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Preface

Oxen that rattle the yoke or halt in
the shade, what is that
you express in your eyes?

Leaves of Grass [Song of Myself ]
Whitman, 1855

The ancient Greeks called the
world κoσμoς, beauty.

Nature
Emerson, 1836

So much of what I read brings to mind evolutionary biology. Whitman’s
oxen express the ancientness of their ancestry, their genealogy, through their
eyes. Their muscular strain against the yoke—the culmination of millions
of years of knitting muscles now used to ease the labor of humanity. Their
respites in the shade of a tree, acknowledgments of physiological signals
honed in their ancestors, and their ancestors. As you see, any word of nature
can send me spinning down semi-poetic thoughts of the history of life on
Earth.

The material Universe is a marvel. Our local world presents glorious,
ungroomed beauty (κoσμoς), animate flesh assembled as transient bodies,
the history of evolution written in their mortal (but heritable) genomes,
morphology, physiology, and behavior (however broadly you might like
to define that last term). As biologists, we appreciate the wildly complex
interplay of abiotic and biotic factors that shape the diversity of life observed
by each of us each day on Earth. Therefore, it may be difficult for purists to
accept simulation of this marvel as a legitimate form of exploration in the
biological sciences.However, theuse of in silico in the title of this book should
not detract from the often childlikewonder the organic world engenders, the
existential wonder that gently directed so many of us to careers in science.
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viii Preface

But recall that the world we find ourselves within is the current though ever-
fleeting endpoint of innumerable stochastic processes that have played out
since the origin of the Universe, constrained only by physical laws and what
has already unfolded in the history of life. Doesn’t that sound amenable to a
bit of algorithmic imitation? By aping these processes in computer code, we
can (with error) forecast the future direction of biological entities and (with
error) infer past evolutionary processes that led to the measured characters
of a contemporary genetic sample.

Some have posited a “digital physics,” which (put crudely) amounts to
the idea that evolution of the Universe is the output of a computer program
(Zuse 1970). Imaginative explorations of this very idea are also found in the
realmof science fiction, demonstrated perhapsmost famously by the filmThe
Matrix, which invokes gnostic thought in its conception of (1) an over-world
and (2) a perceived world. Simulating perceived worlds of any complexity
would require computing powerwell beyond our species’ current capability.
However, fictional representations of reality as simulation are instructive. They
remind us that no matter the true, basal reality, we are all in some, perhaps
uncomfortable, reductionist sense just data. This is good! It should mean
we are capable of using computer simulation to capture something of the
complicated network of interactions and quasi-rules of biology comprising
”the force that through the green fuse drives the flower ” (Thomas 1934).

Simulating the natural world necessarily requires us to (1) simplify, to
ignore the factors of lesser effect size, and (2) question the epistemological
utility of computer simulation in science (Chap. 1). Evolutionary biology is
a science of history. Thus, it is natural to follow a retrospective approach
in which we query the past for signal of the evolutionary factors that have
produced the genetic variation we sample today in fields, ponds, forests,
oceans, and the riparian zones beside rushing rivers. Retrospective (coales-
cent) simulation does and should play a large role in the types of intellectual
investigations we focus on here (Chap. 2).

However, themajority of this volumedetails prospective, forward-in-time
simulations, as these allow us to simulate more complex scenarios that inch
us a bit closer to “reality.” Chaps. 3–8 cover the causes ofmolecular evolution
in an order of introduction that seems natural to me: mutation and popu-
lation size (Chap. 3), demographic change (Chap. 4), meiotic recombination
(Chap. 5), population structure and migration (Chap. 6), natural selection
(Chap. 7), and the effects of natural selection on linked variation (Chap. 8).
This order is not agreed upon, as a casual perusal of population genetic/ge-
nomic textbooks will reveal. My apologies to those whose preferred order is
violated by my choices herein. The final chapter of this volume—Chap. 9—
delves into simulating phenotypes, specifically quantitative (complex) trait
values, including their evolution by artificial and natural selection.

A major goal of this volume is to walk you through the construction of
a reasonably multipurpose, prospective (forward-in-time) simulation pro-
gram. The program we add to as we progress through Chaps. 3–9 is named



Preface ix

FORward Time simUlatioN Application, or FORTUNA (see Sect. 1.4.2). An
appendix provides a glossary of parameters introduced throughout. It is
certainly possible for the reader to read the logic behind the coding without
the need to fully digest digressions into the specific meaning of lines of code
and the use of FORTUNA to investigate their research goals.

Finally, I need tomention that I am a self-taught programmer and am sure
to have broken more arcane rules regarding the proper syntax and use of
language idioms in R and C++. However, my philosophy has always been
that if I can code something that compiles successively and reliably does
what I expect it to do in a reasonable amount of compute time—and I can
explain it to someone else—well, then we are golden.

Zuse K (1970) Calculating Space. New York: MIT Technical Translation
AZT-70-164-GEMIT:1–98.

Platteville, WI, USA Ryan J. Haasl
January 2022
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1
Simulation as a Form of Scientific
Investigation

But that there were natural causes to all these things I am willing to
concede, for the resources of nature are infinite apparently.

– Samuel Beckett, Molloy

1.1 Simulations as Enlivened Models

In the first episode of the Discovery Channel’s 2011 series Planet Dinosaur,
the Cretaceous dinosaur Spinosaurus sp. is brought to life on the screen. The
presented animation required a model of the dinosaur’s anatomy based on
fossil discoveries in Egypt and Morocco from the early twentieth century
as well as more complete, more recent finds. Models are commonly imper-
fect representations of an entity or system that is either too complex for us
to represent with exactitude or will always be impossible for us to experi-
ment upon because the dynamics of the system evolve over expansive time
periods or are not directly accessible. In evolutionary biology, models are
used for all of these reasons. For example, current anatomical models of
the full body of Spinosaurus necessarily involve uncertainty as only some
of its various bony parts have been uncovered. In addition, its status as an
extinct species precludes us from directly observing its true biomechanics,
behavior, ecology, or fleshed-out appearance. Thus, paleontologists debate
whether Spinosaurus was both an aquatic and terrestrial predator or one or
the other and argue whether its enormous neural spines supported a fin or
hump-like structure.

© Springer Nature Switzerland AG 2022
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2 1 Simulation as a Form of Scientific Investigation

As another example, although the rapid evolution of phenotype occurs
in response to artificial and natural selection, there are many objects of evo-
lutionary interest that occur over time periods too lengthy to observe and
monitor directly. Indeed, when we consider the radiation of a clade, the time
period in question commonly spans millions of years. Moreover, the radia-
tion of a clade from a single, ancestral species implies a host of details that
the imperfect model can probably safely ignore: daily temperatures, most
intra- and interspecific interactions, earthquakes, floods, wind speeds, etc.

For the purposes of this volume—and largely ignoring the extensive lit-
erature on scientific modeling (with no intended disrespect to those who
think deeply on the subject)—I will treat a simulation as an enlivened model.
Returning to the example ofSpinosaurus, paleontologists haveused themore-
or-less complete fragments of individual Spinosaurus fossils to create models
of the overall body of Spinosaurus. With the aid of anatomists and biophysi-
cists, the capacity of this dinosaur to run or swim or bite was also modelled.
Even at this stage, however, themodel of Spinosaurus is a static thing, though
it speaks to its potential energy to run and bite and swim. Only upon the
application of computer-generated imagery (CGI) to themodel dowe transi-
tion to a simulation of the living Spinosaurus. In otherwords, CGI Spinosaurus
is an enlivened simulation of the model.

Our models will be less fearsome. We will, for example, model mutation
and genetic drift, the effects of demographic change on genetic diversity,
and the evolution of a complex trait over time. However, the same analogy
holds. Amodel of mutation will specify parameters such as the length of the
sequence monitored, the point mutation rate, and the size of the population.
This parameterized model is static, but it contains potential energy, if you
will. Once instantiated in code that is run on a computer, the model comes
alive and outputs evolutionary data that track the frequencies of derived
alleles in the simulated sequence from generation to generation.

1.2 Borges: How Detailed Should a Model Be?

In his landmark (though regarded by many academics as specious) treatise
Simulacra and Simulation, Jean Baudrillard (1994) begins with the example of
Jorge Luis Borges’ one-paragraph fiction, “On Exactitude in Science.”1 The
beauty and relevance of this text make it worth quoting in its entirety:

1 Quotedwith permission fromCollected Fictions, 1999, translatorAndrewHurley, Penguin
Classics.



1.2 Borges: How Detailed Should a Model Be? 3

... In that Empire, the Art of Cartography attained such Perfection that the map of
a single Province occupied the entirety of a City, and the map of the Empire, the
entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and
the Cartographers Guilds struck a Map of the Empire whose size was that of the
Empire, and which coincided point for point with it. The following Generations,
who were not so fond of the Study of Cartography as their Forebears had been, saw
that that vast Map was Useless, and not without some Pitilessness was it, that they
delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the West,
still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars;
in all the Land there is no other Relic of the Disciplines of Geography.

The text is attributed to a fictional Suárez Miranda; in other words, the
story itself simulates themodel of academic writing. More to the point, how-
ever, the story addresses the map-territory relation. A map is a represen-
tation/model of the territory, and as Alfred Korzybski famously remarked,
“The map is not the territory.” Model and reality are joined by a sign of
approximation rather than identity.

Yet taking a geographical map as a pedestrian example, models may
offer significant utility. Despite their stripped-down detail, we use maps to
successfully navigate the real world. A paper or electronic road map allows
us to find the location of a social gathering even when the house of our
host is not explicitly included. More radically, the road map certainly does
not include the blue jay splashing in the bird bath when we arrive or the
letters and packages in our host’s mailbox. These minute, real-time details
are simply not necessary for us to find our destination using the map as a
guide.

When the Cartographer’s Guild of the story goes big and constructs a
point-for-pointmapof theEmpire at the scale of 1:1, people of theEmpirefind
themap“Useless.”Howcould amapas big as theworld it represents serve as
a practical navigational aid or provide a digestible synopsis of the Empire’s
reach? The title Borges ascribes to the story is telling. As scientistswhomodel
the natural world, the essential tension of the model lies between too much
detail and not enough. That is, what level of “exactitude” is required for
usefulness?

As the example of the road map shows us, a model can be immensely
useful despite far-less-than-perfect precision. Furthermore, Borges’ fiction
warns that construction of a perfect model entails considerable labor not
well spent. Baudrillard (1994) writes,“To simulate is to feign to have what
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one doesn’t have. [...] But it ismore complicated than that because simulating
is not pretending.” Models and enlivened simulations may only ape nature,
given that each ephemeral bubble of the stream and each genetic locus are
not represented. However, when we engage in modeling and simulating the
natural world, we are not simply pretending—i.e., playing at world build-
ing. Successful simulation requires us to identify a model that includes the
essential details of our natural subject and put them in motion; the output of
the simulation thus references nature.

1.3 A Short, Selective History of Computer Simulation

1.3.1 Origination of the Monte Carlo Method

Georges-Louis Leclerc, Comte de Buffonwas a French polymathwho is often
referred to in histories of evolutionary thought as one of the first humans to
publicly contemplate questions that concern evolutionary biologists (Mayr
1981). In addition, the Monte Carlo method may be indirectly traced to
his so-called “needle experiment,” first proposed in 1733 (Buffon 1733) and
published with an analytical solution in 1777. The short-needle variant of this
experiment estimates the probability that a needle of length l when thrown
randomly upon a wooden floor composed of an array of boards of equal
width w (with l<w) will lay across the intersection between two floor boards
(Fig. 1.1a). It can be shown that this probability P = 2l

wπ . Although Buffon did
not propose the needle experiment for this purpose, rearrangement of this
equation

π =
2l

wP
(1.1)

suggests we can perform the needle experiment with known values of l and
w to obtain an empirical estimate of P and therefore π. To be explicit, if
we know l and w, unknowns π and P remain. However, we can obtain an
approximation of P by actually throwing needles of length l at an array of
floorboards whose widths are w. Plugging our estimate P̂ into Eq. 1.1 then
provides us with the estimate π̂.

We next implement the needle experiment as an R function as an example
of theMonte Carlo method and experimentation. We pass a single argument
(n) to the function, which is the number of “needles to throw.”

1 buffon <- function(n)

2 {

3 r <- 0.25

4 hits <- 0

5 x0 = runif(n, 0, 20)
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A

B

l

w

C

32 98
x0 = 2.15 x0 = 8.85

a1
a2 = a1 + ∏

xs[2] = r cos(a1)

xs[1] = r cos(a2)

a2 = a1 - ∏

a1

xs[1] = r cos(a2)

xs[2] = r cos(a1)

Fig. 1.1 Buffon’s needle experiment. (a) The setup in which needles of length l are thrown
on a floor whose boards are of width ω. Gray needles straddle a floorboard edge, while
black needles land wholly on one floorboard. (b) An example of finding the endpoints of
a thrown needle based on the midpoint of the needle along the x-axis (x0) and angles a1
and a2; in this case, the needle counts as a “hit” because its lower endpoint overlaps the
floorboard intersection at x = 2. (c) Another example, where the needle does not overlap
either of its flanking floorboard intersections

6 a1 = runif(n, 0, 2*pi)

7 results <- list(vector(), vector())

8 for (i in 1:n) {

9 a2 <- 0

10 if (a1[i] > pi) {

11 a2 <- a1[i] - pi

12 } else {

13 a2 <- a1[i] + pi

14 }

15 x1 <- r*cos(a1[i]) + x0[i]

16 x2 <- r*cos(a2) + x0[i]

17 xs <- sort(c(x1, x2))

18 if ( xs[1] <= floor(x0[i]) | xs[2] >= ceiling(x0[i]) ) {

19 hits <- hits + 1

20 }

21 if (i %% 20 == 0) {

22 results[[1]] <- c(results[[1]], i)
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23 results[[2]] <- c(results[[2]], 1/(hits/i))

24 }

25 }

26 return(results)
27 }

In this function, we assume w = 1 and l = 0.5, which reduces Eq. 1.1 to
π = 1/P.

Monte Carlo experiments use random sampling to solve a numerical
problem; in many cases, the problem may be intractable. Famously, in 1954,
Fermi, Pasta, Ulam, and Tsingou (Fermi et al. 1955) used random sampling
to study a nonlinear problem in physics that (like many others) was not
mathematically tractable:

We decided to try a selection of problems for heuristic work where in absence
of closed analytic solutions experimental work on a computing machine would
perhaps contribute to the understanding of properties of solutions.

In the case of the needle experiment,where the randomsample is obtained
by either physically throwing the needles or simulating their throws as we
do, the goal is to estimate P, which is then used to estimate π.

To simulate the landed position of a thrown needle, we need to generate
two random numbers: (1) the point along the x-axis where the midpoint (x0)
of the needle falls on a floor with 20 floorboard intersections (line 5) and (2)
the angle in radians at which the axis of the needle lands relative to the x-axis
(a1; line 6)—i.e., an angle of zero means the needle is parallel with the x-axis
and has zero slope—from which the second angle (a2) is calculated (lines
9–14). Figure 1.1b–c provides two examples that illustrate the subsequent
calculation of the two endpoints of a thrown needle and the determination of
whether or not the needle straddles a floorboard intersection (lines 15–20). If
the needle does cross a floorboard intersection, it is added to the tally of hits
or successes. Every 20 needles, the updated estimate of π = 1/P = 1/(hits/i)
is recorded (lines 21–24), and the results are ultimately returned by the
function after all needles are thrown (line 26).

Figure 1.2 shows the results of three independent simulations in which
1,000,000 needles are thrown. The average of all three estimates upon simu-
lating the throws of 1,000,000 needles is very near the true value of π. Note
that we use the known value of π to find the endpoints of thrown needles
(lines 10–14). This seems rather circular, but we are simply using ourmodern
knowledge of trigonometry to accurately model where real needles would
land. The random (Monte Carlo) determination of x0 and a1 is really what
drives our estimate of π in the simulation.
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Fig. 1.2 Three independent simulations of Buffon’s needle experiment. In each simulation,
one million needles were thrown. The traces show the estimate of π versus the number of
iterations (i.e., needles thrown). The mean estimate of π across the three replicates is very
close to its true value (dashed line)

1.3.2 Early Computer-Based Simulation

Coincident with the culmination of World War II, the first generation of
general-purpose electronic computers was developed. Notable among these
computerswas the ElectronicNumerical Integrator andComputer (ENIAC),
one of the first general-purpose electronic computers. The programmable
capacity of these computers provided a means for scientists to work on
problems that were mathematically intractable; the era of simulation-based
inference and electronic number crunching was born. It is an unfortunate
skeleton in the closet of scientific computing that the very first use of the
ENIAC was to test the practicability of a thermonuclear weapon. In late
1945, Edward Teller, Nicholas Metropolis, and Stanislaw Ulam simulated
the analytically intractable dynamics of a thermonuclear reaction.

John von Neumann and Ulam understood that machines like the ENIAC
could run Monte Carlo experiments with much greater efficiency than the
contemporary practice of legions of women—the original bearers of the title
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computer—performing massive quantities of hand calculations. In other
words, it made sense to replace physical throwers of needles with electronic
ones. Although early, computer-basedMonte Carlo experimentation contin-
ued to be used in weapons research, the computational methods developed
in this era paved the way for their later, more benign application. For exam-
ple, by the late 1940s, Ulam developed the method of Markov chain Monte
Carlo, which modern biologists use in a wide variety of statistical applica-
tions including Bayesian inference of phylogenetic trees (Huelsenbeck and
Ronquist 2001) and the estimation of population structure from empirical
genetic data (Pritchard et al. 2001).

In 1958, Keith Tocher developed the first general-purpose simulator
named, rather obviously, the General Simulation Program (GSP), which was
used for the specific task of simulating the workings of an industrial plant.
Tocher later penned the first book on computer simulation, The Art of Sim-
ulation (1963). Shortly thereafter, Geoffrey Gordon developed a computing
language named the General Purpose Simulation System (GPSS). It too was
initially developed with business efficiency in mind and was often used for
so-calledwaiting line problems—i.e.,What are the dynamics of queueswhen
there are more customers than service providers? During the same period,
two important papers examined the problems associated with digital simu-
lation (Conway 1963; Conway et al. 1959). Although the authors focused on
systems simulation—as a modern example, consider the video game SimCity,
where the output of a large number of interacting variables is simulated—
they were motivated by a desire to describe general problems facing the
practitioner of a digital computer simulation. Some of these problems still
require careful consideration today, including management of memory and
dealing with error associated with discretization of continuous quantities
such as time.

1.3.3 Early Simulations of Biological Evolution

Next, I focus on two groups of biological researchers who pioneered the
application of computer simulation to questions of evolutionary biology. I
first discussworkbypopulation geneticists in the 1960s,whoweremotivated
by a desire to check the validity of their mathematical models using Monte
Carlo experimentation. Second, we examine the early work of a group of
rebellious paleontologists (and one ecologist) who simulated phylogeny as
a stochastic process and helped drive the growth of a more quantitative
paleontology with a decidedly evolutionary bent: paleobiology.
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1.3.3.1 The Molecular Population Geneticists

The mid-to-late 1960s were banner years for the empirical and theoretical
studyof genetic variation inpopulations.Harris (1966),HubbyandLewontin
(1966), and Lewontin andHubby (1966) produced empirical data document-
ing the existence of considerable variation in human and fruit fly (Drosophila
pseudoobscura). In a real sense, these seminal papers provided theoretical
population geneticists with a justification for their existence. Although phe-
notypic variation in nature was always evident, theory required underlying
genetic variation for there to be anything to talk about. In thewords ofHubby
and Lewontin (1966):

... even without mathematics it is clear that genetic change caused by natural selec-
tion presupposes genetic differences already existing ...

In other words, the mathematics of population genetics only reached its
full potential once empiricists began to characterize the grist (abundant ge-
netic variation) for the mill (populations subject to evolutionary factors).
Documented differences in electrophoretic mobility of an enzyme revealed
by Lewontin and Hubby were distinct, co-dominant phenotypes themselves.
Importantly, it was also true that these electrophoretic alleles were likely
to be neutral and have no effect on conspicuous structural or physiological
phenotypes.

Two years earlier, the infinite alleles model (IAM; Kimura and Crow 1964)
had posited that (1) the “wild-type allele” is often a set of distinct DNA se-
quences that all map to the wild-type phenotype and (2) for the purposes
of modeling genetic variation, it is quite safe to assume that each new mu-
tation produces a previously nonexistent allele at the genetic level, without
reference to the phenotype associated with each allele. In conjunction with
steadily accumulating evidence of abundant genetic variation innatural pop-
ulations, the idea that a protein-coding gene could be mutated in a number
of ways with next-to-no effect on phenotype ledMotoo Kimura to formulate
his neutral theory of molecular evolution. The first expression of neutral
theory (Kimura 1968) emphasized the role of genetic drift:

Finally, ifmy chief conclusion is correct, and if the neutral or nearly neutralmutation
is being produced in each generation at amuch higher rate than has been considered
before, then wemust recognize the great importance of random genetic drift due to
finite population number in forming the genetic structure of biological populations.

This focus on the abundance of neutral variants, whose frequencies in
a population are determined by genetic drift and not natural selection (re-
ferred to as non-Darwinian evolution by King and Jukes (1969)), led Kimura
to revisit Kimura and Crow (1964). He did so with a twist by modeling
dynamics of the IAM using diffusion (Kolmogorov differential) equations
and assuming only mutation and genetic drift as the stochastic drivers of
allele frequencies and the number of alleles in a population (Kimura 1968).
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Unlike the standard Wright-Fisher model, diffusion models treat allele fre-
quency and time as continuous variables. Given an initial allele frequency,
diffusion models provide a probability distribution of allele frequency at any
given time. Thus, output of diffusion models explicitly acknowledges the
probabilistic, random nature of microevolution under the IAM: given the
starting frequency of an allele xt=0 and effective population size Ne, we can
quantify the probability, for example, that 0 ≥ xt>0 < 0.01.

The probabilistic results of the analytically derived diffusion model de-
tailed in Kimura (1968) are attractive because they allow us to easily quan-
tify the probability of allele frequency at some future time t > 0. However,
tractability of diffusion models relies on some approximation—namely, re-
placing an explicit accounting of allele frequency (e.g., 1/2N in a diploid
model, where N is population size) with a continuous variable. Thus, Ewens
and Ewens (1966) and Kimura (1968) used Monte Carlo simulations of the
IAM to assess potential loss of accuracy associated with the diffusion model
approach.

Kimura (1968) used two programswritten in Fortran and runwith punch-
card input on an IBM7090 to implement hisMonteCarlo experiments. Before
moving on to the simulations, first, consider how the fully transistorized
computer used by Kimura was marketed by IBM at a cost of nearly three
million dollars (equivalent to 25 million USD today; IBM Data Processing
Division 1960):

Although the IBM 7090 is a general purpose data processing system, it is designed
with special attention to the needs of engineers and scientists,whofind computation
demands increasing rapidly. As a scientific computing system, the 7090 will greatly
speed the design of missiles, jet engines, nuclear reactors and supersonic aircraft.

Four IBM 7090 systems are incorporated in the Air Force’s Ballistic MissileWarning
System, the 3000-mile radar system in the far north designed to detect missiles fired
at southern Canada or the United States from across the polar region.

Two IBM 7090 systems are being used by Dr. Wernher Von Braun’s development
group at the George C. Marshall Space Flight Center of the National Aeronautics
and Space Administration, in Huntsville, Alabama.

The IBM 7090 and the follow-up 7094 were used to control the Mercury
and Gemini space flights. Although renting the use of a 7090 cost hundreds
of thousands of dollars per month (in today’s dollars), it was as an old
but reliable beast by the time Kimura used it in 1968; the first IBM 7090
was installed in 1959. However, access to such a machine was a privilege,
particularly if you were a population geneticist and not working for NASA
or a defense contractor.

In Kimura’s 1968 simulations, each allele was accounted for each gen-
eration. A pseudo-random number generator was used to implement (1)
mutation and (2) the random sampling of alleles from the previous genera-
tion. The diploid version of Kimura’s program began with as many alleles
as there were gene copies—i.e., 2N alleles. After a sufficient number of dis-
crete generations, the factors of sampling error (drift) and mutation reached
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an equilibrium of sorts. As Kimura notes regarding a simulation where
N =Ne = 100 (Ne is effective population size):

Starting with 200 alleles, the balance between mutation and random extinction of
alleles had been reached well before generation 100.

For each of the nine runs of the diploidmodel, Kimura calculated the average
value of the number of effective alleles (ne) and the number of alleles (na)
across all simulated generations following achievement of mutation-drift
balance. ne is the number of equally frequent alleles required to achieve the
same level of heterozygosity as observed, while na is the actual number of
distinct alleles in the simulatedpopulation.Unless the simulatedalleles are of
equal frequency, na > ne. Although Kimura’s conclusion is subjective and not
subject to a goodness-of-fit test, Kimura was pleased with his comparison of
observed values of ne and na in the simulations to the expected values under
the diffusion model:

Despite the smallness of population number assumed in these experiments, agree-
ment between observed and expected is fairly good, except that the diffusion ap-
proximation tends to underestimate na.

As one example of his results, when he simulated N =Ne = 100 and 2Nμ = 1,
where μ is mutation rate, the run produced average na = 9.68 and ne = 3.13;
expected values were na = 8.61 and ne = 3.0.

Ewens and Ewens (1966) only ran one Monte Carlo simulation, while
Kimura (1968) ran two simulations of his haploid program and nine simu-
lations of his diploid program. Considering that we could perform one of
these Monte Carlo experiments in well less than a second today using a
standard desktop computer, it is tempting to view these numerical exper-
iments as laughable. However, these were pioneering experiments. Rather
than adopting a cynical attitude toward their sluggishness, we should con-
sider howany one of us can harness the immense computing power available
to us today to best advance the science of population genetics. In my case, I
know I will never possess the genius of a Kimura. So I view today’s comput-
ing power as something of an equalizer; we can ask computers to simulate
scenarios of a complexity that reaches well beyond what pure mathematical
analysis would ever allow.

1.3.3.2 The Paleobiologists

Eldredge and Gould (1972) countered the assumption of phyletic gradu-
alism (PG) inherent to the Modern Synthesis and Darwin’s own thinking
with an alternative hypothesis they called punctuated equilibria (PE; El-
dredge and Gould 1972). The opposing concepts of PG and PE explain the
origin of morphological divergence among species by either emphasizing
the role of anagenesis (PG) or cladogenesis (PE). PG hypothesizes that the
majority of divergence is due to anagenesis—changeswithin species lineages
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over long stretches of time—while PE suggests most divergence is due to
a burst of morphological change at and shortly after (on a geologic scale)
the cladogenetic event of speciation. Eldredge and Gould were particularly
interested in the disparity between the phylogenetic expectations under PG
and PE because numerous empirical case studies from the paleontologi-
cal record supported morphological stasis within species over millions of
years—i.e., anagenesis had a relatively small influence. Moreover, the early
paleobiologists were keen to argue for macroevolutionary mechanisms that
were decoupled from microevolution. The prevailing opinion, assumed at
least since the Modern Synthesis, was that macroevolutionary patterns such
as the presence of speciose, “bushy” clades versus small, species-poor clades
should be viewed as the accumulated effect of microevolution.

Enter David Raup, a pioneer of a more-quantitative paleontology, the use
of computer simulation in evolutionary biology, and the new discipline of
paleobiology. In conjunction with like-minded paleontologists and ecologist
Daniel Simberloff, Raup participated in the so-called MBL group, named
after the site of their early meetings at the Marine Biological Laboratory in
Massachusetts. The MBL group devised a simple simulation of something
akin to a stochastic birth-death process, the results of which were visualized
as phylogenetic trees and clade diversity graphs. For each discrete and unit-
less step/iteration of the simulation, one of the following happened to an
extant lineage: (1) continued as its own lineage, (2) split into two species/lin-
eages, or (3) went extinct.

Each simulation began with a single species and, initially,

P(speciation) > P(extinction), (1.2)

which allowed for the tree to grow. In addition to the parameters for speci-
ation probability and extinction probability, Raup et al. (1973) specified an
equilibriumdiversity parameter.Upon achieving an equilibrium, the relative
probabilities of speciation and extinction were set to

P(speciation) = P(extinction). (1.3)

Finally, two other parameters were required: (1) a damping factor, which
controlled the magnitude of variation around the equilibrium diversity
level, and (2) a clade size parameter, which specified the size of a mono-
phyletic grouping (as the sum of the lineages’ ages) required to simulate
what amounts to an automated taxonomist declaring this or that mono-
phyletic group as a clade.

The motivation for this project was to “test for correspondence between
real data and the randomly generated results” (Raup et al. 1973); it should not
escapeournotice that this comparisonof empirical and simulation-generated
data is the beating heart of the modern suite of inferential methods called
approximate Bayesian computation (ABC; Beaumont 2010). Equal extinc-
tion and speciation probabilities, following the attainment of equilibrium
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diversity level, were meant to model an evolutionary world in which mi-
croevolution, particularly natural selection, played no role. If simulation of
the macroevolutionary processes of cladogenesis and extinction alone could
produce cladograms similar to those estimated from nature, it might sug-
gest there are unknown macroevolutionary (above-species-level) processes
at work in producing macroevolutionary patterns visualized in cladograms.

The lack of any directly simulated microevolutionary factors in the MBL
simulation implied an agnosticism to the causes of extinction and speciation.
In the words of the authors:

... we suggest that an evolutionary event may depend upon the joint occurrence of
many underlying causes, each achieving a specific probability of occurrence at a
given time, so that the event itself can be predicted only in a statistical sense – even
though it does, in fact, have a conventional cause.

So the authors treat cause of speciation as an integration of multiple and
difficult-to-realistically-simulate factors. Again, avoiding direct simulation
of microevolution suggests that any correspondence between simulated and
empirical cladograms supports the existence of unknown macroevolution-
ary (above-the-species-level) processes at work in producing macroevolu-
tionary patterns visualized in cladograms.

A stronger case for the lack of importance of natural selection tomacroevo-
lutionary pattern would be made by a simulation that explicitly includes
natural selection and other microevolutionary factors (Turner 2011) whose
results indicate that no matter how we vary the magnitude of these fac-
tors, we still obtain the samemacroevolutionary results. This would provide
strong support for a true decoupling of microevolution and macroevolu-
tion and perhaps speak to the relative importance of PG and PE models of
macroevolutionary change. To the latter point, these first results reported
by the MBL group are generated by a simulation that explicitly disallows
speciation by anagenesis, which the authors refer to as “pseudo-extinction”
of the ancestral species due to considerable within-lineage change. Still, the
authors emphasize their belief in the relevance of their results to the natural
world based on a comparison of simulated phylogenies and those of an em-
pirical diversity record of reptiles. Particularly interesting is the observation
that in one representative simulation, three distantly related taxa go extinct
at the same time step. In practice, this simultaneous extinction of multiple,
unrelated clades would likely be interpreted as evidence of a common cause
of extinction. Given the independence of each lineage in the simulation,
however:

... the stochastic approach invites the alternate hypothesis that the three extinctions
had totally independent causes and that their coincidence in timewas due to chance
– well within the expectations of the appropriate stochastic model.

Due to limitations in computing power, only 24 independent runs of
the program were performed. As with the population genetic simulations,
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references to the practical aspects of simulation in Raup et al. (1973) may
strike us as remarkably outdated.

Because of the limitations of computer storage, the number of lineages produced
by any run was restricted to 500.

Lineages are shown as a series of vertical dashes, one for each unit of time; the
ancestry of lineages formed by branching is shown by horizontal series of commas.
This form of output can be produced rapidly on a line printer.

However, this publication along with slightly earlier studies in adjacent
disciplines (e.g., geology; Harbaugh and Bonham-Carter 1970) laid the foun-
dation on which modern simulations of biologically relevant stochastic pro-
cesses are built. Moreover, it is not a bad practice when building simulation
programs to consider a world in which we have greater restrictions on com-
puter memory and efficiency than we actually do. If taken seriously, this
mental exercise can spur us to create more efficient code. Of course, dead-
lines exist and we may not have time to craft perfectly elegant code; some-
times, it is necessary and acceptable to write programs of brute force that
take advantage of the vastly increased computing power currently available
to us.

1.4 Philosophy and Simulation

1.4.1 Plato and Representational Fiction

One section of Plato’s Republic, whatever its limitations as gauged by pro-
fessional philosophers, may be, is worth starting with to engage our minds
in the task of assessing the epistemological implications of computer simu-
lation. In essence, can—and if so how—computer simulations help us learn
about the natural world?

In Book III of The Republic Plato—in the voice of Socrates and the brothers
Glaucon and Adeimantus—dialogue ensues upon the educational rules for
the children to becomeGuardians (philosopher kings/rulers) in autopian city
free of the disparate hazards presented by democracy and oligarchy. These
Guardians would rule not for personal gain but because their aptitudes and
dispositions made it their clear destiny.

Socrates begins by examining the content of the literature (poetry and
drama) appropriate to training budding Guardians. He distinguishes be-
tween representational and narrative fictions, and to make the point clear,
Socrates recalls the very opening of The Iliad in which the priest Chryses im-
plores Agamemnon to retrieve his daughter. Up to a point in this epic poem,
Chryses is viewed in the third person as a priest who does this and that. But
then, Homer switches to a perspective in which it is as if Chryses is voicing
the story rather than Homer. The former is narrative fiction and the latter
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is representational fiction, in which we as the reader are expected to inhabit
the mind of the character. Plato believed representational fiction should be
banned from the curriculum of the learning Guardians. They should only
inhabit thoughts of justice and excellence. Stunningly, the very act of read-
ing or, as an actor, inhabiting and playing the part of a less-than-excellent
character can corrupt:

They should neither do a mean action, nor be clever at acting a mean or otherwise
disgraceful part on the stage for fear of catching the infection in real life (Plato 395c).

The education of the Guardians relates to scientific simulation in an im-
portant way. When we code an evolutionary scenario in silico, we work
from models or, more specifically, deeply thought-out representations of the
components of our model. Although my authorship of this volume clearly
signals the value I place in the efficacy of scientific simulation, we must not
allow ourselves to fall beholden to the clean, hermetic atmosphere of dig-
itally represented worlds. It is important that the representational fictions
we instantiate in the computer are treated as another tool in our arsenal that
allows scientists to attack the truth along lines tangential to it.

1.4.2 Fortuna and Chance Ontology

The return of Fortuna corresponded to the world feeling of chance ontology . . . 2

–Peter Sloterdijk, In the World Interior of Capital

The Roman goddess of chance, Fortuna, spun her Rota Fortunae, or Wheel
of Fortune, to randomly determine the fates of man and woman (Fig. 1.3).
Her presence among the Roman pantheon acknowledged the recognizably
stochastic nature of human life. Today, you and I also recognize the large
role chance plays in our everyday lives. In addition, we understand that
probabilistic outcomes are implicated in the fates of all lifeforms as well
as the physical structure of Earth and the abiotic elements of its overlain,
ever-fluid, and skin-like biosphere.

To borrow Sloterdijk’s term – though in a rather different context – chance
ontology is an honest accounting of being that acknowledges the considerable
influence of chance and risk taking. Evolutionary genetic theory embraces
and codifies the deeply probabilistic engine of life. Mutation, meiotic re-
combination, migration, natural selection, and genetic drift all incorporate
elements of chance. Deterministic models certainly have their role in evolu-
tionary biology. For example, it is helpful to know that an adaptive allele is
expected to take considerably more time to move from a frequency of 0.99 to
fixation when heterozygotes have the same fitness as homozygotes for the

2 Quoted with permission from the translation by Wieland Hoban, 2013, Polity Books,
Cambridge.
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Fig. 1.3 AMedieval illustration of Fortuna added in the twelfth century to a tenth-century
copy of Moralia in Job by St. Gregory the Great (540–604AD). Fortuna turns the Wheel of
Fortune between different fates, which, clockwise from the top, are ruling, about to rule,
without a kingdom, and having ruled. The two upside-down figures with less fortunate
fates look to Fortuna, as if asking for her intervention (Image in the public domain)

adaptive allele than when they do not. Yet including chance in our enliven-
ment of models by simulation is one detail we should include whenever
possible. In a world of chance ontology, expectations are guide posts but
hardly certainties; stochastic simulations offer us a means to explore the
ways in which expectations are circumnavigated. The ubiquitous presence
of pseudorandom number generators in the code detailed herein suggests
they are the modern acolytes of Fortuna.

1.4.3 Epistemological Concerns

Epistemology is the study of knowledge. How do we distinguish fact from
opinion?How is knowledge generated? The act of simulation and simulation
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output require us to think about what simulated data represent. How do
simulated data differ from empirical data? Should a computer simulation be
counted as an experiment?

Althoughwewill not explore the epistemology of simulation in detail, it is
worth taking amoment to contemplate the seeming weirdness of simulation
experiments in population genetics. Often, coalescent simulations (Chap. 2)
are run thousands or millions of times in the service of inference methods
such as approximate Bayesian computation. Are these repetitions and the
data they generate in someway analogous toMendel’s repetitions of genetic
crosses and the resultant phenotypic data?

Perhaps I’m asking too many questions, but these are real concerns re-
garding simulation. We want our work to be meaningful and applicable to
our academic concerns. So we had best be confident that our methodology
(simulation) provides us with knowledge. I would argue that simulations
are real experiments that provide us with data that can be used both for
inference and for building intuition concerning natural processes. The re-
sults of in vitro experiments are commonly accepted with the caveat that
things might turn out different in a living organism. Similarly, we should
use the results of in silico experiments to our advantage, but keep in mind
that things might be different in the natural world.

For discussion of serious philosophical thought on the topic of the episte-
mological nature of simulation, I would recommend (Winsberg 2010) as an
excellent starting point. Winsberg (2010) makes a convincing case that pop-
ulation genetic simulation is both a legitimate form of scientific experimen-
tation and that simulated data are a source of furthering our understanding
of natural processes:

... simulation is a process of knowledge creation, and one in which epistemologi-
cal issues loom large ... simulation is in fact a deeply creative source of scientific
knowledge ...

1.5 Whom This Book Will Benefit

The decreasing costs of computing power and genetic data acquisition over
the last two decades present biologists with exciting opportunities to draw
nuanced inferences from population genetic/genomic data (Hudson 2002).
Depending on the research question addressed, one of two distinct ap-
proaches to population genetic simulation may be appropriate (Chap. 2).
The most efficient of these two approaches by far is retrospective, coales-
cent simulation. This approach is suitable in a wide variety of contexts and
should be chosen whenever appropriate. However, because the comput-
ing power of even a single, modern desktop computer is quite remarkable,
it is now possible to conduct prospective, forward-in-time simulations that
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model individuals as separate objects with complex life histories and genetic
processes.

This volume is therefore geared toward advanced undergraduate stu-
dents, graduate students, and professional academics who need a gentle
push toward incorporatingpopulation genetic simulation into their research.
Although I spend time covering retrospective coalescent simulation in the
next chapter, my hope is that this volume will help researchers realize the power
of prospective simulation. I find prospective simulation to be empowering be-
cause it allows me to explore evolutionary theory in a more transparent way
than retrospective simulation; every detail of the simulated evolutionary
process must be spelled out in the code. Therefore, when prospective simu-
lation points to an unexpected result, it is easier to validate that the surprise
result is not an artifact of the simulation process itself. In addition, prospec-
tive simulation allows us to simulate more complex evolutionary scenarios
only limited by our informed imagination and the extra compute time this
added complexity entails.

1.6 Required Background Knowledge and Online Resources

To avoid making the volume overly long, I assume a basic working knowl-
edge of the data structures and syntax of C++ and R. However, we will not
find it necessary to venture into the arcane aspects of these two languages
in this volume. The reader with general knowledge of control structures in
computer programming should be able to learn by example through study
of the numerous instances of example code found throughout. I devote con-
siderable verbiage to elaborating details of the code I introduce throughout
the text. The reader interested solely in the use of simulation code found in
the book and a tour of some of the scenarios that can be simulated—their re-
sults interpreted—can safely skip these technical accounts of code logic and
implementation. However, I hope a minority of readers might find these
prosaic interruptions useful.

Because I wrote this volume with an eye toward readers well versed in
the concepts of evolutionary biology and genetics, I also assume the reader
is familiar with terms such as allele, polymorphism, and fitness. Neverthe-
less, each of the subsequent chapters includes exposition on basic theoretical
knowledge that will aid the reader’s understanding of the simulation de-
tails. As a practical aid, all of the code listings presented here can be found at
github.com/deltafortuna organized by chapter. Updates to the code, errata,
and future expansions of FORTUNAwill also be found here. The Appendix
provides a comprehensive list of the parameters used to run distinct simu-
lation scenarios.



References 19

References

Baudrillard J (1994) Simulacra and Simulation. The University of Michigan
Press, New York

Beaumont MA (2010) Approximate Bayesian computation in evolution and
ecology. Annu Rev Ecol Evol Syst 41:379–406

Buffon G (1733) Editor’s note concerning a lecture given 1733 by mr. le clerc
de buffon to the royal academy of sciences in paris. Histoire de l’Académie
Royale des Sciences pp 43–45

Conway R (1963) Some tactical problems in digital simulation. Manag Sci
10:47–61

Conway R, Johnson B, Maxwell W (1959) Some problems of digital systems
simulation. Manag Sci 6:92–110

Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic
gradualism. In: Schopf TJM (ed)Models in Paleobiology. Freeman, Cooper
and Co., San Francisco, pp 82–115

EwensWJ, Ewens PM (1966) Themaintenance of alleles bymutation—monte
carlo results for normal and self-sterility populations. Heredity 21:371–378

Fermi E, Pasta J, Ulam S (1955) Studies of non linear problems. Los Alamos
National Laboratory Document LA-1940:977–989

Harbaugh JW, Bonham-Carter G (1970) Computer simulation in geology.
John Wiley, New York

HarrisH (1966) Enzymepolymorphisms inman. In: Proceedings of theRoyal
Society B Biological Sciences, vol 164, pp 298–310

Hubby JL, Lewontin RC (1966) A molecular approach to the study of genic
heterozygosity in natural populations i. The number of alleles at different
loci in Drosophila pseudoobscura. Genetics 54:577–594

Hudson RR (2002) Generating samples under aWright-Fisher neutral model
of genetic variation. Bioinformatics 18:337–338

Huelsenbeck JP, Ronquist F (2001) Mrbayes:bayesian inference of phyloge-
netic trees. Bioinformatics 17:754–755

IBM Data Processing Division (1960) IBM 7090 Processing system technical
fact sheet. IBM, New York

Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–
626

Kimura M, Crow JF (1964) The number of alleles that can be maintained in
a finite population. Genetics 49:725–738

King JL, Jukes TH (1969) Non-darwinian evolution. Science 164:788–797
Lewontin RC, Hubby JL (1966) A molecular approach to the study of genic
heterozygosity in natural populations. ii. amount of variation and degree
of heterozygosity in Drosophila pseudoobscura. Genetics 54:595–609

Mayr E (1981) The growth of biological thought. Harvard University Press,
Harvard

Pritchard J, Stephens M, Donnelly P (2001) Inference of population structure
using multilocus genotype data. Genetics 155:945–959



20 1 Simulation as a Form of Scientific Investigation

Raup DM, Gould SJ, Schopf TJM, Simberloff DS (1973) Stochastic models of
phylogeny and the evolution of diversity. J. Geol. 81:525–542

Turner D (2011) Paleontology: a philosophical introduction. Cambridge Uni-
versity, Cambridge

Winsberg E (2010) Science in the age of computer simulation. The University
of Chicago Press, Chicago



2
Retrospective and Prospective Simulation

Δt approaching zero, eternally approaching, the slices of time growing
thinner and thinner, a succession of rooms each with walls more silver,
transparent, as the pure light of the zero comes nearer.1

– Thomas Pynchon, Gravity’s Rainbow

With notable exceptions, including experimental evolution, much of the
research effort in evolutionary biology focuses on the past. Which gene or
genetic variant was targeted by natural selection in the past? What is the
demographic history of a population? When did the MRCA of a clade live
on Earth?

The fossil recordprovides uswithdirect, if imperfect, insights into the past
morphology of extinct species. Genomic data of extant organisms provide
us with a less-direct record of the past, and the record is messy. Although
modern genomes have been shaped by historical events and are, in that
sense, historical records, new mutations overwrite old ones, chromosomal
mutations such as inversions and translocations change the positions of
genes, etc. Therefore, genomic data offer a “document” for inferring the
past, but the constant erosion of the “text” in this document makes our task
of inferring the past difficult.

For a moment, consider that you come across a grand array of dominoes
fallen upon each other on a sidewalk.What can you infer about the past from
the observed trackways of fallen dominoes? Was there a point in the past
when some individual provided the kinetic energy to set the falling cascade
in motion? Or was it the wind? Regardless, when did the dominoes fall? As
an outsider hypothesis, is it possible that some strange individual assembled
the dominoes in their observed fallen state? The problem here is that current
patterns might be explained by a multitude of historical causes.

The use of modern genetic data to infer information about the past is
therefore beset by at least two broad problems:

1 Quoted with permission. 1973. Penguin Classics.
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1. Genetic patterns indicative of past events, such as the signatures of a
selective sweep due to positive natural selection (see Chap. 8) decay due
to new mutation and recombination.

2. Modern patterns of genetic variation are often equally well explained by
distinct evolutionary causes.

However, simulation experiments (Chap. 1) provide a means for addressing
these problems. For example, decreased frequencies of derived alleles in a
localized region of the genome might be explained by positive or purifying
natural selection. Simulating genetic data under both scenarios and com-
paring the simulated data to the one empirical data set has the potential to
help us identify subtle differences that support purifying rather than positive
natural selection or vice versa.

In this chapter, we mainly focus on a retrospective (backward-in-time)
approach to evolutionary genetic simulation. We also compare retrospective
simulation to the focus of the rest of this volume—prospective, or forward-in-
time simulation. Because evolutionary biology is a largely historical science,
it is perhaps more natural for us to think retrospectively. One key point
to keep in mind, however, is that prospective simulations can take a past
timepoint—tpast—as the starting generation; we can then run the prospec-
tive simulation for tnow − tpast generations to produce a simulated data set
corresponding to the current time. In other words, both retrospective and
prospective simulations have the ability to generate simulated genetic data
sets that we can compare to an empirical data set sampled from an extant
population.

2.1 Background: Retrospective Versus Prospective
Simulation

Retrospective simulations, based on coalescent theory (Wakeley 2008), pro-
vide us with simulated sequence samples that, in the context of inference,
are compared to present-day empirical samples. By varying parameter val-
ues controlling evolutionary factors such as mutation, demographic change,
population structure, recombination, andmore, comparisons between simu-
lated and empirical sequence data sets empower the evolutionary geneticist
to estimate probability densities on parameters of interest. Coalescent sim-
ulations are retrospective in the sense that the first step is to simulate the
past genealogy leading to a modern-day sample. The resulting shape of the
genealogy may be influenced by (1) recombination, (2) demographic change
during specified periods of time, (3) migration among semi-isolated popu-
lations, and (4) simple forms of natural selection. The simulated genealogy
serves as the “skeleton” upon which mutations (following some model) are
placed. Derived variants then “flow” to all sequences that are descendants
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Fig. 2.1 In retrospective, coalescent simulation, a genealogy is first simulated; this tree
connects all sequences in the current generation to their most recent common ancestor
(MRCA). Once a genealogy is produced, a mutational model is used to add mutations
to random positions on the branches of the genealogy. In the illustrated tree, we focus
on three sites within the sequence of the MRCA: A, G, and T and sites 1–3; the ellipses
indicate intervening, unspecified sequence. Threepointmutations that occur are randomly
determined. As illustrated by the T3C mutation, the derived cytosine residue is inherited
by all descendants of the lineage onwhich themutation occurred. In this case, the result of
the three point mutations is a set of three single nucleotide polymorphisms: A/G, position
1; G/A, position 2; T/C, position 3

of the branches where mutations occurred (Fig. 2.1). Importantly, the sim-
ulation of only those lineages leading to the modern-day sample (i.e., the
genealogy) obviates the need to account for those lineages that went ex-
tinct in the past and are therefore not ancestral to the modern-day sample
(Fig. 2.2a–b).

Prospective simulations begin with an initial population of individuals
whose patterns of genetic variation are determined by the researcher. This
category of simulation is often individual based, meaning that each gener-
ation we account for all individuals of the population, each of which acts
as its own agent: migrating, incurring mutation, mating, etc. The primary
advantage to prospective simulation is that the complexity of the simulated
evolutionary model is only limited by the imagination and coding ability
of the researcher. As one example, we can code complex forms of natural
selection such as overdominant or frequency-dependent selection that are
difficult or impossible to implement in retrospective simulations. In addition,
because prospective simulations begin with the initial population, move for-
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Fig. 2.2 (a) Transmission of gene copies toward the present in a population of constant size
N = 10. (b) The underlying genealogy/coalescent of the current population in (a), which
makes it evident that all ten individuals in the present population are descendants of a
single, most recent common ancestor 13 generations in the past. (c) A simulation tactic
used frequently in this volume. The starting genetic variants for prospective simulation
will often be drawn from a coalescent simulation (left half of panel)

ward in time generation by generation, and account for all individuals, these
simulations are often easier to conceptualize. Retrospective simulations are
more opaque in nature, meaning there is a greater chance that the researcher
is not simulating exactly what he or she thinks. The primary disadvantage
to prospective simulations is that they require considerably greater compute
time. This disadvantage stems from the need to keep track of every individual
every generation, as opposed to retrospective simulations that only require
us to consider the lineages leading to the modern-day sample.

The central tension at the heart of our choice between retrospective and
prospective simulation is therefore computational efficiency versus model
complexity. The choice is simple if themodel of evolution is relatively simple.
For example, if one wants to investigate how changes to the point mutation
rate affect the accumulation of genetic differences between two populations
experiencing limited gene flow, this is easily accomplished using a retrospec-
tive approach. In this case, the computational speed of coalescent simulation
makes it the clear choice. On the other hand, if onewishes to simulate ameta-
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population with hundreds of source and sink sites, prospective simulation
may be the only way to accomplish this goal.

In Chaps. 3–9, we will systematically construct a more-and-more com-
plex prospective simulation program. However, we will often use retrospec-
tive simulation to derive an initial population for prospective simulation
(Fig. 2.2c). Because so much of this volume is devoted to prospective sim-
ulation, in this chapter we focus on coalescent theory and the mechanics
of performing retrospective simulations in R. The intent is that this chapter
will serve as a standalone primer on retrospective simulation as well as a
reference point for later chapters in which retrospective simulation is used.

2.2 Background: Coalescent Theory

Coalescent simulation is considerably more efficient because we begin with
a sample of k genes and ask, How are these genes related to one another?
To answer this question, we simulate a genealogy connecting the n genes to
a common ancestor based on a few simple probabilistic expectations. The
efficiency of this process derives from our ability to ignore any past lineages
of the population/species that fail to transmit genetic information to the
present sample time. In other words, extant genetic variation derives only
from mutations to the lineages that are part of the genealogy. The reader
interested in detailed treatments of coalescent theory has several volumes
fromwhich to choose (Hahn 2018; Hein et al. 2005;Wakeley 2008) in addition
to the primary literature.

Consider a sample of k = 2 genes from a diploid population of 2Ne gene
copies. If Ne is large, technically infinite, the probability that the two genes
find their common ancestor (i.e., coalesce) in the preceding generation is 1

2Ne
.

This is an intuitive probability; there are 2Ne gene copies in the preceding
generation, andgiven that one of the twogenes had to come fromone of these
potential parents, the chance that the other gene copy in the sample is derived
from the same parent is simply one out of the 2Ne possible parents. Clearly,
the probability that coalescence does not occur in the previous generation
is 1− 1

2Ne
. The time in generations to coalescence of the two gene copies is

geometrically distributed as

PT2 (t2) =
1

2Ne

(
1− 1

2Ne

)t−1
, (2.1)

where T2 is a random variable for the time to coalescence of two randomly
sampled sequences. In other words, looking backward, the path to the first
“success” (coalescence) requires t−1 generations in which coalescence does
not occur followed by the generation in which coalescence finally occurs.
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time (10,000 generations)
0 50 100 150

Fig. 2.3 Exponential approximation of coalescent times for two genes. Ne = 10,000 and
mean coalescent time is 2Ne = 20,000 generations (dotted line)

The continuous approximation is an exponentially distributed time to
coalescence:

PT2 (t2) =
1

2Ne
e−

t−1
2Ne (2.2)

The mean and standard deviation of an exponential distribution are both
equal to the inverse of the exponential parameter λ, which equals 1

2Ne
in

this case. Thus, the expected time to coalescence of two genes is simply
2Ne. However, this expectation is not particularly predictive given that the
standard deviation on this random variable is also 2Ne (Fig. 2.3).

Again looking to the past, the next coalescence among any pair of the k
genes is exponentially distributed with parameter λ =

(k
2
)
as

PTk (tk) =
(
k
2

)
e−(

k
2)tk , (2.3)

where time is scaled in units of 2Ne generations for a diploid population. Thus,
when Ne = 10,000, the expected time to coalescence of k = 2 genes is 1/

(2
2
)
=

1, or 2Ne × 1 = 20,000 generations. If k = 10 sampled genes are present in
the genealogy, the expected time to the first coalescence between any two
lineages is 1/

(10
2
)
= 0.022, or 2Ne × 0.022 = 444 generations. These two cases

demonstrate the intuitive result that expected coalescent times decrease as
the number of lineages left to coalesce increases; simply put, there are more
potential pairs of genes that may share a common ancestor in the previous
generation, each with a probability of 1/2Ne.
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Two important metrics of the genealogy are (1) the tree height or time to
the most recent common ancestor (TMRCA) and (2) the total time in the tree,
which is the sum of all branch lengths (Tt). The expected values, again scaled
in units of 2Ne generations, are

E[TMRCA] = 2
(
1− 1

k

)
(2.4)

E[Tt] = 2
k−1∑
1

1
i
. (2.5)

It isworth noting that coalescent simulation in R,whetherwe use themost
popular coalescent simulator MS (Hudson 2002) or SCRM in R, will require
us to scale time in units of θ = 4Ne generations for diploid populations (see
Sect. 2.3). This is important as the theoretical results just discussed are all
scaled in units of 2Ne generations.

To simulate a genealogy for sample size k, we need only draw coalescent
times from Eq. 2.3 and choose a random pair of genes/lineages to coalesce at
each coalescent time. The realized total branch length of the tree is then

T =
k∑

i=2

iti (2.6)

To assign actual simulated sequences to the sample of k genes, we add ran-
dommutation events to the branches. As intuition suggests, longer branches
will have greater probability of bearing mutation(s). Similarly, genealogies
with larger values of T will bear more total mutations and, therefore, segre-
gating sites among the sampled genes.

Assuming the sampled sequences evolve neutrally, the expected number
of differences between two randomly drawn sequences (where the expected
time to coalescence is 2Ne generations) isθ= 4Neμ. Becausemutation in either
lineage leads to a difference between the two sampled sequences, on average,
a total of θ/2 mutations occur along each lineage (Fig. 2.4). In general, the
number of mutations, m, that occurs along a branch is conditional on branch
length t and Poisson distributed with parameter θt

2 :

PM|t(m|t) =
(
θt
2

)m

m!
e− θt

2 (2.7)

Thus, after simulating a genealogy with explicit branch lengths, we can use
Eq. 2.7 to draw random numbers of mutations per branch and determine the
sampled sequences by allowing thesemutations to flowdown the genealogy
to the sampled sequences as illustrated in Fig. 2.1.

We can also use coalescent simulation to produce sequence samples under
simple non-neutral and non-equilibrium conditions. For example, coalescent
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Fig. 2.4 Consider a sequence 10,000 bp long with a point mutation rate of 10−8. Then, the
sequence-widemutation rate is μsequence = 104×10−8 = 10−4 and in a populationwhereNe =

10,000, θ = 4Neμ = 4×104 ×10−4 = 4. Under the neutral coalescent, the expected number
of differences between two randomly chosen sequences with an expected coalescent time
of 2Ne generations is equal to θ. Mutation in either of the lineages leads to a difference
between the two sequences; thus, on average, θ/2 mutations will occur on each lineage to
yield the expected number of differences, θ. Here, the ancestral sequence is represented
by four zeros at the four sites that will be mutated in one of the lineages. The time and
identity of each mutation from the ancestral 0 allele to the derived 1 allele are indicated

simulators allow us to model changes in population size over time, popu-
lation structure with or without gene flow, and simple selective regimes. To
demonstrate, consider a population that undergoes an exponential increase
in population size from 100 to 10,000 individuals beginning 100 generations
in the past. Because there are so manymore individuals in the current popu-
lation than in the past, this means coalescent events are less likely to happen
in more recent generations. Rapid population increase changes the topology
of the genealogy dramatically, tending to produce so-called star genealogies
in which coalescent events cluster further back in time when the population
was small. In other words, the terminal branches of the genealogy are much
longer than under the equilibrium coalescent. This leads to an abundance of
singleton variants because most mutation events occur along these long, ter-
minal branches and therefore only affect the sequence of one of the sampled
genes.

Modeling complex formsof selection, includingmultilocus and frequency-
dependent selection, under the coalescent framework is difficult or impos-
sible and one motivation for performing prospective simulations. Recent
coalescent simulators, such as discoal (Kern and Schrider 2016), are quite
useful in that they allow us to rapidly simulate gene sequences overlapping
or linked to the target of a hard or soft selective sweep. However, this pro-
gram only simulates selection for a single adaptive allele. Similarly, Berg
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and Coop (2015) approximate a soft selective sweep using coalescent theory.
Again, this is useful when one is interested in simulating this important
scenario. However, more complex selective dynamics require us to code our
own prospective simulations.

2.3 Coalescent Simulations in MS and R

In this section, we use the R packages scrm (Staab et al. 2015) and coala

(Staab and Metzler 2016) to simulate several evolutionary scenarios of dif-
fering demographic history and population structure (Fig. 2.5). We will also
use R to analyze the output data.
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Fig. 2.5 The four scenarios modeled in this section using coalescent simulation in R. Time
flows forward from top to bottom. (a) A single population of constant size; the gray box
represents the population and the white lines the genealogy leading to the sample of eight
genes. In all other panels, genealogies are not illustrated; the widths of populations on the
horizontal axis represent relative size of the population. (b) Population structure without
gene flow, including an instantaneous population bottleneck in population 1 at time t1 and
exponential population growth in population 3. The two population splits occur at times
t2 and t3. (c) The same as scenario B, with the difference that population 3 undergoes an
instantaneous population expansion at time t1. (d) Population structure with admixture
and gene flow. The ancestral population splits into two wholly isolated populations 1 and
2 at t3. At time t2, a fraction of individuals in population 2 are drawn from population
1 individuals (admixture), and population 2 splits into populations 2 and 3 at time t3.
Population 3 expands exponentially after its origin, and gene flow may occur between
populations 2 and 3. We also incorporate recombination in simulations of this scenario
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2.3.1 Package SCRM

The coalescent simulator SCRM (Staab et al. 2015) is an alternative to the
commonly used coalescent simulator MS (Hudson 2002) and is tailored to
provide rapid (though approximate) coalescent simulation of genome-size
data sets. SCRM is easily implemented in R using the scrm package and can
be used without approximation to simulate shorter sequences as well. Most
of the arguments used in SCRM are the same as those used inMS, with some
useful additions, including admixture with a population that is simulated
“on the side.”

2.3.1.1 Scenario A

Webeginwith the simplest formof coalescent simulation: a single population
of constant size (Fig. 2.5a). MS, SCRM, and COALA (see Sect. 2.3.2) scale all
events—coalescence, mutation, recombination, migration, and population
splits—in terms of the population mutation parameter, θ = 4Neμ (assuming
a diploid population). Therefore, the first step in coalescent simulation is
to choose a focal population and calculate its value of θ. We assume that
mutations are point mutations; the output will therefore be a sequence of
segregating sites for each gene sampled, expressed as a vector of zeros and
ones, where ones represent derived alleles. Because sequences are being
returned, we must calculate the mutation rate μ for the sequence as a whole,
which means we must explicitly decide upon the length of the sequence to
be simulated. Let us assume a 10,000-bp sequence with a point mutation
rate of 1× 10−8. Then μsequence = 104 × 10−8 = 10−4. We will further assume
that effective population size Ne = 50,000. With these parameters in hand,
θseq = 4×Ne×μsequence = 4× (5×104)×10−4 = 20.

The following R listing generates two data sets of 20 sequences sampled
from a population in which θ = 20, stored in object ss, and provides some
basic investigation of the simulated data:

1 library(scrm) # load package

2 ss <- scrm(’20 2 -t 20 -T’)

3 names(ss)
4 as.vector(ss$seg_sites[[2]][1,])
5 ss$seg_sites[[2]][1,]
6 round(as.numeric(colnames(ss$seg_sites[[2]])) * 10000)

7 dim(ss$seg_sites[[1]])
8 dim(ss$seg_sites[[2]])

In line 2, the leading “20 2” specifies simulation of two data sets of 20
sequences, the value ofθ is specified following the “-t”flag, and the “-T”flag
indicates we want to store the genealogy in addition to the sequences. The
object ss now contains two lists, which are revealed by the names function in
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Fig. 2.6 Output from lines 4 and 5 of the previous listing. Note that many positions have
been omitted from the positional data for the sake of space

line 3: ss<currencydollar>trees and ss<currencydollar>seg sites. Line
4 prints the sequence of the first of 20 sequences from data set 2, while line 5
prints the same sequencewith positions of the segregating variants indicated
(Fig. 2.6). Note that the positions are given as real numbers between 0 and 1.
To convert this to an actual position in the simulated sequence, we multiply
the column names (positions converted to numeric) by the sequence length
of 10,000 (line 6). The dimensions of the data sets (lines 7–8) indicate 20 rows
(for the 20 sequences) and 91 and 65 columns, the number of segregating
sites, for data sets 1 and 2, respectively.

Next, we use the R package ape (Paradis and Schliep 2019) to visual-
ize the genealogies of the two simulated data sets. The objects in the list
ss<currencydollar>trees are Newick formatted trees, which represent the
relationships between the sequences aswell as the branch lengths. For exam-
ple,within theNewick formatted tree, the code(13:0.006,11:0.006):0.068
indicates that (1) sequences 13 and 11 are sister sequences, (2) the branches
leading from their common ancestor are 0.006 long, and (3) the branch lead-
ing from the coalescent event that links these sequences to another sequence
or sequences is 0.068 long. The following listing provides R code for plotting
the two genealogies (Fig. 2.7).

1 library(ape)
2 len = length(ss$trees)
3 trees <- list(length = len)

4 for (i in 1:len) {

5 trees[[i]] <- read.tree(text = paste0(ss$trees[[i]]))
6 }

7 par(mfcol=c(1,2)) # create plot device with two panels

8 plot(trees[[1]])
9 plot(trees[[2]])

Next, we check that the expected values of TMRCA and Tt are realized in a
sample of 10,000 independently simulated genealogies. Assuming a sample
size of n = 20, the expected values of these two quantities are
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Fig. 2.7 The two simulated genealogies visualized using APE. Of course, genealogies you
simulate will have different topologies and tip labels. Note that most coalescent events
are clustered near the present

E[TMRCA] = 2
(
1− 1

20

)
= 1.90 (2.8)

E[Tt] = 2
20−1∑
1

1
i
∼ 7.10. (2.9)

However, these expectations are expressed in units of 2Ne generations,
and the branch lengths reported by SCRM are reported in units of 4Ne
generations. We must therefore rescale the expected values to E[TMRCA] = 0.95
and E[Tt] = 3.55 by dividing by 2.

Once a genealogy is loaded as a tree object in APE, we can calculate a
multitude of metrics of interest to us. Currently, our goal is to calculate the
TMRCA and Tt for each tree. Assume you have a tree object in APE named
tr. The function coalescent.intervals() returns several values, one
of which is total.depth—i.e., TMRCA. Thus, coalescent.intervals(tr)
<currencydollar>total.depth returns theTMRCA of tr. The tree object itself
has a value <currencydollar>edge.length, which is a vector of all branch
(edge) lengths. Thus, sum(tr<currencydollar>edge.length) returns Tt.

We are now ready to run a proving experiment that calculates the average
values of TMRCA and Tt across 10,000 independently simulated genealogies
to see how well they compare to the previously calculated expectations.

1 ss <- scrm(’20 10000 -t 20 -T’)

2 Tt <- 0

3 Tmrca <- 0

4 for (i in 1:10000) {

5 tr <- read.tree(text = paste0(ss$trees[[i]]))
6 Tt <- Tt + sum(tr$edge.length)
7 Tmrca <- Tmrca + coalescent.intervals(tr)$total.depth
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8 }

9 Tt / 10000 # returns the average value of T_t
10 Tmrca / 10000 # returns the average value of T_MRCA

In my case, the average values of TMRCA and Tt were 0.953 and 3.553, respec-
tively, which are clearly good approximations to the expected values of 0.95
and 3.55.

2.3.1.2 Scenario B

We now turn our attention to the scenario shown in Fig. 2.5b. Table 2.1
lists the parameter values used for each of the three populations in this sce-
nario. We again assume a point mutation rate of μ = 1×10−8 and a sequence
10,000 bp long; therefore, μsequence = 104 × 110−8 = 10−4. Because it does not
undergo demographic change, wewill use population 2, withNe = 10,000, as
our focal population to calculate θ = 4×104×10−4 = 4. The time points listed
in Table 2.1 are expressed in units of absolute generations; we need to convert
these to units of 4Ne = 40,000 generations to use the SCRM simulator. 10,000,
20,000, and 40,000 generations are therefore expressed as 0.25, 0.5, and 1.0 4Ne
generations, respectively. Finally, we need to calculate the exponential rate
that causes the increase of population 3 from 100 individuals at t2 to 100,000
individuals at t0. Exponential growth follows the equation Nt =N0ert. In the
current case, N0 = 100 at the start of the expansion, Nt = 100,000 as the cur-
rent population size, and t = t2 = 0.5. We solve for the exponential rate using
a rearrangement of the previous equation:

r = ln
( Nt

N0

)
t−1 = ln

(100,000
100

) 1
0.5
= 13.8 (2.10)

Now, we are ready to run the simulation using SCRM.

Table 2.1 Parameters used to simulate scenario B shown in Fig. 2.5b. Dashes indicate that
a given time point is not relevant to the population. instant = instantaneous bottleneck;
exp = exponential growth

Parameter Population 1 Population 2 Population 3

μsequence 1×10−4 1×10−4 1×10−4
Ne 10,000→ 1000 (instant) 10,000 (constant) 100→ 100,000 (exp)
sample size 10 sequences 10 sequences 10 sequences
t1 10,000 generations – –
t2 – 20,000 generations 20,000 generations
t3 40,000 generations 40,000 generations –
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1 ss <- scrm(’30 2 -t 4 -I 3 10 10 10 -eg 0 3 13.8 -en 0 1 0.1 -en 0.25 1 1

↪→ -ej 0.5 3 2 -ej 1.0 1 2 -T’)

2 trees <- list(length=2)
3 for (i in 1:len) {

4 trees[[i]] <- read.tree(text = paste0(ss$trees[[i]]))
5 }

6 plot(trees[[1]])

The command passed to scrm() in line 1 of the previous R listing intro-
duces a number of additional flags that allow us to implement the demog-
raphy shown in Fig. 2.5b.

• -I: Used to simulate population structure. The first number following
is the number of populations, which is then followed by the number of
genes sampled from each of these populations.

• -eg: Used to simulate exponential population growth. The first number
following indicates the time before which exponential growth applies; the
second number indicates the population towhich growth applies, and the
third number is the growth rate as calculated in Eq. 2.10.

• -en: Used to simulate instantaneous changes in population size. The first
number indicates the time before which the population size (relative to Ne)
specified by the third number applies. The second number indicates the
population to which this change applies.

• -ej: Used to simulate the splitting of an ancestral population (looking for-
ward in time) or, thinking retrospectively, the joining of two populations
looking backward in time. The first number is the time when the split/join
occurs, the second number indicates the population number that is elim-
inated by the join (looking retrospectively), and the third number is the
population that subsumes the lost population.

Now we can deconstruct the command passed to scrm() in line 1:

• 30 2 -t 4: Specifies simulation of two data sets with k = 30, θ = 4.
• -I 3 10 10 10: Specifies simulation of three modern populations, from

each of which ten sequences are sampled. Note that the total number of
sequences drawn from all populations must equal the total sample size
(30 in this case).

• -eg 0 3 13.8 specifies that from the present (time 0) past-ward, an expo-
nential growth rate r of 13.8 applies to population 3.

• -en 0 1 0.1 -en 0.25 1 1: The first -en sets the size of population 1 to
0.1×Ne starting a time=0 and moving backward. However, the second
-en sets the size of population 1 to 1×Ne specified at time t1 = 0.25×
4Ne generations ago and before. Looking forward in time, these two -eN

flags should be interpreted as an instantaneous population bottleneck that
occurs at t1 and reduces the population to one-tenth of its previous size.

• -ej 0.5 3 2 -ej 1.0 1 2: The first -ej specifies that, looking backward
in time, population 3 becomes part of population 2 at time t2 = 0.5×4Ne
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generations ago. Subsequently, the second -ej command indicates that the
remaining two lineages (1 and 2) join to form the ancestral lineage at time
t1 = 1.0× 4Ne generations ago. Looking forward in time, these two -ej

flags should be interpreted as a population split at t1 into lineages 1 and
2, followed by a split of lineage 2 into populations 2 and 3 at t2.

