
4
Demographic Change

The workers have taken it into their heads that they, with their busy
hands, are the necessary, and the rich capitalists, who do nothing, the
surplus population.

– Friedrich Engels, The Condition of the Working Class in England

4.1 Background

In the previous chapter, we considered a population that maintains constant
population size. However, we often need to simulate a population whose size
is, or was, in flux. Brief consideration brings to mind many such cases. The
population size of our own species has expanded dramatically, particularly
over the last century; total census population of the human species grew from
∼2 billion in 1927 to∼7 billion in 2011. Invasive species are primarily defined
as a category of alien species by their rapid population growth following in-
troduction to a new locality. Declines in population size are also common
in the natural world. Nascent island populations—the result of immigration
from mainland populations—are necessarily much smaller than the parent
population. Anthropogenic changes to the environment have caused count-
less species throughout the world to decline in size precipitously.

Demographic change has a genome-wide effect on genetic variation because
changes in population size change the number of individuals and therefore
the number of copies of entire genomes present in a population. In other
words, the number of copies of a specific locus or chromosome is not altered
to the exclusion of most other loci/chromosomes. This contrasts sharply with
natural selection, which generally only affects quantity and pattern of genetic
variation in the immediate vicinity of the locus targeted by selection.

Note that my use of the term “demographic change” is limited to changes
in population size. We will not explicitly model changes in birth/death rates
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88 4 Demographic Change

or the age structure of populations. In this chapter, Nt represents population
size at time t, whileN100 represents population size at generation 100. A sym-
bological distinction is not made between census and effective population
sizes, but we assume effective population size throughout the chapter.

4.1.1 Models of Demographic Change

Consider a population whose census size increases monotonically from 1000
individuals to 10,000 individuals over the course of 100 generations. We can
imagine a number of trajectories the population might follow to bring about
this increase (Fig. 4.1). The simplest are instantaneouspopulation expansion in
which the increase occurs in one generation and a linear expansion in which
(10,000− 1000)/100 = 90 individuals are added each generation. Somewhat
more complicated are the widely used exponential and logistic models of
population growth, which we now consider in turn.

2500

5000

7500

10000

0 25 50 75 100
generation

N

instantaneous

lo
gi

st
ic lin

ear
exponentia

l

starting N =1,000

Fig. 4.1 Four models of population expansion fromN = 1000 to N = 10,000 over the course
of 100 generations. For the logistic model, the low density growth rate r ≈ 0.114. For the
exponential model, the intrinsic rate of increase r ≈ 0.023
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4.1.1.1 Exponential Population Growth or Decline

Each generation, exponential population growth increases population size
by a constant fraction of the current population size. Because the base pop-
ulation size increases each generation, the number of individuals added
each generation grows rapidly, ultimately leading to runaway population
growth. Following t generations of exponential increase, beginning with a
population size of N0, population size Nt is

Nt =N0ert. (4.1)

Given t, N0, and Nt (i.e., parameters we are likely to specify for our sim-
ulation), we can calculate the corresponding value of r, the intrinsic rate of
increase, using the following rearrangement of Eq. 4.1:

r = ln
(Nt

N0

)
t−1 (4.2)

Thus, for the example described at the beginning of this section and shown
in Fig. 4.1, r= ln(10)×0.01≈ 0.023. Exponential population decline follows the
same equations, but r is negative in sign. For example, the inverse scenario
in which population size declines from N0 = 10,000 to N100 = 1000 requires
r ≈ −0.023.

4.1.1.2 Logistic Population Growth

Runaway population growth is ultimately constrained by limited resources—
an idea famously promulgated by Thomas Malthus. A small population may
grow exponentially, but as population size approaches its carrying capacity,
K, growth slows down. Logistic growth is therefore characterized by a sig-
moidal growth curve, where growth from a small population size begins
at near-exponential rates but then declines precipitously as population size
approaches K. The modifying influence of K on growth rate is easily seen in
the discrete logistic equation:

Nt+1 =Nt+ rNt

(
1− Nt

K

)
. (4.3)

When Nt << K, nearly rNt individuals are added to current population size
by the next generation. Under the logistic model, r is therefore sometimes
named the low density growth rate. However, at carrying capacity (Nt = K),
rNt is multiplied by zero, resulting in constant population size of K. Given
K and N0, the logistic model for population size after t generations is

