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Abstract. Profiled side-channel attacks represent the most powerful
category of side-channel attacks. There, the attacker has access to a
clone device to profile its leaking behavior. Additionally, it is common
to consider the attacker unbounded in power to allow the worst-case
security analysis. This paper starts with a different premise where we
are interested in the minimum power that the attacker requires to con-
duct a successful attack. We propose a new framework for profiled side-
channel analysis that we call the Efficient Attacker Framework. With it,
we require attacks to be as powerful as possible, but we also provide a
setting that inherently allows a more objective analysis among attacks.
To confirm our theoretical results, we provide an experimental evalua-
tion of our framework in the context of deep learning-based side-channel
analysis.

1 Introduction

Side-channel analysis (SCA) is a threat that exploits weaknesses in physical
implementations of cryptographic algorithms rather than the algorithms them-
selves [1]. Profiled SCA performs the worst-case security analysis by considering
the most powerful side-channel attacker with access to an open (the keys can
be chosen or are known by the attacker) clone device. Additionally, the SCA
community considers an attacker in the setting with unbounded power, e.g., the
attacker can obtain any number of profiling or attack traces and has unlimited
computational power.

In the last two decades, besides template attack and its variants [2,3], the
SCA community started using machine learning to conduct profiled attacks.
Those results proved to be highly competitive compared to template attack,
and, in many scenarios, machine learning methods surpassed template attack
performance [4–6]. Unfortunately, in these scenarios, the experimental setup is
often arbitrarily limited, and no clear guidelines on the limitation of profiling
traces or the hyperparameter tuning phase are offered or discussed.

More recently, the SCA community started to experiment with deep learn-
ing where such methods bested both template attack and other machine learn-
ing methods [7–9]. Again, no clear guidelines on the number of profiling traces
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were given or investigated. Simultaneously, the researchers started to give more
attention to the hyperparameter tuning, but the results are still far from defini-
tive ones, see, e.g., [10,11]. Consequently, there is an evident lack of evaluation
guidelines/frameworks in the context of profiled analysis to understand vari-
ous attacks’ performance or how they compare. This gap is highly important
as state-of-the-art results with deep learning successfully and efficiently break
publicly available targets.

This paper aims to extend the currently used evaluation techniques to a
framework that determines the least powerful attacker that can still reveal secret
information. To achieve this, we evaluate the limit on 1) the number of mea-
surements the attacker can collect in the training phase and 2) the number of
hyperparameter tuning experiments. It could sound counter-intuitive to make
such limitations as one can argue there is no reason why an attacker cannot col-
lect a large number of measurements or run hyperparameter tuning as long as
needed (or select an algorithm that has no hyperparameters to tune). We claim
that there are several reasons for that:

1. By considering a scenario where an unlimited number of measurements are
available, we “allow” less powerful attacks. More precisely, the attacker can
use a larger set of measurements to compensate for less powerful profiling
models.

2. By considering a scenario where a computationally unbounded attacker runs
the analysis, one assumes the attacker can always find the best possible attack
while that seldom happens in practice.

3. The target device may include a countermeasure that limits the number of
exploitable measurements. The experimental setup can have constraints that
limit the allowed length of the hyperparameter tuning phase.

4. Although taking measurements or running more experiments is “cheap”, there
is always a point where this is more effort than the target/secret is worth.

5. Having more measurements does not guarantee better results, especially in
realistic scenarios. Consider the case where one device is used for profiling
and the other for the attack, i.e., the portability setting (a realistic case that
is usually simplified in research works where only a single device is used [7–
9,12]). Then, adding more measurements to the profiling phase can cause
machine learning methods to overfit1 [12]. The same issue can happen due to
a too detailed tuning phase.

As far as we know, there are no previous works considering profiling and
realistic attacker evaluation frameworks. When the attacker is restricted, it is
usually set as one of several tested scenarios (e.g., testing a classifier’s perfor-
mance with specific hyperparameters or a different number of measurements in
the training phase). Alternatively, it is motivated by some limitations in the data
acquisition or evaluation process.

In this paper, we present the following main contributions:

1 Overfitting occurs when the learning model learns the data too well and cannot
adapt to previously unseen data.
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1. We propose a new framework for profiled side-channel analysis where we
evaluate the minimum power of an attacker in the profiling phase to still be
successful in the test phase. We also introduce a new threat model that differs
from a common one by considering a more realistic attacker. The attacker in
our threat model is still powerful from the computational perspective and the
perspective of the learning models that can be built. In other words, we move
from the problem of simply breaking the target (which is well-explored and
with strong results, especially when considering deep learning) to a problem
where we break the target with a minimal number of measurements and
minimal hyperparameter tuning. We consider our framework to be intuitive
and easily adaptable to many realistic scenarios.

