
PhiAttack
Rewriting the Java Card Class Hierarchy

Jean Dubreuil1 and Guillaume Bouffard2,3(B)

1 Serma Safety & Security, Pessac, France
j.dubreuil@serma.com

2 National Cybersecurity Agency of France (ANSSI), Paris, France
guillaume.bouffard@ssi.gouv.fr

3 Information Security Group, DIENS École Normale Supérieure,

CNRS, PSL University, Paris, France

Abstract. Compiling Java Card applets is based on the assumption that
export files used to translate Java class item to Java Card CAP tokens
are legitimate. Bouffard et al. [2] reversed the translation mechanism.
Based on malicious Application Programming Interface (API) embedded
in a target, they succeeded in making a man-in-the-middle attack where
cryptographic keys can leak.

In this article, we disclose that, on a pool of legitimate export files,
Java Card Virtual Machine (JCVM) implementations can be confused
by a CAP file verified by the Java Card Bytecode Verifier (BCV). The
disclosed vulnerability leads to Java Card class hierarchy rewriting. The
introduced vulnerability is exploitable up to Java Card 3.0.5. Recently,
Java Card 3.1.0 provides a new export file format which prevents this
vulnerability.

Keywords: Java Card · BCV · Inheritance tree

1 Introduction

Java Card platform [14] is the most used technology embedded in secure com-
ponents [13]. Java Card is a lightweight version of Java for resource-constrained
devices as secure components. Therefore, such secure component embeds a vir-
tual machine, which interprets application bytecodes already romized with the
operating system or downloaded after issuance. Due to security reasons, the
ability to download code into the card is controlled by a protocol defined by
GlobalPlatform [7].

To build a Java Card application, an image of the targeted Java Card Vir-
tual Machine (JCVM) implementation is required. This image gives information
about the available Application Programming Interface (API) and the class hier-
archy. In this article, we focus on how class inheritance is translated during the
compilation process and loaded in a JCVM platform. We show this process can
be corrupted to redefine the class-tree hierarchy which leads to execute malicious
code.
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 275–288, 2022.
https://doi.org/10.1007/978-3-030-97348-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_15&domain=pdf
http://orcid.org/0000-0002-2046-369X
https://doi.org/10.1007/978-3-030-97348-3_15

276 J. Dubreuil and G. Bouffard

1.1 Java Card Security Model

To install an applet on the Java Card platform, one must implement it in Java
language and then build it within Java compiler (javac) to obtain Java class
files. Those class files are not designed to be embedded in a resource-limited
device. Indeed, the Java class files are executed as is by the Java Virtual
Machine (JVM) where references are resolved by name; it is very costly in both
execution time and memory space. The translated Java class files are named
the CAP (for Converted APplet) file.

To run a Java applet on resource-constraint devices, the adopted solution
is to translate reference name to token during a step made by the Java Card
converter1. If the class file to convert implements features that can be used by
other applications, a Java Card export file is also generated. The export file
contains, for each Java reference name element, the associated token embedded
on the device. Therefore, export files are also used by the bytecode converter
during the translation process. After this translation, Java Card files are checked
by the Bytecode Verifier (BCV) which statically verifies the compliance to the
Java Card security rules. There is a unique CAP file by converted package,
and it is signed to ensure its integrity and authenticity. On the device, the
GlobalPlatform [7] layer verifies the CAP file signature. This part is described
on the left part of Fig. 1.

Fig. 1. Java Card security model.

After obtaining and signing the applet CAP file, the applet developer needs
GlobalPlatform loading keys to load his applet or library. During the installation
process, on the right part of Fig. 1, an embedded security module checks some
security elements. The installed applet runs in its context segregated by the Java
Card Firewall. It ensures that applet accesses only its data or specific shared
features.