Nt =
KN0

N0+ (K−N0)e−rt (4.4)
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4.1.2 Using Coalescent Simulation to Build Intuition
Regarding the Genetic Consequences of Demographic
Change

To build basic intuition regarding the effects of population increase and de-
crease on genetic variation, we use coalescent simulation implemented in
the R package coala (Staab and Metzler 2016, see Chapter 2). To make the
effects of population growth and decline as clear as possible, we will com-
pare the genealogies and site frequency spectra of a population at mutation-
drift equilibrium (Ne = 25,000 diploid individuals) to simulations of two ex-
treme scenarios: (1) an instantaneous population expansion from Ne = 50 to
Ne = 25,000 and (2) an instantaneous population bottleneck from Ne = 25,000
to Ne = 50. In both cases, the genetic sample is drawn 50 generations follow-
ing the sudden change in population size. We draw samples of n = 20 and
n = 100 to show the effect of demographic change on the structure of ge-
nealogy (left column panels in Fig. 4.2) and the SFS (right column panels of
Fig. 4.2), respectively. A bottleneck is a biologically relevant scenario; envi-
ronmental catastrophe may rapidly decimate a local population, and a small,
founder population derived from a large population may in one generation
establish itself elsewhere. An instantaneous population expansion of the
size simulated here is less relevant from a biological/ecological standpoint.
Nevertheless, its extremity is used to showcase the effects of population
expansion.

In all scenarios, a point mutation rate of 1×10−8 and a 20,000-bp sequence
were simulated. We first examine the baseline results from simulating a
population at mutation-drift equilibrium. Looking backward in time, the
n= 20 sequences of a sample initially coalesce with rapidity, while coalescent
times (the waiting time to the merger of sequence lineages) increase as the
number of lineages to coalesce decreases (Fig. 4.2a). This is characteristic of
the neutral coalescent process, in which the probability of coalescence be-
tween an unspecified pair of lineages in the previous generation equals n(n−1)

4Ne
.

As n—the remaining number of genes that have not coalesced—decreases,
the probability of coalescence decreases, and coalescence time increases on
average.

Under the neutral coalescent, the site frequency spectrum should be dis-
tributed geometrically. However, this expectation is only met when spectra
are averaged across numerous unlinked loci. Although the SFS of one sim-
ulation is not geometrically distributed, it does show hallmarks of what we
expect the distribution of genetic variation to look like under neutral, equi-
librium conditions (Fig. 4.2b). The most abundant types of polymorphic sites
(SNPs) are those in which the frequency of derived alleles is low. In particu-
lar, the most abundant type of SNP is a singleton in which only one of the 100
sampled sequences shows a derived allele. The SFS for this simulation also
shows a declining trend in the number of SNPs with high frequencies of the
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derived allele. Again, because the results are shown for a single simulation
(and, therefore, a single locus), we do see some clear exceptions to this trend.
For example, the numbers of SNPs with derived allele counts are remarkably
common — 5 and 13, respectively (Fig. 4.2b).

Figure 4.2a and b is derived from the results of one simulation. De-
vise a hypothesis to explain the bimodal SFS in Fig. 4.2b given the
genealogy shown in Fig. 4.2a.

Both the genealogy and SFS under instantaneous population expansion
(Fig. 4.2c,d) show a clear departure from that of the equilibrium scenario.
The genealogy is comb-like (Fig. 4.2c); all 20 sampled sequences evolve
independently of each other until they rapidly coalesce in a compressed
period of time in the recent past. The SFS is notable for (1) the small number
of polymorphic sites (cf. scale of the y-axis in Fig. 4.2b and d) and (2) derived
allele counts exclusively ≤ 3 out of 100 sampled sequences. We expect a
drastic increase in population size to alter patterns of genetic variation,
but the specific question of interest is why these particular alterations are
characteristic of population expansion.

Prior to the expansion, the population of 50 diploid individuals collec-
tively carries just 100 copies of the simulated locus. As detailed in the last
chapter, small populations harbor less variation than large populations. It is
possible, even likely, that the initial population was devoid of variation at
the locus simulated. However, the in-one-generation increase in population
size to 25,000 diploid individuals provides a large reservoir of sequences that
can incur mutations. In other words, the small population with depauper-
ate genetic variation becomes a large population with depauperate genetic
variation. The simulated sequence is a (nearly) blank canvas upon which
new variants may be written. However, the long terminal branches of the
genealogy mean the vast majority of derived alleles found in a sample are
singletons. This process of occasionally generating derived alleles within a
genetically depauperate sequence yields the SFS seen in Fig. 4.2d. Polymor-
phic sites are rare because we have only allowed 50 generations for new
mutations to arise on the “blank canvas.” Moreover, those polymorphic sites
that are identified in the sample show low derived allele counts because they
have had little time to spread through the population.

