
Vincent Grosso
Thomas Pöppelmann (Eds.)

LN
CS

 1
31

73

Smart Card Research
and Advanced Applications
20th International Conference, CARDIS 2021
Lübeck, Germany, November 11–12, 2021
Revised Selected Papers

Lecture Notes in Computer Science 13173

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

Vincent Grosso · Thomas Pöppelmann (Eds.)

Smart Card Research
and Advanced Applications
20th International Conference, CARDIS 2021
Lübeck, Germany, November 11–12, 2021
Revised Selected Papers

Editors
Vincent Grosso
Jean Monnet University
Saint-Etienne, France

Thomas Pöppelmann
Infineon Technologies
Neubiberg, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-97347-6 ISBN 978-3-030-97348-3 (eBook)
https://doi.org/10.1007/978-3-030-97348-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3874-7527
https://doi.org/10.1007/978-3-030-97348-3

Preface

These are the proceedings of the 20th International Conference on Smart Card Research
and Advanced Applications (CARDIS 2021). This year’s CARDIS was held in a hybrid
manner in Lübeck, Germany, and took place online from November 11 to November
12, 2021. It was organized by the Institute for IT Security of the Universität zu Lübeck,
Germany.

Since 1994, CARDIS has been the venue for security experts from industry and
academia to exchange ideas on the security of smart cards and related applications. Smart
cards play an important role in our day-to-day life through their use in banking cards,
SIM cards, electronic ID documents, and passports. Moreover, smart card technology
is increasingly used in embedded systems to protect the Internet of Things (IoT),
machine-to-machine communication (M2M), or automotive applications. Independent
of the application, what has stayed a constant over the years is the need to prevent
always advancing remote and physical attacks. Therefore, the scope of the conference has
widened and now covers all aspects of the design, development, deployment, evaluation,
penetration testing, and application of smart cards and secure embedded systems.

The present volume contains 16 papers that were selected from 32 submissions. The
31 members of the Program Committee evaluated the submissions, wrote 102 reviews,
and engaged in thorough discussions on the merits of each paper. Three invited talks
completed the technical program. Nele Mentens presented recent results on flexible
electronics in her keynote “Security challenges and opportunities in emerging device
technologies: a case study on flexible electronics”. Christine van Vredendaal discussed
challenges of post-quantum cryptography and of the NIST standardization process in
her keynote “Challenges of Post-QuantumCryptography in the EmbeddedWorld”. Axel
Poschmann gave insights on supply chain security in his keynote “Lessons Learned from
Securing the Supply Chain of a High-Security Smartphone”.

Organizing a conference is always a hard task, but it is even more complex nowadays
with the COVID-19 crisis. We would like to express our deepest gratitude to Thomas
Eisenbarth and all the members of his team who enabled CARDIS 2021 to succeed. We
thank the authors who submitted their work and the reviewers who volunteered to review
and discuss the submitted papers. We greatly appreciate the amazing work of our invited
speakers who gave entertaining and insightful presentations. We would like to thank
Springer for publishing the accepted papers in the LNCS collection and the sponsors
Riscure, Infineon, hardwear.io, NewAE, NXP, Rambus, and Thales for their generous
financial support. We are grateful to the CARDIS steering committee for allowing us to
serve as the program chairs of such a well-recognized conference. Finally, we thank all
presenters, participants, and session chairs, physically and online, for their support in
making this CARDIS edition a great success.

December 2021 Vincent Grosso
Thomas Pöppelmann

Organization

General Chair

Thomas Eisenbarth University of Lübeck, Germany

Program Committee Chairs

Vincent Grosso CNRS and Université Jean Monnet, France
Thomas Pöppelmann Infineon Technologies, Germany

Steering Committee

Sonia Belaïd CryptoExperts, France
Begül Bilgin Rambus Cryptography Research, The Netherlands
Thomas Eisenbarth University of Lübeck, Germany
Jean-Bernard Fischer Nagravision, Switzerland
Aurélien Francillon EURECOM, France
Tim Güneysu Ruhr-Universität Bochum, Germany
Marc Joye Zama, USA
Konstantinos Markantonakis Royal Holloway, University of London, UK
Amir Moradi University of Cologne, Germany
Svetla Nikova KU Leuven, Belgium
Jean-Jacques Quisquater Université catholique de Louvain, Belgium
Francesco Regazzoni University of Amsterdam, The Netherlands
Françis-Xavier Standaert Université catholique de Louvain, Belgium
Yannick Teglia Thales, France

Program Committee

Diego Aranha Aarhus University, Denmark
Josep Balasch KU Leuven, Belgium
Davide Bellizia Université catholique de Louvain, Belgium
Shivam Bhasin NTU, Singapore
Ileana Buhan Radboud University, The Netherlands
Eleonora Cagli CEA-Leti, Université Grenoble Alpes, France
Jan-Pieter D’Anvers KU Leuven, Belgium
François Durvaux Silex Insight and Université catholique de

Louvain, Belgium

viii Organization

Domenic Forte University of Florida, USA
Benoît Gérard DGA-MI, France
Patrick Haddad STM, France
Kerstin Lemke-Rust Hochschule Bohn-Rhein-Sieg, Germany
Pierre-Yvan Liardet eShard, France
Roel Maes Intrinsic ID, The Netherlands
Cuauhtemoc Mancillas Lopez CINVESTAV-IPN, Mexico
Nele Mentens Leiden University, The Netherlands
Amir Moradi Ruhr-Universität Bochum, Germany
Debdeep Mukhopadhyay IIT Kharagpur, India
Colin O’Flynn NewAE Technology Inc., Canada
David Oswald University of Birmingham, UK
Peter Pessl Infineon Technologies, Germany
Stjepan Picek TU Delft, The Netherlands
Romain Poussier NTU, Singapore
Francesco Regazzoni University of Amsterdam, The Netherlands
Thomas Roche NinjaLab, France
Pascal Sasdrich Ruhr University Bochum, Germany
Tobias Schneider NXP Semiconductors, Austria
Peter Schwabe MPI-SP, Germany, and Radboud University,

The Netherlands
Johanna Sepulveda Airbus, Germany
Yannick Teglia Thales, France
Yuval Yarom University of Adelaide and Data61, Australia

Additional Reviewers

Manaar Alam
Michel Agoyan
Florian Bache
Matteo Bocchi
Olivier Bronchain
Nicolas Bruneau
Jean-François Dhem
Daniele Fronte
Dirmanto Jap
Alberto Martinez-Herrera

Nicolai Müller
Kit Murdock
Sioli O’Connell
Brisbane Ovilla-Martinez
Owen Pemberton
Prasanna Ravi
Tania Richmond
Sayandeep Saha
Aein Rezaei Shahmirzadi
Marvin Staib

Contents

Side-Channel Attacks

Single-Trace Fragment Template Attack on a 32-Bit Implementation
of Keccak . 3
Shih-Chun You and Markus G. Kuhn

Trace-to-Trace Translation for SCA . 24
Christophe Genevey-Metat, Annelie Heuser, and Benoît Gérard

Profiled Side-Channel Analysis in the Efficient Attacker Framework 44
Stjepan Picek, Annelie Heuser, Guilherme Perin, and Sylvain Guilley

Towards a Better Understanding of Side-Channel Analysis Measurements
Setups . 64
Davide Bellizia, Balazs Udvarhelyi, and François-Xavier Standaert

A Tale of Two Boards: On the Influence of Microarchitecture
on Side-Channel Leakage . 80
Vipul Arora, Ileana Buhan, Guilherme Perin, and Stjepan Picek

Complete Practical Side-Channel-Assisted Reverse Engineering
of AES-Like Ciphers . 97
Andrea Caforio, Fatih Balli, and Subhadeep Banik

Fault Attacks

Fast Calibration of Fault Injection Equipment with Hyperparameter
Optimization Techniques . 121
Vincent Werner, Laurent Maingault, and Marie-Laure Potet

Laboratory X-rays Operando Single Bit Attacks on Flash Memory Cells 139
Laurent Maingault, Stéphanie Anceau, Manuel Sulmont, Luc Salvo,
Jessy Clediere, Pierre Lhuissier, Emrick Beliard, and Jean Luc Rainard

Multi-Spot Laser Fault Injection Setup: New Possibilities for Fault
Injection Attacks . 151
Brice Colombier, Paul Grandamme, Julien Vernay, Émilie Chanavat,
Lilian Bossuet, Lucie de Laulanié, and Bruno Chassagne

x Contents

Public-Key Cryptography

In-depth Analysis of Side-Channel Countermeasures
for CRYSTALS-Kyber Message Encoding on ARM Cortex-M4 169
Hauke Malte Steffen, Lucie Johanna Kogelheide, and Timo Bartkewitz

Hardware Implementations of Pairings at Updated Security Levels 189
Arthur Lavice, Nadia El Mrabet, Alexandre Berzati,
Jean-Baptiste Rigaud, and Julien Proy

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 210
Georg Land, Pascal Sasdrich, and Tim Güneysu

Secure Implementations

Under the Dome: Preventing Hardware Timing Information Leakage 233
Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier,
and Jean-Louis Lanet

Enhanced Encodings for White-Box Designs . 254
Alberto Battistello, Laurent Castelnovi, and Thomas Chabrier

PhiAttack: Rewriting the Java Card Class Hierarchy . 275
Jean Dubreuil and Guillaume Bouffard

FuzzyKey: Comparing Fuzzy Cryptographic Primitives
on Resource-Constrained Devices . 289
Mo Zhang, Eduard Marin, David Oswald, and Dave Singelée

Author Index . 311

Side-Channel Attacks

Single-Trace Fragment Template Attack
on a 32-Bit Implementation of Keccak

Shih-Chun You and Markus G. Kuhn(B)

Department of Computer Science and Technology, University of Cambridge,
Cambridge CB3 0FD, UK

{scy27,mgk25}@cl.cam.ac.uk

Abstract. Template attacks model side-channel leakage information
using Gaussian multivariate distributions. They have been quite suc-
cessful in directly reconstructing individual bits of 8-bit parallel buses
and registers from power traces. However, extending their use directly
to larger word sizes, such as 32-bit buses, becomes impractical. Here
we show that it is possible to use an LDA-based stochastic model to
independently build templates for just byte fragments of such a word,
to predict the exact values of its four member bytes, instead of only
overall Hamming weights. We demonstrate this technique to reconstruct
the arbitrary-length inputs of SHA3-512 and some other Keccak sponge
functions implemented on a 32-bit Cortex-M4 device. The quality of
these templates was high enough such that remaining errors in their
predictions could be eliminated via belief propagation on a factor-graph
network (SASCA). In our experiments, we already reliably recovered
SHA3-512 inputs up to 719 bytes long (10 invocations of the permuta-
tion), and reconstructing even longer inputs should be just a matter of
making longer recordings.

Keywords: Template attack · SASCA · Keccak · SHA-3 · 32-bit
device

1 Introduction

1.1 Motivation and Background

Since the National Institute of Standards and Technology (NIST) standardized
Secure Hash Algorithm 3 (SHA-3) [13] in 2015, several variants of Differen-
tial Power Analysis (DPA) [9,17,18] have been used to reconstruct the keys
in Keccak-based message authentication codes (MAC-Keccak). These attacks
require multiple accesses to the SHA-3(K‖M) function, with a known and
varying message M , and their recorded power traces, to recover the fixed and
unknown key K.

S.-C. You—Supported by the Cambridge Trust and the Ministry of Education, Taiwan.

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 3–23, 2022.
https://doi.org/10.1007/978-3-030-97348-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_1&domain=pdf
https://orcid.org/0000-0002-6359-7866
https://orcid.org/0000-0003-3902-5435
https://doi.org/10.1007/978-3-030-97348-3_1

4 S.-C. You and M. G. Kuhn

Later, in 2020, two different approaches for single-trace recovery strategies
appeared. Kannwischer et al. [7] used Soft Analytical Side-Channel Analysis
(SASCA) [19] to recover a 128 or 256-bit secret S used in Keccak-f [1600](S‖M),
given known message M , based on simulated noisy Hamming-weight information
of intermediate values in this permutation. They concluded that their method
was very successful on a simulated 8-bit or 16-bit device, but the situation was
not yet clear on 32-bit devices, where they successfully recovered 128-bit keys
only under some conditions, such as a lower noise level, but not 256-bit keys.
They also suggested their SASCA approach may reach a higher success rate with
a leakage model bearing more information than just Hamming weights.

We introduced the other approach in [21]. On an ATxmega256A3U [1] 8-
bit device, we used an enumeration procedure based on 600 rank tables for the
intermediate bytes. Each rank table lists all 256 candidate bytes in descending
order of probability, as predicted by LDA-based stochastic-model templates. This
enumeration technique could reconstruct a complete intermediate state from a
single trace and then invert it to determine all Keccak-f [1600] input and output
bits. By repeating the same procedure on every invocation of Keccak-f [1600] in
the absorbing stage of the Keccak sponge function, we can recover arbitrary-
length SHA3-512 inputs.

Therefore, encouraged by both these results, we now target a more ambitious
goal, namely to reconstruct the complete arbitrary-length input of SHA-3 or
SHAKE functions implemented on a 32-bit device, from a single trace. To achieve
this target, we will have to figure out how to practically build templates for a
32-bit bus that can obtain far more information about a 32-bit state than just
the Hamming weight.

Choudary and Kuhn [3] used template attacks based on Linear Discriminant
Analysis (LDA) to directly recover from a single load instruction the exact value
of a byte, and not just its Hamming weight. They also looked at extending their
method to states with more than 8 bits. However, directly building templates
for a 32-bit value is not practical this way.

1.2 Contributions and Paper Structure

We introduce the fragment template attack, to extract information about indi-
vidual bits from power traces that observe activity on 32-bit parallel data buses.
To achieve this, we apply the LDA technique to project the data onto subspaces
where the projected data are only related to a fragment (e.g., a byte or a nib-
ble) of the full 32-bit word, and then independently build templates for these
fragments, to enable us to reconstruct their values independently and within a
reasonable run time.

We built fragment templates for intermediate states in the Keccak-f [1600]
permutation implemented on a 32-bit device, the STM32F303RCT7 CPU on a
ChipWhisperer-Lite board [14]. We found that the resulting estimates are good
enough for a SASCA attack, i.e. to error-correct the template-attack information
with the help of a loopy belief-propagation factor graph based on the structure
of the rounds of the Keccak-f [1600] permutation.

Single-Trace Fragment Template Attack 5

In this paper, we first introduce and review some of the prior work that
our technique is based on (Sect. 2), namely the LDA-based stochastic model
templates and SASCA. Section 3 then explains our methodology, including how
we build fragment templates and our modification of a previous use of SASCA
against Keccak, and how to combine the results from multiple invocations of
Keccak-f [1600] in the absorbing stage of a Keccak sponge function to calculate
full arbitrary-length inputs. The evaluation of our experiments in Sect. 4 shows
how parameters such as the number of rounds observed and the number of known
bits at the input of Keccak-f [1600] affect the success probability of our attack.

2 Preliminaries and Notation

2.1 LDA-based Templates on Keccak

The Template Attack with Stochastic Models. Following the original
template attack (TA) introduced by Chari et al. [2], the “stochastic” model
F9 by Schindler et al. [15], and the use of Fisher’s Linear Discriminant Anal-
ysis (LDA) by Standaert and Archambeau [16] for dimensionality reduction of
traces, Choudary and Kuhn [3] combined these into an LDA-based template pro-
filing stage for a F9 model as follows. Firstly, record the traces and group them
according to the target byte value b ∈ {0, . . . , 255}, where trace xb,t observed
target value b, with t ∈ {1, . . . , nb} enumerating the traces in that group. When
building a template for a target byte b, treat each member bit (b[0] to b[7]) as
an independent variable, and then use a multivariate linear regression to calcu-
late for each point in time coefficients c0 to c7 and a constant c8 to predict the
expected values of samples as x̄b =

∑7
l=0(b[l] · cl) + c8, the F9 stochastic model.

We write

x̄b =
7∑

l=0

(b[l] · cl) + c8

to represent the expected vector of an entire m-sample trace, where c0, . . . , c8 ∈
R

m. From these, build two covariance matrices, B representing the signal, and
Σ representing the noise, as

B =
1

∑
b nb

∑

b

nb(x̄b − x̄)(x̄b − x̄)T,

Σ =
1

∑
b nb

∑

b

nb∑

t=1

(xb,t − x̄b)(xb,t − x̄b)T,

where x̄ is the average of all 256 expected vectors x̄b.

Dimensionality Reduction. In the LDA step, project the m-sample traces
xb,t onto the m′ largest eigenvectors of Σ−1B, to obtain dimensionality-reduced
m′-sample traces xb,t,proj, where m′ � m, and the signal-to-noise ratio in the

6 S.-C. You and M. G. Kuhn

new subspace is larger. Likewise, the expected traces x̄b as well as the attack
trace xa can be projected into the same subspace as x̄b,proj,xa,proj ∈ R

m′
.

With all these traces projected into the new subspace, we now can build a
pooled covariance matrix

S =
1

∑
b nb

∑

b

nb∑

t=1

(xb,t,proj − x̄b,proj)(xb,t,proj − x̄b,proj)T,

such that the probability density of the attack trace xa,proj can be modelled as

f(xa,proj|x̄b,proj,S)

=
1

√
(2π)m′ |S| exp

(

−1
2
(xa,proj − x̄b,proj)TS−1(xa,proj − x̄b,proj)

)

.

Having this likelihood calculated for all 256 values b, we can sort them in descend-
ing order to generate a rank table of all candidates, or we can normalize these
likelihoods to build a probability table.

If the originally recorded trace length and sampling frequency are very high,
prior sample selection or resampling steps are needed to make the above LDA
matrix operations feasible. Like in [21], we therefore used sample-rate reduction
and sample selection based on multivariate linear regression as initial dimension-
ality reduction steps before applying LDA compression (see Sect. 4.2).

Template Attack on an 8-Bit Implementation of Keccak. In [21] we
used the above LDA-based template attack already to recover 600 interme-
diate bytes from single invocations of the Keccak-f [1600] permutation on an
ATxmega256A3U 8-bit microcontroller. This permutation is the sequence of five
steps (θ, ρ, π, χ, ι), which iterate for 24 rounds. We reuse here the same notation
for the intermediate states αΩ , α′

Ω , βΩ and β′
Ω between these steps, defined for

the Ωth round as

Input θ−→ α0
ρ,π−−→ α′

0
χ−→ β0

ι−→ β′
0

θ−→ α1
ρ,π−−→ · · · χ−→ β23

ι−→ Output.

We use three variables, i, j ∈ Z5, h ∈ Z8 to label the 200 bytes of these states,
where “∈ Zn” shall imply arithmetic modulo n. For example, the first byte in
the first lane of α′

0 is α′
0[0, 0, 0], and its least significant bit is α′

0[0, 0, 0][0]. In
addition to this bytewise notation, we also use a bitwise notation with bit index
k ∈ Z64 and a “ˆ” on the variable, as in α̂′

0[i, j, k] = α′
0[i, j, h][l] for k = 8×h+ l

and l ∈ {0, . . . , 7}.
Given an attack trace, in [21] we used 600 templates to generate the rank

table for each of the 200 intermediate bytes in each of the three states α′
0, β0 and

α1, so that all the correct candidates in α′
0 can be found through the three-level

enumeration.

Single-Trace Fragment Template Attack 7

2.2 Soft Analytical Side-Channel Analysis on Keccak

Belief Propagation and SASCA. Veyrat-Charvillon et al. [19] introduced
SASCA, which is an inference technique for template attacks on cryptographic
algorithms based on the belief-propagation algorithm [10, Chapter 26]. The idea
behind SASCA is that all the probability information available to the attacker
is represented as a factor graph, where there are two types of nodes called “vari-
able”, representing the intermediate states of the cryptographic algorithm, and
“factor”, representing how these intermediate states depend on each other and
on the observed traces. Each of these nodes is only connected to nodes of the
respective other type (i.e., the factor graph is a bipartite graph), and informa-
tion can flow through these connections. The factor graph therefore reflects the
mathematical structure of the cryptographic algorithm, which then influences
the updating of the probability estimates of the variables accordingly during the
execution of the belief-propagation or sum-product message-passing algorithm.

While the variable nodes represent the intermediate values in the crypto-
graphic algorithm, we can separate the factor nodes into two subtypes, “obser-
vation factors” and “constraint factors”. Observation factors fm(xn) represent
observed probabilities of the values of their only connected variable xn, here usu-
ally from a template-based likelihood. Constraint factors fm(xm) are connected
to more than one variable (xn1 , . . . , xnkm

) = xm (where N (m) = {n1, . . . , nkm
}

shall denote the set of indices of these variables) with a mathematical equation
as the constraint. The information flow can be thought of as messages passed
between variable nodes xn and factor nodes fm, which in practice are stored in
a table, and from which the marginal probabilities of all the candidate values
of each variable can be calculated. On a connection, the information flow is bi-
directional, where a message from a variable xn to a factor fm is denoted as
qn−→m, and a message from a factor fm to a variable xn as rm−→n. Each of these
messages is a function of a value ξ of xn. The probability of a candidate xn = ξ
in message qn−→m is:

qn−→m(xn = ξ) =
∏

m′ �=m

rm′−→n(xn = ξ),

which means the probability passing from a variable to a factor is the product
of the probabilities of the same candidate in all the messages r passing from
all other factors connected to this variable. Meanwhile, the probability of a
candidate xn = ξ in the message rm−→n is:

rm−→n(xn = ξ) =
∑

w

⎡

⎣fm(xn = ξ,xm\xn = w)
∏

n′∈N (m)\n

qn′−→m(xn′ = wn′)

⎤

⎦ ,

where

fm(xm = v) =

{
1, constraint holds with xm = v,

0, otherwise.

8 S.-C. You and M. G. Kuhn

In other words, the probability passed from factor fm to variable xn is the sum of
the product of the probabilities of the candidates in the messages q passed from
the other variables xn′ connected to factor fm, where these candidates combined
with the candidate xn = ξ match the constraint in fm. For the special case of
an observation factor this reduces to:

rm−→n(xn = ξ) = fm(xn = ξ),

where fm(xn) is the probability table observed from the templates, instead of a
constraint function. To obtain the final probability Pn of candidates xn = ξ, we
need the product

Zn(xn = ξ) =
∏

m

rm−→n(xn = ξ)

of the probabilities in all the messages r passed to the same variable xn and then
normalize the result as

Pn(xn = ξ) =
Zn(xn = ξ)

∑
ξ′ Zn(xn = ξ′)

.

This is how the probabilities can be updated recursively through a tree struc-
ture. The algorithm terminates on tree-shaped factor graphs once the number of
steps has reached the diameter of the tree. However, in most SASCA networks
of cryptographic algorithms, the factor graph is less likely to be a tree struc-
ture. Instead, it probably features loops, which means that this recursive belief
propagation will not terminate to output exact probabilities.

MacKay describes an easy solution [10, Chapter 26] called loopy belief prop-
agation (loopy-BP). The main idea is to initialize all the values in the table for
all messages q with one, then alternatingly update all the messages in the table
for r and then q, with renormalization when the probability values become too
small. Then terminate when a steady state has been reached.

Apply Loopy Belief Propagation to Keccak. Kannwischer et al. [7] demon-
strate how they use loopy-BP given noisy Hamming-weight information of inter-
mediate values. Their simulated attacks targeted the secret first 128 or 256 bits
of the input of a Keccak-f [1600] permutation, with the remaining input bits
being known. They first introduce a bitwise (i.e., ξ ∈ {0, 1}) loopy-BP network.
In this case, many constraint factors and variables in the bit permutation step ρ
and π are no longer needed: firstly, we can simply connect the output of step θ
to the input of step χ following the permutation rules of the two steps instead,
and secondly, step ι XORs some round constant in the first lane, so we only
need to swap the output probabilities corresponding to 0 and 1 of step χ there.
Therefore, we only need to include one of the two states αΩ and α′

Ω in the factor
graph, and one of βΩ and β′

Ω .
As for the most complicated step, θ, the corresponding equation is

α̂Ω [i, j, k] =
4⊕

j=0

β̂′
Ω−1[i − 1, j, k] ⊕

4⊕

j=0

β̂′
Ω−1[i + 1, j, k − 1] ⊕ β̂′

Ω−1[i, j, k].

Single-Trace Fragment Template Attack 9

input C0 D0 α′
0 β0 C1 D1 α′

1 β1

θ′
0 θ′′

0 θ′
1 θ′′

1

θ′′′
0 θ′′′

1χ0 χ1

Fig. 1. The loopy-BP graph structure for the Keccak-f permutation, showing the node
relations for the first two rounds. Variable nodes are in circles, constraint factors in
squares. Observation factors are not shown here. Each state variable shown here actu-
ally represents 1600 or 320 single-bit variable nodes, respectively.

If we directly designed a constraint factor following this equation, it would con-
nect to 12 variables. Instead, Kannwischer et al. [7, Fig. 1] separated it into three
equations

ĈΩ [i, k] =
4⊕

j=0

β̂′
Ω−1[i, j, k], (θ′)

D̂Ω [i, k] = ĈΩ [i − 1, k] ⊕ ĈΩ [i + 1, k − 1], (θ′′)

α̂Ω [i, j, k] = D̂Ω [i, k] ⊕ β̂′
Ω−1[i, j, k], (θ′′′)

where Ĉ and D̂ are additional 320-bit intermediate states (which we will also
refer to as C and D bytewise). They then use these three substeps of θ to build
the constraint factors in their graph.1

For step χ, they suggest to combine the five-bit input and output in a row
(where j and k are fixed) into a single constraint factor node, instead of con-
necting these ten bits with five separate nodes connecting to three input bits
and one output bit. They claim this will increase the efficiency of information
transmission from β̂ to α̂′ nodes. Figure 1 shows the resulting factor graph.

They terminate the loopy-BP procedure if the total entropy of all the vari-
ables drops to 0, or if the probabilities in the network no longer change, or after
50 iterations.

They simulated attacks on devices with 8, 16, or 32-bit words, of which their
leakage model provides noisy Hamming weights. They state that the bitwise
factor graph is not suitable for processing Hamming weights because marginal-
ization will discard the information in the joint distribution of the bits in the
target word, leading to bad attack performance. Therefore, they developed a
“clustering” technique to deal with Hamming-weight information, which com-
bines e.g. eight bits into one variable (i.e., ξ ∈ Z256).

1 β̂′[i, j, k], Ĉ[i, k], D̂[i, k], α̂[i, j, k] here are equivalent to I, P, T, O, respectively in [7].

10 S.-C. You and M. G. Kuhn

3 Our Attack Strategy

At a high level, our attack has three main steps. We first split each 32-bit target
word into several fragments and build a set of templates targeting each fragment
independently. We use these profiled fragment templates to generate a probabil-
ity table for every fragment in the words of the intermediate states that we target
in an invocation of the Keccak-f [1600] permutation. Secondly, we marginalize
these probability tables for fragments into binary probability tables for each bit.
We then feed these, as well as the known bits in the capacity part of the input,
into the loopy-BP network for error correction. Recall that the capacity input
has all 0 bits in the first invocation in a Keccak sponge function, and in later
invocations it is the same as the capacity output of the previous invocation.
The third step is to calculate the complete input and output of this invocation.
Repeat this for each invocation. In the end, by XORing consecutive rate parts,
we find the complete padded input of the Keccak sponge function.

3.1 Template Attack on Word Fragments

If we were to directly apply an LDA-based stochastic-model template [3] on
each intermediate 32-bit word, we first would use multivariate linear regression,
treating the 32 member bits as independent variables, to calculate the expected
value for each candidate. We could then build templates for these candidates,
to which the attack traces can be compared. However, with 232 candidates,
this approach is neither efficient nor practical. Therefore, we instead separate
an intermediate word into fragments, here four bytes, and independently build
templates for each. We hope that by limiting the candidate set to just the values
of one fragment f at a time, treating the values of the other fragments as noise,
based on the resulting per-fragment inter-class scatter Bf and total (pooled)
intra-class scatter Σf , the LDA can project the traces onto different subspaces,
where each projection maximizes the signal-to-noise ratio for just one byte at a
time.

More specifically, applying the LDA procedure directly on an intermediate
32-bit word, of value v, the matrices B and Σ would be

B =
232−1∑

v=0

nv(x̄v − x̄)(x̄v − x̄)T
/

232−1∑

v=0

nv,

Σ =
232−1∑

v=0

nv∑

t=1

(xv,t − x̄v)(xv,t − x̄v)T
/

232−1∑

v=0

nv,

where x̄v is the expected value of traces corresponding to v with

x̄v =
31∑

l=0

(v[l] · cl) + c32, (1)

where cl is the coefficient vector of bit v[l], and c32 is the constant vector.

Single-Trace Fragment Template Attack 11

Instead, our LDA procedure takes the same training traces, but profiles the
template with only eight bits at a time. We split each word value v ∈ Z232 into
four byte fragments v �→ (F0(v), . . . , F3(v)) with Ff (v) =

∑7
l=0 v[8f + l] · 2l. Let

Vf,b = {v |Ff (v) = b} be the set of all 32-bit values where fragment number f
has value b. For each f , we can apply the F9 stochastic model to obtain the 256
expected trace vectors

x̄f,b =
7∑

l=0

b[l] · cf,l + cf,8, (2)

from the traces xv,t with v ∈ Vf,b, respectively. We then calculate the inter-class
scatter Bf and the total intra-class scatter Σf :

Bf =
255∑

b=0

∑

v∈Vf,b

nv(x̄f,b − x̄)(x̄f,b − x̄)T
/

255∑

b=0

∑

v∈Vf,b

nv,

Σf =
255∑

b=0

∑

v∈Vf,b

nv∑

t=1

(xv,t − x̄f,b)(xv,t − x̄f,b)T
/

255∑

b=0

∑

v∈Vf,b

nv.

Now the inter-class scatter Bf only contains the signals from fragment number
f , and the signals from the other three bytes no longer count in the inter-class
scatter, but instead contribute to the total intra-class scatter Σf . In other words,
they are considered to be switching noise in this model.

After we project the profiling and attack traces via these two matrices to
the new m′-dimensional subspace (m′ = 8 in this paper), we can calculate the
pooled covariance matrix and combine it with the projected expected traces as
the template for this target byte in the intermediate word.

Note that in practice, with far less than 232 profiling traces acquired, an
efficient implementation will exploit the fact that many nv will be zero, by iter-
ating over recorded traces rather than all v. Alternative schemes for partitioning
a 32-bit word into fragments might be useful as well, such as 11 + 11 + 10 bits,
or grouping bits into fragments by distance of coefficient cl.

3.2 Bitwise Loopy Belief Propagation on Factor Graphs

After our templates generate the per-fragment probability tables for the selected
intermediate states, we marginalize these tables to eight binary tables of their
member bits and then use a bitwise loopy-BP network as the error-correction
procedure. Kannwischer et al. [7] state that the probability of a bit calculated by
marginalizing the Hamming weight will lose much information available in the
joint distribution of the unit’s member bits, but we believe that the information
loss caused by marginalization may not be a severe problem in our experiments:
our templates are based on the stochastic model F9 [15], where bits in the
target bytes are viewed as independent binary variables. With the assumption
of mutual independence, this model already, to some extent, gives up exploiting
information from a joint distribution across bits. Since we have already bitwisely
marginalized probabilities, the clustering technique is not required.

12 S.-C. You and M. G. Kuhn

Besides that main difference, we made a number of other changes compared to
Kannwischer et al. Firstly, instead of their “layer-after-layer” message updating,
in a single iteration we simply update all rm−→n messages in the factor graphs
before we update all qn−→m messages. Secondly, we terminate the loopy-BP algo-
rithm after either reaching a steady state, or a maximum iteration count of 200.
We found that checking the total entropy value helped little, so we dropped this
termination check. Thirdly, their factor graph appears to cover only the first
two rounds [7, Sect. 4.5] whereas we tested different factor graphs that cover the
first two, three, or four rounds, respectively, to take more side-channel informa-
tion into account. Finally, after not finding consistent improvements when trying
different damping rates, we present our results without damping.

We did not acquire any side-channel observations for the input. Instead its
observation factors set the capacity part of the Keccak-f [1600] input according
to the sponge construct with probability one to all-zero for the first invocation,
and, also with probability one, to the verified output of the previous invocation
in subsequent invocations. The rate-part bits of the input are the only variables
without any observation factor connected.

3.3 Dealing with Multiple Invocations

We slightly modify the procedure to recover the full padded input of a Keccak
sponge function from [21] as follows.

After the loopy-BP algorithm reaches a steady state, we select in α′
0 for

each bit variable the candidate with the higher probability to decide on our
prediction for that intermediate bit. However, the correctness of that state is not
yet ensured. Therefore, we feed the predicted α′

0 bits into the inverse functions
of π, ρ, and θ, to calculate the corresponding input. Then we check if its capacity
part matches the expected value (e.g., all zero at the first invocation). If it passes
this check, we accept our α′

0 prediction, and calculate from that the predicted
output of the invocation. Otherwise, we consider the attempt to have failed and
terminate. The reason for using the α′

0 prediction instead of using the loopy-BP
results of the rate part in the input variable node directly is that the latter does
not benefit from this consistency check against the capacity part.

For a sponge function with more than one invocation, we repeat what we have
done for the first invocation, however now the capacity of the input is verified
instead against the capacity of the output of the previous invocation.

After recovering the input and output of every invocation, the remaining
steps for calculating the complete padded sponge-function input are straightfor-
ward, involving XORing the rate-part inputs and outputs, as described in [21]
and Fig. 2.

4 Experiments

4.1 Keccak Implementation and the Target Board

Our experiments target the 32-bit processor STM32F303RCT7, which has one
ARM Cortex-M4 core, on a ChipWhisperer-Lite (CW-Lite) board [5]. Our

Single-Trace Fragment Template Attack 13

Fig. 2. The procedure to reconstruct input (and output) of sponge function Keccak[c]
by template attack: 1© generate the probability tables for the target intermediate states
in the first Keccak-f [1600] permutation and marginalize them to binary tables; 2© add
the observation-factor for the capacity part of the input, which is all 0; 3© run the
loopy-BP network, terminate and calculate the input and output of this invocation
from state α′

0 4©, and then 5© check consistency of the input capacity part; 6© add
the observation-factor for the capacity part of the input, where the bits match the
capacity part of the output from the previous invocation; 7© repeat template recovery,
table marginalization, and loopy-BP on latter invocations in the absorb stage; 8© repeat
step 5©; 9© XOR the rate parts of consecutive invocations and concatenate these XOR
results to find the padded Keccak[c] input.

Keccak implementation is based on the official reference C code [20] and our
test application implements the four SHA-3 functions (SHA3-224, SHA3-256,
SHA3-384, SHA3-512) and two extendable output functions (SHAKE128,
SHAKE256). This device stores the intermediate states that we target as
a sequence of fifty 32-bit words. We used the default compiler settings of
the ChipWhisperer 5.2.1 software, such as optimization for space (-Os with
arm-none-eabi-gcc v9.2.1).

4.2 Trace Recording

The ChipWhisperer-Lite board also includes a power-analysis oscilloscope, but
that can record no more than 24 kilosamples per trace (at up to 105 MS/s). How-
ever, we wanted to record at least 15,000 clock cycles per trace, to cover at least
four rounds of the Keccak-f [1600] permutation. That would have left us with
very few points per clock cycle (PPC). To separate signals from 32 data bits
processed in parallel, more samples per clock cycle will give us more dimensions
in the signal space to achieve this. At the same time we wanted to preserve the
phase lock between the oscilloscope’s sampling clock and the CPU clock. There-
fore, we used instead an NI PXIe-5160 [11] 10-bit oscilloscope, which can sample

14 S.-C. You and M. G. Kuhn

at 2.5 GS/s into 2 GB of sampling memory, and an NI PXIe-5423 [12] wave gen-
erator, as an external clock signal source, to supply the target board with a
5 MHz square wave signal. We installed the oscilloscope and waveform generator
in the same PXIe chassis and configured both to use a common 100 MHz refer-
ence clock signal from the latter. With this setting, we collected traces at the
highest sampling rate, at 500 points per clock cycle (500 PPC). This provided
us with the flexibility to later digitally downsample to different PPC values, as
needed.

After not using the on-board oscilloscope, we had to create an impedance-
matched connection for the power signal. We used a 50 Ω coaxial cable to connect
the oscilloscope and the CW-Lite’s measure connector (JP10) [6]. However, JP10
taps the VDD connection of the CPU after a 13 Ω source impedance (R66+R67).
This posed a problem: the 3.3 V DC level would have lead to a high current drain
with the oscilloscope input configured to 50 Ω impedance and DC coupling, but
if we don’t have a 50 Ω impedance match on at least one end of the transmission
line, reflections will add a lot of ripples to the recorded waveform. Therefore,
we connected the coaxial cable to JP10 via a 37 Ω resistor (to better match
the 50 Ω impedance of the cable) and a 10 nF capacitor (to block the 3.3 V DC
component). Together with the 50 Ω impedance of the oscilloscope input, this
capacitor forms a high-pass filter with a time constant of 0.5µs (2.5 clock cycles),
or a 3 dB cutoff frequency of about 320 kHz. This way, we both avoid ringing on
the cable, by terminating it at both ends, and use AC coupling with an impulse
response that decays within a few clock cycles.

We recorded traces while the device executed SHA3-512 on random inputs
that each require 10 invocations of the Keccak-f [1600] permutation. At 2.5 GS/s,
each 7,500,000-sample trace we recorded covers the first four complete rounds of
Keccak-f [1600], and we recorded that for each invocation of the permutation. To
exclude the possibility of trigger accidents (none were detected), we checked that
all traces recorded have a Pearson correlation of at least 0.98 with the mean trace.
Overall, we recorded 16 000 traces for interesting-clock-cycle detection, 64 000 for
template building, and 1 000 for model evaluation. For the traces recorded for
testing, see Sec. 4.4.

4.3 SASCA Model Building and Evaluation

Interesting Clock Cycle Detection. Treating each bit in the intermediate
byte as an independent variable, in [21] we had used multivariate linear regression
to find the coefficient of determination (R2) of these eight variables, and for the
voltage-peak point in each clock cycle, we had evaluated the correlation with
the intermediate byte. Using a selection threshold of R2 > 0.09, we had created
far shorter training traces for each intermediate byte to build its LDA-based
template.

To detect the interesting clock cycle sets (ICs) for a 32-bit device, we assume
that the four bytes in the same word will share the same sets. Therefore, we
make a small change to our method for 8-bit devices. Rather than estimating
the correlation between the samples and the 32-bit intermediate value with a

Single-Trace Fragment Template Attack 15

169000 169500 170000 170500 171000 171500 172000 172500 173000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
2

Coefficient of determination

R2
0

R2
1

R2
2

R2
3

∑
f R2

f

169000 169500 170000 170500 171000 171500 172000 172500 173000
sample

−0.015

−0.010

−0.005

0.000

0.005

0.010

vo
lt
ag
e
(V

)

Reference trace (inverted Y axis)

mean
2σ interval

Fig. 3. The corresponding four R2
f values of (α′

0[0, 0, 0], . . . , α′
0[0, 0, 3]) for each sample

based on the 16 000 detection traces and their sum representing the detection results
of the full 32-bit word (above), as well as the mean trace and the 2σ interval (below)
at the same time samples.

32-bit linear regression, as in Eq. (1), which would need more traces to build, we
instead estimate the correlation by adding the four R2

f values calculated from
the independently built 8-bit model (2) of each fragment byte in this 32-bit
intermediate value. While this may be less accurate, due to slight overfitting, it
significantly reduces the number of traces required.

Figure 3 shows a small part of a mean trace, covering the 32-bit word consist-
ing of (α′

0[0, 0, 0], . . . , α′
0[0, 0, 3]), along with the corresponding four R2

f values for
each point, based on the 16 000 detection traces. Most of the data dependency is
limited to one clock cycle in the time interval shown. We also can see that the R
values peak near the voltage peek, and can use this to speed up the selection of
samples from our 500 PPC data. We sum 50 voltage samples around each volt-
age peak, and calculate

∑
f R2

f for that to decide whether this entire clock cycle
should be included. Table 1 shows the number of interesting clock cycles selected
for each intermediate word in the first round, with two different thresholds (0.04
and 0.01); the results of the omitted other three rounds are similar. We used the
lower threshold

∑
f R2

f > 0.01. The SNR values of the points selected were in
the range 0.01 to 3.43.

Template Building and Validation. Considering the run time for building
templates, we only wanted to deal with at most 2000 samples per trace after
selecting the ICs. Given the numbers in Table 1, we therefore decided to resample
the training traces from 500 PPC down to 10 PPC, by averaging 50 consecutive
samples into one, effectively reducing the sampling rate to 50 MHz.

Using the 1000 traces in the validation set, Table 2 shows the resulting suc-
cess rate and guessing entropy (as in [21]) for α′

0, while Table 3, 4, 5 show the
corresponding results for intermediate states β0, C0 and D0, respectively. The
omitted data for other rounds looks similar. Our results for α′

0 and β0 are not as
good as the ones for the 8-bit processor in [21], and possibly not good enough for
our enumeration procedure there, but they are suitable for SASCA. Note that,

16 S.-C. You and M. G. Kuhn

Table 1. Numbers of interesting clock cycles selected in round Ω = 0 with thresholds∑
f R2

f > 0.04 (left) and
∑

f R2
f > 0.01 (right)

Lane[i] C0 D0 Lane[i] C0 D0

First

word

Second

word

First

word

Second

word

First

word

Second

word

First

word

Second

word

[0] 13 15 3 2 [0] 31 35 36 30

[1] 12 16 3 1 [1] 31 33 25 33

[2] 10 16 3 1 [2] 32 35 25 26

[3] 11 17 3 2 [3] 31 38 17 32

[4] 12 16 3 1 [4] 35 36 34 55

Lane[i, j] α′
0 β0 Lane[i, j] α′

0 β0

First

word

Second

word

First

word

Second

word

First

word

Second

word

First

word

Second

word

[0, 0] 21 35 28 39 [0, 0] 55 69 48 66

[1, 0] 73 90 54 68 [1, 0] 130 139 91 114

[2, 0] 67 89 53 68 [2, 0] 125 141 88 112

[3, 0] 68 88 49 66 [3, 0] 120 142 88 111

[4, 0] 71 88 54 68 [4, 0] 136 158 96 111

[0, 1] 64 85 47 61 [0, 1] 120 147 86 111

[1, 1] 71 87 56 69 [1, 1] 124 144 92 111

[2, 1] 67 80 46 61 [2, 1] 129 143 85 103

[3, 1] 71 89 53 70 [3, 1] 127 141 91 110

[4, 1] 69 74 48 55 [4, 1] 141 144 100 103

[0, 2] 61 90 49 70 [0, 2] 143 166 87 113

[1, 2] 68 84 51 67 [1, 2] 121 135 89 110

[2, 2] 66 87 48 64 [2, 2] 126 142 90 113

[3, 2] 73 84 52 68 [3, 2] 133 148 92 109

[4, 2] 73 91 59 69 [4, 2] 134 162 101 116

[0, 3] 64 88 47 64 [0, 3] 120 145 87 112

[1, 3] 63 88 43 61 [1, 3] 115 140 84 112

[2, 3] 71 90 54 69 [2, 3] 131 146 96 112

[3, 3] 68 89 55 73 [3, 3] 116 144 90 115

[4, 3] 77 85 50 58 [4, 3] 143 158 106 112

[0, 4] 75 74 50 62 [0, 4] 133 146 102 106

[1, 4] 79 90 49 67 [1, 4] 134 146 104 117

[2, 4] 64 86 50 65 [2, 4] 122 137 83 111

[3, 4] 65 91 52 70 [3, 4] 131 140 87 110

[4, 4] 65 82 45 60 [4, 4] 135 153 83 126

similar to the 8-bit experiments in [21], the results for the first lane of state α′

in every round are worse than those for the other lanes in the same state. This
is because this lane is not rotated in steps π or ρ, resulting in fewer interesting
clock cycles for the bits in this lane.

Since we use the marginal probabilities in the loopy-BP network, we also
show in Table 6 the average number of correct bits in different intermediate states
from the 1000 validation traces. Because the probability tables are binary after

Single-Trace Fragment Template Attack 17

Fig. 4. Percentage of successfully recovered traces for the different factor-graph net-
works (with different numbers of rounds observed), as a function of the number of
loopy-BP iterations (left) and the number of unknown input bits (right).

marginalization, we define whether a bit is successfully predicted by checking if
the probability of the correct candidate bit is higher than 0.5. The marginalized
results also show that our templates predicted the state α′

Ω more successfully in
these four rounds than the other states.

We also tried other choices of fragment size besides 4 × 8 bits: 11 + 11 + 10
bits, 8 × 4 bits, 16 × 2 bits and 32 × 1 bit. We found that the choice of fragment
size plays little role in the results after marginalization. As an example, Table 8
compares the performance of these different fragment sizes for the first bit in
α′
0 after marginalization. Therefore, the fragment size can be chosen here to

optimize computation time. For 11-bit fragments, calculating probability tables
for 211 candidates dominates the testing stage. On the other hand, with 32 1-bit
fragments, the profiling stage takes longer, as we need to calculate a separate Σf

for each fragment for LDA, the most time-consuming profiling step. Therefore,
for our experiments with single-bit marginalization, the use of 4×8-bit fragment
templates seemed a good compromise.

Evaluation on Different Networks. We now evaluate how well the loopy-
BP algorithm works when fed with marginalized binary probability tables from
a single validation trace, along with 1024 known bits in the capacity part of the
input. Table 7 shows the number of validation traces reaching a steady state,
along with statistics on the number of iterations required, and the number of
validation traces where all intermediate bits were recovered. We provide results
from three networks, covering two, three, and four rounds, respectively. Although
intermediate values of all the validation traces are successfully recovered in these
three networks, we can see that we will need fewer iterations to reach a steady
state with the four-round network. Figure 4 (left) shows the percentage of suc-
cessfully recovered traces (defined as all the bits of α′

0 being recovered correctly)
out of the 1000 validation traces for these three factor-graph networks as a func-
tion of the number of loopy-BP iterations. It takes fewer iterations to completely
recover state α′

0 than it takes for the network to stabilize. It appears that the

18 S.-C. You and M. G. Kuhn

Table 2. Success rates (left) and guessing entropy (right) of templates in α′
0

(i, j) h (i, j) h

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(0, 0) 0.036 0.046 0.021 0.023 0.029 0.050 0.012 0.015 (0, 0) 47.918 37.603 72.631 66.417 58.449 36.038 84.323 69.128

(1, 0) 0.534 0.580 0.192 0.203 0.176 0.426 0.338 0.463 (1, 0) 2.914 2.228 9.998 9.484 10.852 3.305 5.991 3.168

(2, 0) 0.459 0.558 0.259 0.152 0.206 0.457 0.352 0.386 (2, 0) 3.296 2.191 7.754 13.492 10.111 2.793 4.998 4.433

(3, 0) 0.376 0.213 0.248 0.469 0.289 0.306 0.291 0.612 (3, 0) 3.878 10.928 7.214 3.287 6.476 5.613 5.836 2.142

(4, 0) 0.522 0.377 0.370 0.246 0.275 0.384 0.506 0.351 (4, 0) 2.576 4.329 4.455 7.112 8.444 4.172 2.976 5.131

(0, 1) 0.450 0.273 0.133 0.348 0.412 0.393 0.145 0.405 (0, 1) 3.304 6.886 21.260 3.147 3.947 3.788 13.872 2.868

(1, 1) 0.473 0.242 0.435 0.449 0.342 0.373 0.347 0.487 (1, 1) 2.725 7.374 2.801 3.769 5.946 4.577 5.000 3.175

(2, 1) 0.878 0.358 0.109 0.149 0.791 0.389 0.151 0.163 (2, 1) 1.161 4.434 21.005 16.938 1.381 4.054 16.640 12.926

(3, 1) 0.360 0.332 0.259 0.279 0.173 0.358 0.366 0.531 (3, 1) 4.909 4.014 7.500 7.730 13.265 3.903 5.013 2.675

(4, 1) 0.598 0.337 0.140 0.447 0.432 0.230 0.068 0.307 (4, 1) 2.005 4.753 18.085 3.258 3.421 8.237 30.208 3.685

(0, 2) 0.717 0.292 0.110 0.140 0.790 0.427 0.162 0.284 (0, 2) 1.573 5.369 22.824 15.404 1.378 3.447 12.988 7.555

(1, 2) 0.807 0.457 0.182 0.135 0.610 0.539 0.173 0.196 (1, 2) 1.295 3.155 12.805 16.964 2.118 2.141 13.294 12.928

(2, 2) 0.423 0.214 0.110 0.789 0.383 0.277 0.176 0.777 (2, 2) 3.110 8.532 21.392 1.404 5.061 6.394 13.671 1.291

(3, 2) 0.789 0.554 0.233 0.164 0.608 0.423 0.219 0.242 (3, 2) 1.308 2.049 9.743 14.054 2.401 3.065 11.262 8.953

(4, 2) 0.435 0.255 0.533 0.357 0.268 0.390 0.601 0.537 (4, 2) 2.866 6.688 2.319 5.176 8.416 4.756 1.986 2.902

(0, 3) 0.517 0.240 0.112 0.424 0.387 0.364 0.168 0.554 (0, 3) 2.555 8.155 22.583 2.758 4.980 4.951 14.281 2.157

(1, 3) 0.740 0.318 0.118 0.124 0.577 0.460 0.217 0.305 (1, 3) 1.509 5.179 17.242 16.478 2.061 3.089 9.198 6.468

(2, 3) 0.599 0.609 0.248 0.195 0.358 0.709 0.256 0.230 (2, 3) 2.029 1.885 8.480 12.055 5.119 1.573 8.126 8.616

(3, 3) 0.359 0.295 0.362 0.277 0.271 0.388 0.559 0.382 (3, 3) 4.863 5.171 4.425 6.750 9.046 4.186 2.511 5.356

(4, 3) 0.517 0.263 0.228 0.807 0.263 0.187 0.132 0.885 (4, 3) 2.509 7.140 9.502 1.275 7.513 11.743 17.919 1.167

(0, 4) 0.635 0.424 0.122 0.290 0.445 0.288 0.061 0.183 (0, 4) 1.866 3.518 19.914 4.703 3.229 6.271 33.439 7.764

(1, 4) 0.522 0.234 0.282 0.747 0.211 0.160 0.164 0.845 (1, 4) 2.620 9.101 8.051 1.582 10.651 13.080 14.079 1.306

(2, 4) 0.767 0.504 0.151 0.138 0.411 0.503 0.273 0.267 (2, 4) 1.549 2.537 13.825 18.494 3.763 2.569 7.648 8.671

(3, 4) 0.633 0.571 0.148 0.140 0.250 0.621 0.265 0.382 (3, 4) 2.066 2.134 15.311 16.691 7.488 1.926 8.879 4.935

(4, 4) 0.860 0.359 0.111 0.178 0.838 0.397 0.146 0.203 (4, 4) 1.212 4.708 25.596 12.427 1.255 4.436 19.452 9.656

Table 3. Success rates (left) and guessing entropy (right) of templates in β0

(i, j) h (i, j) h

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(0, 0) 0.063 0.060 0.026 0.034 0.035 0.039 0.022 0.017 (0, 0) 29.099 31.206 66.016 55.164 49.097 41.215 77.061 72.161

(1, 0) 0.067 0.084 0.039 0.034 0.035 0.065 0.035 0.058 (1, 0) 41.296 27.599 51.756 51.166 51.967 35.532 52.942 43.689

(2, 0) 0.055 0.073 0.049 0.043 0.046 0.070 0.039 0.052 (2, 0) 45.505 31.928 47.914 52.142 52.209 34.579 52.971 48.676

(3, 0) 0.061 0.049 0.030 0.057 0.052 0.058 0.046 0.052 (3, 0) 46.225 38.049 48.516 43.621 45.427 39.180 53.513 44.922

(4, 0) 0.045 0.066 0.059 0.044 0.056 0.080 0.048 0.051 (4, 0) 44.973 33.773 41.436 53.657 45.342 29.965 45.826 47.460

(0, 1) 0.054 0.053 0.028 0.055 0.056 0.050 0.036 0.054 (0, 1) 42.920 37.477 55.296 43.037 47.861 39.370 62.768 47.697

(1, 1) 0.062 0.052 0.061 0.054 0.049 0.043 0.043 0.043 (1, 1) 44.062 41.569 43.692 47.447 49.794 41.370 51.363 48.475

(2, 1) 0.096 0.045 0.034 0.041 0.063 0.068 0.022 0.029 (2, 1) 37.942 35.927 58.811 53.895 39.371 37.991 61.425 57.728

(3, 1) 0.047 0.063 0.043 0.055 0.045 0.055 0.038 0.064 (3, 1) 49.000 33.408 47.756 51.132 54.896 38.350 52.300 44.095

(4, 1) 0.081 0.055 0.032 0.063 0.073 0.047 0.020 0.049 (4, 1) 39.393 34.967 55.991 43.244 38.900 35.159 70.819 49.384

(0, 2) 0.055 0.062 0.029 0.033 0.067 0.056 0.029 0.035 (0, 2) 40.071 34.954 57.510 54.016 40.775 36.531 61.750 54.218

(1, 2) 0.070 0.059 0.032 0.050 0.059 0.054 0.025 0.033 (1, 2) 37.223 35.369 53.714 52.559 43.220 38.293 61.419 59.342

(2, 2) 0.064 0.049 0.028 0.065 0.049 0.057 0.029 0.067 (2, 2) 42.703 38.837 58.793 42.058 44.949 41.459 63.710 40.046

(3, 2) 0.076 0.073 0.050 0.028 0.049 0.057 0.029 0.040 (3, 2) 38.453 34.161 51.291 54.249 44.727 36.590 60.970 54.708

(4, 2) 0.064 0.072 0.080 0.053 0.051 0.064 0.065 0.058 (4, 2) 40.264 35.120 43.146 49.255 43.270 33.627 44.398 47.326

(0, 3) 0.048 0.061 0.031 0.054 0.051 0.058 0.025 0.055 (0, 3) 41.919 38.271 58.745 46.345 45.974 39.711 64.287 47.035

(1, 3) 0.088 0.062 0.031 0.030 0.051 0.085 0.032 0.050 (1, 3) 35.889 34.639 56.862 54.783 43.745 32.077 56.285 52.072

(2, 3) 0.065 0.079 0.046 0.049 0.043 0.080 0.042 0.033 (2, 3) 39.466 29.259 47.707 52.404 47.964 28.582 53.567 55.279

(3, 3) 0.055 0.067 0.053 0.038 0.044 0.065 0.050 0.050 (3, 3) 47.758 34.515 41.710 50.016 45.893 35.975 51.737 50.468

(4, 3) 0.062 0.067 0.043 0.066 0.051 0.056 0.018 0.061 (4, 3) 36.454 33.344 46.953 38.291 38.767 35.921 63.725 36.496

(0, 4) 0.063 0.080 0.028 0.063 0.050 0.044 0.022 0.031 (0, 4) 36.658 30.434 57.476 47.138 45.926 38.289 73.197 47.420

(1, 4) 0.064 0.056 0.045 0.060 0.049 0.048 0.032 0.057 (1, 4) 41.344 35.637 47.295 43.026 50.578 45.520 64.383 42.099

(2, 4) 0.073 0.074 0.037 0.025 0.048 0.072 0.044 0.054 (2, 4) 38.915 32.309 55.223 55.883 42.468 35.518 55.496 49.946

(3, 4) 0.057 0.084 0.030 0.045 0.032 0.083 0.025 0.054 (3, 4) 42.077 29.945 53.072 53.553 51.580 35.255 56.883 48.758

(4, 4) 0.077 0.061 0.020 0.041 0.163 0.144 0.038 0.055 (4, 4) 37.359 38.467 61.073 50.593 15.980 21.212 53.895 33.795

two-round network takes more iterations to recover all validation traces correctly
than the larger networks.

Figure 4 (right) shows the percentage of successfully recovered traces out of
1000 validation traces when we provide different numbers of known bits (not
just 1024), to explore the situation when the size of the rate parts (r unknown

Single-Trace Fragment Template Attack 19

Table 4. Success rates (left) and guessing entropy (right) of templates in C0

(i, j) h (i, j) h

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(0, 0) 0.027 0.036 0.016 0.030 0.041 0.060 0.019 0.042 (0, 0) 58.015 39.596 65.977 51.890 42.605 31.637 76.724 49.012

(1, 0) 0.025 0.044 0.020 0.039 0.034 0.066 0.015 0.036 (1, 0) 58.307 40.936 69.313 49.246 43.310 32.581 77.534 46.917

(2, 0) 0.027 0.043 0.027 0.039 0.047 0.051 0.018 0.043 (2, 0) 56.889 42.208 66.796 51.466 36.740 33.989 72.759 47.559

(3, 0) 0.032 0.047 0.017 0.045 0.045 0.056 0.015 0.046 (3, 0) 59.543 41.348 68.157 51.589 38.406 31.291 74.440 44.055

(4, 0) 0.026 0.048 0.022 0.037 0.066 0.075 0.018 0.048 (4, 0) 60.075 39.145 69.823 49.706 33.487 29.861 65.547 43.852

Table 5. Success rates (left) and guessing entropy (right) of templates in D0

(i, j) h (i, j) h

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(0, 0) 0.013 0.020 0.006 0.012 0.016 0.010 0.008 0.013 (0, 0) 91.069 84.318 92.714 87.537 84.127 73.385 93.005 85.368

(1, 0) 0.013 0.016 0.010 0.016 0.016 0.016 0.008 0.015 (1, 0) 87.800 84.453 89.139 86.089 78.383 78.650 90.992 80.381

(2, 0) 0.008 0.016 0.011 0.014 0.012 0.021 0.005 0.016 (2, 0) 89.727 86.831 89.815 88.058 76.028 78.165 92.148 84.787

(3, 0) 0.010 0.020 0.009 0.013 0.016 0.019 0.012 0.011 (3, 0) 93.462 83.278 92.638 84.953 84.579 70.239 92.599 82.877

(4, 0) 0.017 0.006 0.011 0.012 0.020 0.020 0.009 0.019 (4, 0) 91.890 81.804 90.937 88.506 80.511 76.263 91.385 76.724

Table 6. Average (μ) and standard deviation (σ) of the number of correct bits found
after marginalization of the byte tables (out of 1600 bits in α′

Ω and βΩ , and 320 bits
in CΩ and DΩ , respectively).

State α′
0 β0 α′

1 β1 α′
2 β2 α′

3 β3

μ 1353.432 1093.831 1352.345 1094.108 1353.010 1095.214 1353.998 1095.555

σ 15.854 17.746 16.313 17.103 16.028 17.255 15.243 17.265

State C0 D0 C1 D1 C2 D2 C3 D3

μ 211.007 187.974 211.480 187.722 211.509 187.489 211.051 187.565

σ 7.992 9.049 8.181 7.999 8.230 7.774 8.077 8.189

Table 7. Results of terminating bitwise SASCA on the 32-bit device

Network #Steady #Iteration #Correct traces

Median Mean σ Max Input α′
0 β0 α′

1 β1 α′
2 β2 α′

3 β3

4-round 1000 25 25.421 0.573 28 1000 1000 1000 1000 1000 1000 1000 1000 1000

3-round 1000 30 30.331 1.247 34 1000 1000 1000 1000 1000 1000 1000 N/A N/A

2-round 1000 51 51.710 4.391 72 1000 1000 1000 1000 1000 N/A N/A N/A N/A

Table 8. Fragment size had little influence on accuracy of bit prediction, as illustrated
here for the first bit in α′

0, using several metrics: predicted marginalized probability of
correct candidate from the first trace (Prob.), number of correct bit predictions over
1000 validation traces (#Success), maximum and average deviation (|ε|) of probability
among these 1000 trials from the predictions made by four-byte fragment templates.

Fragments 11 + 11 + 10 bits 4× 8 bits 8× 4 bits 16× 2 bits 32× 1 bit

Prob. 0.752437 0.750506 0.752002 0.752274 0.751888

#Success 729 730 733 733 732

Max |ε| 0.026377 – 0.010587 0.013578 0.013906

Average |ε| 0.002809 – 0.001652 0.001872 0.002043

20 S.-C. You and M. G. Kuhn

bits) and capacity parts (c known bits) of the permutation input vary in different
sponge functions. When the number of unknown bits increases beyond half of the
full state, including up to the 1600−128×2 = 1344 unknown bits in SHAKE128,
the four-round network performs better than the others. Therefore we chose the
four-round network for our final version of the attack.

4.4 Loopy Belief-Propagation Results

Results for the SHA-3 and SHAKE Functions. We recorded five groups
of 1000 test traces. Each group had a different range of SHA3-512 input lengths,
requiring 1, 2, 4, 5, or 10 invocations of Keccak-f [1600] to absorb, respectively.
Table 9 shows the number of successfully recovered inputs for each of these test
traces, and related statistics on the number of iterations required. We can see
that all the inputs were successfully recovered, after about 25–30 iterations.2

Apart from SHA3-512, we also recorded test traces for other Keccak[c] sponge
functions, including the other three SHA-3 variants and the two SHAKE extend-
able output functions. It is noteworthy that, because our SASCA network of
Keccak-f [1600] relies on the capacity part of the output of the previous invoca-
tion, the functions with a shorter capacity part (c known bits) may encounter a
lower success rate or may require more iterations to reach a steady state. Table 10
shows some results of these five functions with inputs that can be absorbed in
one or two invocations. We can see the results meet our expectation that the
shorter the capacity part, the lower the number of inputs we successfully recover,
and the more iterations we need to reach a steady state, despite all success rates
remaining close to 1. It is also noteworthy that in the same function, if the suc-
cess rate for inputs requiring one invocation is p, that for inputs requiring two
invocations should be p2, which is also consistent with our results.

Apart from our final four-round version, we have also tried these exper-
iments with the three-round network. Table 11 shows the results of recovering
1000 inputs with one invocation from the test traces of the six SHA-3 or SHAKE
functions. It appears that the four-round network provides better results, sug-
gesting that recording longer traces covering more rounds helps to push the
success rate much closer to 1.

2 Recall that Kannwischer et al.’s results [7] for their all-zero public input set, which
is similar to our experiments with very short Keccak[c] input, were worse than those
for their random public input set. We did not observe such variability in our setting,
i.e. the success rates or the number of iterations required did not significantly vary
with the input length of Keccak[c], even down to just one byte.

Single-Trace Fragment Template Attack 21

Table 9. Results of recovering the SHA3-512 inputs with multiple invocations of
Keccak-f [1600] permutation.

#Invocations #Traces
recovered

#Iteration

Median Mean σ Max

1 1000 25 25.399 0.804 28

2 1000 26 25.629 0.619 29

4 1000 26 25.575 0.611 29

5 1000 26 25.615 0.621 31

10 1000 25 25.364 0.552 28

Table 10. Results of recovering the functions in the SHA-3 family with one and two
invocations by the four-round network.

Function c r #Inv. #Rec. #Iteration*

Median Mean σ Max

SHA3-512 1024 576 1 1000 25 25.399 0.804 28

2 1000 26 25.629 0.619 29

SHA3-384 768 832 1 1000 27 26.838 0.942 29

2 1000 27 27.061 0.662 30

SHA3-256 512 1088 1 1000 29 28.646 1.246 32

2 998 29 28.679 0.761 33

SHAKE256 1 997 29 29.054 1.272 34

2 996 29 28.996 0.926 37

SHA3-224 448 1152 1 1000 29 29.106 1.255 33

2 996 29 29.440 0.971 37

SHAKE128 256 1344 1 979 31 30.897 1.512 39

2 971 31 31.206 1.212 39

*Only invocations that reached a steady state are taken into account.

Table 11. Results of recovering the functions in the SHA-3 family with one invocation
by the three-round network.

Function c r #Rec. #Iteration*

Median Mean σ Max

SHA3-512 1024 576 1000 30 30.064 1.720 35

SHA3-384 768 832 1000 34 34.066 2.057 41

SHA3-256 512 1088 999 38 38.023 2.924 46

SHAKE256 999 39 38.789 2.727 50

SHA3-224 448 1152 992 39 39.284 2.947 52

SHAKE128 256 1344 921 43 43.512 5.033 107

*Only invocations that reached a steady state are taken into account.

22 S.-C. You and M. G. Kuhn

5 Conclusion and Outlook

With the help of LDA-based dimensionality reduction, we successfully built frag-
ment templates that generate separate probability tables for each byte in the
32-bit words of the targeted intermediate states. The quality of our templates
is sufficient for creating per-bit marginalized observation factors from which a
bitwise loopy-BP network can reconstruct the full input and output of each
invocation of Keccak-f [1600], using also knowledge about a part of its input,
as given by the sponge construction. From that we can easily reconstruct the
padded arbitrary-length inputs of the Keccak sponge functions. Interestingly, our
results so far indicate that, although the Keccak[c] functions with a longer capac-
ity have cryptographically a higher security margin, that actually helps in our
attack strategy. Our results suggest that this method will also work for Keccak-
based sponge functions with a shorter capacity, especially when observing more
rounds by recording longer traces. We also expect that this attack strategy can
easily be applied to other SHA-3-derived functions, such as cSHAKE, KMAC,
TupleHash and ParallelHash, defined in NIST Special Publication 800-185 [8],
which also use the Keccak[256] or Keccak[512] functions, except for different
padding methods.

Our fragment templates reconstruct full-state information stored in larger
word sizes (such as 32 bits) than are practical with regular template or stochastic-
method attacks, by using the LDA technique to project traces onto subspaces
that are only related to a manageable part of the state. Further improvements
should be possible, for example lowering the R2 threshold to include more inter-
esting clock cycles may help to build templates with even higher success rates,
at the expense of more computational time required for profiling. We expect this
fragment-template technique can be extended beyond attacks on SHA-3 related
functions. Also, so far we have only demonstrated this technique using the same
board for profiling and attack, therefore its portability remains to be investi-
gated; however LDA-based techniques have previously already been shown to
help with portability of templates across boards [4].

Data and source code used are available at:

https://www.cl.cam.ac.uk/research/security/datasets/sha3-32bit/

References

1. Atmel Corporation: AVR XMEGA Microcontrollers. http://www.atmel.com/
products/microcontrollers/avr/avr xmega.aspx. Accessed Mar 2014

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

3. Choudary, M.O., Kuhn, M.G.: Efficient stochastic methods: profiled attacks beyond
8 bits. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 85–103.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 6

https://www.cl.cam.ac.uk/research/security/datasets/sha3-32bit/
http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx
http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-16763-3_6

Single-Trace Fragment Template Attack 23

4. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.
Inf. Forensics Secur. 13(2), 490–501 (2018). https://doi.org/10.1109/TIFS.2017.
2757440

5. CW1173: ChipWhisperer-Lite product data sheet, 13 February 2018. https://
media.newae.com/datasheets/NAE-CW1173 datasheet.pdf

6. ChipWhisperer-Lite arm edition, schematic, rev 03. https://github.com/
newaetech/chipwhisperer/raw/develop/hardware/capture/chipwhisperer-lite-
32bit/cw-lite-arm-main.pdf

7. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on Keccak. IACR
Trans. Crypt. Hardware Embed. Syst. 2020(3), 243–268 (2020). https://doi.org/
10.13154/tches.v2020.i3.243-268

8. Kelsey, J., Chang, S., Perlner, R.: SHA-3 derived functions: cSHAKE, KMAC.
TupleHash ParallelHash (2016). https://doi.org/10.6028/NIST.SP.800-185

9. Luo, P., Fei, Y., Fang, X., Ding, A.A., Kaeli, D.R., Leeser, M.: Side-channel anal-
ysis of MAC-Keccak hardware implementations. IACR Cryptology ePrint Archive
2015, 411 (2015). https://doi.org/10.1145/2768566.2768567

10. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

11. NI PXIe-5160. http://www.ni.com/en-gb/support/model.pxie-5160.html
12. NI PXIe-5423. http://www.ni.com/en-gb/support/model.pxie-5423.html
13. NIST: SHA-3 standard: permutation-based hash and extendable-output functions,

August 2015. https://doi.org/10.6028/NIST.FIPS.202. FIPS PUB 202
14. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware

embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

15. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

16. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

17. Taha, M., Schaumont, P.: Differential power analysis of MAC-Keccak at any key-
length. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp.
68–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4 5

18. Taha, M., Schaumont, P.: Side-channel analysis of MAC-Keccak. In: 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
125–130. IEEE (2013). https://doi.org/10.1109/HST.2013.6581577

19. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 15

20. Extended Keccak code package. https://github.com/XKCP/XKCP. Accessed Apr
2019. lib/low/KeccakP-1600/Compact64/KeccakP-1600-compact64.c

21. You, S.-C., Kuhn, M.G.: A template attack to reconstruct the input of SHA-3 on
an 8-bit device. In: Bertoni, G.M., Regazzoni, F. (eds.) COSADE 2020. LNCS,
vol. 12244, pp. 25–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
68773-1 2

https://doi.org/10.1109/TIFS.2017.2757440
https://doi.org/10.1109/TIFS.2017.2757440
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://github.com/newaetech/chipwhisperer/raw/develop/hardware/capture/chipwhisperer-lite-32bit/cw-lite-arm-main.pdf
https://github.com/newaetech/chipwhisperer/raw/develop/hardware/capture/chipwhisperer-lite-32bit/cw-lite-arm-main.pdf
https://github.com/newaetech/chipwhisperer/raw/develop/hardware/capture/chipwhisperer-lite-32bit/cw-lite-arm-main.pdf
https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.1145/2768566.2768567
http://www.ni.com/en-gb/support/model.pxie-5160.html
http://www.ni.com/en-gb/support/model.pxie-5423.html
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-41383-4_5
https://doi.org/10.1109/HST.2013.6581577
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://github.com/XKCP/XKCP
https://doi.org/10.1007/978-3-030-68773-1_2
https://doi.org/10.1007/978-3-030-68773-1_2

Trace-to-Trace Translation for SCA

Christophe Genevey-Metat1 , Annelie Heuser1(B) , and Benôıt Gérard1,2

1 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
annelie.heuser@irisa.fr

2 Direction Générale de l’Armement, Rennes, France

Abstract. Neural Networks (NN) have been built to solve universal
function approximation problems. Some architectures as Convolutional
Neural Networks (CNN) are dedicated to classification in the context of
image distortion. They have naturally been considered in the community
to perform side-channel attacks showing good results on traces exposing
time misalignment. However, even where these timing distortions are not
present, NN have produced better results than legacy attacks.

Recently in TCHES 2020, auto-encoders have been used as prepro-
cessing for noise reduction. The main idea is to train an auto-encoder
using as inputs noisy traces and less noisy traces so that the auto-encoder
is able to remove part of the noise in the attack dataset.

We propose to extend this idea of using NN for pre-processing by not
only considering the noise-reduction but to translate data between two
side-channel domains. In a nutshell, clean (or less noisy) traces may not
be available to an attacker, but similar traces that are easier to attack
may be obtainable. Availability of such traces can be leveraged to learn
how to translate difficult traces to easy ones to increase attackability.

Keywords: Side-channel analysis · Generative Adversarial Network ·
Profiled attacks · Neural networks · Electromagnetic emanations ·
Power consumption

1 Introduction

Physical side-channel analysis has been introduced at the end of the 90’s in [9].
Since then, the interest of side-channel attacks has increased and new attacks
and channels have been considered. Those attacks have been classified into two
classes depending on the ability of the attacker to perform some prior training
before attacking. Profiled attacks leverage the availability of training data to
outperform non-profiled attacks by tuning the leakage model to best fit reality.
Indeed profiled attacks are the most efficient ones since the model used is at
worse as good as a generic model used in the non-profiled case. The reference
for profiled attacks are Template Attacks (TA) [2] which are optimal as soon as
the leakage fits the model used (usually a Gaussian model).

A few years ago, Deep Learning (DL) techniques have been introduced as new
profiled attacks [11]. They have been shown to gain good performance even in the
presence of countermeasures. As an example, the ASCAD database [14] contains
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 24–43, 2022.
https://doi.org/10.1007/978-3-030-97348-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_2&domain=pdf
http://orcid.org/0000-0002-1901-626X
http://orcid.org/0000-0002-1095-5420
http://orcid.org/0000-0002-0598-2387
https://doi.org/10.1007/978-3-030-97348-3_2

Trace-to-Trace Translation for SCA 25

traces corresponding to a masked implementation with artificial desynchroniza-
tion. The database has been used in numerous works leading to high-performance
attacks compared to classical techniques.

Related Work. Most of the works using DL techniques are based on con-
volutional neural networks [8,10,12,12,14,20]. Lately, some works go beyond
this approach and have shown the advantage of using Generative Adversarial
Networks (GAN)s for data augmentation [17] or Convolutional Auto-Encoders
(CAE) for noise reduction [19]. In particular, Wang et al. investigated the use
of Conditional Generative Adversarial Networks (CGAN) for data augmenta-
tion [17], which requires a labeled dataset. They show that increasing the amount
of traces in the training dataset with traces generated by a CGAN can improve
the performance of profiled attacks. As a result, they show that they can reach
similar performances using only half of the original measured training traces.

Closer to our work, authors of [19] have investigated the capability of CAE
to denoise/remove the effect of various hiding countermeasures. For this, they
artificially added noise to the ASCAD datasets: Gaussian noise, shuffling, clock-
jitter and random-delay. Their results show that auto-encoders are effective tools
to improve the quality of traces and thus to increase the attack performance by
targeting processed traces. This work is of interest since for the first time, NN
are not considered for performing a full attack but only as a preprocessing step
before applying a distinguisher. Actually, the approach does not need to be in
a classical profiling context as we will detail in this paper and thus can be used
as a prior process to any other classical side-channel attack.

To be able to learn how to remove the noise, the auto-encoder needs a training
dataset containing the noisy traces and the corresponding clean traces. The
main drawback of this approach is that the attacker must have access to those
clean traces (e.g. traces without any countermeasure present). In many situations
(e.g., when clock-jitter is present) the attacker might not be able to fulfill this
requirement. We propose here to relax this constraint by considering an easier
dataset instead of a clean one. That is, not using a noiseless version of the
training dataset but some dataset obtained from a setup which is easier to attack.
For this, we leverage on techniques designed to translate between two domains.

This Work. We aim at investigating how far we could extend the research
topic from [19] by going beyond noise reduction and toward trace translation.
The main goal is shared with the aforementioned paper since the finality is to
improve attack traces for reaching better attack performances. To this end, we
investigate the use of GAN, as they are known in the field of computer vision to
be effective to generate synthetic data. They are for instance used to generate
art, improve astronomical images, or to perform image-to-image translation.

In this paper, we adjust and tune two GAN architectures over a set of hyper-
parameters: (1) Speech Enhancement GAN (SEGAN) which has been designed
for speech enhancement [13], (2) Pix2Pix [5] designed in the context of image
translation or generation, and select the best performing one for our experiments.

Our main idea is to translate traces measured on “difficult” (e.g., complex,
noisy) sources to “easier” ones, without the restriction of having clean and noisy

26 C. Genevey-Metat et al.

traces from the same device, source, and implementation. We considered our
traces as paired datasets, even if they come from different devices, because these
traces contain the same intermediate variable. To make a proof of concept of our
approach, we perform the following translation experiments:

1. from (less informative) electromagnetic (EM) to power consumption traces,
2. from one target device to another (STM32F1 to STM32F2, STM32F0 to

STM32F2, STM32F2 to STM32F4).

The first case is motivated by the practical limitations of an attacker that
may not be able to introduce a resistor on the target PCB to attack while
being able to measure the power on a training device. The second one has been
chosen to see if the translation goes beyond what could be seen as a (simple)
scaling/shifting and is actually able to transform the leakage model (e.g. leakage
shape and location).

2 Preliminaries

2.1 Side-Channel Analysis

In the side-channel adversary model one assumes that the attacker is able to
measure side-channel information while knowing the plaintext or ciphertext plus
some information about the internal structure of the implemented algorithm.
Using this information the attacker is able to make predictions about parts of
the secret key. Formally, a function of the cryptographic algorithm is processed
taking as inputs (a part of) the secret key k∗ and (a part of) the plaintext (or
ciphertext) t. The attacker defines an internal state of the cryptographic algo-
rithm y as a function of t and k∗, which is assumed to relate to the deterministic
part of the measured leakage x. For example, in AES a common choice is the
substitution output, i.e. y(t, k∗) = SBox[t⊕k∗], where SBox[·] is the substitution
look-up table. We denote y(·, ·) as the label.

(Non-)Profiled Attacks. When performing a side-channel attack, an attacker
has access to an attack dataset. That is, a set of traces which is obtained with
some fixed secret that the attack aims at recovering. To extract information
from these measurements, the attacker has to make some hypotheses about the
least constrained leakage model. On top of that, profiled attacks have access to
a training dataset that is a set of traces with known inputs/secrets obtained
in similar conditions. The attacker may, for instance, acquire a clone device in
order to extract such a training dataset.

Correlation Power Analysis (CPA). The most common non-profiled side-
channel analysis technique is based on the Pearson correlation coefficient [1].
The attacker iterates over all possible values of the key k from the key-space
and, knowing the ciphertext or plaintext t, computes y(t, k) for each possible
key prediction k. Given a certain amount of side-channel measurement traces x
with corresponding t, he then calculates the Pearson correlation between x and
y(t, k). The most likely key prediction is the one that maximizes the correlation.

Trace-to-Trace Translation for SCA 27

Neural Network Attacks. In our experiments, we will use three different
networks for exploiting an attack dataset (that is, recovering the fixed key used
to generate the traces). Those networks have been designed to target traces
containing 700 time samples, and thus we reduced our traces to 700 points by
selecting relevant windows based on Signal-to-Noise Ratio (SNR). The training
is run for 100 epochs with batches of size 128. For each architecture, we selected
the model reaching the best validation loss.

ASCAD Neural Network. Authors of [14] have introduced the first deeply studied
neural network, that they refer to as cnn best. In our experiments, we will refer to
this network as ASCAD network (using its corresponding published parameters).

In
pu

t

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

C
on

v1
D

P
oo

lin
g1

D

F
la
tt
en

M
L
P

So
ft
m
ax

O
ut
pu

t

Fig. 1. ASCAD network

The ASCAD network, which is close to the architecture of VGG-16 [16] is
depicted in Fig. 1. It is composed of five blocks with one convolutional layer by
block, a number of filters equal to (64, 128, 256, 512, 512) with kernel size 11
(same padding), ReLU activation function, and an average pooling layer for each
block. The CNN has two final dense layers of 4 096 units.

Variations of the ASCAD Network. Recently, lighter networks have been pro-
posed in the side-channel context. To show that trace translation is not particular
to one network, we additionally use:

1. the network proposed by Zaid et al. in [20] labeled as Zaid network,
2. the even lighter network presented by Wouters et al. in [18], labeled as

NoConv1 network.

The Zaid network (depicted in Fig. 2(a)) is composed of one block with one
convolutional layer, a number of filters equal to 4, with a kernel size 1 (same
padding), SeLU activation functions, an batch normalization layer, and an aver-
age pooling layer. Finally, The Zaid network has two dense layers of 10 units.

The NoConv1 network (depicted in Fig. 2(b)) is composed of one block with
one average pooling layer. The NoConv1 network has two dense layers of 10
units. Figure 2(b) gives an illustration of the NoConv1 network.

28 C. Genevey-Metat et al.

C
on

v1
D

B
at
ch
N
or
m

P
oo

lin
g1

D

F
la
tt
en

M
L
P

So
ft
m
ax

(a) Zaid

P
oo

lin
g1

D

F
la
tt
en

M
L
P

So
ft
m
ax

(b) NoConv1

Fig. 2. Additional networks

2.2 Datasets

We use the chipwhisperer light capture board combined with the CW308 UFO
board to measure side-channel information from different STM32 devices. More
precisely, we used the STM32F0 (Cortex-M0), STM32F1, STM32F2 (both
Cortex-M3) and STM32F4 (Cortex-M4) target devices from the CW308 board1.

On all devices, the beginning of an AES-128 encryption was measured, where
we used the TINYAES implementation integrated in the chipwhisperer software.
The chip frequency was set to 7.37 MHz and the measurements are sampled at
4×7.37 Ms/s. For the chipwhisperer light setup, power consumption is collected
through the measurement shunt on the CW308 UFO board. To capture EM
signals we used a Langer near-field EM probe (RF-U 5-2) connected to a 20dB
amplifier2. On each device and source, we measured 100k traces for training and
validating (used in a ratio of 80:20 for learning the translation and training the
neural network attack), and 25k traces as an attack dataset with 25 different
keys.

2.3 Evaluation Metrics and Targeted Value

Experiments have been performed to first-order leakage from the output of the
AES substitution box (SBox): To evaluate the amount of leakage, we use the
SNR. Let X denote the captured side-channel measurement, let Y be the label
that is determined by the plaintext and the secret fixed key, then SNR gives
the ratio between the deterministic data-dependent leakage and the remaining
noise, i.e. SNR = V(E(X|Y)

E(V(X|Y) , where E(·) is the expectation and V(·) the variance
of a random variable.

To evaluate the ability to retrieve the key, we use the Guessing Entropy (GE),
which is the expected ranking of the secret key k∗ within a vector of key guesses.
In particular, the vector of key guesses gi,1, . . . , gi,|K| for the i-th measurement
is calculated by mapping each key guess k to a label j with probability p̂i,j and
applying the maximum-likelihood principle over 1 to m measurements (where m
is the number of measurements considered for the attack). The guessing entropy
is then the expected position of the secret key k∗ in the sorted vector of key

1 https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html.
2 We do not claim that the setup, nor the position of the EM probe on the device is

chosen optimally.

https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html

Trace-to-Trace Translation for SCA 29

Fig. 3. General overview of GAN

guesses, where the sorting is applied to the probabilities in descending order. In
other words, the guessing entropy gives the average amount of key guesses an
attacker needs to perform before he reveals the secret key. In case his first guess
is the secret key GE = 0.

2.4 GAN

GAN [4] falls into the class of generative modelling, meaning that it can be used
to generate or output new synthetic data that could have plausibly been drawn
from the original dataset. GAN is composed of two deep neural networks: the
generator, and the discriminator. Generally speaking, the generator is used to
generate new valid examples from the problem domain, whereas the discrimina-
tor is used to classify examples as real (from the domain) or fake (generated).

As illustrated in Fig. 3, the generator takes a fixed-length random vector as
input and generates a sample in the domain, i.e., the space of real data. The
random vector is typically drawn from a Gaussian distribution and it seeds the
generative process. The discriminator model takes either an input from the real
data or the generated one from the generator and predicts a binary class label of
real or fake. The discriminator uses the discriminator loss for back-propagation,
whereas the generator takes the generator loss produced by the discriminator.

Since its introduction in 2014, the interest of GAN has grown and many other
GAN architectures have been proposed3. One particular class of GAN concen-
trates on the problem of image translation instead of pure image generation.
One of the best-known architectures is Pix2Pix [6], it requires paired datasets.

Pix2Pix is trained to transform images from one domain into images that
could plausibly belong to another domain. For example, a famous illustration in
image translation transforms an drawing into a real image.