1 The Java Card converter is included in the Java Card SDK available on the Oracle’s
website: https://www.oracle.com/fr/java/technologies/java-card-tech.html.

https://www.oracle.com/fr/java/technologies/java-card-tech.html

PhiAttack 277

1.2 State-of-the-Art Java Card Platform Security

The Java Card platform implementation security has been thoroughly studied
against software [1,3–5,8–10,12,17] attacks. Those attacks are implementation
dependent and they are prevented by a BCV. The Java Card protection pro-
file [15] requires the usage of a BCV to check the applet compliance from Java
security rules.

How the BCV checks CAP files has been analysed in [6,11]. Lancia et al. [11]
shows that the BCV does not verify the correctness of information stored twice
in the CAP file. Based on this missing check, they succeed in breaking the
JCVM sandbox by executing ill-formed bytecodes from BCV verified applet.
This vulnerability was corrected in the BCV provided in the Java Card 3.0.5u3
toolchain.

To check the correctness of CAP files, the BCV analysis relies on export
files used during the CAP file conversion. If an export file contains wrong infor-
mation – information which does not correspond to the targeted JCVM – a
vulnerability may occur. Disclosed by Mostowski et al. [12], using wrong export
files, they succeed in making a type confusion upon a BCV-verified applet. More-
over, Bouffard et al. [2] succeed a Man-in-the-Middle attack based on malicious
export files to extract cryptographic secrets. In their attack, they must install
a backdoored API on a targeted JCVM and provide export files to link applet
to this malicious API. Those export files replace the Java Card cryptographic
API. On the targeted JCVM platform, the backdoored API makes interface with
the legitimate Java Card cryptographic API and saves each key generated. How-
ever, this attack is interesting but hard to realize in practice: the attacker must
force its victim to use corrupted export files whereas it is expected that any
application developer use export files from Oracle’s development kit.

1.3 Contribution

In this article, we generalise Bouffard et al.’s work [2] where we corrupt the Java
Card class hierarchy. We succeed in confusing the CAP file import mechanism
to force the targeted JCVM platform to use our Java class hierarchy instead of
the legitimate one. As token resolution relies on runtime verification, our attack
is not detected by a BCV. Therefore, we exploit the token resolution mechanism
to execute malicious code on JCVM platform where each installed CAP file are
checked by an up-to-date BCV.

Our contribution has been initially performed on Java Card specification
3.0.5 [14] as there is no publicly known product implementing a higher specifi-
cation version. Therefore, in the paper, we use the BCV provided by the Java
Card SDK 3.0.5.

We notice that the latest available Java Card SDK is the 3.1.0u5 version [16].
However, when writing this article, there is not product that implements this
version.

This article is organized as follows: Sect. 2 describes the Java Card import
mechanism in order to introduce the PhiAttack explained in Sect. 3. A discussion
on how to counteract this attack is in Sect. 4. Section 5 concludes this article.

278 J. Dubreuil and G. Bouffard

2 Java Card Import Mechanism

This section explains how imported packages are referenced in CAP and export
files in order to introduce the exploited vulnerability.

When an application needs to call some methods from an external API, for
instance the Java Card standard API, runtime must first import the package or
the class containing this method. Importing classes and packages in Java Card
is performed similarly to Java standard syntax as shown in Listing 1.1.

Listing 1.1. SimpleImportExample class description.

1 package simple;
2

3 import javacard.framework .*; // Importing the whole package
4 import javacard.framework.JCSystem; // Importing only one class
5

6 public class SimpleImportExample {
7 public byte publicField;
8 private byte privateField;
9 protected byte protectedField;

10 byte packageField;
11

12 public static short getVersionExample() {
13 // Use one of the imported features
14 return JCSystem.getVersion ();
15 } }

As explained in Sect. 1.1, outputted by the Java Card toolchain, the CAP file
contains application information to be executed as is by the JCVM. The export
file has everything required to use public features provided to other applications.
Therefore, the export file shares public application names and associated tokens.