2. We strengthen our results with an experimental evaluation conducted on pub-
licly available datasets protected with masking countermeasures. We explore
two commonly used leakage models and two neural network types.

The code is publicly available at https://github.com/AISyLab/EfficientAttac
kerFramework.

2 Existing Frameworks for Side-Channel Evaluation

2.1 Scientific Metrics

The most common evaluation metrics in the side-channel analysis are success
rate (SR) and guessing entropy (GE) [13]. GE states the average number of key
candidates an adversary needs to test to reveal the secret key after conducting
a side-channel analysis. In particular, given Q traces in the attack phase, an
attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of
probability with |K| being the size of the keyspace. So, g1 is the most likely and
g|K| the least likely key candidate. The guessing entropy is the average position
of k∗

a in g over multiple experiments. The success rate is defined as the average
empirical probability that g1 equals the secret key k∗

a.
In practice, one may consider leakage models Y (·) that are bijective functions.

Thus, each output probability calculated from the classifiers for Y (k) directly
relates to one key candidate k. When Y (·) is not bijective, several key candidates
k may get assigned with the same output probabilities, which is why a single
trace attack (Q = 1) may not be possible in the case of non-bijective leakage
models. Further, to calculate the key guessing vector g over Q attack traces, the
(log-)likelihood principle is used.

Remark 1. SR and GE are used for practical evaluations in both non-profiling
and profiling scenarios. Typically, they are given over a range of traces used in
the attack phase (i.e., for q = 1, 2, . . . , Q). If these metrics are used in profiling
scenarios, there are no clear guidelines for evaluating attacks. Most of the time,
the number of training measurements N in the profiling stage is (arbitrary) fixed,
making comparisons and meaningful conclusions on profiled side-channel attacks
or resistance of implementations hard and unreliable in most scenarios.

https://github.com/AISyLab/EfficientAttackerFramework
https://github.com/AISyLab/EfficientAttackerFramework
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Whitnall and Oswald introduced a more theoretical framework that aims at
comparing distinguishing powers instead of estimators of attacks [14,15]. Accord-
ingly, the profiling dataset N size does not play any role in this framework. The
most popular metrics of the framework are the relative and absolute distin-
guishing margins in which the correct key’s output score and the value for the
highest-ranked alternative are compared.

Another approach to compare side-channel attacks uses closed-form expres-
sions of distinguishers [16], enabling conclusions about distinguishers without
the requirement of actual measurements. Unfortunately, only a few closed-form
expressions of distinguishers have been achieved so far.

Regarding masking countermeasures, Duc et al. defined information-
theoretical bounds on the success rate depending on the number of mea-
surements, shares, and independent on the concrete estimated side-channel
attack [17]. In [18], the authors provided information-theoretic tools to bound
the model errors in side-channel evaluations concerning the choice of the leakage
model.

Typically, to assess the performance of machine learning classifiers, accuracy
is used [19]. A detailed comparison between accuracy (but also other machine
learning metrics like precision, recall, F1) and guessing entropy/success rate is
given in [6], which details that such metrics may not always be a proper choice
for assessing the attack performance in side-channel analysis.

2.2 Practical Evaluation Testing

While most of these previous metrics are relevant in some contexts and scenarios,
a different approach is required to make research statements in the context of
profiled attacks. This issue becomes even more evident when looking at practical
evaluation used in standardization processes. In practice, there are two main
practical schemes:

1. Test-based schemes, such as NIST FIPS 140 [20] and its application to the
mitigation of other attacks (part of Appendix F, in particular, non-invasive
attacks ISO/IEC 17825 [21]).

