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Preface

This volume comprises in total 27 scientific papers (18 long papers and nine short
papers) that have all undergone peer review from the following three biomedical image
analysis challenges at MICCAI 2021: the Mitosis Domain Generalization Challenge
(MIDOG 2021), the Medical Out-of-Distribution Analysis Challenge (MOOD 2021),
and Learn2Reg (L2R 2021). Our challenges share the need for developing and fairly
evaluating algorithms that increase accuracy, reproducibility, and efficiency of automated
image analysis in clinically relevant applications.

The MIDOG 2021 challenge aimed at finding domain-generic solutions for mito-
sis detection in histopathology images, a task commonly performed by pathologists in
breast cancer diagnosis and grading. For this, 300 cases of breast cancer were digitized
using six different microscopy scanners, two of which were completely unknown to the
participants. Participants submitted dockered algorithms using the grand-challenge.org
platform. The proceedings of MIDOG include five long papers followed by nine short
papers.

The Learn2Reg competition’s aim was to provide three complementary, clinically
relevant tasks for medical image registration. Abdominal CT-MR fusion, respiratory
motion estimation inCT, andwhole-brain inter-subject alignment inMRIwere addressed
by a great variety of methods with considerable advances over previous state-of-the-art
performance. The challenge was organized using the grand-challenge.org website as a
point of contact for data sharing, submission of displacement fields and dockers, and
evaluation.

With the MOOD 2021 challenge the goal was to provide a first standardized bench-
mark and challenge for out-of-distribution detection and localization on radiological
imaging data. The challenge encompassed two publicly available training datasets and
evaluation on the respective hidden test sets via docker submission and automated
evaluation using the synapse.org platform.

The chairs of the organizing committees would like to express their sincere gratitude
to the members of the organization committees and to the MICCAI challenges team.

January 2022 Marc Aubreville
MIDOG 2021 General Chair

David Zimmerer
MOOD 2021 General Chair

Mattias Heinrich
Learn2Reg 2021 General Chair
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MIDOG 2021 Preface

Algorithmic or algorithm-aided microscopy image processing has seen vast advance-
ments in the last decade, thanks to powerful methods based on machine learning, and
deep learning in particular. One task where automatic methods are especially helpful
within the diagnostic process is the detection of cells undergoing cell division (mitotic
figures) in digitized microscopy whole slide images. The density of mitotic figures
within tumor tissue is known to be strongly correlated with tumor proliferation and is
thus one of the strongest individual predictors for tumor malignancy in many tumor
types, including breast cancer. While the determination of the count of mitotic figures
within a predefined area is thus of great importance for prognostication, it is also
notorious for having high inter-rater discordance and for being time consuming. Both
call for the utilization of algorithms to increase diagnostic accuracy, reproducibility,
and efficiency. Deep learning-based methods have shown to be remarkably accurate in
the detection of mitotic figures recently, yet they often suffer from robustness issues
when images from another laboratory are used for testing than for training. This drop in
performance is caused by a domain-dependent covariate shift. Multiple factors con-
tribute to domain shift, among which staining variability and tissue preparation dif-
ferences have been long suspected to be influential factors. Another major factor, which
has often been underestimated, is the optical and electrical properties of the image
acquisition device (the whole slide scanner). Clinically applicable algorithmic solutions
need to work with acceptable performance under a wide range of side conditions,
including the scanner. Thus, they are required to generalize to unseen scanners.

This was the motivation for the first international Mitosis Domain Generalization
Challenge (MIDOG 2021)1, which was organized as a satellite event of the 24th
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2021). The goal of the challenge was to investigate and improve
generalization across scanner types for mitosis detection, and thereby build the foun-
dation for a general understanding of domain generalization for this task. The challenge
was organized by a group of scientists from Austria, the Netherlands, and Germany. It
opened for registration and download of the challenge dataset on April 1, 2021. As the
target of the challenge was generalization and access to images of the test domains -
even if unlabeled - could easily lead to compromised results, the participants were
never able to download images of the test set. For the evaluation of the algorithms, they
thus had to hand in containers encapsulating their computational approaches (using the
docker virtualization framework) which were subsequently run by the organizers using
an automated tool on the grand-challenge.org platform.

To check for algorithmic validity, the organizers made a preliminary test set
available two weeks prior to the final submission deadline, and the participants were
allowed to submit one container per day for a preliminary evaluation, albeit they
received no access to the images themselves or the individual per-image results. As a
baseline and for comparison, the organizers made available a reference approach by

1 Official challenge description is available at: 10.5281/zenodo.4573978.



Wilm et al. together with an example docker container and a pre-print description of the
approach. In total, 46 individuals submitted a container at this stage of the challenge,
out of which 17 also submitted to the final test set. The deadline for the final sub-
mission was September 2, 2021.

Alongside the final submission, the participants had to provide a link to a publicly
available pre-print short paper describing their approach in detail. All of these short
papers were subjected to single-blind peer review, checking for novelty and quality of
the work. Twelve approaches passed peer review and also surpassed a minimum score
in the evaluation and were invited to participate in the workshop. One approach which
passed peer review but did not exceed the minimum score was included as short paper
in this proceedings. A long version of the description of the reference approach was
subjected to external peer review by three experts and after acceptance added to the
proceedings. All workshop participants were invited to also contribute a long paper to
the proceedings, to be subjected to another round of peer review. In the end, five long
papers and nine short papers were accepted to be included in the proceedings.

We thank all participants and the organization committee of MIDOG 2021 for their
valuable contribution to the workshop, the discussions, and the proceedings.

Marc Aubreville
Katharina Breininger
Christof A. Bertram

MIDOG 2021 Preface 3
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Domain Adversarial RetinaNet
as a Reference Algorithm for the MItosis

DOmain Generalization Challenge

Frauke Wilm1(B) , Christian Marzahl1 , Katharina Breininger2 ,
and Marc Aubreville3

1 Pattern Recognition Lab, Computer Sciences, Friedrich-Alexander-Universität,
Erlangen-Nürnberg, Germany

frauke.wilm@fau.de
2 Department of Artifical Intelligence in Biomedical Engineering,
Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany

3 Technische Hochschule Ingolstadt, Ingolstadt, Germany

Abstract. Assessing the mitotic count has a known high degree of
intra- and inter-rater variability. Computer-aided systems have proven to
decrease this variability and reduce labeling time. These systems, how-
ever, are generally highly dependent on their training domain and show
poor applicability to unseen domains. In histopathology, these domain
shifts can result from various sources, including different slide scanning
systems used to digitize histologic samples. The MItosis DOmain Gen-
eralization challenge focused on this specific domain shift for the task
of mitotic figure detection. This work presents a mitotic figure detection
algorithm developed as a baseline for the challenge, based on domain
adversarial training. On the challenge’s test set, the algorithm scored
an F1 score of 0.7183. The corresponding network weights and code for
implementing the network are made publicly available.

Keywords: MIDOG · Domain Shift · Mitotic Count ·
Histopathology · Object Detection

1 Introduction

A well-established method of assessing tumor proliferation is the mitotic count
(MC) [12] - a quantification of mitotic figures in a selected field of interest. Identi-
fying mitotic figures, however, is prone to a high level of intra- and inter-observer
variability [3]. Recent work has shown that deep learning-based algorithms can
guide pathologists during MC assessment and lead to faster and more accurate
results [3]. However, these algorithmic solutions are highly domain-dependent
and performance significantly decreases when applying these algorithms to data
from unseen domains [7]. In histopathology, domain shifts are often attributed
to varying sample preparation or staining protocols used at different laborato-
ries. These domain shifts and their impact on the resulting performance of an

c© Springer Nature Switzerland AG 2022
M. Aubreville et al. (Eds.): MIDOG 2021/MOOD 2021/L2R 2021, LNCS 13166, pp. 5–13, 2022.
https://doi.org/10.1007/978-3-030-97281-3_1
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6 F. Wilm et al.

algorithm have been tackled with a wide range of strategies, e.g. stain normaliza-
tion [9], stain augmentation [14], and domain adversarial training [7]. Domain
shifts, however, cannot only be attributed to staining variations but can also
include variations induced by different slide scanners [2]. The MItosis DOmain
Generalization (MIDOG) challenge [1], hosted as a satellite event of the 24th

International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2021, addresses this topic in the form of assessing the MC
on a multi-scanner dataset. This work presents the reference algorithm developed
out-of-competition as a baseline for the MIDOG challenge. The RetinaNet-based
architecture was trained in a domain adversarial fashion and scored an F1 score
of 0.7183 on the final test set.

2 Materials and Methods

The reference algorithm was developed on the official training subset of the
MIDOG dataset [4]. We did not use any additional datasets and had no access
to the (preliminary) test set during method development. The algorithm is based
on a publicly available implementation of RetinaNet [10] which was extended by
a domain classification path to enable domain adversarial training.

2.1 Dataset

The MIDOG training subset consists of Whole Slide Images (WSIs) from 200
human breast cancer tissue samples stained with routine Hematoxylin & Eosin
(H&E) dye. The samples were digitized with four slide scanning systems: the
Hamamatsu XR, the Hamamatsu S360, the Aperio CS2, and the Leica GT450,
resulting in 50 WSIs per scanner. For the slides of three scanners, a selected field
of interest sized approximately 2mm2 (equivalent to ten high power fields) was
annotated for mitotic figures and hard negative look-alikes. These annotations
were collected in a multi-expert blinded set-up. Aiming to support unsuper-
vised domain adaptation approaches, no annotations were available for the Leica
GT450 so that participants could only use the images for learning a visual rep-
resentation of the scanner. Figure 1 illustrates exemplary patches of the scanners
included in the training set.

The preliminary test set consists of five WSIs each for four slide scanning
systems: the Hamamatsu XR and the Leica GT450, which already contributed
to the training set, and the 3DHISTECH PANNORAMIC 1000 and the Hama-
matsu RS, which were not seen during training. The scanner models of the
preliminary test set, however, were undisclosed for the duration of the challenge.
Participants only knew that the preliminary test set consisted of two seen and
two unseen domains. This preliminary test set was used for evaluating the algo-
rithms before submission and publishing preliminary results on a leaderboard on
Grand Challenge1. The evaluation on Grand Challenge ensured that the partici-
pants had no access to test images during method development. This restriction
1 https://midog2021.grand-challenge.org/.

https://midog2021.grand-challenge.org/
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Fig. 1. Exemplary patches from the MItosis DOmain Generalization (MIDOG) chal-
lenge. Figure reproduced with permission from Aubreville et al. [2].

was also followed for developing the baseline algorithm. The final test set consists
of 20 additional WSIs from the same scanners used for the preliminary test set.
After the submission deadline, all algorithms were deployed once on this final
test set for method comparison.

2.2 Domain Adversarial RetinaNet

For the domain adversarial training, we customized a publicly available Reti-
naNet implementation [10] by adding a Gradient Reversal Layer (GRL) and a
domain classifier. For the encoder, we used a ResNet18 backbone pre-trained
on ImageNet. For the domain discriminator, we were inspired by the work of
Pasqualino et al. [13] and likewise chose three repetitions of a sequence of a con-
volutional layer, batch normalization, ReLU activation, and Dropout, followed by
an adaptive average pooling and a fully connected layer. Implementation details
can be obtained from our GitHub repository. We experimented with varying the
number and positions of the domain classifier but ultimately decided for posi-
tioning a single discriminator at the bottleneck of the encoding branch. Figure 2
schematically visualizes the modified architecture.

ResNet Encoder Feature Pyramid
Network

class subnet

box subnet

GRL

domain
discriminator

conv

batchnorm

ReLU

dropout

average pooling

fully-connected

Fig. 2. Domain adversarial RetinaNet architecture.
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2.3 Network Training

We split our training data into 40 training and ten validation WSIs per scanner
and ensured a similar distribution of high and low MC samples in each subset.
For network training, we used a patch size of 512 × 512 pixels and a batch size
of 12. Each batch contained three images of each scanner. To overcome class
imbalance, we employed a custom patch sampling, where half of the training
patches were sampled randomly from the slides and the other half was sampled
in a 512-pixel radius around a randomly chosen mitotic figure. Furthermore,
we performed online data augmentation with random flipping, affine transfor-
mations, and random lightning and contrast change. The loss was computed as
the sum of the domain classification loss for all scanners and the bounding box
regression and instance classification loss for all annotated scanners:

L =
∑

s∈S

1

Ms

Ms∑

m=1

Ldom,m + β(s) · (Lbb,m + Linst,m) β(s) =

{
0, if s = GT450.

1, otherwise.

S : set of scanners M : samples in batch

The bounding box loss Lbb was computed as smooth L1 loss and the focal
loss [8] function was used for both, the instance (Linst) and the domain (Ldom)
classification loss. During backpropagation, the gradient was negated by the GRL
and multiplied with α, a weighting factor which was gradually increased from
0 to 1 following the exponential update scheme of Ganin et al. [6]. We trained
the network with a cyclical maximal learning rate of 1 × 10−4 for 200 epochs
until convergence. Model selection was guided by the highest performance on
the validation set as well as the highest domain confusion, i.e. highest domain
classification loss, to ensure domain independence of the computed features.

2.4 Evaluation

The training procedure described in the previous section was repeated three
times and the validation slides of the three annotated scanners were used for
performance assessment. To compare results across different model operating
points, we constructed precision-recall curves and compared the area under the
precision-recall curves (AUCPRs) averaged over all three scanners for which
mitotic figure annotations were available. As our final model, we selected the
model with the highest mean AUCPR on the validation set and selected the
operating point according to the highest mean F1 score. This resulted in a mean
AUCPR of 0.7551 and an F1 score of 0.7369 at an operating point of 0.64 on our
internal validation set. This model was submitted as a reference approach to the
MIDOG challenge and was evaluated using a Docker-based submission system
that ensured that participants of the challenge did not have access to the test
images at any time during the challenge. Before the evaluation on the final test
set, we ensured the sanity of the baseline algorithm by applying the model to
the preliminary test set, which resulted in an F1 score of 0.7401. This evaluation
was run once, i.e., no hyperparameters were tuned on the preliminary test set.
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For quantitative evaluation, we computed the F1 score for mitosis detection
on the challenge test set and compared the performance of the “reference app-
roach”, trained with domain adversarial training, to a weak baseline” trained
without normalization or augmentation and a “strong baseline” trained with
normalized images and the same online data augmentation methods as described
in Sect. 2.3 but without methods for domain adaptation.

3 Results and Discussion

Across all test images, our weak baseline scored an F1 score of 0.6279, our strong
baseline an F1 score of 0.6982, and our reference approach an F1 score of 0.7183.
Detailed results for precision, recall, and F1 scores of the three models by scanner
are summarized in Table 1. They show that the improved F1 score over the strong
baseline could mainly be attributed to a higher recall, i.e. less mitotic figures were
overlooked, while precision values were very similar for most scanners.

Table 1. Performance metrics per model and scanner. The Hamamatsu XR also con-
tributed to the training set with labeled images and the Leica GT450 with unlabeled
images. The other scanners were unseen during training.

Precision Recall F1 score

Weak
Baseline

Strong
Baseline

Reference
Approach

Weak
Baseline

Strong
Baseline

Reference
Approach

Weak
Baseline

Strong
Baseline

Reference
Approach

Seen Domains

XR 0.8043 0.7778 0.7678 0.7291 0.7586 0.7980 0.7649 0.7681 0.7183

GT450 0.9016 0.7360 0.7318 0.2792 0.6650 0.6650 0.4264 0.6987 0.6968

Unseen Domains

PANNORAMIC 1000 0.6698 0.5692 0.6723 0.7172 0.7475 0.8081 0.6927 0.6463 0.7339

RS 0.6559 0.6417 0.6364 0.4919 0.6210 0.6210 0.5622 0.6311 0.6286

All Scanners 0.7545 0.6965 0.7143 0.5377 0.6998 0.7223 0.6279 0.6982 0.7183

In Fig. 3a, we used bootstrapping to visualize the distribution of F1 scores per
scanner. The results show that the weak baseline performed particularly badly for
the Leica GT450 scanner with an average F1 score of 0.4264 and a high variance in
performance across all test slides, which becomes apparent by thewide distribution
in the bootstrapping visualization. Looking at the detailed results in Table 1, this
was mainly attributed to a low recall, i.e. a lot of mitotic figures were overlooked.
Considering the example patches of the Leica scanner shown in Fig. 1, this result
is not surprising, as the Leica scanner produces images with a much higher illumi-
nation and less contrast compared to the other scanners. Without normalization,
these images can challenge the network, especially since the Leica scanner was not
seen during training of the baseline models due to missing annotations and was
only used for training the domain generalization component of the domain adver-
sarial network. When comparing the strong baseline with our reference approach,
the models show very similar performance for most of the scanners except for the
unseen PANORAMIC 1000, where the domain adversarial training significantly
increased the F1 score to 0.7339 compared to an F1 score of 0.6463 for the strong
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baseline. Furthermore, the narrower distributions of the bootstrapping in Fig. 3d
indicate a lower variance in performance compared to the wider distributions of
the baseline models in Fig. 3b and c.

XR GT450 PANNORAMIC 1000 RS

(a) Bootstrapping (b) Weak Baseline

(c) Strong Baseline (d) Reference Approach

Fig. 3. Bootstrapping and Uniform Manifold Approximation and Projection (UMAP)
plots of the evaluated models. The weak baseline was trained without any measures for
normalization or augmentation and the strong baseline was trained with normalized
images and online augmentations.
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(a) PANORAMIC 1000 (b) RS

Fig. 4. Exemplary images where F1 scores for the strong baseline and the domain
adversarial varied significantly.

Additionally, we evaluated the models’ capability for domain generalization
by using Uniform Manifold Approximation and Projection (UMAP) [11] plots.
UMAP is a dimensionality reduction technique that can be used to visualize
the high dimensional feature representations within neural networks in a two-
dimensional space. For our plots, we have randomly sampled 30 patches on each
WSI of the MIDOG test set and selected the output of the last layer of our
RetinaNet encoders for visualization. The UMAP plot of the reference approach
is visualized in Fig. 3d. The data clustering independent of scanner domains
shows that the domain adversarial training encouraged the extraction of domain-
independent features. As a comparison Fig. 3b visualizes the UMAP plot for
the weak baseline. Here, the samples show a distinctive clustering according to
scanner vendors. The cluster centers of the two Hamamatsu scanners are closer
together, which is not surprising as they come from the same vendor and the
same series (NanoZoomer). Figure 3c shows the UMAP plot of the strong base-
line. Whereas the normalization and augmentation techniques pushed the dis-
tributions closer together, the GT450 still forms a distinguishable cluster at the
lower right of the feature representation. Recalling the scanner-wise model per-
formance summarized in Table 1, however, this did not impair the mitosis detec-
tion. Nevertheless, when comparing the bootstrapping visualizations in Fig. 3c
and d, the remaining three scanners are less distinguishable in the feature rep-
resentation of the domain adversarial model which seemed to have helped the
mitotic figure detection for especially the unseen scanners. Interestingly, Fig. 3d
shows a separated cluster on the right hand of the main cluster with patches
from all scanners. A closer look at the example patches shows that these were
predominantly patches with large white areas due to teared tissue or empty fat
vacuoles.

Figure 4 shows two examples where the domain adversarial model signifi-
cantly outperformed the strong baseline with F1 scores of 0.8 and 0.6 for the
PANORAMIC 1000 image in Fig. 4a and F1 scores of 0.6364 and 0.4286 for the
Hamamatsu RS image in Fig. 4b. The large differences in performance could
mainly be attributed to a higher number of false-positive predictions for the
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baseline model. Both examples show very intense staining which might not have
been met with the augmentation methods used during training and thereby
challenged the strong baseline model.

4 Conclusion

In this work, we presented our baseline algorithm for the MIDOG challenge,
based on domain adversarial training. With an F1 score of 0.7183, the algo-
rithm is in line with previous mitotic figure algorithms trained and tested on
breast cancer images from the same domain [5]. The domain adversarial train-
ing improved especially the generalization across unseen scanner domains while
maintaining a similar performance on seen domains. The feature representation
as UMAP plots visualizes the successful extraction of domain invariant features
of the proposed network. In total, 17 algorithms were submitted to the MIDOG
challenge for evaluation on the final test set. From these, four approaches out-
performed this strong but out-of-competition reference approach. The code used
for implementing and training the proposed network is publicly available in our
GitHub2 repository.
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Abstract. Breast cancer is the most commonly diagnosed cancer world-
wide, with over two million new cases each year. During diagnostic
tumour grading, pathologists manually count the number of dividing cells
(mitotic figures) in biopsy or tumour resection specimens. Since the pro-
cess is subjective and time-consuming, data-driven artificial intelligence
(AI) methods have been developed to automatically detect mitotic fig-
ures. However, these methods often generalise poorly, with performance
reduced by variations in tissue types, staining protocols, or the scanners
used to digitise whole-slide images. Domain adaptation approaches have
been adopted in various applications to mitigate this issue of domain
shift. We evaluate two unsupervised domain adaptation methods, Cycle-
GAN and Neural Style Transfer, using the MIDOG 2021 Challenge
dataset. This challenge focuses on detecting mitotic figures in whole-slide
images digitised using different scanners. Two baseline mitosis detection
models based on U-Net and RetinaNet were investigated in combina-
tion with the aforementioned domain adaptation methods. Both base-
line models achieved human expert level performance, but had reduced
performance when evaluated on images which had been digitised using a
different scanner. The domain adaptation techniques were each found to
be beneficial for detection with data from some scanners but not for oth-
ers, with the only average increase across all scanners being achieved by
CycleGAN on the RetinaNet detector. These techniques require further
refinement to ensure consistency in mitosis detection.

Keywords: Convolutional Neural Network (CNN) · Generative
Adversarial Network (GAN) · Neural Style Transfer · CycleGAN

1 Introduction

Breast cancer is the most commonly diagnosed cancer worldwide, accounting
for one quarter of all malignancies in women [20]. Diagnosis involves identifying
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cancer sub-type, grade, and molecular profile (oestrogen/progesterone receptor
and HER2 amplification status). Counting dividing cells (mitotic figures) is a
key task for pathologists within the Nottingham grading score, which combines
mitotic count, tubule formation, and nuclear pleomorphism as a measure of
the aggressiveness of the underlying malignancy. This grade carries prognostic
information as part of the Nottingham Prognostic Index [21].

Recent studies in human and veterinary pathology have highlighted that
pathologists’ detection of mitoses is both variable [3] and time-consuming [9].
This increases pressure on histopathology diagnostic services, where in the
UK alone, only 3% of departments are adequately staffed to meet diagnostic
demand. As a result, 45% of departments routinely outsource work and 50% use
locums [18], at significant cost. Recent advances in deep learning (DL)-driven
automated techniques for mitosis detection have shown promise both for reduc-
ing inter-observer variability between pathologists, and for relieving some of the
workload associated with the mitotic count.

Domain adaptation approaches in general aim to learn a mapping that
reduces the gap between source and target data distributions. In the context of
computer vision problems, they are employed to improve generalisation of image-
based DL models to data from different domains during inference. While convo-
lutional neural networks (CNNs) have proved a powerful tool for solving a mul-
titude of vision problems, it is well established that they tend to over-fit to data
in the training domain, and hence generalise poorly to target domains during
inference. Domains in digital histopathology may include variations introduced
from tissue staining processes, scanner properties, or the histological prepara-
tions being scanned. The domain adaptation methods we investigate focus on
the visual appearance of an image, taking a content image and one or more style
images, and creating a stylised representation of the content image.

1.1 MIDOG Challenge 2021 and Relevant Literature

Fig. 1. 512× 512 segments of MIDOG 2021 training data from (a) Hamamatsu XR
(HXR), (b) Hamamatsu S360 (HS360), (c) Aperio CS (ACS), (d) Leica GT.

The MIDOG Challenge was a competition on mitosis detection [1], held at the
International Conference on Medical Image Computing and Computer Assisted
Intervention, 2021. The challenge provided 200 training images, each a 2 mm2

region of interest selected manually from haematoxylin and eosin (H&E) stained
breast cancer whole-slide images (WSIs). All samples were prepared using an
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identical staining process at the pathology laboratory of UMC Utrecht. These
images were digitised using four different scanners: 50 each from Hamamatsu XR
nanozoomer 2.0 (HXR), Hamamatsu S360 0.5 NA (HS360), Aperio ScanScope
CS2 (ACS), and Leica GT450. All images digitised using the first three scan-
ners were annotated via majority voting by three pathologists, to reduce inter-
observer variability and single-observer bias. A deep learning model was used to
suggest any potentially missed mitotic figures, which were also annotated by the
pathologists. Scans from the Leica GT450 lacked annotations and were not used
in this study. Algorithms submitted to the challenge were evaluated on a set
of 80 WSIs from a combination of training set scanners and previously unseen
scanners.

Efforts were made to minimise selection bias during data collection for the
challenge, by digitising all available breast cancer samples in the order that
they had been sent to the pathology lab for examination. This led to a highly
varied training set, with the number of annotations for a WSI ranging from 2 to
184. These annotations were sparsely distributed throughout the images, with
most 512× 512 crops containing no annotations at all. The difference between
scanners is shown in Fig. 1. The scanners have different colour profiles, with ACS
producing deeper red scans, and HXR producing scans with a blue-purple hue.

Prior to MIDOG 2021, few studies had investigated the impact of domain
adaptation techniques on the detection of mitotic figures in images acquired
using multiple scanners. A recent study used a domain adversarial neural net-
work (DANN), a multi-task approach which combines domain adaptation and
classification to learn image domain-independent representations [16]. However,
the method performed poorly when combined with stain normalisation. This
suggests that the model learned to classify within specific domains rather than
truly learning to classify in a domain-independent manner.

Another study proposed a stain-transfer network using a GAN architecture
with a U-Net encoder, adding an edge-weighted regularisation to retain basic
structures from the input images [2]. This was found to improve performance for
patch-level classification, but was not tested on pixel-level predictions for local-
ising and counting mitoses. In histopathology more generally, researchers have
evaluated the benefit of domain adaptation for segmentation [8], detection [10],
and classification tasks [19].

The most common techniques are stain normalisations based upon match-
ing colour distribution, and GANs for holistic domain adaptation. The domain
adaptation methods we investigate in the current study have a limited amount
of previous research in histopathology. Two studies investigated Neural Style
Transfer (NST) for transferring stains across cell-level images, but without eval-
uating the subsequent effects on a computer vision model [4,7]. To the best of our
knowledge, these are the only studies to use this method for histopathology with-
out significant adjustments, such as changing to an adversarial loss function [15].
The original NST method has not been evaluated as a domain adaptation tool
for cell-level classification, segmentation, or detection. CycleGAN is increasingly
popular in histopathology [19], and while previous research in mitosis detection
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has evaluated it for switching between stains [14], it has not previously been
evaluated for domain adaptation within the same staining process.

2 Methods

2.1 Mitosis Detection Models

U-Net is an architecture for semantic segmentation which combines multiple
layers of downsampling to generate a multi-scale feature mapping [17]. This
method requires segmentation masks for training, which we generated by taking
each pixel to be a 1 if it was within a mitotic figure bounding box and a 0
otherwise. U-Net outputs a probability map, which we converted to bounding
box predictions through a multi-step process, shown in Fig. 2. First a binary
map was generated by applying a threshold to the probability map. Objects were
subsequently extracted from this by selecting external contours. Any detection
with a height or width less than 10 pixels was assumed to be an artifact and was
removed, as this was empirically found to improve robustness. The remaining
detections had a bounding box placed around their center at the same size as
the original annotations. We used a combination of binary cross entropy loss,
dice loss and focal loss, which we weighted heavily towards the focal loss as this
performs well on unbalanced datasets [11].