2.1 Import Mechanism from the CAP File Point of View

The CAP file contains information to call the external methods. We now focus
on JCSystem.getVersion() method (Listing 1.1, line 14) to understand CAP
file import mechanism.

The Import and the ConstantPool components are used by the Method
component when calling the JCSystem.getVersion() method as shown in List-
ing 1.2.

Listing 1.2. A simple.cap file partial view.

1 Import Component
2 A0000000620001 // java/lang
3 A0000000620101 // javacard/framework
4

5 ConstantPool Component
6 // 0
7 staticMethodRef 0.0.0()V; // java/lang/Object.<init >()V
8 // 1
9 staticMethodRef 1.8.9()S; // javacard/framework/JCSystem.getVersion ()S

10

11 // ...
12

13 Method Component
14

15 .method public static getVersionExample()S 1 {

PhiAttack 279

16 .stack 1;
17 .locals 0;
18

19 L0: invokestatic 1 // javacard/framework/JCSystem.getVersion ()S
20 sreturn;
21 }

In the Import component (Listing 1.2, lines 1 to 3), two packages are listed:
java.lang, indexed at 0 and javacard.framework, indexed at 1. Even if not
explicitly imported in the Java source file, the java.lang package is automati-
cally imported by the compiler.

All the imported packages are referenced by their corresponding
Application Identifier (AID) value. In the ConstantPool component, the
JCSystem.getVersion() method is referenced in the second entry, Listing 1.2,
line 9. Value 1.8.9 is interpreted as followed:

– 1 represents the second imported package (there, javacard.framework),
– 8 represents the class token (JCSystem)
– and 9 the method token (getVersion()).

Class and method tokens are defined in the export file of javacard.
framework package. Finally, the invokestatic bytecode references the second
entry of the ConstantPool component, indicating to the JCVM where it can
find the method to call.

2.2 Import Mechanism from the export File Point of View

Considering Listing 1.1, the obtained export file contains the declaration of:

– the SimpleImportExample class and reference to its super classes (in this
case, only Object class),

– the publicField and protectedField fields. The export file contains:
public, protected, static and final field declarations

– and the getVersionExample() method. As well as the fields, the export file
contains public, protected, static and final method declarations.

In this example, we have seen that export file does not list the imported
javacard.framework package. However, a package can publicly expose features
that it had previously imported. This happens, for instance, when inheriting and
in this case, the export file will trace the imported packages.

Listing 1.3. The InheritingImportExample class.

1 package inheriting;
2

3 import javacard.framework.ISOException;
4

5 public class InheritingImportExample extends ISOException {
6 public InheritingImportExample(short reason) {
7 super(reason);
8 } }

280 J. Dubreuil and G. Bouffard

In Listing 1.3, a class inheriting from ISOException is defined at line 5. After
converting this class, the CAP file will import the javacard.framework package
as explained for Listing 1.2, based on the AID value. The export file will con-
tain supplementary information because the InheritingImportExample class
exposes all the public tokens from the ISOException class. Therefore, the fol-
lowing items are found in the export file:

– all the super classes of InheritingImportExample: in order, we have:

1. ISOException,
2. CardRuntimeException,
3. RuntimeException,

4. Exception,
5. Throwable
6. and Object.

– all the inherited public methods from these classes: setReason(),
getReason() and equals().

Unlike in the CAP file, imported tokens in export file are referenced using
their fully qualified names. For instance, the ISOException class is defined by
the ConstantPool entry shown in Listing 1.4.

Listing 1.4. Partial view of inheriting package export file.

1 tag : 01 (cp_utf8_info)
2 length: 00 1f
3 utf8_bytes []: javacard/framework/ISOException

In this Section we have seen how imported packages are referenced in CAP
and export files. In some cases, the imported package is simultaneously defined
in both files. However, an asymmetry exists as the CAP file references imported
packages from their AID values while the export file references them using their
fully qualified names.