We next consider the genesis of the distinct topology associated with
a large and instantaneous population expansion: in our example, looking
backward in time from the present, no coalescence of the n = 20 sequences
for an extended period followed by a flurry of coalescent events in the past
(Fig. 4.2c). As you might guess, this cluster of coalescent events dates back to
the much smaller, pre-expansion population. The long absence of coalescence
following the expansion is a direct consequence of the sudden increase in
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Fig. 4.2 Typical genealogies and site frequency spectra for a neutral, equilibrium model
(a,b), an instantaneous population expansion (c,d), and an instantaneous population bot-
tleneck (e,f). Although there are 20 branch tips in (f), coalescent events take place so rapidly
moving backward in time that it appears the tips are too short to visualize. For clarity,
the genealogies are based on a sample of just 20 sequences; the site frequency spectra are
calculated from a larger sample of 100 sequences. Samples for the population bottleneck
and expansion scenarios were drawn 50 generations following the demographic event. In
the genealogies, time flows forward from left to right
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the number of sequences present in the population. The probability P(n) that
no coalescent event takes place in the previous generation is equal to

P(n) =
2Ne−1

2Ne
+

2Ne−2
2Ne

+ ...+
2Ne−n+1

2Ne
, (4.5)

where n is the number of sequences in the sample. It can be shown that
P(n)≈ 1−(n2

) 1
2Ne

(Hudson 1990). In our current example, then, the probability
that none of the lineages coalesce for the 50 generations since the expansion—
with n = 20 and 2Ne = 50,000—equals

P(20)50 ≈
[
1−
(
20
2

)
1

50,000

]50

≈ 0.827 (4.6)

In other words, greater than 80% of the time, none of the
(20

2
)
= 190 pairs

of sequences will coalesce in the 50 generations following the expansion.
Contrast this with the small, pre-expansion population of just 50 individuals
(2Ne = 100) where the probability that one pair of sequences will coalesce with
a common ancestor in the previous generation is a near certainty. Although
an instantaneous, 500-fold increase in population size is an extreme example,
these ideas show that a comb-like topology (perhaps, more commonly named
a star topology) is characteristic of genealogies associated with population
expansions.

The average effect of a population bottleneck on a genealogy is oppo-
site to that of a population expansion (Fig. 4.2e); most coalescent events
take place post-bottleneck, while the last coalescent events are often much
older and traceable to the larger, pre-bottleneck population. The resulting
SFS (Fig. 4.2f) shows isolated peaks associated with mutations occurring
on the long branches that become derived alleles shared by the descendant
sequences of these long branches.

Finally, we look at the summary statistics—and estimators ofθ—nucleotide
diversity π and Watterson’s estimator θW for the same demographic scenar-
ios just discussed. Our expectations are the following: (1) for the scenario of
no demographic change, both estimators should zero-in on the per-locus ex-
pected value of θ = 20, and (2) because both summary statistics are directly
related to the site frequency spectrum and we have just seen that demo-
graphic change has profound impacts on the SFS, both summary statistics
should be greatly perturbed by the strong demographic change modeled.
Both of these expectations are met by this simple simulation study (Fig. 4.3).
In addition, notice that under neutral, equilibrium conditions, θW shows
superior resolution to π as an estimator of per-locus θ (Fig. 4.3a).
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Fig. 4.3 Boxplots showing the diversity in per-locus values of nucleotide diversity π and
θW across 1000 replicate simulations for each of three demographic models. Panels (a),
(b), and (c) here correspond to the same demographic models used to produce the results
shown in Fig. 4.2 panels (a-b), (c-d), and (e-f), respectively—namely, ((a)) No demographic
change. ((b)) Instantaneous population expansion. ((c)) Instantaneous population bottle-
neck. Ne = 25,000, per-site μ = 1×10−8, seqlength = 20,000 bp, and sampsize = 100. Note
the different y-axis scales between panels. Samples for the population bottleneck and
expansion scenarios were drawn 50 generations following the demographic event. On
average, π - θW is zero for a neutral locus in a population of constant size, a negative value
for population expansion, and a positive value for a population decline; the results shown
here validate those theoretical expectations. The median estimate of per-locus θ (for both
estimators) at a neutral locus in a population of constant size (panel A) matches the ex-
pectation of θ = 4Neμ× seqlen == 4×50,000×10−8 ×10,000 = 20. Both summary statistics
are therefore good estimators of θwhen the atmosphere is ostensibly boring—neutral and
static. In addition, this is another example of validation in which our simulation results
match theoretical expectations