RetinaNet is a one-stage detection algorithm which feeds inputs through an
encoder and a feature pyramid network to generate multi-scale features. These
features are used for simultaneous bounding box regression and classification [11].
This has previously been shown to perform at the level of an expert pathologist
for quantifying pulmonary haemosiderophages [13].

Fig. 2. U-Net post-processing procedure. (a) ground-truth image with one mitotic
figure (b) predictions map output from U-Net (c) binary map (d) bounding box pre-
dictions. This example has one True Positive prediction (upper left) and one False
Positive prediction (lower right).

2.2 Domain Adaptation Methods

Neural Style Transfer (NST) is a one-to-one domain adaptation method, cast-
ing the style of one image on to the content of another [5]. NST uses intermediate
layers of a pre-trained VGG19 CNN to extract features representing the style
and content of each input image. The loss function combines a style loss, which



18 J. Breen et al.

quantifies the difference between the output image and the input style image,
and a content loss, which quantifies the difference between the output and the
input content images.

CycleGAN is a generative adversarial network used for visual domain
adaptation [22]. CycleGAN uses two GANs, one to produce a stylised image
and another to recreate the original input image from the stylised image. This
attempts to overcome mode collapse, where a generator creates the same output
regardless of input. The performance at reproducing the original input image is
measured by a cycle consistency loss, and the performance at transferring the
style is measured by an adversarial loss. As GAN losses tend not to give a clear
indication of convergence, we use the Fréchet Inception Distance to decide when
to stop training [6].

Macenko normalisation is a common normalisation approach in H&E-
stained images which accounts for each stain separately [12]. This was used
for comparison to the domain adaptation approaches. The normalisation was
applied to both the training data and the evaluation data, where the domain
adaptation approaches were only applied to evaluation data.

Examples of all three methods are shown in Fig. 3. Neural Style Transfer
changes the colour profile of scans much less than CycleGAN, as it was found that
running NST for more iterations led to very poor mitosis detection performance,
as the resulting images were too artificial.

Fig. 3. Domain Adaptation and normalisation approaches applied to three crops from
the Hamamatsu S360 scanner, with Aperio CS as the target domain.
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2.3 Implementation

Models were evaluated using the cell-wise F1 score, which is the harmonic mean
of the precision and recall. This metric punishes false detections and missed
mitotic figures equally. True positives are defined as predictions made within
30 pixels of the center of an annotated mitotic figure. Both domain adaptation
methods were used as normalisation approaches during inference, not during
training. This approach keeps the detection models completely agnostic to the
testing domain, ensuring that any difference to detection performance is a result
of the domain adaptation approaches alone.

All experiments were undertaken with a single GPU on Google Colab. Both of
the detectors were implemented with a ResNet encoder pre-trained on ImageNet,
with ResNet101 found to be optimal for RetinaNet and ResNet152 for U-Net.
We evaluated our methods using a three-fold approach where two annotated
scanners were used for training and the other one was withheld for evaluation as
an unseen domain. The average F1 score and 95% confidence intervals were cal-
culated using 10,000 epoch bootstrapping, with evaluations on non-overlapping
512× 512 crops from all available WSIs in the training domain (40 training WSIs
and 10 test WSIs per scanner), and from all 50 WSIs in the external domain.

3 Results

Fig. 4. F1 scores from each detection model, where two scanners were used for training
and one for validation, on (a) the training set (b) a test set from the training domain
(c) the external domain (d) the external domain with NST (e) the external domain
with CycleGAN (f) the external domain with Macenko. 95% confidence intervals shown
in black. *0.243 ± 0.043. **0.426 ± 0.041.

Mitosis detection results from all experiments conducted in this study are sum-
marised as bar plots of F1 scores in Fig. 4 with 95% confidence intervals. The best
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average performance on unseen data was achieved by the U-Net with Macenko
normalisation, with the baseline U-Net and U-Net+CycleGAN close behind. At
the time of MIDOG 2021, our best results were from U-Net without domain
adaptation, so we trained this model on data from all three training scanners.
Our model achieved an F1 score of 0.693 on the preliminary test set, and 0.686
on the final test set. Precision and recall were very similar, at 0.686 and 0.685,
respectively, indicating that the model was balanced.

4 Discussion

The performance of both baseline detection algorithms is found to be comparable
to human performance, with an average F1 score of 0.69 for U-Net and 0.65
for RetinaNet, compared to the human score of 0.68 in a comparable study
[3]. The average performance on the unseen domain is lower, at 0.61 and 0.56,
respectively. Detection performance was generally lower when the Hamamatsu
XR was used as an unseen scanner, which is likely caused by the scanner having
a significantly different colour profile to the other two scanners. Both domain
adaptation methods slightly improved performance on the RetinaNet, though
this performance was still lower than on the other scanners.

Overall, the domain adaptation methods performed inconsistently, with
CycleGAN improving the average F1 score for RetinaNet but not for U-Net,
and NST improving the average score for one of the three unseen domains for
each detector, but degrading average performance. Macenko normalisation gave
a slight increase in average detection performance for the U-Net, but was very
inconsistent for RetinaNet, with both domain adaptation techniques performing
better on average. Due to computational limits and long run-times for the domain
adaptation methods, hyperparameter optimization was limited. Our hyperpa-
rameters were thus influenced by similar works and by practicalities, and were
likely to be sub-optimal for mitotic figure detection, which was not investigated
in these similar works.

Future work should focus on evaluating the source of inconsistencies in
domain adaptation methods applied to digital histopathology applications, to
improve reliability. This may include combining images from different scanners
to create a more general target domain for CycleGAN. Furthermore, the effects
of training both detection models with artificial images generated by the domain
adaptation methods should be evaluated as this may make the detectors more
robust to domain shifts. To better evaluate the domain adaptation methods, it
would be beneficial to also compare their respective run-times.

5 Conclusion

We implemented1 two unsupervised domain adaptation techniques, CycleGAN
and Neural Style Transfer, for overcoming scanner-driven domain shifts in his-
tology images, and enabling robust mitosis detection. These were applied to
1 https://github.com/scjjb/MIDOG Domain Adaptation.

https://github.com/scjjb/MIDOG_Domain_Adaptation
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transform test data acquired using scanners previously unseen by the detection
models. Our baseline detection methods, U-Net and RetinaNet, performed com-
parably to a human expert on data from the training domain, with reduced per-
formance on data from an unseen domain. Both domain adaptation techniques
were found to improve detection performance for some of the unseen domains
but not for all. Average detection performance across all unseen domains was
only improved using CycleGAN in combination with the RetinaNet detector.
This partial success justifies the need for further investigation to understand and
overcome these inconsistencies. Improved techniques for modelling in the pres-
ence of domain-shifts, or for learning domain-invariant features, will be essential
for accelerating the deployment and adoption of automated tools in routine diag-
nostic practice.
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Abstract. Recent studies for mitotic figure identification have shown
performance comparable to that of human experts; however, the chal-
lenge to develop strategies invariant to image variance in different micro-
scope slide scanners still remains. In this paper, we propose a method
for domain generalization in mitotic figure detection by considering the
scanner as a domain and the characteristic specified for each domain as
a style. The method aims to make the mitosis detection network robust
to scanner types by using various style images. To expand the style vari-
ance, the style of the training image is transferred into arbitrary styles
by the proposed style transfer module based on StarGAN. Furthermore,
we propose patch selection criteria to resolve the imbalance problem.
Our model with the proposed training scheme has obtained satisfactory
detection performance on the MIDOG Challenge containing scanners
that have not been seen.

Keywords: Domain Generalization · Mitosis Detection · Style
Transfer

1 Introduction

Detecting mitotic figures (MFs) in histopathology images is important for tumor
prognostication. Since counting the MFs by a pathologist is costly, computer-
aided automatic MF detection is attracting more attention. Many research
works [7,12,16] have achieved remarkable performance in detecting MF. How-
ever, microscopic images are obtained by various scanners and the images contain
different visual features depending on the scanner, hence the works mentioned
above show an inconsistent performance by different scanners. Focusing on the
color difference between scanners, many research works [3,13] have proposed
a method using stain normalization [10,14,19] with the principle of interpret-
ing the problem as a domain generalization problem by defining the scanner as
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the domain. However, stain normalization performs a simple pixel-by-pixel color
mapping based on only the color distribution of images and some visual artifacts
can occur [22].

We have considered some global aspects that capture overall context of the
stained image to get better performance in MF detection. In this paper, we define
a novel domain characteristic, namely style, which contains shape details as well
as color distribution. Our proposed style transfer module (STM) converts domain
style of an input image into a different style. We increase the number of training
domains through STM so that the model learns the unique characteristic of MF
regardless of the scanner. In addition, we devise the selection criteria of input
patches to resolve the data imbalance issue. The effectiveness of our proposed
method is explained in Sect. 4.2. The proposed method has achieved 0.7243 F1
score on the test set of the 2021 MICCAI MIDOG Challenge, ranking 4th in the
leaderboard [1].

2 Related Work

Computer-aided mitosis detection has gained interests from researchers for
the benefit of reducing the manual workload. The nature of the problem also
fits in the current development of computing disciplines. A two-step method,
feature extraction and classification method, was widely adapted by early
approaches [7,12,16]. The feature extraction step is composed of preprocess-
ing and generating candidate segmentation from the whole slide image (WSI).
The selection of features sent to the next step is based on statistics [7,16] or prior
knowledge of mitosis to reduce false negatives due to insufficient MF counts.

The emergence of deep learning and the development of computing power
also has a large influence on the mitosis detection area. CNNs have shown great
performance improvement in 2D image processing areas, so they have also been
used in mitosis detection. Some approaches focus on input patches that are
used in training [3,13] with stain normalization methods of [10,14,19]. Other
approaches modify the model to be efficient and powerful [8,21]. However, the
problem that remains for these approaches is that they have insufficient general-
ization to scanners. To solve the scanner dependency problem, Tellez et al. [17]
used hematoxylin and eosin stain-based augmentation on input patches to devise
a scanner-robust method.

Domain generalization is the problem of making a model robust to multido-
main data containing an unseen test domain. Reducing the difference between
domains is a widely used method for generalization [5,6,18], such as alignment
of extracted features. Another approach is to augment the input data so that
the model can be robust to unseen domains [15,23]. In this approach, augmen-
tation is used as a solution for domain shift. Simple random augmentation and
generative augmentation are existing approaches for augmentation. For gener-
ative domain shift, synthesis using a generative adversarial network (GAN) [4]
is widely used. StarGAN [2] is known to perform well in multidomain environ-
ments, while some approaches [24] focus on two-domain situations. Our style
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transfer module uses StarGAN’s generator, which is used to create plausible
augmented patches by applying style transformation including both color and
shape details. The module reflects the characteristics better than simple stain
augmentation, which only changes the color distribution.

Fig. 1. Overview of our training scheme using the style transfer module.

3 Method

Our training scheme consists of a patch selection and a style transfer module.
Patch selection is used to control the image patch used in the actual learning
process. Then, the style transfer module changes the input patch to an arbitrary
style. Finally, the detection network is trained by the transformed patch. Figure 1
shows the overall view of our proposed scheme.

3.1 Patch Selection (PS)

Performing the detection task using WSI as input has a high computational cost
on both the STM and detection network. We use a patch-based approach that
has been used in previous mitosis detection studies. Selection of the input patch
is essential because the model performance is highly dependent on the input
patches. We use several criteria to sort the input patches.

First, we consider the ratio of the foreground-background patches. The fore-
ground (FG) patch denotes that it contains either MF or mitotic-like figure
(MLF) annotation, and the background (BG) patch has neither type of anno-
tation. When all slices of WSI are used in training, the model concentrates on
the background because the portion of the annotated patch is small compared
to BG patches. Therefore, we adjust the FG-BG ratio to α : 1 such that BG
patches have a small portion. Additionally, the number of FG patches is balanced
between scanners to prevent the model bias of a certain scanner. We address the
effect of our PS criteria in Sect. 4.2.

3.2 Style Transfer Module (STM)

The role of the style transfer module (STM) is to take an input patch and a
random style code and return a generated patch that fits the style. When shifting
between N domains, StarGAN uses an N -element one-hot vector in which 1
represents the target domain. Here, if this code is replaced with a normalized
float vector, the generator should return an image with a new fused style.
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Fig. 2. Transfer module results. (a): original patch (b): scanner-1 style (c): scanner-2
style (d): scanner-3 style (e) scanner-4 style (f): random style

We follow the adversarial training scheme and loss function of Choi et al. [2]
with the provided scanner images. Each scanner type represents a one-hot label
of the style code vector. In the training step, the generator G is trained to trans-
fer a scanner image into another scanner-styled image, while the discriminator
D is trained to determine whether or not the image is synthesized. Using this
approach, G will learn to transfer between scanner styles, including color dis-
tribution and shape details. Figure 2 (f) shows the generator making a random
style when using the random normalized style code, as expected.

In training detection model, the generator of the trained StarGAN is used as
our STM. STM performs augmentation before entering the detection network.
Unlike the training stage, STM takes a normalized random float vector as a
style code and makes the style-transferred image based on the corresponding
code. Figure 3 shows the difference in training and inference steps. Furthermore,
we modified the portion of the generated random styled image and the original
patch image as p. This is because overgeneralization can degrade the overall
performance.
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Fig. 3. Difference between StarGAN and style transfer modules. (a): StarGAN gener-
ator (b): Our proposed style transfer module (STM)

Moreover, we found some artifacts that hinder the quality of the generated
image. There are two kinds of artifacts: checkerboards and stain artifacts. The
checkerboard artifact is caused by trainable upsampling of transposed convolu-
tion. Following the solution introduced in the paper of [11], transposed convo-
lution is changed to a stack of bilinear upsampling and convolution. Another
problem is unexpected stain generation on the background, which might confuse
the model. Therefore, by using the background segregation method from stain
normalization by Macenko et al. [10], we separated and preserved the back-
ground part from generation. Since this approach preserves the style better than
the previous version, we call this version advanced STM (a-STM).

4 Experiments

4.1 Implementation

The MIDOG Challenge dataset containing four scanners with approximately
7200 × 5400 pixel sized WSIs and 50 images for each scanner is used. Scanner
annotations contain information on MF and MLF to enhance the performance
of the training model. The preliminary test set and the final test set data use
two known scanners and two unknown scanners. All four scanners are used for
STM but only three scanners (Hamamatsu XR, Hamamatsu S360, Aperio CS2)
are used for the detection network because the images from Leica GT450 does
not contain annotations.

RetinaNet [9] is used for our detection network as the baseline approach
in [20] with ImageNet pretrained ResNet 101 backbone. Since the bounding box
size of the ground truth is fixed at 50, we set the size of the base anchor to 50
and then gave some variation as shown in Eq. 1. When a fixed anchor size of
50 is used, the results are lower than when various anchor size, which because
the detection model is classified with more diverse information through some
variations.

A = [x × 20, x × 2
1
3 , x × 2

2
3 ],∀x ∈ Abase (1)
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Training. Most hyperparameter settings for STM follow the original StarGAN
training [2]. The learning rate for both D and G are lowered to 0.00005 because
cell images show little variance compared to general images. For the same reason,
the total iterations are also lowered to 80 K. After training, the generator is used
as STM. The detection network takes an input in which random rotation and
random flip augmentation with a style transfer module are applied. Both MF
and MLF are classified to learn hard negatives effectively. The model is trained
over 120 epochs for approximately a day with a 0.001 learning rate, decaying by
1/10 on (84600, 112800) steps. α = 6 and p = 0.2 are chosen experimentally.
For each scanner, 40 images are used as training images, 5 as validation images,
and 5 as local tests. All training is done on a NVIDIA TITAN RTX GPU.

Inference. All of the patches from WSI are used as input. After detecting
both MF and MLF for all patches, the MLF results are discarded, and the
remaining results are aggregated. The merging process is held by non-maximum
suppression, with the criterion that two objects within 15 pixels are considered
the same object.

Table 1. Comparison of F1 score from ablation study

Hamamatsu
XR

Hamamatsu
S360

Aperio CS2
(unseen)

baseline 0.7226 0.7576 0.7255

baseline + PS 0.7237 0.7783 0.7643

baseline + PS + STM 0.7532 0.8307 0.7586

baseline + PS + a-STM 0.7895 0.8293 0.7816

4.2 Ablation Study

To determine the effect of our proposed method, an ablation study is conducted
for each component (PS, STM, a-STM). In ablation study, we split the MIDOG
dataset into local training and test set, and the image from Aperio CS2 scanner
is excluded in the training and used in the test phase only to fit the setting of
domain generalization. Table 1 shows the effect of each component. Note that
solving the imbalance using PS improves the F1 scores from Aperio CS2 because
the model is trained similarly for both scanners, making the model more robust.
Additionally, using the STM-based model (STM, a-STM) balances the perfor-
mance between scanners, as expected. However, using the STM-based model
shows little degradation on Aperio CS2 scanner, which is the result of patch
artifacts described in Sect. 3.2. Therefore, the removal of artifacts in the gener-
ated patches prevents the image from losing style details; hence, the results show
outstanding performance for all scanners.



Domain-Robust Mitotic Figure Detection with Style Transfer 29

Table 2. Comparison of final test set results at the MIDOG Challenge

Test Set

F1 Precision Recall

reference [20] 0.7108 0.6909 0.7319

ours 0.7243 0.6790 0.7761

F1 Precision Recall

Hamamatsu XR 0.8363 0.8556 0.8177

Leical GT450 0.6448 0.6982 0.5990

3dHistech P1000 0.7650 0.8333 0.7071

Hamamatsu RS 0.6216 0.7041 0.5565

5 Conclusion

In this study, we propose a new training scheme using STM and PS to solve the
domain generalization problem in mitosis detection. For the preliminary test set,
our model using the previous version of the STM achieved an F1 score of 0.7548,
ranking 4th in the challenge leaderboard. Table 2 shows the F1 score results on
the final test set, suggesting that the use of STM and PS allows the model to
function for unseen datasets. Our model achieves a better F1 score of 0.7243 (R:
0.6789, P: 0.7761) than the original reference code. For each scanner, we have
obtained a slightly imbalanced score between scanners (0.62 to 0.83). We confirm
that the artifact issue explained in Sect. 3.2 is frequently shown in Leical GT450
dataset, which resulted in lower performance for all test images. Furthermore,
we have anticipated the score of Hamamatsu RS scanner has dropped because
of its feature similarity with Leical GT450. As shown in the ablation study, the
results from a-STM which is investigated after the challenge ended on the local
dataset suggest that the maintenance of the unique style affects the performance
of style transfer by reducing the difference between scanner results. Thus, our
complete method using the advanced style transfer module is expected to show
greater performance on a real test set.
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Abstract. Mitotic figure count is an important prognostic factor for
breast cancer grading. However, the mitotic identification often suffers
from the domain variations. We propose a two-step domain-invariant mito-
sis detection method based on Faster RCNN and a convolutional neural
network (CNN). We generate various domain-shifted versions of existing
histopathology images using a stain augmentation technique, enabling our
method to effectively learn various stain domains and achieve better gener-
alization. The performance of our method is evaluated on the preliminary
test and final test sets of the MIDOG-2021 challenge, resulting in F1 score
of 68.95% and 67.64% respectively. The experimental results demonstrate
that the proposed mitosis detection method can achieve promising perfor-
mance for domain-shifted histopathology images.

Keywords: Mitosis detection · Breast Cancer · Histopathology
images · Faster RCNN

1 Introduction

The number of mitotic figures is one of the critical features in Nottingham grad-
ing system [1], which is widely used for breast cancer grading. Manual mitosis cell
counting is a time-consuming task in which a pathologist analyzes the selected
areas on a tissue. In recent decades, with the advent of whole slide imaging scan-
ners, the entire tissue can be digitized as multiple high-resolution images, encour-
aging us to develop computerized methods for mitosis detection. The similarity
between mitosis and other cells is one of the challenges that hampers accurate
detection of mitotic figures. In the recent years, several international competi-
tions have been organized to address mitosis detection challenges: MITOS 2012
[2], AMIDA13 [3], MITOS-ATYPIA-14 [4] and Tumor Proliferation Assessment
Challenge TUPAC16 [5]. Recently, several methods have been developed and
evaluated on the datasets provided by the aforementioned challenges [6–9]. The
main goal of these methods was to identify mitoses within the unseen test sam-
ples drawn from the same distribution as training samples.
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Another major difficulty for histopathological image analysis and especially
for mitosis detection is the scanner variability, and stain variations in tissue
[10], which can derive from differences in staining conditions and tissue prepara-
tion and using various scanners. This variability in the image representation can
adversely affect the mitosis detection performance, especially when the training
and testing data do not come from the same domain distribution. This prob-
lem is well-known as domain shift [11]. Several solution approaches have been
proposed in recent literature to cope with domain shift problem [12–21]. Stain
normalization is one of the approaches that can be used for domain adaptation,
which is often used as pre-processing before training the network [12,13]. The
stain normalization methods change the color appearance of a source dataset
by using the color characteristics of a specific target image. Although the stain
normalization methods reduce the color and intensity variations, they some-
times have an adverse effect on the performance due to not preserving detailed
structural information of the cells for all domain shifted cases. Also, the color
normalization methods alone cannot solve inter-scanner variability problem [14].

Data augmentation is another popular technique that is used for domain
shift adaptation [15–17]. The stain normalization methods aim to equalize the
color appearance of the images, while stain augmentation techniques expand the
training set by creating new images with new color appearances. It has been
shown that stain augmentation techniques can significantly improve the model
generalization and they usually outperform stain normalization methods [18]. In
recent years, several studies have evaluated the impact of domain shift on model
performance. Some recent solutions are based on adversarial neural networks
[19–21]. These methods aim to remove the domain information from the model
representation. To address the domain shift problem for mitosis detection, the
MItosis DOmain Generalization (MIDOG) competition was organized [22] to
evaluate the impact of domain shift introduced by using different scanners on
mitosis detection performance. In the next sections, we propose two-step mitosis
detection based on Faster RCNN [23] and a convolutional neural network. We
also used a stain augmentation technique for domain adaptation.

2 Dataset

The dataset used in this study is related to the MIDOG competition that was
held as a part of the MICCAI-2021 conference [22]. The MIDOG consists of three
training, preliminary test, and final test sets containing 200, 20, and 80 breast
cancer histopathology images stained with Hematoxylin and Eosin (H&E). The
images of training set were scanned by four different scanners, including the
Hamamatsu XR NanoZoomer 2.0, the Hamamatsu S360, the Aperio ScanScope
CS2, and the Leica GT450, while the preliminary and final test images were
scanned by Hamamatsu XR, Leica GT450, and two scanners unknown for model
training (3dHistech P1000, Hamamatsu RS). The mitosis cells were annotated by
pathologists within the selected region of interest with an area of approximately
2mm2. The annotations were only provided for images scanned by three scanners
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Fig. 1. Block diagram of the proposed mitosis detection method (a) Training phase,
(b) Testing phase

in the training dataset, and no annotations were available for the images scanned
with Leica GT450. In our experiments, we used the preliminary test and final
test sets for performance evaluation.

3 Method

Figure 1 represents the block diagram of our mitosis detection method in train-
ing and testing phases. Our method in the training phase consists of four steps:
k-fold cross-validation, data preparation, mitosis candidate detection by Faster
RCNN models, and false-positive removal by CNN models. For reducing the
false-positive detection rate, our method detects mitotic figures in two cascade
steps. In the first step, instead of splitting our training dataset into two training
and validation subsets, we used the k-fold cross-validation technique (k = 4)
as a preventative technique against overfitting. Using this technique, the train-
ing dataset containing images captured by Hamamatsu XR NanoZoomer 2.0,
Hamamatsu S360, Aperio ScanScope CS2 scanners is randomly divided into
four different subsets. We only used the images scanned by these three scanners,
since the annotations have been only provided for them.

During the training phase, one of the subsets is considered as a validation
set and the remaining as a training set. For domain adaptation and to over-
come the domain shifting problem, we used StainTools as a stain augmentation
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Fig. 2. The stain augmentation examples: (top-left) Original image, (others) Aug-
mented images

technique proposed in [24]. This technique augments an image by decompos-
ing it into the stain matrix S and the concentration matrix C, modifying the
concentration matrix, and then recombining it with the stain matrix to get an
augmented image. Figure 2 represents some augmented images generated from
a sample region of histopathology image. Using the mentioned augmentation
technique, we randomly generated nine new histopathology images with shifted
stain appearances from each original image. The augmented and original images
are then used to train Faster-RCNN and CNN models. This technique helps us
expand the training dataset and effectively improve model generalization and
performance, especially for unseen domains.

Figure 3 (a) illustrates the domain distribution of training data based on
the t-SNE embedding of randomly extracted patches from images of four scan-
ners. As we can see in the figure, the images scanned with Leica GT450 scanner
have a quite different distribution than other scanners. This will result in poor
performance of the model on unseen images of the Leica GT450 scanner. The
performance would be even lower on other unseen distributions. The augmenta-
tion technique that we used in our method can effectively cope with this problem.
As shown in Fig. 3 (b), the augmented images cover some new domain regions
in the t-SNE plot, indicating that the augmentation technique not only enables
the model to learn the unseen Leica GT450 scanner distribution but also well-
generalizes the model over the other unseen distributions.

Because the images are large in size, in the next step, the images within each
subset are split into small patches with the size of 1536 × 2048 (the padding
is done if needed). Then we trained four different Faster RCNN models using
the four augmented subsets. For model training, we used a mini-batch size of
4, with a cyclical maximal learning rate of 10−4 for 40 epochs by consider-
ing binary cross-entropy and smooth L1 losses for classification and regression
heads, respectively. The validation loss is also used for the early stopping and
checkpoint (with a patience of ten epochs), helping the models to further avoid
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Fig. 3. Illustration of the domain distribution using t-SNE embedding method: (a)
Color distribution of four Hamamatsu XR NanoZoomer, Hamamatsu S360, Aperio
ScanScope and Leica GT450 scanners (b) Color distribution of augmented images

overfitting. For combining the ensemble results of four trained Faster RCNN
models, we used Weighted Boxes Fusion (WBF) method [25]. WBF effectively
utilizes confidence scores of all proposed bounding boxes to iteratively constructs
the averaged boxes. It has better results than other box ensembling methods like
Non-maximum Suppression (NMS).

Having false-positive results is a most challenging problem for mitosis detec-
tion. Therefore, the detected mitoses are used to train CNNs to perform finer
mitosis detection in the next step. In this step, all of the false-positive and
truly detected mitoses at the output of the first step are used to train Efficient-
NetB0 networks. Four different networks are trained in the second step using the
detected cells within the four subsets. Before training the networks, we extended
the cell subsets using the mentioned augmentation technique for domain gen-
eralization. For the training, we used a mini-batch size of 256 and trained the
models for 200 epochs with a cyclical maximal learning rate of 10−4. To avoid
overfitting, the early stopping with a patience of fifty epochs is used during
training. The binary cross-entropy loss is also considered to train the networks.