The BCV may not be able to ensure that the AID used in the CAP file
corresponds to the package name used in the export file and this may lead to
inconsistencies as explained in the next Section.

3 PhiAttack

On Java Card platforms, every package is identified by a unique AID value.
Actually, nothing prevents an application developer to create its own package
with the same name as an already existing package, as long as the assigned AID
value to this package is not already used by another one. At compilation and
runtime, this is accepted: the BCV is able to identify and discriminate the two
packages ensuring that the packages are properly used and the JCVM interprets
bytecode from the content of CAP files that import packages with their AID.

PhiAttack 281

3.1 Setting-up the Attack

Let’s consider an application developer that creates two packages, both named
library but each one has a different AID, as shown in Listing 1.5 and List-
ing 1.6. Each package contains a class, named Phi, with a method named
doSomething(). However, this method signature is different from one package
to another. The difference is highlighted in red and underline.

Listing 1.5. library package with
DEADBEEF01 AID.

package library;

public class Phi {
public void doSomething () {

// ...
} }

Listing 1.6. library package with
DEADBEEF02 AID.

package library;

public class Phi {
public short doSomething () {

// ...
} }

In the Java source code, one cannot import both versions of the library
package at the same time. As each package has the same name, the compilation
process cannot distinguish one from the other. However, this can be achieved by
forging a CAP file that imports these packages, from their AIDs. Even if such a
construction cannot be obtained in a common way, it will be, however, accepted
by the BCV. In this case, the BCV properly handles the two packages and it is
able to differentiate the two Phi classes. Such a construction is quite weird but
is actually allowed.

A third package named proxy is described in Listing 1.7. It imports library
package. At compilation time, only the library package defined in Listing 1.5
is given to the Java Card toolchain. Therefore, the CAP file of proxy pack-
age imports library with DEADBEEF01 AID. The PhiProxy class only inherits
from the Phi class. Therefore, the export file of proxy package references the
library.Phi class and the doSomething() method with the correct signature
(return type is void).

Listing 1.7. proxy package

package proxy;

import library .*;

public class PhiProxy extends Phi {}

A last package, named exploit, is created and described in Listing 1.8. This
package imports two packages: library and proxy. At compilation time, the
library package defined in Listing 1.6 is provided at the Java Card toolchain.
Therefore, the CAP file of exploit imports library with DEADBEEF02 AID. In
doExploit() method, Listing 1.8 line 7, an instance of PhiProxy is created and
its reference is saved in a variable of type Phi. Finally, the doSomething() is
called.

282 J. Dubreuil and G. Bouffard

Listing 1.8. exploit package

1 package exploit;
2

3 import library .*;
4 import proxy .*;
5

6 public class Exploit {
7 public void doExploit () {
8 PhiProxy proxyInstance = new PhiProxy ();
9 Phi phiInstance = proxyInstance;

10 short result = phiInstance.doSomething ();
11 } }

Figure 2 shows the UML diagram of these packages in order to synthesise a
global view of the dependencies between them.

Fig. 2. UML diagram of PhiAttack.

The four packages described in this section are checked by the BCV. The
obtained result is: 0 error and 0 warning.

3.2 Understanding PhiAttack

Two processes must be studied here, 1) the analysis performed by the BCV
on CAP and export files of exploit package and 2) the execution flow of
doExploit() method at runtime.

On the one hand, to verify the exploit.cap file, BCV makes checks as
introduced in Fig. 3. In the doExploit method in Listing 1.8, three parts are
critical:

1. At line 8, an instance of PhiProxy is created. The obtained reference is stored
in a variable of the same type. On Fig. 3, the BCV checks this instruction new
0 by resolving token 0 (1) and reads the ConstantPool entry 0 to obtain
proxy.PhiProxy type (2) in proxy export file.