As mentioned previously, this MS syntax can become rather opaque. Par-
ticularly given the scaling of time parameters, it is very easy to simulate
something other than what you intended.

Figure 2.8 shows the resulting genealogy from one run of scenario B
(Fig. 2.5b). All three populations are resolved as monophyletic groups, al-
though repeated simulation of this population model will frequently yield
population 2 and/or 3 as (a) paraphyletic group(s). On the other hand, popu-
lation 1 is always resolved as amonophyletic group, likely due to two factors:
(1) it is isolated from the other two populations for 40,000 generations and
(2) it undergoes a rather severe bottleneck at t1 = 10,000 generations ago.
This latter point also explains the extremely short branch lengths for pop-
ulation 1 seen in Fig. 2.8. We expect population bottlenecks to decrease the
expected time for coalescent events relative to a population of constant size.
Intuitively, the reason for shorter branch lengths is that the probability of
coalescence, 1/2Ne, becomes larger as Ne becomes smaller. As we have seen
already, the opposite is expected during population expansions, which cause
coalescent times and branch lengths to increase. It may therefore seem sur-
prising that the average coalescence time among population 3 sequences is
clearly shorter than among population 2 sequences. However, we need to re-
member that population 3 initially undergoes a severe bottleneck from10,000
to 100 at time t2 before the population expands inexorably (and exponen-
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Fig. 2.8 A representative genealogy resulting from simulation of scenario B
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Fig. 2.9 Population size of the exponentially increasingpopulation 3 in scenario B. Starting
population size is Ne = 100. The two horizontal dashed lines correspond to Ne = 2000 and
Ne = 10,000

tially!) toward its current size of 100,000. To see why this matters, consider
the population size trajectory of population 3 in scenario B (Fig. 2.9). It takes
8864 generations for the population to attain 2000 individuals, still a fifth of
the pre-bottleneck population size, and 13,349 generations to regain the pre-
bottleneck population size of Ne = 10,000.While it is true that the population
then expands from Ne = 10,000 to Ne = 100,000 in the remaining 6650 gener-
ations, a majority of its time is spent at a size less than Ne = 10,000. Indeed,
we can use the harmonic mean of all Ne to calculate effective population size
over the 20,000-generation period:

1
Ne
=

1
t

t∑
i=1

1
Ni
, (2.11)

whereNi is population size at time t= i. This results in an effective population
size of just 691 individuals, substantially less than the constant effective size
of population 2, which is 10,000.

2.3.1.3 Scenario C

Scenario C differs from scenario B in two ways: (1) at time t2, population 3
begins at the same size as population 2 (Ne = 10,000), and (2) the population
expansion at time t1 is instantaneous, increasing to Ne = 100,000. We again
assume that population 2 has a constant population size of Ne = 10,000 and
use this to scale time and rates. Thus, t3 = 1, t2 = 0.5, and t1 = 0.25 in units of
4Ne generations. The code for implementing 100 replicates of this scenario
and extracting and visualizing trees is as follows:
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1 ss <- scrm(’30 100 -t 4 -I 3 10 10 10 -en 0 3 10 -en 0.25 3 1 -en 0 1 0.1

↪→ -en 0.25 1 1 -ej 0.5 3 2 -ej 1.0 1 2 -T’)

2 trees <- list(length=100)
3 for (i in 1:len) {

4 trees[[i]] <- read.tree(text = paste0(ss$trees[[i]]))
5 }

6 plot(trees[[1]]) # to plot other trees replace 1 with an integer between

↪→ 2 and 100

Line 1 is dissected as follows:

• 30 100 -t 4 -I 3 10 10 10: Specifies 100 data sets of size 30, θ= 4, and
three populations from each of which ten sequences are drawn.

• -en 0 3 10: Specifies that at time 0 and moving backward in time, pop-
ulation 3 is set to ten times the size of the focal Ne = 10,000, or 100,000.

• -en 0.25 3 1: Specifies that at time t1 = 0.25, population 3 is instanta-
neously set to the same size as that of the focal population (i.e., 10,000
sequences).

• -en 0 1 0.1 -en 0.25 1 1: Specifies that at time zero, looking back-
ward, the size of population 1 is set to 1/10th that of the focal population
size (i.e., 1000) and at time t1 = 0.25, its size increases (again, looking
backward in time) to the same size as that of the focal population (i.e.,
10,000).

• -ej 0.5 3 2 -ej 1.0 1 2: Specifies that population 3 merges with pop-
ulation 2 (looking backward in time) at time t2 = 0.5 and population 1
merges with population 2 at time t3 = 1.0.

Figure 2.10 shows a representative genealogy resulting from coalescent
simulation of scenario C. Note that sequences drawn from the bottlenecked
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Fig. 2.10 A representative genealogy resulting from simulation of scenario C
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population again coalesce very rapidly. Relative to scenario B, however, it is
now clear that the population expansion encountered by population 3 has
led to elongated branch lengths. The full effect of a population expansion—
to generate long branches and lots of single nucleotide variants at low
frequencies—is realized. This is the result of the different ways in which
we modeled a population expansion in scenarios B and C. In scenario C,
population 3 instantaneously increases to a size of 100,000 sequences and
maintains this size for 10,000 generations. This is quite different from the
slow but inexorable growth of population 3 in scenario B, which, as we have
seen, leads to an effective population size considerably less than 10,000 de-
spite the fact that population 3 has attained a size of 100,000 sequences by
current time in both scenarios.

2.3.1.4 Scenario D

When running coalescent simulations for scenarioD (Fig. 2.5d),we introduce
three additional details: a one-time admixture event, recombination, and
continuous gene flow. Once again, we assume that the effective population
size of population 2 is Ne = 10,000 and use this to scale all parameter values.
We also use deeper time points, setting t3 = 80,000 generations (2× 4Ne
generations), t2 = 40,000 generations (1× 4Ne generations), and t1 = 25,000
generations (0.625×4Ne generations). The relevant events, moving forward
in time, are then as follows:

• At t3, the common ancestral population splits in two, moving forward in
time.

• At t2, one-half of the sequences in population 2 are drawn frompopulation
1, representing a one-time admixture event.

• At t1, population 3 originates as a population with size Ne = 100, af-
ter which it undergoes exponential growth to a population size of
Ne = 100,000 by t0 (present day).

Exponential Growth of Population 3

Because the time allotted for exponential growth from 100 to 100,000
sequences is longer (25,000 generations) relative to that simulated in scenario
B (where it was 20,000 generations), we need to calculate the exponential
growth rate anew:

r = ln
(100,000

100

) 1
0.625

= 11.05 (2.12)

Continuous Migration

We will simulate a very high symmetric migration rate between popu-
lations 2 and 3 of m = 0.01, which indicates that every generation, 1% of
the sequences in populations 2 and 3 consist of migrants from the opposite
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population. The population-scaled migration rate M = 4Nem. Recall that the
Ne in question is that of the constant-sized population 2—i.e., 10,000. Thus,
gene flow from population 2 to 3 and vice versa is M = 4×104×10−2 = 400.
Recombination

Let ρ = 4Ner represent the population-scaled recombination rate, where r
is the probability that a cross-over occurs at a specific site in the simulated
sequence (note that this is a distinct r from the exponential growth rate
calculated immediately above). A reasonable per-site value for r is 10−8;
therefore, ρsite = 4×104×10−8 = 4×10−4. This will need to be multiplied by
the sequence length simulated to obtain what is essentially the probability
that a cross-over occurs somewhere along the length of a simulated sequence.
We will simulate sequence lengths of 10,000 bp and 250,000 bp, which will
therefore have values ofρsequence = ρsite×104 = 4 andρsequence = ρsite×2.5×105 =
100, respectively.

We simulate scenario D, specifying 25 data sets of 30 10,000 bp sequences
each, ten sets from each population:

1 dat <- scrm(’30 25 -t 4 -r 4 10000 -I 3 10 10 10 -m 2 3 400 -m 3 2 400

↪→ -eg 0 3 11.05 -ej 0.625 3 2 -eps 1.0 2 1 0.5 -ej 2.0 1 2’)

Because the 25 data sets of 30 sequences are simulated independently of one
another, we can treat them as 25 unlinked 10,000 bp sequences. The command
is dissected as follows:

• 30 25 -t 4: Because we aim to simulate 25 unlinked sequences of
10,000 bp (θ = 4 for each of the 25 sequences), we require 25 indepen-
dent coalescent simulations with a sample size of 30 in each case. As
shown below, we then combine the 25 independent (i.e., unlinked) sam-
ples together. We will, for example, concatenate the first sample from
each of the 25 data sets for a total data set that represents the 25 unlinked
sequences sampled from a single individual. Because each of the 25 sim-
ulations simulates sequence evolution at unlinked, independent loci, it is
safe for us to randomly combine sequences. Essentially,we are performing
post hoc independent assortment. One thing we must not do, however, is
concatenate sequence data from separate populations.

• -r 4 10000: This flag indicates that meiotic recombination in the form of
crossing over should be simulated during the generation of each of the 25
data sets. The parameter values are the values of ρ (calculated above) and
the length of the sequence (in base pairs).

• -I 3 10 10 10: As before, this flag indicates that there are three popu-
lations at current time, from each of which a sample of ten haplotypes is
drawn. It is important to understand that the first ten rows of the resulting
table of segregating sites are drawn from population 1, the next ten from
population 2, and the final ten from population 3.



40 2 Retrospective and Prospective Simulation

• -m 2 3 400 -m 3 2 400: The lowercase m flag is used to indicate migra-
tion rate between a pair of specific populations in a single direction. In
each case, the first two parameters are the population number fromwhich
migrants emigrate and the population number to which they immigrate,
respectively. The third parameter is the population-scaled migration rate
(M) calculated above. We need both flags to simulate symmetric rather
than one-way migration between the two populations.

• -eg 0 3 11.05 -ej 0 0.625 3 2 -eps 1.0 2 1 0.5 -ej 2.0 1 2: The
growth and join flags are used similarly to their use in scenarios B and
C. However, the -eps flag is new. It states that at 1×4Ne generations ago,
one-half (fourth parameter) of the sequences in population 2were derived
from population 1 (second and third parameters, respectively). In other
words, this is an example of one-way admixture.

Next, we combine the segregating sites from all 25 loci into one data frame
and provide column/marker names:

1 ss <- data.frame(dat$seg_sites[[1]])
2 marker_pre = rep("M1", dim(dat$seg_sites[[1]])[2])
3 for (i in 2:length(dat$seg_sites)){
4 marker_pre = c(marker_pre, rep(paste("M", i, ".", sep = ""),

↪→ dim(dat$seg_sites[[i]])[2]))
5 ss <- cbind(ss, dat$seg_sites[[i]])
6 }

7 marker_suf <- seq(1:dim(ss)[2])
8 names(ss) <- paste(marker_pre, marker_suf, sep="")

9 names(ss) <- marker_labs

I then wrote the data frame ss to a file, which I input to the popular program
STRUCTURE (Pritchard et al. 2001) using the admixture model, 240,000
MCMC iterations (40,000 burn-in), ploidy of one, three as the assumed num-
ber of populations, and all other parameter values set to default.

In essence, we are treating the simulated data as an empirical data set and
using the program STRUCTURE to assess whether the given evolutionary
history produces evidence for three separate populations or not. Figure 2.11a
shows the results of the STRUCTURE analysis. Note that because each rowof
the input file was analyzed as data from a haploid individual, each vertical
bar in the figure shows the admixture proportions of a “haplotype” of 25
unlinked sequences and not a diploid individual. If the simulated data were
indeed empirical data,we see there is no indication of independent evolution
of populations 2 and 3 as all 20 samples from these populations show∼ 100%
ancestry to a single population (represented by dark gray). Population 1 is
clearly distinct from both of these populations.

This result is not surprising, given that the level of gene flow between the
two populations is very high (M = 400). A well-known—perhaps in itself
surprising—rule of thumb is that when M >> 1 (which often represents a
very small absolute number of migrants, Nm) between two defined groups
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of individuals of the same species, these groups behave as a single, panmictic
population.

Remember, however, that the data set analyzed was a concatenation of 25
unlinked 10,000-bp loci. When single 10,000-bp loci from the same data set
are analyzed in STRUCTURE, the results are highly variable (Fig. 2.11b1−3).
Sometimes,we obtain nearly the same result aswhen the total data set is used
(Fig. 2.11b1). However, in many cases, we obtain results that would seem to
split the sampled sequences from populations 2 and 3 into groups that do
not follow their a priori defined populations (Fig. 2.11b1 and b2). Compari-
son of the STRUCTURE results in Fig. 2.11a and b nicely demonstrates that
simulation results can be used to perform a power analysis that provides us
with valuable insight into the type and quantity of data we should gather
from natural populations of interest. The lesson here would clearly be that
we need to gather sequence data from multiple unlinked positions in the
genome to make trustworthy inferences regarding the population structure
of the focal species.

Finally, I took this idea one step further and ran another coalescent sim-
ulation of a single 250,000-bp sequence using all the same demographic
and time parameters as before. Importantly, this produces a simulated data
set of exactly the same number of assayed nucleotides as a data set of 25
10,000-bp sequences. STRUCTURE analysis produced results highly diver-
gent from those of the previous analyses in that all three populations were
characterized as being highly isolated from one another (Fig. 2.11c). While
it is likely that many simulations of a single 250,000-bp sequence would
produce STRUCTURE results analogous to those shown in Fig. 2.11a, the
result shown in Fig. 2.11c speaks to the need to sample multiple, unlinked
loci, which provide independent assessments of evolutionary history and
prevent one anomalous locus from leading us to draw incorrect conclusions.

2.3.1.5 Interpreting Genealogical Results When Recombination Is
Simulated

Although we simulated recombination in our treatment of scenario D, we
simply used the sequence data and did not address the underlying genealog-
ical information.When recombination is included in a coalescent simulation,
looking backward in time, there are two competing processes that result in
the genealogy: merger of two sequences (coalescence) and splitting of a sin-
gle sequence into two (recombination). The complex tree documenting the
history of recombination and coalescence that links the sampled sequences
to a common ancestral sequence is referred to as an ancestral recombination
graph (Hudson 1990). In practice, the complex history of coalescence and
recombination means that a sequence of a given length can be broken into
subsequences whose borders are defined by recombination breakpoints—
sites where crossing over took place. Each of these subsequences has its
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Fig. 2.11 STRUCTURE results for differently sized data sets generated according to evo-
lutionary scenario D. (a) Based on a data set of 25 unlinked loci of 10,000 bp each. (b) Three
separate results based on one of the 10,000-bp loci from (a). (c) Based on a data set of one
250,000-bp data set

own genealogy. As a result, there is an MRCA for each subsequence of the
sampled sequence and a grand most recent common ancestor, or GMRCA,
which is the common ancestral sequence to all subsequences of the sampled
sequence (Fig. 2.12a). The ancestral recombination graph can be separated
into individual genealogies for each subsequence (Fig. 2.12b), and the sam-
pled sequences incorporate mutations on each of these trees (Fig. 2.12b–c).
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Fig. 2.12 The ancestral recombination graph shows the history of coalescent and recombi-
nation events leading from a grand most recent common ancestor (GMRCA) to a sample
of sequences. (a) The ancestral recombination graph. A single recombination event is
shown with the breakpoint (vertical gray lines) splitting the overall sequence sampled
into left and right fragments. Solid lines show paths common to the genealogies of both
fragments, dashed lines show paths specific to the genealogy of the left fragment, and
dotted lines show paths specific to the genealogy of the right fragment. C stands for a
coalescent event, R for a recombination event, and T for transmission of a sequence. Gray
sequence is sequence not represented in the sample. (b) The reconstructed genealogies of
the left and right fragments; note that the MRCA to the right fragment occurs in the more
recent past than that of the left fragment. Mutations denoted by small arabic letters. (c)
The sequences of the sample based on mutations shown in (b). Dots indicate the alleles of
the GMRCA, while letters indicate derived mutations

2.3.2 Package COALA

The R package COALA allows the user to simulate sample sequences us-
ing SCRM or other simulators including MS. The chief advantage to using
COALA is that the user specifies the requisite parameter values and the com-
mand line fed toMS or SCRM is generated automatically. This is particularly
advantageous in cases where the simulated model is complex, which makes
it easy to incorrectly specify the order and/or details of the command line.



44 2 Retrospective and Prospective Simulation

Let us begin with a simple model to familiarize ourselves with the ba-
sic syntax used in COALA functions and simulation. Assuming you have
installed the scrm and coala packages in R, the following code stores the
results of coalescent simulation in the object dat:

1 library(coala) # loads SCRM as well

2 mod <- coal_model(10,1) + feat_mutation(1) + sumstat_seg_sites()
3 dat <- simulate(mod)

Model mod is specified in line 2 using the function coal model(), one of
many feature functions (feat mutation()), and one of many summary statis-
tic functions (sumstat seg sites()).Note that feature and summary statistic
functions are strung together using a “+”. The arguments to coal model()

specify a single sample size of ten haploid sequences. The value of the pop-
ulation mutation parameter θ is the argument to feat mutation(), and
sumstat seg sites() indicates we want to collect the state of each segregat-
ing site in all of the sampled sequences. In line 3, we then pass the specified
model to the function simulate(), and all output is stored in the object dat.
By default, the SCRM simulator is used, but you can gain access to the simu-
lator MS, for example, by installing the package PHYCLUST and adding the
activate ms() function with a suitable priority in order to use MS instead
(see COALA package documentation for full details).

To view the SCRM command line associated with the model, we type
dat<currencydollar>cmds, which prints the list of commands used for
each separate simulation. In our case, we ran only one simulation, and the
value of dat<currencydollar>cmds[[1]] is "scrm 10 1 -t 1". In order
to view the polymorphism data, we simply enter dat<currencydollar>

seg sites[[1]], which provides the data shown in Fig. 2.13. Columns are
segregating sites, and rows are individual sequences. The column headings
specify, as a real number, the position of each segregating site. To convert
these to nucleotide positions (i.e., integers), we need to consider the length of
the simulated sequence. One way to satisfy our simulated parameter value
θ = 1 is to imagine a population of 2500 individuals, a point mutation rate of
10−8, and a sequence that is 10,000 bp long: θ = 4Neμ = 4×2.5×103×10−8×
104 = 100 = 1. Then the first segregating site is at nucleotide 1664 or 1665
depending on how you decide to round numbers.

Now let us simulate a substantially more complex scenario with two
populations, one of which experiences a recent exponential population ex-
pansion (population 1) and the other which experiences a recent population
bottleneck (population 2; Fig. 2.14a). We assume that population 1 consists
of Ne = 10,000 individuals at time 0 (which is used to scale all times), a
sequence 10,000 bp in length, and a point mutation rate of 10−8. Further-
more, we assume that 100 (or 0.0025 4Ne) generations ago, population 1 only
held 100 individuals while population 2 consisted of 20,000 individuals. At
this time point, population 1 began exponential population growth at a rate
of r = 1842.1, and population 2 instantaneously declined to a size 0.01 of
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Fig. 2.13 Polymorphism data generated using COALA

Ne = 10,000, or 100 individuals. Finally, 200 (or 0.005 4Ne) generations ago,
the ancestral population split into the extant populations. The following code
specifies this model and simulates according to the model:

1 mod2 <- coal_model(c(10,10),1) + feat_mutation(4) + feat_growth(1842.1,
↪→ population=1, time="0.") + feat_size_change(0.01, population=2,

↪→ time="0.") + feat_size_change(2, population=2, time="0.0025") +

↪→ feat_pop_merge(0.005,1,2) + sumstat_seg_sites() +

↪→ sumstat_nucleotide_div(population=1) + sumstat_sfs(population=2)
2 dat2 <- simulate(mod2)

Figure 2.14b–c shows the SCRM command associated with the model
and the simulated data from the first ten of many segregating sites. The
final two commands in line 1 of the previous listing introduce two ad-
ditional summary statistics that can be calculated on the simulated data.
First, sumstat nucleotide div(population=1) specifies calculation of nu-
cleotide diversity on the data from population 1 (the first ten sequences).
See Sect. 3.4.6.1 for a discussion of what nucleotide diversity represents. For
now, suffice it to say that nucleotide diversity is the mean number of pair-
wise differences between sampled sequences. In our case, nucleotide diver-
sity (dat2<currencydollar>pi) equals zero because there is no variation; all
sequences in population 1 are identical (the first ten rows/haplotypes listed
in Fig. 2.14c). Unfortunately, COALA does not provide a means to output
nucleotide diversity for more than one population; we can calculate nu-
cleotide diversity across sequences from all populations using the argument
population="all", but this would be quite inappropriate in this case as the
two populations have experienced dramatically different histories during
the last 100 generations. Second, sumstat sfs(population2) calculates the
site frequency spectrum for population 2 (the second ten rows/haplotypes
in Fig. 2.14c). dat2<currencydollar>sfs holds the vector 6 2 8 0 3 0 2 0

0; this indicates there are six segregating sites in which only one sequence
bears the derived allele, two segregating sites in which two sequences (of 10)
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1time = 0.

time = 0.0025
(100 gens ago)

time = 0.005
(200 gens ago)

A

B
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2

Fig. 2.14 Amodel simulated in COALA. (a) Summary of the demographic changes in the
model. Two hundred generations ago, population 1 split from the ancestral population
(looking forward in time). One hundred generations ago, population 1 began growing
exponentially, and population 2 experienced a severe and instantaneous population bot-
tleneck. (b) The SCRM command line assembled by COALA. (c) Polymorphism data for
all 20 sequences at the first ten of 21 total segregating sites in the sample. The horizontal
line separates sequences sampled from populations 1 and 2. Note the absence of variation
among sequences drawn from population 1 (sequences 1–10)

bear the derived allele, eight segregating sites in which three sequences (of
10) bear the derived allele, etc. Again, calculation of this summary statistic
in COALA suffers from the same limitation; it can either be calculated across
all populations or in just one of the populations. Nevertheless, this is a very
handy package for coalescent simulation. It is possible to simulate selection
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at a single locus (feat selection()), calculate a wide variety of summary
statistics, and more.

As a test of your population genetic intuition, posit an explanation for
why the sampled sequences from population 1 are devoid of variation
while considerable variation is found among the sampled sequences from
population 2.

2.4 The Utility of Retrospective, Coalescent Simulation

It bears mentioning again that the majority of this volume focuses on for-
ward simulation. This is not because coalescent simulation is obsolete or
inapplicable to evolutionary inference. Coalescent simulation is perfectly
appropriate for a variety of inferential tasks. In fact, whenever possible, the
use of coalescent simulation is preferred due to its rapidity.

As we move into Chap. 3, however, our focus shifts to and stays with
forward-in-time simulation. One reason for this focus is that, to my knowl-
edge, there are few texts that provide a primer on forward-in-time sim-
ulation. My hope is that as you, the reader, make your way through the
subsequent chapters, you will feel empowered to use forward simulation to
tackle problems that cannot be met by coalescent simulation’s limitations.
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3
Mutation and Genetic Drift

And who’s that, through the crack in the orange shade, breathing carefully?
Watching? And where, keepers of maps, specialists at surveillance, would
you say the next one will fall?1

– Thomas Pynchon, Gravity’s Rainbow

3.1 Background

The vastmajority of newvariants generated bymutation are destined for loss
in the near future. The reason is intuitive. In a diploid population of effective
size Ne, a point mutation yields a new autosomal variant that begins as a
single copy among 2Ne total copies of the nucleotide, or at a frequency of
1/2Ne. Given its initial rarity, the new allele can easily be lost by chance in one
or a few generations. There is no guarantee the allele will be sampled and
transmitted to the next generation. As a concrete example, if the individual
carrying the mutant allele does not mate, the mutant allele is lost after only
one generation of existence. Even if the carrier of the mutant variant does
mate, by Mendel’s principle of equal segregation, the mutant allele will be
transmitted with uncertainty (probability = 0.5).

1 Quoted with permission. 1973, Penguin Classics.
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Qualitatively, then, allele frequencies may evolve each generation solely
due to random sampling of the finite number of alleles in the previous gener-
ation. Are there quantitative expectations related to this phenomenon? Yes.
Perhaps the most important simple result of theoretical population genetics
is that the fixation probability of a neutral allele (i.e., the probability it attains
a frequency of 1.0) equals its current frequency (Kimura 1962). The fixation
probability of a new neutral allele is therefore 1/2Ne in a diploid population;
note this implies that loss of a new variant becomes more likely as popula-
tion size increases. Even when a new genetic variant confers a considerable
selective advantage, its survivorship is still highly improbable when at very
low frequency in the population.

The precarious existence of new variants, coupled with their steady gen-
eration by mutation, leads to the characteristic shape of the neutral allele
frequency spectrum (AFS). The AFS is the distribution of allele counts in
a population sample, documenting the number of derived variants found
as n copies in the population. The neutral AFS is geometrically distributed;
the most common class of variants consists of those that exist as only one
copy in the sample, which are called singletons. Although new alleles tend to
be lost rapidly, mutation repeatedly counteracts these losses by introducing
new variants.

The primary consequence of genetic drift is loss of genetic diversity due
to the loss of alleles and, therefore, polymorphism. One way to measure this
loss is by examining the decay of heterozygosity over time. In the absence
of mutation, genetic drift leads to a predictable decay in heterozygosity at a
polymorphic locus. In a diploid population, heterozygosity at a polymorphic
locus declines by H/2Ne each generation, where H is the current value of
heterozygosity (Wright 1931). A deterministic recursion equation specifies
what H will be after t generations of genetic drift:

Ht =H0(1−1/2Ne)t,

where H0 is the starting value of heterozygosity.
In this chapter, excepting Sect. 3.2, we model both mutation and genetic

drift. Given sufficient time, the population will reach mutation-drift equilib-
rium, at which point the generation of new variants by mutation is balanced
by the loss of genetic variants due to genetic drift. For a given mutation rate
and effective population size, we can predict the equilibrium level of genetic
diversity, measured in a diploid population as the parameter θ = 4Neμ. Al-
though individual new alleles are more likely to be lost in a large population
than in a small population, a greater total number of new alleles enter the
large population each generation. Thus, the expected level of genetic diver-
sity in a population at mutation-drift equilibrium increases with the size of
the population. For example, given the same pointmutation rate for a 10,000-
bp locus of μ= 10,000×10−8 = 10−4, genetic diversity θ= 4×10,000×10−4 = 4
for a diploid population of size Ne = 10,000 and θ = 4× 100,000× 10−4 = 40
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for a diploid population of size Ne = 100,000. Importantly, as detailed in
Sect. 3.6, the theoretical expectation of genetic diversity (θ) at a neutral locus
at mutation-drift equilibrium provides us with an important metric for vali-
dating the simulation program FORTUNA, which we begin constructing in
this chapter.

3.2 A Textbook Simulation

Introductory biology textbooks often contain a figure that shows results
from simulation of genetic drift on an existing genetic variant for different
population sizes. This figure provides the reader of the textbook with an
intuitive understanding of the relationship between population size and the
magnitude of genetic drift.

A primary goal of this volume is to empower the reader to use simulation
in order to build intuition regarding processes of much greater complexity.
Therefore, it is worth taking a fewmoments to code this simple simulation to
reinforce the value of simulation in the science of evolutionary genetics and
prepare for more challenging coding tasks. In the following program, we
ignore mutation and assume that a standing variant begins at a frequency of
0.5. Our expectation is that intergenerational change in allele frequency will
be dramatic in small populations and muted in large populations.

Ignoring the idiosyncratic details of different life histories and, to put it
coldly, reproduction is a biological means for sampling the previous gen-
eration’s alleles to produce the next generation’s set of alleles. The central
limit theorem dictates that the magnitude of generation-to-generation flux
in allele frequency due to finite sampling (and not selection, migration, etc.)
is negatively correlatedwith population size. Our simple program of genetic
drift in a population of haploid organisms models reproduction as sampling
with replacement. The count of the focal allele in the next generation is
generated by drawing a random binomial variable with parameters N, hap-
loid population size, and p, the frequency of the focal allele in the previous
generation. Because population size does not change, N remains constant,
but p potentially changes every generation. Each haploid individual of the
next generation results from a random Bernoulli trial in which the chance of
“success” (focal allele is sampled) equals p. Unlike the prospective simula-
tion program we construct in this volume, which explicitly simulates each
mating, we draw a single binomially distributed random variable that rep-
resents the count of focal alleles in the population in the next generation. A
single source file is sufficient for the program.
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drift.cc

1 \\ includes

2 #include <random>

3 #include <fstream>

4 #include <string>

5 #include <map>

6 #include <vector>

7
8 int main(int argc, char *argv[]) {

9
10 // command line arguments

11 double N = atof(argv[1]);

12 std::string suffix = argv[1];

13 int simnum = atoi(argv[2]);

14 int gen = atoi(argv[3]);

15
16 std::mt19937 engine(std::time(0)); //initialize the random engine

17 std::map<int, std::vector<double>> data;

18
19 for (int i = 0; i < simnum; ++i) { // once per simulation replicate

20 double freq = 0.5; //start all sims with frequency = 0.5

21 std::binomial_distribution<> b(N, freq); //binomial sampler

22 for (int j = 0; j < gen; ++j) { // once per generation

23 data[i].push_back(freq);
24 freq = b(engine) / N;

25 b.param(std::binomial_distribution<>::param_type(N, freq));

26 }

27 }

28
29 // print data held in the map, data, to output file

30 std::string fname = "drift_N" + suffix;

31 std::ofstream output;

32 output.open(fname.c_str());
33 //print header line

34 output << "gen ";

35 for (int set = 0; set < simnum-1; ++set)

36 output << set << " ";

37 output << simnum << std::endl; // avoid extra space after last entry

38 //print data for each sim and each generation

39 for (int j = 0; j < gen; ++j) {

40 output << j << " "; // print generation number

41 for (int i = 0; i < simnum-1; ++i)

42 output << data[i][j] << " " ; // print focal allele frequency

43 output << data[simnum-1][j] << std::endl;

44 }

45 output.close();

46
47 return 0;

48 }

drift.cc takes three command-line arguments in the order (1) haploid
population size, (2) the number of replicate simulations to run, and (3) the
number of generations for which each replicate should run. Lines 11–14 use
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these inputs to define the variables N, simnum, and gen, respectively.Note that
N is declared as a double; this is because N will be used as the denominator
to calculate the frequency (a real number) of the focal allele each generation.

The C++11 standard introduced random number generators for several
useful probability distributions. To draw randomvariables from any of these
distributions, it is necessary to initialize a random number engine (line 16),
which is passed as an argument whenever a random variable is generated
(e.g., line 24). Here and throughout the volume, we deploy the reliable and
widely used Mersenne Twister 19937 (std::mt19937) pseudorandom num-
ber generator.

The program populates a map named data, whose key is the replicate
number and whose value is a vector of allele frequencies for the simulation
in question. Each generation (lines 22–26), the current frequency is added to
data (line 23), and a binomial sample of the focal allele is drawn, fromwhich
the new frequency (variable freq) is calculated (line 24). The new frequency
is then used to reparameterize the binomial distribution b (line 25). Finally,
the contents of data are printed to a file whose name is drift N* (lines 29–45),
where * is the sample size specified in the command-line argument.

Next, we compile the program and run five replicates each for N = 50
and N = 50,000 producing the output data files drift N50 and drift N50000,
respectively.

compile and run drift.cc

1 g++ -std=c++11 drift.cc -o drift // -std flag allows use of <random>

2 ./drift 50 5 100 // small number of generations needed for focal allele

↪→ to fix or be lost

3 ./drift 50000 5 50000

Now, we plot the simulation results in R.

plot drift.r

1 library(reshape2) // allows us to "melt" results from all five simulations

2 library(ggplot2)
3 library(cowplot)
4 d50 = read.table(file = "drift_N50", header = T)

5 d50000 = read.table(file = "drift_N50000", header = T)

6 melted50 = melt(d50, id = "gen")

7 melted50000 = melt(d50000, id = "gen")

8 ggplot(metled50, aes(gen, value, factor=variable)) + geom_line() //
↪→ Figure 4.1A

9 ggplot(melted50000, aes(gen, value, factor=variable)) + geom_line() +

↪→ xlim(0,100) // Figure 4.1B

10 ggplot(melted50000, aes(gen, value, factor=variable)) + geom_line() //
↪→ Figure 4.1C
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The resulting plots are shown in Fig. 3.1. Comparison of Fig. 3.1a andb shows
the erratic swings in allele frequency associated with small population size
versus the muted changes to allele frequency from generation to generation
when population size is large. Although the focal allele is fixed or lost in all
five simulations in less than 60 generations when N = 50, polymorphism is
maintained for 50,000 generations in three of five simulation replicates when
N = 50,000 (Fig. 3.1c).

We next consider the relationship between population size and the mean
and variance of p across multiple simulations. Although the plots in Fig. 3.1
show that each simulation run results in deviation from the initial frequency
of the focal allele (p = 0.5), the expected value of p is 0.5. Yet this expectation
is realized in a somewhat peculiar manner. Given sufficient time and no
countervailing factors such as natural selection, the focal allele is either lost
or fixed. Because the probability of fixation of an allele is equal to its initial
frequency, we expect that half of all simulations will result in loss of the
allele while the other half will result in fixation of the allele. Therefore, over
multiple simulations, the average frequency of a focal allele with pinitial = 0.5
is expected to be 0.5. If we run 1000 simulations, E[p]= 0.5 is attained rapidly
when population size is small and more slowly when population size is
large (Fig. 3.2a). Following the same logic, if half of all simulations result in
p = 1 and the other half in p = 0, then E[σ2p] = 0.25. Figure 3.2b shows that
this expected variance is met in short order when N = 50 and has still to be
attained after 100,000 generations when N = 50,000.

We now check that simulated data using our binomial-based process
model of genetic drift match the theoretical decay of heterozygosity due
to drift. Once again using drift.cc, I simulated 100 replicates of haploid
N = 50,000 populations for 50,000 generations and plotted the expected het-
erozygosity versus time (see Sect. 3.1) and compared this to the observed
mean value of heterozygosity across all 100 simulations (Fig. 3.3). The match
is quite good. However, it is important to note that few individual simula-
tions track expected heterozygosity very well. For example, many simulated
populations lost one allele or the other, after which point heterozygosity
equals zero. This is another example where a statistical expectation is met
only when we average multiple replicates. Admittedly, this is the definition
of statistical expectation, but we should remind ourselves that an expected
value might actually be unexpected in a single population.

Although forward simulations are much slower than coalescent simu-
lations, forward simulations provide two major advantages that even the
simple drift.ccmakes clear. First, a forward model of evolution is easier to
conceptualize and therefore code formanypeople. In nature, genetic drift has
a forward-in-time effect on genetic variation after all; as mentioned above,
offspring are produced via the sampling “method” of reproduction. It is sim-
ple to encode this insight in a simulation program as random sampling of a
statistical distribution. As wemove on to individual-based, forward simula-
tions, the value of definingmodels that agree with our perception of the flow
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Fig. 3.1 Simulations of genetic drift on a focal variant beginning at a frequency of 0.5. (a)
N = 50. (b and c) N = 50,000. Note the change in the scale of the time axis between (b)
and (c)
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Fig. 3.2 Mean (a) andvariance (b) of the frequency of a focal allele beginning at a frequency
of 0.5 across 1000 simulations for N = 50 (gray lines) and N = 50,000 (black lines)

of time will become evenmore apparent. Second, forward simulation allows
us to document complete historical information regarding genetic variation.
Coalescent simulation only considers the genealogy leading to the alleles of
the sample (see Chap. 2); extinct alleles are ignored.While this simplification
is profound and central to the efficiency of coalescent simulation, historical
information is often of interest. Coalescent simulation cannot provide the
data shown in Figs. 3.1 and 3.2 because it only provides us with information
regarding a terminal generation. On the contrary, we can track the frequency
of an allele every generation using forward simulation (Fig. 3.4). Further-
more, we can store the fate of each and every allele that emerges over the
course of a simulation. Comprehensive historical data such as this may be
quite helpful depending on the goals of the researcher.
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Fig. 3.3 The decay of heterozygosity at a diallelic locus in the absence of mutation. The
gray line plots mean heterozygosity across 100 independent simulations; each simulated
locus began with two alleles at a frequency of 0.5 and, therefore, starting heterozygosity
of 2× 0.5× 0.5 = 0.5. The dashed line plots the expected decline in heterozygosity for a
haploid population where Ne = 50,0000 and H0 = 0.5

3.3 Some Practicalities

3.3.1 Efficient Representation of a Genetic Sequence

Inmost cases, the direct product of our simulationswill be genetic sequences.
We should therefore consider the best means of representing genetic se-
quences in the programs we code. Perhaps the most straightforward ap-
proach would be to store each sequence as a string, array of char, or a
bitset in which each site in the sequence is tracked. This would be an in-
efficient sequence representation for the simple reason that most positions
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Fig. 3.4 The descent of a derived allele. Simulation only provides us with the genealogy
connecting black circles. Forward simulation, on the other hand, allows us to record all
genetic details of past generations. As a simple example demonstrating the value of a
comprehensive history, forward simulation allows us to calculate the frequency of the
derived allele (p) each generation, while coalescent simulation only provides us with p
in the final, sampled generation. Black circles represent alleles that are directly ancestral
to the sampled alleles. The alleles represented by gray circles are identical by descent to
those alleles ancestral to the sample, but they are members of an extinct genetic lineage.
Open circles represent alleles that are not identical by descent to the derived allele

in the sampled sequence will be invariant even when θ = 4Ne is realistically
large. It is substantially more efficient to track only those sites within the
sequence that are polymorphic in the simulated population.

Throughout the volume, therefore, we represent each derived allele as an
object in its own right. The Allele object stores private variables such as its
count in the population, generation of origin, and position in the sequence
(Fig. 3.5, left column). Each sequence in the population is represented as a
vector of the derived allele positions present in the sequence and diploid
individuals as a collection of two of these sequences (Fig. 3.5, middle col-
umn). When calculating summary statistics on a sample of sequences and/or
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Fig. 3.5 An Allele object stores information regarding each derived allele (left column).
We represent gene sequences as a vectorof derived allele positions present in the sequence
and individual, diploid organisms as a set of two sequences (middle column). For the
purpose of summary statistic calculation in particular, we also use bitsets to represent
sequences; the state at each segregating site is specified as a 0 (ancestral allele) or 1 (derived
allele). The segregating sites documented in the bitset are ordered such that the state of
the lowest segregating position (45 in this example) will be coded in the bitset as the
rightmost (index [0]) bit; the four leftmost 0s of the bitset in this example provide room
for the coding of segregating sites that emerge during the simulation due to mutation

printing sequences to output files, we will represent each sequence as an
ordered bitset of 0s and 1s—ancestral and derived alleles, respectively—
for each polymorphic site in the population (Fig. 3.5, right column). This
representation is particularly useful for rapid calculation of quantities such
as the number of pairwise differences between two sequences using bitset

operators.
In addition tohowwe represent sequences,weneed to consider additional

output details. Example considerations include the following: Do we want
the program to record the history of all derived alleles? Do we want to
store samples (or the entire population) at specific time points? Do we want
the program to calculate summary statistics at specific time points? It is
important to consider these desired outputs because they will impact the
structure and efficiency of the program we code. In the following sections, I
demonstrate how each of these outputs may be accommodated.
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3.3.2 Simulating Point Mutation on a Sequence

The probability that a point mutation changes the state of a specific nu-
cleotide within a specific sequence is generally very low. For example, re-
cent estimates of this probability for human autosomes, which is the per-
nucleotide mutation rate (μnt), are 10−8, or one in 100 million (Lynch 2010;
Roach et al 2010). Intuitively, however, the probability that a point muta-
tion occurs somewhere along a sequence (per-locus mutation rate, μlocus) will
be larger. For example, on average, one in 100 copies of a homologous, 1-
Mbp sequence in a population will incur mutation somewhere along their
length every generation. This is because the per-locus mutation rate equals
sequence length times per-nucleotide mutation rate. Assuming μnt = 10−8,
then μlocus = 106×10−8 = 0.01.

Complicating matters somewhat, we must allow for the smaller proba-
bility that more than one mutation occurs in a given sequence. Technically,
the number of point mutations incurred by a specific sequence is binomially
distributedwith the number of “trials,” n, equal to the number of nucleotides
in the sequence and the probability of “success,” p, equal to μnt. In our sim-
ulations of sequence variation, n is generally large and p is very small. Thus,
it is safe to use the Poisson approximation to the binomial distribution, setting
the Poisson parameter to λ = np. Random draws from a Poisson distribution
so parameterized can then be used to simulate the number of mutations
incurred by a given sequence. Unless the simulated sequence is very long,
the result will usually be zero, and the transmitted sequence will be identi-
cal to that of the parent. When the number of mutations is greater than 0,
we determine the random position(s) where the mutation(s) occurred and
whether the current state of the nucleotide is ancestral or derived; see the
discussion of the member function mutate() below for details.

3.4 Forward Simulation of Mutation and Genetic Drift

In this section, we begin our construction of the forward-in-time simulator
FORTUNA. We define critical C++ classes that will grow in size through-
out the book and produce a program that simulates a diploid population
represented by sequences of a specified length. The program will sample
sequences from the population periodically; this sample is then used to cal-
culate summary statistics of population-level genetic variation. I will also
introduce functionality to record the history of each variant/allele, including
the generation of origin and the generation of either extinction or fixation.
This functionality requires considerably greater computing time and need
only be included in a working program if this information is necessary for
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Population

- mu_sequence : double
- individuals : vector<Individual*>
- alleles : map <int, Allele*>
- randompos : uniform_int_distribution<int>
- randomind : uniform_int_distribution<int>
- randomnum : uniform_real_distribution<double>
  e : mt19937

+ reproduce (int) : void
+ mutate (const vector<int>, const int) : vector<vector<int> >
+ update_alleles (const int) : void
+ get_sample (int) : void

Individual

- sequences : vector<vector<int>>

- remove_alleles_by_position (int, int) : void
+ get_sequences (int) : vector<int>
+ remove_fixed_allele (int) : void

Allele

- position : int
- birthgen: int
- count : int

+ get_count ( ) : int
+ set_count (int) : void
+ get_position ( ) : int
+ set_position ( int) : void
+ increment_count ( ) : void
+ get_birthgen ( ) : int

Ne

0 .. *

Global parameters
popsize : int
mutrate : double
seqlength : int
sampsize : int
sampfreq : int

Functions from summarystats.h
get_pi (int) : double
get_watterson (int, int) : double

Fig. 3.6 Markup of the three classes critical to program FORTUNA

the research question at hand. Because the basic simulator in this chapter
accounts for relatively few evolutionary factors, the parameters specified
are few. The most important of these are mutation rate, effective population
size (Ne), and sequence length.

The markup shown in Fig. 3.6 outlines the three classes introduced in
this chapter: Population, Individual, and Allele. The program begins by
reading in the parameter values specified in the parameters file. These pa-
rameters are declared in params.h, and values from the parameters file are
read and initialized by params.cc. The main source file fortuna ch3.cc in-
stantiates an object of class Population, which includes a vector of pointers
to Ne diploid individuals of class Individual and a map of extant alleles,
where the key is the position of the variant in the sequence and the value
is a pointer to an allele of class Allele. Each individual possesses two ho-
mologous copies of the sequence, each represented as a vector of derived
allelic positions. In addition to its position, each allele includes a variable
for the generation it arose—the variable birthgen—and its current count
in the population, variable count, although birthgen is only recorded in
the case where a full accounting of alleles is required. All sequences are ini-
tially devoid of genetic variation, but once-a-generation calls to the method
Population::reproduce()—which draws random mating pairs as well as
the chromosome transmitted by each parent and checks for newmutation—
graduallydrive thepopulation towardmutation-drift equilibrium. Figure 3.7
provides a summary of program execution.
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Fig. 3.7 Pseudocode of program execution

3.4.1 Parameters

To use simulation as a tool for evolutionary inference, our simulation pro-
gram must allow for easy manipulation of the parameter values to be simu-
lated. In this section,we introduce the file parameters, which is read by FOR-
TUNA at the beginning of program execution. After compiling FORTUNA,
parameters can be edited and saved to run the program with different
parameter values. In the context of inference, which requires us to run sim-
ulations using parameter values drawn from a prior distribution, the wrap-
ping inference program can automate the relevant editing of parameters. At
this stage, a small number of parameters are necessary:

parameters

1 popsize 1000

2 mutrate 1e-08

3 seqlength 2.5e05

4 sampsize 100

5 sampfreq 100

where popsize is diploid Ne, mutrate is the per-nucleotide mutation rate,
seqlength is the length of the sequence to be simulated in base pairs,
sampsize is sample size (<= popsize), and sampfreq is the frequency (in
generations) at which samples are taken from the simulated population. The
number of generations to be simulated is implemented as a command-line
argument. Note that (1) you can change parameter values in the parameters
file without the need to recompile the program and (2) scientific notation is
written using e-notation—e.g., 2.5e05 represents 2.5×105.

Our next step is to write two files. The header file params.h declares
programvariables thatwill hold parameter values, and params.ccpopulates
these variables with the values specified in parameters.
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params.h

1 #ifndef PARAMS_H
2 #define PARAMS_H
3
4 // must be constant at compile time

5 extern const int bitlength = 1000;

6
7 // the following are defined by values in the parameters file

8 extern int popsize;

9 extern double mutrate;

10 extern int seqlength;

11 extern int sampsize;

12 extern int sampfreq;

13
14 #endif

The use of the keyword extern ensures that these variables are accessible
by any file that includes this header file. Because we will use a bitset to
represent samples taken during the simulation, and because the length of
a bitset must be constant at compile time, we directly specify this length
(bitlength) in the header file. Values larger than 1000 are required for larger
values of Ne and seqlength. Until you get a sense for how many segregat-
ing sites are generated by your simulation, you should be liberal with this
parameter value to avoid segmentation faults. If the variable bitlength is
changed, recompilation is required; all other parameter values can be changed
in the parameters file without the need for recompilation.

params.cc

1 #include "params.h" // access to declarations of global parameter values

2
3 map<string, string> read_parameters_file(const string &parameters_fn)
4 {

5 //map<int, map<string, string> > params_by_block;
6 map<string,string> params;

7 ifstream paramfile(parameters_fn.c_str());
8 string line;

9 while(getline(paramfile, line)) {

10 istringstream iss(line.c_str());
11 string key, nextone, value;

12 iss >> key;

13 while (iss >> nextone)

14 value += nextone + " ";

15 params[key] = value;

16 }

17 return params;

18 }

19
20 map<string, string> parameters = read_parameters_file("parameters");
21
22 // variable names

23 int popsize, sampsize, seqlength, sampfreq;
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24 double mutrate;

25
26 int process_parameters() {

27 popsize = atoi(parameters["popsize"].c_str());
28 mutrate = atof(parameters["mutrate"].c_str());
29 sampsize = atoi(parameters["sampsize"].c_str());
30 seqlength = atof(parameters["seqlength"].c_str());
31 sampfreq = atoi(parameters["sampfreq"].c_str());
32 return 1;

33 }

34
35 int good_parameters = process_parameters();

Having declared program variables in params.h, the next step is to populate
them with the values listed in the parameters file, which is accomplished
when params.cc is run (through an #include statement) early in the execu-
tion of the program. First, function read parameters file() is declared and
defined (lines 3–18). The map returned by this function stores the parameter
name as the key and the remaining line specifying the value(s) of the param-
eter as the value. The function is run on line 20, storing the returned map in a
variable named parameters. After declaring the names of the variables (lines
23–24), function process parameters() converts values from type string

to the desired type (lines 26–35).

3.4.2 main() Function

The main() function specified in fortuna ch3.cc has several important
roles, including the following:

• Allows access to required standard library elements and other files of the
program using #include statements

• Reads in the number of generations to be simulated from the command
line

• Initializes a Population object
• Evolves the population for the specified number of generations by calling

the reproduce function of the Population class

fortuna ch3.cc

1 #include <algorithm>

2 #include <string>

3 #include <iterator>

4 #include <bitset>

5 #include <random>

6 #include <cmath>

7 #include <iostream>

8 #include <fstream>
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9 #include <vector>

10 #include <map>

11
12 using namespace std;

13
14 #include "params.h"

15 #include "params.cc" // inclusion causes parameter values to be read

16 #include "allele.h"

17 #include "individual.h"

18 #include "population.h"

19
20 int main(int argc, char *argv[]) {

21
22 int gens = atoi(argv[1]);

23 mt19937 engine(time(0)); //initialize the random engine

24 Population::e = engine;

25 Population pop;

26
27 // simulate for gens generations

28 for (int i =0; i < gens; i++)

29 pop.reproduce(i);

30 pop.close_output_files();
31
32 return 0;

33 }

34
35 // static variables for population class
36 mt19937 Population::e;

The number of generations to be simulated is read as a command-line argu-
ment on line 22. Subsequently, the mt19937 randomnumber engine, declared
as a static variable for use in class Population on line 36, is initialized on
lines 23–24. Next, an object of class Population named pop is instantiated
(line 25), and the Population member function reproduce() is called gens

times to evolve the population (lines 28–29). Finally, output files that record
summary statistics and other data are closed (line 30).

3.4.3 Class Population

Class Population is central to the execution of FORTUNA. An instanti-
ated Population object is the basic unit of evolution in simulations. It in-
cludes containers that store pointers to important sets of objects: diploid
Individuals of the population as well as Alleles currently segregating in
the population. To begin with, let us look at the basic private and static

variables in the class as well as the Population constructor.
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3.4.3.1 Basic Class Structure: Constructor and Private Variables

population.h

1 #ifndef POPULATION_H
2 #define POPULATION_H
3
4 #include "params.h" // provides access to global parameter values (extern)
5 #include "summarystats.h" // provides access to summary statistic

↪→ calculations/functions
6
7 class Population {

8
9 private:

10 double mu_sequence;
11 vector<Individual*> individuals;

12 map<int, Allele*> alleles; /// int key is position of the allele

13 uniform_int_distribution<int> randompos;

14 uniform_int_distribution<int> randomind;

15 uniform_real_distribution<double> randomnum;

16 poisson_distribution<int> randommut;

17 ofstream pi_file;
18 ofstream watterson_file;
19 ofstream allele_file;
20
21 public:
22 Population () {

23 // initialize random number distributions

24 mu_sequence = seqlength * mutrate;

25 randompos.param(uniform_int_distribution<int>::param_type(1,seqlength));
26 randomind.param(uniform_int_distribution<int>::param_type(0,popsize-1));
27 randomnum.param(uniform_real_distribution<double>::param_type(0.,1.));
28 randommut.param(poisson_distribution<int>::param_type(mu_sequence));
29
30 individuals.reserve(popsize*2);
31 for (int i=0; i<popsize; ++i) {

32 vector<int> s1; vector<int> s2;

33 vector<vector<int>> ses{s1,s2};

34 individuals.push_back( new Individual(ses) );

35 }

36
37 string fname = "nucleotide_diversity";
38 pi_file.open(fname.c_str());
39 pi_file << "gen summary.stat" << endl;

40
41 fname = "watterson_estimator";
42 watterson_file.open(fname.c_str());
43 watterson_file << "gen summary.stat" << endl;

44
45 fname = "allele_info";
46 allele_file.open(fname.c_str());
47 allele_file << "position birthgen lifespan extinct.fixed" << endl;

48 }
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49 static mt19937 e;

50 };

51
52 #endif

The class constructor takes no arguments and begins by calculating the
per-sequence mutation rate mu sequence and initializing four random num-
ber generators (lines 24–28):

• randompos: Used to draw random sites within the simulated sequence
• randomind: Used to draw random individuals in the population
• randomnum: Used to draw a real number on the interval [0,1]
• randommut: Used to draw the number of mutations incurred by a trans-

mitted sequence

Next, the vector individuals is populated with Ne (popsize) objects of class
Individual (lines 31–35).individuals (line 11) is of typevector<Individual*>—
i.e., a vector of pointers to objects of class Individual. At the start of the
simulation, the population is devoid of genetic variation; thus, the variable
alleles (line 12) is empty, and the two sequences of each individual consist
of empty vectors (lines 32–33). Line 34 instantiates each Individual object
as well as the pointer in individuals using the keyword new. As we will
see, new mutation will gradually increase genetic variation in the popula-
tion, and eventuallymutation-drift equilibriumwill be attained. Later in this
chapter, we will use sequence output from coalescent simulation to initial-
ize the Population, which will eliminate the need for waiting to achieve
equilibrium. Finally, in lines 37–47, the constructor defines and opens three
files—nucleotide diversity, watterson estimator, and allele file—that will store
the summary statistics π and θwat calculated every sampfreq generations
as specified in the parameters file and the details of new alleles arising by
mutation. One note: this latter file should be commented out if the detailed
history of polymorphism is not required, as it adds appreciable compute time.

3.4.3.2 Member Functions

The public member function reproduce() advances the simulation one
generation at a time. reproduce() itself calls the privatemember functions
mutate(), update alleles(), and get sample(), which we consider in turn
below. As the name implies, reproduce() is responsible for producing the
next generation of individuals. Producing each member of the next genera-
tion requires several steps:

• Choose two parents randomly from among individuals.
• For each parent, choose one of their two (implicitly autosomal) sequences

for transmission.
• Assess transmitted sequences for mutation.
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As we add complexity (and realism) to FORTUNA in succeeding chapters,
additional steps will be needed. For now, however, these steps will suffice
to simulate mutation and genetic drift. Note below—in the discussion of
function mutate()—that we do not mutate a parental sequence until after
each parental chromosome has been randomly selected for transmission.
This choice is rooted in biological reality. Consider two siblings that, with
probability 0.5, inherit separate copies of the same chromosome from one
of their parents. Because the copies of this chromosome are products of
independent meioses, any errors in DNA replication will be independent in
each case, leading to gametes thatmay bear distinctmutations to the parental
template. The same ordering of events will be necessary when we consider
meiotic recombination in Chap. 5—namely, the products of recombination
are derived after the parent and its chromosomes are selected randomly. If
we did not do this, our simulation model would imply that all gametes of
an individual result from a single meiosis.

population.h: function reproduce()

1 public:

2 void reproduce(int gen) {

3
4 for (int i=0; i< popsize; ++i) {

5 vector<int> parents;

6 parents.push_back(randomind(e));
7 parents.push_back(randomind(e));
8
9 // create descendant of individuals parents[0] and parents[1]

10 individuals.push_back( new Individual(individuals[parents[0]],

↪→ individuals[parents[1]], mutate(parents, gen)) );

11 }

12
13 // delete dynamically allocated individuasl of the last generation

14 for (auto iter = individuals.begin(); iter != individuals.end() -

↪→ popsize; ++iter)

15 delete *iter;
16 // remove orphaned pointers from individuals

17 individuals.erase(individuals.begin(), individuals.end()-popsize);
18
19 // update allele counts on sample generations

20 if (gen % sampfreq == 0 )

21 update_alleles(gen);
22
23 if ( gen != 0 && gen % sampfreq == 0 ) {

24 random_shuffle(individuals.begin(), individuals.end() ) ;

25 get_sample(gen);
26 }

27 }

For each individual of the next generation, lines 4–11 of reproduce()
carry out the random choice of parents using the keyword new to instantiate
an Individual object. However, an alternative, intra-simulation construc-
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tor is used to instantiate the new individuals (lines 39–51 of individual.h;
Sect. 4.4.4), which requires us to pass three arguments: the pointers to parents
1 and 2 aswell as a call to mutate(), whichwill determine thepositions of any
mutations incurred by the transmitted sequences from parents 1 and 2 (line
10). New individuals of the next generation are added to the already-existing
vector individuals.

Following instantiation of all of the next generation’s individuals, the
vector individuals holds all individuals of this and the next generation.
Thus, individuals of the previous generation are deleted, freeing thememory
they used (lines 14–15), and individuals of the previous generation are erased
from individuals, returning the size of the vector to population size Ne
(line 17). If the next generation is a sampling generation (i.e., samplefreq
is a factor of gen), the function update alleles() is called (lines 20–21). In
addition, if it is not the first generation, a sample of the population’s genetic
variation will be recorded (lines 23–26) in terms of the summary statistics
calculated by the function get sample() detailed in Sect. 3.4.6. Note that
before get sample() is called, the individuals vector is randomly shuffled
(line 24) so that the first sampsize individuals in the vector represent a
random sample of individuals.

population.h: function mutate()

1 private:

2 vector<vector<int> > mutate(const vector<int> &parents, const int &gen) {

3 vector<vector<int> > mutation_results;
4
5 // determine which, if any, positions are mutated

6 vector<int> mutnum{randommut(e)};

7 mutnum.push_back(randommut(e));
8
9 mutation_results.push_back({mutnum[0]});

10 mutation_results.push_back({mutnum[1]});
11
12 // determine which of the two homologs is transmitted by each parent
13 mutation_results.push_back({(randomnum(e)<0.5) ? 0 : 1});

14 mutation_results.push_back({(randomnum(e)<0.5) ? 0 : 1});

15
16 // resolve any mutation(s) that did occur

17 for (int i=0; i<2; ++i) {

18 for (int j = 0; j < mutnum[i]; ++j) { // loop not entered if no

↪→ mutation (i.e., mutnum[i] == 0)

19 int position = randompos(e);

20 if (alleles.find(position) == alleles.end()) { // new mutation to

↪→ a derived allele in the population

21 alleles.insert({position, new Allele(position, gen)});

22 mutation_results[i].push_back(position);
23 } else { // mutation present in POPULATION; determine if derived

↪→ allele found in the considered sequence
24 vector<int> seq =

↪→ (*(individuals[parents[i]])).get_sequence(mutation_
25 results[i+2][0])
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26 vector<int>::iterator p = find(seq.begin(), seq.end(),
↪→ position);

27 if (p != seq.end()) // back mutation

28 mutation_results[i].push_back(position * -1); // negative

↪→ position signals removal of allele by back mutation

29 else
30 mutation_results[i].push_back(position);
31 }

32 }

33 }

34 return mutation_results;
35 }

As mentioned, the function reproduce() calls the function mutate() as
an argument to the intra-simulation constructor of class Individual. The
results of mutate() are evaluated and ultimately passed to this constructor.
The function mutate() itself requires (1) a vector of two ints, which are
the positions of the parent individuals in the individuals vector, and (2)
the current generation. The variable mutation results (line 3), a vector of
four vector<ints>s, will hold the results of mutation. The first two vectors
record details of mutation(s) to the sequences transmitted by parents[0]

and parents[1], respectively. In each case, the first number of the vector
is the number of mutations incurred by the transmitted sequence as deter-
mined by draws from the Poisson random number generator mutnum (lines
6–10). Lines 13–14 determine which one of each parent’s two sequences is
transmitted; the results of this determination are the sole entries in the last
two vectors of mutation results. The nested for loops on lines 16–32 are
used to resolve several important aspects of any mutations incurred. First,
the position of each newmutation within the sequence is determined on line
19, and the standard library algorithm find() is used to determine whether
or not a derived allele already exists at that position as an Allele object (line
20). If not, a new Allele object is created (line 21), and its position is pushed
to the [0] or [1] position of mutation results (line 22). Otherwise, lines
23–29 determine whether the transmitted sequence has an ancestral or de-
rived allele at that position. If the allele is ancestral, the position is appended
to the [0] or [1] position of mutation results (lines 28–29); if the allele is
derived, backmutation is indicated by adding the negative position to the back
of the [0] or [1] position of mutation results (lines 26–27). Recall that the
results of mutate() are passed to the Individual intra-simulation construc-
tor. Specifically, the four-vector mutation results returned by function
mutate() will be interpreted during instantiation of the new Individual

object (lines 39–51 in individual.h; Sect. 4.4.4).

population.h: function update alleles()

1 private:
2 void update_alleles(const int &gen) {

3 // reset all counts to zero
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4 for (auto iter = alleles.begin(); iter != alleles.end(); ++iter)

5 (*(iter->second)).set_count(0);
6 map<int, int> new_allele_counts;
7 for (auto iter = individuals.begin(); iter != individuals.end();

↪→ ++iter) {

8 for (int i=0; i<2; ++i) {

9 const vector<int> &a = (**iter).get_seq(i);
10 for (auto iter2 = a.begin(); iter2 != a.end(); ++iter2) {

11 ++new_allele_counts[*iter2];
12 (*alleles[*iter2]).increment_count(); // NOTE: alleles[*iter]

↪→ returns a reference (mapped_type) to the pointer to the

↪→ Allele object at position *iter2. The leading *
↪→ dereferences the pointer, granting access to the data.

13 }

14 }

15 }

16
17 for (auto iter3 = new_allele_counts.begin(); iter3 !=

↪→ new_allele_counts.end(); ++iter3)

18 (*alleles[iter3->first]).set_count(iter3->second);
19
20 // identify lost and fixed alleles and print to allele history file

21 vector<int> to_remove;
22 for (auto iter = alleles.begin(); iter != alleles.end(); ++iter) {

23 int current_count = (*(iter->second)).get_count();
24 if (current_count == 0) { // allele LOST from population

25 to_remove.push_back(iter->first); // first is position

26 int birthgen = (*(iter->second)).get_birthgen();
27 allele_file << iter->first << " " << birthgen << " " << gen -

↪→ birthgen << " 0" << endl;

28 }

29 if (current_count == popsize*2) { // derived allele FIXED in

↪→ population

30 to_remove.push_back(iter->first);
31 int birthgen = (*(iter->second)).get_birthgen();
32 for (auto iter2 = individuals.begin(); iter2 !=

↪→ individuals.end(); ++iter2)

33 (**iter2).remove_fixed_allele(iter->first); // removed fixed

↪→ allele’s position from all individuals’ sequences

↪→ (currently stored in nextgen)

34 allele_file << iter->first << " " << birthgen << " " << gen -

↪→ birthgen << " 1" << endl;

35 }

36 }

37
38 // free memory associated w/ lost/fixed alleles and remove entry from

↪→ alleles container

39 for (auto iter = to_remove.begin(); iter != to_remove.end(); ++iter) {

40 delete alleles[*iter]; // free memory from Allele object itself

41 alleles.erase(*iter); // erase alleles map entry corresponding to

↪→ the deleted allele

42 }

43 }
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The function update alleles() performs the important tasks of

• Calculating the current counts of all derived alleles (lines 3–16)
• Identifying allele objects no longer segregating in the population, either

because they were lost from the population or reached fixation in the
population (lines 21–36)

• Deleting these objects as well as erasing pointers to these objects in the
vector alleles (lines 39–42)

This function is computationally expensive. Therefore, we only invoke the
function (via reproduce()) in generations we intend to harvest a sample
of genetic variation from the simulation. However, if you wish to collect a
comprehensive list of derived alleles that emerge during the simulation, you
must set samplefreq equal to 1 so that the lifespan of alleles is properly
calculated. If this is not necessary for your purposes, however, you should
set samplefreq to something substantially greater than 1 and ignore the
output recorded in the allele info file.

population.h: functions get sample() and close output files()

1 private:
2 void get_sample(int gen) {

3 vector<bitset<bitlength>> sample;

4 map<int, int> allele_counts; // note that a map is always sorted by keys

5 int count = 0;

6 for (auto iter = individuals.begin(); iter !=
↪→ individuals.begin()+sampsize; ++iter) { // determines which

↪→ alleles are present in sample

7 vector<int> haplotype = (**iter).get_sequence(0);
8 for (auto iter2 = haplotype.begin(); iter2 != haplotype.end();

↪→ ++iter2)

9 ++allele_counts[*iter2];
10 }

11 for (auto iter = individuals.begin(); iter !=
↪→ individuals.begin()+sampsize; ++iter) { // creates haplotypes

↪→ for each sequence in the sample and populates bitset

12 vector<int> haplotype = (**iter).get_sequence(0);
13 sort(haplotype.begin(), haplotype.end());

14 string hap;

15 for (auto iter = allele_counts.begin(); iter != allele_counts.end();
↪→ ++iter)

16 if ( binary_search (haplotype.begin(), haplotype.end(),

↪→ iter->first))

17 hap += "1";

18 else
19 hap += "0";

20 sample.push_back(bitset<bitlength> (hap));

21 }

22 int S = allele_counts.size();
23 pi_file << gen << " " << get_pi(sample) << endl;

24 watterson_file << gen << " " << get_watterson(sample, S) << endl;

25 }
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26
27 public:
28 void close_output_files () {

29 watterson_file.close();
30 pi_file.close();
31 allele_file.close();
32 }

Each generation a sample is required, the function get sample() is
called from within reproduce() to calculate summary statistics of inter-
est on the random sample of individuals using the functions provided in
summarystats.h (Sect. 3.4.6). In this chapter, we limit ourselves to calcu-
lating two estimators of the population mutation rate θ = 4Neμ: nucleotide
diversity (π) andWatterson’s estimator of θ, θW . The for loop listed in lines
6–10 stores the sequences of the sampsize individuals in a vector named
haplotype. Recall that before calling get sample(), the individuals vector
was shuffled so that we can simply use the first sampsize individuals in
the vector as a random sample of individuals. Further, recall that sequences
are stored as vectors of ints, where each integer is the position index of
a nucleotide where the individuals’s state is derived. Lines 8–9 populate
the map allele counts with counts of alleles found in the sample; thus,
allele counts ends up holding the index of any derived allele found at
least once in the sample and excludes any alleles that are segregating in the
population but not found in the sample of sequences. Lines 11–21 reconstruct
each sequence of the sample as a bitset of 0s and 1s and add this bitset to
the vector of bitsets, sample (declared on line 3). Finally, the number of seg-
regating sites, S, is calculated, and calls to get pi() and get watterson()

calculate and print π and θW to separate files (lines 21–24). See Sect. 3.4.6 for
details of how these summary statistics are calculated.

The function close output files() is called by main() following com-
pletion of the simulation. This function simply closes the output streams that
record summary statistics and allele information (lines 29–31).

3.4.4 Class Individual

Objects of class Individual are primarily defined by the two copies of the
simulated homologous sequence they store in the variable sequences. In
addition, the class provides the public functions get sequences() (line 17)
and remove fixed alleles() (lines 10–14). The former (line 17) returns the
specified sequence (indexed by 0 or 1), while the latter removes fixed, de-
rived alleles from both sequences of the individual—which is called from
the update alleles() function of class Population and removes the posi-
tion number of a recently fixed allele from the sequences if present in the
individual.
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Two constructors are listed. The “generation 0” constructor (lines 27–
29) is used at the beginning of the simulation to produce an individual
with empty sequences. The “intra-simulation” constructor (lines 32–43) takes
two Individual objects as well as the results of the mutate() function as
arguments and initializes the offspring Individuals using this information.
Note that within this constructor, back mutations (from derived to ancestral
allele; identified by a negative position number) are dealt with by calling
the private function remove allele by position() (lines 10–14), which
removes the position of the derived allele from the appropriate sequence.

individual.h

1 #ifndef INDIVIDUAL_H
2 #define INDIVIDUAL_H
3
4 #include "allele.h"

5
6 class Individual {

7
8 private:
9 vector<vector<int>> sequences;

10 void remove_allele_by_position (int seqnum, int position) {

11 auto pos = find(sequences[seqnum].begin(), sequences[seqnum].end(),

↪→ position);

12 if (pos != sequences[seqnum].end()) // ensures position in vector

13 sequences[seqnum].erase(pos);

14 }

15
16 public:
17 inline vector<int> get_sequence(int whichseq) { return

↪→ sequences[whichseq]; }

18 void remove_fixed_allele(int to_remove) {

19 for (int i = 0; i<2; ++i) {

20 vector<int>::iterator p = find(sequences[i].begin(),

↪→ sequences[i].end(), to_remove);
21 if (p != sequences[i].end()) // i.e., element not found

22 sequences[i].erase(p);

23 }

24 }

25
26 // generation 0 constructor

27 Individual (vector<vector<int>> seqs): sequences(seqs) {

28 ;

29 }

30
31 // intra-simulation constructor

32 Individual (Individual *p1, Individual *p2, vector<vector<int> >

↪→ mutation_results) {

33 sequences.push_back((*p1).get_sequence(mutation_results[2][0]));
34 sequences.push_back((*p2).get_sequence(mutation_results[3][0]));
35 for (int i=0; i<2; ++i) {

36 for (int j=1; j<mutation_results[i].size(); ++j) {

37 if (mutation_results[i][j] > 0)
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38 sequences[i].push_back(mutation_results[i][j]);
39 else
40 remove_allele_by_position(i, -1 * mutation_results[i][j]);
41 }

42 }

43 }

44 };

45
46 #endif

3.4.5 Class Allele

Objects of class Allele store information on derived alleles resulting from
mutation. I am using allele in the sense of a single nucleotide variant, not
the more extensive sense of a unique gene sequence. In most cases, we are
only interested in the position and current count of a given derived allele.
However, the generation in which a derived allele is first created is also
recorded in the private variable birthgen. This information can be used for
more detailed analysis of mutational output and will be used to validate the
correctness of the mutation process in Section 3.6.

allele.h

1 #ifndef ALLELE_H
2 #define ALLELE_H
3
4 class Allele {

5
6 private:

7 int position;

8 int birthgen;

9 int count;
10
11 public:

12 inline int get_count() { return count; }

13 inline void set_count(int ccount) { count = ccount; }

14 inline int get_position() { return position; }

15 inline void set_position(int pposition) { position = pposition; cout <<

↪→ pposition << ": " << position << endl; }

16 inline void increment_count() { ++count; }

17 inline int get_birthgen() { return birthgen; }

18
19 // constructor

20 Allele (int pos, int gen): position(pos), birthgen(gen) {

21 count = 0;

22 }

23
24 };

25
26 #endif
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3.4.6 Summarystats Header File

The file summarystats.h provides functions for calculation of various sum-
mary statistics. For now, we limit ourselves to the calculation of nucleotide
diversity (π; not the mathematical constant) and Watterson’s θ (θW). In sub-
sequent chapters, we will add additional functions to calculate a diversity
of summary statistics. The functions in this file are made available to pro-
grams through the #include summarystats.h statement in population.h;
the functions in summarystats.h are invoked by the get sample() function
of Population objects.

summarystats.h

1 #ifndef SUMMARYSTATS_H
2 #define SUMMARYSTATS_H
3
4 #include "params.h"

5
6 // declarations

7 double get_pi (vector<bitset<bitlength>> &sample);
8 double get_watterson (vector<bitset<bitlength>> &sample, int S);

9
10 // definitions

11 double get_pi (vector<bitset<bitlength>> &sample) { // pass by reference

12 double sumdiffs = 0.;

13 double numcomp = 0.;

14
15 #pragma omp parallel for collapse(2)

16 for (int i = 0; i< sample.size() - 1; ++i) {

17 for (int j = i+1; j<sample.size(); ++j) {

18 sumdiffs += (sample[i] ˆ sample[j]).count();
19 numcomp+=1.;

20 }

21 }

22 return (sumdiffs/numcomp/seqlength);
23 }

24
25 double get_watterson (vector<bitset<bitlength>> &sample, int S) { // pass

↪→ by reference

26 double denominator = 0.;

27 for (double i=1.; i<sampsize; ++i)

28 denominator += 1./i;
29 return (S/denominator/seqlength);
30 }

31
32 #endif
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3.4.6.1 Nucleotide Diversity, π

In words, π is the average number of differences between a pair of sequences
in the sample. The number of unique sequence pairs in a sample is

(n
2
)
, where

n is the number of sequences in the sample—i.e., the value of parameter
samplesize. Nucleotide diversity is calculated as

π =

(
n
2

)−1 n−1∑
i=1

n∑
j=i+1

dij, (3.1)

where dij is the number of differences between sequences i and j. For ex-
ample, if sequence i represented as a bitset is 0101001 and sequence j is
1101101, then dij = 2. The number of unique pairwise comparisons is large
for realistic sample sizes—e.g., 4950 for n = 100 and 19,900 for n = 200. One
way to increase the efficiency of these comparisons is to take advantage of the
multicore architecture characteristic of modern processors. In the function
get pi() (lines 11–23), the pragma on line 15 signals a nested for loop that
assigns subsets of the total number of comparisons to parallel calculations
on separate available cores. Finally, note that the return value of get pi() is
divided by seqlength (line 22); in other words, the per-site rather than the
sequence-wide value of π is reported.