4.2 Forward Simulation of Demographic Change

We now modify the forward simulation program FORTUNA—introduced in
Chap. 3—to facilitate simulation of varied demographic scenarios. Modifica-
tions also include updates to summarystatistics.h that enable calculation
of the summary statistic Tajima’s D.
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4.2.1 Requisite New Parameters

Imagine that the modeled population is subject to a series of changes in pop-
ulation size. The information necessary to model each size change includes
the following: (1) type, e.g., instantaneous or logistic; (2) generation numbers
for the onset and conclusion of the demographic regime; (3) population size
at onset of the demographic regime; and (4) any additional parameter(s) re-
quired to specify the demographic model. We first add program parameters
to the parameters and params.h files.

modifications to parameters and params.h files to implement demographic change

1 // additions to parameters

2 demography 0 1 4

3 dem_parameter 0 -9900 0.02

4 dem_start_gen 0 1001 1501

5 dem_end_gen 1000 1500 20000

6 carrying_cap 0 0 10000

7
8 // additions to params.h

9 extern vector<int> demography;

10 extern vector<double> dem_parameter;
11 extern vector<int> dem_start_gen;
12 extern vector<int> dem_end_gen;
13 extern vector<int> carrying_cap;
14 extern vector<int> pop_schedule;

Pay special attention to the parameter values listed on lines 2–6; each is
followed by numbers that specify details of three sequential demographic
events in the population. For example, the demography parameter specifies
the type of demographic event and takes one of five values:

• 0 = constant population size—i.e., no change
• 1 = instantaneous change
• 2 = linear change
• 3 = exponential change
• 4 = logistic change

Thus, the entry demography 0 1 4 indicates the population first maintains
the constant size specified by parameter popsize (Chap. 3), experiences an
instantaneous change, and then enters a phase of logistic change (growth
in this case). The values listed after the other four correspond to these three
demographic regimes in the same order. Look again at the parameter values
in the previous listing. Take a moment to understand that numbers −9900,
1001, 1500, and 0 provide the needed details to model the second selective
regime (an instantaneous change in population size).
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The parameters dem start gen and dem end gen specify the starting and
ending generation for a given demographic event, respectively. The value
of dem parameter provides a necessary parameter for a given demographic
model:

• Absolute change in population size for instantaneous change
• Per-generation change in population size for linear change
• Rate parameter for both exponential and logistic change

Logistic change requires specification of a secondmodel parameter—carrying
capacity—provided to the parameter carrying cap. Each parameter is
stored in a vector, and multiple values for a given parameter should be
separated by whitespace of any size.

The parameter values in the previous listing will be used in the next
section. Collectively, they specify no change in population size for the first
1000 generations, followed by an instantaneous loss of 9900 individuals
(out of 10,000, as specified by the parameter popsize) that lasts for 500
generations, and finally logistic growth at a rate of 0.02 with a carrying
capacity of 10,000. The logistic demographic regime holds from generation
1501 until the end of the simulation at generation 20,000.

File params.h also declares a vector<int> called pop schedule, which
holds the population size at every generation (generations 0–20,000 in the
current case) based on the demographic model parameters just discussed.
The values of pop schedule are calculated in params.cc using the following
additions to the file:

additions to params.cc

1 ...

2 vector<int> get_multi_int_param(const string &key)
3 {

4 vector<int> vec;

5 istringstream iss(parameters[key].c_str());
6 string param;

7 while(getline(iss, param, ’ ’))

8 vec.push_back(atoi(param.c_str()));
9 return vec;

10 }

11
12 vector<double> get_multi_double_param(const string &key)
13 {

14 vector<double> vec;

15 istringstream iss(parameters[key].c_str());
16 string param;

17 while(getline(iss, param, ’ ’))

18 vec.push_back(atof(param.c_str()));
19 return vec;

20 }

21
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22 vector<int> create_pop_schedule()
23 {

24 vector<int> ps;
25 int i=0;

26 int cursize = popsize;