The interest of translation has been raised by different communities. For
speech enhancement [13], authors implemented SEGAN to denoise audio wave-
forms. Contrary to the generator in standard GANs, the one of SEGAN takes as
input a random vector plus a noisy signal data to produce the enhanced signal.
3 Collection of GANs from several domains: https://github.com/hindupuravinash/

the-gan-zoo.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

30 C. Genevey-Metat et al.

3 Trace-to-Trace Translation

3.1 Approach

The idea proposed in this work is to use domain translation as a pre-processing
technique to improve the quality of traces. This approach is enabled as soon as
an attacker has access to paired datasets (that is, sharing the same intermedi-
ate target values) from two different settings. Indeed, one of the settings must
correspond to the attack dataset and the other one corresponds to some settings
for which the chosen attack performs better.

An attacker following the proposed approach will thus handle four different
datasets. To smooth the description of the technique let us introduce some nota-
tion. The goal is to improve the attack on domain A traces by translating traces
from the domain A to domain B. Datasets:

– the original attack dataset contains the traces from which the attacker
wants to extract a secret key (thus from domain A);

– the translation training dataset A contains traces from domain A;
– the translation training dataset B contains traces from domain B that

should be paired with the translation training dataset A;
– the translated attack dataset containing the translation from domain A

to domain B of the original attack dataset.

Should this technique be used in a profiled setting, an additional fifth dataset
would be added, namely

– the training dataset that contains training (thus labeled) traces from
domain B used to train the profiled attack.

We want to bring the reader’s attention to the fact that the only labeled
dataset is the optional fifth one since translation training datasets only need to
be paired (depending on the context, it may not necessarily imply being labeled).

Short Description. With these datasets in mind, the technique can be simply
described in a very compacted form.

1. Train a translator to translate traces from domain A to domain B using
translation training datasets A and B.

2. Use the trained translator to generate the translated attack dataset from the
original attack dataset on domain A.

3. (optional) Train a profiled side-channel attack on the training dataset from
domain B.

4. Attack the translated attack dataset to recover the key using an independent
(un-)profiled attack.

Instantiating the Translator. As a first investigation of trace-to-trace translation,
we propose to use GAN networks as a translator since they have shown to be
efficient in several domains such as image translation [5], style transfer [7] or
audio processing [13]. We do not claim that this architecture is an optimal choice
for translation but its wide use makes it a relevant one for a first investigation.
More details on the used GAN architecture are given in Sect. 3.3.

Trace-to-Trace Translation for SCA 31

3.2 Experimental Methodology

For all our experiments on translation, we assess the improvements brought by
the proposed preprocessing by applying both a profiled and a non-profiled attack.
Let us recall that the attacker has an attack dataset from domain A and the
improvement proposed is to translate them to domain B prior to the attack.

For the non-profiled scenario, the improvement consists in using the GAN to
translate traces from a domain A to a domain B then apply CPA on translated
(synthetic) traces. We compare this to the direct application of CPA to traces of
domain A and thus generate two different graphs illustrating the attack success
as a function of the number of traces used to attack.

Regarding the profiled scenario, the improvement consists in using the GAN
to translate traces from a domain A to a domain B then apply a DL-based
attack on translated (synthetic) traces. Obviously the DL-based attack should
use a model trained on a training dataset from domain B.

For further comparison, we performed a complementary attack that consists
in directly applying the DL-based attack using a model trained on domain B to
the original attack dataset (from domain A). This additional experiment is only
there as a witness experience and to demonstrate that the translation is indeed
successful as both approaches use the same trained model.

3.3 Used GAN Architecture

We compared two architectures of GAN: Pix2Pix and SEGAN. Pix2Pix is well
known for image translation, whereas SEGAN was designed to denoise audio-
waveforms. We tuned both architectures over a set of hyperparameters, and
selected the best performing model (see Table 1).

Table 1. Hyperparameter tuning

Hyperparameter Range SEGAN Pix2Pix

Selected Selected

Optimizer {Adam, RMSProp, SGD} RMSProp RMSProp

Activation function {Tanh, LeakLy ReLU, PReLU} Tanh Tanh

Batch size {64, 128, 256} 128 64a

Epochs {25, 50, 100, 200} 200 200
aFor SEGAN we tried four potential batch sizes, but as Pix2Pix is deeper than
SEGAN, and we were limited by GPU memory in our setup, we could only
test batch size of 64.

During the tuning phase, we used a paired dataset composed of 2 × 100k
traces (100k for each domain). These traces were split: 80k for the training and
20k for the validation. Since using the GE as a validation metric was too expen-
sive on time, we saved the best model over training epochs based on the SNR
obtained on translated traces. SNR can be directly computed on the validation

32 C. Genevey-Metat et al.

dataset while using GE would require to translate a large attack dataset (with
a few fixed keys). We kept the model providing the highest SNR peaks for each
set of hyperparameters. A first analysis of the obtained SNR curves has shown
that the best performances of Pix2Pix and SEGAN were obtained with Tanh
as activation function and RMSprop as an optimizer. To better compare the
obtained models, we additionally used 25k attack traces (translated traces with
few fixed keys). Using them we computed the GE for all final models and chose
the hyperparameters leading to the smallest one as summarized in Table 1.

The SEGAN architecture we selected for our experiments (after fine-tuning
it) is close to the architecture of the original SEGAN [13] that is used for audio
waveform translation.

Input

Conv1D

Tanh

Conv1D

Tanh

Conv1D

Tanh

Conv1D

Tanh

Z

Tanh
Conv1DTranspose

Tanh
Conv1DTranspose

Tanh
Conv1DTranspose

Tanh
Conv1DTranspose

Output

Fig. 4. Generator architecture (SEGAN)

The generator takes as input a 700-point trace coming from the original
domain and outputs a 700-point synthetic trace, which is the translation to
the target domain. The generator is an auto-encoder that is composed of an
encoding part and a decoding part. The output value of the encoding part (or
equivalently the input of the decoding part) lies in the so-called latent space.
The latent representation of the trace has a shape equal to (2, 256) and this is
where the random noise Z is added. The generator is illustrated in Fig. 4. The
encoder is composed of four blocks with one convolutional layer per block, a
number of filters equal to (32, 64, 128, 256) with kernel size 31 (same padding),
followed by a Tanh activation function. The decoding part is composed of four
blocks and one transposed convolutional layer per block, a number of filters
equal to (128, 64, 32, 1) with kernel size 31 (same padding), followed by a Tanh
activation function. Each block of the decoding part is concatenated with the

Trace-to-Trace Translation for SCA 33

output of each encoding block, represented by a dotted arrow in the Fig. 4, it is
the principle of the U-Net architecture [15].

The discriminator takes as input a combination of two 700-point traces: one
trace coming from the original domain and one trace coming from the target one.
This last trace may directly come from the target domain (real trace) or it could
be a generated trace (fake trace). The discriminator is trained to distinguish
between real and fake. More precisely, the discriminator outputs the probability
that a trace from the target domain is a translation from the original domain.
The discriminator is illustrated in Fig. 5. It is composed of four blocks, and one
convolutional layer per block, a number of filters equal to (32, 64, 128, 256)
with a kernel size 31 (same padding), a Batch normalization layer, and a Tanh
activation function. The discriminator has two final dense layers of 256 and 128
units.

In
pu

t

C
on

v1
D

B
at
ch
N
or
m

T
an

h

C
on

v1
D

B
at
ch
N
or
m

T
an

h

C
on

v1
D

B
at
ch
N
or
m

T
an

h

C
on

v1
D

B
at
ch
N
or
m

T
an

h

R
es
ha

pe

M
L
P

Si
gm

oi
d

O
ut
pu

t

Fig. 5. Discriminator architecture (SEGAN)

As for SEGAN, we slightly adapted Pix2Pix to our datasets. The generator of
the Pix2Pix takes as input a 700-point trace coming from the original domain and
outputs a 700-point synthetic trace as SEGAN model. The generator is also an
auto-encoder that is composed of an encoder part and decoder part. The Pix2Pix
network didn’t take latent representation between the encoder part and decoder
part, but just one convolutional layer composed of 512 filters. The encoder part
is composed of seven blocks with one convolutional layer per block, a number
of filters equal to (32, 64, 128, 256, 256, 256, 256) with a kernel size of 11 (same
padding), followed by a Batch Normalization layer and an activation function
(see Table 1). The decoder part is composed of seven blocks and one transposed
convolutional layer per block, a number of filters equal to (256, 256, 256, 256, 128,
64, 32) with a kernel size 11 (same padding), followed by a Batch Normalization
layer and an activation function. The discriminator of the Pix2Pix is composed
of five blocks with one convolutional layer per block, a number of filters equal
to (32, 64, 128, 256, 1) with a kernel size of 11 (same padding). In the original
paper [6] the discriminator part of the Pix2Pix is implemented as PatchGAN,
which means that the discriminator will classify 70 × 70 patches of the input
image as real or fake. In our case, we adapt the output of the discriminator to
output one single value. During the tuning phase, Pix2Pix always provided lower
performance (e.g., lower or less SNR peaks). Hence, SEGAN has been selected
for our experiments on translation in the next sections.

34 C. Genevey-Metat et al.

Fig. 6. Evaluation of STM32F2: (a)–(c) illustrates the mean trace and (d)–(f) the SNR
of the attack dataset for the EM, power channel, and the translated synthetic trace
dataset

4 Translation from EM to Power

In this scenario, we investigate the capability of GAN to translate traces from
EM to power consumption on the same device. Depending on the device, we
obtained various different SNR levels. For each device, we observed that the
SNR corresponding to its EM and power traces have similar shapes while being of
different magnitudes. From a quantitative point of view, the SNR value obtained
from power traces is higher than from EM traces: in our setup EM measurements
contain more noise. For the experiments presented in this section, Domain A
will thus correspond to EM traces (that are harder to attack) and Domain B
to power ones.

STM32F2. Figure 6 shows the mean trace of the attack dataset of the EM data,
the synthetic dataset, and the power consumption, as well as their SNR levels.
First, we observe a translation as indeed the mean translated synthetic trace is
looking close to the mean trace of the power dataset, particularly for the second
half. Next, the SNR value is low (close to 0.4) for the EM channel, whereas
the SNR value is high (close to 50) for the power channel, but their shapes are
similar. The synthetic dataset corresponds to the set generated by GAN, which
was trained to translate traces from EM to the power channel. We observe that
the shape of SNR is different compared to the shape of EM and power and that
the leakage positions changed in time, while still being able to retrieve one (over
three) leakage positions from the target domain. The SNR value of the synthetic
dataset is close to 6, so the translation increases the magnitude and thus the
amount of information. Still, the SNR value is lower than for the power channel,

Trace-to-Trace Translation for SCA 35

which means that some information could not be reproduced (as it may not be
available in the EM trace).

(a) GE for three networks; left: original EM dataset, right: translated synthetic
dataset

(b) CPA on EM dataset (c) CPA on synthetic dataset

Fig. 7. Attack evaluation on STM32F2 EM (original and synthetic translated traces)

In Fig. 7 (top) we plot the GE in the profiled scenario when targeting the
EM channel. First, we see that the performance is not specific to one net-
work (ASCAD, Zaid, or noConv1). On the left side of the figure, one observes
that when using directly the EM traces for attacking (labeled as F2EM), the
attack does not succeed for any network. Next, similar performance can be
observed when the network is trained on the power channel (labeled F2PW).
Contrary the right plot shows that using the model trained on the power chan-
nel (F2PW) while attacking the translated synthetic traces, we observe that the
attack rapidly converges towards a GE of 0 using less than 10 attack traces. We
further evaluate the outcome in the scenario of non-profiled attacks. Figure 7
(bottom) illustrates CPA using directly the EM dataset and when using the
translated synthetic traces. Without translation the correct key is found with
approximately 30 traces, whereas with the translated synthetic dataset the key
can be found using below 15 traces.

36 C. Genevey-Metat et al.

These results confirm that GAN is able to translate between the EM and
power domain (i.e., F2PW not working on EM dataset, but on the translated
dataset for the three networks), and further that the translation is increasing
the exploitable side-channel information using a profiled DL-based attack or even
when considering a classical non-profiled univariate attack.

Fig. 8. Evaluation of STM32F4: (a)–(c) illustrates the (mean) trace and (d)–(f) the
SNR of the attack dataset for the EM, power channel, and the translated synthetic
trace dataset

STM32F4. Figure 8 (top) shows the mean trace obtained from STM32F4 of
the dataset for EM/power measurements and the synthetic traces, where we
visually observe a translation. In the bottom of the figure, we plot the SNR
obtained with different attack datasets. The maximum SNR peak from the EM
channel is close to 0.12, whereas it is close to 17.5 for the power channel, showing
that the power channel is containing less noise. Again, the shape of the synthetic
dataset is different compared to the original channels but in this experiment the
translation preserved perfectly time locations. We observe that the SNR value
of the synthetic attack set is improved by a factor 10.

Figure 9 (top) shows the GE obtained when targeting device STM32F4 with
EM for all three networks. As for STM32F2, we observe on the left that attacking
the EM channel using a model trained on EM (F4EM) or trained on power
consumption (F4PW) does not converge within the given traces for any network.
When using the translated synthetic traces and a model trained on the power
channel (F4PW) GE reaches a mean rank equals to zero with only 20 traces for
NoConv1 and around 30 traces for the other two networks. So, again by using
the GAN translation, we could turn an unsuccessful attack into a successful one.

Trace-to-Trace Translation for SCA 37

(a) GE for three networks; left: original EM, right: translated synthetic dataset

(b) CPA on EM dataset (c) CPA on synthetic dataset

Fig. 9. Attack evaluation on STM32F4 EM (original and synthetic translated traces)

Figure 9 (bottom) shows that again the performance of CPA is improved as
well. Using directly the EM dataset reveals the key using around 200 traces,
while the attack succeeds using around 50 traces using the translated traces.

Summary. In this section, we demonstrate that a translation from EM to power
consumption is possible and that it reduces the number of traces needed for a
successful attack. On both datasets, the classical approach (attacking directly
the noisy channel) with DL failed and we observe that directly using a network
trained on the power channel (but without translating the attack dataset) leads
to poor performances. Our results show that GANs can be used to translate
traces from EM to power channel, and the synthetic traces combined with a
network trained on the power channel is successful. Additionally, our results show
that the performance of CPA is greatly improved when attacking on translated
instead of the original traces.

38 C. Genevey-Metat et al.

Fig. 10. SNR evaluation for each of scenarios considered: (a)–(c) F1PW translated to
F2PW, (d)–(f) F0PW translated to F2PW, (g)–(i) F2PW translated to F4PW; left
column domain A, middle column translated, right column domain B dataset.

5 Cross-Device Translation

In this scenario, we investigate the capability of GAN to translate traces cap-
tured from one device to another. For the experiments presented in this section,
Domain A will thus correspond to traces from one chip and Domain B to
traces from another chip.

STM32F1 Power to STM32F2 Power. In Fig. 10 (a)–(c), we plot the SNR
evaluation obtained with different attack sets when translating F1 to F2 with
power. The SNR value is close to 50 for F2, the synthetic attack set has an SNR
value close to 200 (which is even larger than the target domain), and we can
observe that GAN retrieved all three leakage positions from F2 which are at
different time locations than F1.

Trace-to-Trace Translation for SCA 39

(a) GE; left: original dataset, right: translated synthetic dataset

(b) CPA on STM32F1 (c) CPA on synthetic dataset

Fig. 11. Attack evaluation on STM32F1 (original and synthetic translated traces)

In Fig. 11 (top), we plot the GE obtained when we target F1 with power.
Any of the DL-based attacks on the target domain (labeled F1PW) reaches a
mean rank equal to zero below 2 traces. Using a model trained on F2 directly
does not succeed, however, when translating to the domain F2, the ASCAD and
Zaid networks succeed as well within 2 traces. Even though the performance
using directly F2PW cannot be improved because of its high SNR by nature,
this scenario shows that the translation into another domain is possible. For
CPA (given at the bottom of the figure) we see that the performance can be
improved due to translation. Attacking the original traces is successful within 8
traces, whereas the correct key is found on the synthetic traces using 2 traces.

STM32F0 Power to STM32F2 Power. In Fig. 10 (d)–(f), we plot the SNR
evaluation when we translate F0 to F2 device with power. The SNR value is
close to 50 for the F2 device, and the synthetic attack set has an SNR close to
12 (which is even smaller than the target domain), but again we can observe
that GAN retrieved the leakage positions from F2, while being different in time
and amount for F0 and F2.

40 C. Genevey-Metat et al.

(a) GE; left: original dataset, right: translated synthetic dataset

(b) CPA on STM32F0 (c) CPA on synthetic dataset

Fig. 12. Attack evaluation on STM32F0 (original and synthetic translated traces)

In Fig. 12 (top), we plot the GE obtained when we target F0 with power. As
before, all DL-based attacks on the target domain (labeled F0PW) are already
efficient (as the SNR is high enough), whereas the model trained on F2PW does
not succeed on the original traces. Even though with a tiny difference, we observe
that the best performance was obtained by applying GAN and the Zaid network.

As in the previous scenario, we see that the translation improves the attack-
ability with CPA. On the original dataset, the key can be found using around
12 traces, whereas on the translated synthetic traces we see that the correct key
can be found immediately using 2 traces.

STM32F2 Power to STM32F4 Power. Unlike the previous scenarios, we
now consider to translate from a device with higher SNR to another one with
lower SNR. This is driven by several aspects, for example, the investigation
if the translation between domains is still successful (even though it may give
less attackability), or an attacker may only have a dataset available with a tuned
network for a device with less SNR. In Fig. 10 (g)–(i), we plot the SNR evaluation
when we translate F2 to F4. The SNR value is close to 17.5 for the F4 device, the
synthetic attack set has an SNR value close to 40 (which is still larger than the

Trace-to-Trace Translation for SCA 41

target domain), and we can observe that GAN has recovered all three leakage
positions at the same time positions as F4.

(a) GE for three networks; left: original EM dataset, right: translated synthetic
dataset

(b) CPA on STM32F2 (c) CPA on synthetic dataset

Fig. 13. Attack evaluation on STM32F2 (original and synthetic translated traces)

Figure 13 shows the GE obtained when targeting F2 with power. First, we see
that indeed a translation to a higher noise domain is possible, as all networks
trained on F4PW succeed on the translated dataset, but fail on the original
dataset. Second, one can observe that the attack performance of the three neural
networks is not degraded, but rather slightly improved. The increase may be
explained by the fact, that even though F2 has a higher SNR peak, F4 contains
three SNR peaks that are of a similar magnitude. We can see a similar behavior
in the translated synthetic attack dataset, which shows three SNR peaks with
comparable SNR levels. Indeed, when summing up all SNR values, the synthetic
dataset achieves a higher value than F2.

The performance of CPA shows a degraded performance, which is expected
as its an univariate attack, only considering one SNR peak at a time, where the
magnitude of SNR is directly related to the success of CPA [3].

Summary. Our experiments show that a trace translation between devices is
possible (lower to higher and higher to lower SNR) and the leakage positions of

42 C. Genevey-Metat et al.

the target domain are retrieved by translation. Concerning the SNR amplitudes,
we observed various behaviors. In two of the experiments, the synthetic traces
lead to a significantly higher SNR than the target domain, which we did not
observe when translating EM to power consumption in the previous section. An
intuitive explanation may be that the noise of the two devices (domains) is not
related (i.e., random for the GAN). Accordingly, the translation will be mainly
focused on deterministic leakage, which results to a higher SNR.

6 Conclusion and Future Work

This paper derives successful trace-to-trace translations using GANs in two dif-
ferent contexts, which opens a new door for adversaries. To attack a noisy setting,
an adversary is able to select another type of device or side-channel source that is
easier to attack and use trace translation to improve attack performances. Using
three different state-of-the-art profiled neural network attacks on the synthetic
translated traces, we show that the translation is not particular to a network.
To learn the translation between datasets, the approach in this paper does not
require knowledge of the label (and thus the secret key in some contexts), but
only requires to have paired datasets. This makes it also interesting in the non-
profiled attacker model, demonstrated by using CPA in our experiments. We
also want to point out that this technique is orthogonal to (and thus can be
combined with) classical dimensionality reduction techniques. As our work is
the first demonstration of trace-to-trace translation, we see several directions of
future works. For example:

– further fine-tuning and architecture exploration of GAN networks for trace
translation in the context of side-channel analysis (similarly as it has been
achieved for CNNs in the state-of-the-art);

– exploration of the limitations of trace translation that may go beyond devices
(of related types) and side-channel sources;

– further relaxation of the required datasets;
– applicability of protected implementations. We already applied our method

to a hiding countermeasure (additional Gaussian noise) that showed similar
success as the results presented in the paper. Another important research
direction would be the investigation of masking countermeasures. However,
this may need adaptions of the methodology to lead to successful translations
due to the more complex algebraic links between the leakage and the labels.

Availability. Implementations for reproducing our results will be available at
https://github.com/GeneveyC/Machine-learning-with-SCA.

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

https://github.com/GeneveyC/Machine-learning-with-SCA
https://doi.org/10.1007/978-3-540-28632-5_2

Trace-to-Trace Translation for SCA 43

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

3. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 14

4. Goodfellow, I.J., et al.: Generative adversarial networks (2014)
5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks. In: CVPR (2017)
6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks (2018)
7. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative

adversarial networks (2019)
8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-

ing the power of convolutional neural networks for profiled side-channel analysis.
In: TCHES 2019, no. 3, pp. 148–179, May 2019

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

10. Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel
attack against hardware implementations of AES. In: 2019 22nd Euromicro Con-
ference on Digital System Design (DSD), pp. 261–268, August 2019

11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

12. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. In: TCHES 2020, no. 1, pp. 348–375 (2019)

13. Pascual, S., Bonafonte, A., Serrà, J.: SEGAN: Speech enhancement generative
adversarial network (2017)

14. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. Cryp-
tology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

17. Wang, P., et al.: Enhancing the performance of practical profiling side-channel
attacks using conditional generative adversarial networks (2020)

18. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. In: TCHES 2020, no. 3, pp. 147–168
(2020)

19. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measure-
ments with autoencoders. In: TCHES 2020, no. 4, pp. 389–415 (2020)

20. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. In: TCHES 2020, no. 1, pp. 1–36 (2019)

https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://eprint.iacr.org/2018/053
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1409.1556

Profiled Side-Channel Analysis
in the Efficient Attacker Framework

Stjepan Picek1(B), Annelie Heuser2, Guilherme Perin1, and Sylvain Guilley3

1 Delft University of Technology, Delft, The Netherlands
2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France

3 Secure-IC S.A.S., Cesson-Sévigné, France

Abstract. Profiled side-channel attacks represent the most powerful
category of side-channel attacks. There, the attacker has access to a
clone device to profile its leaking behavior. Additionally, it is common
to consider the attacker unbounded in power to allow the worst-case
security analysis. This paper starts with a different premise where we
are interested in the minimum power that the attacker requires to con-
duct a successful attack. We propose a new framework for profiled side-
channel analysis that we call the Efficient Attacker Framework. With it,
we require attacks to be as powerful as possible, but we also provide a
setting that inherently allows a more objective analysis among attacks.
To confirm our theoretical results, we provide an experimental evalua-
tion of our framework in the context of deep learning-based side-channel
analysis.

1 Introduction

Side-channel analysis (SCA) is a threat that exploits weaknesses in physical
implementations of cryptographic algorithms rather than the algorithms them-
selves [1]. Profiled SCA performs the worst-case security analysis by considering
the most powerful side-channel attacker with access to an open (the keys can
be chosen or are known by the attacker) clone device. Additionally, the SCA
community considers an attacker in the setting with unbounded power, e.g., the
attacker can obtain any number of profiling or attack traces and has unlimited
computational power.

In the last two decades, besides template attack and its variants [2,3], the
SCA community started using machine learning to conduct profiled attacks.
Those results proved to be highly competitive compared to template attack,
and, in many scenarios, machine learning methods surpassed template attack
performance [4–6]. Unfortunately, in these scenarios, the experimental setup is
often arbitrarily limited, and no clear guidelines on the limitation of profiling
traces or the hyperparameter tuning phase are offered or discussed.

More recently, the SCA community started to experiment with deep learn-
ing where such methods bested both template attack and other machine learn-
ing methods [7–9]. Again, no clear guidelines on the number of profiling traces

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 44–63, 2022.
https://doi.org/10.1007/978-3-030-97348-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_3

Profiled Side-Channel Analysis in the Efficient Attacker Framework 45

were given or investigated. Simultaneously, the researchers started to give more
attention to the hyperparameter tuning, but the results are still far from defini-
tive ones, see, e.g., [10,11]. Consequently, there is an evident lack of evaluation
guidelines/frameworks in the context of profiled analysis to understand vari-
ous attacks’ performance or how they compare. This gap is highly important
as state-of-the-art results with deep learning successfully and efficiently break
publicly available targets.

This paper aims to extend the currently used evaluation techniques to a
framework that determines the least powerful attacker that can still reveal secret
information. To achieve this, we evaluate the limit on 1) the number of mea-
surements the attacker can collect in the training phase and 2) the number of
hyperparameter tuning experiments. It could sound counter-intuitive to make
such limitations as one can argue there is no reason why an attacker cannot col-
lect a large number of measurements or run hyperparameter tuning as long as
needed (or select an algorithm that has no hyperparameters to tune). We claim
that there are several reasons for that:

1. By considering a scenario where an unlimited number of measurements are
available, we “allow” less powerful attacks. More precisely, the attacker can
use a larger set of measurements to compensate for less powerful profiling
models.

2. By considering a scenario where a computationally unbounded attacker runs
the analysis, one assumes the attacker can always find the best possible attack
while that seldom happens in practice.

3. The target device may include a countermeasure that limits the number of
exploitable measurements. The experimental setup can have constraints that
limit the allowed length of the hyperparameter tuning phase.

4. Although taking measurements or running more experiments is “cheap”, there
is always a point where this is more effort than the target/secret is worth.

5. Having more measurements does not guarantee better results, especially in
realistic scenarios. Consider the case where one device is used for profiling
and the other for the attack, i.e., the portability setting (a realistic case that
is usually simplified in research works where only a single device is used [7–
9,12]). Then, adding more measurements to the profiling phase can cause
machine learning methods to overfit1 [12]. The same issue can happen due to
a too detailed tuning phase.

As far as we know, there are no previous works considering profiling and
realistic attacker evaluation frameworks. When the attacker is restricted, it is
usually set as one of several tested scenarios (e.g., testing a classifier’s perfor-
mance with specific hyperparameters or a different number of measurements in
the training phase). Alternatively, it is motivated by some limitations in the data
acquisition or evaluation process.

In this paper, we present the following main contributions:

1 Overfitting occurs when the learning model learns the data too well and cannot
adapt to previously unseen data.

46 S. Picek et al.

1. We propose a new framework for profiled side-channel analysis where we
evaluate the minimum power of an attacker in the profiling phase to still be
successful in the test phase. We also introduce a new threat model that differs
from a common one by considering a more realistic attacker. The attacker in
our threat model is still powerful from the computational perspective and the
perspective of the learning models that can be built. In other words, we move
from the problem of simply breaking the target (which is well-explored and
with strong results, especially when considering deep learning) to a problem
where we break the target with a minimal number of measurements and
minimal hyperparameter tuning. We consider our framework to be intuitive
and easily adaptable to many realistic scenarios.

2. We strengthen our results with an experimental evaluation conducted on pub-
licly available datasets protected with masking countermeasures. We explore
two commonly used leakage models and two neural network types.

The code is publicly available at https://github.com/AISyLab/EfficientAttac
kerFramework.

2 Existing Frameworks for Side-Channel Evaluation

2.1 Scientific Metrics

The most common evaluation metrics in the side-channel analysis are success
rate (SR) and guessing entropy (GE) [13]. GE states the average number of key
candidates an adversary needs to test to reveal the secret key after conducting
a side-channel analysis. In particular, given Q traces in the attack phase, an
attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of
probability with |K| being the size of the keyspace. So, g1 is the most likely and
g|K| the least likely key candidate. The guessing entropy is the average position
of k∗

a in g over multiple experiments. The success rate is defined as the average
empirical probability that g1 equals the secret key k∗

a.
In practice, one may consider leakage models Y (·) that are bijective functions.

Thus, each output probability calculated from the classifiers for Y (k) directly
relates to one key candidate k. When Y (·) is not bijective, several key candidates
k may get assigned with the same output probabilities, which is why a single
trace attack (Q = 1) may not be possible in the case of non-bijective leakage
models. Further, to calculate the key guessing vector g over Q attack traces, the
(log-)likelihood principle is used.

Remark 1. SR and GE are used for practical evaluations in both non-profiling
and profiling scenarios. Typically, they are given over a range of traces used in
the attack phase (i.e., for q = 1, 2, . . . , Q). If these metrics are used in profiling
scenarios, there are no clear guidelines for evaluating attacks. Most of the time,
the number of training measurements N in the profiling stage is (arbitrary) fixed,
making comparisons and meaningful conclusions on profiled side-channel attacks
or resistance of implementations hard and unreliable in most scenarios.

https://github.com/AISyLab/EfficientAttackerFramework
https://github.com/AISyLab/EfficientAttackerFramework

Profiled Side-Channel Analysis in the Efficient Attacker Framework 47

Whitnall and Oswald introduced a more theoretical framework that aims at
comparing distinguishing powers instead of estimators of attacks [14,15]. Accord-
ingly, the profiling dataset N size does not play any role in this framework. The
most popular metrics of the framework are the relative and absolute distin-
guishing margins in which the correct key’s output score and the value for the
highest-ranked alternative are compared.

Another approach to compare side-channel attacks uses closed-form expres-
sions of distinguishers [16], enabling conclusions about distinguishers without
the requirement of actual measurements. Unfortunately, only a few closed-form
expressions of distinguishers have been achieved so far.

Regarding masking countermeasures, Duc et al. defined information-
theoretical bounds on the success rate depending on the number of mea-
surements, shares, and independent on the concrete estimated side-channel
attack [17]. In [18], the authors provided information-theoretic tools to bound
the model errors in side-channel evaluations concerning the choice of the leakage
model.

Typically, to assess the performance of machine learning classifiers, accuracy
is used [19]. A detailed comparison between accuracy (but also other machine
learning metrics like precision, recall, F1) and guessing entropy/success rate is
given in [6], which details that such metrics may not always be a proper choice
for assessing the attack performance in side-channel analysis.

2.2 Practical Evaluation Testing

While most of these previous metrics are relevant in some contexts and scenarios,
a different approach is required to make research statements in the context of
profiled attacks. This issue becomes even more evident when looking at practical
evaluation used in standardization processes. In practice, there are two main
practical schemes:

1. Test-based schemes, such as NIST FIPS 140 [20] and its application to the
mitigation of other attacks (part of Appendix F, in particular, non-invasive
attacks ISO/IEC 17825 [21]).

2. Evaluation-based schemes, such as Common Criteria (CC, ISO/IEC
15408 [22]).

Interestingly, both FIPS 140 and CC pay attention to the limited amount of
resources spent. When considering FIPS 140/ISO/IEC 17825, the requirement
is more on the attack traces, but regarding CC, the evaluation of attacks is con-
sidered under two phases: identification (which matches with the training phase
in the context of profiled side-channel attacks) and exploitation (which matches
with the attack phase in the context of profiled side-channel attacks). Strictly
speaking, the distinction is for CC version 2, but it still implicitly holds for
version 3. Several factors are considered for the evaluations of attacks, namely:
elapsed time, expertise, knowledge of the Target Of Evaluation (TOE), access to
TOE, equipment, open samples. The first factor, elapsed time, directly connects

48 S. Picek et al.

with the acquisition of traces in the profiling phase and the hyperparameter
tuning. Indeed, according to the guidance “Application of Attack Potential to
Smartcards” [23], the score is considered:

– 0 if the profiling of the traces can be performed in less than one hour,
– 1 if the profiling of the traces can be performed in less than one day,
– 2 if the profiling of the traces can be performed in less than one week,
– 3 if the profiling of the traces can be performed in less than one month,
– 5 if the profiling of the traces cannot be performed in less than one month.

Accordingly, we see that the CC guidance favors attacks, realized with as little
profiling effort as possible. This profiling effort can go in the direction of the
number of required measurements, the number of experiments in the hyperpa-
rameter tuning phase, or both.

2.3 Practical Observations and Effects of Aging

Besides overfitting (see details in Sect. 1), another difficulty for profiled attacks
is that the collection of side-channel traces becomes less reliable after a long
period. Due to temperature and environmental conditions evolution over time,
some trend noise must be added to the side-channel traces. For instance, this
has been characterized by Heuser et al. in [24], where it is proven that trend
noise drastically impedes SCA. Similar findings are confirmed by Cao et al. [25].
Efficient distinguishing situations, such as that depicted in Fig. 1 shows that the
best number of traces to estimate a distinguisher is not always “the maximal”.

Large
distinguishing

margin

Smaller
distinguishing

margin

Fig. 1. Difference of Means (DoM) distinguisher estimation for all key bytes (the cor-
rect one and all incorrect ones).

Profiled Side-Channel Analysis in the Efficient Attacker Framework 49

This is illustrated on a simple “difference of means” attack representing side-
channel attack on DPA contest 4.2 traces [26] (the second implementation (v4.2)
is based on an improved version of the first version - v4).

3 The Efficient Attacker Framework

3.1 Threat Model

The adversary has access to a clone device running the target cryptographic
algorithm. This device can be queried with a known key and plaintext while
the corresponding leakage measurement is stored. Commonly, the adversary can
have infinite queries to characterize a precise profiling model. There are no limits
on how many experiments he can do to find such a profiling model. Next, the
adversary queries the attack device with known plaintext to obtain the unknown
key. The corresponding side-channel leakage measurement is compared to the
characterized profiling model to recover the key.

In our threat model, the adversary has a limited number of queries to char-
acterize a profiling model. Additionally, he has a limited number of experiments
to conduct hyperparameter tuning. Note, while our framework allows various
machine learning tasks, we concentrate on the classification task in this paper,
as it is common in the profiled SCA [7–9].

3.2 Components of a Successful Attack

Current evaluations for profiled SCA mostly assume that the attacker is
unbounded in his computational power. This assumption aims to provide the
worst-case scenario for the designer, which should help assess the risk properly.
Although the attacker is considered unbounded, he is always bounded, with
bounds set ad-hoc, and there are no clear directions one should follow when
modeling the realistic attacker.

First, we discuss two core assumptions we make in this research. These need
to be fulfilled so that general meaningful comparisons between profiled attacks
can be made, and our framework can provide exploitable results:

1. Attack must be possible. While our framework does not require the attacker
always to succeed, the attack must be possible. For instance, having measure-
ments completely uncorrelated with the labels (set of variables defined from
a leakage model) will make our framework not useful. Still, no side-channel
attack can succeed if there is no statistical connection between the measure-
ments and labels. Consequently, this is not a drawback of our framework.

2. We consider only profiled (supervised) attacks, and therefore, profiling mea-
surements need to allow learnability about the problem. Profiling measure-
ments that are completely uncorrelated with the attack measurements would
make our framework unusable. The hyperparameter tuning (if possible) must
allow reaching a useful profiling model. Again, the profiled attacks cannot
work if the previous conditions are not fulfilled, which does not represent our
framework’s disadvantage.

50 S. Picek et al.

Next, we examine the three components of a successful attack. The worst-case
(strongest) attacker will be unbounded in all three components. Simultaneously,
fulfilling only one or two of those components accounts for more realistic settings
one encounters in practice:

1. Quantity (the number of measurements) - there must be sufficient measure-
ments in the profiling/test phase to conduct the attack, i.e., to build a reliable
profiling model that generalizes to the unseen data. This criterion is a nat-
ural one and is already well-known in SCA as researchers usually report the
attack’s performance concerning a different number of measurements. There
is much less research to determine the minimum number of measurements for
a successful attack.

2. Quality (based on the available measurements, it must be possible to find
the mapping f between the input (measurements) and output (labels)) - the
measurements need to be of sufficient quality to conduct the attack. This con-
dition could be translated into the requirement that the SNR should be suf-
ficiently high or that the data need to have all information required to model
the leakage correctly. Finally, this component includes the leakage model’s
quality, i.e., the considered leakage model provides sufficient information and
the distribution of leakages. Again, like the previous component, this one is
well addressed in the SCA community as researchers usually conduct various
pre-processing steps, e.g., to select/transform features or align traces.

3. Learnability (hyperparameter tuning) - the attacker needs to learn the profil-
ing model. This perspective also accounts for finding the best possible hyper-
parameters for the profiling model. The learnability is naturally connected
with the quantity and quality components. This component is significantly
less addressed, but more recent works show the SCA researchers becoming
more interested in it [9–11,27], confirming our claims about the learnabil-
ity importance. We note that while the researchers usually conduct various
tuning procedures, they rarely report how difficult it was to find the hyper-
parameters used in the end.

We should not limit the quality component: if the attacker can obtain mea-
surements, those measurements should be of the best possible quality. When
discussing the quantity and learnability components, we can (and we must)
evaluate the limit of the number of profiling measurements and experiments in
the tuning phase since:

1. If always considering the extreme case of unbounded measurements in the
profiling phase, we “allow” to utilize weaker attack, which may only work in
this extreme scenario. On the other hand, if we consider the minimum number
of available traces in the profiling phase while still succeeding in the attack
phase, we promote efficient attacks.

2. Theoretically, the attacker who is unbounded in his capabilities could break
cryptographic implementations even with a single measurement as he can
always find the optimal attack. This reasoning suggests that ultimately, the
designer could do nothing to stop the attack.

Profiled Side-Channel Analysis in the Efficient Attacker Framework 51

Remark 2. Having a limited number of measurements or time to conduct hyper-
parameter tuning is a realistic occurrence in practical scenarios, as the attacker
may be limited by time, resources, and also face implemented countermeasures,
preventing him from taking an arbitrarily large number of side-channel measure-
ments while knowing the secret key of the device.

To conclude, we need to consider an attacker who can perform a successful
attack with the smallest possible number of profiling measurements N , where
success is defined over a performance metric ρ with a threshold of δ. To reach
that success, the attacker should use the smallest possible number of tuning
experiments H (where h represents a specific set of hyperparameters, i.e., a
specific profiling model).

Example 1. Consider ρ being the guessing entropy < 20, which is a common
threshold value in the side-channel analysis, see, e.g., [6]. Then, the measure of
the attacker’s power is 1) the number of profiling traces N he needs to train
a profiling model, which is then used on attack traces (of size Q) to break the
implementation, 2) the number of experiments conducted before finding the
hyperparameters resulting in a strong attack, or 3) both the number of profiling
traces and hyperparameter tuning experiments.

3.3 Framework Description

The goal for machine learning classification task is to learn a mapping (model)
f from X to Y, i.e., Y ← f(X, θ) where X are samples drawn i.i.d. from set
X and where the cardinality of X equals N . Let θ be the profiling model’s
parameters that result in the best possible approximation from h hyperparameter
combinations. Additionally, let gQ,f = [g1, g2, . . . , g|K|] be the guessing vector
from the profiled side-channel attack using Q traces in the attack phase, and
the profiling model f built in the profiling phase as an input. In practice, the
estimation of f depends on hyperparameters h, which we denote by fh when the
dependency is emphasized. Then, ρ(gQ,f , k∗

a) represents the performance metric
of the profiled side-channel attack using the secret key k∗

a to evaluate the success.
For a given number of attack traces Q and h1, . . . , hH hyperparameter tuning

selections (H being the number of different hyperparameter sets), the Efficient
Attacker Framework aims at minimizing the number of profiling traces N to
model the function fhi

with hyperparameter selection hi (1 ≤ i ≤ H), such that
the performance metric is still below (or above) a certain threshold δ:

min{N : ρ(gQ,fhi
, k∗

a) < δ}, where N, i ≥ 1 and i ≤ H. (1)

Algorithm 1 gives the procedure of the evaluation in the Efficient Attacker
Framework, and a motivating example is given in Example 2. Note that the
framework allows conducting experiments in parallel to the data acquisition
phase. Indeed, one can start with evaluating the performance regardless of the
number of already acquired measurements. For example, the attacker can assume

52 S. Picek et al.

Static parameters: Maximum size H of hyperparameter models to consider, a
performance metric ρ and a threshold value δ, e.g., GE
< 20

Input : Profiling and attacking device to collect traces from
Output : Minimum number of profiling traces N

1 Capture a test dataset (with secret key k∗
a). Its size Q depends on the expected

performance of the attack. For instance, this test dataset can be as small as one
trace!

2 Training set ← ∅

3 N ← 0
4 while True do
5 Capture one trace // A speed-up can be obtained by advancing

faster, e.g., 10 by 10 traces

6 Append them to Training set, N ← N + 1
7 for i = 1; i ≤ H; i + + do
8 (Randomly) select hyperparameters h
9 Perform Training with selected hyperparameters and obtain a model fh

10 Receive ρ(gQ,fhi
, k∗

a)

11 if ρ < δ then // The model is good enough

12 store hyperparameter selection h
13 break

14 return Minimum number of profiling traces N

Algorithm 1: Conceptual evaluation procedure in the Efficient Attacker
Framework.

the regime where he downloads new measurements every hour and repeats the
experiments with an always-increasing number of measurements.

Algorithm 1 increases the number of profiling traces until the stop condition
(statically defined) is satisfied. As a secondary objective, it attempts to reduce
the search space for the hyperparameters models, with the learning phase to be
as computationally efficient as possible.

Remark 3. Algorithm 1 considers both the number of profiling traces and hyper-
parameter tuning experiments, but this can be easily adjusted for only one
of those options, extended or replaced by other performance evaluations. For
instance, if using a template attack, there are no hyperparameters to tune, which
means that only the number of profiling traces is relevant. On the other hand, if
facing a setting where one cannot obtain enough measurements to reach δ, then
the natural choice is not to limit the number of measurements even more but
to consider the number of hyperparameter tuning experiments. While we con-
sider the number of hyperparameter tuning experiments from the learnability
perspective in this paper, this could be easily cast, for instance, to the selection
of points of interest with template attack.

Profiled Side-Channel Analysis in the Efficient Attacker Framework 53

Example 2. A standard performance metric used in the side-channel analysis is
guessing entropy with, e.g., a threshold δ = 20. In the Efficient Attacker Frame-
work, one would find the minimum number of profiling traces N and hyperpa-
rameter experiments H to reach a guessing entropy below 20 for a fixed number
of Q attack traces. This setting ensures that key enumeration algorithms [28]
(when attacking several key bytes, as in AES-128 where there are 16 bytes of
the key that needs to be recovered simultaneously for a full key recovery attack)
are efficient. Typically, Q ranges over a set of values. Experimental results are
discussed in Sect. 4.

Remark 4. In practice, Algorithm 1 shall be evaluated several times to get an
empirical estimation Ê(N) of the minimum number of profiling traces. This can
be achieved by averaging several evaluations of Algorithm1 (as done in non-
profiled side-channel attack-oriented frameworks, see [13, §3.1]).

Remark 5. The Efficient Attacker Framework is evaluator-oriented and aims at
unleashing profiled attacks even with frugal learning constraints. This reflects
some situations where the number of interactions with the device is limited:

– by design, e.g., owing to enforcement of countermeasures such as limited
number of cryptographic executions until system end-of-life, or

– by certification constraints such as limited “elapsed time” in the Common
Evaluation Methodology (CEM [29, B.4.2.2]) of the Common Criteria.

Remark 6. If two profiling models exhibit very similar performance but require
a radically different amount of resources, then a Pareto front of solutions (i.e., a
set of non-dominated solutions) needs to be given where the designer can decide
on a proper trade-off.

We reiterate that our framework is not designed to force the attacker to use
a small number of measurements in the profiling phase or limit the number of
experiments in the hyperparameter tuning phase. Instead, it forces the attacker
(evaluator) to find the smallest number of traces and tuning experiments to
attack the target successfully.

4 Experimental Evaluation

4.1 Datasets

The first dataset we consider is the ASCAD with a fixed key dataset. The mea-
surements are obtained from an 8-bit AVR microcontroller running a masked
AES-128 implementation, where the side-channel is electromagnetic emana-
tion [30]. This dataset has the same key for the profiling and attack phase.
There are 50 000 traces for profiling and 10 000 for the attack. We use a pre-
selected window of 700 features for the raw trace, and we attack key byte 3,
which is the first masked key byte, as commonly done in the literature [30].

54 S. Picek et al.

The second dataset is a version of the ASCAD dataset with random keys
(denoted ASCAD random keys dataset) in the profiling set. The dataset consists
of 200 000 traces for profiling and 100 000 for the attack. We use a pre-selected
window of 1 400 features for this dataset and attack key byte 3 (the first masked
key byte).

4.2 Efficient Attacker Framework Evaluation

The Efficient Attacker Framework enables us to compare side-channel attacks
and gives a fair comparison between leakage models. For deep learning-based
side-channel attacks, it is often assumed to consider the most accurate leakage
model, i.e., using the intermediate value as class variables (the Identity leakage
model2) [9,27,31], which results in 2b classes where b is the number of considered
bits. In an unsupervised setting (i.e., non-profiled attacks), using the Hamming
weight or the Hamming distance leakage model is a common choice, which results
in b+1 classes only. Using b+1 Hamming weight/distance classes to guess a key
value in {0, . . . , 2b−1} cannot result in a single trace attack on average. However,
using the Hamming weight/distance leakage models may require fewer traces in
the profiling phase to gain good quality estimates of the leakage models (as there
are fewer classes to consider). It is, therefore, not straightforward to determine
what leakage model is most suitable. Consequently, to give a fair comparison,
one should include a dependency on the number of traces in the profiling phase,
as done in the Efficient Attacker Framework.

As a metric, we consider guessing entropy (GE), and in particular, we give the
minimum number of profiling and attack traces to reach GE < 20. We randomly
define hyperparameters for every training procedure for multilayer perceptron
(MLP) and convolutional neural networks (CNNs) according to the hyperparam-
eter ranges provided in Table 1. This scenario represents an optimized random
hyperparameter search since the hyperparameter ranges are chosen based on the
optimized minimum and maximum values (the minimal and maximal values are
selected based on related works) [9,11,27,31]. The number of epochs is set to 50
(we observed that the models tend to overfit and degrade the generalization after
50 epochs), and the backpropagation algorithm optimizer is Adam. The weights
and biases are initialized in a randomly uniform way. We use the batch normal-
ization layer to avoid overfitting, which normalizes the input layer by adjusting
and scaling the activations. For CNNs, a pooling layer (with hyperparameters
range specified in Table 1) always comes after a convolution layer.

We do not explicitly discuss the time perspective here (e.g., the number
of hours or days needed to conduct the experiments). Comparing the number
of tuning experiments gives a fair evaluation, regardless of the time needed to
run those experiments. We note that the number of tuning experiments up to

2 By the “Identity leakage model”, we mean that we do not assume the number of
classes can be reduced owing to model degeneracy, as would be the case for instance
in the “Hamming weight leakage model”, where it is assumed that the leakage Y
depends in X only through wH(X) (the Hamming weight of X).

Profiled Side-Channel Analysis in the Efficient Attacker Framework 55

Table 1. Hyperparameter search space for MLP and CNNs.

Hyperparameter MLP CNN

Min Max Step Min Max Step

Learning rate 0.0001 0.001 0.0001 0.0001 0.001 0.0001

Mini-batch 100 1 000 100 100 1 000 100

Dense (fully-connected) layers 1 4 1 1 4 1

Neurons (for dense or fc layers) 100 400 100 100 400 100

Convolution layers - - - 1 2 1

Filters - - - 4 16 4

Kernel size - - - 2 10 2

Stride - - - 1 4 1

Pooling size - - - 1 4 1

PoolingStride - - - 1 4 1

Activation function (all layers) ReLU, Tanh, ELU, or SELU

50 is low, although we manage to break the target. There is no constraint on
the number of experiments one can use with our framework. Additionally, as
we work with guessing entropy, each attack is repeated 100 times, which gives
much higher computational complexity than one could conclude solely based
on the number of tuning experiments. Every figure contains the results for the
Hamming weight and Identity (i.e., intermediate value) leakage models, as AES
operates on b = 8 bits. We select the best neural network model out of 5, 10,
25, or 50 trained profiling models for each leakage model and a different number
of profiling traces. More precisely, we compare the performance of a different
number of profiling models (thus, forming ensembles) as done in [31]. Here, the
main idea is to demonstrate that the learnability also represents an important
dimension in our framework. All the graphs are to be viewed in color.

ASCAD Fixed Key Dataset. We depict results for the ASCAD fixed key
dataset in Figs. 2 and 3, for MLP and CNN, respectively. For the CNN case, we
also depict the results by using the architecture from [9]. The results confirm
the importance of considering the number of profiling traces and hyperparameter
tuning. In particular, for MLP in combination with the HW leakage model: 25
and 50 models behave the same for 30 000 profiling traces, indicating they are
“equally” good. Nevertheless, restricting the number of profiling traces, e.g., to
20 000 reveals that 50 models reach better attack performance. Finally, many
models perform better for 35 000 than 45 000 profiling traces, indicating that
the data cannot fit the current network capacity.

ASCAD Random Keys Dataset. Figures 4 and 5 show results for the
ASCAD with the random keys dataset. In Fig. 4, we give results for MLP with
hyperparameters defined per Table 1. Notice that considering a different number
of profiling traces shows radically different behaviors. The more important is to
observe that the profiling traces component becomes not as relevant as increasing
the number of searched MLP models, especially for the Identity leakage model

56 S. Picek et al.

Fig. 2. Profiled SCA on the ASCAD fixed key dataset with MLP.

Fig. 3. Profiled SCA on the ASCAD fixed key dataset with CNNs.

in Fig. 4b. For example, by keeping 40 000 profiling traces, the best number of
attack traces after searching for five models is around 3 100 traces, while the
minimum number of attack traces to reach GE< 20 with 50 models is close to
1 000 traces.

Figure 5 depicts the results for CNN architectures confirming the previous
observations. In this particular example, we can immediately see how important
it is to keep increasing the number of profiling traces as well as the number of
searched models. This is expected as, due to the larger number of hyperparameter
options, CNNs are more difficult to tune compared to MLP. In this case, the
Efficient Attacker Framework reveals that increasing both components (profiling
traces and learnability) makes the attack stronger.

4.3 Strong Adversary in the Efficient Attacker Framework

In the previous section, we evaluated our framework under the perspective of
an adversary with strong side-channel capabilities (a profiled attack is mounted

Profiled Side-Channel Analysis in the Efficient Attacker Framework 57

Fig. 4. Profiled SCA on the ASCAD random keys dataset with MLP.

Fig. 5. Profiled SCA on the ASCAD with random keys dataset with CNNs.

over optimal trace interval containing leaky points-of-interests). However, this
same adversary executes a random search and does not possess an optimal neu-
ral network model. In this section, we consider state-of-the-art models from [9]
and [27], which provide carefully tuned CNN models for the ASCAD dataset.
This way, an adversary is considered strong from both side-channel and deep
learning perspectives. As the hyperparameters are already chosen, we again run
50 models for each fixed number of profiling traces by only randomly varying
the batch size (from 50 to 400, with steps of 50 traces).

Figure 6 provides the results for the cnn architecture [32] proposed in [9] for
the Hamming weight and Identity leakage models (for the HW leakage model,
we use the same learning model as for the Identity leakage model, but we set
the number of output classes to 9). The framework indicates that increasing the
number of profiling traces is not very relevant when possessing an “optimal”
profiling model. Indeed, in Fig. 6b, the best results are achieved for 30 000 pro-
filing traces, and adding more profiling traces increases training time and does

58 S. Picek et al.

not improve attack results. In this example, we observe with a real-world dataset
that GE< 20 can be achieved with a single attack trace.

The Identity leakage model results from Fig. 6b indicate one more interesting
phenomenon, which is, to the best of our knowledge, not before reported in deep
learning-based SCA. We can notice for one model setting the behavior called
deep double descent [33]. This behavior describes a phenomenon where the test
loss first decreases with the increase in the architecture size. Then, the loss
starts to increase and finally decreases again. When the loss increases, this is
connected with an effect called “sample-wise non-monotonicity”. Interestingly,
this effect describes a behavior where more training traces damages the test
phase’s performance. While there is no definitive answer to why this behavior
happens, one explanation could be that the model does not have enough capacity
to fit the data. Adding more data requires the model to drastically “change” its
parameters, improving attack performance.

Fig. 6. Profiled SCA on the ASCAD with fixed keys dataset with CNN architecture
from [9].

Figure 7 shows results for noConv1 ascad desync 0 [34] proposed in [27]. As
this neural network architecture is an optimization built on top of [32], results
for the ASCAD fixed key dataset indicate an even smaller minimum number
of profiling traces to reach successful results, which is 20 000 profiling traces.
Nevertheless, we can also observe the differences in model performance with the
Efficient Attacker Framework when selecting different leakage models.

4.4 General Observations

On a general level, while not the core research point in this work, we note that
the Identity leakage model requires fewer attack traces to reach GE < 20, which
is expected. MLP exhibits better performance than CNN for a smaller number
of profiling traces, which is again in line with related works. It is important

Profiled Side-Channel Analysis in the Efficient Attacker Framework 59

Fig. 7. Profiled SCA on the ASCAD with fixed keys dataset with CNN architecture
from [27].

to observe how the learnability constraint directly influences the required com-
bination of the number of profiling and attack traces to reach a low guessing
entropy. Moreover, one can choose a trade-off between profiling traces N and
attack traces Q while still performing a successful attack.

While our framework aims to find the minimal number of profiling traces
and keep the number of tuning experiments to mount a successful attack as low
as possible, we never state what those numbers should be. Indeed, the experi-
ments showcase radically different behaviors for various numbers of profiling and
attack traces (coupled with the influence of the number of tuning experiments).
Providing actual values makes sense only when the whole experimental envi-
ronment is considered (datasets, algorithms, environmental settings) and, even
more importantly, when one compares experiments on the same targets but with
different settings. All our experiments strongly confirm that the number of pro-
filing traces and the number of experiments (complexity) play a paramount role
and should be included in proper performance analysis for deep learning-based
SCA.

4.5 Advantages of the Efficient Attacker Framework

Usually, an attacker is expected to make use of the maximum possible number
of profiling traces to build a model (templates, deep neural networks). Simi-
larly, the number of attack traces tends to be maximized to better estimate the
model exploitation capability. In cases when the learning model is inefficient (i.e.,
unable to fit the existing leakage) and all available side-channel measurements
are used, the attacker or evaluator has a limited view of what component has
a significant impact on the attack results, which can lead to overestimating the
security of the target.

In this case, the reference metric would be the guessing entropy of a single
experiment, which says nothing about the influence of the number of measure-

60 S. Picek et al.

ments and tuning experiments on the security of the assessed target. Therefore,
the Efficient Attacker Framework usage provides a better representation of the
influence of the number of profiling traces, attack traces, and tuning experiments.
We analyze an attack’s efficiency with GE < 20 as a reference metric. Of course,
the framework can be adapted to any metric that describes the attack’s effi-
ciency, such as success rate, or extended to more dimensions that may influence
the attacker’s strength, for example, by including resource requirements. While
the benefits of depicting the results with our framework are evident, one can
ask whether we lost some information when compared to the traditional result
depiction. We claim this not to be true due to two reasons. First, all relevant
information is kept so the attacker can still depict traditional results. Second,
once the appropriate performance level is set (e.g., guessing entropy value equal
to δ), it is less relevant to observe how that value is reached (as values above the
threshold are out of the attacker’s reach).

As a common scenario for deep learning side-channel evaluation, our exper-
iments concentrated on the concept of divide-and-conquer strategies for sym-
metric ciphers. However, the Efficient Attacker Framework is not limited to this
scenario, and depending on the threat model of the attack, the framework can
be extended, for example, to rank estimation strategies [35] or even to recursive
recovering strategies like Extend and Prune (EP) [36]. Instead of using met-
rics on subkey bytes, an evaluator would choose a rank estimation strategy and
depict the number of attack traces to reach a certain estimated rank within
the complete keyspace as a performance metric. As in our experiments, this
may be evaluated in terms of the number of training traces. Naturally, the Effi-
cient Attacker Framework would allow us to compare different rank estimation
strategies. EP techniques are required when estimating models for the entire
keyspace is not feasible as for many asymmetric ciphers. While the estimation
of key recovery differs, the application of the Efficient Attacker Framework is
similar. Depending on the chosen cryptographic primitive, an evaluator could
again depict the minimum number of traces in the attack phase, depending on
the amount of information (bits or chunks of information).

Some former works also attempted to make the most out of the available
information contained within a trace. For instance, soft analytical side-channel
analysis [37] aims at leveraging the information collected at different steps in
one round (e.g., for AES: AddRoundKey, SubBytes, MixColumns, etc.), and even
beyond, from round to round. For such constructive information gathering to
occur, the whole secret shall be guessed at once. Belief-propagation algorithms
can be used in this respect (to relate all leakage points of interest). However, we
notice that such a technique is mostly profitable to exploit as much as possible
the online captured side-channel, whereas the scope of our paper is to optimize
the usage of the data collected from the learning device.

5 Conclusions

This paper discusses how to evaluate attacks when considering the profiled side-
channel analysis. We argue that considering only an unbounded attacker can neg-

Profiled Side-Channel Analysis in the Efficient Attacker Framework 61

atively affect how side-channel analysis is performed while not being realistic. We
propose a new framework, denoted as the Efficient Attacker Framework, where
we explore the number of measurements and hyperparameter tuning experiments
required in the profiling phase such that the attacker is still successful.

We consider our new framework more realistic but also more adept for experi-
mental evaluations since it allows us to compare different results in a more unified
way. In particular, our framework will hopefully trigger more research relevant
not only for academia but also for evaluation labs. Finally, our framework is
relevant beyond profiled side-channel analysis and can be used in any supervised
learning setting.

References

1. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, Boston (2006). https://doi.org/10.1007/978-0-
387-38162-6. ISBN 0-387-30857-1. http://www.dpabook.org/

2. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

3. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

4. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic
devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.)
COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4 18

5. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014.
LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21476-4 2

6. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019)

7. Cagli, Eleonora, Dumas, Cécile., Prouff, Emmanuel: Convolutional neural net-
works with data augmentation against jitter-based countermeasures. In: Fischer,
Wieland, Homma, Naofumi (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 3

8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Trans. Cryptogr. Hardware Embed. Syst. 2019(3), 148–179 (2019)

9. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 1–36 (2019)

10. Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter tuning
for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report
2020/1293 (2020). https://eprint.iacr.org/2020/1293

https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
http://www.dpabook.org/
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://eprint.iacr.org/2020/1293

62 S. Picek et al.

11. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(3), 677–707 (2021)

12. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. In: 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, 23–26 February 2020. The Internet Society
(2020)

13. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

14. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

15. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analy-
sis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 316–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 18

16. Guilley, S., Heuser, A., Rioul, O.: A key to success. In: Biryukov, A., Goyal, V.
(eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 270–290. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26617-6 15

17. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

18. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.-X.:
Leakage certification revisited: bounding model errors in side-channel security
evaluations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 713–737. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 25

19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Series in Data Management Systems, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

20. publication 140–3, N.F.F.I.P.S.: Security Requirements for Cryptographic Mod-
ules (Draft, Revised), vol. 63 (2009). http://csrc.nist.gov/groups/ST/FIPS140 3/.
Accessed 09 Nov 2009

21. ISO/IEC JTC 1/SC 27 IT Security Techniques: ISO/IEC 17825:2016 Informa-
tion technology - Security techniques - Testing methods for the mitigation of non-
invasive attack classes against cryptographic modules, January 2016. https://www.
iso.org/standard/60612.html

22. ISO/IEC JTC 1/SC 27 IT Security techniques: ISO/IEC 15408-1:2009 Informa-
tion technology - Security techniques - Evaluation criteria for IT security - Part
1: Introduction and general model, January 2014. https://www.iso.org/standard/
50341.html

23. Common Criteria: Supporting Document Mandatory Technical Document Applica-
tion of Attack Potential to Smartcards (2013). https://www.commoncriteriaportal.
org/files/supdocs/CCDB-2013-05-002.pdf

24. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method
for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27954-6 23

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-22792-9_18
https://doi.org/10.1007/978-3-642-22792-9_18
https://doi.org/10.1007/978-3-319-26617-6_15
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25
http://csrc.nist.gov/groups/ST/FIPS140_3/
https://www.iso.org/standard/60612.html
https://www.iso.org/standard/60612.html
https://www.iso.org/standard/50341.html
https://www.iso.org/standard/50341.html
https://www.commoncriteriaportal.org/files/supdocs/CCDB-2013-05-002.pdf
https://www.commoncriteriaportal.org/files/supdocs/CCDB-2013-05-002.pdf
https://doi.org/10.1007/978-3-642-27954-6_23

Profiled Side-Channel Analysis in the Efficient Attacker Framework 63

25. Cao, Y., Zhou, Y., Yu, Z.: On the negative effects of trend noise and its applications
in side-channel cryptanalysis. Chin. J. Electron. 23, 366–370 (2014)

26. TELECOM ParisTech SEN Research Group: DPA Contest, 1st edn (2008–2009).
http://www.DPAcontest.org/

27. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 147–168 (2020)

28. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 25

29. Common Criteria Management Board: Common Methodology for Information
Technology Security Evaluation Evaluation methodology, Version 3.1, Revision
4, CCMB-2012-09-004, September 2012. https://www.commoncriteriaportal.org/
files/ccfiles/CEMV3.1R4.pdf

30. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2019). https://doi.org/10.1007/s13389-019-00220-8

31. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: improving generaliza-
tion with ensembles in machine learning-based profiled side-channel analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 337–364 (2020)

32. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN-
architectures in SCA. https://github.com/gabzai/Methodology-for-efficient-CNN-
architectures-in-SCA/blob/master/ASCAD/N0

33. Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep
double descent: where bigger models and more data hurt (2019)

34. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology
for efficient CNN architectures in profiling attacks (2020). https://github.
com/KULeuven-COSIC/TCHES20V3 CNN SCA/blob/master/src/models.py.
Accessed 20 June 2021

35. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

36. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

37. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 15

http://www.DPAcontest.org/
https://doi.org/10.1007/978-3-642-35999-6_25
https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R4.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R4.pdf
https://doi.org/10.1007/s13389-019-00220-8
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/ASCAD/N0
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/ASCAD/N0
https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA/blob/master/src/models.py
https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA/blob/master/src/models.py
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15

Towards a Better Understanding
of Side-Channel Analysis Measurements

Setups

Davide Bellizia, Balazs Udvarhelyi(B), and François-Xavier Standaert

UCLouvain, ICTEAM/ELEN/Crypto Group, Belgium, UK
balazs.udvarhelyi@uclouvain.be

Abstract. The evaluation of side-channel measurement setups and the
impact they can have on physical security evaluations is a surprisingly
under-discussed topic. In this paper, we initiate a comprehensive study
of such setups for embedded software and hardware (FPGA) implemen-
tations. We systematically investigate a design space including the choice
of the probing method, the clock frequency of the device under test, its
supply voltage and the sampling rate of the adversary’s oscilloscope. Our
results quantify the impact (i.e., the risk of security over-estimations) that
suboptimal setups can cause and lead to easy-to-use guidelines for secu-
rity evaluators. Despite some of our conclusions are device-dependent, we
argue that the proposed methodology and some of the proposed guidelines
are of general interest and could be applied to other setups.

Keywords: Probing techniques · Frequency and voltage scaling ·
Sampling rate · Signal-to-noise ratio · Perceived information

1 Introduction

The design of a measurement setup is the first step in the evaluation of a crypto-
graphic implementation against side-channel analysis. Due to its physical nature,
this step inherently carries hard to quantify risks of security overstatements.
Noisy setups may indeed lead evaluators to conclude that the measurements
are less informative than they actually are, and this gap will then be increased
in case a countermeasure aiming at noise amplification, like masking [7,13] or
shuffling [15,29], is implemented. Surprisingly, and despite papers focused on
practical side-channel attacks usually describe how they optimized their setups,
especially when targeting challenging real-world devices [3,21], very few works
are dedicated to the systematic evaluation of measurement setups and the impact
of their optimization on security evaluations. Besides, and to the best of our
knowledge, the most advanced (published) investigations of this topic were per-
formed in specific settings such as the exploitation of static leakages, as recently
investigated by Moos et al. [19], or the evaluation of physical effects such as
couplings to reduce a masked implementation’s security order [10,11,16]. But
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 64–79, 2022.
https://doi.org/10.1007/978-3-030-97348-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_4

Towards a Better Understanding of SCA Measurements Setups 65

when it comes to the the impact of measurement setups on the noise level in
the context of (standard) attacks exploiting the dynamic part of the leakage,
the only works we are aware of are the one of Guilley et al. which puts for-
ward the Signal-to-Noise Ratio (SNR) as a meaningful metric to quantify the
quality of side-channel acquisitions [14], and the one of Merino del Pozo and
Standaert that discusses the impact of different setups in the context of leakage
detection [22]. In this respect, and despite these references are important first
steps in specifying relevant comparison metrics and highlighting the existence of
an interesting design space, they are still have a limited scope: [14] estimates its
proposed (univariate) metric for a single measurement setup while [22] compares
different analog amplifiers and filters for a single probing method.

Recognizing that the design space of measurement setups is broader than
investigated in these previous works, this paper aims at analyzing four important
parameters of actual measurement setups. Namely, our goal is to discuss and
evaluate the impact of the probing method used in the setups, the clock frequency
of the Device Under Test (DUT), its supply voltage and the sampling rate of
the oscilloscope used to collect the measurements. We therefore study these
parameters systematically for two DUTs: a software (ARM Cortex) target and
a hardware (Xilinx FPGA) one. We additionally evaluate the effect of these
different parameters for both univariate evaluation metrics like the SNR and
multivariate evaluation metrics like the Perceived Information (PI).

We then use our investigations to extract useful observations regarding how
to select the parameters of our design space. While most of these observations
are admittedly present (implicitly or explicitly) in former experimental works,
we hope their compilation for two different devices and the quantitative analysis
of the losses a poor measurement setup may imply for security evaluators (which
may reach orders of magnitude) make a useful consolidating effort.

2 Background

We will use Mangard’s SNR [17] to evaluate the quality of first-order and uni-
variate leakages, as suggested by Guilley et al., and the PI metric analyzed in [6]
to evaluate the quality of higher-order or multivariate leakages. For the latter we
profile Gaussian templates in a linear subspace. We next recall these different
evaluation metrics and detail the profiling tools used in our analyzes.

2.1 Mangard’s SNR

Introduced in the context of side-channel analysis by Mangard, the SNR intu-
itively captures the data-dependent signal as the variance of the mean traces
and the noise as the mean of the variance traces, for each time sample [17]. As
a result, for a target intermediate variable y, it is defined as the ratio:

ˆSNR =
V̂ary

(
Êi (l

y
i)

)

Êy

(
V̂ari (l

y
i)

) , (1)

66 D. Bellizia et al.

where V̂ar and Ê are the sample variance and the sample mean estimated on
lyi ∈ L, which represents the i-th side-channel observation generated by a target
variable y. It must be pointed out that the noise in Mangard’s definition is the
result of two contributions. First, physical noise is due to physical phenomena
(e.g., thermal noise, flicker noise) and electrical conditions (e.g., impedance mis-
match, unwanted coupling with unrelated equipment). Second, algorithmic noise
is due to the presence of operations that are independent of the target ones and
are processed in parallel to them (i.e., at the same time). As argued by Guilley
et al., it is a good metric for assessing the quality of side-channel measurements
to be exploited by first-order univariate attacks [14], since it can be related to
the complexity of popular attacks such as the Correlation Power Analysis (CPA)
and (univariate Gaussian) Template Attacks (TA) [5,8,18].

2.2 Subspace Based Gaussian Templates

Gaussian template attacks are a standard method to exploit multivariate leak-
ages [8]. We combine them with a dimensionality reduction step in order to
reduce the possibly high number of informative dimensions d of the leakage
traces to a lower value d′ < d. The profiling consists of an estimation, using
n leakage traces l, of the parameters μx , Σx and W of a Probability Density
Function (PDF) of the form:

m̃n(l|x) =
1√

(2π)d′ · |Σx | · exp
1
2 (W l−μx)Σx (W l−μx)

′ , (2)

where x is the value of the profiled variable, μx the mean vector of length d′,
Σx the covariance matrix of size d′ × d′ and W is the projection matrix of
size d′ × d. This projection matrix is determined thanks to Linear Discriminant
Analysis (LDA) [25]. LDA aims to find the subspace that maximizes the inter-
class variance (i.e., the signal of Mangard’s SNR) and minimizes the intra-class
variance (i.e., the noise of Mangard’s SNR). In practice, we applied this dimen-
sionality reduction to all the samples with sufficient SNR (which d ranging from
30 to 500 depending on the cases) and usually kept a dozen dimensions for d′.
Next, in the online attack phase, the likelihood of x is obtained by applying
Bayes’ law to the leakage models estimated beforehand such that:

m̃n(x|l) =
m̃n(l|x)∑

x∗∈X m̃n(l|x∗)
. (3)

The estimated PDF and the likelihood of the profiled variable can then be used
to calculate the amount of information contained in the leakages.

2.3 Information Theoretic Metrics and Bounds

For higher-order or multivariate attacks, the SNR metric is not directly applica-
ble and a more general information theoretic metric has to be used. In the context

Towards a Better Understanding of SCA Measurements Setups 67

of side-channel attacks, the Mutual Information (MI) is the most frequently con-
sidered candidate [26]. It generalizes the SNR in the sense that it can be related
to the complexity of worst-case higher-order & multivariate attacks [9,12] (and
it is essentially equivalent to the SNR in the first-order univariate case [18]).
However, as recently discussed in [6], estimating the MI is in general a hard
problem. Known estimators are biased and distribution-dependent. Perfect esti-
mations would therefore require the exact knowledge of the leakage distribution.
As a workaround, they proposed the use of the previously introduced PI met-
ric, which represents the amount of information that can be extracted from a
device thanks to an the adversary’s model, possibly biased due to estimation
and assumption errors. For a target secret variable X with leakage variable L,
and denoting the leakage model m̃n(l|x) as described in the previous section,
the PI is expressed as:

P̂In(X;L) = H(K) +
∑
x∈X

p(x)
∑
l∈L

p(l|x) · log2(m̃n(x|l)), (4)

with H(X) the Shannon entropy of the variable S ∈ S. The PI is a lower bound
to the worst-case MI and equality holds in case the adversary’s model is perfect.
It can be viewed as the amount of information extrated by the best practical
attack tried by an evaluator. Concretely, the PI is usually estimated with k-fold
cross-validation and we used k = 10 in our following experiments.

3 Setup Model and Design Space

We now introduce our model and design space for measurement setups, alongside
with the two devices we have adopted to conduct our investigations.

3.1 Setup Model

The setup model is illustrated in Fig. 1. Its goal is to highlight important param-
eters for the informativeness of the leakages such as the probing method, the
DUT’s parameters and the Digital Storage Oscilloscope (DSO)’s parameters. As
reported in [27], the choice of those components and how they interact with each
other impact sensibly on the final outcome of the practical side-channel secu-
rity evaluation of a leaking implementation. A bit more precisely, the current
absorbed by the DUT is first monitored by a probe, which has the role to convert
the current signal into a voltage signal. This signal can then be amplified using
a preamplifier stage in order to increase its magnitude, to mitigate noise in the
measurements and to improve electrical characteristics for the following blocks.
At the end of the so-called measurement chain, a DSO samples and quantizes
the analog voltage signal, converting it in a digital representation. Usually, the
sampling operation is handled following a specific timing, that exploits a trigger
signal in order to synchronize different measurements.1 The precise design space
that we will consider for each block of the model will be detailed later.
1 The availability of a good trigger may raise additional challenges [4].

68 D. Bellizia et al.

Fig. 1. Measurement setup model for power analysis evaluation.

We note that our investigations do not consider the question of filtering,
which we view as an orthogonal one, since it can be performed after the mea-
surements took place in order to compensate a too noisy setup.

3.2 Platforms

In our investigations, we have used two devices in order to cover both hardware
and software implementations of cryptographic algorithms. This choice is moti-
vated by the expected differences between the two types of targets. For example,
hardware implementations generally allow better controlling the design aspects
(from the level of parallelism to low-level implementation choices) while software
implementations are usually more general purpose and serial.

Hardware DUT. Our target hardware DUT is a Xilinx Spartan-6 LX75 FPGA,
mounted on a Sakura-G board, implementing an AES-128 processor with a 32-
bit architecture. It is illustrated in Fig. 2. In order to provide synchronization
between measurements, we generate a trigger signal on one of the IO pins of
the FPGA, rising to logical ‘1’ one cycle before the starting of the encryption
and set back to ‘0’ one cycle after the end of the AES encryption. We used the
integrated measurement point for our measurements.

Software DUT. Our target software implementation is running on a Cortex-
M0 MCU from the STM32F0308 Discovery board. Small modifications were
performed on the board. Namely, we added a crystal oscillator to provide a stable
clock source for the measurements and decoupling capacitors were desoldered.
The MCU is running tiny-AES [2], an open source AES-128 implementation. We
used the same trigger methodology as for the hardware DUT. Our measurements
were performed on the dedicated current measuring point for the MCU.

3.3 Design Space

We explored our design space and DUTs by testing the following parameters:

Towards a Better Understanding of SCA Measurements Setups 69

MixColumns (1/4)

8BIT FIFO

8BIT FIFO

8BIT FIFO

8BIT FIFO

Key
Scheduler

S S S S

32

32

32

32

32

8

8

8

8

CLK

plaintext

ciphertext

32

32

key

Fig. 2. Architecture of the 32-bit AES encryption co-processor.

Regarding the probing methodology, we used both a 2Ω resistor in series with
the power supply voltage and an inductive probe (the Tektronix CT-1, which
gives a transresistance of 5 mV/mA in the frequency range 25 kHz–1 GHz [1]).
When using the CT-1 current probe, the shunt resistor was short-circuited. We
optionally used a preamplifier, namely a R&S HZ16 [24] providing a gain of
20 dB with a noise figure of 4.5 dB, in the frequency range 100 kHz–3 GHz.2

Next, the DUT’s clock frequency is an important macroscopic feature of a
side-channel trace, since it usually reflects the frequency spectrum where leakage
can be found. We chose three clock frequency values (1 MHz, 6 MHz and 24 MHz)
for the hardware DUT and three clock frequencies (4 MHz, 24 MHz and 48 MHz)
for the software DUT. Note that 48 MHz is the maximal clock frequency of the
device. Those sets of values were chosen to observe the impact of the clock
frequency on the shape and distinguishability of the leakage cycles.

Similarly, we chose three power supply voltage (0.8 V, 1.2 V and 1.4 V) for the
hardware DUT and three power supplies (2.6 V, 3.0 V and 3.6 V) for the software
DUT. Those sets of values were chosen in order to observe the impact of working
at nominal supply voltage vs. in minimum and maximum corner cases.

Finally, we used a Picoscope 6424E providing a vertical resolution of 12 bits
and running at three different sampling rates as DSO. We chose sampling rates
values according to the clock frequency of the given DUT, to analyze the impact
of the collected number of samples per clock cycles (which impacts the acquisition
bandwidth and memory requirements). Precisely, we set the sampling rate of the
DSO at approximately ×1, ×5, ×25 the chosen DUT’s clock frequency. We note
that the sampling rate of our DSO is not an integer multiple to the DUT’s clock
frequency as it may induce correlated noise in the measurements.

2 The on-board Sakura amplifier was not used for consistency with the software setup.

70 D. Bellizia et al.

In total, we performed 4×3×3×3 = 108 experiments on each DUT. In each
experiment, we targeted the first key byte of the first AES round and collected
4 × 106 traces for the hardware DUT and 105 for the software one. Both the
input plaintexts and keys have been picked up uniformly at random, in order to
stimulate the combinational and sequential logics of both platforms.

4 Experimental Results and Discussion

In this section, we present the results of our analyses for the proposed metrics
throughout our design space. We first introduce the set of plots (e.g., for the
SNR and PI) that summarize our experiments and will be the basis of our
discussions. We then extract the best configurations for the measurement setup
of both platforms. We finally propose general guidelines for the design of good
measurement setups. Given the granularity of the explored design space, we
organize this discussion according to the setup model in Sect. 3. We also evaluate
the relevance of univariate evaluation metrics as predictors of multivariate ones.

Figure 3 shows the highest SNR value we found for each set of parameters
for both platforms (in logarithmic scale). We present the results in the form
of a matrix where the X-axis contains the different power supply values and
sampling speeds, and the Y-axis contains the DUT clock frequencies and the
probing method used in each experiment. The thick orange lines delimit the
probing methods on the X-axis and the sampling speeds on the Y-axis. Darker
blue blocks represent setup parameters where the SNR is higher. Figure 4 shows
a similar matrix for the PI values obtained after LDA, in order to evaluate the
impact of setup choices from a multivariate attack perspective.

A bit more in detail, the SNRs in Fig. 3 were calculated on the whole leakage
trace and the maximum value was then taken. In the hardware case, as shown
in Fig. 3a, the best SNR is obtained using the CT-1 current probe combined
with the amplifier, setting the DUT to the slowest clock speed and lowest power
supply value, and sampling at the highest rate. In the software case, as shown
in Fig. 3b, the differences are more subtle and many sets of parameters give a
peak SNR value close to the best one. The latter is obtained using the resistor
combined with the amplifier, setting the DUT to the highest clock speed and
sampling at lowest rate (contrary to the hardware case) while still using the
lowest power supply value (like in the hardware case).

Regarding our multivariate analysis, we calculated the PI for each set of
parameters. Concretely, for each experiment independently, we first pre-selected
samples based on the SNR traces, keeping the ones above the noise floor for
profiling. We then built Gaussian templates combined with LDA as presented in
Sect. 2.2. We next analyzed the impact of the d′ parameter, trying d′ = 1 up to
25 for the hardware platform and 50 for the software one. We finally kept the d′

leading to the highest PI, which is reported in Fig. 4.

Towards a Better Understanding of SCA Measurements Setups 71

≈ 1 × fclk ≈ 5 × fclk ≈ 25 × fclk

0.8V 1.2V 1.4V 0.8V 1.2V 1.4V 0.8V 1.2V 1.4V

CT − 1

Resistor

CT − 1 + Amp

Resistor + Amp

24MHz

6MHz

1MHz

24MHz

6MHz

1MHz

24MHz

6MHz

1MHz

24MHz

6MHz

1MHz

-4.16 -4.15 -4.16 -3.56 -3.61 -4.06 -2.77 -4.16 -2.90

-4.15 -4.18 -4.23 -2.96 -2.32 -3.38 -2.01 -3.19 -2.05

-4.18 -4.18 -4.18 -2.83 -3.07 -3.14 -1.66 -1.66 -1.70

-4.18 -4.14 -4.16 -4.10 -4.03 -4.07 -4.13 -4.09 -4.08

-4.13 -4.12 -4.11 -4.02 -3.23 -3.91 -3.12 -3.65 -2.84

-4.14 -4.16 -4.15 -3.13 -3.22 -3.16 -2.70 -2.48 -2.33

-4.19 -4.14 -4.23 -4.01 -4.07 -3.70 -4.04 -4.11 -4.13

-4.13 -4.20 -4.17 -2.80 -2.54 -2.68 -3.34 -2.67 -2.72

-4.17 -4.11 -4.17 -1.79 -2.05 -2.28 -1.32 -1.53 -1.60

-4.14 -4.10 -4.19 -3.83 -3.01 -3.72 -3.14 -3.15 -3.17

-4.19 -4.19 -4.14 -3.07 -2.55 -3.01 -2.67 -2.48 -2.35

-4.11 -4.12 -4.18 -2.94 -3.13 -3.10 -2.05 -2.00 -1.94

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g 1

0
SN

R

(a) Hardware DUT.

≈ 1 × fclk ≈ 5 × fclk ≈ 25 × fclk

2.6V 3V 3.6V 2.6V 3V 3.6V 2.6V 3V 3.6V

CT − 1

Resistor

CT − 1 + Amp

Resistor + Amp

48MHz

24MHz

4MHz

48MHz

24MHz

4MHz

48MHz

24MHz

4MHz

48MHz

24MHz

4MHz

-0.04 -0.06 -0.08 0.14 -0.13 -0.10 0.16 0.14 0.09

-0.93 -1.01 -1.04 -0.04 -0.08 -0.10 0.02 -0.01 -0.03

-2.19 -2.23 -2.26 -0.87 -0.98 -1.05 -0.45 -0.55 -0.52

-0.82 -0.81 -0.91 0.02 0.02 -0.20 -0.01 -0.03 -0.21

-1.32 -1.37 -1.50 -0.15 -0.10 -0.53 -0.08 -0.12 -0.45

-2.43 -2.42 -2.42 -1.02 -1.19 -1.39 -0.41 -0.41 -0.55

0.02 0.06 0.00 0.33 0.29 0.23 0.33 0.32 0.27

-0.89 -0.98 -1.04 0.14 0.16 0.07 0.22 0.22 0.18

-2.23 -2.33 -2.29 -0.74 -0.87 -0.89 -0.18 -0.29 -0.29

-0.86 -0.47 -1.06 0.42 0.39 0.27 0.46 0.43 0.38

-1.38 -1.40 -1.53 0.15 0.13 -0.05 0.23 0.19 0.14

-2.41 -2.45 -2.49 -1.01 -1.16 -1.36 -0.32 -0.15 -0.20

−2.0

−1.5

−1.0

−0.5

0.0

lo
g 1

0
SN

R

(b) Software DUT.

Fig. 3. Peak SNR values observed for the hardware (a) and software (b) DUTs.

72 D. Bellizia et al.

≈ 1 × fclk ≈ 5 × fclk ≈ 25 × fclk

0.8V 1.2V 1.4V 0.8V 1.2V 1.4V 0.8V 1.2V 1.4V

CT − 1

Resistor

CT − 1 + Amp

Resistor + Amp

24MHz

6MHz

1MHz

24MHz

6MHz

1MHz

24MHz

6MHz

1MHz

24MHz

6MHz

1MHz

-inf -inf -inf -3.60 -3.65 -inf -2.72 -inf -2.69

-inf -inf -inf -2.94 -2.28 -3.60 -1.84 -3.29 -1.88

-inf -inf -inf -1.93 -1.86 -1.74 -1.58 -1.64 -1.57

-inf -inf -inf -inf -3.61 -4.10 -3.84 -3.59 -3.59

-inf -inf -inf -inf -3.14 -4.02 -2.70 -3.47 -2.46

-inf -inf -inf -3.30 -3.16 -2.97 -2.56 -2.43 -2.21

-inf -inf -inf -4.67 -inf -3.66 -inf -inf -inf

-inf -inf -inf -2.72 -2.46 -2.50 -3.61 -2.65 -2.44

-inf -inf -inf -1.35 -1.54 -1.53 -1.26 -1.48 -1.45

-inf -inf -inf -4.20 -2.71 -3.70 -2.83 -2.86 -2.94

-inf -inf -inf -2.79 -2.22 -2.88 -2.18 -2.23 -2.10

-inf -inf -inf -2.10 -2.20 -2.23 -1.85 -1.63 -1.71

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g 1

0
P
I

(a) Hardware DUT.