4 Evaluation and Results

We evaluated the performance of the proposed method on training, preliminary
and final test sets. Table 1 represents the performance of our method on cross-
validation training data across all four folds based on three criteria, including
precision, recall, and F1 score. The precision represents the fraction of detected
cells that are truly mitosis while recall expresses the fraction of true mitosis
cells that are detected. The F1 score is also the harmonic mean of precision
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Table 1. Performance of the proposed mitosis detection method on cross-validation
training data across all folds

Fold Faster-RCNNs Faster-RCNNs + CNNs

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

1 53.32 58.15 55.63 85.12 89.5 87.25

2 49.56 60.38 54.43 83.61 88.23 86.07

3 51.19 58.84 54.74 84.91 86.18 85.54

4 54.75 59.27 56.92 86.29 89.31 87.77

Table 2. Performance of our method on the preliminary test set

Method TP FP FN Precision (%) Recall (%) F1 score (%)

Faster-RCNNs 140 389 26 26.46 84.33 40.28

Faster-RCNNs + CNNs 114 66 52 63.33 68.67 65.90

Faster-RCNNs + CNNs + Aug. 121 64 45 65.41 72.89 68.95

and recall. The confident threshold is a parameter that can affect performance.
The higher threshold value will reduce the false positives but, at the same time,
increase the false negative results, resulting in higher precision and lower recall.
We have chosen various confident threshold values in our experiments and the
optimal thresholds for which the best results (F1 score) are obtained are 0.4 for
the first phase and 0.6 for the second phase. The results show that the two-step
mitosis detection (Faster-RCNNs + CNNs) can effectively improve the mitosis
detection performance. Also, we individually evaluated the performance of the
first step mitosis detection results (Faster-RCNNs) on the preliminary test set
to better understand the importance of the multi-stage classification in reducing
the number of false positive detections.

Table 2 summarizes the performance of our mitosis detection method on the
preliminary test set. The results show that the first mitosis detector achieved an
F1 score of 40.28% on the preliminary test set, containing some false positives
at the output. According to Table 2, the second mitosis classification helped our
method to achieve an F1 score of 65.90%. In fact, in the second classification
step, the false positives were considerably removed by CNNs and it significantly
improved the mitosis detection performance. Our best result on the prelimi-
nary test set was obtained using the two-step mitosis detection method and the
mentioned augmented technique, resulting in an F1 score of 68.95%. Table 3
also represents the performance of our mitosis detection method on the final
test set. The final test set contains images of two new scanners. Therefore, it
could be challenging to detect mitotic figures within images of two new scanners.
However, because of using augmentation technique, the models could learn new
unseen distributions, helping our method generalize on unseen domains.
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Table 3. Performance of our method on the final test set

Scanner TP FP FN Precision (%) Recall (%) F1 score (%)

Hamamatsu XR 158 64 45 71.17 77.83 74.35

Leica GT 450 110 38 87 74.32 55.83 63.76

3dHistech P1000 74 28 25 72.54 74.74 73.62

Hamamatsu RS 74 61 50 54.81 59.67 57.13

Overall 416 191 207 68.53 66.77 67.64

5 Conclusion

In this work, we presented a two-step domain-invariant mitosis detection method
based on Faster RCNN and CNN models. We used a stain augmentation tech-
nique for domain generalization and dataset expansion. Our results demon-
strated that stain augmentation and multi-stage classification lead to a marked
improvement of domain generalization for mitosis detection.
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Abstract. As the third-place winning method for the MIDOG mito-
sis detection challenge, we created a cascade algorithm consisting of a
Mask-RCNN detector, followed by a classification ensemble consisting of
ResNet50 and DenseNet201 to refine detected mitotic candidates. The
MIDOG training data consists of 200 frames originating from four scan-
ners, three of which are annotated for mitotic instances with centroid
annotations. Our main algorithmic choices are as follows: first, to enhance
the generalizability of our detector and classification networks, we use a
state-of-the-art Residual Cycle-GAN to transform each scanner domain
to every other scanner domain. During training, we then randomly load,
for each image, one of the four domains. In this way, our networks can
learn from the fourth non-annotated scanner domain even if we don’t
have annotations for it. Second, for training the detector network, rather
than using centroid-based fixed-size bounding boxes, we create mitosis-
specific bounding boxes. We do this by manually annotating a small
selection of mitoses, training a Mask-RCNN on this small dataset, and
applying it to the rest of the data to obtain full annotations. We trained
the follow-up classification ensemble using only the challenge-provided
positive and hard-negative examples. On the preliminary and final test
set, the algorithm scores an F1 score of 0.7578 and 0.7361, respectively,
putting us as the preliminary second-place and final third-place team on
the leaderboard.

Keywords: MIDOG Challenge · Mitosis Detection · Instance
Segmentation

1 Introduction

Mitosis detection is a highly challenging task in pathology due to the rarity of
the events and the highly variable morphological appearance of a cell under-
going mitosis - some being very clear and others highly ambiguous [17]. While
several mitosis detection challenges have been organized over the past years
(MITOS12 [13], AMIDA13 [14], MITOS14 [11], TUPAC16 [15]), none of them
c© Springer Nature Switzerland AG 2022
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focused on testing the effect of domain shift on the robustness of a mitosis detec-
tion method. The MIDOG challenge [1,2] specifically addresses this by providing
training data originating from four different scanners but making the unseen test
set (partially) consist of images that are not from these same scanners.

1.1 Dataset

Following the challenge description: the MIDOG training subset consists of 200
whole slide images (WSI) from human breast cancer tissue samples stained
with routine H&E dye. The samples were digitized with four slide scanning sys-
tems: the Hamamatsu XR NanoZoomer 2.0, the Hamamatsu S360, the Aperio
ScanScope CS2 and the Leica GT450, resulting in 50 WSI per scanner. For the
slides of three scanners, a selected field of interest sized approximately 2 mm2

(equivalent to ten high power fields) was annotated for mitotic figures and hard
negative look-alikes. These annotations were collected in a multi-expert blinded
set-up, but with the help of computer augmentation, similar to [4]. For the Leica
GT450, no annotations were available. The preliminary and final test set consist
of four (at the time undisclosed) scanners, only two of which were also part of the
training set, namely the Hamamatsu XR, Leica GT450, 3DHistech P1000 and
Hamamatsu RS. The preliminary test set consists of only five WSI from each for
four test scanners. This preliminary test set was used for evaluating the algo-
rithms prior to submission and publishing preliminary results on a leaderboard.
The final test set consists of 20 additional WSI from the same four test scan-
ners. The evaluation through a Docker-based submission system ensured that
the participants had no access to the (preliminary) test images during method
development.

2 Materials and Methods

We base our method around a classic cascade approach to detect mitotic
instances in H&E-stained images. We first use a Mask-RCNN [8] to detect mitotic
candidates in an image. These candidates are then extracted as small patches
and given to a classifier ensemble of a ResNet50 [7] and DenseNet201 [9]. The
predictions are merged via weighted average and the final score is returned.

To improve the generalizability of the method - which is the main purpose
of the challenge - we used a Residual Cycle-GAN [3] to transform each image of
the training images into all other available domains. In this way, each mitotic
annotation is available in all 4 scanner domains. This differs from standard data
augmentation (color, hue, brightness, etc.), in that these are not random shifts
in appearance for the training process, but specifically towards domains that we
know are in the testing set. In Fig. 1 we show a 4× 4 grid of images of the 4
domains that we transformed to all other domains.

To improve the information present in the data for training a detector, we use
Mask-RCNN to create pixel-wise annotations for all annotated mitotic instances.
Since we know where all mitoses are, we use Inkscape to manually annotate the
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first 100 or so, train a pretrained Mask-RCNN model on this small dataset, and
apply it specifically around other known mitoses. We use test-time augmentation
(8 rotations and flips) and average the predicted masks for each mitosis, result-
ing in clean masks for most annotations. The remaining “difficult” cases were
manually completed, providing us mitosis-specific bounding boxes for all mitotic
instances. The average bounding box diagonal in the dataset is 28.8± 7.9 pixels,
which is consistent with the MITOS12 dataset [10].

Fig. 1. Residual Cycle-GAN transformed patches. The diagonal are original patches,
off-diagonal patches are domain-transformed.
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2.1 Domain-Specific Residual Cycle-Gan Augmentation

For the Residual Cycle-GAN [3] we followed the reference model architecture
of two sets of generators and discriminators. The Residual Cycle-GAN follows
the same principle as a regular one, with the difference that the input image
has a direct skip connection with the generated output image. In this way, the
generator does not need to reconstruct the image from a set of filter outputs,
but only needs to add a “residual”, i.e. a color change in the input image so
that it resembles a target domain. As it reduces the computational load on the
generator, this approach requires fewer data and converges more quickly.

We train six Cycle-GANs to obtain domain transformation functions from
all four scanner domains to each other. We train each cycle-GAN for 150000
iterations with generator learning rate 1e−4, discriminator learning rate 1e−2,
batch size 4, cycle-consistency loss weight 1 and adversarial loss weight 5. We
then use the trained generators of these models to create four complete “scanner”
copies of the training data, where each copy corresponds to one of four scanners.
This means that each “scanner” data set consists of 25% real data and 75%
GAN-transformed data, which will be equally sampled from during training. We
show an illustration of the 4 data sets in Fig. 1.

2.2 Final Submission Network Training

We split our training data into 45 training slides and 5 validation slides per
scanner, ensuring that the validation set had both highly mitotic and non-mitotic
slides. The Torchvision implementation of Mask-RCNN with ResNet50 backbone
was pretrained on the public COCO2017 dataset, and both the ResNet50 and
DenseNet201 classifiers were pretrained on ImageNet. Note that this is the same
model architecture as we used for creating the mitosis masks, but now trained
on in For Mask-RCNN training, we used a patch size of 3000× 3000 pixels and a
batch size of 1. We did not train on patches that did not contain any mitoses. We
found that using a larger patch size improves the validation performance, and did
not improve when adding negative patches. We augmented Mask-RCNN training
using skewing, 8 random flips/mirroring, and the domain-specific Cycle-Gan
augmentation stated before. We used SGD with a plateau-reduction learning
rate scheduler starting at 0.002 and reducing by a factor of 2 if the PR-AUC
does not improve after 5 epochs. We warmed up the optimizer during the first
epoch and only unfroze the last two convolutional blocks of the Mask-RCNN
network. We ran the algorithm until convergence after around 200 epochs.

The classification networks were only trained with the positive and negative
instances provided by the challenge organizers - we found that adding hard
negatives detected by the detector did not improve leaderboard performance.
We used a batch size of 32, and trained for 100 epochs, and kept the model
with the best F1 score. We used ADAM with standard parameters and a Cosine
annealing learning rate scheduler starting at 2×10−5 with a focal loss. For both
networks, we only unfroze the backbone after 5 epochs. We used a patch size of
80× 80, which we resized to 224× 224 to conform with ImageNet pretraining.
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We used our GAN-based domain augmentation, together with H&E specific data
augmentation [6], with parameters n = 3, m = 7. The classification head consists
of 3 blocks of convolutions with Relu, batch normalization, and dropout set to
0.5, followed by a fully connected layer to the output.

For both the detector and classifiers, many variations of optimization param-
eters were tried and the model with the best PR-AUC on validation was selected.

2.3 Ablation Study on Instance Segmentation and Domain-Specific
GAN Augmentation

The outcome of the challenge indicated that using label enhancement (i.e. adding
instance segmentation masks) for mitosis annotations was a winning ingredient
for all winning MIDOG approaches. For this reason, we conducted an ablation
study on the aforementioned training strategy to understand what aspect of our
algorithm most contributed to our success. Note that we perform this study on
the detection algorithm only, without the subsequent cascade classifiers.

To this end, we started our experiment with a basic Faster-RCNN net-
work [12] with ResNet50 as a backbone, trained using fixed-size bounding boxes
of size 50 × 50 pixels, centered on the mitosis coordinate. We then gradually
increased the complexity of our strategy; first by introducing geometric aug-
mentations e.g. rotations, flips, skewing. Then using the exact bounding box
obtained from borders of the mask annotations and finally, using a Mask-RCNN
with the actual mitosis masks and an offline GAN-based data augmentation
method where we transformed the data from each scanner to a different scan-
ner.

3 Results

In Table 1 we show the results of our ablation study to find what worked best
for our mitosis detection algorithm. Note that “F1 val” indicates F1 score on
Scanner 1, 2 and 3 images, whereas “F1 val S4” is the F1 score on the same
validation images but GAN-transformed to look like the scanner 4 domain.

In Table 2 we finally show a summary of our model’s scanner-wise perfor-
mance statistics on the MIDOG challenge test set and our validation set after
training. Note that NA means “Not Available” as these scanners were not avail-
able in either the test or training set. We discuss our results in the next section.

For reference, our model’s aggregate validation PR-AUC was 0.8823 and F1
was 0.8287. On the preliminary test set our approach resulted in the second-
highest aggregate F1-score of 0.7577, resulting from a 0.7820 precision and a
0.7349 recall.
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Table 1. Ablation study to find optimal mitosis detection strategy. From top to bot-
tom, the algorithm becomes increasingly complex. Describing columns from left to
right, first, there is experiment ID, which model we use (Fast-RCNN or Mask-RCNN),
whether we used fixed-size or adaptive bounding boxes (based on masks), whether we
use the mask itself (for Mask-RCNN), use of skew augmentation and use of domain-
specific GAN augmentation. Finally, we report F1 score statistics on the validation set
(F1 Val) and the F1 score on the GAN-transformed validation set to scanner 4 (F1 val
S4).

exp # model adapt. bboxes mask skew aug GAN aug F1 val F1 val S4

(1) Faster-RCNN × × × × 0.824 0.536

(2) Faster-RCNN × × � × 0.835 0.425

(3) Faster-RCNN � × � × 0.818 0.493†

(4) Faster-RCNN � × � � 0.823 0.815∗

(5) Mask-RCNN � � � × 0.812 0.705†

(6) Mask-RCNN � � � � 0.813 0.812∗

Table 2. Precision, recall and F1 scores for all scanners available in the MIDOG train
and test set. NA indicates “Not Available”, as these scanners were either not available
in the test or train set. Note that the validation scores for the Leica GT450 scanner
have an asterisk, as this scanner was not annotated in the training data, but we used
our GAN approach to evaluate the annotated validation set transformed to the Leica
GT450 domain.

Test Validation

Scanner Precision Recall F1 Precision Recall F1

Hamamatsu XR 0.669 0.572 0.617 0.618 0.871 0.723

Leica GT450 0.693 0.690 0.692 0.798* 0.825* 0.812*

3DHistech P1000 0.851 0.696 0.766 NA NA NA

Hamamatsu RS 0.669 0.572 0.617 NA NA NA

Hamamatsu S360 NA NA NA 0.775 0.968 0.861

Aperio CS2 NA NA NA 0.860 0.804 0.831

4 Discussion and Conclusion

From the MIDOG Challenge results the pattern emerged that the first, second,
and third place winners (us) all enhanced the mitosis annotations before using
some detection algorithm. For this reason, we studied the effect on domain gen-
eralizability of adding either instance segmentation for the annotated mitoses
or domain-specific GAN augmentation, shown in Table 1. As the MIDOG data
does not have a separate test set available to evaluate generalizability for dif-
ferent algorithm variants, we used our GAN domain augmentation to transform
our validation set to resemble the non-annotated scanner 4 (Leica GT450). We
observe that the “F1 val” score is similar for all experiments regardless of model
or augmentation strategy, indicating that for in-training domains there is no
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significant effect of adding instance masks or domain-augmentation. However,
for “F1 val S4” we found that just adding the instance masks for scanners 1–3
already improved generalizability to simulated scanner 4, going from F1 score
0.493 (Exp 3) to 0.705 (Exp 5). Moreover, we see that adding GAN augmenta-
tion improves F1 score for F-RCNN, going from F1 score 0.493 (Exp 3) to 0.815
(Exp 4). The same observation is true for Mask-RCNN, going from F1 score
0.705 (Exp 5) to 0.813 (Exp 6). We note that adding the GAN augmentation
seems to obviate the benefit of adding masks (F-RCNN versus mask-RCNN),
but we chose to submit the Mask-RCNN approach nonetheless. We note, how-
ever, that we don’t have access to the test set for this ablation study so don’t
know if our findings on the simulated validation set generalize to the test set.

Finally, we compare the performance of our algorithm between the train,
validation, and test set in Table 2. As is expected, our validation scores are
always higher than the test scores. Interestingly enough our algorithm generalizes
better to an unseen scanner (3DHistech) than a scanner that was actually in
the training dataset (Hamamatsu XR), though we note that this scanner also
performs worst among the four train scanners in validation. The Leica GT450
scanner, for which we explicitly used our GAN domain augmentation during
training, performs second-best in test, suggesting our approach indeed enhanced
the model’s generalizing properties to this domain.

On the preliminary test set, it was interesting that the MIDOG reference
approach [16], which used a RetinaNet with domain adversarial training, was
already among the top competitors on the leaderboard. The computational ben-
efit of domain adversarial training over domain-specific GAN augmentation is
that it is not necessary to train a cycle-GAN or transform any of the training
images. On the other hand, the GAN augmentation can be used for any network
architecture without having to choose where to plug in the domain adversarial
loss during training - something that the reference approach had to experiment
with. It is a subject of future work which of these approaches provides the best
domain generalizability.

As for the training of the Residual Cycle-GAN, we note that visually the
results illustrated in Fig. 1 seem convincing, but the color transformation is not
always completely consistent between different frames. As is typical of GANs, it
is hard to know exactly when to stop training, and it is hard to assess how these
color variations impact the final mitosis detection performance.

In conclusion, while the winning approaches in the MIDOG challenge were
different, it seems that injecting more information into the mitosis detection
problem improves the final detection performance. It would be interesting to
see how using self-supervised contrastive learning as pretraining [5], instead of
ImageNet pretraining, could further improve the mitosis detection performance
of any approach.
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Abstract. The detection of mitotic figures from different scanners/sites
remains an important topic of research, owing to its potential in assist-
ing clinicians with tumour grading. The MItosis DOmain Generalization
(MIDOG) challenge aims to test the robustness of detection models on
unseen data from multiple scanners for this task. We present a short sum-
mary of the approach employed by the TIA Centre team to address
this challenge. Our approach is based on a hybrid detection model, where
mitotic candidates are segmented on stain normalised images, before
being refined by a deep learning classifier. Cross-validation on the train-
ing images achieved the F1-score of 0.786 and 0.765 on the preliminary
test set, demonstrating the generalizability of our model to unseen data
from new scanners.

Keywords: Mitosis detection · MIDOG · Domain generalization ·
Deep learning

1 Introduction

The detection of mitotic figures is an important task in the analysis of tumour
regions [1]. The abundance, or count, of mitotic figures has been shown to be
strongly correlated with cell proliferation, which in turn is an important prog-
nostic indicator of tumour behaviour, and thus is a key parameter in several
tumour grading systems [1,2]. However, other imposter/mimicker cells are often
mistaken for mitotic figures due to their similar appearance/morphology, lead-
ing to large inter-rater variability. The introduction of deep learning methods
for automated detecting/counting of mitotic figures in histology images offers a
potential solution to this challenge.

An additional challenge is the translation of machine learning models into
clinical practice (i.e., on whole-slide images or WSIs generated by digital slide
scanners), which requires a high degree of robustness to staining and scanner
variations.
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The WSIs can vary in their appearance as a result of differences in the way
in which the sample was prepared (e.g. preparation/staining procedures) and
scanner acquisition method and particular scanner settings. The result of this
variation is a domain shift between WSIs collected from different scanners/sites.

The MItosis DOmain Generalization (MIDOG) challenge [3] provides a
means of testing different algorithms on cohorts of expertly annotated histology
images for mitotic figure detection in the presence of a domain shift. To combat
these challenges, we first normalise the stain intensities of all images provided to
our model before passing images through our proposed hybrid mitosis detection
pipeline. The hybrid analysis pipeline consists of (a) a mitotic candidate segmen-
tation model and (b) refinement by a deep learning (DL) classifier. We generated
ground truth (GT) segmentation masks of mitotic figures via a semi-automated
DL model [4,5].

The use of a pre-trained DL method for generating GT annotations allows
the DL models to exploit important contextual information by treating this
detection task as a segmentation task instead.

2 Methodology

2.1 Image Pre-processing

As stain variation is the dominant challenge when analysing histology images
from various scanners, in the first step of our proposed pipeline we used Vahadane
et al.’s method [6] to normalise the stain intensities of all images in the training
set to the target image 009, with the help of TIAtoolbox1 library. Note the same
stain matrix acquired from image 009 is used on-the-fly during the prediction
on test images.

2.2 Mitosis Candidate Segmentation

Mitosis Mask Generation. We approach the mitosis candidate detection
problem as a segmentation task. However, in order to train a CNN for the seg-
mentation task in a supervised manner, GT masks of the desired objects within
the image are required. Since the organizers have only provided approximate
bounding box annotations for each mitosis in the released MIDOG dataset, we
obtained mitotic instance segmentation masks using NuClick2 [4,5], a CNN-
based interactive segmentation model capable of generating precise segmentation
masks for each mitotic figure from a point annotation within the mitotic figure.
Therefore, for each annotation point in the dataset, we fed the centre point of
the bounding box alongside the patch from the original image into NuClick to
generate the individual segmentation mask.

1 https://github.com/TissueImageAnalytics/tiatoolbox.
2 https://github.com/navidstuv/NuClick.

https://github.com/TissueImageAnalytics/tiatoolbox
https://github.com/navidstuv/NuClick
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Segmentation Model. We employed a lightweight segmentation model, called
Efficient-UNet [7], for the segmentation task. The Efficient-UNet is a fully con-
volutional network based on an encoder-decoder design paradigm where the
encoder branch is the B0 variant of Efficient-Net [8]. Using this model with pre-
trained weights from ImageNet as a backbone allows the overall model to benefit
from transfer-learning, by extracting better feature representations and gaining
higher domain generalizability. The Jaccard loss function [9] is robust against
the imbalanced population of positive and negative pixels in the segmentation
dataset, and thus has been utilised to train the model.

Model Training. In order to train and evaluate the model, we extracted
512 × 512 patches from the stain-normalised images. There was a large class
imbalance in the training dataset, owing to the much fewer patches that con-
tained mitosis (positive patches) in comparison to those without mitosis (nega-
tive patches). Since we did not wish to introduce a bias towards predicting empty
maps (hence increasing the number of false negatives), we devised an on-the-fly
under-sampling approach which guaranteed that similar number of positive and
negative patches were sampled at the beginning of each epoch. Here, we used
all positive patches in all epochs but randomly sampled the negative patches in
each epoch. This way we trained a segmentation model that maintains a high
level of precision whilst having a high recall.

Post-processing and Candidate Extraction. At the inference stage of the
previous step, each image is tiled with overlap (512× 512 patches with 75 pixels
overlap) and results for all tiles are aggregated to generate the segmentation pre-
diction map. We then use a sequence of morphological operations and compute
the centroid of the connected components to extract candidate mitotic cells from
the segmentation map.

2.3 Mitosis Candidates Refinement

In the final step of our method, the mitosis candidates discovered in the previous
step were verified using a classifier. Here, we trained an Efficient-Net-B7 [8]
classifier to distinguish between mitoses and mimickers. To train the classifier we
extracted mitosis and mimicker patches (96×96 pixels) based on the annotations
provided by the challenge organizers. Again, to deal with the problem of class
imbalance, we incorporated the on-the-fly under-sampling technique.

2.4 Data Augmentation

To make both segmentation and classification networks more robust against the
variation seen in histology images, we include the standard data augmentation
techniques during the network training phase. The extent and combinations of
these augmentation techniques are randomly selected on-the-fly and differ from
epoch to epoch.
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2.5 Inference

The same pipeline as used for training was applied to each input image for
inference. However, in order to benefit from all the models and all the training
data, we also included “model ensembling” and “test time augmentation” (TTA)
techniques in the inference pipeline. Therefore, during segmentation and classi-
fication, predictions from all three models from the cross-validation experiments
(in addition to predictions on input image variations by TTA techniques like
image flipping and sharpening) are averaged to make more confident and robust
final predictions on unseen data.

3 Evaluation and Results

The training set released with the MIDOG challenge contains 150 images with
GT annotations. All segmentation and classification models were evaluated in
a cross-validation framework as follows: three folds were created based on the
images from different scanners (fold 1: images 1–50; fold 2: images 51–100; fold
3: images 101–150). Three experiments were conducted, where the models were
trained on two folds and validated on the final fold, such that all images were
tested once. Our training scheme simulated the way in which the challenge is
tested i.e. the test scanner is not used during the network training.

Many configurations for the segmentation and classification networks were
tested, but the ones with minimum segmentation loss and best classification
F1-score on the validation set were selected. In Table 1, results of the cross-
validation experiments for the segmentation only and the hybrid (segmenta-
tion+classification) models are reported separately. The segmentation model
alone achieved a F1-score of 0.755 in mitosis detection over all the images in
the training set. In comparison, the addition of the classier (mitosis candidate
refinement step) increased the F1-score to 0.786. Note that the threshold values
and hyper parameters on each step in the proposed pipeline are selected based
on the cross-validation experiments.

Table 1. Results of cross-validation experiments on the MIDOG dataset.

tseg tcls Recall Precision F1-Score

Segmentation only 0.5 – 0.824 0.696 0.755

Segmentation + Classification 0.4 0.6 0.771 0.801 0.786

Using the proposed hybrid method and the above inference method, we were
able to achieve the F1-score of 0.765 on the preliminary test set. The small reduc-
tion in F1-score on testing sets, when compared to cross-validation, indicates the
robustness and generalizability of the proposed approach.
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4 Discussion and Conclusion

In this work, we have presented a new method for the challenge of mitotic figure
detection in histology images in the presence of a domain shift. Our proposed
method first segments mitotic figures, based on the Efficient-UNet architecture,
before passing the results of segmentation on to a DL-based classifier to fur-
ther differentiate between mitotic figures and hard negatives (mimickers). All
images were normalised to a chosen sample image during training, before being
normalised on-the-fly during inference. The proposed method achieved a high
F1-score of 0.765 when tested on the preliminary test set for the MIDOG chal-
lenge.
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Abstract. Mitotic figure detection is a challenging task in digital
pathology that has a direct impact on therapeutic decisions. While auto-
mated methods often achieve acceptable results under laboratory condi-
tions, they frequently fail in the clinical deployment phase. This prob-
lem can be mainly attributed to a phenomenon called domain shift. An
important source of a domain shift is introduced by different microscopes
and their camera systems, which noticeably change the colour represen-
tation of digitized images. In this method description, we present our
submitted algorithm for the Mitosis Domain Generalization Challenge
[1], which employs a RetinaNet [5] trained with strong data augmenta-
tion and achieves an F1 score of 0.7138 on the preliminary test set.

Keywords: Mitosis detection · Domain generalization · Digital
pathology

1 Methods

Motivated by recent data-centric approaches we use a RetinaNet [5] trained with
strong data augmentation to enforce prediction consistency.

1.1 Dataset

We use the publicly available Mitosis Domain Generalization Challenge
(MIDOG) dataset [1]. The data consists of 200 Whole Slide Images (WSIs)
from hematoxylin and eosin (HE) stained breast cancer cases. Furthermore, the
dataset can be divided into subsets of 50 images, which were acquired and dig-
itized with four different scanners (Aperio ScanScope CS2, Hamamatsu S360,
Hamamatsu XR NanoZoomer 2.0, Leica GT450). For three scanners annotations
for mitotic figures and hard negatives (imposters) are provided. The disclosed
preliminary and final test sets contain samples of two known scanners and two
unknown ones.
This work was supported by the Bavarian Ministry of Economic Affairs, Regional
Develop- ment and Energy through the Center for Analytics - Data - Applications
(ADA-Center) within “BAYERN DIGITAL II” and by the BMBF (16FMD01K,
16FMD02 and 16FMD03).
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1.2 Model

Our object detection algorithm consists of a RetinaNet [5] with an EfficientNet
B0 [11] backbone. The backbone is initialized with state of the art ImageNet
weights, which were trained using RandAugment [2] and Noisy Student [13].
We did not change the feature pyramid and used all five pyramid levels. The
network’s heads consist of four layers with a channel size of 128. Anchor ratios
are set to one while the differential evolution search algorithm introduced by [14]
is employed to determine three anchor scales (0.781, 1.435, 1.578) (Fig. 1).