27 for (int step = 0; step < demography.size(); ++step) {

28 for (; i<dem_start_gen[step]; ++i)

29 ps.push_back(cursize);
30 for (; i <= dem_end_gen[step]; ++i) {

31 switch(demography[step]) {

32 case 0: ps.push_back(cursize); // no size change

33 break;
34 case 1: if (i == dem_start_gen[step])
35 cursize += dem_parameter[step];
36 ps.push_back(cursize); // instantaneous

37 break;
38 case 2: cursize += dem_parameter[step];
39 ps.push_back(cursize); // linear

40 break;
41 case 3: cursize *= exp(dem_parameter[step]); // exponential

42 ps.push_back(cursize);
43 break;
44 case 4: cursize = (carrying_cap[step] * cursize) /
45 (cursize + (carrying_cap[step] -

↪→ cursize)*exp(-1*dem_parameter[step])); //
↪→ logistic

46 ps.push_back(cursize);
47 }

48 }

49 }

50 return ps;
51 }

52
53 // additional variable declarations

54 vector<int> demography;

55 vector<double> dem_parameter;
56 vector<int> dem_start_gen;
57 vector<int> dem_end_gen;
58 vector<int> carrying_cap;
59
60 int process_parameters() {

61 ...

62 demography = get_multi_int_param("demography");
63 dem_parameter = get_multi_double_param("dem_parameter");
64 dem_start_gen = get_multi_int_param("dem_start_gen");
65 dem_end_gen = get_multi_int_param("dem_end_gen");
66 carrying_cap = get_multi_int_param("carrying_cap");
67 ...

68 }

69 ...

70 vector<int> pop_schedule = create_pop_schedule();
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The functions get multi int param( ) and get multi double param( )

(lines 2–20) allow read-in of multi-valued parameters and are used in the
calculation of pop schedule carried out by function create pop schedule(

) (lines 22–51). Population size begins at the value specified by the parameter
popsize and is stored as current population size in the variable cursize (line
26). The for loop beginning at line 27 will step through each demographic
event and, for each generation of the individual demographic regime, calcu-
late population size. Note that once the starting generation of a demographic
event is reached, as determined by the control statement at line 28, the pro-
gram enters the for loop from line 30 through line 48 until the last generation
of the demographic event is reached. Each iteration of this for loop employs
a switch statement (lines 31–47), which queries the type of demographic
change (line 31), updates population size (cursize) accordingly, and pushes
cursize to the population schedule (pop schedule). Finally, the calculated
population schedule is returned (line 50).

Small changes to population.h are also required. However, we will cover
these changes in Sect. 4.2.3 following a brief discussion of how to calculate
the summary statistic Tajima’s D.

4.2.2 Calculating Tajima’s D

As discussed in Chap. 3, Tajima’s D quantifies the difference between two
estimators of θ: nucleotide diversity (π) and Watterson’s estimator (θW)
(Tajima 1989). At equilibrium, we expect these estimators to provide roughly
equal estimates, yielding a value of D = 0. Positive or negative deviations
from zero are characteristic of various evolutionary events, including demo-
graphic change. Specifically, Tajima’s D is defined as

D =
π−θW√

Var(π−θW)
(4.7)

Now let a1 =
∑n−1

i=1
1
i , a2 =

∑n−1
i=1

1
i2

, n be sample size (the number of sequences),
and S be the number of segregating sites in the sample. Then, Tajima (1989)
defines Var(π−θW) as

Var(π−θW) = S
(

1
a1

)(
n+1

3(n−1)
− 1
a1

)
+S(S−1)

⎛⎜⎜⎜⎜⎝ 1
a2

1+ a2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝2(n2+n+3)

9n(n−1)
− n+2

a1n
+
a2

a2
1

⎞⎟⎟⎟⎟⎠
(4.8)

Keep in mind that θW = S
a1

, where the denominator controls for sample
size, which is necessary because large samples uncover a greater number
of segregating sites than small samples. Similarly, the expected range of
Tajima’s D is expected to be greater for smaller sample sizes; the variance of
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D in the denominator controls for this fact, as it is a function of n, a1, and
a2, the latter two themselves being functions of n. The following function for
calculating and returning Tajima’s D is added to summarystats.h:

summarystats.h: function get tajimas d( )

1 double get_tajimas_d (double pi, double watterson, int S) {

2 double d = pi - watterson; // numerator

3 double a1 = 0.;