≈ 1 × fclk ≈ 5 × fclk ≈ 25 × fclk

2.6V 3V 3.6V 2.6V 3V 3.6V 2.6V 3V 3.6V

CT − 1

Resistor

CT − 1 + Amp

Resistor + Amp

48MHz

24MHz

4MHz

48MHz

24MHz

4MHz

48MHz

24MHz

4MHz

48MHz

24MHz

4MHz

0.61 0.60 0.58 0.79 0.75 0.75 0.87 0.87 0.87

0.45 0.43 0.37 0.80 0.80 0.77 0.87 0.87 0.87

-1.64 -1.84 -1.92 0.28 0.28 0.20 0.67 0.64 0.58

0.62 0.49 0.62 0.87 0.87 0.87 0.90 0.90 0.90

0.31 0.28 0.23 0.83 0.82 0.82 0.89 0.89 0.89

-inf -inf -inf 0.10 0.13 -0.02 0.65 0.63 0.58

0.75 0.74 0.73 0.83 0.83 0.83 0.89 0.89 0.89

0.60 0.59 0.55 0.87 0.87 0.87 0.89 0.89 0.89

-1.52 -1.36 -1.63 0.57 0.52 0.47 0.84 0.83 0.81

0.70 0.72 0.69 0.88 0.88 0.89 0.90 0.90 0.90

0.41 0.39 0.31 0.88 0.88 0.88 0.90 0.90 0.90

-inf -inf -inf 0.30 0.28 0.15 0.78 0.77 0.76

−1.5

−1.0

−0.5

0.0

0.5

lo
g 1

0
P
I

(b) Software DUT.

Fig. 4. Peak PI values observed for the hardware (a) and software (b) DUTs.

Towards a Better Understanding of SCA Measurements Setups 73

For the hardware platform’s results reported in Fig. 4a, we observe that the
experiment leading to the highest PI is obtained with the same set of parameters
that leads to the highest SNR in Fig. 3a. Generally speaking, comparing the two
metrics, the PI follows the same trend as the SNR in this case.3 For the software
platform’s results reported in Fig. 4b, we see that the effect of the probing method
and the power supply voltage are negligible, which is different from the univariate
SNR analysis of Fig. 3b. By contrast, observations regarding the clock frequency
and sampling rate remain similar as in the univariate case. We also note that
our highest PI value is 7.96 for an 8-bit bus.

As a complement, Fig. 5 depicts exemplary SNR and leakage traces for both
platforms, corresponding to the best cases in Fig. 3. The SNR traces are in the
upper subplots and mean leakage traces in the lower subplots.

0 200 400 600
Sample #

0.00

0.01

0.02

0.03

0.04

0.05

SN
R

of
H
W

pl
at
fo
rm

0 10000 20000 30000 40000 50000
Sample #

0

1

2

3

SN
R

of
SW

pl
at
fo
rm

0 200 400 600
Sample #

−20000

−10000

0

R
aw

le
ak
ag
e
of

H
W

pl
at
fo
rm

0 10000 20000 30000 40000 50000
Sample #

−20000

−10000

0

10000

20000

R
aw

le
ak
ag
e
of

SW
pl
at
fo
rm

Fig. 5. Exemplary SNR and leakage traces: hardware (left) and software (right).

These experimental investigations lead to the following observations:

Probe. The choice of a probe was more critical for the hardware platform than
the software one in our experiments. In the hardware case, the inductive probe
gave better results than the resistor. A plausible explanation is that the CT-1
interferes less with the side-channel signal and is intrinsically less noisy than a
shunt resistor. So as long as the target leakage is covered by the probe’s band-
width, it seems to be a good choice. In the software case, both the inductive probe

3 The experiments where the log10 PI is -inf correspond to a negative PI, indicating
the no information could be extracted from the estimated model.

74 D. Bellizia et al.

and the resistor gave good results, presumably due to the easier-to-exploit mea-
surements (reflected by the higher SNR and PI values). As for the use of the
amplifier, it does not show a significant impact as in most of our design space,
the signal that we sample is within the vertical range of our DSO.

We posit that the observation regarding the inductive (CT-1) probe could
change if targeting higher clock frequencies, and the observation regarding the
amplifier could change if targeting more advanced technologies or a side-channel
signal with lower amplitude (e.g., an electromagnetic one).

Clock Frequency. This parameter is in general important for side-channel
analysis. Whenever it can be controlled by the adversary, both our hardware
and software results suggest the same rule-of-thumb: “use the highest available
clock frequency such that independent clock cycles are easy to distinguish”.

We first illustrate this rule-of-thumb with Fig. 6. It shows the traces we
recorded with the best parameter set and varying clock frequencies for the FPGA
platform. At 1 MHz, the independent peaks for each clock cycle are clearly dis-
tinguishable. At higher clock frequencies, the leakage traces are smoother and
the overlapping between the clock cycles in the measurements increases.

0 5 10 15 20 25
Time [µs]

−25000

−20000

−15000

−10000

−5000

0

5000

10000

R
aw

(a) 1MHz.

0 1 2 3 4
Time [µs]

−20000

−15000

−10000

−5000

0

5000

10000

15000

20000

R
aw

(b) 6MHz.

0.0 0.2 0.4 0.6 0.8 1.0
Time [µs]

−30000

−20000

−10000

0

10000

20000

R
aw

(c) 24MHz.

Fig. 6. Clock frequency effect on the hardware setup.

Towards a Better Understanding of SCA Measurements Setups 75

We next turn to the software case study to explain the first part of the
rule-of-thumb (i.e., why it is not advisable to reduce the clock frequency uncon-
ditionally). In this respect, we first note that for this software DUT, the clock
cycles were clearly distinguishable even for the maximum clock frequency (so
the second part of the rule-of-thumb was fulfilled). In this case, the best SNR
and PI values are observed for higher clock frequencies. We explain this effect
by observing that all the samples in a clock cycle are not equally informative.
During an MCU clock cycle, most of the dynamic power is contained right after
the rising edge of the clock as the effect of the registers changing state. The
leakage from the remaining of the clock cycle is mostly due to static power and
is usually less informative [20,23]. Therefore, the interest of decreasing the clock
frequency can become detrimental when conditioned on a sampling frequency.

More precisely, and as illustrated in Fig. 7, decreasing the clock frequency
can lead the collected samples (represented by red diamonds in the figure) to
correspond mostly to the static part of the leakage, and to miss the information
of the dynamic part (represented by the green rectangles of the figures). Overall,
this can lead to a collection of samples that is less informative: the univariate
SNR can be lower by missing the most informative sample and the multivariate
PI can be lower by cumulatively covering less relevant samples.

Fig. 7. Sampling with different DUT clock frequencies.

VDD. Despite less definitive than the clock frequency, the supply voltage also
affects the shape of the leakage traces, as it increases the critical path and
therefore spreads the information towards more samples. This naturally causes
the multivariate PI to be improved when lowering the supply voltage below the
nominal one. Interestingly, we also observed that for both targets and most sets
of other parameters, decreasing VDD is also beneficial to the univariate SNR.

A plausible reason for this observation is that both devices are based on
CMOS technology (even though from different technology nodes and manufac-
turers) which generally exhibits smoother transient current when VDD is lower
than nominal, due to reduced transconductance of digital cells. This can reduce
both the signal and, here more dominantly, the noise of the leakage.

76 D. Bellizia et al.

We note that this observation is admittedly technology-dependent: see [28] for
a report on several technology nodes. It is also not unconditional: as reported
in the same paper, the output noise of a digital cell in subthreshold regime
(that corresponds to extremely low VDD values) is not minimal, as transistors
exhibit higher resistance and thus contribute more to increase the noise level. So
overall, our conclusion regarding the VDD parameter is that reducing it below
the nominal value can have marginal interest, especially for multivariate attacks,
but is not expected to lead to significant gain/loss factors.

Sampling Rate. This parameter is especially critical for the cost of the attacks
as it affects the memory requirements to store the leakage measurements.

On the one hand, its selection is related to the clock frequency: as in general
when quantizing signals, the sampling rate should at least be chosen larger than
the Nyquist frequency. This requirement was confirmed in our experiments, and
showed to be more critical (resp., less critical) in the hardware case (resp., soft-
ware case). This is presumably due to the lower (resp., larger) amount of less
(resp., more) informative samples of the harware (resp., software) case.

On the other hand, in the context of side-channel analysis, a natural ques-
tion is whether increasing the sampling rate significantly beyond the Nyquist
frequency can be useful. Namely, can it lead to more powerful multivariate
attacks? By testing a sampling frequency of ×1, ×5 and ×25 the clock fre-
quency, we observed that collecting more samples helps only to a limited extent.
In particular, both for the software and the hardware platforms, the gains when
moving from ×1 to ×5 the clock frequency are more significant than when mov-
ing from ×5 to ×25 the clock frequency, again with more incentive to increase
the sampling rate in the hardware case than in the software case. A plausible
reason for this difference is once more the more condensed and noisy nature of
the hardware leakage (i.e., the fact that it is concentrated in less cycles with
more algorithmic noise, rather than spread over more cycles in software).

Univariate vs Multivariate Evaluations. Eventually, our results indicate
that whether the SNR is a good predictor of the PI is quite case-dependent.

If the SNR traces present a single peak or a set of peaks that are close to each
other (e.g., within one cycle), they usually indicate correlated leakage coming
from a single operation. In this case, which typically corresponds to our hardware
experiments (see the left part of Fig. 5), a good univariate SNR will generally be
a good indicator of a good multivariate PI. Multivariate attacks will always be
more powerful but the SNR can serve as a first-order comparison metric.

By contrast, if the SNR traces contain multiple peaks separated by several
clock cycles, they rather indicate independent leakage coming from different
operations. In this case, which typically corresponds to our software experiments
(see the right part of Fig. 5), multivariate attacks are expected to be significantly
more powerful than univariate ones. So the direct estimation of the multivariate
PI is in general a better (i.e., more conclusive) evaluation strategy.

Towards a Better Understanding of SCA Measurements Setups 77

5 Conclusions

This study aims at evaluating the risk of over-estimating the physical security of
an implementation due inadequate parameter choices when configuring a mea-
surement setup. We focus on four main parameters: the probing method, the
clock frequency, the power supply voltage and the sampling rate. We apply our
methodology to an embedded software and a hardware FPGA implementation
of the AES-128 block cipher. It leads to 108 experiments for each DUT, that
we analyze by means of univariate and multivariate evaluation metrics, namely
the SNR and the PI. Our findings show that the losses due to a bad selection of
parameters can be significant and lead to a strong over-estimations of an imple-
mentation’s security level. We also use our experiments in order to consolidate
general intuitions and recommendations regarding the good choice of parameters
and to discuss their device and architecture dependencies.

Acknowledgments. François-Xavier Standaert is a senior research associate of the
Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in
parts by the European Union through the ERC project SWORD (724725).

References

1. Accurrent probes - ct1, ct2, ct6 data sheet. https://download.tek.com/manual/
070795702web.pdf

2. Tinyaes in c. https://github.com/kokke/tiny-AES-c
3. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-

ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 599–619. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4 30

4. Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: Design and implementation
of a waveform-matching based triggering system. In: Standaert, F.-X., Oswald,
E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 184–198. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-43283-0 11

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.-X.:
Leakage certification revisited: bounding model errors in side-channel security
evaluations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 713–737. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 25

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1 26

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES. Lecture Notes in
Computer Science, vol. 2523, pp. 13–28. Springer, Redwood city (2002)

9. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most suc-
cessful mutual information and success rate in side-channel analysis. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(2), 49–79 (2019)

https://download.tek.com/manual/070795702web.pdf
https://download.tek.com/manual/070795702web.pdf
https://github.com/kokke/tiny-AES-c
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-319-43283-0_11
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26

78 D. Bellizia et al.

10. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 1

11. Cnudde, T.D., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(2), 123–148 (2018)

12. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

13. Goubin, L., Patarin, J.: DES and differential power analysis (the duplication
method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

14. Guilley, S., Maghrebi, H., Souissi, Y., Sauvage, L., Danger, J.L.: Quantifying the
quality of side-channel acquisitions. In: COSADE 2011. pp. 16–28 (2011)

15. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767480 16

16. Levi, I., Bellizia, D., Standaert, F.: Reducing a masked implementation’s effective
security order with setup manipulations and an explanation based on externally-
amplified couplings. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 293–
317 (2019)

17. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-
2 18

18. Mangard, S., Oswald, E., Standaert, F.: One for all - all for one: unifying standard
differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

19. Moos, T., Moradi, A., Richter, B.: Static power side-channel analysis - an investi-
gation of measurement factors. IEEE Trans. Very Large Scale Integr. Syst. 28(2),
376–389 (2020)

20. Moradi, A.: Side-channel leakage through static power. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 562–579. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 31

21. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
virtex-ii fpgas. In: ACM Conference on Computer and Communications Security,
pp. 111–124. ACM (2011)

22. Merino del Pozo, S., Standaert, F.-X.: Getting the most out of leakage detection. In:
Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 264–281. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-64647-3 16

23. Pozo, S.M.D., Standaert, F., Kamel, D., Moradi, A.: Side-channel attacks from
static power: when should we care? In: DATE, pp. 145–150. ACM (2015)

24. Schwarz, R.: R&s hz-15, r&s hz-17 probe sets, r&s hz-16 preamplifier. https://
scdn.rohde-schwarz.com/ur/pws/dl downloads/dl common library/dl brochures
and datasheets/pdf 1/service support 30/HZ-15 16 17 bro en 5213-6687-12
v0100.pdf

25. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-662-44709-3_31
https://doi.org/10.1007/978-3-319-64647-3_16
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/service_support_30/HZ-15_16_17_bro_en_5213-6687-12_v0100.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/service_support_30/HZ-15_16_17_bro_en_5213-6687-12_v0100.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/service_support_30/HZ-15_16_17_bro_en_5213-6687-12_v0100.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/service_support_30/HZ-15_16_17_bro_en_5213-6687-12_v0100.pdf
https://doi.org/10.1007/978-3-540-85053-3_26

Towards a Better Understanding of SCA Measurements Setups 79

26. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

27. for Standardization, I.O.: It security techniques - test tool requirements and test
tool calibration methods for use in testing non-invasive attack mitigation tech-
niques in cryptographic modules - part 1: Test tools and techniques (Geneva (CH)
2019), iSO/IEC 20082–1

28. Veirano, F., Silveira, F., Navinery, L.: Is intrinsic noise a limiting factor for sub-
threshold digital logic in nanoscale CMOS? In: 2015 International Workshop on
CMOS Variability (VARI), pp. 45–50 (2015)

29. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-34961-4_44

A Tale of Two Boards: On the Influence
of Microarchitecture

on Side-Channel Leakage

Vipul Arora1,2, Ileana Buhan3, Guilherme Perin2, and Stjepan Picek2(B)

1 Riscure B.V, Delft, The Netherlands
2 Delft University of Technology, Delft, The Netherlands

3 Radboud University, Nijmegen, The Netherlands

Abstract. Advances in cryptography have enabled the features of con-
fidentiality, security, and integrity on small embedded devices such as
IoT devices. While mathematically strong, the platform on which an
algorithm is implemented plays a significant role in the security of the
final product. Side-channel attacks exploit the variations in the system’s
physical characteristics to obtain information about the sensitive data.
In our scenario, a software implementation of a cryptographic algorithm
is flashed on devices from different manufactures with the same instruc-
tion set configured for identical execution. To analyze the influence of
the microarchitecture on side-channel leakage, we acquire thirty-two sets
of power traces from four physical devices. While we notice minor differ-
ences in the leakage behavior for different physical boards from the same
manufacturer, our results confirm that the difference in microarchitecture
implementations of the same core will leak different side-channel infor-
mation. We also show that TVLA leakage prediction should be treated
with caution as it is sensitive to both false positives and negatives.

Keywords: Microarchitecture · Side-channel leakage · TVLA

1 Introduction

The question we ask in this work is both simple and practically relevant for
an embedded system developer assigned to implement an existing cryptographic
algorithm on a microcontroller. The developer is free to choose any microcon-
troller meeting the project’s functional requirements, e.g., ARM Cortex M0, a
popular choice in the IoT industry. Our developer has several options for a given
core from the diverse SoC range offered by different manufacturers.

Devices supporting a similar instruction set architecture (ISA) vary in design
depending on the implementation choices. The ISA represents an abstraction of
the underlying hardware implementation, known as the microarchitecture [9].
Figure 1 shows the relation between the ISA and the microarchitecture. The
ability to separate the ISA design from the microarchitecture was a significant
step in the development of modern computing, granting functional compatibility
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 80–96, 2022.
https://doi.org/10.1007/978-3-030-97348-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_5

A Tale of Two Boards 81

Fig. 1. We refer to the ISA implementation as the microarchitecture, which is
manufacturer-specific and considered a trade secret. The illustration is inspired by [13].

while allowing for flexibility in the implementation. As the choices made during
the ISA implementation significantly impact the final product’s performance,
the microarchitecture implementation is considered a trade secret, and details
are typically not available in the public domain.

All other things being equal, our developer would like to choose the microar-
chitecture implementation, which minimizes the side-channel leakage. Con-
cretely, the question relevant to our embedded system developer is:

Given the choice between two implementations of the same core, how sig-
nificant is the difference in side-channel leakage?

This study selected two devices designed with an ARM Cortex M0 core from
the same family, the same ISA, and different vendors. To detect the source of
differences between different implementations, we took special care to synchro-
nize the traces between two devices for identical execution. We labeled the time
samples in the trace with the executed instruction to identify and explain, where
possible, the source of difference.

Contributions. We present a methodology for comparing software implemen-
tations across devices with the same instruction set and comment on the influ-
ence of microarchitecture implementation on side-channel leaks. We compare
the manufacturing variability between different physical devices from the same
manufacturer. To reveal the effects of the microarchitecture implementation,
we compare devices from different manufacturers. We contrast the accuracy of
leakage detection techniques with the “real” leaks obtained by profiling for the
evaluation. We show that leakage detection techniques are prone to false posi-
tives and false negatives, and their results should be treated with caution.

2 Related Works

The results presented in this paper have a wider application than the practical
relevance for our embedded system engineer. First, to the area of side-channel

82 V. Arora et al.

leakage simulators, which face the problem of portability across devices. For
example, both ELMO [10] and [11], were created specifically for an ARM Cortex
M0 STM32F0 (30R8T6) device. If the microarchitecture implementation signif-
icantly impacts the side-channel leakage, the simulator needs to be retrained
when the target is an ARM Cortex M0 NRFf51 board. The creation of sophis-
ticated gray-boxed leakage models required for accurate side-channel simulators
requires including microarchitecture information. While we know that reverse-
engineering the microarchitecture of commercial processors is possible [4,10], the
effort is intensive.

Second, our results have an application to the area of deep learning for SCA,
where training and attacking across different physical boards using the same
model is possible but requires a special training procedure [3]. Golder et al.
extended the previous work and explored the cross-device perspective for a large
number of devices (3) [5]. Van der Valk et al. aimed to analyze the portability
problem from the AI explainability perspective and discussed the overspecializa-
tion phenomenon. Bhasin et al. showed that portability makes the deep learning
attacks more difficult as the deep learning algorithms will easily overfit [1]. To
prevent this, the authors proposed the Multiple Device Model approach. Over-
specialization denotes the situation when a machine learning attack does not
overfit when using the test set from the same device (as when not considering
portability), but it overfits when attacking a different device [14]. Wu et al. pro-
vide a workaround for the Multiple Device Model where ablation can reduce the
overfitting effect [15]. Zhang et al. investigated the difficulty of profiling attacks
when considering homogeneous (same devices) and heterogeneous settings (dif-
ferent devices) [16]. Another challenge for profiled attacks is that the collection
of side-channel traces becomes less reliable after a long period. Consequently,
certain trend noise must be added to the side-channel traces due to temperature
and environmental conditions evolution over time. Heuser et al. characterized
this effect and proved that trend noise drastically impedes SCA [7]. Similar find-
ings are confirmed by Cao et al. [2].

3 Background

ARM Cortex M0. The Cortex M0 is a 32-bit RISC processor developed by
ARM that implements version v6M of the ARM instruction set [8]. It is one
of the most widely used embedded devices due to an efficient instruction set
and affordable development costs with comprehensive development tools and
support. The Cortex M0 has a Harvard architecture with both 16-bit (THUMB)
and 32-bit instructions and a 32-bit data path. It does not include a data cache
or memory management unit (MMU) but comes with a prefetch buffer. The
ARM6 has 37 registers, consisting of thirty-one 32-bit general-purpose registers
and six additional status registers. The instruction set determines the functional
capabilities of a processor by specifying the list of all supported instructions.

Test Vector Leakage Assessment (TVLA) [6] is one of the most popular
leakage detection methods due to its simplicity and relative effectiveness. It is

A Tale of Two Boards 83

based on statistical hypothesis tests and comes in two flavours: specific and
non-specific. The ’fixed-vs-random’ is the most common nonspecific test and
compares a set of traces acquired with a fixed plaintext with another set of
traces acquired with random plaintext. In the case of a specific test, the traces
are divided according to a known intermediate value tested for leakage. Welch’s
two-sample t-test for equality of means is applied for all trace samples in both
cases. A difference between two sets larger than a given threshold is taken as
evidence for the presence of a leak.

Key Rank Estimate is a commonly used metric in SCA for assessing the
performance of an attack. It is performed in a known key scenario and returns the
rank of the correct key candidate in the sorted score vector of all key candidates.
The key ran estimate is related to the success rate curve [12], which shows the
evolution of the correct key candidate as more traces are added. There are two
differences compared to the success rate: first, key ranking is performed on a fixed
set of traces, whereas the success rate is performed on a variable set of traces to
capture the evolution of the correct key candidate; second, key ranking can be
performed for all samples in the trace, whereas the success rate is typically shown
for one sample. The result of the key rank estimate is affected by the number
of traces used for analysis. If leaks are present, key rank converges towards the
first position as more traces are added.

4 Experimental Setup

Target Devices. We selected for this study two ARM Cortex-M0 cores as com-
prehensive literature is available, and the Cortex M0 has found wide application
in embedded and IoT devices:

1. STM32 Discovery is a development board from ST Microelectronics for the
STM320f051 device, which consists of an on-board MCU interface enabling
easy flashing and debugging using STLink over USB. The development board
also offers a PPI port that connects a current probe to measure the current
consumption. On inspection of the STM32 board’s schematic, we observe that
the MCU interface and the target device share the same power source. The
target MCU is powered by an external 3V3 supply from the current mea-
surement port using the USB port. The coupling capacitors attached to the
power pins of the target MCU are removed; they act as a low pass filter on
the input power supply to the target MCU. We used two STM32 boards for
our experiments, referring to them as STMAand STMB.

2. NRFf51 is an SoC designed for Bluetooth Low Energy applications based on
Cortex M0 running at 16 MHz. The NRFf51 development kit also offers a
current measurement port, and we found no coupling capacitors to the power
line circuitry. The target MCU is already isolated from the interface MCU
when the board is powered externally using 3V3, so no hardware modifications
are required. We used two NRFf51 boards for our experiments, referring to
them as NRFAand NRFB.

84 V. Arora et al.

Fig. 2. Acquisition setup for (a) STM32 and (b) NRFf51 boards. Pin A9 and A10 are
used on STM32, and pin 9 and pin 11 are used on NRFf51board for UART Rx and Tx,
respectively. For connecting the trigger signal, we use pin A11 for the STM32and pin
A14 for the NRFf51 boards. For both, the signal from the current probe is attached to
the oscilloscope through a 50Ω impedance. For the NRFf51 board, the signal from the
current probe is passed through a signal amplifier.

Measurement Setup. Throughout this paper, we maintain the same exper-
imental setup, shown Fig. 2. We use Riscure’s Inspector SCA toolchain 1 for
acquisition and signal processing. Furthermore, we use a Picoscope 3000 and a
Riscure-CP189 current probe. An important requirement for our setup is that
both boards execute the same instructions in sync. Since the two boards have a
different startup script for configuration and execution, we took special care to
ensure the code between the triggers is identical for both targets. The same com-
piler was used to generate the binary files, and we compared the disassembled
code on both boards to verify that the execution was identical. For a consistent
toolchain, the software projects for both devices were created and compiled using
Kiel Vision 5. An unmasked implementation of AES-1282 was flashed on both
target boards. The execution sequence is:

1. On boot/reset, a startup code runs on both target devices, which sets the
system and peripheral clocks. While the NRFf51 device works at a fixed clock
speed of 16 Mhz, the STM32 device supports operation over a wide clock fre-
quency. The startup code sets the clock frequency to 16 MHz.

2. Core and UART drivers are initialized.
3. System tick interrupt is disabled.
4. Control enters the main function, AES object with a preset key is initialized.
5. Enter an infinite loop, repeat the steps below:

(a) Receive 16 bytes of data over UART.
(b) Set trigger pin low, which signals the oscilloscope to start recording.
(c) 16 bytes of data are encrypted.
(d) Encrypted ciphertext is returned over UART.

1 https://www.riscure.com/security-tools/inspector-sca.
2 https://github.com/ARMmbed/mbedtls.

https://www.riscure.com/security-tools/inspector-sca
https://github.com/ARMmbed/mbedtls

A Tale of Two Boards 85

Fig. 3. An example of labeled traces.

Synchronization of Traces. To provide an accurate analysis of the observed
effects, we want to align the traces with clock cycle accuracy. We compared the
accuracy of the trigger signal from the oscilloscope to the recorded traces to find
the level of drift. Using the disassembly of C code, the assembly code line that
sets the trigger pin low is found to have exact timing. We use the number of
cycles it takes the program flow to enter the encrypt function, and we use it to
identify the start of the encrypt function in the recorded traces.

Adding Instruction Labels. We used the ARM process simulator in Keil
MDK version 53 to record the execution trace of instructions. The tool outputs
a CSV file with disassembly code and the execution time for each instruction.
We use the execution trace information to link the instruction labels to their
power trace segments. An example of the results of combining power traces
with instruction labels obtained from the execution trace is shown in Fig. 3.
The example presents the acquired power trace immediately after acquisition
and up until add round key operation on the first four bytes. Unless otherwise
mentioned, for the rest of the experiments we use the power trace corresponding
to the Listing 1.1. To confirm the correctness of the labeling, we also visually
verified that repeated instruction sequences show a similar power consumption.

Trace Sets. We collected a total of 32 trace sets, 2500 traces each, from the
four physical boards (STMA, STMB, NRFA, NRFB) available. Half of the traces are
provided with a fixed 16-byte plaintext, and half have 16-byte random plaintext.
We used two different keys, key 1 and key 2, for the encryption and two different
values for the fixed input D1 and D2. As the TVLA methodology [6] specifies
performing a repetition to verify the results, the trace sets are labeled by 1 or 2,
representing two repetitions. Figure 4 shows an overview of the collected traces.

3 https://www2.keil.com/mdk5/docs.

https://www2.keil.com/mdk5/docs

86 V. Arora et al.

1 CMP r1, #0x04

2 BLT 0x08000818

3 LSLS r3,r1,#2

4 ADDS r3,r3,r2

5 LDRB r3,[r3,r0]

6 LDR r4,[pc,#28] : @0x0800083C

7 LDRB r3,[r4,r3]

8 LSLS r4,r1,#1

9 ADDS r4,r4,r2

10 STRB r3,[r4,r0]

11 ADDS r3,r1,#1

12 UXTB r1,r3

13 CMP r1,#0x04

14 BLT 0x08000818

15 LSLS r3, r1,#2

16 ADDS r3,r3,r2

17 LDRB r3,[r3,r0]

18 LDR r4, [pc,#28]: @0x0800083C

19 LDRB r3,[r4,r3]

20 LSLS r4,r1,#1

21 ADDS r4,r4,r2

22 STRB r3,[r4,r0]

23 ADDS r3,r1,#1

Listing 1: Code sequence captured during the experiments.

5 A Closer Look at the Implementation

The raw traces from the STM32 and NRFf51 board are shown in Fig. 5. A quick
visual comparison confirms that the power consumption for the two devices
differs significantly. The operations performed are based on repetitive patterns
that can be distinctly identified for both devices.

S-box Leakage. To understand how the devices are leaking, we isolate the
samples corresponding to the S-box computation in round one, as shown in
Fig. 5. We profile the targets using the Hamming Weight (HW) leakage model.
We select all 16 bytes of the S-box and correlate the intermediate values with
the selected samples. We rank the probability of leak for all the possible key-
byte combinations. With this approach, we relate observable leaks at each time
sample index with the probability of the correct key byte leaking to an attacker.
The results are shown in Fig. 6.

For the STM32 device, Fig. 6 (top), we observe that key data leaks strongly
while the subsequent byte is loaded, which seems evidence for data-overwrite
leaks from registers. A small section of leaks is observed again when a key element
from the same group is operated upon. This can relate to how key data is stored
in subsequent memory locations, and memory access loads more than 1-byte
data on the bus. This effect can be due to 4-byte memory access in Cortex M0;

A Tale of Two Boards 87

Fig. 4. Overview trace sets. The nomenclature is class board key data repetition. For
example, a trace set with the name NRF B key2 D1 1 means it was collected from
NRFB board, key K2 is used for encryption, D1 is provided as fixed input, and 1 is the
repetition cycle.

Fig. 5. The raw power trace for the STMA device (top) and NRFA device (bottom). The
highlighted section marks the 1st round of the S-box operation on the first byte of
data. The selection starts at index 14 910 and has a length 1 235 samples. This section
of trace has been used for the evaluation in Sects. 6 and 7.

the old key bytes are also sent on the bus due to a word size of 4 bytes. (i.e. we
observe leak of k[0][0] when operations are performed on k[0][1], leak of k[0][0],
k[0][1] when operation are performed on k[0][2]; similarly We observe leak of
k[0][0], k[0][1], k[0][2] when operation are performed on k[0][3]).

Similarly, the results for the NRFf51 device are presented in Fig. 6 (bottom).
We observe that the correct key intermediate is leaking consistently after the
first time it is read from memory, and key data is leaking when operations are
performed on byte data stored in subsequent memory locations. Memory access
read 4 bytes of consecutive data from the provided memory address. Comparing
the leaks across the two devices, we note that data-overwrite leaks are observed
at similar trace sections. The key bytes start to leak subsequent to the STR
instructions and leak while the next byte data is loaded by LDR instructions. We
surmise that the contrasting behavior results from the difference in microarchi-
tecture implementation. The NRFf51 device is a low power board; memory access

88 V. Arora et al.

Fig. 6. (To be viewed in colors.) Key rank results for the STM32 (top) and NRFf51 (bot-
tom) devices. The selection captures the s-box operation. We perform key ranking on
all 16 bytes in round 1. The red color indicates strong leaks, where the correct key
candidate is ranked in the first position, whereas other colors represents weak leaks.

consumes significant power and impacts dynamic power consumption. The choice
of memory technology will impact the leaks observed from the board.

For the remainder of the report, we select the leaks from the S-box operation
on 1 byte of data (Byte 1). To maintain uniformity in the analysis, the same
trace section will be used for all comparisons.

6 The Influence of Manufacturing Variability

Manufactured silicon chips have variations due to the raw material used or vari-
ations in the manufacturing process. Non-uniform etc.hing can introduce incon-
sistencies in transistors’ depletion layer, which will affect the leakage current
generated on switching. Inconsistencies are spread out across peripherals at the
microarchitecture level, which means that each physical device will have its power
fingerprint resulting from the accumulation of these effects.

This section explores the manufacturing differences between boards from the
same manufacturer, namely, the differences in side-channel leaks from STMA vs.
STMB, and NRFA vs. NRFB. These results are useful for putting in perspective
the results obtained in Sect. 7. The devices are prepared with similar hardware
modifications and flashed with the same binary, keeping the key and input data
parameters identical, as described in Sect. 5.

The result of the TVLA test for both STMA and STMB, Fig. 7 (a), shows a similar
shape for the leakage. Additionally, the repetition of the test (with different
inputs and keys) shown with a dotted line confirms these results. Key rank

A Tale of Two Boards 89

Fig. 7. (To be viewed in color.) Results of data leakage comparison for STMA and STMB.
From the top: (a) TVLA traces, (b) key rank results for STMA, (c) key rank results
for STMB. The red rectangle indicates the area of the trace where TVLA shows false
negative (profiling indicates leakage).

results in Figs. 7 (b) and (c) show leaks over a wider section of power traces for
both devices compared to the results predicted by TVLA. Key rank results for
the STMA device show leaks at the beginning of the trace, a behavior not seen
in the key ranking results for the STMB device. These leaks are probably caused
by manufacturing defects in STMA. Gaps in leakage are observed for both boards
during the execution of UXTB and BLT instructions, which can be sourced from
effects in the physical layer. We observe gaps in the results of key rank analysis
during the ADDS and the BLT instruction, which is consistent for both boards.
We could attribute this effect to operations being implemented at the hardware
level, which mask the leakage of key data at those locations.

The TVLA results shown in Fig. 8 (a) indicate a very similar trend for both
NRFf51 boards. Key rank analysis results for the two boards are shown in Fig. 8
(c) and (d). While we note a slight variation between the leakage NRFA and NRFB,
the overall trend is similar. However, we note a significant difference between
the leakage predicted by TVLA, which indicates both false positive and false
negative leakage.

To summarize, we confirm that the manufacturing process may create slight
differences between the leaks in the different physical devices we examined, but
the overall trend seems consistent. Based on the experimental results, we con-
clude that there are significant differences between the leakage predicted by
TVLA and the ground truth as indicated by profiling the targets.

90 V. Arora et al.

Fig. 8. (To be viewed in color.) Results of data leakage comparison for NRFA and NRFB.
From the top: (a) TVLA traces, (b) key rank for NRFA, (c) key rank for NRFB. The blue
rectangle indicates the area of the trace where TVLA shows false positive (leakage
while profiling indicates no leakage). The red rectangle indicates the area of the trace,
where TVLA shows false negative (no leakage while profiling clearly indicates leakage).

7 The Influence of Microarchitectural Implementation

The ARM Cortex-M0 microprocessor has a three-stage pipeline, which means
there can be up to three instructions implemented in the fetch, decode, and exe-
cute stages of the pipeline. Memory access greatly impacts the dynamic power,
so the effect of memory instructions is significant and can be diffused to be
visible while other instructions are executed. Furthermore, while we know the
instruction executed at every clock cycle, we note that the power trace consists
of a cumulative effect from all pipeline stages of the processor.

When porting code to a device with a similar hardware architecture, the
grouping of instructions in pipeline stages will probably be also similar. However,
the magnitude/contribution of leaks from different pipeline stages may vary for
different devices. Additionally, as microarchitectural implementation choices are
not public, the best we can do for describing the difference in side-channel leakage
between the STM32 and NRFf51 boards is a plausible explanation.

A Tale of Two Boards 91

Fig. 9. Fixed vs. random mean trace plot for STM32 (top) and NRFf51 (bottom). The
y-axis shows the power consumption, and the x-axis represents time. The numbers on
the x-axis are the instruction being executed, see Listing 1.1.

7.1 Power Profiles

Mean Traces. Fixed vs. random mean plots comparing the two devices are
presented in Fig. 9. The power traces from STM32 devices have a higher power
consumption than the traces obtained from the NRFf51 device, as evident from
the scale of the y-axis. STM32 is designed for general-purpose IoT applications,
whereas the NRFf51 is a low energy device with a current consumption of 2mA.
The low power of the NRFf51 device makes it more sensitive to noise.

Comparing the mean trace plots from both devices, we observe the fixed vs.
random lines deviating at the same power trace sections. In Fig. 9, this is visible
in the difference between the red (random set) and blue (fixed set) lines for both
plots. The deviations reveal sections of code with a dynamic power component. If
the underlying data is changed in the code section, we will observe fluctuations in
the specific section of power traces. We repeated the experiments with a different
value for the input data to verify that the observations were not incidental.
We distinguish between the two repetitions by presenting results with a solid
and a dotted line in the power profile comparison plots. Repeating artifacts are
observed for LDR (labeled 6 and 18) and STRB (labeled 10 and 22) instructions
in power trace, confirming the correct labeling of traces with instructions. In
the case of the NRFf51 devices, the effects of individual instructions are not as
prominent and are difficult to distinguish visually.

From the mean plots of fixed (blue) vs. random (red) execution for both
the device, we observe both the sets exhibit a similar trend though they differ
along certain sections of the traces. In Fig. 9 (top), we notice that the deviation
between the random and fixed sets is visible only following the STRB r3,[r4,r0]
(labeled 10) instruction until the BLT branch (labeled 14). In Fig. 9 (bottom), we
can distinctly see the execution trace of fixed as well as random sets. The inter-
esting observation is that the distance between the mean of two sets increases
substantially after the STRB r3,[r4,r0](labeled 10) instruction and then slowly

92 V. Arora et al.

Fig. 10. Fixed vs. random standard deviation trace plot for STM32 (top) and
NRFf51 (bottom). The y-axis shows the power consumption, and the x-axis represents
time. The numbers on the x-axis are the instruction being executed, see Listing 1.1.

decreases up until the BLT instruction (labeled 14). From the results in the pre-
vious section, we know that these are the locations where leaks are observed.
The software implementation seems to show evidence of data overwrite leaks at
similar sections across devices of both classes.

Standard Deviation. The operands influence the power consumption due to
the toggling of bits when new data is loaded. An increase in the standard devi-
ation of the random set is observed where the power consumption depends on
the underlying data. The standard deviation of the fixed set provides us with a
base level for executing a set of operations with constant data.

Standard deviation plots in Fig. 10 show that the standard deviation for the
fixed set consistently varies for every clock cycle. This behavior is consistent for
the fixed sets for all boards and repetitions. The increase in standard devia-
tion for the random sets provides evidence of leaks, and interestingly these are
observed at similar trace sections for both the STM32 and NRFf51 devices. For
the STM32 traces, the deviation in random vs. fixed plot occurs near the ADDS
r4,[r4,r2] (labeled 9), STRB r3,[r4,r0] (labeled 9) and BLT 0× 08000818
(labeled 14) instructions where variance of random set is visibly higher in com-
parison to the fixed set. In the case of NRFf51 boards, the variance of a random
set is higher compared to the fixed set for all sections of the trace. Following
the execution of the STRB r3,[r4,r0] instruction (labeled 10), the variance of
random set increases until the CMP r1,#0× 04 instruction (labeled 13) where it
peaks and goes down until LSLS r3,r1,#2 instruction (labeled 15) where the
operation on next byte starts.

A Tale of Two Boards 93

Fig. 11. TVLA results for the STMA and NRFA devices. The numbers on the x-axis are
the instructions being executed, see Listing 1.1.

7.2 Data Leakage

TVLA Results. Fig. 11 shows the TVLA results for the STMA (red line) and the
NRFA(blue line) devices. A green line represents the threshold value of 4.5. The
plot shows that the side-channel leaks for the two devices differ significantly. For
the STMA, the TVLA value rises above the 4.5 threshold at STRB r3,[r4,r0]
instruction, goes down at UXTB r1, r3 instruction and rises again covering CMP
r1,#0× 04(labeled 13) and BLT 0× 08000818 (labeled 14) instructions. For the
NRFA device, the TVLA results show leakage for almost all instructions (labeled
1–21). However, as seen in the previous section, the TVLA results need to be
considered with caution.

Key Rank Analysis results have been added as a transparent layer over
the TVLA for both boards in Fig. 12.

Fig. 12. (To be viewed in colors.) Overlay of the key rank estimate on the TVLA
results for STMA device(top) and NRFA device (bottom). Red regions represent the index
locations where the correct key is ranked first. The rectangles highlight differences in
leakage between the two boards. The numbers on the x-axis are the instruction being
executed, see Listing 1.1.

For the STMA device, the correct key data starts leaking Fig. 12 (top)
from the LDRB r3, [r4,r3] instruction (labeled 7) until the STRB r3,[r4,r0]

94 V. Arora et al.

instruction (labeled 22). Our hypothesis for the leak observed during the LDRB
r3,[r4,r3] instructions (labeled 7) is that the key byte is being loaded on the
bus. The key byte also leaks while the arithmetic instructions are being per-
formed, at ADDS r4,r4,r2 instruction (labeled 9). We believe this is an effect of
the three-stage pipeline: while the ADDS instruction is being executed the data
is being pre-fetched for the STRB instruction.

We see that the correct key byte continues to leak in the subsequent instruc-
tions even though no operations are performed directly on the key data. In the
analyzed s-box implementation, the loop operates on 4 bytes, four times to oper-
ate on a total of 16 bytes of data; the check for the loop occurs at CMP r1,#0× 04
instruction(labeled 13). The check compares the relative value of R1 to #0 × 04
and branches to the next instruction if the R1 value is less than 4.

The subsequent instructions LSLS and ADDS compute the relative index from
which the next key data is to be loaded by the LDRB instruction, which is when
the leak of key data stops. We find this to be an interesting behavior since the
data stops leaking when the data in the memory bus-A is overwritten by new
data. We do not have an explanation for the gaps in the resulting leaks for the
STRB (labeled 10) and UXTB (labeled 12).

Figure 12 (bottom) shows the key rank analysis for the NRFA device. The
correct key byte starts leaking at STRB, r3,[r4,r0] instruction (labeled 10),
and leaks until LDR r4,[pc,#28] instruction (labeled 18). The leaks observed
in the NRFA device seem to have a strong effect on the dynamic power, and its
effects seem diffused, showing up while other instructions are being executed.
We can infer that the correct key byte is on the bus after the STRB instruction
(labeled 10), which leaks over the subsequent instructions as the data is being
overwritten. An interesting behavior observed in NRFAboards is the leak of the
first key byte when the operations are being performed on the next byte of data,
due to register overwrites from LDR instruction.

To summarize, we confirm that the influence of microarchitecture imple-
mentation has a significant effect on the leakage behavior of the two boards
we analyzed. The results for the NRFA device differ from the key rank results on
STMA device showing an additional leak of arithmetic (LSLS) instruction (labeled
15). The results for the STMA and the NRFA devices show a similar trend subse-
quent to the STRB instruction.

8 Conclusions and Future Work

Our results show that while the power traces collected from the boards of the
two manufacturers have very different visual profiles, some instruction sequences
leak in the same way, which can be explained by the similar pipeline executions
of instructions for both cores. To answer whether the microarchitecture impacts
side-channel leakage, we first investigate the influence of manufacturing varia-
tion. While we observe differences between physical boards, the trend for side-
channel leakage for the two boards we investigated is similar. When comparing
the side-channel leak between different chips, we see clear evidence of leakage
behavior that we attribute to microarchitecture implementation differences.

A Tale of Two Boards 95

In terms of the impact on the design of side-channel simulators, our results
show that the existence of a generic simulator, e.g., for an ARM-Cortex M0,
is improbable. Differences in microarchitecture, such as differences in memory
implementation or other functional optimizations, require that a simulator pre-
dicting side-channel leakage be trained for different silicon implementations. For
the portability of templates between different core implementations, we extrap-
olate that the differences in microarchitecture will be a deciding factor.

We compared TVLA, probably the first choice of leakage assessment tech-
nique, with the leakage obtained by profiling. Despite its simplicity and based on
the differences observed in our results, we would caution our embedded system
developer against using TVLA alone to determine leakage behavior and suggest
using key ranking as a more robust, albeit more effort-intensive technique.

References

1. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. In: 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, 23–26 February 2020. The Internet Society
(2020). https://www.ndss-symposium.org/ndss2020/

2. Cao, Y., Zhou, Y., Yu, Z.: On the negative effects of trend noise and its applications
in side-channel cryptanalysis. IACR Cryptology ePrint Arch 2013, 102 (2013).
http://eprint.iacr.org/2013/102

3. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-deepsca:
Cross-device deep learning side channel attack. In: 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6 (2019)

4. Gao, S., Oswald, E., Page, D.: Reverse engineering the micro-architectural leakage
features of a commercial processor. Cryptology ePrint Archive, Report 2021/794
(2021). https://eprint.iacr.org/2021/794

5. Golder, A., Das, D., Danial, J., Ghosh, S., Sen, S., Raychowdhury, A.: Practi-
cal approaches toward deep-learning-based cross-device power side-channel attack.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(12), 2720–2733 (2019).
https://doi.org/10.1109/TVLSI.2019.2926324

6. Goodwill, G., Jun, J., P.Rohatgi: A testing methodology for side channel resistance
validation. In: NIST Non-invasive Attack Testing Workshop, vol. 7, pp. 115–136
(2018)

7. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method
for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27954-6 23

8. Limited, A.: Arm v6-m architecture reference manual. Tech. rep., ARM Limited
(ARM DDI 0419E (ID070218) 2018)

9. Marshall, B., Page, D., Webb, J.: Miracle: Micro-architectural leakage evaluation.
Cryptology ePrint Archive, Report 2021/261 (2021). https://eprint.iacr.org/2021/
261

10. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ‘grey box’ modelling for instruction leakages. In:
USENIX Security Symposium, pp. 199–216 (2017)

https://www.ndss-symposium.org/ndss2020/
http://eprint.iacr.org/2013/102
https://eprint.iacr.org/2021/794
https://doi.org/10.1109/TVLSI.2019.2926324
https://doi.org/10.1007/978-3-642-27954-6_23
https://eprint.iacr.org/2021/261
https://eprint.iacr.org/2021/261

96 V. Arora et al.

11. Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., Yarom, Y.:
Rosita: Towards automatic elimination of power-analysis leakage in ciphers. In:
NDSS (2021)

12. Standaert, François-Xavier., Malkin, Tal G.., Yung, Moti: A unified framework for
the analysis of side-channel key recovery attacks. In: Joux, Antoine (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 26

13. Stokes, J.: Inside the Machine. No startch press/ars technica library, An illustrated
Introduction to Microprocessors and Computer Architecture (2007)

14. van der Valk, D., Picek, S., Bhasin, S.: Kilroy was here: the first step towards
explainability of neural networks in profiled side-channel analysis. In: Bertoni,
G.M., Regazzoni, F. (eds.) Constructive Side-Channel Analysis and Secure Design,
pp. 175–199. Springer International Publishing, Cham (2021)

15. Wu, L., Won, Y.S., Jap, D., Perin, G., Bhasin, S., Picek, S.: Explain some noise:
Ablation analysis for deep learning-based physical side-channel analysis. Cryptol-
ogy ePrint Archive, Report 2021/717 (2021). https://eprint.iacr.org/2021/717

16. Zhang, F., et al.: From homogeneous to heterogeneous: Leveraging deep learning
based power analysis across devices. In: 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.
9218693

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://eprint.iacr.org/2021/717
https://doi.org/10.1109/DAC18072.2020.9218693
https://doi.org/10.1109/DAC18072.2020.9218693

Complete Practical Side-Channel-Assisted
Reverse Engineering of AES-Like Ciphers

Andrea Caforio1, Fatih Balli1,2, and Subhadeep Banik1(B)

1 LASEC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{andrea.caforio,subhadeep.banik}@epfl.ch

2 CSEM, Neuchtel, Switzerland
fatih.balli@csem.ch

Abstract. Public knowledge about the structure of a cryptographic
system is a standard assumption in the literature and algorithms are
expected to guarantee security in a setting where only the encryption key
is kept secret. Nevertheless, undisclosed proprietary cryptographic algo-
rithms still find widespread use in applications both in the civil and mili-
tary domains. Even though side-channel-based reverse engineering attacks
that recover the hidden components of custom cryptosystems have been
demonstrated for a wide range of constructions, the complete and practi-
cal reverse engineering of AES-128-like ciphers remains unattempted.

In this work, we close this gap and propose the first practical reverse
engineering of AES-128-like custom ciphers, i.e., algorithms that deploy
undisclosed SubBytes, ShiftRows and MixColumns functions. By per-
forming a side-channel-assisted differential power analysis, we show that
the amount of traces required to fully recover the undisclosed components
are relatively small, hence the possibility of a side-channel attack remains
as a practical threat. The results apply to both 8-bit and 32-bit architec-
tures and were validated on two common microcontroller platforms.

1 Introduction

Over the past few years, the field of side-channel-assisted cryptanalysis has
evolved into an intricate spectrum. In this spectrum, the trace, which is the sig-
nal collected by the adversary during the execution of a cryptographic operation,
can stem from various sources, such as the electromagnetic emission, the power
consumption, or even the sound noise generated by the victim device [4,13,19].
Furthermore, there are many available techniques to analyze the collected traces
with the goal of recovering the secret key [7,13,15].

Kerckhoffs’s principle states that any cryptosystem should be secure even if
everything about the system, except the key, is public knowledge. This concept is
widely embraced by cryptographers, however security through obscurity remains
as a tempting path to follow in industry. Undisclosed proprietary cryptographic
algorithms are still used in civil applications, e.g., GSM or Pay-TV systems, and
in diplomatic or military domains. Even though security through obscurity is far

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 97–117, 2022.
https://doi.org/10.1007/978-3-030-97348-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_6

98 A. Caforio et al.

from ideal and generally discouraged by cryptographers, from the implementa-
tion layer perspective, it is considered as an extra layer of protection against all
types of attacks, including that of side-channels. In particular, one idea that we
consider in this paper is to implement a custom version of a popular scheme,
e.g., AES, by replacing the inner layer of operations without publicly disclos-
ing these modifications. Obviously, the idea is that extrapolating conclusions
from side-channel observations becomes significantly harder when the construc-
tion in question is not fully disclosed. Therefore, the adversary would need to
collect larger amount of traces. This is exactly the approach taken by the Dan-
ish enterprise Dencrypt whose communication devices ship with a customized
AES implementation with secret S-boxes based on the Dynamic Encryption pro-
posal [12].

The first known use of side channels to reverse-engineer (SCARE) hidden
structures was the case of the A3/8 algorithm used in GSM [17]. This attack
reveals the contents of one of the two substitution tables, which are intended
to be kept secret, used for authentication and key agreement in GSM. This
was later improved by Clavier in an attack that fully recovers both tables [8].
In a related work, Clavier et al. [9] presented a theoretical reverse engineering
of AES-like secret ciphers, which shared the same core structure of AES-128,
but used secret SubBytes, ShiftRows and MixColumns functions instead. Devel-
oped independently around the same time, Rivain and Roche [21] proposed a
generic reverse engineering attack which applies to a general class of undisclosed
substitution-permutation ciphers, showing that this line of attack works beyond
the AES constructions.

Note that none of the previous works demonstrate the mentioned attacks in
practice, but instead their results are only based on theoretical simulations. More
specifically, they all rely on the assumption that some side-channel observations
can be made that allows the attacker to distinguish whether intermediate values
of an algorithm are equal at different points during the computation. However,
these works neither back up the assumption through an experimental setup,
nor present a practical full-recovery attack. It is thus important to determine
the efficacy of side-channel reverse engineering on real-world platforms. The
first practical attack was presented by Jap and Bhasin [11]. The authors tried
to recover the 256 entries of a secret 8-bit S-box implemented on an Atmel
AT-mega328P microprocessor mounted on Arduino UNO board and succeeded
in recovering 159 out of 256 entries. However, a practical side-channel-assisted
reverse engineering attack that recovers the full description of an AES-128-like
cipher remains an open problem.

Contributions. In this paper, we demonstrate the first practical side-channel-
assisted reverse engineering procedure for the full description of unprotected
AES-128-like ciphers that deploy undisclosed SubBytes, ShiftRows and Mix-
Columns functions. A precise definition of such a cipher will be given shortly.
Our attacks follow the side-channel-assisted differential plaintext methodology
(SCADPA) pioneered by Breier et al. [6] and subsequently extended by Bhasin et
al. [5], whose work enhances differential power analysis [13] with tools from

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 99

conventional differential cryptanalysis. Specifically, the complete recovery rou-
tine proceeds in four consecutive steps as detailed in Table 1. This work thus
closes the open question of whether such an attack is feasible, and more so
on the cost of performing such attack. We validate our recovery routines on
both 8-bit and 32-bit systems, namely the 8-bit ATXMEGA128D4 and 32-bit
STM32F303 architectures that find wide use in the industry.

Table 1. Complexity (the number of traces) of our proposed AES-128-like side-channel-
assisted reverse engineering algorithms. The parameter α denotes the required number
of repetitions in order to get a stable average in the extracted power traces. On our
testing equipment, α ≈ 10 was sufficient for effectively de-noising the traces.

Recovery Platforms Complexity Reference

Encryption key 8-bit, 32-bit α × 29 Sect. 2.3

Partial ShiftRows 8-bit, 32-bit α × 32 Sect. 3.1

255 MixColumns candidates 8-bit, 32-bit α × 220 Sect. 3.2

Full SubBytes, ShiftRows, MixColumns 8-bit, 32-bit α × 218 Sect. 3.3

Outline. We review some preliminary material concerning side-channel-assisted
reverse engineering attacks in Sect. 2. Section 3 details our procedures that
recover the complete description of hidden components within AES-128-like
ciphers. Ultimately, the paper is concluded in Sect. 4.

2 Preliminaries

We commence the preliminaries with a precise definition of an AES-128-like
cipher and then proceed with a review of the power consumption model in micro-
controllers.

Definition 1 (AES-like cipher). Denote by AES∗ an AES-128-like SPN
cipher over the Rijndael finite field of the form

AES∗ : F
4×4
256 × F

4×4
256 �→ F

4×4
256

(p, k) �→ y,

for some plaintext p and key k. The round function consists of a round key
addition layer AK, a byte-wise substitution layer SB defined by a lookup table
T : F256 �→ F256, a byte permutation layer PB over F

4×4
256 that shuffles the state

bytes according to some permutation Π ∈ S16 (where Sn is the permutation
group over n elements) and a linear diffusion layer MC that multiplies the state
by a circulant matrix M ∈ F

4×4
256 such that

M =

⎡
⎢⎢⎣

a b c d
d a b c
c d a b
b c d a

⎤
⎥⎥⎦ , (1)

100 A. Caforio et al.

where a, b, c, d ∈ F256\{0}. Without loss of generality, the round key generation is
assumed to be achieved via the regular AES-128 key scheduling function KS using
T as the substitution table instead of the Rijndael S-box. Finally, the sequence
of operations is the same as the original AES-128 algorithm, i.e.,

AES∗(p, k) :
1: AK(p, k)
2: for i ← 1; i < 10; i ← i + 1 do
3: KS(k), SB(p), PB(p), MC(p), AK(p, k)
4: KS(k), SB(p), PB(p), AK(p, k)

In the following, we adopt the standard column-major notation to denote the
individual bytes of the state as per Definition 2.

Definition 2 (Notation). Let bi,F (j) ∈ F256 be the value of the i-th state byte
after the computational layer F ∈ {AK,SB,PB,MC} in the j-th round function
for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 10. Analogously, let ci,F (j) ∈ F

4
256 be the value of the

i-th state column for 0 ≤ i ≤ 3. A graphical depiction of this notation is given
in Fig. 1.

For the experiments we conducted in the paper, on both 8-bit and 32-
bit microcontrollers, the AES∗ algorithm is implemented in a straightforward
constant-time and byte-wise manner in which each state byte is computed indi-
vidually in all layers of the round function. SB and PB are realized via standard
lookup tables. The field multiplication steps that are part of MC are computed
with a generic Galois field multiplication routine. This type of AES-128 imple-
mentation is common for 8-bit central processing units with limited memory.
In 32-bit environments, a more compact T-table implementation is sometimes
also deployed that combines the substitution and diffusion layers through lookup
tables. We remark that for the remainder we are mostly interested in the com-
putation of round key additions and the byte substitutions, hence our attacks
are irrespective of the actual choice of implementation for the PB and MC oper-
ations. See Fig. 2 for a generic set of byte-wise instructions that implement the
AK and SB layers. Note that certain implementations also merge the AK and
SB layers, however in many publicly available implementations, like OpenSSL,
AVR-crypto-lib and the masked secAES proposal, these layers are separated [1–3].

2.1 Setup

The reverse engineering procedures proposed in this work have been validated on
existing platforms. In particular, we utilized the following two microcontrollers:

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 101

Fig. 1. Byte and column notations for the first two rounds. The notation scheme pro-
gresses similarly for later rounds.

– ATXMEGA128D4. An 8-bit microcontroller featuring a 2-stage-pipelined
AVR processing unit. It offers 128 KB of flash memory and can be clocked at
a maximum frequency of 32 MHz.

– STM32F303. A 32-bit microcontroller featuring a 3-stage-pipelined ARM
Cortex-M4 processing unit. It offers 256 KB of flash memory and can be
clocked at a maximum frequency of 72 MHz.

The two target microcontrollers are mounted on a ChipWhisperer CW308
board [18] that clocks them at a frequency of 7.37 MHz. Power traces are cap-
tured via the ChipWhisperer CW1173 board through a 10-bit 105 MS/s ADC.
A key aspect of this setup, is that power traces are captured synchronously
with the target clock, in other words, four samples per clock cycles are obtained
at a frequency of roughly 30 MHz. Synchronous sampling, in contrast to asyn-
chronous sampling performed by ordinary oscilloscopes, reduces the number of
samples that are required for precise measurements and thus accelerates attacks
that necessitate the processing of a large number of traces. This is reflected in
the fact that taking an average over α ≈ 10 repetitions of an experiment was
sufficient to effectively de-noise the power traces and attain a stable average.

102 A. Caforio et al.

Fig. 2. Generic assembly of the AK (left) and SB (right) layers in AES∗ operating on
a single byte. Note that statements within square brackets are akin to a function call,
e.g., [ADDR PT] computes the plaintext address. It should be straightforward to convert
the given snippets to valid assembly for any 8-bit or 32-bit architecture.

2.2 Power Leakage Model

Power leakage simulators for micro-controllers have been developed in the past
for numerous systems. In the context of leakage models, SILK (simple leakage
simulator) is one of the first power simulators that generates power traces given
a C file as input [22]. The simulator, however, is not specific to any particular
architecture. Reparaz also described a simulator generating power traces from a
high-level C description of a cryptographic algorithm [20]. ELMO (Emulator for
Power Leakage for Cortex M0) was introduced by McCann et al. for the Cortex-
M0 and M4 processor families [16] whose program takes as input a compiled
binary object file. Le Corre et al. proposed the first leakage simulator MAPS
(Micro-Architectural Power Simulator) for the ARM Cortex-M3 Processors [10].
This work accounts for the the inter-instruction dependency of the power con-
sumption by utilizing a more refined micro-architectural model of the target
processor. Specifically, it models all pipeline registers and validates these models
through simulations with an HDL description of the target micro-architecture.

There are two common cases of dynamic power consumption that we exploit,
as they correlate with the intermediate values computed in the processor’s core:

1. Register-type instructions typically read two values from the register file,
compute an arithmetic or logical operation on them, and eventually store
the result back in a register. This naturally causes the value stored in the
destination register to be updated. Let us use R1 ← R2 ⊕ R3 as an example
register-type instruction XOR, and denote the value of R1 before and after
the execution of the XOR by a and b respectively. Then, some portion of the
dynamic power consumption depends on the amount of bits that needs to be
flipped when R1 goes through the transition a → b. Therefore, in the collected
power trace, if we focus on the special point in time that corresponds to this
instruction’s execution, we can find the correlation between the Hamming
weight of a ⊕ b, i.e., H(a ⊕ b), and the consumed power. This was referred to
as Hamming-distance model by Mangard et al. [14].

2. Memory-type instructions either bring a value from the memory into a regis-
ter, or store a register value in a specified memory location. These operations
cause the memory bus to be driven with the data to be stored (the bus is usu-
ally pre-charged to a value that is either all zero or all one logic values). Let

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 103

us use [ADDR PT] ← R1 as an example of memory-type instruction, where
[ADDR PT] denotes the address of the plaintext byte in the memory. Then,
the execution of the store instruction causes a dynamic power consumption
that correlates with the amount of logic one values in R1, if the bus is initially
pre-charged to all zeroes. In other words, H(R1) correlates with the measured
power value at particular point in time that corresponds to the store instruc-
tion. This was referred to as Hamming-weight model by Mangard et al. [14].

As our main motivation in this paper is not to investigate the relationship
between the power consumption and the intermediate values, but rather use the
established model as an abstract tool, this intuition will suffice for the remainder.

Definition 3 (Power Trace). Let Exp(bi,F (j)) be an experiment that obtains
a power trace from the computation of the value bi,F (j), i.e., the i-th state byte
of the j-th round during the computational layer F for i ∈ [0, 15], j ∈ [1, 10]
and F ∈ {AK,SB,PB,MC}. Since computing any particular layer F is typically
carried out by multiple instructions, let us denote by E(bi,F (j)) the power signal
recorded during the computation of byte bi,F (j), e.g., at the moment it is placed
on an initially reset bus. Similarly, we define E(bi,F (j)) as the averaged power
signal over multiple runs.1

An experimental observation is that E(bi,AK(j)) > E(b′
i,AK(j)) if and only

if H(bi,AK(j)) > H(b′
i,AK(j)) for a large enough number of repetitions where

H(bi,F (j)) is the Hamming weight of the i-th state byte of the j-th round after the
layer F . This follows from the Hamming weight model of power consumption.
Analogously, E(bi,SB(j)) > E(b′

i,SB(j)) if and only if H(bi,SB(j)) > H(b′
i,SB(j)).

This observation is validated in Fig. 3 for AK(0) and SB(1) on our custom AES∗

implementation but can also be observed on most byte-based implementations
on both 8-bit and 32-bit architectures.

2.3 Key Recovery

Naturally, the first step of reverse-engineering an undisclosed AES∗ structure
involves recovering the encryption key. This is a straightforward procedure as it
is directly possible to target the whitening key addition before the first round
function, meaning that we measure the power trace E(bi,AK(0)) for each state
byte. We have bi,AK(0) = pi + ki, consequently if E(bi,AK(0)) < E(b′

i,AK(0)) for
all b′

i,AK(0) ∈ F256 \ {bi,AK(0)}, then bi,AK(0) = 0, or in other words, pi = ki. The
key recovery algorithm thus tests whether a plaintext pi yields H(bi,AK(0)) = 0.
The entire key recovery routine for one byte is given in Algorithm 1. We remark
that Algorithm 1 can be modified into a procedure that recovers the Hamming
weight of bi,AK(0) and bi,SB(1) with identical complexity by simply counting how
many traces exhibit a higher, lower and equal power consumption as shown in
Algorithm 2. This property will be useful in Sect. 3.2 and Sect. 3.3.
1 For the remainder of this text, we assume that a signal E(bi,F (j)) corresponds to a

plaintext p, while E(b′
i,F (j)) refers to p′.

104 A. Caforio et al.

Fig. 3. Differential power traces E(bi,AK(0)) − E(b′
i,AK(0)) and E(bi,SB(1)) − E(b′

i,SB(1))
corresponding to different Hamming weight distances on 8-bit ATXMEGA128D4 and
32-bit STM32F303 architectures.

The lookup table L in Algorithm 2 is related to the distribution of the
Hamming weight of a random variable over F256, which was mentioned in [14,
Table 4.1], where L−1(i) =

∑
b∈F256

1H(b)>H(i)−
∑

b∈F256
1H(b)<H(i). For any byte

b ∈ F256, it essentially counts the difference of the number of b′ ∈ F256 \ {b} for
which E(b) > E(b′) and E(b) < E(b′). Since E is correlated with the Hamming
weight, the method faithfully recovers H(b) using L if the power traces are ade-
quately de-noised. A slightly modified version of Algorithm 1 can be used to
uniquely identify bi,AK(0), bi,SB(1) such that their Hamming weight is either zero
or eight. As tmin already represents the byte whose Hamming weight is zero.
Similarly, tmax = arg max J is equal to the byte with Hamming weight eight.

Parallelization. Due to the fact that it takes around α × 28 traces to recover a
single key byte using Algorithm 1, it should take α×212 for the complete 16-byte
key. However, it is possible to parallelize the key recovery procedure for multiple
key bytes at once. The idea is to have an index set I ⊂ [0, 15], and query the
28 plaintexts pi,j = i, ∀j ∈ I and pi,j = 0, ∀j �∈ I, instead of a singleton j
(here pi,j implies the j-th byte of the i-th plaintext for i ∈ [0, 255]). The key
recovery algorithm again tests whether a plaintext pi,j yields H(bi,AK(j)) = 0
for some j ∈ I. We have observed that if I does not contain consecutive indices

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 105

Algorithm 1. Recover i-th Key Byte
� Choose a plaintext p and initialize an empty array J of size 256.

1: p ∈ F
4×4
256 , J ← {·}

2: for t ∈ F256 do
� Replace i-th byte of p with t, encrypt p and obtain a stable power trace.

3: pi ← t, e ← E(bi,AK(0)), J(t) ← e

4: tmin = arg min J
5: return tmin

then the power peaks corresponding to the round key addition are reasonably
spaced apart in the time axis, allowing for efficient identification of the j-th
peak only by visual inspection. As a consequence, if we repeat the process for
I = {0, 2, 4, . . . , 14} and then {1, 3, 5, . . . , 15} we can recover the entire key in
two runs.

Complexity. Since by parallelization we recover eight key bytes using α × 28

traces, we need α × 29 traces for the complete key.
The reader will note that it is possible to further accelerate the proposed key

recovery procedure by utilizing bit-wise differentials. Let p = 0 be the all-zero
plaintext with corresponding power trace for the first byte after the key addition
E(b0,AK(0)). Similarly, let p′ = p+(1 � j) for j ∈ [0, 7] be the plaintext where all
bits are set to zero except the j-th bit of the first plaintext byte with respective
power trace E(b′

0,AK(0)). Clearly, if E(b0,AK(0)) < E(b′
0,AK(0)), then the j-th bit of

k0 is zero. On the other hand, an inequality E(b0,AK(0)) > E(b′
0,AK(0)) indicates

that that the j-th bit of k0 is equal to one. Repeating this for all j yields the
full key byte k0 in α × 23 encryptions, which again can be parallelized in an
analogous fashion as done before with Algorithm 1 in order to recover multiple
key bytes in a single iteration.

Algorithm 2. Recover Hamming Weight H(b) for b ∈ {bi,AK(0), bi,SB(1)}
� Initialize a lookup table L and choose a plaintext p for which we want to calculate
either H(bi,AK(0)) or H(bi,SB(1)).

1: L ← { 255 : 0, 246 : 1, 210 : 2, 126 : 3, 0 : 4, −126 : 5
−210 : 6, −246 : 7, −255 : 8 }

2: p ∈ F
4×4
256 , e ← E(b), h ← 0

3: for t ∈ F256 do
� Replace the i-th byte of p with t and extract the averaged power trace. Count
how many t have a larger/smaller Hamming weight.

4: pi ← t, e′ ← E(b)
5: if e′ < e then h ← h − 1.
6: else if e′ > e then h ← h + 1.

7: Find h0 in the set {255, 246, 210, 126, 0, −126, −210, −246, −255} such that |h−h0|
is minimized.

8: return L(h0)

106 A. Caforio et al.

3 Reverse-Engineering AES-Like Ciphers

Having established the preliminaries, we proceed with our recovery algorithms for
the byte permutation PB, the matrix M of the diffusion layer MC and ultimately
the lookup table T of the nonlinear substitution layer.

3.1 Partial Π Recovery

The key recovery algorithm exploited the correlation between the Hamming
distance of two values and their respective power consumption. This connection
implies that any differential introduced in the plaintext that is diffusing through
the rounds of the cipher incurs either a power spike or drop at specific points.
The utilization of this phenomenon in attacks is a relatively recent addition to
the large assortment of side-channel assisted cryptanalytic attacks and was first
introduced by Breier et al. with an attack on PRESENT[6]. The detection of
differentially active bytes and columns lays the groundwork for our algorithms
that recover Π in the byte permutation layer PB, M as part of the linear diffusion
layer MC and the S-box T in the substitution layer.

Definition 4 (Differential Activity). Denote by δi,F (j) ∈ {�,�} an indica-
tor that signals whether a state byte is differentially active (with � representing
an active byte). Analogously, let Δi,F (j) ∈ {�,�} be an indicator for differen-
tially active columns.

A direct approach that uniquely recovers Π consists in injecting a differ-
ence in a single plaintext byte pi + p′

i = d such that δj,PB(1) = � is observable
in the differential power trace E(bj,PB(1)) − E(b′

j,PB(1)) at some byte position
j ∈ {0, . . . , 15}. However, this method might not be reliable in certain imple-
mentations for the following reasons:

1. Depending on the implementation, the PB and MC operations may be com-
bined together so that a distinct region in the trace segregating the PB layer
may not be deducible.

2. Even if the PB region is clearly separated, any particular implementation may
swap bytes in a specific order depending on the algebraic description of Π.

3. The active position i may be a fixed point of Π, due to which no operation
the i-th byte in the PB operation is necessary.

Instead, we will observe the peaks in the differential traces during round
key addition E(bi,AK(1)) − E(b′

i,AK(1)) of the first round or the substitution layer
of the second round E(bi,SB(2)) − E(b′

i,SB(2)). If the permutation function Π is
such that i-th byte is mapped to the j-th column (for any 0 ≤ j ≤ 3), i.e.,
Π(i) ∈ {4j, 4j +1, 4j +2, 4j +3} then after the first round MC, the j-th column
becomes active, which shows up as a sequence of four spikes after the second

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 107

round substitution layer in the differential trace. The relative order in the time
axis of these peaks tells us the value of j such that 4j ≤ Π(i) ≤ 4j + 3, for each
i. In other words, we are able to deduce which column each byte is mapped to
after the PB operation. The diffusion of a single active plaintext byte into an
active column Δj,AK(1) = � is shown in Fig. 4. Furthermore, the experimental
detection of an active column on actual hardware is given in the plots of Fig. 5.

At this point, we do not yet have the precise description of Π but only the
the column to which each byte is mapped. The full permutation is recovered
alongside the diffusion matrix M and the S-box T in the following sections.

Fig. 4. Diffusion of a single active byte during the initial computational layers with
Π(0) = 10. δl,AK(1) = � and δl,SB(2) = � for 8 ≤ l ≤ 11 are observable as four spikes
in the differential power trace (see Fig. 5), i.e., E(bl,AK(1)) - E(b′

l,AK(1)) and E(bl,SB(2))

- E(b′
l,SB(2)).

Complexity. Recovering Π up to column permutations exhibits a worst-case
complexity of α×32 traces, i.e., two averaged power traces are required for each
state byte.

3.2 Finding 255 Candidates for M

Given the unknown matrix from (1), we proceed in multiple steps with differ-
entials on the certain specific locations after the substitution layer of the first
round. More specifically, we are interested in plaintext differentials that diffuse
to two active bytes after the PB operation of the first round, e.g., δ0,PB(1) = �,
δ1,PB(1) = �, δ2,PB(1) = �, δ3,PB(1) = �. With some probability, such a difference
leads to three active bytes in the first state column after the MC layer of the
first round, e.g., δ0,MC(1) = �, δ1,MC(1) = �, δ2,MC(1) = �, δ3,MC(1) = �. In the
following, let d0, d1, d2, d3 denote the four differentials in the first column after
the PB layer of the first round, i.e.,

d0 = b0,PB(1) + b′
0,PB(1), d1 = b1,PB(1) + b′

1,PB(1),

d2 = b2,PB(1) + b′
2,PB(1), d3 = b3,PB(1) + b′

3,PB(1).

108 A. Caforio et al.

Fig. 5. Differential power traces E(bi,SB(2)) - E(b′
i,SB(2)) for 0 ≤ i ≤ 15 on the 32-bit

STM32F303 platform for different active state columns. The color coding indicates the
time frame during which a state column is computed (blue for the first and yellow for
the fourth column). The plots for the ATXMEGA128D4 architecture are given in the
appendix.

In order to detect whether two active bytes in the first column activate three
bytes after the multiplication by M , we can check the differential power traces
E(bi,AK(1))−E(b′

i,AK(1)) or E(bi,SB(2))−E(b′
i,SB(2)) for 0 ≤ i ≤ 3 for the occurrence

of spikes and drops. It is important to remark that since we only know to which
column a byte is shifted during PB it is not possible to infer which two bytes are
actually active in the first column. Let ui be such that Π(ui) = i,∀i ∈ [0, 15],
i.e., u4i, u4i+1, u4i+2, u4i+3 are the bytes in the state that get mapped to the
i-th column after the first round PB. We have already determined the values
of u0, u1, u2, u3 up to a permutation of the 4 elements. As such, this means we
have narrowed down the exact values of ui for i = 0 → 3 to a set of 4! = 24
candidates.

Now assume that we lock one of the 24 possible choices of the four-tuple of
indices u0, u1, u2, u3 and proceed in the following way:

1. Fix plaintext bytes pu2 = p′
u2

, pu3 = p′
u3

to some values in F256.
2. Use Algorithm 2 to find plaintext bytes pu0 , pu1 for which H(bu0,SB(1)) = 0

and H(bu1,SB(1)) = 0.
3. Similarly, find p′

u0
that yields H(b′

u0,SB(1)
) = 8, which gives us a differential

d0 = 255.

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 109

4. Subsequently, iterate over all p′
u1

∈ F256 \{pu1} and check whether δ0,MC(1) =
�. This can be done by checking for the absence of any peaks in the differential
power traces E(bi,AK(1)) − E(b′

i,AK(1)) or E(bi,SB(2)) − E(b′
i,SB(2)).

5. Such an occurrence only happens for a single p′
u1

for which we then calculate
the Hamming weight H(b′

u1,SB(1)
) = H(d1) = H(x1) = w1.

Consequently, we have d0 = 255, d1 = x1, d2 = 0, d3 = 0, which corresponds
to the relation

255a + x1b = 0 → 255a = x1b.

By appropriately choosing different differentials d0, d1, d2, d3, it is possible to
infer more relations for the same choice of indices u0, u1, u2, u3 as shown in
Table 2.

Table 2. Ten choices of differentials d0, d1, d2, d3 to obtain relations between the xi

and the unknown M coefficients. Note that only the Hamming weight of the xi, i.e.,
H(xi) = wi are known but not their actual values. A graphical schematic of the first
four steps is given in Fig. 6.

Step d0 d1 d2 d3 δi,MC(1) = � Relation

1 255 x1 0 0 i = 0 255a = x1b (2)

2 x2 255 0 0 i = 0 255b = x2a (3)

3 255 x3 0 0 i = 1 255d = x3a (4)

4 x4 255 0 0 i = 1 255a = x4d (5)

5 255 x5 0 0 i = 2 255c = x5d (6)

6 x6 255 0 0 i = 2 255d = x6c (7)

7 255 x7 0 0 i = 3 255b = x7c (8)

8 x8 255 0 0 i = 3 255c = x8b (9)

9 255 0 x9 0 i = 0 255c = x9a (10)

10 x10 0 255 0 i = 0 255a = x10c (11)

The ten inferred relations from the side-channel observations can be combined
with each other to yield a set of filter equations as listed in Table 3.

It is possible to computationally verify that, given the filters from Table 3
alongside the set of recovered Hamming weights H(xi) = wi, there will always
be a unique solution for all xi whenever the indices u0, u1, u2, u3 are correctly
guessed. In particular, filtering out wrong xi proceeds in the following loop:

1. Select a set of ten bytes b1, . . . , b10 with bi ∈ F256 such that H(bi) = wi.
2. If the selected set satisfies the filter equations in Table 3, then retain them as

the solution for the xi and return. Otherwise, repeat from the first step.

110 A. Caforio et al.

Fig. 6. First four steps of the linear diffusion layer recovery. Red squares indicate
differentials of value 255. (Color figure online)

From here we can get 28 − 1 solutions for M as follows: we freely choose a to be
any non-zero byte. Then b, c, d are obtained from above as b = 255−1 · x2 · a,
c = 255−1 · x9 · a and d = 255−1 · x3 · a. For the 23 incorrect initial guesses the
situation is slightly more complicated. For exactly 20 other incorrect guesses the
above algorithm returns no solution which implies that our guess was incorrect.
However, for the remaining three guesses in which the starting u0, u1, u2, u3

are rotations of the correct guess, the algorithm also yields a unique solution.
The remaining solutions in the latter cases are row rotated versions of M in
the opposite direction. To understand why this happens, let Πt be the 4 × 4
permutation matrix that rotates a column vector by t locations for 0 ≤ t ≤ 3
in some direction. Let ci,PB(1) be the i-th column after PB of the first round.
Note that if M is a circulant matrix, then M · Π−1

t is also a circulant matrix,
in which the rows of M are rotated t locations in the opposite direction. Since
M · ci,PB(1) =

(
M · Π−1

t

) · (Πt · ci,PB(1)
)
, this explains that any starting guess of

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 111

Fig. 7. Differential power traces E(bi,AK(1)) - E(b′
i,AK(1)) for 0 ≤ i ≤ 3 on the 8-bit

ATXMEGA128D4 platform with a single inactive byte in the first column. The color
coding indicates the four key additions of the first column (blue for the first and yellow
for the fourth). The plots for the STM32F303 architecture are given in the appendix.
(Color figure online)

u0, u1, u2, u3 that is a rotation of the correct guess also yields a set of solutions
for the matrix M that is a row-rotated version of the correct matrix.

The next question is then how to recover t and Πt? The answer is, it is
not necessary, because it is straightforward to see that for any value of t, it
yields an algebraically equivalent block cipher. We repeat the above algorithm
to for the three other columns of the state, i.e., all possible guesses of Ui =
[u4i, u4i+1, u4i+2, u4i+3] ∈ [4i, 4i + 3] for 1 ≤ i ≤ 3. For each column we get four
rotationally equivalent initial guesses that yield solutions for M . We first select
the guesses for the four sets of initial guesses Ui that yield the same set of 28 −1
solutions for M up to multiplication by the free variable a.

Complexity. Identifying plaintext bytes pu0 , pu1 and pu2 that facilitate the
zero images H(bu0,SB(1)) = 0, H(bu1,SB(1)) = 0 and H(bu2,SB(1)) = 0 using Algo-
rithm 1 requires 3×α×28 traces as it only needs to be done in the first and ninth
step. Similarly, it requires 3 × α × 28 to find plaintext bytes that yield di = 255.
In the worst case, it takes 10 × α × 28 traces to find the occurrence of an inac-
tive byte in the first column in each step and ultimately another 10 × α × 28

encryptions to find the xi. Hence, the ten steps have a cumulative worst-case
complexity of 26×α× 28 traces. Finally, the whole procedure is repeated 4× 24
times for each state column and each choice of u0, u1, u2, u3, yielding a total
worst-case complexity of 4 × 24 × 26 × α × 28 ≈ α × 220 traces.

112 A. Caforio et al.

Table 3. Nine filter equations derived from the obtained relations in Table 2.

Combination Filter Combination Filter

(2), (3) x1x2 = 2552 (4), (5) x3x4 = 2552

(6), (7) x5x6 = 2552 (8), (9) x7x8 = 2552

(10), (11) x9x10 = 2552 (2), (8), (10) x1x7x9 = 2553

(3), (9), (11) x2x8x10 = 2553 (3), (5), (7), (9) x1x3x5x7 = 2554

(4), (6), (8), (10) x2x4x6x8 = 2554 – –

3.3 Substitution Layer Recovery

Ultimately, to recover the hidden substitution table, we fix one of the 255 can-
didates of M recovered in the previous section and limit ourselves once again to
plaintext differentials that diffuse onto a single column after the PB operation
and then converge into a single active byte after MC as shown in Fig. 8.

This convergence property was a cornerstone of the See-in-the-Middle attack
on partially masked AES-128 implementations in [5] where the authors experi-
mentally verified that it occurs with probability 2−22 and thus necessitates on
average 211.5 encryptions. Mathematically, a convergence onto the first byte of
the column only happens when the differential output of the substitution layer
is of the following form:

b0,SB(1) + b′
0,SB(1) = T (p0 + k0) + T (p0 + k0 + d0) = eλ,

b1,SB(1) + b′
1,SB(1) = T (p1 + k1) + T (p1 + k1 + d1) = fλ,

b2,SB(1) + b′
2,SB(1) = T (p2 + k2) + T (p2 + k2 + d2) = gλ,

b3,SB(1) + b′
3,SB(1) = T (p3 + k3) + T (p3 + k3 + d3) = hλ,

(2)

for all non-zero λ ∈ F256 and a four-tuple of differentials d0, d1, d2, d3 ∈ F256

where the parameters e, f, g, h ∈ F256 stem from the inverse of M , i.e.,

M−1 =

⎡
⎢⎢⎣

e f g h
h e f g
g h e f
f g h e

⎤
⎥⎥⎦ .

The first step of our recovery procedure involves simplifying (2) by finding a
four-tuple of plaintext bytes p0, p1, p2, p3 such that T (pi + ki) = 0, which yields

T (p0 + k0 + d0) = eλ, T (p1 + k1 + d1) = fλ,

T (p2 + k2 + d2) = gλ, T (p3 + k3 + d3) = hλ.
(3)

Subsequently, we look for the occurrence of a convergence by varying the
differentials d0, d1, d2, d3 and observing the differential power traces E(bi,AK(2))−

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 113

Fig. 8. Convergence of a differentially active column into a single active byte in the
same column. On average, roughly 211.5 encryptions are required for the convergence
to occur.

E(b′
i,AK(2)) or E(bi,SB(2)) − E(b′

i,SB(2)). Once found, the Hamming weight of the
substitution box outputs is recovered, i.e.,

H(T (p0 + k0 + d0)) = w0, H(T (p1 + k1 + d1)) = w1,

H(T (p2 + k2 + d2)) = w2, H(T (p3 + k3 + d3)) = w3.

Since at this point pi, ki, di are known, the task boils down to filling up the
256 entries of T by some method to convert the weights wi recovered above
into actual values. However, the actual values are related by (3) which can be
leveraged as follows: we pre-compute a lookup table L whose λ-th entry is the
tuple L[λ] = [H(eλ),H(hλ),H(gλ),H(fλ)] for all 0 < λ < 256 and infer the
value of λ if L[λ] = [w0, w1, w2, w3] for some table entry. For random values
of e, f, g, h, through computer simulations we have found that more than 200
entries of L are unique. If the fingerprint [w0, w1, w2, w3] is a unique entry in the
table, we recover four substitution table elements. Otherwise, we can repeat the
procedure for a different differential. We were able to recover all entries within
a few repetitions of the above procedure. Note that there are 255 candidates for
M and for each one a lookup table is created yielding a potential solution for

114 A. Caforio et al.

M and T whose correctness we can verify with a plaintext-ciphertext pair from
the target device.

Complexity. Recovering the zero-image in the first step requires 4 × 28 = 210

encryptions. Afterwards, for each four elements of the S-box, the convergence
phenomenon requires an additional α × β × 211.5 encryptions where β is the
reciprocal of the probability that a unique Hamming weight fingerprint is found
in the pre-computed table. Note that on average 211.5 plaintexts are required to
observe a convergence onto a single active byte. If the coefficients e, f, g, h are
chosen uniformly at random, then β ≈ 1.3. This step needs to be repeated 256

4 =
64 times to recover all the entries of T . Hence the number of total encryptions
to recover the full substitution table for a given MC matrix M is α × 210 + α ×
β × 217.5. Note that the power traces only need to be extracted once.