2. At line 9 the previously stored reference is copied in a variable of type Phi.
The compiler translates this operation by aload and astore instructions and

PhiAttack 283

it does not insert checkcast instruction as PhiProxy type is a sub-class of
Phi. From the BCV, type is ensured; aload instruction pushes a PhiProxy
instance on operand stack and astore instruction pops a Phi instance from
operand stack. There, the BCV validates the operation because it finds the
mother class Phi from library package with DEADBEEF02 AID. At this state
of the verification, the BCV cannot know that the actual mother class is
in package with DEADBEEF01 AID. At runtime, as there is no checkcast
instruction, no cast verification is performed.

3. At line 10, the doSomething() method is called on an instance of type Phi.
On Fig. 3, to call this method, the invokevirtual 1 instruction is checked
by the BCV. To verify this method call, the BCV resolves token 1 (3).
to obtain library.Phi.doSomething() method signature (4) in library
export file.

Fig. 3. BCV view when verifying exploit.cap file.

During the verification, the BCV performs its checks based on export files
content:

– proxy export file states that PhiProxy inherits from a class called
library.Phi. The missing information here is that this class must come from
library package with DEADBEEF01 AID.

– library export file with DEADBEEF02 AID states that it contains a class
named library.Phi. When verifying exploit package, the BCV only con-
siders this library package based on the Import component of exploit.

284 J. Dubreuil and G. Bouffard

On the other hand, at runtime, the JCVM tries to resolve the doSomething
virtual method upon the invokevirtual 1 instruction. To do this, the class
hierarchy is browsed until finding the method token. Due to the similar con-
struction, the doSomething() methods of both library packages have the same
method token value.

Fig. 4. Runtime view when executing exploit.cap.

From the JCVM point of view, Fig. 4, the actual class hierarchy of the cur-
rently accessed Object class:

PhiProxy → Phi (from library package with DEADBEEF01 AID) → Object.

Therefore, when interpreting the invokevirtual instruction, the found
method is the one from library package with DEADBEEF01 AID: this method
returns nothing (void type).

PhiAttack 285

In line 10 in Listing 1.8, when returning from doSomething() method, a value
is expected from the stack to store it in variable called result. During runtime,
as the called method returns nothing the value is popped from an empty stack:
a stack underflow is obtained.

This whole construction is allowed by the BCV because of the asymmetry
in the import mechanism described in Sect. 2. In this Section, a stack underflow
is demonstrated as example but various kinds of exploitation are described in
Sect. 3.3.

3.3 Variations and Exploitation of Such an Attack

We have seen in Sect. 3.2 that a stack underflow attack can be performed using
a specific construction that induces errors in the BCV import resolution. Using
the same principle, a stack overflow attack can also be performed, by switching
the two library packages.

The same principle can also be applied on the Java Card standard API. For
instance, the attacker can create its own javacardx.crypto package with its own
Cipher class (containing for instance methods with a different signature than
expected). Using a proxy package in which a class inherits from the attacker’s
Cipher class, the principle described in Sect. 3.2 applies.

A type confusion attack can also be performed by replacing for instance
Listings 1.5 and 1.6 by Listings 1.9 and 1.10. Indeed the confusion() method
from package with DEADBEEF01 AID will be called instead of the other one,
transforming the short argument in a reference type.

Listing 1.9. library package with
DEADBEEF01 AID for type confusion.

package library;

public class Phi {
public Object confusion(

Object o){

return o;
} }

Listing 1.10. library package with
DEADBEEF02 AID for type confusion.

package library;

public class Phi {
public Object confusion(

short s) {
return null;

} }

This can even be performed with the Object class itself, in java.lang pack-
age. This allows to redefine a complete class hierarchy (with Exception and all
the Java Card standard API). However, it must be noted that defining Object
class in a CAP file leads to set very specific values in some structures of the
CAP. For instance, the super class ref field of class info structure in Class
component has value 0xFFFF. This value induces errors during CAP file loading
on many public Java Card platforms. These errors suggest that the loader of
such products is not designed to load a new Java Card class hierarchy root.