4 double a2 = 0.;

5 for (double i=1.; i < sampsize; ++i) {

6 a1 += 1./i;
7 a2 += 1./(i*i);
8 }

9 double n = sampsize; // for easier expression
10 double var = watterson * ( (n+1) / (3*(n-1)) - 1/a1 ) +

11 ( S * (S-1) * ( 1 / (a1*a1+a2)) *
12 ( (2*(n*n + n+3))/(9*n*(n-1)) - (n+2)/(a1*n) + a2/(a1*a1) ) );

13 return(d / sqrt(var));
14 }

As reflected by the arguments to this function (line 1), it can only be
called after π and θW have been calculated. Furthermore, calculation
of Tajima’s D requires us to use the per-locus rather than per-site esti-
mates of θ. Therefore, the return values of the functions get pi( ) and
get watterson( ) were also modified to reflect this necessary change.
Specifically, return (sumdiffs / numcomp) rather than return (sumdiffs

/ numcomp / seqlength) returns the per-locus value of π. Similarly, the
change to return (S / denominator) returns the per-locus number of seg-
regating sites.

4.2.3 Final Changes to Program Files

Minor modifications to population.h are required to complete the imple-
mentation of additional functionality—namely, the ability to simulate de-
mographic change and calculate Tajima’s D. Because we are now calculating
three summary statistics, we also make modifications to population.h that
cause all summary statistic output to print to one file.

population.h: Chap. 4 modifications

1 // changes to private variables

2 ofstream sumstat_file; // all sumstats printed here

3
4 // change to function update_alleles( )

5 if (current_count == pop_schedule[gen]*2) { // replaces popsize*2 in

↪→ ch3 listing

6
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7 // changes to function reproduce ( )

8 randomind.param(uniform_int_distribution<int>::param_type(0,pop_schedule
↪→ [gen]-1));

9 ...

10 for (int i=0; i< pop_schedule[gen==0 ? gen : gen-1]; ++i) { // replaces

↪→ popsize in ch3 listing

11 ...

12 for (auto iter = individuals.begin(); iter != individuals.end() -

↪→ pop_schedule[gen==0 ? gen : gen-1]; ++iter) // replaces

↪→ popsize in ch3 listing

13 ...

14 individuals.erase(individuals.begin(), individuals.end()-
↪→ pop_schedule[gen==0 ? gen : gen-1]); // replaces popsize in

↪→ ch3 listing

15
16 // additions to function get_sample( )

17 double pi = get_pi(sample);
18 double watterson = get_watterson(sample, S);

19 double tajimasd = get_tajimas_d(pi, watterson, S);

20 sumstat_file << gen << " " << pi << " " << watterson << " " << tajimasd

↪→ << endl;

21
22 // addition to function close_output_files( )

23 sumstat_file.close();
24
25 // changes to Population constructor

26 randomind.param(uniform_int_distribution<int>::param_type(0,pop_schedule[0]
↪→ - 1)); // replaces popsize in ch3 listing

27 ...

28 for (int i=0; i<pop_schedule[0]; ++i) { // replaces popsize in ch3

↪→ listing

29 ...

30 fname = "sumstats";

31 sumstat_file.open(fname.c_str());
32 sumstat_file << "gen pi watterson tajimasd" << endl;

Changes to the population.hfile shown in lines 2, 17–20, 23, and 30–32 drive
calculation of Tajima’s D and output of all summary statistics to a single file
named sumstats.

The remaining changes specified account for the potentially variable value
of population size. In Chap. 3, where population size remained constant, we
could simply use the value popsize every generation. Now, however, the
population size at any given generation gen is stored in pop schedule[gen].
Because population size may change each generation when modeling de-
mographic change, the random variable randomind must be updated each
generation so that potential indices of individuals chosen as parents fall be-
tween 0 and current population size less one. Initialization of the randomind

is performed in the constructor (line 26) and updated each generation at the
beginning of function reproduce( ) (line 8). Variable population size also
necessitates changes to the test expressions of several for loops (lines 10, 12,
and 28) as well as an erase( ) function (line 14). In line 10, the test expression



4.3 Simulating a Bottleneck Followed by Logistic Growth 101

is written as i < pop schedule[gen==0 ? gen : gen-1]. We use the condi-
tional operator for the index because pop schedule[-1] is undefined; thus,
for generation 0, we need to use the initial population size pop schedule[0]

as the test condition.