4 Future Work and Conclusion

In this work, we demonstrated the first complete and practical side-channel
assisted reverse engineering attack on AES-like ciphers thus settling an open
problem of whether such a recovery is feasible. The presented techniques are
based on the recently introduced SCADPA methodology that combines differ-
ential power analysis with tools from conventional differential cryptanalysis. All
recovery procedures were validated on two common 8-bit and 32-bit microcon-
trollers. Beyond the material presented in this paper, we identify the following
set of open problems:

– Non-Circulant MixColumns. The recovery of the 255 MixColumns matrix
candidates in Sect. 3.2 relies on the fact that M is circulant. One could also
imagine an attack that is applicable to invertible non-circulant matrices in
F
4×4
256 as was the assumption in [9].

– Protected Implementations. Our recovery procedures apply to unpro-
tected byte-wise implementations, however masking and shuffling are com-
mon side-channel countermeasures that attempt to prevent deductions from
power measurements and thus also complicate any reverse engineering efforts.

– T-Table Implementations. The S-box recovery routine of Sect. 3.3 relies
on the assumption that the Hamming weight of substituted bytes after the
SB layer is recoverable via Algorithm 2. This may not be the case anymore
in T-table implementations that merge the S-box with the MixColumns layer
in a set of lookup tables.

Acknowledgements. We wish to thank Thomas Roche for helping us improve this
paper. Fatih Balli and Subhadeep Banik are supported by the Swiss National Science
Foundation (SNSF) through the Ambizione Grant PZ00P2 179921.

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 115

A Supplementary Plots

Fig. 9. Differential power traces E(bl,SB(0)) - E(b′
l,SB(0)) on the 8-bit ATXMEGA128D4

platform for different active state columns.

Fig. 10. Differential power traces E(bi,AK(1)) - E(b′
i,AK(1)) for 0 ≤ i ≤ 3 on the 32-bit

STM32F303 platform with a single inactive byte in the first column.

116 A. Caforio et al.

References

1. AVR-Crypto-Lib. https://wiki.das-labor.org/w/AVR-Crypto-Lib/en. Accessed 03
July 2021

2. OpenSSL. https://github.com/openssl/openssl. Accessed 03 July 2021
3. secAES. https://github.com/ANSSI-FR/secAES-ATmega8515. Accessed 03 July

2021
4. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic side-

channel attacks on printers. In: Proceedings of 19th USENIX Security Symposium,
Washington, DC, USA, 11–13 August 2010, pp. 307–322. USENIX Association
(2010). http://www.usenix.org/events/sec10/tech/full papers/Backes.pdf

5. Bhasin, S., Breier, J., Hou, X., Jap, D., Poussier, R., Sim, S.M.: SITM: see-in-the-
middle side-channel assisted middle round differential cryptanalysis on SPN block
ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 95–122 (2020). https://doi.
org/10.13154/tches.v2020.i1.95-122

6. Breier, J., Jap, D., Bhasin, S.: SCADPA: side-channel assisted differential-plaintext
attack on bit permutation based ciphers. In: Madsen, J., Coskun, A.K. (eds.) 2018
Design, Automation & Test in Europe Conference & Exhibition, DATE 2018, Dres-
den, Germany, 19–23 March 2018, pp. 1129–1134. IEEE (2018). https://doi.org/
10.23919/DATE.2018.8342180

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

8. Clavier, C.: An improved SCARE cryptanalysis against a secret A3/A8 GSM algo-
rithm. In: McDaniel, P., Gupta, S.K. (eds.) ICISS 2007. LNCS, vol. 4812, pp. 143–
155. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77086-2 11

9. Clavier, C., Isorez, Q., Wurcker, A.: Complete SCARE of AES-like block ciphers by
chosen plaintext collision power analysis. In: Paul, G., Vaudenay, S. (eds.) Progress
in Cryptology - INDOCRYPT 2013–14th International Conference on Cryptology
in India, Mumbai, India, 7–10 December 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 8250, pp. 116–135. Springer (2013). https://doi.org/10.1007/
978-3-319-03515-4 8

10. Le Corre, Y., Großschädl, J., Dinu, D.: Micro-architectural power simulator for
leakage assessment of cryptographic software on ARM Cortex-M3 processors. In:
Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 82–98. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89641-0 5

11. Jap, D., Bhasin, S.: Practical reverse engineering of secret sboxes by side-channel
analysis. In: IEEE International Symposium on Circuits and Systems, ISCAS 2020,
Sevilla, Spain, 10–21 October 2020, pp. 1–5. IEEE (2020). https://doi.org/10.1109/
ISCAS45731.2020.9180848

12. Knudsen, L.R.: Dynamic encryption. J. Cyber Secur. Mobil. 357–370 (2014).
https://doi.org/10.13052/jcsm2245-1439.341

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer (2007)

15. Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 78–92. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 6

https://wiki.das-labor.org/w/AVR-Crypto-Lib/en
https://github.com/openssl/openssl
https://github.com/ANSSI-FR/secAES-ATmega8515
http://www.usenix.org/events/sec10/tech/full_papers/Backes.pdf
https://doi.org/10.13154/tches.v2020.i1.95-122
https://doi.org/10.13154/tches.v2020.i1.95-122
https://doi.org/10.23919/DATE.2018.8342180
https://doi.org/10.23919/DATE.2018.8342180
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-77086-2_11
https://doi.org/10.1007/978-3-319-03515-4_8
https://doi.org/10.1007/978-3-319-03515-4_8
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1109/ISCAS45731.2020.9180848
https://doi.org/10.1109/ISCAS45731.2020.9180848
https://doi.org/10.13052/jcsm2245-1439.341
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44499-8_6

Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers 117

16. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ’grey box’ modelling for instruction leak-
ages. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, 16–18 August 2017,
pp. 199–216. USENIX Association (2017). https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/mccann

17. Novak, R.: Side-channel attack on substitution blocks. In: Zhou, J., Yung, M., Han,
Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 307–318. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45203-4 24

18. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

19. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

20. Reparaz, O.: Detecting flawed masking schemes with leakage detection tests. In:
Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 204–222. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 11

21. Rivain, M., Roche, T.: SCARE of secret ciphers with SPN structures. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 526–544. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 27

22. Veshchikov, N.: SILK: high level of abstraction leakage simulator for side chan-
nel analysis. In: Preda, M.D., McDonald, J.T. (eds.) Proceedings of the 4th Pro-
gram Protection and Reverse Engineering Workshop, PPREW@ACSAC 2014, New
Orleans, LA, USA, 9 December 2014, pp. 3:1–3:11. ACM (2014). https://doi.org/
10.1145/2689702.2689706

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://doi.org/10.1007/978-3-540-45203-4_24
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-642-42033-7_27
https://doi.org/10.1145/2689702.2689706
https://doi.org/10.1145/2689702.2689706

Fault Attacks

Fast Calibration of Fault Injection
Equipment with Hyperparameter

Optimization Techniques

Vincent Werner1,2(B), Laurent Maingault1, and Marie-Laure Potet2

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, 38000 Grenoble, France
{vincent.werner,laurent.maingault}@cea.fr

2 Univ. Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France
{vincent.werner,marie-laure.potet}@univ-grenoble-alpes.fr

Abstract. Although fault injection is a powerful technique to exploit
implementation weaknesses, this is not without limitations. An impor-
tant preliminary step, based on rigorous calibration of the fault injection
equipment, greatly affects the exploitability and repeatability of injected
faults. The equipment parameter space is usually explored with ran-
dom search, grid search, and more recently with the help of metaheuris-
tic algorithms. In this article, we apply, for the first time, two recent
hyperparameter optimization techniques to fault injection. We evaluate
these optimization techniques on three different 32-bit microcontrollers,
and find better glitch waveforms than with metaheuristic algorithms. In
addition, we propose a two-stage optimization strategy under black-box
conditions to reduce the dimensionality of the parameter space and speed
up the equipment calibration. Finally, we apply this approach to bypass
the code read protection of a built-in bootloader faster than with genetic
algorithms.

Keywords: Fault injection · Voltage glitch · Parameter optimization

1 Introduction

Fault injection is a powerful technique to bypass security features of embedded
systems, such as code protection mechanisms [8,15,26]. Using electrical glitches
[2], focused light [31], electromagnetic pulses [13] or even nanofocused X-rays [1],
one can locally perturb the chip environment to alter its behavior and gain access
to critical information. Although fault injection can lead to impressive results,
this is not without limitation. One of the biggest challenges is the calibration of
fault injection equipment. Each fault injection equipment has multiple specific
parameters that must be adjusted precisely, such as the positions x, y, z of an

This work is supported by the French National Research Agency in the framework of
the “Investissements d’avenir” program (ANR-15-IDEX-02 and ANR-10-AIRT-05).

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 121–138, 2022.
https://doi.org/10.1007/978-3-030-97348-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_7

122 V. Werner et al.

electromagnetic probe tip. This preliminary calibration step is required in order
to find exploitable and repeatable faults.

The parameter space is often too large to be entirely covered manually dur-
ing time-constrained security evaluation. The most commonly-used methods to
explore the parameter space are Grid Search (GS) and Random Search (RS). GS
is a semi-exhaustive search on a predetermined and progressively refined range
of values. Although GS is effective with small parameter space, this technique is
inefficient to explore a high dimensional parameter space, as the number of eval-
uated configurations increases exponentially with the number of parameters con-
sidered. Even though RS is slightly better than GS for exploring large parameter
space [6], both GS and RS select next configurations to evaluate independently
of the previous results, thus, many evaluations are wasted on poorly-performing
configurations.

Several approaches have been proposed to reduce the time spent on the equip-
ment calibration, using more complex optimization techniques, such as meta-
heuristic algorithms. However, genetic and memetic algorithms are inherently
chaotic and can suffer from premature convergence [19]. Accordingly, Bayesian
and Bandit Optimization techniques are typically preferred over metaheuris-
tic algorithms to optimize hard combinatorial problem solvers [16] or machine
learning models [20]. To the best of our knowledge, such techniques have not
been considered for fault injection yet. Therefore, in this article, we propose
applying two efficient hyperparameter optimization techniques, so as to simplify
and speed up the calibration of a fault injection equipment for a given target
microcontroller. In addition, we also propose an optimization strategy to reduce
the dimensionality of the parameter space in order to speed up even more the
equipment calibration. To sum up, our contribution is threefold:

– We apply for the first time two hyperparameter optimization techniques,
Successive Halving Algorithm (SHA) and Sequential Model-based Algorithm
Configuration (SMAC), to find the best settings and induce repeatable and
exploitable faults with our voltage fault injection (VFI) setup, on three dif-
ferent 32-bit microcontrollers.

– We propose breaking down the optimization problem into two stages, so as
to simplify but also to speed up the equipment calibration; first, 1) during
the Calibration stage, we focus on fault injection parameters only, using fault
characterization tests, which are small programs running on the target device,
designed to maximize fault propagation, and then, once the best configura-
tions are identified, 2) during the Exploitation stage, we find the fault injection
timing to exploit vulnerabilities on the target application.

– Using this strategy and SMAC, we successfully bypass the code protection
mechanism of a built-in bootloader. Moreover, SMAC reduces the equipment
calibration time by half compared to Genetic Algorithm (GA).

The outline of the rest of the article is as follows. After an overview of the
related work to overcome the limitations of GS and RS in Sect. 2, we compre-
hensively explain our fault injection optimization strategy in Sect. 3. In Sect. 4,

Fast Calibration of Fault Injection Equipment 123

we detail SHA and SMAC optimization techniques, which are used for equip-
ment calibration. In Sect. 5, to evaluate the performance of these optimization
techniques, we calibrate our VFI setup for three different microcontrollers using
SHA, SMAC, GA and RS. Finally, in Sect. 6, we apply our fault injection strategy
using SMAC to bypass a read protection mechanism on a 32-bit microcontroller
faster than with GA.

2 Related Work

Parameter optimization has recently gained in popularity in the fault injection
community. Different approaches have been proposed to speed up the equipment
calibration step. When possible, reducing the parameter space by identifying the
regions of interest helps considerably. For example, using a scanning electron
microscope, Courbon et al. [12] find the most sensitive areas of the die to focus
with Laser Fault Injection (LFI). Similarly, Schellenberg et al. [30] measure the
optical beam induced current, as imaging technique, in order to localize flip-
flops of an hardware AES accelerator. Madau et al. [23] propose to acquire EM
emission traces, so as to detect EM hotspots and reduce the parameter space
of EM Fault Injection (EMFI) equipment. Finally, to reduce the dimensionality
of the problem, Carpi et al. [10] split the optimization problem into two stages,
one focusing on voltage parameters and the other one on proper timing. Note
that Picek et al. [28] also mention this approach, without further evaluating this
idea.

Another way to find the best settings faster is to use better optimization
algorithms than RS or GS. GA is a popular metaheuristic algorithm based on the
evolutionary theory, which has been applied to EMFI [24] but also VFI [8,10,28]
to find the best configurations. Picek et al. [27] use Memetic algorithm, which is
an extension of the traditional GA with a local search technique, also to explore
more efficiently the VFI parameter space. More recently, Wu et al. [35] have
proposed a characterization method for LFI setups based on deep learning to
tune the pulse width and the power of the laser.

Table 1. Comparison of the related work according to the optimization technique, the
dimension reduction of the parameter space, and the fault injection technique.

Related work Optimization technique Dimension reduction FI technique

Our contribution Bandit optimization ✓ VFI

Bayesian optimization

[27] Memetic algorithm ✗ VFI

[24] Genetic algorithm ✗ EMFI

[8,28] Genetic algorithm ✗ VFI

[10] Genetic algorithm ✓ VFI

[35] Deep learning ✗ LFI

[23] Grid search ✓ EMFI

[12,30] Grid search ✓ LFI

124 V. Werner et al.

Nevertheless, the main limitation of metaheuristic algorithms is the introduc-
tion of additional hyperparameters that must be configured, such as the size of
the population, the mutation rate, or the fitness function. Moreover, depending
on the optimization problem, metaheuristic algorithms can suffer from premature
convergence. Similarly, finding the right number of hidden layers and neurons of
the deep neural network is tedious.

More efficient optimization techniques have been proposed over the past
decade, such as Bayesian optimization or Bandit optimization. Although already
used for hyperparameter optimization of machine learning algorithms, these
techniques have never been applied to fault injection. Accordingly, we propose
for the first time to apply SMAC (Bayesian optimization) and SHA (Bandit
optimization) to improve the calibration of fault injection equipment. Moreover,
we also reduce the dimensionality of the parameter space by splitting the opti-
mization in two stages, but unlike [10], we decide to use fault characterization
tests to find the best configurations.

3 Fault Injection Optimization Approach

In this section, we detail our general approach for fault injection optimization.
This strategy aims to reduce the time spent on searching for the best equipment
settings, by reducing the dimensionality of the parameter space. Speeding up the
parameter space exploration is particularly important as security evaluations are
often time-constrained.

3.1 Common Approach

The most common strategy to optimize fault injection consists to calibrate the
fault injection equipment directly with the target application. But for large
applications, identifying the critical sections, that can potentially lead to vulner-
abilities, is tedious, therefore, it is nearly impossible during a black-box, time-
constrained, security evaluation to find the right equipment settings and the right
timing to inject the fault. In addition, the lack of feedback for some application
further complicates the equipment calibration [33], and significantly increases
the amount of work required.

3.2 Our Approach

In an effort to tackle these issues, we propose reducing the dimensionality of the
parameter space by breaking down the problem of fault injection optimization
into two stages, so as to simplify and speed up the parameter space exploration.
First, 1) the Calibration stage optimizes the equipment calibration independently
of the target application, using fault characterization tests and then, 2) the
Exploitation stage finds the right timing to inject a fault in order to exploit
a vulnerability on the target application. Figure 1 presents our fault injection
optimization strategy.

Fast Calibration of Fault Injection Equipment 125

Fault Probability. During the calibration stage, only faults resulting in a faulty
output are considered as effective, while faults resulting in a crash, a timeout or
a normal output are not taken into account. The fault probability is used as a
metric to compare performance between configurations. The fault probability of
a configuration is given by #{faulty results}

#{fault injected} for this configuration.

Fault Characterization Test. The fault characterization test, is not the tar-
get application itself, but rather a series of instructions, arranged in such a way
as to maximize the number of effective faults on the target microcontroller, in
order to quickly find the settings with the highest fault probability. Fault char-
acterization tests have been already applied to highlight fault effects on various
microcontrollers with different fault injection techniques [4,11,14,25,29,32,34].
The main advantage of using a fault characterization test is that we can com-
pletely ignore the injection timing during the optimization of our setup for the
target microcontroller, which helps the exploration of the parameter space. In
addition, a characterization test is often smaller than the target application,
reducing the time required in the long run. Furthermore, a fault characteriza-
tion test simplifies the equipment calibration by giving instant feedback on the
effectiveness of the fault injection parameters, in comparison with an equipment
calibration directly with black-box applications [33].

Target Microcontroller Fault Characterization Test

SMAC / SHAFault Injection
Equipment

Best Equipment Setting Target Microcontroller Target Application

RS / GS
Fault Injection

Equipment

Successful Attack

Calibration Stage

Exploitation Stage

Equipment Parameter
Space

Fig. 1. Overview of our fault injection optimization strategy.

Optimization Techniques. We use different optimization techniques for each
step of our approach. During the calibration stage, we use hyperparameter opti-
mization techniques such as SMAC or SHA, to quickly explore the equipment
parameter space, way faster than with GS or RS (due to the curse of dimen-
sionality [5]). Then, once the best settings are identified, the right timing to
inject the fault can be found with a simple random/grid search on the target
application during the exploitation stage.

126 V. Werner et al.

4 Hyperparameter Optimization Techniques

In this section, we comprehensively explain the two hyperparameter optimization
techniques, SHA and SMAC, which are used to improve the convergence speed
towards the best fault injection settings during the calibration stage.

4.1 Parameter Space and Equipment Configuration

The parameter space Θ depends on the fault injection technique and the setup
used. For example, our VFI setup has 9 free parameters defining the glitch
waveform (8 voltage levels and the glitch duration, more detailed information is
provided in Sect. 5.2, Fig. 2). Each configuration θ ∈ Θ describes how to adjust
each parameter of the given fault injection equipment (e.g. the positions x, y, z
of an electromagnetic probe tip). Depending on the number of equipment con-
figurations possible within the parameter space, and the target microcontroller,
the complexity of the search will vary. SHA or SMAC can significantly help to
reduce the time spent identifying configurations that induce exploitable faults.

4.2 Successive Halving Algorithm

SHA has been originally proposed by Karnin et al.[18] to solve multi-armed
bandits problems, but it can also be applied for hyperparameter optimization
[36]. The main purpose of the algorithm (Algorithm 1) is to identify the best
arm correctly (the best configuration) within a fixed budget T , that is a limited
amount of time or resources (e.g. the total number of fault injections). The
total budget is evenly allocated across log2(n) elimination rounds, where n is
the number of initial configuration instances �Θ0. The algorithm evaluates the
configurations in a uniform manner. At the end of each round, the worst ones

Algorithm 1: Successive Halving Algorithm
Input: Total budget T , fault injection parameter space Θ, n initial configuration

instances �Θ0 ⊂ Θ
Output: Optimized configuration θinc ∈ �Θ�log2(n)�

for r = 0 to �log2(n)� − 1 do

tr ←
⌊

T

|�Θr|�log2(n)�

⌋
;

foreach θi ∈ �Θr do
Test tr times each configuration θi;
Compute the empirical mean μr,i of θi;

kr ← �|�Θr|/2�;
/* Keep the kth

r best θi with the largest μr,i */

�Θr+1 ← BestKthConfigurations(�Θr, kr);

return θinc ∈ �Θ�log2(n)�;

Fast Calibration of Fault Injection Equipment 127

are eliminated. Then, on each successive round, the remaining configurations are
evaluated twice as much as the previous round, and the process repeats until
only one remains.

The main concern is, for a fixed budget T , whether to consider many config-
urations (large n) with smaller number of trials for each (tr); or a small number
of configurations (small n) with larger number of trials for each (tr). A solution,
proposed by Aziz [3], is to take a budget T = n log2(n), resulting in an aggressive
selection of configurations after just a single shot (⇒ tr = 1) in the first round.
Although only a conjecture has been presented to give an upper bound on the
simple regret, the particular parameterization T = n log2(n) of the Algorithm 1
is better empirically than more complex solutions, also based on SHA, such as
HyperBand [20].

4.3 Sequential Model-Based Algorithm Configuration

SMAC, proposed by Hutter et al. [16], is a general framework for Sequen-
tial Model-Based Optimization (SMBO), also known as Bayesian Optimiza-
tion. SMAC has been successfully applied for hyperparameter optimization of
hard combinatorial problem solvers and various machine learning algorithms.
Contrary to classical Bayesian-based approaches, SMAC supports all types of
parameters, including continuous, discrete, categorical, but can also handle non-
deterministic processes which is a key feature to optimize fault injection parame-
ters. In Sect. 4, we will see that SMAC outperforms common approaches used to
optimize the fault injection equipment. In the following, we explain the SMAC
algorithm in detail.

Sequential Model-Based Optimization. Unlike previous approaches,
SMBO keeps track of past results to fit iteratively a probabilistic model, in
order to select the next fault injection configurations which could potentially
maximize the number of effective faults on the target microcontroller.

SMBO, as detailed in Algorithm 2, is structured around two key components,
a probabilistic model and a selection function, also called the surrogate model
and the acquisition function respectively. The probabilistic model M is fitted
(FitModel) to previous results R = {(θ1, o1), ..., (θn, on)} where θi is a possible
configuration of the fault injection equipment, and oi is the observed fault prob-
ability with configuration θi. The model aims to predict the fault probability
oi+1 of a new configuration θi+1 to determine if θi+1 is worth being evaluated.
The new configurations �Θnew are selected from the fault injection parameter
space Θ by the acquisition function (SelectConfigurations) which keeps bal-
ance between exploitation (sampling where the model predicts the highest fault
probability) and exploration (sampling where the model has no prior distribu-
tion). On top of that, SMBO adds an intensification mechanism (Intensify),
which determines 1) the budget allocated for each configuration θi and 2) the
best known configuration so far θinc [16].

SMAC uses Random Forests (RF) as a surrogate model instead of more
commonly-used Gaussian process models, which explains how SMAC supports

128 V. Werner et al.

Algorithm 2: Sequential Model-Based Optimization
Input: Total budget T , fault injection parameter space Θ, initial configuration

instances �Θinit ⊂ Θ
Output: Optimized parameter configuration θinc

R, θinc ← Initialize(�Θinit);
repeat

/* Fit the model M based on results R */

M ← FitModel(R);

/* Select promising configurations �Θnew */

�Θnew ← SelectConfigurations(M, Θ);
/* Find the best configuration θinc */

R, θinc ← Intensify(θinc, �Θnew);

until total budget T is exhausted ;
return θinc;

discrete and categorical parameters. RF [9] is an ensemble method that grows
many individual decision trees, which together, can be used to solve both clas-
sification and regression problems. For the latter, decision trees take continuous
values (e.g. fault probability) rather than class labels at their leaves (also called
regression trees). SMAC estimates the performance (fault probability) mean μθ

and variance σ2
θ for a new configuration θ by computing the empirical mean and

variance of the individual regression trees prediction of the RF. By default, and
to maintain a low computational cost, SMAC builds B = 10 regression trees
with a maximum depth of 20. Each tree is grown to the largest extent possible,
based on a training set of n results sampled at random with replacement from
the previous results R (also called bagging). Then, at each node, m features
(e.g. fault injection parameters) are randomly selected from the initial features,
and the one minimizing the reduced squared sum loss among the training set is
chosen to split the node.

Finally, the acquisition function of SMAC is based on Expected Improvement
(EI), which is used to quantify how much a new configuration θ should improve
performance (fault probability) over our current optimum θinc. Formally, the
improvement I(θ) = max(f(θinc) − f(θ), 0) compares the performance between
the new configuration θ with the best known configuration so far θinc. As the
objective function f is unknown, EI is computed instead using the posterior
distribution of θ given the predictive mean μθ and variance σ2

θ obtained with
RF and the empirical mean performance fθinc

of the best configuration seen so
far [16,17]. Next, the new configurations which yield to the highest expected
improvement are selected and evaluated.

Initial Configuration Instances. One main limitation of SMAC is that initial
conditions can greatly affect the convergence speed, thus we propose our addi-
tional two-step procedure to select the initial configuration instances to better
calibrate a given fault injection equipment. Without at least one configuration

Fast Calibration of Fault Injection Equipment 129

in �Θinit which induces an effective fault, SMAC struggles to identify the best
settings. This procedure ensures that we do not start SMAC without at least
one working configuration.

– Pure exploration: configurations θ ∈ Θ are sampled at random and tested
until 1) at least kmin configurations that generate an effective fault have
been found, and 2) nmin faults have been injected. By default, kmin = 1 and
nmin = 1000.

– Mutation: the set �Θinit of initial configuration instances includes at least the
kmin configurations identified during the pure exploration step, and addi-
tional configurations generated with a gaussian mutation operator [7] using
the configurations found so far, so as to reach |�Θinit| = kinit configurations.
By default, kinit = 100.

Based on the target microcontroller, kmin, nmin and kinit can be adjusted.
For example, SMAC may struggle with some secure microcontrollers. Extending
the pure exploration phase (i.e. kmin > 1 and nmin > 1000) can significantly
help SMAC in early stages, especially when only a few configurations induce
effective faults.

5 Equipment Calibration with Different Microcontrollers

In this section, we optimize our VFI setup for three different 32-bit microcon-
trollers, using SMAC, SHA, GA and RS. In these experiments, SMAC outper-
forms other optimization techniques and consistently identifies the best settings
for our VFI setup. First, we present the target microcontrollers and general infor-
mation about the experiments. Then, we detail our VFI setup and the parameter
space associated. Afterwards, we compare the performance (fault probability and
convergence speed) of SMAC and SHA with more commonly-used techniques,
such as GA and RS.

5.1 Target Microcontrollers

We have selected three different 32-bit microcontrollers, based on different
Cortex-M cores. The die of these microcontrollers are different, thus, they will
not react the same way to voltage fault injections. Therefore, the best settings
for our VFI setup will be different for each microcontroller. The selected micro-
controllers are:

– µC-M0 is a Cortex M0+ running at 24 Mhz, based on the ARMv6-M archi-
tecture with 2 stages pipeline.

– µC-M3 is a mainstream microcontroller based on the Cortex M3 running at
24Mhz, which implements the ARMv7-M architecture with 3 stages pipeline.

– µC-M4 is ultra-low-power microcontroller based on the Cortex M4, running
at 72Mhz. The core is based on the ARMv7E-M architecture with 3 stages
pipeline and branch speculation.

130 V. Werner et al.

5.2 Setup

General Information. During the Calibration Stage (Fig. 1), we use the fault
characterization test detailed in Table 2. This test has been designed to maxi-
mize the propagation of bit-set or bit-reset on the fetched instruction, but also
instruction skips (not detailed in this study). For each optimization technique
(SMAC, SHA, GA and RS), we inject 50,000 faults (≈ 6 h). For SMAC, we use
the Python library SMACv3 [21], and more precisely the class SMAC4HPO. For
SHA, GA and RS, we do not use an external library.

For SHA, as described in Sect. 3, we use the parameterization T = n log2(n),
with n = 4096. For GA, each individual of the population represents a valid
configuration of the fault injection equipment considered. We train a population
of 50 individuals over 200 generations, where each individual is tested five times.
In addition, we use a gaussian mutation operator [7], a roulette-wheel selection
via stochastic acceptance [22] and the fitness of an individual is given by its fault
probability. For RS, we evaluate 10,000 configurations, where each configuration
is tested five times. In the following, we detail our VFI setup and its associated
parameter space.

Table 2. Instruction Corruption (IC) Test for the ARMv7-M instruction set, as well
as the initial values of registers.

Voltage Fault Injection Setup. Our VFI setup is similar to the Bozzato et
al. [8] test bench. We use a custom 30 MSps Digital-to-Analog Converter (DAC)
to generate arbitrary glitch waveforms instead of an external arbitrary waveform
generator. The DAC is a simple R-2R ladder with 8-bit resolution, which converts
digital input byte into analog output voltage. The glitch waveform, sent to the
DAC, is generated with a function that takes a set of 8 instantaneous voltage
levels, that are then interpolated with cubic interpolation on a grid, up to 2048-
by-256, that depends on the waveform size requested. This setup is cheap (≈
100$) and yet offers great versatility to adapt to different targets with the ability
to generate a large spectrum of glitch waveforms ([8]).

Fast Calibration of Fault Injection Equipment 131

However, the versatility comes at a price, as the parameter space of our
VFI setup, presented in Fig. 2, is larger than those of more commonly-used VFI
setups. Indeed, most of the time, only two parameters are used (glitch duration
and glitch amplitude), while our setup has 9 free parameters (8 voltage levels and
the glitch duration). Therefore, our VFI setup is a good candidate to evaluate
the relevance of SMAC and SHA optimization techniques.

Fig. 2. VFI parameter space, ≈ 1018 configurations. The glitch waveform is defined
with 8 voltage levels (x0...x7) and the duration.

5.3 Experimental Protocol

The results of the fault injection optimization with SMAC, SHA, GA and RS are
heterogeneous. While SMAC and SHA, by design, return a single configuration
(the best found), RS and GA return several configurations. Indeed, SMAC and
SHA progressively increase the number of test to better approximate the fault
probability in order to select the best configuration whereas RS and GA always
evaluate each configuration the same number of times, thus several configurations
can end up with the same fault probability. Accordingly, to fairly compare the
fault probability evolution over time of the configuration(s) found with SMAC,
SHA, GA and RS, several considerations have to be taken into account:

– SMAC : by design, with SMAC, the best configuration known so far is updated
during runtime execution, thus no post-processing required.

– RS : unlike SMAC, post-processing is required for RS. Every 5000 fault injec-
tions, we inject 1000 more faults to evaluate the fault probability of the best
configuration(s) found so far.

– GA: The same post-processing as RS is required.
– SHA: We evaluate the average fault probability at each halving of the remain-

ing configurations.

For each microcontroller considered, we optimize our VFI setup using SMAC,
SHA, GA and RS and we compare the fault probability evolution over time of
the configuration(s) found. The best optimization technique is the one that finds
the configuration with the highest fault probability, within a minimum number
of fault injections.

132 V. Werner et al.

5.4 Results

The results of the experiments are summarized in Fig. 3 and Table 3. In the
Fig. 3, we compare the evolution of fault probability over 50,000 fault injections,
to visually determine the convergence speed of each optimization technique (fast
or slow). Table 3 presents the fault probability of the best settings found with
each technique.

For each microcontroller, SMAC is significantly faster than other optimiza-
tion techniques. In particular, in less than 10,000 fault injections, SMAC sys-
tematically identifies configurations with higher fault probability than GA, RS
and SHA. Therefore, SMAC can be used to calibrate an equipment faster than
more commonly-used optimization techniques, hence saving valuable time dur-
ing security evaluations. On the other hand, SHA slowly converges towards the
best configuration. However, at the end, after 50,000 fault injections, SHA finds
the configuration with the best fault probability for µC-M0 and µC-M3.

By design, SHA uses all the allocated budget T , and removes iteratively the
worst configurations at each round, which explains the slow convergence speed,
in comparison with other optimization techniques. Nevertheless, we find that
SHA wastes many evaluations on poorly-performing configurations during the
first rounds, in particular with µC-M0. Our additional procedure for SMAC,
described in Sect. 4.3 could also help SHA to select the initial configuration
instances �Θ0, so as to reduce the time spent on poorly-performing configura-
tions. Although we have not evaluated SMAC or SHA with other fault injection
techniques, we believe that these optimization techniques can be easily adapt-

Table 3. Performance comparison between optimization techniques.

SMAC SHA GA RS

µC-M0 Max fault probability 0.52 0.53 0.49 0.49

Convergence speed Fast Slow Fast Slow

µC-M3 Max fault probability 0.77 0.81 0.52 0.24

Convergence speed Fast Slow Slow Slow

µC-M4 Max fault probability 0.95 0.79 0.81 0.71

Convergence speed Fast Slow Fast Slow

Fig. 3. Evolution of fault probability over 50,000 fault injections, according to SMAC,
GA, SHA and RS, with VFI

Fast Calibration of Fault Injection Equipment 133

able to EMFI or LFI. Regarding the results, SMAC is more efficient than GA,
RS, and SHA, in particular to quickly calibrate fault injection equipment for
a given microcontroller. In the following, we will show that SMAC can also be
used to exploit vulnerabilities faster than GA.

6 SMAC to Bypass a Code Protection Mechanism

In this section, we apply our two-stage strategy with SMAC to bypass a code
protection mechanism, with VFI, on a 32-bit microcontroller. The presented
attack is a known attack [8] which downgrades the security level of the target,
so as to extract the firmware. We will show that SMAC is better than GA at
identifying the best settings within a limited number of fault injections, and
therefore that SMAC can save valuable time during security evaluations.

6.1 STM32F103RB

The microcontroller STM32F103RB is a 32-bit ARM Cortex-M3 core operating
at 24 MHz. The preprogrammed bootloader offers code protection mechanisms
to prevent any read or write operations from the bootloader on the user flash
memory. In practical terms, once the read protection (RDP) is enabled, the
bootloader returns a negative response (NACK) when a Read Memory command
is issued. To disable RDP, the flash must be completely erased.

Attack. The known attack [8] to bypass the read protection mechanism con-
sists in injecting a fault during the Read Memory command. Indeed, when the
bootloader receives the Read Memory command, it checks the RDP value and
returns the ACK or the NACK byte, depending on whether RDP is disabled or

Fig. 4. Evolution of fault probability over 6000 fault injections, according to SMAC
and GA, on the STM32F103RB; and the best glitch waveforms found with SMAC and
GA during the calibration stage.

134 V. Werner et al.

enabled, respectively. By injecting a fault during the RDP checking phase, an
attacker can deceive the read protection mechanism and retrieve the content of
the selected memory block.

Calibration Stage. In order to find the best settings for our VFI equipment
to glitch the STM32F103RB, we will use SMAC and GA, and compare the fault
probability evolution. For both SMAC and GA, we perform the calibration stage
with 6000 fault injections (24 generations for GA) during ≈ 15min, with the
fault characterization test in Table 2, and with the default parameters. Figure 4
presents the fault probability evolution over time of the best configuration(s)
found with SMAC and GA. We have arbitrarily chosen a small number of fault
injections during the calibration stage, so as to show that SMAC is definitely
faster at identifying the best settings than more commonly-used optimization
techniques, such as GA. Not only does SMAC converge faster than GA, but
SMAC also identifies configurations twice as efficient as those found with GA
(Table 4).

Exploitation Stage. We compare the average of the elapsed time to perform
the attack to bypass RDP (exploitation stage) with SMAC and GA, using the
best glitch waveforms found during the calibration stage. The attack is easily
achieved with the best configuration found with SMAC, on average in less than
5 minutes. On contrary, with the best configurations found with GA, we have
not been able to bypass the read protection mechanism of the STM32F103RB.
This shows that with only 6,000 fault injections during the calibration stage, GA
clearly underperforms SMAC. Figure 5 presents the oscilloscope traces of the
attack to bypass RDP on the STM32F103RB, using the best glitch waveform
found with SMAC.

Table 4. Performance comparison between SMAC and GA on the STM32F103RB
with VFI.

Number of fault injections

6000 12000

SMAC Max fault probability 0.79 0.79

Calibration time 15 min 30 min

Exploitation time <5min <5 min

GA Max fault probability 0.37 0.55

Calibration time 15 min 30 min

Exploitation time N/A <5 min

Fast Calibration of Fault Injection Equipment 135

Fig. 5. Oscilloscope traces of the glitch attack to bypass RDP on the STM32F103RB.

Note that with a larger number of fault injections during the calibration
stage, it is also possible to bypass RDP using GA. For example, with twice as
many fault injections during the calibration stage (i.e. 12,000 instead of 6,000),
GA identifies equipment settings that can successfully glitch the STM32F103RB
and bypass the code protection mechanism (Table 4). But even after 12.000 fault
injections, the configurations identified with GA have a lower fault probability
than with SMAC.

7 Conclusion

Fault injection requires a preliminary step of equipment calibration in order to
find exploitable and repeatable faults. In this article, we have proposed applying
state-of-the-art optimization techniques, already used for machine learning and
other hard combinatorial problems, to fault injection. Bayesian Optimization
(SMAC) and Bandit Optimization (SHA) are used to identify the best equip-
ment configurations which maximize exploitable faults on a target microcon-
troller. While SHA is a simple algorithm, easily adaptable to fault injection and
yet offers decent performance, SMAC is arguably the most interesting optimiza-
tion technique, finding better equipment configurations faster than metaheuristic
algorithms.

In addition, to simplify and speed up the equipment calibration, we have
proposed splitting fault injection optimization into two stages, the calibration
stage and the exploitation stage. We optimize fault injection parameters inde-
pendently of the target application with a fault characterization test and then,
once the best configurations are identified, we find fault injection timings to
exploit vulnerabilities on the target application. With SMAC and this strategy,
we successfully bypass a code protection mechanism of the STM32F103RB boot-
loader. In particular, the calibration stage with SMAC is twice as fast as with

136 V. Werner et al.

GA. Furthermore, SMAC and SHA have systematically identified better config-
urations than metaheuristic algorithms, and although it has not been studied
in this article, finding configurations with high fault probability is even more
important when multi-fault injections are necessary, as inducing more repeat-
able faults greatly help in carrying out complex multi-fault attacks.

As future work, it will be interesting to apply other promising optimization
techniques such as HyperBand (Bandit Optimization) or Tree-structured Parzen
Estimator (Bayesian Optimization). Moreover, we will investigate the applica-
tions of hyperparameter optimization techniques to find exploitable faults with
other fault injection techniques, such as LFI or EMFI. Finally, our ongoing
research is focused on direct applications of fault injection optimization with
SMAC or SHA on secure microcontrollers. For example, we believe that we can
find exotic waveforms with SMAC that can bypass voltage glitch attack detec-
tors.

References

1. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J., Tucoulou, R.:
Nanofocused X-ray beam to reprogram secure circuits. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 175–188. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 9

2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 20

3. Aziz, M.: On Multi-Armed Bandits Theory and Applications. PhD thesis, Ph. D.
Thesis, Northeastern University, Boston, MA, USA (2019)

4. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box character-
ization of the effects of clock glitches on 8-bit mcus. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 105–114. IEEE (2011)

5. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton
(1861)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2), 281–305 (2012)

7. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies-a comprehensive introduction.
Natural Comput. 1(1), 3–52 (2002)

8. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: optimizing voltage
fault injection attacks. IACR Trans. Cryptogr. Hard. Embed. Syst. 199–224, 2019
(2019)

9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
10. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it

if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 16

11. Colombier, B., Menu, A., Dutertre, J.-M., Moëllic, P.-A., Rigaud, J.-B., Danger,
J.-L.: Laser-induced single-bit faults in flash memory: instructions corruption on a
32-bit microcontroller. IACR Cryptol. ePrint Arch. 2018, 1042 (2018)

https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/978-3-319-08302-5_16

Fast Calibration of Fault Injection Equipment 137

12. Courbon, F., Loubet-Moundi, P., Fournier, J.J.A., Tria, A.: Increasing the effi-
ciency of laser fault injections using fast gate level reverse engineering. In:
2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 60–63. IEEE (2014)

13. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 7–15. IEEE
(2012)

14. Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédière, J.: From code
review to fault injection attacks: filling the gap using fault model inference. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107–124.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 7

15. Gerlinsky, C.: Breaking code read protection on the nxp lpc-family microcontrollers
(2017)

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investi-
gation of model-based parameter optimisation: spo and beyond. In: Proceedings of
the 11th Annual conference on Genetic and evolutionary computation, pp. 271–278
(2009)

18. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed
bandits. In: International Conference on Machine Learning, pp. 1238–1246. PMLR
(2013)

19. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimedia Tools Appl. 80, 1–36 (2020)

20. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

21. Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A., Hut-
ter, F.: Smac v3: algorithm configuration in python (2017). https://github.com/
automl/SMAC3

22. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance.
Physica A Stat. Mech. Appl. 391(6), 2193–2196 (2012)

23. Madau, M., Agoyan, M., Maurine, P.: An EM fault injection susceptibility crite-
rion and its application to the localization of hotspots. In: Eisenbarth, T., Teglia,
Y. (eds.) CARDIS 2017. LNCS, vol. 10728, pp. 180–195. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75208-2 11

24. Maldini, A., Samwel, N., Picek, S., Batina, L.: Optimizing electromagnetic fault
injection with genetic algorithms. In: Breier, J., Hou, X., Bhasin, S. (eds.) Auto-
mated Methods in Cryptographic Fault Analysis, pp. 281–300. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11333-9 13

25. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE
(2013)

26. Obermaier, J., Tatschner, S.: Shedding too much light on a microcontroller’s
firmware protection. In: 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 2017) (2017)

https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
https://doi.org/10.1007/978-3-319-75208-2_11
https://doi.org/10.1007/978-3-030-11333-9_13

138 V. Werner et al.

27. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
memetic algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 159–173. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4 11

28. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1106–
1111. IEEE (2014)

29. Riviere, L., Najm, Z., Rauzy, P., Danger, J. L., Bringer, J., Sauvage, L.: High
precision fault injections on the instruction cache of armv7-m architectures. In:
2015 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 62–67. IEEE (2015)

30. Schellenberg, Markus F., et al.: On the complexity reduction of laser fault injection
campaigns using obic measurements. In: 2015 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pp. 14–27. IEEE (2015)

31. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

32. Trouchkine, T., Bouffard, G., Clédière, J.: Fault injection characterization on mod-
ern CPUs. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024,
pp. 123–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4 8

33. Van den Herrewegen, J., Oswald, D., Garcia, F.D., Temeiza, Q.: Fill your boots:
Enhanced embedded bootloader exploits via fault injection and binary analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 56–81, 2021 (2021)

34. Werner, V., Maingault, L., Potet, M.-L.: An end-to-end approach for multi-fault
attack vulnerability assessment. In: 2020 Workshop on Fault Detection and Toler-
ance in Cryptography (FDTC), pp. 10–17. IEEE (2020)

35. Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characterization method
for semi-invasive fault injection attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 146–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-40186-3 8

36. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algo-
rithms: theory and practice. Neurocomputing 415, 295–316 (2020)

https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1007/978-3-030-40186-3_8
https://doi.org/10.1007/978-3-030-40186-3_8

Laboratory X-rays Operando Single Bit Attacks
on Flash Memory Cells

Laurent Maingault1, Stéphanie Anceau1(B), Manuel Sulmont1, Luc Salvo2,
Jessy Clediere1, Pierre Lhuissier2, Emrick Beliard1, and Jean Luc Rainard1

1 CEA-Leti, 17 Avenue Des Martyrs, 38054 Grenoble, France
stephanie.anceau@cea.fr

2 Université Grenoble Alpes, CNRS, UMR5266, Grenoble INP, Laboratoire SIMaP,
38000 Grenoble, France

Abstract. The need to increase the level of digital security standards requires a
sustained research effort on new means of perturbations likely to disturb the pro-
cessing of integrated circuits. X-rays modification is a powerful semi-permanent
fault injection technique with a high spatial accuracy, which allows an adversary
to modify efficiently secret data from an electronic device. Experimental results
demonstrate that several semi-permanent bit erase faults can be injected in code
and data with corrupting flash memory, even with an X-rays spot from an X-rays
laboratory source of less than 10 µm in diameter. This is the order of magnitude
of 15 memory cells with a process node of 350 nm in the presented experiments.
The article also presents the specificity of performing an X-rays attack without
the need of a synchrotron-focused beam, as presented in CHES 2017 [1].

Keywords: X-rays · Physical attacks · Cybersecurity

1 Introduction

The possibility of using visible and IR light to perform attack on integrated circuit was
revealed by Skorobogatov and Anderson [2]. The physical phenomena have been stud-
ied and explained by the failure-analysis community [3–6]. Laser light can be synchro-
nized and focused in order to induce transient and persistent faults. During the security-
evaluation practice, these attacks may give powerful results. In order to further investi-
gate the wavelength spectrum of perturbations, it is proposed here to study the effects
of ionizing radiation like X-rays. Compare to fault perturbations induced in a circuit by
a laser light, where the spot size is few microns, X-rays beam allows to obtain a spot
size down to 50 nm using synchrotron source and down to 400 nm in laboratory nano
sources. This is therefore more suitable to modify one single transistor for the most
advanced technology mode. It is physically possible to modify one single bit transistor
with the X-rays and the limitation is only coming from the way used to focus the beam.
Security countermeasures can be deactivated in the flash block memory or the regis-
ters in the glue logic for example. The second advantage of X-rays is their potential to

© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 139–150, 2022.
https://doi.org/10.1007/978-3-030-97348-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_8

140 L. Maingault et al.

penetrate deeply through materials and induced semi-permanent faults on flash mem-
ory cells and NMOS transistors. The X-rays beam can penetrate through the plastic or
ceramic package, through the front side active shield of the circuit or the backside die
paddle. This semi-permanent perturbation of the X-rays is completely reversible with
a simple heat treatment in a classical oven and no physical modification is visible after
the X-rays perturbations. X-rays interaction with electronic circuits has been analyzed
[7–22], but its use for security evaluation has been mainly restricted to die and package
imaging or occasional perturbation with no practical success [23, 24] before the single
bit semi-permanent fault injections performed at the European synchrotron facility in
Grenoble [1].

Since the late 90s, the flash memory cells are known to be vulnerable to the cyber
attacks of secure integrated circuits. However, significant improvements have been done
to secure electronic devices: The stored data, that often contains critical secret keys,
is indeed now ciphered and scrambled in the flash memory blocks. Nowadays it is
difficult to reread the flash memory content for the actual technology node. It is there-
fore interesting to develop another method for the modification of the memory content.
This document demonstrates the feasibility of semi-permanent X-rays modifications of
localized several flash memory cells using backside and frontside attack with laboratory
X-rays source. For the purpose of this article, we chose to attack ATmega128P devices.
Despite its large technology node compared to standard devices in the cybersecurity
field, it is a perfect demonstrator of an attack feasibility. Furthermore, the availability
in DIP packages allows to easily decapsulate the target device and, even if the device
is damaged by the X-rays fault injection, it can easily be replaced. We will first present
the methods to prepare the circuit for X-rays attacks, the methodology of an attack with
a laboratory X-rays source and the results obtained using both backside and frontside
attack.

2 Materials and Methods

2.1 Preparation of Integrated Circuit ATmega128P for X-rays Attack

In this work, we target an 8-bit AVR microcontroller, the Atmel ATmega128P. It has
128 kB of flash memory, 4 kB of EEPROM and 4 kB of RAM. The technology node is
350 nm and the 128 kB flash memory block is visible on the right part of Fig. 1.

Laboratory X-rays Operando Single Bit Attacks 141

Fig. 1. ATmega128P integrated circuit after package removal.

The backside of the chip’s package together with the copper paddle was removed
using a cheapASAPmillingmachine. Themetal connections of the package are returned
to the opposite side: each connection is brazed to strengthen the connection in order to
avoid any breakdown during multiple manipulations (Fig. 2).

Fig. 2. ATmega128Pdevice samplewithout preparation (left picture). TheASAPmillingmachine
for the device backside thinning is used and the ATmega128P device backside pads are returned
and milled (right picture).

The device protection shown in Fig. 2 relies on four steps::

i. Deposition of 20 µm thickness W over 300 µm diameter on the flash memory.
ii. Drilling of a 10 µm diameter hole into the W layer.
iii. A square Pb foil (1 cm × 1 cm) with thickness of 300 µm is drilled to make a hole

of 250 µm.
iv. The Pb foil is placed over the W deposit in order to protect the circuit and keep the

10 µm hole visible.

142 L. Maingault et al.

Fig. 3. (a) Thickness measurement of theWmask deposited on the ATmega128P device backside
surface. (b) 10 µm diameter hole visible on the same W mask used for the X-rays focalization.
(c) Lead mask shown on the circuit. (d) Principle of Pb mask alignment

Step (i) is performedwith a V400 Focused Ion Beam (FIB).We put the sample on the
right part of on a sample holder inside the FIB vacuum chamber. The sample holder is
custom made and its dimensions are optimized for the following experimentation. First,
the backside memory block is localized thanks to an in-situ infrared camera. Then gas is
injected for the circle deposition of tungsten thickness of 20 µm localized in the center
of the memory block on the backside surface of the device. The precise positioning in
the center of the memory block is possible thanks to the piezoelectric XY table with a
movement precision of 0.2µm.The thickness of the deposited tungsten layer ismeasured
with a quick etching of a single line on the border of the tungsten deposition layer. The
sample is then tilted to an angle of 45° inside the FIB vacuum chamber. The diameter of
the W deposit is 300 µm.We check the diameter and the thickness value of the tungsten
(W) mask and the result is visible on the left picture of the Fig. 3.

Step (ii) is also performed in the V400 FIB using a 65 nA current without any gas. 2
h are required to make a hole of 10 µm diameter and 20 µm thickness in the W deposit.
The hole can be seen in Fig. 3 (b).

Step (iii) the Pb foil is drilled with a 200 µm drill bit using a conventional tabletop
drilling machine.

Step (iv) The Pb foil is superposed on the Tungsten (W) mask under the inversed
optical microscope on the backside sample surface. For that, the sample is fixed under
the microscope with several stickers. Then the Pb foil is positioned slowly and we check
that there is a good superposition of the two masks. Then we use a transparent UV light
polymerization glue in order to fix the Pb foil in the right position. The viscosity of the
UV sticker is correct for the border fixation of the Pb foil on the backside device surface

Laboratory X-rays Operando Single Bit Attacks 143

at the right position. We still check with the microscope that the Pb foil does not move
under the microscope during the glue polymerization. The result of the Pb and W foil
superposition is visible in Fig. 3 (c).

2.2 X-rays Source Laboratory

We used an Hamamatsu nano-tube with Lab6 and Mo target. Operating condition was
40 kV with 1.9 W in large spot configuration (meaning a focus of the spot of around
2 µm). Imaging is done with a Varian flat panel allowing to easily see the W hole
made with the FIB. The experimental setup, the principle of attack on the sample and a
radiograph of the system are shown in Fig. 4. Bright pixels in a very small area are visible
and correspond to the position of the 10µmdiameter ofWmask hole on the surface of the
ATmega128P backside device (see arrow). The shape around the W mask corresponds
to the PCB soldering X-rays picture in transmission on the dedicated electronic card.

Fig. 4. (a) Experimental setup of the X-rays source laboratory experiment. The ATmega128P
sample electronic PCB mounted near the nano X-rays source. (b) Transmission image of the
component with the 10 µm hole can be seen in (c).

2.3 Operando Analysis of ATmega128P Device During X-rays Exposure

Two interfaces have beenmade for the frontside and the backside of the device in order to
use a PC with a USB port for the functionality exploitation of the ATmega128P device.
Python programs have been developed for the CESTI laboratory in order to write and
read the flash memory block of the ATmega128P device. We used PyQt5 for the GUI,
numpy and matplotlib for data treatment and image visualization and library Ftd2xx to
communicate with the Atmega circuit. This program detects the faulted errors during
the reading sequence and allows the visualization of the faults during the experiment. It
is possible to follow in operando the fault that are created. Figure 5 presents the program
interface. The first window on the left allows connecting to the circuit, program the flash
and read it. The log windows indicates at each pass the number of faulted bits and the
last window is an image of the faulted memory cells.

144 L. Maingault et al.

Fig. 5. Interface of the program controlling the operando experiment

3 Results and Discussion

Figure 6 presents the number of faults created at each time as well as some images
showing the fault location during backside X-rays attack. The first faults are observed
after 520 s and two bits were faulted as it can be seen on the image shown in Fig. 6.

Fig. 6. Number of faulted transistors with various X-rays exposure duration and visualization of
the faulted transistors.

The first part of the faulted results (before 880 s) correspond to the floating gate tran-
sistor erasing: electrons are evacuated from the floating gate to the substrate as shown on
the left of Fig. 7. The second part of the faulted results appears at 880 s where columns
start to be faulted. This type of fault transistors correspond to the semi-permanent con-
duction of the NMOS transistors. These transistors correspond to the NMOS access

Laboratory X-rays Operando Single Bit Attacks 145

transistors of each memory cell and the permanent conduction of the NMOS transistor.
The ionization of the oxide layer between the NMOS transistor generates positive charge
at the interface with the substrate. This induces electron leakage in the substrate channel
at the interface as shown on the two figures on the right of Fig. 7. These erase and conduct
phenomena are well explained in the aerospace applications studies in which radiation
naturally occurs and prevents chips from functioning properly. All these extensive effect
studies are used for the protection of the devices in the space environment [7–22]. The
so-called semi-permanent effect is based on the fact that a simple one-hour heat anneal-
ing treatment at 150 °C allows recovering the previous device functional behavior [1].
However, if the X-rays irradiation lasts too long it will be impossible to retrieve the
initial behavior.

Fig. 7. Erased memory cell mechanism illustration (left image) and permanent conductivity
mechanism of the NMOS access transistor illustration (right images) [ref pour le images?]

The functionality of the flash memory block is presented on Fig. 8. On the left, it
is possible to see the erased cells faulted results and on the right, the NMOS access
transistor faulted result. The evolution of the corruption with time exposure is shown
on Fig. 8. After 520 s, the memory cells in the W mask hole are corrupted and the
floating gates of the memory cell transistors are emptied thanks to the photoemission
of carriers stored in the floating gates. This result is visible during the reading of the
corresponding line of the corrupted memory cells. After 880 s, the access to any line of
the exposed array is corrupted due to these NMOS transistors that are conductive, even
if the corresponding line is not selected. This is due to charge trappings in insulating
layers, inducing Vt shifts in NMOS transistors. If we stop the X-rays irradiation between
520 s and 880 s, the programed memory cells will remain in the erased state during the
next writing operation.

The flash block memory cells are programed with alternating 1s and 0s for each
memory cell side by side we have programmed the flash memory block with 5555 logic
values. It is clearly possible to stop the experiment after the first part of the faulted results
(i.e. before 880 s) in order to keep only the erased memory cell faults and performed an
exploitable security attack. Figure 9 presents longitudinal and transverse cross sections
allowing tomeasure the size of the block cell which is approximately (1.3µm× 3.5µm).
Figure 9 also presents a schematic of the memory cell blocks indicating that sixteen
floating gate transistors could be irradiated in the 10 µm diameter hole. Only half of the
sixteen floating gates are full of electrons and thus will be faulted, which means eight
floating gate transistors. During the experiment, seven floating gate transistors were

146 L. Maingault et al.

Fig. 8. The figure presents the logical representation of part of the flash memory block in the
X-rays exposed area (red circle). The logical functionality of part of the flash block memory cells
is visible during the X-rays irradiation. The two parts of the attack process are clearly visible:
on the left picture, the floating gates of the memory cells are in an erased state and on the right
picture, the NMOS access transistors are conductive. The state of the fault floating gate transistors
and the fault NMOS access transistor is conductive; the red arrows represent each fault memory
cell and each fault transistor. (Color figure online)

faulted (see Fig. 6). This difference may be due to the fact that the tungsten hole might
be slightly smaller or not exactly in the position shown in Fig. 9.

Fig. 9. (a) Frontside perpendicular FIB cross section and SEMpictures of the flash blockmemory
cells of the ATMEGA128P device. (b) Transverse cross section (dashed white line of (a)). (c)
Schematic of the memory cell blocks with the W hole.

4 Towards Simple Single Bit Attacks with Laboratory X-rays
Source

The principle of using W mask to perform X-rays attack on backside integrated circuits
has been clearly validated in the previous section.We therefore tried to simplify the sam-
ple preparation and explored the availability of performing frontside attack. Knowing
the flash zone position, a lead film (10 mm height × 20 mm width × 50 µm thickness)

Laboratory X-rays Operando Single Bit Attacks 147

was glued on the frontside of the component to protect the surrounding electronic com-
ponents. We choose to start with a lead film, easier to manipulate and cut than W plate
and to limit the FIB use to the drilling of holes. Different square holes with edge length
ranging from 5 µm to 10 µm were drilled directly in the Pb film with the FIB with a
65 nA current during 3 h. The main advantage of this procedure is that we avoid several
tricky steps of the sample preparation procedure presented in the previous section: there
is no need to return the metal legs connecting the component to the boardconnection as
necessary in backside attack, to use ASAP machining neither to align Pb film with W
deposit and hole as explained earlier. Furthermore, we also simplified the X-rays attack:
in this case, we do not use a Mo target, which is not a classical target, but a W target
that is available in common X-rays sources. The X-rays attack conditions were similar:
40 kV, 1.9Wwith large spot size of around 2µm focalization. Figure 10 (a) presents the
sample with the Pb lead directly glued on the front side with carbon tape. Figure 10 (b,
c) presents FIB images of the holes performed in the flash and a X transmission image
of the device mounted in the X-rays source, showing holes in white.

Fig. 10. (a) Frontside component with Pb film of 50 µm thickness protecting the circuit in the
middle. (b) FIB images of the series of hole made in the Pb film. (c) X-rays transmission image
of the component showing holes.

Figure 11 presents the images of the faulted bits with various X-rays exposure dura-
tions. The first fault appears in less than one hour (at 2960 s) and it is a single bit fault
(see red arrows on Fig. 11). Other faults appear with time in the different holes. It is
interesting to note that in each hole we start by a single bit fault as indicated by red
arrows. The second bit fault in each hole is generally coming after 60 s to 120 s after the
first fault. This could let time to switch off the X-rays in order to perform only single
bit attack, keeping only the single erased memory cell fault and perform an exploitable
attack. However, it would be better to reduce the size of the holes and thus only attack
one transistor. It can be seen from the last image of Fig. 11 that some holes are not
presenting faults when compared to Fig. 10: only eight holes present faults. This is due
to the 5555 programming of the flash where 128 columns are set to 1 and 128 columns
are set to 0 alternatively. Only columns set to 1 can be changed to 0 and produce a
fault. This explains why four holes in between the white dashed lines of Fig. 10 are not
producing faults.

148 L. Maingault et al.

Fig. 11. Images of the faulted bits with time during front side X-rays attacks of Atmega: red arrow
indicates the single bit fault. (Color figure online)

5 Conclusion

It is possible to attack only several flashmemory block cells andNMOSaccess transistors
with a simple X-rays laboratory source. The seven erased cells may allow a program
change stored in the memory block or to deactivate a countermeasure when this one
needs a flash memory cell reading. This work is the continuation of what has been
done in Grenoble ESRF with a 50 nm focalized synchrotron source [1]. The fact that
we do not need a synchrotron and that a conventional W target X-rays source can be
used for managing such an attack is a very interesting feature. Furthermore, we show
that it is possible to perform frontside attacks with a quite simple sample preparation to
protect the circuit. We show that single-bit attacks can be done but we need to reduce
the size of the holes in order not to fault other transistors around. It is interesting to
note that the Pb film with hole down to µm size can be prepared with FIB and then
put in front of the components (not glued on it) to perform random single-bit attacks in
the flash memory. This limits drastically the use of the FIB to perform attacks: indeed,
this removable protective film can be reused to attack other components with different
technology node. The 350 nm technology of the Atmega128 is a proof of concept and
the aim is to perform such attacks on more advanced technology nodes.

Acknowledgements. This work was carried out in the framework of the MITIX project funded
by ANR Project.

References

1. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J.-L., Tucoulou, R.: Nanofocused
x-ray beam to reprogram secure circuits. In: Fischer, W., Homma, N. (eds.) CHES 2017.

Laboratory X-rays Operando Single Bit Attacks 149

LNCS, vol. 10529, pp. 175–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4_9

2. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36400-5_2

3. Habing, D.H.: The use of lasers to simulate radiation-induced transients in semiconductor
devices and circuits. IEEE Trans. Nucl. Sci. 12, 99–100 (1965)

4. Henley F.J.: Logic failure analysis of CMOSVLSI using a laser probe. In: Reliability Physics
Symposium, 22nd Annual, pp. 69–75 (1984)

5. Burns D., Pronobis M., Eldering C., Hillman R.: Reliability/design assessment by internal-
node timing-margin analysis using laser photocurrent injection. In: 22nd Annual Proceedings
on Reliability Physics 1984, pp. 76–82. IEEE (1984)

6. Hériveaux, L., Clédière, J., Anceau, S.: Electrical modeling of the effect of photoelectric laser
fault injection on bulk CMOS design. ISTFA. In: 39th International Symposium for Testing
and Failure Analysis (2013)

7. Micheloni R., Crippa L., Marelli A.: Inside NAND Flash Memories, pp. 537–571. Springer,
New York (2010). https://doi.org/10.1007/978-90-481-9431-5

8. Oldham, T.R., McLean, F.B.: Total ionizing dose effects in MOS oxides and devices. IEEE
Trans. Nucl. Sci. 50, 483–499 (2003)

9. Oldham T.R.: Ionizing Radiation Effect in MOS Oxides. Advances in Solid State Electronics
and Technology (ASSET) Series, World Scientific, Singapore (1999)

10. Soucarros, M., Clediere, J., Dumas, C., Elbaz-Vincent, P.: Fault analysis and evaluation of a
true random number generator embedded in a processor. J. Electron. Test. 29, 367–381 (2013)

11. Ma, T.P., Dressendorfer, P.V.: LonizingRadiationEffects inMOSDevices andCircuits.Wiley,
New York (1989)

12. Shaneyfelt, M.R., Schwank, J.R., Fleetwood, D.M., Winokur, P.S., Hughes, K.L., Sexton,
F.W.: Field dependence of interface trap buildup in polysilicon and metal gate MOS devices.
IEEE Trans. Nucl. Sci. 37(6), 1632 (1990)

13. Caywood, J., Prickett, B.: Radiation-induced soft errors and floating gate memories. In:
Proceedings of 21st Annual Reliability Physics Symposium, pp. 167–172 (1983)

14. Snyder, E., McWhorter, P., Dellin, T., Sweetman, J.: Radiation response of floating gate
EEPROM memory cells. IEEE Trans. Nucl. Sci. 36, 2131–2139 (1989)

15. McNulty, P., Yow, S., Scheick, L., Abdel-Kader, W.: Charge removal from FGMOS floating
gates. IEEE Trans. Nucl. Sci. 49, 3016–3021 (2002)

16. Cellere, G., Paccagnella, A., Visconti, A., Bonanomi, M.: Lonizing radiation effects on
floating gates. Appl. Phys. Lett. 85, 485–487 (2004)

17. Cellere, G., Paccagnella, A., Visconti, A., Bonanomi, M., Caprara, P., Lora, S.: A model for
TID effects on floating gate memory cells. IEEE Trans. Nucl. Sci. 51, 3753–3758 (2004)

18. Cellere, G., Paccagnella, A., Lora, S., Pozza, A., Tao, G., Scarpa, A.: Charge loss after 60Co
irradiation of ash arrays. IEEE Trans. Nucl. Sci. 51, 2912–2916 (2004)

19. Wang, J., et al.: Total ionizing dose effects on flash-based field programmable gate array.
IEEE Trans. Nucl. Sci. 51, 3759–3766 (2004)

20. Wang J., Kuganesan G., Charest N., Cronquist B.: Biased-irradiation characteristics of the
floating gate switch in FPGA. In Proc. IEEE Radiation Effects Data Workshop, pp. 101–104,
Jul. 2006

21. Cellere, G., et al.: Total ionizing dose effects in NOR and NAND ash memories. IEEE Trans.
Nucl. Sci. 54, 1066–1070 (2007)

https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/978-90-481-9431-5

150 L. Maingault et al.

22. Nguyen D.N., Lee C.I., Johnston A.H.: Total ionizing dose effects on flash memories. In:
IEEE Radiation Effect Data Workshop, p. 100 (1998)

23. Gerardin, S., et al.: Radiation effects in flash memories. IEEE Trans. Nucl. Sci. 60(3), 1953–
1969 (2013)

24. Bar-El H., Choukri H., Naccache D., Tunstall M., Whelan C.: The Sorcerer’s Apprentice
Guide to Fault Attacks. IACR Cryptology ePrint Archive (2004)

Multi-Spot Laser Fault Injection Setup:
New Possibilities for Fault Injection

Attacks

Brice Colombier1(B) , Paul Grandamme2, Julien Vernay2, Émilie Chanavat2,
Lilian Bossuet2 , Lucie de Laulanié3, and Bruno Chassagne3

1 Université Grenoble Alpes, CNRS, Grenoble INP Institute of Engineering
Université Grenoble Alpes, TIMA, 38000 Grenoble, France

brice.colombier@grenoble-inp.fr
2 Université Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR

5516, 42023 Saint-Étienne, France
{paul.grandamme,julien.vernay,lilian.bossuet}@univ-st-etienne.fr,

emilie.chanavat@etu.univ-st-etienne.fr
3 ALPhANOV Centre Technologique Optique et Lasers Institut d’Optique

d’Aquitaine, 33400 Talence, France
{lucie.bon,bruno.chassagne}@alphanov.com

Abstract. Fault injection attacks rely on experimental techniques to
inject one or several faults into a device during operation. Among these
techniques, laser fault injection is known as a powerful one, thanks to its
unmatched spatial and temporal precision. So far though, the overwhelm-
ing majority of published laser fault injection attacks were performed
with only one laser spot. In this article, we present a new multi-spot
laser fault injection setup. After a description of the optical system, we
highlight its new capabilities against the limitations of existing single-
spot laser fault injection setups. We then discuss some intrinsic limita-
tions that this setup has, making it not equivalent to running multiple
single-spot setups simultaneously on the same target. We then provide
experimental evidence of faults performed with two and four spots which
are unfeasible with a single-spot laser fault injection setup. This paves
the way for new fault attacks on security and cryptography algorithms
that exploit this new type of fault.

Keywords: Fault attacks · Laser fault injection · Multi-spot

1 Introduction

Faults induced in electronic systems by natural events, such as radiations, had
been well studied for several decades by research in the safety domain. However,
it was not until the article by Boneh et al. in 1997 that their importance with
regards to security was acknowledged [7]. In that article, authors show how to
take advantage of hardware faults to break cryptography algorithms. Since then,

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 151–166, 2022.
https://doi.org/10.1007/978-3-030-97348-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_9&domain=pdf
http://orcid.org/0000-0002-6028-3028
http://orcid.org/0000-0001-7964-3137
https://doi.org/10.1007/978-3-030-97348-3_9

152 B. Colombier et al.

fault injection attacks have become a field of research in their own right [5]. In
this setting, faults are injected intentionally to carry out the attack.

In order to induce a fault in an electronic system, an attacker has several
tools to choose from [4]. We refer to the first category as global fault injection
techniques: it is not possible to target a specific element of the system under
attack. Among those techniques, we find voltages glitches [3] clock glitches [2]
or heating [14]. The second category of fault injection techniques are local : they
allow an attacker to target a specific feature of the device under attack. These
techniques usually exploit radiations, either electromagnetic [16], optical [23] or
in the form of X-rays [1].

In this article, we focus on optical fault injection. In particular, we deal
with multi-spot laser fault injection setups. Compared with existing single-spot
setups, multi-spot setups have the ability to inject multiple faults. This allows
new types of faults to be performed, which are out of reach of single-spot setups,
effectively extending the possible fault model. However, multi-spot laser fault
injection setups also have some intrinsic limitations, due to the physical arrange-
ment of optical elements. This constraint must be taken into account in the
fault model. Finally, this extended fault model could be exploited to mount new
attacks on security algorithms.

1.1 Contributions

This article makes the following contributions:

– We describe the different components of the optical apparatus used by the
multi-spot laser fault injection setup,

– We show the possibilities of this new setup when compared to a single-spot
laser fault injection setup,

– We highlight the limitations of a multi-spot laser fault injection setup, show-
ing how mechanical and optical constraints lead to the fact that a multi-spot
laser fault injection setup is not equivalent to multiple single-spot laser fault
injection setups,

– We verify the capabilities of the setup by performing fault injection on char-
acterisation codes. We experimentally perform two example faults, involving
two and four laser spots respectively, that are impossible to achieve with a
single-spot laser fault injection setup.

1.2 Outline

This article is organised as follows. Section 2 provides an overview of related work
on laser fault injection. Section 3 describes the limitations of a single-spot laser
fault injection setup with respect to the data corruption fault model. Section 4
presents the multi-spot laser fault injection, its capabilities as well as its intrinsic
limitations. Section 5 provides experimental evidence for two new faults that
can only be performed with a multi-spot laser fault injection setup. Finally, we
conclude the article in Sect. 6.

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 153

2 Related Work

Laser fault injection was first described in the context of hardware security
by Skorobogatov and Anderson [23]. However, the action of photons on silicon
devices was already known before. It was exploited to simulate the effect of ion
beams and evaluate the reliability of integrated circuits [8].

As detailed in [20], when a laser shot passes through silicon, electron-hole
pairs are created. If an electric field exists in the region, then these charges drift
in opposite directions, inducing an electric current. This in turn may have an
effect on the transistors, depending on their logic state before the laser shot. The
exact sensitive areas of the transistors, which depend on the data handled, are
detailed in [20]. Another important point is that, for the laser beam to penetrate
deep enough in silicon and reach the active areas of the transistors, its wavelength
must be in the infrared region, where silicon is transparent. Thus an infrared
laser whose wavelength is in the micrometer range is commonly used for this
purpose [11,17,20].

While access to the die is granted in the context of wafer-level testing, this
is not the case for physical attacks. Thus the device under attack must first
be decapsulated [5]. This can be done by chemical and mechanical means to
dissolve the package and provide physical access to the die. An optional step of
mechanical polishing can also be taken to thin the die, reducing absorption of
the laser beam before it reaches the active areas of the transistors.

Pioneer work in laser fault injection was carried out on integrated circuits
manufactured at micrometer-scale technology nodes. In [23], the target is a 6-
transistor SRAM cell that has 20µm on each side. This is of the same order of
magnitude as the size of the laser spot used in this work, which had a diameter of
10µm approximately. As technology nodes shrunk, the ability to perform precise
laser fault injection was questioned. However, later work performed at the 90, 45
and 28nm technology nodes showed that single bit faults are still within reach,
by fine tuning the laser power [12,21]. The correlation between the number of
faulty bits and the laser power was explicitly established in [12]. A complex
System-on-Chip was eventually attacked with this technique [24] and single-bit
faults were observed in this case as well. Therefore, even though the features
at a given technology nodes are far smaller than the laser spot size, laser fault
injection remains a technique of choice for precise fault injection attacks.

Although the effect of multiple faults performed by laser fault injection was
modeled at the register-transfer level in [19], no experiments were performed in
this work. There are very few articles in the literature that claim to perform an
attack using a multi-spot laser fault injection setup [6,22,25]. The first one [22]
performs the same fault on two branches of an AES hardware implementation on
an FPGA protected by redundancy, so the fault cannot be corrected. However, as
noted by the authors, the attack relies on a very precise placement of the target
elements, making it hard to reproduce on a real target design. The second one
gives an overview of two certification processes followed by secure products, and
describes the various tools which are used to perform the security evaluation [6].
The multi-spot laser fault injection setup is said to be capable of defeating

154 B. Colombier et al.

protected implementations, by shining one laser spot on the target while others
are used to disable the hardware redundancy and cross-check verification. No
further practical details were provided though. Finally, in [25], even though a
two-spot setup is used, the fault models considered are described at the software
level. Therefore, a lot of faults obtained cannot be explained and are referred to
as “Fatal Errors”: for instance, the target chip is not responding. Other valid
faults are mostly classified as multiple instructions skip. Eventually, some faults
are still left unexplained.

In this article, we chose instead to characterize the possibilities of a multi-
spot laser fault injection setup with fault models that are fully explained and
reproducible. For this reason, we focus on fault models that deal with data
corruption in basic memory elements.

2.1 Fault Model Considered

We restrict our study here to works where clear evidence of data corruption by
laser fault injection has been produced, either in the form of bit-set, bit-resets
or bit-flips. In this regard, while previous work focused on memory elements like
SRAM cells [20,21] or D-flip flops [10] a recent line of work deals with NOR
Flash memory architecture instead [11,13,15,17]. The associated fault model is
single or dual-bit bit-set. The photoelectric effect is still the root cause of the
fault, and its effect on the NOR Flash architecture is detailed in [11,17].

In other works, the occurrence of multi-bit faults was dependent on the phys-
ical layout of memory elements: a matrix of D flip-flops in a custom ASIC design
in [12] and processor registers in [24]. Conversely, when performing laser fault
injection in NOR Flash memory, it is not the individual memory elements that
are faulty but the read-out circuitry. Data stored in the Flash memory remains
unaffected by the fault. This makes the laser positioning much easier, since the
bit-lines of the read-out circuitry are shared among memory bits. More precisely,
bits of index i share the jth bit-line such that i ≡ j mod n where n is the width of
data read from the Flash memory, usually 32 bits. Thus, traversing the memory
lengthwise allows to fault the individual bits and their index is directly related to
the position of the laser spot in the memory Flash length, as depicted in Fig. 1.
On our target device, which we will describe in more details in Sect. 4, the Flash
memory has a length of 1500µm, so individual bits can be targeted by making
steps as large as 1500/32 � 45µm. This is feasible manually with the joystick
provided with most laser fault injection stations. We insist that we obtain the
same perfect repeatability observed in [11,17].

As experimentally demonstrated in [17], the results can be easily ported to
a different target as long as it comes with NOR Flash memory. This is actually
a very common feature in embedded systems where NOR Flash memory is used
as EEPROM1 to store the configuration of the microcontroller. For all these
reasons, we chose to use this fault model to illustrate the possibilities of the
multi-spot laser fault injection setup.

1 Electrically-Erasable Programmable Read-Only Memory.

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 155

Fig. 1. Effect of the laser spot moving lengthwise over the flash memory on all-zero
32-bit data (0x00000000) fetched from the flash memory

3 Limitations of Single-Spot Laser Fault Injection Setups

Before introducing the multi-spot laser fault injection setup, it is important to
identify the limitations of existing single-spot laser fault injection setups. To this
end, we start by reviewing existing fault models for data corruption and identify
two limitations in the way they are currently described.

3.1 Existing Fault Models for Data Corruption

We place ourselves here in the framework of fault injection attacks targeting data
corruption. This choice brings us to a low level of abstraction, where we deal
directly with data fetched from the Flash memory. If such data are instructions,
then this could for example lead to the processor executing corrupted instruc-
tions, inducing another fault model, such as instruction skip, which is described
at a higher level of abstraction. However, here, we consider the lowest possible
level of abstraction to remain as general as possible.

The fault models dealing with data corruption capture quite well three
aspects of the fault. The first one is the direction of the fault. Since we are
dealing with binary data here, the different directions of the fault are: set (the
data is forced to 1), reset (the data is forced to 0) or flip (the data is flipped
from 0 to 1 or from 1 to 0).

The second one is the cardinality of the fault, that is, how many bits are
affected by the fault. For instance the fault can have the following cardinalities:
single-bit (one bit is faulty), multi-bit (multiple bits are faulty) or byte (eight
bits are faulty).

The third one is the repeatability of the fault, that is, what is the probability
that the fault occurs given a set of experimental fault injection parameters.

These existing characteristics of the data corruption fault models fail to cap-
ture two features of the fault, which are especially significant for the multi-spot
laser fault injection setup. The first one is the contiguity of the fault and the
second one is the time dimension of the fault model.

156 B. Colombier et al.

3.2 Contiguity

When a multi-bit fault model is considered, one aspect that is not taken into
account is whether the faulty bits are contiguous or not.

When performing laser fault injection, the charges induced in silicon fol-
low a Gaussian distribution [9]. The spread of this distribution depends on the
laser power and is usually characterised by the “full-width at half-maximum”
(FWHM) value [12,24]. If the power is high, the area in which the charge density
is high enough can be sufficiently large to encompass multiple transistors and
induce a fault on multiple bits [12].

Based on this observation, one could argue that non-contiguous bits could
be targeted by having multiple zones in the laser beam where the power is
high enough. To achieve this, an SLM (Spatial Light Modulator), a DMD (Dig-
ital Micromirror Device), or a DOE (Diffractive Optical Element) can be used,
that allows to split the incoming laser beam into multiple laser beams to tar-
get the device under attack. While these solutions may seem attractive, since
they require only one laser source, the optical elements involved are complex
and expensive. Moreover, the laser spots which are eventually focused on the
device under attack are not fully independent, either spatially or temporally. In
addition, the initial power is split among the beams, is dependent on their final
shape and is hard to control. Therefore, these solutions make it very challenging
to perform laser fault injection on non-contiguous bits with a single laser source
in a controlled manner.

Another possibility to fault non-contiguous bits is to exploit the layout of
target elements. For instance, if memory elements are organised in a grid shape,
then injecting a fault on one side of the grid could lead to fault non-contiguous
bits of the data. However, in this case, the fault model is layout-dependent, which
obviously incurs a loss of generality.

Therefore, the first limitation of a single-spot laser fault injection setup is its
inability to inject non-contiguous faults in general, as summarised in Fig. 2.

Fig. 2. Feasibility of contiguous and non-contiguous multi-bit faults with a single-spot
laser fault injection setup

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 157

3.3 Time Dimension

Another aspect which is not captured by existing fault models is the ability
to perform two faults at different locations, but close in time. Indeed, with
a single-spot laser fault injection setup, doing so requires to turn the laser off,
move the target and turn the laser on again. On some setups, the objective lenses
move while the target remains fixed, but the reasoning is identical. Indeed, the
mechanical system can only be operated so fast. This should be contrasted with
the clock frequencies at which the usual targets are operating, ranging from tens
of megahertz to a few gigahertz [24].

If the time interval between the two intended faults is too small, then it is
simply not possible to perform this type of fault with a single-spot laser fault
injection setup. Let Δt be the time interval between the two faults, vmax the
maximum linear speed of the mechanical setup and dtargets the distance between
the two target features on the die. Then, for this type of fault to be feasible, we
need the relation given in Eq. (1) to hold.

Δt >
dtargets
vmax

(1)

To simplify, we consider that the mechanical system always operates at full
speed. In reality, the acceleration and deceleration phases are often sinusoidal
to prevent abrupt changes in speed that could misalign the elements. With a
realistic maximum linear speed of 20 mm/s and assuming that the features are
distant of 10 % of a die that has 2 mm on each side, then the minimum time
interval Δtmin between the two faults is given in Eq. (2).

Δtmin =
dtargets
vmax

=
2 × 10

100

20
= 0.01 s (2)

Considering a rather slow device running at only 10 MHz, that is, with a clock
period of 100 ns, then Δtmin is equal to 105 clock periods. This imposes a very
hard constraint on the time interval between target instructions in a program if
an attacker wants to perform multiple faults during its execution. These consid-
erations are summarised in Fig. 3.

Another critical aspect of having to move the target between two faults is the
difficulty to synchronise these two faults together. Indeed, while the laser shots
are very precise and synchronised with a trigger sent to the laser sources, the
mechanical system cannot be synchronised precisely, adding a non-deterministic
delay before the positioning is correct and the second laser shot can be made.
Therefore, synchronising the two faults requires two triggers. This adds another
constraint to the attack scenario.

As we will show in the next section, a multi-spot laser fault injection setup
frees us from these constraints. It allows to perform multiple faults that are
arbitrarily close in time without requiring multiple triggers.

158 B. Colombier et al.

Fig. 3. Feasibility of consecutive faults with a single-spot laser fault injection setup on
a 16-bit data word

4 Four-spot Laser Fault Injection Setup

4.1 Setup Description

Figure 4 shows the four-spot laser fault injection setup2 used in the experiments.

Fig. 4. Schematic of the four-spot laser fault injection setup (DM: dichroic mirror, PC:
polarization beam splitter cube, OL: objective lens, TL: tube lens, ZL: zoom lenses).

Four monomode laser sources are integrated, two with a wavelength of 980 nm
and two with a wavelength of 1064 nm. Monomode sources can be focused to
smaller spots than multimode ones, allowing smaller features on the die to be

2 QLMS by ALPhANOV: https://www.alphanov.com/actualites/alphanov-concu-un-
banc-laser-quatre-spots-pour-linjection-de-fautes-sur-circuits.

https://www.alphanov.com/actualites/alphanov-concu-un-banc-laser-quatre-spots-pour-linjection-de-fautes-sur-circuits
https://www.alphanov.com/actualites/alphanov-concu-un-banc-laser-quatre-spots-pour-linjection-de-fautes-sur-circuits

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 159

targeted. The two laser sources of same wavelength are linearly polarized but
perpendicular. They are combined by the polarization beam splitter cubes (PC)
which are reflective for one direction of polarization and transmissive for the
other one. The dichroic mirror then spectrally combines the laser beams of dif-
ferent wavelengths, reflecting the beam at 980 nm since it is reflective for this
wavelength and tranmitting the beam at 1064 nm since it is transmissive for this
wavelength. These are eventually focused on the die through the same objective
lens (OL). Different objective lenses are available, namely x2.5, x20 and x50.

4.2 Capabilities

Each laser source is independent and can be moved across the focal plane in the
optical field of view of the objective lens, allowing laser spots on the die to be
positioned independently. Moreover, each laser source is triggered independently,
allowing faults to be as close in time as required by the target application. The
trigger signal may also be shared between multiple laser sources to perform
simultaneous faults on distinct target elements.

4.3 Limitations

While the capabilities described above make it look like the four-spot laser fault
injection setup is equivalent to four single-spot laser fault injection setups, this
is in fact not the case. Indeed, since all laser beams must go through the same
objective lens, the distance between the laser spots on the die is limited by the
field of view of the objective. This distance between the spots depends on the
magnification of the objective lens, which also affects the minimal laser spot
diameter, as shown in Table 1.

Table 1. Field of view and minimal spot diameter for different objective lenses

Magnification Field of view Minimal spot diameter

x2.5 4mm 25µm

x20 500µm 2.2µm

x50 200µm 1.3µm

For instance, with a x20 magnification, the laser spots cannot be more than
500µm apart from one another. Therefore, if the targets elements on the die are
further apart than this limit, they cannot be targeted at the same time. Doing so
would require to move the target, which as detailed above is unrealistic in most
attack scenarios. In addition, with this magnification, the laser spot cannot have
a diameter smaller than 2.2µm. As mentioned before, this is not an obstacle
when aiming for single-bit faults, since we can tune the laser power so that only
a smaller area has a charge density high enough to cause a fault.

160 B. Colombier et al.

Another aspect relative to the laser spot positions is the fact that, when
moved away from the center of the field of view, they gradually lose power, as
shown in Fig. 5. While barely visible for x2.5 and x20 objective lenses, this effect
is very strong for the x50 objective lens. Indeed, in this setting, if a laser spot is
positioned on the edge of the field of view, then almost no optical power reaches
the die. This turned out not to be an issue in the following experiments, since
we used the x20 objective lens only.

Fig. 5. Relative power of laser for different spot positions in the field of view of different
objective lenses

5 Two Examples of New Possible Faults

5.1 Experimental Setup

Full Experimental Setup. The hardware target communicates with a PC
over a serial interface. It generates a trigger signal, sent to a function generator,
which generates the four distinct control signals for the laser sources. This is
shown in Fig. 6a. A picture of the Flash memory area of the microcontroller is
shown in Fig. 6b while Fig. 6c shows four laser spots over the Flash memory.