2. Evaluation-based schemes, such as Common Criteria (CC, ISO/IEC
15408 [22]).

Interestingly, both FIPS 140 and CC pay attention to the limited amount of
resources spent. When considering FIPS 140/ISO/IEC 17825, the requirement
is more on the attack traces, but regarding CC, the evaluation of attacks is con-
sidered under two phases: identification (which matches with the training phase
in the context of profiled side-channel attacks) and exploitation (which matches
with the attack phase in the context of profiled side-channel attacks). Strictly
speaking, the distinction is for CC version 2, but it still implicitly holds for
version 3. Several factors are considered for the evaluations of attacks, namely:
elapsed time, expertise, knowledge of the Target Of Evaluation (TOE), access to
TOE, equipment, open samples. The first factor, elapsed time, directly connects
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with the acquisition of traces in the profiling phase and the hyperparameter
tuning. Indeed, according to the guidance “Application of Attack Potential to
Smartcards” [23], the score is considered:

– 0 if the profiling of the traces can be performed in less than one hour,
– 1 if the profiling of the traces can be performed in less than one day,
– 2 if the profiling of the traces can be performed in less than one week,
– 3 if the profiling of the traces can be performed in less than one month,
– 5 if the profiling of the traces cannot be performed in less than one month.

Accordingly, we see that the CC guidance favors attacks, realized with as little
profiling effort as possible. This profiling effort can go in the direction of the
number of required measurements, the number of experiments in the hyperpa-
rameter tuning phase, or both.

2.3 Practical Observations and Effects of Aging

Besides overfitting (see details in Sect. 1), another difficulty for profiled attacks
is that the collection of side-channel traces becomes less reliable after a long
period. Due to temperature and environmental conditions evolution over time,
some trend noise must be added to the side-channel traces. For instance, this
has been characterized by Heuser et al. in [24], where it is proven that trend
noise drastically impedes SCA. Similar findings are confirmed by Cao et al. [25].
Efficient distinguishing situations, such as that depicted in Fig. 1 shows that the
best number of traces to estimate a distinguisher is not always “the maximal”.

Large
distinguishing

margin

Smaller
distinguishing

margin

Fig. 1. Difference of Means (DoM) distinguisher estimation for all key bytes (the cor-
rect one and all incorrect ones).
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This is illustrated on a simple “difference of means” attack representing side-
channel attack on DPA contest 4.2 traces [26] (the second implementation (v4.2)
is based on an improved version of the first version - v4).

3 The Efficient Attacker Framework

3.1 Threat Model

The adversary has access to a clone device running the target cryptographic
algorithm. This device can be queried with a known key and plaintext while
the corresponding leakage measurement is stored. Commonly, the adversary can
have infinite queries to characterize a precise profiling model. There are no limits
on how many experiments he can do to find such a profiling model. Next, the
adversary queries the attack device with known plaintext to obtain the unknown
key. The corresponding side-channel leakage measurement is compared to the
characterized profiling model to recover the key.

In our threat model, the adversary has a limited number of queries to char-
acterize a profiling model. Additionally, he has a limited number of experiments
to conduct hyperparameter tuning. Note, while our framework allows various
machine learning tasks, we concentrate on the classification task in this paper,
as it is common in the profiled SCA [7–9].

3.2 Components of a Successful Attack

Current evaluations for profiled SCA mostly assume that the attacker is
unbounded in his computational power. This assumption aims to provide the
worst-case scenario for the designer, which should help assess the risk properly.
Although the attacker is considered unbounded, he is always bounded, with
bounds set ad-hoc, and there are no clear directions one should follow when
modeling the realistic attacker.

First, we discuss two core assumptions we make in this research. These need
to be fulfilled so that general meaningful comparisons between profiled attacks
can be made, and our framework can provide exploitable results:

1. Attack must be possible. While our framework does not require the attacker
always to succeed, the attack must be possible. For instance, having measure-
ments completely uncorrelated with the labels (set of variables defined from
a leakage model) will make our framework not useful. Still, no side-channel
attack can succeed if there is no statistical connection between the measure-
ments and labels. Consequently, this is not a drawback of our framework.

2. We consider only profiled (supervised) attacks, and therefore, profiling mea-
surements need to allow learnability about the problem. Profiling measure-
ments that are completely uncorrelated with the attack measurements would
make our framework unusable. The hyperparameter tuning (if possible) must
allow reaching a useful profiling model. Again, the profiled attacks cannot
work if the previous conditions are not fulfilled, which does not represent our
framework’s disadvantage.
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Next, we examine the three components of a successful attack. The worst-case
(strongest) attacker will be unbounded in all three components. Simultaneously,
fulfilling only one or two of those components accounts for more realistic settings
one encounters in practice:

1. Quantity (the number of measurements) - there must be sufficient measure-
ments in the profiling/test phase to conduct the attack, i.e., to build a reliable
profiling model that generalizes to the unseen data. This criterion is a nat-
ural one and is already well-known in SCA as researchers usually report the
attack’s performance concerning a different number of measurements. There
is much less research to determine the minimum number of measurements for
a successful attack.