4.3 Simulating a Bottleneck Followed by Logistic Growth

Having modified the forward simulation program to allow demographic
change and calculation of Tajima’s D, we can now use the program to
model a broadly realistic case of demographic change. Imagine a population
of Ne = 100,000 diploid individuals at mutation-drift equilibrium. Catas-
trophic environmental change causes an instantaneous population bottle-
neck that reduces population size to Ne = 100, which lasts for 500 generations
(Fig. 4.4a). After this, the environment recovers, and logistic growth ensues
at a rapid growth rate of r = 0.02 and a carrying capacity of Ne = 10,000
(Fig. 4.4a).

The demographic parameter values required to specify the demographic
model shown in Fig. 4.4a are those focused on at the beginning of Sect. 4.2.1.
We sample 100 non-recombining sequences with a per-site mutation rate of
μ = 1×10−8 and a length of 250,000 bp from the simulated population every
ten generations. Each simulation uses an initial coalescent simulation to
generate sequences for generation 0 in the forward simulation. mscommand is
set to ./ms 20000 1 -t 100 >ms output in parameters. Because popsize

remains 10,000 and we are simulating a diploid locus, MS must generate
20,000 sequences. Furthermore, the value ofθ= 100 as the per-locus value ofθ
was obtained as follows: θ= 4Neμ×2.5×105 = 4×104×2.5×10−8×2.5×105 =
100.

Figure 4.4b,c shows per-site estimates of θ for two independent replicates
of the simulation setup detailed in the previous paragraph. Although the
starting quantity of genetic variation generated by coalescent simulation
differs in each case, qualitatively similar behavior is seen in both replicates.
The instantaneous bottleneck immediately and drastically reduces genetic
variation. Over the course of the next 18,500 generations, as population size
increases rapidly to carrying capacity and holds there, genetic variation is
slowly restored to expected equilibrium levels. Importantly, π recovers more
rapidly than θW . Given that the numerator of Tajima’s D is π−θW , we expect
this behavior to yield consistently negative values of D. This expectation is
observed; roughly between generations 1500 and 5000, Tajima’s D is < −2 in
both simulations (Fig. 4.4d). In general, Tajima’s D greater than 2 or less than
−2 is considered a significant indicator of evolutionary change. Although a
variety of evolutionary factors may be responsible for this deviation (see next
section), we know the cause in our simulated population: rapid population
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Fig. 4.4 Modeling demographic change. (a) The demographic model; a population of
Ne = 10,000 diploid individuals is simulated using MS; forward simulation consists of
1000 generations at Ne = 10,000, followed by an instantaneous bottleneck that reduces
the population to Ne = 100 diploid individuals for 500 generations, followed by logistic
growth at a rate of r= 0.02 and a carrying capacity ofK= 10,000. (b and c) Results from two
independent replicates of the simulation, sampled every ten generations and summarized
as two independent estimators of θ, θW (black lines) and π (gray lines). (D) The summary
statistic Tajima’s D for the simulation shown in (b; black line) and (c; gray line). The period
of the 500-generation bottleneck is indicated by B or vertical dashed lines
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expansion. In other words, Tajima’s D provides a rather long-lived signal of
population expansion.

Interestingly, Tajima’s D does not provide us with evidence of the drastic
population bottleneck that occurs at generation 1000. During the bottleneck,
values of D become highly variable, but we fail to note a consistent value
of D > 2, which is indicative of significant population decline (Fig. 4.4d).
The loss of nearly all genetic variation with the instantaneous bottleneck ex-
plains this. Values of π and θW are both nearly zero immediately following
the bottleneck, which does not provide a great enough difference between
the two estimators to yield a clear signal of population decline. In the next
section, we will model a gradual population decline, which does produce
a clear increase of D to greater than 2. The population expansion provides
a much clearer signal because the bottleneck produces a genetically depau-
perate population that sets the stage for a slow recovery of genetic variation
as population size increases. The relative difference in recovery of π and θW
then yields the significantly negative values of Tajima’s D shown in Fig. 4.4d.

4.4 The Varying Utility of Summary Statistics for Inference

We now simulate a gradual, linear decline in population size. This situation
is of practical relevance, as conservation biologists are often interested in
assessing current population dynamics in order to determine if a population
merits intervention. The results of this simulation will raise the issue of
which summary statistics are best suited for a specific inferential task.