Fig. 6. Four-spot laser fault injection in flash memory

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 161

Hardware Target. The hardware target we perform the experiments on is a 32-
bit microcontroller, integrated on a custom target board for the ChipWhisperer
platform [18] to allow for backside access. The microcontroller embeds an ARM
Cortex-M3 core and comes with 128 kB of integrated Flash memory. It runs at
a frequency of 7.4 MHz, as dictated by the ChipWhisperer platform.

Laser Fault Injection Setup Parameters. After characterisation, following
the method detailed in [17], we set the laser power to 1.5 W to obtain single-bit
faults on data fetched from Flash memory, with one laser spot only, a 980 nm
laser source and the x20 objective lens. The duration of the laser pulse was set
to 135 ns, which is the clock period of the microcontroller. We observed that, on
this hardware target, the laser spot must be moved in steps of 45µm to perform
a transient fault on the individual bits of data fetched from the Flash memory.

5.2 First Characterisation Code

The goal of this first code is to validate the possibility to perform simultaneous
non-contiguous faults. For that, we target a MOV instruction that loads an 8-bit
value in a register, as shown in Fig. 7a where 0x00 is loaded in R0. We raise a
trigger signal before the target instruction and lower it after, before reading back
the content of the R0 register.

This source code is compiled using the Thumb instruction set without any
optimisation. Figure 7b shows how this instruction is encoded. We aim for the
imm8 part of the instruction and want to load 0x55 instead of 0x00, to demon-
strate the ability to perform four simultaneous non-contiguous bit-sets.

Fig. 7. Characterisation code for four simultaneous faults on non-contiguous bits

Experimental Results. We started the experiment with only one laser spot,
with the experimental parameters given above. We gradually increased the delay
up to 1113 ns where a single-bit fault was observed. We then positioned the three
other spots with a distance of 90µm between them, since there is a step of 45µm
between individual bits. We had to lower their individual power to approximately
750 mW, otherwise the chip crashed and was not responding anymore. Finally,
we succeeded to store the value 0x55 in R0.

162 B. Colombier et al.

5.3 Second Characterisation Code

The second fault consists in targeting two instructions which are close, but per-
form the fault on different bits. To this end, we use the characterisation code
shown in Fig. 8a.

Fig. 8. Characterisation code for two faults close in time on different bits

Again here, we raise a trigger signal at the beginning of the execution (see
Fig. 8a, line 6) and lower it at the end (see Fig. 8a, line 17)

We target the instructions associated with the following two operations:

– the increment of the loop counter. This compiles into an ADD instruction
as shown in Fig. 8b. We perform a fault injection on the imm8 part of the
instruction. More specifically, we modify the increment to make it N instead
of 1. We assume a single-bit bit-set fault model, so N is of the form 2i + 1,
where i is an integer between 1 and 7. This requires to perform a bit-set
on the bit of index i. For example, the increment can be changed to 5 by
performing a bit-set on the bit of index 2, as shown in Fig. 8b.

– an exclusive-OR in the body of the loop. This compiles into an EORS instruc-
tion as shown in Fig. 8c. We perform a fault injection on the opcode, turning
the EORS instruction into an ADCS instruction, to perform an addition with
carry instead. This requires to perform a bit-set on the 8th bit.

The experimental results are stored in an array of two elements. The first
one stores the difference between the original and the actual number of times
the body of the for loop has been executed. The second one stores the number
of times the exclusive-OR operation has been turned into an addition. This way,
we isolate the two faults and are able to observe their respective influences.

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 163

Experimental Results. We performed different experiments by changing the
increment of the loop counter to different values, while faulting the EORS instruc-
tion in the body of the for loop at the same time. As specified above, the hard-
ware target sends only one trigger signal. From there on, in order for the fault
injection to be successful, the main challenge is to find the correct parameters
for the two control signals of the two laser sources. To this end, four parameters
must be tuned on the function generator:

– the initial delay for the first laser source tinit1 . This is the delay between
raising of the trigger signal and executing the first instruction to fault.

– the initial delay for the second laser source tinit2 . This is the delay between
raising of the trigger signal and executing the second instruction to fault.

– the period tlasers which is the time it takes to execute the body of the for
loop once. Note that both control signals have the same period.

– the duty cycle α which defines how long every laser shot should last. Since
we want each laser to fault one instruction per execution of the body of the
for loop, the duty cycle must be set accordingly.

The first step is to tune the two initial delays. This is done by increasing
these delays one after the other while monitoring the result values. As soon
as one fault is observed, the initial delay is found. We obtain the following
values: tinit1 = 2070 ns and tinit2 = 3825 ns. The second step is to tune the
period of the control signals. This is done by producing only two pulses and
increasing the period until two faults are observed. We obtain the following value:
tlasers = 5535 ns. This corresponds to 41 clock periods (5535 = 41 × 135) given
that our target has a clock period of 135 ns. Therefore, executing the body of the
for loop takes 41 clock cycles. Finally, we set the duty cycle to α = 1

41 � 2.4 %
to target one clock cycle out of the 41 of the body of the for loop.

These four settings are shown in Fig. 9, where the actual fault performed by
each laser shot is shown as well. Using this settings, we were able to change the
loop increment to 5 instead of 1 and alter the exclusive-OR operation in the
body of the loop to turn it into an addition.

Fig. 9. Timing of signals used to control the fault injection setup

164 B. Colombier et al.

6 Conclusion

In this article, we highlighted the limitations of single-spot laser fault injection
setups, which are not considered by previously considered fault models. We then
presented a new four-spot laser fault injection setup that can overcome these
limitations. With experiments on two characterisation codes, we showed that two
new types of fault are feasible with this setup: four simultaneous non-contiguous
faults and two faults very close in time on different bits. Having identified this
extension of the data corruption fault model, feasible by laser fault injection,
future works could focus on applying this to new attacks on security algorithms.

Acknowledgement. This work was carried out in the framework of the FUIAAP22
Project PILAS supported by Bpifrance. This work is supported by the French National
Research Agency in the framework of the “Investissements d’avenir” program “ANR-
15-IDEX-02” and the LabEx PERSYVAL “ANR-11-LABX-0025-01”. This work is sup-
ported by INS2I in the framework of the PANTACOUR project.

The authors would also like to thank Jean-Max Dutertre from EMSE for providing
them with a backside-opened device suitable for laser fault injection.

References

1. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J., Tucoulou, R.:
Nanofocused x-ray beam to reprogram secure circuits. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 175–188. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 9

2. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Chris-
tianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028165

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 20

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

5. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

6. Bhasin, S., Lomné, V., Tobich, K.: An industrial outlook on challenges of hardware
security in digital economy. In: Ali, S.S., Danger, J., Eisenbarth, T. (eds.) Inter-
national Conference on Security, Privacy, and Applied Cryptography Engineering.
Lecture Notes in Computer Science, vol. 10662, pp. 1–9. Springer, Goa, India (Dec
(2017). https://doi.org/10.1007/978-3-319-71501-8 1

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/978-3-319-71501-8_1
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

Multi-Spot LFI Setup: New Possibilities for Fault Injection Attacks 165

8. Buchner, S., et al.: Pulsed laser-induced SEU in integrated circuits: a practical
method for hardness assurance testing. IEEE Trans. Nucl. Sci. 37(6), 1825–1831
(1990)

9. Buchner, S., Knudson, A.R., Kang, K., Campbell, A.: Charge collection from
focussed picosecond laser pulses. IEEE Trans. Nucl. Sci. 35(6), 1517–1522 (1988)

10. Champeix, C., Borrel, N., Dutertre, J., Robisson, B., Lisart, M., Sarafianos, A.:
SEU sensitivity and modeling using pico-second pulsed laser stimulation of a D flip-
flop in 40 nm CMOS technology. In: International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, pp. 177–182. IEEE Computer
Society, Amherst, MA, USA, October 2015

11. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger,
J.L.: Laser-induced single-bit faults in flash memory: instructions corruption on a
32-bit microcontroller. In: IEEE International Symposium on Hardware Oriented
Security and Trust, pp. 1–10. McLean, VA, USA, May 2019

12. Dutertre, J.M., et al.: Laser fault injection at the CMOS 28 nm technology node:
an analysis of the fault model. In: Workshop on Fault Diagnosis and Tolerance
in Cryptography, pp. 1–6. IEEE Computer Society, Amsterdam, The Netherlands,
September 2018

13. Garb, K., Obermaier, J.: Temporary laser fault injection into flash memory: cali-
bration, enhanced attacks, and countermeasures. In: International Symposium on
On-Line Testing and Robust System Design, pp. 1–7. IEEE, Napoli, Italy, July
2020

14. Hutter, M., Schmidt, J.-M.: The temperature side channel and heating fault
attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp.
219–235. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 15

15. Kumar, D.S.V., Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-
depth and black-box characterization of the effects of laser pulses on ATmega328P.
In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 156–170.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2 11

16. Maurine, P.: Techniques for EM fault injection: equipments and experimental
results. In: Bertoni, G., Gierlichs, B. (eds.) Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 3–4. IEEE Computer Society, Leuven, Belgium,
September 2012

17. Menu, A., Dutertre, J.M., Rigaud, J.B., Colombier, B., Moëllic, P.A., Danger, J.L.:
Single-bit laser fault model in NOR flash memories: analysis and exploitation. In:
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 41–48. IEEE,
Milan, Italy, September 2020

18. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

19. Papadimitriou, A., Hély, D., Beroulle, V., Maistri, P., Leveugle, R.: A multiple fault
injection methodology based on cone partitioning towards RTL modeling of laser
attacks. In: Fettweis, G.P., Nebel, W. (eds.) Design, Automation & Test in Europe
Conference & Exhibition, pp. 1–4. European Design and Automation Association,
Dresden, Germany, March 2014

20. Roscian, C., Sarafianos, A., Dutertre, J., Tria, A.: Fault model analysis of laser-
induced faults in SRAM memory cells. In: Fischer, W., Schmidt, J. (eds.) Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 89–98. IEEE Computer
Society, Los Alamitos, CA, USA, August 2013

https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-030-15462-2_11
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17

166 B. Colombier et al.

21. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into
90 nm and 45 nm SRAM-cells. In: Homma, N., Medwed, M. (eds.) CARDIS 2015.
LNCS, vol. 9514, pp. 193–205. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31271-2 12

22. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES by simultaneous
laser fault injections. In: Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, pp. 36–46. IEEE Computer Society, Santa Barbara, CA, USA, August
2016

23. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

24. Vasselle, A., Thiebeauld, H., Maouhoub, Q., Morisset, A., Ermeneux, S.: Laser-
induced fault injection on smartphone bypassing the secure boot-extended version.
IEEE Trans. Comput. 69(10), 1449–1459 (2020)

25. Werner, V., Maingault, L., Potet, M.: An end-to-end approach for multi-fault
attack vulnerability assessment. In: Workshop on Fault Diagnosis and Tolerance
in Cryptography, pp. 10–17. IEEE, Milan, Italy, September 2020

https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/3-540-36400-5_2

Public-Key Cryptography

In-depth Analysis of Side-Channel
Countermeasures for CRYSTALS-Kyber
Message Encoding on ARM Cortex-M4

Hauke Malte Steffen , Lucie Johanna Kogelheide(B) ,
and Timo Bartkewitz

Division for Hardware Evaluation, TÜV Informationstechnik GmbH,
TÜV NORD Group, Essen, Germany

{h.steffen,l.kogelheide,t.bartkewitz}@tuvit.de

Abstract. A variety of post-quantum cryptographic schemes are cur-
rently undergoing standardization in the National Institute of Standards
and Technology’s post-quantum cryptography standardization process.
It is well known from classical cryptography that actual implementations
of cryptographic schemes can be attacked by exploiting side-channels,
e.g. timing behavior, power consumption or emanation in the electro-
magnetic field. Although several of the reference implementations cur-
rently in the third and final standardization round are – to some extent –
implemented in a timing-constant fashion, resistance against other side-
channels is not taken into account yet.

Implementing sufficient countermeasures, however, is challenging. We
therefore exemplarily examine CRYSTALS-Kyber, which is a lattice-
based key encapsulation mechanism currently considered as a candidate
for standardization. By analyzing the power consumption side-channel
during message encoding we develop four more and compare six differ-
ent implementations with an increasing degree of countermeasures. We
show that introducing randomization countermeasures is crucial as all
examined implementations aiming at reducing the leakage by minimiz-
ing the Hamming distance of the processed intermediate values only are
vulnerable against single-trace attacks when implemented on an ARM
Cortex-M4.

Keywords: Post-quantum cryptography · NIST competition ·
Message encoding · CRYSTALS-Kyber · Side-channel analysis

1 Introduction

Quantum computers have been a merely theoretical construction for many
decades. However, during the last years significant progress has been made
and increasingly large quantum computers have been built [14,15]. A cryp-
tographically relevant quantum computer threatens today’s most wide-spread
asymmetric cryptographic schemes, namely Rivest-Shamir-Adleman (RSA) and
Elliptic Curve Cryptography (ECC). These schemes rely on either the integer
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 169–188, 2022.
https://doi.org/10.1007/978-3-030-97348-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_10&domain=pdf
http://orcid.org/0000-0002-7065-5980
http://orcid.org/0000-0002-6849-7434
http://orcid.org/0000-0002-3133-0382
https://doi.org/10.1007/978-3-030-97348-3_10

170 H. M. Steffen et al.

factorization problem or the discrete logarithm problem which a quantum com-
puter can efficiently solve using Shor’s algorithm [30]. For industries with prod-
ucts in the field for a long time (e.g. automotive) or data that might be valuable
even decades from now (e.g. health data) the transition to quantum resistant
cryptographic schemes therefore has to be initiated as soon as possible [19,20,29].

The field of Post-Quantum Cryptography (PQC) is based on mathemati-
cal problems that are hard to solve for both classical and quantum computers,
thereby offering suitable replacement candidates for RSA and ECC. The most
prominent standardization effort for PQC is conducted by the National Institute
of Standards and Technology (NIST) in their PQC standardization process [23].
The Key Encapsulation Mechanism (KEM) CRYSTALS-Kyber is a third round
candidate of the NIST PQC standardization process [22].

Side-channel attacks exploit channels which unintentionally carry data
dependent information, e.g. power consumption or timing behavior [8,12,16,17].
By monitoring these channels during execution of a security critical function an
attacker might extract secret data. Side-channel attacks thereby do not focus
on attacking the algorithm itself but on a potentially insecure implementation.
Side-channel attacks also apply to PQC schemes and resistance against side-
channel attacks is an evaluation criteria in the third and final round of the NIST
PQC standardization process [18].

Simple Power Analysis (SPA) aims at extracting a secret by measuring only
one execution of the security relevant function while Differential Power Analy-
sis (DPA) requires an attacker to record a certain number of traces in order to
perform an attack. In general, DPA is considered the more powerful attack tech-
nique. However, if an SPA does succeed the results are devastating as only a sin-
gle trace is enough to attack the implementation. Side-channel resistance of the
remaining candidates in the NIST PQC standardization process has for exam-
ple been investigated in [26,31,32], with CRYSTALS-Kyber being one of the
examined – and vulnerable – candidates. The second round candidate NewHope
proved vulnerable against SPA, with the authors suggesting that a nearly iden-
tical attack path could also be applied to CRYSTALS-Kyber [1].

To counter SPA and DPA, masked implementations of CRYSTALS-Kyber
have been proposed [4,7,10]. Masking reduces side-channel leakage by processing
data in shares. An attacker can only recompute the original value if she can
correctly recover all involved shares. However, in case of a high SPA success
rate, conducting an SPA on the involved shares becomes a feasible attack path.
Therefore, on top of examining sufficiency of masking schemes themselves [5] it
might be necessary to implement additional countermeasures.

This work aims at comparing countermeasures which are applicable on top of
a masking approach. CRYSTALS-Kyber hereby is merely chosen as an exemplary
PQC scheme, as both publications on side-channel vulnerabilities as well as first
suggestions on how to mitigate the threat do exist.

The following chapters are organized as follows: Sect. 2 briefly introduces
CRYSTALS-Kyber. Section 3 outlines several attack paths motivating the selec-
tion of the message encoding step for the attacks conducted in this work.
Section 4 presents the six different implementations which have been examined

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 171

introducing the subsequently added countermeasures for each of the implemen-
tations.

Following the attack path lined out for NewHope in [1], we first evaluate the
reference implementation submitted to the third round of the NIST PQC stan-
dardization process [2]. The second implementation is based on an approach to
reduce the Hamming distance of the leaking values as suggested by Amiet et al.
[1]. For the third implementation, we introduce the use of a dummy polynomial
aiming at hiding the processing of the involved coefficients. The fourth imple-
mentation on top of that balances the look-ups of the involved polynomials. For
the fifth implementation, we use randomness to invert the order in which the
polynomials are processed. The sixth implementation then fully randomizes the
order in which the involved data is processed.

Section 5 contains the experimental results for each of the implementations
with all but the last implementation failing to withstand the conducted attacks.
Summing up the experimental results, Sect. 6 comes to the conclusion that rel-
atively simple countermeasures are not sufficient to prevent an SPA. Therefore,
more sophisticated countermeasures have to be developed to secure PQC not
only against SPA but also against the more powerful DPA. We show that ran-
domization countermeasures can reduce the SPA success rate to random guess-
ing, making these countermeasures a potentially beneficial extension even for
masked implementations.

2 Background on CRYSTALS-Kyber

Kyber is an IND-CCA2-secure KEM originally published in [6]. To obtain CCA-
security, Kyber applies a variant of the Fujisaki-Okamoto (FO) transform [11]
to the CPA-secure Public Key Encryption (PKE) scheme Kyber.CPAPKE. In
general, KEMs are used by the communicating parties to generate shared keys
for symmetric encryption allowing them to establish a secure communication
channel. PKE is used to transmit encrypted data between the participants while
processing the KEM.

Kyber is parametrized by a set of chosen integers. The security strength of
the exchanged symmetric keys is basically determined by n which also defines
the ring together with prime number q within this lattice-based scheme.

Algorithm 1 describes the encapsulation of the Kyber KEM scheme. For each
execution of the encapsulation, the message m is randomly chosen and hashed
by the initiator. Afterwards, m and the hash of the public key pk are hashed into
the preliminary key K̄ and into the random coins r. Thereafter, pk, m, and r are
given to the encryption function of the PKE scheme (line 4, Algorithm 1), which
is described in Algorithm 2. The shared key K is derived from the preliminary
key K̄, and the ciphertext c is sent to the responder. The symmetric primitives
H(·), G(·), and KDF(·) are preferably instantiated by SHA3-256, SHA3-512, and
SHAKE-256, respectively [3,21].

The random message m is the only unknown session related variable and has
to remain secret while it is incorporated as fresh entropy during the encapsula-

172 H. M. Steffen et al.

Algorithm 1. KYBER.CCAKEM.Enc(pk): encapsulation [3]
Input: Public key pk
Output: Ciphertext c
Output: Shared key K

1: m ← {0, 1}256

2: m ← H(m)
3: (K̄, r) := G(m||H(pk))
4: c := KYBER.CPAPKE.Enc(pk, m, r)
5: K := KDF(K̄||H(c))

return (c,K)

tion. With knowledge about m, it is possible to reconstruct the encapsulation,
and hence compute the shared key K.

During the encryption (line 5, Algorithm 2), m is given to the Decode(·) func-
tion. This processing, also denoted as message encoding, only bases on the mes-
sage itself, potentially leaking information about the message m. Please note that
the Decode(·) function is further discussed in Sect. 4.1 which describes the imple-
mentation of the message encoding step for the reference implementation [2].

Algorithm 2. KYBER.CPAPKE.Enc(pk,m, r): encryption [3]
Input: Public key pk
Input: Message m
Input: Random coins r
Output: Ciphertext c

1: t̂ := Decode(pk)
2: Â := Sample(pk)
3: (r̂, e1, e2) := Sample(r)
4: u := NTT−1(ÂT ◦ r̂) + e1
5: v := NTT−1(t̂T ◦ r̂) + e2 + Decompress(Decode(m))
6: c1 := Encode(Compress(u))
7: c2 := Encode(Compress(v))

return c = (c1||c2)

As a result of the applied FO transform, the decrypted message m′ is re-
encrypted and compared with the received ciphertext c during the decapsulation,
which is described in line 6 of Algorithm 3. Therefore, the message encoding can
be targeted at both participating sides of the KEM.

During the CPAPKE decryption, the Decode(·) function, which is not explic-
itly described in this section, processes not only the message m but also the secret
key sk (see [3]).

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 173

Algorithm 3. KYBER.CCAKEM.Dec(sk, c): decapsulation [3]
Input: Secret key sk
Input: Ciphertext c
Output: Shared key K

1: pk := sk + 12 · k · n
8

2: h := sk + 24 · k · n
8

+ 32
3: z := sk + 24 · k · n

8
+ 64

4: m′ := KYBER.CPAPKE.Dec(sk, c)
5: (K̄′, r′) := G(m′||h)
6: c′ := KYBER.CPAPKE.Enc(pk, m′, r′)
7: if c = c′ then
8: K := KDF(K̄′||H(c))
9: else

10: K := KDF(z||H(c))
11: end if

return K

3 Side-channel Attack Paths Against CRYSTALS-Kyber

This section aims at categorizing several potential side-channel attack paths
allowing for a reconstruction of the shared key. To generate a shared key basically
only two non-public variables are involved: the session-bound random message
m and a participant’s secret key. The random message m is generated during the
key encapsulation (Algorithm1) and transformed into the ciphertext c utilizing
the public key. Consequently, if an attacker manages to obtain m, she can easily
compute the shared key.

The secret key, by contrast, is utilized within the key decapsulation to recover
m or rather m′ from c (Algorithm 3). Hence, if an attacker manages to obtain
the secret key, she can compute the shared key as well.

Potentially, side-channels might leak sufficient information on these two vari-
ables and also, trivially, side-channels might leak sufficient information on the
shared key itself during its generation.

Different attack categories can be considered: attack category 1 aims at recov-
ering the message m by attacking the key encapsulation. Attack categories 2
and 3 concentrate on the secret key, and the shared key, respectively. Naturally,
attacks on the message (cat. 1) and the shared key (cat. 3) only allow for inter-
cepting a single session and need to be continuously repeated, whereas attacks on
the secret key (cat. 2) would allow for intercepting all sessions established with
the same secret key. This work focuses on attacks on the message with the attack
paths A to E explained in the following paragraph. Category 2 and 3 are not
discussed any further throughout this work but, nevertheless, require as much
attention as category 1 in order to create a properly secured implementation.

• Attack Path 1.A The random message m is freshly generated for each
encapsulation call (Algorithm 1, line 1), and thus can be observed only once.
Therefore, an SPA with horizontal attacks is feasible. Especially the fetch

174 H. M. Steffen et al.

from a random number source as well as the move from such a source to
a dedicated Random-Access Memory (RAM) variable is in the focus of this
attack path.

• Attack Path 1.B The random message m is fed into the hash function
H(·) (Algorithm 1, line 2). Here, m is most likely moved from its dedicated
RAM variable to an interface RAM variable of the hash function. The same
holds true for the output H(m) that simply replaces m in the remainder
of the encapsulation. Additionally, the message treatment, e.g. the message
scheduling for SHA3-256, could be exploited. Again, an SPA with horizontal
attacks is the method of choice.

• Attack Path 1.C This attack path (Algorithm 1, line 3) is similar to path
B. With the input of G(·), an attacker might obtain m, whereas the 256 most
significant bits of the output K̄ of G(m||H(pk)) could directly be used to
compute the shared key K since the ciphertext c is public. Note that r is not
of interest since it can be computed if m is recovered or not required if K̄ is
recovered. Though, r alone cannot be used as an attack vector.

• Attack Path 1.D This attack path is related to the message encoding (Algo-
rithm 1, line 4) utilized within the CPAPKE encryption (Algorithm 2, line
5). We refer to the following section where we elaborate on that process.

• Attack Path 1.E This attack path (Algorithm 1, line 5) is likewise similar
to path B and C. With the input of KDF (·), an attacker might obtain K̄,
whereas the output is the shared key K.

Summarizing, each step of the key encapsulation is suitable to recover the shared
key if side-channels leak sufficient information.

We decided to concentrate on attack path 1.D for several reasons: on the
one hand there are already published works dealing with securing the message
encoding [1] and on the other hand the message m is processed in bitwise manner
during the message encoding. In contrast, the other attacks paths only allow for
observing the target variables while they are moved. It is widely believed in side-
channel attacks that the smaller the portion of the target variable the better the
exploitability in case side-channels leak sufficient information on that portion.
Therefore, attacks on the message encoding are presumably more hazardous.

In order to secure an implementation against side-channel attacks, a variety
of countermeasures can be considered. Masked implementations have been pro-
posed, e.g. by Reparaz et al. [28], and Oder et al. [25], with masked encoding func-
tions processing two shares individually. However, in case of a high SPA success
rate both shares might be determined by an attacker who can thereby reconstruct
the original message. Reparaz et al. [27] also presented an additively homomor-
phic Ring-Learning-With-Errors masking that does not require a masked encoder
and uses an unprotected encoding function. Consequently, in case single-trace
SPA attacks apply flawlessly (which we demonstrate in Sect. 5.2), masking in
shape of sharing is not effective at all.

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 175

4 Message Encoding With Countermeasures

Focusing on the message encoding step (see Sect. 3, attack path 1.D), we imple-
ment and attack different countermeasures. The third up to the sixth implemen-
tation candidates have been designed and developed through the course of this
work. Please note that we do not claim full effectiveness. Our selection of coun-
termeasures shall rather demonstrate how to proceed to minimize side-channel
leakage only by modifying the message encoding algorithm without introducing
complex masking or hiding schemes. The following approaches are explained in
detail in Sect. 4.1 to Sect. 4.6:

1. The message encoding step as implemented in the reference implementation
[2] without additional countermeasures against SPA.

2. An implementation of the message encoding according to [1], which aims at
reducing the Hamming distance of the leaking values based on a multiplicative
approach.

3. A dummy polynomial is included aiming at hiding the processing of the
involved coefficients.

4. The preceding approach is improved by balancing the look-ups of the poly-
nomials, leading to a Hamming distance independent of the processed bits.

5. The order of the processed polynomials is randomly inverted for each execu-
tion of the encoding, changing the signature of the processed bit in the power
side-channel.

6. Additionally, the processed bytes and bits are randomly shuffled for each
execution of the encoding.

For all presented implementations, an SPA is carried out aiming at recovering
the value of the processed bits by examining a single trace. Within the imple-
mentations, the message m, and the prime q are denoted as msg, and KYBER_Q,
respectively.

4.1 Message Encoding According to Reference Implementation

Listing 1 presents the reference implementation [2] of the message encoding func-
tion as submitted to the third round of the NIST PQC standardization process.
It takes a 32-byte message msg as an input and converts it to a polynomial r of
degree 256. To this end, the function iterates in a bitwise manner over msg and
sets a coefficient of r either to 0 or to the constant (KYBER_Q+1)/2, depending
on whether the bit of msg is 0 or 1.

To set the coefficients of the polynomial to the correct value in line 6 of
Listing 1, a mask is calculated which is either 0× 0000 or 0xFFFF, depending
directly on a single bit of msg.

1 void poly_frommsg(poly *r, const uint8_t msg[

KYBER_INDCPA_MSGBYTES]) {

2 unsigned int i,j;

3 int16_t mask;

176 H. M. Steffen et al.

4 for(i=0;i<KYBER_N /8;i++) {

5 for(j=0;j<8;j++) {

6 mask = -(int16_t)((msg[i] >> j) & 1);

7 r->coeffs [8*i+j] = mask & ((KYBER_Q +1) /2);

8 }

9 }

10 }

Listing 1. CRYSTALS-Kyber – Message Encoding [2]

The two values of the mask have the maximum possible Hamming distance of
16, i.e. all bit positions differ. We assume that this leads to a distinguishable
difference in the amount of power consumption when processing the mask, and
thus allows for extracting information on the actual secret message as for each
bit of msg the value of the mask is evaluated again.

4.2 Message Encoding With Multiplication

Amiet et al. [1] presented an approach to make the attack more difficult by
reducing the Hamming distance between the two possible values of the mask. To
encode a message, the coefficients of the polynomial are calculated by multiplying
the message bit and (KYBER_Q+1)/2. Hence, line 6 and 7 in Listing 1 are replaced
by Listing 2. The two possible values for the mask are 0 and 1 reducing the
maximum possible Hamming distance from 16 to one.

6 mask = ((msg[i] >> j) & 1);

7 r->coeffs [8*i+j] = mask *((KYBER_Q +1) /2);

Listing 2. CRYSTALS-Kyber – Message Encoding with multiplication [1]

Decreasing the Hamming distance should result in reduction of the observed
leakage, however, an SPA, as described in [1], might still be applicable.

4.3 Message Encoding Using Data Independent Polynomial
Generation

To counteract vulnerabilities still present in the previous implementation, we
first remove the mask evaluation as it may leak information about the message
bit during its storing and loading instructions. Furthermore, information leakage
is reduced by generating polynomials in a data independent fashion: additionally
to the already provided r, we define a second polynomial r_d which is discarded
after the message encoding. We first initialize all coefficients of r and r_d to the
constant (KYBER_Q+1)/2. Afterwards, each time a single bit of msg is processed,
one coefficient of one of the polynomials is set to zero. If the extracted message
bit is zero, the coefficient of the real polynomial r is altered, otherwise the coef-
ficient of the dummy polynomial r_d is altered. The reference implementation
is modified by replacing all lines from line 3 onwards in Listing 1 by Listing 3.

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 177

3 poly r_d;

4 poly *p_r[2] = {r, &r_d};

5 for(i=0;i<KYBER_N;i++) {

6 r->coeffs[i] = (KYBER_Q +1) /2;

7 r_d.coeffs[i] = (KYBER_Q +1) /2;

8 }

9 for(i=0;i<KYBER_N /8;i++) {

10 for(j=0;j<8;j++) {

11 p_r[(msg[i] << (7-j)) >> 7]->coeffs [8*i+j] = 0;

12 }

13 }

Listing 3. CRYSTALS-Kyber – Message Encoding using data independent polynomial
generation

In contrast to the previous implementations, information leakage should be
reduced significantly as the very same operation of setting a polynomial to zero
is performed each time independently of the processed value. Remaining leakage
could still be caused by determining which polynomial should be used, based on
the currently evaluated bit of msg.

4.4 Message Encoding Using Data Independent Polynomial
Generation With Balanced Byte Look-Up

We extend the previously introduced approach by balancing the look-ups of the
polynomials by covering the extracted message bits with alternating masks. To
do so, we initialize a pointer array p_r of size 256 alternately containing both
polynomials. Furthermore, we define two mask values with identical Hamming
weight for later balancing of the look-ups. Line 4 of Listing 3 is replaced by
Listing 4. We remark that the code presented in Listing 4 can be placed outside
the message encoding function.

4 poly *p_r [256];

5 uint32_t xorMasks [2] = {0xaaaaaaaa , 0x55555555 };

6 for(i=0;i<256;i+=2) {

7 p_r[i] = r;

8 p_r[i+1] = &r_d;

9 }

Listing 4. CRYSTALS-Kyber – Message Encoding using data independent polynomial
generation with balanced byte look-up – Initialization

While processing the bits of msg the index of p_r is calculated as an 8 bit value
with Hamming distance independent of the processed bits for each message byte.
This corresponds to replacing line 11 in Listing 3 with Listing 5.

11 p_r [((xorMasks[j & 1] ^ msg[i]) >> j) & 0xff]->

coeffs [8*i+j] = 0;

Listing 5. CRYSTALS-Kyber – Message Encoding using data independent polynomial
generation with balanced byte look-up – Balanced look-up

178 H. M. Steffen et al.

As a result, potential information leakage depending on the polynomial look-ups
should be reduced. Remaining leakage might be caused by the data dependency
of the addressed polynomial as well as the evaluated message bit.

4.5 Message Encoding Using Polynomial Randomization

In this section, we present an additional measure to decrease leakage of the
polynomial processing. The strategy is to shift the pointer array p_r and the
balancing array xorMask by 0 or 1, depending on the most significant bit of the
first message byte (MSB). As the message msg is randomly chosen, evaluating the
MSB serves as a source of randomness without introducing an additional fetch
from a random number generator. To first extend the used arrays, we replace
line 4 of Listing 4 by Listing 6.

4 poly *p_r [256+1];

5 uint32_t xorMasks [3] = {0xaaaaaaaa ,0x55555555 ,0 xaaaaaaaa };

Listing 6. CRYSTALS-Kyber – Message Encoding using polynomial randomization –
Initialization

In order to randomly invert the polynomial look-ups, the arrays are shifted to
the left by adding Listing 7 after line 8 of Listing 3.

9 uint32_t b_inv = ((0 xaaaa00aa ^ msg [0]) >> 7) & 0xff;

10 for(i=0; i<255;i++) {

11 *(p_r+i) = *(p_r+i+b_inv);

12 }

13 for(i=0; i<2;i++) {

14 *(xorMasks+i) = *(xorMasks+i+b_inv);

15 }

Listing 7. CRYSTALS-Kyber – Message Encoding using polynomial randomization –
Inversion by shifting

Compared to the preceding implementation, information leakage should further
decrease. But again, processing the polynomials can still cause small differences
in the amount of power consumption. We furthermore remark that this imple-
mentation introduces a new data dependency based on the most significant bit
of the MSB.

4.6 Message Encoding Using Byte and Bit Level Random Ordering

We extend the previous approach by shuffling the order in which the bytes and
their bits are processed. Again, the MSB is used as a source of randomness. We
define two masking variables i_m, and j_m to shuffle the bytes and their bits.
Therefore, line 9 of Listing 7 is replaced by Listing 8.

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 179

9 uint32_t rand = (0 xaaaa00aa ^ msg [0]);

10 uint8_t i_m = rand & 0x1f;

11 uint8_t j_m = (rand >> 5) & 0xff;

12 uint32_t b_inv = (rand >> 7) & 0xff;

Listing 8. CRYSTALS-Kyber – Byte and bit level random ordering – Initialization

The shuffling variables i_m, and j_m are added to the loop counters i, and j,
respectively while iterating through the bytes and bits of msg by an exclusive-
or. Therefore, the order of the bytes is shuffled and the bits of each byte are
processed in the same but randomized order. For this, we replace line 9 onwards
in Listing 3 by Listing 9.

9 uint8_t i_r , j_r;

10 for(i=0;i<KYBER_N /8;i++){

11 i_r = i ^ i_m;

12 for(j=0;j<8;j++){

13 j_r = j ^ j_m;

14 p_r[((xorMasks [(j_r & 1)] ^ msg[i_r]) >> j_r) & 0

xff]->coeffs [8* i_r+j_r] = 0;

15 }

16 }

Listing 9. CRYSTALS-Kyber – Byte and bit level random ordering – Shuffled look-ups

Introducing this level of randomization should significantly reduce the observed
leakage. However, the masking variables in Listing 8 themselves become a target
of side-channel analysis, potentially requiring additional protection.

5 Experimental Results

This section presents our practical results of the side-channel analysis of Kyber’s
message encoding, targeting all implementations listed in Sect. 4.1 to Sect. 4.6.

5.1 Measurement Setup

Figure 1 shows the setup targeting the Cortex-M4 processor (@120 MHz) on the
FRDM-K22F development board (rev. D) programmed with the MCUXpresso
software development kit (11.2.1) to prepare the board for our measurements
[24]. Hardware modifications are necessary – all capacitors between the measur-
ing point and the power pins of the Cortex-M4 have been removed – in order
not to degrade the power consumption signal. Power traces are recorded utiliz-
ing a populated resistor with a Teledyne LeCroy AP033 active differential probe
attached to a Teledyne LeCroy HDO9404M. The horizontal resolution of the
oscilloscope is set to 0.1 ns, i.e. 10 GS/s sampling rate. A dedicated trigger sig-
nal – a signal pulse framing the encoding – is utilized via a general purpose pin.
Thus, only minimal alignment (via cross-correlation) is needed.

180 H. M. Steffen et al.

(a) Teledyne LeCroy oscilloscope (b) FRDM-K22F development board

Fig. 1. Measurement setup

5.2 Message Encoding According to Reference Implementation

First, the reference implementation according to [2] is targeted, involving pro-
cessing of a 16 bit mask for the encoding of each bit of the message. An exemplary
power trace as well as the analysis results are depicted in Fig. 2.

(a) Power consumption while processing
one byte

(b) Mean traces for processing 0 (black)
and 1 (gray) with the maximum dis-
tance marked by the red line

(c) Distribution of power consumption (d) t-test result

Fig. 2. Side-channel analysis of message encoding according to the reference imple-
mentation [2]

Figure 2a depicts the power consumption while processing one byte. Whether
a 0 or a 1 is processed results in a clearly distinguishable pattern in the power
trace allowing for extraction of the message msg by observation of a single trace
with the bare eye. Focusing on processing one bit only, Figure 2b shows the mean

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 181

traces for the two classes 0 and 1 for a total of 8,000 involved traces. The red
vertical line marks the sample for which the difference between the mean traces
reaches its maximum. For this sample, all traces are analyzed, resulting in Figure
2c which depicts the means’ distributions which we assume to be Gaussian for
the two classes 0 and 1. Whereas the means are significantly distinguishable,
the variances are very close. Performing a t-test over the whole sample range,
with considered noise thresholds according to [9], Figure 2d is obtained. On top
of the t-test a single-trace SPA is performed which results in a success rate1 of
100.0%. The available traces were halved for profiling as well as matching and
Points Of Interest (POI) were selected by Sum Of Squared pairwise Tdifferences
(SOST) [13].

5.3 Message Encoding with Multiplication

In order to reduce the Hamming distance of the processed internal values, the
calculation of the 16 bit mask is replaced by a multiplication operation according
to the approach suggested in [1] and outlined in Sect. 4.2. Each bit of the message
msg is multiplied with the constant (KYBER_Q+1)/2. Thus, the evaluated mask
is either equal to 0 or 1.

(a) Power consumption while processing
one byte

(b) Mean traces for processing 0 (black)
and 1 (gray) with the maximum dis-
tance located within the red lines

(c) Distribution of power consumption (d) t-test result

Fig. 3. Side-channel analysis of message encoding with multiplicative mask

Figure 3a illustrates a single trace of the power consumption. Though the
shape of the trace changed in comparison to Fig. 2a, significant differences can
still be observed for the two classes. Thus, a single-trace attack by observation
with the bare eye is still possible. The mean traces for processing 0 and 1 are

1 Proportion of correctly classified traces, i.e. rs = Correctly classified traces
Number of traces

.

182 H. M. Steffen et al.

shown in Fig. 2b. As for the reference implementation, a total of 8,000 traces is
analyzed. Figure 2c depicts the power distribution for the two classes 0 and 1
as extracted from the sample with the highest power consumption within the
timeframe marked by the red vertical lines in Fig. 2b. Whilst the two distribu-
tions move closer together and the variances are more distinguishable compared
to the reference implementation, the overlap is still negligible. This is reflected
in the t-test result, depicted in Fig. 2d. The SPA success rate is still 100.0%,
despite reduction of Hamming distance by the multiplication approach. Pre-
sumably due to the high horizontal oscilloscope resolution, the leakage is fully
exploitable leading to a flawless single-trace SPA.

5.4 Message Encoding Using Data Independent Polynomial
Generation

As leakage of the mask could be exploited even for a Hamming distance of
only one, an alternative approach is examined which does not require a mask
(compare Sect. 4.3). Instead, a dummy polynomial is used, and for each bitwise
encoding step, a coefficient of either the polynomial r or its dummy counterpart
r_d is set to zero. Pointers to the real and the dummy polynomial are stored in
a pointer array. Therefore, the same operation is performed for each encoding
step. When all bits have been processed, the dummy polynomial is discarded.

(a) Power consumption while processing
one byte

(b) Mean traces for processing 0 (black)
and 1 (gray) with the maximum dis-
tance marked by the red line

(c) Distribution of power consumption (d) t-test result

Fig. 4. Side-channel analysis of message encoding with data independent polynomial
generation

In contrast to the previous measurements, it is indistinguishable to the bare
eye whether a 0 or 1 is processed (compare Fig. 4a). Figure 4b depicts the mean

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 183

traces for processing 0 and 1 with small differences in the mean power con-
sumption still identifiable for the two classes. Figure 4c depicts the distributions
of the measured power values for one selected sample for the two classes. The
distributions lie closer together and the overlap is strongly increased, however,
the variance of the two classes significantly differs. Figure 4d shows the corre-
sponding t-test result which still indicates information leakage. When an SPA is
conducted, the success rate noticeably drops to 68.6% compared to the attacks
on the previous implementations.

5.5 Message Encoding Using Data Independent Polynomial
Generation with Balanced Byte Look-Up

Aiming at further reducing the remaining leakage, the look-ups of the polyno-
mials are balanced, meaning that the selection of whether an operation shall be
performed on the real or the dummy polynomial is done with the help of two
masking values with identical Hamming weight (compare Sect. 4.4).

(a) Power consumption while processing
one byte

(b) Mean traces for processing 0 (black)
and 1 (gray) with the maximum dis-
tance marked by the red line

(c) Distribution of power consumption (d) t-test result

Fig. 5. Side-channel analysis of message encoding with data independent polynomial
generation with balanced byte look-up

The power trace depicted in Fig. 5a cannot be interpreted by the bare eye
only. Comparing the average traces for both classes, subtle differences are still
visible (compare Fig. 5b). This results in the two distributions depicted in Fig. 5c
not fully overlapping and also differing in their variance. The t-test as presented
in Fig. 5d accordingly yields results above the noise threshold. The conducted
SPA results in a success rate of 67.9%, nearly as high as the unbalanced imple-
mentation shown in the previous section.

184 H. M. Steffen et al.

5.6 Message Encoding Using Polynomial Randomization

In order to introduce greater variance, the ordering of real and dummy poly-
nomials within the pointer array is randomized for each function call (compare
Sect. 4.5). Thereby, leakage caused by accessing the same index values over and
over again shall be reduced. However, the distributions in Fig. 6c as well as the
t-test results in Fig. 6d indicate that the leakage is only slightly reduced.

(a) Power consumption while processing
one byte

(b) Mean traces for processing 0 (black)
and 1 (gray) with the maximum dis-
tance marked by the red line

(c) Distribution of power consumption (d) t-test result

Fig. 6. Side-channel analysis of message encoding with polynomial randomization

The conducted SPA still yields a success rate of 64.0%.

5.7 Shuffled Message Encoding Using Byte and Bit Level Random
Ordering

The last investigated implementation shuffles the processed message bytes as well
as the order in which the bits of each byte are processed (compare Sect. 4.6).

In contrast to the previous tests the number of analyzed traces is increased
from 8,000 traces to 80,000 traces. To this end, Fig. 7d shows the t-test result
for ten times more traces compared to the previous implementations. Analyzing
this larger trace set, the t-test yields results slightly above the noise threshold
for a very limited range of samples. When only 8,000 traces are included, the
t-test values remain below the noise barrier. The distributions for the two classes
as shown in Fig. 7c are indistinguishable from each other.

Performing an SPA, the success rate reduces to 50.1% which corresponds to
random guessing.

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 185

(a) Power consumption while processing
one byte

(b) Mean traces for processing 0 (black)
and 1 (gray) with the maximum dis-
tance marked by the red line

(c) Distribution of power consumption (d) t-test result

Fig. 7. Side-channel analysis of message encoding with byte and bit level random
ordering

5.8 Comparison of Countermeasures

Table 1 summarizes our results of Sect. 5.2 to Sect. 5.7 for the applied t-tests
and SPA as well as the required number of clock cycles and the overhead with
respect to the reference implementation. Please recall that the implementation
with random byte and bit level ordering has been analyzed with a higher number
of involved traces compared to all other implementations (80,000 compared to
8,000 traces).

Table 1. Comparison of implementations

t-test SPA Clock cycles (overhead)

Implementation tmax #POI Success rate

Reference implementation[2] 437 1,535 100.0% 11,732

Multiplication[1] 177 796 100.0% 12,500 (1.09×)

Data independent polynomial gen. 24.8 525 68.6% 16,066 (1.42×)

Balanced data independent polynomial gen. 19.6 700 67.9% 19,425 (1.66×)

Polynomial randomization 13.8 1,231 64.0% 26,893 (2.29×)

Byte and bit level random ordering 5.2 1,755 50.1% 29,211 (2.49×)

POIs are selected by means of SOST. The selection of POIs for the SPA is
conducted in such a way that only samples are included for which the SOST value
reaches at least 20% of the maximum SOST value. A high number of selected
POIs therefore corresponds to either an implementation which can be easily
attacked (please refer to the row regarding the reference implementation) or an

186 H. M. Steffen et al.

implementation for which nearly all measured sample points are independent of
the processed data (please refer to the row regarding the implementation with
random ordering). In the latter case many sample points lie above the threshold
of 20% due to the fact that the maximum SOST value itself is low.

Comparing the maximum absolute t-test values tmax with the SPA success
rates, it can be observed that both indicators are reduced for successively added
countermeasures. For the last implementation, the t-test values only slightly
exceed the noise barrier and the SPA success rate reaches 50.1% which corre-
sponds to random guessing.

6 Conclusion

Achieving resistance against side-channel analysis is crucial for PQC implemen-
tations to make PQC schemes suitable replacement candidates for currently used
asymmetric cryptographic schemes. In this work, we examined various counter-
measures for the CRYSTALS-Kyber message encoding step on an ARM Cortex-
M4. For a total of six different implementations, we performed a side-channel
analysis targeting the power domain. The amount of leakage is classified using
a t-test, then, an SPA is conducted targeting the processing of individual bits.

Masking only is a suitable countermeasure if the success rate for an SPA
is lower than 100%. However, for the first two examined implementations, the
value of the processed bit can be read from the power trace with the bare eye.
Processing this value in a number of shares would not improve side-channel
resistance as the shares could be attacked with the same success rate leading to
full recovery of the message.

The Cortex-M4 shows significant leakage even for already protected imple-
mentations, e.g. accessing a dummy in comparison to the real polynomial still
results in exploitable leakage, which leads us to the conclusion that it is a chal-
lenging task to implement an algorithm in a side-channel secured fashion on
this hardware. The most promising countermeasure which we could identify is
full randomization of the order of the processed bits. It is therefore considered
beneficial to introduce randomization countermeasures even on top of masked
implementations.

The message decoding function is the inverse operation of the examined mes-
sage encoding. In order to apply the presented randomization approach to the
decoding step, however, one byte has to be decoded first to serve as the source
of randomness. To minimize leakage at this point in time, the independent poly-
nomial generation countermeasure could be applied.

Furthermore, the same message is encoded twice, first by the initiator and
then by the responder during the re-encryption. In combination with the decod-
ing step, the very same message could be attacked up to three times. However,
choosing different but static randomization bytes prevents such an attack.

When a randomization approach is selected, fetching and processing ran-
dom numbers becomes a suitable target for side-channel analysis and has to be
implemented in a side-channel secure fashion as well.

In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber 187

References

1. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with a
single trace. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
189–205. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 11

2. Avanzi, R., et al.: NIST Submission Package for round 3 (2020). https://pq-
crystals.org/kyber/resources.shtml

3. Avanzi, R., et al.: CRYSTALS - kyber: algorithm specifications and supporting
documentation (version 3.01) (2021). https://pq-crystals.org/kyber/data/kyber-
specification-round3-20210131.pdf

4. Bache, F., Paglialonga, C., Oder, T., Schneider, T., Güneysu, T.: High-Speed Mask-
ing for Polynomial Comparison in Lattice-based KEMs. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 483–507 (2020)

5. Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
Cryptology ePrint Archive, Report 2021/104 (2021)

6. Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy, Euro S&P 2018, pp.
353–367. IEEE (2018)

7. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
Kyber: first- and higher-order implementations. Cryptology ePrint Archive, Report
2021/483 (2021)

8. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (2006)

9. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and
optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 7

10. Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-
quantum cryptography. Cryptology ePrint Archive, Report 2021/479 (2021)

11. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In: Wiener, M.J. (ed.) Advances in Cryptology - CRYPTO
’99. LNCS, vol. 1666, pp. 537–554. Springer (1999).

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2001. pp. 251–261. Springer (2001).

13. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In:
Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2006. pp. 15–29. Springer (2006).

14. Google: A Preview of Bristlecone, Google’s New Quantum Processor (2018).
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

15. IBM: IBM’s Roadmap For Scaling Quantum Technology (2020). https://www.ibm.
com/blogs/research/2020/09/ibm-quantum-roadmap

16. Kocher, Paul, Jaffe, Joshua, Jun, Benjamin: Differential Power Analysis. In:
Wiener, Michael (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 25

17. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO ’96.
pp. 104–113. Springer (1996)

https://doi.org/10.1007/978-3-030-44223-1_11
https://pq-crystals.org/kyber/resources.shtml
https://pq-crystals.org/kyber/resources.shtml
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap
https://doi.org/10.1007/3-540-48405-1_25

188 H. M. Steffen et al.

18. Moody, D., et al.: Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process (2020)

19. Mosca, M.: Towards quantum-safe cryptography. In: Mosca, M., Lenhart,
G., Pecen, M. (eds.) 1st Quantum-Safe-Crypto Workshop, pp. 39–49. ETSI
(2013). https://docbox.etsi.org/Workshop/2013/201309 CRYPTO/e-proceedings
Crypto 2013.pdf

20. Mosca, M.: Cybersecurity in an Era with Quantum Computers: Will We Be Ready?
IEEE Secur. Priv. 16(5), 38–41 (2018)

21. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. Technical Report. Federal Infor-
mation Processing Standards Publications (FIPS PUBS) 202, U.S. Department of
Commerce, Washington, D.C. (2015)

22. National Institute of Standards and Technology: PQC Standardization Pro-
cess: Third Round Candidate Announcement (2020). https://www.nist.gov/
news-events/news/2020/07/pqc-standardization-process-third-round-candidate-
announcement

23. NIST: Post Quantum Cryptography - Workshops and Timeline (2021). https://
csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline

24. NXP: FRDM-K22F: NXP Freedom Developement Platform for Kinetis K22
MCUs (2021). https://www.nxp.com/design/development-boards/freedom-
development-boards/mcu-boards/nxp-freedom-development-platform-for-kinetis-
k22-mcus:FRDM-K22F

25. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 142–174 (2018)

26. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic Side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 307–335 (2020)

27. Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Additively
Homomorphic Ring-LWE Masking. In: Takagi, T. (ed.) Post-Quantum Cryptogra-
phy - PQCrypto 2016. LNCS, vol. 9606, pp. 233–244. Springer (2016).

28. Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A Masked Ring-LWE
Implementation. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2015. LNCS, vol. 9293, pp. 683–702. Springer
(2015).

29. Rodriguez-Henriquez, F., Jaques, S., Lochter, M., Mosca, M.: How long can we
safely use pre-quantum ECC? (2020). https://eccworkshop.org/2020

30. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

31. Sim, B., et al.: Single-trace attacks on message encoding in lattice-based KEMs.
IEEE Access 8, 183175–183191 (2020)

32. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D.: Magnifying side-channel leakage
of lattice-based cryptosystems with chosen ciphertexts: the case study of kyber.
Cryptology ePrint Archive, Report 2020/912 (2020)

https://docbox.etsi.org/Workshop/2013/201309_CRYPTO/e-proceedings_Crypto_2013.pdf
https://docbox.etsi.org/Workshop/2013/201309_CRYPTO/e-proceedings_Crypto_2013.pdf
https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement
https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement
https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-kinetis-k22-mcus:FRDM-K22F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-kinetis-k22-mcus:FRDM-K22F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-kinetis-k22-mcus:FRDM-K22F
https://eccworkshop.org/2020

Hardware Implementations of Pairings
at Updated Security Levels

Arthur Lavice1,2,3(B) , Nadia El Mrabet1 , Alexandre Berzati2,
Jean-Baptiste Rigaud1 , and Julien Proy2

1 Mines Saint-Etienne, CEA, Leti, Centre CMP, 13541 Gardanne, France
{arthur.lavice,nadia.el-mrabet,jean-baptiste.rigaud}@emse.fr

2 Thales DIS Design Services SAS, Meyreuil, France
{arthur.lavice,alexandre.berzati,julien.proy}@thalesgroup.com

3 ARMINES, Paris, France

Abstract. Pairings are cornerstones to several interesting cryptographic
protocols including Non-interactive ARgument of Knowledge currently
used in Zcash cryptocurrency. The Kim and Barbulescu Number Field
Sieve attack has weakened pairing-friendly curves. Most impacted are
the famous BN curves which now require an increase of the parameters
to provide equivalent security. Recent cost estimations of pairings have
recommended switching to other curves, but their selections are no longer
clearly straightforward. This paper aims at providing the first hardware-
based pairing implementations on the best curve candidates at both 128-
bit and 192-bit security levels. The proposed architecture intends to fit
both lightweight FPGA and ASIC purposes and the design is prototyped
on a Kintex-7 FPGA device. It computes a pairing within 42.7 ms for
128-bit of security and 184.2 ms for 192-bit.

Keywords: Pairings · Lightweight hardware/software
implementations · Updated key size · Parallel computation

1 Introduction

Pairings are cryptographic tools whose bilinearity property allows finding effi-
cient solutions to many protocols such as the tripartite Diffie-Hellman key
exchange [23] or short signature schemes [9]. It also enables the creation of
new protocols such as Identity-Based Encryption [8] or zero knowledge-Succinct
Non-interactive ARgument of Knowledge (zk-SNARK) [7] used in Zcash cryp-
tocurrency. A pairing is a bilinear and non-degenerate map e : G1 × G2 → G3

where G1 (resp. G2) is generally taken as a subgroup of an elliptic curve over
E(Fp) (resp. E(Fpk)) and G3 is usually a subgroup of Fpk . G1,G2, and G3 are
subgroups of prime order r. Pairing computation strongly depends on curve
parameters such as ρ = log 2(p)

log 2(r)
. But pairings friendly elliptic curves are rare and

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 189–209, 2022.
https://doi.org/10.1007/978-3-030-97348-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_11&domain=pdf
http://orcid.org/0000-0003-2804-1608
http://orcid.org/0000-0003-3840-584X
http://orcid.org/0000-0001-7394-5345
http://orcid.org/0000-0002-0402-6780
https://doi.org/10.1007/978-3-030-97348-3_11

190 A. Lavice et al.

a lot of research has been done to find suitable curves such as BLS [5], BN [6],
KSS [24] and DCC [13] curves. A taxonomy of these methodologies is found
in [15].

Through numerous arithmetic optimizations, BN curves were found to be the
best choice for pairings at the 128-bit security level. But the Kim and Barbulescu
attack [27] has improved the discrete logarithm attack against these curves and
thus threatens the security of many families of pairings. Since this attack depends
on curve parameters, it has reshuffled the field and, BN curves are no longer the
best ones. Now, performance time seems to be similar on several other curves
at the 128-bit security level. In [4], the authors make an extensive literature
review to study actual security of pairings. Their estimations only take into
account the complexity of modular multiplications and neglect other operations.
This approach may not be sufficient to determine the best curves at the 128-
bit security level. Another approach from [18] is to create new pairing-friendly
curves resistant to the Kim and Barbulescu attack.

There are many time-efficient software versions of pairings, but their imple-
mentations on constrained devices are challenging. Indeed, one pairing compu-
tation could take seconds to complete with the 128-bit security level [36] prior to
the Kim and Barbulescu attack. Having fast pairing implementations on small
devices is essential, for example, to guarantee user-friendly utilization of Zcash
currency on a hardware wallet.

Our Contribution. This paper proposes a way to efficiently support emerging
curves at both the 128 and the 192-bit security levels. A new formula for squaring
over cyclotomic fields Gφ2(q) is proposed and is more suitable for curves intro-
duced in [18] than the previous one given in [17]. Our work provides a time×area
efficient lightweight coprocessor with configurable modulo to support multiple
curves. This coprocessor enables parallel computation of modular multiplica-
tions with additional operations in order to cut down additional costs brought
by neglected operations such as modular additions. This paper also presents a
hardware-software co-design architecture based on a Microblaze CPU to demon-
strate the performance of our coprocessor. The genericity of our design allows us
to give the first comparison between hardware implementations of several pair-
ings at updated security levels with the same design. Finally, this paper shows
that, following the Kim and Barbulescu attack, the optimal choice of a curve at
the 128-bit security level depends on the target platform.

Organization of the Paper. Section 2 provides some mathematical back-
ground on pairings as well as a summary of the latest estimations of pairing
costs at updated security levels. Section 3 details curve parameters and recalls
some arithmetic optimization of the Miller algorithm and the final exponentia-
tion formula for the 3 best candidates at the 128-bit security level and for the
best candidate at the 192-bit security level. It also provides a new formula for
cyclotomic squaring in Gφ2(q2) (see Eq. 13). In Sect. 4, we present our dedicated
hardware implementation used to accelerate operations on the base field and

Hardware Implementations of Pairings at Updated Security Levels 191

our hardware/software codesign used for pairing implementations. Finally, we
summarize our work and discuss future research directions in Sect. 5.

Notation. In this paper, we will use the following notation. Fp: a finite field of
prime characteristic p. Fpk : an extension field of degree k of Fp. G[r]: a subgroup
of order r of G. e (resp. n): the number of words used to represent numbers in Fp

(resp. log 2(p)). Mq (resp, Sq, Aq, Dblq): a multiplication (resp. square, addition,
double) in Fq. Mulxq: a multiplication of an element Fq by x, a small constant
in Fq.

2 Background on Pairings

The following part gives some background about pairings and their implemen-
tations. There are several pairings such as [20,22,34], but constructions of the
most efficient ones are similar to the Ate pairing defined below [19].

2.1 Introduction and Definition

Definition 1. (Ate pairing). Let E be an elliptic curve defined over Fp; r be
a large prime divisor of #E(Fp); t be the trace of E and k be the embedding
degree of E with respect to r (k is the smallest integer such that r|pk − 1).
Let G1 ⊆ E(Fp)[r], G2 ⊆ E(Fpk)[r], G3 = Fpk [r] and u = t − 1.
The Ate pairing is defined as:{

e : E(Fp)[r] × E(Fpk)[r] → Fpk [r],

(P,Q) � fu,Q(P)
pk−1

r .
(1)

The computation of such pairing relies on two distinct steps. First, the func-
tion fu,Q(P) is computed with Miller’s algorithm (see Algorithm 1) [30]. The
complexity of Miller’s algorithm depends on the Hamming Weight(HW) and the
log 2 of u. To decrease the complexity of Miller’s algorithm, the Non-Adjacent
Form (NAF) is classically used to represent u. The second part is the so-called
final exponentiation. It raises fu,Q(P) at the power of (pk − 1)/r.

2.2 Pairing Optimizations

Pairing implementations are based on different arithmetics presented in Fig. 1.
Elliptic curves and extension field arithmetics depend on modular arithmetic
which again depends on integer arithmetic. Curve parameters have a direct
impact on the complexity of these operations. The three principal optimizations
regarding these parameters are cited below:

Embedding Degree k. It is a crucial parameter since it defines the extension
fields used during computations. Having k in the form k = 2i3j enables efficient
extension field arithmetic with Karatsuba and Toom-Cook formulae [28] and is
one prerequisite to using twisted curves during computations [14].

192 A. Lavice et al.

Algorithm 1. Miller’s algorithm [30]
Input: u = (un−1 . . . u0) NAF decomposition of t − 1, P ∈ E(Fp) and Q ∈ E(Fpk)
Output: fu,Q(P) ∈ Fpk [r])

1: T ← Q; f1 ← 1;
2: for i = n − 2, ..., 0 do
3: T ← 2T ; f1 ← f2

1 ×lQ,Q(P)/v2Q(P); Where lQ,Q is the tangent of E at point Q,
and v2Q is the vertical line of E at point [2]Q.

4: if ui = 1 then
5: T ← T + Q; f1 ← f1 × lQ,T (P)/vQ+T (P); Where lQ,T is the line (QT),

and vQ+T is the vertical line of E at point Q + T .
6: else if ui = −1 then
7: T ← T + Q; f1 ← f1 × l−Q,T (P)/v−Q+T (P);
8: end if
9: end for

10: return f1 = fu,Q(P)

Twisted Curves. Let E be an elliptic curve defined over Fpk . An elliptic curve
Ẽ defined over Fpk/d is called a twisted curve of degree d of E if there exists
an isomorphism ψd from Ẽ into E According to the value of k, the potential
degrees for a twist are d = 2, 3, 4 or 6. Computing Miller’s algorithm on the
twisted curve also enables avoiding the computation of the denominator when k
is a multiple of 2 [29] or 3 [38]. Twist also makes line and tangent evaluations
sparse elements of Fpk (with at least one null coefficient).

Generation of Curves. The generation of pairing-friendly elliptic curves is the
most important step because it conditions the use of optimizations cited in this
section. A family of pairing-friendly elliptic curves is a mathematical method to
create curves with a prescribed embedding degree as in the taxonomy presented
in [15]. The characteristic p, the trace t and a large prime factor of r such that
r|#E(Fp) are given by polynomials evaluated in an integer u. This integer (u)
has a significant impact on the complexity of pairings. Hence, it is important to
choose an appropriate generator u with low Hamming Weight representation.

3 Selection of Pairing-Friendly Curves and Parameters

3.1 Summary of Estimated Pairings Complexity

The arithmetic required to implement a pairing depends on curve parameters.
For this reason, much attention was given to Optimal Ate pairings [34] on BN
curves. But parameters that make a curve pairing-friendly also make it vulner-
able to the extended tower Number Field Sieve (NFS) attack presented in [27].
As a result, recent security analysis of pairings presented in [3] and [4] have
led to new key size requirements. BN curves are the most impacted and are no

Hardware Implementations of Pairings at Updated Security Levels 193

Fig. 1. Required operations for pairings

longer considered as interesting curves for pairings. Recent research has iden-
tified more resilient curves against such attacks. To our knowledge, the most
promising alternative are curves presented in [18].

In [4] the authors estimate pairings complexity by taking into account only
the cost of modular multiplications. They use the compressed squaring formulae
given in [25] to estimate the complexity of the final exponentiation of pair-
ings on BLS12, BLS24 and KSS18 [24] curves which admit a twist of degree 6.
Compressed squaring is an interesting method since it decreases the number of
multiplications but it computes several modular inversions. To compute modular
inversions of a number α ∈ Fp with the coprocessor presented in Sect. 4, we have
to use Fermat’s theorem and compute α raised to the power of p − 2. Then, the
cost of a modular inversion is approximated for naive implementation at the cost
of �3n/2�Mp, which is significant.

Moreover, compressed squaring requires storing several elements in Fpk [2].
This increases the memory needed by approximately 30% for a slight latency
benefit compared to cyclotomic squaring of [17]. We choose to use the formula
proposed in [17] in order to target implementation on constrained devices. Table 1
presents the best pairing candidates at the 128-bit and 192-bit security levels
according to [4] and [18]. In what follows, we denote by GMT8 the curve pre-
sented in [18] with embedding degree k = 8.

The complexity of Miller’s algorithm is critical when computing the product
of pairings in short signatures for example. When computing scalar multiplica-
tions on G1, log 2(r) and log 2(p) are crucial parameters; log 2(r), log 2(p), the
embedding degree k and the degree of the twist d are also important when com-
puting a scalar multiplication on G2.

194 A. Lavice et al.

Table 1. Theoretical complexity of pairings at different security levels [4,18]*: Mp cost
depends on log 2(p)

Security Method k log 2(p) Miller (Mp*) Final Expo. (Mp*) Total (Mp*)

BLS 24 319 9 381 23 400 32 781

BLS 12 460 7 438 8 151 15 589

128-bit GMT 8 544 4 502 7 056 11 558

DCC 15 383 6 836 19 190 26 026

KSS 16 340 7 534 18 514 26 048

192-bit BLS 24 559 16 368 36 573 52 941

KSS 18 657 13 488 30 473 43 961

At the 128-bit security level, several curves have similar complexity but have
different points of interest. This is especially the case of the first curve from
Table 1 (BLS24) and the second candidate (GMT8). At the 192-bit security
level, KSS18 and BLS24 have similar complexity but also similar parameters.
KSS18 is a bit less interesting than BLS24 when looking at the complexity of
Miller’s algorithm, the characteristic p, or the order r. At this security level,
BLS24 should be the better choice whatever the target application. Based on
these estimations, we choose to implement the two best pairing candidates at
the 128-bit security level: BLS24 and GMT8. Since BLS12 is still one of the best
candidates, we consider it as the reference curve at the 128-bit security level and
implement it. We also provide an implementation of BLS24 at 192-bit security.

In the following section, we present the parameters of the chosen curves and
provide some aspects of their implementation.

3.2 Pairing Arithmetic and Implementation Aspects

All the selected curves (BLS12, BLS24, GMT8) have an even embedding degree.
In this case, the vertical lines computed in Algorithm 1 are elements of Fpk/d

and will be sent to 1 during the final exponentiation. Hence, the computation of
denominators v2Q or vQ+T can be omitted during Miller’s algorithm.

“High-level” operations such as extension fields or elliptic curve operations
can be computed with a succession of modular operations (or operations in the
base field: Fp). Searching for a cost-efficient hardware coprocessor to compute
these operations is a way to enhance the efficiency of pairing implementations.
Moreover, arithmetic used to implement pairings highly depends on the pairing
family. Hence, the sequence of modular operations also depends on the curve.
To ensure the flexibility of our design, we choose to focus on modular operations
to design a hardware accelerator suitable for all curves.

Common Operations: Multiplication and Squaring in Fp2 . During pairing
computations, most of the operations are computed over the extension field
Fpk/d . For the selected curves, Fpk/d = Fp2 or Fp4 . An element A of Fpk is a

Hardware Implementations of Pairings at Updated Security Levels 195

polynomial of degree n, with 0 ≤ n ≤ k − 1 and with its coefficient in Fp. Let
P be an irreducible polynomial of degree k. Let A and B be two elements of
Fpk . The result C of the multiplication of A by B is defined as the Euclidean
remainder of the polynomial A × B by the polynomial P . As previously said,
the curves selected in our study all have an embedding degree of k = 2i3j . To
construct extension fields of these embedding degrees, the classical method is
to use extension field towers. For instance, Fp4 can be seen as an extension of
degree 2 of Fp2 . Algorithm 2 (resp. Algorithm 3) is the standard way to compute
a multiplication (resp. a square) in extension fields of degree 2.

Curves Admitting a Twist of Degree 6. BLS curves are defined over Fp

by E : y2 = x3 + b and by a parameter u ∈ Z such that the parameters p, r,
t are evaluations of some polynomials at u (p = p(u), r = r(u), and t = t(u)).
In our implementations, we select the same parameters as in [4] which are u =
−232 + 228 + 212 (resp. u = −256 − 243 + 29 − 26) For BLS24 at 128-bit (resp.
192-bit) security and u = −277 + 250 + 233 for BLS12.

Algorithm 2. Multiplication in
Fpk = Fpk/2 [g], g2 = v, v ∈ Fpk/2

Input: A = a0 + a1g,
B = b0 + b1g ∈ Fpk

Output: Z ← AB ∈ Fpk

Cost: 3Mpk/2 + 5Apk/2+1Mulvpk/2

Begin

1: t0 ← a0b0; t1 ← a0 + a1

2: z0 ← b0 + b1; z1 ← a1b1;
3: t1 ← t1z0; z0 ← t0 − vz1;
4: z1 ← t0 + z1; z1 ← z1 − t1;
5: return Z = z0 + z1g;

End

Algorithm 3. Square in
Fpk = Fpk/2 [g], g2 = v, v ∈ Fpk/2

Input: A = a0 + a1g ∈ Fpk ,
Output: Z ← A2 ∈ Fpk

Cost: 2Mpk/2 +4Apk/2 +1Dblpk/2 +
2Mulvpk/2

Begin

1: z0 ← a0a1; t0 ← a0 − a1;
2: t1 ← a0 − va1; t0 ← t0t1;
3: z1 ← 2z0; z0 ← t0 + (v + 1)z0;
4: return Z = z0 + z1g;

End

To our knowledge, the most efficient way to compute Miller’s algorithm on
these curves is to use mixed affine-projective coordinates along with the line
evaluations proposed in [12]. Then the characteristic p(u), the order of the sub-
groups r(u) and the trace t(u) of E are given by Eq. 2 for BLS12 and by Eq. 3
for BLS24.⎧⎨

⎩
r(u) = u4 − u2 + 1,
p(u) = (u − 1)2r/3 + u,
t(u) = u + 1.

(2)

⎧⎨
⎩

r(u) = u8 − u4 + 1,
p(u) = (u − 1)2r/3 + u,
t(u) = u + 1.

(3)

The same extension fields and elliptic curves as in [26] are used for BLS12
(see Eq. 4) at 128-bit security and for BLS24 (see Eq. 5) at 192-bit security.
Multiplications and squares over Fp12 (resp. Fp24) are computed with formulae

196 A. Lavice et al.

given in [28] for cubic extension.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log 2(p) = 461,
log 2(r) = 308,
Fp2 = Fp[i], i2 = −1,
Fp4 = Fp2 [v], v2 = i + 1,
Fp12 = Fp2 [g], g3 = v,
E(Fp) : y2 = x3 + 4,

Ẽ(Fp2) : y2 = x3 + 4(i + 1).

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log 2(p) = 559,
log 2(r) = 449,
Fp2 = Fp[i], i2 = −1,
Fp4 = Fp2 [v], v2 = i + 1,
Fp24 = Fp4 [g′], g′6 = v,
E(Fp) : y2 = x3 + 9,

Ẽ(Fp4) : y2 = x3 + 9(−i + 1)v/2.

(5)

For BLS24 at 128-bit security, g′ can not be chosen such that g′12 = i + 1 as
in Eq. 4 because this extension tower does not construct a field. Therefore, we
choose to define Fp24 and E as described in Eq. 6 to simplify the expression of
Ẽ, and to ease the computation of Miller’s algorithm.⎧⎪⎪⎨

⎪⎪⎩
log 2(p) = 318, Fp24 = Fp4 [g′], g′6 = v,
log 2(r) = 256, E(Fp) : y2 = x3 + 5,

Fp2 = Fp[i], i2 = −1, Ẽ(Fp4) : y2 = x3 + 5/v,

Fp4 = Fp2 [v], v2 = i + 3, Ẽ(Fp4) : y2 = x3 + (−i + 3)v/2.

(6)

The Case of GMT8. The curves proposed in [18] differ from BLS12 or BLS24
curves as the modulo p and the order of subgroups r can not be represented
by polynomials in the variable u. Moreover, This curve admits a twist of degree
d = 4 and is generated using a variant of the Cocks-Pinch algorithm [11]. In [18],
they define Fp8 as Fp[g] with g8 = 5.

The most efficient formula to compute Miller’s algorithm for these kinds of
curves is the one proposed in [12] along with the mixed affine-”weight-(1, 2)
coordinates.” These coordinates represent points of E by (X : Y : Z), which
corresponds to the affine point (x, y) where x = X

Z and y = Y
Z2 . The parameters

of the GMT8 curve at 128-bit security are given in Eq. 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r = 0xff0060739e18d7594a978b0ab6ae4ce3d log 2(r) = 256,
bfd52a9d00197603fffdf0000000101, log 2(p) = 544,

p = 0xbb9dfd549299f1c803ddd5d7c05e7cc03 Fp2 = Fp[v], v2 = 5,
73d9b1ac15b47aa5aa84626f33e58fe6694 Fp4 = Fp2 [u], u2 = v,
3943049031ae4ca1d2719b3a84fa363bcd2 Fp8 = Fp4 [g], g2 = u,
539a5cd02c6f4b6b645a58c1085e14411, E(Fp) : y2 = x3 + 2x,

t = 264 − 254 + 237 + 232 − 4, Ẽ(Fp2) : y2 = x3 + 2vx.

(7)

Summary of Operations Required by Miller’s Algorithm. For curves
E : y2 = x3 + ax + b that admit a sextic or quartic twist, the complexity of
Miller’s algorithm of the selected curves is given in Table 2. For the sake of
simplification, pk (resp pk/d) is denoted q (resp. l). Since a and b are small
coefficients, Multiplication by a or b can be computed without modular multi-
plications. Pairing implementations on BLS12 and BLS24 curves both rely on

Hardware Implementations of Pairings at Updated Security Levels 197

Fp2 = Fp[i] but GMT8 relies on Fp2 = Fp[v]. The formulae used to compute
operations on these fields are similar since they only differ in the reduction step
(see Algorithm 2 and Algorithm 3).

The dependency between operations required by Miller’s algorithm for the
selected curves is summarized in Fig. 2, where operations specific to each curve
are framed. Modular operations are the common points of selected curves even
if the size of the characteristic (p) differs between BLS24, BLS12 and GMT8.

Table 2. The complexity of Miller’s step using twist

Operation Complexity

Twist Sextic twist Quartic twist

Doubling (D) k/3.Mp + 3Ml + 5Sl + Mq + Sq k/2.Mp + 3Ml + 6Sl + Mq + Sq + Mulal

Mixed add (MA) k/3.Mp + 10Ml + 2Sl + Mq + Mulbl k/2.Mp + 9Ml + 5Sl + Mq

Miller (total) log 2(u).D + HW (u).MA

Fig. 2. Operations during Miller’s algorithm selected curves

3.3 Implementation of the Final Exponentiation

The second part of a pairing calculation is computing Miller’s algorithm result
raised to the power of pk−1

r . This is called the final exponentiation and its com-
plexity depends on different curve parameters. This section presents arithmetic
optimizations used to compute this step on selected curves.

Curves Admitting a Twist of Degree 6. The decomposition of the final
exponentiation is a well-known optimization of pairings. To our knowledge, the
most efficient is proposed in [16] for both BLS12 and BLS24. They used the

198 A. Lavice et al.

parametrization of modulo p to provide fast and memory-efficient implementa-
tions. For BLS12, the ratio p12−1

r is split into an easy part (p6 − 1)(p2 + 1), and
a hard one (p4 − p2 + 1)/r. Then, the hard part is also decomposed as:

(p4−p2+1)/r = λ0+λ1p+λ2p
2+λ3p

3 and the λi are calculated according to
Eq. 8. The same methodology applies for BLS24. The ratio p24−1

r is split into an
easy part (p12 −1)(p4 +1) and a hard one (p8 −p4 +1)/r. Then, the hard part is
decomposed into: (p8−p4−1)/r = λ0+λ1p+λ2p

2+λ3p
3+λ4p

4+λ5p
5+λ6p

6+λ7p
7

and the λi are calculated according to Eq. 9.
⎧
⎪⎪⎨

⎪⎪⎩

λ3 = u2 − 2u + 1,
λ2 = λ3u,
λ1 = λ2u − λ3,
λ0 = λ1u + 3.

(8)

⎧
⎪⎪⎨

⎪⎪⎩

λ7 = u2 − 2u + 1, λ3 = λ4u − λ7,
λ6 = λ7u, λ2 = λ3u,
λ5 = λ6u, λ1 = λ2u,
λ4 = λ5u, λ0 = λ1u + 3.

(9)

After the easy part of the final exponentiation, all computations are done in
cyclotomic subgroups of Fpk . This allows faster squaring formulae as the ones
presented in [17].

The Case of GMT8. The curves presented in [18] are defined over a finite field
of characteristic p, where p can not be represented as a polynomial evaluated
in u. Hence, formulae similar to Eq. 8 or Eq. 9 for BLS are not available. The
method proposed by the authors of [18] consists in breaking down the final
exponentiation p8−1

r again into an easy part (p4 − 1) and a hard part (p4+1
r).

Then, the hard part is represented as in Eq. 10.
Once again, the second part of the final exponentiation is done in cyclotomic

subgroups. Since this curve admits a twist of even degree (d = 4), a square in
this subgroup costs approximately 2 squares in Fp4 .

⎧⎨
⎩

t0 = p + 1 mod r,

c = p+1−t0
r ,

p4+1
r = (t0−1)4+1

r + (p + t0 − 1)(p2 + (t0 − 1)2)c.
(10)

Let Fp8 and Fp4 be defined as in Eq. 7 and let a = a0 + a1g, with a ∈ Fp8 ,
a0, a1 ∈ Fp4 . A square in Gφ2(Fp4)

is computed as follows:

a2 = (a2
0 + va2

1) + 2a0a1g = a2
0 + a2

1 + [(a0 + a1)2 − (a2
0 + a2

1)]g. (11)

Following [17], a ∈ Gφ2(Fp4)
⇒ a2

0 − va2
1 = 1. Thus, we can replace a2

1 in the

Eq. 11 by 1−a2
0

v and compute a2 with the following formula:

a2 = 2a2
0 − 1 + [(a0 + b0)2 − a2

0 − (a2
0 − 1)/v]g. (12)

If 1
v can be computed without a modular inverse, then the cost of the above

formula is 2 squares in Fp4 and some additions.
However, this is not the case with the GMT8 curve as 1

v = v3

5 . We can pre-
compute this value, but it increases the cost of Eq. 11 by at least a multiplication

Hardware Implementations of Pairings at Updated Security Levels 199

of a Fp4 element by a Fp element (which costs four Mp). To avoid these multipli-
cations, we propose to replace a2

0 by 1 + va2
1 in Eq. 11. It leads to the following

formula which does not require any inversion:

a2 = 2va2
1 + 1 + [(a0 + a1)2 − 1 − (v + 1)a2

1]g. (13)

Thus, our formula is more suitable to compute squaring in the cyclotomic
subgroup for pairing on the GMT8 curve.1

Summary of Operations Required by Final Exponentiation. Analo-
gously to the computation of Miller’s algorithm, we summarize the different
operations required during the final exponentiation in Fig. 3. Basic operations
are the same as in Miller’s algorithm, but there are other operations such as
efficient squaring in the cyclotomic subgroups.

Modular operations form the basis of pairing arithmetic. The following
section, presents a lightweight coprocessor suitable to compute pairings on dif-
ferent curves and at different security levels.

Fig. 3. Operations during final exponentiation on selected curves

4 Hardware Implementation of Pairings

In this section, we present a lightweight coprocessor design to accelerate modular
operations and cut down the additional cost brought by neglected operations.
This coprocessor will be called the base field unit in the rest of the paper. Then,
we propose a hardware/software co-design architecture to compare pairings on
different curves at updated security levels.

1 At the time of submitting this article, the proposed formula was new in the literature.
However, we later realized that it also appears in the RELIC project [1].

200 A. Lavice et al.

4.1 Base Field Unit

As previously explained, the computation of pairings relies both on elliptic
curves and extension fields arithmetic. These arithmetics can be carried out with
sequences of operations in the base field Fp (also called modular operations). The
required operations are modular multiplications, reductions, additions, subtrac-
tions, doubles, and divisions by 2. These operations are computed with the base
field unit. To limit the number of memory accesses, we implement elementary
operations on 64-bit integers. Finally, we choose to use single-port RAM to store
intermediate values. This memory model is more likely to be suitable for light
use because its cost is lower compared to a dual port RAM.

Modular Multiplication. Given its complexity compared to other operations
over the base field, modular multiplication is a key operation. The proposed
multiplier, described in Fig. 4, is a variant of the systolic architecture proposed
in [21]. It computes an alternative form of the Montgomery algorithm [31]:
the Multiple Word Radix-2 Montgomery Multiplication (MWR2-MM, see Algo-
rithm [33]). This architecture is composed of e processing elementary units. One
unit (PE0 on Fig. 4) focuses on the computation of line 3 and the first iteration
at line 5 of Algorithm 4 (see below). Then, e − 1 units (PEj on Fig. 4) compute
other iterations j at line 5.

Fig. 4. Hardware design dedicated to compute Modular multiplications

Hardware Implementations of Pairings at Updated Security Levels 201

These units compute bitwise and logical operations on 64-bit integers such
as shift, addition or xor. Therefore, it does not require any DSP in FPGA imple-
mentation. This design offers a good performance area trade-off. It distributes
the calculation over several small processing elements. Hence, the size of the
modulo has a limited impact on hardware frequency. All modular operations are
decomposed into 64-bit additions, subtractions or shifts.

Algorithm 4. MWR2-MM [33]
Input: X =

∑n−1
i=0 xi.2

i, Y =
∑e−1

i=0 Y (j).2(w.j), p =
∑e−1

j=0 p
(j).2(w.j)

Output: S =
∑e−1

j=0 S
j .2w.j = X.Y.2−n mod (n) with 0 ≤ S ≤ 2.p

Begin

1: S = 0
2: for i = 0, ..., n − 1 do
3: qi = (xi.Y

(0)
0) ⊕ S

(0)
0

4: (C(1), S(0)) = xi.Y
(0) + qi.p

(0) + S(0)

5: for j = 1, ..., e do
6: (C(j+1), S(j)) = C(j) + xi.Y

(j) + qi.p
(j) + S(j)

7: S(j−1) = (S
(j)
0 , Sj−1

w−1..1)
8: end for
9: S(e) = 0

10: end for
11: return S

Additional Operations. The dedicated component presented in Fig. 5 is
designed to compute additional operations (addition, subtraction, double, divi-
sion by 2 and reduction). As for modular multiplications, the modulo is loaded
once prior to any computation. It is stored on a cyclic register (CyclReg on
Fig. 5). Two 64-bit adder-subtractors (Add and Red) are used. One for the
addition (or subtraction) and the other to compute the modular reduction. The
two possible results are stored in two dedicated registers RegAdd and RegRed.
These registers allow us to chain operations. Thus, we restrict the quantity of
memory access to the minimum: load operands and store the final result. Then,
the component Div is used to compute divisions by 2. The computation of a
modular double is considered as a computation of a special modular addition.
In this case, the loading of the operand is faster than in classical addition and
this enables computing modular doubles faster than modular additions.

Similarly, the modular division by two is a special subtraction. Our adder
computes both A − 0 and A + p, and then, depending on the parity of A, the
results will either be A/2 or (A+p)/2. Once again, it enables computing modular
divisions by two faster than modular subtractions. The number of clock cycles
required by each operation in Fp is expressed in Table 3. The implementation of
doubles and divisions by 2 operations allows saving e clock cycles for these oper-
ations. Implementation of additional operations (addition, double, ...) has less
impact on design performances than the implementation of modular multiplica-
tion. However, their costs can not be neglected since they are called about 6 times

202 A. Lavice et al.

Fig. 5. Hardware design dedicated to compute additional operations

more than multiplications. As an example for GMT8 curves, when log 2(p) = 544
and e = 9, the computation time of a modular multiplication is around 18 (resp.
25) times longer than a modular addition (resp. double). Additional operations
represent 25% of pairing computation times which is significant.

Table 3. Costs of base field operations

Operation Number of clock cycles

Modular multiplication n + 3�n/64� + 4

Modular reduction 2�n/64� + 6

Modular addition/subtraction 3�n/64� + 6

Modular double 2�n/64� + 6

Modular division by 2 2�n/64� + 7

Hardware Implementations of Pairings at Updated Security Levels 203

Proposed Hardware/Software Architecture for Prototyping Purposes.
The multiplier and the custom adder are both controlled by a Finite State
Machine (Scheduler in Fig. 6). This scheduler allows loading operands from the
dedicated RAM (CryptoRAM in Fig. 6), launching a modular operation, and sav-
ing the final result into the CryptoRAM. The sequence of modular operations
can be fixed for a specific pairing implementation, but we choose to maintain
flexibility in our design and use a CPU instead. It allows implementing different
pairings on the same component. Macro instructions are defined to pilot our
base field unit which is connected to the CPU with an AXI interface (Advanced
eXtensible Interface). This interface is chosen for its compatibility with a wide
variety of processors (including ARM and RISC-V CPUs). To execute complex
operations, the CPU must control the base field unit and the cryptoRAM, again
to load operands, compute selected operations and save the results.

