (line 2).6 The algorithm then randomly generates a list of execution
steps (line 3). If the plan is a leaf plan, then a list of a actions is generated,

6 l is one of the input parameters.
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Algorithm 2. Generate plans to achieve a goal
1: procedure GenPlan(dp,Pc,Gc)
2: isLeaf ← dp == d ‖ random() < l
3: pb ← GenPB(isLeaf )
4: Cs ← Pc
5: for each step in pb do
6: prec ← random(Cs)
7: post ← ¬random(Es)
8: if step is the first step in pb then
9: prec ← Pc

10: else if step is the last step in pb then
11: post ← Gc

12: Es ← Es ∪ {post} \ {¬post}
13: Cs ← Cc ∪ {post} \ {¬post}
14: if step is an Action then
15: step ← an action with precondition prec and postcondition post
16: else
17: step ← genGoal(depth + 1 , prec, post)

return a plan node with precondition Pc and plan body pb

otherwise, the plan body will contain a actions and g subgoals. We assume the
first and the last steps in a plan are actions, the former has the plan’s precon-
dition Pc as its own precondition and the later has the goal-condition Gc as
its postcondition (lines 8–11). This ensures that if the precondition of a plan is
satisfied, then the first step in the plan must be executable, and if the last step
of the plan has been executed successfully, then the goal must be achieved. The
postcondition of each step in the plan (apart from the last step) is randomly
selected from the set Es, and the value of the postcondition is the negation of
the selected variable (line 7), e.g., if the selected variable is currently true, then
the postcondition of this step is to make it false. We then use the postcondition
of this step to update the set Es and a set Cs which stores candidate precon-
ditions for each step (lines 12–13). The precondition of each step in a plan is a
variable randomly selected from the set Cs. Cs is initially the precondition of
the plan (line 4) and is updated as the postcondition of each step is generated.
This ensures the precondition of each step is either the precondition of the plan,
or it is a condition established by one of its preceding steps that has not been
undone by any intermedia steps. We then check each step in the plan body. If it
is an action, then an action node with corresponding pre- and post-conditions
will be generated (lines 14–15). Otherwise, a subgoal will be generated by calling
Algorithm 1 (line 17). Finally, a plan node with preconditions Pc and a plan
body pb is returned.

The application of GenGPT could be easily invoked from the command-line
and generate an output XML using the following command:

java -jar GenGPT.jar <args>
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Once the generation starts, Algorithm 1 is called to generate the top-level
goal of each GPT. To generate a top-level goal, the value of dp is set to 1, the
Pc is set to an empty set, and Gc is a unique goal-conditions that cannot be
established by any other GPTs. Algorithm 1 then generates preconditions for
the plans to achieve the top-level goal and calls Algorithm 2 to generate the
plan nodes. After that, Algorithm 2 iteratively calls Algorithms 1 and itself to
generate its subgoals and all the hierarchies below until all the leaf plans are
generated. Finally, the GPT structure is translated into XML file by the Java
package jdom2.

During the generation of the GPTs, the parameter d determines the maxi-
mum depth a plan can be placed, i.e., all plans at depth d are leaf plans. For all
other plans, they have l chance to be a leaf plan at any depth which potentially
make the GPT unbalanced. Parameters p, a and g determines the number of
plans, actions and subgoals in each GPT.7 As a result, GenGPT is able to pre-
cisely control the shape of GPT and the trees are not always balanced if l is set to
nonzero. Thus, the third property mentioned in Sect. 2 is satisfied. Given a plan
in the random GPT, if its precondition holds in the current environment, then
we could easily know that the first step in this plan is also executable as its pre-
condition is the same as the plan’s precondition. In GenGPT, the precondition
of the second step is either the postcondition of the first step in the plan or the
precondition of the plan, so the second step in this plan is executable after the
first action finishes its execution. By induction, we could conclude that any of the
steps in a plan is executable if all its previous steps have been successful executed,
which implies the plan is well-formed and thus the first property mentioned in
Sect. 2 is satisfied. Moreover, as all the plans in the GPT are well-formed, we
could know that the plans to achieve the top-level goal are also well-formed. In
an environment where there is an applicable plan to achieve the top-level goal, it
should be straightforward to know the corresponding GPT is executable, thus,
the second property is also satisfied. Overall, GenGPT is able to generate GPTs
to satisfy all three properties mentioned in Sect. 2 which makes it a potential
tool to generate benchmarks to IPP.

4 Conclusion and Future Work

This paper presents a goal-plan tree generator, which is used to generate syn-
thetic GPTs for evaluating approaches to IPP. We have shown the necessity of
using GPT to represent intentions from the different agent programming lan-
guage and the challenges in generating random GPTs. We also provided the
basic idea of how GenGPT works and how the mentioned problems are solved.
In future work, we plan to add parallel constructs and other types of goals.

Acknowledge. We would like to thank Brian Logan and John Thangarajah for many
helpful discussions relating to the work presented here.

7 In this paper, we choose to use fixed number of goals, plans and actions for simplicity.
However, it is straight forward to change it to a more flexible version with minimal
and maximum number of goals, plans and actions.
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