Consider a population of 50,000 diploid individuals at mutation-drift
equilibrium. A linear decline of ten individuals per generation begins at
generation 1000 until, at generation 5900, the population stabilizes at 1000
diploid individuals. We assume a per-site point mutation rate of μ = 1×10−8

and a 50,000-bp sequence. Once again, we initialize a Population object
using the results of coalescent simulation in MS. The parameters file that
describes this population model (Fig. 4.5a) is

parameters for the model detailed in Sect. 4.4

1 popsize 50000

2 mutrate 1e-08

3 seqlength 5e04

4 sampsize 100

5 sampfreq 10

6 demography 0 2 0

7 dem_parameter 0 -10 0

8 dem_start_gen 0 1001 5901

9 dem_end_gen 1000 5900 8500

10 carrying_cap 0 0 0

11 useMS 1

12 mscommand ./ms 100000 1 -t 100 >ms_output
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Figure 4.5b shows the per-site values of π (gray) and θW (black) sampled
every ten generations. During the population decline, a very gradual increase
in Tajima’s D is observed (Fig. 4.5c). Furthermore, while θW begins to decline
at 3000 generations, likely due to the loss of rare variants,π remains elevated
until after the population decline ends at 5900 generations (Fig. 4.5b). Shortly
after the decline stops at generation 5900, significant values ofD are observed
and maintained during the next 2000 generations (Fig. 4.5c).

At roughly generation 7000, there is a sharp drop in both θW and
π. Generate a hypothesis that explains this seemingly anomalous
“blip.”

From the practical standpoint of the conservation biologist hoping to de-
termine if a population is subject to a sustained population decline, these
results are worrisome. During the nearly 4000 generations that the popu-
lation is bleeding individuals, both π and Tajima’s D fail to signal such.
Moreover, the decline in θW is only visible to us because we have access data
from the entire history of the population decline. θW at any one sample point
would not signal a population decline.

On another note of caution, Fig. 4.4 makes clear that Tajima’s D drops
below the critical value of −2 following a drastic, though transient, popula-
tion bottleneck. As will be shown in the last chapter of this volume, strong
positive selection also drives Tajima’s D to less than −2. As is often the case
in population genetics, distinct evolutionary scenarios produce the same
pattern of genetic variation. On a more hopeful note, we can sometimes find
an additional layer to the genetic pattern that allows us to go further with
our inference. Returning to our example, both a population bottleneck and
selective sweep can produce a significantly negative value of Tajima’s D. On
average, the former will be observed across the whole genome, while the
latter will be limited to a region proximate to the molecular target of natural
selection.

Given the nosiness of our summary statistic clues, one inferential tactic is
to create as many unique ways of summarizing the genetic data as possible
in the hope that a legion of summary statistics will somehow collectively
capture the nuance of a sequence alignment. Superficially, the recent use
of convolutional neural networks (CNN) on input “images” of sequence
alignments seems to obviate the need for summary statistics (Flagel et al.
2018). Of course, the CNN is learning high-dimensional summaries of the
data that we would never imagine natively (i.e., as humans). So summary
statistics are still in play, but they are of the multidimensional chess variety.

Nevertheless, there are summary statistics that intuitively should capture
aspects of the sequence alignment not tracked by π or θW . For example,
how many unique haplotypes are found in a sample? The answer is the
summary statistic K. Each of the K haplotypes has a frequency in the sample.
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Fig. 4.5 Modeling demographic change: a gradual, linear decline over the course of 4000
generations. (a) The demographic model: a population of Ne = 50,000 diploid individuals
at mutation-drift equilibrium is simulated using MS; forward simulation begins with a
further 1000 generations of equilibrium followed by a linear decline lasting 4900 gener-
ations in which Ne declines by ten individuals each generation. At this point, Ne = 1000
diploid individuals and a further 4600 generations are simulated. Results of simulation of
this model include (b) the per-site values of θW (black dots) and π (gray dots) as well as
(c) Tajima’s D

The summary statistic K is the discrete frequency distribution of each of the
K haplotypes. Sometimes, variant-specific summaries such as observed and
expected heterozygosity, or their difference, can prove valuable.
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Successful inference often requires us to act creatively, conjuring up
new summaries of the data as well as creating compound summary
statistics (such as Tajima’s D) that contrast individual summaries of
the data. Imagine an evolutionary scenario and a sequence align-
ment sampled from a population. What other summary statistics can
you come up with that might facilitate insight into the population’s
evolution?
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