The chosen CPU for prototyping purposes is the MicroBlaze unit pro-
vided by Vivado tools. It is based on a 32-bit architecture. However, it can
be easily replaced by any processor. 32-bit instructions of the form: ins =
{@A,@B,@Z,Code} are used by the CPU to pilot the base field unit. Having
32-bit CPU does not hinder the control of our 64-bit base field unit.

As shown in Fig. 6, instructions are sent by the CPU to the base field
unit through the AXI. A decoder (Ins-decoder) stores addresses of operands
(@A,@B), address of the result (@Z), and selects the base field operation corre-
sponding to Code. Then, the Scheduler controls the CryptoRAM and either the
multiplier or the custom adder computes this operation. In this way, a modular
operation can be launched with a single instruction.

Fig. 6. Proposed hardware/software architecture

204 A. Lavice et al.

Finally, a FIFO stacks several instructions to mask the cost of sending
instructions to the base field unit. The CPU can read and write into the Cryp-
toRAM to load operands and to read the result of the computation. Instructions
are sent from the CPU to the coprocessor through the AXI as shown in Fig. 6.
The CPU also controls a timer to monitor coprocessor computation times and
a Universal Asynchronous Receiver Transmitter (UART) component to allow
external communication.

Finally, the MicroBlaze CPU runs a software program in C to compute High-
level operations. The objective of this design is to minimize the impact of addi-
tional operations on implementation performances. Thus, the base field unit is
built to be able to launch additional operations while performing modular mul-
tiplications.

Common Optimization: Parallelized Multiplication and Square in Fp2 .
The selected curves all rely on Fp2 = Fp[v] arithmetic. In Sect. 3, Fp2 = Fp[v],
where v is defined as v = −1 for BLS12 and BLS24 curves and v = 5 for GMT8
curves. Multiplication by 5 can be computed with two doubles and one addition.
Then, multiplications by v can also be parallelized in Algorithm 2 and Algo-
rithm3. Four additions and one multiplication by v can be computed in parallel
during multiplications and three additions, one double and two multiplications
by v during squaring.

Additional operations that can be computed in parallel are written with grey
letters in Algorithm 5 and Algorithm 6. Optimized multiplications and squares
in Fp2 cut the computation time by 10% with our architecture.

We manage to parallelize more additional operations during multiplications
and squares in Fp4 . The total gain brought by our parallel implementation is
approximately 12% for BLS12 and 15% for GMT8 and BLS24 curves.

Algorithm 5. Optimized multiplication
in Fp2 = Fp[g], g2 = v, v ∈ Fp

Input: A = a0 + a1g,B = b0 + b1g ∈ Fp2

Output: Z ← AB ∈ Fp2

Cost: 3Mp2 + 1Ap2

Begin

1: t0 ← a0b0; t1 ← a0+a1 z0 ← b0+b1;
2: z1 ← a1b1; t1 ← t1z0; z0 ← t0 − vz1;
3: z1 ← t0 + z1; z1 ← t1 − z1;
4: return Z = z0 + z1g;

End

Algorithm 6. Optimized square
in Fp2 = Fp[g], g2 = v, v ∈ Fp

Input: A = a0 + a1g ∈ Fp2 ,
Output: Z ← A2 ∈ Fp2

Cost: 2Mp + 1Ap

Begin

1: z0 ← a0a1; t0 ← a0 − a1;
2: t1 ← a0 − va1; t0 ← t0t1;
3: z1 ← 2z0; z0 ← t0 + (v + 1)z0;
4: return Z = z0 + z1g;

End

Hardware Implementations of Pairings at Updated Security Levels 205

Verification and Test. The procedure presented in Fig. 7 is used to ensure the
correctness of our implementation. First, we use Magma calculator software [10]
as a reference implementation to generate P (resp. Q), a generator of G1 (resp.
G2). Then, a Python script computes the test vector {P, [α]P,Q, [α]Q} with
α a random element. Subsequently, our design computes both e(P, [α]Q) and
e([α]P,Q). Finally, the CPU sends these two values back to the desktop which
checks for the equality of: e(P, [α]Q) = e([α]P,Q). Verifying the pairing bilinear-
ity ensures the correctness of our implementations. This method is used to test
our design at each level of the development, from operations on the base field to
the entire pairing.

4.2 Implementation Results

The proposed design is coded in VHDL and implemented on a Kintex-7. Our
base field unit is packaged into a custom IP and integrated into a System on
Chip with a MicroBlaze CPU. The time × area metric is chosen to estimate
the overall performance of the hardware component. This value gives a complete
picture since it does not only take into account the estimated area but also the
amount of performance provided. It gives a fairer comparison than the classical
one using the equivalent gate metrics. The obtained performances are presented
in Table 4 for the old 128-bit and for the updated 128-bit and 192-bit security
levels.

In [35], authors build a highly parallel architecture to design a fast and
energy-efficient pairing unit for BN curves at the old 128-bit security level.
However, their design required thousands of slices and several Digital Signal
Processing (DSP) units and would be difficult to fit in lightweight designs.

To our knowledge, the fastest pairing architecture at the old 128-bit security
level is the one proposed in [37]. To maximize the benefit of parallelization, the
authors use several triple-port RAMs. This memory requires around four times
the area required by classical simple-port ones. As a result, this architecture
could also barely fit in lightweight designs.

Fig. 7. Procedure for a test sequence with our ALU

206 A. Lavice et al.

Authors in [32] propose a lightweight hardware accelerator for modular mul-
tiplication and pilot it with a Cortex A9 CPU to compute pairings on BN curves
at the old 128-bit security level. They also demonstrate that adding dedicated
hardware to compute operations in the base field can decrease both time and
energy required to compute a pairing. Our BLS12-381 implementation has a
better time × area than previous hardware implementations on BN curves of
[32,35].

Table 4. Performances comparison of pairing hardware implementations

Security Ref. Curves Platform Area (slices) DSP Time (ms) time × area

[37] BN-254 Virtex-6 5237 64 0.41 2147

99.7-bit [35] Virtex-7 28400 128 3.43 97412

[32] Zynq-7020 598 0 134 80132

120.7-bit This work BLS12-381 Kintex-7 1006 0 36.14 36357

This work BLS12-460 Kintex-7 1223 0 48.91 59817

Virtex-7 1235 0 48.91 60404

Virtex-6 1446 0 65.21 94294

BLS24-318 Kintex-7 925 0 64.78 59922

128-bit Virtex-7 922 0 64.78 59727

Virtex-6 1156 0 86.37 99844

GMT8-544 Kintex-7 1325 0 42.71 56591

Virtex-7 1463 0 42.71 62485

Virtex-6 1654 0 56.94 94195

192-bit This work BLS24-518 Kintex-7 1325 0 184.23 244105

For the sake of fair comparison with future work, we implement our ALU on
a Virtex-7 and a Virtex-6 FPGA. These platforms are chosen because they have
been widely used in previous work. FPGAs are built with Configurable Logic
Blocks (CLB), and 7-series FPGA such as Kintex-7 or Virtex-7, and Virtex-6
FPGA use identical CLB. Each CLB contains two slices and each slice contains
four 6-inputs Look Up Table (LUT) and four flip-flops. According to Xilinx, the
main difference is that the 7-series FPGAs have more interconnecting routing
resources compared to Virtex-6 FPGA. This explains the difference between our
design performance on the 7-series and on the Virtex-6 FPGA. The last version
of the Xilinx ISE design suite (14.7) is used to implement our coprocessor in
Virtex-6. The results presented in Table 4 are given as an indication since the
test and development are done on a Kintex-7 FPGA. Virtex-7 implementation
is running at 200 MHz and Virtex-6 at 150 MHz. The difference in time × area
between GMT8 and BLS24 is limited to 5% which is not enough to discard
a curve. Furthermore, pairings at actual security levels require a consequent
amount of memory. With our implementation, GMT8 requires 5976B, BLS12
7040B and BLS24 9920B respectively. Since memory is often the critical resource

Hardware Implementations of Pairings at Updated Security Levels 207

in constrained devices, GMT8 may be the appropriate choice at the updated
128-bit security level.

Table 4 also shows that the curve ranking in terms of time × area, not only
differs from estimations given in [4], but also differs from one platform to another.
Therefore, it becomes interesting to choose the curve according to the desired
application and platform.

5 Conclusion and Future Work

The Kim and Barbulescu attack created a new paradigm as BN curves are no
longer undisputed pairing champions. Authors of [4] and [18] have studied new
curves. The consequences are that any dedicated hardware implementation ought
to support multiple arithmetics to maximize flexibility. Pairing complexity esti-
mates only take into account the complexity of modular multiplications. This
paper shows that neglected operations such as modular additions have also a sig-
nificant impact on implementation performances since they represent 25% of the
overall computation time in our architecture. Based on the best curve candidates
for implementations, we presented a flexible hardware architecture to support all
of them. The proposed lightweight hardware is designed to accelerate modular
operations. It has a reconfigurable modulus which enables the support of differ-
ent curves and allows parallel computing during multiplication. This improves
performance by approximately 15% decreasing the cost of additional operations
to consider only multiplications.

To the best of our knowledge, this paper presents the first hardware imple-
mentation of pairings at the updated 128-bit and 192-bit security levels as
proposed in [4] and in [18]. Moreover, the proposed implementations provide
promising performances compared to previous work on lightweight implementa-
tions since our time×area product is three times better than the one presented
in [32]. Our different FPGA porting results also provide evidence that the best
curves have similar complexity at the updated 128-bit security level. It shows
that there is no optimal choice of pairings at the 128-bit security level. With our
architecture, the GMT8 curve seems to provide the best time and time × area
performances. But it also requires a bigger coprocessor than for BLS24 or BLS12.
On the other hand, BLS24 requires much more memory than GMT8. Future work
could consider other promising curves such as KSS16, DCC15 or other curves
proposed in [18] and evaluate their performance on classical protocols.

References

1. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is
an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic

2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 5

https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-20465-4_5

208 A. Lavice et al.

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. (2018). https://hal.archives-ouvertes.fr/hal-01534101

4. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their secu-
rity, their complexity. IACR Cryptol. ePrint Arch. 2019, 485 (2019)

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security Symposium, pp.
781–796. USENIX Association (2014)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

10. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3–4), 235–265 (1997). https://doi.org/10.1006/
jsco.1996.0125

11. Cocks, C., Pinch, R.: Identity-based cryptosystems based on the Weil pairing. In:
manuscript (2001)

12. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 14

13. Duan, P., Cui, S., Chan, C.: Special polynomial families for generating more suit-
able elliptic curves for pairing-based cryptosystems. IACR Cryptol. ePrint Arch.
2005, 342 (2005)

14. El Mrabet, N., Guillermin, N., Ionica, S.: A study of pairing computation for elliptic
curves with embedding degree 15. IACR Cryptol. ePrint Arch. 2009, 370 (2009)

15. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010)

16. Ghammam, L., Fouotsa, E.: Improving the computation of the optimal Ate pairing
for a high security level. J. Appl. Math. Comput. 59 (2018). https://doi.org/10.
1007/s12190-018-1167-y

17. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 13

18. Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees
five to eight and optimal Ate pairing computation. Cryptology ePrint Archive,
Report 2019/431 (2019). https://eprint.iacr.org/2019/431

19. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. Cryptology ePrint
Archive, Report 2006/110 (2006). https://eprint.iacr.org/2006/110

20. Hess, F.: Pairing lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85538-5 2

https://hal.archives-ouvertes.fr/hal-01534101
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/s12190-018-1167-y
https://doi.org/10.1007/s12190-018-1167-y
https://doi.org/10.1007/978-3-642-13013-7_13
https://doi.org/10.1007/978-3-642-13013-7_13
https://eprint.iacr.org/2019/431
https://eprint.iacr.org/2006/110
https://doi.org/10.1007/978-3-540-85538-5_2
https://doi.org/10.1007/978-3-540-85538-5_2

Hardware Implementations of Pairings at Updated Security Levels 209

21. Huang, M., Gaj, K., El-Ghazawi, T.: New hardware architectures for Montgomery
modular multiplication algorithm. IEEE Trans. Comput. 60(7), 923–936 (2011).
https://doi.org/10.1109/TC.2010.247

22. John, T.: Duality theorems in Galois cohomology over number fields. In: Interna-
tional Congress of Mathematicians Stockholm 1962, Djursholm (1963)

23. Joux, A.: A one round protocol for tripartite diffie-hellman. In: ANTS-IV: Proceed-
ings of the 4th International Symposium on Algorithmic Number Theory, London,
UK, p. 385394 (2000)

24. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85538-5 9

25. Karabina, K.: Squaring in cyclotomic subgroups. Cryptology ePrint Archive,
Report 2010/542 (2010). https://eprint.iacr.org/2010/542

26. Khandaker, M.A.-A., Nanjo, Y., Ghammam, L., Duquesne, S., Nogami, Y., Kodera,
Y.: Efficient optimal ate pairing at 128-bit security level. In: Patra, A., Smart, N.P.
(eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 186–205. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71667-1 10

27. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

28. Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamen-
tal Algorithms. Addison Wesley Longman Publishing Co., Inc., USA (1997)

29. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 2

30. Miller, V.S.: The weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004). https://doi.org/10.1007/s00145-004-0315-8

31. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

32. Salman, A., Diehl, W., Kaps, J.: A light-weight hardware/software co-design for
pairing-based cryptography with low power and energy consumption. In: FPT, pp.
235–238. IEEE (2017)

33. Tenca, A., Koc, C.: A scalable architecture for Montgomery multiplication. In: Pro-
ceedings of First International Workshop Cryptographic Hardware and Embedded
Systems (CHES 1999), pp. 94–108 (01 1999)

34. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010).
https://doi.org/10.1109/TIT.2009.2034881

35. Wang, A.T., Guo, B.W., Wei, C.J.: Highly-parallel hardware implementation of
optimal Ate pairing over Barreto-Naehrig curves. Integration 64, 13–21 (2019)

36. Xiong, X., Wong, D.S., Deng, X.: Tinypairing: a fast and lightweight pairing-
based cryptographic library for wireless sensor networks. In: WCNC, pp. 1–6. IEEE
(2010)

37. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing coprocessor
architecture. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp.
160–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-
4 10

38. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels. In:
Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 412–430.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 24

https://doi.org/10.1109/TC.2010.247
https://doi.org/10.1007/978-3-540-85538-5_9
https://eprint.iacr.org/2010/542
https://doi.org/10.1007/978-3-319-71667-1_10
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/11586821_2
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1007/978-3-642-36334-4_10
https://doi.org/10.1007/978-3-642-36334-4_10
https://doi.org/10.1007/978-3-642-34931-7_24

A Hard Crystal - Implementing Dilithium
on Reconfigurable Hardware

Georg Land1,2(B) , Pascal Sasdrich1 , and Tim Güneysu1,2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
{georg.land,pascal.sasdrich,tim.guneysu}@rub.de

2 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

Abstract. CRYSTALS-Dilithium as a lattice-based digital signature
scheme has been selected as a finalist in the Post-Quantum Cryptog-
raphy (PQC) standardization process of NIST. As part of this selec-
tion, a variety of software implementations have been evaluated regard-
ing their performance and memory requirements for platforms like x86
or ARM Cortex-M4. In this work, we present a first set of Field-
Programmable Gate Array (FPGA) implementations for the low-end
Xilinx Artix-7 platform, evaluating the peculiarities of the scheme in
hardware, reflecting all available round-3 parameter sets. As a key com-
ponent in our analysis, we present results for a specifically adapted
Number-Theoretic Transform (NTT) core for the Dilithium cryptosys-
tem, optimizing this component for an optimal Look-Up Table (LUT)
and Flip-Flop (FF) utilization by efficient use of special purpose Digital
Signal Processors (DSPs). Presenting our results, we aim to shed further
light on the performance of lattice-based cryptography in low-cost and
high-throughput configurations and their respective potential use-cases
in practice.

Keywords: FPGA · Dilithium · PQC

1 Introduction

In the light of continuous progress and advancement on the development of
quantum computers, security of existing public-key cryptographic schemes starts
to crumble [12]. While most existing and currently deployed schemes rely on the
hardness of integer factorization or computing discrete logarithms, broken by
Shor’s quantum algorithm [15], given that an attacker has access to a large-scale
quantum computer, a call for the design, proposal, and standardization of new
post-quantum secure schemes for Key Encapsulation Mechanism (KEM) and
digital signatures has been initiated by the United States National Institute for
Standards and Technology (NIST) in 2017 [10].

After two competitive rounds of thorough scrutiny and examination, NIST
announced the seven finalists from the initial field of 69 candidates in 2020 which
still have to undergo further evaluation in a third and final round. Moreover, the
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 210–230, 2022.
https://doi.org/10.1007/978-3-030-97348-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_12&domain=pdf
http://orcid.org/0000-0002-1533-3583
http://orcid.org/0000-0002-5443-626X
http://orcid.org/0000-0002-3293-4989
https://doi.org/10.1007/978-3-030-97348-3_12

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 211

seven finalists can be categorized into the four key establishment schemes, Classic
McEliece, Kyber, NTRU, and Saber as well as the three digital signature schemes
Dilithium, Falcon, and Rainbow.

Interestingly, five out of the seven remaining finalists are using hard lattice
problems as fundamental security assumption. Along with Falcon [7], Dilithium [5]
is one of the two remaining lattice-based digital signature schemes, while Rainbow
is based on multivariate cryptography instead. Further, Dilithium and Kyber are
part of the Cryptographic Suite for Algebraic Lattices (CRYSTALS) using struc-
tured lattices to allow fast arithmetic and enable compact key, ciphertext and
signature sizes. More precisely, the underlying polynomial ring enables efficient
polynomial multiplication leveraging the Number-Theoretic Transform (NTT).

While literature is rich in efficient and optimized implementations on
lattice-based KEMs, to date, lattice-based digital signature schemes are mostly
neglected. In particular, efficient implementation of lattice-based signature
schemes in reconfigurable hardware urgently needs to be investigated in order
to guide and support the selection of the future post-quantum cryptography
standards. In this regard, we are only aware of a two existing hardware imple-
mentations of Dilithium [13,16], while several optimized software implementa-
tions, e.g., targeting AVX2 [4] or Cortex-M4 [8] architectures, have been pre-
sented recently. Further, even though the design in [13] has been implemented
on a high-performance Virtex-7 Field-Programmable Gate Array (FPGA), it
does not exploit important features of modern reconfigurable hardware architec-
tures efficiently. For this, we present a novel set of efficient and compact FPGA
implementations specifically targeting a low-end Xilinx Artix-7 series through
evaluating the peculiarities of the Dilithium digital signature scheme for efficient
and clever mapping into modern FPGA features and components1.

Contribution. For this, our contribution can be summarized as follows:

– An optimized NTT component making extensive use of Digital Signal Pro-
cessors (DSPs) is presented to exploit peculiarities and features of modern
low-end FPGAs. We were able to synthesize our NTT implementation for a
frequency of 311 MHz, resulting in a latency of 1.7 μs, which is, to the best of
our knowledge, the fastest NTT implementation for comparable parameters
in Artix-7 FPGAs.

– Our Dilithium core is compact and self-contained, providing functionalities
for key generation, signature generation, signature verification, precomputa-
tion, arbitrary-length message digesting, and packing and unpacking keys and
signatures.

– For Dilithium-III, our core uses 30k Look-Up Tables (LUTs), 11k Flip-Flops
(FFs), 45 DSPs and 23 Block-RAMs (BRAMs) with fmax = 142 MHz. For
key generation, our core is capable of performing 4290 OP/s, for signature
generation 1351 OP/s and for signature verification 11751 OP/s.

1 Our implementation is publicly available at https://github.com/Chair-for-Security-
Engineering/dilithium-artix7.

https://github.com/Chair-for-Security-Engineering/dilithium-artix7
https://github.com/Chair-for-Security-Engineering/dilithium-artix7

212 G. Land et al.

– Additionally, we report area and speed results for individual stand-alone
cores, supporting either only key generation, signature generation, or veri-
fication. These smaller cores still support the necessary unpacking, packing,
digesting, and precomputation operations.

– For Dilithium-III, our keygen-only core is capable of performing 7250 OP/s.
The sign-only core performs 1560 OP/s and the verify-only core 16137 OP/s.

Related Work. Many lattice-based schemes have been proposed in recent years
and there is a wide variety of implementations in hardware. The first implemen-
tation of a lattice-based signature scheme was proposed by Güneysu et al. [9] in
2012. Pöppelmann et al.extend this work in [11]. Soni et al. present an implemen-
tation of the second-round parameter set of Dilithium targeting Artix-7 FPGAs
[16]. However, they use a High Level Synthesis (HLS) approach resulting in a
rather large design. Another implementation of the second-round parameter set
of Dilithium is provided by Ricci et al., which targets the high-end Virtex-7
platform [13]. Most notably, their design achieves a high throughput for signa-
ture generation. Other post-quantum secure signature schemes that have been
implemented in reconfigurable hardware include Rainbow [6], SPHINCS [1] and
XMSS [17]. Furthermore, efficient implementation of the NTT in hardware has
been researched very well. Roy et al. presented an efficient design that uses
two merged NTT layers [14]. Banerjee et al. presented an Application-Specific
Integrated Circuit (ASIC) design of the NTT that can be used to accelerate
multiple schemes [2]. Finally, Zhang et al. present a way to integrate the post-
processing of the inverse transformation into the main computation resulting in
a low-complexity implementation [19].

2 Preliminaries

2.1 Notation

Throughout this work, we will use and assume the following notation. Let n and
q be two integers, such that n = 256 and q = 223 − 213 + 1. Further, let Rq be a
polynomial ring with Rq = Zq[X]/(Xn + 1). In addition, let us denote vectors
in bold lower-case letters, e.g., v, while matrices are denoted in bold upper-case
letters, e.g., A. Polynomials in NTT domain are indicated by a hat.

Additionally, for an integer s, we denote s[a : b], where a > b, as the bit
slice of s bounded by the offsets a, b counting from LSB to MSB, for example
for s = 6 we have s[2 : 1] = 112 = 3.

2.2 Number-Theoretic Transform

The NTT, as used in Dilithium, can be seen as a discrete Fourier transform
over polynomials in Rq, where the complex arithmetic is replaced by the mod-
ular arithmetic of the polynomial coefficients. Since the ring structure enables
negative wrapped convolution, we can use an n-point NTT for fast polynomial

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 213

multiplication by transforming both factor polynomials to the NTT domain, mul-
tiplying coefficient-wise in NTT domain, and then applying the inverse transform
to the result to obtain the final product polynomial.

2.3 CRYSTALS-Dilithium

In July 2020, NIST announced the 7 finalist and 8 alternate candidates for
the Post-Quantum Cryptography (PQC) standardization competition, with both
schemes of the CRYSTALS suite being selected as finalist for their respective
categories. In particular the digital signature scheme Dilithium has undergone a
thorough scrutiny during the competition process and since then reached version
3.1 [5], while most recently some major changes and updates for the various
security parameter sets have been presented.

In general, the Dilithium digital signature scheme has been designed to adopt
simple and secure design principles, in particular substituting discrete Gaussian
sampling in favor of uniform sampling. In addition, all remaining fundamental
operations have been carefully chosen such that they easily can be performed
in constant time. Aiming at long-term security, the different security levels and
parameters have been chosen conservatively while endeavoring to minimize the
combined size of public key and signatures. Eventually, the modular construc-
tion of Dilithium favors efficient and highly optimized implementations across all
security levels and parameter sets as the main operations rely on SHAKE-128 or
SHAKE-256 and the multiplication in the polynomial ring Rq, regardless of the
security level. Instead, higher or lower security is only achieved through addition
or reduction in the number of operations performed in Rq.

Further, as a digital signature scheme, Dilithium provides the following three
core methods for key generation, signature generation, and signature verification.

Key Generation. For key generation, the respective algorithm generates a
k × l matrix A such that each entry in the matrix is a polynomial of the ring
Rq. Using randomly sampled vectors s1 and s2, with polynomials in Rq where
each coefficient is in [−η, η] , the second part of the public key is generated
as t = As1 + s2, performing all algebraic operations over Rq. To keep the
public key size small, the matrix A is replaced by a seed ρ which generates A
deterministically, which is a widespread technique in lattice-based cryptography.
Additionally, to further decrease the size of the public key, the lower d bits of
each coefficient in t are placed in the secret key rather than the public key.

Signature Generation. The fundamental operation of Dilithium is the gen-
eration of digital signatures. For this, the signing algorithm chooses a masking
vector y with coefficients from [−γ1, γ1) in order to compute w = Ay and rounds
the result such that w = w1 · 2γ2 +w0, where each coefficient in w0 is less than
or equal to γ2. The challenge c, a polynomial in Rq with coefficients from {−1, 1}
at τ random positions and all other coefficients being 0, is sampled by hashing
the message and w1 and is used to generate the potential signature z = y+ cs1.

214 G. Land et al.

Using rejection sampling, leakage of the secret key is prevented, at the penalty
of repeating the signature generation process if the signature fails the security
and correctness checks. Additionally, since for the verification t is needed but
only the upper 10 bits of t are contained in the public key, the signer needs to
compute the vector of carry bits (“hints”) h that result from the unknown part
in t during the verification computation. Finally, if a z is found that passes the
checks, the signature is returned as (c, z,h).

Signature Verification. For signature verification, Az − ct is rounded analo-
gously to the signing procedure and the resulting higher-order bits are set to be
w′

1. Since the lower bits of each coefficient in t are not contained in the public
key, the verifier makes use of the hints h to perform this operation. Following
this, the challenge c is recomputed from the message and w′

1 and compared to
the one provided in the signature. Also, z is checked to have a valid norm (i.e.,
whether each coefficient has the maximum value as checked during signature
generation).

Parameter Sets. With introduction of version 3.1 of the Dilithium algorithm
specification, the list of supported security parameter sets has been adjusted
for the three NIST security levels II, III, and V. Since the operations in Rq do
not change for the different parameter sets, the performance-critical dimensions
of A are adjusted, resulting in an increased or reduced number of operations,
depending on the targeted security level.

Compared to round 2, the following adjustments have been proposed:

– d is decreased from 14 to 13.
– τ is now different for each parameter set rather than 60 for all, resulting in a

slight speed-up for the lower parameter sets.
– γ1 is now a power of two, which simplifies sampling y significantly.
– η = 2 for security levels II and V and η = 4 for security level III, rather than

different ηs for each parameter set.
– γ2 = (q − 1)/88 for security level II. Both other security levels keep γ2 =

(q − 1)/32.

3 Design Considerations

Modern FPGA generations are equipped with a multitude of general purpose
logic. However, for certain applications, highly optimized special purpose com-
ponents such as very compact and optimized DSP cores are provided, offering
efficient and fast integer arithmetic operations, or BRAMs, offering compact
true dual-port memory banks for easy storage of larger amounts of data. Given
this, our primary design goal was to reduce the footprint of our architecture in
terms of general purpose components such as LUTs and FFs, as these compo-
nents usually are the limiting factor in larger systems. Additionally, we design
all operations such that there is no timing dependency on secret values.

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 215

3.1 Arithmetic

As a first step, we opted to implement the basic arithmetic using DSP modules
for fast and efficient coefficient-level computations. DSP blocks are abundantly
available on latest FPGA devices but in general applications rarely used. More
precisely, we exploit several special features of modern Xilinx DSP blocks, includ-
ing:

Runtime Reconfiguration. During design and synthesis time, the DSP can be
configured to provide different functionalities during runtime. Based on this,
we configured some of our instantiated DSP modules to provide multiple
different arithmetic operations, allowing to re-use the same DSP for different
operations, hence resulting in a highly integrated and optimized design with
respect to area and utilization.

Pre-addition. Besides fast integer multiplication, each DSP unit is equipped
with a pre-adder stage, allowing to merge multiple arithmetic operations
within a single DSP.

Single Instruction Multiple Data. Although each DSP unit can perform
up to 48-bit wide additions, we opted to use DSP cores in a Single Instruction
Multiple Data (SIMD) fashion, allowing to perform two 24-bit additions or
subtractions instead, perfectly fitting the constrains of underlying arithmetic
operations in the polynomial ring.

Number-Theoretic Transform. On a high level, we follow the design ideas
from [19], especially including the inverse NTT without post-processing. How-
ever, by applying the aforementioned DSP features to our NTT design, our
implementation achieves a low latency despite processing relatively big coef-
ficients. In contrast to known NTT architectures, which usually utilize DSPs
only for a low-latency multiplication and perform any other arithmetic with
general-purpose logic, our novel approach of leveraging the full capabilities of
DSPs results in a low latency for any involved arithmetic. This approach fits
the requirements for implementing Butterfly Units (BFUs) particularly well, as
during the forward NTT, e.g., a + bω is computed, which can be mapped to
DSP functionality without additional arithmetic logic. Also, even though this
operation is not useful for our inverse NTT, we still can re-use the exact same
DSPs by reconfiguring them at runtime at the cost of additional control logic.

3.2 Memory

Besides efficient arithmetic, a specific memory architecture and layout is required
to store and load coefficients and polynomials efficiently during arithmetic oper-
ations. Given the design considerations for our arithmetic modules including the
NTT unit, we identified the following two design constraints for our memory
architecture:

216 G. Land et al.

1. Given the NTT architecture, the design would benefit from reading and writ-
ing up to four coefficients simultaneously. For this, we decided to use four
simple dual port BRAMs to store polynomials. More precisely, we use four
parallel 18K BRAM instances for this, each of them holding up to 512 coef-
ficients. This means, since for a single polynomial only 64 coefficients are
stored per BRAM, we can fill the four 18K BRAM units with up to eight full
polynomials.

2. The memory layout has to be adjusted such that the number of read and
write conflicts are minimized. In particular, the layout has to ensure that
the coefficients of the polynomials are distributed among the BRAMs such
that we always can read or write data during the arithmetic operations with-
out stalling due to memory access conflicts. This can be achieved as fol-
lows: For a polynomial’s coefficient aXi, the coefficient is placed in memory
bankaddr (Eq. 1) at address addr (Eq. 2) [19, Sec. 3.1].

bankaddr = i[7 : 6] + i[5 : 4] + i[3 : 2] + i[1 : 0] mod 4 (1)
addr = i[7 : 2] (2)

Our design needs to hold k · l +2l +6k +1 polynomials in total. It is possible
to reduce this memory footprint significantly by sampling single polynomials of
Â just in time. However, we opt to expand Â once and store it for further com-
putations. This has the advantage that introducing a pre-processing operation
enables signing multiple messages (or verifying multiple signatures) under the
same key without the necessity of re-sampling Â.

Since z and y are never accessed simultaneously, we only plan with l poly-
nomials for both together. Additionally, s1 takes storage for l polynomials. c
occupies storage for one polynomial. Four of the six polynomial vectors of size k
are s2, t0, t1,w. The remaining 2k polynomials are used as temporary storage,
for example during MakeHint.

Given that we can store up to 8 polynomials using four BRAM units, the
total number of BRAM instances is governed by the security level. In particular,
we need storage for 49 polynomials for level II, 77 polynomials for level III, and
119 polynomials for level V. We were able to identify efficient memory map-
pings for each parameter set, such that it only requires �4(kl + 2l + 6k + 1)/8�
18K BRAM primitives. We did so by iteratively searching through possible mem-
ory mappings in a randomized way and checking whether the requirements are
met. The memory mapping enables the following operations in a pipelined or
parallel fashion:

– During matrix-vector multiplication, the vector elements are transformed
sequentially to NTT domain. Upon completion of the transformation, the
multiply-accumulate module updates the resulting vector elements through
coefficient-wise multiplication with the Â polynomials.

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 217

– In pre-computations for signature generation and verification, the matrix Â
is expanded and in parallel, NTTs of s1, s2, t0 and t1 can be performed.

– During verification, the norm check of z can be performed in parallel to
sampling c.

– Since, at the end of key generation, s1 is part of the secret key, during matrix-
vector multiplication, s1 is transformed to NTT domain for fast multiplica-
tion. To avoid the necessity of performing an inverse NTT, s1 is stored in two
locations simultaneously during sampling, after which one can be transformed
and the other location is used as result.

3.3 Functionality

In order to provide an integrated and self-contained core for generation and
verification of digital signatures based on the Dilithium scheme, our architecture
needs to support the full set of the following operations:

KeyGen Generation of a key from a given seed.
Signpre Expansion of Â and pre-computation of ŝ1, ŝ2, and t̂0.

Sign Signature computation.
Verifypre Expansion of Â and pre-computation of t̂1.

Verify Signature verification.
Digestmsg Hashing of arbitrary-length messages along with tr (of the public

key).
Store Storing and unpacking public keys, secret keys, signatures, or seeds.
Load Packing and sending public keys, secret keys, or signatures.

Additionally, we provide individual cores which only support either key gen-
eration, signature generation, or verification. Besides featuring only a subset of
the operations, these smaller cores also come with a lower BRAM usage since
some polynomials are only required for a subset of operations. An overview which
operation is supported by each single-task core can be found in Table 1.

Table 1. Operation support matrix for single-task cores

KeyGen Signpre Sign Verifypre Verify Digestmsg Store Load

KeyGen-only ✓ ✗ ✗ ✗ ✗ ✗ Seed Keys

Sign-only ✗ ✓ ✓ ✗ ✗ ✓ kpriv Sign.

Verify-only ✗ ✗ ✗ ✓ ✓ ✓ kpub

218 G. Land et al.

Fig. 1. Dilithium high-level architecture

4 Implementation on Reconfigurable Hardware

In this section, we outline the basic architecture of our comprehensive Dilithium
architecture. In particular, our construction exploits special purpose units and
features of an Artix-7 FPGA (XC7A100T).

4.1 Architectural Details

The high-level architecture of our implementation is shown in Fig. 1. All basic
arithmetic operations are performed by the NTT, Multiply-Accumulate (MACC),
and Matrix-Vector Multiplication units. However, even though the matrix-vector
multiplication serves as master and control unit for the NTT and MACC cores,
both sub-cores must be accessible from the global operation control unit as well
to provide auxiliary support for additional arithmetic operations. Besides, the
check units directly access polynomials in the memory for norm checking and
provide the check result to the operation control module. The Sampler module
controls and accesses the Keccak hash core in order to buffer the hash output
before writing the uniformly generated random samples to memory. However,
the Keccak-based hash core is also accessible from the operation control unit,
mostly required for random seed expansion. Finally, the hint modules control
read and write access to the hint registers in the memory unit. Further, as
already highlighted in Sect. 3, the memory unit consists of several BRAMs for
the intermediate polynomials, two 512-bit registers to store ρ′ and μ as well
as some additional 256-bit registers for ρ, c̃, tr, K, and the seed for the key
generation.

Number-Theoretic Transform. As already mentioned in Sect. 3, our NTT
implementation follows the design principles of [19]. However, we pre-multiply
the stored twiddle factors for the inverse transform by a factor of 2−1 in order
to avoid the additional logic for mutliplying one coefficient by 2−1 in the BFU.

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 219

Fig. 2. Architecture of the BFU. DSPs are numbered, Di are shift registers that com-
pensate for the DSPs or the reduction as given in their respective index. Ddiff compen-
sates for the difference of cycle counts between D1,2,R and D3,4

From an implementation perspective, we modify several details: First, as
already mentioned we utilize DSPs for all arithmetic operations in order to
achieve a low area footprint and a high frequency. Second, we make use of the
true dual-port capabilities of the BRAM modules, enabling our design to read
two twiddle factors simultaneously in the lowest NTT layer and thus still allowing
processing four coefficients at the same time.

At the core of the NTT, we instantiate two independent BFUs, as depicted
in Fig. 2. More precisely, each BFU receives two unsigned 23-bit coefficients, an
unsigned 23-bit twiddle factor, and the signed 24-bit value a− b. Note, however,
that this value can be computed for both BFUs simultaneously using a single
DSP in SIMD mode.

Forward Number-Theoretic Transform. In general, the butterfly configuration
for the forward NTT computes two values A and B such that (A,B) := (a + b ·
ω, a − b · ω), given that ω denotes the pre-computed twiddle factor. For this, we
use the DSPs 1 and 2 to compute a+bω. More precisely, we need to combine two
DSPs for this operation since each DSP itself can only perform signed 25×18-
bit multiplications. However, when combining DSPs for larger multiplications,
we can leverage a dedicated low-latency cascade path. After multiplication, the
resulting product is reduced to a representative in [0, q) and already provides the
first part of the forward NTT computation. Further, subtracting the first part
from 2a and adding or subtracting q (depending on the sign of the subtraction
result), we obtain the second part of the forward NTT output.

220 G. Land et al.

In addition, for increased throughput, the BFUs have been pipelined, using
shift register instances to delay the input a of the third DSP. More specifically,
the first part of the result is also delayed through a shift register in order to
return both parts of the forward NTT computation simultaneously.

Inverse Number-Theoretic Transform. Similar to the forward NTT, the inverse
NTT computes two values A and B, such that (A,B) := (2−1(a + b), (a − b)ω).
However, as already mentioned before, this time the operand ω for the inverse
NTT is already pre-processed to incorporate the factor 2−1.

Here, ω and the pre-computed, signed value a − b are used as input for the
multiplication DSPs 1 and 2. Further, depending on the sign bit of the value a−b,
we choose between adding q or 0 using the pre-adder stage of the multiplication
DSPs to obtain a positive multiplication result. Finally, the multiplication result
is then reduced and serves as output. Besides, the second part of the output is
designed to be 2−1(a + b). For this, we use DSP 3 as 3-input adder with inputs
�a/2�, �b/2� and either 1 (if both least signification bits (LSBs) of a and b are 1),
or (q + 1)/2 (if the LSB of either a or b is 1), or 0 otherwise. Since the result of
this operation might be greater or equal to q, we use the fourth DSP to subtract
q from the result. The second part of the BFU output is then chosen between
the output of DSPs 3 and 4.

Multiply-Accumulate. The second arithmetic core is used to perform
multiply-accumulate operations. More specifically, this core is designed to per-
form four computations per clock cycle in parallel in order to make full use of
the available memory bandwidth. It consists of eight DSPs and four reduction
modules. Each two DSPs perform one of the following operation, while the result
then is fed into the reduction module.

a · b + c: The first DSP performs the multiplication of a with the lower 17 bits
of b and the addition. The second DSP multiplies a with the remaining
upper bits of b and updates the first result to the final 46 bit value
that is then fed into the reduction module.

a + b: The first DSP computes the sum, while the second one subtracts q.
Eventually, the result of the second DSP is selected if it is non-negative,
else the result of the first DSP is selected.

b − a: The first DSP computes the subtraction, while the second one adds
q. Eventually, the result of the first DSP is selected as output if it is
positive, else the output of the second DSP is selected.

Note that for operations without multiplication, the reduction module can
be bypassed, resulting in a lower latency. Again, this module is fully pipelined,
allowing to process an entire polynomial within 64 cycles (in addition to the
initial pipeline length).

Matrix-Vector Multiplication. This module controls both the NTT module
and the MACC module to (1) transform the polynomials in the input vector

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 221

into NTT domain and (2) perform a matrix-vector multiplication with Â. The
resulting polynomial vector is then in NTT representation as well.

First, the first input polynomial is transformed by the NTT module. Then,
while the second input polynomial is transformed, the point-wise multiplication
between each polynomial from the first column in Â and the first, already trans-
formed input polynomial is carried out consecutively using the MACC module.
The resulting polynomials are stored in the result vector polynomial storage.
Note that the point-wise multiplications take k · 64 + 14 cycles2, while one NTT
takes 533 cycles. When both operations are finished, the NTT module trans-
forms the third input polynomial and in parallel, the second, already trans-
formed input polynomial is multiplied point-wise with each polynomial from the
second column in Â and added to the intermediate result from the first k MACC
operations. The resulting polynomials again are stored back to the result vector
polynomial storage.

This procedure is repeated until all l input polynomials are transformed.
Afterwards, the resulting k polynomials are updated to the final result using the
MACC module. With this, a whole matrix-vector multiplication is carried out
in k · 512 + 23 + k · 64 + 14 cycles3.

Modular Reduction. In our implementation, we need a total of six reduction
module instantiations: While each BFU module contains a single reduction mod-
ule, the MACC module contains four reduction modules. For the modular reduc-
tion of a 46-bit value s, we recursively exploit the relation 223 ≡ 213 − 1 mod q
in a similar way as in [19].

s[45 : 0] ≡ 223s[45 : 23] + s[22 : 0] ≡ 213s[45 : 23] − s[45 : 23] + s[22 : 0]

≡ 223s[45 : 33] + 213s[32 : 23] − s[45 : 23] + z

≡ 213 (s[45 : 33] + s[32 : 23]) − (s[45 : 33] + s[45 : 23]) + z

≡ 223s[45 : 43] + 213 (s[42 : 33] + s[32 : 23]) − (s[45 : 33] + s[45 : 23]) + z

≡ 213 (s[45 : 43] + s[42 : 33] + s[32 : 23]) − (s[45 : 43] + s[45 : 33] + s[45 : 23]) + z

≡ 213x − y + z ≡ 223x[11 : 10] + 213x[9 : 0] − y + z

≡ 213 (x[11 : 10] + x[9 : 0]) − (y + x[11 : 10]) + z mod q

The result of our reduction can still be greater than 223 so that we could
repeat the substitution once again at the expense of additional depth and delay in
the arithmetic computation. However, we observe that the result of the reduction
at this point is already within the interval (−q, 2q)4. For this, we can simply

2 14 is the initial pipeline length.
3 The NTTs can be pipelined as well and thus, 23 is the initial pipeline length.
4 Since in our implementation all coefficients are stored in the standard representation

[0, q), this reduction also works for results of computations ab + c, since (q − 1)2 +
(q − 1) < 246.

222 G. Land et al.

Fig. 3. Architecture of the modular reduction. DSPs are numbered, Di are shift reg-
isters that compensate for the DSPs as given in their respective index. At the output
multiplexer, the sign bit is discarded, which decreases the bit width to 23.

add q to a negative result or subtract q if the result is positive. Eventually,
delaying the reduced result, as well as given the sum or subtraction with q, the
final result is determined by selecting the non-negative value out of both.

In practice, we use four DSPs and one small addition implemented in general-
purpose logic to perform the modular reduction. The first DSP computes x and
y by using a Kronecker substitution-like approach: The lower bits compute x and
the higher bits compute y. However, as the computation does not fit entirely into
the pre-adder stage, we need to add the least-significant bit of x using general-
purpose logic outside the DSP and delay the resulting bit, while the carry is fed
into the DSP as well. Thus, DSP 1 is used as a fully pipelined 4-input adder with
a latency of four clock cycles. Note, however, that for recent Ultrascale FPGAs,
the witdh of pre-adder stage within the DSPs increased, which would allow to
improve this reduction and give up the general-purpose addition.

Further, the second DSP computes z + x[11 : 10] − y. The result is fed into
DSP 3 via a low-latency path, where (x[11 : 10] + x[9 : 0]) · 213 are added to
the previous result. Note that x[11 : 10] corresponds to the output bits 10 and
9, and x[9 : 1] correspond to the output bits 8 to 0 from DSP 1. x[0] has been
computed separately before DSP 1 and is delayed accordingly. The fourth and
final DSP is connected to the third one via a low-latency path and adds q if the
result of the third DSP is negative or subtracts q otherwise. Eventually, only
the positive result is selected as output.

Keccak. A fundamental part of Dilithium is the application of SHAKE-128 and
SHAKE-256, both as hash function or as Extendable-Output Function (XOF).
More precisely, both functions use the same Keccak permutation with the same
state size of 1500 bits but a different rate r, which either is 1344 bits for SHAKE-
128 or 1088 bits for SHAKE-256. Thus, our implementation features a single
Keccak core that performs the permutation in 24 cycles (i.e., using a single cycle
per round).

For data input and output we decided to implement 32-bit buses. During I/O
operations, the Keccak module rotates the internal state for r = 1344 on a 32-
bit basis, while simultaneously the input is added (exclusive-or) to the rotation

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 223

feedback. Note that this behavior can also be used to compute SHAKE-256, i.e.,
by just using an unaltered feedback for the last 8 = (1344 − 1088)/32 words.

Sampling. Dilithium requires several sampling algorithms that use the output
of SHAKE. Unfortunately, none of the sampling algorithms is aligned to work
on 32-bit words. We solved this problem using buffers with a length of the least
common multiple of 32 and the desired output bit width. This enables converting
a stream of 32-bit words to a stream of words with the desired output bit width.

Sampling the challenge c involves the Fisher-Yates shuffle. We implement
this using a shift register with runtime-variable depth that contains all offsets
of the non-zero coefficients and their sign bit. Once a random offset is found in
rejection sampling, we rotate through the shift register and compare the stored
offsets with the newly sampled one. If they are equal, we replace the old one with
the current rejection threshold (keeping the sign bit), which essentially performs
the swap. Then we increase the register depth and shift in the newly sampled
offset with the corresponding sign bit. Finally, the polynomial is written to the
BRAM.

Rounding. Implementing the Power2Round operation in hardware is very effi-
cient, since during the computation of t, we simply split the result into the upper
10 bits and the lower 13 bits, stored into different polynomial memories. How-
ever, since the t0 coefficients are interpreted as signed integers and our main
paradigm is to store coefficients always as standard representatives, we need
to add q if the most signification bit (MSB) is 1. Due to the structure of the
operation, this is efficient with a LUT-based adder, which allows to avoid the
additional usage of a DSP.

We implement the HighBits operation as a simple behavioral description of
a range look-up depending on the input coefficient, which is efficient since for
γ2 = (q −1)/32, since there are only 16 different possible output values and only
the 15 MSB of a coefficient contribute to the result. For γ2 = (q − 1)/88, there
are only 44 different outputs and only the 13 MSB of a coefficient contribute to
the result.

Checking the low bits of w − cs2, however, involves the MACC module in
subtraction mode. Again, we implement a simple look-up that returns HighBits
times 2γ2 – which is efficient for the same reasons as explained above – and we
subtract the result from the coefficient to obtain the low bits and check their
norm without storing them.

Hint. We store the hint in two registers, i.e., one storing the 1’s offsets and the
other one storing the k polynomial boundaries in the same format as specified
for the packed signatures. For the MakeHint operation, we have w − cs2 and
w − cs2 + ct0 stored separately such that both can be read simultaneously.
Eventually, we look up both HighBits and if differing, a new offset is shifted in.
Further, for the UseHint operation, the hint module looks up the HighBits for

224 G. Land et al.

each coefficient, i.e., both for h=0 and h=1. Then, selecting the correct one,
the value is shifted into a buffer register for sampling (as described before) and
absorbed to compute the value c̃, which ultimately is compared to the value of
the signature during verification.

Memory Access. In-place NTTs as deployed in our implementation usu-
ally require polynomials to be re-orderd according to a bit-reversal permuta-
tion. Our NTT with two BFUs requires reading and writing four coefficients
simultaneously, which is ensured by distributing the coefficients according to
Eqs. 1 and 2. However, this also ensures that four coefficients with position
br(i), br(i + 1), br(i + 2), br(i + 3) (with 4|i) are placed in different memories.
As a consequence, we can access polynomials either in bit-reversed order or in
normal order, which eliminates the necessity of an explicit re-ordering opera-
tion. Our implementation makes use of this either by sampling polynomials in
bit-reversed order or by accessing polynomials in bit-reversed order during NTT.

Single-Task Cores. In order to instantiate single-task cores that only support
a subset of operations which are sufficient to perform either key generation,
signing, or verification (see Table 1), we adjust the opcode decoder in our top
level module and delete all unnecessary module instantiations. Furthermore, we
adjust the load module such that only values that are generated by the respective
single-task core can be packed and loaded. Similarly, we adjust the store module
such that only values can be unpacked and stored that are necessary for the
respoective single-task core. Thus, by applying slight changes to three files, a set
of single-task cores is generated. Note that in order to adjust the security level,
a single-line change is sufficient. Additionally, we generate memory mappings
for each single-task core that exclude all polynomials which are not used in the
respective core, resulting in a lower BRAM usage.

4.2 Utilization and Performance Results

This section provides area utilization and performance results obtained after
Place-and-Route (PnR) on a Xilinx XC7A100T Artix-7 FPGA using the
Vivado 2020.1 tool suite.

Utilization. Table 2 lists the results for resource utilization as well as the maxi-
mum frequency fmax obtained after synthesis and implementation. As expected,
the LUT, FF, and BRAM utilization increases with the parameter sets, while
the DSP utilization, governed by the NTT and MACC modules, is independent
of the parameter sets.

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 225

Table 2. Resource utilization and performance on a XC7A100T FPGA

Param. Set Core Utilization fmax KeyGen Signpre Sign Verifypre Verify

LUT FF DSP BRAM MHz OP/s OP/s OP/s OP/s OP/s

II Full 27433 10681 45 15 163 8692 16905 2435 14938 18595

Keygen 11064 7209 45 11 221 11772 – – – –

Sign 18028 9166 45 15 179 – 18557 2673 – –

Verify 12118 7551 45 11 200 – – – 18331 22819

Cycles: 18 761 9 647 66 966 10 917 8 770

III Full 30 900 11 372 45 21 145 4 368 7 993 1 375 7 242 11 966

Keygen 14 285 8 588 45 17 205 6 203 – – – –

Sign 21 832 10 245 45 21 174 – 9 603 1 659 – –

Verify 14 911 8 209 45 15 200 – – – 10 017 16 551

Cycles: 33 102 18 089 105 129 19 966 12 084

V Full 44 653 13 814 45 31 140 2 750 4 152 1 250 3 868 8 517

Keygen 19 319 10 138 45 25 202 3 954 – – – –

Sign 29 331 12 867 45 31 158 – 4 691 1 412 – –

Verify 17 527 9 984 45 23 197 – – – 5 424 11 944

Cycles: 50 982 33 767 112 145 36 250 16 462

Performance. Table 2 shows performance results for our implementations as
the average over 1000 executions on random inputs. For signature verification,
we report cycle counts for valid signatures only. More precisely, since the norm
check of z, taking less than 100 cycles, is performed at the beginning, an invalid
signature is processed subtantially faster. Besides, for signature generation, the
cycle count spreads widely due to the nature of Dilithium. For the best-case sce-
nario, in which a signature candidate is accepted after the first iteration, signing
takes 19423, 26979, and 36609 cycles for Dilithium-II, III, and V, respectively.

Components. Table 3 shows the area consumption obtained after PnR for
selected components. Additionally, cycle counts for the single operations are
given.

4.3 Comparison to Existing Work

In out-of-context synthesis, we achieved a frequency of 311MHz with a utiliza-
tion of 524 LUTs, 759 FFs, 17 DSPs and 1 BRAM for our NTT. For NTT/iNTT,
our implementation takes 533/536 cycles. In Table 4, we compare our NTT design
to others. To the best of our knowledge, we are the first to report detailed per-
formance numbers including latency for the Dilithium NTT as Ricci et al. [13] do
not report cycle counts. Thus, we also include NTT implementations for different
moduli and polynomial degrees. For a fair comparison, it is worth noting that
the polynomial degree n mainly impacts the latency since an NTT has complex-
ity O(n log n), while the modulus size �log2 q� defines the area of the arithmetic
circuit which dominates the overall size.

The implementation from [13] achieves a very high frequency since it operates
on the high-end Virtex-7 platform. Other implementations that target the same

226 G. Land et al.

Table 3. Area consumption and performance of selected components

Param. Set Component Operation Utilization Clock cycles

LUT FF DSP BRAM

All NTT Forward 444 421 17 1 533P

Inverse 536P

All MACC MACC 641 751 24 – 85P

Add/sub 75P

All Keccak Permute 3708 1623 – – 24

Absorb ≥42M

Squeeze 1 per 4B

II Matrix-vector multiplication 2129 59 – – 2370

III 2774 49 – – 3019

V 4591 46 – – 4434

II Expansion Expand Â 198 142 – – 9647

III 1021 144 – – 18089

V 1316 144 – – 33767

II Sampler Sample c 312 458 – – 946

III 411 547 – – 1417

V 384 662 – – 2050

II Sampler Sample s1, s2 143 44 – – 3176

III 114 48 – – 6750

V 163 45 – – 5953

II Sampler Sample y 244 43 – – 1654

III 112 42 – – 2147

V 469 48 – – 3006

PMultiple consecutive operations are pipelineable MDepending on the master module

polynomial ring size n = 256 and target Artix-7 FPGAs are presented in [3,18].
The first one offers a similar latency like our implementation, but due to the
modulus supporting only 7 layers of NTT instead of 8, the gap is larger in
practice. Note that regarding LUTs and FFs, our implementation has a similar
area usage despite the 10 bit larger modulus. The reason for this is our heavy
usage of DSPs. Finally, we compare to three NTT implementations with a smaller
gap for the modulus size, but a higher polynomial degree. As expected, these
implementations have a higher latency due to the bigger n. However, we expect
that our implementation would have a latency of about 3.8 μs for n = 512 and
about 8.4 μs for n = 1024 at the cost of a minor increase in area usage5. Overall,
our NTT implementation features a low LUT and FF usage and at the same
time, the fmax is, to the best of our knowledge, significantly higher than for any
other known design on Artix-7.

It is worth noting, however, that the comparison has several limitations: Our
implementation results have been achieved with out-of-context synthesis and
subsequent PnR, without connection to the memory that contains the poly-
nomials. For other implementations, like [19], the authors do not report what
exactly is contained in the NTT-only implementations and how the utilization
and performance numbers are found, although the numbers indicate that some-

5 Doubling the polynomial degree can be achieved by increasing the size of an internal
counter by 1 bit.

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 227

Table 4. Comparison of hardware designs for NTT implementations

(n, q) Platform Utilization f t Ref.

LUT FF DSP BRAM MHz µs

256, 8380417 XC7A100T 524 759 17 1 311 1.7 This

256, 8380417 XCVU7P 1798 2532 48 3.5 637 – [13]

256, 3329 XC7A35T 609 640 2 4 257 1.9 [18]

256, 7681 XC7A200T 533 514 1 3 – 17.1 [3]

256, 7681 XC7A200T 479 472 1 2 – 16.7 [3]

1024, 12289 XC7Z020 847 375 2 6 244 10.5 [19]

512, 12289 XC7Z020 741 330 2 5 245 5.3 [19]

512, 12289 V6LX75T 994 944 1 3 278 14.8 [14]E

EExcluding area usage for sampler and random number generator.

how a polynomial memory is connected. The advantage of our approach, to use
an out-of-context synthesis without memory connection, is that a good approx-
imation of the real fmax of the arithmetic is given. The operational frequency
for a design that features our NTT then oviously depends additionally on the
exact memory layout of the overall design, which however is not depending on
the NTT itself.

In Table 5, we compare our implementation of Dilithium-III with other rel-
evant implementations of post-quantum signature schemes on reconfigurable
hardware. In contrast to existing implementations of Dilithium for Artix-7 [16]
and Virtex-7 [13] which report area utilization, frequency, and latency individu-
ally per operation, we would like to emphasize that in addition to our single-task
cores, our full core combines and embeds all operations in a single architecture.
Additionally, since our cores feature precomputation operations for signing and
verification, performing these for multiple messages under the same key can be
speeded up significantly. In particular, for signing, 104 μs are spent on precom-
putations for the single-task core at security level III. For verification, precom-
putations take 100 μs at security level III, so the actual verification latency is
about 60 μs in that case.

Notably, our architecture outperforms existing solutions either in terms of
resource utilization or throughput thus provides a compact, self-contained, and
efficient solution for post-quantum secure digital signatures. In general, our
design focuses on a reasonable trade-off between area consumption and perfor-
mance degradation, in order to provide a modestly large and fast architecture.

228 G. Land et al.

Table 5. Comparison of hardware design for PQC signature schemes

Oper. Scheme Platform Utilization f t Ref.

LUT FF DSP BRAM MHz µs

KeyGen Dilithium-IIIF XC7A100T 30900 11372 45 21 145 229 This

Dilithium-III XC7A100T 14285 8588 45 17 205 161 This

Dilithium-IIIR XCVU7P 54183 25236 182 15 350 52 [13]

Dilithium-IIIR,H Artix-7 86646 17674 – – 119 1955 [16]

qTesla-3H Artix-7 111122 23398 – – 79 45650 [16]

Sign Dilithium-IIIF XC7A100T 30900 11372 45 21 145 852 This

Dilithium-III XC7A100T 21832 10245 45 21 174 709 This

Dilithium-IIIR XCVU7P 81530 83926 965 145 333 63 [13]

Dilithium-IIIR,H Artix-7 90567 21160 – – 114 14140 [16]

qTesla-3H Artix-7 126008 25984 – – 79 7441 [16]

GLP Spartan-6 7465 8993 28 29.5 – 1074 [11]

Rainbow-IaC Kintex-7 27712 27679 0 59 111 18 [6]

Rainbow-IcC Kintex-7 52895 32476 0 67 90 11 [6]

SPHINCS-256 Kintex-7 19067 38132 3 36 525 1530 [1]

Verify Dilithium-IIIF XC7A100T 30900 11372 45 21 145 222 This

Dilithium-III XC7A100T 14911 8209 45 15 200 160 This

Dilithium-IIIR XCVU7P 61738 34963 316 18 158 95 [13]

Dilithium-IIIR,H Artix-7 65274 15169 – – 114 2491 [16]

qTesla-3H Artix-7 84834 17604 – – 79 1926 [16]

GLP Spartan-6 6225 6663 8 15 – 1002 [11]
FFull core RRound-2 parameters HHigh level synthesis CCore enabling signing and verifi-

cation

5 Conclusion

In this work, we present the first set of FPGA implementations for all three
round-3 parameter sets of Dilithium for the low-end Artix-7 platform. Our design
follows a universal design goal, featuring low latency compared to implementa-
tions of other post-quantum secure signature algorithms on the one hand, but
still having a low area footprint on the other hand, making the usage of Dilithium
feasible for many low-cost and constrained scenarios. As a highlight, our imple-
mentations can be used as full-service processors for Dilithium, being capable
of performing key generation, precomputations, signature generation, verifica-
tion, arbitrary-length message digesting as well as key and signature packing
and unpacking.

Acknowledgments. The work described in this paper has been supported in part
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, by the H2020
project PROMETHEUS (grant agreement ID 780701), and by the Federal Ministry
of Education and Research of Germany through the QuantumRISC (16KIS1038) and
PQC4Med (16KIS1044) projects.

A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware 229

References

1. Amiet, D., Curiger, A., Zbinden, P.: FPGA-based accelerator for post-quantum
signature scheme SPHINCS-256. IACR Trans. Cryptogr. Hardw. Embed. Syst.
(2018)

2. Banerjee, U., Ukyab, T.S., Chandrakasan, A.P.: Sapphire: a configurable crypto-
processor for post-quantum lattice-based protocols. IACR Trans. Cryptogr. Hardw.
Embed. Syst. (2019)

3. Chen, Z., Ma, Y., Chen, T., Lin, J., Jing, J.: High-performance area-efficient poly-
nomial ring processor for crystals-kyber on FPGAS. Integr. (2021)

4. Ducas, L., et al.: A lattice-based digital signature scheme. IACR Trans. Cryptogr.
Hardw. Embed. Syst, CRYSTALS-Dilithium (2018)

5. Ducas, L., et al.: CRYSTALS-Dilithium - Algorithm Specifications and Supporting
Documentation (Version 3.1). Technical Report (2021). https://pq-crystals.org/
dilithium/data/dilithium-specification-round3-20210208.pdf

6. Ferozpuri, A., Gaj, K.: High-speed FPGA implementation of the NIST round 1
rainbow signature scheme. In: 2018 International Conference on ReConFigurable
Computing and FPGAs - ReConFig 2018 (2018)

7. Fouque, P.-A., et al.: Falcon: Fast-Fourier Lattice-based Compact Signatures over
NTRU - (Specification v1.2 - 01/10/2020). Technical Report (2020). https://falcon-
sign.info/falcon.pdf

8. Greconici, D.O.C., Kannwischer, M.J. , Sprenkels, D.: Compact dilithium imple-
mentations on Cortex-M3 and Cortex-M4. IACR Trans. Cryptogr. Hardw. Embed.
Syst. (2021)

9. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

10. NIST. Call for Proposals - Post-Quantum Cryptography — CSRC. Tech-
nical Report, NIST (2017). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals

11. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

12. Post Quantum Cryptography Team. Post-Quantum Cryptography: NIST’s Plan
for the Future. Technical Report, NIST (2016). https://csrc.nist.gov/csrc/media/
projects/post-quantum-cryptography/documents/pqcrypto-2016-presentation.
pdf

13. Ricci, S., et al.: Implementing crystals-dilithium signature scheme on FPGAS. In:
Reinhardt, D., Müller, T. (eds.) ARES 2021: The 16th International Conference
on Availability, Reliability and Security, Vienna, 17–20 August 2021, pp. 1:1–1:11.
ACM (2021)

14. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 21

15. Shor, P.W.:. Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science (1994)

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://doi.org/10.1007/978-3-642-33027-8_31
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/pqcrypto-2016-presentation.pdf
https://doi.org/10.1007/978-3-662-44709-3_21
https://doi.org/10.1007/978-3-662-44709-3_21

230 G. Land et al.

16. Soni, D., Basu, K., Nabeel, M., Karri, R.: A hardware evaluation study of NIST
post-quantum cryptographic signature schemes. In: Second PQC Standardization
Conference (2019)

17. Thoma, J.P., Güneysu, T.: A configurable hardware implementation of XMSS.
IACR Cryptol. ePrint Arch. (2021)

18. Zhang, C., et al.: Towards efficient hardware implementation of NTT for Kyber
on FPGAS. In: 2021 IEEE International Symposium: On Circuits and Systems
(ISCAS) (2021)

19. Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly efficient architec-
ture of NewHope-NIST on FPGA using low-complexity NTT/INTT. IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2020)

Secure Implementations

Under the Dome: Preventing Hardware
Timing Information Leakage

Mathieu Escouteloup1(B), Ronan Lashermes1(B), Jacques Fournier2(B),
and Jean-Louis Lanet1(B)

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France
{ronan.lashermes,jean-louis.lanet}@inria.fr

2 Univ. Grenoble Alpes, CEA Leti, DSYS/LSOSP, Grenoble, France
jacques.fournier@cea.fr

Abstract. Numerous timing side-channels attacks have been proposed
in the recent years, showing that all shared states inside the microarchi-
tecture are potential threats. Previous works have dealt with this prob-
lem by considering those “shared states” separately and not by looking
at the system as a whole.

In this paper, instead of reconsidering the problematic shared resources
one by one, we lay out generic guidelines to design complete cores immune
to microarchitectural timing information leakage. Two implementations
are described using the RISC-V ISA with a simple extension. The cores
are evaluated with respect to performances, area and security, with a new
open-source benchmark assessing timing leakages.

We show that with this “generic” approach, designing secure cores
even with complex features such as simultaneous multithreading is pos-
sible. We discuss about the trade-offs that need to be done in that respect
regarding the microarchitecture design.

1 Introduction

Since Spectre [18] and Meltdown [20] attacks were published in 2018, the microar-
chitecture security is under scrutiny. Numerous attacks have now been demon-
strated [4,10,22,24,35] targeting the whole microarchitecture to extract infor-
mation from timing variations. These weaknesses in the design allow extracting
information across different security domains: a userland application can read in
kernel memory, a virtual machine (VM) can gain information on another VM,
etc. Unfortunately, on the software side, efficient countermeasures are lacking,
and radical solutions have been forcefully implemented. For example, in 2018, the
OpenBSD operating system (OS) decided [15] to disable Intel Hyper-Threading
(Intels’ simultaneous multithreading (SMT) technology) to avoid information
leakage between hardware threads (also called harts), an expensive approach
that cannot be reproduced for all hardware mechanisms: disabling Intel HT
leads to performance losses of up to 20% [19].

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 233–253, 2022.
https://doi.org/10.1007/978-3-030-97348-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_13

234 M. Escouteloup et al.

Motivation. Solutions have been proposed in the literature [7,12,16,17,25,32,
34], but they focus on some microarchitectural components in isolation. In this
paper, we outline new generic design rules based on first principles to prevent
timing information leakage, and build whole cores immune to them. In partic-
ular, we explore the instruction set architecture (ISA) modifications that can
help build secure designs for all cores, from simple microcontrollers to complex
microprocessors.

Contributions. In this paper we propose and implement a process to build cores
without microarchitectural timing leakage. After analysing the attacks in the
literature (Sect. 2), we extract the design rules that must be followed for leakage-
free implementations (Sect. 3). We propose an ISA modification to enable cir-
cumventing timing information leakage (Sect. 4). We implement two cores with
cache memories, branch prediction or SMT, free of timing leakage (Sect. 5). We
propose a security benchmark suite, timesecbench, that evaluate the timing leak-
age with respect to several microarchitectural components (Sect. 6). Our security
and performance evaluations highlight the trade-offs required to design leakage-
free cores (Sect. 6).

2 The Need to Redefine the Microarchitecture
for Security

Sharing is one of the basic principles used in modern cores for achieving high
performances, e.g. cache memories shared between cores or branch prediction
information between programs. But sharing leaks timing information between
users of the same resources, leaks which can be exploited by attackers.

2.1 Threats

Threat Model. In this paper, we consider the covert channels scenario where
shared resources are used to exchange information. The attacker controls both
the trojan application, sending information through timing dependencies and
the spy application, reading the information. The applications are supposed to
be located in different security domains. A security domain is delimited by a
unique security policy: different policies define corresponding domains. Resist-
ing to this threat implies that the system can thwart a side-channel scenario,
where the attacker only controls the spy and where the trojan only leaks informa-
tion unwillingly. We are interested in microarchitectural timing leakage, therefore
the timing information read by the spy must only be coming from the microar-
chitectural state of the core when the spy is executing. Thus, all trojans that
functionally leak information, by writing to memory or with a time-dependent
function, are out of scope in our paper.

Our threat model is the following: the attacker wins if she is able to transmit
information from the trojan to the spy. But she cannot use any architectural
means of communication (architectural features are the ones exposed by the

Under the Dome: Preventing Hardware Timing Information Leakage 235

ISA). The spy cannot measure the trojan execution time (time measurements
are architectural functionalities).

Shared Resources Attacks. Different kinds of sharing have been shown to be
sources of timing information leakages in modern processor architectures. Tim-
ing variations due to cache memories [6] have been known for many years, with
multiple variants in numerous implementations [13]. Similar results have been
achieved on different resources like branch prediction tables or translation looka-
side buffer (TLB).

The resource usage itself represents an interesting information that can be
recovered by measuring resource contention. Different works [3–5,29] have shown
the possibility to recover information from processors with SMT support. The
same kind of observation is also possible with mechanisms like cache controllers
shared between cores.

In 2018, timing leakage attacks have reached a new level of complexity with
transient attacks, adding the use of hardware techniques like speculation or out-
of-order speculation. In Spectre [18] or Meltdown [20] and their variants [9,10,28]
shared resources are used to leak information. It was an important lesson for
designers: even if ignored during many years, timing leakages are still present in
all modern systems.

2.2 Related Work

Since the publication of the first shared resource exploitation, new countermea-
sures are regularly proposed.

Hardware solutions modify the microarchitecture to ensure the security.
Simply removing the problematic mechanisms is not realistic from a performance
point of view [8,19]. Then, another approach is to design shared resources differ-
ently. Some solutions [11,17] try to partition cache memories among the users:
each of them has now only access to its own data. It can be spatial partitioning,
where the cache is split between the different users, and/or temporal partition-
ing by flushing the data at the end of a user’s execution. Another approach is to
remove the deterministic behaviour by introducing some randomization [21,26].
In this case, if timing leakages still exist, they do not depend on confidential
information. Both approaches have been known for many years [30], and can
also be combined to enforce the isolation [12]. Finally, proposals also concern
other mechanisms like speculation [16,34] or port contention [25].

Software solutions are also studied, where the application has to directly
consider the microarchitecture. Retpoline [27] tries to protect against branch
target injection used by Spectre [18] by influencing and redirecting speculation
when it is needed. Existing primitives for microarchitecture management can also
be used in some cases. lfence instruction exists in some x86 implementations [1]
to block branch prediction. Other primitives like clflush also exist to manage
cache structures.

If both pure hardware or software approaches have interesting properties,
they also suffer from significant disadvantages. With pure hardware solutions, the

236 M. Escouteloup et al.

software does not have to consider security issues on the hardware side. However,
no flexibility on the applied constraints is possible, harming the performances.
Conversely with pure software solutions, the application must perfectly know the
microarchitecture to protect itself from attacks on the hardware side, harming
its portability. More importantly, it also needs a way to manage all the different
mechanisms with dedicated primitives. It therefore leads to study the role of the
ISA.

The ISA is the interface between the hardware and the software. It creates
an abstraction of the hardware for the software. Here again, two strategies have
been explored to modify the architecture for security purposes. Regarding the
previous software solutions, a first one is to break this abstraction role to allow
a better microarchitecture management from the software. This functional app-
roach [14,33] focuses on designing a complete augmented ISA where hardware
shared features must be directly manageable with software. In our opinion, these
works all suffer from the same conceptual weakness: they consider the timing
problem as a microarchitectural design issue. Instead, the problem lies in the lim-
ited ISA semantics regarding security notions: the issue cannot be solved only
by flushing microarchitectural elements, at the risk of forbidding multithreaded
or multicore processors, which require spatial sharing. Other works have shown
the efficiency of a more abstract approach, by allowing an ISA interface to guide
the resource management by the hardware. MI6 [7] adds a new purge instruc-
tion to flush microarchitectural state independently of the implementation. The
DAWG [17] proposal offers new registers to the software to parametrize security
domains in cache-like structures. In ConTExT [23], a dedicated bit is added to
each page entry to indicate if transient execution is possible or not.

However, these solutions are still considering only some specific shared
resources and not the problem as a whole. By focusing on microarchitectural
elements in isolation, they are still missing the bigger picture: we do not want
to add numerous mechanisms to finely control the cache or the speculation
behaviour. This path leads to stacking of countermeasures, to complex systems,
to poor portability (how to use ConTExT [23] without virtual memory?) and
will severely limit the possibility one day of having formal security guarantees for
the software running on such processors. Instead of fine-tuning the microarchi-
tecture, we prefer a formal contract between software and hardware. This leads
to our contribution where the fully abstract approach allows a clear organiza-
tion. The ISA must allow the software to communicate its security properties to
the hardware.

3 Design Guidelines

Shared resources must be designed by considering security constraints. Secure
design guidelines can be crafted to avoid timing leakages by considering the
attack models based on known attacks.

Under the Dome: Preventing Hardware Timing Information Leakage 237

3.1 Definitions and Goals

We call shared resources all states or elements which can be assigned to different
users. A resource is temporally shared when multiple users can request it at
different times. A resource is spatially shared when multiple users can request it
simultaneously. Spatial and temporal sharing are not exclusive: some resources,
particularly caches, can use both. For the rest of this paper, we define a user as
a security domain which must be isolated from the other ones.

In any implementation, shared resources are limited in number: this is one
of the reasons they are shared. A system with multiple security domains implies
that at least one piece of information will inevitably be leaked between them: the
availability of the resource. If a resource is used by a security domain, it becomes
unavailable for another domain. By construction, this cannot be avoided. Yet it is
possible to overcome this difficulty by distinguishing between static and dynamic
availability. The dynamic availability is the possibility for a resource to be used
at any point in time as long as it is not already requested. Static availability
is the possibility for a security domain to lock a resource for a potential future
usage. When the security domain locks the resource, we say that it is allocated, in
which case it is no longer available but not necessarily “used”. To allow correct
execution of a security domain, resource allocation must be done during its
creation and kept during its whole lifetime.

While dynamic availability leaks information with precise execution timings
that can be exploited with port contention attacks [4], static availability does
not permit this kind of leakage. In our case, we only allow static availability as
information leakage, giving the following security property:

Shared Resource Security Property. The only information that a security
domain may extract from a shared resource is the domain’s own data or the
resource’s static availability.

Then, the different shared resources must be modified to prevent other infor-
mation leakages. These modifications needed to safely support security domains
can be summarized in three main strategies: lock, flush and split.

3.2 Resource Availability: Lock

Design Guideline 1: Static Allocation. The different minimal resources
needed by a security domain must be allocated during the domain creation and
locked until its deletion.

Each shared resource can only support a limited number of security domains,
which can be one (only temporal sharing) or more (temporal and spatial sharing).

Static allocation allows having the exclusivity of a resource in order to use
it without execution timing leakages. Obviously, it is necessary only in systems
where multiple security domains can simultaneously be executed, leading to
potential spatial leakages. Allocation is simplified when only one security domain
can exist at any time in the whole system: it can simply use all the different
resources.

238 M. Escouteloup et al.

3.3 Temporal Resource Sharing: Flush

The static allocation cannot last forever and the resource must be released even-
tually to make a place for another security domain. The resource design must
ensure that there is no leakage between the security domains, which leads to the
following guideline:

Design Guideline 2: Release. When a security domain ends, all its associated
resources must be released only when all persistent states have also been erased.

We call “persistent states” all information stored in registers or memories
whether data, metadata, finite-state machine (FSM) states etc. All of them are
associated with a security domain for which the associated data must be removed
before allowing allocation from another security domain. Different works [7,33]
have shown that flushing resources is efficient to make a temporal isolation bar-
rier. Then, all temporally shared resources must support it.

3.4 Spatial Resource Sharing: Split

In some cases, lock and flush strategies are enough: e.g. if there is only temporal
sharing. But fully locking a resource in an exclusive way during each execution
can be limiting. Some resources need to handle requests from different users
simultaneously. In this case, the correct strategy is partitioning, also called split.
Such a resource must be able to isolate all users from each other.

Design Guideline 3: Partitioning. A resource able to handle requests from
multiple security domains simultaneously must be able to partition each domain
state in its own isolated compartment. States and data cannot be shared.

In other words, any spatially shared resource must be split between the secu-
rity domains. It can be seen as resources with multiple lock slot: multiple security
domains can simultaneously lock a part of this resource, but without any inter-
action between them.

Because split is only a form of sharing, it also has both temporal and spatial
variants. In a temporal split, the resource is successively available for each user
and only seems simultaneously available at a global scale. It is simply a way of
transforming a partial simultaneous sharing in a local temporal sharing where
lock and flush strategies are applied. With spatial split, the resource is truly
simultaneously available for each user at any time. It leads to our last design
guideline:

Design Guideline 3: Availability Split. A spatially shared resource must
ensure that, at any given time, its availability for any security domain is inde-
pendent from the domains being served.

Partitioning can take several forms depending on the targeted resources [11,
12,17,25,30]. To efficiently apply all these strategies, the hardware must finally
be informed about the security domain switching.

Under the Dome: Preventing Hardware Timing Information Leakage 239

3.5 Exclusive Allocation and Heterogeneity

As mentioned previously, static allocation only prevents the detection of a
resource usage, not its availability. In the case of heterogeneous systems, this
information can be exploited to build a covert channel. We call a system het-
erogeneous when all the users do not have exactly the same resources. It is a
common organization in modern microarchitectures: all the threads or cores are
not necessarily equivalent, e.g. to satisfy different performances or power con-
straints. Then, if the trojan allocates some resources and not others, a message
can be sent to the spy: the latter can deduce the trojan allocation from mea-
suring its own available resources. In a completely secure system without even
covert channels, we can deduce the following guideline:

Design Guideline 5: Homogeneity. During their execution, all users must
be treated equally, by allocating the same resources in types and numbers.

Obviously, strictly applying this rule can be very restrictive: no flexibility
is allowed in the resource allocation. If the natural solution would be to have
strictly duplicated cores with their own resources, we will present in the next
section a manner to prevent this covert channel while preserving some flexibility.

4 Domes

The security domains can only be defined at the software level through the
applications themselves. To enforce the shared resource security property we
defined above, the hardware has to be aware of the security domains. Therefore
to communicate their boundaries to the hardware, the ISA must be modified. In
this section, we present our proposal to modify the RISC-V ISA.

4.1 Fine-Grained Security Domains

In current systems, we can find several implementations of security domains.
They are the result of a historical evolution of the security needs due to the
evolution of the threats. The mostly used and classic security domains are the
privilege levels, notably separating the kernel from the userland.

However, in the case of sharing, these domains are too coarse-grained. An
application may want to isolate tasks (e.g. a web server isolating several clients, a
web browser sandboxing its tabs) while having only one address space. It justifies
the works such as ConTExT [23] where security domains are proposed at page
granularity, Time-Secure Cache [26] at process granularity or a completely new
security domain notion managed by the software in DAWG [17]. This domain
notion must now be used by the hardware to manage all the shared resources.

240 M. Escouteloup et al.

4.2 Fence or Context

Boundaries of the security domains have to be communicated from the software
to the hardware. In classical systems, privilege levels are changed with a dedi-
cated mechanism, often with specialized instructions. Similarly, we must define
the mechanism that allows switching between fine-grained security domains.
Before the precise ISA modifications, we must choose between two possible
semantics.

The first possibility is to use stateless switches between domains called
fences, similarly to the timing fences from Wistoff et al. [33]. In this case the
boundary between domains is specified by a dedicated fence.t instruction that
separates the security domains before and after the instruction. Typically, the
execution of this fence must ensure that all states associated with the current
security domain are flushed out of the microarchitecture. Finally, fences are par-
ticularly efficient for creating temporal security domains: each one is delimited
by the previous and the next fences. But this approach does not consider spatial
sharing: for example the hardware has no information to decide whether two
harts are in the same security domain.

The second possibility is the use of contexts, a stateful switch. Each microar-
chitectural resource, state or data is at any time explicitly or implicitly associated
with a security domain which constitutes the context. With this information, the
resource can be adapted to the execution and may share states (same domains)
or isolate them (different domains), both temporally and spatially. The context
semantics gives more power to the microarchitecture than fences, but increases
the system complexity.

Since we want a global solution able to consider all the different shared
resources in the microarchitecture, we choose the context semantics. We call our
specific implementation a dome. A dome is an execution context that corre-
sponds to one security domain. At any given time, each hart is assigned to a
unique dome but several harts can share the same dome. At the microarchitec-
ture level, it defines which resources can be used by each hart: all instructions
and microarchitectural states are implicitly or explicitly assigned to the corre-
sponding dome.

4.3 ISA Changes for Dome Support

Adding dome support in a core requires to augment the ISA with new instruc-
tions, new registers and the corresponding hardware modifications. This proposal
can be seen as an extension over the base RV32I [31]. Our goal here is to analyse
the ISA with context support: their role, what is needed and the consequences.
The contextualization can be implemented in different ways and only one is
described in the rest of this paper. Because our proposal does not use specific
features of the RISC-V ISA, the same principles can be exported to other ones
like x86, ARM etc.

Under the Dome: Preventing Hardware Timing Information Leakage 241

Dome Identifier. Each dome is represented by a unique number, the dome iden-
tifier, stored in a dedicated register domeid, one per hart. This register is read-
only, since a dome cannot dynamically change its own configuration. domenextid
is the register that indicates the identifier of the next dome when a context
switch occurs. The current dome can write into this register. These registers are
considered as new Machine-level control and status registers (CSRs): they are
manageable by the same instructions described in the RISC-V ISA [31].

Fig. 1. Resource lifecycle with static allocation.

When our next dome configuration is ready, we need to switch to the new
domain with the dedicated instruction dome.switch. Each resource has a lifecy-
cle described in Fig. 1. Allocated resources have to be flushed and then released,
before those needed by the new dome are allocated. At the same time, domeid
must be updated: it receives the information present in domenextid. If we want
to free all resources from a security domain, for example before turning the
machine off with write-back caches, it is enough to switch to a new domain.

Dome Capability. Sometimes, there are not enough resources in number to satisfy
the needs of each hart. For example, we may think of a system with only one
cryptographic accelerator, one floating-point unit, or as in our case one multiply
and divide execution unit (MULDIV) execution unit. To deal with this case, we
add new registers to store the dome capabilities, specifying if the dome needs
access to these few resources: domecap and domenextcap. Bits are set in these
registers if the dome has or need access to some predetermined features (such as
RISCV M extension) that map to hardware resources.

Upon a switch, the system will try to lock the resources corresponding to
the capabilities of the next dome. Therefore dome.switch rd can now fail if the
resources asked are not available; in case of success rd is set to 0.

4.4 Software Implications

In addition to having an impact on the hardware, the ISA also changes the way
software must be designed.

242 M. Escouteloup et al.

Compiler. The RISC-V ISA naturally suggests linking a capability bit for each
supported extension: because each instruction is already associated to an exten-
sion, the compiler knows when a piece of code requires a capability. As a con-
sequence, the compiler can automatically insert the proper instructions for a
dome switch (capability and all), apart from the next dome identifier. Indeed,
identifying the security domains is part of the application logic.

Dome Management. In our implementation, domes are managed by the higher
level of privilege, the Machine-level. It is responsible for selecting the correct
IDs and capabilities for the different domes where are executed the applica-
tions. It must also perform the different switches needed. Domes are only tools
to allow isolation of the software and, as any tool, they can be used improp-
erly. Software developers have to be aware that these guarantees are offered at
dome granularity. Monolithic systems are not going to take full advantages of
the dome switching guarantees, while too many dome switches can make static
resource allocations similar to dynamic ones. Also, since capabilities are in con-
tradiction with the Design guideline 5, it is the responsibility of this higher
privilege-level to ensure that multiple domes are not trying to communicate
with resource allocation, e.g. abusing dome.switch. This can be detected with
a failing dome.switch.

Spatial Sharing in the Single Hart Case. The cost of dome switching can be
high in some scenarios. For example, in the case of an exception, all the shared
resources must be flushed twice. It can be interesting to allow some spatial
sharing, even in a single hart case, between an active dome currently being
executed and a background dome that will eventually be returned to.

5 Implementation

To demonstrate and validate our design rules, we build several cores with a mod-
ular architecture that are evaluated in Sect. 6. We choose the Chisel language to
allow a better modularity and configuration management. It becomes particu-
larly easy to compare designs by only modifying some parameters: dome support
can be enabled by switching a boolean variable to true. Code for our cores and
the evaluations are available online: https://gitlab.inria.fr/mescoute/hsc-eval.

5.1 Target Description

Global View. To evaluate dome support in the case of a simple core but also with
spatial sharing, two cores have been implemented. The first core, named Aubrac
is based on a 5-stage in-order pipeline. The second core, named Salers, is a more
complex dual-hart 6-stage in-order pipeline as illustrated in Fig. 2. In Salers,
the two harts are running simultaneously and can be switched off using custom
CSRs: one hart working alone takes all the resources and a classic superscalar
execution is achieved.

https://gitlab.inria.fr/mescoute/hsc-eval

Under the Dome: Preventing Hardware Timing Information Leakage 243

Fig. 2. Global view of the Salers core microarchitecture.

