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Abstract. Current approaches for deformable medical image registra-
tion often struggle to fulfill all of the following criteria: versatile appli-
cability, small computation or training times, and the being able to esti-
mate large deformations. Furthermore, end-to-end networks for super-
vised training of registration often become overly complex and difficult to
train. For the Learn2Reg2021 challenge, we aim to address these issues by
decoupling feature learning and geometric alignment. First, we introduce
a new very fast and accurate optimisation method. By using discretised
displacements and a coupled convex optimisation procedure, we are able
to robustly cope with large deformations. With the help of an Adam-
based instance optimisation, we achieve very accurate registration per-
formances and by using regularisation, we obtain smooth and plausible
deformation fields. Second, to be versatile for different registration tasks,
we extract hand-crafted features that are modality and contrast invari-
ant and complement them with semantic features from a task-specific
segmentation U-Net. With our results we were able to achieve the over-
all Learn2Reg2021 challenge’s second place, winning Task 1 and being
second and third in the other two tasks.

Keywords: image registration · convex optimisation · instance
optimisation

1 Motivation

Deep-learning-based approaches for medical image registration usually involve
an elaborate learning procedure and yet they often struggle with the estimation
of large deformations and the versatile usability for a wide range of tasks. To
address the different registration tasks of the Learn2Reg2021 challenge1 [8], we
present a fast and accurate optimisation method for image registration that
requires little learning. Our method robustly captures large deformations by
using discretised displacements and a coupled convex optimisation. In order to
be versatile for various tasks, we include a hand-crafted feature extractor in our
method that is contrast and modality invariant and still highly discriminative
for local geometry.
1 https://learn2reg.grand-challenge.org.
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2 Methods

The main idea of our method is to perform large-deformation image registration
by using a coupled convex optimisation [6] that approximates a globally optimal
solution of a discretised cost function followed by an Adam-based instance opti-
misation to further improve the local registration accuracy. Dense correlation has
already been used extensively in learning based optical flow estimation (cf. PWC-
Net [16]) and end-to-end trainable 3D registration networks (cf. PDD-Net [5]),
however both approaches have limitations. PWC-Net requires multiple warping
steps and is difficult to extend from 2D to 3D (see [4]). PDD-Net employs a
dense 3D displacements, but substantially simplifies the optimisation strategy,
which may lead to some inaccuracies. ConvexAdam aims to combine the best of
both worlds (learning and optimisation-based) by leveraging segmentation pri-
ors where available and relying on robust hand-crafted features and fast discrete
optimisation.

Fig. 1. The structure of our registration method. It consists of a feature extractor
(MIND and/or nnUNet) and a dense correlation layer followed by a coupled convex
optimisation and an Adam-based instance optimisation.

As visualised in Fig. 1, the basic structure of our registration method consists
of a feature extractor, a correlation layer, a coupled convex optimisation, and an
instance optimisation.

The feature extractor outputs contrast and modality invariant features from
the fixed and moving input images. For this, hand-crafted MIND features
[7] ensuring versatility regarding different types of registration tasks can be
employed. Depending on the availability of labelled image data, automatic seg-
mentations as provided by the nnU-Net [10] can be used instead. Different to
other state-of-the-art supervised deep learning registration methods [14] we avoid
using the expert labels only at the end for the warping loss, which may lead to
sub-optimal results due to limited gradient backflow. We instead found that
using off-the-shelf segmentation networks produce best results.
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The obtained features are fed into a correlation layer, which computes a
sum-of-squared-differences (SSD) cost volume with a box filter and gives an
initial best displacement for each voxel (simply taking the argmin). Therefore,
we employ a search space with up to 5000 discretised displacements per voxel.
The capture range can be up to at least 48 voxels in each dimension (setting for
Task 2) and therefore estimate large motion accurately.

The correlation layer’s output is used to solve two coupled convex optimisa-
tion problems for efficient global regularisation: In several iterations, alternating
steps are performed for similarity and smoothness optimisation, i.e. a spatially
smoothed field based on the current argmin (minimal SSD costs) displacements
followed the by adding a penalty to the discreted SSD costs based on the dis-
crepancy of this current globally smooth optimum.

The resulting displacements in turn are used as a starting point for an Adam-
based instance optimisation in order to provide the final deformation grid used
for warping of the moving input image. This step is very similar to classic opti-
cal flow estimation [15]. For this purpose, the cost function is linearised and
the Adam optimiser [11] is used for gradient descent. Smoothness of the dis-
placement field is induced by adding a B-spline deformation model and diffusion
regularisation.