1.3 Domain Generalization Through Augmentation

Our main method to approach domain generalization is data augmentation.
Data-driven approaches such as RandAugment [2] have been proven to increase
model robustness and have been used in recent state of the art models. Inspired
by Trivial Augment [7] a very simple random augmentation strategy is used,
where a single augmentation is applied to each image. The augmentations are
drawn uniformly from a set of color, noise and special transformations while the
augmentation strength is random to some defined degree. The pool of augmenta-
tions consists of color jitter, HE [12], fancy PCA, hue, saturation, equalize, ran-
dom contrast, auto-contrast, contrast limited adaptive histogram equalization
(CLAHE), solarize, solarize-add, sharpness, Gaussian blur, posterize, cutout,
ISO noise, JPEG compression artefacts, pixel-wise channel shuffle and Gaus-
sian noise. In addition, every image is randomly flipped and RGB channels are
randomly shuffled.

Fig. 1. Used augmentations with different strengths.
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1.4 Training and Evaluation

For experimentation, we divide the dataset into five folds with three training,
one validation and one test split for each scanner (test splits are added to the
train set for submissions). During the training phase, we uniformly sample the
images of the train set and randomly select a mitotic figure or an imposter
annotation. A patch with a size of 448 pixels is randomly cropped around the
selected annotation similar to [6]. The RetinaNet is trained for 100 pseudo epochs
with a batch size of 16 using the super-convergence scheme [8]. Adam optimizer
with a maximum learning rate of 1e-4 is used. The best models are selected based
on the lowest validation loss. After the training phase, we combine the training
and validation set and optimize the model’s confidence threshold with respect
to the best F1 score. During inference, incoming WSIs are tiled into overlapping
patches of 448 pixels. All models are trained and tested using an Nvidia GeForce
RTX 3060 with 12 GB GPU RAM.

2 Results

For the final submission, we only use labelled data to train a single RetinaNet
with the proposed data augmentation strategy. This method achieves an F1 score
of 0.7138 on the preliminary test set of the MIDOG challenge.

3 Discussion

Overall, we are able to generalize better across multiple scanner domains with
strong data augmentation. The magnitude at which such simple transformations
improve generalization at no cost of inference speed is higher than expected. Even
models trained with only one scanner reach similar results on our test split, show-
ing only a small performance drop. In the following, we will lay out unsuccessful
attempts to improve the quality further. One major issue was the model selec-
tion based on the validation loss. The models were not capable of overfitting
the data, assumingly due to the sampling and the strong data augmentation,
models ended up in an equilibrium mode where performance improvements were
wiggling between the different scanners back and forth. Because of that, the
representation shift metric proposed by Stacke et al. [10] was tested. It was
applied to the three convolutional layers, which flow into the feature pyramid,
but was found to not help the model selection process. Another strategy was a
dual-stage attempt with a verification net proposed by Li et al. [4]. The network
was trained on the predicted patches of the first stage using the same augmen-
tation and in addition a Gradient Reversal Layer [3] to remove even the last
bits of scanner dependent information. Unfortunately, this resulted in a perfor-
mance drop of 12.1% on the preliminary dataset. Finally, the choice of using
an EfficientNet originated from the attempt to incorporate the unlabeled data
using a self-supervised Student-Teacher learning procedure based on the STAC
framework [9]. While increasing the performance on our test split, this resulted
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in a small performance drop of 1% on the preliminary dataset. One problem
was that producing pseudo labels with a high confidence threshold resulted in
very few labelled samples while self-training reportedly needs a huge amount
of pseudo labelled data to make use of it. A second problem arises with false
positive pseudo labels. We used a labelled scanner to check the number of wrong
labels incorporated in the pseudo labels and found that for mitotic figures pseudo
labels were mainly correct while hard negatives actually included a lot of mitotic
figures. This probably led to more confusion than having a positive effect.
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Abstract. In this paper, we propose a multi-source domain adaptation
method for mitotic cell detection. Our method is two-step approach. The
first step is extraction of candidate regions of mitosis, and the second step
is classification of the candidate regions to mitosis or non-mitosis. In the
second step, we train a deep neural network model that has two classifi-
cation tasks, namely mitosis/non-mitosis classification and domain clas-
sification. The branch for the domain classification has Gradient Reversal
Layer for the domain adaptation. Our method does not use all images in
the source domain, but uses the selected images in the domain adaptation
phase to reduce the storage size of the source domain data.

Keywords: Mitosis Detection · Domain Adaptation · Gradient
Reversal Layer

1 Introduction

Mitosis detection is a key component in tumor prognostication for a range of
tumors including breast cancer. Scanning microscopy slides with different scan-
ners leads to a significant visual difference, resulting in a domain shift. This
domain shift prevents most deep learning models from generalizing to other
scanners, resulting in severely reduced performance.

The scope of the proposed method is to detect mitotic data (cells undergoing
cell division) from histopathology images scanned by multiple scanners [2]. The
training dataset consists of images scanned by four different scanners, three
of which are labeled. The training dataset consists of 200 breast cancer cases
in total. The test dataset consists of images scanned by 4 different scanners, two
of which are the same scanners in the training dataset.

2 Proposed Method

Our method is two-step approach. The first step is extraction of candidate
regions of mitosis. In the second step, we classify the candidate regions to mitosis
and non-mitosis. In the following, we explain the details of each step.
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2.1 Extraction of Candidate Regions

We first transform the input RGB images into Blue Ratio (BR) images. The blue
ratio image, which accentuates the nuclear dye, is computed as the ratio of the
blue channel and the sum of the other two channels [3]. We extract candidate
mitotic regions by binary thresholding of the BR image. The regions are cropped
as rectangle patches and these patches are the candidate for mitosis.

2.2 Classification of Candidate Regions

We classify the candidate regions into mitosis or non-mitosis. Our histopathology
images are scanned by four different scanners, three of which are labeled. By
using the labeled images, we train a deep neural network model which has two
classification tasks. The first task is mitosis/non-mitosis classification, which is
a binary classification, and the second one is scanner classification, which is
a three-class classification. We use ResNet [6] as the base model. In ResNet,
we remove the final fully connected layer and append two branches at the end
of the network. In the first branch, there are three fully connected layers for
mitosis/non-mitosis classification. The second branch is for scanner classification
and Gradient Reversal Layer [5] followed by three additional fully connected
layers. Figure 1 shows an overview of the network structure in our method.

In the supervised training phase, we use all patches extracted from images
of three scanners using labeled source domain data. For each scanner, eighty
percent of images are used for training data and the rest images are used for
validation data. We use cross entropy loss for each classifier and the final loss is
the summation of two losses.

We use images of three scanners in a domain adaptation phase which are
labeled and treated as source domain data, and one image from a target domain
which is a target image for mitosis detection. A general unsupervised domain
adaptation setting is not feasible since we need to keep all source domain data in
the domain adaptation stage. To do so, we select patches in the source domain
and use those selected patches in the domain adaptation phase. For patch selec-
tion, we use a classifier trained using the source domain images. When patches
are classified by the classifier, we select patches that have high confidence (high
probability) as mitosis or non-mitosis.

In the domain adaptation phase, we extract candidate regions from an image
from the target domain. For such patches, however, we do not have labels on
the mitosis/non-mitosis. These patches are treated as coming from the fourth
scanner (the fourth class in the scanner classifier). We use cross entropy loss
for mitosis/non-mitosis classification and scanner classification for the source
domain data, and cross entropy loss for scanner classification for the target
domain data. The final loss is the summation of those losses.

Upon completion of the domain adaptation phase, patches in the target
domain are classified into mitotic or non-mitotic regions.
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Fig. 1. Network structure of our proposed method.

3 Experimental Conditions and Results

In the extraction of the candidate regions, the threshold is set to the mean value
plus 3 times of the standard deviation of the BR image. Regions that are smaller
than 2 pixels are discarded, and regions that its width or its height is longer than
50 pixels are also discarded. The size of a patch is 64 × 64 pixels. For example,
we selected about 873k patches from 50 images of scanner 1. In these patches,
672 patches were mitotic regions.

We use an 18-layer ResNet as the base network. In the training of the classifier
using the source domain data, the learning rate is 1.0×10−5, which is optimized
with the Optuna library [1], the batch size is 128, and the number of epochs
is 30. The optimizer is Adam [4] and the learning rate is changed with cosine
annealing.

For the domain adaptation phase, we select 10k patches from each scanner
in the source domain. Out of the 10k patches, there are ten mitotic regions.

In the domain adaptation phase, the learning rate is 1.7 × 10−6, which is
optimized with the Optuna library using the source domain data, the batch size
is 128, the number of epochs is 5. We use Adam optimizer and do not change
the learning rate.

As shown in the preliminary testing phase using 20 images, the precision,
recall and F1 scores of our method are 0.72, 0.74, and 0.73, respectively.

4 Conclusion

We proposed a multi-source domain adaptation method for mitotic cell detection.
Our method does not use all patches in the source domain, but uses the selected
patches in the domain adaptation phase to reduce the source domain data.

The future work is to improve the method to extract the candidate regions
and to select the patches in the source domains.
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Abstract. Automated detection of mitotic figures in histopathology
images is a challenging task: here, we present the different steps that
describe the strategy we applied to participate in the MIDOG 2021 com-
petition. The purpose of the competition was to evaluate the generaliza-
tion of solutions to images acquired with unseen target scanners (hidden
for the participants) under the constraint of using training data from a
limited set of four independent source scanners. Given this goal and con-
straints, we joined the challenge by proposing a straight-forward solution
based on a combination of state-of-the-art deep learning methods with
the aim of yielding robustness to possible scanner-related distributional
shifts at inference time. Our solution combines methods that were previ-
ously shown to be efficient for mitosis detection: hard negative mining,
extensive data augmentation, rotation-invariant convolutional networks.

We trained five models with different splits of the provided dataset.
The subsequent classifiers produced F1-score with a mean and standard
deviation of 0.747±0.032 on the test splits. The resulting ensemble con-
stitutes our candidate algorithm: its automated evaluation on the pre-
liminary test set of the challenge returned a F1-score of 0.6828.

Keywords: Computational Pathology · Mitosis Detection · Rotation
Equivariance/Invariance

1 Dataset Preparation

The organizers of MIDOG 2021 [1] provided annotated images from 150 cases
(50 cases each from 3 different source scanners). 50 images from a fourth scanner
were provided but we chose not to use them in order to present a solution based
solely on a supervised learning framework, thus leaving room for improvements
for future work.

We created five folds of three splits such that we were able to train and
validate multiple models with varying data distributions. For each fold, we par-
titioned cases in splits with the following distribution: training (80%), validation
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(10%) and test (10%), such that the distribution of scanners was identical within
each split. With this partition we intended to use as much available source data
as possible for training while keeping a small proportion for internal validation
and model selection.

Fig. 1. Precision-Recall analysis of five models trained and evaluated on the different
test sets for each fold of the dataset. Dark blue circles show the performances achieved
by the models using the operating points that maximized the F1-score on the validation
sets.

2 Model Architecture

We modeled the conditional likelihood of the mitosis class given an input image
patch of size 77 × 77 at magnification 40× using convolutional neural networks
(CNNs). Motivated by the benefits of rotation invariance property of deep learn-
ing models for computational pathology tasks [2,5,7,9], we used roto-translation
equivariant convolutional layers with a 8-fold discretization of the orientation
axis [7]. As this structure guarantees the roto-translation equivariance of the
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internal activations and invariance of the output of the models with respect
to the orientation of the input, rotation augmentation at training and inference
time becomes an unnecessary step. Furthermore, this gained invariance property
prevents learning possible biases related to the orientation of the images.
The detailed architecture we used is described in Table 1.

3 Training Procedure and Data Augmentation

We trained our models with batches of size 64 balanced between mitotic figures
and non-mitotic objects, and optimized the weights of the models via mini-
mization of the cross-entropy loss. We used the Adam optimizer (learning rate
3 × 10−4), with a step-wise decay by a factor 0.8 every 5000 iterations, and
stopped training after convergence of the training loss. We used weight decay
with coefficient 2 × 10−4. For inference time, we kept the weights of the model
that achieved the minimum validation loss.

In order to ensure the generalization of our model to variations of appear-
ance related to unseen scanners, we opted for an extensive and aggressive data
augmentation strategy. For this purpose, we applied a series of random transfor-
mations according to the protocol described in Table 2. Examples of transformed
image patches are shown in Fig. 2. This approach is motivated by related works
showing the effectiveness of data augmentation for mitosis detection [6,8].

Fig. 2. Example of mitosis-centered image patches transformed according to our ran-
dom data augmentation protocol.

Generating training batches via random sampling of non-mitotic image
patches is known to be a suboptimal approach for mitosis detection as models
are less exposed to challenging non-mitotic objects during training [3]. Therefore,
to encourage the model to discriminate challenging non-mitotic objects, for each
fold, we sequentially resampled the dataset by removing easy classified patches
using a protocol derived from [3] using first versions of the models trained via
random sampling of the training sets.
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Table 1. Architecture of the CNN used in this work. Shape of output tensors are
written with the following format: (Orientations×)Channels(×Height×Width). Shape
of operator tensors are written with the following format: (Orientations×)Out.Ch.×
In.Ch.×Ker.Height×Ker.Width. * indicates that the operation is followed by a Batch
Normalization layer and a leaky ReLU non-linearity (coefficient 0.01).

Layer Operator Shape Output Shape

Input – 3×77×77

Lifting Convolution * 16×3×4×4 8×16×74×74

Max Pooling 2×2 8×16×37×37

SE(2,8)-Convolution * 8×16×16×4×4 8×16×34×34

Max Pooling 2×2 8×16×17×17

SE(2,8)-Convolution * 8×16×16×4×4 8×16×14×14

Max Pooling 2×2 8×16×7×7

SE(2,8)-Convolution * 8×16×16×4×4 8×16×4×4

SE(2,8)-Convolution * 8×32×16×4×4 8×32×1×1

Maximum Projection – 32

Fully Connected * 64×32 64

Fully Connected + Sigmoid 1×64 1

Table 2. Data augmentation protocol: for each input image patch, we scanned the
following list of transformations and applied it with a given probability, after random
sampling of a set of coefficients.

Transformation Coefficients Probability

Transposition – 50%

Color Shift cr,g,b ∼ U [−13, 13] 50%

Gamma Correction γr,g,b ∼ U [0.9, 1.5] 50%

Hue Rotation h ∼ U [0, 1] 50%

Spatial Shift Δx,y∼U [−12px, 12px] 100%

Spatial Scale α ∼ U [−13%, 13%] 50%

Additive Gaussian Noise cx,y,c ∼ N (0, 50) 50%

Cutout [4] (random color/size s) s ∼ U [8px, 16px] 50%

4 Inference Time

At inference time, the fully convolutional structure of our models enables their
dense application on large test images which produces probability maps. Candi-
date mitotic figures are identified as local maxima after applying non-maxima
suppression within a radius of 30px. Our models are then turned into binary
classifiers by setting a cutoff threshold (operating point) that is selected such
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that the F1-scores on the validation sets were maximized. We applied this pro-
cedure to generate a classifier for each fold, and then gathered the 5 models to
form an ensemble. The performance of these classifiers on the source test sets
are reported in Fig. 1. For new test images the detections of each classifier are
considered as votes for candidate mitoses and we filter out detections that get
less than 2 votes.

5 Conclusions and Discussion

We proposed a straight-forward approach combining multiple state-of-the-art
solutions to tackle the generalization problem for scanner-related distributional
shifts in the context of the MIDOG2021 competition. We report a lower per-
formance of our solution on the preliminary test set provided by the organizers
compared to the performances we obtained on the source test sets, suggesting
that the generalization of our model is limited to some extent. We hope that our
methodology can be considered as a baseline, that could potentially be improved
using additional training components for domain generalization. In future work,
we will aim at investigating the reasons of the generalization limitations of the
presented method.
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Abstract. Deep learning based mitotic figure detection methods have
been utilized to automatically locate the cell in mitosis using hematoxylin
& eosin (H&E) stained images. However, the model performance dete-
riorates due to the large variation of color tone and intensity in H&E
images. In this work, we proposed a two stage mitotic figure detection
framework by fusing a detector and a deep ensemble classification model.
To alleviate the impact of color variation in H&E images, we utilize both
stain normalization and data augmentation, leading model to learn color
irrelevant features. The proposed model obtains an F1 score of 0.7550 on
the preliminary testing set and 0.7069 on the final testing set.

Keywords: Mitosis · Domain shift · data augmentation · deep
ensemble model

1 Introduction

Tumor proliferation obtained form hematoxylin & eosin stained (H&E)
histopathological images provides valuable information regarding the patient
prognosis and treatment planning, especially in breast cancers [6]. Mitotic activ-
ity of tumor cells observed in high power field view is an epiphenomenon of the
cell proliferation, is therefore selected to quantify the tumor proliferation and
has been shown to associated with the patients’ prognosis [3].

The large variability observed in H&E stained pathological images still
impeded the application of automatic mitosis detection in clinical settings.
Despite the source of variation in the H&E images, it mostly manifests as large
variation in color tone among different H&E images. Hence, earlier attempts
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primarily focused on unifying the color space by utilizing color normalization
techniques [2].

In this work, we presented our approach to the MIDOG challenge [1]. Inspired
by earlier works [5], we constructed a two stages mitosis detection model by using
the detectorRS [4] as the base model to coarsely identify the mitosis figure in the
images. The results of detector model is later refined by a deep ensemble classi-
fication model to illuminate false positives and improve the overall performance.
To address the domain shift problem, we employed both stain normalization and
data augmentation focusing on inducing color variation. Our results suggested
two-stages model equipped with both stain normalization and data augmenta-
tion can be an potential solution to address the domain shift in detecting mitosis
figures in H&E images.

2 Data-Set

The data-set was provided by the MIDOG challenge [1]. In brief, all images were
obtained from human breast cancer tissue samples after routine Hematoxylin
& Eosin staining. The Training set consists of 200 H&E images obtained from
four different scanners, including Hamamatsu XR nanozoomer 2.0, Hamamatsu
S360 (0.5 NA), Aperio ScanScope CS2, and Leica GT450. Each scanner provided
50 H&E images. Mitotic figures were annotated for the first three scanners. In
total, annotation of 1721 and mitotic figures and 2714 non-mitotic figures (hard
negative cases) were provided. To train our model, we randomly selected 5 images
from each scanner with annotation as the validation set. The rest of training
images were used to optimize the model.

The preliminary test set released by the MIDOG challenge consisted of 20
WSIs from four scanners, in which two scanners were part of the training set
and the remaining two scanners are unknown.

3 Proposed Model

The proposed model is shown in Fig. 1. Our whole H&E image processing pipeline
consisted of five steps. Firstly, we cropped the original training images into
patches of the size 512 × 512 pixels, centered at the ground truth mitotic fig-
ures and hard negative cases. For each annotated cases, we randomly shifted
the center of each patch within the range of ±205 pixels. Then, a detectorRS
model [4] was trained to identify the location of mitotic figures using a bound-
ing box with a size of 50 × 50 pixels. In the training phase, all training images
were normalized with respect to the first images of the first scanner (001.tiff ) by
using Macenko stain normalization. Then, we augmented the training patches by
using random rotation, elastic deformation, scaling, Gaussian blur and a bright-
ness and contrast enhancement. The detector was trained by using SGD with a
learning rate of 0.02 for 12 epochs. Once the detector was trained, we employed
the trained model to the whole training images to identify all suspected mitotic
figures. To be noted, the model was trained using patches containing annota-
tions of ground truth mitotic and hard negative cases, whereas the trained model
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Fig. 1. Pipeline of the proposed mitotic figure detection framework

scanned through the training images can produce many previously un-annotated
false mitotic figures. This observation also motivated us to employed a second
stage classifier to refine the results produced by the detector.

The overall structure of deep ensemble model consists of five convolution
networks, adopted from [5]. The input to the deep ensemble model was the sus-
pected mitotic figures found by the trained detector on the training images with
a classification threshold of 0.3. The positive cases for training the classification
model consisted of all samples with ground truth mitotic figures. The negative
cases were the false positive cases identified by the detector on the whole training
images and the hard negative cases. Training samples for the classification model
were construed by shifting the center of obtained patches from detector within
the range of [−5, 5] pixels. To balance the training samples between positive and
negative cases, we adjusted the number of times of applying offset to balance the
number of cases in positive and negative classes. Finally, the samples were resized
to 120 × 120 and fed to the deep ensemble model. To overcome the domain shift
caused by different scanner, we heavily utilized online augmentation methods
that can induce color variation to increase the diversity of the training samples.
The augmentation employed were horizontal and vertical flipping, random clip-
ping and color jitter augmentation with luminance, contrast, hue and saturation
disturbance intensity. Each individual model was optimized using AdamW with
a learning rate of 2 × 10−4 and was trained for 100 epochs. The optimal weights
for each individual convolution network was selected based on their performance
on the validation set. The output of the ensemble model was the weighted sum
of soft-max score produced by each convolution networks. The final decision of
the proposed two-stage mitotic figure detection was obtained by combing the
classification score obtained from both detector and deep ensemble model as,

Sfinal = α ∗ SDE + (1 − α) ∗ SDect (1)



Detecting Mitosis Against Domain Shift 71

where α ∈ [0, 1] is the weights to balance the decision made by the detector and
the deep ensemble model and optimized on the validation set, Sfinal is the final
score to produce the final decision, SDE and SDect are the classification score
for the deep ensemble modular and detection modular, respectively.

4 Results

We first tested the performance of detection modular on the validation set. The
results of F1 score, precision and recall were given in Table 1. It can be observed
that detector alone was able to retrieve almost 80% of mitosis figures. In the
meantime, it also produced many false positives resulted in a inferior precision
score and a significantly degraded F1-score. The ability to refine the results
obtained from the detector by the ensemble classification model weighted by
different α was shown in Fig. 2. It can be observed that by varying the value of
α ∈ [0, 1], the optimal performance on F1 score was found when α = 0.9. The
obtained model obtained a F1 score of 0.7550 on the preliminary testing set and
0.7069 on the final testing set.

Table 1. Model performance on validation set, preliminary testing set and final testing
set

Validation Set Preliminary Testing Set Final Testing Set

F1-Score 0.7128 0.7550 0.7069

Precision 0.7270 0.7238 0.7279

Recall 0.6993 0.7892 0.6870

Fig. 2. Performance of individual and ensemble classification model on the validation
set
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5 Conclusion

In conclusion, we presented a fused detector and deep ensemble classification
model with image preprocessed by stain normalization and heavy data aug-
mentation to address the domain shift problem for mitosis figure detection.
Experiment results showed that the fused model performs reasonably well on
the preliminary testing set released by the MIDOG challenge.
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Abstract. We present a summary of domain adaptive cascade R-CNN
method for mitosis detection of digital histopathology images. By com-
prehensive data augmentation and adapting existing popular detection
architecture, our proposed method has achieved an F1 score of 0.7500
on the preliminary test set in MItosis DOmain Generalization (MIDOG)
Challenge at MICCAI 2021.
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1 Introduction

Mitotic count (MC) is a common and critical marker of breast cancer prognosis
[4]. Manually marking mitotic cells in Hematoxylin and Eosin (H&E) stained
histopathology images is obviously time-consuming and subjective. With the
dramatic improvements in computer vision and digital pathology, researchers
proposed to automate this process in pathology laboratories. A number of mito-
sis detection competitions have been held, e.g., the ICPR MITOS-2012 challenge
[9], the ICPR MITOS-ATYPIA-2014 challenge [8], and the MICCAI-TUPAC16
challenge [12]. Thus, numerous works have been proposed, and achieved remark-
able success in the field of mitosis detection [2,10].

However, deep learning based detection models may have poor generalization
capability to unseen datasets due to the domain shift. Such problem is commonly
observed in digital histopathology image analysis, caused by tissue preparation
and image acquisition. The MItosis DOmain Generalization (MIDOG) challenge
[1], hosted as a satellite event of the 24th International Conference at Med-
ical Image Computing and Computer Assisted Intervention (MICCAI) 2021,
addresses this topic in the form of assessing MC on a multiscanner dataset.
In this abstract, we propose a method with domain augmentation and Domain
Adaptive Cascade R-CNN (DAC R-CNN) for mitosis detection to achieve robust
detection performance for varieties of images.
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2 Materials

The MIDOG training set consists of 200 image tiles from Whole Slide Images
(WSIs) of human breast cancer tissues with H&E dye. The image tiles were
digitized with four slide scanners: Hamamatsu XR nanozoomer 2.0, Hamamatsu
S360 (0.5 NA), Aperio ScanScope CS2, and Leica GT450, resulting in 50 image
tiles per scanner. From each image tile, a trained pathologist selected an area
of 2 mm2 corresponding to approximately 10 high power fields. Annotations are
provided for the first three scanners.

3 Methodology

3.1 Stain Color Domain Augmentation

In MIDOG challenge, the test set contains images scanned by unknown slide
scanners. Previous stain normalization methods transfer different pathology
images into one target stain color style, which may not improve the robustness
of detection model when dealing with unseen stain color appearance. Therefore,
in addition to traditional image augmentation methods, we propose stain color
domain augmentation to generate training images with a wider range of stain
color appearances, making our model more robust to unseen data. To be spe-
cific, we build on previous stain normalization methods by adding randomness
in selecting normalization methods and target color styles.

The proposed stain color domain augmentation method involves two types
of stain normalization methods: Reinhard [7] and Vahadane [11]. Each method
will be executed with a given probability. Reinhard transfers color based on tar-
get mean and variance, while Vahadane transfers color according to the target
color appearance matrix. We obtain an initial range for target mean, variance,
and each element of the color appearance matrix using the whole training set,
respectively. Target values are randomly selected from those ranges during aug-
mentation, making it possible to generate images with very different color styles.
We will gradually enlarge those ranges to create new training samples to feed
the network until detection performance degrades to a limit. In this way, we
expect the trained network to achieve robust detection performance for varieties
of images.

3.2 Domain Adaptive Cascade R-CNN

We propose a Cascade R-CNN based domain adaptation model for mitosis detec-
tion [3], referred to as Domain Adaptive Cascade R-CNN (DAC R-CNN) (See
Fig. 1). The backbone network of DAC R-CNN is pre-trained ResNet-50, and
three cascaded detection heads are utilized for high quality detector. Inspired
by our previous work [5], we employ an image-level adaptation component to
address overall differences between different image domains like image color and
style using PatchGAN [6], through which we aim to obtain similar feature maps
from input image and reference image.



Domain Adaptive Cascade R-CNN for MIDOG Challenge 75

Fig. 1. Domain Adaptive Cascade R-CNN architecture. “I” is input image, “I′” ref-
erence image for domain adaptation, “Backbone” backbone network for feature map
extraction, “Cascade Head” detection head, “B” bounding box, and “C” classification.
“Discriminator” is a convolutional PatchGAN classifier for distinguishing input image
from reference image, which should be removed in inference phase.

Specifically, a parallel reference branch is added to the network architecture
with a discriminator following feature maps of both the input image and the
reference image. Two branches share the same backbone, which serves as the
generator. The discriminator distinguishes the input image from the reference
image. The discriminator is a convolutional PatchGAN classifier that operates
on image patches. One advantage of PatchGAN is that it can be applied to
images with arbitrary sizes. Note that labels of reference images are not needed.
By generating similar features, domain adaptation seeks to achieve comparable
performance for unlabelled data.