3.4.6.2 Watterson’s θ, θW

Atmutation-drift equilibrium, both π and θW serve as estimators of the pop-
ulation mutation parameter θ = 4Neμ. However, the estimator θW is based
on a very different summary of the genetic variation inherent to the sample
of sequences: the number of segregating (variable) sites in the alignment
of sampled sequences, S. Importantly, even if only one of the n sequences
shows a different nucleotide than the other n−1 sequences at a site (what is
commonly referred to as a singleton), the site counts toward the total number
of segregating sites. S is therefore a rather coarse summary of genetic varia-
tion as both a singleton and a site where the frequency of the derived allele is
0.5 add one to the sum S. Furthermore, θW is not simply equal to S because
sample size influences S. Clearly, larger sample sizes provide greater oppor-
tunity to discover segregating sites for which the minor allele frequency is
low. The definition of θW is therefore normalized by sample size:

θW =
S
an
, (3.2)

where an =
∑n−1

i=1
1
i ,which is calculated in the function get watterson() (lines

25–30) and stored in the variable denominator (line 26). Note that the return
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value of get watterson() is also divided by seqlength (line 29); the function
thus returns the per-site value of θW .

3.4.6.3 The Inferential Merit of π and θW

Although we expect π = θW in an equilibrium population, perturbations to
equilibrium such as demographic change or various forms of natural se-
lection affect the two summary statistics differently. Consider a scenario in
which a large population is drastically reduced in size due to environmental
catastrophe. This population bottleneck will reduce the quantity of genetic
variation in the population, thereby lowering both π and θW . If the remnant
population then expands over time, π and θW will increase at different rates
due to the distinct ways in which these statistics are calculated. Specifically,
θW will increase more rapidly than π because there will be an enrichment
of rare alleles resulting from new mutation. While rare alleles stand an ap-
preciable chance of being captured by a sample, each increasing S by one,
these rare alleles will impact π—the average number of differences between
sampled sequences—very little. Comparisons of π and θW can therefore be
used to test the null hypothesis of equilibrium (π=θW) and potentially allow
us to infer the cause of non-equilibriumwhen the null hypothesis is rejected.
For example, a large value of θW −π may be interpreted as evidence of re-
cent population expansion. As discussed in subsequent chapters, somewhat
more sophisticated test statistics such as Tajima’s D (Tajima 1989) are used
to facilitate inferences such as this.

3.5 Aspects of Genetics, Population Biology, and
Environment Not Yet Modeled

It is important to take amoment and consider biological realities that our cur-
rent model (and simulation program) of the evolution of population genetic
variation does not include. At the genetic level, we do not include meiotic
recombination. The process and consequences of recombination will be in-
troduced in Chap. 5. In addition, the only form of mutation considered is
point mutation; although point mutations remain the focus throughout this
volume, my intent is to add additional code at driftlessevolution.com
that will allow simulation of other categories of mutation (e.g., microsatel-
lites and indels).

Note that the simple version of FORTUNA detailed in this chapter as-
sumes neutral evolution. In other words, the genetic variants introduced by
point mutation neither increase nor decrease the fitness of individuals who
carry them. We wait until Chaps. 7–8 to consider natural selection and its
effects on linked sequence variation.
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At the level of the population, there are several potential complexities not
addressed by the currentmodel. First, all matings produce a single offspring.
Second, generations are nonoverlapping; all individuals are assumed to re-
produce at the same time. Third, we assume a single panmictic population
and ignore the sex of potential parents. Although the current model pre-
cludes selfing, all potential mating pairs between separate individuals are
equally likely. This also means that population structure is not modelled.
To do so, we must create separate objects of class Population and specify
the rate of migration between these populations (see Chap. 6 for details).
Fourth, we do not consider nonrandom mating in any of its forms, such as
inbreeding, positive assortativemating, or negative assortativemating. Fifth,
population size is constant; bottlenecks, expansions, and founder events are
not considered. All of these additional complexities and more will be con-
sidered in subsequent chapters.

Thus, we begin simply and add additional complexities incrementally. I
again emphasize that what we sacrifice in terms of computational efficiency
when choosing a forward-in-time simulation is balanced by our ability to
simulate the complexities mentioned in a relatively straightforward and
intuitive manner. If it were possible to incorporate all of these complexities
in a retrospective, coalescent simulation, therewouldbenoupside to forward
simulation.

3.6 Validation: Comparing Simulation Output with
Theoretical Expectations

If a simulation program compiles, runs without crashing, and generates out-
put, this does not ensure that the simulation has simulated what we think it
did. Whenever possible, it is therefore important to compare simulated data
to theoretical expectations. In the current case—simulationof aWright-Fisher
populationwith constant population size, no recombination, all neutral vari-
ants, and randommating—there are a number of comparisons we can make
to reassure ourselves that the simulation program is working properly. First,
both π and θw are expected to equal θ = 4Neμ. Second, the probability that a
new variant ultimately fixes in the population equals its initial frequency of
1/2Ne. Third, for those alleles that do fix, mean time to fixation is expected to
be 4Ne. All three of these expectations are calculable because our simulation
program requires us to provide explicit values of Ne and μ.

We will use R to compare simulation results to theoretical expectations.
First, I read the two data files that contain the running calculations of π and
θw each samplefreq generations. We then plot π and θw versus time and
compare these values to the theoretical expectation (Fig. 3.8).
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Fig. 3.8 Values of nucleotide diversity (black) and Watterson’s θ (gray) sampled every
100 generations (n = 400) for 200,000 generations. Note that because we begin with no
genetic variation in the simulated 250,000-bp sequence, time is required for mutation to
add variation. For the parameter values simulated (popsize=10,000, mutrate=10e-8), the
expected value of θ = 4×Ne×μ = 4×10,000×10−8 = 4×10−4, which is denoted by a solid
horizontal line

1 > pi = read.table(file = "nucleotide_diversity", header = T)

2 > wat = read.table(file = "watterson_estimator", header = T)

3 > ggplot(NULL, aes(gen, summary.stat)) + geom_point(data=pi) +

↪→ geom_point(data=wat, colour="gray") + geom_hline(yintercept=2e-06)

Regarding Fig. 3.8, there are two points worth noting here. First, π and θw
track each other as we would expect with roughly equal mean values, but π
demonstrates noticeably greater variance and occasional, dramatic swings
in value. A good example is found at roughly 135,000 generations, where π
decreases sharply and θW remains roughly static around its expected value.
The different behaviors of these two summary statistics is central to the
statistic Tajima’s D, which we will revisit when discussing demographic
change and the inference of natural selection in subsequent chapters. Even
in the neutral case, however, it is clear these two summary statistics respond
at different rates to changes in levels of genetic variation over time. Second,
the expected value of θ for this simulation is 4× 10−4, as denoted by the
horizontal bar. Because we start the simulation with a population devoid of
variation, it takes some time for the population to reach this mutation-drift
equilibrium value of θ. It therefore makes sense to discard the results from
early generations of the simulation before we check whether the data meet
theoretical expectations. Note, however, that even after the population has
obtained sufficient genetic variation (≈ 50,000 generations), values of these
two θ estimators still oscillate about the expected value of 0.0004. In other
words, the equilibrium value is just that; we expect the mean value of θ to be
4×10−4 over long periods of time.
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I next ran a 200,000-generation simulation in which per-nucleotide muta-
tion rate was 10−9, population size was 500, and simulated sequence length
was 5 Mbp. Expected θ = 4×500×10−9 = 2×10−6. In R, I then loaded objects
pi and wat as before and ran the following code.

1 > pi.trunc = pi[pi$gen>50000,] // burn-in of 50,000 generations

2 > wat.trunc = wat[wat$gen>50000,]
3 > mean(pi.trunc$summary.stat) // find mean value of pi over the remaining

↪→ 150,000 generations

4 [1] 1.99867e-06

5 > mean(wat.trunc$summary.stat)
6 [1] 2.000395e-06

Lines 1–2 enforce a burn-in period during which time the population is
acquiring genetic variation and not yet at equilibrium. As the results in
lines 4 and 6 show, both estimators of θ conform nicely to the theoretical
expectation of θ = 4Neμ = 2×10−6.

The update alleles() function reports the lifespan of each derived
allele—i.e., the difference between birthgen and the generation in which
the derived allele fixes or is lost, which quantifies the number of generations
for which the derived allele was segregating in the population. In addition
to the position and lifespan of a derived allele, the file allele info records
a column named extinct.fixed that holds a zero if the derived allele was
lost or a one if the derived allele fixed. As mentioned previously, proper cal-
culation of the lifespan of a derived allele requires that update alleles() be
run every generation, which happens if the parameter samplefreq is set to
1. This adds substantially to the execution time of the program. However, it
is valuable for certain purposes, including validation of the underlying code
as we now see. My hope is that the results shown below will provide you
with sufficient confidence that the program is operating correctly, obviating
the need for you to run a simulation of unnecessarily great execution time.

Let us look at an example. For the sake of continuity, I only use alleles
“birthed” in the last 150,000 generations of the same simulation analyzed in
the previous listing of R code.

1 > a = read.table(file = "allele_history", header = T)

2 > a.trunc = a[a$birthgen>50000,] // burn-in of 50,000 generations

3 > a.trunc.fixed = a.trunc[a.trunc$extinct.fixed == 1,] // select alleles

↪→ that fixed

4 > nrow(a.trunc.fixed) / nrow(a.trunc) // nrow gives number of alleles in

↪→ each data.frame
5 [1] 0.0009833301 // proportion of new alleles that fixed

6 > mean(a.trunc.fixed$lifespan) //
7 [1] 1955.18 // mean time to fixation
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Fig. 3.9 Position of each new mutation versus generation. Nearly 750,000 new mutations
were generated within the 150,000 generations shown (gray and black dots). Although
the vast majority of these new mutations were rapidly lost from the population (the gray
dots that are so frequent they appear as a background square of gray), a small number
of new mutations became fixed (black dots). By sight, the position of new mutations and
those destined for fixation appears evenly distributed

These results are in keeping with theoretical expectations. Namely, the ex-
pected fixation probability of a new allele equals 1/2Ne = 1/(2×500)= 0.001≈
0.00098 and the expected mean time to fixation equals 4Ne = 4×500 = 2000 ≈
1955.

Finally, it is worth checking that random number generation is behaving
in a suitably random manner. One check is to plot sequence position of
mutations versus time. If random number generation is working properly,
we expect a random cloud of points. In other words, we do not expect
mutational hot or cold spots. In our example, this expectation is thankfully
met, and it is clear that alleles destined for fixation are also evenly distributed
by sequence position (Fig. 3.9).
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3.7 Avoiding the Burn: Coalescent Simulation Followed by
Forward Simulation

As seen in Fig. 3.8, a pure forward simulation requires beginning with no
variation in the population and thousands of generations of simulation be-
fore mutation-drift equilibrium is achieved. In consequence, we waste com-
putation time and, for most analyses of the simulated data, must specify
a burn-in time that avoids calculation on pre-equilibrium generations. The
time required to achieve mutation-drift equilibrium increases dramatically
with increases in population size and/or mutation rate. Thankfully, we can
usually avoid these two related problems by first running a rapid coalescent
simulation and then using the output of the coalescent simulation to estab-
lish the first generation in our forward simulation. This allows us to begin
our forward simulation with a population that is already at mutation-drift
equilibrium. A standard program for performing coalescent simulations is
MS (Hudson 2002). In the following discussion, I assume the compiled MS
executable is located in the same directory as the compiled FORTUNA pro-
gram.

To facilitate this new functionality, two additional parameters are added
to the parameters file: useMS, which specifies whether the program should
begin by calling MS, and mscommand, which specifies the command to be
run in MS. We will assume Ne = 50,000 diploids, μper−site = 5× 10−9, and a
100,000-bp sequence. Our goal is to simulate 100,000 sequences (the total
number of sequences in the population) at mutation-drift equilibrium. The
only parameter for the MS command that needs to be calculated is per-locus
θ, which is 4×Ne×μper−site×seqlen:

θ = 4×50,000×5×10−9×1×100,000 = 100 (3.3)

Given our need for 100,000 simulated sequences and θ = 100, the mscom-
mand is therefore ./ms 100000 1 -t 100 >ms output. Note that output
from MS is sent to a file named ms output, which will be parsed for its
sequences that are in turn input for an expanded Population class construc-
tor (detailed below).

We next take a look at the minor additions to the files parameters,
params.h, params.cc, and mutdrift forward.cc:

preemptive coalescent simulation: minor modifications to program files

1 // additions to parameters

2 useMS 1

3 mscommand ./ms 100000 1 -t 100 >ms_output
4
5 // additions to params.h

6 extern bool useMS;

7 extern string mscommand;

8
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9 // additions to params.cc

10 bool useMS;

11 string mscommand;

12
13 int process_parameters() {

14 ...

15 useMS = atoi(parameters["useMS"].c_str());
16 mscommand = parameters["mscommand"];

17 ...

18 }

19
20 // addition to fortuna_ch3.cc
21 #include <sstream> // stringstream parsing of ms_output
22 #include <regex> // enables parsing of ms_output

Setting the Boolean useMS to 1 impels FORTUNA to run mscommand, parse
the ms output file, and use the output genetic sequences as the starting point
for forward simulation. Setting useMS to 0, on the other hand, means that
all sequences will, as before, lack genetic variation at the beginning of the
simulation.

Next,we lookat amore significant change to the constructor ofpopulation.h,
which will parse ms output and use the sequence data to populate the Popu-
lation class at generation 0. Again, the advantage to this is that from the very
first generation of forward simulation, we have sequence data at mutation-
drift equilibrium.

population.h: modified constructor

1 if (useMS) { // start population with MS generated variation

2 cout << "using MS to initialize population ..." << endl;

3 system(mscommand.c_str());
4 ifstream ms_output("ms_output");
5 string ms_line;
6 regex query("positions");

7 bool trigger = false;
8 vector<int> allele_positions;
9 while(getline(ms_output, ms_line)) {

10 if (regex_search(ms_line, query)) {

11 trigger = true;
12 istringstream iss(ms_line);
13 string s;

14 iss >> s; //skip the first subpart, which is "positions:"

15 while (iss >> s) { // read decimal positions,

16 // convert to base pair position,

17 // and create new allele at that position

18 int position = seqlength * atof(s.c_str());
19 allele_positions.push_back(position);
20 alleles.insert( { position , new Allele(position,-1) } );

21 }

22 continue;
23 }

24
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25 if (trigger) { // allele positions determined;

26 vector<int> s1, s2;

27 for (int i=0; i < ms_line.length(); ++i)

28 if (ms_line[i] == ’1’)

29 s1.push_back(allele_positions[i]);
30 getline(ms_output, ms_line);
31 for (int i=0; i < ms_line.length(); ++i)

32 if (ms_line[i] == ’1’)

33 s2.push_back(allele_positions[i]);
34 vector<vector<int>> ses{s1,s2};

35 individuals.push_back( new Individual(ses) );

36 }

37 }

38 } else { // constructor code from earlier listing

39 ...

40 }

41 }

If useMS is set to 1, line 1 ensures that lines 2–37 are executed rather than
the constructor detailed previously (lines 38–40). Line 3 runs MS. The while
loop (lines 9–37) first identifies the line that begins with positions: in the
ms output file and creates new alleles after converting the decimal positions
to base pair positions (lines 10–23). Note that the a value of −1 is passed to
the constructor of Allele (line 20), which indicates we do not know how
many generations ago the derived allele arose because MS output does not
provide this information.

Line 10 uses the <regex> library’s functionality to search for the line that
matches the string “positions.” If it is found, this indicates that all subsequent
lines in the ms outputfile contain sequences (really, haplotypes). TheBoolean
variable trigger is then set to true (line 11) to indicate that the program has
found the critical line below which the genetic data are given. Lines 25–36
of the while loop are executed when trigger is true. These lines extract the
haplotype data from ms output two lines at a time to create new Individual

objects using theMS simulated haplotype data. Again, if useMS is set to 0, the
previously detailed constructor (line 39, placeholder) will execute instead,
and each individual will begin with no derived alleles.

Figure 3.10 compares π across 400,000 generations of forward simulation
between the case where we begin with MS-derived data (black dots) and the
case where we do not (gray dots). Clearly, coalescent simulation is helpful. If
we begin with nonvariable haplotypes, > 100,000 generations of simulation
are required to reach mutation-drift equilibrium for the parameter values
simulated.
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Fig. 3.10 Beginning the simulation with output from a coalescent simulation assures that
the simulated population begins the forward simulation at mutation-drift equilibrium.
As the figure illustrates, this approach eliminates the need for a burn-in period. The
simulation beginningwith output fromMS (black dots) therefore begins near the expected
equilibrium value of π = 0.001 (horizontal line). Indeed, the mean value of π for the first
100,000 generations equals 0.00107. The pure forward simulation (gray dots), where we
begin with no genetic variation, does not reach mutation-drift equilibrium until well
after 100,000 generations. Though not always possible, beginning a forward simulation
from coalescent output therefore eliminates useless computation and wasted time. The
parameters specified inboth simulationswereNe = 50,000,μper−site = 5×10−9, and sequence
length of 100,000 bp. π was calculated every 100 generations based on a sample of 400
individuals
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4
Demographic Change

The workers have taken it into their heads that they, with their busy
hands, are the necessary, and the rich capitalists, who do nothing, the
surplus population.

– Friedrich Engels, The Condition of the Working Class in England

4.1 Background

In the previous chapter, we considered a population that maintains constant
population size.However,we often need to simulate a populationwhose size
is, or was, in flux. Brief consideration brings to mind many such cases. The
population size of our own species has expanded dramatically, particularly
over the last century; total census population of the human species grew from
∼2 billion in 1927 to∼7 billion in 2011. Invasive species are primarily defined
as a category of alien species by their rapid population growth following in-
troduction to a new locality. Declines in population size are also common
in the natural world. Nascent island populations—the result of immigration
from mainland populations—are necessarily much smaller than the parent
population. Anthropogenic changes to the environment have caused count-
less species throughout the world to decline in size precipitously.

Demographic change has a genome-wide effect on genetic variation because
changes in population size change the number of individuals and therefore
the number of copies of entire genomes present in a population. In other
words, the number of copies of a specific locus or chromosome is not altered
to the exclusion of most other loci/chromosomes. This contrasts sharply with
natural selection,which generally only affects quantity andpattern of genetic
variation in the immediate vicinity of the locus targeted by selection.

Note that my use of the term “demographic change” is limited to changes
in population size. We will not explicitly model changes in birth/death rates
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or the age structure of populations. In this chapter, Nt represents population
size at time t, whileN100 represents population size at generation 100. A sym-
bological distinction is not made between census and effective population
sizes, but we assume effective population size throughout the chapter.

4.1.1 Models of Demographic Change

Consider a population whose census size increases monotonically from 1000
individuals to 10,000 individuals over the course of 100 generations. We can
imagine a number of trajectories the population might follow to bring about
this increase (Fig. 4.1). The simplest are instantaneouspopulation expansion in
which the increase occurs in one generation and a linear expansion in which
(10,000− 1000)/100 = 90 individuals are added each generation. Somewhat
more complicated are the widely used exponential and logistic models of
population growth, which we now consider in turn.
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Fig. 4.1 Fourmodels of population expansion fromN = 1000 to N = 10,000 over the course
of 100 generations. For the logistic model, the low density growth rate r ≈ 0.114. For the
exponential model, the intrinsic rate of increase r ≈ 0.023
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4.1.1.1 Exponential Population Growth or Decline

Each generation, exponential population growth increases population size
by a constant fraction of the current population size. Because the base pop-
ulation size increases each generation, the number of individuals added
each generation grows rapidly, ultimately leading to runaway population
growth. Following t generations of exponential increase, beginning with a
population size of N0, population size Nt is

Nt =N0ert. (4.1)

Given t, N0, and Nt (i.e., parameters we are likely to specify for our sim-
ulation), we can calculate the corresponding value of r, the intrinsic rate of
increase, using the following rearrangement of Eq. 4.1:

r = ln
( Nt

N0

)
t−1 (4.2)

Thus, for the example described at the beginning of this section and shown
in Fig. 4.1, r= ln(10)×0.01≈ 0.023. Exponential population decline follows the
same equations, but r is negative in sign. For example, the inverse scenario
in which population size declines from N0 = 10,000 to N100 = 1000 requires
r ≈ −0.023.

4.1.1.2 Logistic Population Growth

Runawaypopulationgrowth isultimately constrainedby limited resources—
an idea famously promulgated by ThomasMalthus. A small populationmay
grow exponentially, but as population size approaches its carrying capacity,
K, growth slows down. Logistic growth is therefore characterized by a sig-
moidal growth curve, where growth from a small population size begins
at near-exponential rates but then declines precipitously as population size
approaches K. The modifying influence of K on growth rate is easily seen in
the discrete logistic equation:

Nt+1 =Nt+ rNt

(
1− Nt

K

)
. (4.3)

When Nt << K, nearly rNt individuals are added to current population size
by the next generation. Under the logistic model, r is therefore sometimes
named the low density growth rate. However, at carrying capacity (Nt = K),
rNt is multiplied by zero, resulting in constant population size of K. Given
K and N0, the logistic model for population size after t generations is

Nt =
KN0

N0+ (K−N0)e−rt (4.4)
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4.1.2 Using Coalescent Simulation to Build Intuition
Regarding the Genetic Consequences of Demographic
Change

To build basic intuition regarding the effects of population increase and de-
crease on genetic variation, we use coalescent simulation implemented in
the R package coala (Staab and Metzler 2016, see Chapter 2). To make the
effects of population growth and decline as clear as possible, we will com-
pare the genealogies and site frequency spectra of a population at mutation-
drift equilibrium (Ne = 25,000 diploid individuals) to simulations of two ex-
treme scenarios: (1) an instantaneous population expansion from Ne = 50 to
Ne = 25,000 and (2) an instantaneous population bottleneck from Ne = 25,000
to Ne = 50. In both cases, the genetic sample is drawn 50 generations follow-
ing the sudden change in population size. We draw samples of n = 20 and
n = 100 to show the effect of demographic change on the structure of ge-
nealogy (left column panels in Fig. 4.2) and the SFS (right column panels of
Fig. 4.2), respectively. A bottleneck is a biologically relevant scenario; envi-
ronmental catastrophemay rapidly decimate a local population, and a small,
founder population derived from a large population may in one generation
establish itself elsewhere. An instantaneous population expansion of the
size simulated here is less relevant from a biological/ecological standpoint.
Nevertheless, its extremity is used to showcase the effects of population
expansion.

In all scenarios, a point mutation rate of 1×10−8 and a 20,000-bp sequence
were simulated. We first examine the baseline results from simulating a
population at mutation-drift equilibrium. Looking backward in time, the
n= 20 sequences of a sample initially coalesce with rapidity, while coalescent
times (the waiting time to the merger of sequence lineages) increase as the
number of lineages to coalesce decreases (Fig. 4.2a). This is characteristic of
the neutral coalescent process, in which the probability of coalescence be-
tween an unspecified pair of lineages in the previous generation equals n(n−1)

4Ne
.

As n—the remaining number of genes that have not coalesced—decreases,
the probability of coalescence decreases, and coalescence time increases on
average.

Under the neutral coalescent, the site frequency spectrum should be dis-
tributed geometrically. However, this expectation is only met when spectra
are averaged across numerous unlinked loci. Although the SFS of one sim-
ulation is not geometrically distributed, it does show hallmarks of what we
expect the distribution of genetic variation to look like under neutral, equi-
librium conditions (Fig. 4.2b). Themost abundant types of polymorphic sites
(SNPs) are those in which the frequency of derived alleles is low. In particu-
lar, the most abundant type of SNP is a singleton in which only one of the 100
sampled sequences shows a derived allele. The SFS for this simulation also
shows a declining trend in the number of SNPs with high frequencies of the
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derived allele. Again, because the results are shown for a single simulation
(and, therefore, a single locus), we do see some clear exceptions to this trend.
For example, the numbers of SNPswith derived allele counts are remarkably
common — 5 and 13, respectively (Fig. 4.2b).

Figure 4.2a and b is derived from the results of one simulation. De-
vise a hypothesis to explain the bimodal SFS in Fig. 4.2b given the
genealogy shown in Fig. 4.2a.

Both the genealogy and SFS under instantaneous population expansion
(Fig. 4.2c,d) show a clear departure from that of the equilibrium scenario.
The genealogy is comb-like (Fig. 4.2c); all 20 sampled sequences evolve
independently of each other until they rapidly coalesce in a compressed
period of time in the recent past. The SFS is notable for (1) the small number
of polymorphic sites (cf. scale of the y-axis in Fig. 4.2b and d) and (2) derived
allele counts exclusively ≤ 3 out of 100 sampled sequences. We expect a
drastic increase in population size to alter patterns of genetic variation,
but the specific question of interest is why these particular alterations are
characteristic of population expansion.

Prior to the expansion, the population of 50 diploid individuals collec-
tively carries just 100 copies of the simulated locus. As detailed in the last
chapter, small populations harbor less variation than large populations. It is
possible, even likely, that the initial population was devoid of variation at
the locus simulated. However, the in-one-generation increase in population
size to 25,000 diploid individuals provides a large reservoir of sequences that
can incur mutations. In other words, the small population with depauper-
ate genetic variation becomes a large population with depauperate genetic
variation. The simulated sequence is a (nearly) blank canvas upon which
new variants may be written. However, the long terminal branches of the
genealogy mean the vast majority of derived alleles found in a sample are
singletons. This process of occasionally generating derived alleles within a
genetically depauperate sequence yields the SFS seen in Fig. 4.2d. Polymor-
phic sites are rare because we have only allowed 50 generations for new
mutations to arise on the “blank canvas.”Moreover, those polymorphic sites
that are identified in the sample show low derived allele counts because they
have had little time to spread through the population.

We next consider the genesis of the distinct topology associated with
a large and instantaneous population expansion: in our example, looking
backward in time from the present, no coalescence of the n = 20 sequences
for an extended period followed by a flurry of coalescent events in the past
(Fig. 4.2c). As youmight guess, this cluster of coalescent events dates back to
themuch smaller, pre-expansionpopulation. The longabsence of coalescence
following the expansion is a direct consequence of the sudden increase in
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Fig. 4.2 Typical genealogies and site frequency spectra for a neutral, equilibrium model
(a,b), an instantaneous population expansion (c,d), and an instantaneous population bot-
tleneck (e,f). Although there are 20 branch tips in (f), coalescent events take place so rapidly
moving backward in time that it appears the tips are too short to visualize. For clarity,
the genealogies are based on a sample of just 20 sequences; the site frequency spectra are
calculated from a larger sample of 100 sequences. Samples for the population bottleneck
and expansion scenarios were drawn 50 generations following the demographic event. In
the genealogies, time flows forward from left to right
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the number of sequences present in the population. The probability P(n) that
no coalescent event takes place in the previous generation is equal to

P(n) =
2Ne−1
2Ne

+
2Ne−2
2Ne

+ ...+
2Ne−n+1

2Ne
, (4.5)

where n is the number of sequences in the sample. It can be shown that
P(n)≈ 1−(n

2
) 1
2Ne

(Hudson 1990). In our current example, then, the probability
that none of the lineages coalesce for the 50 generations since the expansion—
with n = 20 and 2Ne = 50,000—equals

P(20)50 ≈
[
1−

(
20
2

)
1

50,000

]50
≈ 0.827 (4.6)

In other words, greater than 80% of the time, none of the
(20
2
)
= 190 pairs

of sequences will coalesce in the 50 generations following the expansion.
Contrast this with the small, pre-expansion population of just 50 individuals
(2Ne = 100)where theprobability that onepair of sequenceswill coalescewith
a common ancestor in the previous generation is a near certainty. Although
an instantaneous, 500-fold increase in population size is an extreme example,
these ideas showthat a comb-like topology (perhaps,more commonlynamed
a star topology) is characteristic of genealogies associated with population
expansions.

The average effect of a population bottleneck on a genealogy is oppo-
site to that of a population expansion (Fig. 4.2e); most coalescent events
take place post-bottleneck, while the last coalescent events are often much
older and traceable to the larger, pre-bottleneck population. The resulting
SFS (Fig. 4.2f) shows isolated peaks associated with mutations occurring
on the long branches that become derived alleles shared by the descendant
sequences of these long branches.

Finally,we lookat the summary statistics—andestimators ofθ—nucleotide
diversity π andWatterson’s estimator θW for the same demographic scenar-
ios just discussed. Our expectations are the following: (1) for the scenario of
no demographic change, both estimators should zero-in on the per-locus ex-
pected value of θ = 20, and (2) because both summary statistics are directly
related to the site frequency spectrum and we have just seen that demo-
graphic change has profound impacts on the SFS, both summary statistics
should be greatly perturbed by the strong demographic change modeled.
Both of these expectations are met by this simple simulation study (Fig. 4.3).
In addition, notice that under neutral, equilibrium conditions, θW shows
superior resolution to π as an estimator of per-locus θ (Fig. 4.3a).
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Fig. 4.3 Boxplots showing the diversity in per-locus values of nucleotide diversity π and
θW across 1000 replicate simulations for each of three demographic models. Panels (a),
(b), and (c) here correspond to the same demographic models used to produce the results
shown in Fig. 4.2 panels (a-b), (c-d), and (e-f), respectively—namely, ((a)) No demographic
change. ((b)) Instantaneous population expansion. ((c)) Instantaneous population bottle-
neck. Ne = 25,000, per-site μ = 1×10−8, seqlength = 20,000 bp, and sampsize = 100.Note
the different y-axis scales between panels. Samples for the population bottleneck and
expansion scenarios were drawn 50 generations following the demographic event. On
average, π - θW is zero for a neutral locus in a population of constant size, a negative value
for population expansion, and a positive value for a population decline; the results shown
here validate those theoretical expectations. The median estimate of per-locus θ (for both
estimators) at a neutral locus in a population of constant size (panel A) matches the ex-
pectation of θ = 4Neμ× seqlen == 4×50,000×10−8 ×10,000 = 20. Both summary statistics
are therefore good estimators of θwhen the atmosphere is ostensibly boring—neutral and
static. In addition, this is another example of validation in which our simulation results
match theoretical expectations

4.2 Forward Simulation of Demographic Change

Wenowmodify the forward simulation programFORTUNA—introduced in
Chap. 3—to facilitate simulation of varied demographic scenarios. Modifica-
tions also include updates to summarystatistics.h that enable calculation
of the summary statistic Tajima’s D.
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4.2.1 Requisite New Parameters

Imagine that the modeled population is subject to a series of changes in pop-
ulation size. The information necessary to model each size change includes
the following: (1) type, e.g., instantaneous or logistic; (2) generation numbers
for the onset and conclusion of the demographic regime; (3) population size
at onset of the demographic regime; and (4) any additional parameter(s) re-
quired to specify the demographic model. We first add program parameters
to the parameters and params.h files.

modifications to parameters and params.h files to implement demographic change

1 // additions to parameters

2 demography 0 1 4

3 dem_parameter 0 -9900 0.02

4 dem_start_gen 0 1001 1501

5 dem_end_gen 1000 1500 20000

6 carrying_cap 0 0 10000

7
8 // additions to params.h

9 extern vector<int> demography;

10 extern vector<double> dem_parameter;
11 extern vector<int> dem_start_gen;
12 extern vector<int> dem_end_gen;
13 extern vector<int> carrying_cap;
14 extern vector<int> pop_schedule;

Pay special attention to the parameter values listed on lines 2–6; each is
followed by numbers that specify details of three sequential demographic
events in the population. For example, the demography parameter specifies
the type of demographic event and takes one of five values:

• 0 = constant population size—i.e., no change
• 1 = instantaneous change
• 2 = linear change
• 3 = exponential change
• 4 = logistic change

Thus, the entry demography 0 1 4 indicates the population first maintains
the constant size specified by parameter popsize (Chap. 3), experiences an
instantaneous change, and then enters a phase of logistic change (growth
in this case). The values listed after the other four correspond to these three
demographic regimes in the same order. Look again at the parameter values
in the previous listing. Take a moment to understand that numbers −9900,
1001, 1500, and 0 provide the needed details to model the second selective
regime (an instantaneous change in population size).
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The parameters dem start gen and dem end gen specify the starting and
ending generation for a given demographic event, respectively. The value
of dem parameter provides a necessary parameter for a given demographic
model:

• Absolute change in population size for instantaneous change
• Per-generation change in population size for linear change
• Rate parameter for both exponential and logistic change

Logistic change requires specification of a secondmodel parameter—carrying
capacity—provided to the parameter carrying cap. Each parameter is
stored in a vector, and multiple values for a given parameter should be
separated by whitespace of any size.

The parameter values in the previous listing will be used in the next
section. Collectively, they specify no change in population size for the first
1000 generations, followed by an instantaneous loss of 9900 individuals
(out of 10,000, as specified by the parameter popsize) that lasts for 500
generations, and finally logistic growth at a rate of 0.02 with a carrying
capacity of 10,000. The logistic demographic regime holds from generation
1501 until the end of the simulation at generation 20,000.

File params.h also declares a vector<int> called pop schedule, which
holds the population size at every generation (generations 0–20,000 in the
current case) based on the demographic model parameters just discussed.
The values of pop schedule are calculated in params.cc using the following
additions to the file:

additions to params.cc

1 ...

2 vector<int> get_multi_int_param(const string &key)
3 {

4 vector<int> vec;

5 istringstream iss(parameters[key].c_str());
6 string param;

7 while(getline(iss, param, ’ ’))

8 vec.push_back(atoi(param.c_str()));
9 return vec;

10 }

11
12 vector<double> get_multi_double_param(const string &key)
13 {

14 vector<double> vec;

15 istringstream iss(parameters[key].c_str());
16 string param;

17 while(getline(iss, param, ’ ’))

18 vec.push_back(atof(param.c_str()));
19 return vec;

20 }

21
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22 vector<int> create_pop_schedule()
23 {

24 vector<int> ps;
25 int i=0;

26 int cursize = popsize;

27 for (int step = 0; step < demography.size(); ++step) {

28 for (; i<dem_start_gen[step]; ++i)

29 ps.push_back(cursize);
30 for (; i <= dem_end_gen[step]; ++i) {

31 switch(demography[step]) {

32 case 0: ps.push_back(cursize); // no size change

33 break;
34 case 1: if (i == dem_start_gen[step])
35 cursize += dem_parameter[step];
36 ps.push_back(cursize); // instantaneous

37 break;
38 case 2: cursize += dem_parameter[step];
39 ps.push_back(cursize); // linear

40 break;
41 case 3: cursize *= exp(dem_parameter[step]); // exponential

42 ps.push_back(cursize);
43 break;
44 case 4: cursize = (carrying_cap[step] * cursize) /
45 (cursize + (carrying_cap[step] -

↪→ cursize)*exp(-1*dem_parameter[step])); //
↪→ logistic

46 ps.push_back(cursize);
47 }

48 }

49 }

50 return ps;
51 }

52
53 // additional variable declarations

54 vector<int> demography;

55 vector<double> dem_parameter;
56 vector<int> dem_start_gen;
57 vector<int> dem_end_gen;
58 vector<int> carrying_cap;
59
60 int process_parameters() {

61 ...

62 demography = get_multi_int_param("demography");
63 dem_parameter = get_multi_double_param("dem_parameter");
64 dem_start_gen = get_multi_int_param("dem_start_gen");
65 dem_end_gen = get_multi_int_param("dem_end_gen");
66 carrying_cap = get_multi_int_param("carrying_cap");
67 ...

68 }

69 ...

70 vector<int> pop_schedule = create_pop_schedule();
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The functions get multi int param( ) and get multi double param( )

(lines 2–20) allow read-in of multi-valued parameters and are used in the
calculation of pop schedule carried out by function create pop schedule(

) (lines 22–51). Population size begins at the value specified by the parameter
popsize and is stored as current population size in the variable cursize (line
26). The for loop beginning at line 27 will step through each demographic
event and, for each generation of the individual demographic regime, calcu-
late population size. Note that once the starting generation of a demographic
event is reached, as determined by the control statement at line 28, the pro-
gram enters the for loop from line 30 through line 48 until the last generation
of the demographic event is reached. Each iteration of this for loop employs
a switch statement (lines 31–47), which queries the type of demographic
change (line 31), updates population size (cursize) accordingly, and pushes
cursize to the population schedule (pop schedule). Finally, the calculated
population schedule is returned (line 50).

Small changes to population.h are also required. However, wewill cover
these changes in Sect. 4.2.3 following a brief discussion of how to calculate
the summary statistic Tajima’s D.

4.2.2 Calculating Tajima’s D

As discussed in Chap. 3, Tajima’s D quantifies the difference between two
estimators of θ: nucleotide diversity (π) and Watterson’s estimator (θW)
(Tajima 1989). At equilibrium, we expect these estimators to provide roughly
equal estimates, yielding a value of D = 0. Positive or negative deviations
from zero are characteristic of various evolutionary events, including demo-
graphic change. Specifically, Tajima’s D is defined as

D =
π−θW√

Var(π−θW)
(4.7)

Now let a1 =
∑n−1

i=1
1
i , a2 =

∑n−1
i=1

1
i2
, n be sample size (the number of sequences),

and S be the number of segregating sites in the sample. Then, Tajima (1989)
defines Var(π−θW) as

Var(π−θW) = S
(
1
a1

)(
n+1

3(n−1) −
1
a1

)
+S(S−1)

⎛⎜⎜⎜⎜⎝ 1
a21+ a2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝2(n

2+n+3)
9n(n−1) −

n+2
a1n
+

a2
a21

⎞⎟⎟⎟⎟⎠
(4.8)

Keep in mind that θW =
S
a1
, where the denominator controls for sample

size, which is necessary because large samples uncover a greater number
of segregating sites than small samples. Similarly, the expected range of
Tajima’s D is expected to be greater for smaller sample sizes; the variance of
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D in the denominator controls for this fact, as it is a function of n, a1, and
a2, the latter two themselves being functions of n. The following function for
calculating and returning Tajima’s D is added to summarystats.h:

summarystats.h: function get tajimas d( )

1 double get_tajimas_d (double pi, double watterson, int S) {

2 double d = pi - watterson; // numerator

3 double a1 = 0.;

4 double a2 = 0.;

5 for (double i=1.; i < sampsize; ++i) {

6 a1 += 1./i;
7 a2 += 1./(i*i);
8 }

9 double n = sampsize; // for easier expression
10 double var = watterson * ( (n+1) / (3*(n-1)) - 1/a1 ) +

11 ( S * (S-1) * ( 1 / (a1*a1+a2)) *
12 ( (2*(n*n + n+3))/(9*n*(n-1)) - (n+2)/(a1*n) + a2/(a1*a1) ) );

13 return(d / sqrt(var));
14 }

As reflected by the arguments to this function (line 1), it can only be
called after π and θW have been calculated. Furthermore, calculation
of Tajima’s D requires us to use the per-locus rather than per-site esti-
mates of θ. Therefore, the return values of the functions get pi( ) and
get watterson( ) were also modified to reflect this necessary change.
Specifically, return (sumdiffs / numcomp) rather than return (sumdiffs

/ numcomp / seqlength) returns the per-locus value of π. Similarly, the
change to return (S / denominator) returns the per-locus number of seg-
regating sites.

4.2.3 Final Changes to Program Files

Minor modifications to population.h are required to complete the imple-
mentation of additional functionality—namely, the ability to simulate de-
mographic change and calculate Tajima’s D. Because we are now calculating
three summary statistics, we also make modifications to population.h that
cause all summary statistic output to print to one file.

population.h: Chap. 4 modifications

1 // changes to private variables

2 ofstream sumstat_file; // all sumstats printed here

3
4 // change to function update_alleles( )

5 if (current_count == pop_schedule[gen]*2) { // replaces popsize*2 in

↪→ ch3 listing

6



100 4 Demographic Change

7 // changes to function reproduce ( )

8 randomind.param(uniform_int_distribution<int>::param_type(0,pop_schedule
↪→ [gen]-1));

9 ...

10 for (int i=0; i< pop_schedule[gen==0 ? gen : gen-1]; ++i) { // replaces

↪→ popsize in ch3 listing

11 ...

12 for (auto iter = individuals.begin(); iter != individuals.end() -

↪→ pop_schedule[gen==0 ? gen : gen-1]; ++iter) // replaces

↪→ popsize in ch3 listing

13 ...

14 individuals.erase(individuals.begin(), individuals.end()-
↪→ pop_schedule[gen==0 ? gen : gen-1]); // replaces popsize in

↪→ ch3 listing

15
16 // additions to function get_sample( )

17 double pi = get_pi(sample);
18 double watterson = get_watterson(sample, S);

19 double tajimasd = get_tajimas_d(pi, watterson, S);

20 sumstat_file << gen << " " << pi << " " << watterson << " " << tajimasd

↪→ << endl;

21
22 // addition to function close_output_files( )

23 sumstat_file.close();
24
25 // changes to Population constructor

26 randomind.param(uniform_int_distribution<int>::param_type(0,pop_schedule[0]
↪→ - 1)); // replaces popsize in ch3 listing

27 ...

28 for (int i=0; i<pop_schedule[0]; ++i) { // replaces popsize in ch3

↪→ listing

29 ...

30 fname = "sumstats";

31 sumstat_file.open(fname.c_str());
32 sumstat_file << "gen pi watterson tajimasd" << endl;

Changes to the population.hfile shown in lines 2, 17–20, 23, and 30–32 drive
calculation of Tajima’s D and output of all summary statistics to a single file
named sumstats.

The remaining changes specified account for the potentially variable value
of population size. In Chap. 3, where population size remained constant, we
could simply use the value popsize every generation. Now, however, the
population size at any given generation gen is stored in pop schedule[gen].
Because population size may change each generation when modeling de-
mographic change, the random variable randomind must be updated each
generation so that potential indices of individuals chosen as parents fall be-
tween 0 and current population size less one. Initialization of the randomind
is performed in the constructor (line 26) and updated each generation at the
beginning of function reproduce( ) (line 8). Variable population size also
necessitates changes to the test expressions of several for loops (lines 10, 12,
and 28) aswell as an erase( ) function (line 14). In line 10, the test expression
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is written as i < pop schedule[gen==0 ? gen : gen-1].We use the condi-
tional operator for the index because pop schedule[-1] is undefined; thus,
for generation 0, we need to use the initial population size pop schedule[0]

as the test condition.

4.3 Simulating a Bottleneck Followed by Logistic Growth

Having modified the forward simulation program to allow demographic
change and calculation of Tajima’s D, we can now use the program to
model a broadly realistic case of demographic change. Imagine a population
of Ne = 100,000 diploid individuals at mutation-drift equilibrium. Catas-
trophic environmental change causes an instantaneous population bottle-
neck that reduces population size to Ne = 100, which lasts for 500 generations
(Fig. 4.4a). After this, the environment recovers, and logistic growth ensues
at a rapid growth rate of r = 0.02 and a carrying capacity of Ne = 10,000
(Fig. 4.4a).

The demographic parameter values required to specify the demographic
model shown in Fig. 4.4a are those focused on at the beginning of Sect. 4.2.1.
We sample 100 non-recombining sequences with a per-site mutation rate of
μ = 1×10−8 and a length of 250,000 bp from the simulated population every
ten generations. Each simulation uses an initial coalescent simulation to
generate sequences for generation 0 in the forward simulation. mscommand is
set to ./ms 20000 1 -t 100 >ms output in parameters. Because popsize

remains 10,000 and we are simulating a diploid locus, MS must generate
20,000 sequences. Furthermore, the value ofθ= 100 as the per-locus value ofθ
was obtained as follows: θ= 4Neμ×2.5×105 = 4×104×2.5×10−8×2.5×105 =
100.

Figure 4.4b,c shows per-site estimates of θ for two independent replicates
of the simulation setup detailed in the previous paragraph. Although the
starting quantity of genetic variation generated by coalescent simulation
differs in each case, qualitatively similar behavior is seen in both replicates.
The instantaneous bottleneck immediately and drastically reduces genetic
variation. Over the course of the next 18,500 generations, as population size
increases rapidly to carrying capacity and holds there, genetic variation is
slowly restored to expected equilibrium levels. Importantly, π recovers more
rapidly than θW . Given that the numerator of Tajima’s D is π−θW , we expect
this behavior to yield consistently negative values of D. This expectation is
observed; roughly between generations 1500 and 5000, Tajima’s D is < −2 in
both simulations (Fig. 4.4d). In general, Tajima’s D greater than 2 or less than
−2 is considered a significant indicator of evolutionary change. Although a
variety of evolutionary factorsmay be responsible for this deviation (see next
section), we know the cause in our simulated population: rapid population
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Fig. 4.4 Modeling demographic change. (a) The demographic model; a population of
Ne = 10,000 diploid individuals is simulated using MS; forward simulation consists of
1000 generations at Ne = 10,000, followed by an instantaneous bottleneck that reduces
the population to Ne = 100 diploid individuals for 500 generations, followed by logistic
growth at a rate of r= 0.02 and a carrying capacity ofK= 10,000. (b and c) Results from two
independent replicates of the simulation, sampled every ten generations and summarized
as two independent estimators of θ, θW (black lines) and π (gray lines). (D) The summary
statistic Tajima’s D for the simulation shown in (b; black line) and (c; gray line). The period
of the 500-generation bottleneck is indicated by B or vertical dashed lines
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expansion. In other words, Tajima’s D provides a rather long-lived signal of
population expansion.

Interestingly, Tajima’s D does not provide us with evidence of the drastic
population bottleneck that occurs at generation 1000. During the bottleneck,
values of D become highly variable, but we fail to note a consistent value
of D > 2, which is indicative of significant population decline (Fig. 4.4d).
The loss of nearly all genetic variation with the instantaneous bottleneck ex-
plains this. Values of π and θW are both nearly zero immediately following
the bottleneck, which does not provide a great enough difference between
the two estimators to yield a clear signal of population decline. In the next
section, we will model a gradual population decline, which does produce
a clear increase of D to greater than 2. The population expansion provides
a much clearer signal because the bottleneck produces a genetically depau-
perate population that sets the stage for a slow recovery of genetic variation
as population size increases. The relative difference in recovery of π and θW
then yields the significantly negative values of Tajima’s D shown in Fig. 4.4d.

4.4 The Varying Utility of Summary Statistics for Inference

We now simulate a gradual, linear decline in population size. This situation
is of practical relevance, as conservation biologists are often interested in
assessing current population dynamics in order to determine if a population
merits intervention. The results of this simulation will raise the issue of
which summary statistics are best suited for a specific inferential task.

Consider a population of 50,000 diploid individuals at mutation-drift
equilibrium. A linear decline of ten individuals per generation begins at
generation 1000 until, at generation 5900, the population stabilizes at 1000
diploid individuals. We assume a per-site point mutation rate of μ = 1×10−8
and a 50,000-bp sequence. Once again, we initialize a Population object
using the results of coalescent simulation in MS. The parameters file that
describes this population model (Fig. 4.5a) is

parameters for the model detailed in Sect. 4.4

1 popsize 50000

2 mutrate 1e-08

3 seqlength 5e04

4 sampsize 100

5 sampfreq 10

6 demography 0 2 0

7 dem_parameter 0 -10 0

8 dem_start_gen 0 1001 5901

9 dem_end_gen 1000 5900 8500

10 carrying_cap 0 0 0

11 useMS 1

12 mscommand ./ms 100000 1 -t 100 >ms_output
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Figure 4.5b shows the per-site values of π (gray) and θW (black) sampled
every ten generations. During the population decline, a very gradual increase
in Tajima’s D is observed (Fig. 4.5c). Furthermore, while θW begins to decline
at 3000 generations, likely due to the loss of rare variants,π remains elevated
until after the population decline ends at 5900 generations (Fig. 4.5b). Shortly
after the decline stops at generation 5900, significant values ofD are observed
and maintained during the next 2000 generations (Fig. 4.5c).

At roughly generation 7000, there is a sharp drop in both θW and
π. Generate a hypothesis that explains this seemingly anomalous
“blip.”

From the practical standpoint of the conservation biologist hoping to de-
termine if a population is subject to a sustained population decline, these
results are worrisome. During the nearly 4000 generations that the popu-
lation is bleeding individuals, both π and Tajima’s D fail to signal such.
Moreover, the decline in θW is only visible to us because we have access data
from the entire history of the population decline. θW at any one sample point
would not signal a population decline.

On another note of caution, Fig. 4.4 makes clear that Tajima’s D drops
below the critical value of −2 following a drastic, though transient, popula-
tion bottleneck. As will be shown in the last chapter of this volume, strong
positive selection also drives Tajima’s D to less than −2. As is often the case
in population genetics, distinct evolutionary scenarios produce the same
pattern of genetic variation. On a more hopeful note, we can sometimes find
an additional layer to the genetic pattern that allows us to go further with
our inference. Returning to our example, both a population bottleneck and
selective sweep can produce a significantly negative value of Tajima’s D. On
average, the former will be observed across the whole genome, while the
latter will be limited to a region proximate to the molecular target of natural
selection.

Given the nosiness of our summary statistic clues, one inferential tactic is
to create as many unique ways of summarizing the genetic data as possible
in the hope that a legion of summary statistics will somehow collectively
capture the nuance of a sequence alignment. Superficially, the recent use
of convolutional neural networks (CNN) on input “images” of sequence
alignments seems to obviate the need for summary statistics (Flagel et al.
2018). Of course, the CNN is learning high-dimensional summaries of the
data that we would never imagine natively (i.e., as humans). So summary
statistics are still in play, but they are of the multidimensional chess variety.

Nevertheless, there are summary statistics that intuitively should capture
aspects of the sequence alignment not tracked by π or θW . For example,
how many unique haplotypes are found in a sample? The answer is the
summary statistic K. Each of the K haplotypes has a frequency in the sample.
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Fig. 4.5 Modeling demographic change: a gradual, linear decline over the course of 4000
generations. (a) The demographic model: a population of Ne = 50,000 diploid individuals
at mutation-drift equilibrium is simulated using MS; forward simulation begins with a
further 1000 generations of equilibrium followed by a linear decline lasting 4900 gener-
ations in which Ne declines by ten individuals each generation. At this point, Ne = 1000
diploid individuals and a further 4600 generations are simulated. Results of simulation of
this model include (b) the per-site values of θW (black dots) and π (gray dots) as well as
(c) Tajima’s D

The summary statistic K is the discrete frequency distribution of each of the
K haplotypes. Sometimes, variant-specific summaries such as observed and
expected heterozygosity, or their difference, can prove valuable.
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Successful inference often requires us to act creatively, conjuring up
new summaries of the data as well as creating compound summary
statistics (such as Tajima’s D) that contrast individual summaries of
the data. Imagine an evolutionary scenario and a sequence align-
ment sampled from a population. What other summary statistics can
you come up with that might facilitate insight into the population’s
evolution?
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5
Meiotic Recombination

The magician was one who knew how to enter into this system, and use
it, by knowing the links of the chains of influences ... 1

– Frances A. Yates Giordano Bruno and the Hermetic Tradition

5.1 Background

Thus far we have treated mutation as the only source of genetic variation.
While mutation is the source of all genetic variants, this viewpoint limits our
thinking on issues of evolutionary genetics. DNA sequences are strings of
specific combinations of variants. It is reasonable to conclude that different
combinations of variantsmight, for example, vary in terms of the fitness they
confer to individuals. Meiotic recombination in diploid organisms is respon-
sible for producing potentially novel combinations of genetic variants, i.e.,
unique multisite patterns of genetic variation referred to as haplotypes. The
shuffling of genetic variants via recombination is evolutionarily important
because specific combinations of variants may be selectively advantageous.
In addition, haplotypic variation generated by recombination is often of
value to inference. As discussed in the final section of the previous chapter,
haplotype data are the basis for several additional summary statistics that
we can add to our inferential arsenal.

5.1.1 Crossing-Over and Independent Assortment

Because meiotic recombination alters combinatorial genetic variation, discus-
sion of recombination requires us to focus on two or more variable loci in

1 Quoted with permission. 1991, University of Chicago Press.
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a population. Depending on whether the loci in question are linked or un-
linked, two very distinct forms of meiotic recombination are responsible for
shuffling variants found in gametes. In the case of linked polymorphisms,
crossing-over during Prophase I of meiosis is responsible for recombina-
tion. Consider two linked diallelic SNPs, where the specific single-nucleotide
variants are G/C and A/T. Considering only these two sites, four unique
combinations (i.e., haplotypes) are possible:

G A

C A

G T

C T

Let Kn stand for the number of possible, unique haplotypes in a sequence
with n diallelic polymorphisms. As the number of polymorphic sites in-
crease, the number of unique haplotypes increase exponentially: Kn = 2n.

Based on the simple example just discussed, imagine crossing-over oc-
curs between the two polymorphisms during meiosis of a cell in the doubly
heterozygous individual CT/GA, where the forward slash separates the hap-
lotypes of the two homologous chromosomes. Two of the four daughter
cells (gametes) will harbor recombinant gametic types—CA and GT—while the
other two daughter cells will hold parental types—CT and GA—named so be-
cause these are the very haplotypes contributed by the parents of the CT/GA
individual (Fig. 5.1).

The genetic distance between two loci, measured in centiMorgans (cM),
quantifies how frequently recombinant types are generated in cells of the
double heterozygote. If the two loci are physically very close (i.e., tightly
linked), crossing-over between the loci in question will be rare and the re-
combination frequency (r, the proportion of gametes that are recombinant) will
be low. On the other hand, if the two loci are physically very far apart from
one another nearly every meiosis will include a cross-over between them,
each ofwhichwill generate two recombinant and two parental gametic types
(Fig. 5.1, left). In this case r = 0.5, which is an upper limit on recombination
frequency. The reason r cannot be greater than 0.5 is that each cross-over
involves only one of the sister chromatids from each of the homologous
chromosomes. The chromatids of each homologous chromosome not par-
ticipating in the cross-over event retain their original, parental haplotype
(Fig. 5.2).

Let me stress this point by relating it to how we model and simulate
recombination. Recombination frequency among two linked loci measures
the frequency at which crossing-over leads to transmission of its products
(recombinant chromosomes and the gametes that carry them), not the fre-
quency of chiasma formation between two loci. Again, the extreme case is
most illustrative of this point. When r between two linked loci is maximal at
0.5, everymeiosis is expected to entail crossing-over between the two loci. Re-
combination frequency is 0.5 rather than 1 because only half of the products
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of thismeiosiswill be recombinant. In otherwords, recombination frequency
measures the fraction of gametes carrying recombinant sequences and not
the frequency at which a recombination event takes place between two loci
in meiocytes. This simplifies the model of recombination in the computer
because we can simply inquire whether a recombinant sequence is passed
on (with probability r) and eschew simulating chiasmata that ultimately will
have no effect on the pattern of diversity in the simulated, focal segment of
DNA (Fig. 5.2b).

If the two polymorphisms in question are unlinked, meiosis still produces
recombinant gametic types with combinations of genetic variants that differ
from either parent’s contribution. Meiotic recombination of unlinked loci is
referred to as independent assortment, which means that each homologous
pair independently ”determines” which side of the metaphase plate the ma-
ternal and paternal chromosomes position themselves. For two homologous
pairs as shown in Fig. 5.1 (right), there are two distinguishable alignments of
the homologous pairs. If we consider all homologous pairs of, say, human,
independent assortment leads to a very large number of distinguishable
assortments (2c−1 = 222 ≈ 4.2 million, where c is the haploid number of chro-
mosomes in a dividing cell).

The upper bound on r is still 0.5. Consider the double heterozygote
C/G;T/A, where the semi-colon indicates that the two polymorphisms re-
side on non-homologous chromosomes and the forward slash still separates
the variants found on each of the two homologous pairs. Independent assort-
ment of nonhomologous pairs leads to a recombination frequency of r = 0.5
because one of the two possible alignments during Meiosis I yields solely
parental types, the other possible alignment yields solely recombinant types,
and both alignments are equally probable (Fig. 5.1, right).

5.1.2 Linkage Disequilibrium

The shuffling action of meiotic recombination implies that it is a randomiz-
ing mechanism. If it is currently the case that a nonrandom association of
alleles—e.g., CT and GA haplotypes are found much more frequently than
CA and GT haplotypes—crossing-over should lead to the decay of this non-
random association between alleles over time absent countervailing mech-
anisms. The nonrandom association of alleles is commonly called linkage
disequilibrium (LD). Unfortunately, this term is somewhat of a misnomer as
LD may also be observed between unlinked loci. For example, epistatic se-
lection in which the combinations of an allele on chromosome 2 and an allele
on chromosome 5 are selected for (or against) because this specific combina-
tion of alleles leads to greater (or lesser) fitness will enrich for a particular
combination of unlinked alleles. In other words, epistatic selection can lead
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relative to those found in the parental gametes, are generated by crossing-over in the
case of linked loci (left) and independent assortment in the case of unlinked loci (right).
Regarding linked loci, recombinant types are only generated if the chiasma forms between
the two loci in question (an interlocus chiasma); even then, only half of the resultant gametes
are recombinant because two of the chromatids are uninvolved in crossing-over and
retain the parental combination of alleles. Importantly, the frequency at which interlocus
chiasmata form is positively correlated with physical distance between loci. Regarding
unlinked loci, there are two possible relative alignments of the relevant homologous pairs.
One produces 100% parental types, while the other produces 100% recombinant types.
Because both alignments are equally likely, meioses produce 50% recombinant types on
average (i.e., r = 0.5). In Meiosis I illustrations, vertical dashed line represents the cell’s
equator or metaphase plate
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Fig. 5.2 (a) Even for loosely linked loci, between which a chiasma forms every meiosis, r
cannot exceed 0.5 because a given chiasma only involves two chromatids. This result is
easy to interpret; the two chromatids not involved in crossing-over remain parental types.
(b) Perhaps more surprisingly, multiple chiasmata involving different pairs of chromatids
still yield only half recombinant types with respect to the two loci shown. Also note that our
simulation program does not need to account for the complexity shown in the right-hand
panel of (b). We can simply use r as a probability to assess whether or not a transmitted
sequence is recombinant or not

to a nonrandom association of unlinked alleles. As a result, LD is sometimes
referred to as gametic disequilibrium in the literature.

The presence and magnitude of LD can be a powerful inferential tool,
but several questions related to LD need to be answered: (1) How does LD
arise?; (2) How do we quantify LD?; and (3) At what rate does crossing-over
cause LD between linked loci to decay?

Epistatic selection is one means by which LD arises. If a specific combina-
tion of alleles at two loci is selectively favored, that combinationwill increase
in frequency in the population producing a nonrandomassociation of alleles.
Conversely, if a specific combination of alleles at two loci is deleterious, that
combination will decrease in frequency in the population, leading to a con-
spicuously low frequency of the combination.Another source of LD is simple
mutation. Consider a G/A polymorphism linked to a monomorphic T. Now
imagine that one copy of this T nucleotide is mutated to C on a chromosome
that bears a G at the already-polymorphic site. If the two sites are sufficiently
close to one another and the new C allele randomly increases in frequency, GC
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haplotypes will also rise in frequency, representing a nonrandom association
of alleles.

The most common means of quantifying LD is to calculate coefficients of
linkage disequilibrium. Consider two linked loci with two alleles each: G/A
and T/C. Furthermore, imagine that both polymorphic loci are at Hardy-
Weinberg equilibrium and that LD is complete. In other words half of the
chromosomes in a sample are of haplotype GC and the other half are of
haplotype AT. The frequencies of the four possible haplotypes are then PGC =
PAT = 0.5 and PGT = PAC = 0 and all allele frequencies (e.g, pG at site 1) are 0.5.
If the association among alleles at the two loci was completely random, then
the difference PGC−pGpC is expected to equal zero; the frequency of a given
haplotype should simply be equal to the product of the two component allele
frequencies. The coefficients of LD are calculated in this way:

DGC = PGC−pGpC = 0.25
DAT = PAT −pApT = 0.25
DGT = PGT −pGpT = −0.25
DAC = PAC−pApC = −0.25

(5.1)

Thus, we see that regardless of the haplotype on which we focus, the
absolute value of the coefficient is 0.25. And it really is the absolute value
that indicates the relative magnitude of LD. As LD decays (see below), both
negative and positive coefficients approach zero, which represents complete
random association among alleles, or linkage equilibrium.

One problemwith this standard set of LD coefficients is that themaximum
absolute value obtainable is dependent on the frequencies of the component
alleles. When all four alleles are at equal frequencies of 0.5, Dmax = 0.25. In
any other case, however, Dmax < 0.25, which you can confirm by plugging
four unequal allele frequencies into the formula for Dmax:

Dmax = min{p1p2,q1q2}, (5.2)

where p1 and p2 are the frequencies of the two alleles at one focal locus and
q1 and q2 are the frequencies of the two alleles at the other.

Because LD coefficients are dependent on allele frequencies, we cannot
reliably compare ourmeasure of LDbetween different pairs of loci. Lewontin
(1964) proposed a set of normalized coefficients termed D′:

D′ = D
Dmax

(5.3)

Although D′ is also somewhat dependent upon component allele frequen-
cies, it is an improvedmeasure for comparison of LDamongdifferent pairs of
loci. See Hedrick (1987) for a discussion of the pitfalls related to quantifying
LD as well as the benefits to using different metrics for different purposes.
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Fig. 5.3 Decay of linkage disequilibrium in 100 generations for three different values of r

Decay of LD among linked loci is a function of their genetic distance
as measured by recombination rate r. Specifically, after one generation the
coefficient of LD changes by a factor of 1− r:

Dt+1 =Dt(1− r), (5.4)

and after t generations declines by a factor of (1− r)t:

Dt =D0(1− r)t, (5.5)

where D0 is the starting value of the LD coefficient. Figure 5.3 shows the
decay of LD for different values of r. The dynamics illustrated in this fig-
ure are easily explained; greater genetic distances (r) reflect more frequent
crossing-over between the two loci in question, the shuffling effect of which
leads to more rapid decay of LD.

5.1.3 Variation in Recombination Rate

When simulating a relatively short sequence of DNA, it is appropriate to use
a single recombination rate—for example, 10−8 per nucleotide. However,
simulation of a long DNA sequence requires us to recognize that fine-scale
recombination rates vary along chromosomes.Recombination ”hotspots” are
local regions of a chromosome that show recombination rates much greater
than the genomic average (Lichten and Goldman 1995).
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Fig. 5.4 Locus b is separated from loci a and c by the same physical distance of 1 million
base pairs. For illustrative purposes, let the mean per-nucleotide value of r between loci a
and b be 10−8 and that between loci b and cbe 10−7. Then, genetic distances between the two
loci are not equal to each other. Specifically, the recombination rate between loci a and b,
rab = 106×10−8 = 0.01= 1cMwhile rab = 106×10−7 = 0.01= 10cM. In terms of recombination,
b is ten times closer to a than c

A physical map of genetic loci is drawn in units of base pairs, while a
genetic map is drawn in units of cM. Because recombination rate varies along
chromosomes, distances between loci on physical and genetic maps are not
proportional (Fig. 5.4). We will briefly explore the consequences (in terms
of LD coefficients) of variation in recombination rate between six loci in
Sect. 5.2.

In Sect. 5.3, we will add to and modify the FORTUNA program files by
adding cross-over events to the simulated sequence. When we focus on
an entire sequence, it is possible for us to explicitly classify a segment of
the overall sequence as a recombination hotspot. In general, recombination
hotspots are on the order of 1–2 kb long. So, as an example, consider a
simulated 10,000 bp sequence where bases 4000–5999 represent a hotspot in
which per-base recombination rate is rh = 10−7, while the rest of the bases in
the sequence possess a recombination rate of rc = 10−8. Now, let rt represents
the total probability of a cross-over somewhere along the sequence: rt =
2000× rc + 8000× rc = 2.8× 10−4. Finally, let l be the sequence length, a be
the lower bound of the hotspot, and b be the upper bound of the hotspot.
Then, given a cross-over event, the cumulative probability distribution of the
sequence position p where the cross-over occurs is defined as the piecewise
function:

C(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

prc
rt

if 0 ≤ p < a
arc+(p−a)rh

rt
if a ≤ p < b

(a+p−b)rc+(b−a)rh
rt

if b ≤ p ≤ l

(5.6)

Figure 5.5 shows the cumulative distribution of cross-over position for
the parameter values discussed above. Note that although the 2 kb hotspot
only occupies 20% of the physical sequence, roughly 70% of cross-overs will
map to a position within this hotspot. In Sect. 5.3, where we will extend our
forward simulation to include crossing-over, we will also add functionality
allowing us to model a recombination hotspot. In order to do this, when a
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Fig. 5.5 Cumulative probability distribution C(p) of cross-over position on a 10,000 bp
sequence. The per-nucleotide probability of cross-over is 10−8 for all nucleotides outside
the recombination hotspot on the range [4000,6000], where the per-nucleotide probability
of cross-over is an order of magnitude higher, 10−7. If we use a random number generator
to draw a real number on [0,1], the arrows show how we can map this value using the
inverse function of C−1(p) to a position on the sequence. The gray box illustrates the region
along the y-axis that maps to a position in the hotspot

cross-over event occurs, we will need to map a random real number on the
range [0,1] to a specific position on the sequence where cross-over occurs
(Fig. 5.5). This requires the inverse cumulative probability function, which
returns a sequence position for a given random number between 0 and 1
inclusive. The inverse of Eq. 5.6 is:

C−1(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

crt
rc

if 0 ≤ c < arc
rt

crt+a(rh−rc)
rh

if arc
rt
≤ c < brh−a(rh−rc)

rt
crt−(b−a)(rh−rc)

rc
if brh−a(rh−rc)

rt
≤ c ≤ 1

(5.7)

This rather monstrous looking equation will be simple to program. The
arrowed lines in Fig. 5.5 show its utility. We can simply plug in a randomly
generated value of c to the appropriate term in Eq. 5.7 in order to obtain a
position of cross-over.

Use of this inverse function does produce the desired results. Using the
expanded version of FORTUNA outlined in Sect. 5.3, I kept track of the
position of the first 5000 cross-overs sites on a 200,000 bp sequence with a
recombination hotspot at bases 100,000–101,999, a base recombination rate of
10−8 per base and a ”hot” recombination rate of 10−7 per base. The empirical
probability density of cross-over sites shows a very large increase in cross-
over occurrence within the narrow window of the hotspot (Fig. 5.6).
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Fig. 5.6 Distribution of 5000 random cross-over positions along a 200,000 bp sequence,
with a recombination hotspot from bases 100,000–101,999. The strip chart at the bottom
of the figure, with noise added in the vertical dimension, shows a clear build-up of
cross-overs coinciding with the hotspot. The kernel density estimate on top shows the
magnitude of cross-over density increase within the hotspot

5.2 Forward Simulation of Meiotic Recombination Among
Multiple Linked and Unlinked Loci

Before expanding FORTUNA code, we write a standalone program to sim-
ulate six diallelic loci in which alleles are represented by 0 and 1. Loci a, b,
and c are linked, locus d is unlinked to all other loci, and loci e and f are
linked (Fig. 5.7a–b). We use output from this simulation to examine the effect
of population size on the decay of LD.