3 Experiments and Results

Each of the Learn2Reg2021 tasks entails certain challenges that we face with
slightly varying experimental setups as outlined in the following. The complete
implementation details can be found in our publicly available repository.2 Table 1
presents quantitative results and Fig. 2 shows qualitative results for the individ-
ual tasks.

Task 1 Thorax-Abdomen CT-MR. The first task aims to align multimodal intra-
patient data [1–3,12]. Besides of multimodal image registration, the objectives of
learning from few and noisy labels, as well as dealing with large deformations and
missing correspondences are challenging. For this task, we extract hand-crafted
MIND features and include an inverse-consistency constraint as introduced in
[6] to enforce a minimised discrepancy between the forward and backward trans-
formations in order to avoid implausible deformations. To further regularise the
displacement field during Adam instance optimisation, we add thin plate splines
yielding smooth deformation fields. As large deformations are to be expected,
we chose a search space that includes discretised displacements with a capture
range of 64 mm for each dimension within the scanned anatomy.

Task 2 Lung CT. The second task is to perform inspiration-expiration regis-
tration on intra-patient lung CT data [9]. In this task, there is the challenge of
estimating large breathing motion for scans with only partial visibility of the
lungs in the expiration scans. The displacement search range is selected in order
2 https://github.com/multimodallearning/convexAdam.

https://github.com/multimodallearning/convexAdam
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Table 1. Results for the different Learn2Reg2021 tasks. Accuracy is measured by
the Dice similarity of organ segmentations (Dice), the target registration error for
anatomical landmarks (TRE), and the 95% Hausdorff distance for segmentations (HD).
Robustness is measured by the 30% lowest Dice scores (Dice30), Dice scores for addi-
tional segmentations (Dice+add) and the 30% highest TRE values (TRE30). Plausibility
of the deformations is measured by the standard deviation of the logarithmic Jacobian
determinant (SDlogJ). Dice similarities are reported in %, TRE and HD values are
given in millimetres and inference time is given in seconds. The last table displays the
challenge scores and ranks for the overall 1st, 2nd, and 3rd place.

Task 1

Dice Dice+9 HD SDlogJ time

initial 33.1 22.3 44.48 − −
ours 75.4 73.1 20.75 0.09 1.30

Task 2

TRE TRE30 SDlogJ time

initial 10.24 16.80 - -

ours 1.85 2.89 0.06 1.82

Task 3

Dice Dice30 HD SDlogJ time

initial 55.9 29.7 4.07 - -

ours 79.9 64.5 2.00 0.05 12.62

Scores and ranks

Task1 Task2 Task3

score (rank) score (rank) score (rank)

LapIRN 0.86 (2) 0.79 (4) 0.94 (1)

convexAdam 0.88 (1) 0.83 (3) 0.82 (2)

PIMed 0.85 (4) 0.68 (6) 0.70 (5)

Task 1 Task 2 Task 3

Fig. 2. Qualitative results of our proposed method (top row: colourmap overlay of fixed
and moving image (Task 1 and 2) or segmentation (Task 3); bottom row: overlay of
fixed and warped moving image or segmentation).
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to capture motion with up to 42× 30 × 42 mm for the x-, y-, and z-dimension
respectively. Like in the first task, MIND features of both input images are used
to compute the SSD cost volume.

Task 3 Whole Brain MR. The third task deals with the registration of inter-
patient T1-weighted brain MRI [13]. Here, the main challenge is to precisely align
small structures of variable shape. For this reason, we chose a displacement cap-
ture range of 16 mm for each dimension within the scanned brain structures. As
this task comprises a large amount of labelled image data, nnU-Net predictions
for segmentation guidance are employed. We use the nnU-Net predictions in the
form of inverse class-weighted one-hot encodings as features for our method’s
optimisation steps.

4 Conclusion

Our contribution to the Learn2Reg2021 challenge showed that image registration
can be performed fast and accurately using an optimisation strategy with little
learning. It is highly parallelisable on a GPU and robust by using a large search
space of discretised displacements. Smoothness of the deformation fields could
be induced by a global convex regularisation, diffusion regularisation, and B-
spline interpolation. By using an efficient Adam-based instance optimisation,
our method yields very precise results and by integrating a modality-invariant
feature extractor, we achieve a wide versatility. We were able to achieve the
overall Learn2Reg2021 challenge’s second place, winning Task 1, being second
in Task 3, and being third in Task 2.
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