4 Results

Our proposed method produced an F1 score of 0.7500 with a 0.7792 precision
and a 0.7229 recall on the preliminary test set in MItosis DOmain Generalization
(MIDOG) Challenge at MICCAI 2021.
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Abstract. The detection of mitotic figures in histological tumor images
plays a vital role in the decision-making of the appropriate therapy.
However, tissue preparation and image acquisition methods degrade the
performances of the deep learning-based approaches for mitotic figures
detection. MIDOG challenge addresses the domain-shift problem of this
detection task. In an endeavour to reduce this domain shift, we propose
a pre-processing autoencoder that is trained adversarially to the sources
of domain variations. The output of this autoencoder, exhibiting a uni-
form domain appearance, is finally given as input to the retina-net based
mitosis detection module.

Keywords: Domain Generalization · Mitotic Figures ·
Histopathology · Homogenizers

1 Introduction

Machine learning algorithms often underperform when they are validated on an
external data that differs significantly from the distribution of their training
data. This problem is even more pronounced in medical images due to several
intrinsic sources of variability. The MIDOG challenge presents the problem of
domain shift in data for mitosis detection on large cohorts of histopathology
dataset collected from several scanners. Mitosis detection by itself is a very
challenging problem owing to the large variability in the morphology of mitotic
nuclei, along with the presence of several confounding nuclei. This difficulty is
further exacerbated by the large scale inter-observer variabilities. In order to
reduce the domain discrepancy, we present a preprocessing pipeline that acts
as an unsupervised domain generalizer that averages the appearance between
the different scanners with an additional capability to nullify domain specific
signals. This deep learning pipeline leverages the property of auto-encoders as a
cross-data homogenizer, essentially reducing the appearance between the differ-
ent domains [2].
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2 Materials and Methods

Our algorithm was trained on MIDOG dataset only. The algorithm consists of
a homogenizer followed by RetinaNet [4] for object detection.

2.1 Dataset

The MIDOG challenge released samples obtained from four slide scanners sys-
tems, namely the Hamamatsu XR NanoZoomer 2.0, the Hamamatsu S360, the
Aperio ScanScope CS2, and the Leica GT450. Around 50 scans were provided
from each of these scanner. The entire training data hence consisted of 200 whole
slide images WSI from human breast cancer tissue samples stained with routine
hematoxylin and eosin (H&E) stain. Supervised training annotations were pro-
vided for three scanners except the LeicaGT450. The supervision consisted of
mitotic figures and hard negatives that resembles mitotic nuclei. Annotations
were collected from multiple experts who were blinded to one another. The pre-
liminary test set contains five WSI correspond to four unrevealed scanners of
which only two were also part of the training set. Evaluation of the algorithms
was accomplished based on this preliminary test before publishing preliminary
results on a leaderboard. The final test consists of 80 cases (20 for each scanner)
belonged to the same four scanners used for the preliminary test set.

2.2 Methodology

As mentioned earlier, the object detection was done using RetinaNet, whereas
our main contribution lies in proposing and testing a domain generalising pre-
processing step. The preprocessing pipeline consists of a multi-headed encoder
network Gf . The encoder coupled with a decoder component Gr completes the
autoencoder section of the pipeline that aims to reconstruct the input images,
x ∈ X with an MSE loss. The optimization in the MSEloss results in reconstruc-
tion of the images that hold an average appearance compared to the training
images. Utilizing this idea, we use the whole dataset, with the appropriate val-
idation splits, provided as a part of MIDOG challenge in order to make the
autoencoder learn all the latent domains present in data. This is feasible as this
part of the training does not require an associated supervised label.

The encoder network also has a training adversarial head Gy which basically
acts as a domain discriminator. The reason for incorporating this module is to
further erase domain specific signals explicitly with the help of an adversarial
component. Here the training process makes use of explicit domain labels in
the form of the scanner technology labels, y ∈ Y = {HamamatsuRx, Hamamat-
suS360, Aperio, Leica GT450}. We have summarized the overall architecture in
Fig. 1.

Mathematically, if we denote the output of the encoder as a D-dimensional
feature vector f , For every input x, the outputs of the model are the recon-
structed image r and the domain label y.

f = Gf (x, θf ) (1)
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Fig. 1. The architecture of the domain homogenizer.

Finally, during the learning stage, we aim to maximize the domain label predic-
tion loss and minimize the reconstruction loss simultaneously to obtain domain-
invariant features.

L =
∑

i=1...N

Lr(Gr(Gf (xi ;θf );θr ),yi) (2)

2.3 Network Training

From the data of each of the four scanners we selected 40 WSI out of 50 WSI
for training the homogenizer and the remaining 10 WSI used for validation.
We used a patch size of 256 × 256 pixels and a batch size of 8. Furthermore,
we performed data augmentation with color jitter, affine transformations, and
random lightning and contrast change. We trained the network with a cyclical
maximal learning rate [5] of 10−4 for 60 epochs until convergence. The loss of
the homogenizer was a weighted combination of the perceptual loss and the
classification loss. And the model optimized by minimizing the reconstruction
loss and maximizing the domain classification loss. For object detection, we
followed the same strategy of splitting the data of each of the three annotated
scanners into 40 out of 50 WSI of each scanner for training and the remaining
10 WSI for validation. We used the focal loss as the classification loss [3] and L1
loss for regression. We trained the network with a learning rate of 10−4 for 150
epochs until convergence.
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3 Discussion and Conclusion

In this paper, we have described our method for the MIDOG challenge [1].
Our proposed domain homogenizer proved its efficiency in producing a uniform
domain appearance of input images belonging to sources of different domains.
Our code will be made publicly available in our GitHub repository after the final
submission deadline.
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Abstract. Mitotic counts are one of the key indicators of breast cancer
prognosis. However, accurate mitotic cell counting is still a difficult prob-
lem and is labourious. Automated methods have been proposed for this
task, but are usually dependent on the training images and show poor
performance on unseen domains. In this work, we present a multi-stage
mitosis detection method based on a Cascade R-CNN developed to be
sequentially more selective against false positives. On the preliminary
test set, the algorithm scores an F1 score of 0.7492.

Keywords: Domain Generalization · Mitosis Detection ·
Histopathology · MIDOG

1 Introduction

Breast cancer disease is a global concern affecting over 2 million women world-
wide [5]. Central to breast cancer diagnosis and treatment planning, is patholog-
ical analysis of tissue sections under magnification. There are typically three fea-
tures that are used in grading, which includes mitosis counts, tubule formation
and nuclear pleomorphism. Mitotic counts are a key indicator of tumour aggres-
siveness, but manual counting of mitosis is labourious, subjective and error prone.
With the advent of whole slide imaging (WSI) scanners, there is an opportunity
to leverage computational algorithms to perform mitosis detection in an auto-
matic and objective manner. However, a challenge with automated mitosis detec-
tion, and many computational pathology algorithms is domain shift [10]. Different
scanners and staining creates variability in colours and noise distributions, which
can cause generalization challenges especially for deep learning-based algorithms
when new data is out of the training distribution. To address these challenges,
the MIDOG competition was launched [1] to test mitosis detection algorithms on
images acquired from different scanners and laboratories. In addition to the gener-
alization challenges due to domain shift, discriminating mitotic figures from hard
negative samples is also a big concern in mitosis detection. The proposed Cascade
R-CNN based architecture is trained with images from different domains to detect
mitotic figures and hard negative samples with high accuracy.
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Material and Methods

In this work, the proposed mitosis detection algorithm was developed using
the official training set of the MIDOG dataset. The algorithm is based on a
publicly available implementation of the Cascade R-CNN [2] which consists of
a sequence of sequential detectors with increasing intersection over union (IoU)
to reduce false positives which may be attributed to the hard to detect mitotic
cells. Because of small amount of images, progressively resampling in each stage
is also used to reduce overfitting by ensuring there is a positive set of examples
in each stage. These methods and datasets are detailed next.

1.1 Dataset

In total, the MIDOG dataset contains 150 annotated high power fields (HPFs).
We extracted 18,960 patches of 512× 512 size from three scanners (Hamamatsu
XR NanoZoomer 2.0, Hamamatsu S360, Aperio ScanScope CS2). Annotations
consisted of two labels: one for the mitotic figures, and a second label for the
hard-negative examples, which are darkly stained cells or regions that have sim-
ilar appearance to mitosis (but are not mitosis). Only patches that had mitosis
or hard-negative samples were used to train the models. In total, there were
3,072 training and 1,913 validation patches of 512× 512 size, respectively. The
data was split randomly. In this subset of data, there were 2,437 mitotic fig-
ures and 1,558 hard negative examples. Considering the hard negative examples
as an another class ensured the model to reduce the number of false positives
specifically in dark-stained and low contrast images.

1.2 Cascade R-CNN

In this work, the Cascade R-CNN architecture [2] is proposed for mitosis detec-
tion. The Cascade R-CNN model is a two-stage model that detects candidate
regions (region proposal network), and a second stage that performs classifi-
cation on the candidate regions (RPN+classification). The multi-scale nature
of the Cascade R-CNN enables the detection of multiresolution structures by
training with increasing IoU thresholds, which may be more robust against false
positives. Progressively sampling stage by stage improves detection and ensures
that all detectors have a positive set of examples of equivalent size, and as a
result reduces overfitting. Applying the same multi-stage procedure in the test-
ing phase, enables a higher agreement between the hypotheses and the detector
in each stage.

1.3 Network Training

As previously described, 3,072 patches of size 512× 512 pixels with a batch size
of 4 were used for training. All images were normalized using the Macenko stain
normalization algorithm [7]. Data augmentation with random flipping, scaling,
color, cropping and contrast was also considered. Through experimentation, it
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was found that random cropping (with minimum of 0.3 IoU of cropped patches)
and scaling (to 4 other scales with ±64 pixels steps) was optimal (See Fig. 1). The
two-stage Cascade R-CNN with ResNext101 64x4d [12] backbone pretrained on
ImageNet [4] dataset model with stochastic gradient descent (SGD) and a learn-
ing rate of 0.01 for 50 epochs. A linear warm up ratio of 0.001 for 500 steps
was also applied to make training more stable. Gradient clipping was consid-
ered to prevent exploding gradients. To optimize training, different sampling
methods were also considered. The IoU balanced [11] and online hard example
mining (OHEM) [9] sampling methods were implemented to select hard samples
according to their confidence. However, in comparison with random sampling
performance worsened. This may be due to the similarities between mitotic fig-
ures (with high score) with some of the hard-negative annotations; or it could be
related to the structure of the proposed two-stage detection method. As the Cas-
cade R-CNN model is a two-stage detection (RPN+classification) architecture,
added a focal loss [6] to overcome class imbalance but results did not improve
and therefore, was not used. positive sample. As the model processes overlapping
tiles, there may be multiple detections for a single mitosis. To overcome this, the
output predictions were post-processed with non-maximum suppression [8] and
a 0.5 threshold is used to remove multiple overlapped bounding box detections.
All the models are implemented with MMDetection [3] library for automated
detection on a RTX 2080 GTI GPU.

Fig. 1. Sample augmented training images.

2 Evaluation and Results

The precision-recall curves for the validation set are shown in Fig. 2 with an
average precision (AP) of 0.8306 for the mitosis class and an AP of 0.6439 for
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the hard negative class. The average F1 score on the validation set was 0.63 and
0.46 for the mitosis and hard-negative samples, respectively. Evaluation on the
preliminary test set from the MIDOG organizers resulted in a mean F1 score
of 0.7492 (with 0.7707 precision and 0.7289 recall) (See Fig. 3 for some visual
results).

Fig. 2. Validation area under the precision-recall curve per class for validation set.

Fig. 3. Results of the detection module at patch-level. Yellow boxes highlights the true
predictions, whereas red box shows the false predictions and white boxes are ground-
truth annotations.
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3 Discussion and Conclusion

In this work, we presented an algorithm for the MIDOG challenge with a F1 score
of 0.6279 on the validation set and an F1 score of 0.7492 on the preliminary test
images. The model’s performance on all of the preliminary test images are in
the top but only for 003.tiff there are lots of false positives which degraded the
overall performance.
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Abstract. Mitotic Count is the most important morphological feature
of breast cancer grading. Many deep learning-based methods have been
proposed but suffer from domain shift. In this work, we construct a
Fourier-based segmentation model for mitosis detection to address the
problem. Swapping the low-frequency spectrum of source and target
images is shown to be effective to alleviate the discrepancy between dif-
ferent scanners. Our Fourier-based segmentation method can achieve F1

with 0.7456, recall with 0.8072, and precision with 0.6943 on the pre-
liminary test set. Besides, our method reached 1st place in the MICCAI
2021 MIDOG challenge.

Keywords: Mitosis Detection · Deep learning · Domain generalization

1 Introduction

Nowadays, breast cancer is an increasingly common disease in both developed
and developing countries [10]. According to the Nottingham grading system [3],
it can be diagnosed and predicted by three features, which are nuclear polymor-
phism, mitotic count, and tubule formation on histopathological sections stained
with hematoxylin and eosin (H&E). Among them, the mitotic count is the most
important morphological feature of grading. So pathologists usually search for
mitosis in a complete slide with a high-power field of view (HPF) manually to
count. However, a large number of HPF in a single complete slide and the appear-
ance difference of mitotic cells make the task time-consuming and tedious. In
addition, it is objective to judge mitotic cells and are prone to reach a consensus
on mitotic count among pathologists.

Recent advances in deep learning and digital scans have paved the way
and many automatic mitosis detection methods have been proposed [7,8,11].
Although achieving great success, a drop in performance is often observed when
the trained model is tested on data from another domain(i.e. different slide scan-
ners and sample preparation from clinical centers). This problem makes it hard
for mitosis detection algorithms to be widely used in the real diagnosis process.
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To solve the problem, we construct a Fourier-based segmentation method for
mitosis detection and submit it to the MIDOG challenge. We convert teh mitosis
detection task to mitotic cell segmentation, which makes our model more robust
and stable. Inspired by [13], We swap the low-frequency spectrum of source and
target images to alleviate the discrepancy between different scanners. Experi-
mental results show that our Fourier-based segmentation method can address
the domain shift in mitosis detection. It achieves F1 with 0.7456, recall with
0.8072, and precision with 0.6943 on the preliminary test set of MIDOG chal-
lenge.

2 Methodology

Regarding mitosis detection as segmentation, the proposed algorithm can be
divided into image pre-processing, Fourier domain SK-Unet and image post-
processing. Image pre-processing and image post-processing are processes of con-
verting bounding boxes and masks. As for the network, SK-Unet [12] equipped
with Fourier domain adaptation is modified for the task.

2.1 Image Pre-processing

Due to the fact that the segmentation model is more robust, we convert mitotic
detection to segmentation, thus masks of mitotic cells are required. First, all
cells in an image are segmented with pre-trained Hovernet [5] which is publicly
available1. Then we get cells that need to be preserved according to the bounding
boxes of the image. In specific, a cell is reserved when the Intersection of Union
(IOU) of the cell and any bounding box is over 0.8.

2.2 Fourier Domain Sk-Unet

In order to solve the problem of domain adaptation, a simple method for unsu-
pervised domain adaptation is adopted, which is swapping the low-frequency
spectrum of one with the other [13]. To be specific, there are three steps. First,
given an image Is, its amplitude and phase components can be calculated using
the FFT algorithm [4]. Second, the center region of Is’s amplitude component is
replaced by that of another image It. This means that the low-frequency infor-
mation of the two images is swapped. Third, the modified amplitude component
and its unaltered phase component are used to reconstitute an image with a
similar style of It using inverse FFT (iFFT). The motivation of the swapping
process is that high-level semantics represented by the high-frequency spectrum
is the real cue for mitosis while low-level semantics is closer to background infor-
mation. So combining one high-frequency spectrum with several low-frequency
components can generate images with different styles and the same label, which
enlarges the amount of training data and enhances the generalization ability of

1 https://github.com/simongraham/hovernet inference.

https://github.com/simongraham/hovernet_inference
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our model. Some generated samples are shown in Fig. 1. For the mitosis seg-
mentation, SK-Unet is adopted by us. The method proposed a combination of
feature maps from different scales in the encoder-decoder network to improve
the segmentation results.

Fig. 1. A FDA sample. Images are the source image, reference image and generated
image from left to right.

2.3 Post-processing

The image post-processing process aims to refine the result of cell segmentation
and convert it to bounding boxes. Initially, the hole filling technique is applied to
attain accurate segmentation masks. Then, connected component analysis for all
the obtained masks is performed and each connected component is regarded as a
cell. Last, centers of all minimum bounding rectangles for connected components
are calculated as our final result.

3 Experiment

3.1 Dataset

Our algorithm is evaluated on the MICCAI 2021 MIDOG challenge [1]. The
MIDOG training subset consists of 200 Whole Slide Images (WSIs) from
human breast cancer tissue with four slide scanning systems (Hamamatsu XR
NanoZoomer 2.0, the Hamamatsu S360, the Aperio ScanScope CS2, and the
Leica GT450). Each scanner has 50 images annotated, except for the Leica
GT450. To validate the model, we randomly select 50 images from one of the
scanners and model selection is based on models’ performance on this validation
set. The rest of images were used to train the model. In addition, there is a
preliminary test set from the MIDOG challenge to evaluate the prior model. It
contains 20 images, which are from 2 scanners in the training set and 2 unknown
scanners.

3.2 Experiment Setup

A sliding window scheme with overlap is used to crop each WSI into small
patches of size 512× 512 pixels. Standard real-time data augmentation methods
such as horizontal flipping, vertical flipping, random rescaling, random cropping,
and random rotation are performed to make the model invariant to geometric
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perturbations. Moreover, RandomHSV is also adopted to randomly change the
hue, saturation, and value of images in the hue-saturation-value (HSV) color
space, making the model robust to color perturbations. The Adam optimizer [6]
is used as the optimization method for model training. The initial learning rate
is set to 0.0003, and reduced by a factor of 10 at the 30th and the 50th epoch,
with a total of 80 training epochs. The min-batch size is set as 24. The network
is trained by minimizing a total loss function composed of a Focal Loss and a
Dice loss. All models are implemented using the PyTorch framework [9] and all
experiments are performed on a workstation equipped with an Intel(R) Xeon(R)
E5-2680 v4 2.40GHz CPU and four 32 GB memory NVIDIA Tesla V100 GPU
cards.

3.3 Experiment Results

The performances of the three models are reported in Table 1. The first two
rows are results of LinkNet [2] and SK-Unet [12] respectively. It shows the SK
module in SK-Unet indeed gets more informative feature maps in both spatial
and channel-wise space than LinkNet. Comparing the second and the third row,
our model(SK-Unet+FDA) achieves stronger performance on both the validation
set and preliminary test set. It outperforms SK-Unet 0.0141 and 0.0111 of F1-
score, which indicates that FDA (Fourier Domain Adaptation) enhances the
generalization ability of our model.

Table 1. F1-score from models

Model F1 (validation set) F1 (preliminary test set)

LinkNet 0.6954 /

SK-Unet 0.7331 0.7354

Ours 0.7472 0.7465
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Despite overwhelming successes in recent years, progress in the field of biomedical
image computing still largely depends on the availability of annotated training
examples. This annotation process is often prohibitively expensive because it requires
the valuable time of domain experts. Additionally, this approach simply does not scale
well: whenever a new imaging modality is created, the acquisition parameters change.
Even something as basic as the target demographic is prone to change, and new
annotated cases have to be created to allow methods to cope with the resulting images.
Image labeling is thus bound to become a major bottleneck in the coming years.
Furthermore, it has been shown that many algorithms used in image analysis are
vulnerable to Out-of-Distribution samples, resulting in incorrect and overconfident
decisions. In addition, physicians can overlook unexpected conditions in medical
images, often termed ‘inattentional blindness’. In one study 50% of trained radiologists
did not notice a gorilla image rendered into a lung CT scan when assessing lung
nodules. One approach, which does not require labeled images and can generalize to
unseen pathological conditions, is Out-of-Distribution or anomaly detection (which in
this context is used interchangeably). Anomaly detection can recognize and outline
conditions that have not been encountered during training. Thus, it circumvents the
time-consuming labeling process and can quickly be adapted to new modalities.
Additionally, by highlighting such abnormal regions, anomaly detection can guide
physicians’ attention to otherwise overlooked abnormalities in a scan and potentially
improve the time required to inspect medical images.

However, while there is a lot of recent research on improving anomaly detection,
especially with a focus on the medical field, a common dataset/benchmark to compare
different approaches was still missing. Thus, a fair comparison between different
proposed approaches was impossible. We tackled this issue for medical imaging with
the Medical Out-of-Distribution Analysis Challenge (MOOD 2021) and offered a
standardized dataset that allowed for a fair comparison of different approaches and
outlined how well different approaches worked.

For the challenge1, we provided two datasets with more than 600 scans each, one
brain MRI-dataset and one abdominal CT-dataset, to allow for a comparison of the
generalizability of the approaches. To prevent overfitting on the (types of) anomalies
existing in our test set, the test set was kept confidential at all times. The training set
consisted of hand-selected scans in which no anomalies were identified. Some scans in
the test set did not contain anomalies, while others contained naturally occurring
anomalies. In addition to the natural anomalies, we added synthetic anomalies. The
target for the challenge was to detect and localize anomalies. As detection and local-
ization are two distinct objectives, the challenge consisted of two (sub-)tasks, first, the
detection of abnormal samples, and second, the localization of abnormal pixels.

1 Official challenge document: https://zenodo.org/record/4573948.

http://zenodo.org/record/4573948


The submission was docker-based and ran over the synapse.org2 platform. To
check the submission for validity, the participants had the chance to submit a container
for a preliminary evaluation on four previously provided toy cases and validate the
reported scores. For participation in the two challenge tasks, three submissions were
allowed with only the last one counting towards the challenge. After submission, only
the number of successfully processed scans was reported and there was no feedback
regarding the score before the official results announcement. From 150 registered
participants, for each task, eight teams submitted a valid container. All successfully
participating teams were invited to provide a detailed paper describing their approach.
The papers were reviewed by the challenge organizers. This resulted in five papers
being published in these challenge proceedings.

Thanks go to all participants and the organizing team of MOOD 2021.

David Zimmerer

2 Challenge submission page: https://www.synapse.org/#!Synapse:syn21343101/wiki/599515.
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Abstract. Recent studies on anomaly detection have achieved great
success in data analysis, yet the application of out-of-distribution detec-
tion in medical imaging remains an underdeveloped area of study. In
this paper, we propose a 3D fully self-supervised learning method for
volumetric medical image data. Inspired by recent advancements in rep-
resentation learning for out-of-distribution detection, we propose a train-
ing method for pseudoanomaly generation with copy-paste. The training
uses contrasts of the normal image with the pseudoanomaly image that
is generated from the normal image. Through this scheme, a representa-
tion is learned to detect an abnormal image and to localize the anomaly
area. In addition, we use a 3D patch as an input to provide the spatial
information of the third dimension from volumetric image data. The pro-
posed approach was tested in the 2021 MICCAI MOOD challenge, and
it ranked the first place in both sample-level and pixel-level tasks.

Keywords: Out-of-Distribution · Self-supervised Learning · Medical
Imaging

1 Introduction

Creating medical image data with labels for various types of lesions or tumors
is a difficult and expensive task since it requires a considerable amount of time
by experts in the field. Moreover, even well-trained radiologists often fail to
detect abnormalities in unexpected situations. In fact, when radiologists focused
on a lung nodule in an image synthesized from a gorilla image into a CT scan,
more than half of the radiologists did not detect the gorilla [5]. Even if supervised
learning is enabled with a labeled anomaly dataset, it does not work when tested
with the data not included in the training dataset [7]. In this regard, we propose
a self-supervised learning method that works on unseen datasets when only a
normal image is provided.

This research was supported by the Capacity Enhancement Program for Scientific
and Cultural Exhibition Services through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science and ICT (NRF-2018X1A3A1069693).
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We train the network with the idea of forging an anomaly, which we called it
pseudoanamaly, through hard augmentation. We focus on the fact that most of
the features of the original image are lost during the augmentation process due to
strong distortion [3]. Thus, we observe that if strong distortion, called hard aug-
mentation, is applied to a partial patch of the image, the patch itself becomes an
out-of-distribution area. Among the various types of hard augmentations, copy-
paste, which is a method of pasting copied patches to different areas, shows robust
and effective performances for various cases. Therefore, we set our strategy to
develop self-supervised learning by pseudoanomaly generation with copy-paste
by combining additional subaugmentations to resolve unexpected dependencies.

In addition, most of the existing methods are trained with 2D slices [2,17],
but these approaches lose much of the context information of 3D CT scans. More-
over, the computation is too expensive for a 3D image to obtain a precise result
since a pixel-level abnormality is generated based on a sample-level abnormality
[9,19]. Therefore, we devise a 3D encoder-decoder network in which the attached
classification module computes an overall abnormality and the decoder gener-
ates a probability map of abnormalities. When constructing the network model,
the characteristics of the target domain are considered. In the case of complex
structured data, considering the fact that there are different anatomical features
according to the different portions, we design the network to learn each posi-
tional characteristic through the position module. In contrast, in the case of
regularly structured data, considering that there is little difference in appear-
ance depending on the position, we process the entire image at once without the
position information. Then, we solve the inconsistent abnormality problem using
the consistency connection module, which allows pixel-level results to reflect the
sample-level result.

The experimental results of the proposed method were presented in the 2021
MICCAI MOOD challenge [20], and this method ranked in the first place for
both the pixel-level task and the sample-level task.

2 Related Work

Self-supervised learning has drawn increasing attention in recent years when
supervised learning encountered the bottleneck of expensive data labeling.
Autoencoder models [1], which are used as generative self-supervised learning
methods, train the data distribution by reconstructing the image from the cor-
rupted input. Although it generates the classification result from a pointwise
generative reconstruction, it also has the shortcoming that the result is highly
dependent on the intensity difference. Another self-supervised learning method
is contrastive learning. In the case of instance discrimination, positive and nega-
tive samples need to be defined to train the instance representation itself. Many
research works [3,4,6] have selected a scheme that makes the augmented inputs
similar and the other image in the batch dissimilar. However, there is an issue
that some augmentations can degrade the discriminative performance [3], so
CSI [16] has been proposed to treat hard augmentations as negative samples.
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Fig. 1. Examples of Hard Augmentation. The size and position of the patch to
be augmented are randomly selected.

Anomaly detection is done by self-supervised learning. The task is to identify
abnormal images and to find its location when a dataset consisting only of normal
images is provided. The definition of an anomaly image includes those cases
ranging from a tiny defect to the distribution of out-of-normal images. Initially,
autoencoder-based networks were developed [10,12,14]. These approaches had
limitations in increasing the accuracy due to the differences occurring during
reconstruction. Another method, two-stage training has been studied; it learns
the overall features of normal data through pretasks and then performs anomaly
detection through fine-tuning. Path SVDD [19] conducted a pretask to find the
relative position of the peripheral patch relative to the given patch in the first
stage. CutPaste [9] is an example of creating an irregularity by pasting a copied
image patch at the first stage, resulting in generalizing effectively to real defects
at the second stage.

MOOD challenge [20] addresses another challenge from the previously studied
anomaly detection field in that it conducts the task with 3D medical images.
In the previous study of MOOD 2020 [11,18], they proposed self-supervised
approaches, which are still 2D image-based approaches that divide the volume
image into 2D slices. If only 2D images are considered, they inevitably lose much
of the 3D information.

3 Method

We use U-Net [13] as a reference network that receives a 3D patch as an input.
The pixelwise abnormality is performed through the decoder, and the samplewise
abnormality is performed by attaching a classification module to the bottom of
the network.

3.1 Pseudoanomaly Generation

To detect anomalies, training of the normal distribution is required. Existing 2D
methods are able to learn the representation of normal instances indirectly with
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a large batch size, but it is impossible in 3D due to physical resource limita-
tions. Therefore, we choose a straightforward method of arbitrarily generating
a pseudoanomaly even if only normal data are given. The processed anomaly
area can be said to be an out-of-normal distribution area because most of the
features of the original image are lost. Therefore, we train the encoder to learn
the difference between the normal and abnormal images from the same image
by the classification task to determine whether the image is defective or not.