2. Quality (based on the available measurements, it must be possible to find
the mapping f between the input (measurements) and output (labels)) - the
measurements need to be of sufficient quality to conduct the attack. This con-
dition could be translated into the requirement that the SNR should be suf-
ficiently high or that the data need to have all information required to model
the leakage correctly. Finally, this component includes the leakage model’s
quality, i.e., the considered leakage model provides sufficient information and
the distribution of leakages. Again, like the previous component, this one is
well addressed in the SCA community as researchers usually conduct various
pre-processing steps, e.g., to select/transform features or align traces.

3. Learnability (hyperparameter tuning) - the attacker needs to learn the profil-
ing model. This perspective also accounts for finding the best possible hyper-
parameters for the profiling model. The learnability is naturally connected
with the quantity and quality components. This component is significantly
less addressed, but more recent works show the SCA researchers becoming
more interested in it [9–11,27], confirming our claims about the learnabil-
ity importance. We note that while the researchers usually conduct various
tuning procedures, they rarely report how difficult it was to find the hyper-
parameters used in the end.

We should not limit the quality component: if the attacker can obtain mea-
surements, those measurements should be of the best possible quality. When
discussing the quantity and learnability components, we can (and we must)
evaluate the limit of the number of profiling measurements and experiments in
the tuning phase since:

1. If always considering the extreme case of unbounded measurements in the
profiling phase, we “allow” to utilize weaker attack, which may only work in
this extreme scenario. On the other hand, if we consider the minimum number
of available traces in the profiling phase while still succeeding in the attack
phase, we promote efficient attacks.

2. Theoretically, the attacker who is unbounded in his capabilities could break
cryptographic implementations even with a single measurement as he can
always find the optimal attack. This reasoning suggests that ultimately, the
designer could do nothing to stop the attack.
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Remark 2. Having a limited number of measurements or time to conduct hyper-
parameter tuning is a realistic occurrence in practical scenarios, as the attacker
may be limited by time, resources, and also face implemented countermeasures,
preventing him from taking an arbitrarily large number of side-channel measure-
ments while knowing the secret key of the device.

To conclude, we need to consider an attacker who can perform a successful
attack with the smallest possible number of profiling measurements N , where
success is defined over a performance metric ρ with a threshold of δ. To reach
that success, the attacker should use the smallest possible number of tuning
experiments H (where h represents a specific set of hyperparameters, i.e., a
specific profiling model).

Example 1. Consider ρ being the guessing entropy < 20, which is a common
threshold value in the side-channel analysis, see, e.g., [6]. Then, the measure of
the attacker’s power is 1) the number of profiling traces N he needs to train
a profiling model, which is then used on attack traces (of size Q) to break the
implementation, 2) the number of experiments conducted before finding the
hyperparameters resulting in a strong attack, or 3) both the number of profiling
traces and hyperparameter tuning experiments.

3.3 Framework Description

The goal for machine learning classification task is to learn a mapping (model)
f from X to Y, i.e., Y ← f(X, θ) where X are samples drawn i.i.d. from set
X and where the cardinality of X equals N . Let θ be the profiling model’s
parameters that result in the best possible approximation from h hyperparameter
combinations. Additionally, let gQ,f = [g1, g2, . . . , g|K|] be the guessing vector
from the profiled side-channel attack using Q traces in the attack phase, and
the profiling model f built in the profiling phase as an input. In practice, the
estimation of f depends on hyperparameters h, which we denote by fh when the
dependency is emphasized. Then, ρ(gQ,f , k∗

a) represents the performance metric
of the profiled side-channel attack using the secret key k∗

a to evaluate the success.
For a given number of attack traces Q and h1, . . . , hH hyperparameter tuning

selections (H being the number of different hyperparameter sets), the Efficient
Attacker Framework aims at minimizing the number of profiling traces N to
model the function fhi

with hyperparameter selection hi (1 ≤ i ≤ H), such that
the performance metric is still below (or above) a certain threshold δ:

min{N : ρ(gQ,fhi
, k∗

a) < δ}, where N, i ≥ 1 and i ≤ H. (1)

Algorithm 1 gives the procedure of the evaluation in the Efficient Attacker
Framework, and a motivating example is given in Example 2. Note that the
framework allows conducting experiments in parallel to the data acquisition
phase. Indeed, one can start with evaluating the performance regardless of the
number of already acquired measurements. For example, the attacker can assume
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Static parameters: Maximum size H of hyperparameter models to consider, a
performance metric ρ and a threshold value δ, e.g., GE
< 20

Input : Profiling and attacking device to collect traces from
Output : Minimum number of profiling traces N

1 Capture a test dataset (with secret key k∗
a). Its size Q depends on the expected

performance of the attack. For instance, this test dataset can be as small as one
trace!