The simulation begins with an admixture event between two populations
of the same species wholly isolated from each other for hundreds of gener-
ations. We also assume that during their isolation the two populations have
fixed opposite alleles at each of the six loci. In other words, each individ-
ual of one population is homozygous for ”0” alleles and each individual
of the other population is homozygous for ”1” alleles. At generation 0 of
the simulation, a new admixed population is formed with equal numbers
of individuals from each population (Fig. 5.7c). Then, at each of the studied
loci the frequencies of ”0” and ”1” alleles are both 0.5. Initially, complete
LD (D = 0.25) exists between each pair of loci because each individual in the
generation of admixture either possesses all ”0” or all ”1” alleles.
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50%  { {0,0,0,0,0,0} , {0,0,0,0,0,0} }

Admixed population at generation 0100% { {1,1,1,1,1,1} , {1,1,1,1,1,1} }

100%  { {0,0,0,0,0,0} , {0,0,0,0,0,0} }
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Fig. 5.7 (a) Hypothetical chromosomes 1–3 with the six loci modeled; recombination
frequency r between linked loci is indicated. (b) Each individual is represented as a vector
of two vectors, and ultimately stored in a map that represents the population (see text).
Each of the two vectors contains the alleles transmitted by one parent. (c) The simulation
detailed in this section begins with an admixture event that combines equal numbers
of individuals from two source populations which have fixed for opposing alleles. As a
result, the initial admixed population shows complete LD at all six loci

5.2.1 Code

Given the relative simplicity of this program, we will code a single source
file multilocus ld.cc that declares the two functions recombine() and
print data() followed by the main function:

multilocus ld.cc: declarations and main function

1 #include <random>

2 #include <iostream>

3 #include <fstream>

4 #include <string>

5 #include <map>

6 #include <vector>

7 #include <algorithm>

8
9 using namespace std;

10
11 map<int, vector<vector<int> > > recombine(map<int, vector<vector<int> >

↪→ >&, double&);
12 void print_data(int g, ofstream&, map<int, vector<vector<int> > >&,

↪→ double&);
13
14 double ab_r, bc_r, ef_r;
15 uniform_int_distribution<int> randomind(0,9999);

16 uniform_int_distribution<int> random_chromatid(0,3);
17 uniform_real_distribution<double> randomnum(0,1);
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18 mt19937 engine(time(0));
19
20 int main (int argc, char *argv[] ) {

21 int gen = atoi(argv[1]);

22 double numind = atof(argv[2]);

23 ab_r = atof(argv[3]);

24 bc_r = atof(argv[4]);

25 ef_r = atof(argv[5]);

26
27 randomind.param(uniform_int_distribution<int>::param_type(0,numind-1));
28
29 string fname("ld_coefs");
30 ofstream ofile;

31 ofile.open(fname.c_str());
32
33 ofile <<

↪→ "gen\tDab\tDac\tDad\tDae\tDaf\tDbc\tDbd\tDbe\tDbf\tDcd\tDce\tDcf\

34 tDde\tDdf\tDef" << endl;

35
36 map<int, vector<vector<int> > > population;

37 vector<int> p1{1,1,1,1,1,1};

38 vector<int> p2{0,0,0,0,0,0};

39
40 // parent population 1

41 for (int i=0; i < numind/2; ++i) {

42 population[i].push_back(p1);
43 population[i].push_back(p1);
44 }

45 // parent population 2

46 for (int i=numind/2; i<numind; ++i) {

47 population[i].push_back(p2);
48 population[i].push_back(p2);
49 }

50
51 for (int g=0; g<gen; ++g) {

52 print_data(g, ofile, population, numind);

53 population = recombine(population, numind);

54 }

55
56 ofile.close();
57
58 return 0;

59 }

Lines 11–12 declare functions recombine( ) and print data( ), which are
defined in the next listing. Lines 14–18 declare the variables for recombina-
tion rates between linked loci aswell as three randomnumber generators and
the mt19937 algorithm that powers them. The program takes five command
line arguments (lines 20–25), which in order are: (1) number of generations
to run; (2) number of diploid individuals; and (3) recombination rates be-
tween the linked paris of loci a and b, b and c, and e and f, respectively. On
line 27, the randomind number generator is updated with the user-defined



5.2 Forward Simulation of Meiotic Recombination Among Multiple Linked... 119

population size and lines 29–33 open the output file and print the header
line. As shown in Fig. 5.7, the six alleles from each parent are stored as a
vector and an individual is represented by a vector of two of these vectors
(one for each parent). Finally, the population is represented as a map of indi-
vidual vector<vector<int> >s (line 35). The population is initialized with
half individuals from a parent population inwhich all alleles are ”0” and half
individuals from a parent population where all alleles are ”1” (lines 36–48).
The heart of the program is the for loop (lines 50–53) that prints output and
simulates recombination followed by mating for gen generations.

The two functions called on lines 51–52 are now defined:

multilocus ld.cc: recombine and print data function definitions

1 map<int, vector<vector<int> > > recombine(map<int, vector<vector<int> > >

↪→ &p, double &n) {

2 map<int, vector<vector<int> > > recombined;

3 for (int i=0; i < n; ++i){

4 vector<vector<int> > parent1 = p[randomind(engine)]; //e.g.,
↪→ {0,0,0,0,0,1} & {0,1,1,0,0,1}

5 vector<vector<int> > parent2 = p[randomind(engine)];

6
7 // ab crossing-over

8 // first parent
9 if (randomnum(engine) <= ab_r)

10 swap(parent1[0][1], parent1[1][1]);

11 // second parent
12 if (randomnum(engine) <= ab_r)
13 swap(parent2[0][1], parent2[1][1]);

14
15 // bc crossing-over

16 if (randomnum(engine) <= bc_r)
17 swap(parent1[0][2], parent1[1][2]);

18 if (randomnum(engine) <= bc_r)
19 swap(parent2[0][2], parent2[1][2]);

20
21 // ef crossing-over

22 if (randomnum(engine) <= ef_r)
23 swap(parent1[0][5], parent1[1][5]);

24 if (randomnum(engine) <= ef_r)
25 swap(parent2[0][5], parent2[1][5]);

26
27 vector<int> chr1{randomnum(engine) < 0.5 ? 0 : 1, randomnum(engine)

↪→ < 0.5 ? 0 : 1 };

28 vector<int> chr3{randomnum(engine) < 0.5 ? 0 : 1, randomnum(engine)

↪→ < 0.5 ? 0 : 1 };

29
30 vector<int> variants1;

31 vector<int> variants2;

32
33 for (int j=0; j<3; ++j) {

34 variants1.push_back(parent1[chr1[0]][j]);
35 variants2.push_back(parent2[chr1[1]][j]);
36 }
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37
38 variants1.push_back(parent1[randomnum(engine) < 0.5 ? 0 : 1][3]);

39 variants2.push_back(parent2[randomnum(engine) < 0.5 ? 0 : 1][3]);

40
41 for (int j=4; j<6; ++j) {

42 variants1.push_back(parent1[chr3[0]][j]);
43 variants2.push_back(parent2[chr3[1]][j]);
44 }

45
46 recombined[i].push_back(variants1);
47 recombined[i].push_back(variants2);
48 }

49 return recombined;

50 }

51
52 void print_data(int g, ofstream &o, map<int, vector<vector<int> > > &p,

↪→ double &n) {

53 vector<vector<double> > coefs;

54 vector<double> zeroes;

55 zeroes.assign(6,0.);

56
57 double nn = 2.*n; // number of alleles

58
59 for (int i=0; i<6; ++i)

60 coefs.push_back(zeroes);
61
62 for (int i=0; i<5; ++i) {

63 for (int j=i+1; j<6; ++j) {

64 double freq1 = 0.;

65 double freq2 = 0.;

66 for (int k = 0; k<n; ++k) {

67 for (int l=0; l<2; ++l) {

68 freq1 += p[k][l][i];

69 freq2 += p[k][l][j];

70 if (p[k][l][i] ==1 && p[k][l][j] == 1)

71 coefs[i][j]++;

72 }

73 }

74 coefs[i][j] /= nn;

75 coefs[i][j] -= (freq1/nn * freq2/nn);
76 }

77 }

78
79 o << g << "\t";

80 for (int i=0; i<5; ++i) {

81 for (int j=i+1; j<6; ++j) {

82 o << coefs[i][j] << "\t";

83 }

84 }

85 o << endl;

86 }
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Function recombine() receives a reference to population and population
size and an empty map called recombined is declared as a holder for in-
dividuals of the next generation (lines 1–2). The for loop spanning lines
3–48 iterates population-size times. It begins by picking two random parents
from the population (lines 4–5). Then, crossing-over among linked loci on
the parental chromosomes is implemented. Let us focus on cross-over events
between loci a and b. For parent 1, we ask if a random number between 0
and 1 inclusive is less than or equal to the recombination rate between a and
b. If so, we conclude that cross-over has occurred and the alleles at the a and
b loci will be swapped between the two homologs. To accomplish this the
standard algorithm swap( ) is used; the arguments to this function are the
alleles at position 1 (the b locus allele) of the first parent’s two chromosomes.
The algorithm will, as named, swap these two alleles within their respective
vectors. The same task is performed for parent 2 and again for linked loci b
and c and e and f (lines 11–25). Lines 27–31 choose between the two parental
homologs of each parent for chromosome 1 and 3 and declare two temporary
vectors to contain the parental contributions from each parent. Lines 33–44
add the allelic contributions of each parent to these vectors. Finally, the map
to be returned (recombined) is populated with individual i’s alleles. I leave it
for the reader to decipher the mechanics of the function print data, simply
stating that the function calculates LD coefficient D for each unique pair of
loci and prints to file.

5.2.2 Results

I ran multilocus ld two times each for Ne = 10,000 and Ne = 100. For the
larger population size, the decay of LD among all three pairs of linked
loci closely follows the decay of LD expected according to Eq. 5.5 (Fig. 5.8,
left-hand panels). When Ne = 100, however, much greater generation-to-
generation variance of LD coefficients is observed. The results for Dab
(Fig. 6.7, upper right-hand panel) are illustrative. In the case of the simu-
lation tracked by a gray line, Dab declines rapidly and has dropped from 0.25
to around -0.075 by 175 generations, after which it rapidly rises to nearly 0.1
by 200 generations. The simulation tracked by the black line hews closely
to the expected line, but just after 150 generations flat lines at Dab = 0 due
to the loss of an allele. The frenetic behavior and greater disparity between
observation and expectation of the small population’s values of D are the
results of genetic drift. Small population size leads to large swings in allele
frequencies, which are components of Eq. 5.1. In the most extreme case, one
of the alleles is lost from the population. Because the program calculates all
LD coefficients with reference to the 1–1 haplotype, if the ”1” allele is lost at
locus a or b all terms in Eq. 5.1 are zero and Dab therefore remains zero.



122 5 Meiotic Recombination

Dab

0.2

0.1

0

-0.1

Ne = 10,000 Ne = 100

0.2

0.1

0

-0.1

0            50         100       150       200
generation

0.2

0.1

0

-0.1

0            50         100       150       200
generation

Dbc

0            50         100       150       200
generation

Def

0.25

0.20

0.15

0

0.05

0.10

0            50         100       150       200
generation

0            50         100       150       200
generation

0.25

0.20

0.15

0

0.05

0.10

0.2

0.1

0

-0.1

0            50         100       150       200
generation

Fig. 5.8 Decay of linkage disequilibrium (LD) between three pairs of linked loci for effective
population sizes of 10,000 and 100. In each graph, the dashed curve shows the expected
decay of LD according to Eq. 5.5. In each case, results of two independent simulations are
shown (gray and black solid lines) and D = 0.25 at generation 0. When Ne = 10,000 results
conform to theoretical expectations rather well (left column); this is not true of the small
Ne = 100 population (right column). Both Dab and Dbc (Ne = 100) remain at 0 in one of the
two replicates due to loss of an allele

What about the LD coefficients between unlinked loci? Take Da f as an
example. Like all of the loci, Da f begins at 0.25, but should rapidly decline
since r = 0.5 among unlinked loci. Table 5.1 shows the value of Da f for the
first ten generations of evolution for the same four simulations summarized
in Fig. 5.8. When Ne = 10,000, simulated decay of LD among unlinked loci
follows expectations closely. On the other hand, Da f can oscillate somewhat
dramatically when effective population size is only 100. I have bold-faced
a few cells in the Ne = 100 simulation results to show that, even among
unlinked loci, the influence of genetic drift allows appreciable values of LD
to reemerge.
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Table 5.1 Expected and simulated decay of LD among unlinked loci a and f. Bold-faced
values highlight notable deviations from the long-term decline of LD due to the imperfect
sampling associated with small population size

Ne = 10,000 Ne = 100
Generation Expected Sim 1 Sim 2 Sim 1 Sim 2

0 0.2500 0.2500 0.2500 0.2500 0.2500
1 0.1250 0.1280 0.1265 0.0920 0.1095
2 0.0625 0.0655 0.0640 0.0708 0.0632
3 0.0313 0.0277 0.0301 0.0292 0.0331
4 0.0156 0.0150 0.0110 -0.0145 0.0129
5 0.0078 0.0076 0.0036 0.0122 0.0123
6 0.0039 0.0048 0.0024 -0.0140 0.0421
7 0.0020 0.0046 -0.0025 0.0087 0.0238
8 0.0010 0.0017 -0.0013 0.0250 0.0120
9 0.0005 0.0027 0.0003 0.0341 0.0290

(1)
The output from multilocus ld showsdecliningD for allpairs of loci,
including those that are unlinked such as loci a and f (Fig. 5.7a). This
happens despite the fact that function recombine( ) only resolves re-
combination via crossing-over. Look at the definition of recombine( )
and work out why D for unlinked loci declines each generation (as
it should). In other words, how is independent assortment accom-
plished in this code?

(2)
Add to the code of multilocus ld.cc to simulate epistatic selection
in which the relative fitness of the four possible genotypes at loci a
and b are w0−0 = 1, w1−1 = 0.975, w0−1 = 0.95, and w1−0 = 0.95.

5.3 Forward Simulation of Crossing-Over Along a Sequence

We now turn our attention to modification of the forward simulation pro-
gram FORTUNA. Specifically, we will add the potential for crossing-over
along the simulated sequence. The simulation coded in Sect. 5.2 modeled
the occurrence of crossing-over in a binary manner (i.e., either crossing-over
occurred between loci a and b or it did not). Because we will now work
with sequences holding many polymorphic loci rather than pairs of poly-
morphic loci, added realism is required. Specifically, we must now consider
the possibility of multiple cross-over events between any two loci that af-
fect the haplotype of the transmitted chromosome. To do so, we will model
the number of cross-over events using a Poisson distribution for the same
reasons we used a Poisson-distributed random variable to model mutation:
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probability of cross-over at a specific nucleotide is very small and the num-
ber of nucleotides (each a chance/trial for occurrence of cross-over) are quite
large. This adjustment relative to what we did in Sect. 5.2 is important be-
cause an even number of cross-overs between two loci will not change the
combination of alleles at these loci. Failure to account for this fact would
lead to simulation output that harbors inaccurate recombinant haplotypes.
In particular, alleles at distantly linked loci would switch too often.

For the reader familiar with basic experimental genetics, a review of the
three-point test cross will remind her that empirical estimation of recombi-
nation rate requires correction for those small number of instances where
a transmitted chromosome has incurred two cross-overs between the two
outer loci. For example if three loci are found in the order a-b-c and one
cross-over occurs between a and b during the same meiosis that a cross-over
occurs between loci b and c, test cross results will provide evidence for re-
combination within the a-b and b-c intervals but initially fail to identify the
fact that two cross-overs occurred between the interval a-c. By allowing for
the possibility of multiple cross-overs and ensuring that these rare events
are resolved correctly, we obtain haplotypes that are in keeping with what
we would expect to find in nature.

5.3.1 Additional Parameters Required to Model
Recombination Along a Sequence

Two boolean parameters—useRec and useHotRec—will be used to control
whether the simulation incorporates recombination and a recombination
hotspot, respectively. Baseline recombination rate and the recombination
rate at the hotspot are stored in the parameters recrate and hotrecrate,
respectively. In the case that a recombination hotspot is simulated, the start-
ing and ending positions of the hotspot within the simulated sequence are
specified by hotrecStart and hotrecStop. Beginning with this iteration
of FORTUNA, we introduce code that calculates window-based statistics
instead of statistics for the entire sequence. This requires three additional
parameters: (1) getWindowStats, which instructs the program to calculate
window-based statistics or not; (2) windowSize, which specifies the length in
base pairs of each window; and (3) windowStep, which specifies the number
of basepairs to slide thewindow forward. Thenext listing shows theupdated
parameters file as well as the values that will be used to simulate the results
detailed at the end of this section. Note that we are modeling a population
of constant size, which is why the demography parameter is set to 0.

parameters

1 popsize 10000

2 mutrate 1e-08

3 useRec 1
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4 useHotRec 1

5 recrate 1e-09

6 hotrecrate 1e-06

7 hotrecStart 80000

8 hotrecStop 81999

9 seqlength 2e05

10 sampsize 100

11 sampfreq 25

12 demography 0

13 dem_parameter 0

14 dem_start_gen 0

15 dem_end_gen 100002

16 carrying_cap 0

17 useMS 1

18 getWindowStats 1

19 windowSize 10000

20 windowStep 5000

21 mscommand ./ms 20000 1 -t 80 >ms_output

The next two listings provide the additional code added to files params.h
and params.cc to properly load values of the new parameters provided in
the parameters file.

params.h: additions for this chapter

1 extern double recrate;

2 extern double hotrecrate;

3 extern bool useRec;

4 extern bool useHotRec;

5 extern int hotrecStart;

6 extern int hotrecStop;

7 extern bool getWindowStats;

8 extern int windowSize;

9 extern int windowStep;

params.cc: additions for this chapter

1 // new parameter declarations

2 int hotrecStart, hotrecStop, windowSize, windowStep;

3 double recrate, hotrecrate;

4 bool useRec, useHotRec, getWindowStats;

5
6 // populate parameters with values

7 recrate = atof(parameters["recrate"].c_str());
8 hotrecrate = atof(parameters["hotrecrate"].c_str());
9 hotrecStart = atoi(parameters["hotrecStart"].c_str());

10 hotrecStop = atoi(parameters["hotrecStop"].c_str());
11 windowSize = atoi(parameters["windowSize"].c_str());
12 windowStep = atoi(parameters["windowStep"].c_str());
13 useRec = atoi(parameters["useRec"].c_str());
14 useHotRec = atoi(parameters["useHotRec"].c_str());
15 getWindowStats = atoi(parameters["getWindowStats"].c_str());
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5.3.2 Modifying population.h

The primary changes to population.h include (1) modification of the func-
tion get sample() to allow calculation ofwindow-based summary statistics;
(2) a new function recombine() that simulates cross-over events; and (3) nec-
essary changes to the class constructor.

In the constructor, conditional ifs are used to control whether or not the
total recombination pressure (r sequence; line 2) should be calculated. If
recombination in the absence of a hotspot is modeled, r sequence is sim-
ply the recrate times seqlen (line 59). On the other hand, if a hotspot is
modeled, calculation of r sequence requires consideration of the disparate
recombination rates and the length of sequence for which each rate holds
(lines 55–58). With r sequence in hand, the Poisson random variable gen-
erator (randomrec; line 3) is parameterized in line 60. In addition, we add
lines that open the output file and print the appropriate column headers
depending on whether summary statistics will be calculated for windows
(lines 63–68) or for the entire sequence as in earlier chapters (line 69). In
the case of window-based summary statistics, the column headings consist
of the generation, the specific statistic, and the mid-point of each window.
For example, if a 200,000 bp sequence is simulated and windows 10,000 bp
wide are used with a step size of 5000 bp, the column headings for windows
will run from w5000 for the [0,10000]bp window to w195000 for the [190000,
200000]bp window.

Regarding summary statistic calculation, the function get sample() is
modified to allow for calculation of window-based statistics. Lines 7–8 use
the populated map<int, int> allele counts, where the key is the position
and thevalue is thenumber of sequences in the samplewith thederived allele
at that position, to populate the positions vector with ordered positions of
alleles. The block executed when getWindowStats is true (lines 10–19) calls
the get window stats() function defined in summarystats.h and prints the
results (returned as the map stats) to the summary statistics output file.
Note that the key in stats is the name of the statistic (e.g., S) and its value
is a vector of this statistic calculated for each window (see summarystats.h
listing below for detail).

The intrasimulation constructor for class Individual, called within the
function reproduce() includes a call to the new function recombine() as
its last argument (line 49). Function recombine() (lines 26–46) determines
the positions of break points (i.e., chiasmata) formed between the two chro-
matids already selected for transmission to the new individual in function
mutate(). If useRec is false, an empty vector is returned as an argument
to the Individual constructor and no recombination will take place. On the
other hand, if recombination is simulated, the number of chiasmata are
drawn from randomrec (line 29). The block in lines 31–39 is executed, which
implements the bias toward break points within the hotspot via Eq. 5.7 as
detailed in section 5.1.3. In the absence of a recombination hotspot, random
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break points along the sequence length are chosen from randompos (line 40).
Finally, the break points are sorted in ascending order (line 43) and returned
to the intrasimulation constructor (line 45).

population.h: additions for this chapter

1 // additions to private variables

2 double r_sequence;
3 poisson_distribution<int> randomrec;

4
5 // additions, modifications to private function get_sample()
6 vector<int> positions;

7 for (auto iter = allele_counts.begin(); iter != allele_counts.end();
↪→ ++iter)

8 positions.push_back(iter->first);
9

10 if (getWindowStats) {

11 map<string, vector<double> > stats = get_windowStats(positions,
↪→ sample, S); // function to be added to summarystats.h

12 for (auto iter = stats.begin(); iter != stats.end(); ++iter) {

13 sumstat_file << gen << " ";

14 sumstat_file << iter->first << " ";

15 for (auto iter2 = (iter->second).begin(); iter2 !=
↪→ (iter->second).end(); ++iter2)

16 sumstat_file << *iter2 << " ";

17 sumstat_file << endl;

18 }

19 } else { // previous code in this block

20 double pi = get_pi(sample);
21 ...

22 sumstat_file << gen << " " << pi << " " << watterson << " " <<

↪→ tajimasd << endl;

23 }

24
25 // new private function recombine()

26 vector<int> recombine() {

27 vector<int> breakpoints;

28 if (useRec) { /// if false, empty vector passed to Individual

↪→ constructor

29 int chiasmata = randomrec(e);

30 for (int i=0; i<chiasmata; ++i) {

31 if (useHotRec) {

32 double c = randomnum(e);

33 if (c < hotrecStart * recrate / r_sequence )

34 breakpoints.push_back( c * r_sequence / recrate );

35 else if (c < (hotrecStop*hotrecrate -

↪→ hotrecStart*(hotrecrate-recrate)) / r_sequence)
36 breakpoints.push_back( (c*r_sequence +

↪→ hotrecStart*(hotrecrate - recrate)) / hotrecrate);

37 else
38 breakpoints.push_back( (c*r_sequence -

↪→ (hotrecStop-hotrecStart)*(hotrecrate-recrate) ) /
↪→ recrate );

39 } else {
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40 breakpoints.push_back(randompos(e));
41 }

42 }

43 sort(breakpoints.begin(), breakpoints.end());
44 }

45 return breakpoints;

46 }

47
48 // modification to reproduce() line

49 individuals.push_back(new Individual(individuals[parents[0]],

↪→ individuals[parents[1]], mutate(parents, gen), recombine()) );

50
51 // additions, modifications to constructor

52 Population () {

53 ...

54 if (useRec) { // new block

55 if (useHotRec) {

56 int hotspot_length = hotrecStop - hotrecStart + 1;

57 r_sequence = ( hotspot_length * hotrecrate ) + ((seqlength -

↪→ hotspot_length) * recrate);

58 } else
59 r_sequence = seqlength * recrate;

60 randomrec.param(poisson_distribution<int>::param_type(r_sequence));
61 }

62 ...

63 if (getWindowStats) { // new block

64 sumstat_file << "gen stat ";

65 for (int w=0; w + windowSize <= seqlength; w += windowStep)

66 sumstat_file << "w" << w+windowStep << " ";

67 sumstat_file << endl;

68 } else
69 sumstat_file << "gen pi watterson tajimasd" << endl; // old line

70 ...

71 }

5.3.3 Modifying individual.h

Resolution of the break points determined in the Population class func-
tion recombine() occurs during instantiation of the new object of class
Individual. The modified intrasimulation constructor accepts the break
points as input (next listing: line 35). If a transmitted sequence incurs a
new mutation (line 38), the positions of derived alleles in the sequence are
sorted in ascending order (line 40). After mutation is resolved, if one or more
break points were passed to the constructor, the new combination of alleles
in the transmitted sequences are determined by a call to the new function
resolve crossover() (lines 2–32).
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The work of the rather complicated function resolve crossover() is
summarized in Fig. 5.9 for the case of three break points. Essentially, the
break points divide each of the transmitted sequences into numbreaks + 1
segments. Then, every other segment (really, its derived alleles), beginning
with the second segment of each of the sequences, is swapped between
sequences. Figure 5.9a shows the setup, while Fig. 5.9b shows its resolution
for the specific case illustrated.

At the start of the function, the number of break points is calculated as
numbreaks (line 3), iterators for determination of segments are declared
(line 4), a map to hold the derived allele positions of each segment, and a
vector to store recombined sequences are declared (lines 5–6).Next,we loop
through the two transmitted sequences in turn (lines 8–18). The iterator

lower is initialized with the index of the first derived allele in a sequence
(line 9), after which a loop through the break point positions (lines 10–15)
identifies the index of the last derived allele position that is less than the po-
sition of the next break point (stored as iterator upper) using the standard
library algorithm upper bound() (line 11). The derived allele positions of
the segment are stored in the dummy vector newvec using standard library
function assign( ), lower is set to upper, and the derived alleles of the
segment are added to the segments map (lines 12–14). Finally, any derived
allele positions in the last segment downstream of the last break point are
determined (lines 16–17).

Thefinal loopof functionresolve crossover (lines 20–31) loopsnumbreaks
+ 1 times to build the recombined sequences. In the first pass, when the loop
variable i == 0, recombined sequences are first initialized with the derived
allele positions of each sequence’s first segment (line 22). In each subse-
quent iteration, derived allele positions of the opposite sequence’s segment
are appended to the recombined sequences if i%2 == 0 (lines 23–27) or the
original derived allele positions of the sequence are appended (lines 27–30).
The return value of this function is void because sequences are private

variables of class Individual and the function has modified these variables
internally.

individual.h: additions and modifications

1 // new private function
2 void resolve_crossover (vector<int>& breaks) {

3 int numbreaks = breaks.size();

4 vector<int>::iterator lower, upper;
5 map<int, vector<int> > segments;
6 vector<int> newvec;

7
8 for (int seq = 0; seq < 2; ++seq) {

9 lower = sequences[seq].begin();
10 for (int i=0; i<numbreaks; ++i) {

11 upper = upper_bound(sequences[seq].begin(),
↪→ sequences[seq].end(), breaks[i]);

12 newvec.assign(lower, upper);
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13 lower = upper;
14 segments[i + seq*(numbreaks+1)] = newvec;

15 }

16 newvec.assign(lower, sequences[seq].end());
17 segments[numbreaks + seq*(numbreaks+1)] = newvec;

18 }

19
20 for(int i=0; i<= numbreaks; ++i) {

21 if (i%2 == 0) {

22 if (i == 0) {sequences[0] = segments[0]; sequences[1] =

↪→ segments[numbreaks+1];}
23 else {

24 sequences[0].insert(sequences[0].end(), segments[i].begin(),
↪→ segments[i].end());

25 sequences[1].insert(sequences[1].end(),
↪→ segments[i+numbreaks+1].begin(),
↪→ segments[i+numbreaks+1].end());

26 }

27 } else{
28 sequences[0].insert(sequences[0].end(),

↪→ segments[i+numbreaks+1].begin(),
↪→ segments[i+numbreaks+1].end());

29 sequences[1].insert(sequences[1].end(), segments[i].begin(),
↪→ segments[i].end());

30 }

31 }

32 }

33
34 // modifications to intrasimulation constructor

35 Individual (Individual *p1, Individual *p2, vector<vector<int> >

↪→ mutation_results, vector<int> breakpoints) { // modified line

36 ...

37 for (int i=0; i<2; ++i) {

38 for (int j=1; j<mutation_results[i].size(); ++j) {

39 if (mutation_results[i][j] > 0) {

40 sequences[i].push_back(mutation_results[i][j]);
41 sort(sequences[i].begin(), sequences[i].end()); // new line

42 }

43 else
44 remove_allele_by_position(i, -1 * mutation_results[i][j]);
45 }

46 }

47
48 if (breakpoints.size() > 0) // new line

49 resolve_crossover( breakpoints ); // new line

50 }
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Fig. 5.9 Resolution of cross-over events between the two transmitted sequences that
define the genetic variation of a newly instantiated object of class Individual. (a) Break
point positions are stored in vector breaks. Lower-case letters represent positions of
derived alleles on the prerecombination sequences. Function resolve crossover() first
breaks each of the sequences into segments that hold the derived allele positions of
each segment; for example, segments[1] would hold the integers corresponding to the
positions of derived alleles b, d, and e. (b) The recombined chromosomes transmitted to the
new object of class Individual are built segment-by-segment, with every other segment
switching places between sequences

5.3.4 Window-Based Summary Statistics and Calculating the
Number of Haplotypes K in summarystats.h

File summarystats.h receives a new function—get windowStats()—that
calculates summary statistics for each window defined by the extern pa-
rameters windowSize and windowStep. In addition, we will now calculate
a new summary statistic—the number of unique haplotypes, K—for each
window. Because haplotypes are specific combinations of alleles along a se-
quence and crossing-over shuffles these combinations, it stands to reason
that K is at least partially a function of crossing-over.

Function get windowStats() is declared on line 2 and defined on lines
5–47. The function is called by a Population object and returns a map that
keys the name of a specific summary statistic (as a string) to the values
of that statistic for each window as a vector<double>. Line 6 declares the
variable stats that will be returned, followed by the declaration of three
variables internal to the function: (1) the map haplotypes, which stores the
haplotype of each window as a string and has sequence number as key; (2)
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windowBitSample, which stores the haplotypes of each window as a vector
of bitset and has window number as key; and (3) windowS, which stores the
value of S for each window.

Next, the function iterates through the sample of sequences passed by
reference to get windowStats( ) (lines 10–29). Lines 11 and 12 convert the
bitset representation of the entire sequence to a string and trim the string
to the size of the number of segregating sites in the sample, S, respectively.
Variable haps (line 13) temporarily stores the haplotypes of each window for
the sequence under consideration and count (line 14) will keep track of win-
dow number. With these preliminaries out of the way, the for loop on lines
15–27 iterates through eachwindow. Variable wl is the lower limit of thewin-
dow and controlled by the for loop (line 15), while variable wu is the upper
limit on the window (line 16). Lines 17–18 use upper bound() to find the it-
erators pointing to the first entry in positions that is greater than wl and wu,
respectively. To make sense of these lines, recall that the variable positions
passed by reference to get windowStats() is a vector<int> holding the
ordered positions of segregating sites in the sample. The iterators are then
converted to integers, which thanks to zero-based indexing correspond to
the positions in the substring b (line 12) that contain segregating sites within
the currently considered window (lines 19–20). The string-formatted hap-
lotype for this window is added to haps and the bitset version is added
to windowBitSample (lines 22–23). Because S for each window is constant
across the population, window-specific S is only calculated on the first pass
through the loop (lines 25–26). Finally, the vector<string> of haplotypes
for this sequence’s windows is assigned to the map haplotypes.

On line 32, a new map, haplotype counts is declared, which is used in the
subsequent for loop to count the frequency of each unique haplotypes for
a given window. This frequency count is not used in this chapter, but sets
the stage for its use in subsequent chapters. The for loop (lines 33–45) first
declares a map, counts this window, that takes a string representation of
a haplotype whose value is the number of times this haplotype is counted
in the sample and is populated on lines 35–36. Note that haplotypes[j][i]
is the string-based haplotype of sequence j and window i. Lines 38–40
allow window-specific calculation of π and θW , while lines 30, 37, and 41–
43, populate the map, stats, with the results that are passed back to the
Population object (line 46) for printing to the output file.

summarystats.h: additions for this chapter

1 // new function declaration

2 map<string, vector<double> > get_windowStats( vector<int> &positions,
↪→ vector<bitset<bitlength>> &sample, int S );

3
4 // new function definition

5 map<string, vector<double> > get_windowStats( vector<int> &positions,
↪→ vector<bitset<bitlength>> &sample, int S ) {

6 map<string, vector<double> >stats;
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7 map<int, vector<string> > haplotypes;

8 map<int, vector<bitset<bitlength> > > windowBitSample;

9 vector<double> windowS;

10 for (int i = 0; i < sample.size(); ++i) {

11 string a = sample[i].to_string();
12 string b = a.substr(bitlength-S, S);

13 vector<string> haps;

14 int count = 0;

15 for (int wl = 0; wl+windowSize<= seqlength; wl += windowStep) {

16 int wu = wl + windowSize;

17 vector<int>::iterator lowindex = upper_bound(positions.begin(),
↪→ positions.end(), wl);

18 vector<int>::iterator upindex = upper_bound(positions.begin(),
↪→ positions.end(), wu);

19 int l = lowindex - positions.begin();

20 int u = upindex - positions.begin();

21 haps.push_back(b.substr(l, u-l));

22 bitset<bitlength> btemp (b.substr(l,u-l));
23 windowBitSample[count].push_back(btemp); // by window #

24 count++;
25 if (i == 0)

26 windowS.push_back(u-l);
27 }

28 haplotypes[i] = haps;

29 }

30 stats["S"] = windowS;

31 int windowCount = haplotypes[0].size();

32 map<int, map<string, int> > haplotype_counts; // key is window number,

↪→ internal map consists of string and its counts for this window
33 for (int i = 0; i<windowCount; ++i) {

34 map<string, int> counts_this_window;
35 for (int j=0; j<sample.size(); ++j)

36 counts_this_window[haplotypes[j][i]]++;
37 stats["K"].push_back(counts_this_window.size());
38 double pi, wat;

39 pi = get_pi(windowBitSample[i]);
40 wat = get_watterson(windowS[i]);
41 stats["pi"].push_back(pi);
42 stats["wat"].push_back(wat);
43 stats["tajD"].push_back(get_tajimas_d(pi, wat, windowS[i]));

44 haplotype_counts[i] = counts_this_window;
45 }

46 return (stats);

47 }

It is important to note that the output file will contain several contiguous
rows with results from the same sampling generation. A portion of the
output from a simulation run for which window-based summary statistics
were calculated is shown in Fig. 5.10. Each sample produces five lines of
results in the output file—namely, window-specific values of the summary
statistics K, S, π, Tajima’s D, and θW . It is convenient to have one output file
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summary statistics 
for sample at 
generation 25

summary statistics 
for final sample at 

generation 100,000

values of statistic by window

25
25
25
25
25
50

... ... ... ... ... ...
...
...
...
...
...
...

...

...

...

...

...

100000
100000
100000
100000
100000

K

K

K
S

S
pi

pi

tajD

tajD

wat

wat

16 1615

1515

21 19 15

14

18
27

12
20

17
24

6.3057
0.6290
5.2150

4.9428
0.8093
3.8629

6.0022
0.8745
4.6356

3.9057 3.0754 1.9487
-0.9061
2.8972

-0.4655
3.6698

-0.1081
4.0561

gen stat w5000 w10000 ... w195000

Fig. 5.10 Annotated partial output file that demonstrates the structure of window-based
summary statistic reports output to the file sumstats by FORTUNA

and, when processing the results in R, it is simple to split the overall data set
into separate objects for each statistic based on the stat column.

5.3.5 Results

I ran three distinct forward simulations for comparison: (1) recombination
hotspot at 80–82 kbp along a 200 kbp segment using the parameter values
of the parameters file listed in Sect. 5.3.1; (2) uniform recombination rate,
implemented by changing parameter useHotRec to 0 in the parameters file;
and (3) no recombination, implemented by changing parameter useRec to 0
in the parameters file.

5.3.6 Effect of Recombination on the Number of Unique
Haplotypes, K

The presence of a recombination hotspot greatly increases the number of
unique haplotypes (K) locally but not globally. Figure 5.11a shows the dis-
tribution of K for overlapping 10 kbp windows across the 4000, n = 100
samples drawn from a simulated population each 25 generations over a
100,000-generation span. Throughout the simulation, the windows span-
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Fig. 5.11 K and Tajima’s D for overlapping 10 kbp windows under three different scenar-
ios: recombination hotspot, uniform recombination rate, and no recombination. (a) The
distribution of K at each window across the 4000 samples taken every 25 generations.
(b) The mean value of Tajima’s D at each window across the 4000 samples. About 95%
confidence intervals on themean estimates are shown as dashed lines but are very narrow

ning base pairs 75–85 kbp and 80–90 kbp possess roughly two times or more
haplotypes than other windows. These are the two windows that contain
the simulated recombination hotspot at 80–82 kbp. Uniform recombination
rate increases K globally relative to sequences simulated in the absence of
recombination, although the increase is rather slight (cf. two rightmost pan-
els of Fig. 6.10a). Before moving on to panel B of Fig. 5.11, we take a moment
to detail an R script that uses window-based output from FORTUNA in the
file sumstats to generate plots of the type shown in Fig. 5.11a.
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5.3.7 Visualizing the Distribution of a Summary Statistic
Across Simulations and by Window

The output file provides us with a time series of data for multiple windows
within the simulated sequence. This is good in that we have a multitude
of data to contemplate and analyze. However, the very first step in our ex-
ploration of the data—producing effective visualizations of the data—is a
difficult one. Our decision regarding the type of visualization we produce
depends most on the message we are attempting to convey. In the case of
Fig. 5.11a, I hoped to show as holistic a summary of the results as possible. I
did not want to simply graph the mean value of K across all 4000 replicates
versusmid-windowposition. Rather, I wanted to showvariance across repli-
cates, which meant I needed to display a distribution. Notice the difference
between panels A and B of Fig. 5.11. In Fig. 5.11b, I do graph the mean of a
statistic; it is distinctly less informative than panel A in my opinion. I chose
to use a tiled heat map. The column of colored tiles corresponding to a given
window on the x-axis visualizes the distribution of K values across the 4000
replicate simulations. The tiles are colored according to a white-black color
gradient, with light colors indicating low density and dark colors indicating
high density.

The following R script includes one functionwhose parameter is the name
of summary statistics output file named sumstats.

heatmap.r

1 library(ggplot2)
2 library(cowplot)
3 library(reshape2)
4
5 heatmap <- function(datafile="sumstats") {

6 d <- read.table(file = datafile, header = T);

7 dd <- split(d, d$stat)
8 size <- dim(dd$K)
9 numcol = size[2] - 2

10 kmat <- dd$K[,3:size[2]]
11 kmat2 <- matrix(0, nrow = max(kmat)+5, ncol = numcol)

12 for (i in 1:size[1]) {

13 for (j in 1:numcol) {

14 kmat2[kmat[i,j],j] <- kmat2[kmat[i,j],j] + 1

15 }

16 }

17 kmat2.melted <- melt(kmat2)

18 ggplot(kmat2.melted, aes(x = Var2, y = Var1, fill = value)) +

↪→ geom_tile() + coord_equal() + scale_fill_gradient(low="white",
↪→ high="black")

19 }

After reading in the data from sumstats, the function heatmap( ) splits
the data by type of summary statistic. Although the output file is amixture of
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results for different summary statistics (Fig. 5.10), the base split() function
allows us to quickly partition the data into statistic-specific data frames. For
example, the object dd (line 7) can be used to access the data for Tajima’s
D and K by using dd<currencydollar>tajD and dd<currencydollar>K,
respectively. In this case, we focus on dd<currencydollar>K, as K is the
statistic of interest.On line 10, the first two columns of dd<currencydollar>K
are removed because these hold the generation number and statistic type,
which are not needed to generate the heatmapofK alone.Next, on line 11,we
create a matrix of zeroes with column number equal to five greater than the
maximal value of K found across all samples and windows and row number
equal to window number. The nested for loops on lines 12–16 populate
this matrix, kmat2, which we subsequently ”melt” on line 17. kmat2.melted
produces a data framewith three columns: (1) rownumber, i.e.,K; (2) column
number, i.e., windownumberw; and (3) value, i.e., howmany timesK unique
haplotypes were found at window w. Note that in the ggplot function, we
use window number (the second column of kmat2.melted as the x-axis
variable because we want sequence position to run along the x-axis. To
utilize this function:

• open R
• set the working directory to the location of this script and the output file

sumstats

• load the function using source("heatmap.r")

• run heatmap( )

5.3.8 Effect of Recombination on Tajima’s D and Simulation
as Exploration

For the same set of three simulations—recombination with hotspot, uniform
recombination, and no recombination—recombination alone does not yield
statistically significant values of Tajima’sD on average (Fig. 5.11b). However,
close examination of these plots shows that (1) mean values of D for 10 kbp
windows are, on average, greater in the presence of uniform recombination
than in the case of no recombination and (2) the greatest mean value of D in
the presence of a recombination hotspot coincides with the position of the
hotspot. Given that the numerator of Tajima’s D is π−S/an, these two points
suggest that nucleotide diversity (π) is positively correlated with recom-
bination rate. Empirical data from the honey bee Apis mellifera—a species
with globally high recombination rate and great intragenomic variation in
recombination rate—corroborate this correlation (Beye et al. 2006; Liu et al.
2015).

This is a good example of the way in which simulations can be used to
move theoretical considerations forward. Empirical genomic data are the
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end result of numerous (often confounding) evolutionary factors. In the
simulations presented in this section, we have eliminated the influence of
demographic change and natural selection to focus on the effects of recom-
bination in isolation, which turn out to be increased K and slightly increased
values of π and Tajima’s D. This is not a strong result. It has not been veri-
fied through comprehensive exploration of parameter space. It may have no
bearing on the theory of evolution. But I hope you can see that toying exper-
imenting with some very basic code allows us to begin exploring ideas that
intrigue us but are difficult or impossible to assess with pure mathematical
analysis.

Ultimately, our ability to add and remove different evolutionary factors
and to vary the parameter values of those factors we do include provides
us with a rich, multidimensional space to explore. Simulation frees us a bit
to explore somewhat further reaches of the model and parameter spaces. In
turn, the hope is that insights gained from these computational experiments
can be applied to and contextualized by empirical data from nature. The toy
example presented here of course only hints at the deeper possibilities.
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6
Population Structure and Migration

There were other social consequences of the plague. After each successive
epidemic wave had passed, the gene flow between classes increased in in-
tensity. Cities found themselves depopulated and lowered their standards
for citizenship. Venice, normally very closed to foreigners, now granted
free citizenship to anyone who settled there for a year. Social mobility
increased, as surviving elites needed to replenish their ranks with fresh
blood. Relationships among cities altered because of the enormous demo-
graphic shifts wrought by the plague. The eventual emergence of Venice
as the core of the network system was in no small measure a consequence
of those demographic changes.1

– Manuel De Landa, A Thousand Years of Nonlinear History

6.1 Background and Theory

To this point we have modeled and simulated a single, panmictic population.
When devising a model to simulate, however, we frequently encounter the
need to model nonrandom mating due to mate choice based on phenotype,
geographical barriers to effective migration, ecological barriers to dispersal,
and many other causes. Imagine a room in which a solitary individual is
smoking a cigarette in one corner. Let intensity of cigarette smoke odor be
analogous to allele frequency. Due to diffusion of the odorant molecules
throughout the room—a process analogous to random mixing of mates
throughout a population—in short order all points in the room will smell
of cigarette smoke at similar intensity (Fig. 6.1a). Similarly, given sufficient
generations of random mating, allele frequencies will equilibrate at values

1 Quoted with permission. 2000, Zone Books, Brooklyn, NY.
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that hold across the entire population, i.e., there will not be pockets of indi-
viduals or sub-regions of the population range in which allele frequencies
differ substantially from those of other social, ecological, or geographical
stratifications of the population.

To put it in the terms of evolutionary genetics, a panmictic population
does not show population genetic structure, more commonly referred to sim-
ply as population structure. In a panmictic population, you expect estimated
allele frequencies to be the same regardless of the physical position within
the population from which the sample was taken. If a population is not
panmictic, genetic heterogeneity (i.e., structure) begins to emerge. Lack of
genetic population structure in empirical data supports a null hypothesis of
random mating and vice-versa. However, we must remember that popula-
tion structure can emerge for a diversity of reasons.

Now consider two adjacent but separate rooms, one with a cigarette
smoker and one in which 100 lemons are thrown and smashed against a
wall. Because there is no flow of air between the rooms, the two smells dif-
fuse to equilibrium within their respective rooms but there is no mixing of
odors (Fig. 6.1b). This is analogous to isolation by barrier, which commonly
leads to thefixationof distinct alleles (cigarette or citrus odor) in isolatedpop-
ulations (rooms). Now imagine you repeat the same scenario many times,
progressively enlarging an opening in the wall between the two rooms.
When the connection between the two rooms is very small (Fig. 6.1c), anal-
ogous to a modicum of gene flow, you detect a hint of cigarette smoke in
the lemon room and vice versa. Once the connection between the two rooms
becomes sufficiently large, however, the two rooms are as one (Fig. 6.1d);
without additional information, you would be hard pressed to determine
which room initially contained the smoker and which the lemons. These tri-
als are analogous to increasing gene flow (aka, effective migration) between
the two populations (rooms). Finally, consider a cigarette smoker smoking
outside. From a sufficient distance, no smell of cigarette is detected. How-
ever, as you approach the smoker, the intensity of cigarette smell becomes
stronger and stronger (Fig. 6.1e). This is analogous to isolation by distance
(IBD), in which the frequency of an allele is autocorrelated with distance.
This translates to a simple definition of IBD: individuals close to one another
are more genetically similar to each other than to those farther away.

Classical models of discrete populations (or subdivisions of populations
called demes), include island models as well as stepping-stone models of ef-
fective migration.2 The key parameters in both cases are (1) the number of
populations or demes, d, and (2) the migration rate m. The latter parameter
is defined as the fraction of a deme’s individuals this generation that are

2 Throughout this text (and in the extended version of FORTUNA developed in this
chapter), I will use the termdeme and population interchangeably;my justification for this
sloppy nomenclature is that you couldmodel networks of populations (metapopulations)
or semi-isolated subdivisions of one population (demes) using different parameter values
in the same program, FORTUNA.
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Fig. 6.1 Odorant diffusion as an analogy for gene flow. A burning cigarette releases C
odorants, analogous to one allele, while smashed lemons release L odorants, analogous to
an alternative allele at the same locus. (a) Analogy to a panmictic population. Given
sufficient time, C odorants become evenly distributed within the enclosed room. (b)
Analogy to isolation by barrier. In this case, an air-tight wall prevents the mingling of
alleles/odorants. (c) Analogy to minimal gene flow. A small break in the barrier allows a
small number of alleles/odorants to pass from one room to the other. (d) Analogy to high
gene flow. Despite the separate origins of cigarette smoke and lemon alleles/odorants,
given sufficient time, diffusion effectively eliminates the distinction between the rooms.
With sufficient gene flow, the two rooms/demes become a single, panmictic population.
(e) Analogy to isolation by distance. If a cigarette is smoked outside on a calm day, the
intensity of the allele/odorant increases with decreasing distance to the source

offspring of parents present in another deme in the previous generation;
another way to state this is that m is the fraction of a deme’s population
that emigrated from another deme. An island model is defined as a set of
demes in which each deme is connected to all other demes by some, per-
haps equal (or symmetric), value of m (Fig. 6.2a). A stepping-stone model
is defined as a set of demes in which only those demes adjacent to each
other may exchange migrants (Fig. 6.2b). Furthermore, for both the island
and stepping-stone model, we can make the distinction between conserva-
tive and proportional migration. In the conservative case, demes exchange the
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Fig. 6.2 Discrete models of migration. (a) A symmetric island model in which migration
rates between all demes are equal. For example, m1,3 =m2,1, where mx,y is the proportion of
offspring this generation in population y derived from parents present in population x the
previous generation. (b) A stepping stone model. Only adjacent demes—e.g., 1 and 2 as
well as 2 and 3—exchange migrants. (c) Conservative migration in which migration rates
are equal between demes even when Ne, proportional to the size of the circle denoting the
deme, is unequal. (d) Proportional migration in which the number of emigrants from a
deme to another is proportional to Ne of the source deme

same number of migrants, regardless of their population sizes (Fig. 6.2c); the
model is conservative in the sense that thismigration patternwill not change
Ne of either population. In the proportional case, emigrants are released from
a population as a function of Ne (Fig. 6.2d). Thus, a small population receives
a proportionally greater number of emigrants than a large population. Given
sufficient time, Ne of the two populations will become equal.

One of the more influential and intuitive models for thinking about pop-
ulation structure is the structured coalescent, (e.g., Nordborg 1997; Rice 2004,
Fig. 6.3). In this case, demes might be viewed as semi-permeable containers
where the genetic uniqueness of demes is negatively correlated with their
porosity to effective migration (i.e., gene flow). When considering two ran-
dom genes from the sample, there are now three possible events that could
happen to either of the lineages in the previous generation (i.e., looking
backwards): mutation, migration from one deme to another, or coalescence.
Note that coalescence requires both lineages exist in the same deme at the
same time. Interestingly, the formulas that identify fii—the probability that
two genes sampled from the same deme are identical by descent—and fi j—
the probability that two genes randomly sampled from separate demes are
identical by descent—take the form of moment-generating functions for the
random variable of time (T). This means we can calculate the expected time
to coalescence for genes sampled from the same deme (Ts) and those sam-
pled from different demes (Td) as well as the variances on these random
variables.

In the case of symmetric migration where d demes are connected by the
same rate of migration, m, and each population is of size N (Wakeley 2008):
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Fig. 6.3 A simple illustration of the structured coalescent modified from Fig. 3.13 of Rice
(2004). In present time, genes a− e are sampled from deme 1 and genes f −− j are sampled
from deme 2. In the illustrated case, lineage f moves/migrates from deme 1 to deme 2
roughly 1.5Ne generations in the past, while the lineage leading to the MRCA of genes
a−− f migrates to deme 2 roughly 5Ne generations ago. Theory underlying the structured
coalescent provides the probability that (1) two randomly sampled genes fromeither deme
1 ( f1,1) or deme 2 ( f2,2) are identical by descent and (2) two randomly sampled genes, one
from each deme, are identical by descent ( f1,2). As shown in this illustration and embodied
in Eqs. 6.1 and 6.2, on average genes sampled from the same deme have shorter coalescent
times (Ts) than genes sampled from separate demes (Td). However, this illustration also
shows that Ts for any pair of sequences sampled from deme 2 that includes gene f (e.g.,
f and i) is much greater (6Ne generations) than the expected value of E[Ts] = 2Ned, which
equals 4Ne generations in this case with two demes

E[Ts] = 2Nd (6.1)

E[Td] = 2Nd+
d−1
2m
, (6.2)

var(Ts) = 4N2d2+2N
(d−1)2

m
. (6.3)

Similar, though often more complex, expectations may be found in the
case of asymmetric migration.
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6.2 Forward Simulation of Two Demes

In this chapter, we focus on the simulation of discrete demes separated from
each other by user-specified migration rates, mij, which specify the fraction
of individuals in deme j that are immigrants from deme i this generation.

6.2.1 Two Formerly Independent Demes Begin Exchanging
Migrants

We start with a simple example, in which two demes of equal population
size are generated by coalescent simulation. Then, beginning at the first gen-
eration of the forward simulation the two demes begin exchanging migrants
at user-specified rates. We will use simulation of this example to corroborate
the often stated rule of thumb that if Nem > 1, the two demes will act as one
panmictic population (Spieth 1974). Nem is an important compound parameter
that has an intuitive interpretation as the number of migrants to the deme each
generation. Consider Fig. 6.1b–d once again. We would like to confirm that
onemigrant between demes is the threshold at which the analogy illustrated
in Fig. 6.1d manifests, i.e., an underwhelming barrier to gene flow leads to
a panmictic population. Surely, Nem of 1 is too small to affect the genetic
makeup of either deme.

Although the modeled scenario is simple, we must now simulate two ob-
jects of the Population class at once. In order to make this more manageable
in the long run, we (1) create a Metapopulation class that holds a vector of
pointers to the individual demes (each an object of class Population); (2)
substantially revise parameters and params.cc; and (3) create a Matrix class
that efficiently stores and accesses the matrix of migration rates between all
demes. As in previous chapters, the changes will be explicitly documented,
but I encourage you to visit this volume’s website for the full source files
used in this chapter as this time some rather radical changes are being made
to the previously documented code. This may be particularly true of this
chapter as the changes and additions are substantial.

6.2.1.1 Reading Parameters for More Than One Population

We begin with a full listing of the new form of the parameters file.

parameters // new format w/ global and deme-specific parameters

1 mutrate 1e-08

2 useRec 1

3 useHotRec 1

4 recrate 1e-09
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5 hotrecrate 1e-06

6 hotrecStart 80000

7 hotrecStop 81999

8 seqlength 2e05

9 sampsize 100

10 sampfreq 25

11 getWindowStats 1

12 windowSize 10000

13 windowStep 5000

14 pop_num 2

15 modelMigration 1

16 migration_rates 0. 0.00001 0.00001 0.

17 runlength 5000

18 DEME /// 0

19 popsize 10000

20 demography 0

21 birthgen 0

22 extinctgen 25000

23 dem_parameter 0

24 dem_start_gen 0

25 dem_end_gen 100000

26 carrying_cap 0 0 0

27 useMS 1

28 mscommand ./ms 20000 1 -t 80 >ms_output
29 DEME /// 1

30 popsize 10000

31 demography 0

32 birthgen 0

33 extinctgen 25000

34 dem_parameter 0

35 dem_start_gen 0

36 dem_end_gen 100000

37 carrying_cap 0 0 0

38 useMS 1

39 mscommand ./ms 20000 1 -t 80 >ms_output

Lines 1–17 are extern variables, global in the sense that these parameter
values apply to all demes. While lines 1–13 and the parameter values they
specify are of the same name and meaning as previously used, we now
add pop num to specify the number of demes simulated (line 14), the bool

modelMigration that can switch simulation of migration off (0) or on (1)
(line 15), migration rates to populate the migration rate matrix (line 15), and
runlength to specify the number of generations to run the simulation (line
17). Previously, this was entered as an argument to program execution. As
shown, the parameter value of migration rates will generate a migration
matrix stored as an object of Matrix class and this form:

[
m0,0 m0,1
m1,0 m1,1

]
=

[
0 0.0001

0.0001 0

]
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In other words, the first two numbers of migration rates specify the
first row of migration rates (from deme 0 to all demes), and the second two
numbers the second row.

The remainder of parameters specifies a block of deme-specific param-
eter values for each deme, with each block led by a line that contains the
uppercase word DEME (lines 18 and 29). Only the first pop num demes speci-
fied will be considered by the program. Thus far, the only new parameters
in these blocks are birthgen and extinctgen. birthgen is set to zero for
both demes because simulation begins with both demes active/extant. More-
over, because we want to simulate each population for the duration of the
program, extinctgen needs to be set to a value greater than or equal to
runlength. However, these two parameters provide us with the capacity to
introduce or eliminate populations intrasimulation. Note that useMS is set to
1 for both demes because we begin with coalescent-simulated populations
in each case. Below, we will also create demes through population splitting
or merger. We could set mscommand differently for the two populations with
the warning that popsize must be adjusted accordingly and that mutrate
is the same for both populations once the forward-in-time simulation be-
gins; this means that the -t flag should also be adjusted appropriately in the
mscommand. As an explicit example, if we wished to model deme 1 as consist-
ing of 5000 rather than 10,000 diploid individuals, the appropriate mscommand
would be ./ms 10000 1 -t 40 >ms output, which reflects the requirement
of just 10,000 sequences and θsequence = 4Neμ = 4×5000×10−8×200,000 = 40.
Furthermore, we would set popsize to 5000.

In order to intake parameter values from the newly formatted parameters

file, we need to modify params.cc as well. First, we look at modifications to
the function read parameters file(). Recall that this function simply reads
each line of the parameters file and stores each line in a map, where the key
is the parameter name and the value is a string of the parameter value(s).

params.cc: read parameters file( ) update; modifications to params.h

1 map<int, map<string, string> > read_parameters_file(const string

↪→ &parameters_fn)
2 {

3 map<int, map<string, string> > params_by_block;
4 map<string,string> params;

5 ifstream paramfile(parameters_fn.c_str());
6 string line;

7 int block = -1;

8 regex query("DEME");

9 while(getline(paramfile, line)) {

10 istringstream iss(line);

11 string key, nextone, value;

12 iss >> key;

13 if (regex_search(key, query)) { // check if entering next deme block

14 params_by_block[block] = params;

15 params.clear();

16 ++block;
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17 } else {

18 while (iss >> nextone)

19 value += nextone + " ";

20 params[key] = value;

21 }

22 }

23 params_by_block[block] = params; // assign values for final deme

24 return params_by_block;
25 }

26 map<int, map<string, string> > p = read_parameters_file("parameters");
27
28 //params.h
29 extern vector<string> mscommand;

30 extern vector<bool> useMS;

31 extern map<int, vector<int> > pop_schedule;
32 extern bool trackAlleleBirths;

33 extern int diploid_sample;
34 extern int printhapfreq;

Much of this code remains the same as before and is included solely for
context. The changes are motivated by our need to account for the blocks
of deme-specific parameters in the parameters file. To this end, we declare
a new variable block and define it as -1 (line 7). This indexing variable
will assign parameters read to separate blocks, where -1 is the block of
”global” variables and blocks 0 ... n are blocks of variables specific to
demes 0 through n. Each block of read-in parameters is again stored as a
map<string, string>, which is then indexed by block and returned in the
form of a map<int, map<string, string> > container (line 1).

Recall that lines in the parameters file that include theword DEME indicate
subsequent lines that specify parameter values specific to a deme. Thus, we
need to define a regex query to search for this word in each line (line 8)
and, as we move through the lines of the parameters file (lines 9–22), do the
following each time the query is matched (line 13): (1) add the accumulated
map<string, string> params to the container params by block using the
current value of block as the key; (2) clear params; and (3) increment block
(lines 14–16). The function call of line 26 then stores the returned map as
variable p. Note that the new parameters added to this chapter are also
declared in params.h (lines 29–34).

The other major set of changes we need to make to params.cc are to de-
clare (without defining) all extern variables (lines 2–7) andwrite a new func-
tion thatwill process the map named p returned by read parameters file().
Our need to create containers of deme-specific variables (indexed by deme
number) motivates the creation of this function, process parameters( )

(lines 9–44).

params.cc: process parameters()

1 // new and updated parameter declarations

2 int pop_num, runlength;
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3 vector<double> m;

4 vector<string> mscommand;

5 vector<bool> useMS;

6 vector<int> birthgen, extinctgen;

7 map<int, vector<int> > pop_schedule;
8
9 int process_parameters() { // replaces old version of function

10 for (auto iter = p.begin(); iter!=p.end(); ++iter ) {

11 map<string, string> parameters = iter->second;

12 if (iter->first == -1) { // block of global parameters

13 mutrate = atof(parameters["mutrate"].c_str());
14 recrate = atof(parameters["recrate"].c_str());
15 hotrecrate = atof(parameters["hotrecrate"].c_str());
16 useRec = atoi(parameters["useRec"].c_str());
17 useHotRec = atoi(parameters["useHotRec"].c_str());
18 hotrecStart = atoi(parameters["hotrecStart"].c_str());
19 hotrecStop = atoi(parameters["hotrecStop"].c_str());
20 sampsize = atoi(parameters["sampsize"].c_str());
21 seqlength = atof(parameters["seqlength"].c_str()); // covernsion

↪→ using atof() enables use of e notation in parameters file
22 sampfreq = atoi(parameters["sampfreq"].c_str());
23 getWindowStats = atoi(parameters["getWindowStats"].c_str());
24 windowSize = atoi(parameters["windowSize"].c_str());
25 windowStep = atoi(parameters["windowStep"].c_str());
26 pop_num = atoi(parameters["pop_num"].c_str());
27 runlength = atoi(parameters["runlength"].c_str());
28 m = get_multi_double_param("migration_rates", parameters);

29 } else { // block of deme parameters

30 popsize = atoi(parameters["popsize"].c_str());
31 demography = get_multi_int_param("demography", parameters);

32 dem_parameter = get_multi_double_param("dem_parameter",
↪→ parameters);

33 dem_start_gen = get_multi_int_param("dem_start_gen", parameters);

34 dem_end_gen = get_multi_int_param("dem_end_gen", parameters);

35 carrying_cap = get_multi_int_param("carrying_cap", parameters);

36 birthgen.push_back( atoi(parameters["birthgen"].c_str()) );

37 extinctgen.push_back( atoi(parameters["extinctgen"].c_str()) );

38 useMS.push_back( atoi(parameters["useMS"].c_str()) );

39 mscommand.push_back( parameters["mscommand"] );

40 pop_schedule[iter->first] = create_pop_schedule();
41 }

42 }

43 return 1;

44 }

45
46 int good_parameters = process_parameters();
47 double* a = &m[0]; // Matrix takes array argument

48 Matrix<double> mig(pop_num, pop_num, a);

Lines 1–8 declare all variables listed in params.h. Because the values of
deme-specific parameters are potentially different among demes for useMS,
mscommand, birthgen, extinctgen, and pop schedule, we store them in con-
tainers. In the case of the first four, we use a vector of the appropriate type
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(lines 5–7, 36–39) and the values within each vector are indexed by deme
number. For pop schedule, the by-generation population size is stored in a
vector<int> that is the value of a map whose key is the population number
(lines 7, 40). The function is called at line 46 and the migration matrix mig is
instantiated as a Matrix object3 (lines 47–48) using the migration rates listed
in the parameters file (lines 47–48).

6.2.1.2 Class Metapopulation

We now introduce a new class, Metapopulation, which coordinates the sim-
ulation of multiple objects of the class Population—thought of as demes or
populations depending on the simulated model. Before proceeding to the
class definition however, we take care of some modifications necessary to
the main source file:

fortuna.cc //modifications

1 ...

2 #include "metapopulation.h"

3 #include "matrix.h"

4 ...

5 mt19937 engine2(time(0));
6 Metapopulation::f = engine2;

7 ...

8 cout << "MIGRATION matrix:" << endl;

9 mig.print_matrix();
10 Metapopulation meta;

11
12 for (int i =0; i < runlength; ++i) {

13 meta.reproduce_and_migrate(i);
14 if (i % 25 == 0) { cout << "gen " << i << endl;}

15 }

16 meta.close_output_files();
17 return 0;

18 }

19
20 // additional static variables for metapopulation class
21 mt19937 Population::e;

22 mt19937 Metapopulation::f;

We include the Metapopulation and Matrix class header files (lines 2–3)
and create a separate Mersette pseudo-random number generator f for use
in the Metapopulation object (lines 5–6, 22). The migration matrix is printed
to STDOUT (lines 8–9) and a Metapopulation object is instantiated in line 10.
Because we now specify a parameter runlength in the parameters file, the
for loop from lines 12–15 invokes this variable. Any arguments to the pro-

3 matrix.h defines Matrix objects and the functions used to access and change their cell
values; see online code for the file if interested in its details.
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gramcallwill be ignored. Each iteration of this loop calls the Metapopulation
member function reproduce and migrate(), which takes the current gen-
eration as its argument (line 13) and the current generation is printed to
STDOUT every 25 generations (line 14). Note that this program can still be
used to simulate a single population; you need to only change parameter
pop num to 1 and any DEME blocks beyond the first one will be ignored.

The name of the class does not imply that we are necessarily modeling a
metapopulation in the technical, biological sense.

metapopulation.h

1 #ifndef METAPOPULATION_H
2 #define METAPOPULATION_H
3
4 class Metapopulation {

5
6 private:

7 vector<Population*> populations;

8 uniform_real_distribution<double> random01;

9
10 public:

11 void reproduce_and_migrate(int gen) {

12 // reproduction within all extant demes

13 // AND check for birth/extinction of population

14 for (int i=0; i<pop_num; ++i) {

15 if ((*populations[i]).get_extant()) {

16 if (extinctgen[i] == gen)

17 (*populations[i]).set_extinct();
18 else
19 (*populations[i]).reproduce(gen);
20 }

21 else {

22 if ( birthgen[i] == gen ) {

23 (*populations[i]).set_extant();
24 (*populations[i]).reproduce(gen);
25 }

26 }

27 }

28
29 // migration among all demes

30 for (int i=0; i<pop_num; ++i) {

31 if ( (*populations[i]).get_extant() ) {

32 for (int j=0; j < pop_num; ++j) {

33 if ( (*populations[j]).get_extant() ) {

34 double Nm = mig[i][j] * pop_schedule[j][gen];
35 if (Nm < 1) {

36 if(random01(f) < Nm)

37 Nm = 1;

38 else
39 Nm = 0;

40 }

41 else
42 Nm = floor(Nm);
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43
44 for (int k=0; k<Nm; ++k) {

45 vector<vector<int>> v1 =

↪→ (*populations[i]).get_sequences(k);
46 (*populations[j]).add_immigrant( v1 );

47
48 // check for new alleles introduced to population j

49 for (int m = 0; m < 2; ++m) {

50 vector<int> v2 =

↪→ (*populations[j]).get_allele_positions();
51 vector<int> diff;
52 set_difference(v1[m].begin(), v1[m].end(),

↪→ v2.begin(), v2.end(), inserter(diff,
↪→ diff.begin()));

53 for (auto q:diff)
54 (*populations[j]).insert_new_allele(

↪→ (*populations[i]).get_allele_info(q) ) ;

55 }

56 }

57 (*populations[i]).remove_emigrants(Nm);
58 } else continue;

59 }

60 } else continue;

61 }

62 if ( (gen+1) % sampfreq == 0)

63 for (int i=0; i<pop_num; ++i)

64 if ((*populations[i]).get_extant())
65 (*populations[i]).sample(gen);
66 }

67
68 void close_output_files() {

69 for (auto iter = populations.begin(); iter != populations.end();
↪→ ++iter)

70 (*iter)->close_output_files();
71 }

72
73 Metapopulation() {

74 for (int i=0; i < pop_num; ++i) {

75 if (birthgen[i] != 0 )

76 populations.push_back( new Population(i, 0) );

77 else
78 populations.push_back( new Population(i, 1) );

79 }

80 random01.param(uniform_real_distribution<double>::param_type(0.,1.));
81 }

82
83 ˜Metapopulation() {}

84
85 static mt19937 f;

86 };

87
88 #endif
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The Metapopulation constructor (lines 73–81) creates pop num new
Population objects. As noted above, you might specify ten demes in the
parameters file, but only the first pop num demes’ (Population objects) will
be created. For each newly created Population object, a pointer to the object
is added to the end of the private variable populations (line 7). In addi-
tion, the Population constructor now takes a second argument (see details
below), which specifies whether the deme is currently extant or not—1 and
0, respectively. When the forward simulation begins at generation 0, only
those demes that have a birthgen of 0 will be extant (lines 75–76). Demes
that come into existence later in the simulation are still instantiated (lines
77–78), but theywill not be activated until their birthgen generation. Finally,
the constructor instantiates the random number generator random01 (line 8)
as a random number generator on the range [0,1] (line 80).

Two public functions are defined. Function close output files( )

(lines 68–71)—is analogous to the functionof the samename in thePopulation
class,with thedifference that this function causes theoutputfiles of eachdeme
to be closed. Function reproduce and migrate( ) (lines 11–66)—controls
the simulation of all demes as time moves forward. A for loop (lines 14–27)
cycles through all Population objects and first queries whether the deme in
question is extant (line 15). If so, a second check is made to see if the current
generation is the extinctgen of the deme under consideration (line 16). If so,
the deme is inactivated by a call to Population function set extinct() (see
details below). Otherwise, the reproduce() function is called on the current
deme (lines 18–19), which acts as before for this deme, i.e., reproduction,
mutation, recombination, and sampling are all carried out for this deme. If
the deme is not currently active, as indicated by a false return to the if

statement on line 15, we check if the current generation is the birthgen of
this currently inactive deme (line 22). If so, we activate the deme and imme-
diately call reproduce( ) on it (lines 23–24). In Sect. 6.3, we will introduce
splits and mergers of demes, but for now we assume all demes are initiated
by coalescent simulation.

Following reproduction in all active demes, we then determine which
individuals, if any, migrate from one deme to another and afterwards update
the alleles variable of each deme (lines 30–61). We begin with migration,
where variable i of the outer for loop (begins line 30) represents the deme
number from which emigrants may leave and variable j of the inner for

loop (begins line 32) represents the deme number that may receive migrants.
If deme i is not extant (false returned at line 31), it cannot yield migrants
and sowe skip to the next deme (via continue statement; line 60). Assuming
deme i is extant, we then check to see if deme j is extant (line 33) and again
skip the deme if not (line 58). If both demes i and j are active, we then
proceed with migration by first determining the number of migrants Nm by
multiplying the fraction of individuals in deme j that are immigrants from
deme i each generation (mig[i][j]) by the current population size of deme j
(line 30). If Nm is less than zero, we then determine if one or zero individuals
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migrate from i to j using the random number generator random01 (lines
35–40).