To create a reasonable anomaly image, we have examined various types of 3D
augmentations. As shown in Fig. 1, six types of hard augmentations are tested:
mask, Sobel, rotation, copy-paste, permutation, and scar. The mask refers to a
method of giving a random intensity value ∈ [0, 1], the Sobel refers to a method
of applying a Sobel filter to a random patch, and rotation refers to a method
of rotating a random patch in [90, 180, 270] degrees. copy-paste is a method of
pasting a copied patch to another area, permutation is a method of mixing a
random patch with 8 subpatches divided in the x-, y-, and z-axis directions and
scar [9] is a method of applying copy-paste to a very small area.

Fig. 2. Examples of
Subaugmentation

When the encoder learns the normal distribution,
the decoder predicts where the anomaly is located.
It is a kind of segmentation task, so it is vulnerable
to overfitting to the trained pseudoanomalies. Simple
3D pseudoanomalies lack diversity because they are
mostly cuboid in shape and have a limited intensity
range. To avoid overfitting problems, we perform addi-
tional augmentations of color jitter and free rotation
in three dimensions (Fig. 2).

3.2 Network Module

Fig. 3. Network Architecture with Consistency Connection. The number on
each cube indicates the size of the channel. S indicates the sample-level results, and
P indicates the pixel-level results. Note the ‘consistency connection’ indicated in the
network.
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Consistency Connection. Sample-level and pixel-level anomaly detections
have a common goal of finding anomalous images, although these two tasks are
performed in different modules. Therefore, a consistency connection is added to
increase the learning efficiency by sharing the results of the two tasks during
training. As shown in Fig. 3, the classification results are concatenated with the
last part of the decoder to the pixel level result to reflect the sample level result.
The consistency connection aims to raise the consistency between two tasks that
are trained in different modules so that a synergistic effect can be obtained in
which the accuracy of both tasks increases.

Position Module. Often the features are differentiated in accordance with
their positions. In such case, providing position information during training can
be helpful. In particular, human body image includes complex structures that
can be interpreted easily by knowing its spatial position. To take advantage of
this property, we attach the position information to the input patch by defining
the position module, as shown in Fig. 4. Position information contains the defined
position class, and it is added to the corresponding channel of the input image
patch before training. In this way, the representative features of each position
are learned to inform the global context of the network.

Network

Image 
Patch

Position
Information

(0 ~ 26)

Image Patch

Position Info

Image 
Patch

Fig. 4. Scheme of Position Module. This is an example of defining 27 position
classes by dividing the input image into three each in the x, y, and z directions. Position
information with the corresponding channel to each class is concatenated to the input
image patch.

4 Experiments

We evaluate our method using the MOOD 2021 dataset, which consists of 800
brain CT images of 256 × 256 × 256 and 550 abdominal CT images of 512 ×
512 × 512. It is divided into a training set, validation set and test set at a ratio
of 8:1:1. During the training, elastic deformation was applied to the input image
with 50% probability. All models were trained using the Adam [8] optimizer with
a one-cycle learning rate policy [15] ranging from 10−3 to 10−2 for 200 epochs.
All of the training was done on a NVIDIA RTX 3090 GPU.

A pseudoanomaly is created by randomly selecting a center position and
applying hard augmentation to a region with a random width, height, and depth.
Their length ranges from 10 pixels to half of the input size for each dimension.
In the case of scar, we apply different synthesis rules that select the length of
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Table 1. The Test Results of Six Types Hard Augmentation. Models are
trained with a synthesized pseudoanomaly by six different hard augmentations without
subaugmentation. Numbers written without brackets indicate a pixel-level AP, and
numbers in bracket indicate a sample-level AP. Sample-level results of the total AP are
described in the order of the results for normal images and for anomaly images. Bold
text indicates the method showing the highest AP, and the underlined text indicates
the method showing the second-highest AP.

Data Train Test Total APMask Sobel Rotation Copy-Paste Permutation Scar

Brain

Mask 0.9995 (1.0) 0.2062 (0.0375) 0.1779 (0.2375) 0.2566 (0.2875) 0.1555 (0.0875) 0.1700 (0.0) 0.3276 (1.0, 0.2750)
Sobel 0.3666 (0.55) 0.0.9801 (1.0) 0.3361 (0.4) 0.3796 (0.55) 0.5043 (0.675) 0.3102 (0.0375) 0.4795 (1.0, 0.5354)

Rotation 0.9893 (1.0) 0.8901 (0.9625) 0.9454 (0.975) 0.9521 (1.0) 0.8398 (0.9875) 0.5476 (0.4575) 0.8596 (0.975, 0.9021)
Copy-Paste 0.9974 (1.0) 0.9128 (0.9125) 0.9426 (0.95) 0.9900 (1.0) 0.8642 (0.9875) 0.5824 (0.475) 0.8815 (1.0, 0.8875)
Permutation 0.8152 (1.0) 0.8382 (0.975) 0.9342 (0.9875) 0.9643 (1.0) 0.9601 (1.0) 0.6198 (0.4875) 0.8553 (1.0, 0.9083)

Scar 0.4935 (0.9875) 0.5003 (0.8125) 0.6740 (0.975) 0.6244 (1.0) 0.7213 (0.9875) 0.8881 (0.9) 0.6503 (0.975, 0.9438)

Abdom

Mask 0.9518 (1.0) 0.6262 (0.8727) 0.1424 (0.2727) 0.1989 (0.3818) 0.1431 (0.2910) 0.0054 (0.0) 0.3446 (1.0, 0.4697)
Sobel 0.1770 (0.7818) 0.9811 (1.0) 0.2324 (0.7091) 0.2826 (0.8) 0.3037 (0.7455) 0.1627 (0.2182) 0.3566 (0.8727, 0.7091)

Rotation 0.5583 (1.0) 0.6581 (1.0) 0.6627 (1.0) 0.6152 (1.0) 0.7604 (1.0) 0.3206 (0.5455) 0.5959 (0.8545, 0.9242)
Copy-Paste 0.9125 (1.0) 0.9290 (1.0) 0.8364 (1.0) 0.9317 (1.0) 0.8954 (1.0) 0.2662 (0.4727) 0.7952 (0.9091, 0.9121)
Permutation 0.3832 (1.0) 0.6201 (0.9818) 0.5011 (1.0) 0.6406 (1.0) 0.8416 (1.0) 0.3100 (0.5455) 0.5494 (0.8000, 0.9212)

Scar 0.1190 (1.0) 0.2452 (1.0) 0.2199 (0.9818) 0.2289 (1.0) 0.3510 (0.9818) 0.6614 (0.8) 0.3042 (0.4909, 0.9606)

the long side from 5 pixels to half of the input size, and the other sides from
2 pixels to 5 pixels. If a pseudoanomaly is generated in the background with
the same intensity of air, we do not consider this area as a label. To make it
possible, we preprocess the abdominal image to zero intensity outside the human
body. After that, to prevent anomaly areas that are too small, we perform the
anomaly synthesis process again when the generated pseudoanomaly is less than
20 voxels.

Brain data are resized into 64 × 64 × 64 and trained with the model that
has the consistency connection, as shown in Fig. 3, which will be referred to as
BrainNet. In the case of resizing into 128×128×128, the detection performance
was rather poor. This is because it is difficult to create a larger receptive field due
to a limitation in the GPU’s VRAM. In the case of abdominal data, it is resized
into 256×256×256 and trained with the model that has the position module of
Fig. 4 instead of the consistency connection, which will be called AbdomNet.
When the position module is used, the network is trained with a patch-based
approach in which the input has half of the data size. Both networks take free-
rotated and color-jittered copy-paste anomalies as inputs. We set the different
batch sizes to 8 and 1 for BrainNet and AbdomNet, respectively, considering
the input image size. In the experiments, we resized the abdominal image to
128×128×128 due to training time and resized the brain image to 128×128×128
when attaching the positional module to BrainNet.1

4.1 Augmentation Test

We first compare the effectiveness of six augmentations using a robustness test on
the detection of unseen augmentation types. As you can see in Table 1, the net-
work trained with copy-paste showed outstanding performance on both the brain
1 Code available at https://github.com/zinic95/MOOD CGV.

https://github.com/zinic95/MOOD_CGV
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Table 2. The Results of the Ablation Study. BrainNet is a model with a con-
sistency connection and AbdomNet has a position module instead of a consistency
connection. Both networks make a pseudoanomaly by free-rotated and color-jittered
copy-paste. It shows the difference in AP results by excluding the methods of BrainNet
and AbdomNet. pos indicates the position module and cons indicates the consistency
connection.

Network Shape Size Intensity APCube Sphere S M L 0.25 0.5 0.75 1.0

0.9347 0.8782 0.7416 0.9834 0.9962 0.7871 0.8828 0.9706 0.9878 0.9064
BrainNet

(0.9054) (0.7751) (0.6270) (0.9202) (0.9289) (0.6217) (0.8137) (0.9059) (0.9629) (0.8403)

− free rotation
-0.0412 -0.3080 -0.3352 -0.0945 -0.0960 -0.1323 -0.2112 -0.1905 -0.1669 -0.1746

(-0.0461) (-0.2780) (-0.3133) (-0.0961) (-0.0327) (-0.0378) (-0.2032) (-0.1880) (-0.1624) (-0.1621)

− color jitter
-0.0917 -0.1319 -0.2059 -0.0830 -0.0482 -0.0420 -0.0894 +0.0028 -0.0903 -0.1118

(-0.0722) (-0.0984) (-0.0971) (-0.0722) (-0.0420) (+0.0028) (-0.0735) (-0.1102) (-0.1238) (-0.0853)

− cons
-0.0256 -0.0652 -0.0885 -0.0050 -0.0047 -0.0184 -0.0578 -0.0335 -0.0214 -0.0454

(-0.0558) (-0.0486) (-0.0516) (-0.0537) (-0.0267) (-0.0130) (-0.0418) (-0.0603) (-0.0428) (-0.0522)

− cons, + pos
-0.1299 -0.2063 -0.0166 -0.0445 -0.4450 -0.1705 -0.1791 -0.1582 -0.1669 -0.1681

(-0.0027) (-0.0121) (+0.0878) (+0.0013) (-0.0666) (+0.0945) (+0.0107) (-0.0214) (-0.0564) (-0.0074)

0.7965 0.7161 0.4147 0.9749 0.8796 0.6337 0.7784 0.8017 0.8115 0.7563
AbdomNet (0.8984) (0.8577) (0.7679) (0.9673) (0.8989) (0.7978) (0.8865) (0.9070) (0.9207) (0.8780)

− free rotation
+0.0340 -0.3772 -0.0821 -0.1754 -0.2576 -0.1948 -0.1690 -0.1645 -0.1580 -0.1716
(-0.0293) (-0.4077) (-0.3814) (-0.1649) (-0.1092) (-0.3346) (-0.2086) (-0.1756) (-0.1550) (-0.2185)

− color jitter
-0.0891 -0.1666 -0.0077 -0.1018 -0.2743 -0.0534 -0.1675 -0.1639 -0.1266 -0.1279

(-0.0236) (-0.2743) (-0.1249) (-0.1361) (-0.1859) (-0.1606) (-0.1647) (-0.1512) (-0.1081) (-0.1490)

− pos
0.0000 -0.0011 +0.0554 -0.0048 -0.0526 -0.0317 +0.0194 +0.0026 +0.0075 -0.0006

(-0.0385) (-0.2429) (-0.1984) (-0.0652) (-0.1585) (-0.1983) (-0.1368) (-0.1428) (-0.0829) (-0.1407)

+ cons
+0.0676 +0.0687 +0.1524 +0.0009 +0.0431 +0.0728 +0.0726 +0.0706 +0.0686 +0.0681
(-0.0110) (-0.0413) (-0.1200) (-0.0060) (+0.0123) (-0.0721) (-0.0309) (-0.0281) (-0.0205) (-0.0261)

and abdominal datasets. In particular, copy-paste on the abdominal dataset
shows that pixel-level AP is approximately 0.2 higher than the second-place rota-
tion case. Since there are no significant differences in the sample-level AP when
comparing augmentation cases belonging to the upper rank, we set a strategy to
perform the self-supervised learning by making a pseudoanomaly with copy-paste
according to the pixel-level AP results. Then, we enrich the anomaly shape and
intensity range using additional augmentation to the copy-paste anomaly area.
We apply color jitter and rotation, which showed notable performance on the
augmentation test, with more free dimensions and degrees.

4.2 Ablation Study

We perform an ablation study on the proposed subaugmentations and network
modules. We report the pixel-level AP and sample-level AP of our 3230 synthe-
sized mask anomaly images with various shapes, sizes, and intensities from five
test-set images. The results are shown in Table 2.

Subaugmentation. Free rotation significantly improves the performance of
sphere-shaped anomalies. This is because copy-paste augmentation is mostly
shaped as a cuboid and aligned with each image dimension. Since the model
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learns this shape characteristic of the anomaly area during training, overfitting
to the cube shape may occur. Similarly, the color jitter shows better results at
almost all intensities. copy-paste cannot generate intensity outside the original
image intensity range. Color jitter, however, enables the generation of the inten-
sity that the original image does not have, thus avoiding the model being trained
only to specific intensities.

Network Module. In the case of BrainNet, the consistency connection
improves the performance by directly transferring the classification result to the
pixel-level detection. However, the position module greatly degrades the pixel-
level performance. The brain has a symmetrical structure, and there is no drastic
change because of location so that the positional module harms the learning of
the brain structure. In contrast to BrainNet, the position module of AbdomNet
greatly improves the sample-level task. The position information helps to under-
stand the complex structure of a human abdomen, which has a better learning
effect. When attaching the consistency module to AbdomNet, there is a trade-off
between the advantage of pixel-level tasks and the disadvantage of sample-level
tasks. Therefore, in light of the results of the provided 4 toy set cases, which have
sphere-shaped anomalies with diverse intensities, as shown in Fig. 5, we design
the final AbdomNet without a consistency module.

Fig. 5. Results of the Toy Set. (Left) Input image and (Right) Prediction result.

5 Conclusion

We present a novel self-supervised learning method for 3D volumetric data. The
key idea is the creation of a pseudoanomaly to identify the defectivities and their
areas. When training on out-of-distribution by copy-paste pseudoanomaly gen-
eration, we prove that it shows robust results even in unseen cases. Moreover, we
designed helpful network modules, which are the consistency connection module
and position module, in regards to the characteristics of the data. Our leaning
method shows superior results on the MOOD 2021 dataset with BrainNet and
AbdomNet for anomaly detection in brain CT images and abdominal CT images,
respectively. Our next plan is to build a network to better manage large-sized
images without resizing and make the network more robust to diverse anomalies
such as image corruptions.
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Abstract. Mitigating out-of-distribution inaccuracies due to insufficient
labeled data is a widespread problem in the medical AI field. To tackle
this medical out-of-distribution problem, through the medical out-of-
distribution challenge [1], our team utilized self-supervised learning with
UNETR [2]. UNETR is a 3D UNET model where the encoder incorporates
Vision Transformers [3]. Abnormal samples were generated from normal
samples using a 3D extension to the cutout method described by [4], allow-
ing for self-supervised learning. The input size was chosen to be one eighth
of the original size due to the large computational cost associated with 3D
image segmentation. This results in 3D images that are 128 × 128 × 128
pixels for brain samples and 256×256×256 pixels for abdominal samples.
Abdominal samples were further divided into 8 different patches, with all
8 patches being used for training. The model produces a voxel-wise abnor-
mality prediction ranging between 0 and 1, where 1 represents an abnormal
voxel. We then further extrapolate this prediction to generate a sample-
wise prediction by taking the maximum value.

Keywords: Semi-supervised learning · 3D UNETR · Medical
Out-of-distribution

1 Introduction

Abnormality causes a great threat to the diagnostic system [1,5–7]. However,
acquiring quality and important data from biomedical image is limited especially
with abnormal samples. For example, a low frequency of appearance of rare
disease or corruption of the data makes data acquisition even more difficult. Also,
accurate labeling by professional personnel is costly in terms of time and resource
[1]. Thus, detecting such anomaly is a widespread problem in the medical AI field.

Various approaches have been attempted to define and interpret the out-of-
distribution problem. First, when a feature is extracted from the classifier, a
study was conducted to create a threshold with SVM, binary classifier, prob-
ability threshold [8] to distinguish the in-distribution samples from the out-
of-distribution samples. Alternatively, there is an approach that utilizes the
concepts of temperature scaling and input preprocessing. It can distinguish in-
distribution samples and out-of-distribution samples data based on a threshold
[9,10]. Also, classification based on distance [11] has been achieved.
c© Springer Nature Switzerland AG 2022
M. Aubreville et al. (Eds.): MIDOG 2021/MOOD 2021/L2R 2021, LNCS 13166, pp. 104–110, 2022.
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Semi-supervised anomaly detection has been achieved by setting a discrimi-
native boundary of a normal sample [12,13]. Unsupervised anomaly detection is
a method of encoding an unlabeled sample with an auto-encoder, extracting the
principal component, calculating difference between the input and the output
to determine whether an abnormal sample [14–16]. There is also self-supervised
learning methods to solve out-of-distribution problems. By well-defined pre-task
definitions, we can use the advantages of supervised learning to overcome the
limitations of solving problems with only one normal sample class [17].

To solve the medical out-of-distribution problem, we chose semi-supervised
learning method based on the winning paper of the last year [17]. The idea
of semi-supervised learning, which generated abnormal samples using normal
samples, was extended with the cutout [4]. Also, instead of using 2D image
segmentation [18–20], we decided to use 3D UNETR [2]. Among various 3D
UNET variants [21,22], 3D UNETR has an advantage at learning global context.
In MOOD 2021, we achieved 3rd place and 5th place in pixel-wise task and
sample-wise task respectively. However, as we analyzed the results, trained model
for abdominal could be improved. We increased the size of the cutout and found
out that the result significantly improves.

2 Methods

2.1 Self-supervised Dataset Preparation

The dataset that was provided in the challenge consists of 800 brain MRI scans
with the size of 256 × 256 × 256 and 550 abdominal CT scans with the size of
512 × 512 × 512. Additionally, 4 brain and 4 abdominal samples were given as a
toy examples. Each of these sets consisted of both abnormal and normal samples.
All of the training samples were normal. To acquire abnormal samples, a method
similar to self-supervised learning [17] was used, especially a 3D extension to the
cutout method [4]. In Fig. 1, normal abdominal and brain data samples are
shown in (a) and (d), respectively. For Fig. 1 (b) and (e) show abnormal samples
generated using the cutout method, and (c) and (f) show the corresponding label
used in the training. Total number of cutout was 5 for each sample.

2.2 3D UNETR

3D UNETR [2] was chosen and utilized for the self-supervised learning task.
UNETR follows the “U-shaped” network design. A set of transformer replaces
the encoder with convolutions, and the outputs from the transformer are con-
nected to the decoder with skip connections. A transformer turns the input vol-
ume into sequence representations, which allows the network to learn the global
context effectively. The model structure for 3D UNETR was kept the same from
the original paper [2]. The patch resolution was set to be 16, and the embedding
size was set to be 768.

Since training 3D models with 3D volume requires more memory than train-
ing 2D models with images from a stack, it was necessary to reduce the size of
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(a) abdom sample (b) cutout (c) label

(d) brain sample (e) cutout (f) label

Fig. 1. Example of original samples, abnormal samples and their labels for abdominal
and brain data

the input. We reduced the size of brain samples to 128×128×128. For abdominal
samples, their size were reduced down to 256× 256× 256 instead. Reducing the
abnormal samples down to 128 × 128 × 128 caused too much loss in the infor-
mation. To allow using the abnormal samples as inputs in training, the samples
were divided into 8 pieces as shown in Fig. 2. Each individual patch was fed into
the network, and the final output was produced by combining all of the 8 output
pieces back to the original position. For brain samples, no such patch division
was needed.

Fig. 2. Model prediction pipeline

Figure 2 shows the model prediction pipeline for both pixel-wise and sample-
wise prediction. The first output of the model represents the pixel-wise predic-
tion. Then, the sample-wise prediction is acquired by calculating the maximum
value of the pixel-wise prediction, which is from 0 to 1. The training is achieved
minimizing the binary cross entropy loss between the pixel-wise prediction and
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the actual label. To train the model, ADAM optimizer was used with a learning
rate of 0.001 and a weight decay of 0.0005. At least 5000 iterations were allowed
for training both brain and abdominal samples. 6 GPUs (NVIDIA Quadro RTX
5000) were used.

3 Results and Discussion

Using the toy testing examples that were provided, results listed in Table 1 were
achieved. The model provided more accurate result on pixel-wise results except
for the abdominal samples. The pixel-wise abdominal results were significantly
lower than expected. From Fig. 4 (b), it can be seen that the model was confused
on the edges of the divided patches of abdominal. Also, some parts of the bone
were misclassified as anomaly. We speculated the size of the cutout compared
to the large size of the abdominal samples. Since the same size of the cutout
augmentation was applied on the abdominal samples as that of the brain sam-
ples, small sized cutout may have prevented the network from learning enough
features for anomaly detection, causing low accuracy on pixel-wise prediction for
abdominal samples.

Table 1. UNETR accuracies on MOOD2021 sample testing data.

Sample-wise prediction Pixel-wise prediction

Brain 0.75 0.78

Abdominal 0.75 0.16

Abdominal improved after challenge 0.75 0.84

To verify our hypothesis, the size of the cutout in the abdominal samples
was doubled as shown in Fig. 3. Our preliminary experimental results show that
doubling the size of the cutout significantly increases the accuracy from 0.16%
to 0.84% on toy examples. Figure 4 demonstrates examples of the visualized
prediction results of abnormal samples for a brain model, an abdominal model,
and an improved abdominal model. As it can be seen from (b) and (c), the
improved model not only has learned better for anomaly but also better identifies
the edges of the blocks than the original abdominal model does.

In the MOOD2021 challenge, the variation of out-of-distribution samples
was not revealed ahead of time. While, our method only used cutout to gener-
ate corrupt examples, some other simple augmentations that could have been
implemented, and were later revealed to be part of the hidden testing set, include
local shuffling and varying the transition rate between normal and anomalous
portions of the image by blending them together.

Based on the research conducted during this competition, we believe that
the volumetric segmentation approach is promising for the medical out-of-
distribution task. We believe that future exploration of the frequency, inten-
sity and variety of image corruptions will lead to better, more robust out-of-
distribution results. To start, implementing local shuffling and blending between



108 S. Park et al.

(a) abdom new origin (b) cutout (c) label

Fig. 3. Increased size of cutouts applied on abdominal dataset generation for improved
abdominal model

(a) Visualized results for brain samples

(b) Visualized results for abdominal samples

(c) Visualized results for abdominal samples

Fig. 4. Visualization of results
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normal and anomalous portions of the image is a good start, however exploring
avenues such as the addition of local noise, mixing and matching portions of
different brain scans could also be explored. A more in depth approach could be
creating a 3D mesh model given the different data scans and applying shape dis-
tortions to more accurately model different medical conditions such as swelling
in the brain could also lead to fruitful results.

4 Conclusion

To tackle medical out-of-distribution problem, we utilized self-supervised learn-
ing with 3D UNETR. We demonstrated that 3D UNETR is effective at learning
global context to predict pixel-wise anomaly. Initially from the result, we identi-
fied that too small cutout size may hinder the training, and increasing the cutout
size significantly increased the model performance on toy examples. Although,
we only used the cutout for anomaly generation, other methods of augmenta-
tion such as local shuffling or foreign patch interpolation [17] may be applied to
achieve better results.
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Abstract. We present an extension of the self-supervised outlier detec-
tion (SSD) framework [12] to the three-dimensional case. We first
apply contrastive learning on a network using a general dataset of two-
dimensional slices randomly sampled from all the available training data.
This network serves as a latent embedding encoder of the input images.
We model the in-distribution latent density as a multivariate Gaussian,
fitted to the embeddings of the training slices. At test time, each test
sample is scored by summing the Mahalanobis distances from all its
slices to the means of the learned Gaussians. While mainly meant as a
sample-level method, this approach additionally enables coarse localiza-
tion, scoring each voxel by the minimum Mahalanobis distance among
the slices that contain it. On the sample-level task of the 2021 MIC-
CAI Medical Out-of-Distribution Analysis Challenge [20], our method
ranked second on the challenging abdominal dataset, and fourth overall.
Moreover, we show that with pretrained features and the right choice of
architecture, a further boost in performance can be gained.

Keywords: out-of-distribution detection · Mahalanobis distance ·
contrastive learning

1 Introduction

Deep learning models have reached, and at times even surpassed, expert-level
performance on a number of medical tasks in controlled academic environ-
ments [7,17]. However, translating these results to the real world still faces a
number of critical hurdles. One of these is the detection and handling, at infer-
ence time, of samples drawn from outside the training data distribution. When
presented with these out-of-distribution (OOD) samples, deep learning models
exhibit undefined behaviour, and crucially, are unable to detect these cases by
themselves. Hence, in order to be able to trust a deployed model, we should
have a manner to detect and discard samples that it cannot reliably process.
This is accomplished through the addition of an OOD detector, which ensures
only samples drawn from the training distribution pass through for evaluation
to the underlying model.
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While some OOD detectors assume the availability of a large set of annotated
training examples, these will not always be available. Consequently, they should
be able to function in an unsupervised manner, learning the training distribu-
tion without labels and preventing any input that deviates too far from it from
passing through.

For two-dimensional images, a wide variety of these unsupervised OOD detec-
tors is available in the literature. They are typically based on frameworks such
as generative models [3,11,13], autoencoders [6,19] or other types of represen-
tation learning [1,4,5], with most recently a trend towards contrastive learning
[10,12,14,15,18].

The 3-dimensional case, on the other hand, has received far less attention.
Current state-of-the-art methods in the medical domain operate along one plane,
and aggregate the scores over slices to obtain a final volume-level result [9,16].
By committing to one plane, however, they might be biased towards a certain
orientation of anomaly.

Our proposed method, an extension of the self-supervised outlier detection
(SSD) [12] framework for volumetric data, overcomes this issue by combining
results from all three anatomical planes. We submitted our approach to the
sample-level task of the MICCAI Medical Out-of-Distribution Analysis Chal-
lenge (MOOD) [20], where it placed second on the challenging abdominal task,
and fourth overall. Nevertheless, the MICCAI challenge did not allow methods
to use pre-trained features from general computer vision datasets, such as Ima-
geNet. By removing this constraint, we demonstrate that much better results
can be obtained without any neural network training or fine-tuning of hyperpa-
rameters.

2 Approach

Our method relies on a neural network to extract latent embeddings, which are
subsequently used to model the latent data distribution. A typical strategy is
to choose a network pre-trained on ImageNet as this latent embedding encoder.
However, given that the MOOD challenge did not allow the use of networks
pre-trained on external datasets, our submitted approach makes use of self-
supervised contrastive learning using exclusively the MOOD challenge datasets.

2.1 Datasets

The MOOD challenge provided two datasets: Brain, 800 MRI scans of size
256 × 256 × 256 manually verified to hold no anomalies; and Abdominal, 550
anomaly-free CT scans of size 512 × 512 × 512. Each dataset includes four toy
test cases, which we use for validation.

2.2 Contrastive Learning

To perform contrastive learning, we first generated a temporary dataset by com-
bining all the available training images from the challenge. In particular, we
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Fig. 1. Sample images from our 2D dataset used for contrastive learning.

randomly sampled slices from the coronal, sagittal and axial planes from both
datasets where at least 1% of the pixels were non-zero. This resulted in a total of
81563 images (Fig. 1), that were used exclusively to solve the contrastive learning
problem.