2 Training set ← ∅

3 N ← 0
4 while True do
5 Capture one trace // A speed-up can be obtained by advancing

faster, e.g., 10 by 10 traces

6 Append them to Training set, N ← N + 1
7 for i = 1; i ≤ H; i + + do
8 (Randomly) select hyperparameters h
9 Perform Training with selected hyperparameters and obtain a model fh

10 Receive ρ(gQ,fhi
, k∗

a)

11 if ρ < δ then // The model is good enough

12 store hyperparameter selection h
13 break

14 return Minimum number of profiling traces N

Algorithm 1: Conceptual evaluation procedure in the Efficient Attacker
Framework.

the regime where he downloads new measurements every hour and repeats the
experiments with an always-increasing number of measurements.

Algorithm 1 increases the number of profiling traces until the stop condition
(statically defined) is satisfied. As a secondary objective, it attempts to reduce
the search space for the hyperparameters models, with the learning phase to be
as computationally efficient as possible.

Remark 3. Algorithm 1 considers both the number of profiling traces and hyper-
parameter tuning experiments, but this can be easily adjusted for only one
of those options, extended or replaced by other performance evaluations. For
instance, if using a template attack, there are no hyperparameters to tune, which
means that only the number of profiling traces is relevant. On the other hand, if
facing a setting where one cannot obtain enough measurements to reach δ, then
the natural choice is not to limit the number of measurements even more but
to consider the number of hyperparameter tuning experiments. While we con-
sider the number of hyperparameter tuning experiments from the learnability
perspective in this paper, this could be easily cast, for instance, to the selection
of points of interest with template attack.
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Example 2. A standard performance metric used in the side-channel analysis is
guessing entropy with, e.g., a threshold δ = 20. In the Efficient Attacker Frame-
work, one would find the minimum number of profiling traces N and hyperpa-
rameter experiments H to reach a guessing entropy below 20 for a fixed number
of Q attack traces. This setting ensures that key enumeration algorithms [28]
(when attacking several key bytes, as in AES-128 where there are 16 bytes of
the key that needs to be recovered simultaneously for a full key recovery attack)
are efficient. Typically, Q ranges over a set of values. Experimental results are
discussed in Sect. 4.

Remark 4. In practice, Algorithm 1 shall be evaluated several times to get an
empirical estimation Ê(N) of the minimum number of profiling traces. This can
be achieved by averaging several evaluations of Algorithm1 (as done in non-
profiled side-channel attack-oriented frameworks, see [13, §3.1]).

Remark 5. The Efficient Attacker Framework is evaluator-oriented and aims at
unleashing profiled attacks even with frugal learning constraints. This reflects
some situations where the number of interactions with the device is limited:

– by design, e.g., owing to enforcement of countermeasures such as limited
number of cryptographic executions until system end-of-life, or

– by certification constraints such as limited “elapsed time” in the Common
Evaluation Methodology (CEM [29, B.4.2.2]) of the Common Criteria.

Remark 6. If two profiling models exhibit very similar performance but require
a radically different amount of resources, then a Pareto front of solutions (i.e., a
set of non-dominated solutions) needs to be given where the designer can decide
on a proper trade-off.

We reiterate that our framework is not designed to force the attacker to use
a small number of measurements in the profiling phase or limit the number of
experiments in the hyperparameter tuning phase. Instead, it forces the attacker
(evaluator) to find the smallest number of traces and tuning experiments to
attack the target successfully.

4 Experimental Evaluation

4.1 Datasets

The first dataset we consider is the ASCAD with a fixed key dataset. The mea-
surements are obtained from an 8-bit AVR microcontroller running a masked
AES-128 implementation, where the side-channel is electromagnetic emana-
tion [30]. This dataset has the same key for the profiling and attack phase.
There are 50 000 traces for profiling and 10 000 for the attack. We use a pre-
selected window of 700 features for the raw trace, and we attack key byte 3,
which is the first masked key byte, as commonly done in the literature [30].
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The second dataset is a version of the ASCAD dataset with random keys
(denoted ASCAD random keys dataset) in the profiling set. The dataset consists
of 200 000 traces for profiling and 100 000 for the attack. We use a pre-selected
window of 1 400 features for this dataset and attack key byte 3 (the first masked
key byte).