For each immigrant to deme j, we obtain the sequences of this individual
currently in deme i, store it in variable v1, and add it to population j using
the function add immigrant( ) described below (lines 44–46). For each new
immigrant to deme j, we then check to see if any alleles previously absent
from deme j are now present due to the immigration of an individual from
another deme (lines 49–55). Todo this,we retrieve the list of allele positions in
deme j (line 50) and use the standard library functions set difference( )

and inserter( ) to check for any allele positions present in the sequences
of the immigrant but absent from the population and create new Allele

objects for deme j if this is the case (lines 51–54). Upon considering all
immigrants to deme j, we then remove the emigrant from deme i and free
thememoryoccupiedby its pointer using the functionremove emigrants( )

(line 57) detailed below. Figure 6.4 illustrates the collective actions of the
add immigrant( ) and remove emigrants( ) functions for a simple case of
symmetric migration.

Finally, evolution of the current generation is not complete until after
reproduction and migration have occurred. In previous iterations of the
FORTUNA program, the reproduce() function of class Population called
get sample() automatically during sampling generations. However, we
must now wait to sample until after migration has occurred. This neces-
sitates the creation of a separate function in class Population, which we
name sample() (see below for details). Lines 62–65 call the sample() func-
tion for each deme that is extant (lines 63–65) conditional on the current
generation being a sampling generation (line 62).

6.2.1.3 Modifications to Class Population

In order for a Metapopulation object to perform properly, several minor
additions and changes are required to population.h. The following listing
summarizes these changes.

population.h // additions and modifications

1 ...

2 private:

3 int popn;

4 bool extant;

5 ...

6 void update_alleles(const int &gen) {

7 ...

8 if (current_count == pop_schedule[popn][gen]*2) { // add [popn] index
9 ...

10 public:

11 inline int get_popnum() { return popn;}

12 inline bool get_extant() {return extant;}
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DEME 0
individual 1_0
Individual 2_0
Individual 3_0
Individual 4_0

DEME 1
individual 1_1
Individual 2_1
Individual 3_1
Individual 4_1

DEME 2
individual 1_2
Individual 2_2
Individual 3_2
Individual 4_2

DEME 0
individual 3_0
Individual 4_0
Individual 1_1
Individual 1_2

DEME 1
individual 3_1
Individual 4_1
Individual 1_0
Individual 2_2

DEME 2
individual 3_2
Individual 4_2
Individual 2_0
Individual 2_1

A B

Fig. 6.4 Collective actions of the add immigrants() and remove immigrants() functions.
(a) Black lines indicate immigration of an individual from one deme to another. New
immigrants are pushed to the back of the vector that holds individuals in the receiving
deme. For simplicity we assume Ne = 4 and mi, j = 0.25 for all i and j. On average, then,
one individual immigrates from each deme to each other. After all migration is accounted
for, the white lines indicate that the emigrants from each deme are removed. (b) The
outcome of immigration. Although the original labels of each individual are retained to
emphasize the action of migration, understand that each individual in each deme is now
a true member of that deme. For example, the individual labeled 2 2 in DEME 1 is now a
member of DEME 1 and not DEME 2 from which it emigrated

13 inline void set_extant() {extant = 1;}

14 inline void set_extinct() {extant = 0;}

15 inline vector<vector<int>> get_sequences(int indnum) { return
↪→ (*individuals[indnum]).get_sequences();}

16 inline void add_immigrant(vector<vector<int>> ses)

↪→ {individuals.push_back( new Individual(ses) ); }

17
18 void remove_emigrants(int Nm) { // new function
19 for (auto iter = individuals.begin(); iter != individuals.begin() + Nm;

↪→ ++iter)

20 delete *iter;
21 individuals.erase(individuals.begin(), individuals.begin()+Nm);

22 }

23
24 vector<int> get_allele_positions() { // new function
25 vector<int> v;

26 for (auto iter=alleles.begin(); iter!=alleles.end(); ++iter)

27 v.push_back(iter->first);
28 return v;

29 }

30
31 vector<int> get_allele_info(int s) { // new function
32 vector<int> v = {s};

33 v.push_back( (*alleles[s]).get_birthgen() );

34 v.push_back( (*alleles[s]).get_originating_population() );

35 return v;

36 }
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37
38 void insert_new_allele(vector<int> v) { // new function
39 alleles.insert( { v[0] , new Allele( v[0], v[1], v[2] ) } );

40 }

41 ...

42 void reproduce(int gen) { // add migration and variable N

43 randomind.param(uniform_int_distribution<int>::param_type(0,pop_schedule
↪→ [popn][gen]-1));

44 int N = pop_schedule[popn][gen]; // N is number of individuals to

↪→ produce

45 if (modelMigration) {

46 int n_imm = 0;

47 int n_emi = 0;

48 for (int i=0; i<pop_num; ++i) {

49 n_emi += mig[popn][i] * pop_schedule[i][gen];
50 n_imm += mig[i][popn] * N;

51 }

52 N += n_emi;
53 N -= n_imm;
54 }

55 ‘ for (int i=0; i< N; ++i) {

56 ... // random parents drawn as before, producing N individuals

57 }

58 for (auto iter = individuals.begin(); iter != individuals.end() - N;

↪→ ++iter)

59 delete *iter;
60 individuals.erase(individuals.begin(), individuals.end() - N);

61 }

62
63 void sample(int gen) { // new function
64 update_alleles(gen);
65 random_shuffle(individuals.begin(), individuals.end() ) ;

66 get_sample(gen + 1);

67 }

68
69 Population (int popnum, int eextant):popn(popnum), extant(eextant) { //

↪→ added parameters to constructor

70 ...

71 randomind.param(uniform_int_distribution<int>::param_type(0,pop_schedule
↪→ [popn][0] - 1));

72 ...

73 if (useMS[popn]) {

74 ...

75 system(mscommand[popn].c_str());
76 ...

77 for (int i=0; i<pop_schedule[popn][0]; ++i) {

78 ...

79 }

Two new private variables are added to the class: (1) popn (line 3), which is
the population number and (2) extant (line 4), of type bool and set to 1 if
the deme is currently active within the simulation or 0 if it is not. In addition,
several helper (get or set) functions are defined on lines 11–16. Of particular
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interest is get sequences(), which returns a vector of both sequences for
an individual and is used during migration (line 45 of metapopulation.h
listing above). Conversely, the function add immigrant() creates a new in-
dividual and pushes a pointer to this object to the back of immigrants (line
16). The function remove emigrants() takes as an argument the number of
individuals that have emigrated from the deme and subsequently deletes
the object and frees the memory assigned to the pointer to this object (lines
18–22).

The function reproduce( ) (lines 42–61) ismodified to determine towork
out the calculus of migration—making sure that offspring of parents cur-
rently in the deme are generated after accounting for the gain of immigrants
and loos of emigrants. Then, N is modified to reflect the number of off-
spring the deme needs to produce from within. The initial value of N is set
to the population size associated with current generation as detailed in the
pop schedule for the deme in question (line 44). As an example, consider
lines 45–54 and then imagine a deme that is scheduled to consist of 5000
individuals after this round of reproduction and migration. If the number of
immigrants from all sources (n imm) are 400 and the number of emigrants to
all other demes (n emi) are 100, then N = population schedule[popn][gen]

+ n emi - n imm (lines 42, 52–53), or N = 5000+100−400 = 4700 in this case.
In other words, only 4700 individuals need to be produced, as 100 of these
individuals will emigrate to other demes, but 400 immigrants from other
demes will bring population size up to the required 5000. Of note, this
works for both symmetric and asymmetric migration.

Next, the N individuals are produced as before (lines 55–57); the upper
bound of the for loop is simply changed to the calculated N. Lines 58–60
delete the pointers to individuals of the previous generation and erase the
orphaned pointers postdeletion. The upper bound of the iterator is set to
individuals.end() - N in each case because this will remove all but the N
newly minted individuals from the vector that holds them. As mentioned
in the previous subsection, it is necessary to create a new function, named
sample(), for use with migration (lines 45–49).

Lines 24–40 introduce three short new functions that allow increased ca-
pability tomanage alleles’ histories and frequencies in the context ofmultiple
demes. The constructor (beginning on line 34) now takes a second argument,
which is the initial value of the variable extant. The remaining changes ac-
count for the fact that several of the extern variables defined in params.h are
now indexed by deme (i.e., population number), which requires the addition
of a [popn] index to several variables (e.g., line 8).
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6.2.1.4 Results of Simulating Two Demes Connected by Different Rates
of Migration

After all of those changes, we are now ready to simulate the scenario pro-
posed at the beginning of Sect. 6.2 and attempt to corroborate the theoretical
result that Nem> 1 between two demes is essentially synonymous to a single
panmictic population. I performed three simulations in which parameter
values were identical to those listed in 6.2.1.1, with the exception that pa-
rameter migration rates was set to one of the following in each separate
simulation:

• 0. 0.00001 0.00001 0.
• 0. 0.0001 0.0001 0.
• 0. 0.001 0.001 0.

As both demes were set to popsize of 10,000 diploid individuals and all
migration rates are symmetric, these migration rates settings were equiva-
lent to 0.1, 1, and 10 migrants between the two populations each generation,
respectively. In each simulation, each deme began with genetic variation
generated by independent coalescent simulations. At generation zero, mi-
gration ensued between the two demes and each simulationwas run for 5000
generations. To assess genetic similarity between the two demes, I plotted
the values of Tajima’s D. This seemed a good summary statistic to use as it
incorporates both the number of segregating sites and nucleotide diversity.
However, I note that the results are qualitatively similar for single summary
statistics. In Sect. 6.3, we will calculate FST to assess the genetic similarity
between demes.

In short, the results of these simulations confirm that Nem = 1 appears
to be the threshold at which the two demes no longer appear genetically
divergent. When Nem = 0.1, values of Tajima’s D for the two demes are
highly dissimilar (Fig. 6.5). Conversely, whether Nem = 1 or Nem = 10, the
values of Tajima’s D for both populations are highly coincident (Fig. 6.5).

6.3 Forward Simulation of n Demes

In the last section, we spent considerable effort to provide FORTUNA with
the functionality to simulate any number of demes, using this added func-
tionality to simulate the simple scenario of two demes connected by variable
magnitudes of migration. In this section, we add further functionality to
FORTUNA, allowing us to: (1) split and merge demes rather than initiat-
ing each deme with coalescent-simulated genetic diversity; (2) output full
haplotypes at specified time points; (3) choose between haploid and diploid
sampling; (4) calculate observed and expected heterozygosity at all segre-
gating sites; (5) calculate single- and multilocus FST for each pair of demes;
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Fig. 6.5 Nem ≥ 1 provides sufficient mixing between two demes to make them appear as
one panmictic population. Values of Tajima’s D are plotted for windows of 10 kbp with
step size of 5 kbp for the two demes as gray and black lines

and (6) simulate a true metapopulation scenario in which some demes are
sources and others are sinks. Note that (2)–(4) provide us with functionality
that is not specific to simulations that include migration.

6.3.1 Deme Splitting and Merger

To facilitate the splitting or merger of currently extant demes, each DEME
block in the parameters file includes two new parameters: splitgenesis
and mergergenesis. Beforewe dig into the use of these parameters, consider
that the ndemes alluded to in the section titlemay be coeval and/or allochronic.
Here, we simulate a scenario that involves both deme splitting and merger
(Fig. 6.6). By definition, the splitting or merger of a deme leads to two or one
descendant deme(s), respectively. Therefore, both coeval and allochronic
demes will be simulated (e.g., Fig. 6.6).

The parameter splitgenesis is defined for each deme block as a vector
of three integers. As an example, the values 1 0 40 indicate that the deme
originates via splitting (1 in the first position) of deme 0 (0 in the second
position) and begins with 40% of the individuals from deme 0. Parameter
mergegenesis is also defined by a vector of three integers. For example, the
values 1 2 3 specify the deme originates via merger (1 in the first position)
and that it is the amalgam of demes 2 and 3 (the final two integers). If the
useMS parameter of the DEME block is set to 1, these parameters are ignored,
as the deme is initiated by coalescent simulation. Clearly, if useMS is set to
zero, the first parameter argument of either splitgenesis or mergegenesis
must be set to one. That is, each new deme must come from somewhere—
either initiated with coalescent simulation, the split of an ancestral deme, or
the merger of two ancestral demes.
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Fig. 6.6 Scenario simulated in this section. Genetic variation of deme 0 at generation 0 is
produced by coalescent simulation. This deme is forward simulated for 20,000 generations
at which point a population split yields demes 1 and 2, which receive 40% and 60% of
the individuals in deme 0, respectively. Both demes then evolve for 40,000 generations
with minimal gene flow between them, after which a population merger yields deme 3
(Ne = 1000) that goes on to evolve for 40,000 more generations. Only demes 1 and 2 are
coeval, while all other pairs of demes are allochronic

Becausewehave covered indetail the changes to params.cc and params.h

associated with the addition of new parameters to the parameters files in
this and other chapters, I ask the reader to look at the Chap. 6 code online and
consider the modifications required to these files. From now on, however,
I will assume we have seen enough of these mundane changes to warrant
skipping explicit instruction. Instead, let us look at the DEME blocks of
the parameters file that will allow us to simulate the scenario sketched in
Fig. 6.6.

parameters file // values used to simulate model in Fig. 6.6

1 DEME /// 0

2 popsize 1000

3 demography 0

4 birthgen 0

5 extinctgen 20000

6 ...

7 useMS 1

8 mscommand ./ms 2000 1 -t 8 >ms_output
9 splitgenesis 0 0 0

10 mergegenesis 0 0 0

11 DEME /// 1

12 popsize 400

13 demography 0

14 birthgen 20000

15 extinctgen 60000

16 ...

17 useMS 0

18 mscommand ./ms
19 splitgenesis 1 0 40

20 mergegenesis 0 0 0
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21 DEME /// 2

22 popsize 600

23 demography 0

24 birthgen 20000

25 extinctgen 60000

26 ...

27 useMS 0

28 mscommand ./ms
29 splitgenesis 1 0 60

30 mergegenesis 0 0 0

31 DEME /// 3

32 popsize 1000

33 demography 0

34 birthgen 60000

35 extinctgen 100001

36 ...

37 useMS 0

38 mscommand ./ms
39 splitgenesis 0 0 0

40 mergegenesis 1 1 2

The ellipses in the previous listing skip the demographic parameters of each
DEME block, as we are not modeling population expansion or contraction
in any of the four demes. Deme 0 is initiated via coalescent simulator MS
(lines 7–8); 2000 sequences are generated corresponding to the popsize of
1000 diploid individuals (line 2). It is the only extant deme for the first 20,000
generations of the simulation (lines 4–5).

At generation 20,000, demes 1 and 2 originate (their birthgen parameter
is set to 20,000) via splitting of deme 0 (lines 19 and 29). Note that the
third number of the splitgen parameter is 40 and 60 for demes 1 and 2,
respectively. This means 40% of the individuals in deme 0 will be randomly
assigned to new deme 1, while the remaining 60% of individuals will be
assigned to new deme 2. Importantly, these split percentages must add up to
100 atmost. If youwant anewdeme to increase in size following the split, you
should specify its demographic parameters appropriately (Chap. 4). It is fine
if the two split percentages add to less than 100. The ”unused” individuals
from the ancestral deme are simply lost. It is also important to set the popsize
of each deme resulting from a split appropriately; in this case, for deme 1
popsize = 1000×0.4 = 400 and for deme 2 popsize = 1000×0.6 = 600 (lines
12 and 22).

extinctgen is set to 60,000 for demes 1 and 2, while birthgen of deme
3 is set to 60,000 because demes 1 and 2 merge to become deme 3 at 60,000
generations (Fig. 6.6; lines 15, 25, and 34). The mergegenesis parameter for
deme 3 tells the program that it is the product of merger of demes 1 and 2
(line 40).

Now,we consider the code that implements the splits andmergers of pop-
ulations. This requires us to examine the necessary changes to population.h
and metapopulation.h, which include a new inline function as well as



6.3 Forward Simulation of n Demes 161

modifications to the functions set extant() (Population class; previously
implemented as a simple, inline function) and reproduce and migrate()

(Metapopulation class).

population.h and metapopulation.h // additions and modifications

1 // population.h, new public functions

2 inline int get_current_popsize(int gen) {return pop_schedule[popn][gen];}
3 vector<int> set_extant() {

4 extant = 1;

5 vector<int> i;

6 if (splitgenesis[popn][0] > 0) {

7 i.push_back(1);
8 i.push_back(splitgenesis[popn][1]); // source population

9 i.push_back(splitgenesis[popn][2]); // percent

10 } else if (mergegenesis[popn][0] > 0 ) {

11 i.push_back(2);
12 i.push_back(mergegenesis[popn][1]); // first source population

13 i.push_back(mergegenesis[popn][2]); // second source population

14 } else
15 i.push_back(0);
16 return(i);
17 }

18
19 // metapopulation.h, add to function reproduce_and_migrate( )

20 void reproduce_and_migrate(int gen) {

21 for (int i=0; i<pop_num; ++i) {

22 if ((*populations[i]).get_extant()) {

23 ...

24 } else {

25 if ( birthgen[i] == gen ) {

26 vector<int> change = (*populations[i]).set_extant();
27 map<int, int> alleles_to_add;
28 if (change[0] == 1) { //split
29 int N = (double) (change[2]) / 100 * (*populations[

↪→ change[1] ]).get_current_popsize(gen);
30 for (int k = 0; k<N; ++k) {

31 vector<vector<int>> v1 = (*populations[ change[1]

↪→ ]).get_sequences(k);
32 (*populations[i]).add_immigrant( v1 );

33 for (int m=0; m<2; ++m)

34 for (auto iter=v1[m].begin(); iter!=v1[m].end(); ++iter)

35 ++alleles_to_add[*iter];
36 }

37 (*populations[ change[1] ]).remove_emigrants(N); // so that

↪→ the other deme populated by the split doesn’t receive

↪→ same individuals

38 } else if (change[0] == 2) { //merger
39 vector<int> N;

40 N.push_back( (*populations[ change[1]

↪→ ]).get_current_popsize(gen) );

41 N.push_back( (*populations[ change[2]

↪→ ]).get_current_popsize(gen) );

42 for (auto q:N) {
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43 for (int k = 0; k<q; ++k) {

44 vector<vector<int> > v1 = (*populations[ change[1]

↪→ ]).get_sequences(k);
45 (*populations[i]).add_immigrant( v1 );

46 for (int m=0; m<2; ++m)

47 for (auto iter=v1[m].begin(); iter!=v1[m].end();
↪→ ++iter)

48 ++alleles_to_add[*iter];
49 }

50 }

51 } // else built from MS

52 if (change[0] > 0) // deme not built from MS

53 for (auto iter=alleles_to_add.begin(); iter !=
↪→ alleles_to_add.end(); ++iter) // populate alleles

↪→ in new deme

54 (*populations[i]).insert_new_allele( (*populations[
↪→ change[1] ]).get_allele_info(iter->first) );

55 (*populations[i]).reproduce(gen);
56 }

57 }

58 }

59 ...

60 }

Line 2 codes a function allowing us to obtain the current population size
of the deme in question, which is particularly important when the deme
is undergoing demographic change. In lines 3–17, we expand the func-
tion set extant(), first introduced in the previous section, such that it not
only sets the Population class private variable to true (line 4) but also re-
turns a vector<int> that specifies the manner in which the deme should
be activated. The if-else if-else control structure (lines 6–15) determines
whether thenewdeme is the result of a split,merger, or coalescent-simulation
data. This determination is the first entry of the returned vector<int> (0,
1, or 2 for coalescent, split, and merger, respectively). For a split or merger
additional relevant values are pushed to the returned vector<int> (lines
8–9 and lines 12–13).

Lines 20+ demonstrate the modifications to the Metapopulation class
functionreproduce and migrate(),whichnow invokes thePopulation class
functions detailed in the previous paragraph. As before, the function cycles
among all populations (extant or not; line 21). If the population is not ex-
tant, but its birthgen is the current generation, the modified set extant()

function is called, returning the vector<int> called change (lines 25–26).
Any deme originating from split or merger initially holds no Allele objects;
we therefore create a map<int, int> (alleles to add) to temporarily store
the new alleles (line 27). Based on the value of change[0] returned from
set extant(), we either carry out a split (lines 28–37), a merger (lines 38–
51), or do nothing special in the case of a deme originating from coalescent
simulation. Regardless, the current deme, if extant, will call reproduce()
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(line 55) and participate in migration (ellipsis at line 59, documented in
Sect. 7.2).

In the case of a split, we first determine the size of the daughter deme
(N), which requires us to account for the percentage of the parent deme that
ends up in the new deme as well as the current population size of the parent
deme (line 29). Using a for loop, we then populate the new deme with the
first N individuals from the parent deme (lines 31–32), add the alleles from
each individual to alleles to add (line 33–35), and remove the N individuals
used to create the new deme from the parent deme (line 37). This last step
ensures that we do not add the same individuals’ sequences to the other
daughter deme.

In the case of a merger, we first determine the current population sizes
of the two merging demes (lines 39–41). The for loop spanning lines 42–50
then adds all individuals from each of the merging demes and populates
alleles to add based on the sequences of these individuals.

Assuming the focal deme originates from a split or merger (line 52 returns
true), the map alleles to add will be populated. The values of this map

(how many times the derived allele at each position was observed in the
new deme) are irrelevant to the next step. However, the keys of this map are
the positions of all derived alleles in the population ordered from least to
greatest by map index. For each key (i.e., polymorphic site), an Allele object
is then created, a pointer to which is added to the deme’s private variable
map<int, Allele*> alleles (lines 53–54).

6.3.2 Distributional and Longitudinal Visualization of
Summary Statistics

In Chap. 5, we used a heat map to plot the distribution of haplotypes (K)
by window over the course of the simulation. In this subsection, we intro-
duce two R functions for visualization. One is an expansion of the function
distributional heatmap( ) covered in Chap. 5, which allows us to plot
distributional heat maps of any discrete or continuous summary statistic by
window. The second function—longitudinal heatmap( )—plots a longi-
tudinal heat map of any summary statistic; that is, the evolving value of a
summary statistic is shown for each window for each sampling generation.
Both functions are written to accept the sumstats output file generated by
FORTUNA. We will use this function to plot the evolution of nucleotide
diversity for demes 0 and 1 in the model pictured in Fig. 6.6.

The following listing provides the code for both functions.
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heatmaps.r

1 library(ggplot2)
2 library(cowplot)
3 library(reshape)
4
5 distributional_heatmap <- function(inputfile, stat, discrete = T,

↪→ interval = 0.5) {

6 d <- read.table(file = inputfile, header = T)

7 dd <- split(d, d$stat)
8 size <- dim(dd[[stat]])
9 numcol = size[2] - 2

10 mat <- dd[[stat]][,3:size[2]]
11 numrow = numeric()
12 high = numeric()
13 low = numeric()
14 brks = vector()
15 if (discrete) {

16 numrow <- max(mat) + 1

17 } else {

18 for (i in 1:numcol) {

19 minnie <- min(mat[,i], na.rm=T)
20 maxie <- max(mat[,i], na.rm=T)
21 if (i==1) {

22 low <- minnie

23 high <- maxie

24 } else {

25 if (minnie < low) {low <- minnie}

26 if (maxie > high) {high <- maxie}

27 }

28 }

29 low = floor(low)
30 high = ceiling(high)
31 brks = seq(low, high, interval)

32 numrow = length(brks) - 1

33 }

34 mat2 <- matrix(0, nrow = numrow, ncol = numcol)

35 if (discrete) {

36 for (i in 1:size[1]) {

37 for (j in 1:numcol) {

38 mat2[mat[i,j],j] <- mat2[mat[i,j],j] + 1

39 }

40 }

41 } else {

42 for (i in 1:numcol) {

43 h = hist(mat[,i], breaks = brks, plot = F)

44 mat2[,i] = h$counts
45 }

46 }

47 mat2.melted <- melt(mat2)

48 r = 1 # ratio for creating squares in heatmap

49 if (!discrete) {

50 for (i in 1:length(mat2.melted[,1])) {

51 mat2.melted[i,1] = brks[mat2.melted[i,1]]
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52 }

53 r = 1 / interval

54 }

55 ggplot(mat2.melted, aes(x = X2, y = X1, fill = value)) + geom_tile() +

↪→ coord_equal(ratio = r) + scale_fill_gradient(low = "white",

↪→ high = "black")

56 }

57
58 longitudinal_heatmap <- function(inputfile, stat="K", timeflow="down",

↪→ scalelim=vector(), timelim=vector(), lowcol=1, fix=0) {

59 d <- read.table(file = inputfile, header = T)

60 dd <- split(d, d$stat)
61 size <- dim(dd[[stat]])
62 q <- dd[[stat]][,c(1,3:size[2])]
63 m <- melt(q, id.vars=c("gen"))
64
65 d<- ggplot(m, aes(x=variable, y=gen, fill=value)) + geom_tile()
66
67 if (length(timelim) != 0) {

68 if (timeflow == "down") {

69 d <- d + ylim(timelim[2], timelim[1])

70 } else {

71 d <- d + ylim(timelim[1], timelim[2])

72 }

73 } else {

74 if (timeflow == "down") {

75 d <- d + ylim(max(m$gen), min(m$gen))
76 }

77 }

78
79 if (length(scalelim) != 0) {

80 if (lowcol) { # use white as low-value color

81 d <- d + scale_fill_gradient(low="white", high="black",

↪→ limits=scalelim)

82 } else {

83 d <- d + scale_fill_gradient(low="black", high="white",

↪→ limits=scalelim)

84 }

85 } else {

86 if (lowcol) { # use white as low-value color

87 d <- d + scale_fill_gradient(low="white", high="black")

88 } else {

89 d <- d + scale_fill_gradient(low="black", high="white")

90 }

91 }

92
93 if (fix != 0) {

94 d <- d + geom_hline(yintercept=fix, linetype=2)

95 }

96
97 d <- d + geom_vline(xintercept = (size[2] - 2) / 2, linetype = 2)

98 d

99 }
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We begin with explanation of the distributional heatmap() function. Un-
like the version covered in Chap. 6, this function is now generalized in the
sense that it can plot any continuous or discrete summary statistic. Two ar-
guments must be supplied while the other two have default values that can
be changed if desired. Function parameter inputfilemust be specified and
is simply the name of a summary statistics output file from a FORTUNA run
(remember to surround it in double quotation marks. The stat argument
can take the values "K" (haplotypes), "pi", "S", "tajD", and "wat" (unless
you have expanded the program to calculate additional summary statis-
tics, in which case there would be more options). If the summary statistic
is discrete (K or S), those are the only parameters that require our attention,
as discrete is set to TRUE by default and the value of interval is irrel-
evant. On the other hand, if the summary statistic is continuous (i.e., pi,
tajD, or wat), we must set discrete to FALSE and choose an interval of
choice. In the discrete case, lines 17–33, 41–46, and 49–54 are used to com-
pute a histogram for eachwindow,where the break points of the histogram’s
bins are interval apart. For example, the top panel of Fig. 6.7 was gener-
ated using the call distributional heatmap("testrun.0", stat="tajD",

discrete=F, interval=0.5), where testrun.0 is the imaginary name of a
summary statistic output file. The lower panel of Fig. 6.7 required the same
call, with the exception that interval=0.2.

Calls to function longitudinal heatmap() require a greater number of
arguments. Again, the inputfile and stat of interest must be specified.
Three other arguments affect the look of the resulting plot. First, timeflow
can be set to "down" (the default) or "up". When timeflow is down, the top
cells correspond to the oldest time points; in otherwords, time flows forward
as we move down the y-axis. Clearly, the opposite is true of timeflow="up".
In this case, the lowest cells correspond to the oldest time points and time
flows forward up the y-axis. Second, we can manually set the scale of the
thirddimensionof theseheatmaps—color coding corresponding to thevalue
of the summary statistic—by providing a low and high value as a vector
for the argument to scalelim—e.g., scalelim = c(-3,3). If scalelim is
not specified, the scale will be set automatically to include the highest and
lowest values of the summary statistic in the data set. One motivation for
specifying the scale of the heat map’s third dimension is to guarantee that
the same color applies to the same value of summary statistic acrossmultiple
graphs drawn from independent replicates or separate demes. An example
of this is shown in Fig. 6.8 wheremuch less genetic variation, asmeasured by
nucleotide diversity, is present in deme 1 than in deme 0. By setting scalelim
= c(0,3.5) when plotting both graphs, each shade of gray means the same
thing in both and the lesser diversity in deme 1 becomes quite evident.
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Fig. 6.8 Evolution of nucleotide diversity (π) along the 200,000 bp simulated se-
quence for demes 0 and 1 depicted in Fig. 6.6. Figures were generated using the
longitudinal heatmap() function with manually set limits of 0 and 3.5. Thus, black
corresponds to π = 3.5, while white corresponds to π = 0. Window size is 10,000 bp and
step size is 5000 bp. Note that the duration of time documented is twice as long for deme
1. Because the default timeflow of ”down” was used, earlier generations are found at the
top of the y-axis
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6.3.3 Diploid Sampling and Outputting Full Haplotypes at
Specified Time Points

There are several motivations for recording a sample of haplotypes every n
generations. First, we can return to the actual sequence data and calculate
whatever summary statistics we like at a later date (e.g., FST, Sect. 6.3.4). Sec-
ond, we can use the sequences as input for analysis in a wide variety of other
programs. Third, we can return to a critical time point in the simulation and
use these sequence data as the starting point for many simulation replicates
to quantify the frequency with which a certain outcome is achieved from
these initial conditions.

To this point, sequence samples have consisted of a single haplotype from
n individuals where n = sampsize. In most empirical contexts, however, we
sample bothhaplotypes fromeach individual sampled. In this subsection,we
therefore also add the ability to sample both haplotypes from each sampled
individual. In this case if sampsize=100, both haplotypes will be sampled
from 50 randomly selected individuals. The following adjustments to the
code will allow us to (1) choose between haploid and diploid sampling and
(2) print haplotypes sampled from the population to file every printhapfreq
generations.

modifications to add haplotype printing functionality

1 \\ parameters file (global block)

2 printhapfreq 5000

3 diploid_sample 1

4
5 \\ params.h file
6 extern int printhapfreq;

7 extern int diploid_sample;
8
9 \\ params.cc file

10 int process_parameters() {

11 ...

12 if(iter->first == -1) {

13 ...

14 printhapfreq = atoi(parameters["printhapfreq"].c_str());
15 diploid_sample = atoi(parameters["diploid_sample"].c_str());
16 }

17 }

18
19 \\ population.h file
20 void get_sample(int gen) {

21 ofstream sequencefile; //only used if gen % printhapfreq == 0

22 string ofname = "deme" + to_string(popn) + "_" + to_string(gen);
23 bool printhap = false;

24 if (gen % printhapfreq == 0) printhap = true;

25 if (printhap) sequencefile.open(ofname.c_str());
26 ...

27 int additional = sampsize;
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28 if (diploid_sample)
29 additional /= 2;

30 for (auto iter = individuals.begin(); iter !=
↪→ individuals.begin()+additional; ++iter) {

31 vector<int> haplotype = (**iter).get_sequence(0);
32 for (auto iter2 = haplotype.begin(); iter2 != haplotype.end();

↪→ ++iter2)

33 ++allele_counts[*iter2];
34
35 if (diploid_sample) {

36 vector<int> haplotype = (**iter).get_sequence(1);
37 for (auto iter2 = haplotype.begin(); iter2 != haplotype.end();

↪→ ++iter2)

38 ++allele_counts[*iter2];
39 }

40 }

41 ...

42 // print column headers

43 if (printhap) {

44 for (auto iter = positions.begin(); iter != positions.end(); ++iter)

45 sequencefile << "nt" << to_string(*iter) << " ";

46 sequencefile << endl;

47 }

48
49 for (auto iter = individuals.begin(); iter !=

↪→ individuals.begin()+additional; ++iter) {

50 for (int h=0; h<diploid_sample+1; ++h) { // modified loop

51 vector<int> haplotype = (**iter).get_sequence(h);
52 sort(haplotype.begin(), haplotype.end());
53 string hap;

54 for (auto iter = allele_counts.begin(); iter !=
↪→ allele_counts.end(); ++iter)

55 if ( binary_search (haplotype.begin(), haplotype.end(),
↪→ iter->first)) {

56 hap += "1";

57 if (printhap) sequencefile << "1 ";

58 } else {

59 hap += "0";

60 if (printhap) sequencefile << "0 ";

61 }

62 sample.push_back(bitset<bitlength> (hap));

63 if (printhap) sequencefile << endl; // new line

64 }

65 }

66 ...

67 if (printhap) sequencefile.close(); // new line

68 }

We begin with the addition of two global parameters and the necessary code
for reading them into memory (lines 1–17):

• printhapfreq, which specifies how often sequence samples are printed
to file
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• diploid sample, set to 1 if both haplotypes are to be sampled from each
randomly selected diploid individual and 0 otherwise

Because the program will only check for printing of haplotypes within
the get sample() function, which is called every sampfreq generations, cal-
culation sampfreq / printhapfreq must have a remainder of zero to ensure
that the code to print haplotype files is executed.

Indeed, the remaining coding changes and additions involve the
get sample() function of class Population. An output stream and file name,
specific to the deme in question, are created each time get sample() is called
(lines 21–22). However, the stream will only be opened if the current gener-
ation divided by printhapfreq yields a remainder of zero, which is deter-
mined in lines 24–25 and also sets the bool variable printhap to true if the
remainder is zero. Lines 27–29 are used to set the value of additional and
the following for loop (lines 30–40) thereby cycles through the appropriate
number of individuals to obtain the sample: either sampsize individuals
in the case of haploid sampling or sampsize / 2 individuals in the case
of diploid sampling. Although true the iterator of this loop causes us
to sample the first additional individuals in the vector, recall that we
random shuffle( ) to mix the contents of the vector prior to sampling
(Sect. 3.4.3.2). In this way, a random sample of individuals is obtained.
Within the for loop, the first is analyzed and used to set the allele counts

variable local to the get sample)() function. If a diploid sample is required,
the same happens with the second haplotype of the individual (lines 35–39).

The next block of new code (lines 42–47) prints the column headings of
the sequence output file, which are simply the positions of the segregating
sites. This makes use of the vector<int> called positions, which holds
the positions of all segregating sites (first defined within get sample( ) in
Sect. 5.3.2). The outer for loop covering lines 49–65 again cycles through the
sampled individuals. The nested for loop (lines 50–64) is either traversed
once (haploid sampling) or twice (diploid sampling). Each traversal obtains
the haplotype (line 51). Some of this code is, as before, used to populate the
vector<bitset<bitlength> > named sample. New code, however, prints
the haplotypes to the file. Importantly, note that if diploid sampling is used,
the two haplotypes sampled from a single individual are printed consecu-
tively.

6.3.4 Calculating Multilocus FST

A common statistic used tomeasure the genetic (dis)similarity of deme pairs
isWright’s FST (Wright 1951), sometimes referred to as the fixation index. FST
ranges from 0 to 1. Consider a sequence alignment where sampled members
of both demes are included. There are three possible types of segregating
sites in this alignment:
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1. the derived allele is not fixed in either deme, i.e., the SNP is polymorphic
in both demes.

2. one deme is fixed for either the ancestral or derived allele while the site
is polymorphic in the other deme.

3. one deme is fixed for the ancestral allele and the other for the derived
allele.

Anotherwayof thinking about the third category of segregating site is that
every individual in each deme is homozygous at the site. Many formulas for
calculating FST therefore compare expected heterozygosity of a sample both
within andacrossdemes at a site that showsvariationwithin the alignment of
sequences from both demes, which is true of any of the three categories listed
above. The bottom line is that FST = 0 at a single site when allele frequencies
are identical in both demes and FST = 1 at a single site of the third type.
These two extremes indicate a general interpretation of FST: Highly similar
demes, with highly similar allele frequencies, will have FST values close to
zero while highly dissimilar demes will have FST values near one.

FST can therefore be used to quantify the ”connectivity” of two demes,
given thatwe expect high levels of gene flowbetween twodemes tomaintain
very similar allele frequencies among the demes and vice-versa. Indeed,
Wright (1931) showed that for an island model FST for small values of m can
be used to estimate Nem, the absolute number of migrants flowing from one
deme to another each generation:

FST =
1

4Nem+1
⇒ ˆNem =

1
4

(
1

FST
−1

)
(6.4)

Note, however, this estimator is only reliable under quite exacting condi-
tions (Whitlock and McCauley 1999).

FST was initially definedwith reference to a single-segregating site. Given
that we can now gather data from very large numbers of segregating sites,
how do we scale up to a multilocus FST? One widely used solution is the
multilocus measure of FST derived in Reich et al. (2009). For details on the
derivation, see the Supplementary Information of this article. Implementing
the calculation in code is quite simple and is provided in the following listing
of calc fst.r.

calc fst.r

1 calc_fst <- function(fn1, fn2)

2 {

3 p1 = read.table(file = fn1, header = T)

4 p2 = read.table(file = fn2, header = T)

5
6 diff12 = setdiff(names(p1), names(p2)) # in p1 but not p2

7 diff21 = setdiff(names(p2), names(p1)) # in p2 but not p1

8
9 p1[,diff21] <- 0

10 p2[,diff12] <- 0
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11 p1 <- p1[,order(names(p1))]
12 p2 <- p2[,order(names(p2))]
13
14 a1 = colSums(p1)

15 n1 = length(p1[,1])
16 a2 = colSums(p2)

17 n2 = length(p2[,1])
18 nn1 = n1 * (n1-1)

19 nn2 = n2 * (n2-1)

20 q1 = a1/n1
21 q2 = a2/n2
22 N = (q1 - q2)ˆ2 - (( ( a1*(n1-a1) ) / nn1 ) / n1) - (( (a2*(n2-a2) ) /

↪→ nn2 ) / n2)

23 D = N + ( (a1*(n1-a1)) / nn1 ) + ( (a2*(n2-a2)) / nn2 )

24 fst = sum(N) / sum(D)
25
26 print(fst)
27 }

A call to the function calc fst() requires two arguments: the filenames of
two diploid haplotype files whose production was detailed in the previous
section. Because it is likely that some ormany of the polymorphic sites in one
deme aremonomorphic in the other deme, wemust identify these category 2
sites sowe can add a placeholder column to the deme lacking polymorphism
(lines 6–7). To this end, we append a column of zeroes to indicate there is
no variation at this site in the deme (lines 9–10). After supplementing the
two data frames (p1 and p2) with the necessary monomorphic data, we
then reorder both data frames so that the indexing of the columns (SNPs) is
the same (lines 11–12). Lines 14–24 then use these reordered data frames to
calculate the multilocus value of FST detailed in Reich et al. (2009), which is
printed to screen (line 26).

Although calc fst() should technically be used with a set of fully un-
linked SNPs, we will apply it using SNPs present in simulated 200,000 bp
sequences. To do so, wemodify the simulation scenario presented in Fig. 6.6,
by only simulating the population split and significantly shortening the time-
scale such that we sample demes 1 and 2 for only 900 generations following
their split from deme 0. Effective population sizes remain the same. Three
replicate simulations each were run for m = 0.01 and m = 0.00001. As ex-
pected, low levels of gene flow lead to rapid genetic divergence of the two
populations and vice-versa (Fig. 6.9). Note that even when m is as low as
0.00001, FST appears to approach an asymptotic value in ¡1000 generations.

6.4 Printing Allele History File

Nowwe leverage the explicit, time-stamped record generated by simulation
to provide us with insight into the history of alleles segregating in one or
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Fig. 6.9 Calculated FST between demes 1 and 2 descended from ancestral deme 0 as
picture in Fig. 6.6. (a) Calculated values of FST for three independent replicates each
where m = 0.01 (solid lines) or m = 0.00001 (dashed lines). (b) The mean values of FST over
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more demes. These histories are not something we can assess with certainty
in the natural world. Perhaps more importantly in the context of this vol-
ume, these histories are also unavailable to us from coalescent simulation.
Although forward-time simulations aremuch slower than coalescent simula-
tions by virtue of the fact that all individuals and all alleles are accounted for,
this computational cost provides us with additional information that moti-
vates simulation experiments that require greater complexity. The following
listing provides the means to document the origins of alleles emerging in
all simulated demes. I then detail a problem the reader can solve to find the
proportion of alleles in deme x that originated in another deme y for different
values of Nem.

Modifications to multiple FORTUNA source files to implement documentation

of allele history

1 \\ parameters file (global block)

2 trackAlleleBirths 1

3
4 // params.h file
5 extern bool trackAlleleBirths;

6
7 // params.cc file
8 int process_parameters() {

9 ...

10 if (iter->first == -1) {

11 ...

12 trackAlleleBirths = atoi(parameters["trackAlleleBirths"].c_str());
13 }

14 }

15
16 // population.h file
17 private:
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18 ...

19 ofstream abf;

20 ...

21 void get_sample(int gen) {

22 ...

23 if (printhap) {

24 ...

25 for (auto iter = positions.begin(); iter != positions.end(); ++iter)

26 sequencefile << (alleles[*iter]) -> get_originating_population()
↪→ << " ";

27 sequencefile << endl;

28 for (auto iter = positions.begin(); iter != positions.end(); ++iter)

29 sequencefile << (alleles[*iter]) -> get_birthgen() << " ";

30 sequencefile << endl;

31 ...

32 }

33 ...

34 }

35 ...

36 vector<vector<int> > mutate(const vector<int> &parents, const int &gen) {

37 ...

38 for (int i=0; i<2; ++i) {

39 for (int j = 0; j < mutnum[i]; ++j) {

40 ...

41 if (alleles.find(position) == alleles.end()) { // new mutation to

↪→ a derived allele in the population

42 alleles.insert({position, new Allele(position, gen, popn)});

↪→ //updated with popn

43 if (trackAlleleBirths) // new statement

44 abf << "nt" << position << "\t" << gen << "\t" << popn <<

↪→ endl;

45 ...

46 }

47 ...

48 }

49 }

50 ...

51 public:

52 ...

53 void close_output_files() {

54 ...

55 if(trackAlleleBirths) abf.close(); // new line

56 ...

57 }

58 ...

59 Population (int popnum, int eextant):popn(popnum), extant(eextant) {

60 ...

61 if (useMS[popn]) {

62 ...

63 while(getline(ms_output, ms_line)) {

64 if (regex_search(ms_line, query)) {

65 ...

66 while(iss >> s) {

67 ...
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68 alleles.insert( { position , new Allele(position,-1,popn) }

↪→ ); //updated line with popn

69 }

70 }

71 ...

72 }

73 ...

74 }

75 ...

76 // Print new alleles to abf, if applicable

77 string ofname = "deme" + to_string(popn) + "_allele_births";
78 if (trackAlleleBirths)

79 abf.open(ofname.c_str());
80 ...

81 }

82
83 // allele.h file
84 ...

85 private:

86 int originating_population;
87 public:

88 inline int get_originating_population() { return
↪→ originating_population; } // new inline function

89 // modify constructor to include additional parameter

90 Allele (int pos, int gen, int op): position(pos), birthgen(gen),

↪→ originating_population(op) {

91 ...

92 }

Lines 1–14 illustrate how the extern bool variable trackAlleleBirths is
read from the parameters file. A value of 1 indicates that we will keep track
of allele births. In the population.h file, we add the additional private
variable ofstream abf, which provides us with a buffer to which allele
births will be printed (line 19). Lines 51–57 in the class constructor create a
name for the output file and open the abf buffer with this name. Within the
mutate() function of population.h, for each new mutation we add lines
43–44, which print the position of the mutation, current (origin) generation
of the allele, and the deme number of the originating deme to the allele
history file. If haplotype files are generated, we now add an additional two
header lines to the haplotype file; the first line lists the nucleotide position of
each segregating site among the sampled haplotypes, while the second lists
the generation of origin of the segregating site in each column. Note that this
change requires us to slightly modify the calc fst() R function detailed in
the previous subsection, as the first two lines will not consist of haplotypes
but, rather, metadata. See online code for the requisite change.

Next, we write an R function that allows us to identify the origins of
alleles from haplotype files. Recall that the names of these files take the form
of deme1 500, which is the sequencefile (actually haplotypes) for deme 1
at generation 500.
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analyze alleles.r

1 library(ggplot2);
2 library(reshape2);
3 library(cowplot);
4
5 analyze_allele_origins <- function(timepoints, focaldeme, origindemes,

↪→ imagefile="allele_origins.pdf")
6 {

7 q = matrix(nrow=length(timepoints), ncol = length(origindemes)+1); # 1

↪→ extra for generation

8 for (i in 1:length(timepoints)) {

9 t <- read.table (file = paste("deme", focaldeme, "_", timepoints[i],

↪→ sep = ""), header = T);

10 q[i,1] = timepoints[i];

11 for (j in 1:length(origindemes)) {

12 q[i,1+j] = sum(t[1,] == origindemes[j]);

13 }

14 }

15 n <- c("gen");
16 for (i in 1:length(origindemes)) {

17 n <- c(n, paste("d",origindemes[i],sep=""));
18 }

19 q <- as.data.frame(q);
20 names(q) <- n;

21 mq <- melt(q, id.vars="gen");

22 gg <- ggplot(mq, aes(gen)) + geom_point(aes(y=value, colour=variable));
23 gg <- gg + geom_line(aes(y=value, colour=variable));
24 #gg + scale_colour_manual(values = c("snow2", "snow4", "black"));

25 gg;

26 ggsave(imagefile);

27 return(q);
28 }

The parameters of the function analyze alleles() (line 5) include:

• timepoints: a seq( ) (e.g., seq(500, 5000, 500)) of the generations
when haplotype files were generated

• focaldeme: number of the focal deme
• origindemes: a vector( ) of possible demes fromwhich allelesmay have

originated by mutation
• imagefile: the name (inducing the .pdf extension) of the file to save

the plot produced by the function; file name is allele origins.pdf by
default

Note that I have commented out line 24 because you may wish to simply
allow ggplot2 to assign default colors to each curve. If you do specify colors
of your choice using line 24, however, you must make sure the number of
listed colors are less than or equal to the length of the origindemes vector.
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Modify the parameters file to simulate an ancestral deme of size Ne =
10000 (useMS=1), which splits into demes x and y, each with Ne = 5000,
and allows both demes to evolve for 2000 generations. Run multiple
simulations, changing thevalueofm each time, to obtain results across
awide range of gene flow. Use R to read results files and produce plots
of the proportion of polymorphic sites in deme x whose derived allele
originated in deme y versus the value of m. Try plotting the x-axis on
a logarithmic scale. Do the results confirm your expectations? Practice
explaining why the results are as they are.

6.4.1 Results and Validation

We begin with three simulations. In all three, deme 0 (Ne = 10000) is sim-
ulated using mscommand ./ms 20000 1 -t 80 -r 80 200001 >ms output.
Note that recombination is explicitly modeled and a sequence of length
200,000 bp is simulated. This deme remains whole for 100 generations, after
which it splits into demes 1 and 2 evenly, i.e., each begins with Ne = 5000
randomly assigned individuals. Two of the simulations are replicates of a
scenario of symmetrical migration in which m1,2 = m2,1 = 0.005 and the per-
site recombination rate of the simulated 200,000 bp sequence is r = 10−9. We
sample haplotypes every 500 generations and set trackAlleleOrigins to 1
and runlength to 50001 (generations). The output haplotype files have the
names deme1 X and deme2 X, where X is the sampled generation. We then
apply the R function analyze alleles detailed in the previous section to
generate a graph for each deme:

• d1 = analyze allele origins( seq(500, 50000, 500), 1, originde

mes = c(0,1,2), imagefile="deme1.pdf"

• d2 = analyze allele origins( seq(500, 50000, 500), 2, originde

mes = c(0,1,2), imagefile="deme2.pdf"

The objects d1 and d2 store the table used to generate the two PDFs that
are each saved to file. Note that the first argument, timepoints, is given a
sequence running from the generation number of the first haplotype sample
(generation 500) to the last haplotype sample (generation 50,000) by steps of
500.

The results of the two replicates are shown in Fig. 6.10a, b. Because 4Nem=
20,000×0.005 = 1000 >> 1, we expect the two demes to exchange genes at a
sufficiently high rate for the two demes to become one panmictic population.
This is confirmed by the fact that alleles originating by mutation in demes 1
and 2 are found in roughly equal numbers in both demes in both replicates
(dark gray and black lines). As we would expect, alleles that originated in
ancestral deme 0 decline over time as they are randomly lost from both
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demes (Fig. 6.10a, b; light gray lines). However, the step-like pattern of this
decline in deme-0 origin alleles may seem curious. For example, the last
20,000 generations of Fig. 6.10a show no decline in deme-0 origin alleles.
Upon examining individual haplotype files, I found that there were two
haplotypes of deme-0 origin alleles faithfully transmitted from generation
to generation and between demes 1 and 2. However, this pattern is much
different than the jagged increase in deme-1 and deme-2 origin alleles shown
in Fig. 7.10a, b). Furthermore, upon running a simulation in which r for the
forward simulation was increased by an order of magnitude to 10−8, the
decline in deme-0 origin alleles is smoother (Fig. 7.10c).

Observations such as these in our simulation results should give us some
pause. Most often, patterns that strike your intuition as odd are not indicative of
a newly discovered population genetic phenomenon; rather they are indicative of
something overlooked in the simulation process. Wemight question, for example:
Is the difference (jagged increases vs. step-like declines) due to the fact that
deme-0 alleles were primarily derived from coalescent simulation, while
deme-1 and deme-2 origin alleles were exclusively the product of mutations
in these demes during the forward-time portion of the simulation? It isworth
validating the ”reality” of a seemingly anomalous observation whenever
possible.

Myfirst thoughtwas that perhaps a per-site r of 10−9 was simply too low to
break up the haplotypes present after the coalescent simulation. Inspection
of haplotype files confirmed ”stubborn” blocks of tightly linked alleles that
were by chance not mixed by the process of crossing over. Still, curious.
Shouldn’t both demes be purged of all deme-0 origin alleles after 50,000
generations? And why do the increases in deme-1 and deme-2 origin alleles
oscillate so much?—indicating that haplotypes of these alleles are never
given the chance to evolve.

In Fig. 6.10, each panel shows that the increase in number of derived
alleles originating fromdeme 1 and 2 is similar but not even. Consider
Fig. 6.10a (left). It shows us that in deme 1, there are always slightly
more alleles originating from deme 1 than deme2. The opposite of
this is true in Fig. 6.10a (right). Is this more likely:

• a signal that the two demes are not quite a panmictic population?
• or, simply due to what must be a relatively large number of exceed-

ingly rare alleles recently produced in the focal deme?

Use results of a simulation to determine if the hypothesis in point
2 is actually true. For example, in deme 1 is there an excess of rare
alleles that originated in deme 1?

In this case, I reasoned that if the step-likedeclineof allelesderived froman
ancestral population is real, we should see a similar pattern in a subsequent
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Fig. 6.10 Symmetric migration between two demes. Each row shows the results of a
separate simulation; deme 1 results are in the left column and deme 2 results are in the
right column. In each graph, the three lines document the number of derived alleles in
the focal deme that originated by mutation in deme 0, 1, or 2 (see legend). The data to
generate these graphs were read from the allele information file, whose construction is
detailed at the beginning of Sect. 6.4

split of either deme 1 or deme 2. Therefore, I altered the parameters file such
that two additional demes (3 and 4) were Ne = 2500 descendants of deme 1
splitting in two at generation 50,000. Deme 2 was allowed to go extinct at
generation 50,001 and demes 3 and 4were simulated for an additional 50,000
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generations (Fig. 6.11). The results validated the step-like decline of alleles
originating in ancestral demes (solid dark gray and black lines in the bottom
row of graphs in Fig. 6.11), thereby seeming to rule out the possibility that
this pattern was a result of coalescent simulation.

With this certainty in mind, we can move on to explaining the difference
between jagged increases and step-like declines in allele counts from ances-
tral and extant demes. The jagged increase in allele counts originating in
extant demes is due to the fact that new mutants necessarily begin at a fre-
quency of 1/2Ne, which is also the probability that each will rise to fixation.
The effect is that the vast majority of new alleles are lost rapidly. Alleles orig-
inating in extant demes are mostly appearing and then blinking out. On the
other hand, alleles inherited from an ancestral deme that hang around for
an appreciable number of generations were likely at a high frequency when
the ancestral population splits in two. They decline in number over time be-
cause no new alleles from extinct demes are entering the extant demes. Yet
the high-frequency alleles that are present in descendant demes are tightly
linked to each other and must be eliminated together—though at a rate con-
tingent on recombination frequency. This takes a long time, particularly as
these ”sub-haplotypes” of ancestrally derived alleles are ping-ponging back
and forth between the extant demes connected by gene flow.

Next, we look briefly at the results of three simulations in which the
symmetrical migration rate is low (Nem = 1; Fig. 6.12a) or migration rates are
asymmetrical (Fig. 6.12b, c). Symmetrical migration where Nem = 1 shows a
noisy but overall increasing number of deme-1 origin alleles in deme 2 and
vice-versa (Fig. 6.12a). Extrapolating this trend—i.e., given sufficient time—
wewould expect both demes to become essentially panmictic. However, this
contrasts sharply with the results shown in Fig. 7.10a, b, where we see an
instantaneous equal sharing of alleles between demes 1 and 2.

In the cases where migration flows in only the deme 1 to deme 2 direction
(Fig. 6.12b) or is two orders of magnitude greater in the deme 1 to deme 2
direction (Fig. 6.12c), we find the rather remarkable result that deme-1 origin
alleles vastly outnumber deme-2 origin alleles in deme 2. Again, we need to
assess everything we are doing, including the parameter values simulated
and the code itself, to make sure this is not an artificial pattern. In this case, if
you will trust me, the code checks out. We must therefore form a hypothesis
for this counter-intuitive result.

Note that the counts of deme-1 origin alleles are very similar over time in
both demes. Oneway to interpret these patterns is that new alleles are ”bred”
in deme 1 and soon shared with deme 2. Another way of putting this is that
both demes are panmictic for deme-1 origin alleles, but not deme-2 origin
alleles because the latter are not ”shipped” to deme 1. Also of note is the fact
that deme-2 origin alleles (black lines) appear to be at equilibrium from the
very first sample at 500 generations (400 generations after the split between
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Fig. 6.11 Validation of the step-like decline of alleles derived from ancestral demes. The
schematic of the simulation is shown, in which deme 0 is generated by coalescent simu-
lation, splitting into demes 1 and 2 at generation 100. At generation 50,000, deme 2 goes
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Fig. 6.12 Minimal or asymmetric migration between two demes. Details of the graphs are
the same as in Fig. 6.10
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demes 1 and 2) and that the equilibrium number of deme-2 origin alleles is
much lower. We can explain this result using the logic that deme-2 origin
alleles are sequestered in their evolution within a smaller population of
5000 individuals, while deme-1 origin alleles are essentially evolving within
a population of 10,000 individuals (deme 1 + deme 2). Finally, note that
asymmetric migration results in much more rapid die-off of deme-0 origin
alleles in deme 1 which receives zero or minimal numbers of migrants from
deme 2 (cf. Deme 1 panels of Fig. 6.12b and c).
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7
Natural Selection

Around her aged loins, she gathered a whole nation of humble ancient
deaths, shades long silent ... This body of ours, this disguise put on by
common jumping molecules, is in constant revolt against the abominable
farce of having to endure.1

– Louis-Ferdinand Céline, Journey to the End of the Night

7.1 Background and Theory

Beginning biology students often place an identity sign between natural se-
lection and biological evolution. This is a case of mistaken identity. After
all, we have already encountered numerous other determinants of molecu-
lar and, therefore, phenotypic evolution. These include mutation, sampling
variability due to finite population size, recombination of linked genetic loci
that can generate novel haplotypes in a population, and effective migration
between semi-isolated demes.

One critical difference between natural selection and other evolutionary
factors is that natural selection can act as a true driver of evolution. For exam-
ple, unlike the stochastic action of genetic drift, positive directional selection
drives the frequency of an adaptive allele up. Conversely, purifying selection
drives the frequency of a deleterious allele down. Yet, the line that connects
random mutation to adaptive phenotype is so conceptually bright that it
tempts us into perhaps overly simplistic accounts of biological evolution, i.e.,
just-so stories (apejorative term for a simplistic, pat hypothesis of adaptation)

1 JOURNEY TO THE END OF THE NIGHT, copyright 1934, 1952 by Louis-Ferdinand
Celine, translation copyright 1983 Ralph Manheim. Reprinted by permission of New
Directions Publishing Corp.
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of the general form: mutation x fixed because phenotype y to which it maps
is adaptive in environment z. When true, it is a beautiful discovery to find
clear adaptive connections of this form. In the absence of strong, empirically
based evidence supporting adaptation, however, we must remember that
the quantity and character of extant genetic variation are functions of many
genetic and (in the case of complex traits) environmental factors.

Storytelling focused on the natural history, evolution, and defining adap-
tations of a species is central to dissemination of knowledge in evolutionary
biology. The impulse to tell stories of evolution is strong enough that it is
acceptable to use teleological phrases such as “Wings are for flight” to help
explain the adaptive significance of a trait despite the general antipathy of
evolutionary biologists toward teleology (Okasha 2018). Often missing from
these stories is the death correlated with adaptation. Differential fitness im-
plies loss of life, the “humble ancient deaths” of those who were slightly
less-fit and, therefore, not as long-lived. Death of the less-fit is the morbid
but inevitable cost of selection.

Another reason natural selection holds so much sway over our minds is
the concept’s association with the most famous opening act of evolutionary
biology: Charles Darwin, M.A., F.R.S., F.G.S., &c. The illustrious pedigree of
the concept sometimes makes it feel impossible to overstate the importance
of natural selection to evolution. Important historical counterpoints to the
assumed predominance of natural selection include Gould and Lewontin
(1979) and the (semi-)neutral theory of Motoo Kimura and Tomoko Ohta.
I personally believe it is possible to overstate the importance of natural
selection. But of course natural selection is important. Supporting evidence?
I devote this chapter and the next to the topic.

7.1.1 Natural Selection as Optimization?

The branch of computing called evolutionary computation uses algorithms
thatmimic organic evolution. In a standard algorithm of this kind, fragments
of code play the part of alleles and are subject to recombination, mutation,
and natural selection during each iteration of a for loop, i.e., generation.
Based on a fitness function that quantifies the success of the evolving code,
the code self-optimizes to perform a specific task. Computer code of greater
fitness is passed on to the next iteration of the algorithm with greater prob-
ability, thereby improving the efficiency and/or efficacy of the next “genera-
tion” of code fragments.

The danger of equating natural selection with an optimization process is
that itmay cause some to envision biological evolution as a process that leads
to ever-better “product”—with the implication that generation t is better
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equipped to handle the dangers and insults of theworld thangeneration t−1,
just as it was better prepared than generation t−2. Sewall Wright’s famous
and forever-debatedmetaphor of an adaptive landscape is onemanifestation
of this view, inwhich populations are imagined climbing hills of the adaptive
landscape whose altitude is measured in mean population fitness (w̄, see
Sect. 7.1.2.1) (Wright 1932). Ronald Fisher’s contemporaneous “fundamental
theorem of natural selection” predicts the change in w̄ due to the effects of
natural selection alone (Fisher 1930). The fundamental theorem of natural
selection has, on occasion, also been interpreted as amathematical result that
implies mean population fitness always increases and thus a core statement
in favor of the optimizing capacity of natural selection. However, the idea
of ever-increasing fitness is not true and it was not Fisher’s intent (Edwards
2002).

The most obvious problem with treating natural selection as an organic
optimization algorithm is that the environment is in constant flux; the op-
timal combination of genotypes is therefore ever-shifting. The situation re-
minds me of the eponymous Luke played by Paul Newman in Cool Hand
Luke (1967). Luke is instructed to dig a hole and upon doing so is asked why
the hole is empty. Then, after completing the refilling, Luke is asked what all
that dirt is doing in the hole. In a similar way, a population “strives” toward
the current, genotypic ideal only to have that ideal cruelly changed from
time to time.

In his thorough examination of fitness optimization by natural selection,
Samir Okasha (2018) identifies two additional reasons; the idea is controver-
sial. First, populations only bear a limited number of available genotypes and,
therefore, phenotypes and adaptations. Thus, if natural selection is a process
of optimization, it is a conditional optimization; the total set of conceivable
phenotypes are not within the reach of any population. Second, in addition
to the vulnerability of an adaptive allele at low frequency, it is important
to remember that there are forms of selection that are not expected to lead
to the fixation of a particular allele. Examples include negative frequency-
dependent selection (Sect. 7.2.2) and overdominance (Sect. 7.2.3).

It seems safe to conclude that the classic, Darwinian view of natural selec-
tion in which an adaptive variant emerges by mutation and rises to fixation
is a type of optimization. In addition, despite reasonable philosophical objec-
tions, I find the adaptive landscape metaphor to be a useful conceptual and
pedagogical tool as long as we are honest about its limitations. If humans
could visualize more than three or four (with color-coding) dimensions,
complaints about misleading labeling of axes on the adaptive landscape
would be moot. Both the adaptive landscape and the view of natural selec-
tion as an optimization process can prove valuable. We must simply work
carefully.
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7.1.2 Fitness

Fitness is the mean reproductive output of an individual with a given geno-
type or set of genotypes. In population genetics, fitness is often defined with
reference to genotype at a single locus. In this case, fitness of each genotype
at the focal locus is implicitly averaged across all genetic backgrounds. In
a real sense, this is not a satisfactory model of evolution; an individual’s
true fitness is determined by variation at all loci determinative of pheno-
types that affect the viability or fecundity of an individual. However, most
empirical studies do focus on a single or small set of loci that impact fit-
ness. It is therefore reasonable to consider fitness as a function of this small
number of loci, treating the fitness of each genotype as a fitness marginal-
ized over all possible genetic backgrounds. In practice, we do not explicitly
marginalize fitness; we just do not have the information regarding genetic
backgrounds to make this calculation. Conceptually, however, it is impor-
tant to keep in mind that the fitnesses of genotypes at a given locus isolate
the effect of genetic variation at this locus from the genetic background as
a whole.

The following discussion of the different “faces” of fitness and their roles
in deriving Eqs. 7.6 and 7.7—which describe the effects of one generation of
positive natural selection on frequency of an adaptive allele—follows Rice
(2004). I find this derivation logical and intuitive.

The most direct measure of the fitness of a genotype is absolute fitness,
which is expressed in terms of the average number of offspring produced by
individuals of each genotype. Consider a locus with two alleles—A and a—
in a diploid species. Although empirical determination of absolute fitness
is laborious, imagine that a research team has determined the following
absolute fitnesses of the three possible genotypes:

genotype absolute fitness

A/A 10
A/a 9.5
a/a 9

Although absolute fitness is an intuitive measure, it is more instructive
to express fitness in relative terms. Relative fitness is obtained by dividing
each absolute fitness value by the maximum absolute fitness. In this way,
the table of absolute fitnesses is converted to the following table of relative
fitnesses, which has the attractive advantage of normalizing all fitness values
to a maximum relative fitness of 1.0:
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genotype relative fitness

A/A wA/A = 10/10 = 1.0
A/a wA/a = 9.5/10 = 0.95
a/a wa/a = 9/10 = 0.9

A selective regime consists of the biotic and abiotic factors that collectively
determine the expected outcome of natural selection. I now introduce a sim-
ple two-parameter model of relative fitness values that, however indirectly,
is meant to reflect the reproductive consequences of the selective regime on
individuals with distinct genotypes at a locus. It is important for the reader
to understand that I will refer to the set of relative fitness values as a selective
regime throughout. I do this for ease of communication. Despite this bow to
facility, remember that themodeled relative fitness values are a locus-specific
consequence of the active selective regime and, therefore, a reflection of the se-
lective regime—and not the selective regime itself, as commonly defined.
The two parameters of our model are (1) the selection coefficient, s, and (2)
the dominance coefficient, h. At a diallelic locus, the relative fitness values
of genotypes, from most- to least-fit, are then 1., 1− hs, and 1− s. Using pa-
rameter values h = 0.5 and s = 0.1, we recover the values of relative fitness
shown in the previous table:

genotype relative fitness

A/A wA/A = 1.0
A/a wA/a = 1.−hs = 0.95
a/a wa/a = 1.− s = 0.9

With respect to simulation, the definition of a selective regime in terms of h
and s offers great flexibility. A dominant selective regime holds when h = 0.,
and an additive selective regime holds when h> 0. Meanwhile, s controls the
strength of selection regardless of the value of h. Of course, there are many
situations—e.g., overdominance—that cannot be captured by an unaltered
version of this model no matter the chosen values of h and s.

7.1.2.1 Marginal Fitness and Mean Population Fitness

In words, mean population fitness is defined as the average relative fitness
of an individual in a population. Mathematically, it is easiest to express this
quantity w̄ as a function of allele frequencies and their values of marginal
fitness.

Informally, marginal fitness can be thought of as the average fitness of an
allele in a population. Marginal is used in the same sense as in a marginal
probability distribution, where the probability of a random variable is cal-
culated (marginalized) over the probabilities of all other random variables
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under consideration. Clearly marginal fitness is an abstraction in diploid
organisms, as natural selection acts upon differences in phenotype that are
dependent on genotype rather than a single allele. However, calculation of
marginal fitnesses does possess some heuristic value and makes calculation
of w̄ easier.

To see how marginal fitness is calculated, again consider a diallelic locus
with alleles A and a. Thus, there are three possible genotypes—A/A,A/a, and
a/a—and each allele is found in the context of two of the three genotypes. To
obtain the marginal fitness of allele A, we first ask the question: How proba-
ble is it that an A allele finds itself in a homozygous genotype (i.e., A/A)? The
answer is simply the probability that the other allele of the genotype is also
A, which is equal to the frequency of A, or p. Second, we ask: How probable
it is that an A allele finds itself a member of the heterozygous genotype A/a?
The answer is simply the probability that the other allele of the genotype is
a, which is equal to the frequency of a, or q. Finally, we weight the relative
fitness of genotypes A/A and A/a by the probability of the other allele in
the genotype A/ —which is simply p or q—to obtain the marginal fitness of
allele A:

wA = pwA/A+ qwA/a (7.1)

Following similar logic, the marginal fitness of allele a is:

wa = pwA/a+ qwa/a (7.2)

With marginal fitnesses in hand, the mean fitness of individuals in the pop-
ulation is easy to calculate:

w̄ = pwA+ qwa (7.3)

Here, we weight the marginal fitness of each allele by its frequency in the
population.

Marginal fitnesses can also be expressed in terms of our basic model of
single-locus selection as functions of p, q, s, and h:

wA = pwA/A+ qwA/a = p(1)+ (1−p)(1−hs) = 1−hsq (7.4)

wa = pwA/a+ qwa/a = p(1−hs)+ (1−p)(1− s) = 1−hsp− qs (7.5)

7.1.2.2 Deterministic Changes to Allele Frequencies

Wenowcalculate deterministic changes to the frequency of the adaptive allele,
p. These changes are deterministic in the sense that the stochastic effects of
finite population size are ignored. Even a highly adaptive allele is often
lost in stochastic simulations (and, presumably, in nature) simply because
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it emerges on a single chromosome in a diploid population at a frequency
of 1/2N. In the deterministic simulation that follows, we isolate the effects
of natural selection, and the rise in frequency of the adaptive allele will
be identical between runs whenever the simulation is run with the same
parameter values.

The frequency of the favored A allele in the next generation is:

pt+1 = pt
wA

w̄
, (7.6)

where pt+1 is the frequency of the A allele after one generation of natural
selection. Note that the term wA

w̄ controls whether the allele increases or
decreases in frequency. If this quantity is > 1, the current frequency of A
(pt) will increase and if this quantity is < 1, the current frequency of allele
A will decrease. This should make intuitive sense. If the marginal fitness of
A alleles is greater than mean population fitness w̄, we expect A alleles to
be passed on to the next generation with greater frequency than a alleles. In
other words, the term wA

w̄ measures the expected bias (in this case, positive)
of transmission of allele A to the next generation due to natural selection.

Finally, the deterministic change in the frequency of an allele in one gen-
eration can be expressed as:

Δp = pt+1−pt =
ptwA

w̄
− ptw̄

w̄
=

pq(wA−wa)
w̄

(7.7)

The following R script simulates the deterministic trajectory of a favored
allele under positive natural selection for the model discussed in Sect. 7.1.2
and parameterized by user-input values of N, s, and h.

deterministic selection.r

1 deterministic_selection <- function(N, s, h, epsilon)

2 {

3 timecount <- 0

4 p <- 1 / (2*N)
5 fitness <- c(1-s, 1-h*s, 1)

6 marg_fitness <- calc_marginal_fitness(fitness, p)

7
8 gen <- c(timecount)
9 frequency <- c(p)

10 popfit <- c(calc_population_fitness(p, marg_fitness))
11
12
13 while (p <= 1-epsilon) {

14 gen <- c(gen, timecount <- timecount + 1)

15 marg_fitness <- calc_marginal_fitness(fitness, p)

16 wbar <- calc_population_fitness(p, marg_fitness)
17 frequency <- c(frequency, p <- p * ( marg_fitness[2] / wbar ))

18 popfit <- c(popfit, wbar)

19 }

20
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21 d <- data.frame("gen" = gen, "frequency" = frequency, "popfit" = popfit)

22 return(d)
23 }

24
25 calc_marginal_fitness <- function(fitness, p)

26 {

27 q <- 1-p

28 mfit <- c(q*fitness[1] + p*fitness[2], p*fitness[3] + q*fitness[2])
29 return(mfit)
30 }

31
32 calc_population_fitness <- function(p, mfit)

33 {

34 q <- 1-p

35 wbar <- q*mfit[1] + p*mfit[2]
36 }

In addition, to N, s, and h, the function deterministic selection() takes
the argument ε, which determines how long the function will run (line 13).
The motivation for this detail is that under deterministic conditions it will
take a very large number of generations to obtain fixation of the favored
allele even though fixation is approached after a much smaller number of
generations.