Our self-supervised learning approach of choice was the Simple framework for
Contrastive Learning of visual Representations (SimCLR) [2]. SimCLR applies
two stochastic augmentations to an image and projects these to a latent space.
It then optimizes the network by minimizing the latent distance between the two
versions of the same image while maximizing the distances to the other samples
in the batch. This is done by minimizing the contrastive loss for minibatches of
size N ,

�i,j = − log
exp(sim(zi,zj)/τ)

∑2N
k=1 1[k �=i] exp(sim(zi,zk)/τ)

, (1)

for augmentations i and j, where z represents the latent vector, τ the temper-
ature, and sim(x, y) the cosine similarity. We used the resulting network as our
latent embedding encoder in all our experiments.

2.3 Training

Training consists of fitting multivariate Gaussians (MVG) to the distribution of
the latent embeddings of the training data {xi}Ni=1. This is done independently
for each anatomical plane —coronal, sagittal, axial— and slice. In particular,
let {xi,s,p}Ni=1 be the set of two-dimensional slices of the training data at slice
location s for a given anatomical plane p ∈ P = {coronal, sagittal, axial}. We
extract the latent embeddings by average pooling the feature maps at the penul-
timate layer of our network, which gives a collection of descriptors {f(xi,s,p)}Ni=1.
We fit a MVG to this set of descriptors by computing the mean as

μp,s =
1
N

N∑

i=1

f(xi,p,s), (2)
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and the covariance matrix as

Σp,s =
1
N

N∑

i=1

(f(xi,p,s) − μp,s)(f(xi,p,s) − μp,s)ᵀ. (3)

The covariance matrix is shrinkaged by adding a small multiple of the identity
matrix in order to prevent it from becoming singular.

2.4 Scoring Slices

At inference time, the score at slice s for plane p is given by the Mahalanobis dis-
tance [8] between its latent embedding and the mean of the corresponding MVG,

Mp,s(x) = dΣp,s
(fp,s(x),μp,s) =

√

(fp,s(x) − μp,s)ᵀΣ−1
p,s(fp,s(x) − μp,s). (4)

We found that slices at the edges of the brain were scoring disproportionally
high (Fig. 2). To combat this, we ignore the anomaly scores of slices where more
than 95% of pixels are zero.

2.5 Combining Dimensions

The final sample level score is given by the sum over all slices from the three
planes,

S(x) =
∑

p∈P

d∑

s=1

Mp,s(x). (5)

With our approach, a coarse localization is possible. For a voxel with coor-
dinates (i, j, z), the score is given by

Si,j,z(x) = min(Mcoronal,i(x),Msagittal,j(x),Maxial,z(x)). (6)

We found that smoothing the Mahalanobis distances along slices increases the
localization performance. While this approach is only able to segment boxes,
pointing the user towards the location of the anomaly should often suffice in
practice.

3 Experiments

When evaluated on the MOOD toy data, which only contains four volumes per
modality, our method reaches perfect accuracy at the sample level. Hence, in
order to be able to differentiate between the performance of our models, we
added a third evaluation alongside the pixel-level task, where we compute the
slice-wise performance. A slice is considered OOD when it contains at least one
OOD-labelled pixel.

For these three evaluations we show an ablation study in Tables 1 and 2.
Using the self-supervised training over random weights results in the largest
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Fig. 2. Mahalanobis distance per slice along the sagittal plane for toy brain sample #4
from the MOOD challenge. (a) shows the two spurious peaks at the edges of the brain,
(b) shows our correction. (c) shows the most outlying slice before the correction, (d)
after.

gain in performance. The correction for slices where less than 5% of pixels are
non-zero and the smoothing of the slice-wise responses further improve results.

Interestingly, our method is unable to perform well on the abdominal data
when evaluated slice-wise, despite a perfect sample-level score on the toy data,
and a second place in the MOOD challenge. We find this to be a result of OOD
regions not being scored higher than some natural variations, see Fig. 3. The
fact that our method reached the second place in the MOOD challenge on this
dataset suggests that all current methods struggle with complex cases like these.

If we relax the constraint of not using external datasets to train the latent
embedding network, we can boost the performance even further. Tables 1 and 2
also show results when using networks pre-trained on ImageNet instead of con-
trastive learning of the challenge datasets. With a ResNet-152 architecture, our
approach is able to improve upon these features on the brain dataset, while being
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worse on the abdominal case. However, with an EfficientNet-b0 architecture,
performance is consistently better in both cases. Additionally, the smaller latent
space makes the method faster, and the contrastive learning step is bypassed
completely. This finding suggests the field of OOD might be misguided in its
over-reliance on using ResNet as a baseline model, upon which all comparisons
are built [1,5,10,12,14,15,18].

Table 1. Ablation study on the toy brain data. RN stands for ResNet, EN for Effi-
cientNet. Best result given in bold, second best underlined.

Sample Slice Pixel

Features Correction Smoothing AUC AP AUC AP AUC AP

Random weights Random ✗ ✗ 100 100 74 36 84 8

+ contrastive learning Contrastive ✗ ✗ 100 100 84 64 88 27

+ edge correction Contrastive ✓ ✗ 100 100 84 72 90 34

+ smoothing Contrastive ✗ ✓ 100 100 84 68 88 31

SS3D Contrastive ✓ ✓ 100 100 88 80 90 38

Pretrained RN-152 Pretrained ✓ ✓ 100 100 86 77 94 29

Pretrained EN-b0 Pretrained ✓ ✓ 100 100 92 87 93 63

Table 2. Ablation study on the toy abdominal data. RN stands for ResNet, EN for
EfficientNet. Best result given in bold, second best underlined.

Sample Slice Pixel

Features Correction Smoothing AUC AP AUC AP AUC AP

Random weights Random ✗ ✗ 100 100 48 16 63 1

+ contrastive learning Contrastive ✗ ✗ 100 100 49 16 66 1

+ edge correction Contrastive ✓ ✗ 100 100 50 20 68 1

+ smoothing Contrastive ✗ ✓ 100 100 52 17 66 1

SS3D Contrastive ✓ ✓ 100 100 53 19 69 1

Pretrained RN-152 Pretrained ✓ ✓ 100 100 80 56 91 13

Pretrained EN-b0 Pretrained ✓ ✓ 100 100 86 70 94 21

In Fig. 4 we show how the localization is correctly able to detect an abnormal
region in a volume from the MOOD brain test set. While not segmenting the
spherical lesion fully, the end-user would be successfully pointed towards the
anomalous region. Additionally, inference with our method is very fast, with
all 667 brain test samples predicted in only 124 s on the MOOD submission
platform, and can thus be used in real-time.
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Fig. 3. (a) shows the predictions along slices for a normal sample, (b) the predictions
with an anomalous region centered around slice 95.

Fig. 4. Image, ground truth and localization by our model for a volume from the
MOOD test set.

4 Conclusion

We presented an extension of the SSD framework [12] for use with medical vol-
umes. Besides sample-level OOD detection, coarse localization is made possible
through the combination of results along all three planes. For any real-world appli-
cation, unconstrained by challenge restrictions, we recommend using a pretrained
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EfficientNet with our method, circumventing self-supervised learning entirely. A
clear path for future work is to move towards fully three-dimensional methods.
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Abstract. Using self-supervision in anomaly detection can increase sen-
sitivity to subtle irregularities. However, increasing sensitivity to certain
classes of outliers could result in decreased sensitivity to other types. While
a single model may have limited coverage, an adaptive method could help
detect a broader range of outliers. Our proposed method explores whether
meta learning can increase the adaptability of self-supervised methods.
Meta learning is often employed in few-shot settings with labelled exam-
ples. To use it for anomaly detection, where labelled support data is usu-
ally not available, we instead construct a self-supervised task using the test
input itself and reference samples from the normal training data. Specif-
ically, patches from the test image are introduced into normal reference
images. This forms the basis of the few-shot task. During training, the same
few-shot process is used, but the test/query image is substituted with a
normal training image that contains a synthetic irregularity. Meta learning
is then used to learn how to learn from the few-shot task by computing sec-
ond order gradients. Given the importance of screening applications, e.g.
in healthcare or security, any adaptability in the method must be coun-
terbalanced with robustness. As such, we add strong regularization by i)
restricting meta learning to only layers near the bottleneck of our encoder-
decoder architecture and ii) computing the loss at multiple points during
the few-shot process.

Keywords: Outlier detection · Self-supervised learning ·
Meta-learning

1 Introduction

The main goal in outlier detection is to detect unanticipated irregularities. Many
important problems can be framed in this way, including content moderation,
security, and disease screening. All of these tasks can be very taxing on workers
and phenomena such as inattentional blindness can make it particularly difficult
to detect unexpected stimuli [6]. Machine learning methods have the potential
to assist in many of these tasks. While most methods require labelled data to
achieve expert-level performance, e.g. supervised methods for detecting breast
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cancer [22] or retinal disease [4], self-supervised methods have recently begun to
close the gap [3,10,11,16].

Similar self-supervised approaches also exist in outlier detection [8,19]. How-
ever, applications such as medical imaging can require very specific and subtle
features that are difficult to learn in an unsupervised manner. Many diseases
can only be detected by those with domain expertise; but being a specialist does
not always improve detection. The “cost of expertise” is a bias toward famil-
iar patterns, and can cause rigidity in perception of new stimuli. For example,
one study found that physicians have a tendency to make diagnoses related to
their speciality, even when examining cases outside of their domain [9]. This is
especially problematic in open-ended problems such as outlier detection because
there are no restrictions on what pathologies may appear.

As such, anomalous features can be subtle and disease specific, but can also
vary immensely across pathologies. Recent methods have increased sensitivity
to subtle outliers through self-supervision [20,21]. Our aim in this work is to
explore whether meta learning can improve the adaptability of these methods.
We construct a self-supervised few-shot task to be used during both training
and testing. During training, we use second order gradients [7] to optimize for
initial parameters that are adaptable to different tasks. In testing, the few-shot
task gives the model a chance to adapt to features in the test data, potentially
priming the model for better detection.

2 Related Work

Many methods have been developed to tackle outlier detection from different
perspectives. Reconstruction-based methods use auto-encoders [2] or generative
models [18] to reproduce or restore [15] the normal components of the image.
Errors in the reconstruction are used to highlight abnormalities. This is most
effective for abnormalities that exhibit large intensity differences. Self-supervised
methods are trained on proxy tasks that can either exploit (i) whole image aug-
mentations that help the network to learn holistic features and major landmarks
in the normal data [8,19] or (ii) patch-based augmentations that increase sensi-
tivity to sub-image anomalies [14,20,21]. The design of the self-supervised task
can influence which types of features are learned and consequently which types
of anomalies are detected. This can help increase sensitivity to specific types of
irregularities, but it can also limit detection of other types of anomalies.

Meta learning can be applied to few-shot problems to allow models to adapt
quickly to new tasks. One of the most ubiquitous strategies in this area is model-
agnostic meta-learning (MAML) [7]. While first order gradients point toward
parameters that give better outputs, second order gradients point toward param-
eters that give better few-shot gradients. By backpropagating through the few-
shot optimization steps, MAML aims to learn an initialization point that benefits
the most from the few-shot gradients. This strategy is typically used in settings
with labelled examples, but there are also extensions in unsupervised settings
that use clustering [12]. There are even few-shot methods in outlier detection;
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however, these exploit a small amount of real anomalous data [5], or use multi-
class data organized into normal and anomalous categories [13]. The goal of
this work is to explore meta learning in a setting where the few-shot task is
self-supervised.

3 Method

Our proposed method, MetaDetector, is a meta learning approach for self-
supervised outlier detection. In this section we briefly describe the self-supervised
tasks, the meta learning process, and the regularization involved in training.

The two self-supervised tasks used in this method are foreign patch inter-
polation (FPI) [20] and Poisson image interpolation (PII) [21]. In both tasks, a
random patch is taken from one image and introduced into another image. This
is done through linear interpolation in the case of FPI and by Poisson image
editing [17] in the case of PII. In both cases, the corresponding label is a mask
of the altered patch that is scaled by the blending factor. Figure 1 depicts an
example of FPI, where a patch in image xi has been altered to produce x̃i. Using
x̃i as an input, the output of the network, As(x̃i), is compared with the label ỹi

using a binary cross-entropy loss.

Fig. 1. Network architecture with example inputs, labels, and outputs. Quantities
above each residual block indicate the number of feature channels.

The meta learning component of our method is based on MAML [7] and it
involves an inner and outer optimization loop. The inner loop is the few-shot
optimization process. It involves a query image xq, which may or may not be
anomalous, and a reference image xr which is a normal image from the training
data. Random patches from the query image are introduced into the reference
image using FPI, producing x̃r. This creates an input and label, as shown in
Fig. 1, which can be used to take one optimization step in the inner loop. This
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can be repeated k times depending on how many steps are desired in the few-shot
process. In each step, the query image remains the same, but a new reference
image and a new random patch are selected. In all of our experiments we use
k = 2. This few-shot process is applied during testing and training. In testing,
the query image is an unknown sample, xq, but during training the query image
is a normal sample (from the training data) that has been altered with FPI or
PII, i.e. x̃q.

Fig. 2. Meta learning process with self-supervised few-shot task. Random patches,
highlighted in blue and yellow, are taken from each query image xq and introduced into
reference images, xr, forming x̃r. Each φ is the result of few-shot optimization using
these synthetically altered samples, x̃r. Second order gradients from each few-shot task
are aggregated to improve the initialization parameters, θ. (Color figure online)

The loss for both self-supervised tasks is a pixel-wise regression using binary
cross-entropy, as defined by Eq. 1. In this equation, fθ is used to represent the
model parameterized by θ. The parameter updates in the inner loop are thus
characterized by Eq. 2. This is a standard gradient update. Meanwhile Eq. 3
specifies the parameter updates for the outer loop. Note that the loss is evaluated
using the updated parameters from the inner loop, φ, and the query sample, x̃q.
However, the gradient is taken with respect to the initial parameters, θ, which
means that gradient must flow through the gradient steps of the inner loop.

Lbce(x̃r, ỹr, fθ) = −ỹrlogfθ(x̃r) − (1 − ỹr)log(1 − fθ(x̃r)) (1)
φi = θ − α∇θLbce(x̃r, ỹr, fθ) (2)
θi = θ − β∇θLbce(x̃q, ỹq, fφ) (3)
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Note that Eqs. 2 and 3 are simplified for legibility. In reality, φi is the result
of several gradient steps, and θi is updated using an aggregate of multiple inner
loops. This is depicted in Fig. 2. In our experiments, the step sizes α and β are
set to 1 × 10−2 and 1 × 10−3, respectively.

The last component of our method is the regularization. Since the model is
being trained for fast adaptation, the predictions from the model could change
drastically after only a few gradient steps. This is useful for adaptability, but
it could also negatively impact robustness. We add strong regularization to the
optimization process in two ways. First, we restrict meta learning to parameters
in the bottleneck residual block (orange in Fig. 1). The rest of the parameters
are learned using standard self-supervised training (as in FPI [20] and PII [21])
using only the query samples, x̃q. This limits the number of parameters that can
change during few-shot adaptation and drastically reduces computational costs.

Our second form of regularization is a multi-step loss based on a strategy pro-
posed in MAML++ [1]. The original MAML method computes outer loop gra-
dients according to Eq. 3, specifically using fφ, the parameters that are reached
after taking the final few-shot step. With a multi-step approach, we compute
the loss after every few-shot step [1]. The total loss is a weighted sum, where
coefficients increase linearly with step number.

To run MetaDetector in evaluation mode, only the few-shot process is per-
formed. Patches from the test image, xq, are introduced into normal reference
images, xr, which creates self-supervised samples x̃r. The model is trained on
these samples to reach the adapted parameters, φ. The updated model is then
used to run inference on the original test image, xq. The output from this infer-
ence is used directly as an anomaly score map, As(xq).

4 Evaluation and Results

We train MetaDetector on normal brain MRI and abdominal CT data from the
medical out-of-distribution (MOOD) analysis challenge [23]. Since this dataset
only includes normal samples, we evaluate on a synthetic test dataset that
includes spheres with uniform intensity shifts, noise additions, sink/source defor-
mations, uniform translations, and reflections across axes of symmetry. The
details and the code to reproduce these test cases are provided in Tan et al. [20].

Table 1. Average precision for brain and abdominal synthetic test data [20] (originally
from the MOOD challenge [23]).

Anatomy Method Subject-level AP Pixel-level AP

Brain FPI [20] 0.9723 0.7319

MetaDetector 0.9989 0.8551

Abdomen FPI [20] 0.8854 0.6229

MetaDetector 0.9694 0.1657
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Preliminary results are given in Table 1 and Fig. 3. Overall, MetaDetector
outperforms FPI [20] on synthetic test data. The low abdominal pixel-level score
is likely due to a bias in the synthetic test data toward visibility in the coro-
nal view. While FPI [20] was trained using 2D coronal slices [20], MetaDetector
uses transverse slices at half the resolution (256 × 256) in order to meet com-
putational restrictions. Qualitative examples in Fig. 3 (provided by the MOOD
organizers [23]) indicate that MetaDetector can localize different types of subtle
abnormalities. However, false positives appear to be quite common. This could
be either due to (i) synthetic training samples that are too subtle or (ii) the
few-shot process priming the model to recognize healthy tissue from the query
image as abnormal.

Fig. 3. Qualitative samples from the MOOD challenge [23]. Input, ground truth, and
prediction (from left to right).

5 Discussion and Conclusion

We explore the use of meta learning in self-supervised outlier detection. Meta
learning techniques such as MAML [7] can help models to quickly adapt to
new data. We present an approach that uses self-supervision for the few-shot
task, which allows training with only normal data. Early results indicate that
the proposed method can outperform other self-supervised methods, such as
FPI [20], on synthetic test data. This basic framework also has the potential to
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make outlier detection more adaptive, to better handle new stimuli. In future
work, we aim to design more varied self-supervised tasks to encourage the model
to rely more on information gained in the few-shot learning process.
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Abstract. In medical imaging, un-, semi-, or self-supervised pathol-
ogy detection is often approached with anomaly- or out-of-distribution
detection methods, whose inductive biases are not intentionally directed
towards detecting pathologies, and are therefore sub-optimal for this
task. To tackle this problem, we propose AutoSeg, an engine that can
generate diverse artificial anomalies that resemble the properties of real-
world pathologies. Our method can accurately segment unseen artificial
anomalies and outperforms existing methods for pathology detection on a
challenging real-world dataset of Chest X-ray images. We experimentally
evaluate our method on the Medical Out-of-Distribution Analysis Chal-
lenge 2021 (Code available under: https://github.com/FeliMe/autoseg).

Keywords: Self-Supervised Anomaly Segmentation · Anomaly
Detection · Inductive Bias

1 Introduction

Anomalies are samples that deviate from a predefined norm. In medical images,
these can manifest in various ways. Inaccuracies in image acquisition – like
motion artifacts in MRI – can be considered as anomalies, as well as patholo-
gies like tumors, natural intra-patient variations, or images from other modal-
ities, such as natural images. In most applications however, we are interested
in detecting pathologies. Therefore, the problem is ill-defined, and detection
methods that follow this broad definition are likely to struggle with this diffi-
cult task. Moreover, all anomaly detection models have some form of inductive
bias, making certain types of anomalies harder to detect than others. Espe-
cially reconstruction-based anomaly detection methods have a strong inductive
bias because of the scoring function that is based on relative intensity differ-
ences between the original image and the reconstruction. However, the inductive
biases of many methods are not steered towards that problem. Recent works
have shown that machine learning models can successfully be trained on syn-
thetic data [12,16]. Apart from performance improvements, this allows for more
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control over the models’ detection characteristics. We therefore, present a new
approach that creates a useful inductive bias to better detect pathologies in
medical images.

Our contributions are the following:

– We propose AutoSeg, a novel strategy for generating artificial anomalies that
represent characteristics of real-world anomalies better than existing meth-
ods.

– We evaluate our approach on multiple modalities including a challenging and
unsolved real-world dataset.

– We achieve state of the art detection performance on artificial and real-world
anomalies.

2 Related Work

We sort related work in medical anomaly detection into three categories:
Reconstruction-based methods train a generative model – such as an Autoen-

coder (AE) or a Generative Adversarial Network (GAN) – on images from
healthy subjects only. This way, the model learns the underlying distribution
and will fail to reconstruct regions in images that are anomalous, and were thus
not observed during training. Prominent representatives of these methods are
[1,10]. In [1], the authors use a convolutional Autoencoder as their generative
model. In [10], Schlegl et al. train a GAN to represent the “healthy” distribution
and during test-time use restoration to find an image that is both close to the
input image and the learned manifold. Recently, Baur et al. [2] compared all
reconstruction-based methods in a large study. We refer the reader to their work
for a more thorough overview thereof. This family of methods, however, has a
very strong inductive bias, and it was recently shown by Meissen et al. [5] that
for brain MRI, it can be outperformed via simple thresholding.

The second category contains methods that attempt to directly evaluate the
likelihood of a sample being from the “healthy” distribution. They also use
generative models trained on images from healthy patients only to compute the
likelihood. Pinaya et al. [9] train an ensemble of autoregressive transformers on
the latent space of a pretrained fully-convolutional Vector Quantised-Variational
Autoencoder (VQ-VAE) to estimate the likelihood of every spatial feature in this
latent space. Zimmerer et al. [17] use the gradient of the evidence lower bound
(ELBO) of a trained Variational Autoencoder (VAE) to detect anomalies in
brain MRI. The ELBO is a lower bound on the actual log-likelihood of a sample
x: ELBO(x) ≤ log p(x).

Recently, training on synthetic data became a popular approach for machine
learning in regimes where annotated data is hard to acquire. It has been suc-
cessfully applied to optical flow estimation [12] and face-related computer vision
[16]. In medical imaging, Tan et al. [13] trained a self-supervised segmentation
model to detect artificial anomalies on brain MRI and abdomen CT. The anoma-
lies are created by selecting two images from different patients and interpolating
between them at randomly sampled rectangular patches with random interpo-
lation factors.
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3 Method

Fig. 1. Overview of our method. An anomaly mask is generated via AutoSeg. The
anomalous texture is taken from a different image like in [13]. A UNet predicts the
anomaly mask and strength of interpolation.

Baseline. We build our method upon the work of Tan et al. [13]. To create arti-
ficial anomalies, we choose two images at random, sample a rectangular mask
at a random location inside the two, uniformly sample an interpolation factor
in the interval [0.05, 0.95], and interpolate the images at the sampled mask with
the interpolation factor. A segmentation model is then trained to segment the
anomalous region, as well as to predict the interpolation factor. Unlike the orig-
inal work, we use a UNet [3] as our segmentation model.

AutoSeg. To increase the realism of the artificial anomalies, we propose
AutoSeg, an engine to generate anomalies with diverse characteristics. AutoSeg
is able to generate a specified number of anomalies in the shape of random poly-
gons with a controllable number of vertices. This way, single large anomalies can
be created – as it is common for tumors – or multiple smaller ones like in multi-
ple sclerosis (MS) lesions. The artificial anomaly generation process consists of
two parts: Creating the anomaly mask, and choosing the anomalous texture. We
use our proposed AutoSeg for the former and adhere to the patch interpolation
strategy of the baseline for the latter. Figure 1 shows an overview of our method.

Volumetric Data. Medical data is often three-dimensional. Despite that, most
existing methods for anomaly detection are processing single slices indepen-
dently, discarding all spatial information along one axis [1,2,9,10,13,17]. Using
3D convolutions is a potential solution to this problem but comes with signif-
icant computational costs. This forces the user to either downsample the data
or to use a patch-based approach. Both alternatives limit the spatial resolution
along all three axes. Our solution mimics how radiologists look at volumetric
data and is similar to work of Perslev et al. [7]. Instead of providing only one
viewing direction, we train our models with samples from all three viewing direc-
tions (axial, coronal, and sagittal) equally as in. During test-time, we perform
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inference on all three viewing directions and fuse the results by taking the aver-
age across all three predictions. This allows us to use the same architecture for
2D and 3D data and requires only minimal changes to the training scheme. We
also feed k = 3 adjacent slices at once to the segmentation network as channel
dimensions to further increase the spatial information.

4 Evaluation

Datasets. We evaluate our method on multiple publicly available data sets.
First, we apply our method to the Medical Out-of-Distribution Analysis Chal-
lenge 2021 (MOOD) [8]. The data contains 800 brain T2 MRI scans of healthy
young adults from the Human Connectome Project [14] with 256 × 256 × 256
pixels per scan, and 550 abdominal CT scans of patients over 50 years of age [11]
with 512×512×512 pixels per scan. We split the two data sets into 60% training
and 40% test data. From the training set, we use 5% to evaluate performance
during training. Since no test data is publicly available for the MOOD challenge,
we create our own artificial anomalies for evaluation on 75% of the held-out test
set. For every anomalous sample A, we chose a sphere h in the scan at random
and add one of eight anomaly types to the pixels in the sphere. We use the six
anomaly types of Tan et al. [13] and add two more, called local blur and slice
shuffle. For the local blur, we create a blurred version A′ of the input scan via
Gaussian filtering and replace the original sample A with A′ at the anomalous
region h. For the slice shuffle, we choose a random axis and replace each slice
along this axis in the patch with another slice inside that patch.

To test the suitability of our method for clinical applications, evaluation on
a non-trivial real-world dataset is necessary. Therefore, we further evaluate our
method on the publicly available ChestX-ray14 dataset [15], containing 112, 120
frontal-view X-ray images of 30, 805 patients with 14 disease labels. The dataset
also includes the disease bounding boxes for 984 images. We only consider 43, 322
images of patients over 18 and with posteroanterior view from which we use 75%
for training and the rest for evaluation. While the original image resolution is
1024×2014, we bilinearly downsample all images to 256×256 – maintaining the
aspect ratio – to be in line with the brain MR images. Because of the obvious
domain shift, we processed the male and female patients separately. This dataset
is challenging for pathology detection, because of the large intra-patient and
intra-image variance in the patients’ position, their anatomy, and the presence
of external objects such as pacemakers.

Experimental Setup. We implement our method in the PyTorch [6] frame-
work. For the UNet, we choose the implementation of Buda et al. [3]. We train our
method for 5 epochs using the AdamW optimizer [4] with the default param-
eters for the UNet, a batch size of 8, and a learning rate of 0.0001. For the
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ChestX-ray14 dataset, we choose a larger batch size of 64, a smaller model
with width = 16, and train for 10 epochs. We compare our method against a
reconstruction-based VAE and report the average precision for every experiment.
For reference, we also include the performance a randomly guessing model would
achieve. AutoSeg is tuned to generate single anomalies with 10 vertices, cubic
spline interpolation between the vertices, and sizes uniformly sampled between
10% and 50%, 20% and 60%, and 5% and 70% of the image size for brain MRI,
abdominal CT, and Chest X-ray respectively. We deliberately performed only
minimal hyperparameter tuning – varying only the model width and learning
rate – to emphasize the contribution of our method over optimization strategy
improvements.

5 Results

Table 1. Average precision of our and comparing methods on unseen artificial anoma-
lies of the held-out test set.

Method Brain MRI Abdomen CT

Sample Pixel Sample Pixel

Random 0.750 0.003 0.750 0.004

VAE 0.740 0.016 0.749 0.011

UNet (Baseline) 0.956 0.427 - -

+AutoSeg 0.999 0.954 - -

+2.5D Training 1.000 0.974 0.988 0.953

Here we show the results of the evaluation described in Sect. 4. In Table 1 the
segmentation and detection performance of our models on the artificial anoma-
lies from the held-out test set is presented. Using our proposed AutoSeg yields
the strongest performance improvement, leading to almost perfect segmenta-
tion. The worst performance in this experiment is achieved by the VAE, not
substantially exceeding random guessing.