4.2 Efficient Attacker Framework Evaluation

The Efficient Attacker Framework enables us to compare side-channel attacks
and gives a fair comparison between leakage models. For deep learning-based
side-channel attacks, it is often assumed to consider the most accurate leakage
model, i.e., using the intermediate value as class variables (the Identity leakage
model2) [9,27,31], which results in 2b classes where b is the number of considered
bits. In an unsupervised setting (i.e., non-profiled attacks), using the Hamming
weight or the Hamming distance leakage model is a common choice, which results
in b+1 classes only. Using b+1 Hamming weight/distance classes to guess a key
value in {0, . . . , 2b−1} cannot result in a single trace attack on average. However,
using the Hamming weight/distance leakage models may require fewer traces in
the profiling phase to gain good quality estimates of the leakage models (as there
are fewer classes to consider). It is, therefore, not straightforward to determine
what leakage model is most suitable. Consequently, to give a fair comparison,
one should include a dependency on the number of traces in the profiling phase,
as done in the Efficient Attacker Framework.

As a metric, we consider guessing entropy (GE), and in particular, we give the
minimum number of profiling and attack traces to reach GE < 20. We randomly
define hyperparameters for every training procedure for multilayer perceptron
(MLP) and convolutional neural networks (CNNs) according to the hyperparam-
eter ranges provided in Table 1. This scenario represents an optimized random
hyperparameter search since the hyperparameter ranges are chosen based on the
optimized minimum and maximum values (the minimal and maximal values are
selected based on related works) [9,11,27,31]. The number of epochs is set to 50
(we observed that the models tend to overfit and degrade the generalization after
50 epochs), and the backpropagation algorithm optimizer is Adam. The weights
and biases are initialized in a randomly uniform way. We use the batch normal-
ization layer to avoid overfitting, which normalizes the input layer by adjusting
and scaling the activations. For CNNs, a pooling layer (with hyperparameters
range specified in Table 1) always comes after a convolution layer.

We do not explicitly discuss the time perspective here (e.g., the number
of hours or days needed to conduct the experiments). Comparing the number
of tuning experiments gives a fair evaluation, regardless of the time needed to
run those experiments. We note that the number of tuning experiments up to

2 By the “Identity leakage model”, we mean that we do not assume the number of
classes can be reduced owing to model degeneracy, as would be the case for instance
in the “Hamming weight leakage model”, where it is assumed that the leakage Y
depends in X only through wH(X) (the Hamming weight of X).
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Table 1. Hyperparameter search space for MLP and CNNs.

Hyperparameter MLP CNN

Min Max Step Min Max Step

Learning rate 0.0001 0.001 0.0001 0.0001 0.001 0.0001

Mini-batch 100 1 000 100 100 1 000 100

Dense (fully-connected) layers 1 4 1 1 4 1

Neurons (for dense or fc layers) 100 400 100 100 400 100

Convolution layers - - - 1 2 1

Filters - - - 4 16 4

Kernel size - - - 2 10 2

Stride - - - 1 4 1

Pooling size - - - 1 4 1

PoolingStride - - - 1 4 1

Activation function (all layers) ReLU, Tanh, ELU, or SELU

50 is low, although we manage to break the target. There is no constraint on
the number of experiments one can use with our framework. Additionally, as
we work with guessing entropy, each attack is repeated 100 times, which gives
much higher computational complexity than one could conclude solely based
on the number of tuning experiments. Every figure contains the results for the
Hamming weight and Identity (i.e., intermediate value) leakage models, as AES
operates on b = 8 bits. We select the best neural network model out of 5, 10,
25, or 50 trained profiling models for each leakage model and a different number
of profiling traces. More precisely, we compare the performance of a different
number of profiling models (thus, forming ensembles) as done in [31]. Here, the
main idea is to demonstrate that the learnability also represents an important
dimension in our framework. All the graphs are to be viewed in color.

ASCAD Fixed Key Dataset. We depict results for the ASCAD fixed key
dataset in Figs. 2 and 3, for MLP and CNN, respectively. For the CNN case, we
also depict the results by using the architecture from [9]. The results confirm
the importance of considering the number of profiling traces and hyperparameter
tuning. In particular, for MLP in combination with the HW leakage model: 25
and 50 models behave the same for 30 000 profiling traces, indicating they are
“equally” good. Nevertheless, restricting the number of profiling traces, e.g., to
20 000 reveals that 50 models reach better attack performance. Finally, many
models perform better for 35 000 than 45 000 profiling traces, indicating that
the data cannot fit the current network capacity.