Run deterministic selection() using the following arguments:

• deterministic selection(10000, 0.01, 0., 0.003)

• deterministic selection(10000, 0.01, 0.5, 0.000001)

• deterministic selection(10000, 0.1, 0., 0.003)

• deterministic selection(10000, 0.1, 0.5, 0.000001)

The first and third commands are for a dominant selective regime, while the
second and fourth commands are for an additive selective regime in which
the heterozygote (A/a) has a relative fitness centered exactly between the
relative fitnesses of the two homozygotes (A/A and a/a) because h = 0.5.

Before examining the deterministic results, however,we pause to consider
the Hardy-Weinberg law, which helps explain the differing trajectories of an
increasing p (the frequency of the favored allele) between additive and dom-
inant selective regimes. TheHardy-Weinberg law for two alleles is expressed
as the quadratic equation

p2+2pq+ q2 = 1, (7.8)

where each of the terms on the left-hand side provides the expected fre-
quency of the three possible genotypes. Specifically, fA/A = p2, fA/a = 2pq,
and fa/a = q2. Figure 7.1a shows the genotype frequencies expected for dif-
ferent values of p, from 0 to 1. Two key values of p are indicated. First, when
0 ≥ p < 1

3 , a/a genotypes outnumber A/a genotypes. Second, when 2
3 < p ≤ 1,

A/A genotypes outnumber A/a genotypes. Most importantly, the fraction of
A alleles found in A/a genotypes is greater than the fraction of A alleles in
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A/A genotypes for all p < 0.5, while the fraction of a alleles in A/a genotypes
is greater than the fraction of a alleles in a/a genotypes for all p > 0.5.

It follows that for very low values of p, we expect all sampled A alleles to
be found in heterozygotes. Consider that if p = 1/20,000, then p2 = 2.5×10−9;
in a population of a billion individuals, you would only expect to find two
or three A/A homozygotes. Conversely, for values of p approaching 1, the
vast majority of a alleles are found in heterozygotes. The importance of this
lies in the difference in fitness of heterozygotes specified by the dominant
and additive selective regimes. Under a dominant selective regime, both
homozygotes for the favored allele (A/A) and heterozygotes have the same,
maximal relative fitness of 1.0. On the other hand, under an additive selective
regime, in which h is nonzero, the heterozygotes possess a lower fitness than
homozygotes for the favored allele (A/A).

As a result of these facts, we find that wA/a impacts differences in the
slope of the adaptive allele’s frequency between additive and dominant
selective regimes during two critical phases of its increase: when p is very
low or very high. For low values of p and an additive selective regime under
which wA/a < wA/A, the A allele struggles to rise in frequency because there are
likely no A/A genotypes in the population. Thus, noticeable increases in p
begin much later under an additive selective regime regardless of selective
strength s (Fig. 7.1b,c). Second, fixation of the A allele (p = 1) takes much longer
to accomplish under a dominant selective regime. To consider the effect of s on
these dynamics, again consider Fig. 7.1b,c. In both panels, results from a
dominant (h = 0) and additive (h = 0.5) selective regimes are shown (black
andgray lines, respectively). Bothplots look identical,with the exception that
the length of time shown on the x-axis is an order of magnitude different:
0–500 generations for s = 0.01 (Fig. 7.1b) and 0–5000 generations for s =
0.1 (Fig. 7.1c), i.e., s influences the quantitative more than the qualitative
dynamics of the adaptive allele’s ascent under a deterministic model.

Differences in the value of h, on the other hand, lead to noticeable distor-
tions of dp/dt. Focusing on the case of s = 0.01 (Fig. 7.1b), the only difference
in relative fitnesses is for the heterozygotes: wA/a = 1−hs = 1− (0)(0.01) = 1.
for the dominant selective regime and wA/a = 1− hs = 1− (0.5)(0.01) = 0.995
for the additive selective regime. Thus when p is very small, under a dom-
inant selective regime the only genotype with a selective deficit is a/a. As
a result, a alleles are more rapidly eliminated and the dominant selective
regime is associated with an earlier onset in the rise of p = fA. Conversely,
when p is very large, a alleles are able to “hide out” in heterozygotes under
a dominant selective regime, because heterozygotes do not suffer a fitness
deficit. This results in the much longer time needed to purge the population
of the deleterious a alleles associated with a dominant selective regime. On
the other hand, because nearly all a alleles in the population are found in
heterozygotes for large p, the fitness deficit of heterozygotes under an ad-
ditive selective regime facilitates the rapid elimination of a alleles from the
population.
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In the next section, we use simulation to address the complication of finite
population size. In other words, we take into account the fact that random
fluctuations in allele frequencies still occur despite the directional pressure
on allele frequencies provided by natural selection.

7.2 Stochastic Simulation of the Selected Variant Only

In Chap. 8, wewill consider the effect of natural selection on linked variation,
requiring us to simulate full sequences bracketing the selected variant. For
now, we limit our attention to the selected variant itself. To this end, we
cover a simple simulation program that includes reproduction in addition to
user-input values of selection parameters. Inclusion of reproduction mimics
a more realistic situation in which natural selection and sampling error due
to genetic drift jointly influence evolution of the selected variant. In short,
we now simulate a stochastic process.

7.2.1 Frequency-Independent Selection

Program stochastic selection.cc is a standalone program that requires
the user to input values of N, a string for the output file suffix, s, and h on
the command-line in that order. It is assumed that an adaptive allele has just
arisen by mutation and therefore starts at a frequency of 1/2N. Due to the
randomness provided by reproduction, it is very common for the favored,
derived allele to be lost from the population early on. To account for this,
the boolean varible trigger is used to control the loop that runs from lines
34–79. In this way, the simulation starts over each time the favored allele is
lost and the program will not complete until a run of the simulation results
in fixation of the favored allele. If the nonindented, commented-out lines are
activated, the program will print the current frequency of the favored allele
to screen as well as the number of tries (variable numtries; lines 32, 35, and
81) required for the favored allele to successfully achieve fixation. Output
from this program is the frequency of the favored allele and w̄ for each
generation.

stochastic selection.cc

1 #include <random>

2 #include <fstream>

3 #include <string>

4 #include <map>

5 #include <vector>

6 #include <iostream>

7
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8 using namespace std;

9
10 int main(int argc, char *argv[]) {

11
12 // command line arguments

13 double N = atof(argv[1]);

14 string suffix = argv[2];

15 double s = atof(argv[3]);

16 double h = atof(argv[4]);

17
18 map<int, int> pop;

19 vector<double> fitness;

20 fitness.push_back(1.-s);
21 fitness.push_back(1.-(h*s));
22 fitness.push_back(1.);
23
24 default_random_engine engine(time(0)); //initialize the random engine

25 map<int, vector<double>> data;
26 uniform_int_distribution<int> randind(0,N-1);

27 uniform_real_distribution<double> randd(0.,1.);

28
29 bool trigger = true;

30 int gen;

31 // int numtries = 0;

32
33 while(trigger) {

34 // numtries++;

35 // populate the population with N-1 homozygotes for ancestral allele

36 // ... and 1 heterozygote for the derived, beneficial allele

37 for (int i=0; i<N-1; i++)

38 pop[i] = 0;

39 pop[N-1] = 1;

40 gen = 0;

41 double p = 1/(2*N);
42
43 while (p != 0. && p != 1.) {

44 gen++;

45 vector<int> survivor_indices;
46 map<int, int> nextpop;

47 for (int i=0; i<N; i++) {

48 if (randd(engine) <= fitness[pop[i]])

49 survivor_indices.push_back(i);
50 }

51 uniform_int_distribution<int> randind(0,survivor_indices.size());
52
53 for (int i=0; i<N; i++) { // constant population size

54 double offspring = 0.;

55 for (int j=0; j<2; j++) {

56 switch (pop[survivor_indices[ randind(engine) ] ] ) {

57 case 0: break;
58 case 1: if (randd(engine) <= 0.5) { offspring+=1.; }

59 break;
60 case 2: offspring+=1.;

61 }
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62 }

63 nextpop[i] = offspring;

64 }

65 pop = nextpop;

66 p = 0.;

67 for (int i = 0; i<N; i++) p += pop[i];

68 p /= (2*N);
69 data[gen].push_back(p);
70 double q = 1. - p;

71 double popfit = p*(p*fitness[2]+q*fitness[1]) +

↪→ q*(p*fitness[1]+q*fitness[0]); // mean population fitness

72 data[gen].push_back(popfit);
73 // cout << p << endl;

74 }

75 if (p == 1.) trigger = false;

76 else data.clear();
77 // cout << "****************************" << endl;

78 }

79
80 // cout << "Number of tries: " << numtries << endl;

81
82 // output data held in the map, data
83 string fname = "stochastic_selection_resultsN" + suffix;

84 ofstream output;

85 output.open(fname.c_str());
86 output << "gen\tfrequency\tpopfit" << endl;

87 for (int i=1; i<data.size(); i++)

88 output << i << "\t" << data[i][0] << "\t" << data[i][1] << endl;

89 output.close();
90
91 return 0;

92 }

Representative results from this simulation are shown in Fig. 7.2. These
simple results from a simple program inform our growing intuition regard-
ing positive selection targeting a new allele just arisen from mutation. First,
when selective pressure is low, the random influence of genetic drift on allele
frequencies is quite evident. When s = 0.01 (Fig. 7.2a-c), the trajectory of the
increase in p = fA is jagged. Conversely, when s = 0.1 (Fig. 7.2e), p increases
smoothly under both selective regimes, as selection is sufficiently strong to
dampen the random fluctuations due to genetic drift. In other words, strong
selection results in a quasi-deterministic increase in p provided the favored
allele survives its tenuous existence when it first emerges via mutation.

Second, under a dominant selective regime, mean population fitness (w̄)
climbs at a rapid rate despite the protracted time it takes to purge the popu-
lation of all less-fit alleles (Fig. 7.2d,f). A close comparison of the p to w̄ under
a dominant selective regime (cf. black lines in Fig. 7.2c vs. d and Fig. 7.2e
vs. f) shows that once p ∼ 0.75, w̄ is very nearly 1. Thus, the lengthy time
required for fixation of the A allele under the dominant selective regime
may be of little real consequence. This result is easily explained by the fact
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that once p is substantial, there are relatively few a/a homozygotes, which is
the only genotype with relative fitness < 1. In other words, although a fairly
large number of a alleles may still be segregating in the population, most of
them are found in heterozygotes and do not debit mean population fitness.
Figure 7.2d,f shows that, conversely, the slower up-tick in p under an additive
selective regime (h = 0.5) has the consequence of the population spending a
longer period with low w̄ relative to a dominant selective regime.

7.2.2 Negative Frequency-Dependent Selection

In the previous Sect. 7.2.1, we assumed relative fitness is independent of
current allele frequencies. However, this is not always true, in which case
we refer to natural selection as frequency-dependent. We specifically focus
on negative frequency-dependent selection because it can lead to the impor-
tant and interesting situation in which polymorphism is maintained despite
selection. Under negative frequency-dependence, the relative fitness of a
homozygous genotype is greater when its component allele is rare. For ex-
ample, wA/A is greatest when p = fA is small and wa/a is greatest when q = fa
is small.

Before introducing a model of negative frequency-dependent selection,
we consider the expected dynamics of allele frequencies in response to this
typeof selection. TheRscript that follows—analyze selective regimes.r—
calculates the one-dimensional vector field and w̄ for a given set of relative
fitness functions that may be dependent or independent of p. The vector
field visualizes ṗ = dp

dt , which is the rate of change in p on the domain [0,1]. A
variety of one-locus, two-allele selective regimes can be analyzed using these
functions. The utility of these functions is first shown by applying them to
two frequency-independent selective regimes.

analyze selective regime.r

1 analyze_selective_regime <- function(s, h, relfitAA, relfitAa, relfitaa)

2 {

3 p <- seq(0,1,0.001)
4 q <- 1-p

5 relfit <- list()
6
7 relfit[[1]] <- eval(substitute(relfitAA))
8 relfit[[2]] <- eval(substitute(relfitAa))
9 relfit[[3]] <- eval(substitute(relfitaa))

10
11 wA <- p*relfit[[1]] + q*relfit[[2]]
12 wa <- p*relfit[[2]] + q*relfit[[3]]
13 wbar <- p*wA + q*wa
14
15 pt <- p * wA / wbar
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16 change <- pt-p
17 vf <- data.frame("p" = p, "pdot" = change)

18 popfit <- data.frame("p" = p, "wbar" = wbar)

19 q <- list()
20 q[[1]] <- vf

21 q[[2]] <- popfit

22 return(q)
23 }

24
25 plot_vector_field <- function(q)
26 {

27 plot(q[[1]]$p, q[[1]]$pdot, type = "l", xlab = "p", ylab = "dp/dt")
28 abline(h = 0., lty = 2)

29 }

30
31 plot_wbar <- function(q)
32 {

33 plot(q[[2]]$p, q[[2]]$wbar, type = "l", xlab = "p", ylab = "wbar")

34 m <- q[[2]][q[[2]]$wbar == max(q[[2]]$wbar),][1]
35 print(m)
36 abline(v = m, lty = 2)

37 }

Arguments passed to function analyze selective regime() include s,
h, and the relative fitness of each genotype—relfitAA, relfitAa, and
relfitAa; the latter are entered as expressions in terms of s, h (assuming
two parameters are required to express relative fitness), as well as p and q
in cases of frequency-dependent selection. We begin by calculating the vec-
tor field and mean population fitness for dominant and additive selective
regimes of frequency-independent selection:

1 > source("analyze_selective_regime.r")
2 > dom <- analyze_selective_regime(0.05, 0, 1, 1-h*s, 1-s)

3 > add <- analyze_selective_regime(0.05, 0.5, 1, 1-h*s, 1-s)

Note the expressions used to represent relative fitness of each genotype.
Next, we plot (1) the vector field and (2) w̄ versus p for the two frequency-
independent selective regimes:

1 > plot_vector_field(dom)
2 > plot_wbar(dom)
3 > plot_vector_field(add)
4 > plot_wbar(add)

The resultingplots are shown in Fig. 7.3.Althoughplots of pversus time (e.g.,
Figs. 7.1b,c and 7.2) showed that a dominant selective regime is characterized
by an early increase p and then a protracted climb toward fixation, vector
fields provide a more explicit, high-resolution depiction of these facts. Ex-
amining the vector fields for the dominant (Fig. 7.3a) and additive (Fig. 7.3b)
selective regimes, we first notice that ṗ is greater than zero for all values of
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p other than zero and one, which are absorption points in the absence of
mutation. Thus, if an adaptive allele is not lost in the early phases of positive
natural selection, this consistent drive toward fixation leads to fixation with
near-certainty. Second, notice that ṗ varies depending on the value of p. Re-
member this we are currently considering frequency-independent selection,
by which we mean relative fitness is not a function of allele frequencies.
Yet, dp/dt does change with the value of p; the slope shows a definite peak
at different values of p for the two selective regimes (Fig. 7.3a,b). Finally,
as compared to the additive model, dp/dt shows a rapid decline for p > 0.5
under the dominant selective regime (Fig. 7.3a).
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We could find the curves shown in Fig. 7.1b,c without ever running a
simulation. (A) How would you map the information in Fig. 7.3a to
produce the deterministic p versus t plots of Fig. 7.1b,c. (B) What effect,
if any, does the value of s have on the one-dimensional vector field of
additive and dominant selective regimes?

When we discussed Fig. 7.2b,f, we noted that w̄ was generally greater for
the dominant selective regime than the additive selective regime. Compar-
ing Fig. 7.3c to d, this observation is corroborated. For all values of p, the
dominant selective regime possesses greater w̄, which is most pronounced
for intermediate values of p. w̄ is maximized when p = 1, fully replacing the
less-fit allele.

Wenextperformgraphical analysis of two scenarios of negative frequency-
dependent (NFD) natural selection: (1) a dominant case in which wA/A =wA/a
and the relationship between p and relative fitness is linear (Fig. 8.4a); (2)
an additive case where the relationship between p and relative fitness is
quadratic (Fig. 8.4b). To contextualize these selective regimes, consider a toy
example inwhich a single selected locus determines the outward appearance
of a prey species. As predators hunt these prey species, they learn a search
image that corresponds to themost frequent outward appearance of the prey
species. Thus, individuals of the prey species bearing a genotype that maps
to a rare outward appearance stand a better chance of surviving. Over time,
the situation reverses as the formerly rare phenotype becomes common and
the relative fitnesses of the different causative genotypes flip rank.

Under the additive selective regime, the heterozygote genotype maps
to a third outward appearance (phenotype), somewhat complicating the
dynamics of the two allele frequencies in the population (cf. Fig. 7.4a and b).

As an example of how touseanalyze selective regime() in this context,
we encode a dominant NFD selective regime that is linear in form and
defined in terms of just s and p:

genotype relative fitness

A/A wA/A = 1.0− sp
A/a wA/a = 1.0− sp
a/a wa/a = 1.0− s+ sp

As our second example, we encode an additive NFD selective regime that is
quadratic in form and uses two selective parameters (s and h) as well as the
frequency of the A allele p = 1− q:

genotype relative fitness

A/A wA/A = 1.0− sp2

A/a wA/a = 1.0−2shpq
a/a wa/a = 1.0− sq2
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First, note that the relative fitness of each genotype incorporates its expected
frequencyunder theHardy-Weinberg law. Second, note that h is againusedas
a dominance coefficient that affects the magnitude of fitness deficit accorded
to heterozygotes. You—and Nature!—could of course specify many other
NFD selective regimes. You alone can use analyze selective regimes.r to
graphically analyze your creations.

We do so next for our two example scenarios defined in the tables above.
We assume s = 0.05 and, for the additive NFD regime, h = 2:

1 > nfd_dom <- analyze_selective_regime(0.05, 0, 1-s*p, 1-s*p, 1-s+s*p)
2 > plot_vector_field(nfd_dom)
3 > plot_wbar(nfd_dom)
4 > nfd_add <- analyze_selective_regime(0.05, 2., 1-s*pˆ2, 1-2*s*h*p*q,

↪→ 1-s*qˆ2)
5 > plot_vector_field(nfd_add)
6 > plot_wbar(nfd_add)

The vector fields and plots of w̄ versus p for both NFD selective regimes
are shown in Fig. 7.4c–f. In the case of dominant NFD, a single stable point
is found at p = 0.5 where dp/dt = 0 (Fig. 7.4c). When A is the minor allele
(p < 0.5), positive values of dp/dt drive p upwards toward the stable point.
Conversely, when a is the minor allele, negative values of dp/dt drive p
downwards toward the stable, fixed point. In the absence of mutation, p = 0.
and p = 1. are absorption points. They would not be stable points were
mutation included.

Things are somewhat more complicated (and interesting?) under the ad-
ditive NFD selective regime (Fig. 7.4d). Excluding the absorption points at 0
and 1, dp/dt = 0 for three values of p: 0.276, 0.5, and 0.724. The first and last
of these points are stable because they are bracketed by dp/dt of opposing
direction, while the intermediate point is unstable as any perturbation will
lead p away from this point. Importantly, under both NFD selective regimes,
the stable points are at values of p that are neither zero nor one. In other
words, as long as p is neither equal to zero or one, NFD is one means of
preserving polymorphism at a locus.

Next, we compare the stable points of each selective regime to its point
of maximal w̄. Under the dominant NFD selective regime, max(w̄) = 0.392
(Fig. 7.4e). However, the stable point, which is an attractor of p is at 0.5
(Fig. 7.4c). We will see in subsequent simulations that p = 0.5 is indeed an
attractor. An important conclusion drawn from this example is that natu-
ral selection may not always maximize fitness even when environmental
conditions are stable and the values of s and h do not change.

In the additive NFD case, the two stable points at p = 0.276 and p = 0.724
do correspond to the two values of max(w̄) (cf. Fig. 7.4d and f). Although
population fitness is expected to be maximized by natural selection in this
case, the actual value of p found in a population maximizing w̄ is uncertain
as it depends on what the value of p was at the onset of natural selection
(Fig. 7.4d).
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Fig. 7.4 Two selective regimes of negative frequency-dependence (NFD). The left-hand
column (a,c,e) corresponds to a dominant form of NFD in which heterozygotes bear the
same relative fitness as homozygotes for the allele A, whose frequency is denoted p. The
right-hand column (b,d,f) corresponds to an additive form of NFD in which all three
genotypes bear different relative fitness. In the case of the dominant NFD, maximal w̄
(e) does not coincide with the stable point at p = 0.5 (c). The points of maximal w̄ for the
additive NFD (f) do coincide with the two stable points (d)
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The next step is to write a forward simulation program that simulates
evolution at a single locus under an NFD selective regime. As you might
expect, the simulation is very similar to that for frequency-independent
selection. I do not reproduce the program here, but it is available online
among Chap. 7 materials (stochastic selection negfreq.cc). Command-
line inputs to this program include Ne, s, h (the last of which is meaningless
in the case of the dominant NFD selective regime that only needs the one
selection parameter s), and the number of generations to simulate. This last
parameter is necessary because unlike frequency-independent selection, we
expect polymorphism to persist. There is no fixation of p and therefore no
natural point at which to terminate the program. By default, the program
begins with p = 1/2Ne; as before, the program starts over if p is absorbed at
p = 0.

For both NFD selective regimes detailed above, I ran the program for
20,000 generations for both Ne = 10,000 and Ne = 1000. In the dominant case
(Fig. 7.5a,b),we observemaintenance of polymorphismat the single attractor
at p = 0.5, which does not coincide with the frequency of the A allele that
would maximize w̄. In addition, as population size decreases the variance
on p around the attractor increases.

In the additive case (Fig. 7.5c,d), decreasing population size produces a
more interesting effect. When Ne = 10,000, because we begin the simulation
with the lowest possible nonzero value of p = 1/2Ne, p approaches and re-
mains on the lower of the two attractors at p = 0.276 (Fig. 7.5c). However,
when we decrease Ne to 1000, the population oscillates between periods
in which p is focused on the smaller attractor and periods focused on the
greater attractor at p= 0.724 (Fig. 7.5d). This can be explained by the fact that
sampling error associated with small population size somewhat frequently
perturbs p sufficiently for it to be attracted to another stable point. Again,
note that unlike the dominant NFD selective regime, both stable points cor-
respond to the two values of p that maximize w̄ (Figs. 7.4f and 7.5d).

7.2.3 Overdominance

Overdominance (heterozygote advantage) refers to a selective regime in
which the heterozygote bears greater relative fitness than either of the two
homozygotes. Here is a two-parameter model of overdominance:

genotype relative fitness

A/A wA/A = 1.0− s
A/a wA/a = 1.0
a/a wa/a = 1.0− t
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Fig. 7.5 Kernel density estimates of p over 20,000 generations of forward, stochastic simu-
lations of the selective regimes summarized in Fig. 7.4a and b. In all simulations, p began
at a frequency of 1/2Ne and s was set to 0.05. Top row: Results from simulation of the
dominant NFD selective regime summarized in Fig. 7.4a. Bottom row: Results from sim-
ulation of the additive NFD selective regime summarized in Fig. 7.4b.Ne: 10,000 in (a, c);
1000 in (b,d). Vertical dashed lines indicate value(s) of p at which w̄ is maximized for the
selective regime

s and t may be equal or not. We now examine an overdominant selective
regime in which t is twice the value of s. This corresponds to a hierarchy of
relative fitnesses: wA/a > wA/A > wa/a.

Heterozygote advantage, almost by definition, implies maintenance of
polymorphism, and equal values of s and t should lead to maintenance of
both alleles near frequencies of 0.5. However, the greater relative fitness of
A/A homozygotes than a/a homozygotes that we explore here suggests the
frequency of the A allele will be attracted to a value greater than p = 0.5. For
two different sets of s and t values that satisfy s = 2t, vector fields do in fact
correspond to a stable point at p = 0.667 (Fig. 7.6a). Vector fields and plots
of w̄ versus p suggest two additional conclusions: (1) different sets of {s, t},
that share identical proportions of s and t, share the same stable point of p,
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Fig. 7.6 Evolution of overdominant selective regimes. (a) Vector fields for two overdom-
inant selective regimes. In both cases, the t = 2s, meaning reduction in relative fitness of
the A/A homozygote is half that of the a/a homozygote, where wA/a = 1. However, the
strength of selection matters. Higher values of s and t lead to more rapid convergence on
the stable attractor at p= 0.667 andmaintain a tighter spread around the stable attractor as
evidenced in (c). Again, p = 0 and p = 1 are absorption points in the absence of mutation.
(b) w̄ for the two selective regimes. (c and d) Kernel density estimates of p across 20,000
generations of simulation of the two selective regimes. In both simulations, Ne = 10,000
and p began at a frequency of 10−4 (one allele only). The slower approach of p to the at-
tractor at 0.667 under the weaker selective regime explains the noticeable peak in density
for small values of p; during this stage of the simulation, p was only weakly drawn toward
the attractor and therefore oscillated at lower values of p for some time

although lower values of s dampen the rate of approach (Fig. 7.6a), and (2)
the stable point coincides with maximal w̄ (Fig. 7.6b).

Although the overdominant selective regime defined in the previous
paragraph is not frequency-dependent, we use the program of the previ-
ous subsection (stochastic selection negfreq.cc) to simulate overdomi-
nance because fixation is not expected for either allele. Forward simulation
of these selective regimes confirms p = 0.667 as an attractor (Fig. 7.6c,d) and
that weaker selection leads to greater variance over time around this stable
point (Fig. 7.6d).
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7.3 Selection at Two Linked Sites

We now turn our attention to the case of natural selection targeting two
linked loci. The main complicating factor in this analysis is that fitness of
an organism is dependent upon the combinatorial state of two genotypes
derived from two haplotypes.

7.3.1 Simulation of Two-Locus Selection with Recombination

We consider a commonly investigated situation of two-locus selection: bal-
ancing selection in which polymorphism is maintained at both loci. The fol-
lowing relative fitnessmatrix defines this formof selection. Two assumptions
are inherent: (1) there are just two alleles at each locus, and (2) both forms
of double heterozygotes bear equal relative fitness, i.e., wAB/ab = wAb/aB. The
latter assumption is reasonable as long as we do not have reason to suspect
that one locus has a cis-regulatory effect on the other locus (Rice 2004).

A/A A/a a/a

B/B 1− sA− sB− eAB 1− sB 1− tA− sB− eaB
B/b 1− sA 1 1− tA
b/b 1− sa− tB− eAb 1− tB 1− tA− tB− eab

Before turning to the definitions of the terms in this matrix, note the column
and row headings of the matrix: relative fitnesses are defined at the inter-
section of the genotypes at both loci. It makes sense to define the bi-locus
fitnesses in terms of genotypic combinations because absent cis-effects, the
genotypes at each locus , are what determine phenotype and therefore fit-
ness.

Our calculations will require us to obtain the marginal fitnesses of hap-
lotypes. Ignoring recombination for the moment, this reduces the problem
to selection at a single site with four variants—haplotypes AB, Ab, aB, and
ab. This sleight of hand means we can apply many of the same analytical
steps as outlined earlier in the chapter to two-locus selection. However, we
cannot realistically ignore recombination. Because the two simulated loci are
linked, we must account for the fact that crossing-over among doubly het-
erozygous haplotypes generates recombinant haplotypes and, thereby, affects
linkage disequilibrium as measured by D.

Wenow turn to themeaningof the newparameters included in the relative
fitnessmatrix above. Becausewe assume balancing selection, each of the two
loci individually is overdominant. Thus for each locus, any individual with
a homozygous genotype A/A or B/B is reduced by the quantity sA and/or
sB, respectively. Similarly, any individual with a homozygous genotype a/a
or b/b is reduced by the quantity tA and/or tB, respectively. In addition
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to recombination, consideration of two loci also requires us to account for
potential gene-gene (epistatic) interactions among the individuals who are
homozygous at both loci. For example, AB/AB double homozygotes may
suffer a fitness disadvantage due to a deleterious interaction among A and
B alleles, which is quantified by the epistatic coefficient eAB. The relative
fitnesses of the three other double homozygotes are quantified by eaB, eAb,
and eab. Fitness of the double heterozygote is set to 1.

For brevity in the following discussion, from here on we refer to hap-
lotypes AB, A-b, a-B, and a-b as haplotypes 1, 2, 3, and 4, respectively.
Furthermore, we denote their frequencies as hi and marginal fitnesses as wi.
Then, the marginal fitness of each haplotype is calculated as:

wi =

4∑
j=1

hjwij, (7.9)

where wij is the relative fitness of the combination of haplotypes i and j
as defined in the fitness matrix above. For example, an individual with
haplotypes 1 and 2 (i.e., a joint genotype of AB/Ab) corresponds to the
cell that intersects genotypes A/A and B/b, or w12 = 1− sA. The summation
weights the relative fitness of each possible combination of haplotype i and a
second haplotype by the frequency of the second haplotype, hj. See Eqs. 7.1
and 7.2 of this chapter, obtained by the same logic in a one-locus case; the
distinction is that here we are treating each haplotype as an allele.

Figure 7.7 shows which of the four cells in the relative fitness matrix are
relevant to the calculation of the each haplotype i’s marginal fitness. Here is
an explicit calculation of the marginal fitness of haplotype 1 (AB), which
makes use of the relative fitnesses associated with the submatrix highlighted
in gray in Fig. 7.7:

w1 = (h1×wAB/AB)+ (h2×wAB/Ab)+ (h3×wAB/aB)+ (h4×wAB/ab),

where each wij is the relative fitness of cells [1,1], [2,1], [1,2], and [2,2] in the
fitness matrix, respectively.

Mean population fitness is then calculated as the sum of each haplotype’s
relative fitness weighted by its frequency:

w̄ =
4∑

i=1

hiwi (7.10)

Finally, the frequency of a given haplotype in the next generation may be
calculated as:
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Fig. 7.7 Submatrices of the relative fitness matrix for combinations of genotypes at two
loci relevant to the calculation of themarginal fitnesses of haplotypes 1, 2, 3, and 4. The four
cells highlighted for each haplotype are the cells that contain the haplotype in question.
For example, the four cells highlighted in gray all contain the haplotype A-B. The set of
haplotypes shown in each cell include all haplotypes found in at least one haplotype pair
that yields the single-locus genotypes corresponding to the cell’s row and column. For
example, cell [2,1] lists haplotypes A-B andA-b because only this pair of haplotypes yields
an A/a and B/b genotype

h′1 =
1
w̄
(h1w1− rDw1,4)

h′2 =
1
w̄
(h2w2+ rDw1,4)

h′3 =
1
w̄
(h3w3+ rDw1,4)

h′4 =
1
w̄
(h4w4− rDw1,4),

(7.11)

where w1,4 is the relative fitness of the double heterozygote (dihybrid) in
cis: AB/ab. Looking at Eq. 7.11, we find that the next generation’s frequency
of each haplotype is a function of both (1) fitness effects (hiwi) and (2) the
generation or loss of haplotype i due to crossing-over (±rDw1,4). Again, the
derivation of these equations assumes that w1,4 =w2,3, where 2,3 is the dihy-
brid in trans: Ab/aB. Because both types of dihybrids are assumed equally
fit, we can use one or the other in Eq. 7.11. Note, however, the signs of sub-
traction and addition of rDw1,4 are specific to the w1,4 case; recombination
between loci A and B in a 1,4 dihybrid reduces the number of AB and ab
haplotypes (haplotypes 1 and 4, respectively; Fig. 7.7) and increases the fre-
quency of the aB andAbhaplotypes. In otherwords,we subtract rDw1,4 in the
h′1 and h′4 calculations because crossing-over between haplotypes 1 and 4will
reduce the number of 1 and 4 haplotypes in the population. Conversely, such
recombination will yield new 2 and 3 haplotypes; thus the sign of addition.
If we used w2,3 as the reference combination, signs would be reversed.
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7.3.1.1 Deterministic Simulation

The R function deterministic twolocus selection() requires a large
number of parameters, including selection coefficients, epistatic parameters,
the starting frequencies of the four haplotypes, and the number of genera-
tions to run the simulation.

deterministic twolocus selection.r

1 deterministic_twolocus_selection <- function(r, sA, sB, tA, tB, eAB, eAb,

↪→ eaB, eab, h1, h2, h3, h4, gens)

2 {

3 fit <- matrix(nrow=3, ncol=3, c(1-sA-sB-eAB, 1-sA, 1-sA-tB-eaB, # col 1

4 1-sB, 1, 1-tB, # col 2

5 1-tA-sB-eAb, 1-tA, 1-tA-tB-eab)) # col 3

6 print(fit);
7
8 # initial haplotype frequencies

9 h <- c(h1, h2, h3, h4) # f_A-B, f_A-b, f_a-B, f_a-b
10
11 w <- vector(); #vector for marginal fitnesses

12 anchor <- list(a1 = c(1,1), a2 = c(2,1), a3 = c(1,2), a4 = c(2,2)) #

↪→ upper-left cell of each submatrix

13 d <- setNames(data.frame(matrix(ncol = 9)), c("gen", "h1", "h2", "h3",

↪→ "h4", "pA", "pB", "wbar", "D")) # initialize data matrix

14
15 for (gen in 1:gens) {

16 # calc marginal fitness of each haplotype

17 for (i in 1:4) {

18 subfit <- fit[ anchor[[i]][1]:(anchor[[i]][1]+1),

↪→ anchor[[i]][2]:(anchor[[i]][2]+1)]

19 subfit <- c(subfit[,1], subfit[,2])

20 w[i] <- sum(h * subfit)

21 }

22
23 # calc mean population fitness and D

24 wbar <- sum(h*w)
25 D <- h[1] - (h[1]+h[2]) * (h[1]+h[3])

26
27 # calc new frequencies of haplotypes

28 for (i in 1:4) {

29 if (i ==2 | i == 3) {

30 h[i] <- ( (h[i]*w[i]) + (r*D*fit[2,2]) ) / wbar

31 } else {

32 h[i] <- ( (h[i]*w[i]) - (r*D*fit[2,2]) ) / wbar

33 }

34 }

35 d[gen,] = c(gen, h[1], h[2], h[3], h[4], h[1]+h[2], h[1]+h[3], wbar, D)
36 }

37 return(list("data" = d, "fitness_matrix" = fit))

38 }
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The parameterized fitness matrix for each combination of genotypes is
defined on lines 3–5 and returned as the second element of a list (line 38). Re-
member that in R, matrices are defined column by column, which is distinct
from our implementation of matrices in C++, where matrices are defined
row by row. Vector h (line 9) holds the current frequencies of the four hap-
lotypes. It is of course critical that the values of these frequencies entered as
arguments to the function sum to unity. Vector w (line 11) holds the marginal
fitness of each haplotype and the list anchor defines the upper-left cell of
each submatrix as shown in Fig. 7.7. The for loop on lines 15–36 is run each
generation, beginning with the calculation of the four marginal fitnesses ac-
cording to Eq. 7.9. Initially subfit holds the 2x2 submatrix corresponding
to one of the four haplotypes (line 18). We then combine the two columns of
this submatrix into one vector and multiply by each of the four appropriate
haplotype frequencies (lines 19–20). Calculation of mean population fitness
(Eq. 7.10, line 24) and the measure of linkage disequilibrium D (line 25) are
straightforward. Finally, the next generation haplotype frequencies are cal-
culated according to Eq. 7.11 on lines 28–34; again, the reference combination
of haplotypes (1 and 4) used here and quantified by fit[2,2] is arbitrary.
The function returns a list of (1) the time series data and (2) the relative
fitness matrix (line 37).

We first run deterministic twolocus selection() for two different pa-
rameter sets:

Two-locus parameter set 1
• r = 0.05
• sA = sB = tA = tB = 0.01
• eAB = eab = 0.04
• eAb = eaB = 0.02

Two-locus parameter set 2
• r = 0.001
• sA = sB = tA = tB = 0.01
• eAB = eab = −0.02
• eAb = eaB = 0.02

In both cases, starting haplotype frequencies were set to h1 = 0.05, h2 = 0.45,
h3 = 0.45, and h4 = 0.05. Figure 7.8 shows the evolution of haplotype frequen-
cies, fA = p1, fB = p2, w̄, and D for both parameter sets.

Note that there are two differences between parameter sets 1 and 2. First,
recombination between the target loci is 50 times more common under pa-
rameter set 1. Second, haplotypes 1 (AB) and 4 (ab) are disfavored relative to
haplotypes 2 (Ab) and 3 (aB) in parameter set 1 (eAB = eab = 0.04), while the
opposite is true for parameter set 2 (eAB = eab = −0.02).

These two differences in the modeled genetic systems result in substan-
tially different values of all metrics monitored by the R function. First, com-
paring Fig. 7.8a and b, haplotypes 1 and 4 equilibrate at frequencies lower
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than those of haplotypes 2 and 3 due to differences in relative fitness under
parameter set 1 and vice-versa for parameter set 2. However, the frequency
differences between these two sets of haplotypes aremuch greater in the case
of parameter set 2 due to the very low incidence of recombination between
the two selected loci. Second, while the high recombination frequency asso-
ciated with parameter set 1 results in near linkage equilibrium (D = 0), the
very low recombination frequency associated with parameter set 2 results
in near-maximal linkage disequilibrium (D > 0.2; cf. Fig. 7.8c and d). Finally,
mean population fitness rises rapidly under parameter set 1 and then falls to
a sub-optimal value of∼ 0.981while w̄ nearly reaches unity under parameter
set 2, presumably because the near absence of recombination allows themost
fit haplotypes of AB and ab to nearly eliminate the less-fit haplotypes of Ab
and aB (cf. Fig. 7.8e and f). Equilibrium values of haplotype frequencies,
D, and w̄ agree with those identified by grid search (boxed problem below;
dashed gray lines in Fig. 7.8).

Changes to the starting frequencies of the two haplotype classes—(1) AB
and ab versus (2) Ab and aB—can drastically alter the frequency equilibria,
even in a deterministic framework. Figure 7.9a and b shows the results of
running the two parameters sets again but starting with flipped frequencies
of the two haplotype classes, i.e., setting h1 = h4 = 0.45 and h2 = h3 = 0.05.
Comparing these results to those of Fig. 7.8a, we see that identical haplo-
type frequency equilibria are attained; the path to those equilibria is simply
different because of the different starting conditions. Allowing the starting
frequencies of the haplotypes within each haplotype class to be slightly
different from one another can cause dramatic changes. For example, start-
ing with h1 = 0.04, h4 = 0.05 and h2 = 0.46, h3 = 0.45, haplotype frequencies
eventually attain predicted equilibrium frequencies, but at a slower pace (cf.
Figs. 7.8c and 7.9c, note scale of the generation axis).More dramatically, start-
ing with the same haplotype frequencies, the greater starting frequency of
haplotype 4 (ab) coupled with its fitness advantage ultimately results in the
loss of polymorphism at both loci as haplotype 4 fixes (Fig. 7.9d). Flipping
the starting frequencies within each haplotype class results in reciprocal re-
sults (Fig. 7.9e,f); notably, the higher starting frequency of haplotype 1 leads
to fixation of this haplotype—rather than haplotype 4, as in Fig. 7.9d—under
parameter set 2 (Fig. 7.9f). The results in Fig. 7.9d and f indicate that when
two loci are tightly linked, it can be relatively easy for balancing selection to
fail to preserve polymorphism. They also suggest that small perturbations
in allele frequency due to finite population size may lead to unpredictable
results when stochastic simulation is employed (Sect. 7.3.1.2)

Focusing on the results using parameter set 2, even when the frequen-
cies of the favored 1 and 4 haplotypes start 0.002 apart, the result is the
same. While starting all haplotype frequencies at 0.25 leads to predicted
haplotype frequencies (Fig. 7.10a), making the minor adjustment of setting
h1 = h2 = 0.25, h3 = 0.249, and h4 = 0.251 leads to the fixation of haplotype 4
despite its trulymodest head start (Fig. 7.10b; h4 = 0.251 vs. h1 = 0.249). Again
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Fig. 7.9 Evolution of haplotype frequencies under deterministic two-locus selection for
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matrix for each parameter set is shown atop each column. In all panels, the dashed gray
lines indicate the values of haplotype frequencies associated with the internal equilibrium
found by grid search. Each row shows the results for different starting frequencies of the
four haplotypes: (a,b) h1 = h4 = 0.45 and h2 = h3 = 0.05; (c,d) h1 = 0.04, h2 = 0.46, h3 = 0.45,
and h4 = 0.05; (e,f) h1 = 0.05, h2 = 0.45, h3 = 0.46, and h4 = 0.04
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demonstrating the substantial effect of recombination rate r on equilibrium
frequencies, increasing recombination by one order of magnitude (e.g., from
r = 0.001 to r = 0.01) dramatically decreases the equilibrium frequency of the
favored haplotype class (1 and 4, orAB and ab) and increases the equilibrium
frequency of the disfavored haplotype class (2 and 3, or Ab and aB; Fig. 7.11).
Interestingly, the implication is that at least for some selection regimes even
modest recombination can substantially lower the equilibrium frequencies
of the favored haplotypes. In short, these results suggest that evolution of
linked, two-locus systems is easily perturbed by any number of relevant
parameters, in many cases leading to sub-optimal equilibrium frequencies
of haplotypes.

In this subsection as well as Figs. 7.8, 7.9, 7.10, and 7.11, I referred to
expected equilibriumvalues of haplotype frequencies, w̄, andD via grid
search. However, I did not provide details of a grid search. As Figs. 7.8,
7.9, 7.10, and 7.11 show, expectations of key values derived from a
different source than a simulation program allowus to validate that our
program isperforming correctly. In this situation, a grid search is a brute
force approach in which we test as many sets of haplotype frequencies
as possible to find at least an approximate equilibrium point. Write
a program that performs a grid search of haplotype frequencies to
identify equilibrium haplotype frequencies. Here are some things to
consider when planning the program:

• Equilibrium haplotype frequencies must sum to one.
• Frequencies must be on the domain [0,1], but the search space be-

comes exponentially larger as the precision of the equilibrium fre-
quencies becomes finer—for example, from 0.01 to 0.001 to 0.0001 to
0.00001. Test different levels of precision.

• You will need some numerical criterion whose maximum or mini-
mum value (depending on the criterion) is associated with the set
of haplotypes that provide the closest approximation to equilibrium
values.

• Your inputs should include r, D, selection coefficients, and epistatic
coefficients.

7.3.1.2 Stochastic Simulation

We now consider a program written in C++ that enables stochastic simula-
tion of a two-locus selection system.
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stochastic twolocus selection.cc

1 #include <random>

2 #include <fstream>

3 #include <map>

4 #include <vector>

5 #include <algorithm>

6 #include "matrix.h"

7 using namespace std;

8
9 vector<int> genos_from_haps(const vector<int> &haps);

10 vector<int> reproduce(const vector<vector<int> > &parents, const double
↪→ &r, const vector<double> &prerand);

11
12 int main(int argc, char *argv[]) {

13
14 // command line arguments

15 double r = atof(argv[1]); // recombination rate r on the range (0.,0.5)

16 double s_A = atof(argv[2]); // selection coefficients
17 double s_B = atof(argv[3]);

18 double t_A = atof(argv[4]);

19 double t_B = atof(argv[5]);

20 double h0 = atof(argv[6]); // initial haplotype COUNTS of ... A-B

21 double h1 = atof(argv[7]); // ... A-b

22 double h2 = atof(argv[8]); // ... a-B

23 double h3 = atof(argv[9]); // ... a-b

24 double eAB = atof(argv[10]); // epistatic parameter for AB/AB
25 double eAb = atof(argv[11]); // ... Ab/Ab
26 double eaB = atof(argv[12]); // ... aB/aB
27 double eab = atof(argv[13]); // ... ab/ab
28 int gens = atoi(argv[14]);

29
30 uniform_real_distribution<double> randomnum(0.,1.);

31 mt19937 engine(time(0));
32
33 double p_A, p_B, w0, w1, w2, w3, D; // allele frequencies, marginal

↪→ fitnesses and D
34
35 // calculate popuation size and fitness matrix
36 int numhaplotypes = h0+h1+h2+h3;

37 int N = numhaplotypes/2;
38 vector<double> hapcounts = {h0, h1, h2, h3};

39 vector<double> fitness;

40 fitness.push_back(1-s_A -s_B-eAB);
41 fitness.push_back(1-s_B);
42 fitness.push_back(1-t_A-s_B-eAb);
43 fitness.push_back(1-s_A);
44 fitness.push_back(1);
45 fitness.push_back(1-t_A);
46 fitness.push_back(1-s_A-t_B-eaB);
47 fitness.push_back(1-t_B);
48 fitness.push_back(1-t_A-t_B-eab);
49 double* f = &fitness[0];
50 Matrix<double> fit(3, 3, f); //fitness matrix
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51
52 //print fitness matrix
53 for (int i=0; i<3; ++i) {

54 for (int j=0; j<3; ++j)

55 cout << fit[i][j] <<"\t" ;

56 cout << endl;

57 }

58
59 // create vector of available haplotypes

60 vector<int> haplotypes;

61 for (int i=0; i<4; ++i)

62 for (int j=0; j<hapcounts[i]; ++j)

63 haplotypes.push_back(i);
64
65 // randomly pair haplotypes to individuals

66 map<int, vector<int> > individuals;

67 random_shuffle(haplotypes.begin(), haplotypes.end());
68 for (int i=0; i<numhaplotypes; i+=2) {

69 individuals[i/2].push_back(haplotypes[i]);
70 individuals[i/2].push_back(haplotypes[i+1]);
71 individuals[i/2].push_back(0);
72 individuals[i/2].push_back(0);
73 }

74
75 // add A and B locus genotypes of each individual as [2] and [3] entries

76 for (int i=0; i<N; ++i){

77 vector<int> haps = {individuals[i][0], individuals[i][1]};

78 vector<int> genos = genos_from_haps(haps);
79 individuals[i][2] += genos[0];

80 individuals[i][3] += genos[1];

81 }

82
83 ofstream datafile("twolocus_selection_data");
84 datafile << "gen\th1\th2\th3\th4\tp1\tp2\tD"<< endl;

85
86 for (int gen=0; gen<gens; ++gen) {

87 // calc and store current haplotype frequencies

88 vector<double> haplotypeFreqs;

89 for (int i=0; i<4; ++i)

90 haplotypeFreqs.push_back(hapcounts[i]/numhaplotypes);
91
92 // calc and store current allele frequencies

93 p_A = haplotypeFreqs[0] + haplotypeFreqs[1]; // A-B and A-b

94 p_B = haplotypeFreqs[0] + haplotypeFreqs[2]; // A-B and a-B

95
96 // calculate D using the A-B haplotype and print
97 D = haplotypeFreqs[0] - p_A * p_B;
98 datafile << gen << "\t" << haplotypeFreqs[0] << "\t" <<

↪→ haplotypeFreqs[1] << "\t" << haplotypeFreqs[2] << "\t" <<

↪→ haplotypeFreqs[3] << "\t" << p_A << "\t" << p_B << "\t" << D
↪→ << endl;

99
100 // cull individuals that don’t make fitness test

101 vector<int> remainder; // stores index of surviving individuals
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102 for (int i=0; i<N; ++i) {

103 if (randomnum(engine) <= fit[ individuals[i][3] ][

↪→ individuals[i][2] ] ) //
104 remainder.push_back(i);
105 }

106
107 uniform_int_distribution<int> randomint(0, remainder.size()-1);

108 map<int, vector<int> > nextgen;

109
110 for (int i=0; i<N; ++i) {

111 vector<vector<int> > parents;

112 parents.push_back( individuals[remainder[randomint(engine)]] );

113 parents.push_back( individuals[remainder[randomint(engine)]] );

114 vector<double> pr = {randomnum(engine), randomnum(engine),

↪→ randomnum(engine)};

115 nextgen[i] = reproduce(parents, r, pr);

116 }

117
118 individuals = nextgen;

119 hapcounts = {0,0,0,0};

120 for (int i=0; i<N; ++i) {

121 hapcounts[individuals[i][0]]++;

122 hapcounts[individuals[i][1]]++;

123 }

124 }

125 datafile.close();

126 return(0);

127 }

128
129 vector<int> genos_from_haps(const vector<int> &haps) {

130 vector<int> vecky = {0,0};

131 if (haps[0] == 2 || haps[0] == 3)

132 vecky[0]++;

133 if (haps[1] == 2 || haps[1] == 3)

134 vecky[0]++;

135 if (haps[0] == 1 || haps[0] == 3)

136 vecky[1]++;

137 if (haps[1] == 1 || haps[1] == 3)

138 vecky[1]++;

139 return(vecky);

140 }

141
142 vector<int> reproduce(const vector<vector<int> > &parents, const double

↪→ &r, const vector<double> &prerand) {

143 vector<int> v = {-1,-1,0,0};

144 for (int i=0; i<2; ++i) {

145 if (parents[i][0] + parents[i][1] == 3) { // then double

↪→ heterozygote (AB/ab or Ab/aB)
146 // need to check for recombination ...

147 if (prerand[2] <= r) {

148 if (parents[i][0] == 0 || parents[i][1] == 0) {

149 if (prerand[i] <= 0.5)

150 v[i]=1;

151 else
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152 v[i]=2;

153 } else {

154 if (prerand[i] <= 0.5)

155 v[i]=0;

156 else

157 v[i]=3;

158 }

159 }

160 }

161 if(v[i]<0) {

162 if (prerand[i] <= 0.5)

163 v[i]=parents[i][0];

164 else

165 v[i]=parents[i][1];

166 }

167 }

168
169 vector<int> haps = {v[0], v[1]};

170 vector<int> genos = genos_from_haps(haps);
171 v[2] = genos[0];

172 v[3] = genos[1];

173 return(v);

174 }

Lines 9–10 declare two functions defined on lines 129–140 and 147–179.
Although it is a bit cumbersome, all parameters of the simulation are read as
command-line arguments; you could see. They include selection coefficient,
initial haplotype counts, epistatic parameters, and the number of generations
to run the simulation. Parameter values must be entered on the command-
line in the same order as they are read on lines 15–28. These parameters are
then used to determine population size (lines 36–37) and initialize the fitness
matrix (lines 40–50), which are printed to standard output (lines 53–57).

Lines 60–63 initialize the vectorvariable haplotypes, which holds a num-
ber of zeroes equal to the count of haplotype 1 (AB), a number of ones equal
to the count of haplotype 2 (Ab), &c (admittedly, zero-based indexing makes
this code a bit awkward). N individuals are then initialized as a map, where
the key is an integer corresponding to an individual and the value is a vector
of the two haplotypes and two genotypes it carries (line 66). The haplo-
types are obtained by shuffling the haplotypes vector and then assigning
every two haplotypes to the next individual (lines 67–73). Genotypes are
inferred from the haplotypes and assigned to the second and third indices of
the individuals vector (lines 76–81) using the function genos from haps()

(lines 129–140). The final bit of setup is to create an output data file that will
track the frequencies of all four haplotypes, the frequencies of the A and
B alleles at the two loci, and the linkage disequilibrium measure D (lines
83–84).

Simulation of the selection on the two-locus system is coded in the for

loop spanning lines 86–127. Haplotype frequencies (lines 88–90), allele fre-
quencies (lines 93–94), andD (line 97) of the current generation are calculated



222 7 Natural Selection

and printed to the output file (line 98). Viability selection is then imposed
by eliminating individuals that fail a selection test and survivors indices are
stored in the vector<int> remainder (lines 101–105). Next, a random num-
ber generator is created to randomly select parents from among remainder

(line 107) and a temporary map named nextgen is used to store the offspring
of mating (line 108). In the for loop spanning lines 110–116, an individual

of the next generation is generated bypassing two randomly selected parents
and a vector of three randomly generated numbers on the domain [0,1] to the
function reproduce() (see next paragraph). After N offspring are generated
in this manner, the temporary nextgen is assigned to individuals and the
new hapcounts are calculated (lines 118–123).

The function reproduce() (lines 142–174; called at line 115) first deter-
mines if an individual parent is a double heterozygote (conditional on line
145). If so, it is necessary to test whether or not crossing-over between the
two selected loci occurs (line 147). If it does, the haplotype passed on to
the offspring form , the parent currently under consideration, depends on
the type of double heterozygote (AB/ab or Ab/aB) and a random fifty-fifty
chance as to which recombinant haplotype is passed on (lines 148–158). If
the parent is not a double heterozygote—or it is, but crossing-over does
not occur—one of the two nonrecombinant haplotypes is passed on to the
offspring (lines 161–166). After considering both parents, the genotypes are
assigned by a call to genos from haps() and the vector of haplotypes and
genotypes is returned (lines 169–173).

Figure 7.12 shows the results of stochastic simulation of parameter sets 1
and 2 (introduced in the previous Sect. 7.3.1.1). As suggested by grid search
and deterministic simulation, parameter set 1 rapidly leads to a situation in
which haplotypes 2 and 3 maintain a slight frequency advantage over hap-
lotypes 1 and 4. The stochastic nature of the simulation is indicated by the
moderate up-and-down changes in haplotype frequencies (Fig. 7.12a). In the
case of parameter set 2,we already saw (in a deterministic context, Fig. 7.9d,f)
that even marginal differences between the starting frequencies of favored
haplotypes 1 and 4 caused the haplotype of greater starting frequency to
fix. The stochastic simulation results shown in Fig. 7.12b are drawn from a
simulation in which the favored haplotypes began at equal frequencies of
0.05. This leads my mind to an intuition that the two favored haplotypes
would achieve equal, mid-range frequencies as in the deterministic context
(Fig. 7.9b). The representative stochastic simulation results for parameter set
2 (Fig. 7.12b) of course provide an empirical counterpoint to any similar intu-
ition youmay have heldwithme. In this representative example, h1 randomly
gains a sufficient frequency advantage around generation 400 that ultimately
drives it to fixation and the other three haplotypes (including the favored
haplotype 4) to extermination. Yet again, we see that chance determines an
outcome that diverges from expectations based on the driving action of nat-
ural selection alone. The randomnumber generators of stochastic simulation
mimic the noise of natural processes.
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8
Effects of Selection on Linked Variants

Space and perception generally represent, at the core of the subject, the fact
of his birth, the perpetual contribution of his bodily being, a communication
with the world more ancient than thought.1

– Maurice Merleau-Ponty, Phenomenology of Perception

8.1 Modeling Natural Selection and Linked Polymorphism

In this chapter, we return to amending the forward simulation program
FORTUNA.We begin with numerous additions and changes to existing pro-
gram files. These changes allow us to model and simulate natural selection
within FORTUNA and track its effects on linked sequence diversity. In this
section, we focus on the changes to program files that enable the simulation
of natural selection. Section 8.2 then explores the use of the updated pro-
gram to simulate different types of positive selection, including selection on
new or standing adaptive variants, overdominance, and negative-frequency
dependence. In Sect. 8.3, we investigate purifying selection and background
selection using the updated program. Note that the following listings con-
tain some code related to frequency-dependent and purifying selection that
I will address more fully in Sects. 8.2 and 8.3.

fortuna.cc // additions and modifications

1 #include <numeric> // for iota() function

2 int main() {

3 ...

4 bool simulate = true;

5

1 Quoted with permission from the translation by Colin Smith, 2002, Francis & Taylor
Group.
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6 while (simulate) {

7 Metapopulation meta;

8 for (int i =0; i < runlength; ++i) {

9 if (i % 5 == 0) cout << i<< endl;

10 bool test = meta.reproduce_and_migrate(i);
11 if (! test) break;
12 if (i == runlength - 1) simulate=false;

13 }

14 meta.close_output_files();
15 }

16 }

Modification to the main() function consists of wrapping the instantiation
of the Metapopulation object within a while loop (lines 6–15) conditioned
on the Boolean variable simulate initially set to true (line 4). This variable
only becomes false when the simulation has run for runlength genera-
tions (line 12), after which the program is set to terminate. Lines 10–11 allow
the simulation to restart if the selected variant is lost from a population,
which happens frequently when the adaptive variant begins at very low fre-
quency. A modified Metapopulation function—reproduce and migrate()

(see metapopulation.h listing this section) only returns true (see subse-
quent listings) when the selected variant has a frequency > 0. If the selected
variant is lost and test therefore returns false (line 10), program execu-
tion falls out of the for loop (line 11) and output files are closed (line 14).
Because simulate still equals true, the return to line 7 instantiates a new
Metapopulation, output files are overwritten, and a new simulation begins.

parameters, params.h, params.cc // additions and modifications

1 // parameters file
2 ... // in each DEME block

3 sellocus 500000 1 0.05 0.025 1

4 possel 0. 0. 0.

5 nfdsel 0.5 3.

6 negsel 0. 0. 275000 325000 100

7 ...

8
9 // params.h

10 extern map<int, vector<double> > sellocus, possel, nfdsel, negsel;

11
12 // params.cc

13 map<int, vector<double> > sellocus, possel, nfdsel, negsel;

14 int process_parameters() {

15 if (iter->first == -1) {

16 ...

17 } else {

18 ...

19 sellocus[iter->first] = get_multi_double_param("sellocus",
↪→ parameters);

20 possel[iter->first] = get_multi_double_param("possel", parameters);

21 nfdsel[iter->first] = get_multi_double_param("nfdsel", parameters);
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22 negsel[iter->first] = get_multi_double_param("negsel", parameters);

23 }

24 }

Four new, multi-part parameters specific to populations (and therefore
listed in the DEME block of each simulated population in file parameters)
facilitate simulation of qualitatively different forms of natural selection (lines
3–6, parameters). Lines 9–24 show the code necessary for declaring and
defining these parameters using the samemechanics as in previous chapters.
The parameter values shown on lines 3–6 are representative only. In this
section, we only discuss the meanings of sellocus and possel. Meanings of
nfdsel and negselwill be addressed in Sects. 8.2.5 and 8.3, respectively.

Parameter sellocus first specifies the location of the selected locus (index
[0]) and the starting count of the selected variant (index [1]). If the selected
variant begins at a count of greater than 1, we need to identify a polymorphic
site generated by MS simulation that most closely matches the position and
starting count specified by the first two elements of sellocus. Required pre-
cision of this match is controlled by the next two elements of the parameter
(indices [2] and [3]). Respectively, they specify the maximum distance (as a
fraction of seqlength) the MS generated variant can lie on either side of
the preferred location and the maximum frequency difference from the desired
frequency that will be tolerated. For example, if seqlength is set to 1,000,000,
popsize is set to 10,000, and sellocus is set, as shown, to 500000 250 0.05

0.025 1, then the program will search for an MS generated variant that is
between the position 450,000bp and 550,000bp and at a frequency between
0 and 0.05.

Thefinal entry of parameter sellocus is set to 0 or 1. This controlswhether
the loss of the selectedvariant causes the simulation tobegin again. This is not
particularly useful when only one population is simulated. However, when
multiple populations are simulated, it may be desirable to allow certain
populations to lose the selected variant without terminating the simulation.
The fifth (index [4]) entry of the sellocus parameter should be set to zero
for any population where loss of the selected variant is allowed.

Parameter possel specifies the selective regime under positive natural
selection. Respectively, the three entries specify the coefficients s, t, and h,
where s and h are the selection and dominance coefficients as discussed
in Chap. 7 and t is a second selection coefficient used when simulating
overdominance (Sect. 8.2.4).

metapopulation.h // additions and modifications

1 public:

2 int reproduce_and_migrate(int gen) { // return variable changed to int

3 bool fixtest = true; // new variable
4 ...

5 if ( gen==0 || (gen+1) % sampfreq == 0) {

6 for (int i=0; i<pop_num; ++i) {
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7 if ((*populations[i]).get_extant()) {

8 if (possel[(*populations[i]).get_popnum()][0] != 0 &&
↪→ sellocus[(*populations[i]).get_popnum()][4] == 1 )

9 fixtest = (*populations[i]).sample(gen);
10 else
11 int dummy = (*populations[i]).sample(gen);
12 if (! fixtest )

13 break;
14 }

15 }

16 }

17 return (fixtest);

18 }

Within themodified functionreproduce and migrate(), variablefixtest
(line 3) remains true as long as the selected variant is at a frequency
> 0. Furthermore, fixtest is now the return variable for the function
reproduce and migrate() to the main() function (line 2; see fortuna.cc

listing above). The value of fixtest determines whether the simulation is
restarted due to loss of the selected variant—in which case the variable
evaluates as false upon returning from the call to sample() on line 9. If a
population is extant this generation (line 7), we check to see if (1) positive
selection is active in this population and (2) if so, whether simulation restart
is required upon loss of the selected variant in this population (line 8). If both
of these conditions hold, we then take a sample from the current population
and set fixtest based on whether or not the adaptive variant is still present
in the currently considered population. If one or neither of the conditions
tested in line 8 hold, we still sample the population and update allele fre-
quencies in the population. However, the return value of function sample()

is irrelevant and ignored (lines 10–11). Finally, if fixtest returns false (line
12)—because we do require the selected variant to survive in the currently
considered population and it has not—we immediately break the for loop
(lines 6–15).
The majority of changes necessary to incorporate simulation of natural se-
lection are to population.h:

population.h // additions and modifications

1 private:

2 ...

3 ofstream sinfo;

4 bool activeselection{}, standingvar{}, newvariant{}, nfdselection{},

↪→ negselection{};

5 int keypos=-999;

6 vector<double> fitness;

7 double nfd_s, nfd_h;
8 vector<int> purifying_sites;
9 ...

10 void update_selected_freqAndFit(const int &gen) {
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11 double count = pop_schedule[popn][gen]*2; // start count at ALL alleles

↪→ derived

12 vector<double> genotype_freqs = {0.,0.,0.}; // holds frequency of A/A,
↪→ A/a, a/a, where A is derived allele

13 for (auto iter = individuals.begin(); iter != individuals.end();
↪→ ++iter) {

14 int num_ancestral_alleles = (**iter).get_genotype(keypos);
15 count -= num_ancestral_alleles;
16 genotype_freqs[num_ancestral_alleles]++;
17 }

18 double p = count/(pop_schedule[popn][gen]*2); // frequency of derived

↪→ allele

19 double q = 1-p;

20 for (int i=0; i<3; ++i)

21 genotype_freqs[i] /= pop_schedule[popn][gen];
22 sinfo << gen << "\t" << p << "\t" << genotype_freqs[0] << "\t" <<

↪→ genotype_freqs[1] << "\t" << genotype_freqs[2] << "\t";

23
24 if (nfdselection) {

25 /* fitness[0] = 1 - (nfd_s*p*p);
26 fitness[1] = 1 - (2*nfd_s*nfd_h*p*q);
27 fitness[2] = 1 - (nfd_s*q*q);*/
28
29 double max_fit = -999;

30 fitness[0] = 1 - nfd_h*genotype_freqs[1] + nfd_h*genotype_freqs[2];
31 if (fitness[0] > max_fit) max_fit = fitness[0];

32 fitness[1] = 1 - nfd_s*genotype_freqs[1];
33 if (fitness[1] > max_fit) max_fit = fitness[1];

34 fitness[2] = 1 - nfd_h*genotype_freqs[1] + nfd_h*genotype_freqs[0];
35 if (fitness[2] > max_fit) max_fit = fitness[2];

36 for (int i=0; i<3; ++i)

37 fitness[i] /= max_fit;
38 }

39 sinfo << fitness[0] << "\t" << fitness[1] << "\t" << fitness[2] << endl;

40 }

41
42 bool update_alleles(const int &gen) { return value change: void to bool

43 bool fixtest = true;

44 ...

45 for (auto iter = alleles.begin(); iter != alleles.end(); ++iter) {

46 ...

47 if (current_count == 0) {

48 ...

49 if ( iter->first == keypos) fixtest = false;

50 }

51
52 if (current_count == pop_schedule[popn][gen]*2) { // derived allele

↪→ FIXED

53 if ( (activeselection && iter->first != keypos) ||

↪→ !activeselection) {

54 to_remove.push_back(iter->first);
55 for (auto iter2 = individuals.begin(); iter2 !=

↪→ individuals.end(); ++iter2)

56 (**iter2).remove_fixed_allele(iter->first);
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57 }

58 }

59 ...

60 }

61 return (fixtest);

62 }

63
64 public:

65 void reproduce(int gen) {

66 ...

67 // removal of potential parents by selection (all new)
68 vector<int> recode_parents;
69 if (activeselection)

70 for (int i=0; i<individuals.size(); ++i)

71 if (randomnum(e) <= fitness[

↪→ (*individuals[i]).get_genotype(keypos) ] )

↪→ recode_parents.push_back(i);
72 if (negselection)

73 for (int i=0; i<individuals.size(); ++i)

74 if (randomnum(e) <= fitness[

↪→ (*individuals[i]).get_negsel_genotype(purifying_sites) ] )

↪→ recode_parents.push_back(i);
75 if (activeselection || negselection)

76 randomind.param(uniform_int_distribution<int>::param_type(0,
↪→ recode_parents.size() - 1) );

77
78 for (int i=0; i<N; ++i) {

79 vector<int> parents;

80 if (activeselection || negselection) {

81 parents.push_back(recode_parents[randomind(e)]);
82 parents.push_back(recode_parents[randomind(e)]);
83 } else {

84 parents.push_back(randomind(e));
85 parents.push_back(randomind(e));
86 }

87 ...

88 }

89 ...

90 if (gen % sampfreq == 0 && (!activeselection && !negselection)) \\

↪→ added last set of conditionals

91 update_alleles(gen);
92
93 if ( gen != 0 && gen % sampfreq == 0 && (!activeselection &&

↪→ !negselection)) { // added last conditionals

94 random_shuffle(individuals.begin(), individuals.end() ) ;

95 get_sample(gen);
96 }

97 if (activeselection) update_selected_freqAndFit(gen);
98 }

99
100 bool sample(int gen) {

101 bool fixtest = update_alleles(gen);
102 if (!fixtest && sellocus[popn][4]==1) {return fixtest;}

103 random_shuffle(individuals.begin(), individuals.end() ) ;
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104 get_sample(gen);
105 return(fixtest);
106 }

107
108 void close_output_files () {

109 ...

110 if (activeselection) sinfo.close();
111 }

112
113 Population (...) {

114 if (possel[popn][0]!=0 || nfdsel[popn][0]!=0 || negsel[popn][0]!=0) {

115 if (nfdsel[popn][0] != 0)

116 nfdselection = true;

117 if (negsel[popn][0] != 0) {

118 negselection = true;

119 fitness = {1, 1-(negsel[popn][0]*negsel[popn][1]),
↪→ 1-negsel[popn][0]};

120 vector<int> possible_sites(negsel[popn][3]-negsel[popn][2]+1);
121 iota(possible_sites.begin(), possible_sites.end(),

↪→ negsel[popn][2]);

122 random_shuffle(possible_sites.begin(), possible_sites.end());
123 auto iter = possible_sites.begin();
124 purifying_sites.assign(iter, iter+negsel[popn][4]);

125 sort (purifying_sites.begin(), purifying_sites.end());
126 } else
127 activeselection = true;

128
129 if (activeselection) {

130 keypos = sellocus[popn][0];

131 if (sellocus[popn][1] > 1)

132 standingvar=true;

133 else
134 newvariant=true;

135 double s = possel[popn][0];

136 double t = possel[popn][1];

137 double h = possel[popn][2];

138 nfd_s = nfdsel[popn][0];

139 nfd_h = nfdsel[popn][1];

140 if (t == 0) fitness = {1, 1-(h*s), 1-s}; // dominant or additive

141 else fitness = {1-s, 1, 1-t}; // overdominant

142 }

143 }

144 ...

145 if (activeselection) {

146 ofname = "deme" + to_string(popn) + "_selectioninfo";
147 sinfo.open(ofname.c_str());
148 }

149
150 if (useMS[popn]) {

151 ...

152 if (activeselection && !standingvar)
153 alleles.insert( { keypos, new Allele(keypos, -1, popn) } );

154
155 while(getline(ms_output, ms_line)) {
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156 if (regex_search(ms_line, query)) { // reading in allele positions

157 ...

158 while (iss >> s) {

159 int position = seqlength * atof(s.c_str());
160 allele_positions.push_back(position);
161 if (standingvar || position != keypos )

162 alleles.insert( { position , new Allele(position,-1,

↪→ popn) } );

163 }

164 ...

165 }

166 if (trigger) {

167 vector<int> s1, s2;

168 for (int i=0; i < ms_line.length(); ++i)

169 if (ms_line[i] == ’1’) {

170 if (allele_positions[i] != keypos)

171 s1.push_back(allele_positions[i]);
172 if (standingvar)

173 (*(alleles[allele_positions[i]])).increment_count();
174 }

175 getline(ms_output, ms_line);
176 for (int i=0; i < ms_line.length(); ++i)

177 if (ms_line[i] == ’1’) {

178 if (allele_positions[i] != keypos)

179 s2.push_back(allele_positions[i]);
180 if (standingvar)

181 (*(alleles[allele_positions[i]])).increment_count();
182 }

183 if (activeselection && !standingvar && newvariant) {

184 s1.push_back(keypos);
185 newvariant = false;

186 sort(s1.begin(), s1.end());
187 }

188 ...