In Sect. 3.1, the two Phi classes have the same structure: they both inherit
from Object and they both have the same number of public methods. However,
if the number of public methods is different, calling a method in the exploit
package may result in calling an actually non-existing method. Depending on
the JCVM implementation, runtime may have several reactions, but overflow in
the public virtual method table is very likely to happen.

286 J. Dubreuil and G. Bouffard

However, the Phi attack principle is not a full attack path by itself. Indeed the
obtained overflow/underflow must still be exploited on a targeted device with a
specific payload. Many state-of-the-art attacks [1,3–5,8–10,12,17] are detected
by the BCV. Combined with Phi attack principle, these attacks become full
exploitations that disclose sensitive assets without being detected by the BCV.

4 Discussion on Countermeasures

Our contribution was performed on Java Card specifications 3.0.5. However,
when packages described in Sect. 3.1 are checked by the BCV provided by the
Java Card 3.1.0 toolchain, the following log is obtained:

Listing 1.11. BCV log on proxy package

INFOS: [v3.1.0] Off -Card Verifier
INFOS: Export file library\javacard\library.exp is in an older export

file format. Please update the export file to format 2.3.
INFOS: Export file proxy\javacard\proxy.exp is in an older export file

format. Please update the export file to format 2.3.
INFOS: Verifying CAP file proxy\javacard\proxy.cap
INFOS: Verification completed with 0 warnings and 0 errors.

As stated in Sect. 3.1, the BCV raises no warning and no error, validating
the CAP and export files. However, information about export files version is
returned.

Indeed only export files in version 2.2, specified in [14], have been used.
Version 2.3 is described in [16]. Nevertheless, export files in version 2.2 are still
accepted by the BCV 3.1.0 as valid format, with only an information indicating
that a new format is available.

Version 2.3 of export file format adds supplementary information in the file.
Among modifications, a new structure is added containing the AID value, the
minor and major version of each package referenced in the export file. The AID
value is the missing information that prevented the BCV to detect the attack
attempted in Sect. 3.1. Therefore, when export files are generated in version
2.3, the construction shown in Sect. 3.1 is successfully detected by the BCV as
malformed.

Before loading one or several CAP files in a Java-Card based product, the
latest version of the BCV must be executed in order to ensure that the loaded
code is not malicious. However, more than just running the BCV, the entity
performing the verification should also check that export files provided are in
version 2.3. Ensuring the version is 2.3 allows to detect potential malicious
applications to be loaded.

5 Conclusion

We show in this article how a missing information in the export file allows an
attacker to abuse the BCV checks during packages import resolution. This could

PhiAttack 287

lead an attacker to execute malicious pieces of code within a verified application
allowing to potentially break the Java Card security model.

This kind of issue can be countered by denying the use of export file format
older than 2.3 even if the latest BCV version still accepts export files in 2.2
version.

The identification of this missing information in export files allowing to
attack Java Card products opens perspective and potential future work on find-
ing other kind of information that would be completely or partially missing.

Following our responsible disclosure policy, as far as we know, all the Java
Card platform developers concerned by this vulnerability were informed before
the publication of this paper.

Acknowledgments. A very special thanks to my wife, Marie-Philomène Dubreuil,
who accompanied me during all these hours of work on this research topic. This attack
is named after her.

Jean Dubreuil

References

1. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined software and hardware
attacks on the Java card control flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-27257-8 18

2. Bouffard, G., Khefif, T., Lanet, J., Kane, I., Salvia, S.C.: Accessing secure informa-
tion using export file fraudulence. In: Crispo, B., Sandhu, R.S., Cuppens-Boulahia,
N., Conti, M., Lanet, J. (eds.) 2013 International Conference on Risks and Security
of Internet and Systems (CRiSIS), La Rochelle, France, 23–25 October 2013, pp.
1–5. IEEE (2013). https://doi.org/10.1109/CRiSIS.2013.6766346