ASCAD Random Keys Dataset. Figures 4 and 5 show results for the
ASCAD with the random keys dataset. In Fig. 4, we give results for MLP with
hyperparameters defined per Table 1. Notice that considering a different number
of profiling traces shows radically different behaviors. The more important is to
observe that the profiling traces component becomes not as relevant as increasing
the number of searched MLP models, especially for the Identity leakage model
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Fig. 2. Profiled SCA on the ASCAD fixed key dataset with MLP.

Fig. 3. Profiled SCA on the ASCAD fixed key dataset with CNNs.

in Fig. 4b. For example, by keeping 40 000 profiling traces, the best number of
attack traces after searching for five models is around 3 100 traces, while the
minimum number of attack traces to reach GE< 20 with 50 models is close to
1 000 traces.

Figure 5 depicts the results for CNN architectures confirming the previous
observations. In this particular example, we can immediately see how important
it is to keep increasing the number of profiling traces as well as the number of
searched models. This is expected as, due to the larger number of hyperparameter
options, CNNs are more difficult to tune compared to MLP. In this case, the
Efficient Attacker Framework reveals that increasing both components (profiling
traces and learnability) makes the attack stronger.

4.3 Strong Adversary in the Efficient Attacker Framework

In the previous section, we evaluated our framework under the perspective of
an adversary with strong side-channel capabilities (a profiled attack is mounted
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Fig. 4. Profiled SCA on the ASCAD random keys dataset with MLP.

Fig. 5. Profiled SCA on the ASCAD with random keys dataset with CNNs.

over optimal trace interval containing leaky points-of-interests). However, this
same adversary executes a random search and does not possess an optimal neu-
ral network model. In this section, we consider state-of-the-art models from [9]
and [27], which provide carefully tuned CNN models for the ASCAD dataset.
This way, an adversary is considered strong from both side-channel and deep
learning perspectives. As the hyperparameters are already chosen, we again run
50 models for each fixed number of profiling traces by only randomly varying
the batch size (from 50 to 400, with steps of 50 traces).

Figure 6 provides the results for the cnn architecture [32] proposed in [9] for
the Hamming weight and Identity leakage models (for the HW leakage model,
we use the same learning model as for the Identity leakage model, but we set
the number of output classes to 9). The framework indicates that increasing the
number of profiling traces is not very relevant when possessing an “optimal”
profiling model. Indeed, in Fig. 6b, the best results are achieved for 30 000 pro-
filing traces, and adding more profiling traces increases training time and does
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not improve attack results. In this example, we observe with a real-world dataset
that GE< 20 can be achieved with a single attack trace.

The Identity leakage model results from Fig. 6b indicate one more interesting
phenomenon, which is, to the best of our knowledge, not before reported in deep
learning-based SCA. We can notice for one model setting the behavior called
deep double descent [33]. This behavior describes a phenomenon where the test
loss first decreases with the increase in the architecture size. Then, the loss
starts to increase and finally decreases again. When the loss increases, this is
connected with an effect called “sample-wise non-monotonicity”. Interestingly,
this effect describes a behavior where more training traces damages the test
phase’s performance. While there is no definitive answer to why this behavior
happens, one explanation could be that the model does not have enough capacity
to fit the data. Adding more data requires the model to drastically “change” its
parameters, improving attack performance.

Fig. 6. Profiled SCA on the ASCAD with fixed keys dataset with CNN architecture
from [9].

Figure 7 shows results for noConv1 ascad desync 0 [34] proposed in [27]. As
this neural network architecture is an optimization built on top of [32], results
for the ASCAD fixed key dataset indicate an even smaller minimum number
of profiling traces to reach successful results, which is 20 000 profiling traces.
Nevertheless, we can also observe the differences in model performance with the
Efficient Attacker Framework when selecting different leakage models.

4.4 General Observations

On a general level, while not the core research point in this work, we note that
the Identity leakage model requires fewer attack traces to reach GE < 20, which
is expected. MLP exhibits better performance than CNN for a smaller number
of profiling traces, which is again in line with related works. It is important
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Fig. 7. Profiled SCA on the ASCAD with fixed keys dataset with CNN architecture
from [27].

to observe how the learnability constraint directly influences the required com-
bination of the number of profiling and attack traces to reach a low guessing
entropy. Moreover, one can choose a trade-off between profiling traces N and
attack traces Q while still performing a successful attack.