189 }

190 }

191
192 if (activeselection && standingvar) { // determine keypos

193 int low=keypos-floor(sellocus[popn][2]*seqlength);
194 if (low < 0 ) low = 0;

195 int high=keypos+floor(sellocus[popn][2]*seqlength);
196 if (high >= seqlength) high = seqlength-1;

197 vector<int> current_best{-999, 999999,-999};

198 int acceptablediff =

↪→ floor(pop_schedule[popn][0]*2*sellocus[popn][3]);
199 int target_low = sellocus[popn][1] - acceptablediff;

200 int target_high = sellocus[popn][1] + acceptablediff;

201 for (auto iter=alleles.begin(); iter != alleles.end(); ++iter) {

202 if (iter->first >= low && iter->first <= high) { // in range
203 int ct = (*(iter->second)).get_count();
204 if (ct >= target_low && ct <=target_high) {

205 int diff = abs(sellocus[popn][1]-ct);
206 if (diff < current_best[1] ) {

207 current_best[0] = iter->first;
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208 current_best[1] = diff;
209 current_best[2] = ct;

210 }

211 }

212 } else {

213 if (iter->first > high) break;
214 else continue;

215 }

216 }

217 if (current_best[0] != -999) {

218 keypos = current_best[0];
219 cout << "Standing variant identified at base pair " << keypos <<

↪→ " with a starting allele count at time 0 of " <<

↪→ current_best[2] << endl;

220 } else
221 throw("suitable standing variant not identified");

222
223 if (nfdselection)

224 update_selected_freqAndFit(0);
225
226 sinfo << "gen\tp\tf_AA\tf_Aa\tf_aa\tw_AA\tw_Aa\tw_aa" << endl;

227 }

228 ...

229 }

We first declare several private variables required to implement various
types of natural selection within the program (lines 3–8). Note that variable
keypos holds the position of the selected variant in cases where natural
selection is active and only one site is the target of selection (line 5).

The function update selected freqAndFit() (lines 10–40) is only re-
quired for implementationofnegative frequency-dependent selection (NFD)—
where relative fitness of genotypes requires calculation of current allele fre-
quencies. The function updates the frequency of alleles at the site targeted
by selection and updates vector<double> fitnesswhenNFD is simulated.
However, we call this function when any form of selection is simulated be-
cause (1) updating the frequency of a single site costs next-to-nothing com-
putationally (unlike updating all segregating sites in the population), and
(2) consistent updating of the selected variant’s frequency allows us to iden-
tify the specific generation when, for example, a positively selected variant
reaches fixation.

Functionupdate selected freqAndFit()first declares anddefinescount
as the number of chromosomes present in the diploid population (line 11).
Then, genotype counts is declared and list-defined with each of the three
possible genotypes set to an initial frequency of 0 (line 12). The for loop
from lines 13–17 determines the genotype of each individual through a call
to a new function get genotype() of the Individual class (see next listing).
Genotype is recorded as the number of ancestral alleles, i.e., a genotype of
0 bears two derived alleles. On line 15, count—initially set to 2Ne but ulti-
mately holds the number of derived alleles in the population—is debited
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by the number of ancestral alleles of the individual under consideration.
On line 16, the relevant genotype is incremented. Frequencies of the derived
and ancestral alleles (p and q, respectively) are calculated on lines 18–19 and
genotype frequencies are calculated by dividing the genotype counts held
in genotype freqs by the total number of chromosomes in the population
(lines 20–21). Results are then printed to the selection information file (han-
dle sinfo; line 22). The remainder of the function is specific to the case of
negative frequency-dependent selection (lines 24–39). In the case of NFD,
relative fitnesses may either be calculated in terms of expected genotype
frequencies (lines 25–27) or empirical genotype frequencies (lines 29–37).
As shown in this listing, the former method is commented out, forcing the
program to calculate the three relative fitnesses based on empirical geno-
type frequencies. Recalculated relative fitness values are then printed to the
selection information file (line 39).

Several additions are made to the previously established private func-
tion update alleles(). This function is called whenever a sample is drawn
from the population via the function sample(). Its essential, computation-
ally intensive, role is to update the frequencies of all alleles. The return type
is changed to bool (line 42) and the return variable fixtest is declared and
defined as true (line 43). If an allele is found to have a count of zero in
the population (line 47) and the position of the allele is keypos, fixtest
is set to false (line 49); remember, a false value of fixtest indicates the
advantageous allele has been lost from the population. Conversely, if only
the derived allele is left at a previously polymorphic site (conditional test on
line 52), the Allele class object is removed from the population. However,
we want a fixed, adaptive allele to remain listed as an allele in the popula-
tion. Otherwise, each individual will suddenly be absent the advantageous
allele and another, artificial selective sweep will impact the population . To
facilitate this, monomorphic alleles are only removed from the population
if one set of conditions on line 53 is met: (1) the variable activeselection

(see below) is false, meaning we are not simulating positive selection or (2)
activeselection is true but the position of the allele is not keypos.

Viability selection is implemented through additions to the previously
describedpublic functionreproduce(). First,vector<int> recode parents

is declared (line 68). This container holds the indices of individuals that
survive selection and therefore become potential parents of the next gen-
eration. In the case of positive selection, the variable activeselection is
true. In this case, an individual is added to recode parents if a random
number uniformly distributed on the domain [0,1] is ≤ the fitness of the in-
dividual (lines 69–71). When simulating purifying selection, negselection
is true and an individual is added to recode parents if a random number
is less than the fitness determined by function get negesel genotype()

specific to purifying selection (lines 72–74; see Sect. 8.3). If either type of
selection is operative, the randomind uniform random number generator is
subsequently reset to select integers from 0 to one less than the number of
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individuals contained by recode parents (lines 75–76). The for loop that
generates individuals of the next generation (lines 78–88) is nowmodified to
draw parents from the surviving recode parentswhen natural selection is
active (lines 80–83).

It is important to understand why removal of potential parents in this
manner is a means of modeling viability selection. Fitness deficits under
viability selection are manifested as the inability to reach sexual maturity
and therefore produce offspring. In code, failing the “fitness test” of lines
71 and 74 results in the removal of the individual from the set of possible
parents. Although we do not do so here, it would be simple to modify this
aspect of function reproduce() to, for example, model fecundity selection.
In this case, a fitness deficit would manifest as a lower mean number of
offspring.

Consider how you would implement fecundity selection as well as
sexual selection in code. Note that both forms of selection require an
implementation of the sex of each individual.

Finally, we add an extra set of conditionals to previous code (lines
90 and 93) in order to prevent running update alleles() (line 91) and
get sample() (line 95) twice when selection is active. This is necessary,
because the function sample() is called when selection is active, and this
function (discussed next) itself calls update alleles() and get sample().
Thus, lines 91 and 95 should only be executed if selection is not active.

Within the public function sample() (lines 100–106), the value of the
Boolean variable fixtest is derived from the call to update alleles() (line
101). If fixtest is found to be false, meaning none of the adaptive alle-
les remain in the population, sample() is prematurely terminated (line 102)
as it takes time to generate the sample and the simulation will start over
anyway. If neither of the conditions of line 102 are met, a sample is gener-
ated as before and the value of fixtest is returned to its calling function,
reproduce and migrate() in the class Metapopulation.

The remainder of the changes to population.h are to the constructor. The
if block on lines 114–143 is used if any form of natural selection is called
for by the parameters, i.e., one of the conditionals on line 114 evaluates
true. Depending on the type of selection, the relevant Boolean variable
nfdselection (line 116), negselection (line 118), or activeselection (line
127) is set to true. Note that in the case of NFD, both nfdselection and
activeselection are ultimately set to true. The initial declarations of these
private variables with trailing brackets (line 4) ensure these variables are
set to false by default. We will discuss lines 119–125 in Sect. 8.3, where we
discuss purifying selection.

Lines 129–142 are invoked when dealing with positive selection or over-
dominance. First, keypos is set based on the possel parameter. Next, we
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determine whether positive selection acts on standing variation or a new,
adaptive variant (lines 131–130). Then we read the selection parameters
from possel and nfdsel (lines 135–139). In the case of positive selection, we
also define a constant dominant or additive selective regime if selection co-
efficient t == 0 (line 140) or overdominant selective regime otherwise (line
141).

A selection information file is created and opened on lines 145–148 if
positive selection (NFD or otherwise) is simulated. A history of the adaptive
allele frequency when simulating straight positive selection or one of the
two alleles evolving under NFD is recorded in this file, as well as the relative
fitness of each genotype—which is unchanging in cases other than NFD.

When MS is used to generate the starting sequences in the population
(lines 150–190), a number of modifications are required for simulating dif-
ferent forms of natural selection. In the case of positive selection on a new
variant,we create a new Allele object at this position (lines 152–153) because
we know we will begin with at least one derived allele at that position. The
if loop on lines 156–165 first reads the line of the MS output file that lists
the decimal positions of each of the segregating sites. If simulating standing
variation (i.e., the frequency of the adaptive allele is > 1/2Ne) or the position
under consideration does not equal keypos we create a new object of class
Allele at the current position (lines 161–162).

The if block on lines 166–189 interprets two consecutive lines/sequences
of theMSoutput file to populate the individuals vector. For both sequences,
we add the position of a derived allele to the sequence vector s1 or s2 as
appropriate, if the position is not keypos (lines 170–171 and lines 178–179).
In addition, when we simulate positive selection on standing variation, we
need to calculate the frequencies of derived alleles at all segregating sites so
that we can identify a site that closely matches the characteristics specified
in the sellocus parameter. Thus, when simulating selection on standing
variation, we increment the derived allele count of each segregating site
when necessary (lines 172–173 and lines 180–181).

In the case of positive selection on a new variant, we add keypos to
the first s1 sequence built and switch newvariant to false (lines 183–187).
The latter action has the effect of preventing the addition of keypos to any
other sequences due to the newvariant condition on line 183; thus, only one
sequence has a derived allele at the keypos initially. We also sort the derived
allele positions in s1 so that keypos is properly positioned (line 186). Failure
to do so would make recombination ineffective.

Lines 192–216 comprise an if block that attempts to identify a segregating
site fromMS output that meets the starting constraints of a standing variant
specified in parameter sellocus. If a site is found, keypos is set to the site
and its position and starting frequency are printed to standard output (line
218). It is possible that a segregating site meeting the specified constraints
does not exist, in which case the program terminates with an error message
printed to the screen (line 221).
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Finally, relative fitness values are calculated/updated if simulating NFD
(lines 223–224) and the header line of the selection information file is printed
(line 226).

individual.h // additions

1 public:

2 ...

3 int get_genotype(int pos) { // returns number of ancestral alleles (i.e.,

↪→ 0s)

4 int geno = 2;

5 if ( find( sequences[0].begin(), sequences[0].end(), pos) !=
↪→ sequences[0].end() ) --geno;

6 if ( find( sequences[1].begin(), sequences[1].end(), pos) !=
↪→ sequences[1].end() ) --geno;

7 return geno;

8 }

9
10 int get_negsel_genotype(vector<int>& sites) { // returns number of seqs

↪→ with a deleterious allele

11 int geno = 0;

12 for (int i=0; i<2; ++i) {

13 vector<int> intersectionality;

14 set_intersection(sites.begin(), sites.end(), sequences[i].begin(),

↪→ sequences[i].end(), back_inserter(intersectionality));
15 if (intersectionality.size() >0) ++geno;

16 }

17 return geno;

18 }

Two new public functions are added to individual.h, both of which
return a relevant genotype in the qualitatively distinct cases of positive and
purifying selection. Function get genotype() (lines 3–8) returns the number
of ancestral alleles present at the pos position passed to the function (line
3). The genotype begins with its maximum value of 2 (line 4). Then, both
sequences of the Individual object are interrogated for the presence of
the position, and, if found, the genotype value is decremented (lines 5–6).
A value of 2 is assigned to a genotype with both ancestral, less-fit alleles
because the relative fitness values calculated for each Population object
index the most fit genotype as [0] and the least fit genotype as [2]. In the
case of negative selection, the function get negsel genotype() (lines 10–
18) returns the number of sequences with at least one deleterious, derived
allele. Again this numbermay range from 0 to 2. Setting the genotype to zero
initially (line 11), we use the standard library function set intersection()

in order to search to populate the vector<int> intersectionalitywith the
intersection between the positions of the queried sequence and the positions
of sites that are subject to purifying selection (line 14; see Sect. 8.3). If the size
of intersectionality is greater than 0, the sequence contains at least one
deleterious allele and the genotype is increased by one (line 15). Note that
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the vector of deleterious positions is a parameter of the function (line 10).
We will return to the determination of these sites in Sect. 8.3.

8.2 Positive Selection

Positive natural selection—which acts to increase the frequency of a favored
allele—has characteristic effects on linked, neutral genetic diversity. These
effects becomemost evidentwhenpositive selection seizes upon a new, adap-
tive variant derived from mutation. Temporally, these signatures of selection
tend to be most evident near the time of fixation of the adaptive allele. Char-
acteristic signatures of selection include: (1) an excess of high-frequency,
derived alleles; (2) numerous low-frequency alleles; (3) a general elimina-
tion of linked diversity, assessed by declines in summary statistics such as
the number of unique haplotypes K, nucleotide diversity π, and the number
of segregating sites S; and (4) perturbation of linkage disequilibrium among
neutral variants on either side of the site targeted by natural selection. The
general decline in linked variation is called a selective sweep, while the
increase in the frequency of derived alleles linked to the adaptive variant is
named genetic hitchhiking.

As linked genetic diversity declines in response to positive natural selec-
tion both S and π decline. As genetic diversity begins to recover via new
mutation, however, increases in S and π occur at different rates. Each new
variant captured in a sample of sequences adds one to S but very little to
the value of π because this statistic is averaged over all pairs of sequences—
most of which will not contain the sequence difference. We focus on the test
statistic Tajima’s D, which captures this disparity between S and π; as a rule
of thumb, regions with a value less than −2 suggest the region contains or is
closely linked to a variant targeted by selection.

8.2.1 Selection on a New Variant

Selection on a new variant produced by mutation is easier to detect than se-
lection on a standing variant—i.e., an allele that is present as more than one
copy when selection begins. An adaptive variant produced by new muta-
tion necessarily arises on a single haplotypic background. This is important
because as the adaptive variant rises in frequency, linked variants are also
transmitted to the next generation; they hitchhike, thereby reducing linked
geneticdiversity and (Fig. 8.1a) andpushing the allele frequency spectrumoff
neutral equilibrium. Changes in the pattern of genetic variation are assessed
using a variety of summary and test statistics, including the aforementioned
K, π, S, and Tajima’s D. Now consider how things change when a previously
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Fig. 8.1 Illustration of how positive selection on a new (a) or standing (b) variant affects
linked polymorphism. (a) The adaptive variant (star symbol) arises frommutation on one
specific haplotype, A-C-G. The right-facing arrow indicates the passage of time. Upon
fixation, nearly all tightly linked polymorphism has been lost. In other words, a selective
sweep has occurred. The one adenine at the third SNP is the result of crossing-over during
the march to fixation of the adaptive variant. (b) Here, the adaptive variant existed as a
neutral variant before it became a target of positive natural selection. As a result, it is found
on multiple haplotypic backgrounds. As the adaptive variant rises to fixation, genetic
hitchhiking of linked variants still occurs. However, which variants hitchhike depends
on the chromosome—e.g., A-A-A, A-C-G, or T-C-A in this scenario. The end result of
this starting difference is a less comprehensive selective sweep in which polymorphism is
easily retained at linked sites

neutral, standing variant at a frequency of, say, 0.3 suddenly becomes a target
of natural selection due to changes in the environment. The adaptive variant
finds itself embeddedwithin a variety of haplotypic backgrounds (Fig. 8.1b).
This means that as adaptive variant frequency rises toward fixation there is
not one specific set of neutral variants at linked polymorphic sites that hitch-
hike with the selected variant. In other words, the decline in diversity is
not nearly as pronounced (Fig. 8.13b). In these cases, our summary and test
statistics will have considerably less statistical power to detect the action of
positive natural selection.

As an example of the effect on genetic polymorphism brought about by
selection on a new variant, consider the results of a simulation with the
following relevant parameter values:
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Natural selection scenario

1 mutrate 1e-08

2 useRec 1

3 useHotRec 0

4 recrate 1e-08

5 ...

6 seqlength 1e06

7 sampfreq 25

8 windowSize 10000

9 windowStep 5000

10 pop_num 1

11 runlength 10001

12 ...

13 DEME /// 0

14 popsize 10000

15 useMS 1

16 mscommand ./ms 20000 -t 400 -r 400 1000000 >ms_output
17 ...

18 sellocus 500000 1 0. 0. 1

19 possel 0.05 0. 0.5

In summary, we simulate a 1Mbp sequence where mutation and recombina-
tion rates both equal 1×10−8 in a single population of size Ne = 10,000. The
new, adaptive variant at base pair 500,000 evolves under a selective regime in
which s= 0.05 and h= 0.5. Figure 8.2, whichwas created using the R function
longitudinal heatmap() introduced in section X.X.X, shows the evolution
of the summary statistic π. A clear reduction in π is observed in and around
the selected site beginning shortly before fixation of the adaptive allele. This
“footprint” of selection gradually narrows for thousands of generations until
near-equilibrium values of π are regained. Note that the 10,000bp samples
herehave an expectedvalueofπ= 4Neμ×seqlength= 4×104×10−8×104 = 4.

We next introduce a new visualization function in the R file heatmaps.r.
Function longitudinal discrete heatmap() allows discretization of con-
tinuous summary statistic values into bins whose bracketing values are de-
fined by the user.

heatmaps.r // add function longitudinal discrete heatmap()

1 longitudinal_discrete_heatmap <- function(inputfile, stat="K",
↪→ brks=vector(), timeflow="down", timelim=vector(), fix = 0) {

2 dat <- read.table(file = inputfile, header = T);

3 ddat <- split(dat, dat$stat);
4 size <- dim(ddat[[stat]]);
5 q <- ddat[[stat]][,c(1,3:size[2])];
6 m <- melt(q, id.vars=c("gen"));
7 m$value <- cut(m$value, breaks = c(-Inf, brks, Inf));

8 cols <- gray.colors(length(brks)+1, start = 0., end = 1., gamma = 2)

9
10 d <- ggplot(m, aes(x=variable, y=gen, fill=value)) + geom_tile();
11
12 if (length(timelim) != 0) {

13 if (timeflow == "down") {
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Fig. 8.2 Continuous heat map of nucleotide diversity (π) plotted using the R function
longitudinal heatmap() detailed in section X.X and argument lowcol=1. The simulation
visualized by πwas run with s = 0.05, h = 0.5, Ne = 10,000, and a single favored variant at
generation 0. Dashed horizontal line shows the approximate generation of fixation of the
favored variant, while the dashed vertical line shows the position of the favored variant.
Values were sampled every 25 generations, with sample size n = 500

14 d <- d + ylim(timelim[2], timelim[1]);

15 } else {

16 d <- d + ylim(timelim[1], timelim[2]);

17 }

18 } else {

19 if (timeflow == "down") {

20 d <- d + ylim(max(m$gen), min(m$gen));
21 }

22 }

23
24 d <- d + scale_fill_manual(values = cols);

25
26 if (fix != 0) {

27 d <- d + geom_hline(yintercept=fix, linetype=2);

28 }

29 d;

30 }

The arguments inputfile, stat, timeflow, timelim, and fix all have the
same meaning as in the non-discrete version of this function. A majority
of the code is in fact similar or identical to the non-discrete function. The
key difference is that we cut data by the points specified by the function
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parameter brks (lines 1 and 7) and, dependent on the number of resulting
bins, assign a grayscale color to each bin inwhich the lowest bin is associated
with black and the highest bin is associated with white (line 8). Note the
polarity of this colorization scheme. For example, if you focus on the number
of segregating sites S in each window and specify brks = c(1,3,5,7), six
bins will be created descending in associated color from black to white along
the grayscale: (−∞,1], (1,3], (3,5], (5,7], and (7,+∞). Of course,we are dealing
with a finite summary statistic in S whose lower bound is zero. Therefore,
the first interval is better thought of as [0,1] and the last interval as > 7.

Figure 8.3a shows a low resolution discretization of K for the natural se-
lection scenario described above created using brks = c(10, 20, 30, 40),
while Fig. 8.3b shows a higher resolution discretization of K values us-
ing brks=c(5, 10, 15, 20, 25, 30, 35, 40). The higher resolution plot
(Fig. 8.3b) makes it more clear that K declines in windows in and around the
selected site at and following the time it fixes. Furthermore, it ismore evident
in Figs. 8.15b than a that an initial broad reduction in K gradually narrows
in scope after fixation. This example shows that some experimentation is
required with any output data in order to find the most helpful values of
brks.

Next,we focus on the test statistic Tajima’sD, which is sensitive to changes
in the allele frequency spectrum caused by natural selection and/or other
evolutionary factors such as demographic change. Remember the rule of
thumb that values of Tajima’s D less than −2 may indicate positive natural
selection. We first consider two scenarios that are identical to the scenario
listed above with the exception that selective strength is varied. Namely, the
simulation whose results are shown in Fig. 8.4a was run with the parameter
possel 0.01 0. 0.5 (s = 0.01) while the simulation on which Fig. 8.4b is
based was run with the parameter possel 0.05 0. 0.5 (s = 0.05). Because
h = 0.5, both are simulations of an additive selective regime. Comparison
of Fig. 8.4a and b clearly demonstrates the positive correlation between the
strength of selection as measured by s and the selective footprint—the width
of sequence affected by the action of natural selection. Not surprisingly this
comparison also shows that fixation occurs more quickly when the strength
of selection is greater. Finally, and perhaps most interestingly, note that in
the case of s = 0.01, values of Tajima’s D in some windows adjacent to the
selected site are less than−2 hundreds of generations before the final fixation
of the advantageous allele (Fig. 8.4a). This is likely due to the fact that by
the point Tajima’s D begins to crash the frequency of the adaptive allele is
already close to fixation and has therefore eliminated most variation in the
immediate vicinity. Because s is relatively small, it then takes a rather long
time to fix the adaptive allele after which significant values of Tajima’s D
begin to erode.

Results for a dominant selective regime (h = 0) are shown in Fig. 8.5.
Results shown in Fig. 8.5a are from a simulation with possel 0.01 0. 0.

while those in Fig. 8.5b are from a simulation with possel 0.05 0. 0.. In
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Fig. 8.3 The number of unique haplotypes K by window. Simulation and sam-
pling conditions identical to those in Fig. 8.2. The difference between panels (a)
and (b) is the number and value of breaks passed to parameter brks in function
longitudinal discrete heatmap(). The vertical dashed line marks the position of the
adaptive allele while the horizontal dashed line marks the time of fixation

other words, these two simulations of a dominant selective regime differ
only in the magnitude of selective strength, s.

Under the dominant selective regime, we still see a positive correlation
between s and fixation time as well as between s and the width of the
selective footprint. In the dominant case, however, the decrease in Tajima’s
D to significant levels (less than −2) occurs long before fixation regardless
of selective strength. In fact, we see a near-immediate decline in Tajima’s D
when s = 0.05. This can be explained by the dynamics of the adaptive allele
frequency under a dominant selective regime. Recall that the frequency of
an adaptive allele rises rapidly to near fixation under a dominant selective
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Fig. 8.4 Discrete, longitudinal heat maps of Tajima’s D for two distinct simulations of pos-
itive selection for a single advantageous allele embedded within a 1Mbp sequence under
an additive selective regime. In both cases h = 0.5. (a) s = 0.01. (b) s = 0.05. Horizontal,
dashed lines indicate the approximate generation when the advantageous alleles fixed,
while vertical, dashed lines indicate the position of the advantageous variant

regime, but true fixation of the adaptive allele may take a very long period of
additional time to achieve because heterozygotes bearing a copy of the less-
fit allele have relative fitness equal to that of individuals homozygous for the
adaptive allele. In short, most of the selective sweep is accomplished quickly,
driving Tajima’sDdownward,where it remains for some time following true
fixation of the adaptive allele.

Although longitudinal heatmaps, continuous or discrete, are quite helpful
to obtain a broad view of the evolution of a sequence, we often want to plot
the values of a statistic across the simulated sequence at a specific time
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Fig. 8.5 Discrete, longitudinal heat maps of Tajima’s D for two distinct simulations of
positive selection for a single advantageous allele embedded within a 1Mbp sequence
following a dominant selective regime. In both cases h = 0. (a) s = 0.01. (b) s = 0.05.
Horizontal, dashed lines indicate the approximate generation when the advantageous
alleles fixed, while vertical, dashed lines indicate the position of the advantageous variant

point. I now introduce the R function stat at timepoint() to facilitate this
need. Even though this function does not produce a heat map, I add it to
heatmaps.r for convenience.

heatmaps.r // add function stat at timepoint()

1 stat_at_timepoint <- function(inputfile, stat="tajD",
↪→ windows=seq(5000,995000,5000), timepoint, mvgavg=0)

2 {

3 d <- read.table(file = inputfile, header = T);

4 dd <- split(d, d$stat);
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5 size <- dim(dd[[stat]]);
6 q <- dd[[stat]];
7 qq <- q[q$gen==timepoint, 3:size[2]];

8 plot(windows, qq, type = "b", lwd=0.25);

9
10 if (mvgavg >0 & (mvgavg %% 2 == 1) ) {

11 pos<-vector();
12 mavg<-vector();
13 abvbel = floor(mvgavg/2);
14 for(i in (abvbel+1):(size[2]-2-abvbel)) {

15 avg<-0;
16 pos<-c(pos, windows[i]);

17 for(j in (i-abvbel):(i+abvbel)) {

18 avg <- avg+qq[j];

19 }

20 mavg<-c(mavg, avg/mvgavg);
21 }

22 lines(pos, mavg, col = "black", lwd =2);

23 }

24
25 abline(h=0, lty = 1);

26 abline(h=-2, lty = 2);

27 abline(v=500000, lty = 3);

28 }

This function plots a given statistic (Tajima’s D, by default) from a FOR-
TUNA summary statistic output file (e.g., sumstats0). It is required that
you change the value of the windows parameter if the window configuration
sampled differs from the default. For example, if you simulated a 100,000bp
sequence and sampled 10kbp windows with no overlap, you would enter
windows=seq(10000, 90000, 10000). Youmust also provide a value for the
argument timepoint, which is the generation number of the sample to be
plotted. By default, argument mvgavg is set to zero, in which case only the
statistic values of each window will be plotted. If mvgavg is set to a positive
and odd integer, however, a solid line will be superimposed on the raw data.
For example, if mvgavg is set to 5, the value of the superimposed line will be
the average value of the current window and the two windows before and
after. Plotting this moving average may make it easier to spot trends in the
data.

To display the use of the function, we graph Tajima’s D at four time points
for a representative simulation in which all parameters are the same as
before except for the possel parameter. Figure 8.6 shows the plot of Tajima’s
D from a simulation with parameter possel 0.01 0. 0.5, while Fig. 8.7
shows the plot of Tajima’s D from a simulation with parameter possel 0.10

0. 0.5. In both cases, the time points considered are (1) 25 generations
after mutation to the adaptive allele, (2) 100 generations before fixation of
the adaptive allele, (3) at fixation, and (4) 1000 generations post-fixation. At
generation 25 of both simulations, we observe a neutral pattern of Tajima’s
D, in which values oscillate in, to all appearances, a random manner. At
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Fig. 8.6 Values of Tajima’s D at four different time points for a simulation of positive
selection on a single, new variant at position 500kbp where h = 0.5 and s = 0.01. The time
points shownare (upper, left) the first sample at t= 25, (upper, right) 100 generations before
fixation at t = 5250, (lower, left) fixation at t = 5350, and (lower, right) 1000 generations
post-fixation at t = 6350. Note that the scale of the y-axis changes between panels

all other time points, however, a distinct trough in the value of Tajima’s
D is observed adjacent to the selected site at 500kbp; by trough, I mean
that multiple contiguous windows show a depressed level of Tajima’s D
that approaches or is less than −2. As expected, weaker selection produces a
narrower trough (Fig. 8.6, where s= 0.01) compared to simulation of ten-fold
stronger selection (s0.10) on which Fig. 8.7 is based. Another detail to note in
these plots is that each trough appears to be centered to the side of the actual
target of selection (upstream of 500kbp in both cases illustrated). Simulation
studies of selective sweeps repeatedly demonstrate this off-center signal of
selective sweeps (Kim and Nielsen 2004). Similar skewing is observed in
the longitudinal plots (e.g., Fig. 8.5). However, the main guidance offered by
these results is that a lone significant value of Tajima’s D or other test statistic
should not be taken as evidence of natural selection or other population
genetic processes. Rather, we expect a sustained trend in the test statistic
across multiple windows.
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Fig. 8.7 Values of Tajima’s D at four different timepoints for a simulation of positive
selection on a single, new variant at position 500kbp where h = 0.5 and s = 0.10. The
time points shown are (upper, left) the first sample at t = 25, (upper, right) 100 generations
before fixation at t= 300, (lower, left) fixation at t= 400, and (lower, right) 1000 generations
post-fixation at t = 1400. Note that the scale of the y-axis changes between panels

8.2.2 Selection on Standing Variation

As suggested by the conceptual illustration in Fig. 8.1, positive selection on a
standing variant is not expected to eliminate linked variation with the same
efficiency as selection on an adaptive variant produced by newmutation.We
can model positive selection on a standing variant by altering the sellocus
parameter in any or all deme blocks of the parameters file. The results of
these simulations are shown in Fig. 8.8; in all cases parameter possel 0.05

0. 0.5. The differences between the simulations whose results are shown in
Fig. 8.8 were as follows:

• sellocus 500000 1 0. 0. 1 // Fig. 8.8a
• sellocus 500000 1000 0.01 0.01 1 // Fig. 8.8b
• sellocus 500000 10000 0.01 0.01 1 // Fig. 8.8c

With the exception of possel and sellocus all parameter values were
the same as in natural selection scenario listing in Sect. 8.2.1. Recall that the
first two entries to the sellocus parameter are (1) position of the selected
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variant and (2) starting number of derived (in this case adaptive) alleles.
Because the initial genetic variation is drawn from an MS simulation, there
is almost no chance one of the neutrally evolved SNPs will happen to be
at the desired position with the desired count of derived alleles. The third
and fourth entries of sellocus help us identify a random SNP from the MS
output that is close to the first two parameter values; in particular, they allow
us to control what counts as close enough. For example, sellocus 500000

1000 0.01 0.01 1 asks the program to find a SNP from the MS output
that (1) is within 0.01× 1Mbp = 10,000bp on either side of site 500,000 and
(2) shows a derived allele frequency within 0.01 of 1000/20,000 = 0.05—i.e.,
between 0.04 and 0.06. Recall that the final value of sellocus takes either
a 0 or 1; 1 specifies that the program will start over if the derived allele is
lost from the deme—a nearly impossible event when we begin with 1000 or
10,000 adaptive alleles in the deme.

Figure 8.8a shows selection on a new variant and is included for the
sake of comparison. Note that selection for a standing variant beginning at a
frequency of ∼ 0.05 (Fig. 8.8b) still lowers the values of Tajima’s D. However,
in comparison to Fig. 8.8a, the signal is much weaker. When the standing
variant begins at a frequency of ∼ 0.5, the signal of selection is nearly non-
existent. We would be hard pressed to flag this region as a putative target of
selection if Fig. 8.8c was based on an empirical data set.

8.2.3 No Recombination

Crossing-over during the course of a selective sweep has the effect of sep-
arating the adaptive allele from initially linked variants over time. Because
recombination rate increases with the physical distance between the adap-
tive and linked alleles, it is the more distantly linked variants that are first
separated from the adaptive allele. Crossing-over therefore explains why the
trough of Tajima’s D observed in Figs. 8.6 and 8.7 is localized to the imme-
diate vicinity of the adaptive allele. It also helps explain why the width of
this trough is positively correlatedwith selective strength. Stronger selection
fixes the adaptive allele more rapidly, thus giving crossing-over less time to
separate adaptive and linked variants. Think of the adaptive allele as the
bottom of a river valley and the strength of selection as the magnitude of
kinetic energy exerted by the river’s flow. A mighty river carves a wider
valley into the earth.

There are, of course, sequences that experience little or no crossing-over.
For example, (1) the majority of the Y- and W-chromosome sequences in X-
Y and Z-W sex determination systems are subject to minimal crossing-over,
and (2)maternally inheritedmitochondrial DNAs and chloroplast DNAs are
only rarely subject to crossing-over. Therefore, we next consider a simulation
of natural selection with no recombination. This serves two purposes, the



250 8 Effects of Selection on Linked Variants

Tajima’s D
< -2

≥ 0

[-2, -1)
[-1, 0)

Tajima’s D
< -2

≥ 0

[-2, -1)
[-1, 0)

Tajima’s D
< -2

≥ 0

[-2, -1)
[-1, 0)

0

2500

5000

7500

10000

2500

5000

7500

10000

0

2500

5000

7500

10000

ge
ne

ra
ti

on
ge

ne
ra

ti
on

ge
ne

ra
ti

on

0 500,000 1,000,000
position (bp)

0 500,000 1,000,000
position (bp)

0 1,000,000
position (bp)

A

B

C

0

500,000
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first of which is technical. We hope to see that our simulation program is
properly integrating the effects of selection, recombination, andmutation. In
the absence of recombination, we expect a global rather than local selective
footprint along the simulated sequence, as crossing-over is not available
to break up the association of the adaptive allele to variants linked to it
at the onset of selection. If we turn off recombination, by setting program
parameter useRec to 0 and find the same patterns of natural selection as seen
earlier, wewould know that our code has a problem. The second purpose for
simulatingpositive selectionwithno recombination is tomimic the evolution
of non-recombinant DNA.

Figure 8.9a shows the discrete longitudinal distribution of Tajima’s D
based on simulation of positive selection on a new variant in the absence of
recombination. Parameter values are as beforewith the following exceptions:

• useRec 0

• possel 0.1 0. 0.5

Given that s = 0.1, this is rather strong selective pressure and because h = 0.5
(an additive selective regime), we expect rapid fixation of the adaptive allele.
As expected in the absenceof recombination, the entire lengthof the sequence
shows a marked decrease in Tajima’s D and recovery following fixation of
the adaptive allele—morphing back to lighter shades of gray indicative of
greater values of Tajima’s D—occurs relatively evenly across the sequence.

Simply “turning off” recombination in our simulation does not faith-
fully represent the evolution of Y-DNA or mtDNA. What real, biolog-
ical elements of uniparental inheritance are missing when we just set
useRec to 0? Can we incorporate these elements into our simulation
by changing popsize? After all, Y-DNA has 1/4 the effective popula-
tion size of an autosome in a diploid species. Or, do we again need to
consider explicitly modeling the sex of each individual in simulated
populations?

8.2.4 Overdominance

At an overdominant locus, the heterozygous genotype is of higher fitness
than either of the homozygous genotypes. We now consider whether there
are any characteristic patterns of genetic variation associated with overdom-
inance. Theory suggests that selection at an overdominant locus does affect
levels of diversity at linked, neutral sites. Specifically, we expect overdomi-
nant selection to increase measures of diversity such as π and to bring about
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a pattern called associative overdominance (Ohta and Kimura 1970): neu-
tral polymorphisms tightly linked to the targeted locus will also show high
levels of observed heterozygosity.

Both of these patterns—increased overall diversity and associative
overdominance—are difficult to discern as anomalous in scans of empirical
data. The utility of these signals to identify overdominant loci under selec-
tion is therefore questionable. Nevertheless, onemotivation for simulation is
build intuition and assess whether our preconceptions are corroborated. To
simulate selection at an overdominant locus, the second entry of the possel
parameter is set to a non-zero value. Figure 8.9b is based on the results of
a simulation of overdominant selection where the two selective coefficients
s = 0.05 and t = 0.03 were specified using parameter possel 0.05 0.03 0..
This represents the selective regime

• w A/A = 1− s (homozygous derived allele)
• w A/a = 1
• w a/a = 1− t (homozygous ancestral allele),

In addition, we set the starting frequency of the derived allele (A, as rep-
resented above) to 0.25 by setting popsize to 10000 and the second en-
try of parameter sellocus (the initial count of the derived allele) to 2500.
Overdominant selection produces no discernible anomaly in the pattern of
Tajima’s D in the proximity of the locus under balancing selection (Fig. 8.9b).

To find positive if ephemeral evidence of associative overdominance, we
monitor observed heterozygosity, Hobs—the observed fraction of individuals
with a heterozygous genotype—at each polymorphic site in the simulated
sequence. In addition, we monitor expected heterozygosity Hexp for com-
parison; expected heterozygosity is calculated using the Hardy-Weinberg
expectation of heterozygote frequency, 2pq, where p and q are the frequen-
cies of the balanced alleles. I leave it to the reader to implement calculation
of these summary statistics.

Using the parameter setting of s = t = 0.05 (possel 0.05 0.05 0.) and
focusing on the time point 1000 generations after the onset of balancing se-
lection, we find evidence of both associative overdominance and increased
diversity at and near the targeted locus. First, a number of loci tightly linked
to the overdominant target of selection show observed heterozygosity (Hobs)
> 0.5. Given that expected heterozygosity (Hexp at a diallelic locus is maxi-
mized at 0.5when p= q, this result is by definition unexpected and indicative
of associative overdominance (Fig. 8.10a).

Because Hexp is a function of current allele frequencies, it is instructive to
look at the difference Hobs −Hexp rather than simply looking for a signal of
maximizedHobs. For the same simulation,we see a peak inHobs−Hexp directly
adjacent to the site targetedby selection that rapidly falls tonegativevalues in
both the downstream and upstream directions (Fig. 8.10b). In other words,
there is a narrow region surrounding the targeted site that shows higher-
than-expected genetic diversity as measured by heterozygosity. I reiterate
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Fig. 8.10 Associative overdominance and increased genetic diversity resulting from over-
dominant selection. In both cases s = t = 0.05, Ne = 10,000, the initial frequency of the
derived allele was 0.25. Each triangle represents a SNP in a sample of size n = 500 at 1000
generations following the onset of selection. Vertical lines indicate the position of the over-
dominant locus at base pair 41,820. (a) A large number of loci linked to the selected locus
show Hobs ≥ 0.5. In other words linked loci “act” as overdominant loci despite their neu-
trality. (b) Increased diversity at and surrounding the overdominant locus as measured by
Hobs−Hexp. Positive values of this metric are indicative of greater diversity than expected
based on allele frequencies

that these patterns are often transient and therefore not particularly useful
in the context of inference. Still, exploring parameter space via simulation
may allow us to identify conditions in which associative overdominance is
more sustainable.

Identify a means for calculating Hobs and Hexp either through post-
simulation calculation or by modifying FORTUNA code to calculate
and record these quantities during a simulation. Next, explore the dy-
namics of associative overdominance. How does recombination rate
affect maintenance of this signal? I referred to associative overdomi-
nance as a transient pattern. Do simulation results confirm this?

8.2.5 Negative Frequency-Dependent Selection

In Sect. 7.1.2, we examined the dynamics of allele frequencies at a site subject
to negative frequency-dependent selection (NFD). We now focus on an in-
teresting case of NFD examined by Rice (2004); in addition to documenting
the dynamics of the targeted site, we investigate whether or not this form of
NFD has an effect on linked diversity.
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We begin by explicating the relevant code in the private function
update selected freqAndFit() found on lines 10–40 of the updated
population.h file (Sect. 8.1). This function is required to accurately simu-
late NFD selection because fitness of each genotype is dependent on current
allele frequencies. The variable count holds the total number of derived
alleles in the deme, which we again label A, while the vector<double>

genotype freqs holds the frequencies of the genotypes A/A, A/a, and a/a,
respectively. We begin by defining count as the total number of alleles in the
deme (lines 11); we will decrement this count as ancestral alleles are encoun-
tered. The genotype frequencies are all defined as 0 (line 12) initially. The
for loop on lines 13–17 iterates through the individuals of the deme and
uses the number of ancestral alleles returned by function get genotype()

to modify both count and genotype freqs (lines 15 and 16, respectively).
The frequencies p and q are then calculated (lines 18–19) as are updated
genotype freqs (lines 20–21). After printing these frequencies to the selec-
tion information file (line 22) a block on lines 24–38 is encountered. This is
only executed if nfdselection is true, which will be the case if the first entry
of parameter nfdsel of the parameters file is not equal to zero.

The two entries to parameter nfdsel are read in as nfd s and nfd h, re-
spectively. These coefficients areused to calculate thefitness of eachgenotype
under NFD in one of two ways, either using (1) the commented-out lines
25–27, which use expected genotype frequencies or (2) lines 29–37, which use
empirical genotype frequencies. To implement the first means, uncomment
the relevant lines, comment out lines 29–37, and recompile FORTUNA.Here,
however, we focus on the second, more complex method in which relative
fitness values are functions of updated genotype frequencies. Lines 29, 31,
33, and 35 are used to find the current maximum of relative fitness among
the genotypes (variable max fit), which is needed to normalize the fitness
values (lines 36–37). Finally, relative fitness values are printed to the selection
information file (line 39).

The NFD selective regime encoded in lines 29–35 of the population.h

listing from Sect. 8.1 follows an example of NFD briefly discussed by Rice
(2004) in which the relative fitness values are: wA/A = 1−h fA/a+h fa/a, wA/a =
1− s fA/a, and wa/a = 1−h fA/a+h fA/A. The relative fitness of the heterozygote
contains parameter s (nfd s). The relative fitness of heterozygotes decreases
with increasing s. Therefore the slope of dp

dt vs. p increases with s around
p = q = 0.5 and, as we will see, large values of s manifest as chaotic jumps in
the value of p through time. The relative fitness values of the homozygotes
contain the parameter h (nfd h), which we set to 3 in both cases illustrated
below.

Figure 8.11 shows results from a representative simulation of the NFD
selective regime described in the previous paragraph, using the parameters
possel 500000 250 0.05 0.005 1 and nfdsel 2 3while all other param-
eters were set as listed in the baseline natural selection scenario (Sect. 8.2.1).
We use the settings in possel to aim for a selected site near the middle of
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the 1Mbp simulated sequence with a standing variant frequency beginning
on the domain 250/10,000±0.005 = [0.02,0.03], where 10,000 is popsize. The
values assigned to nfdsel correspond to s = nfds = 2, h = nfdh = 3.

The vector field dp
dt vs p (Fig. 8.11a) was generated with the following R

code:

1 source("analyze_selective_regime.r");
2 d <- analyze_selective_regime(2, 3, 1-(h*2*p*q)+(h*q*q), 1-(s*2*p*q),

↪→ 1-(h*2*p*q)+(h*p*p));
3 plot_vector_field(d);

Note that in the function analyze selective regime() we use Hardy-
Weinberg expectations for the frequencies of the genotypes (line 2, argu-
ments 3-5). The vector field in Fig. 8.11a is superimposed by actual output
(dots) from the results of the simulation described in the last paragraph.
Clearly, results from stochastic simulation hew to the expected dynamics of
the system. In Fig. 8.11b, the next-generation frequency of the derived allele
(pt+1) is plotted against the current frequency of the derived allele (pt), and
each move from pt to pt+1 is denoted by a connecting gray line. The chaotic
single-generation changes to the value of p are evident in this graph. This ex-
ample of NFD selection eventually results in large global losses of diversity
across the 1Mbp sequence (Fig. 8.11c).

The panels of Fig. 8.12 show results for a systemwhere the only parameter
change relative to the simulation results summarized in Fig. 8.11 is to set s
(nfd s) to 1 rather than 2. Comparing panel A of Figs. 8.11 and 8.12, we find
an evident reduction in magnitude of the slope in the region surrounding
p = 0.5 that results from the lesser value of parameter s. We also see that
observed p in the stochastic simulation is found in only two clusters at
roughly p= 0.35 and p= 0.65 (Fig. 8.12a). The evolution of this system from a
low starting frequency of p rapidly reaches a point where the derived allele
frequency reliably ping-pongs between these two frequencies generation
after generation (connecting gray lines in Fig. 8.12b). Rather interestingly,
the effect on linked diversity is also quite different from the case of s = 2.
In the windows immediately surrounding the site targeted by NFD, genetic
variation begins to accumulate in a slowly widening region surrounding
the polymorphism under selection while a tightly linked region of very low
diversity emerges and then begins to dissipate (Fig. 8.12c).

Although it is questionable whether the extreme NFD selective regimes
simulated here correspond to selection on any real phenotype in nature,
these results are interesting and remind us that simulation allows us to test
all sorts of possibilities that may or may not be found within the confines
of the natural world. The very different effects of NFD selection on linked
diversity when s = 1 and s = 2 are particularly interesting and worth taking
a moment to consider and at least partially explain. We start by taking a
closer look at the dynamics of both p and observed heterozygosity ( fA/a).
Figure 8.13a and b show the generation-to-generation changes in p for s = 2
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Fig. 8.11 The effects of negative frequency-dependent selection on selected and linked
sites. Relative fitness of genotypes were simulated under the general model of wA/A =
1− 3 fA/a + 3 fa/a, wA/a = 1− s fA/a, and wa/a = 1− 3 fA/a + 3 fA/A with s = 2 in the underlying
simulation. (a) Vector field for the selected site, where p = fA, the frequency of the derived
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the chaotic changes in p. (c) Discrete heat map of nucleotide diversity (π). The site targeted
by selection was found at the point indicated by the arrow (454,500bp), where p began at
a frequency of 0.0218. The most striking pattern here is the steadfast depauperization of
genetic diversity across the entire 1Mbp sequence. Sample size of n = 500
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8.3 Purifying Natural Selection and Background Selection 259

and s = 1, respectively. Comparing these two panels, the first thing to note
is that when s = 1 the changes from generation to generation are large but
highly predictable; if p is currently ∼ 0.35, it will swing upward to ∼ 0.65 the
next generation and vice-versa (Fig. 8.13b). On the other hand, the changes
to p when s = 2 (Fig. 8.13a) are less predictable. There are still large swings
between low and high values of p. In fact they are frequently of greater
magnitude than those seen in the case of s = 1 (e.g., the change marked by
the arrow in Fig. 8.13a). However, there are smaller jumps interspersed and
no repeatable pattern is discernible.

This difference in the dynamics of p between the two selective regimes
is dramatic enough for us to suspect it underlies the very different effects
on linked diversity. Because heterozygosity—the fraction of individuals in
a sample with a heterozygous genotype—is associated with greater genetic
variation, in Fig. 8.13c we plot fA/a at the selected site for the two distinct
NFD selective regimes. The comparison reveals a striking difference. While
observed heterozygosity (i.e., fA/a) is essentially static at ∼ 0.45 when s = 1
(Fig. 8.13c, dashed line), it oscillates dramatically from generation to gen-
eration when s = 2 (Fig. 8.13c, solid line). This suggests that when s = 1 the
generation-to-generation shifts in p are driven by the loss of the homozygote
A/A or a/a. Conversely, when s = 2, declines in p are to a large degree driven
by the loss of heterozygotes, as we might expect given that s is inversely
proportional to the fitness of heterozygotes. Frequent loss of heterozygotes,
linked to a larger variety of alleles at linked sites, eventually has the affect of
removing linked variation (Fig. 8.11c). However, when s = 1, the great and
steady retention of heterozygotes means that closely linked sites also retain
variation—i.e., the widening region of increased nucleotide diversity seen in
Fig. 8.12c reflects associative overdominance. Note that the increase in nu-
cleotide diversity is localized. Conversely, the decline in nucleotide diversity
when s = 2 is global in effect. I suggest this is because the frequent removal
of variation across the sequence enacted by the removal of heterozygotes at
the selected site outpaces the ability of mutation to replace the lost variation.

8.3 Purifying Natural Selection and Background Selection

Most new mutations are neutral or deleterious, rather than adaptive. Selec-
tion against deleterious alleles is referred to as negative or purifying natural
selection. A relatable if extreme example of a deleterious variant subject to
purifying selection is an allele that causes a disease that is invariably termi-
nal. Returning to the basic equations of natural selection from Sect. 7.1.2, a
lethal allele such as this is modeled by a selection coefficient of s = 1. Then,
wd/d = 1− s = 0, which reflects the absence of offspring from individuals with
the d/d genotype.
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Fig. 8.13 Extreme NFD selection and resulting changes in allele frequency and observed
heterozygosity. The data shown here are drawn from the same simulations underlying
those shown in Figs. 8.11 and 8.12. (a and b) The frequency of the derived allele from
generation to generation during a representative time interval from generation 2000 to
2150 from the same simulation represented in Fig. 8.11 (a; i.e., s = 2) and Fig. 8.12 (b;
i.e., s = 1). (c) Observed heterozygosity ( fA/a) for the s = 2 (solid line) and s = 1 (dashed
line) simulations. The arrows in (a) and (c) point to the same time point, where there is a
particularly large swing in both p and fA/a
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Now consider a sequence interval within the genome where new mu-
tations at many different sites are likely to have a deleterious effect. An
obvious example of such an interval is an exon or entire coding sequence,
where mutations at non-synonymous sites affect protein function to vary-
ing, but potentially devastating, degrees. Such sequences accrue deleterious
mutations each generation in a population of any considerable size. Their
incessant removal by purifying selection, generation after generation, has
the effect of also removing linked variation. The decline in genetic diversity
associatedwith repeated purifying selection is named background selection
(Charlesworth et al. 1993, 1995).

Before turning to examples of purifying selection simulations, we add
an additional means of visualizing polymorphism along a sequence to
heatmaps.r. The function sequence boxplot() takes the summary statistic
output file from a FORTUNA run (e.g., sumstats0 for deme 0) and produces
a box plot of the specified summary statistic for each window. The func-
tion also allows the user to turn off the plotting of outlier values by setting
outlier=F and to specify a range for the y-axis by setting, for example,
y=c(0,2). The set of box plots shown in Fig. 8.14c,d were created using this
specification of the y-axis range, which facilitates direct comparison between
the results from two separate simulations. The sequence interval covered by
the box plot will simply be the width of the sampled window as specified
by the parameter windowSize.

heatmaps.r // add function sequence boxplot()

1 sequence_boxplot <- function(inputfile, stat="pi", outlier=T, y=c())
2 {

3 dat <- read.table(inputfile, header = T);

4 ddat <- split(dat, dat$stat);
5 q <- ddat[[stat]];
6 q <- q[,3:length(q[1,])];
7 boxplot(q, outline=outlier, ylim = y);

8 }

To simulate purifying selection, we use the negsel parameter and set the
first entries of the possel and ndfsel parameters set to zero. We nowmodel
a large, 1500bp exon in the middle of a simulated sequence that is 26,500bp
long. To set up thismodel,weuse the parameter values negsel 1 0.1 12500

13999 1000. The first two values specify values of the coefficients s and h
under a standard selective model: thus, wD/D = 1, wD/d = 1− hs = 0.9, and
wd/d = 1− s = 0, where d stands for the deleterious allele. In words, the dele-
terious d allele is a lethal recessive, but heterozygotes suffer a considerable
but lesser fitness deficit. The next two parameter values indicate that this
selective regime applies to at least some of the nucleotides in the region
between base pair 12,500 and 13,999 of the simulated sequence, our exon.
Operating under the rather coarse assumption that two of every three nu-
cleotides are subject to the specified selection regime while the remaining



262 8 Effects of Selection on Linked Variants

nu
cl

eo
ti

de
 d

iv
er

si
ty

0

0.5

1.0

1.5

2.0

“exon”

(0
,0

.5
]

(2
6.

0,
26

.5
]

window range (kbp) window range (kbp)(0
,0

.5
]

(2
6.

0,
 2

6.
5]

0

20

40

60

ge
ne

ra
ti

on
 (1

00
0s

)
0

ge
ne

ra
ti

on
 (1

00
0s

)

20

40

60

window range (kbp)

“exon”A B

nu
cl

eo
ti

de
 d

iv
er

si
ty

0

0.5

1.0

1.5

2.0
C

(0
,0

.5
]

(2
6.

0
26

.5
]

window range (kbp)(0
,0

.5
]

(2
6.

0,
 2

6.
5]

≤0.05
(0.05, 0.10]
(0.10, 0.15]
(0.15, 0.20]
(0.20, 0.25]
(0.25, 0.30]

>0.40

nucleotide
diversity

(0.30, 0.40]

D

Fig. 8.14 The effect of purifying selection. (a and c) Parameter negsel was set to 0.1

1 12500 14000 1000 on a 26,500bp simulated sequence. Samples (n = 100) were drawn
every 100 generations over the course of 75,000 simulated generations. The discrete heat
map (a) and boxplots (c) are partitioned into non-overlapping windows of 500bp. In both
cases, the threewindows that span the “exonic” sequence show sustained, near-absence of
genetic diversity asmeasured by nucleotide diversity (π). (b and d) Results of a simulation
in which there was no selective pressure on any nucleotide in the 45,000 bp sequence, also
visualizedasboth adiscrete heatmapand set of boxplots.Given that both simulationswere
performed using point mutation and recombination rates μ = r = 1×10−8 and Ne = 10,000,
under equilibrium conditions the expected value of π for each 500bp window is 0.2

“third codon positions” are neutral, the final parameter value specifies that
1000 of the 1500 nucleotides in the specified interval will be targets of purify-
ing selection. These 2 of 3 nucleotides are selected randomly by the program.

Figure 8.14a and b compare results from the simulated 26,500bp sequence
with (a) and without (b) purifying selection. Note that window size is
only 500bp in these simulations. Therefore, expected nucleotide diversity
πwindow = θwindow = 4Neμ×500 = 4×104×10−8×5×102 = 0.2. The comparison
of longitudinal plots shows a clear and persistent lack of genetic diversity at
the three windows covering the simulated “exon” (Fig. 8.14a), while the sim-
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Fig. 8.15 Lower recombination rate leads to awider selective footprint. Results shownhere
are from a simulation in which all parameters except recrate are the same as in Fig. 8.14.
Namely, recrate 1e-10was used instead of recrate 1e-08. (a) The longitudinal plot of
nucleotide diversity shows consistent absence of variation in the three middle “exonic”
windows, butnoticeabledeclines ingeneticdiversity are also evident in adjacent “intronic”
windows. (b) Boxplots show the range of nucleotide diversity across the 75,000 simulated
generations. The wider selective footprint is particularly evident here when compared
to Fig. 8.14c. Moreover, median and maximum values of π are noticeably lower than in
Fig. 8.14c

ulation of a neutral sequence shows no region that is consistently low or high
in nucleotide diversity over the 75,000 simulated generations (Fig. 8.14b). Us-
ing function sequence boxplot() to summarize nucleotide diversity across
the samples over the 75,000 simulated generations, the difference is made
more obvious. Variation in the three 500bp “exon” windows is basically
absent (though a few outlier samples not shown contained some variation),
while the surroundingwindows show awide range of genetic variation over
the course of the 75,000-generation simulation (Fig. 8.14c). In the absence of
purifying selection on an identically sized sequence, we observe some win-
dows that show less variation in nucleotide diversity during the simulation.
However, they are randomly scattered along the sequence (Fig. 8.14d).

These results confirm expectation; over the entire simulated sequence,
genetic diversity is depressed as measured by π. At any given point in
time (consider a thin, horizontal slice in Fig. 8.14a or b), most windows
show nucleotide diversity less than the neutral expectation of 0.2. However,
outside the three “exonic” windows of Fig. 8.14a, the distribution of low-
diversity windows changes over time—i.e., what was once a windowwith a
value of π below the neutral expectation eventually transitions to a window
with above-neutral π and vice versa. Another way to say this is that the
region showing persistent background selection is rather narrow.

The footprint of background selection becomes wider in regions of low
recombination, which is also true of the footprint of positive selection. To see
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show a noticeably lower median and range of nucleotide diversity when r = 10−10 than
when r = 10−8. In fact, “intronic” windows show a noticeably smaller range of nucleotide
diversity than neutral windows in a neutral simulation (the no selection box plot). This de-
cline in diversity relative to the neutral expectation at sites linked to a region undergoing
repeated purifying selection is the pattern associated with background selection

evidence of this, we repeat the previous simulation of purifying selection
at an exon with one change: we set recrate to 1e-10 (r = 1× 10−10) rather
than 1e-08 (r = 1× 10−8). This change leads the persistent decline in genetic
diversity to bleed into sequence adjacent to the exonic windows (Fig. 8.15).
Although background selection is most obvious in the “intronic” windows
tightly linked to the “exonic” windows (Fig. 8.15b), the median and range
of nucleotide diversity across all intronic windows declines when the lower
recombination rate is simulated (Fig. 8.16). This is evidence of background
selection: repeated loss of genetic diversity due to selection against variants
in a small region of sequence leads to declines in linked, neutral diversity.
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9
Quantitative Traits

Finest of all the things I have left is the light of the sun,
Next to that the brilliant stars and the face of the moon,
Cucumbers in their season, too, and apples and pears.

– Praxilla, Adonis

9.1 Background and Theory

In this chapter, we expand the functionality of FORTUNA by adding code
that keeps track of alleles at multiple genes. Collectively, the genotypes of
these genes help determine the value of a quantitative trait, which is char-
acterized by continuous rather than discrete variation. Familiar examples of
quantitative traits are adult height in humans, crop yield, and resistance to
pathogens or insecticides. In addition to polygenic variation, environment
also affects quantitative trait value. The branch of evolutionary genetics fo-
cusedonquantitative traits is, not surprisingly, namedquantitative genetics.

We first focus on basic theory of quantitative genetics and model how
genetic variation and environment collectively determine the distribution
of quantitative trait values. Most experimental studies of quantitative ge-
netics use controlled crosses in an attempt to identify quantitative trait
loci (QTL)—those multiple loci in the genome that show some correlation
with the quantitative phenotype in question and harbor the actual, causative
genes.

Quantitative traits important to the livelihood of humans (e.g., crop yield)
have been the subjects of artificial selection for millennia, which shows that
knowledge of the underlying genetic variation at causative loci is not neces-
sary tomeaningfully push themean quantitative trait value of a herd or field
in the desired direction generation after generation. Numerous Assyrian re-
liefs (ninth Century bc) depict priests and “winged genies” hand-pollinating
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Fig. 9.1 Assyrian relief of an eagle-headed winged genie from the palace of the king of
Assyria, Ashur-nasir-pal II (883–859 bc). Photo: In the public domain, designated CC0

female date palm flowers through application of pollen from themale flower
(Fig. 9.1). This is the near-magic of artificial selection enshrined.

Because quantitative traits vary continuously, we model the distribution
of quantitative trait values in a population as a normal distribution with
population mean μ and variance VP, the latter of which is the sum of two
other variances:

VP = VG+VE. (9.1)

VG is genetic variance and VE is environmental variance. This equation
embodies the nature vs. nurture debate—which asks whether biology or
environment is of greater importance to phenotype—with VG representing
“nature” and VE representing “nurture.” The relative importance of genes
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and environment to determination of phenotype varies from trait to trait.
The relative importance of genetic determinants is the quantitative trait’s
heritability—the fraction of variance in phenotype (VP) due to genetic vari-
ation. Similarity between parent and offspring phenotypes increases with
heritability of the quantitative trait.

Broad-sense heritability places all sources of genetic variance in the nu-
merator:

H2 =
VG

VP
(9.2)

Note that H2 is the symbol for broad-sense heritability; the “2” superscript
does not imply H = (VG/VP)1/2. For animal and plant breeders, greater prac-
tical importance is found in the narrow-sense heritability of a trait:

h2 =
VA

VP
, (9.3)

where VA is additive variance, one component of total genetic variance VG.
Additive variance is of greater utility to animal and plant breeders be-

cause it derives from QTL showing additive gene action in which the trait
value of the heterozygous genotype is at the midpoint between the trait
values associated with the two homozygous genotypes. Let the allele effect
of an allele be a. Conceptualize allele effect as the amount by which trait
value increases for each copy of the allele in the genotype (Fig. 9.2a). In
contrast, at QTL showing dominant gene action, the single copy of the fo-
cal allele F in the heterozygote adds a+ d to the phenotype associated with
individuals homozygous for the non-focal allele, where d is the dominance
effect (Fig. 9.2b)—i.e., one allele shows partial or complete dominance over
the other. Dominance effects limit the effectiveness of truncation selection,
a tactic used by animal and plant breeders to force mean phenotype in one
direction or another each generation. It is easiest to intuit the confounding in-
fluence of dominance effects by considering an instance of artificial selection
such as that detailed in Fig. 9.3.

Gene-gene interaction contributes to the final component of VG. The most
direct demonstrations of these interactions, termed epistasis, are those in
which variation at one gene completely masks the phenotypic influence of
another locus. One such trait is coat color in Labrador Retrievers. In reality,
Labrador coat color is controlled by many genes, but the most common
phenotypic variants—black, brown, and yellow—can be explained by the
effects of just two genes. The first, traditionally referred to as the B locus,
determines the darkness of the pigment eumelanin produced by these dogs.
B/B and B/b dogs produce black eumelanin while b/b dogs produce lighter,
brownish eumelanin; this variation explains the phenotypic difference black
and brown Labs. The second locus, traditionally referred to as the E locus,
determines whether or not the eumelanin produced in the melanosomes of
the skin are further deposited in the fur. Deposition of eumelanin in the
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Fig. 9.3 Additive genetic variance is more helpful to animal and plant breeders. Consider
the same single-locus trait of fruit size discussed in the caption to Fig. 9.2. Moreover, imag-
ine you are a plant breederwishing to increase the fruit size of plants in the next generation.
The intuitive tactic is to choose parents who show the most desirable phenotype—i.e., in-
dividuals with large fruits. (a) If gene action is additive, all parents selected for large
fruit size are F/F and all progeny are therefore F/F. (b) If gene action is dominant and we
assume that half the parents chosen due to large fruit size are F/f and half are F/F then
6.25% of progeny will, on average bear small fruit. Note that complete dominance (d = a)
is shown in this case. Also consider that if the majority of large-fruit plants in our stock
are heterozygotes, the percentage of small-fruit progeny will be greater than 6.25%
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Fig. 9.4 Epistatic determination of coat color inLabradorRetrievers. See text for discussion

fur occurs in E/E and E/e individuals, but not e/e individuals. The type of
eumelanin produced by e/e yellow Labradors is masked due to its lack of
deposition to the fur. Although there is no direct interaction between the
protein products of the two loci, this is still epistasis in the sense that the
final phenotype is determined by the variation present at both loci. If you
are told an unseen Labrador is B/b you cannot know whether it is a black
or yellow Labrador due to your lack of knowledge regarding the E locus
(Fig. 9.4).

Technically speaking, the Labrador coat color example is a formof recessive
epistasis, in which a homozygous recessive genotype at what I will call the
epistatic locus masks the effects at what I will call the main locus. Note that
the B locus is also subject to dominant gene action—complete dominance, in
this case.

Figure 9.5 shows the genotype-phenotype landscape of some two-locus
interactions. In Fig. 9.5a,b, the epistatic locus completelymasks the contribu-
tion to the phenotype of the main locus in a recessive or dominant fashion.
When themasking epistatic locus is recessive (Fig. 9.5a), only theE1/E1 geno-
type at the epistatic locus (E) masks additions to phenotype associated with
the M locus. Otherwise, M acts additively. When the E1 allele is dominant,
just one E1 allele is sufficient to mask the effects of the M locus (Fig. 9.5b).
Figure 9.5c shows the joint additive effect of two loci in the absence of epis-
tasis, with the added complication that the allele effects of loci A and B—XA
and XB, respectively—have different values.

Although it is possible to model higher-order interactions, we now focus
on the four possible types of interactions between pairs of loci: additive x
additive (AxA), additive x dominance (AxD), dominance x additive (DxA),
and dominance x dominance (DXD). Here, if a locus is labeled additive, it
shows only additivity—regardless of the genotype at the other, interacting
locus. If a locus is labeled dominance, it shows some form of departure from
additivity. Here, dominance refers to a locus that disrupts the additivity of
alleles at the other locus.
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Fig. 9.5 Some genotype-phenotype landscapes of two-locus epistasis. The effect of the
epistatic allele E1 in (a) and (b) is to completely mask the influence of the main locus on
phenotype. (a) The masking epistatic allele E1 is recessive. It only masks the effect of the
main allele genotype when the individual is homozygous for E1. X is the allele effect of
allele M1. (b) The masking epistatic allele E1 is dominant. It is only when both epistatic
alleles are E0 that the purely additive nature of the M locus becomes apparent. Note that
dominant refers to the masking allele E1, not a dominance effect. (c) The contribution of
two purely additive loci to quantitative phenotype. XA and XB represent the allele effects
of the “1” allele at lociA andB, respectively. The greatest addition to phenotype is achieved
when both loci are homozygous for the “1” allele. The uneven appearance of the plane is
due to the fact that XA > XB

Figure 9.6 shows the results of interaction between pairs of main and
epistatic loci for each type of two-locus epistasis.1 When looking at Fig. 9.6a
(AxA epistasis), imagine standing in front of the M1/M0 position on the M
axis and looking forward through the graph; you would first see a straight
line above you slanting downward to your right, followed by a straight line
with zero slope and, in the back, a straight line sloping downward to your
left. The straightness of these lines shows additive effects associated with
the M locus in each case. The difference in slope between the lines, however,
is a function of the E locus genotype. In other words, the E locus genotype
modulates the additivity of the M locus, but it does not eliminate additivity
of the M locus. Figure 9.6a is an example of AxA epistasis because you can
carry out the same thought experiment as before, but this time standing in
front of the E1/E0 point on the E-axis and looking through the graph. Again,
E-locus genotypes show additivity regardless of the M-locus genotype, but
the slope of the phenotypic changes depending on the M-locus genotype.

Figures 9.6b,c show AxD and DxA epistasis, respectively, and are sim-
ply mirror images of each other. We focus on the AxD epistasis shown in
Fig. 9.6b. Here, main locus M shows purely additive effects, though the
slope of additive effects is a function of E-locus genotype. The difference
from AxA epistasis is made clear, however, when we fix M-locus genotype

1 I stress that labeling one locus main and the other epistatic is not something you will find
in the literature; these are labels of convenience for constructing FORTUNA only.
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Fig. 9.6 Genotype-phenotype landscapes of two-locus epistasis. Heavy lines indicate ad-
ditivity as you move along the parallel axis, while light lines indicate dominance (depar-
tures from straight lines and, therefore, additivity) as you move along the parallel axis.
For several of the joint genotypes (dots), the addition to phenotype is indicated in terms
of X, the additive effect specified for the main locus M in the FORTUNA parameters file
(see next Sect. 9.2.2). (a) AxA epistasis. (b, c) AxD and DxA epistasis. In both cases the M
locus shows additivity; however, the resulting effect on phenotype is switched. (d) DxD
epistasis. See text for further explanation

and consider different E-locus genotypes. Non-additive patterns for E-locus
genotypes are evidentwhen theM-locus genotype is eitherM1/M1 orM0/M0.
Finally, Fig. 9.6d showsDxD epistasis in which each locus—M and E—shows
dominance, the pattern of which is dependent upon genotype at the other
locus. Figure 9.6 uses equal additive effects (X) for all loci. Effect sizes can
of course differ between the two loci in a pair, which we will consider when
developing FORTUNA to simulate quantitative trait evolution.

Finally, we expand Eq. 9.1 by breaking down genetic variance into its
components:
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VP = VA+VD+VI +VE, (9.4)

where VA, VD, and VI represent additive, dominance, and epistatic genetic
variances, respectively. Environmental variance represents the sum effect
of the environment on quantitative phenotype determination. As a simple
example, consider two female humans with exactly the same alleles at the
QTLs determinative of adult height. IfVE = 0, then bothwomen should show
exactly the same height as adults. However, environment certainly does play
a role in the determination of adult height. In particular, nutrition during
development—say, calcium intake—will determine whether or not each in-
dividual obtains the adult height to which she is genetically predisposed.

9.2 Neutral Quantitative Trait Evolution

9.2.1 Some Preliminaries

We begin with modifications to FORTUNA that will allow us to simulate a
quantitative trait whose causative loci show only additive gene action. The
“sequence” produced by simulation of quantitative traits will actually be a
list of alleles for each unlinked, causative locus. Thus, parameter seqlength
takes on a new meaning when simulating quantitative trait evolution: it
represents the number of causative loci. At each locus, the “1” allele has a
positive allele effect, while the “0” allele does not add to trait value. Pre-
viously, we stored the two haplotypes of an individual in the sequences

variable of the Individual class. This variable holds two vector<int>s;
each lists the positions of derived alleles in one haplotype of the individual.
Variable sequences is also repurposed for simulation of quantitative trait
evolution.

As an example, consider simulation of a quantitative trait with five
causative loci (seqlength equals 5) in which an individual’s sequences vari-
able holds the values {{0, 4}, {2}}. In binary, we represent the two “sequences”
as 10001 and 00100, respectively. In essence, the sequences variable holds
the genotypes of the five causative loci: 1/0, 0/0, 1/0, 0/0, and 1/0. If the “1”
alleles at each causative locus contribute allele effect a to phenotype, then,
ignoring environmental variance, this individual will show a quantitative
phenotype of b+ 3a, where b is the baseline phenotype associated with an
individual lacking any alleles of positive effect on phenotype.