3. Bouffard, G., Lanet, J.-L.: Reversing the operating system of a Java based smart
card. J. Comput. Virol. Hacking Tech. 10(4), 239–253 (2014). https://doi.org/10.
1007/s11416-014-0218-7

4. Bouffard, G., Lanet, J.: The ultimate control flow transfer in a Java based smart
card. Comput. Secur. 50, 33–46 (2015). https://doi.org/10.1016/j.cose.2015.01.004

5. Faugeron, E.: Manipulating the frame information with an underflow attack. In:
Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 140–151.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 10

6. Faugeron, E., Valette, S.: How to hoax an off-card verifier. e-smart (2010)
7. GlobalPlatform: Card Specification. GlobalPlatform Inc., 2.2.1 edn. (January 2011)
8. Hamadouche, S., et al.: Subverting byte code linker service to characterize Java

card API. In: 7th Conference on Network and Information Systems Security (SAR-
SSI), 22–25 May 2012, pp. 75–81 (2012)

9. Hamadouche, S., Lanet, J.: Virus in a smart card: myth or reality? J. Inf. Secur.
Appl. 18(2–3), 130–137 (2013). https://doi.org/10.1016/j.jisa.2013.08.005

10. Lancia, J.: Java card combined attacks with localization-agnostic fault injection. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 31–45. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37288-9 3

11. Lancia, J., Bouffard, G.: Java card virtual machine compromising from a bytecode
verified applet. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514,
pp. 75–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 5

https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1109/CRiSIS.2013.6766346
https://doi.org/10.1007/s11416-014-0218-7
https://doi.org/10.1007/s11416-014-0218-7
https://doi.org/10.1016/j.cose.2015.01.004
https://doi.org/10.1007/978-3-319-08302-5_10
https://doi.org/10.1016/j.jisa.2013.08.005
https://doi.org/10.1007/978-3-642-37288-9_3
https://doi.org/10.1007/978-3-319-31271-2_5

288 J. Dubreuil and G. Bouffard

12. Mostowski, W., Poll, E.: Malicious code on Java card smartcards: attacks and
countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85893-5 1

13. Oracle: Java Card Technology - Providing a secure and ubiquitous platform
for smart cards. Technical report, Oracle, Security Evaluations, Oracle Corpo-
ration, 500 Oracle Parkway, Redwood Shores, CA 94065 (2012). www.oracle.com/
technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf

14. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.
Version 3.0.5, Oracle, Oracle America Inc., 500 Oracle Parkway, Redwood City,
CA 94065 (2015)

15. Oracle: Java card system - open configuration protection profile. Protection Pro-
file versoin 3.0.5, Oracle, Security Evaluations, Oracle Corporation, 500 Oracle
Parkway, Redwood Shores, CA 94065 (December 2017)

16. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.
Version 3.1, Oracle, Oracle America Inc., 500 Oracle Parkway, Redwood City, CA
94065 (February 2021)

17. Razafindralambo, T., Bouffard, G., Lanet, J.-L.: A friendly framework for hidding
fault enabled virus for Java based smartcard. In: Cuppens-Boulahia, N., Cuppens,
F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 122–128. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31540-4 10

https://doi.org/10.1007/978-3-540-85893-5_1
https://doi.org/10.1007/978-3-540-85893-5_1
www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
https://doi.org/10.1007/978-3-642-31540-4_10

	PhiAttack
	1 Introduction
	1.1 Java Card Security Model
	1.2 State-of-the-Art Java Card Platform Security
	1.3 Contribution

	2 Java Card Import Mechanism
	2.1 Import Mechanism from the CAP File Point of View
	2.2 Import Mechanism from the export File Point of View

	3 PhiAttack
	3.1 Setting-up the Attack
	3.2 Understanding PhiAttack
	3.3 Variations and Exploitation of Such an Attack

	4 Discussion on Countermeasures
	5 Conclusion
	References