While our framework aims to find the minimal number of profiling traces
and keep the number of tuning experiments to mount a successful attack as low
as possible, we never state what those numbers should be. Indeed, the experi-
ments showcase radically different behaviors for various numbers of profiling and
attack traces (coupled with the influence of the number of tuning experiments).
Providing actual values makes sense only when the whole experimental envi-
ronment is considered (datasets, algorithms, environmental settings) and, even
more importantly, when one compares experiments on the same targets but with
different settings. All our experiments strongly confirm that the number of pro-
filing traces and the number of experiments (complexity) play a paramount role
and should be included in proper performance analysis for deep learning-based
SCA.

4.5 Advantages of the Efficient Attacker Framework

Usually, an attacker is expected to make use of the maximum possible number
of profiling traces to build a model (templates, deep neural networks). Simi-
larly, the number of attack traces tends to be maximized to better estimate the
model exploitation capability. In cases when the learning model is inefficient (i.e.,
unable to fit the existing leakage) and all available side-channel measurements
are used, the attacker or evaluator has a limited view of what component has
a significant impact on the attack results, which can lead to overestimating the
security of the target.

In this case, the reference metric would be the guessing entropy of a single
experiment, which says nothing about the influence of the number of measure-
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ments and tuning experiments on the security of the assessed target. Therefore,
the Efficient Attacker Framework usage provides a better representation of the
influence of the number of profiling traces, attack traces, and tuning experiments.
We analyze an attack’s efficiency with GE < 20 as a reference metric. Of course,
the framework can be adapted to any metric that describes the attack’s effi-
ciency, such as success rate, or extended to more dimensions that may influence
the attacker’s strength, for example, by including resource requirements. While
the benefits of depicting the results with our framework are evident, one can
ask whether we lost some information when compared to the traditional result
depiction. We claim this not to be true due to two reasons. First, all relevant
information is kept so the attacker can still depict traditional results. Second,
once the appropriate performance level is set (e.g., guessing entropy value equal
to δ), it is less relevant to observe how that value is reached (as values above the
threshold are out of the attacker’s reach).

As a common scenario for deep learning side-channel evaluation, our exper-
iments concentrated on the concept of divide-and-conquer strategies for sym-
metric ciphers. However, the Efficient Attacker Framework is not limited to this
scenario, and depending on the threat model of the attack, the framework can
be extended, for example, to rank estimation strategies [35] or even to recursive
recovering strategies like Extend and Prune (EP) [36]. Instead of using met-
rics on subkey bytes, an evaluator would choose a rank estimation strategy and
depict the number of attack traces to reach a certain estimated rank within
the complete keyspace as a performance metric. As in our experiments, this
may be evaluated in terms of the number of training traces. Naturally, the Effi-
cient Attacker Framework would allow us to compare different rank estimation
strategies. EP techniques are required when estimating models for the entire
keyspace is not feasible as for many asymmetric ciphers. While the estimation
of key recovery differs, the application of the Efficient Attacker Framework is
similar. Depending on the chosen cryptographic primitive, an evaluator could
again depict the minimum number of traces in the attack phase, depending on
the amount of information (bits or chunks of information).

Some former works also attempted to make the most out of the available
information contained within a trace. For instance, soft analytical side-channel
analysis [37] aims at leveraging the information collected at different steps in
one round (e.g., for AES: AddRoundKey, SubBytes, MixColumns, etc.), and even
beyond, from round to round. For such constructive information gathering to
occur, the whole secret shall be guessed at once. Belief-propagation algorithms
can be used in this respect (to relate all leakage points of interest). However, we
notice that such a technique is mostly profitable to exploit as much as possible
the online captured side-channel, whereas the scope of our paper is to optimize
the usage of the data collected from the learning device.

5 Conclusions

This paper discusses how to evaluate attacks when considering the profiled side-
channel analysis. We argue that considering only an unbounded attacker can neg-
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atively affect how side-channel analysis is performed while not being realistic. We
propose a new framework, denoted as the Efficient Attacker Framework, where
we explore the number of measurements and hyperparameter tuning experiments
required in the profiling phase such that the attacker is still successful.

We consider our new framework more realistic but also more adept for experi-
mental evaluations since it allows us to compare different results in a more unified
way. In particular, our framework will hopefully trigger more research relevant
not only for academia but also for evaluation labs. Finally, our framework is
relevant beyond profiled side-channel analysis and can be used in any supervised
learning setting.
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