These two cores are implementations of the open-source RISC-V RV32IM
ISA [31], with CSR and fence.i support. Both cores have separate first-level
write-through cache memories for instructions (L1I) and data (L1D) with branch
prediction and basic speculation mechanisms through a branch history table
(BHT) and a branch target buffer (BTB). The different modifications, described
later in this section, are represented with a dedicated dome unit and with existing
modified components bordered with red dotted lines.

Shared Resources. These cores are designed to model multiple resource sharing,
allowing reproducing a representative sample of attacks from the literature. Sev-
eral temporally shared resources have to be considered in both cores. The most
obvious ones are cache lines in L1I and L1D or the prediction tables. But this
also applies to the pipeline, cache controllers or replacement policy registers.

Spatially shared resources are only present in the Salers core, including cache
memories and execution units. Since the latter are shared between harts, port
contention might occur. Particularly, our MULDIV represents a worst case: oper-
ations take many cycles (8 to 32 cycles), timing variations are possible depending
on the operation (division or multiplication) and more importantly, there is only
one unit for two potential users. When one hart is using this unit, if the other one
needs it too, it must wait until the unit is released. This kind of problem is not
exclusive to execution units, and is valid for each resource not spatially shared
and present in fewer instances than the potential users. For example, port con-
tention could be possible, in our design, with cache memories. They are spatially
shared and can securely handle transactions with the pipeline, but contention is
possible with the next memory level without the special care described below.

244 M. Escouteloup et al.

5.2 Aubrac Core

In the case of the Aubrac core, only one hart is running at a time: there is no
need to support the simultaneous execution of multiple domes. Modifications are
simply needed to have dome support (dedicated instruction and CSRs) and to
ensure that there is no persistent traces after a dome switch. For that purpose, a
dedicated execution unit implements a simplified version of the FSM described in
Fig. 1. Since only temporal sharing exists here, free and allocate steps are merged:
all the resources are always allocated by a dome. The release only occurs when
all the resources are empty after the flush cycles.

5.3 Salers Core

In the case of the Salers core in the Fig. 2, two harts are running simultaneously.
We need to ensure dome security properties even with spatial sharing. In addition
to the flush strategy, resource allocation with split and lock strategies must
also be implemented. We find the different modified components which now also
support partitioning and a more complex dome unit, responsible for the resource
allocation and release in addition to flush.

Allocation and Release. During a dome switch, allocation and release must be
performed in the case of spatial sharing. To manage each kind of spatially shared
resource, a mechanism called spread resource unit has been implemented. It is
responsible for associating each resource with a dome depending on the received
allocation and release requests. For example, we have one unit dedicated to the
arithmetic and logic units (ALUs), another for the MULDIVs, etc.. They are all
implemented in the dome unit in the Fig. 2 and are accessed before performing
a dome.switch.

After the allocation, each resource is tagged with its corresponding dome
and has a port number inside this context. Only free resources can be allocated
and, to respect as much as possible the Design guideline 5, this allocation is
always fixed. Then, independently of the resources available, the same number
will always be allocated: only the types can change depending on the capabilities.
Finally, when the execution of a dome is ended, it sends a release request to flush
and free resources.

The number of implemented spread units depends on the number of spatially
shared resources. During a switch, requests to release and allocate resources are
sent to the spread units to respect the resource lifecycle. The final result of a
dome.switch depends on the results of the requests to all spread units.

Spatial Sharing. Spatial partitioning has been applied for cache memories. It is
a well-known mechanism to allow execution of multiple security domains in the
memory hierarchy, with multiple variants. In our case, we decided to use soft-
partitioning at the way-level. Then, each way is viewed by the corresponding
spread unit as a different allocable resource. When a memory request is received
by the cache, the dome tag of the request and the one of each way are compared

Under the Dome: Preventing Hardware Timing Information Leakage 245

to know if the data can be accessed. It is interesting to note that this is a locking
strategy applied locally on each way, leading to a splitting strategy at the scale
of the whole cache.

Cache controllers and memory bus to the main memory are other interesting
cases in our design, because they cannot be fully duplicated nor fully locked since
they are required for all executed domes. A hybrid approach between spatial
and temporal sharing is used in the form of fine-grained multithreading. The
controllers can be requested only during a fixed cyclic period by each dome,
which has an impact on the cache miss operations. The memory bus has also been
modified to support dome id transmission: the master controller is responsible
for making bus contention transparent.

Based on the previously defined strategies, multiple implementations are pos-
sible for the same design: only some possible choices are described in this paper.
This is the designer’s role to decide where and when which mechanisms are
more interesting depending on her constraints: execution units can also be time
partitioned, prediction mechanisms partially shared if not fully duplicated etc.

6 Evaluation

6.1 Security Evaluation

Timesecbench. In order to validate the security properties of our approach, we
propose Timesecbench: a security benchmark suite that measures timing leak-
ages in various scenarios. It is inspired by the Embench [2] performance bench-
mark and is fully available online: https://gitlab.inria.fr/rlasherm/timesecbench.
Obviously, even if the benchmarks can be customized independently of the pro-
cessor, the microarchitectural mechanisms under test must be implemented. This
benchmark suite can be expanded to test other mechanisms or different cores.

Six different attacks are currently available in our security benchmark target-
ing cache memories, branch prediction mechanisms and execution units. They
have been designed with the same following covert channels scenario: a trojan
tries to send information to a spy by exploiting timing information leakage due
to shared resources. Inspired by the work of Ge et al. [14], for each attack we
measure a timing associated with the trojan sending a value i (column index)
and the spy reading a value j (row index).

We then apply a discrimination criterion (here minimal timing for the spy
reading a given value) giving a probability for the spy to read a value j when
the value sent by the trojan is i. The benchmarks are executed without any OS,
cancelling most noises between tests, allowing a better control of the system and
thus reinforcing the power of the attacker. From this joint probability matrix, we
can compute the mutual information MI, that gives the amount of information
that can be sent through the channel for a uniform distribution at input. The
normalized values for our benchmarks are presented in Table 1: it gives the pro-
portion of the trojan information that can be recovered by the spy. For example,
in the L1I case, the trojan sends a 3-bit symbol through the channel (choose
one set among eight), but the spy can only recover 46% of it (or 1.37 bits per

https://gitlab.inria.fr/rlasherm/timesecbench

246 M. Escouteloup et al.

symbol). The channel is closed, i.e. our design is secure if the mutual information
is zero.

For our security analysis, the benchmarks have been executed on both unpro-
tected and protected versions of Aubrac and Salers cores. In the case of protected
designs, trojan and spy are placed in two different domes.

Benchmark Results. All the benchmark results are shown on Fig. 3. The first two
benchmarks evaluate timing leakage for both cache memories L1D and L1I on
Aubrac. The trojan encodes its value i by accessing the corresponding address,
either by loading a value (for L1D) or by executing an instruction (for L1I).
Since a dome.switch is performed after the trojan encoding and before the spy
decoding, it is able to prevent the timing leakage as illustrated on Fig. 3. In the
unprotected L1I case, the attack is not perfect as in the L1D case, due to the
presence of the benchmark own instructions in the L1I cache. Two benchmarks
target the branch prediction mechanisms BTB (for direct jumps) and BHT (for
branches) on Aubrac. Here the trojan trains the branch predictor to ensure that
only the i-th branch is accelerated by the branch predictor. Dome support is able
to remove this timing leakage. The results obtained on the unprotected versions
are polluted by the execution of the benchmarks themselves, that do include
branches and direct jumps. One benchmark attempts to transmit information
across harts on Salers through the L1D cache timing. This is similar to the
previous L1D benchmark but trojan and spy are executed on two different harts.
Interestingly, the timing depends on the value j read by the spy in this case.
This is an overhead due to the fine-grained multithreading technique used by the
memory controller. The last benchmark demonstrates that the MULDIV port
contention can also be used to encode information. In this case, if we enable dome
support, we cannot run this benchmark: the spy hart cannot lock the MULDIV
unit, as intended. The unsecured application cannot be run.

Table 1. Normalized mutual information for the 6 benchmarks in Timesecbench with
0 for no measured leakage.

Normalized MI L1D L1I BHT BTB Cross-L1D Port contention

Unprotected 1.0 0.46 0.38 0.31 0.46 1.0

Protected 0.0 0.0 0.0 0.0 0.0 X

In the scenarios that have been tested, our solution has removed all leakages:
timing information leakage cannot occur across security domain boundaries.

6.2 Performances/Cost Analysis

Dome support involves modifications in the whole microarchitecture. After eval-
uating its security efficiency, we need to analyse the impact on both perfor-
mances and area. The different measurements were carried out after perform-
ing synthesis and implementation with Vivado 2019.2 (default parameters with

Under the Dome: Preventing Hardware Timing Information Leakage 247

phys opt design enabled), targeting the Xilinx ZCU104 FPGA. Sixteen config-
urations are compared: we vary the cache size (1 kB or 4 kB), the next-Line
Predictor (NLP) support for branch prediction and the dome support, both for
Salers and Aubrac. Our goal is to compare both protected and unprotected ver-
sion of the same cores since performances and area overhead highly depend on
the implemented shared resources. Direct comparisons with other works are not
relevant: their implemented shared resources are different.

Performances Overhead. We start by evaluating the overhead in terms of clock
cycles to execute the Embench [2] benchmark suite. Considering that we do not
modify the critical path of our design, it is important to note that the clock
frequency is not impacted in our designs. The geometric means for the different
configurations are shown in Table 2. When comparing Aubrac and Salers, all
the Embench benchmarks but two are taken into account: aha-mont64 gives
an erroneous output and nbody is too slow and hits the simulation timeout (it
involves floating point arithmetic). The single versus dual hart comparison is
performed on Salers by taking into account three benchmarks (nettle-sha256,
nsichneu and slre) adapted to a multithreaded core.

Unprotected Protected Unprotected Protected

L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
py

 v
al

ue

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
yc

le
s

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
py

 v
al

ue

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
yc

le
s

BHT

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
py

 v
al

ue

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
yc

le
s

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
py

 v
al

ue

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
yc

le
s

L1I

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
py

 v
al

ue

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
yc

le
s

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
py

 v
al

ue

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
yc

le
s

BTB

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
py

 v
al

ue

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
yc

le
s

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
py

 v
al

ue

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
yc

le
s

Cross
L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
py

 v
al

ue

Trojan value

 2

 4

 6

 8

 10

 12

C
yc

le
s

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
py

 v
al

ue

Trojan value

 2

 4

 6

 8

 10

 12

C
yc

le
s

Fig. 3. Timesecbench timing matrices: horizontal variability denotes a timing leakage.

248 M. Escouteloup et al.

Table 2. Embench normalized timing geometric means, lower is better. Normalized
with respect to the Aubrac-1kB implementation.

Cache size 1 kB 4 kB 1 kB 4 kB
Aubrac Salers (1 hart)

1.00 0.86 0.95 0.90
Dome 1.00 0.86 1.16 0.92
NLP 0.92 0.78 0.95 0.81

NLP Dome 0.92 0.78 1.07 0.82

Cache size 1 kB 4 kB 1 kB 4 kB
Salers Single hart Dual hart

1.05 0.91 0.56 0.51
Dome 1.07 0.88 0.76 0.62
NLP 1.03 0.88 0.55 0.51

NLP Dome 1.05 0.86 0.75 0.61

From Table 2, we can see that dome support has no timing overhead for
Aubrac, as expected since the benchmarks run in the same security context. Yet
in the Salers case, dome support can really slow down the computation due to
cache partitioning as the cache size is in effect divided by two. In the worst case,
we can observe a loss of 20% on the runtime when L1 caches are split without
speculation. The cache influence is confirmed as multiplying the cache size by
four reduces the overhead by a factor of 2 (10%).

Table 3. Total timings (cycles) for the security benchmarks

Unprotected Protected Overhead% overhead
(cycles) per
dome.switch

L1D 27256 35880 +32% 67.4
L1I 57416 64264 +12% 53.5
BHT 1756202 1796774 +2% 19.8
BTB 445544 463443 +4% 35.0
Cross-L1D 188026 134395 −29% X
Port contention 59250 X X X

But our protection is meant to be used, we must therefore evaluate the
overhead due to switching domes. Obviously, since dome. switch performs a
microarchitectural flush, performances are impacted at the beginning of the new
dome execution: no data is stored in cache memories and we have cache and pre-
diction misses all the time. This can be seen on Fig. 3, where for example in the
L1D case we measure in the protected case a timing of 8 cycles, corresponding
to a miss, in all cases. Therefore, the cost of dome.switch is composed of both
the time for the flush and misses due to this operation. As shown in Table 3,
in these heavily domain switching scenarios, the average timing overhead is 68
clock cycles per switch for L1D and 54 for L1I.

We see that the total execution of the benchmark is significantly reduced
(−29%) with dome support with respect to the unprotected case for the Cross-
L1D benchmark. Upon investigation, this performance improvement is due to

Under the Dome: Preventing Hardware Timing Information Leakage 249

the better isolation between caches: one hart having a cache operation does not
slow down the other hart. The performance cost of having an effective cache
size divided by two is low in this case due to the extremely small program
executed for this evaluation. In our designs, flushing can be done in few cycles.
The cost of dome switching is mostly due to the penalty of increased misses in
the microarchitectural buffers. But this is not a universal rule: for example if
write-through caches allow efficient flushes, the story is different for write-back
caches. For these latter caches, upon a flush the data must be written back to
the upper memory level, which cannot be done rapidly.

Hence, the only parameter to modify the switch duration is the microar-
chitectural flush methodology. This criterion is highly dependent on the other
implementation choices.

Area Overhead. Area results for each core are presented in Table 4. Lookup
tables (LUTs) are necessary for the combinatorial logic whereas flip-flops (FFs)
are memory elements for storing states in the microarchitecture.

Table 4. FPGA resource utilization.

Cache size 1 kB 4 kB 1 kB 4 kB

Aubrac Salers

9, 370 LUTs ×2.62 21, 000 LUTs ×2.24

4, 408 FFs ×1.90 8, 270 FFs ×1.65

Dome ×1.03 ×2.62 ×1.09 ×2.14

×1.07 ×1.97 ×1.32 ×1.99

NLP ×1.30 ×2.93 ×1.27 ×2.58

×1.19 ×2.10 ×1.21 ×1.88

NLP Dome ×1.30 ×2.88 ×1.34 ×2.67

×1.26 ×2.17 ×1.52 ×2.20

Finally, the area cost to mitigate security issues due to temporal sharing is
only a few percents (between +3% and +0% of LUTs, in the same ballpark as
fence.t’s +1%[33]). The FFs increase in Aubrac core is more important (up to
7%) but must be qualified: it is mainly due to the addition of several CSRs in
a small core. Moreover, considering that a switch with only temporal sharing
simply performs a flush, these additional registers are not essential in this case.
On the other hand, the impact is much more important when spatial sharing
has to be considered because of its complexity. For the Salers core, we have a
significant impact of up to 32% in the number of flip-flops. It is mainly due to
new CSRs for both harts, a more complex dome unit with associated states for
each resource and cache controllers with temporal split. In this case, our results
are difficult to compare with other works on secure SMT [25]: we modify all the

250 M. Escouteloup et al.

shared resources and not only the multithreaded execution units. Moreover, this
overhead must be put into perspective, as SMT is mainly used in much more
complex cores with expensive features like out-of-order execution.

7 Discussion and Conclusion

For many years now, timing leakages due to resource sharing have been identi-
fied as a major threat to the security of processors. Nevertheless vulnerabilities
related to such timing leakages are still being found at an alarming rate. This is
mainly because, so far, the proposed mitigation look at specific mechanisms of
a processor architecture in isolation and not at the processor as a whole. This
paper is a step in this direction.

In our approach, we first describe how the ISA has a crucial role to play
in making the software communicate to the hardware the applications’ security
constraints. Two possible semantics, fences and contexts, are discussed. Fences
are simple but limited since they cannot handle spatial sharing. Contexts, on
the other hand, allow designing secure systems with a lot of liberty on the core
features, at the price of more complexity.

We then introduce generic principles for designing shared resources securely
whether it is temporal or spatial sharing and with different granularities: we
discuss such things like shared memories (like caches), but also more subtle com-
ponents such as finite state machines (e.g. cache controllers) and buses (shared
between several subsystems).

We demonstrate the application of our new approach by implementing two
different processors, including one with simultaneous multithreading. We analyse
the impact of this new security dogma on the design of such exemplar processors.
We also foresee that taking into account security will profoundly modify the
canon of processor design: as an example, write-through caches are much faster
to flush than write-back and should supersede the latter one in secure designs.

To evaluate the efficiency of our security approach, we propose a new bench-
mark that shows that the implemented features circumvent timing leakages. This
benchmark tests and detects known vulnerabilities. It will be regularly updated
so that it can be used to help designers validate the security of their processors
at design time. But it cannot be used to guarantee that no timing leakage is
present at all. In our opinion, the formalization of the hardware seems the only
approach for future works to allow real exhaustiveness, a feat that can only be
achieved with a clear ISA semantics to delimit security domains.

Our research shows that, if our principles can be implemented with the ade-
quate ISA, securely implementing resource sharing within processors is possible.
A future work will consist in studying the trade-offs between this security dogma,
performances and design complexity (size and power). Processors with simulta-
neous multithreading will be a relevant use case for this, with deep resources
sharing that can lead to important leakages. Particularly, an analysis of the
trade-offs must be done to compare with multicore processors while maintaining
a high level of security. An exploration of domes impact on out-of-order cores
and many core systems must also be considered.

Under the Dome: Preventing Hardware Timing Information Leakage 251

References

1. Managing-Speculation-on-AMD-Processors. Technical report, Advanced Micro
Devices (2018)

2. Embench: a modern embedded benchmark suite (2020). https://embench.org/
3. Aciicmez, O., Seifert, J.P.: Cheap hardware parallelism implies cheap security.

In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007),
Vienna, Austria, pp. 80–91. IEEE, September 2007

4. Aldaya, A.C., Brumley, B.B., ul Hassan, S., Pereida Garcia, C., Tuveri, N.: Port
contention for fun and profit. In: 2019 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, pp. 870–887. IEEE, May 2019

5. Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R., Lerner, S., Shacham, H.: On
subnormal floating point and abnormal timing. In: IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, pp. 623–639. IEEE, May 2015

6. Bernstein, D.J.: Cache-timing attacks on AES, p. 37 (2005)
7. Bourgeat, T., Lebedev, I., Wright, A., Zhang, S., Devadas, S.: MI6: secure enclaves

in a speculative out-of-order processor. In: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 42–56 (2019)

8. Bulpin, J.R., Pratt, I.A.: Multiprogramming performance of the Pentium 4 with
Hyper-Threading. In: Second Annual Workshop on Duplicating, Deconstruction
and Debunking (WDDD), p. 10 (2004)

9. Canella, C., et al.: Fallout: leaking data on meltdown-resistant CPUs. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS’19, pp. 769–784. Association for Computing Machinery, New York
(2019)

10. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. In: 28th USENIX Security Symposium (USENIX Security 19), November
2019

11. Costan, V., Lebedev, I., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: 25th USENIX Security Symposium (USENIX Security
16), Austin, TX, USA, pp. 857–874. USENIX Association August 2016

12. Dessouky, G., Frassetto, T., Sadeghi, A.R.: HybCache: hybrid side-channel-resilient
caches for trusted execution environments. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, September 2020

13. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8(1),
1–27 (2018)

14. Ge, Q., Yarom, Y., Heiser, G.: No security without time protection: we need a new
hardware-software contract. In: Proceedings of the 9th Asia-Pacific Workshop on
Systems - APSys’18, Jeju Island, Republic of Korea, pp. 1–9. ACM Press (2018)

15. Larabel, M.: Intel Hyper Threading Performance With A Core I7 On Ubuntu
18.04 LTS. Phoronix (2018). https://www.phoronix.com/scan.php?page=article&
item=intel-ht-2018&num=4

16. Khasawneh, K.N., Koruyeh, E.M., Song, C., Evtyushkin, D., Ponomarev, D., Abu-
Ghazaleh, N.: SafeSpec: banishing the spectre of a meltdown with leakage-free
speculation. In: Proceedings of the 56th Annual Design Automation Conference
2019 (DAC16), Las Vegas, NV, USA, pp. 1–6. ACM Press, June 2019

17. Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., Emer, J.: DAWG:
a defense against cache timing attacks in speculative execution processors. In:
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Fukuoka, pp. 974–987. IEEE, October 2018

https://embench.org/
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4

252 M. Escouteloup et al.

18. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE
Symposium on Security and Privacy (S&P’19), Los Alamitos, CA, USA. IEEE
Computer Society, May 2019

19. Larabel, M.: Intel Hyper Threading Performance With A Core i7 On Ubuntu 18.04
LTS - Phoronix, June 2018. https://www.phoronix.com/scan.php?page=article&
item=intel-ht-2018&num=4

20. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, pp.
973–990. USENIX Association, August 2018

21. Qureshi, M.K.: CEASER: mitigating conflict-based cache attacks via encrypted-
address and remapping. In: 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Fukuoka, pp. 775–787 (2018)

22. van Schaik, S., et al.: RIDL: Rogue In-Flight Data Load. In: 40th IEEE Symposium
on Security and Privacy (S&P’19), San Francisco, CA, USA, p. 18, May 2019

23. Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F., Gruss, D.: ConTExT:
a generic approach for mitigating spectre. In: Proceedings of the 27th Annual
Network and Distributed System Security Symposium (NDSS20). Internet Society,
Reston (2020)

24. Schwarz, M., et al.: ZombieLoad: cross-privilege-boundary data sampling. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, p. 15, May 2019

25. Townley, D., Ponomarev, D.: SMT-COP: defeating side-channel attacks on execu-
tion units in SMT processors. In: 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 43–54 (2019)

26. Trilla, D., Hernandez, C., Abella, J., Cazorla, F.J.: Cache side-channel attacks and
time-predictability in high-performance critical real-time systems. In: Proceedings
of the 55th Annual Design Automation Conference, San Francisco, CA, USA, pp.
1–6. ACM, June 2018

27. Turner, P.: Retpoline: a software construct for preventing branch-target-injection,
January 2018. https://support.google.com/faqs/answer/7625886

28. Van Bulck, J., et al.: Foreshadow: extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In: Proceedings of the 27th USENIX Security
Symposium (USENIX Security 18), Baltimore, MD, USA, pp. 991–1008. USENIX
Association, August 2018

29. Wang, Z., Lee, R.: Covert and side channels due to processor architecture. In: 2006
22nd Annual Computer Security Applications Conference (ACSAC’06), Miami
Beach, FL, USA, pp. 473–482. IEEE, December 2006

30. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture - ISCA’07, San Diego, CA, USA, p. 494. ACM Press (2007)

31. Waterman, A., Asanovic, K.: The RISC-V Instruction Set Manual, Volume I: User-
Level ISA, December 2019

32. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard, S.:
SCATTERCACHE: thwarting cache attacks via cache set randomization. In: 28th
USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, pp. 675–
692. USENIX Association (2019)

33. Wistoff, N., Schneider, M., Gürkaynak, F.K., Benini, L., Heiser, G.: Prevention of
microarchitectural covert channels on an open-source 64-bit RISC-V core. CoRR
arXiv:2005.02193 (2020)

https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://support.google.com/faqs/answer/7625886
http://arxiv.org/abs/2005.02193

Under the Dome: Preventing Hardware Timing Information Leakage 253

34. Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C., Torrellas, J.: InvisiSpec:
making speculative execution invisible in the cache hierarchy. In: 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Fukuoka,
pp. 428–441. IEEE, October 2018

35. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14),
San Diego, CA, USA, pp. 719–732. USENIX Association (2014)

Enhanced Encodings for White-Box
Designs

Alberto Battistello1, Laurent Castelnovi2(B), and Thomas Chabrier2

1 Security Pattern, Brescia, Italy
a.battistello@securitypattern.com

2 IDEMIA, Cryptography and Security Group, Pessac, France
{laurent.castelnovi,thomas.chabrier}@idemia.com

Abstract. Designing a robust white-box implementation against state-
of-the-art algebraic and differential computational analysis attacks is a
challenging problem. The study of white-box security was revamped by
recent advances involving grey box attacks. Since then, many authors
have struggled to protect implementations against such new attacks.
New designs as well as new security notions appeared, and white-box
research in general seems to have greatly benefited from such advances.
The current research aims at finding the best encodings and masking
schemes to resist tracing attacks. In this perspective we suggest a new
encoding scheme that can be applied to white-box designs. By using
a modified version of the Benaloh cryptosystem, our design introduces
semi-homomorphic properties to the encoding. To the best of our knowl-
edge, this is the first time such properties are applied to an encoding
design. This allows reducing the memory requirements and providing a
better resistance against tracing attacks. Our encoding is versatile and
can be adapted to different ciphers, and in most cases it provides perfor-
mance improvements with respect to the state-of-the-art.

Keywords: White-Box · AES · Homomorphic cryptosystem · Benaloh
cryptosystem

1 Introduction

The mass adoption of connected devices, like smartphones, tablets or smart-
watches, implied a deep change in the industry. From basic cellular phones,
mobile devices evolved into indispensable microcomputers of everyday life. Our
smartphone collects our information, verifies our identity, secures our credit card
transactions, replaces our car keys, enables us to watch movies and series, and
can perform many other “useful” operations.

It is thus mandatory that such smart objects provide users with enough
security for the collected data. This turns out to be the role of trusted execution

A. Battistello—Part of this work was done while the first author was working at
IDEMIA.

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 254–274, 2022.
https://doi.org/10.1007/978-3-030-97348-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_14

Enhanced Encodings for White-Box Designs 255

environments (TEE) that solved the security problem by delegating the sensitive
tasks to an embedded secure element (eSE). However, smartphones are far from
being standardized in all their aspects. For example the same OS version can
run on multiple platforms. These platforms may have different flavors of eSEs
or none at all. Thus, applications must adapt the security to the device at hand.
Far from being an easy task, providers must even protect the device from the
legitimate user itself, which in some cases may behave wickedly.

The white-box model takes on its full meaning in such an environment, where
the cryptographic implementation is exposed. The white-box model can be seen
as the opposite of the black box model, where the attacker has only access
to the inputs and the outputs. Indeed, the white-box model assumes that the
cryptographic primitive runs in an untrusted environment. In such a scenario
the attacker has full access to the device: he can access the binary code of the
application and observe or interact with the device’s execution, in order for
example to extract the encryption key from the implementation. It is thus very
difficult to provide efficient security solutions against such threats. Nonetheless,
due to the mass adoption of smart-devices, solutions are required by the industry
to mitigate the problem.

Besides, the market needs white-box solutions for DRMs, Pay-TV, secure
storage, etc., motivating researchers all over the world to keep working on it.
The competitive spirit of researchers, together with the market pressure, also
motivated the creation of international challenges, like the WhiBox contest [1,2],
where users are invited to submit white-box AES implementations, and each par-
ticipant can try to break others’ submissions. In these challenges, a white-box is
considered unbroken until its key is found or its functionality reversed. Points are
assigned to the participants who implement the longer lasting unbroken white-
box and to those breaking the strongest ones. For example, an interesting result
of the 2019 edition of the WhiBox competition [2] is that the best white-boxes
withstood attacks for more than one month. Thus, despite theoretically flawed,
the security offered by actual implementations can be sufficient for content which
value is limited to a short-term period (like for example a live football world cup).

One of the many techniques used in the contest of white-box is the use
of encodings [20], affine or non-linear functions applied to the input/output of
tables, and unknown by the attacker. These random encodings provide a map
from the clear world and the encoded world, and allow randomization of key-
dependent data. Such countermeasures are however expensive to deploy. The
designer often needs to find a tradeoff between security and complexity (as a
combination of memory requirements and running time).

The purpose of our work is thus to suggest an encoding principle that can
help to reduce such complexity rise, while maintaining the security at the state-
of-the-art. In particular, we suggest a novel way to create encodings that are both
cheap and safe. We show how to use a degraded semi-homomorphic encryption
scheme, based on the work of Benaloh [6] to build non-linear encodings that
provide better security against algebraic attacks as well as security against dif-
ferential computation analysis (DCA). Our encodings allow dropping the use of

256 A. Battistello et al.

tables for the most used operations in crytographic algorithms. Also, our propo-
sition provides better performances for most operations by exchanging lookup
table accesses with CPU operations. We provide both a security evaluation of
our proposition together with an application to an AES-128 white-box. Based
on our suggested AES-128 white-box, we provide memory and performances
comparisons against state-of-the-art implementations.

This paper is organized as follows. Section 2 is dedicated to the state-of-
the-art in white-box designs and attacks. Afterwards, Sect. 3 introduces our new
encoding scheme. In Sect. 4 we provide a security analysis of our suggested white-
box encoding. The complexity in terms of memory and time of our new design
is evaluated in Sect. 5. Finally some suggestions for further developments of our
idea are provided in Sect. 6. Section 7 concludes this work.

2 State-of-the-Art

In 2002, two seminal papers from Chow et al. [19,20] introduced a new way to
implement cryptographic algorithms that provided some risk mitigation. Such
solutions to resist white-box attacks are known as “white-box cryptography”
(WBC). They paved the way for a new and very active research field for both
theoreticians and practitioners.

2.1 White-Box Designs

The work of Chow et al. [19,20] exposed the first white-box descriptions for both
DES and AES ciphers. Their design has been the white-box implementation ref-
erence since then. Chow et al. introduced the use of tables to perform compu-
tations. Also, similar to the randomization technique of Kilian [31], by encoding
each table with input/output functions unknown to the attacker, Chow et al.
provided an initial solution to the problem of obfuscating a program.

After the first white-box propositions were published, Link et al. suggested an
improved version of the DES white-box in [36], to better resist attacks. However,
several attacks that allowed to recover the key hidden in the DES white-box were
proposed by Wyseur et al. [47] and by Goubin et al. [27]. In parallel, the AES
white-box was broken using an algebraic attack by Billet et al. [7], which was
further refined and generalized by Michiels et al. [39]. In order to thwart such
attacks, other authors proposed further white-box designs of the AES-128, for
example Bringer et al. in [16] suggested an approach based on polynomials, but
their suggestion was broken by De Mulder et al. in [23]. In 2009, Xiao and Lai
proposed an improvement of Chow et al. AES white-box in [48], but again, their
proposal was broken by De Mulder et al. [22]. In 2010, Karroumi suggested in [30]
to use dual ciphers to protect the AES white-box. Unfortunately such a design
was also broken by Lepoint et al. [35].

Generally speaking, all propositions of AES and DES white-box designs have
been shown to be theoretically broken in the sense that the embedded key can be

Enhanced Encodings for White-Box Designs 257

extracted. For each proposition a theoretical attack was found, see for example [7,
35,39].

In a parallel thread of work, researchers tried to clarify the security notions
related to the white-box context, thus works like those of Delerablée et al. [24],
Saxena et al. [44] and Bock et al. [12] appeared.

A further step in the understanding of the security of white box implementa-
tions was brought forward by the introduction, in 2015 and 2016, of two attacks
borrowed from the field of physical security. These attacks were used to break
AES white-box suggestions appeared meanwhile, like the work of Luo et al. [37]
and Lee et al. [32]. Such attacks were fault injection attacks, presented by Sanfe-
lix et al. [42] and side-channel analysis (a.k.a. differential computation analysis,
DCA for short), by Bos et al. [14]. Eventually such attacks provided easier meth-
ods to break all previous contributions, and researchers started to shift their
interest from the algebraic security, to such a physical security dimension.

Indeed, several practical attacks have further reduced the security margin
provided by a white-box implementation [14,42]. However, all is not lost, as
such advanced attacks motivated the study of advanced countermeasures. During
the WhiBox contest editions, for example, a few implementations stood more
than one month, while the hacking community tried to break them. From such
implementations stemmed new understanding and improved countermeasures
(see for example [9,13,28,41,43]), that allowed to thwart, or mitigate, the attacks
explained so far.

2.2 White-Box Encoding

In order to counteract such new attacks, designers suggested to adapt known
embedded security countermeasures, like the masking countermeasure [29,40].
For example the work of Lee et al. [34] suggested a masked AES white-box
implementation. Although providing an undeniable improvement on the security
of white-box instances, such countermeasures deteriorate white-box implemen-
tations in terms of memory and performances.

Encodings are one of the key concepts introduced by Chow et al. Despite their
use in [20] to counteract algebraic attacks authors worked in the recent publica-
tions to improve the effectiveness of encodings and to provide a masking stage to
the algorithm. The two notions of encodings and masking are sometimes over-
lapping, and an encoding scheme may act as a masking scheme, and vice-versa.
Loosely speaking, masking is a technique that removes the correlation between a
value and its representation by, for example, using Shamir’s secret sharing [46],
while encoding is the application of (secret) input and output bijections to a
transformation. Thus a secret sharing scheme can be seen as the application of
the XOR bijection with a mask to the identity transformation, while an encoding
can be interpreted as the application of some (non) linear masking scheme like
for example [17] to a secret value.

It has been shown by various authors [9,13,28,41,43] how an accurate choice
of encoding is paramount to the security of the white-box. In particular it seems
that the best approach, as suggested by recent works [9,28,33,45] is to use a

258 A. Battistello et al.

linear masking on top of a non linear one. Such countermeasures are however
expensive to deploy. The designer often needs to find a tradeoff between security
and complexity (as a combination of memory requirements and running time). As
an example, the winner of the 2019 edition of the WhiBox competition [2] used
such an encoding (as revealed by the reverse engineering attack by Goubin et
al. [28]) and the smallest implementation was about 20 MB for an AES-128
encryption.

In the following section we suggest a new encoding scheme that provides an
improved security, fast operations, and a reduced memory footprint.

3 New Encoding Design for White-Box Constructions

Our proposal is directly inspired by the Benaloh cryptosystem, suggested in [6].
The original scheme is partially homomorphic, meaning that it allows to perform
only one type of operation on plaintexts in the cipher domain. We modified the
original Benaloh cryptosystem while preserving the semi-homomorphic proper-
ties in order to provide a new encoding scheme. Below, we recall the mathemat-
ical background that is used in the rest of the paper. Afterwards, we provide
a brief explanation of the Benaloh cryptosystem together with our suggested
modifications to use it as a white-box encoding.

3.1 Preliminaries

In the rest of this paper we will use notions such as quadratic residue, or higher
residue. Such notions are detailed below.

Definition 1 (Quadratic Residue). Let m ∈ Z
∗
n for an odd integer n. Then

m is a quadratic residue modulo n if there exists x ∈ Z
∗
n such that:

x2 ≡ m mod n.

If no such x exists, then m is a quadratic non-residue modulo n.

Definition 2 (Legendre symbol). Given a prime p and m ∈ Z
∗
p, the Legendre

symbol of m modulo p is denoted
(

m
p

)
and defined as follows:

(
m

p

)
=

⎧
⎨
⎩

0 ifm ≡ 0 mod p,
1 if m is a quadratic residue modulo p,
−1 otherwise.

Definition 3 (Quadratic Residuosity Problem). The quadratic residuosity
problem (QRP) is the following: given an odd composite integer n and m ∈ Z

∗
n,

decide whether m is a quadratic residue or a quadratic non-residue modulo n.

Remark 1. If n is prime, then the QRP can easily be solved by Euler’s criterion:
for any m ∈ Z

∗
n,

(
m
n

) ≡ m(n−1)/2 mod n (see for instance [38]).

Enhanced Encodings for White-Box Designs 259

Definition 4 (Higher Residue). Let m ∈ Z
∗
n for an odd integer n, m is said

to be a d-residue modulo n if there exists x ∈ Z
∗
n such that

xd ≡ m mod n.

If no such x exists, then m is said to be a d-non-residue modulo n.

Definition 5 (Higher Residuosity Problem). The higher residuosity prob-
lem (HRP) is the following: given an odd composite integer n and m ∈ Z

∗
n,

decide whether m is a d-residue or a d-non-residue modulo n.

Remark 2. If the factorization of n is known, then the HRP can easily be solved
(see [38]).

3.2 Original Description of Benaloh Cryptosystem

The Benaloh cryptosystem, introduced by Benaloh in 1994 [6] and improved
by Fousse et al. [25], is an extension of the Goldwasser-Micali cryptosystem
(GM) [26]. The latter’s security relies on the QRP, while the former’s on the HRP.
Where the GM cryptosystem encrypts bits individually, Benaloh’s improvement
allows blocks of bits to be encrypted at once. Both schemes are probabilistic
cryptosystems in the sense that several encryptions of the same message under
the same key yield different ciphertexts. In this section, we describe the original
Benaloh’s cryptosystem.

Key Generation. The public and private key are generated as follows.

– Choose a block size r and two large prime numbers p and q such that:
• r|(p − 1),
• gcd(r, (p − 1)/r) = 1,
• gcd(r, q − 1) = 1.

– Set n = p × q and compute φ(n) = (p − 1)(q − 1).
– Select y ∈ Z

∗
n such that, for any prime factor ri of r:

• yφ(n)/ri �≡ 1 mod n.

The public key is (n, r, y), and the private key is (p, q).

Encryption. Given the public parameters (n, r, y) and a an element of Zr, the
encryption Er is defined as:

Er(a) = yaur mod n,

where u is a random number in Z
∗
n.

260 A. Battistello et al.

Decryption. Given decryption key (p, q), and ciphertext c, the decryption Dr

is defined as:
Dr(c) = logx(cφ(n)/r) mod n,

where x = yφ(n)/r mod n.

The homomorphic property is easily verified:

Er(a) × Er(b) ≡ yaur
0 × ybur

1 mod n
≡ ya+b(u0u1)r mod n
≡ Er(a + b) mod n.

Our work aims at using this cryptosystem as an encoding. This allows to
homomorphically perform some operations on the encoded values and thus
reduce the overall memory cost of the white-box. In the following, we propose
some modifications to achieve our goal.

3.3 Modified Benaloh Cryptosystem

We describe and motivate in this section our adaptations of the Benaloh cryp-
tosystem to make it suitable for using as a white-box encoding. We deal with
the encoding itself in Sect. 3.4.

Key Generation. The public and private key are generated as follows.

– Choose a prime number p.
– Choose a block size r = 2k such that k ≥ 2 and r is the highest power of 2

which divides p − 1.
– Select randomly y a generator of Z∗

p.
– Select randomly t ∈ Z

∗
p.

The public key is (p, r) and the private key is (t, y).

Compared to the original key generation, the private key t is introduced, u
is fixed to 1 and the modulus is a prime number instead of a composite of two
prime numbers. For the sake of simplicity, we keep the expression “private key”
despite the fact that we use our private key both for encryption and decryption.

Encryption. Given the private key (t, y) and the public parameter p, the
encryption Et is defined as:

Et(m) = t ym mod p, (1)

where m is an element of Zp.

It is easily verified that:

Et(m0) × Et(m1) ≡ Et2(m0 + m1) mod p.

Compared to the original encryption, the definition set of m is extended to
the entire group Zp.

Enhanced Encodings for White-Box Designs 261

Decryption. Given the decryption key (y, t, p, r) and the ciphertext c, the
decryption function Dt is defined as:

Dt(c) = logx((t−1c)(p−1)/r) mod p, (2)

where x = y(p−1)/r mod p.

The decryption differs from the original one only by the multiplication by
t−1 mod p.

Motivations

About the Modulus. The modulus has been chosen to be a prime number. Since
our proposal will rely on the QRP and will use a small modulus, there is no
security benefit in choosing a composite modulus as the QRP is easy to solve
even for small composite moduli.

About the Block Size. The block size r has been chosen to be a power of 2 in
order to ensure that the least significant bit (LSB) of Dt(Et(a + b)) equals the
exclusive-or between the LSB of a and the LSB of b. Our proposal is based on
this property, with the condition r = 2k and k ≥ 2.

About the Base. The base y has been chosen to be a generator of Z
∗
p as it

guarantees that y(p−1)/r �≡ 1 mod p. It is a requirement from the original key
generation algorithm. The secrecy of y is a consequence of Sect. 4.1.

About the Key. In our proposal, the senstive data bits will be carried by the
LSB of the exponent of y. The private key t has been introduced to hide this bit.
If t was not present, with only the three previous modifications to the original
Benaloh scheme, the sensitive bit m could be guessed by using the Legendre sym-
bol of E1(m), which equals 1–2 m. The multiplication of E1(m) by a uniformly
random number t makes its Legendre symbol equal to

(
t
p

)
(1 − 2m), which is

equal to 1 or −1 with the same probability 1/2.

3.4 Modified Benaloh Cryptosystem as White-Box Encoding

In this section we show how our modified Benaloh cryptosystem can be used as
a white-box encoding. Our proposal relies on three well-known facts:

1. Any Boolean function can be expressed as a logical circuit composed of XOR,
AND and NOT gates.

2. The sum in Z of two bits a and b is a+b = (a ∧ b) || (a ⊕ b), where || denotes
the concatenation operator.

3. The sum in Z of one bit a with 1 is a + 1 = a || (a ⊕ 1) = a || ā.

We thus propose to consider the cryptographic algorithm as a logical circuit
which gates are modified-Benaloh encoded. We describe hereafter how to encode
(resp. decode) the circuit’s input (resp. output) and how to evaluate its gates.

262 A. Battistello et al.

Encoding and Decoding Functions
Encoding Step. To encode a bit a, the modified key generation method (see
Sect. 3.3) is run and the modified encrypting function (cf. Eq. (1)) is applied to
2s + a, where 0 ≤ s < (p − 1)/2 is uniformly drawn at random. We will denote
the encoding function by Enc:

Enc(a) = Et(2s + a).

Here, s is introduced to make our encoding probabilistic, as does the random u in
the original Benaloh scheme. Introducing this s instead of keeping the original u,
we save one entropy bit: indeed, if the bit x was encoded as Et(x) = tyxur mod p,
then Et(x) = tyvr+x mod p with v = logy u, and since r ≥ 4 and r | (p − 1),
(vr + x mod p − 1) ≡ x mod 4. In other words, the second LSB of the exponent
of y would always be 0. On the other hand, having both u and s does not
provide more entropy to Enc(x). Therefore, we discard u but introduce s to keep
the probabilistic property of the Benaloh scheme.

Decoding Step. To decode a value Enc(a), the modified decryption function (cf.
Eq. (2)) is applied and the result is reduced modulo 2 to get a single bit. We
will denote the decoding function by Dec:

Dec(Enc(a)) = Dt(Enc(a)) mod 2.

Evaluating Logical Gates
As recalled before, a circuit can be constructed using only XOR, AND and NOT
gates. We describe hereafter how each gate can be evaluated under the modified
Benaloh-encoding.

From now, we consider that the encodings of the bits a and b are:

Enc(a) = Et0(2s + a) = t0 y2s+a mod p

Enc(b) = Et1(2s′ + b) = t1 y2s′+b mod p.

XOR Implementation. To compute an encoding of a⊕b, it is sufficient to multiply
the encoding of the two bits:

Enc(a)Enc(b) ≡ t0t1 y2(s+s′)+a+b mod p

≡ t0t1 y2(s+s′+ab)+(a ⊕ b) mod p. (3)

Let us verify that indeed Dec(Enc(a)Enc(b)) = a ⊕ b. Let be α ≡ 2(s + s′ +
ab) + (a ⊕ b) mod p − 1. Since p − 1 is even, α mod 2 = a ⊕ b. Setting t = t0t1,
the decryption function Dt returns α reduced modulo r = 2k, thus this step
preserves the k least significant bits of α. Therefore, the result of the decoding
function is a ⊕ b.

It follows that an arbitrary number of XOR gates can be evaluated in a row
without caring for carries, that is to say, if {a1, . . . , an} is a set of bits:

Dec

(
n∏

i=1

Enc(ai)

)
= a1 ⊕ · · · ⊕ an.

Enhanced Encodings for White-Box Designs 263

It is worth noticing that only modular multiplications, hence only CPU oper-
ations, are needed to evaluate XOR gates. Thus, the evaluation of any linear
function comes at no memory cost by using our modified-Benaloh encodings.

AND Implementation. Contrary to the XOR operation, we use tables to implement
the AND operation. A naive solution is to use one table with two operands as
inputs. This table is used to decode each operand, evaluate the AND gate and
re-encode the result. Each table admits p2 entries and returns a log2 p-bit value,
which implies a memory consumption of p2	log2 p
 bits per table.

We present instead another solution based on right-shift tables admitting only
p entries, thus reducing the memory consumption per table down to p	log2 p

bits. This solution is based on the fact that when Enc(a) and Enc(b) are mul-
tiplied together, y is raised to the power 2(s + s′ + ab) + (a ⊕ b) (see Eq. (3)).
Then, right-shifting it results in s+s′ +ab. Similarly, right-shifting the exponent
of y in Enc(a) (resp. Enc(b)) gives s (resp. s′). By adding these three numbers,
we have 2(s + s′) + ab. Thus, we obtain with our solution the encoding of the
desired bit ab as Enc(ab) = Et(2s′′ + ab) for some t and s′′ = s + s′.

The first step is thus to right-shift the power of y in the expression of
Enc(a)Enc(b), Enc(a) and Enc(b). The fact that r = 2k impedes these three right
shifts to be performed in a homomorphic way by successive left shifts. Thus,
they have to be tabulated. Each table decrypts its entry (instead of decoding it,
otherwise the random s’s would be lost), then right-shifts the result and finally
encrypts the shifted value to which is added a random even number (see Fig. 1).

Fig. 1. Input and output of the three right-shift tables.

The output of the three tables are multiplied together to get, according to
the notations in Fig. 1, Enc(ab) = ty2(S+s+s′)+ab mod p with t = t2t4t6 and
S = s2 + s4 + s6.
NOT Implementation. To get an encoding of ā = a⊕ 1, one must multiply Enc(a)
by any non-quadratic residue modulo p: let v be one of them, then there exists
an integer α such that v ≡ y2α+1 mod p. Thus vEnc(a) ≡ t0y

2(s+α)+a+1 ≡
t0y

2(s+α+a)+ā mod p.

264 A. Battistello et al.

Another solution for the NOT implementation can be used: it is sufficient to
integrate the NOT operation to the next table. For instance, the next table can
be an AND table. The evaluation of the NOT gate can thus be delegated to the
next table due to the linear property of the XOR gate.

From now, sequences of binary operations composed with ANDs, XORs and
NOTs can be computed under our modified-Benaloh encoding.

3.5 Using the Modified-Benaloh Encoding in a White-Box Design

Hereafter, we give a way to design a white-boxed cipher by using the modified-
Benaloh encoding. As an example, we give in Sect. 5 an AES implementation
using our proposal.

Overall Parameters. The modified-Benaloh key generation algorithm (see
Sect. 3.3) is run to get the parameters p, r and y. They have to be common to
all encoded bits within the white-box, in order for the logical gates to be correctly
evaluated as described in Sect. 3.4. These parameters might be refreshed at any
moment, at the cost of an extra decoding-then-encoding step on each encoded
bit to switch from the former set of parameters to the new one.

Encoding Data Bits
Encoding the Key. The �-bit cipher key is embedded within the white-box in a
modified-Benaloh encoded form. The white-box embeds a table with � entries,
each one being of the form tj y2sj+kj mod p, where 1 ≤ j ≤ � and kj is the jth

key bit.

Encoding the Plaintext. The white-box turns each plaintext bit to a modified-
Benaloh encoding using a 1-bit input table. Each bit of the plaintext has its own
encoding table. Such tables are of the form:

Ti = {Enc(0),Enc(1)} = {ti y2si mod p, ti y2s′
i+1 mod p}.

Note that ti here is fully independent from the tj ’s that protect the cipher key.
Let us detail here the use of the private key ti. We can remark that it must

be the same for the two possible encodings of the same bit: suppose that we
could have Enc(0) = Et(2s) and Enc(1) = Et′(2s′ + 1) with t �= t′ and (t, t′)
being different for each bit to encode. Let us consider a table that, within the
circuit, decrypts its entry. As an example, it could be a table evaluating an AND
gate. For this decryption step, the private key of the table entry, or a product of
several of them, if the entry is a product of several encodings, has to be known.
Then, when the entry of such a table would be a combination of n encoded input
bits, 2n tables (one per possible n-tuple of encoded bits) would be necessary to
perform the operation delegated to the table. Therefore, the private key ti has
to be fixed per encoded bit and not per encoding.

Enhanced Encodings for White-Box Designs 265

Cipher Evaluation. Once each bit of the plaintext is encoded, the cipher,
designed as a logical circuit, can be evaluated. One has just to perform binary
operations on the encoded bits as explained in Sect. 3.4.

Decoding Data Bits. The ciphertext’s bits are decoded from their modified-
Benaloh encoded form by a table that applies the decoding function on its entries.
Note that one table per ciphertext bit is necessary, as each decoding table uses
a different private key from the other decoding tables.

4 Security Considerations

With our modified-Benaloh scheme, we proposed to encode each bit b as:

Enc(b) = t y2s+b mod p

for some random numbers t and s. All logical operations between encoded bits are
done in the encoding domain with modular multiplications and table accesses.

In this section we provide a security analysis of our proposal, by addressing
some potential flaws.

4.1 About the Shift Tables

In this section, we study two attack paths opened by the shift tables used to
evaluate the AND gates.

The input-output-squared attack. Let ni,b = ti y2sb+b mod p be the Benaloh-
encoded input of a shift table and no,b = to y2s+sb mod p the corresponding
output. For the sake of clarity, we set here s = 0 as it will not be useful in this
section. Then ni,b n2

o,b ≡ ti t2o y4sb+b mod p.
The attacker can collect ni,0, no,0, ni,1 and no,1 and compute:

z = ni,0 ni,1 n2
o,0 n2

o,1 mod p

= t2i t4o y4(s0+s1)+1 mod p.

Since y is a generator of Z∗
p, there exists τi, τo ∈ {0, . . . , p− 1} such that ti =

yτi mod p and to = yτo mod p. This implies that z = y4(τo+s0+s1)+2τi+1 mod p.
If the attacker can guess the least significant bit (LSB) of τi from z, then

he can compute
(

ti
p

)
= τi mod 2 and therefore b. However, whereas the LSB

of logy z is actually independent from the chosen generator y, it is not the case
of its second LSB: let y′ be another generator of Z∗

p and a be the integer such
that y = y′2a+1 mod p; then logy′(z) = logy′(y) logy(z) ≡ 2(a + τi) + 1 mod 4.
Since a can be odd or even1, the knowledge of z does not give any information
on τi mod 2.
1 For instance, in Z

∗
59, all odd powers of 2 but 257 ≡ −1 mod 59 are generators.

266 A. Battistello et al.

The Frequency Attack. Suppose that we want to AND two bits a0 and a1. Let
s
(0)
0 , s

(1)
0 , s

(0)
1 and s

(1)
1 be four integers modulo (p − 1)/2 and let Enc(a0) =

t0 y2s
(a0)
0 +a0 mod p and Enc(a1) = t1 y2s

(a1)
1 +a1 mod p. The table fed by Enc(a0)×

Enc(a1) during the evaluation of the AND gate (see Fig. 1) returns some α =
t y2δ+β mod p where β is a bit that equals a0a1 ⊕ ((s(a0)

0 + s
(a1)
1) mod 2). Since(

α
p

)
=

(
t
p

)
(1 − 2β),

(
α
p

)
=

(
t
p

)
with probability 3/4 if s

(0)
0 ≡ s

(1)
0 mod 2

and s
(0)
1 ≡ s

(1)
1 mod 2, which leaks the value of a0a1. Therefore, the LSB of the

random s
(0)
0 , s

(1)
0 , s

(0)
1 and s

(1)
1 should be adjusted to avoid this, for instance by

imposing s
(0)
i mod 2 = s

(1)
i + 1 mod 2 for i = 0, 1. In the case where such a

solution would not be tractable, we suggest to implement a Boolean-masked AND
to decorrelate the content of the shift tables from the bits to AND together.

4.2 About the Key

We recall that in our proposal in Sect. 3.3, the cipher key is embedded in a
Benaloh-encoded form within the white-box. Encoded this way, no information
can be extracted on the key just looking at its encoded form: since each key bit
b has its own random private subkey t, Et(b) is indistinguishable from a random
number in Zp and so t acts like a one-time pad.

On the other hand, some information about the key may be revealed by the
following DCA-like attack. Seeing the cipher as a logical circuit, any gate output
is Benaloh-encoded with a random t unknown from the attacker but fixed over
all executions of the white-box. Then any variation of the Legendre symbol of
the gate output is only due to a variation of the encoded bit.

Therefore, the attacker can focus on an AND gate which inputs depend on
a few key bits. By making an assumption on these key bits, the attacker can
compute an expected sequence of outputs of his targeted AND gate when the
input plaintexts vary. Then, by comparing this sequence to the Legendre symbols
actually output by the white-box, the attacker can accept or reject his hypothesis
on the subkey. Repeating this procedure with different gates depending on other
key bits, he can reduce the subset of possible cipher keys.

In order to thwart such an attack, a possible countermeasure consists in
implementing a Boolean-masked circuit (in addition to applying the Benaloh-
encoding). The impact of the masking on the XOR gates comes at no memory
cost. However, concerning the AND masking, we suggest to use the secure AND
proposed by Biryukov et al. [8]. The impact on the number of tables is thus
limited to only a factor 4.

Enhanced Encodings for White-Box Designs 267

4.3 Summary

In order to prevent the identified security issues, we decline our Benaloh-encoded
white-box into two flavours:

1. Proposition 1: a lightweight white-boxed cipher without countermeasure,
2. Proposition 2: a white-boxed cipher implemented as a Boolean-masked circuit

to protect vulnerable AND gates (Sect. 4.2).

We close this section with a brief estimation of the computational effort
needed to defeat our propositions:

1. Proposition 1 can be defeated by the Legendre symbol attack of Sect. 4.2. It
is equivalent to a differential computational analysis (DCA) with a Legendre
symbol leakage model. The results summarized in [9, Table 1] imply that
the cost of the DCA Legendre symbol attack is O(nk log2 p), where n is the
length of the trace, k is the number of key hypotheses and log2 p the cost of
performing Euler’s criterion.

2. Proposition 2 can be defeated by a 2nd-order DCA if the sensitive data are
shared into 2 bits. [9, Table 1] implies in this case that the cost of the Legendre
symbol attack is O(n2k log2 p).

5 Performances: Example with AES-128 Encryption

In this section we provide performances estimations for an AES white-box imple-
mentation designed with our two propositions with the security improvements
described in Sect. 4.3. Furthermore, we compare our AES-128 white-box design
performances against other state-of-the-art designs, with respect to execution
time and space requirements.

The AES can be written with only elementary gates. In particular, an AES
can be only composed of XOR, NOT XOR (NXOR), and AND operations. The AES
requires only XOR gates to implement, except the SubBytes function that requires
also AND gates. For SubBytes, we use the bitsliced software implementation pro-
posed by Calik [18, Sect. 7] which is an improvement of the Boyar and Per-
alta [15] circuit. He proposed an AES SBox with 113 gates, composed of 77 XORs,
4 NXORs and 32 ANDs. Following our proposal in Sect. 3.4), only AND gates require
tables. Hence, the memory consumption of an AES-128 with our proposition is
15 360 × p × 	log2(p)
 bits, where 15 360 = 32 × 10 × 16 × 3:

– 32 ANDs are required for each SBox.
– There are 10 rounds in the AES-128.
– There are 16 input bytes.
– There are 3 tables for each AND with our solution (see Sect. 3.4).

Besides, the secret key is considered to be embedded within the white-box in
a Benaloh-encoded form: it corresponds to 128 tables of 	log2(p)
 bits. Finally,
the white-box requires one table to encode each plaintext bit, and one table

268 A. Battistello et al.

per ciphertext bit to remove all the random masks ti accumulated through the
circuit: it corresponds to 128 × 2 = 256 tables of p	log2(p)
 bits. It leads to a
total of 15 744 = 15 360 + 128 + 256 tables. We can note that whatever the size
of the chosen parameter p, the number of tables is always the same, i.e. 15 744.

In a same way, the execution time is constant and is not dependent on the
size of the parameters (as long as they fit in the architecture registers). Indeed,
whatever the chosen parameters of the implementation, we have 15 744 tables
to access and 30 520 = (92 + 128 + ((77 + 4 + 3 × 32) × 16)) × 10 XOR gates to
evaluate, where:

– 92 represents the number of XORs in the MixColumns.
– 128 represents the number of XORs for the AddRoundKey.
– 77 + 4 represents the number of XORs in the SBox computations.
– 3 × 32 represents the number of ANDs in the SBox computations, and the

number of XORs required during the AND calculations.
– 16 represents the number of SBox in the AES-128.
– 10 represents the number of rounds in the AES-128.

It leads to an execution time of 15 744 table accesses and 30 520 short modu-
lar multiplications. The NOT gates are not taken into consideration. Indeed, we
consider that these gates can be delegated to the next table of the circuit.

Table 1 gives the min and max bounds for memory consumption of an AES
white-box using our proposition, where the bounds depend on the used prime
number p.

Table 1. Memory consumption according to the bit size of p.

�log2(p)� Memory consumption

(megabytes, MB)

4 [0.07, 0.11]

6 [0.39, 0.74]

8 [2.03, 4.01]

10 [10.10, 20.14]

12 [48.42, 96.77]

14 [225.86, 451.64]

16 [1 032.35, 2 064.61]

In Fig. 2 we provide a comparison of sizes and estimated execution time of
published AES-128 white-boxes and our suggestions Proposition 1 and Propo-
sition 2. The entries are sorted by publication date from the left to the right.
The comparison aims at providing an overview of the evolution of white-box
design sizes according to the execution time of the implementation. Figure 2
thus compares the size of a reference AES implementation [21] with the size of

Enhanced Encodings for White-Box Designs 269

the white-box implementations of Chow et al. [20], Bringer et al. [16]2, Xiao et
al. [48], Karroumi [30], Lee et al. 1 [32], Lee et al. 2 [34], Lee et al. 3 [33], Luo et
al. [37], Bai et al. [3], Biryukov et al. [9], Seker et al. [45]3 and this work.

The execution time estimations are obtained by using the number of LUT
accesses multiplied by 0.8 ns (typical RAM access times for DDR3 memory). For
the works that did not use any table, we accounted for 0.5 ns per computation
(typical operation time for a 2 GHz processor).

For our implementation, we choose a 6-bit prime number. Given the remarks
of Sect. 4.3, a 6-bit prime number does not significantly weaken our white-box
compared to longer primes, while allowing a competitive memory footprint.
Concerning memory size, the overall memory cost of the complete implemen-
tation is dominated by the AND tables. For example, by choosing p = 53, with
the implementation described in Sect. 3, Proposition 1 leads to an implemen-
tation of 5,014,144 bits (626.76 kilobytes), coherently with Table 1. The execu-
tion time is constant and is not dependent of the size of the prime number:
15 744 × 0.8 + 30 520 × 0.5 = 27 855 ns.

We remark that our new encoding allows a more efficient white-box design
than the Chow et al. [20] one, and we also argue that our design may be adapted
to a masked implementation with reduced size impact compared to the one of
Biryukov et al. [9].

6 Further Work

In this section we provide a few ideas to further develop our encodings. We orga-
nized such ideas in two main sections. The first section suggests improvements to
the side-channel security of white-boxes. Afterwards we present ideas to thwart
fault attacks.

6.1 Against Side-Channel Attacks

White-box implementations are vulnerable to attacks exploiting software execu-
tion traces containing information about the memory addresses being accessed
or about manipulated data. In order to complexify such attacks, one may add
countermeasures. For example, one can:

– Shuffle and randomize the computations by introducing dummy operations
as suggested in [10]. This can be achieved for example by computing Enc(0)×
Enc(b) for some b, at random time.

2 Bringer et al. did not provide speed figures. We used the count of monomials in
Table 1 of their work and accounted one operation per monomial.

3 Seker et al. did not provide memory figures. In order to obtain the memory con-
sumption of their design we used their (2, 1)-masking, assumed that each gate is
encoded separately (in order to avoid loops) and that each gate is encoded in 1 byte.
This allows a fair comparison against for example the circuit of Biryukov et al. [9],
where the ratio between the number of gates and the resulting size is about 6.4.

270 A. Battistello et al.

Fig. 2. Memory performances and estimated execution time of published AES-128
white-boxes.

– It is possible to mask the AES circuit prior to encoding it into tables. The
impact on the size and speed would be balanced by the augmented security.
We also remark that such countermeasure can easily thwart the Legendre
symbol attack presented in Sect. 4.2.

6.2 Against Fault Attacks

White-box implementations are particularly vulnerable to fault attacks. An
attacker can easily change the execution flow of the implementation or sub-
stitute the value of a variable [11, Sect. 7.2]. Hence, the design of a white-box
must integrate countermeasures against such attacks. Typically redundancy (use
of redundant representations such as a residue number system – RNS [4], or use
of redundant information), error detecting or correcting techniques, or infective
countermeasures [5] are used to thwart such attacks. For example, in order to
introduce redundancy, one can observe that the exponents used in the encodings
are values modulo r. Thus by using a composite r, it is possible to perform smaller
computations modulo each prime dividing r. The result can then be recomputed
by using the Chinese remainder theorem. Each of the two submodules can be
used to:

– Encode the same sensitive value, which provides redundancy.
– Encode different bits of the plaintext, which provides efficiency.
– Encode the correct value on one submodule, a random value on the second

one, which provides randomization.

Enhanced Encodings for White-Box Designs 271

7 Conclusion

This work addresses the problem of encoding data when building a white-
box implementation. We suggest a new encoding scheme based on the Benaloh
cryptosystem that allows both compactness and speed. In particular, the semi-
homomorphic property of our encoding allows to drop half of the tables (in our
example those used for the XOR operations) and to speed up computations by
exchanging part of the tables (used for example in [20]) with homomorphic oper-
ations. We modify the Benaloh scheme in order to obtain an encoding that inher-
its the semi-homomorphic properties of the original design, while fitting the size
constraints of the white-box context. Our new proposition allows the white-box
designer to tune the performances and adapt the security of the implementation
to meet its requirements.

As future work, we remark that it seems possible to enhance speed and mem-
ory consumption of our proposal. In this regard, a promising line of research is to
parallelize multiplications and table accesses. Another direction for further work
is the study of other homomorphic encryption schemes (e.g. lattice based). In
particular, the study of fully homomorphic schemes may turn out advantageous.
Indeed, we have shown in this paper that one can modify a semi-homomorphic
scheme and use it as encoding. Thus it would be interesting to investigate the
modification of a fully homomorphic scheme in a similar way. It could enable to
enhance the security and the memory consumption by only keeping the input
and output tables.

References

1. CHES 2017 capture the flag challenge - the WhibOx Contest - an ECRYPT white-
box cryptography competition (2017). https://whibox-contest.github.io/2017/

2. CHES 2019 capture the flag challenge - the WhibOx contest edition 2 (2019).
https://whibox-contest.github.io/2019/

3. Bai, K., Wu, C., Zhang, Z.: Protect white-box AES to resist table composition
attacks. IET Inf. Secur. 12(4), 305–313 (2018)

4. Bajard, J., Eynard, J., Merkiche, N.: Multi-fault attack detection for RNS crypto-
graphic architecture. In: 23nd IEEE Symposium on Computer Arithmetic, ARITH,
pp. 16–23 (2016)

5. Barbu, G., et al.: A high-order infective countermeasure framework. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC) (2021)

6. Benaloh, J.: Dense probabilistic encryption. In: Selected Areas of Cryptography
(1994)

7. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white-box AES imple-
mentation. In: International Workshop on Selected Areas in Cryptography, pp.
227–240 (2004)

8. Biryukov, A., Dinu, D., Le Corre, Y., Udovenko, A.: Optimal first-order boolean
masking for embedded IoT devices. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 22–41. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 2

https://whibox-contest.github.io/2017/
https://whibox-contest.github.io/2019/
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-319-75208-2_2

272 A. Battistello et al.

9. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: International Conference on the Theory and Application of Cryptology and
Information Security, pp. 373–402 (2018)

10. Biryukov, A., Udovenko, A.: Dummy shuffling against algebraic attacks in white-
box implementations. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 219–248. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-77886-6 8

11. Bock, E., et al.: White-box cryptography: don’t forget about grey-box attacks. J.
Cryptol. 32, 1095–1143 (2019)

12. Bock, E.A., Amadori, A., Brzuska, C., Michiels, W.: On the security goals of white-
box cryptography. IACR Trans. CHES 327–357 (2020)

13. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography. In:
Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 103–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 6

14. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

15. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-Box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1 24

16. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptology ePrint Archive (2006)

17. Bringer, J., Chabanne, H., Le, T.H.: Protecting AES against side-channel analysis
using wire-tap codes. J. Cryptogr. Eng. 2, 129–141 (2012)

18. Calik, C.: CMT: circuit minimization team (2020). https://www.cs.yale.edu/
homes/peralta/CircuitStuff/CMT.html

19. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: A white-box DES implemen-
tation for DRM applications. In: ACM Workshop on Digital Rights Management,
pp. 1–15 (2002)

20. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

21. Cox, M., Engelschall, R., Henson, S., Laurie, B., et al.: The OpenSSL Project
(2002)

22. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao-Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

23. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

24. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 13

25. Fousse, L., Lafourcade, P., Alnuaimi, M.: Benaloh’s dense probabilistic encryption
revisited (2011). https://arxiv.org/pdf/1008.2991.pdf

https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-030-77886-6_8
https://doi.org/10.1007/978-3-319-93387-0_6
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-642-30436-1_24
https://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
https://arxiv.org/pdf/1008.2991.pdf

Enhanced Encodings for White-Box Designs 273

26. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, pp. 365–377 (1982)

27. Goubin, L., Masereel, J.M., Quisquater, M.: Cryptanalysis of white box DES imple-
mentations. In: International Workshop on Selected Areas in Cryptography, pp.
278–295 (2007)

28. Goubin, L., Rivain, M., Wang, J.: Defeating state-of-the-art white-box counter-
measures with advanced gray-box attacks. IACR Trans. CHES 2020(3), 454–482
(2020)

29. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

30. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

31. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
Twentieth annual ACM Symposium on Theory of Computing, pp. 20–31 (1988)

32. Lee, S., Choi, D., Choi, Y.J.: Conditional re-encoding method for cryptanalysis-
resistant white-box AES. ETRI J. 37(5), 1012–1022 (2015)

33. Lee, S., Kim, M.: Improvement on a masked white-box cryptographic implemen-
tation. Cryptology ePrint Archive, Report 2020/199 (2020)

34. Lee, S., Kim, T., Kang, Y.: A masked white-box cryptographic implementation for
protecting against differential computation analysis. IEEE Trans. Inf. Forensics
Secur. 13(10), 2602–2615 (2018)

35. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

36. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box DES. In: International Conference on Information Technology: Coding
and Computing (ITCC 2005)-Volume II, vol. 1, pp. 679–684. IEEE (2005)

37. Luo, R., Lai, X., You, R.: A new attempt of white-box AES implementation. In:
Proceedings of 2014 IEEE International Conference on Security, Pattern Analysis,
and Cybernetics (SPAC), pp. 423–429. IEEE (2014)

38. Menezes, A.J., Katz, J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
Cryptography (1996)

39. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

40. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Interna-
tional Workshop on CHES, pp. 413–427 (2010)

41. Rivain, M., Wang, J.: Analysis and improvement of differential computation
attacks against internally-encoded white-box implementations. IACR Trans. CHES
2019(2), 225–255 (2019)

42. Sanfelix, E., Mune, C., de Haas, J.: Unboxing the white-box. In: Black Hat EU
2015 (2015)

43. Sasdrich, P., Moradi, A., Güneysu, T.: White-box cryptography in the gray box.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 185–203. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 10

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-662-52993-5_10

274 A. Battistello et al.

44. Saxena, A., Wyseur, B., Preneel, B.: Towards security notions for white-box cryp-
tography. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 49–58. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04474-8 4

45. Seker, O., Eisenbarth, T., Liskiewicz, M.: A white-box masking scheme resisting
computational and algebraic attacks. Cryptology ePrint Archive, Report 2020/443
(2020)

46. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
47. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box

DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

48. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications, pp. 1–6. IEEE (2009)

https://doi.org/10.1007/978-3-642-04474-8_4
https://doi.org/10.1007/978-3-642-04474-8_4
https://doi.org/10.1007/978-3-540-77360-3_17

PhiAttack
Rewriting the Java Card Class Hierarchy

Jean Dubreuil1 and Guillaume Bouffard2,3(B)

1 Serma Safety & Security, Pessac, France
j.dubreuil@serma.com

2 National Cybersecurity Agency of France (ANSSI), Paris, France
guillaume.bouffard@ssi.gouv.fr

3 Information Security Group, DIENS École Normale Supérieure,

CNRS, PSL University, Paris, France

Abstract. Compiling Java Card applets is based on the assumption that
export files used to translate Java class item to Java Card CAP tokens
are legitimate. Bouffard et al. [2] reversed the translation mechanism.
Based on malicious Application Programming Interface (API) embedded
in a target, they succeeded in making a man-in-the-middle attack where
cryptographic keys can leak.

In this article, we disclose that, on a pool of legitimate export files,
Java Card Virtual Machine (JCVM) implementations can be confused
by a CAP file verified by the Java Card Bytecode Verifier (BCV). The
disclosed vulnerability leads to Java Card class hierarchy rewriting. The
introduced vulnerability is exploitable up to Java Card 3.0.5. Recently,
Java Card 3.1.0 provides a new export file format which prevents this
vulnerability.

Keywords: Java Card · BCV · Inheritance tree

1 Introduction

Java Card platform [14] is the most used technology embedded in secure com-
ponents [13]. Java Card is a lightweight version of Java for resource-constrained
devices as secure components. Therefore, such secure component embeds a vir-
tual machine, which interprets application bytecodes already romized with the
operating system or downloaded after issuance. Due to security reasons, the
ability to download code into the card is controlled by a protocol defined by
GlobalPlatform [7].

To build a Java Card application, an image of the targeted Java Card Vir-
tual Machine (JCVM) implementation is required. This image gives information
about the available Application Programming Interface (API) and the class hier-
archy. In this article, we focus on how class inheritance is translated during the
compilation process and loaded in a JCVM platform. We show this process can
be corrupted to redefine the class-tree hierarchy which leads to execute malicious
code.
c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 275–288, 2022.
https://doi.org/10.1007/978-3-030-97348-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_15&domain=pdf
http://orcid.org/0000-0002-2046-369X
https://doi.org/10.1007/978-3-030-97348-3_15

276 J. Dubreuil and G. Bouffard

1.1 Java Card Security Model

To install an applet on the Java Card platform, one must implement it in Java
language and then build it within Java compiler (javac) to obtain Java class
files. Those class files are not designed to be embedded in a resource-limited
device. Indeed, the Java class files are executed as is by the Java Virtual
Machine (JVM) where references are resolved by name; it is very costly in both
execution time and memory space. The translated Java class files are named
the CAP (for Converted APplet) file.

To run a Java applet on resource-constraint devices, the adopted solution
is to translate reference name to token during a step made by the Java Card
converter1. If the class file to convert implements features that can be used by
other applications, a Java Card export file is also generated. The export file
contains, for each Java reference name element, the associated token embedded
on the device. Therefore, export files are also used by the bytecode converter
during the translation process. After this translation, Java Card files are checked
by the Bytecode Verifier (BCV) which statically verifies the compliance to the
Java Card security rules. There is a unique CAP file by converted package,
and it is signed to ensure its integrity and authenticity. On the device, the
GlobalPlatform [7] layer verifies the CAP file signature. This part is described
on the left part of Fig. 1.

Fig. 1. Java Card security model.

After obtaining and signing the applet CAP file, the applet developer needs
GlobalPlatform loading keys to load his applet or library. During the installation
process, on the right part of Fig. 1, an embedded security module checks some
security elements. The installed applet runs in its context segregated by the Java
Card Firewall. It ensures that applet accesses only its data or specific shared
features.

1 The Java Card converter is included in the Java Card SDK available on the Oracle’s
website: https://www.oracle.com/fr/java/technologies/java-card-tech.html.

https://www.oracle.com/fr/java/technologies/java-card-tech.html

PhiAttack 277

1.2 State-of-the-Art Java Card Platform Security

The Java Card platform implementation security has been thoroughly studied
against software [1,3–5,8–10,12,17] attacks. Those attacks are implementation
dependent and they are prevented by a BCV. The Java Card protection pro-
file [15] requires the usage of a BCV to check the applet compliance from Java
security rules.

How the BCV checks CAP files has been analysed in [6,11]. Lancia et al. [11]
shows that the BCV does not verify the correctness of information stored twice
in the CAP file. Based on this missing check, they succeed in breaking the
JCVM sandbox by executing ill-formed bytecodes from BCV verified applet.
This vulnerability was corrected in the BCV provided in the Java Card 3.0.5u3
toolchain.

To check the correctness of CAP files, the BCV analysis relies on export
files used during the CAP file conversion. If an export file contains wrong infor-
mation – information which does not correspond to the targeted JCVM – a
vulnerability may occur. Disclosed by Mostowski et al. [12], using wrong export
files, they succeed in making a type confusion upon a BCV-verified applet. More-
over, Bouffard et al. [2] succeed a Man-in-the-Middle attack based on malicious
export files to extract cryptographic secrets. In their attack, they must install
a backdoored API on a targeted JCVM and provide export files to link applet
to this malicious API. Those export files replace the Java Card cryptographic
API. On the targeted JCVM platform, the backdoored API makes interface with
the legitimate Java Card cryptographic API and saves each key generated. How-
ever, this attack is interesting but hard to realize in practice: the attacker must
force its victim to use corrupted export files whereas it is expected that any
application developer use export files from Oracle’s development kit.

1.3 Contribution

In this article, we generalise Bouffard et al.’s work [2] where we corrupt the Java
Card class hierarchy. We succeed in confusing the CAP file import mechanism
to force the targeted JCVM platform to use our Java class hierarchy instead of
the legitimate one. As token resolution relies on runtime verification, our attack
is not detected by a BCV. Therefore, we exploit the token resolution mechanism
to execute malicious code on JCVM platform where each installed CAP file are
checked by an up-to-date BCV.

Our contribution has been initially performed on Java Card specification
3.0.5 [14] as there is no publicly known product implementing a higher specifi-
cation version. Therefore, in the paper, we use the BCV provided by the Java
Card SDK 3.0.5.

We notice that the latest available Java Card SDK is the 3.1.0u5 version [16].
However, when writing this article, there is not product that implements this
version.

This article is organized as follows: Sect. 2 describes the Java Card import
mechanism in order to introduce the PhiAttack explained in Sect. 3. A discussion
on how to counteract this attack is in Sect. 4. Section 5 concludes this article.

278 J. Dubreuil and G. Bouffard

2 Java Card Import Mechanism

This section explains how imported packages are referenced in CAP and export
files in order to introduce the exploited vulnerability.

When an application needs to call some methods from an external API, for
instance the Java Card standard API, runtime must first import the package or
the class containing this method. Importing classes and packages in Java Card
is performed similarly to Java standard syntax as shown in Listing 1.1.

Listing 1.1. SimpleImportExample class description.

1 package simple;
2

3 import javacard.framework .*; // Importing the whole package
4 import javacard.framework.JCSystem; // Importing only one class
5

6 public class SimpleImportExample {
7 public byte publicField;
8 private byte privateField;
9 protected byte protectedField;

10 byte packageField;
11

12 public static short getVersionExample() {
13 // Use one of the imported features
14 return JCSystem.getVersion ();
15 } }

As explained in Sect. 1.1, outputted by the Java Card toolchain, the CAP file
contains application information to be executed as is by the JCVM. The export
file has everything required to use public features provided to other applications.
Therefore, the export file shares public application names and associated tokens.

2.1 Import Mechanism from the CAP File Point of View

The CAP file contains information to call the external methods. We now focus
on JCSystem.getVersion() method (Listing 1.1, line 14) to understand CAP
file import mechanism.

The Import and the ConstantPool components are used by the Method
component when calling the JCSystem.getVersion() method as shown in List-
ing 1.2.

Listing 1.2. A simple.cap file partial view.

1 Import Component
2 A0000000620001 // java/lang
3 A0000000620101 // javacard/framework
4

5 ConstantPool Component
6 // 0
7 staticMethodRef 0.0.0()V; // java/lang/Object.<init >()V
8 // 1
9 staticMethodRef 1.8.9()S; // javacard/framework/JCSystem.getVersion ()S

10

11 // ...
12

13 Method Component
14

15 .method public static getVersionExample()S 1 {

PhiAttack 279

16 .stack 1;
17 .locals 0;
18

19 L0: invokestatic 1 // javacard/framework/JCSystem.getVersion ()S
20 sreturn;
21 }

In the Import component (Listing 1.2, lines 1 to 3), two packages are listed:
java.lang, indexed at 0 and javacard.framework, indexed at 1. Even if not
explicitly imported in the Java source file, the java.lang package is automati-
cally imported by the compiler.

All the imported packages are referenced by their corresponding
Application Identifier (AID) value. In the ConstantPool component, the
JCSystem.getVersion() method is referenced in the second entry, Listing 1.2,
line 9. Value 1.8.9 is interpreted as followed:

– 1 represents the second imported package (there, javacard.framework),
– 8 represents the class token (JCSystem)
– and 9 the method token (getVersion()).

Class and method tokens are defined in the export file of javacard.
framework package. Finally, the invokestatic bytecode references the second
entry of the ConstantPool component, indicating to the JCVM where it can
find the method to call.

2.2 Import Mechanism from the export File Point of View

Considering Listing 1.1, the obtained export file contains the declaration of:

– the SimpleImportExample class and reference to its super classes (in this
case, only Object class),

– the publicField and protectedField fields. The export file contains:
public, protected, static and final field declarations

– and the getVersionExample() method. As well as the fields, the export file
contains public, protected, static and final method declarations.

In this example, we have seen that export file does not list the imported
javacard.framework package. However, a package can publicly expose features
that it had previously imported. This happens, for instance, when inheriting and
in this case, the export file will trace the imported packages.

Listing 1.3. The InheritingImportExample class.

1 package inheriting;
2

3 import javacard.framework.ISOException;
4

5 public class InheritingImportExample extends ISOException {
6 public InheritingImportExample(short reason) {
7 super(reason);
8 } }

280 J. Dubreuil and G. Bouffard

In Listing 1.3, a class inheriting from ISOException is defined at line 5. After
converting this class, the CAP file will import the javacard.framework package
as explained for Listing 1.2, based on the AID value. The export file will con-
tain supplementary information because the InheritingImportExample class
exposes all the public tokens from the ISOException class. Therefore, the fol-
lowing items are found in the export file:

– all the super classes of InheritingImportExample: in order, we have:

1. ISOException,
2. CardRuntimeException,
3. RuntimeException,

4. Exception,
5. Throwable
6. and Object.

– all the inherited public methods from these classes: setReason(),
getReason() and equals().

Unlike in the CAP file, imported tokens in export file are referenced using
their fully qualified names. For instance, the ISOException class is defined by
the ConstantPool entry shown in Listing 1.4.

Listing 1.4. Partial view of inheriting package export file.

1 tag : 01 (cp_utf8_info)
2 length: 00 1f
3 utf8_bytes []: javacard/framework/ISOException

In this Section we have seen how imported packages are referenced in CAP
and export files. In some cases, the imported package is simultaneously defined
in both files. However, an asymmetry exists as the CAP file references imported
packages from their AID values while the export file references them using their
fully qualified names.

The BCV may not be able to ensure that the AID used in the CAP file
corresponds to the package name used in the export file and this may lead to
inconsistencies as explained in the next Section.

3 PhiAttack

On Java Card platforms, every package is identified by a unique AID value.
Actually, nothing prevents an application developer to create its own package
with the same name as an already existing package, as long as the assigned AID
value to this package is not already used by another one. At compilation and
runtime, this is accepted: the BCV is able to identify and discriminate the two
packages ensuring that the packages are properly used and the JCVM interprets
bytecode from the content of CAP files that import packages with their AID.

PhiAttack 281

3.1 Setting-up the Attack

Let’s consider an application developer that creates two packages, both named
library but each one has a different AID, as shown in Listing 1.5 and List-
ing 1.6. Each package contains a class, named Phi, with a method named
doSomething(). However, this method signature is different from one package
to another. The difference is highlighted in red and underline.

Listing 1.5. library package with
DEADBEEF01 AID.

package library;

public class Phi {
public void doSomething () {

// ...
} }

Listing 1.6. library package with
DEADBEEF02 AID.

package library;

public class Phi {
public short doSomething () {

// ...
} }

In the Java source code, one cannot import both versions of the library
package at the same time. As each package has the same name, the compilation
process cannot distinguish one from the other. However, this can be achieved by
forging a CAP file that imports these packages, from their AIDs. Even if such a
construction cannot be obtained in a common way, it will be, however, accepted
by the BCV. In this case, the BCV properly handles the two packages and it is
able to differentiate the two Phi classes. Such a construction is quite weird but
is actually allowed.

A third package named proxy is described in Listing 1.7. It imports library
package. At compilation time, only the library package defined in Listing 1.5
is given to the Java Card toolchain. Therefore, the CAP file of proxy pack-
age imports library with DEADBEEF01 AID. The PhiProxy class only inherits
from the Phi class. Therefore, the export file of proxy package references the
library.Phi class and the doSomething() method with the correct signature
(return type is void).

Listing 1.7. proxy package

package proxy;

import library .*;

public class PhiProxy extends Phi {}

A last package, named exploit, is created and described in Listing 1.8. This
package imports two packages: library and proxy. At compilation time, the
library package defined in Listing 1.6 is provided at the Java Card toolchain.
Therefore, the CAP file of exploit imports library with DEADBEEF02 AID. In
doExploit() method, Listing 1.8 line 7, an instance of PhiProxy is created and
its reference is saved in a variable of type Phi. Finally, the doSomething() is
called.

282 J. Dubreuil and G. Bouffard

Listing 1.8. exploit package

1 package exploit;
2

3 import library .*;
4 import proxy .*;
5

6 public class Exploit {
7 public void doExploit () {
8 PhiProxy proxyInstance = new PhiProxy ();
9 Phi phiInstance = proxyInstance;

10 short result = phiInstance.doSomething ();
11 } }

Figure 2 shows the UML diagram of these packages in order to synthesise a
global view of the dependencies between them.

Fig. 2. UML diagram of PhiAttack.

The four packages described in this section are checked by the BCV. The
obtained result is: 0 error and 0 warning.

3.2 Understanding PhiAttack

Two processes must be studied here, 1) the analysis performed by the BCV
on CAP and export files of exploit package and 2) the execution flow of
doExploit() method at runtime.

On the one hand, to verify the exploit.cap file, BCV makes checks as
introduced in Fig. 3. In the doExploit method in Listing 1.8, three parts are
critical:

1. At line 8, an instance of PhiProxy is created. The obtained reference is stored
in a variable of the same type. On Fig. 3, the BCV checks this instruction new
0 by resolving token 0 (1) and reads the ConstantPool entry 0 to obtain
proxy.PhiProxy type (2) in proxy export file.