A fuller accounting of an individual’s phenotype requires us to allow
allele effect sizes to differ among the causative loci. Some loci may have a
large effect associated with larger values of a and vice-versa. In addition, we
need to account for environmental variance VE. To do so in FORTUNA we
draw random variates from a Normal distribution with mean μ = 0 and a
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standard deviation σ input by the user in the parameters file. The random
variate is thenadded to thegeneticallydeterminedphenotypicvalue, thereby
capturing environmental “noise.” The value of an individual’s phenotype pi
when only additive and environmental variance are active is then:

pi = b+
k∑

j=1

ui, jaj+ ei, (9.5)

where k is the number of causative loci not involved in epistasis, aj is the allele
effect of the jth locus and coefficient ui, j equals 2, 1, or 0 for the genotypes
1/1, 1/0, and 0/0, respectively, at locus j in individual i, and ei ∼ N(0,σ2) is
the environmental variate for individual i. The standard deviation (σ) rather
than the variance (σ2) of the latter Normal distribution will be specified in
the parameters file because normal distribution<> objects in C++11 are
instantiated with standard deviation.

To model dominance effects, it is necessary to include an additional term
relative to Eq. 9.5.

pi = b+
k∑

j=1

ui, jaj+

k∑
j=1

vi, jdj+ ei, (9.6)

where vi, j equals 0, 1, or 0 for the genotypes 1/1, 1/0, and 0/0, respectively at
locus j in individual i.

Finally, epistatic effects require one additional term to determine pheno-
type pi:

pi = b+
k∑

j=1

ui, jaj+

k∑
j=1

vi, jdj+

l∑
q=1

Mx

[
mi,q,ci,q

]
+ ei, (9.7)

where l is the number of epistatically paired loci,Mx is a matrix representing
the effects of epistasis (indexed by x for the type of epistasis), mi,q is the
genotype of individual i at the qth main locus, and ci,q is the genotype of
individual i at the qth epistatic locus. Again, reference to main and epistatic
loci is not standard; it just makes things simpler to code. It may be helpful
to look again at Figs. 9.5b,c and 9.6, where the main and epistatic loci are
represented by M and E along the axes.
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9.2.2 Modifying FORTUNA to Model Quantitative Trait
Evolution

Considerable additions are required to model quantitative trait evolution
using FORTUNA. We begin by detailing several new global parameters
specified in the parameters file.

Additions to parameters

1 polygenicTrait 0

2 baseTraitValue 0.

3 alleleEffects 0.01

4 dominanceEffects 0.005

5 epistatic 0

6 epistaticTypes 5 ... //number of entries depends on number of causative

↪→ loci

7 enviroSD 0.02

Declaration of new variables in params.h

1 \\ GLOBAL PARAMETERS

2 ...

3 extern bool polygenicTrait;

4 extern double baseTraitValue;

5 extern vector<double> alleleEffects;

6 extern vector<double> dominanceEffects;

7 extern double enviroSD;

8 extern vector<int> epistaticTypes;

9 extern int epistaticLoci;

10 extern bool epistatic;

11 extern Matrix<int> epiD;

12 extern Matrix<int> epiR;

13 extern Matrix<int> epiAA;

14 extern Matrix<int> epiAD;

15 extern Matrix<int> epiDA;

16 extern Matrix<int> epiDD;

17 ...

Modifications to the params.cc file allow reading of parameters file val-
ues:

Modifications to params.cc

1 ...

2 int epistaticLoci;

3 double baseTraitValue, enviroSD;

4 bool polygenicTrait, epistatic;

5 vector<double> alleleEffects, dominanceEffects;

6 vector<int> epistaticTypes;

7
8 int process_parameters() {

9 ...
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10 if (iter->first == -1) { // block of global parameters

11 ...

12 polygenicTrait = atoi(parameters["polygenicTrait"].c_str());
13 baseTraitValue = atof(parameters["baseTraitValue"].c_str());
14 alleleEffects = get_multi_double_param("alleleEffects",

↪→ parameters);

15 if (polygenicTrait && seqlength > 1 && alleleEffects.size() == 1)

↪→ // then set all effect sizes to this value

16 for (int i=1; i<seqlength; ++i)

17 alleleEffects.push_back(alleleEffects[0]);
18 dominanceEffects = get_multi_double_param("dominanceEffects",

↪→ parameters);

19 if (seqlength > 1 && dominanceEffects.size() == 1)

20 for (int i=1; i<seqlength; ++i)

21 dominanceEffects.push_back(dominanceEffects[0]);
22 enviroSD = atof(parameters["enviroSD"].c_str());
23 epistatic = atoi(parameters["epistatic"].c_str());
24 epistaticTypes = get_multi_int_param("epistaticTypes",

↪→ parameters);

25 epistaticLoci = epistaticTypes.size();

26 if (epistatic) {

27 seqlength = seqlength + epistaticLoci;

28 for (int i = 0; i<epistaticLoci; ++i)

29 alleleEffects.push_back(0.);
30 } else {

31 epistaticLoci = 0;

32 }

33 }

34 ...

35 }

36 int ed[] = {0, 0, 0, 1, 0, 0, 2, 0, 0};

37 Matrix<int> epiD(3, 3, ed); // dominance epistasis as in

↪→ Fig.˜\ref{ch9:fig5}b
38 int er[] = {0, 0, 0, 1, 1, 0, 2, 2, 0};

39 Matrix<int> epiR(3, 3, er); // recessive epistasis as in

↪→ Fig.˜\ref{ch9:fig5}a
40 int aa[] = {0, 1, 2, 1, 1, 1, 2, 1, 0};

41 Matrix<int> epiAA(3, 3, aa); // AxA epistasis

42 int ad[] = {2, 0, 2, 1, 1, 1, 0, 2, 0};

43 Matrix<int> epiAD(3, 3, ad); // AxD epistasis

44 int da[] = {0, 2, 0, 1, 1, 1, 2, 0, 2};

45 Matrix<int> epiDA(3, 3, da); // DxA epistasis

46 int dd[] = {0, 2, 0, 2, 0, 2, 0, 2, 0};

47 Matrix<int> epiDD(3, 3, dd); // DxD epistasis

Lines 2–6 provide the local declarations of the new parameters, baseTrait
Value is the lowest trait value possible to which the allele effects may add,
while enviroSD is the standard deviation of the Normal distribution used
to generate random environmental the error/noise term in Eqs. 9.5 and 9.6.
The Boolean parameters polygenicTrait and epistatic specify whether
or not to simulate a quantitative trait (as opposed to sequence/haplotypes)
and whether to model epistatic effects, respectively. Each locus, the num-
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ber of which is equal to seqlength, must have a real number specifying
its effect on trait value (alleleEffects) and a real number specifying any
dominanceEffects. If the dominance effect for a particular locus is set to 0.,
then the locus will be purely additive with the heterozygote having an inter-
mediate effect to the two homozygotes. Lines 10–32 provide the additional
code needed to define the global parameters—i.e., not deme-specific—just
discussed. In most cases, this mimics code seen before. However, a couple
twists require explication. After defining the alleleEffects parameter in
line 14, lines 15–16 allow a short cut. If only one number is specified in the
parameters file for alleleEffects, rather than a number for each locus,
allele effects of all loci are set to the single number provided. Lines 19–20 do
the same for dominanceEffects. The parameter epistaticTypes requires
a list of integers, one for each epistatic locus. The provided integer speci-
fies use of a specific definition of two-locus epistasis defined on lines 36–47:
0 for “dominance epistasis” as in Fig. 9.5b; 1 for “recessive epistasis” as in
Fig. 9.5a; 2 for AxA; 3 for AxD; 4 for DxA; 5 for DxD. These values are read in
on line 24 and the number of epistatic loci—epistaticLoci—is determined
on line 25.2

If epistasis is being modeled, then it is necessary to increase seqlength

(line 27), which is the number of main loci stored in the sequences of each
Individualplus the number of epistatic loci. For each epistatic locus,we add
a 0 to alleleEffects for each epistatic locus (lines 28–29). If not simulating
epistasis, the number of epistatic loci is set to zero and alleleEffects is not
expanded (lines 30–32).

Lines 36–47 define the matrices of the different two-locus epistatic effects;
these are theMx of Eq. 9.7 above. You could certainly modify the magnitude
of the values of these matrices to suit your specific needs. However, because
they are only specified in params.cc and not the parameters file, you will
need to recompile the program to incorporate any changes you make to the
values of these matrices.

In cases where you would like to explicitly list the alleleEffects and/or
dominanceEffects for each locus in the parameters file, it can be cumber-
some to do so if the number of loci is large. However, we can use the R
function rdirichlet( ) provided by the MCMCpack package to quickly gen-
erate random values for alleleEffects and/or dominanceEffects. In what
follows, I focus on generating appropriate values for alleleEffects. The
same approach can be used for dominanceEffects.

The Dirichlet distribution generates n random variates that sum to one.
Variance among the n variates is controlled by a vector of n concentration
parameters. In the following snippet, I use the rep function to create a vec-
tor of ten concentration parameters all equal to 1. When the concentration
parameter equals 1, no one of the n variates is expected to be greater or lesser

2 The text immediately following this paragraph provides tips and R code for generating
long lists of alleleEffects, dominanceEffects, and epistaticTypes. This is helpful
when the number of causative loci is large.
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than another. As we see shortly below, we can use concentration parameter
> 1 for a small x < n of the variates; this produces larger allele effects for x
of the n causative loci. The advantage of using this simple R code is that,
particularly for large numbers of simulated loci, you can quickly generate
allele effects that show random variation, print the results to a file, and then
copy and paste from that file into the parameters file.

Generating random allele effects in R for parameters file

1 > library(MCMCpack)
2 > v <- rdirichlet(1, rep(1, 10))

3 # first parameter to rdirichlet(): number of variate sets to draw

4 # second parameter to rdirichlet(): vector of concentration parameters

5 > write.table(v, file = "dirichlet", row.names = F, col.names = F, quote
↪→ = F)

The following shows the results from two calls to the rdirichlet function
that provide some indication of how changing the vector of concentration
parameter affects the variation among the random variates.

1 > a <- rdirichlet(1, c(10, 10, rep(1,8)))
2 > var(a[1,])
3 [1] 0.01068256

4 > a

5 [,1] [,2] [,3] [,4] [,5] [,6] [,7]

6 [1,] 0.3078745 0.2722179 0.09732201 0.07284715 0.0253912 0.04615144

↪→ 0.07955839

7 [,8] [,9] [,10]

8 [1,] 0.04043488 0.03371233 0.02449015

9 > b <- rdirichlet(1, rep(1,10))
10 > var(b[1,])
11 [1] 0.002942469

12 > b

13 [,1] [,2] [,3] [,4] [,5] [,6] [,7]

14 [1,] 0.1361805 0.1908266 0.04276769 0.07372195 0.1195973 0.0214621

↪→ 0.1446838

15 [,8] [,9] [,10]

16 [1,] 0.06659471 0.1426053 0.06156005

Note that the results held in object a (lines 5–8) reflect the greater weight
placedon thefirst twovariates in the call tordirichlet( )on line 1.Roughly
0.58 of the total 1.0 (to which all 10 variates sum) is accounted for by the
first two variates, while the remaining 0.42 of density are rather evenly
divided among the remaining eight variates. These results can be copy-and-
pasted to the alleleEffects parameter in the parameters file to simulate
ten additive loci in which two loci are of much greater effect. The results
held in object b (lines 13–16) reflect the even concentration placed on all ten
variates. Importantly, we still see a wide distribution of values among the
variates. However, there is no a priori reason to believe that any one variate
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will have a greater value than another when all concentrations are equal to
1. The same procedure can be used to generate a

In the case of epistaticTypes, we can also use R to avoid a lot of unnec-
essary typing. Consider a case where you want to simulate 50 epistatic loci,
25 of which yield AxA epistatic effects and 25 of which yield DxD effects.
The following R code will generate the list of 50 integers and write them to
a file.

Generating a list of epistatic effects in R for parameters file

1 > a <- c(rep(2,25), rep(5,25));
2 > write.table(a, file="epistatics", row.names = F, col.names = F, quote =

↪→ F);

You can then open file epistatics and copy-and-paste the output to the
parameters file.

Having covered the meaning and coding of new parameters, we return
to modifications of other FORTUNA source files necessary for simulation of
quantitative trait evolution. First, in order to draw from a Normal distribu-
tion for the environmental variance of each individual a mt19937 is added
to the list of static variables at the end of fortuna.cc.

Modification to fortuna.cc

1 mt19937 Individual::n;

Now consider the numerous modifications to individual.h.

Modifications to individual.h

1 ...

2 private:

3 double trait_value;
4 void calculate_trait_value() {

5 normal_distribution<double> Ve(0, enviroSD); // environmental

↪→ variance

6 trait_value = baseTraitValue;

7 vector<int> genotypes(seqlength); // initialize with seqlength

↪→ entries set to zero

8 for (int i=0; i<2; ++i)

9 for (auto iter = sequences[i].begin(); iter !=
↪→ sequences[i].end(); ++iter)

10 genotypes[*iter]++;
11 for (int i=epistaticLoci; i<seqlength-epistaticLoci; ++i) { //

↪→ calculate contributions of non-interacting loci

12 if (genotypes[i] == 1)

13 trait_value += (alleleEffects[i] + dominanceEffects[i]);

14 if (genotypes[i] == 2)

15 trait_value += (2 * alleleEffects[i]);

16 }

17 if (epistatic) {

18 int mainLocusIndex = 0;

19 // calculate contributions of epistatic pairs
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20 for (int i=seqlength-epistaticLoci; i < seqlength; ++i) { //
↪→ index of epistatic locus

21 double traitMod;

22 switch(epistaticTypes[mainLocusIndex]) {

23 case 0: // dominance epistasis

24 traitMod =

↪→ epiD[genotypes[mainLocusIndex]][genotypes[i]] *
↪→ alleleEffects[mainLocusIndex];

25 trait_value += traitMod;

26 break;
27 case 1: // recessive epistasis

28 traitMod =

↪→ epiR[genotypes[mainLocusIndex]][genotypes[i]] *
↪→ alleleEffects[mainLocusIndex];

29 trait_value += traitMod;

30 break;
31 case 2: // AxA epistasis

32 traitMod=

↪→ epiAA[genotypes[mainLocusIndex]][genotypes[i]]

↪→ * alleleEffects[mainLocusIndex];

33 trait_value += traitMod;

34 break;
35 case 3: // AxD epistasis

36 traitMod =

↪→ epiAD[genotypes[mainLocusIndex]][genotypes[i]]

↪→ * alleleEffects[mainLocusIndex];

37 trait_value += traitMod;

38 break;
39 case 4: // DxA epistasis

40 traitMod =

↪→ epiDA[genotypes[mainLocusIndex]][genotypes[i]]

↪→ * alleleEffects[mainLocusIndex];

41 trait_value += traitMod;

42 break;
43 case 5: // DxD epistasis

44 traitMod =

↪→ epiDD[genotypes[mainLocusIndex]][genotypes[i]]

↪→ * alleleEffects[mainLocusIndex];

45 trait_value += traitMod;

46 }

47 mainLocusIndex++;

48 }

49 }

50 trait_value += Ve(n); // add environmental effect

51 if (trait_value < baseTraitValue)

52 trait_value = baseTraitValue;

53 }

54 ...

55 public:

56 inline double get_trait_value() {return trait_value;}
57 ...

58 Individual (vector<vector<int>> seqs): sequences(seqs) { // generation

↪→ 0 and migration constructor

59 if (polygenicTrait)
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60 calculate_trait_value();
61 }

62 Individual (Individual *p1, Individual *p2, vector<vector<int> >

↪→ mutation_results, vector<int> breakpoints) { //
↪→ intra-simulation constructor

63 if (polygenicTrait) {

64 sequences = mutation_results;
65 calculate_trait_value();
66 } else {

67 ... // constructor code previously discussed

68 }

69 }

70 ...

71 static mt19937 n;

Line 3 declares the variable trait value, which holds the trait value calcu-
lated upon the “birth” of each new member of the class Individual. The
function calculate trait value( ) (lines 4–53), as the name implies, cal-
culates the trait value of an individual. To do so, we first instantiate a
normal distribution member with mean 0 and standard deviation equal
to the extern parameter enviroSD (line 5). Trait value is set to its baseline
value in line 6, and the rest of the function modifies this value, potentially
adding to it. In order to modify the trait value; however, we first need to de-
termine the vector<int>genotypes of each locus, both additive and epistatic
(if the latter is applicable; line 7). This is accomplished by the code of lines
8–10, in which each locus represented by a position in vector<vector<int>

> sequences is interrogated. The for loop spanning lines 11–16 determines
the additive and dominance effects of all loci not subject to epistasis. Note
that i of this loop is first set to the value of epistaticLoci. If there is no
epistasis, this variable is equal to zero. Otherwise, the loop begins at the first
locus that is not subject to epistasis. Furthermore, the loop runs to only the
last of the purely additive loci (seqlength - epistaticLoci) (see Fig. 9.7).
The loop tabulates additions to baseTraitValue by determining if the geno-
type adds one or two alleleEffects (lines 12–15), andmodifies the addition
by any non-zero doiminanceEffects specified for heterozygotes of a given
locus in the parameters file (line 13). The loop spanning lines 17–37, further
trait valuewhen epistatic is set to true (i.e., 1). Variable mainLocusIndex
is first set to zero (line 18), followed by a for loop that runs from the first of
the epistatic loci (seqlength-epistaticLoci) through the end of sequences
(line 20; see Fig. 9.7). For each pair of main and epistatic loci, the quantity
by which trait value is modified is kept track of by the variable trait mod

(line 21). Then a switch( ) function is used to apply the proper type of
epistatic effect for the locus (lines 22–46). Note that each case corresponds to
the epistaticTypes of the locus, and the matrices defined in params.cc are
used to make the proper modification to trait value. Finally, environmen-
tal effect is added to trait value on line 38. If the calculated trait value

is less than baseTraitValue, trait value is set to baseTraitValue (lines
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Main, interacting loci Main, additive loci Epistatic loci

[epistaticLoci] [seqlength - epistaticLoci]

0         1         2        3        4         5        6         7        8        9        10      11     12      13       14

Fig. 9.7 Schematic of the vector<int> genotypesHere, the genotypes of 15 loci are stored
as 0, 1, or 2—which is the number of phenotype-modifying alleles at the locus. 10 main
loci are simulated. Because epistaticLoci is set to 5, the first 5 main loci will interact
with the 5 epistatic loci. The remaining 5 main loci are purely additive. Solid arrows from
epistatic tomain loci represent the interaction between pairs of loci. Two important indices
of genotypes used in the new Individual class function calculate trait value() are
indicated by vertical dotted arrows

51–52). This last conditional implies it is impossible to have a trait value

less than baseTraitValue.
Changes to the public members of the Individual class include a func-

tion to return the calculated trait value (line 56) andmodified constructors
(lines 58–69). The first constructor (lines 58–61), as before, is used in the first
generation or in instances of migration between populations. The only mod-
ification to this constructor is the instruction to calculate trait value upon
instantiation of the Individual object. The second constructor (lines 62–
69) is used in the case of reproduction within a population. Values for the
sequences variable are the result of reproduction andmutation (line 64) and,
again, trait value is calculated upon instantiation of the new Individual

object (line 65). Finally, the static mt19937 variable is on line 71. Recall that
this random number generator is used to draw a random environmental
effect (lines 5 and 50).

Before turning to simulation results in Sects. 9.4–9.5, we next discuss
haplotype files whose output was covered in Sect. 6.3.3. In particular, we
will consider the code needed to start a simulation from a saved haplotype
file rather than from MS output.

9.3 Multiple Runs of Sequence or Quantitative Trait
Evolution

Steven JayGould famously postulated that if the “tape” of evolution onEarth
was rewound and run again, the biological world would be very different
from the one run of evolution to which we are privy today. In some ways
this idea inspires ideas of science fiction. Consider, for example, a run of
evolution in which a terrestrial cephalopod becomes the dominant species
on Earth, composing epic poems, practicing a variety of spiritual disciplines,
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and engaging in military conflict. Importantly, the fictional aspect of such
a vision is that on “our” Earth things have turned out quite differently.
Yet, the idea that identical beginnings can produce distinct evolutionary
outcomes is not fiction. Although natural selection is a force that drives
phenotype toward an ephemeral optimal value or maintains that optimal
value, changes due to natural selection are still stochastic. The probabilistic
nature of evolution ensures that things need not have turned out the way
they have.

Recall from Sect. 6.3.3 that every printhapfreq generations, a haplotype
file is output for every extant deme in that generation. When simulating
sequences, this file consists of the following:

• First line: integer positions of each polymorphic locus
• Second line: number of the deme in which the mutation leading to the

polymorphism arose
• Third line: number of the generation in which the mutation leading to the

polymorphism arose
• Each subsequent line: the state of each polymorphic locus (0 or 1) for a

chromosome

When simulating quantitative traits, the “haplotype” file consists of the fol-
lowing:

• First line: a name for each main and epistatic locus—e.g., Locus1, Locus2,
etc...

• Each subsequent line: the allele at each unlinked locus (0 or 1)

Note that the genotypes for each locus are obtained by combining pairs of
lines. For example, if there are four additive loci without epistasis and lines
2 and 3 of the “haplotype” file are 0 1 0 0 and 1 0 0 1, respectively, then
the genotypes for loci 1-4 in one diploid individual are 1/0, 1/0, 0/0, and 1/0.

To this point,we have either started the simulationwith nopolymorphism
or (almost exclusively) usedMS to generate the starting variation. However,
the generation of haplotype files allows us to begin a simulation from the
variation captured in the haplotype file. There are at least two good motiva-
tions for choosing to do so. First, as alluded to above, the stochastic nature
of evolution can be made apparent by running multiple simulations with
a common starting point. Second, we may have an empirical sample with
estimates of allele frequencies. In this case, we can create a haplotype file
that captures the estimated allele frequencies and use simulation to forecast
the future evolution of the sampled population(s).

Next, we cover the additional code necessary to use a haplotype file to
instantiate a Population object. First, we add two deme-specific parameters
to the parameters file: useHapStartingData and hapFile. The former is a
vector<bool> variable, each entry of which specifies use of a haplotype file
to populate a Population object when set to 1 rather than 0. The latter is a
vector<string> that holds the name(s) of the haplotype file(s) to be used
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for a deme—e.g., deme0 3000, which contains the haplotypes or quantitative
alleles of deme 0 from generation 3000 of a previous FORTUNA run. To read
in the values of these parameters the following modifications are made to
the files handling parameters:

Modifications to parameters; params.h; and params.cc

1 \\ parameters

2 ...

3 DEME /// 0

4 useMS 0 // set to 0 if using haplotype data
5 useHapStartingData 1

6 hapFile deme0_3000
7 ...

8 DEME /// 1

9 useMS 0

10 useHapStartingData 1

11 hapFile deme1_3000
12 ...

13
14 \\ params.h

15 extern vector<bool> useHapStartingData;

16 extern vector<string> hapFile;

17
18 \\params.cc

19 vector<bool> useHapStartingData;

20 vector<string> hapFile;

21 ...

22 int process_parameters() {

23 ...

24 if (iter->first == -1) { // block of global parameters

25 ...

26 } else { // block of deme parameters

27 ...

28 useHapStartingData.push_back(
↪→ atoi(parameters["useHapStartingData"].c_str()) );

29 hapFile.push_back( parameters["hapFile"] );

30 ...

31 }

32 ...

33 }

The other requisite code is added to the Population constructor:

Modifications to population.h

1 Population (int popnum, int eextant, string rreppy):popn(popnum),

↪→ extant(eextant), reppy(rreppy) {

2 ...

3 if (polygenicTrait) {

4 if (birthgen[popn] == 0) {

5 ...

6 map<int, vector<vector<int> > > unlinked_loci;
7 for (int i=0; i<pop_schedule[popn][0]; ++i) {
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8 unlinked_loci[i].push_back({});
9 unlinked_loci[i].push_back({});

10 }

11 if (useHapStartingData[popn]) {

12 hapFile[popn].erase(hapFile[popn].find_last_not_of("
↪→ \n\r\t")+1);

13 ifstream hapdata(hapFile[popn]);

14 string hap_line;
15 getline(hapdata, hap_line); // skip first line

16 for (int i=0; i<pop_schedule[popn][0]; ++i) {

17 for (int j=0; j<2; ++j) { // two lines per diploid individual

18 getline(hapdata, hap_line);
19 for (int k=0; k<hap_line.size()-1; k+=2) {

20 if (hap_line[k] == ’1’)

21 unlinked_loci[i][j].push_back(k/2);
22 }

23 }

24 }

25 } else { // use MS to obtain starting data
26 ...

27 }

28 for (int i=0; i<pop_schedule[popn][0]; ++i)

29 individuals.push_back( new Individual(unlinked_loci[i]) );

30 }

31 }

32 ...

33 if (!polygenicTrait) {

34 vector<int> allele_positions;
35 ...

36 if (useMS[popn]) {

37 ...

38 } else if (useHapStartingData[popn]) {

39 hapFile[popn].erase(hapFile[popn].find_last_not_of(" \n\r\t")+1);

40 ifstream hapdata(hapFile[popn]);

41 string hap_line;
42 getline(hapdata, hap_line); // 1st line:polymorphic site positions

43 istringstream iss(hap_line);
44 string s;

45 while (iss >> s) { // read allele positions; create new Allele

↪→ object for each

46 int position = atoi(s.c_str());
47 allele_positions.push_back( position );

48 alleles.insert( { position , new Allele(position, -1, popn) } );

49 }

50 for (int i=0; i<2; ++i)

51 getline(hapdata, hap_line); // ignore next two lines
52 for (int i=0; i<pop_schedule[popn][0]; ++i) {

53 vector<vector<int> > ses;

54 ses.push_back({});
55 ses.push_back({});
56 for (int j=0; j<2; ++j) { // two lines per diploid individual

57 getline(hapdata, hap_line);
58 istringstream iss2(hap_line);
59 int site = 0;
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60 while (iss2 >> s) {

61 if (s[0] == ’1’) ses[j].push_back(allele_positions[site]);
62 ++site;

63 }

64 }

65 individuals.push_back( new Individual(ses) );

66 }

67 } else { // start with NO variation

68 ...

69 }

70 }

71 ...

72 };

When both polygenicTrait and useHapStartingData[popn] are set to 1
(i.e., true), lines 6–24 are used to instantiate the population. The variable
unlinked loci is declared and defined on lines 6–10; this variable holds
the alleles for each of the polygenic loci determinative of the quantitative
phenotype.When hapFile is read from the parametersfile, the stringholds
white space. It is necessary to trim this white space (line 12) so the file name
is recognized when instantiating the ifstream hapdata on line 13. Lines
14–15 define the string hap line, which takes input from the getline()

function and reads in the first three lines, which are ignored because they
contain metadata for each locus.

The for loop on lines 16–24 populates unlinked loci, where the int key
of this map object specifies the individual. The inner for loop (lines 17–23)
reads the next two lines in the “haplotype” file, and the innermost for loop
(lines 19–22) parses each line by advancing the index variable k by two each
iteration to skip the white space between the 1s and 0s. Finally, whether
the starting data are obtained from a “haplotype” file or MS, the data in
unlinked loci are used to instantiate each Individual of the deme (lines
29–30).

If useHapStartingData[popn] is set to 1 (line 38), but a sequence rather
than a polygenic trait is simulated (line 33), we begin the same way as with
a polygenic trait by declaring the ifstream hapdata using hapFile[popn]

trimmed of trailing white space (lines 39–40) and reading the first line of
the file (lines 41–42). An istringstream named iss is used to parse the first
line of the input file, obtain the polymorphic positions, store each position in
allele positions, and instantiate an Allele object for each position (lines
43–49). Lines 51–52 read and skip the information in the next two lines of
the haplotype file. Each Individual of the deme is instantiated via the for

loop on lines 52–66. This involves creating a vector<vector<int> > ses

(line 53) that initially holds two empty vectors (lines 54–55). For each diploid
individual, the next two lines of the haplotype file are read one at a time
using the for loop on lines 56–64. Again, an istringstream object is used
to parse the input (line 58) and, if a given site in the haplotype is set to the
derived “1” allele, its position is added to the appropriate vector<int> of
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ses (lines 60–63). After both vector<int>s of ses are established, they are
used to instantiate the Individual object (line 65).

As a quick example, I now consider simulating a quantitative trait evolv-
ing neutrally for 3001 generations. This first simulation starts with MS-
generated variation at 10 purely additive QTLs, each with an alleleEffect

of 0.05 and a mutation rate of 10−5 per locus. The black line in Fig. 9.8a
shows the neutral evolution of quantitative phenotype. I then ran five sep-
arate simulations using the deme0 3000 file to start each simulation. The
evolving values of the quantitative trait for all five, independent simulations
are shown in gray (Fig. 9.8a). In the absence of selection, phenotype wanders
freely, with two of the simulations ending with a phenotype greater than the
starting value after 3000 further generations of evolution and three of the
simulations ending with a phenotype less than the starting value.

To demonstrate the use of a haplotype file as the starting point for a se-
quence simulation, I first simulated positive selection on a new variant at
position 50,000 within a 100,000bp sequence. Mutation and recombination
rates were set to 10−8 per nucleotide, Ne = 10,000, s = 0.05, and h = 0.5. The
simulation was stopped after 100 generations, at which point the frequency
of the favored allele at position 50,000 was equal to approximately 0.018.
Using the deme0 100 haplotype file for starting variation, I then ran two in-
dependent simulations for an additional 900+generations. Figure 9.8b shows
the results, with the heavy black line showing the value of Tajima’s D for the
window centered on the selected site for the first 100 generations. Onemajor
difference between the two replicate simulations (gray lines in Fig. 9.8b) was
the fixation time of the favored allele: generation 298 for the dark gray line
and generation 513 for the darker gray line (indicated by vertical dashed
lines in Fig. 9.8b). Further comparison of the dynamics of Tajima’s D be-
tween the two independent simulations reveals some interesting similarities
and differences. In the simulation where fixation occurs earlier (dark gray
line), Tajima’s D declines below −2.0 well before final fixation and remains
at its nadir until after fixation. In the simulation where fixation occurs later
(lighter gray line), Tajima’s D also descends rapidly below −2.0. Unlike the
other simulation, however, its nadir is maintained for a longer period but
recovers to values greater than −2.0 long before fixation takes place. This
simple example shows how multiple runs starting from identical genetic
variation help build heuristic understanding of the evolutionary process
and the summary statistics we use to understand it.

9.4 Random Genotypes for Initiating Quantitative Trait
Simulation

Two disadvantages to using MS-generated variants to start a simulation of
quantitative trait evolution are: (1) we cannot predict what the distribution
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Fig. 9.8 Running multiple simulations of quantitative trait and sequence evolution from
a common starting point. (a) Neutral quantitative trait evolution. MS-generated varia-
tion was used to start the simulation of a quantitative trait evolving neutrally for 3000
generations (black line). The genetic variation data in the “haplotype” file generated at
generation 3000 was then used as the starting point for five independent simulations
that ran for another 3000 generations (five gray lines). (b) Sequence evolution. Positive
selection on a new variant was simulated for 100 generations and the value of Tajima’s D
at the 10,000bp window centered on the selected site was plotted (black line). After 100
generations the favored allele was at a frequency of approximately 0.018. The resulting
haplotype file was then used as a starting point for two independent simulations that
were run for more than 900 additional generations (light and dark gray lines). The dashed
vertical lines indicate the generation when the favored allele became fixed—earlier for
the simulation represented by the dark gray line. See text for more detail regarding the
parameter values of the simulations
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of phenotypes will be, and (2) many of the loci that determine quantitative
phenotype become monomorphic in short order because the derived “1” al-
lele begins at very low frequency as predicted by the neutral allele frequency
spectrum. The second disadvantage may actually be desirable in specific
cases where we want to investigate the role of mutation on continued in-
creases or decreases in phenotype over long evolutionary periods; in these
cases, newmutations at previouslymonomorphic loci serve as new conduits
for phenotypic change.

Given these potential disadvantages, it is desirable to produce a data set
of randomgenotypes inwhichwe specify the initial frequency of the derived
“1” allele at each locus. The following R script allows for rapid generation of
a random set of genotypes with which we can initialize a quantitative simu-
lation by setting the useHapStartingData parameter detailed in Sect. 9.3 and
setting the hapFile parameter to the output file specified in the following R
script.

generatePolygenicData.r

1 makeStartingDataset <- function(n, freqvec, ofname)

2 {

3 m <- matrix(0, ncol = length(freqvec), nrow = n);

4 names <- vector();
5 for (i in 1:length(freqvec)) {

6 random_vecky <- sample( c( rep(1,freqvec[i]), rep(0, n-freqvec[i]) )

↪→ );

7 m[,i] <- random_vecky;
8 names <- c(names, paste("Locus", i, sep = ""));

9 }

10 d <- as.data.frame(m);
11 colnames(d) <- names;
12 write.table(d, file = ofname, row.names = F, col.names = T, quote= F,

↪→ sep = " ");

13 }

The arguments to the function include:

• n: 2Ne
• freqvec: a vector holding the number of derived alleles in the data set for

each locus
• ofname: the name of the file two which the data set is written

For example, the function call makeStartingData(20000, c(400, 5000,

10000, 5000), "starter") will write a file named starter with 20,000
rows of alleles for four loci at starting frequencies of 0.02, 0.25, 0.50, and
0.25 as well as a header line of the form Locus1 Locus2 Locus3 Locus4.
Thus, we ensure that the minor allele frequency at each locus is sufficiently
large to prevent rapid loss due to drift and assert control over the expected
phenotype of individuals represented by the starting data set. Regarding
the latter point, the expected phenotype determined by additive variance
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alone is s
∑k

j=1 qjaj, where k is the number of additive loci, qj is the specified
frequency of the jth locus, and aj is the specified allele effect of the jth allele.
For example, if we model a quantitative trait determined by j = 20 additive
loci, each with an allele effect of a = 0.05 and a starting frequency of q = 0.25,
the expected phenotype is 0.5. Of course, this does not account for noise due
to environmental variance. Moreover, it is impossible to predict the pheno-
types of data sets generated with this function when we model a locus that
includes dominant gene action and/or epistasis. For the same reason, bio-
logical phenotype becomes less predictable when dominance effects and/or
epistasis are active.

9.5 Quantitative Traits Under Selection and Evolutionary
Constraints

Next, we examine quantitative trait evolution under selection. We begin by
introducing the code necessary, followed by examples of directional selec-
tion, evolutionary constraints on phenotype, and artificial selection in the
form of truncation selection.

Thevariablepolysel,whichwill control the type and strengthof selection,
is first declared and defined. Note that this is a deme-specific parameter.

Final modifications to parameters; params.h; and params.cc

1 \\ parameters

2 ...

3 DEME /// 0

4 ...

5 polysel 0 2 10 // added to each deme

6 ...

7
8 \\ params.h

9 extern map<int, vector<double> > polysel;

10
11 \\ params.cc

12 ...

13 map<int, vector<double> > polysel

14 ...

15 } else { // block of deme parameters

16 ...

17 polysel[iter->first] = get_multi_double_param("polysel",
↪→ parameters);

18 ...

19 }

Next, we review additional modifications to population.h necessary to
incorporate selection on a quantitative trait.



292 9 Quantitative Traits

Modifications to population.h

1 private:

2 ...

3 bool polyselection{};

4 ...

5 public:

6 ...

7 void reproduce(int gen, vector<int> actives) {

8 ...

9 if (polyselection) {

10 if (polysel[popn][0] == 3) { // then truncation selection

11 multimap<double, int> ordered_by_trait;
12 for (int i=0; i<individuals.size(); ++i)

13 ordered_by_trait.insert(pair<double,int> (

↪→ (*individuals[i]).get_trait_value(), i) );

14 if (polysel[popn][1] == 1) { // selection for lesser phenotypes

15 for (auto iter=ordered_by_trait.begin(); iter !=
↪→ ordered_by_trait.end(); ++iter) {

16 recode_parents.push_back(iter->second);
17 if (recode_parents.size() == polysel[popn][2])

18 break;
19 }

20 } else { // selection for greater phenotypes

21 for (auto riter=ordered_by_trait.rbegin(); riter !=
↪→ ordered_by_trait.rend(); ++riter) {

22 recode_parents.push_back(riter->second);
23 if (recode_parents.size() == polysel[popn][2])

24 break;
25 }

26 }

27 } else {

28 for (int i=0; i<individuals.size(); ++i)

29 if (randomnum(e) <=

↪→ (*individuals[i]).get_polygenic_fitness(popn) )

↪→ recode_parents.push_back(i);
30 }

31 }

32 if (activeselection || negselection || polyselection) {

33 randomind.param(uniform_int_distribution<int>::param_type(0,
↪→ recode_parents.size() - 1) );

34 for (int i=0; i<N; ++i) {

35 vector<int> parents;

36 if (activeselection || negselection || polyselection ) {

37 ...

38 } else {

39 ...

40 }

41 ...

42 }

43 ...

44 }

45
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46 Population (int popnum, int eextant, string rreppy):popn(popnum),

↪→ extant(eextant), reppy(rreppy) { // constructor

47 ...

48 if (possel[popn][0] != 0 || nfdsel[popn][0] !=0 || negsel[popn][0] != 0

↪→ || polysel[popn][0] != 0) { // added last conditional

49 ...

50 } else if (polysel[popn][0] != 0) {

51 polyselection = true;

52 }

53 ...

54 }

55 ...

56 }

On line 3, the bool polyselection is declared. This will be set to true in the
constructor when the first entry of the polysel parameter is set to something
other than zero (lines 46–56). Selection on a quantitative trait is implemented
in the reproduce() function (lines 7–45). We will implement three distinct
types of selection on polygenic traits: (1) natural selection in which fitness
is determined based on the distance of an individual’s phenotype from a
target phenotype specified by the second entry (index 1) of the polysel

parameter; (2) evolutionary constraints, where two phenotypic values are
listed in polysel as lower and upper constraints on phenotype; and (3)
truncation selection, as a form of artificial selection, in which individuals in
the top or bottom n% of the current phenotypic distribution are selected as
the parents of the next generation, where n is specified by the third entry
(index 2) of the polysel parameter.3

Lines 10–27 implement truncation selection, which holds when the first
entry of polysel is set to 3. We use a multimap<double, int> object
named ordered by trait to enable ordering of individuals by phenotype.
multimaps are a peculiar form of map-like container in which the key is
a potentially non-unique value. We use this container because, like maps,
multimaps are indexed in ascending order by key. This will make it easy for
us to identify the n individuals with the least or greatest phenotypes as par-
ents of the next generation. Lines 12–13 populate ordered by trait. Under
truncation selection, the second entry (index 1) of the polysel parameter
specifies whether selection is for lesser phenotype (when equal to 1; line 14)
or greater phenotype (line 20). In the former case, we iterate through the
multimap in the forward direction (lines 15–19), adding the multimap value,
which is the integer linked to the Individual object with the phenotype
recorded by the multimap key. Iteration continues until the number of indi-
viduals stored as parents in recode parents reaches the required number n,
as specified by polysel[popn][2] (lines 17–18). The same procedure is used
when the selected parents are the n individuals with the greatest phenotype,
with the exception that we iterate in the backwards direction through the

3 See Sects. 9.5.1–9.5.3 for the meanings of the polysel entries in each of these cases.
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multimap (lines 21–25). Lines 32 and 36 are previously coded lines to which
the polyselection condition has been added. Addition of individuals with
the least or greatest trait values to recode parents puts these individuals in
a position to be parents of the next generation.

Lines 27–30 implement natural selection and evolutionary constraints.
In these lines, each individual’s fitness is assessed through a call to the
function get polygenic fitness() of class Individual (discussed next). If
randomnum returns a value less than or equal to the fitness of the individual,
that individual’s identifying integer is pushed to recode parents, making
it a potential parent of the next generation’s progeny.

Calculationofpolygenicfitness is theonly additionnecessary toIndividual.h:

Modifications to Individual.h

1 public:

2 ...

3 double get_polygenic_fitness(int popn) {

4 double fitness;

5 double theta = polysel[popn][1];

6 double s = polysel[popn][2];

7 if (polysel[popn][0] == 1) { // Gaussian fitness function
8 fitness = exp(-1 * s * (pow (trait_value - theta, 2)));

9 } else if (polysel[popn][0] == 2) { // Evolutionary constraints

10 if (trait_value < polysel[popn][1])

11 fitness = 1 - ((polysel[popn][1] - trait_value) *
↪→ polysel[popn][3]); // [3] sel. strength

12 else if (trait_value > polysel[popn][2])

13 fitness = 1 - ((trait_value - polysel[popn][2]) *
↪→ polysel[popn][3]);

14 else
15 fitness = 1;

16 }

17 if (fitness < 0) fitness = 0;

18 if (fitness > 1) fitness = 1;

19 return fitness;

20 }

The fitness returned on line 19 is declared on line 4. Fitness is then either
calculated using a Gaussian fitness function (if the first entry of polysel is
set to 1) or based on evolutionary constraints (if the first entry of polysel
is set to 2). Before returning to the code, however, we take a look at the
form of the Gaussian fitness function, which specifies the relative fitness of
individual i (wi) as:

wi = e−s(pi−θ)2 , (9.8)

where s is a selection coefficient that quantifies strength of selection, pi is the
quantitative phenotype of individual i, and θ is the optimal phenotype.

Figure 9.9 plots wi versus pi −θ. Note the ways in which the selection
coefficient s differs from that used in population genetics for selection on a
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Fig. 9.9 The Gaussian fitness function. Fitness of individual i is plotted versus the differ-
ence between the phenotype of individual i and θ, the optimal phenotype. s = 0.10 (solid
line); s = 0.05 (dashed line), and; s = 0.01 (dotted line)

single locus. In the latter case, relative fitness cannot fall below 1− s. In the
context of the Gaussian fitness function, however, s controls the rate at which
wi falls as the absolute difference between pi and θ increases. Moreover, we
must account for the scale of the phenotype when choosing the value of
s to simulate. For example, if the phenotype in question ranges between 1
and 2, the largest value of pi −θ possible is 1—e.g., if the pi = 1 and θ = 2.
Thus, a relatively larger value of s is required to simulate strong selection at
this scale than for a selected phenotype that ranges between 100 and 200, in
which case differences from θmay be two orders of magnitude larger.

Returning to the previous listing, lines 5–6 read in the values of θ and
s, respectively, which are only used in the case of selection for an optimal
trait value. Lines 7–9 define fitness according to the Gaussian fitness func-
tion. If evolutionary constraints are simulated, lines 9–16 calculate fitness.
Fitness equals 1 whenever the phenotype of the considered individual is
between the lower and upper phenotypic constraints—indices [1] and [2] of
the polysel parameter, respectively. However, if the considered phenotype
is below the lower bound (line 10) or above the upper bound (line 12), the
difference between the phenotype and the appropriate bound is multiplied
by another conception of selective strength—specified by a fourth entry to
polysel parameter; index [3]. By this definition, fitness declines linearly as
the distance from the lower or upper bound increases.
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9.5.1 Natural Selection Using a Gaussian Fitness Function

To simulate natural selection on a quantitative trait using the fitness function
of Eq. 9.8, it is necessary to list three values for the polysel parameter in the
parameters file in this indexed order:

• [0]← 1
• [1]← value of θ, the targeted phenotype
• [2]← value of s, the ’strength’ of selection

We now consider an example in which four demes are simulated (each
with Ne = 2500), only one of which experiences natural selection. In this latter
deme, optimal phenotype (θ) equals 0.5 and s = 0.05. In addition, enviroSD
was set to 0.2 for all demes. Ten purely additive loci—each with an allele
effect of 0.05 were simulated and all four demes began with identical genetic
variation at these loci as generated by one run of MS. Finally, mutation rate
was set to 1× 10−6; this assumes 100 sites at each causative locus that can
switch in a time-reversible manner from state 1 to 0 or vice-versa. Clearly,
this is a parameter value that requires careful consideration, but I decided
on these assumptions for convenience. Figure 9.10a shows the results when
there is no gene flow between the demes. As seen here the deme subject
to natural selection increases toward the optimum, while the three demes
in which the quantitative trait is neutral show three rather independent
trajectories of mean phenotype. Figure 9.10b allows for symmetric migration
between all demes at a rate of m = 0.0004; thus, 4Nem = 4×2500×0.004 = 4.
Although only one of the four demes is subject to natural selection, the high
level of migration draws mean phenotype of all four demes upward toward
the target phenotype of 0.5.

9.5.2 Evolutionary Constraints on Quantitative Phenotype

It is often assumed that a quantitative phenotype cannot fall below or rise
above certain values due to hard biological or physical constraints that pre-
vent manifestation of phenotypes outside these bounds. It is also possible,
as we now model, that quantitative phenotypes outside these bounds are
simply less fit. To simulate evolutionary constraints on a quantitative trait in
a given deme, it is necessary to list four values for the polysel parameter in
the parameters file in this indexed order:

• [0]← 2
• [1]← lower bound
• [2]← upper bound
• [3]← selective strength of constraint when outside these bounds
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Fig. 9.10 Directional selection on a quantitative trait determined by variation at ten purely
additive loci. (a) Four demes of Ne = 2500 each split from a single deme whose genetic
variation was MS-generated. One of the four demes (black line) is subject to directional
selection toward an optimal phenotype of 0.5. Per-locus mutation rate was set to 1×10−6.
No migration was simulated between the four demes. (b) The same as in (a), except that
symmetric migration occurs between all four demes with great frequency (4Nem = 4). In
the presence of gene flow, mean phenotype increases in all four demes toward the optimal
value (dashed line), despite selective pressure present in only one deme (black line)

As described earlier, the relative fitness of an individual is set to itsmaximum
of 1 for any individual whose phenotype is between the specified bounds.

In Fig. 9.11, all simulated demes begin with the same genetic variation
at twenty purely additive loci generated randomly as described in Sect. 9.4.
Allele effects were set to 0.05, mutation rate to 1× 10−6, and enviroSD to
0.2. In panel A, four demes with no selection were simulated. The random
walk of mean quantitative phenotype is evident. In Fig. 9.11b,c, two pairs of
demes were simulated: the first pair had lower and upper bounds of 0.4 and
0.45, respectively, while the second pair had lower and upper bounds of 0.45
and 0.5, respectively. The results shown in Fig. 9.11b are from simulations
in which the selective strength of constraint was set to 0.025. The selective
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Fig. 9.11 Evolutionary constraints. In all cases enviroSD was set to 0.2, twenty purely
additive loci with equal allele effects of 0.05 were simulated, and the mean phenotype
is shown for four independent demes—i.e., no migration. All simulations began with
the same starting “haplotype” file and, therefore, identical starting genetic variation. (a)
Four independent simulations with no selection. (b) Weak constraint with the gray-line
simulations having an upper constraint of 0.5 and lower constraint of 0.45 and black-line
simulations having an upper constraint of 0.45 and lower constraint of 0.40. Selective
strength of constraint set to 0.025. (c) Strong constraint. Same constraints as in (b), but
with selective strength of constraint set to 0.10

strength of constraint for the simulation results shown in Fig. 9.11c was set
higher to 0.1.

When examining Figs. 9.10 and 9.11 it is important to remember that the
lines track the mean phenotype of each deme. Although mean phenotype
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rarely strays beyond the specified evolutionary bounds in any of the deme
results pictured in Fig. 9.11c, a large number of individuals of any given
deme in any given generation would be outside these bounds. If your inten-
tion is to model “hard” evolutionary constraints that represent, for example,
physically impossible values, it is necessary to specify the strength of con-
straint as 1; this will assign a fitness of 0 to all individuals with phenotypes
beyond these bounds.

An interesting pattern observed in Fig. 9.11c is that after generation 6000,
the oscillations ofmean phenotype become noticeably smaller inmagnitude.
This suggests that given sufficient time, evolutionary constraints lead to
reduced genetic variation as more and more members of the deme obtain
constrained phenotypes through very similar genotypes at the causative
genes. As a corollary, this implies that fixation and loss of alleles at causative
loci occurs randomly over time. You might try modeling dominance and
epistatic effects, rather than purely additive effects, to see how these more
unpredictable genetic determinants affect this pattern.

9.5.3 Artificial Selection

Truncation selection is an intuitive approach to artificial selection in which
only those members of the current population with the most desirable phe-
notypes are selected to be parents of the next generation. In particular, the
goal is one of directional selection, either attempting to increase or decrease
the mean phenotype of the next generation. Thus, “truncation”: we only re-
cruit members in one tail or the other of the population’s current phenotypic
distribution to produce the next generation. To simulate truncation selection
on a quantitative trait in a given deme, it is necessary to list three values for
the polysel parameter in the parameters file in this indexed order:

• [0]← 3
• [1]← 1 to select for decreased phenotype, 2 to select for increased pheno-

type
• [2]← the number of individuals in the low or high tail (depending on

[1]) to retain as parents; the smaller this value the more selective—i.e., the
more severe the truncation

The results of truncation selection are rapid, so it is only necessary to
simulate a small number of generations to observe the effects. I ran two
simulations in which the “herd” contained 100 individuals, enviroSD was
set to 0.2, and the causative genetic loci were fifty purely additive loci with
equal allele effects of 0.01. Each simulation was run for four generations. The
only difference between the two simulations was whether smaller or larger
phenotypeswere selected; in either case the 10 smallest or largest individuals
were retained as parents. In practice, it may be preferable to set enviroSD to
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Fig. 9.12 Truncation selection shifts the phenotypic distribution rapidly in the case of
purely additive loci. In all cases enviroSD was set to 0.2, fifty purely additive loci with
equal allele effects of 0.01 were simulated. Each generation the “herd” consists of 100
individuals. (a) Artificial selection to increase quantitative phenotype. Black lines show
the pre-selection kernel density estimate of the “herd” phenotypes estimated using the
density() function in R. Gray lines show the post-selection kernel density estimate of the
“herd” phenotypes. Each generation the 10 individuals with the greatest phenotype were
selected to produce the next generation. (b) Artificial selection to decrease quantitative
phenotype. Each generation the 10 individuals with the lowest phenotype were selected
to produce the next generation

zero in simulations of truncation selection, particularly if you aremodeling a
situation in which all members of the “herd” share a common environment.
Indeed, this would allow you to estimate narrow-sense heritability of the
simulated trait using the well-known breeder’s equation R = h2S, where R is
the response to selection (the difference betweenmean phenotype of this and
next generation) and S is the selection differential (the difference between
the current generation’s mean phenotype and that of the selected parents).

Design a series of rapid simulations to assess the impact of number of
causative loci, variation in allele effects, dominance effects, and epistatic
effects on the narrow-sense heritability of a trait.

Here, however, I have kept things simple to demonstrate the efficacy of (1)
the code and (2) truncation selection on a purely additive trait. Figure 9.12a
shows the steadily increasingdistribution of phenotypeswhen the 10parents
with the greatest phenotypes parent the next generation. Three generations
of truncation selection increase mean phenotype from around 0.3 to roughly
0.5. Selection for smaller phenotype is also effective. Figure 9.12b showsmean
phenotype declining from roughly 0.2 to roughly 0.1 in three generations of
truncation selection.
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The examples of evolutionary constraints as well as artificial and natu-
ral selection presented here only provide a glimpse of what may be done
with the FORTUNA code to simulate quantitative traits and their selection.
As an obvious example, it will often be of interest to simulate dominance
and epistatic effects as well as variation in allele effect size across causative
loci. These tasks can all be accomplished by modifying the values in the
parameters file. It may also be of interest to test fitness functions besides
the Gaussian. This will require you to add to the get polygenic fitness()

function of Individual.h, but hopefully the example of the Gaussian will
make this a very simple task.



Appendix A
FORTUNA Parameter Documentation

Proper simulation of a scenario using FORTUNA requires the user to know
which parameters need to be specified and the appropriate values to spec-
ify. Parameters labeled [[sequence simulation]] are introduced in Chaps. 3–
6 and 8, while parameters labeled [[quantitative trait simulation]] are in-
troduced in Chap. 9. Note, however, that most parameters associated with
[[sequence simulation]] are still used in simulations of quantitative trait
evolution. The distinction is made because quantitative trait simulation in
FORTUNA uses some program data structures (particularly the variable
sequences of class Individual) in a qualitatively different manner (see
Chap. 9). Thus, [[quantitative trait simulation]] parameters only require con-
sideration in simulations of quantitative trait evolution. The global param-
eters listed in Sect. A.1 are listed at the top of the parameters file and their
values are only specified once. On the other hand, deme-specific parameters
(Sect. A.2) must be listed for each Deme block in the parameters file. For
some parameters, the distinct meaning and usage of the parameter in the
context of sequence and quantitative trait simulation are detailed. Example
parameters files specific to a variety of evolutionary scenarios can be found
at github.com/deltafortuna and driftlessevolution.org.

A.1 Global Parameters

alleleEffects (double, double, double, ...)

9.2.2
quantitative trait simulation
The allele effect of each main locus. If only one number is provided, allele
effects at all main loci are set to this number. Otherwise, the allele effect of
each main locus must be specified. See Chap. 9 for suggestions on how to
randomly generate allele effects for large numbers of loci using a Dirichlet
random variable.
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baseTraitValue (double)

9.2.2
quantitative trait simulation
Baseline quantitative phenotype to which allele, dominance, epistatic, and
environmental effects are added to generate phenotype of each individual.

diploid sample (bool)

6.3.3
sequence simulation
When set to true (1), samples and summary statistics are based on a random
selection of diploid individuals. Otherwise, samples and summary statistics
are based on a random selection of sequences from separate individuals.

dominanceEffects (double, double, double, ...)

9.2.2
quantitative trait simulation
The intra-locus dominance effect of each main locus, which applies when
an individual is heterozygous at a main locus. If one number is provided
dominance effects at all loci are equal to this number. Otherwise, the domi-
nance effect of each main locus must be specified. See Chap. 9 for suggestions
on how to randomly generate dominance effects using a Dirichlet random
variable.

enviroSD (double)

9.2.2
quantitative trait simulation
Standard deviation of the Normal distribution from which environmental
effects on quantitative phenotype are drawn. The square of this value is the
environmental variance. Standard deviation is specified in FORTUNA be-
cause the secondargument to the constructor of aC++normal distribution

object is the standard deviation rather than the variance of the distribution.

epistatic (bool)

9.2.2
quantitative trait simulation
When set to 0 (false), epistatic effects are not simulated. When set to 1

(true), epistatic effects are simulated.

epistaticTypes (int, int, int, ...)

9.2.2
quantitative trait simulation
The type of epistasis for each pair ofmain and epistatic loci.While seqlength
specifies the number ofmain loci, the number of ints listed here specifies the
number ofmain lociwhose additive allele effects aremodified by epistatic ef-
fects of the types listed here (see Figure 9.7). The following values are used to
specify the different types of epistasis (see Figures 9.5–9.6 and accompanying
text):
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• 0: dominance (text specific example)
• 1: recessive (text specific example)
• 2: additive by additive (AxA)
• 3: additive by dominant (AxD)
• 4: dominant by additive (DxA)
• 5: dominant by dominant (DxD)

Any combination of epistatic types can be listed here, as long as the number
does not exceed seqlength.

getWindowStats (double);
5.3.1
sequence simulation
Set to 1 to enable printing of by-window summary statistics to file every
sampfreq generations. Set to 0 to disable printing.

hotrecrate (double);
5.3.1
sequence simulation
The per-site recombination rate within a defined recombination hot spot. It
is easiest to specify the value using exponent scientific notation – e.g., 1e-06
indicates one cross-over at a given site every 1/10−6 generations.

hotrecStart (int);
5.3.1
sequence simulation
The first site within the simulated sequence of length seqlength that is the
upstream border of a simulated recombination hot spot.

hotrecStop (int)

5.3.1
sequence simulation
The last site within the simulated sequence of length seqlength that is the
downstream border of a simulated recombination hot spot.

migration rates (double, double, double, ...)

6.2.1.1
sequence simulation
A sequence of real numbers that specify the entries of a pop num × pop num

migration rate matrix. Values entered here are for the migration rate mi, j, the
fraction of individuals in population j that are immigrants from population
i. The first pop num entries of this parameter are interpreted as the first row
of the migration rate matrix and so on. As an example,

migration rates 0 0.001 0.0001 0.0005 0 0.0002 0.0015 0.00005 0
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specifies a migration matrix of:
⎡⎢⎢⎢⎢⎢⎢⎣

0. 0.001 0.0001
0.0005 0. 0.0002
0.0015 0.00005 0.

⎤⎥⎥⎥⎥⎥⎥⎦

for pop num 3.

modelMigration (bool))
6.2.1.1
Set to 1 to simulate migration. Set to 0 to disable simulation of migration
between demes.

mutrate (double)

3.4.1
sequence simulation
Theper-sitemutation rate. This canbe representedas adecimal or in scientific
(exponent) notation – i.e., 0.00000005 or 5e-08.
quantitative trait simulation
The probability of a mutation at each main and epistatic locus simulated.
For example, if set to 1e-06, each locus has a one-in-one-million chance of
mutating (from 0 to 1 or 1 to 0, depending on its current state). The reason for
using a higher mutation rate when simulating quantitative trait simulation
is that we envision each QTL as a protein-coding gene in which there are
multiple sites that canmutate to change theQTL’s effect on phenotype. Thus,
at a per-site mutation rate of 1×10−8 where 100 sites are capable of bringing
about a shift in effect when mutated, the mutation rate is 100×10−8 = 10−6.
In short, I am assuming a per-locus rather than a per-site mutation rate when
simulating quantitative trait simulation. Set mutrate to a lower value if you
do not want to make this assumption.

polygenicTrait (bool)
9.2.2
quantitative trait simulation
Set to 1 to simulate quantitative trait evolution rather than sequence evolu-
tion. Set to 0 to simulate sequence evolution.

pop num (int)

6.2.1.1
sequence simulation
The number of demes/populations to simulate. If pop num is less than the
number of deme-specific parameter blocks, only the parameters in the first
pop num parameter blocks are used.

printhapfreq (int)

6.2.1.1
Haplotype (sequence) samples are printed to file every printhapfreq gen-
erations.
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recrate (double)

5.3.1
sequence simulation
The “baseline,” per-site recombination rate outside of a defined recombina-
tion hot spot, should one be specified. It is easiest to specify this value using
exponent scientific notation – e.g., 1e-08 indicates one cross-over at a given
site every 1/10−8 generations.

runlength (int)

6.2.1.1
sequence simulation
The number of generations for which the simulation should run. Note that
this is the run length of the total simulation. Individual demes have their
own time periods of existence that are equal to or less than runlength.

sampfreq (int)

3.4.1
Samples of all extant populations are taken every sampfreq generations.
sequence simulation

sampsize (int)

5.3.1
sequence simulation
The number of individuals randomly sampled from each population in sam-
pling generations.

seqlength (int)

5.3.1
sequence simulation
The physical length (in nucleotides) of the sequence to be simulated.
quantitative trait simulation
The number of main loci plus the number of epistatic loci.

trackAlleleBirths (bool)

6.2.1.1
When set to 1, the generation in which an allele emerges by new mutation
and the deme in which it first emerged are printed to file. Although this can
be highly useful data for certain research questions, keeping track of these
data is computationally expensive. This allele history file is not generated
if set to 0, which is recommended if the history of alleles is not deemed
important output.

useHotRec (bool)

5.3.1
sequence simulation
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When set to 1, a recombination hot spot is simulated. When set to 0,
the recombination hot spot specified by hotrecrate, hotrecStart, and
hotrecStop is ignored and not simulated.

useRec (bool)

5.3.1
sequence simulation
When set to 1, recombination is simulated. When set to 0, recombination is
not simulated.

windowSize (double)

5.3.1
sequence simulation
The length (in nucleotides) of eachwindow forwhich statistics are calculated
when getWindowStats is set to 1 (true).

windowStep (double)

5.3.1
sequence simulation
Thenumberofnucleotides thewindowshouldadvancewhengetWindowStats
is set to 1 (true). For example if seqlength is 10,000, windowSize is 2000,
and windowStep is 1000, then statistics for the followingwindowswill be cal-
culated; [0, 2000); [1000, 3000); [2000, 4000); [3000, 5000); [4000, 6000); [5000,
7000); [6000, 8000); [7000, 9000); [8000, 10000).

A.2 Deme-Specific Parameters

birthgen (int)

6.2.1.1
sequence simulation
Not to be confused with the variable Allele::birthgen, this is the first
generation that simulation of the deme in question begins.

carrying cap (int, ...)

4.2.1
Contains as many elements as demography. Elements of this vector are rel-
evant when the entry of demography equals 4, which symbolizes logistic
growth. For example, if we set the following parameters

demography 0 1 4

and
carrying cap 15000 10000 50000,
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50000will be used as carrying capacity upon entering the third demographic
phase. The values of the first two numbers of carrying cap are irrelevant in
this case. carrying cap 0 100 50000would accomplish the same thing.

dem end gen (int, ...)

4.2.1
sequence simulation
Contains as many elements as demography. Each entry specifies the last
generation of a phase in the demographic change of a deme. In combination
with dem start gen, defines the time period of each phase of demographic
change.

dem parameter (int)

4.2.1
sequence simulation
Contains as many elements as demography. Each entry specifies a parameter
used with the type of demographic change specified by the element of the
same index in demography.

dem start gen (int, ...)

4.2.1
sequence simulation
Contains as many elements as demography. Each entry specifies the first
generation of a phase in the demographic change of a deme. In combination
with dem end gen, defines the time period of each phase of demographic
change.

demography (int, ...)

4.2.1
For a deme, the series of types of demographic change it experiences. The
following integers specify the corresponding type of change, if any.

• 0 no change in size
• 1 instantaneous change
• 2 linear change
• 3 exponential change
• 4 logistic change

For example, demography 0 3 0 indicates the deme in question remains
at a constant size initially, followed by exponential change in size, after
which constant population size is renewed. The parameters dem start gen,
dem end gen, and dem parameter specify the quantitative details of these
changes (or lack thereof). See section 4.2 for more information and other
examples.

extinctgen (int)

6.2.1.1
sequence simulation



310 A FORTUNA Parameter Documentation

One generation after the deme in question stops being simulated, either
because this number is less than the global parameter runlength, the deme
merges with another, or it is lost to a split into two demes.

hapFile (string)

9.3
sequence simulation
The full name of the file that contains haplotype data from aprevious simula-
tion from which another simulation is initiated when useHapStartingData

rather than useMS is true.

mergegenesis (int, int, int)

6.3.1
sequence simulation
Controls creation of a deme throughmerging of two extant demes. To specify
a merger origin, the first element is set > 0. The second element is the first
source deme, while the third element of the parameter is the second source
deme. For example,

mergegenesis 10 1 2

indicates that the deme originates by the merger of demes 1 and 2.

mscommand (string)

3.7
sequence simulation
The full MS command-line call. Do not place in quotations. If necessary,
include the pathway to the program. For example,

./ms 100 1 -t 4

negsel (double, double, double, double, double)

8.1, 8.3
sequence simulation
Used to simulate purifying natural selection in a specified subsequence.
The first two elements of the parameter are selection coefficients s and h,
respectively. The next two elements specify the first and last base pair of the
subsequence subject to purifying selection. The last element is the number
of sites within the subsequence whose positions will be randomly chosen
where the derived ”1” allele is the deleterious allele. For example,

negsel 0.5 0.1 40000 60000 150

specifies a 20,000bp subsequence from base pair 40,000 through base pair
60,000. At 150 randomly selected positions/sites within the subsequence,
relative fitnesses are w0/0 = 1, w0/1 = 1− hs = 0.95, and w1/1 = 1− s = 0.5.
Purifying selection is simulated whenever the first elements value is greater
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than 0. Make sure that other selection parameters (ndfsel, possel) are set to
0 at their first elements; this avoids conflicting signals of selective targets.

nfdsel (double, double)

8.1, 8.2.5
sequence simulation
Used to simulate negative frequency-dependent selection in which a variant
is favored when at low frequency and vice-versa. The first element is the co-
efficient s, while the second element is the coefficient h. See section 8.2.5 for a
discussion of the relative fitness functions for negative frequency-dependent
selection.

polysel (int, int, int, ...)

9.5
quantitative trait simulation
Used toperformoneof three types of selectiononaquantitative trait. Thefirst
element indicates which of the three types to simulate: 1 for directional selec-
tion toward an optimal phenotype according to a Gaussian fitness function;
2 for evolutionary constraints beyond which a fitness penalty is incurred; 3
for the truncation (artificial) selection.
When simulating directional selection, the second element is the optimal/-
targeted trait value, and the third element is the strength of selection, s.
When simulating evolutionary constraints, the second and third elements
are the upper and lower bounds on trait value, respectively. In addition, a
fourth element should be specified, which is equal to selective strength, s.
Finally, when simulating truncation selection, the second element of param-
eter polysel is set to 1 if selecting for a decreasing trait value and set to 2 if
selecting for an increasing trait value. The third element of the parameter in
this case is the number of individuals to choose as parents of the next gener-
ation; these will either be individuals of the current generation that have the
greatest or smallest trait values.

popsize (integer)

3.4.1, 6.2.1.1
The effective population size of diploid individuals. Initially, popsize is
introduced as a global parameter. In the complete version of FORTUNA,
each deme has its own popsize.

possel (double, double, double)

8.1
sequence simulation
Used to simulate positive selection on a specified site within the simulated
sequence. Both selection on a new variant or a standing variant of specified
frequency can be simulated using this parameter. In addition, overdomi-
nance selection can be simulated with this parameter. Parameter values in-
dicating the position of the selected site are supplied to parameter sellocus.
In the context of positive natural selection, the derived ”1” allele represents
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the adaptive allele. The three elements of possel are the values of s, t, and h,
respectively. The parameter value t is only used when simulating overdom-
inance selection.

Examples of possel usage:

possel 0.1 0. 0.5,
specifies the selective regime, w1/1 = 1, w0/1 = 1−hs = 0.95, w0/0 = 1− s = 0.9

possel 0.1 0.15 0.,
specifies the selective regime, w1/1 = 1− s = 0.9, w0/1 = 1, w0/0 = 1− t = 0.85

(overdominance)

sellocus (double, double, double, double, double)

8.1
sequence simulation
Usedwhen simulatingpositivenatural selection (includingnegative-frequency-
dependent selection and overdominance) to specify the characteristics of the
targeted site. The first element specifies the (preferred) position of the se-
lected site. The second element of the parameter is the count of the adaptive,
derived ’1’ allele at the beginning of the simulation. If set to 1, the starting
frequency of the adaptive allele is p= 1/(2×popsize); this simulates selection
on a new variant generated by mutation in the previous generation. If the
second element is set to a value/count greater than 1, then simulation on
standing variation is requested. Because the standing variation at the begin-
ning of the simulation is drawn from an MS simulation or a haplotype file,
there is great chance that the preferred position of the selected site is not
polymorphic. The solution used in FORTUNA is to scan the polymorphic
sites of MS output or haplotype file for the one that most closely matches the
position specified in the first element of the possel parameter; the closest
match is the polymorphic site that minimizes (1) distance from the preferred
position of the selected site and (2) difference between its derived allele
frequency and the preferred frequency of the derived allele implied by its
starting count. The fifth element of the sellocus parameter should be set
to 1 or 0. Setting it to 1 causes the simulation to start over if the adaptive
allele is lost. When set to 0, the simulation will continue despite loss of the
adaptive allele.

Examples of sellocus usage:

sellocus 500000 1 0. 0. 1

specifies positive selection on the derived allele at base pair 500,000, which
begins as a single copy in the deme. In addition, the simulation will start
over (overwriting output files from failed simulations) any time the adaptive
allele is lost.

sellocus 500000 250 0.05 0.0125 1
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specifies positive selection on a standing variant with a starting frequency
of p = 250/(2×popsize). The third element indicates that a derived allele
from an MS output or haplotype file within 5% of the preferred position at
base pair 500,000 is acceptable as a selective target – i.e., any position on the
domain [450000, 550000]. The fourth element indicates that a derived allele
from an MS output or haplotype file with a frequency within 0.0125 of the
preferred starting allele frequency of p = 250/(2×popsize) is acceptable –
e.g., if popsize equals 10,000 diploid individuals, the desired starting allele
frequency is p= 250/20000= 0.0125 and any polymorphic site with a derived
allele frequency on the domain [0., 0.025] is acceptable.

splitgenesis (int, int, int)

6.3.1
sequence simulation
Controls creation of a deme through the splitting of an extant deme. To
specify a split origin, the first element is set > 0. The second element is the
source deme that is splitting, while the third element of the parameter is the
percentage of individuals in the source deme that are randomly assigned to
the new deme. Note that another new deme should be specified as well to
receive the remaining percentage of individuals from the source deme. For
example,

splitgenesis 1 5 45

indicates that the deme originates through receipt of 45% of the individuals
in deme 5.

useHapStartingData (bool)

9.3
sequence simulation
When set to 1, set useMS to 0, and specify the name of the input haplotype file
using parameter hapFile. Setting this parameter true directs the program to
read starting variation data from a haplotype file produced by a previous run
of FORTUNA.When set to 0, starting variation is drawn fromMS simulation
when useMS<-1 or the deme(s) begin(s) with no variation when useMS<-0.

useMS (bool)

3.7
sequence simulation
When set to 1, set useHapStartingData to 0, and specify the MS command
to run as the entry to the mscommand parameter. Setting this parameter true
directs the program to run mscommand and use the output file ms output as
the source of starting genetic variation.
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