2. At line 9 the previously stored reference is copied in a variable of type Phi.
The compiler translates this operation by aload and astore instructions and

PhiAttack 283

it does not insert checkcast instruction as PhiProxy type is a sub-class of
Phi. From the BCV, type is ensured; aload instruction pushes a PhiProxy
instance on operand stack and astore instruction pops a Phi instance from
operand stack. There, the BCV validates the operation because it finds the
mother class Phi from library package with DEADBEEF02 AID. At this state
of the verification, the BCV cannot know that the actual mother class is
in package with DEADBEEF01 AID. At runtime, as there is no checkcast
instruction, no cast verification is performed.

3. At line 10, the doSomething() method is called on an instance of type Phi.
On Fig. 3, to call this method, the invokevirtual 1 instruction is checked
by the BCV. To verify this method call, the BCV resolves token 1 (3).
to obtain library.Phi.doSomething() method signature (4) in library
export file.

Fig. 3. BCV view when verifying exploit.cap file.

During the verification, the BCV performs its checks based on export files
content:

– proxy export file states that PhiProxy inherits from a class called
library.Phi. The missing information here is that this class must come from
library package with DEADBEEF01 AID.

– library export file with DEADBEEF02 AID states that it contains a class
named library.Phi. When verifying exploit package, the BCV only con-
siders this library package based on the Import component of exploit.

284 J. Dubreuil and G. Bouffard

On the other hand, at runtime, the JCVM tries to resolve the doSomething
virtual method upon the invokevirtual 1 instruction. To do this, the class
hierarchy is browsed until finding the method token. Due to the similar con-
struction, the doSomething() methods of both library packages have the same
method token value.

Fig. 4. Runtime view when executing exploit.cap.

From the JCVM point of view, Fig. 4, the actual class hierarchy of the cur-
rently accessed Object class:

PhiProxy → Phi (from library package with DEADBEEF01 AID) → Object.

Therefore, when interpreting the invokevirtual instruction, the found
method is the one from library package with DEADBEEF01 AID: this method
returns nothing (void type).

PhiAttack 285

In line 10 in Listing 1.8, when returning from doSomething() method, a value
is expected from the stack to store it in variable called result. During runtime,
as the called method returns nothing the value is popped from an empty stack:
a stack underflow is obtained.

This whole construction is allowed by the BCV because of the asymmetry
in the import mechanism described in Sect. 2. In this Section, a stack underflow
is demonstrated as example but various kinds of exploitation are described in
Sect. 3.3.

3.3 Variations and Exploitation of Such an Attack

We have seen in Sect. 3.2 that a stack underflow attack can be performed using
a specific construction that induces errors in the BCV import resolution. Using
the same principle, a stack overflow attack can also be performed, by switching
the two library packages.

The same principle can also be applied on the Java Card standard API. For
instance, the attacker can create its own javacardx.crypto package with its own
Cipher class (containing for instance methods with a different signature than
expected). Using a proxy package in which a class inherits from the attacker’s
Cipher class, the principle described in Sect. 3.2 applies.

A type confusion attack can also be performed by replacing for instance
Listings 1.5 and 1.6 by Listings 1.9 and 1.10. Indeed the confusion() method
from package with DEADBEEF01 AID will be called instead of the other one,
transforming the short argument in a reference type.

Listing 1.9. library package with
DEADBEEF01 AID for type confusion.

package library;

public class Phi {
public Object confusion(

Object o){

return o;
} }

Listing 1.10. library package with
DEADBEEF02 AID for type confusion.

package library;

public class Phi {
public Object confusion(

short s) {
return null;

} }

This can even be performed with the Object class itself, in java.lang pack-
age. This allows to redefine a complete class hierarchy (with Exception and all
the Java Card standard API). However, it must be noted that defining Object
class in a CAP file leads to set very specific values in some structures of the
CAP. For instance, the super class ref field of class info structure in Class
component has value 0xFFFF. This value induces errors during CAP file loading
on many public Java Card platforms. These errors suggest that the loader of
such products is not designed to load a new Java Card class hierarchy root.

In Sect. 3.1, the two Phi classes have the same structure: they both inherit
from Object and they both have the same number of public methods. However,
if the number of public methods is different, calling a method in the exploit
package may result in calling an actually non-existing method. Depending on
the JCVM implementation, runtime may have several reactions, but overflow in
the public virtual method table is very likely to happen.

286 J. Dubreuil and G. Bouffard

However, the Phi attack principle is not a full attack path by itself. Indeed the
obtained overflow/underflow must still be exploited on a targeted device with a
specific payload. Many state-of-the-art attacks [1,3–5,8–10,12,17] are detected
by the BCV. Combined with Phi attack principle, these attacks become full
exploitations that disclose sensitive assets without being detected by the BCV.

4 Discussion on Countermeasures

Our contribution was performed on Java Card specifications 3.0.5. However,
when packages described in Sect. 3.1 are checked by the BCV provided by the
Java Card 3.1.0 toolchain, the following log is obtained:

Listing 1.11. BCV log on proxy package

INFOS: [v3.1.0] Off -Card Verifier
INFOS: Export file library\javacard\library.exp is in an older export

file format. Please update the export file to format 2.3.
INFOS: Export file proxy\javacard\proxy.exp is in an older export file

format. Please update the export file to format 2.3.
INFOS: Verifying CAP file proxy\javacard\proxy.cap
INFOS: Verification completed with 0 warnings and 0 errors.

As stated in Sect. 3.1, the BCV raises no warning and no error, validating
the CAP and export files. However, information about export files version is
returned.

Indeed only export files in version 2.2, specified in [14], have been used.
Version 2.3 is described in [16]. Nevertheless, export files in version 2.2 are still
accepted by the BCV 3.1.0 as valid format, with only an information indicating
that a new format is available.

Version 2.3 of export file format adds supplementary information in the file.
Among modifications, a new structure is added containing the AID value, the
minor and major version of each package referenced in the export file. The AID
value is the missing information that prevented the BCV to detect the attack
attempted in Sect. 3.1. Therefore, when export files are generated in version
2.3, the construction shown in Sect. 3.1 is successfully detected by the BCV as
malformed.

Before loading one or several CAP files in a Java-Card based product, the
latest version of the BCV must be executed in order to ensure that the loaded
code is not malicious. However, more than just running the BCV, the entity
performing the verification should also check that export files provided are in
version 2.3. Ensuring the version is 2.3 allows to detect potential malicious
applications to be loaded.

5 Conclusion

We show in this article how a missing information in the export file allows an
attacker to abuse the BCV checks during packages import resolution. This could

PhiAttack 287

lead an attacker to execute malicious pieces of code within a verified application
allowing to potentially break the Java Card security model.

This kind of issue can be countered by denying the use of export file format
older than 2.3 even if the latest BCV version still accepts export files in 2.2
version.

The identification of this missing information in export files allowing to
attack Java Card products opens perspective and potential future work on find-
ing other kind of information that would be completely or partially missing.

Following our responsible disclosure policy, as far as we know, all the Java
Card platform developers concerned by this vulnerability were informed before
the publication of this paper.

Acknowledgments. A very special thanks to my wife, Marie-Philomène Dubreuil,
who accompanied me during all these hours of work on this research topic. This attack
is named after her.

Jean Dubreuil

References

1. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined software and hardware
attacks on the Java card control flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-27257-8 18

2. Bouffard, G., Khefif, T., Lanet, J., Kane, I., Salvia, S.C.: Accessing secure informa-
tion using export file fraudulence. In: Crispo, B., Sandhu, R.S., Cuppens-Boulahia,
N., Conti, M., Lanet, J. (eds.) 2013 International Conference on Risks and Security
of Internet and Systems (CRiSIS), La Rochelle, France, 23–25 October 2013, pp.
1–5. IEEE (2013). https://doi.org/10.1109/CRiSIS.2013.6766346

3. Bouffard, G., Lanet, J.-L.: Reversing the operating system of a Java based smart
card. J. Comput. Virol. Hacking Tech. 10(4), 239–253 (2014). https://doi.org/10.
1007/s11416-014-0218-7

4. Bouffard, G., Lanet, J.: The ultimate control flow transfer in a Java based smart
card. Comput. Secur. 50, 33–46 (2015). https://doi.org/10.1016/j.cose.2015.01.004

5. Faugeron, E.: Manipulating the frame information with an underflow attack. In:
Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 140–151.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 10

6. Faugeron, E., Valette, S.: How to hoax an off-card verifier. e-smart (2010)
7. GlobalPlatform: Card Specification. GlobalPlatform Inc., 2.2.1 edn. (January 2011)
8. Hamadouche, S., et al.: Subverting byte code linker service to characterize Java

card API. In: 7th Conference on Network and Information Systems Security (SAR-
SSI), 22–25 May 2012, pp. 75–81 (2012)

9. Hamadouche, S., Lanet, J.: Virus in a smart card: myth or reality? J. Inf. Secur.
Appl. 18(2–3), 130–137 (2013). https://doi.org/10.1016/j.jisa.2013.08.005

10. Lancia, J.: Java card combined attacks with localization-agnostic fault injection. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 31–45. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37288-9 3

11. Lancia, J., Bouffard, G.: Java card virtual machine compromising from a bytecode
verified applet. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514,
pp. 75–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 5

https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1007/978-3-642-27257-8_18
https://doi.org/10.1109/CRiSIS.2013.6766346
https://doi.org/10.1007/s11416-014-0218-7
https://doi.org/10.1007/s11416-014-0218-7
https://doi.org/10.1016/j.cose.2015.01.004
https://doi.org/10.1007/978-3-319-08302-5_10
https://doi.org/10.1016/j.jisa.2013.08.005
https://doi.org/10.1007/978-3-642-37288-9_3
https://doi.org/10.1007/978-3-319-31271-2_5

288 J. Dubreuil and G. Bouffard

12. Mostowski, W., Poll, E.: Malicious code on Java card smartcards: attacks and
countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85893-5 1

13. Oracle: Java Card Technology - Providing a secure and ubiquitous platform
for smart cards. Technical report, Oracle, Security Evaluations, Oracle Corpo-
ration, 500 Oracle Parkway, Redwood Shores, CA 94065 (2012). www.oracle.com/
technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf

14. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.
Version 3.0.5, Oracle, Oracle America Inc., 500 Oracle Parkway, Redwood City,
CA 94065 (2015)

15. Oracle: Java card system - open configuration protection profile. Protection Pro-
file versoin 3.0.5, Oracle, Security Evaluations, Oracle Corporation, 500 Oracle
Parkway, Redwood Shores, CA 94065 (December 2017)

16. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.
Version 3.1, Oracle, Oracle America Inc., 500 Oracle Parkway, Redwood City, CA
94065 (February 2021)

17. Razafindralambo, T., Bouffard, G., Lanet, J.-L.: A friendly framework for hidding
fault enabled virus for Java based smartcard. In: Cuppens-Boulahia, N., Cuppens,
F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 122–128. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31540-4 10

https://doi.org/10.1007/978-3-540-85893-5_1
https://doi.org/10.1007/978-3-540-85893-5_1
www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
https://doi.org/10.1007/978-3-642-31540-4_10

FuzzyKey: Comparing Fuzzy
Cryptographic Primitives

on Resource-Constrained Devices

Mo Zhang1,4(B), Eduard Marin2, David Oswald1, and Dave Singelée3

1 University of Birmingham, Birmingham, UK
mxz819@cs.bham.ac.uk, d.f.oswald@bham.ac.uk

2 Telefonica Research, Madrid, Spain
eduard.marinfabregas@telefonica.com

3 imec-COSIC, KU Leuven, Leuven, Belgium
dave.singelee@esat.kuleuven.be

4 University of Melbourne, Parkville, Australia

Abstract. Implantable medical devices, sensors and wearables are
widely deployed today. However, establishing a secure wireless commu-
nication channel to these devices is a major challenge, amongst others
due to the constraints on energy consumption and the need to obtain
immediate access in emergencies. To address this issue, researchers have
proposed various key agreement protocols based on the measurement of
physiological signals such as a person’s heart signal. At the core of such
protocols are fuzzy cryptographic primitives that allow to agree on a
shared secret based on several simultaneous, noisy measurements of the
same signal. So far, although many fuzzy primitives have been proposed,
there is no comprehensive evaluation and comparison yet of the overhead
that such methods incur on resource-constrained embedded devices. In
this paper, we study the feasibility of six types of fuzzy cryptographic
primitives on embedded devices for 128-bit key agreement. We configure
several variants for each fuzzy primitive under different parameter selec-
tions and mismatch rates of the physiological signal measurements on an
MSP430 microcontroller, and then measure and compare their energy
consumption and communication overhead. The most efficient construc-
tions consume between 0.021 mJ and 0.198 mJ for the transmitter and
between 0.029 mJ and 0.380 mJ for the receiver under different mismatch
rates. Subsequently, we modify the best performing methods so that they
run in constant time to protect against timing side-channel attacks, and
observe that these changes only minimally affect resource consumption.
Finally, we provide open-source implementations and energy consump-
tion data of each fuzzy primitive as a reference for real-world designs.

Keywords: Fuzzy commitment · Fuzzy vault · Fuzzy extractor ·
Physiological signal · Key agreement · Energy consumption

c© Springer Nature Switzerland AG 2022
V. Grosso and T. Pöppelmann (Eds.): CARDIS 2021, LNCS 13173, pp. 289–309, 2022.
https://doi.org/10.1007/978-3-030-97348-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97348-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-97348-3_16

290 M. Zhang et al.

1 Introduction

Healthcare technology is evolving at a rapid pace. Medical sensors are get-
ting more miniaturised, while being able to measure a broader set of people’s
Physiological Signals (PSs) more reliably. New generations of widely-deployed
Implantable Medical Devices (IMDs) are considerably lighter and smaller com-
pared to previous generations. Wearables are extensively used nowadays, also
often within the context of health monitoring. Multiple wearable and medi-
cal computing devices can be connected to form a body area network. Besides
their application opportunities within the health domain, all these devices have
in common that they rely on a wireless interface to communicate with each
other or with external devices such as a smartphone. This increased wireless
connectivity enhances without any doubt the quality of the (remote) health-
care that can be offered to users. However, in turn, security and privacy are at
stake for such medical systems. The medical data that is being monitored on
the user is clearly privacy-sensitive. Moreover, the integrity and authenticity of
the data, as well as remote updates or commands sent to the devices, have to
be protected as well. Unfortunately, researchers have demonstrated that several
medical and wearable devices available on the market currently lack security
mechanisms [11,22–24,29].

It is therefore evident that cryptographic solutions are needed to secure the
wireless interface between these devices. This includes the initial security boot-
strap process to establish a secret session key to protect the wireless communica-
tion link. However, this turns out to be a challenging research problem for various
reasons. First, most of these devices have strict resource constraints, e.g., lim-
ited memory and computational power. Furthermore, most IMDs are operated
by a single non-rechargeable and non-replaceable battery which typically lasts
between five and seven years (depending on the type of device and treatment).
Once the battery is drained, the IMD is replaced through a surgical intervention
that can pose risks to patients. Likewise, wearables typically contain small bat-
teries, e.g., powered by a button cell with approximate a thousand joules. Thus,
in such resource-constrained devices every single joule matters. Second, these
devices often do not have any input or output interfaces, such as a keypad or
a screen. Third, a subset of these medical devices, more particularly IMDs, are
not even physically accessible at all, because they are implanted in the patient.
Fourth, most of the wireless connections that have to be made with these devices
cannot rely on any prior trust relation. This is because these network connections
are not static, i.e., the set of external devices one needs to connect to can change
quite often. For example, during an emergency situation, the first doctor that
is present (who may have never seen the patient before) might have to estab-
lish a communication link to the patient’s IMD. Due to all these constraints,
conventional key distribution and bootstrap techniques are not viable options:
key exchanges based on public key cryptography are difficult to manage because
they require establishment of a robust Public Key Infrastructure (PKI).

The use of physiological signals (e.g., a signal extracted from the user’s heart-
beat) has been proposed as an alternative to securely establish a key between two

FuzzyKey 291

devices that do not have any prior trust relationship. In contrast to biometrics,
where the extracted information is to some extent invariant, PSs are required to
be random signals that vary over time. The security of PS-based cryptographic
solutions relies on the fact that the user’s PS can only be obtained by making
physical contact with them (e.g., by touching the skin long enough). A com-
mon approach to agree on a key is for each of the devices to independently and
synchronously take a measurement of a given user’s PS [20,21]. However, the
measurements taken by the devices are often not identical but at best rather
similar due to inherent noise introduced by the measuring process. To address
this limitation, Juels et al. [15,16] and Dodis et al. [10] introduced so-called fuzzy
cryptographic primitives, including the fuzzy commitment [16], fuzzy vault [15]
and fuzzy extractor [10], which allow two devices to agree a cryptographic key
from noisy data.1

1.1 Related Work

Fuzzy cryptographic primitives have become the basis of several PS-based cryp-
tographic protocols. For example, K Venkatasubramanian et al. [38], Hu et al.
[14] and Reshan et al. [4] utilised the fuzzy vault for key agreement based on
measurements of InterPulse Intervals (IPIs), i.e., time intervals between R-peaks
of Electrocardiogram (ECG) signal. Similarly, Cherukuri et al. proposed a PS-
based key distribution protocol based on the fuzzy commitment that is used
to securely transport a session key between two sensors [7]. Another example
is the key agreement protocol by Marin et al. which uses a fuzzy extractor in
combination with IPIs [21]. It is worth noting that the security of PS-based key
exchange protocols has been exhaustively investigated over the past years. In
particular, Calleja et al. [6] and Seepers et al. [32] demonstrated that some PS,
such as those extracted from the patient’s heart, might be measured remotely
without the need for direct physical touch. Besides, the entropy of the PS itself
has been questioned, e.g., although IPI was frequently chosen as the PS used in
prior security protocols, Ortiz-Martin et al. [26] challenged that IPIs may not
have as much entropy as expected. Furthermore, some PS-based key exchange
protocols, such as [7,30], have been proved to be vulnerable to certain attacks
[20].

While PS-based solutions have been frequently designed and analysed, little
effort has been devoted into studying the feasibility of fuzzy primitives (as the
core of such schemes) in resource-constrained systems as well as how to configure
them to optimise performance. This is in contrast to “traditional” cryptographic
algorithms, whose efficient implementation on resource-constrained devices has
been widely studied, see e.g., [12,25,33].

1 Apart from being used in PS-based key exchange protocols, fuzzy schemes are also
used in other areas such as biometrics and Physical Unclonable Functions (PUFs) [3,
5,9,10], where traditional cryptographic algorithms are not directly applicable.

292 M. Zhang et al.

1.2 Contributions

In this paper, we present implementations and evaluations of PS-based 128-bit
key agreement based on fuzzy cryptographic primitives on an MSP430, which is
a representative low-power microcontroller similar to the one used in commercial
IMDs or wearables. Our main contributions are:

1. We implement and optimise six fuzzy cryptographic primitives for PS-based
key exchange. Our implementation can be easily ported to different platforms.

2. We evaluate and compare the resource consumption (energy consumption and
communication overhead) of each construction under various parameter set-
tings both at the transmitter and receiver using an MSP430. We demonstrate
that fuzzy primitives are feasible on a resource-constrained embedded device.
We show how parameter selection affects the performance and report on the
overall best-performing fuzzy primitives under different metric spaces. To the
best of our knowledge, we are the first to provide a systematic evaluations of
various fuzzy primitives on resource-constrained devices.

3. We implement countermeasures against timing attacks for the most efficient
constructions, and show that our protected implementations reduce tim-
ing leakage below the statistical significance threshold, while only minimally
affecting resource consumption.

Our source code is available under the following link: https://github.com/
MrZMN/FuzzyKey

Paper organisation. The remainder of this paper is organised as follows: in
Sect. 2, we introduce the mathematical background of fuzzy primitives, com-
monly used components, and concrete constructions used in this paper. In Sect. 3,
we explain our security assumptions and how to instantiate the constructions
of fuzzy primitives. We give implementation details in Sect. 4, before evaluating
the performance of all fuzzy primitives in Sect. 5. We conclude in Sect. 6.

2 Background

In this section, we describe the mathematical background required for this paper,
and discuss several fuzzy cryptographic algorithms. Elementary computations
are in GF (2m). In this paper, we consider m ≤ 8 so that computations are fast on
constrained embedded devices and most variables fit in one byte. A metric space
M is a finite set. For each M , there is a definite integer distance dist (m1, m2)
between any two elements m1 and m2. The fuzzy primitives discussed in this
paper rely on two different kinds of metric spaces: (i) Hamming metric space and
(ii) set metric space. In a Hamming metric space, M = F � for an alphabet F .
dist(m1,m2) in M is the Hamming distance, which is the number of positions
that m1 differs from m2. For example, for M = {0, 1}3, dist({0, 0, 0}, {1, 1, 1})
= 3. Besides, the number of non-zero elements in m1 is called m1’s Hamming
weight. In a set metric space, M contains all s-element subsets of a universe
U . dist() in M is the set difference, which is the size of symmetric difference

https://github.com/MrZMN/FuzzyKey
https://github.com/MrZMN/FuzzyKey

FuzzyKey 293

(defined by symdiff(m1, m2) = {x ∈ m1 ∪ m2 | x /∈ m1 ∩ m2}). For example,
U = GF (23) and s = 3, dist({0, 1, 2}, {0, 1, 3}) = 2. dist(m1,m2) is an even
number when the size of m1 and m2 is the same.

The inputs of the fuzzy primitives working on these two metrics are different.
For this paper, the input is the physiological value converted from a PS. For
Hamming metric methods, the input is a bit string that can be generated by
concatenating the bit representations of PSs, such as heart rates, which makes
these methods flexible for different types of PS. However, because a bit string is
consecutive, these methods are sensitive to dislocation and erasure errors on the
measurements (e.g., due to peak misdetection when using the heart beat [31]).
One bit erasure at the start of a bit string might lead to a significant increase in
the Hamming distance. Set metric methods alleviate these problems to a certain
extent. The input in this case is a set, and even if there are order-difference or
erasure problems on set elements, the set difference will not vary substantially.
However, converting one specific PS into a set whose elements are randomly
distributed in U can be complicated, especially when the size of U is large.

Error Correction Codes. Error Correction Codes (ECCs) are frequently used to
achieve error-tolerance in this paper. An ECC comprises encoding and decoding
phases. In the encoding phase, the original data is encoded as a codeword, where
some form of redundancy is added. When errors appear in the codeword, the
decoding phase recovers the original data if the total number of errors is below
the error tolerance limit. ECCs are represented by the triple {n, k, t}, where n
is the number of symbols of the codeword, k is the number of symbols of the
data (k < n), and t is the maximum number of errors that can be corrected in a
codeword. The error tolerance is then t/n. We focus on two linear ECCs, namely
binary Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes, as
already recommended in the first papers on fuzzy primitives [10,15,16]. They
provide flexible parameter selection as well as efficient encoding and decoding
methods. As we will show in the next sections, an efficient ECC can greatly
improve the performance of the fuzzy cryptographic algorithms.

2.1 Fuzzy Cryptographic Primitives for PS-Based Key Exchange

We briefly describe all fuzzy cryptographic primitives evaluated in this paper and
show their use for PS-based 128-bit key exchange. We distinguish two types: (i)
based on Hamming distance (fuzzy commitment, code-offset and syndrome) and
(ii) based on set difference (fuzzy vault, improved Juels-Sudan and Pinsketch).

We denote the transmitter and receiver that agree on a cryptographic key
as TX and RX, and refer to the physiological values generated by TX and RX
as ps and ps′. Ext←−− denotes extraction of ps or ps′ from raw PS measurements,
and R←− denotes random number generation.

Shuffle←−−−−− refers to randomly mixing
elements in a set, while calculating the roots of a polynomial is denoted as
roots←−−−. We write (0, 1)� for an �-bit length string and {x, y}s for a set comprising

s distinct elements. In all fuzzy cryptographic constructions described below, the
first step is to extract ps and ps′, which we will omit in the rest of this section.

294 M. Zhang et al.

Fig. 1. Fuzzy cryptographic primitives.

In a fuzzy commitment [16], TX generates a random key and encodes it to
form a codeword (Fig. 1a). Subsequently, TX masks the codeword by XORing it
with ps and then sends the resulting value (denoted by fc) to RX. Upon receiving
fc, RX generates codeword′ by XORing fc with ps′. Only if the mismatch rate
between codeword and codeword′ is less than the ECC’s error tolerance limit,
RX can successfully recover the key previously generated by TX.

The fuzzy vault (Fig. 1b) [15] is designed to “lock” a key using a set of features
A. It can be unlocked only by using a set of features B that is sufficiently similar
to A. Concretely, TX generates a key and embeds it in a univariate polynomial
p(). Then, TX mixes and sends valid points (x, y), where x is in ps and y = p(x),
and invalid points (also known as ‘chaff points’) that do not lie on p(). For each
received point, RX verifies whether x is in ps′, and then performs polynomial
reconstruction based on all the matched points. Only if the overlap between ps
and ps′ is sufficiently large, RX can successfully recover the key.

Both fuzzy commitment and fuzzy vault transport a key using two similar
PS measurements. In contrast, fuzzy extractors [10] extract the key from the
PS itself. Generally, the mismatches of PS measurements at TX and RX are
corrected by sharing “helper data”. Afterwards, both sides use the agreed PS
to extract the cryptographic key with a strong random extractor (e.g., a secure
hash function). We consider four fuzzy extractors in Hamming and set met-
rics. We omit the key extraction step below as it is the last step shared by all
constructions.

The code-offset construction (Fig. 2a) is similar to the fuzzy commitment
scheme, but here ps is the secret, while in fuzzy commitment, ps conceals the
key. In particular, TX generates a random nonce and encodes it as codeword
using the ECC. Then, TX sends ss = codeword⊕ps. RX obtains the codeword′ =
ss ⊕ ps′ = codeword ⊕ ps ⊕ ps′ and can decode it to codeword if the mismatch
rate is within bounds. Finally, RX recovers ps = codeword ⊕ ss.

The syndrome construction (Fig. 2b) is based on syndrome decoding of an
ECC. Concretely, TX and RX regard ps and ps′ as a codeword and calculate

FuzzyKey 295

syndromes syn and syn′, respectively. TX sends syn to RX, who calculates
syn ⊕ syn′. For mismatch vector mis = ps ⊕ ps′, syn ⊕ syn′ is the syndrome
of mis, which decodes to mis if the mismatch rate is within bounds. Then, one
recovers ps = mis ⊕ ps′. Compared to code-offset construction, the syndrome is
always shorter than the codeword, reducing the communication overhead.

In the improved Juels-Sudan construction (Fig. 2c), TX uses the monic poly-
nomial p(x) =

∏
w∈ps (x−w) with roots as elements in ps and writes it as the sum

phigh()+ plow(). TX calculates the coefficients of phigh() and sends them to RX.
Then, RX generates points (x, y) where x is in ps′ and y = phigh(x). If ps′ ≈ ps,
most points will also be on plow(), so RX can reconstruct it and obtain ps by
finding roots of p(). Compared with fuzzy vault, the communication overhead is
much lower as only some coefficients have to be sent.

The Pinsketch construction (Fig. 2d) is based on an ECC. For universe size
u = 2m − 1, a set set can be viewed as a vector {0, 1}u, with 1 at position
where x ∈ set and 0 otherwise. In this way, ps and ps′ are written as two such
u-element vectors v, v′ whose Hamming weight is the set size s. TX and RX
calculate the syndromes sstx and ssrx of v and v′. Afterwords, TX sends sstx
to RX, while RX computes syn = sstx⊕ssrx. If the mismatch rate is under the
error tolerance of the ECC, the syndrome decoding result of syn is the symmetric
difference between sets ps and ps′, which helps correct the mismatches. Because
v and v′ are binary vectors, BCH codes are particularly suitable [10].

Fig. 2. Fuzzy extractor constructions.

296 M. Zhang et al.

3 Design Security and Parameter Selection

To provide a systematic comparison and evaluation of fuzzy primitives for PS-
based key exchange on resource-constrained embedded systems, we make several
design decisions: Taking into account the limits on energy consumption and com-
putational resources in a body-area network scenario and the fact that keys are
often short-lived, we limit ourselves to 128-bit keys. Furthermore, we only con-
sider key exchange between two devices. We note that subsequent protocol steps,
such as key confirmation step to ensure that TX and RX derive the same 128-bit
key, are independent of the underlying fuzzy primitive and hence do not consider
those steps. We also note that fuzzy primitives are only responsible for correct-
ing the mismatches of the PS, i.e., we do not consider errors on the wireless
channel, and assume that the underlying wireless protocol includes appropriate
error detection and correction measures.

Adversary Model. We consider a strong adversary who knows all details about
the used fuzzy primitives and has full access to the communication channel
between TX and RX. The adversary can (i) perform passive attacks by eaves-
dropping on the communication and exploiting information leakage from it. For
example, if ps and ps′ in a fuzzy commitment are low-entropy, the adversary can
statistically analyse their distribution and thus compromise the security [27].
Alternatively, correlation-based methods that leverage the correlation between
communication data over multiple key exchange sessions can be used [17]. On
the other hand, the adversary can also (ii) carry out active attacks, i.e., act as
Man-In-The-Middle (MITM) or replay old sessions. Finally, the adversary can
also observe and exploit secret-dependent timing leakage e.g., the precise time
between two protocol messages, both in passive and active attacks.

We assume that the measured PS cannot be modelled or predicted and cannot
be remotely obtained. The latter implies that adversary can be in proximity to
the user but cannot touch him directly or indirectly (because this would allow
the adversary to measure the signal), nor being able to compromise a device
worn by the user to measure the PS. In the research community, this touch-to-
access access control model is widely accepted as it offers a reasonable trade-
off between security and availability [24,30]. Although the security may rely on
user awareness to some extent, this model ensures high availability in emergency
situations where fast establishment of a secure channel to the IMD is vital. For
this reason, we leave physical side-channel and other attacks with direct access
(such as fault injection) out of the adversary model, as in this case, the adversary
can equally measure the PS directly for key recovery. We also do not consider
Denial-of-Service (DoS) attacks such as jamming or battery depletion attacks.

Countermeasures Against Passive Attacks. The underlying security of the fuzzy
commitment against offline attacks depends on the entropy of the bit strings
ps and ps′ extracted from PS as these are used to conceal the key (by XOR)
while being transported. The security of fuzzy vault relies on the fact that the
adversary cannot distinguish between valid and chaff points, and hence is unable

FuzzyKey 297

to reconstruct p(). For a fuzzy vault scheme with parameters g, b and d (cf.
Fig. 1b), the adversary would need an average of

(
g+b

(g+d)/2

)
/
(

g
(g+d)/2

)
attempts

to reveal p() (assuming that Berlekamp-Welch decoding is used). Therefore, the
number of chaff points needs to be sufficiently large.

For fuzzy extractors, the security depends on the entropy of the PS itself as
the key is directly extracted from the PS. Due to the leakage of helper data, there
will be an amount of entropy loss on PS in each construction. For code-offset
and syndrome constructions, the entropy loss is (n − k) · f , where n, k come
from the underlying (n, k, t) ECC, and f is the number of bits constituting each
symbol. The entropy loss is t · log2 u for the improved Juels-Sudan construction,
and is t · log2(u+1) for the Pinsketch construction, where u is the universe size
and t is the maximum set difference between ps and ps′. Note that the above
represent worst case entropy loss values [10]. Some of them were also proven
to be overly pessimistic [9]. To ensure security, we regard the worst-case values
as the actual entropy loss in this paper. Because we only focus on 128-bit key
agreement, if the remaining entropy of PS (the agreed PS before input to the
strong extractor) is ≥128 bit, the fuzzy extractor is considered secure.

For correlation-based attacks, note that in the case of PS-based key exchange,
the PS has to vary over time and the exchanged key (generated randomly by the
device or extracted from the PS) is short-lived and different in each session [20],
unlike scenarios based on non-variable materials, e.g., biometrics or PUFs. This
means that correlation attacks are prevented by the nature of the application.

Countermeasures Against Active and Timing Attacks. Due to the varying key,
replay attacks are by design prevented. Other active attacks (such as guessing-
based ones) require the adversary to break the fuzzy primitive “online” within a
single protocol session [4,18], otherwise, they at most result in failure of the key
exchange and are detected by subsequent key confirmation. They can thus be
prevented by generating a secret with substantially high entropy. Active attacks
based on accurate measurement or modelling of the underlying PS [6] are out-
side our adversary model. Timing attacks can be generically prevented using
constant-time implementations techniques, which we further discuss in Sect. 4.

Assumptions on Physiological Signal. The selection of the PS (e.g., IPI) and its
quality as an entropy source, although an important issue, are out of the scope
of this paper. However, we would like to stress that the quality of PS only affects
the total measurement time, e.g., a lower quality of the entropy source means
longer measurements. In order to generate the input for the fuzzy primitives, a
set of pre-processing methods (e.g., quantisation and coding [26]) is applied to
the raw PS measurements. However, this is out of the scope of this paper.

Assumptions on Fuzzy Primitive Input. The inputs of fuzzy primitives (i.e.,
ps and ps′ in Sect. 2.1) are extracted from some PS which is measured by two
devices simultaneously. There are several factors that affect the similarity of ps
and ps′, e.g., the type of PS, the measurement accuracy of the sensor, and the
signal processing method. To evaluate and compare different fuzzy primitives, it

298 M. Zhang et al.

is necessary to consider pre-defined mismatch rates (i.e., percentage of different
bits/set elements) between ps and ps′, which reflect the characteristics of differ-
ent kinds of scenarios. In this paper, we consider three mismatch thresholds of
2%, 5% and 10%. While the authors of [39,40] reported that the mismatch rate
for heart rate measurements is typically below 5%, we note that other PSs might
have slightly higher mismatch thresholds. We also note that unlike BCH codes,
RS codes are multi-bit-symbol based. Thus, for RS code variants, the above
thresholds indicate the percentage of different symbols rather than bits. Addi-
tionally, one should note that the average bit error rate (i.e., the possibility that
each bit differs for two bitstrings) may be more broadly used on the Hamming
metric in other application scenarios, thus, we also provide this information for
each variant in Table 2 (with a maximum tolerable failure rate of 10−6). This
maximum average bit rate that can be tolerated needs to be considered when
selecting the most appropriate error correcting code.

Here, we assume that ps and ps′ are �-bit strings that are random and uni-
formly distributed for Hamming metric methods, or sets containing s distinct
elements that are uniformly distributed in a universe U for set metric methods.
This assumption is only made for fairly comparing different fuzzy primitives;
both fuzzy commitment and fuzzy vault naturally require the input to be uni-
formly randomly distributed to ensure security.2 Additionally, if the fuzzy prim-
itive inputs are not uniformly distributed, it is hard to quantify the entropy level
of the PS and establish a unified mismatch rate threshold. Under this assump-
tion, the initial entropy of the PS is � for Hamming metric fuzzy extractors,
while for set metric fuzzy extractors, it is log2

(
u
s

)
with u the size of U .

Parameter Selection. The mismatch rate between ps and ps′ directly determines
the error tolerance requirement of the fuzzy primitives. For Hamming metric
methods, the error tolerance is the same as that of the underlying ECC (i.e.,
t/n for an (n, k, t) code). For example, (50, 44, 1) and (20, 15, 1) BCH codes are
suitable when the maximum mismatch rate is 2% and 5%, respectively. However,
RS codes cannot provide exact 2%, 5% and 10% error tolerance because of their
inherent structure. Therefore, we selected several RS constructions with error
tolerance within 2% + the pre-defined mismatch rate thresholds. For example,
the error tolerance of a (31, 29, 1) RS code is 3.23%. As mentioned in Sect. 2,
all codes stay within the field GF (28). For set metric methods with (u, s, t)
structure, where u is the universe size, s the set size and t the maximum tolerable
set difference between ps and ps′, the error tolerance is t/2s.

For each fuzzy primitive, there can be multiple feasible parameter choices
under the same mismatch rate, e.g., using different configurations of ECCs may
achieve the same error tolerance. The difference between them is that the repe-
tition count might be different: Assume the total repetition count is r and the
number of secret bits distributed in each iteration is i, we need to ensure that
r · i ≥ 128 to achieve 128-bit security. This way, RX concatenates the secret

2 However, this requirement can be alleviated with the combination of a Password
Authenticated Key Exchange (PAKE), as shown in [18]. Note that fuzzy extractors
can still be securely used even if the inputs are not uniformly distributed.

FuzzyKey 299

bits it receives in each iteration to form the 128-bit key. The security of subse-
quent/parallel execution based on linear codes has been proven in [9]. Note that
i is the length of the key distributed per iteration for fuzzy commitment and
fuzzy vault, but the remaining entropy of PS for fuzzy extractors. Consider a
fuzzy commitment that is based on (50, 44, 1) and (200, 168, 4) BCH codes (both
handle mismatch ≤2%) as an example. In order to distribute a 128-bit key, the
former variant needs to be executed three times (3 · 44 > 128), while the latter
only needs to be executed once. Although more iterations may be required, small
parameter choices (e.g., an ECC with a small block size) almost always mean
less computation and hence less energy consumption. Therefore, we test different
variants under the same mismatch threshold. A variant with larger parameter
choice is considered only if it reduces the number of required iterations. Besides,
under each mismatch rate, the variants used by different fuzzy primitives in each
metric are the same, thus help with the performance comparison.

Note that for Hamming metric methods, the number of feasible variants
depends on the number of underlying ECCs that achieve the pre-defined mis-
match thresholds. We give all feasible variants for Hamming metric in Table 2.
For set metric methods, there are more possible (u, s, t) variants because (i) the
universe size u can vary depending on how a PS is converted to a set and (ii) mul-
tiple s and t combinations can achieve the same error tolerance. In this paper, we
use u = 255, which is the maximum universe size for the Pinsketch construction
on GF (28). We define three variants (255, 50, 2), (255, 20, 2) and (255, 10, 2)
for 2%, 5%, and 10% mismatch rate thresholds. These variants are provided for
reference only, and one could devise more appropriate variants for set metrics
with specific mappings from PS to set. Finally, the fuzzy vault construction over
GF (28) is insecure, because the number of chaff points is ≤28. However, for our
performance evaluation in Sect. 5, we limit ourselves to GF (28), and note that
the system can be easily extended to larger fields (e.g., GF (216)).

4 Implementation

We implemented, ran, and measured all algorithms on a TI MSP430FR5969
LaunchPad development board [35]. This board comprises a 16-bit microproces-
sor with 2 kB volatile SRAM and 64 kB permanent FRAM, which is represen-
tative for low-power body area network devices (including e.g., IMDs). We also
alternatively used an MSP430FR5994 development board [36] with 8 kB SRAM
for certain variants that require more resources, and indicate this in Table 2.
For development, we used TI’s Code Composer Studio as it provides integrated
functionality for on-device energy consumption measurement.

Implementation of the Strong Extractor. Considering many embedded micro-
controllers, including the MSP430 used in this paper, feature a hardware AES
accelerator, we opted to use a block cipher-based hash function, with AES as the
underlying cipher. We selected the Hirose construction [13] for the strong extrac-
tor in our implementation. Hirose is a double-block-length hash with Merkle-
Damg̊ard structure. We measured the average energy consumption of each invo-
cation of the Hirose compression function on MSP430FR5969 to be 1.42µJ.

300 M. Zhang et al.

Depending on the availability of a fast hardware/software implementation, other
hash functions such as SHA256 can be used instead of Hirose.

Software Development and Energy Measurement. We implemented all algorithms
in plain C and mainly relied on standard C libraries so that our implementation
can be easily ported to other platforms. For random number generation and
hardware-accelerated AES, we used TI’s driver APIs. The tested average energy
consumption of generating 16 bytes when using TI’s random number generator
API is 2.5µJ. Certain components can be implemented in different ways. For
example, there are a variety of algorithms for ECCs. We chose commonly used,
efficient algorithms: for BCH and RS encoding, we used standard cyclic code
encoding, and for decoding we used the Berlekamp decoding method [2,19]. For
polynomial reconstruction, we used the Berlekamp-Welch algorithm.

We carried out the energy consumption measurement using TI energyTrace
tool. This functionality allows to take accurate on-device energy measurement
from the Code Composer Studio IDE. For each measurement, we averaged the
energy consumption value over 100 executions of the respective algorithm. To
test the error correction ability of the fuzzy primitives, we artificially added
the maximum tolerable number of mismatches on the PS in the code, and then
measured the corresponding energy consumption. We used TI Ultra Low Power
Advisor tool to refactor our code and minimise energy consumption. Overall,
we found that these optimisations reduced the energy consumption ≤10%.

Estimation of Communication Energy Cost. The energy consumption of a pro-
tocol between multiple devices comprises two components: (i) the energy con-
sumption of computations; and (ii) the energy consumption of wireless communi-
cation. In this paper, we only measure the energy consumption of computation,
and model the cost of wireless communication based on the number of bits to
be transmitted and received. In particular, in Sect. 5, we use the experimental
results of [25] for a TelosB [8], a wireless sensor node based on a 16-bit MSP430
microcontroller and a CC2420 transceiver to illustrate the impact of commu-
nication overhead on overall energy consumption. Their results show that for
75 kbps data rate and −5 dBm transmit power, the average energy required to
transmit one bit of effective data is 0.72µJ, and the energy required to receive
this bit is 0.81µJ.

We acknowledge that a simplistic “energy-per-bit” model may be inadequate
e.g., when using packet-based protocols such as Bluetooth Low Energy (BLE)3,
where the constant overheads due to the frame structure and other steps (e.g.,
wakeup and preparation) can be substantial. Therefore, we also provide the
number of payload bits for each variant in Table 2, which can be fed into a
more appropriate energy consumption model for a specific wireless protocol (e.g.,
informed by measurements as reported in [34]). We note that many widely used
protocols support payloads large enough to accommodate all our variants in
one packet (e.g., 246 bytes for BLE). This minimizes the impact of the frame

3 BLE is already being used in commercial IMDs e.g., Medtronic Azure pacemakers [1].

FuzzyKey 301

structure, thus, when considering such protocols, the different implementations
can be compared purely based on their computational energy cost.

Defenses Against Timing Side Channels. We implemented countermeasures
against timing-based side-channel attacks on the best-performing variants (i.e.,
fuzzy primitives with lowest total energy consumption under different mismatch
thresholds, cf. Table 4). We found that non-constant execution time mainly arises
in the ECC encoding/decoding processes through various conditional branches
depending on a value being negative. To address this, we replaced all such con-
ditional branches with Boolean operators, and used other constant-time imple-
mentation techniques, such as constant-time modulo reduction (based on Barrett
reduction) and constant-time sorting.

Table 1. Effects of timing side-channel defenses on timing leakage (measured by
Welch’s t-test) and energy consumption.

Fuzzy primitive Variant TX RX

Protected Unprotected Protected Unprotected

t-value Energy (mJ) t-value Energy (mJ) t-value Energy (mJ) t-value Energy (mJ)

Syndrome extractor (31,29,1)RS 0.06 0.016 92.69 0.021 0.73 0.023 2039.85 0.029

Syndrome extractor (31,27,2)RS 1.64 0.029 2220.64 0.037 1.67 0.043 352.48 0.053

Syndrome extractor (63,49,7)RS 0.99 0.136 4927.79 0.198 0.80 0.237 438.42 0.308

Pinsketch extractor (255,50,2) 1.01 0.089 242.24 0.046 0.72 0.168 733.98 0.127

Pinsketch extractor (255,20,2) 0.77 0.052 468.67 0.044 0.91 0.208 428.64 0.201

Pinsketch extractor (255,10,2) 0.20 0.066 298.66 0.067 6.63 0.377 236.67 0.380

We empirically verified the effects of implementing the above countermea-
sures, including the effect on timing leakage and energy consumption (commu-
nication overhead included). We used dudect [28] to evaluate the timing leakage
of the TX and RX implementations running on the MSP430FR5969. The results
are given in Table 1. The timing leakage of a program is evaluated by Welch’s t-
test in dudect. For each TX and RX implementation, the t-value in Table 1 was
computed using 10,000 timing measurements. For a t-value ≤10, dudect regards
the timing leakage as insignificant given the number of timing measurements.

It is evident that the baseline implementations exhibit strong timing leakage,
while the protected variants significantly reduce the leakage below the constant-
time threshold of the t-test in dudect. Besides, the energy consumption is not
significantly increased for the protected variants. In fact, in some cases the energy
consumption even decreases because of the use of Barrett reduction, which
replaces the costly modulo operation otherwise implemented through division.

5 Performance Evaluation

We implemented 22 variants of fuzzy primitives in total for the Hamming metric
and three for the set metric. For each variant, we measured its computational
energy consumption and estimated the communication cost at both TX and RX
sides, and give the input size (extracted from the PS) required to achieve 128-bit
security. Table 3 shows the main building blocks used by each fuzzy primitive.

302 M. Zhang et al.

T
a
b
le

2
.
E

va
lu

a
ti

o
n

o
f
H

a
m

m
in

g
a
n
d

se
t

m
et

ri
c

m
et

h
o
d
s

F
u
zz

y
co

m
m

it
m

en
t

C
o
d
e-

o
ff
se

t
co

n
st

ru
ct

io
n

S
y
n
d
ro

m
e

co
n
st

ru
ct

io
n

E
rr

o
r

to
le

ra
n
ce

M
a
x
.
av

er
a
g
e

b
it

er
ro

r
ra

te
V

a
ri

a
n
t

#
it

er
a
ti

o
n
s

P
S

d
a
ta

(b
it

)
T

X
(m

J
)

R
X

(m
J
)

C
o
m

m
(b

it
)

T
X

(m
J
)

R
X

(m
J
)

C
o
m

m
(b

it
)

T
X

(m
J
)

R
X

(m
J
)

C
o
m

m
(b

it
)

2
%

0
.0

0
1
6
%

(5
0
,
4
4
,
1
)

B
C

H
3

1
5
0

0
.0

2
2

0
.0

7
9

1
5
0

0
.0

3
0

0
.0

9
1

1
5
0

0
.0

5
2

0
.0

8
4

3
6

2
%

0
.0

1
4
6
%

(1
0
0
,
8
6
,
2
)

B
C

H
2

2
0
0

0
.0

3
7

0
.2

0
1

2
0
0

0
.0

4
5

0
.2

1
5

2
0
0

0
.1

2
7

0
.2

0
7

5
6

2
%

0
.0

8
5
4
%

(2
0
0
,
1
6
8
,
4
)

B
C

H
1

2
0
0

0
.0

8
2

0
.3

8
9

2
0
0

0
.0

8
7

0
.4

0
4

2
0
0

0
.2

4
4

0
.3

9
4

6
4

3
.2

3
%

0
.0

0
3
7
%

(3
1
,
2
9
,
1
)

R
S

1
1
5
5

0
.0

1
1

0
.0

1
7

1
5
5

0
.0

1
6

0
.0

2
1

1
5
5

0
.0

1
4

0
.0

2
1

1
0

5
%

0
.0

0
2
4
%

(2
0
,
1
5
,
1
)

B
C

H
9

1
8
0

0
.0

2
9

0
.1

0
7

1
8
0

0
.0

4
7

0
.1

2
7

1
8
0

0
.0

7
0

0
.1

2
0

9
0

5
%

0
.0

2
7
3
%

(4
0
,
2
8
,
2
)

B
C

H
5

2
0
0

0
.0

3
4

0
.2

2
5

2
0
0

0
.0

4
6

0
.2

3
9

2
0
0

0
.1

2
8

0
.2

3
5

1
2
0

5
%

0
.0

8
5
4
%

(6
0
,
4
2
,
3
)

B
C

H
4

2
4
0

0
.0

4
7

0
.3

4
4

2
4
0

0
.0

5
9

0
.3

5
7

2
4
0

0
.2

2
1

0
.3

5
4

1
4
4

5
%

0
.1

7
2
8
%

(8
0
,
5
2
,
4
)

B
C

H
3

2
4
0

0
.0

7
6

0
.5

2
6

2
4
0

0
.0

8
5

0
.5

4
5

2
4
0

0
.2

9
4

0
.5

3
3

1
6
8

5
%

0
.2

8
4
2
%

(1
0
0
,
6
5
,
5
)

B
C

H
2

2
0
0

0
.0

8
0

0
.5

0
5

2
0
0

0
.0

9
1

0
.5

1
9

2
0
0

0
.3

0
6

0
.5

0
5

1
4
0

5
%

0
.9

0
0
5
%

(2
2
0
,
1
3
6
,
1
1
)

B
C

H
1

2
2
0

0
.1

7
6

0
.9

2
5

∗
2
2
0

0
.1

7
9

0
.9

7
6

∗
2
2
0

0
.7

2
5

1
.0

9
6

∗
1
7
6

6
.6

7
%

0
.0

0
3
8
%

(1
5
,
1
3
,
1
)

R
S

3
1
8
0

0
.0

2
0

0
.0

2
7

1
8
0

0
.0

2
9

0
.0

4
1

1
8
0

0
.0

2
6

0
.0

3
9

2
4

6
.4

5
%

0
.0

6
6
2
%

(3
1
,
2
7
,
2
)

R
S

1
1
5
5

0
.0

1
9

0
.0

3
4

1
5
5

0
.0

2
3

0
.0

4
0

1
5
5

0
.0

2
3

0
.0

3
7

2
0

1
0
%

0
.0

0
3
1
%

(1
0
,
6
,
1
)

B
C

H
2
2

2
2
0

0
.0

6
0

0
.1

4
1

2
2
0

0
.0

9
9

0
.1

8
0

2
2
0

0
.1

0
3

0
.1

8
0

1
7
6

1
0
%

0
.0

4
0
7
%

(2
0
,
1
0
,
2
)

B
C

H
1
3

2
6
0

0
.0

4
6

0
.3

0
7

2
6
0

0
.0

7
3

0
.3

3
1

2
6
0

0
.1

7
5

0
.3

3
1

2
6
0

1
0
%

0
.1

4
2
9
%

(3
0
,
1
5
,
3
)

B
C

H
9

2
7
0

0
.0

4
4

0
.3

9
9

2
7
0

0
.0

6
5

0
.4

2
0

2
7
0

0
.2

5
9

0
.4

2
8

2
7
0

1
0
%

0
.2

9
0
4
%

(4
0
,
1
6
,
4
)

B
C

H
8

3
2
0

0
.0

6
7

0
.7

3
2

3
2
0

0
.0

8
5

0
.7

4
5

3
2
0

0
.3

9
4

0
.7

3
5

3
8
4

1
0
%

0
.4

8
2
2
%

(5
0
,
2
3
,
5
)

B
C

H
6

3
0
0

0
.0

7
4

0
.7

8
6

3
0
0

0
.0

9
1

0
.7

9
7

3
0
0

0
.4

5
2

0
.7

8
5

3
6
0

1
0
%

0
.6

8
5
5
%

(6
0
,
2
7
,
6
)

B
C

H
5

3
0
0

0
.0

7
7

0
.8

7
8

3
0
0

0
.0

9
2

0
.8

9
6

3
0
0

0
.5

4
8

0
.8

8
5

3
6
0

1
0
%

1
.2

7
1
3
%

(9
0
,
3
4
,
9
)

B
C

H
4

3
6
0

0
.1

3
1

1
.7

1
3

3
6
0

0
.1

4
5

1
.7

3
0

3
6
0

0
.9

6
5

1
.7

2
4

5
0
4

1
0
%

1
.8

1
5
3
%

(1
2
0
,
4
3
,
1
2
)

B
C

H
3

3
6
0

0
.1

5
6

2
.1

0
2

3
6
0

0
.1

6
8

2
.1

1
0

3
6
0

1
.2

7
6

2
.0

8
5

5
0
4

1
0
%

3
.0

0
9
0
%

(2
1
0
,
7
0
,
2
1
)

B
C

H
2

4
2
0

0
.2

8
8

3
.3

4
0

∗
4
2
0

0
.3

0
6

3
.4

8
0

∗
4
2
0

2
.6

3
7

4
.0

2
5

∗
6
7
2

1
1
.1

1
%

2
.4

6
2
6
%

(6
3
,
4
9
,
7
)

R
S

1
3
7
8

0
.1

0
3

0
.2

4
7

3
7
8

0
.1

0
7

0
.2

5
2

3
7
8

0
.1

3
8

0
.2

4
0

8
4

F
u
zz

y
va

u
lt

Im
p
ro

v
ed

J
u
el

s–
S
u
d
a
n

co
n
st

ru
ct

io
n

P
in

sk
et

ch
co

n
st

ru
ct

io
n

E
rr

o
r

to
le

ra
n
ce

V
a
ri

a
n
t

#
it

er
a
ti

o
n
s

T
X

(m
J
)

R
X

(m
J
)

P
S

d
a
ta

(b
it

)
C

o
m

m
(b

it
)

#
it

er
a
ti

o
n
s

T
X

(m
J
)

R
X

(m
J
)

P
S

d
a
ta

(b
it

)
C

o
m

m
(b

it
)

#
it

er
a
ti

o
n
s

T
X

(m
J
)

R
X

(m
J
)

P
S

d
a
ta

(b
it

)
C

o
m

m
(b

it
)

2
%

(2
5
5
,
5
0
,
2
)

1
2
.5

3
4

7
.0

3
6

∗
4
0
0

4
0
8
0

1
0
.3

9
1

1
8
.9

5
7

∗
4
0
0

1
6

1
0
.0

3
4

0
.1

1
4

4
0
0

1
6

5
%

(2
5
5
,
2
0
,
2
)

1
1
.3

5
4

0
.6

4
0

1
6
0

4
0
8
0

2
0
.1

3
2

2
.9

8
0

3
2
0

3
2

2
0
.0

2
1

0
.1

7
5

3
2
0

3
2

1
0
%

(2
5
5
,
1
0
,
2
)

2
1
.9

0
6

0
.2

3
8

1
6
0

8
1
6
0

4
0
.0

7
3

2
.3

2
0

3
2
0

6
4

4
0
.0

2
1

0
.3

2
8

3
2
0

6
4

FuzzyKey 303

Table 2 shows the detailed measurement results for all considered fuzzy primitive
instantiations in both the Hamming and set metric. We include the following
characteristics of each variant: error tolerance, maximum average bit error rate,
required number of iterations to achieve 128-bit security, computational energy
cost at TX/RX (excluding communication cost), communication overhead (in
bits transmitted/received), and required number of bits extracted from the PS.
∗ indicates implementation on MSP430FR5994 due to memory requirements.

In the following, we focus on the evaluation and comparison of selected vari-
ants. We include full, detailed results for all variants in Table 2. As mentioned, we
base our estimation of communication costs on the values of 0.72µJ per bit for
TX and 0.81µJ for RX [25], but also provide the number of exchanged payload
bits for use with other models to estimate communication energy.

5.1 Hamming Metric Constructions

The minimum number of input bits derived from the PS is given as n · f · r, where
n is the codeword length of the chosen ECC, f is the number of bits constituting
a symbol, and r is the number of repetitions (i.e., how many iterations of the
primitive are required for 128-bit security). Depending on the specific variant,
between 150 and 420 PS-derived bits are required (cf. Table 2). However, as
we focus on the fuzzy primitive itself, rather than the conversion from PS to
the algorithm input, we provide these values for reference only and to guide
developer decisions in specific situations.

Table 3. Main building blocks of fuzzy primitives for TX and RX.

TX side RNG ECC
encoding

XOR Hash Syndrome
gen.

Find poly.
coeffs

Gen. points
on p()

Gen. chaff
points

Shuffle
points

Fuzzy commitment � � �
Fuzzy vault � � � �
Code-offset extractor � � � �
Syndrome extractor � �
Improved JS extractor � �
Pinsketch extractor � �

RX side ECC
decoding

XOR Reconstruct
p()

Syndrome
gen.

Hash Gen. points
on p()

Filter
points

Find root
on p()

Fuzzy commitment � �
Fuzzy vault � �
Code-offset extractor � � �
Syndrome extractor � � � �
Improved JS extractor � � � �
Pinsketch extractor � � � �

Computation Costs. Fig. 3 shows the energy cost of the Hamming metric fuzzy
primitives. For each mismatch threshold, we show four variants of each fuzzy
primitive and note that they are adequate to indicate the overall trend. At TX
side, we observe that the fuzzy commitment consumes the least energy. The cost

304 M. Zhang et al.

of the code-offset extractor is generally slightly higher than the fuzzy commit-
ment under different mismatch rates. This result is in line with our expectations,
because the code-offset extractor can be seen as a fuzzy commitment with addi-
tional invocation of a strong extractor. The syndrome fuzzy extractor involves
the most energy-intensive computations. This is because syndrome generation
for BCH and RS codes is an expensive operation that involves repeatedly eval-
uating p(x) given x, which requires a number of iterative operations.

At RX side, we note that the energy consumption of the fuzzy commitment is
also the smallest. The difference in computational energy consumption between
the code-offset and syndrome extractors is often small because both extractors
share several building blocks. Note that, even if the syndrome extractor has an
extra “syndrome generation” block compared to the code-offset extractor (cf.
Table 3), the actual execution of these constructions is equivalent.

Regarding ECC choice, the RS code performs substantially better than BCH
for mismatch rates below 5%. However, for 10% mismatch, the chosen RS code
is worse than the best BCH variant. However, note that e.g., the (63, 49, 7)
RS instance can accommodate up to 343-bit distribution per iteration for the
fuzzy commitment, while we only require 128 bits, which is not optimal if only
considering computational energy consumption.

Fig. 3. Energy consumption of Hamming metric primitives.

Combined Computation and Communication Cost. When we also take the esti-
mated communication costs into account, the syndrome fuzzy extractor out-
performs the other two variants most of the time. For both fuzzy commitment
and code-offset construction, the communication overhead is determined by the
codeword length n of the chosen ECC and the number of required repetitions.
For example, consider the (50, 44, 1) BCH variant in Table 2. In this case, the
communication overhead is 50 · 3 bits, because the variant needs to be executed
three times to establish a 128-bit key. In contrast, the communication overhead
for the syndrome extractor depends on the syndrome length and the number of
repetitions. The length of the syndrome is 2 · t · m for BCH and RS codes, where
m comes from GF (2m) underlying the ECC [19]. An obvious advantage is that

FuzzyKey 305

the syndrome is always shorter than the codeword. Considering the previous
example, TX would only need to transmit 12 · 3 bits for the syndrome extrac-
tor. Overall, the variants with lowest combined computation and communication
cost under each mismatch rate are shown in Table 4. The syndrome extractor
has variants with the lowest total energy consumption in all conditions.

Table 4. Fuzzy primitives with lowest total energy cost on the Hamming metric (Syn-
drome extractor) and set metric (Pinsketch extractor).

Mismatch rate Fuzzy primitive Variant Total energy at TX (mJ) Total energy at RX (mJ)

2% Syndrome extractor (31,29,1) RS 0.021 0.029

5% Syndrome extractor (31,27,2) RS 0.037 0.053

10% Syndrome extractor (63,49,7) RS 0.198 0.308

2% Pinsketch extractor (255,50,2) 0.046 0.127

5% Pinsketch extractor (255,20,2) 0.044 0.201

10% Pinsketch extractor (255,10,2) 0.067 0.380

5.2 Set Metric Constructions

The required number of derived bits for set metric methods is s · f · r, where s
is the set size, f is the number of bits constituting a set element, and r is the
number of repetitions. Set metric constructions require input sizes from 160 to
400 bits (cf. Table 2), which is similar to the Hamming metric variants.

Computation Costs. Figure 4 shows the energy consumption of all considered set
metric methods (cf. Table 2 for the underlying data). At TX, we observe that
the fuzzy vault consumes substantially more energy than the other two methods.
This is likely because TX of the fuzzy vault has to generate and shuffle a large
amount of points (mostly chaff points). The TX energy cost of the Pinsketch
fuzzy extractor is slightly below improved Juels-Sudan. According to Table 3,
the difference in energy consumption is due to the difference between syndrome
generation (note that this is not the same as the standard syndrome calculation
of BCH and RS code) and the polynomial coefficient finding.

On the RX side, we find that the Pinsketch construction has the lowest energy
consumption for mismatch rates below 5%, and has slightly higher consumption
than fuzzy vault for 10% mismatch. The improved Juels-Sudan fuzzy extractor
is always the most expensive construction under all mismatch rates, likely due to
the required polynomial root finding process. We further observe that the energy
consumption of this method and the fuzzy vault decrease significantly when the
mismatch rate threshold increases. This is expected because both methods rely
on the same complex polynomial reconstruction for mismatch correction. This
involves operations on s × s matrices (s is the set size). Hence, polynomial recon-
struction is efficient for small sets (i.e., under higher mismatch threshold), but
as the set size increases, the computational complexity increases quadratically.

306 M. Zhang et al.

Fig. 4. Energy consumption of set metric primitives.

Combined Computation and Communication Cost. The number of transmitted
bits for the fuzzy vault is np · lp · r, where np is the total number of points (valid
and chaff points), lp is the length of each point, and r is the repetition count. For
our universe size of 255, np = 255 and lp = 16 bits (each coordinate is one byte).
In contrast, the transmission size for improved Juels-Sudan and Pinsketch fuzzy
extractors is t · f · r, where t is the maximum tolerable set difference between sets
and f is the number of bits constituting a set element (in our constructions f =
8). Hence, the communication cost of the fuzzy vault is much higher compared
to improved Juels-Sudan and Pinsketch. The overall best set metric variants for
each mismatch threshold are shown in Table 4. The Pinsketch fuzzy extractor
performs best in terms of combined computation and communication cost in all
cases. The improved Juels-Sudan has extremely high computation cost in RX,
while the fuzzy vault incurs substantial communication overhead. Considering
that secure implementation of fuzzy vault requires operations over GF (216) and
transmits more points, it is likely that costs would further grow in practice.

5.3 Common Observations and Comparison with Curve25519

We observed certain common tendencies for all fuzzy primitives: for each vari-
ant, the computation energy consumption for RX is generally higher than for
TX. Conversely, the communication cost is roughly the same for TX and RX.
This observation is relevant when assigning TX/RX roles in more complex pro-
tocols; e.g., a low-power IMD can act as TX if the goal is to minimise energy
consumption. In addition, the energy consumption of variants with larger param-
eter (e.g., larger BCH code) shows an increase both for TX and RX, even though
the number of required repetitions decreases.

We compared the energy cost of our best-performing variants with
Curve25519, one of the most efficient elliptic curve-based key exchange schemes
for embedded systems. As reported in [12], one full execution of Curve25519
on MSP430FR5969 costs about 0.012 mJ (0.404 mJ if communication energy is
estimated as in this paper). Thus, our methods are comparable in terms of total
energy consumption. Moreover, fuzzy primitives provide security guarantees

FuzzyKey 307

beyond a public-key scheme such as Curve25519: they can defend against MITM
attacks (without certificate infrastructure) and guarantee that RX and TX are
in physical proximity.

6 Conclusion

In this paper, we systematically and fairly evaluate the performance of fuzzy
cryptographic primitives for PS-based key exchange under controlled conditions
on a resource-constrained MSP430 microcontroller. We show how different fuzzy
primitives can be securely applied to derive a 128-bit key from joint measure-
ments of a PS, and provide implementations of each of these primitives in multi-
ple variants. To our knowledge, we are the first to compare the computation and
communication energy consumption of different fuzzy primitives for a variety of
parameter choices. Among all considered fuzzy primitives, we find that Syndrome
and Pinsketch fuzzy extractors overall offer the lowest energy consumption in
Hamming and set metric spaces.

This indicates that fuzzy commitment and fuzzy vault used in previous PS-
based key exchange solutions [4,7,14,37,38] are not optimal on constrained
devices. Instead, Syndrome/Pinsketch fuzzy extractors may be preferable, with
the added advantage that they neither require random number generation, which
can be costly on embedded systems, nor uniformly randomly distributed inputs
derived from a PS. These constructions consume between 0.021 mJ and 0.198 mJ
for TX and between 0.029 mJ and 0.380 mJ for RX, including computational and
communication energy. This demonstrates that PS-based key exchange methods
using fuzzy primitives are feasible for a resource-constrained device, even if keys
are relatively frequently exchanged. We also observe that ECCs with smaller
parameter choices in fuzzy primitives have generally better performance, even if
more repetitions are required. However, this might come at the cost of having
more strict constraints on the maximum average bit error rate of a PS. Our work
serves as a reference when applying fuzzy primitives for body-area networks and
medical devices, and for other use cases such as biometrics or PUFs.

Acknowledgements. This work is funded in part by the European Union’s Horizon
2020 Research and innovation program under grant agreement No. 826284 (ProTego),
the FWO-SBO project SPITE, and by the Engineering and Physical Sciences Research
Council (EPSRC) under grant EP/R012598/1. Mo Zhang is funded by the Priestley
PhD Scholarship programme. The ECC decoding methods were based in part on the
source code of Simon Rockliff [2].

References

1. Medtronic Azure pacing system. https://europe.medtronic.com/xd-en/healthcare-
professionals/products/cardiac-rhythm/pacemakers/azure.html

2. Simon Rockliff’s Reed-Solomon encoder/decoder. http://www.eccpage.com/rs.c
3. Abidin, A., Argones Rúa, E., Peeters, R.: Uncoupling biometrics from templates

for secure and privacy-preserving authentication. In: ACM SACMAT (2017)

https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html
https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html
http://www.eccpage.com/rs.c

308 M. Zhang et al.

4. Al Reshan, M., Liu, H., Hu, C., Yu, J.: MBPSKA: multi-biometric and physiological
signal-based key agreement for body area networks. IEEE Access 7, 78484–78502
(2019)

5. Billeb, S., Rathgeb, C., Reininger, H., Kasper, K., Busch, C.: Biometric template
protection for speaker recognition based on universal background models. IET
Biometrics 4(2), 116–126 (2015)

6. Calleja, A., Peris-Lopez, P., Tapiador, J.E.: Electrical heart signals can be mon-
itored from the moon: security implications for IPI-based protocols. In: WISTP,
pp. 36–51 (2015)

7. Cherukuri, S., Venkatasubramanian, K.K., Gupta, S.K.S.: BioSec: a biometric
based approach for securing communication in wireless networks of biosensors
implanted in the human body. In: ICPP, pp. 432–439 (2003)

8. Crossbow Technology Inc.: TelosB Mote Platform datasheet, Rev. B, https://www.
willow.co.uk/TelosB Datasheet.pdf

9. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for
PUF-based key generation: overview and analysis. IEEE TCAD 34(6), 889–902
(2015)

10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

11. Halperin, D., Heydt-Benjamin, T.S., Fu, K., Kohno, T., Maisel, W.H.: Security
and privacy for implantable medical devices. IEEE Pervasive Comput. Spec. Issue
Implantable Electron. 7, 30–39 (2008)

12. Hinterwälder, G., Moradi, A., Hutter, M., Schwabe, P., Paar, C.: Full-size high-
security ECC implementation on MSP430 microcontrollers. In: Aranha, D.F.,
Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 31–47. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 2

13. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:
FSE, pp. 210–225 (2006)

14. Hu, C., Cheng, X., Zhang, F., Wu, D., Liao, X., Chen, D.: OPFKA: secure and
efficient ordered-physiological-feature-based key agreement for wireless body area
networks. In: INFOCOM (2013)

15. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

16. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS (1999)
17. Kholmatov, A., Yanikoglu, B.: Realization of correlation attack against the fuzzy

vault scheme. In: Security, Forensics, Steganography, and Watermarking of Multi-
media Contents X, vol. 6819, p. 68190O. SPIE (2008)

18. Li, X., Zeng, Q., Luo, L., Luo, T.: T2Pair: secure and usable pairing for heteroge-
neous IoT devices. In: ACM CCS, pp. 309–323 (2020)

19. Lin, S., Costello, D.J.: Error Control Coding, vol. 2. Prentice Hall (2001)
20. Marin, E., Argones Rúa, E., Singelée, D., Preneel, B.: On the difficulty of using

patient’s physiological signals in cryptographic protocols. In: ACM SACMAT, pp.
113–122 (2019)

21. Marin, E., Mustafa, M.A., Singelée, D., Preneel, B.: A privacy-preserving remote
healthcare system offering end-to-end security. In: Mitton, N., Loscri, V., Moura-
dian, A. (eds.) ADHOC-NOW 2016. LNCS, vol. 9724, pp. 237–250. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40509-4 17

22. Marin, E., Singelée, D., Garcia, F.D., Chothia, T., Willems, R., Preneel, B.: On
the (in)security of the latest generation implantable cardiac defibrillators and how
to secure them. In: ACSAC, pp. 226–236 (2016)

https://www.willow.co.uk/TelosB_Datasheet.pdf
https://www.willow.co.uk/TelosB_Datasheet.pdf
https://doi.org/10.1007/978-3-319-16295-9_2
https://doi.org/10.1007/978-3-319-40509-4_17

FuzzyKey 309

23. Marin, E., Singelée, D., Yang, B., Verbauwhede, I., Preneel, B.: On the feasibility
of cryptography for a wireless insulin pump system. In: CODASPY (2016)

24. Marin, E., et al.: Securing wireless neurostimulators. In: CODASPY, pp. 287–298
(2018)

25. de Meulenaer, G., Gosset, F., Standaert, F., Pereira, O.: On the energy cost of
communication and cryptography in wireless sensors networks. In: IEEE WiMob,
pp. 580–585 (2008)

26. Ortiz Martin, L., Picazo-Sanchez, P., Peris-Lopez, P., Tapiador, J.: Heartbeats do
not make good pseudo-random number generators: an analysis of the randomness
of inter-pulse intervals. Entropy 20, 94 (2018)

27. Rathgeb, C., Uhl, A.: Statistical attack against fuzzy commitment scheme. IET
Biometrics 1(2), 94–104 (2012)

28. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
DATE, pp. 1697–1702. IEEE (2017)

29. Reverberi, L., Oswald, D.: Breaking (and fixing) a widely used continuous glucose
monitoring system. In: USENIX WOOT (2017)

30. Rostami, M., Juels, A., Koushanfar, F.: Heart-to-Heart (H2H): authentication for
implanted medical devices. In: ACM CCS, pp. 1099–1112 (2013)

31. Seepers, R.M., Strydis, C., Peris-Lopez, P., Sourdis, I., Zeeuw, C.I.D.: Peak mis-
detection in heart-beat-based security: characterization and tolerance. In: EMBC,
pp. 5401–5405 (2014)

32. Seepers, R.M., Wang, W., de Haan, G., Sourdis, I., Strydis, C.: Attacks on
heartbeat-based security using remote photoplethysmography. IEEE J-BHI 22(3),
714–721 (2018)

33. Singelée, D., Seys, S., Batina, L., Verbauwhede, I.: The energy budget for wireless
security: extended version. IACR Cryptol. ePrint Arch. 2015, 1029 (2015)

34. TI: AN092: Measuring Bluetooth Low Energy Power Consumption (2012)
35. TI: MSP430FR596x, MSP430FR594x Mixed-Signal Microcontrollers datasheet

(2012). rev. G. https://www.ti.com/lit/gpn/msp430fr5969
36. TI: MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers datasheet

(2016). rev. C. https://www.ti.com/lit/gpn/msp430fr5994
37. Venkatasubramanian, K.K., Banerjee, A., Gupta, S.: Plethysmogram-based secure

inter-sensor communication in body area networks. In: IEEE MILCOM (2008)
38. Venkatasubramanian, K.K., Banerjee, A., Gupta, S.K.S.: PSKA: usable and secure

key agreement scheme for body area networks. IEEE T-ITB 14(1), 60–68 (2010)
39. Venkatasubramanian, K.K., Gupta, S.K.S.: Physiological value-based efficient

usable security solutions for body sensor networks. ACM TOSN 6(4), 1–36 (2010)
40. Xu, F., Qin, Z., Tan, C.C., Wang, B., Li, Q.: IMDGuard: securing implantable

medical devices with the external wearable guardian. In: IEEE INFOCOM (2011)

https://www.ti.com/lit/gpn/msp430fr5969
https://www.ti.com/lit/gpn/msp430fr5994

Author Index

Anceau, Stéphanie 139
Arora, Vipul 80

Balli, Fatih 97
Banik, Subhadeep 97
Bartkewitz, Timo 169
Battistello, Alberto 254
Beliard, Emrick 139
Bellizia, Davide 64
Berzati, Alexandre 189
Bossuet, Lilian 151
Bouffard, Guillaume 275
Buhan, Ileana 80

Caforio, Andrea 97
Castelnovi, Laurent 254
Chabrier, Thomas 254
Chanavat, Émilie 151
Chassagne, Bruno 151
Clediere, Jessy 139
Colombier, Brice 151

de Laulanié, Lucie 151
Dubreuil, Jean 275

Escouteloup, Mathieu 233

Fournier, Jacques 233

Genevey-Metat, Christophe 24
Gérard, Benoît 24
Grandamme, Paul 151
Guilley, Sylvain 44
Güneysu, Tim 210

Heuser, Annelie 24, 44

Kogelheide, Lucie Johanna 169
Kuhn, Markus G. 3

Land, Georg 210
Lanet, Jean-Louis 233
Lashermes, Ronan 233
Lavice, Arthur 189
Lhuissier, Pierre 139

Maingault, Laurent 121, 139
Marin, Eduard 289
Mrabet, Nadia El 189

Oswald, David 289

Perin, Guilherme 44, 80
Picek, Stjepan 44, 80
Potet, Marie-Laure 121
Proy, Julien 189

Rainard, Jean Luc 139
Rigaud, Jean-Baptiste 189

Salvo, Luc 139
Sasdrich, Pascal 210
Singelée, Dave 289
Standaert, François-Xavier 64
Steffen, Hauke Malte 169
Sulmont, Manuel 139

Udvarhelyi, Balazs 64

Vernay, Julien 151

Werner, Vincent 121

You, Shih-Chun 3

Zhang, Mo 289

	 Preface
	 Organization
	 Contents
	Side-Channel Attacks
	Single-Trace Fragment Template Attack on a 32-Bit Implementation of Keccak
	1 Introduction
	1.1 Motivation and Background
	1.2 Contributions and Paper Structure

	2 Preliminaries and Notation
	2.1 LDA-based Templates on Keccak
	2.2 Soft Analytical Side-Channel Analysis on Keccak

	3 Our Attack Strategy
	3.1 Template Attack on Word Fragments
	3.2 Bitwise Loopy Belief Propagation on Factor Graphs
	3.3 Dealing with Multiple Invocations

	4 Experiments
	4.1 Keccak Implementation and the Target Board
	4.2 Trace Recording
	4.3 SASCA Model Building and Evaluation
	4.4 Loopy Belief-Propagation Results

	5 Conclusion and Outlook
	References

	Trace-to-Trace Translation for SCA
	1 Introduction
	2 Preliminaries
	2.1 Side-Channel Analysis
	2.2 Datasets
	2.3 Evaluation Metrics and Targeted Value
	2.4 GAN

	3 Trace-to-Trace Translation
	3.1 Approach
	3.2 Experimental Methodology
	3.3 Used GAN Architecture

	4 Translation from EM to Power
	5 Cross-Device Translation
	6 Conclusion and Future Work
	References

	Profiled Side-Channel Analysis in the Efficient Attacker Framework
	1 Introduction
	2 Existing Frameworks for Side-Channel Evaluation
	2.1 Scientific Metrics
	2.2 Practical Evaluation Testing
	2.3 Practical Observations and Effects of Aging

	3 The Efficient Attacker Framework
	3.1 Threat Model
	3.2 Components of a Successful Attack
	3.3 Framework Description

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Efficient Attacker Framework Evaluation
	4.3 Strong Adversary in the Efficient Attacker Framework
	4.4 General Observations
	4.5 Advantages of the Efficient Attacker Framework

	5 Conclusions
	References

	Towards a Better Understanding of Side-Channel Analysis Measurements Setups
	1 Introduction
	2 Background
	2.1 Mangard's SNR
	2.2 Subspace Based Gaussian Templates
	2.3 Information Theoretic Metrics and Bounds

	3 Setup Model and Design Space
	3.1 Setup Model
	3.2 Platforms
	3.3 Design Space

	4 Experimental Results and Discussion
	5 Conclusions
	References

	A Tale of Two Boards: On the Influence of Microarchitecture on Side-Channel Leakage
	1 Introduction
	2 Related Works
	3 Background
	4 Experimental Setup
	5 A Closer Look at the Implementation
	6 The Influence of Manufacturing Variability
	7 The Influence of Microarchitectural Implementation
	7.1 Power Profiles
	7.2 Data Leakage

	8 Conclusions and Future Work
	References

	Complete Practical Side-Channel-Assisted Reverse Engineering of AES-Like Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Setup
	2.2 Power Leakage Model
	2.3 Key Recovery

	3 Reverse-Engineering AES-Like Ciphers
	3.1 Partial Recovery
	3.2 Finding 255 Candidates for M
	3.3 Substitution Layer Recovery

	4 Future Work and Conclusion
	References

	Fault Attacks
	Fast Calibration of Fault Injection Equipment with Hyperparameter Optimization Techniques
	1 Introduction
	2 Related Work
	3 Fault Injection Optimization Approach
	3.1 Common Approach
	3.2 Our Approach

	4 Hyperparameter Optimization Techniques
	4.1 Parameter Space and Equipment Configuration
	4.2 Successive Halving Algorithm
	4.3 Sequential Model-Based Algorithm Configuration

	5 Equipment Calibration with Different Microcontrollers
	5.1 Target Microcontrollers
	5.2 Setup
	5.3 Experimental Protocol
	5.4 Results

	6 SMAC to Bypass a Code Protection Mechanism
	6.1 STM32F103RB

	7 Conclusion
	References

	Laboratory X-rays Operando Single Bit Attacks on Flash Memory Cells
	1 Introduction
	2 Materials and Methods
	2.1 Preparation of Integrated Circuit ATmega128P for X-rays Attack
	2.2 X-rays Source Laboratory
	2.3 Operando Analysis of ATmega128P Device During X-rays Exposure

	3 Results and Discussion
	4 Towards Simple Single Bit Attacks with Laboratory X-rays Source
	5 Conclusion
	References

	Multi-Spot Laser Fault Injection Setup: New Possibilities for Fault Injection Attacks
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related Work
	2.1 Fault Model Considered

	3 Limitations of Single-Spot Laser Fault Injection Setups
	3.1 Existing Fault Models for Data Corruption
	3.2 Contiguity
	3.3 Time Dimension

	4 Four-spot Laser Fault Injection Setup
	4.1 Setup Description
	4.2 Capabilities
	4.3 Limitations

	5 Two Examples of New Possible Faults
	5.1 Experimental Setup
	5.2 First Characterisation Code
	5.3 Second Characterisation Code

	6 Conclusion
	References

	Public-Key Cryptography
	In-depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber Message Encoding on ARM Cortex-M4
	1 Introduction
	2 Background on CRYSTALS-Kyber
	3 Side-channel Attack Paths Against CRYSTALS-Kyber
	4 Message Encoding With Countermeasures
	4.1 Message Encoding According to Reference Implementation
	4.2 Message Encoding With Multiplication
	4.3 Message Encoding Using Data Independent Polynomial Generation
	4.4 Message Encoding Using Data Independent Polynomial Generation With Balanced Byte Look-Up
	4.5 Message Encoding Using Polynomial Randomization
	4.6 Message Encoding Using Byte and Bit Level Random Ordering

	5 Experimental Results
	5.1 Measurement Setup
	5.2 Message Encoding According to Reference Implementation
	5.3 Message Encoding with Multiplication
	5.4 Message Encoding Using Data Independent Polynomial Generation
	5.5 Message Encoding Using Data Independent Polynomial Generation with Balanced Byte Look-Up
	5.6 Message Encoding Using Polynomial Randomization
	5.7 Shuffled Message Encoding Using Byte and Bit Level Random Ordering
	5.8 Comparison of Countermeasures

	6 Conclusion
	References

	Hardware Implementations of Pairings at Updated Security Levels
	1 Introduction
	2 Background on Pairings
	2.1 Introduction and Definition
	2.2 Pairing Optimizations

	3 Selection of Pairing-Friendly Curves and Parameters
	3.1 Summary of Estimated Pairings Complexity
	3.2 Pairing Arithmetic and Implementation Aspects
	3.3 Implementation of the Final Exponentiation

	4 Hardware Implementation of Pairings
	4.1 Base Field Unit
	4.2 Implementation Results

	5 Conclusion and Future Work
	References

	A Hard Crystal - Implementing Dilithium on Reconfigurable Hardware
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Number-Theoretic Transform
	2.3 CRYSTALS-Dilithium

	3 Design Considerations
	3.1 Arithmetic
	3.2 Memory
	3.3 Functionality

	4 Implementation on Reconfigurable Hardware
	4.1 Architectural Details
	4.2 Utilization and Performance Results
	4.3 Comparison to Existing Work

	5 Conclusion
	References

	Secure Implementations
	Under the Dome: Preventing Hardware Timing Information Leakage
	1 Introduction
	2 The Need to Redefine the Microarchitecture for Security
	2.1 Threats
	2.2 Related Work

	3 Design Guidelines
	3.1 Definitions and Goals
	3.2 Resource Availability: Lock
	3.3 Temporal Resource Sharing: Flush
	3.4 Spatial Resource Sharing: Split
	3.5 Exclusive Allocation and Heterogeneity

	4 Domes
	4.1 Fine-Grained Security Domains
	4.2 Fence or Context
	4.3 ISA Changes for Dome Support
	4.4 Software Implications

	5 Implementation
	5.1 Target Description
	5.2 Aubrac Core
	5.3 Salers Core

	6 Evaluation
	6.1 Security Evaluation
	6.2 Performances/Cost Analysis

	7 Discussion and Conclusion
	References

	Enhanced Encodings for White-Box Designs
	1 Introduction
	2 State-of-the-Art
	2.1 White-Box Designs
	2.2 White-Box Encoding

	3 New Encoding Design for White-Box Constructions
	3.1 Preliminaries
	3.2 Original Description of Benaloh Cryptosystem
	3.3 Modified Benaloh Cryptosystem
	3.4 Modified Benaloh Cryptosystem as White-Box Encoding
	3.5 Using the Modified-Benaloh Encoding in a White-Box Design

	4 Security Considerations
	4.1 About the Shift Tables
	4.2 About the Key
	4.3 Summary

	5 Performances: Example with AES-128 Encryption
	6 Further Work
	6.1 Against Side-Channel Attacks
	6.2 Against Fault Attacks

	7 Conclusion
	References

	PhiAttack
	1 Introduction
	1.1 Java Card Security Model
	1.2 State-of-the-Art Java Card Platform Security
	1.3 Contribution

	2 Java Card Import Mechanism
	2.1 Import Mechanism from the CAP File Point of View
	2.2 Import Mechanism from the export File Point of View

	3 PhiAttack
	3.1 Setting-up the Attack
	3.2 Understanding PhiAttack
	3.3 Variations and Exploitation of Such an Attack

	4 Discussion on Countermeasures
	5 Conclusion
	References

	FuzzyKey: Comparing Fuzzy Cryptographic Primitives on Resource-Constrained Devices
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 Fuzzy Cryptographic Primitives for PS-Based Key Exchange

	3 Design Security and Parameter Selection
	4 Implementation
	5 Performance Evaluation
	5.1 Hamming Metric Constructions
	5.2 Set Metric Constructions
	5.3 Common Observations and Comparison with Curve25519

	6 Conclusion
	References

	Author Index