In Table 2, we present a detailed evaluation of the different artificial anomaly
types. While performance on the UNet baseline is greatly different between dif-
ferent anomaly types, the models trained with AutoSeg show comparable aver-
age precision scores among all types. Slice shuffle anomaly benefits the most
from using 2.5D information during training. This is expected behavior, as it is
the only anisotropic anomaly and is easier to detect from some viewing direc-
tions than from others. Although all other anomalies are isotropic, 2.5D training
also helps in these cases. Additionally, we evaluate our final model trained with
AutoSeg and 2.5D information on the MOOD 2021 challenge [8]. Here, the model
achieves 6th place in the sample-level, and 4th in the pixel-level evaluation.
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Table 2. Average precision for pixel-wise evaluation on MOOD brain MRI.

VAE UNet(Baseline) +AutoSeg +2.5D Training

Local Blur 0.012 0.915 0.997 0.999

Slice Shuffle 0.008 0.134 0.930 0.990

Noise Addition 0.015 0.124 0.908 0.936

Reflection 0.018 0.451 0.986 0.989

Sink Deformation 0.017 0.045 0.922 0.958

Source Deformation 0.016 0.550 0.944 0.968

Uniform Addition 0.022 0.699 0.987 0.986

Uniform Shift 0.021 0.603 0.961 0.967

Total 0.016 0.427 0.954 0.974

Table 3 only shows sample-wise results, as there are no anomaly segmenta-
tions included in the ChestX-ray14 dataset. Here, the performance of our model
trained with AutoSeg is substantially lower compared to the artificial anomalies
but still outperforms all competing methods.

Table 3. Sample-wise average precision of our and comparing methods on posteroan-
terior images of patients over 18 from the ChestX-ray14 dataset, split by gender.

Male Female

Random 0.561 0.579

VAE 0.607 0.624

UNet(Baseline) 0.539 0.576

+AutoSeg 0.643 0.647

Fig. 2. Selected examples of patients with cardiomegaly overlaid with the predicted
anomaly map and the ground truth bounding box.

Figure 3 displays the predicted anomaly maps and the ground truth seg-
mentation maps of two random samples showing a “uniform shift” and a “noise
addition” anomaly. The predictions are almost perfect, showing only some minor
inaccuracies at the borders. Another slight error is visible in the random shift
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Fig. 3. Predictions of our final model with AutoSeg and 2.5D training for artificial
anomalies on the held-out test set of MOOD brain MRI. Left: uniform shift, right:
noise addition.

prediction. Here, the shift created a dent in the outer brain surface. The model
predicts the anomaly only on the brain matter, missing the dent.

Figure 2 shows the localization quality of our model for real-world anomalies
on the example of cardiomegaly. Although being by far not as accurate as for
artificial anomalies, the model is able to identify the heart as the source of the
anomaly.

6 Discussion

Our proposed method steers the inductive bias of a model towards detecting
pathologies – instead of general statistical anomalies – by generating artificial
anomalies that better represent anomalies in the real world. We have shown that
our method produces impressive results on unseen artificial anomalies, outper-
forming existing methods by a large margin. However, real-world pathologies
have potentially very different properties. This can be seen in the ChestX-ray14
dataset, where – despite our model outperforming all competing methods – the
results are far from being usable, even in such a benchmark task. When faced
with well-known practical problems like distribution shift, the performance might
easily degenerate completely. Likewise, the results in the MOOD challenge don’t
reflect the performance our model achieves on our artificial anomalies, indicat-
ing that samples in the hidden test set have different properties than our train
anomalies.

Nevertheless, our results show that steering the inductive bias towards the
actual goal of detecting pathologies improves their detection performance. These
findings motivate us to search for better anomalies with characteristics closer to
real-world pathologies in future work.
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Learn2Reg 2021 Preface

Medical image registration continues to play a very important role in improving clinical
workflows, computer-assisted interventions, and diagnosis as well as for research
studies involving, for example, morphological analysis. Over the last few years deep
learning for medical registration has significantly advanced in terms of robustness,
computation speed, and accuracy and is often able to match or outperform conventional
algorithms. This was demonstrated at our first Learn2Reg benchmark evaluation at
MICCAI 2020. Due to their ease of implementation and fast inference speeds GPU-
accelerated algorithms are likely to improve practical translation. Nevertheless, there
are many more clinically useful applications that have so far not been evaluated in a
comparative setting that provides an unbiased benchmark across learning-based reg-
istration methods, comparing such methods with each other and with their conventional
(not trained) counterparts. This applies in particular to abdominal/thorax MRI/CT
registration and whole-brain inter-subject alignment of MRI. Akin to Learn2Reg 2020,
this new edition also aimed at providing standardised datasets that were easily available
and accessible and resulted in a simplified challenge design that removed many of the
common pitfalls for learning and applying transformations.

Our challenge comprised three clinically relevant sub-tasks (datasets) that were
complementary in nature. Participants could either individually or comprehensively
address these tasks that covered both intra- and inter-patient alignment; CT and MRI
modalities; and neuro-, thorax, and abdominal anatomies registration and address many
imminent challenges of medical image registration: learning from small datasets;
estimating large deformations; dealing with multi-modal scans; and learning from
limited annotations.

A total of more than 500 annotated 3D scans were made available to the public,
including 32 inter-patient abdominal MRI/CTs, 30 pairs of inspiration and exhale lung
CTs, and over 400 whole-brain MRI scans (for details please see learn2reg.grand-
challenge.org/Datasets). The evaluation of the more than two dozen individual task
submissions was carried out with a comprehensive evaluation pipeline, based on dis-
placement fields, to compute the methods’ performances. Since medical image regis-
tration is not limited to accurately and robustly transferring anatomical annotations,
which was measured by computing target registration errors of landmarks or Dice and
surface metrics of anatomical segmentations, we also incorporated a measure of
transformation complexity (the standard deviation of local volume change defined by
the log Jacobian determinant of the deformation) and a direct comparison of run times
through either CPU or our provided Nvidia GPU backends (this was not a strict
requirement for participants).

All metrics were converted into significant ranks and an overall winner across the
three tasks was determined in the method described in “Conditional Deep Laplacian
Pyramid Image Registration Network in Learn2Reg Challenge” by Tony Mok and
Albert Chung. Some interesting outcomes were that combinations of feed-forward
prediction and iterative instance optimization were used by multiple top-ranked
approaches and that de-coupling semantic feature learning in combination with



conventional optimization yielded excellent results. A detailed analysis of comparative
results from both 2020 and 2021 can be found at: https://arxiv.org/pdf/2112.04489.pdf
[1].

The proceedings of this workshop contain eight selected papers that cover a wide
spectrum of conventional and learning-based registration methods and often describe
novel contributions. All papers underwent a light review process by our Program
Committee chairs. We would like to thank all the Learn2Reg participants and co-
organizers for their efforts that helped provide substantial new insights for this
emerging research field and immensely contributed to the success of this challenge.

January 2022 Mattias P. Heinrich
Alessa Hering
Lasse Hansen
Adrian Dalca
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Abstract. Unsupervised learning strategy is widely adopted by the
deformable registration models due to the lack of ground truth of defor-
mation fields. These models typically depend on the intensity-based
similarity loss to obtain the learning convergence. Despite the success,
such dependence is insufficient. For the deformable registration of mono-
modality image, well-aligned two images not only have indistinguish-
able intensity differences, but also are close in the statistical distribution
and the boundary areas. Considering that well-designed loss functions
can facilitate a learning model into a desirable convergence, we learn a
deformable registration model for T1-weighted MR images by integrat-
ing multiple image characteristics via a hybrid loss. Our method regis-
ters the OASIS dataset with high accuracy while preserving deformation
smoothness.

1 Introduction

Deformable registration estimates dense deformation fields to establish image-to-
image correspondence. Conventional methods typically involve time-consuming
iterative optimization and experience-dependent parameter tuning. Alterna-
tively, deformations can be learned for fast registration via (1) supervised learn-
ing [3,4,10,11]; (2) weakly-supervised learning [8]; and (3) unsupervised learn-
ing [2,7].

Supervised learning methods rely on deformations predicted using con-
ventional methods (e.g., SyN [1] or Diffeomorphic Demons [12]) and simula-
tions [3,4]. In contrast, weakly-supervised and unsupervised learning methods
do not require ground truth deformations. Weakly-supervised learning methods
optimize model parameters via supervision using label-level similarity and seg-
mentation maps to align structural boundaries [8]. Unsupervised learning meth-
ods are supervised via intensity-level similarity (e.g., Normalized Cross Correla-
tion (NCC) or Sum of Squared Difference (SSD)).

c© Springer Nature Switzerland AG 2022
M. Aubreville et al. (Eds.): MIDOG 2021/MOOD 2021/L2R 2021, LNCS 13166, pp. 141–146, 2022.
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Fig. 1. Overview of the proposed registration model. Random selected patches from the
inter-subject T1w image pairs input the registration network to output the deformation
field. During training, similarity loss, segmentation loss, and smooth loss are bonded
together to guide the learning.

Our method combines weakly-supervised and unsupervised learning and
learns registration via multiple aspects, including intensity, statistics, label lev-
els. The proposed method ranked fifth on the brain T1w deformable registration
task organized by the MICCAI 2021 Learn2Reg challenge1.

2 Method

The core of our deformable registration model (Fig. 1) is based on VoxelMorph [2]
with the following modifications: (1) increased feature channels for each layer and
(2) deformation field downsampling by a factor of 2. The input is a randomly
selected pair of patches from the moving and fixed images. The output is the
predicted x, y, and z displacements at half the resolution of the input.

2.1 Hybrid Loss

Aligned images should be matched at the boundary, intensity, and statistical
distribution levels. We employ multi-faceted supervision involving a hybrid loss
function to improve the alignment between the moving image Im and the fixed
image If .

Intensity Loss We employ the commonly used SSD to gauge the intensity
dissimilarity between Im and If :

Li = ||I ′
w − I

′
f ||22 (1)

1 https://learn2reg.grand-challenge.org.

https://learn2reg.grand-challenge.org
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where I
′
w = I

′
m ◦ φ is the half size moving image I

′
m warped with predicted

displacement field φ. I
′
m and I

′
f are downsampled from the original moving image

Im and fixed image If by factor 2.

Statistic Loss We employ mutual information [5] to improve the joint proba-
bility distribution between I

′
w and I

′
f :

Ls = H(I
′
w) + H(I

′
f ) − H(Iw, I

′
f ) (2)

where H(·) refers to the entropy of an image, and H(·, ·) is the joint entropy of
two images.

Boundary Loss. We employ the area overlap between the segmentation mask
S

′
w of I

′
w and downsampled segmentation mask S

′
f of I

′
f for boundary-level super-

vision. The segmentation maps are encoded in one-hot format and are convoluted
with a Gaussian blur kernel with the size of 7 and σ of 1. We combine L1 and
Dice for boundary loss:

Lb = ‖S
′
w − S

′
f‖1 + (1 − 2‖S

′
w · S

′
f‖1

‖S′
w + S

′
f‖1 ) (3)

where S
′
w = S

′
m ◦ φ refers to the warped segmentation map.

Total Loss. In addition to the losses described above, we include a gradient-
based regularization term to preserve the topology of the deformation field. The
total loss is

L = Li + Ls + Lb + λ · Grad(φ) (4)

where λ balances the dissimilarity term and regularization term and is set empir-
ically to 0.8 via grid research.

2.2 Dataset and Implementation Details

Dataset Training (414 subjects), validation (20 subjects), and testing (39 sub-
jects) were based on the Open access series of imaging studies (OASIS) dataset [9]
curated by the organizers of Learn2Reg MICCAI Challenge 2021 [6]2. OASIS is
a cross-sectional MRI data study with a wide range of participants from young,
middle aged, nondemented, and demented older adults. Pre-processing (skull-
stripping, normalisation, pre-alignment and resampling) was done according to
the procedure described in [7]. Semi-automatic labels with manual corrections
of 35 cortical and subcortical brain structures were generated using 3D Slicer.

2 https://learn2reg.grand-challenge.org/Datasets/.

https://learn2reg.grand-challenge.org/Datasets/
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Implementation Details. We implemented our method using Pytorch with
NIVIDIA 3090 RTX. We optimized the model with ADAM, with learning rate
1e − 6, a default of 200,000 steps, and batch size of 1. During training, data was
augmented by randomly selecting patches of size 128× 128× 128 from the input
volumes. During testing, a deformation field was predicted for an image volume.
13GB and 11GB of GPU memory was consumed during the training and testing
stages, respectively.

3 Experimental Results

3.1 Results

Table 1 lists the registration accuracy of different settings on the loss functions.
Our method achieves for the testing dataset an average Dice score of 80.47% with
standard error 1.67% and an average Hausdorff distance of 1.8015 ± 0.4325mm
over 35 brain ROIs, with SDlogJ of 0.0822±0.0042 for full size deformation field
ψ. Figure 2 shows exemplar registration results given by our method.

Table 1. Ablation study on the validation dataset.

Method DSC↑ HD(mm)↓ SDlogJ↓
patch VM-c32 0.7978±0.0230 1.9733±0.4777 0.0848±0.0057

patch VM-c64 0.8040±0.0209 1.9432±0.4687 0.0839±0.0053

patch VM-c64+MI+Dice 0.8117±0.0214 1.8549±0.4363 0.0811±0.0053

patch VM-c64+MI+Dice+halved(Proposed) 0.8395±0.0142 1.6635±0.3734 0.0788±0.0044

Fig. 2. From left to right are the moving image, the fixed image, the warped image,
and the predicted deformation field.
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4 Discussion and Conclusion

A good deformable registration framework is required to accurately calculate
the complex mapping between image pairs. The widely used intensity similarity
loss is highly dependent on the image quality, requiring the voxels inside each
tissue to close at intensity across individual data. Hence, the intensity-driven
supervision is efficient yet insufficient. A diverse similarity constraints is then
required to enhance the optimization at multiple levels.

In this Challenge, we adopted a hybrid similarity loss to steer the learning
procedure. The intensity-based SSD loss and the statistic-based MI loss steer
the registration accuracy at both the local voxels and the global intensity dis-
tributions. Meanwhile, the boundary loss improves the match at the boundary
regions. We showed that registration of T1-weighted images can be registered
with high accuracy by enforcing similarity at the intensity, statistic, and bound-
ary levels.

Acknowledgment. Thanks all the organizers of the MICCAI 2021 Learn2Reg chal-
lenge. The work was supported in part by the National Natural Science Foundation of
China under Grant 6210011424.
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Abstract. In this paper, we present our contribution to the learn2reg
challenge. We applied the Fraunhofer MEVIS registration library RegLib
comprehensively to all 3 tasks of the challenge, where we used a classic
iterative registration method with NGF distance measure, second order
curvature regularizer and a multi-level optimization scheme. We show
that with our proposed method robust results can be achieved through-
out all tasks resulting in the fourth place overall task and the best accu-
racy on the lung CT registration task.

Keywords: Image Registration · Registration Challenge · Learn2Reg

1 Introduction

Image registration is a key task in medical image analysis to estimate deforma-
tions between images and to obtain spatial correspondences. The goal of image
registration is to find a reasonable deformation for a pair of fixed and moving
image so that the transformed moving image and the fixed image are similar.
Image registration is typically formulated as an optimization problem where a
suitable cost function is minimized through iterative optimization schemes. Over
time, a variety of image registration models and approaches have been developed.
Therefore comparison possibilities are needed. In order to ensure comparability,
challenges are created in which the different registration procedures are evalu-
ated on the same image data and under the same computation conditions. One
such challenge is the Learn2Reg: 2021 MICCAI Registration Challenge [7]. It
consists of 3 different registration tasks that cover both intra- and inter-patient
alignment, CT and MRI modalities, neuro-, thorax and abdominal anatomies.
In this paper we present our solutions to all 3 tasks of the challenge.

2 Method and Results

All 3 tasks are solved by classical iterative methods and build on cost functions
and losses made up from several terms that are selected for the specific task.
c© Springer Nature Switzerland AG 2022
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Common to all is the use of normalized gradient fields (NGF) [5] image similarity
for fixed and moving images F ,M : Ω ⊂ R3 → R

NGF(F ,M) =
1
2

∫
Ω

1 − 〈∇F ,∇M〉2εF εM
‖∇F‖2εF ‖∇M‖2εM

dx (1)

with parameters εF , εM > 0, 〈x, y〉ε := x�y + ε and ‖x‖ε =
√〈x, y〉ε and 2nd

order curvature (CURV) regularization [4] of displacement vector fields u : Ω ⊂
R3 → R3

CURV(u) =
1
2

∫
Ω

3∑
�=1

‖Δu�‖2 dx. (2)

Furthermore, the methods use a coarse-to-fine multi-level iterative registration
scheme where a Gaussian image pyramid is generated for both images to obtain
downsampled and smoothed images. Then, a registration is performed on the
lowest resolution level and the resulting deformation field serves as the starting
point for the following registration on the next highest level. This proceeds till
the finest level with quasi-Newton L-BFGS optimization at each level. This pro-
cedure allows to align larger structures on the lower levels and helps to avoid
local minima, to reduce topological changes or foldings, and to speed up run
times.

Metrics for accuracy (TRE, DICE, Hausdorff95), robustness (DICE30,
TRE30, DICEunknownLabel) and plausibility of the deformation field (Log-
JacDetStd) are computed for evaluation of the challenge as well as the runtimes.
More details can be found in [1]. Table 1 shows the results of our methods for
all 3 tasks.

Task 1
The aim of the first task was the intra-patient registration of abdominal MR
and CT scans [3]. 8 training and 8 test MR-CT pairs were provided with prepro-
cessing such as same isotropic voxel resolutions (2 mm) and spatial dimensions
(192 × 160 × 192) as well as affine preregistration. In addition, areas of interest
(ROI) were included for both MR and CT scans, as well as for training and
test images. Although the images are affine preregistered, we performed a rigid
registration of the organ ROIs as a first step to obtain a better starting point
for subsequent nonparametric registration. Since the ROIs are masks, the SSD
distance measure was chosen. The deformable registration is performed twice
in our approach, first with α = 50 to give more weight to the regularization.
Then, the same registration is performed again, using the deformation field of
the first registration as initial value, this time with α = 15 to give a better fit
to the details. As edge parameter ε we have chosen half of the average image
gradient in each case. For both deformable registrations we used a multi-level
optimization scheme with 3 levels. As shown in Table 1 the DICE score could be
improved from 0.23 to 0.71 on the test CT scans. One difficulty was that in 3 test
cases an organ was missing in the CT images. The ROIs for MRI and CT are
therefore different and the rigid registration of the ROIs did not work properly
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Table 1. Results of our methods in the Learn2Reg Challenge. For the challenge the
target registration error (TRE), DICE score, 95% percentile of the Hausdorff distance
(Hausdorff95) and the standard deviation of log Jacobian determinant of the deforma-
tion field (LogJacDetStd) were measured. We additionally measured the runtimes for
our methods on a machine of the challenge organizers using a docker container.

task 1 task 2 task3

TRE before reg. [mm] - 10.24 ± 5.28 -

TRE after reg. [mm] - 1.68 ± 2.31 -

TRE30 before reg. [mm] - 16.80 -

TRE30 after reg. [mm] - 2.37 -

DICE before reg 0.23 ± 0.19 - 0.56 ± 0.21

DICE after reg 0.71 ± 0.16 - 0.77 ± 0.17

DICE unknown label after reg 0.65 - 0.59

DICE30 before reg 0.23 - 0.56

DICE30 after reg 0.67 - 0.77

Hausdorff95 before reg. [mm] 42.18 ± 13.55 - 3.85 ± 1.89

Hausdorff95 after reg. [mm] 21.04 ± 14.07 - 2.08 ± 1.7

LogJacDetStd 0.15 ± 0.04 0.08 ± 0.07 0.07 ± 0.01

runtime [s] 14.73 ± 1.46 95.38 ± 18.01 10.36 ± 0.52

and led to unwanted rotations. In Fig. 1 an exemplary registration result on the
validation data with the overlayed segmentations is shown.

Task 2
The aim of the second task was the registration of expiration to inspiration CT
scans of the lung. The provided data consists of 20 training scan pairs [9] and 10
test scan pairs [8]. All scan pairs were resampled to a image size of 192×192×208
and were affine pre-registered. The main challenges are the large deformation due
to breathing and that the lungs in the expiration scans are not fully visible.

Our submitted method based on our previous work [12]. First, a graph-based
matching of a large number of keypoints for the estimation of robust large-
motion correspondences is performed. Then, this is followed by a continuous,
deformable image registration incorporating both image intensities and keypoint
information. Herefore, we used the NGF distance measure with edge parameter
ε = 0.1. For a smooth deformation field we selected the curvature regularizer
with weight parameter α = 1. In contrast to [12], we are not integrating the
lung mask into a cost term to enforce lung boundary alignment, because the
expiration lung is not fully visible. However, we mask the NGF distance measure
with the expiration lung mask. A coarse-to-fine multilevel scheme with 3 levels
was applied. In contrast to last year’s submission [6], we increased the grid
from 33 × 33 × 33 to 55 × 55 × 55. With this change, the target registration
error decreases but also the regularity of the deformation field. With a target
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(a) F (b) M (c) FF,M

Fig. 1. Exemplary registration result for task 1. The original fixed (MR) and moving
(CT) images are shown in coronal direction (a, b). In (c) the fixed MR is overlayed by
the fixed (green) and deformed moving (orange) labels. (Color figure online)

(a) F (b) M (c) |F −M| (d) |F −M(y)|

Fig. 2. Example coronal slices extracted from a exemplary case for task 2: a) The
expiration image, b) inspiration image, c) the difference image before the registration
and d) the difference image after registration. For a better visualization, we only show
the image inside the lung, however, the full thorax scan was used.

registration error of 1.6 ± 2.311 mm, we archived the highest accuracy of all
submissions in the challenge. The whole registration pipeline takes about 92.7 s
which includes the keypoint detection with 86.4 s and the actual registration with
6 s. All results are summarized in Table 1. To illustrate the registration results,
we show the difference images F − M(y) before and after registration in Fig. 2.
The breathing motion was successfully recovered and inner lung structures are
well aligned.

Task 3
The third task deals with the challenge of inter-patient registration of whole
brain MR scans. The data for this task is provided preprocessed including affine
prealignment and resampling, resulting in images with a size of 160 × 192 × 224
voxels at an isotropic 1mm resolution. Additionally, segmentation masks for
35 brain structures are available. The alignment of these predominantly small
structures of variable shape and size form a challenging task, especially between
different patients. The dataset consists of 414 training images including images
for validation [10,11].
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(a) FF (b) FF �=M (c) FF �=M(y)

Fig. 3. Exemplary registration result for task 3. The fixed MRI and its corresponding
labels are shown in axial direction (a). The fixed image is overlayed by the difference
of fixed and moving labels before (b) and after the registration (c), respectively.

In order to speed up the computation we use a fast implementation of our
baseline algorithm on the GPU [2]. This results in a time for optimization of
under a second and a total runtime of around 10 s including data loading and
postprocessing. For optimization of the registration problem we use the NGF
distance measure with parameters εF = 0.01 and εM = 0.01 which are addi-
tionally multiplied by the average gradient for more robustness. The multi-level
pyramid consists of three stages, where the output has half the resolution of the
input images.

As shown in Table 1, our method is able to improve the DICE score on
average from 0.56 to 0.77, while maintaining physically plausible results with a
log Jacobian determinant of 0.07. Moreover, the 30% lowest DICE score of all
cases is the same as the average score (0.77), which shows that our algorithm is
robust against outliers. An exemplary registration result for this task is shown
in Fig. 3.

3 Conclusion

We showed that the Fraunhofer MEVIS RegLib is successfully applicable to
all three tasks of the Learn2Reg challenge that differ greatly and cover both
intra- and inter-patient alignment, various modalities and anatomies. We chose
the classic iterative method for all 3 tasks and achieved the forth place in the
challenge. Furthermore, we achieved the overall highest registration accuracy
with our method in task 2.
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6. Häger, S., Heldmann, S., Hering, A., Kuckertz, S., Lange, A.: Variable fraunhofer
MEVIS RegLib comprehensively applied to Learn2Reg challenge. In: Shusharina,
N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 74–79.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5 9

7. Hering, A., et al.: Learn2Reg: comprehensive multi-task medical image registra-
tion challenge, dataset and evaluation in the era of deep learning. arXiv preprint
arXiv:2112.04489 (2021)

8. Hering, A., Murphy, K., van Ginneken, B.: Learn2Reg challenge: CT lung regis-
tration - test data, September 2020. https://doi.org/10.5281/zenodo.4048761

9. Hering, A., Murphy, K., van Ginneken, B.: Learn2Reg challenge: CT lung regis-
tration - training data, May 2020. https://doi.org/10.5281/zenodo.3835682

10. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J.V., Dalca, A.V.: Hypermorph:
Amortized hyperparameter learning for image registration. CoRR abs/2101.01035
(2021). https://arxiv.org/abs/2101.01035

11. Marcus, D.S., et al.: Open access series of imaging studies (OASIS): cross-sectional
MRI data in young, middle aged, nondemented, and demented older adults. J.
Cognit. Neurosci. 19(9), 1498–1507 (2007)
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Abstract. Steepest descent algorithms, which are commonly used in
deep learning, use the gradient as the descent direction, either as-is or
after a direction shift using preconditioning. In many scenarios calculat-
ing the gradient is numerically hard due to complex or non-differentiable
cost functions, specifically next to singular points. In this work, we focus
on the derivation of the Total Variation regularizer commonly used in
unsupervised displacement fields cost functions. Specifically, we derive
a differentiable proxy to the hard L1 smoothness constraint in an iter-
ative scheme, which we refer to as Cost Unrolling. We show that our
unrolled cost function enables more accurate gradients in regions where
the gradients are hard to evaluate or even undefined without increasing
the complexity of the original model. We demonstrate the effectiveness of
our method in synthetic tests, as well as in the task of unsupervised learn-
ing of displacement fields between corresponding 3DCT lung scans. We
report improved results compared to standard TV in all tested scenar-
ios, achieved without modifying model architecture but simply through
improving the gradients during training.

Keywords: Unsupervised Learning · Displacement Fields ·
Optimization

1 Introduction

The L1 norm of the gradients of a given function, also known as Total Variation
(TV), and more specifically its estimation, has been a significant field of study
in robust statistics [11]. Even prior to the sweeping AI era, many approaches to
Computer Vision problems, such as image restoration, denoising and registration
[18,20] have used a TV regularizer, as it represents the prior distribution of pixel
intensities of natural images [10]. Its main advantage is its robustness to small
oscillations such as noise while preserving sharp discontinuities such as edges.

Historically, solving the TV problem has been a challenging task, mainly due
to the non-differentiability of the L1 norm at zero. Early approaches consisted of
differentiable approximations [4], however iterative variational methods [2,18,20]
have been shown superior.

Introducing trainable Deep Neural Networks (DNNs) to tackle Computer
Vision tasks has brought a significant performance boost, and specifically, the
c© Springer Nature Switzerland AG 2022
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commonly used auto-derivation frameworks [1,17] have provided us with quick
and easy tools to solve complex functions. Indeed, these frameworks may bypass
the L1 non-differentiability either by a differentiable proxy or using its sub-
gradients. Not surprisingly, the TV smoothness regularization can be found in
the cost functions of many 2D and 3D image registration works both past and
recent [9,19]. We claim that non-differentiable cost functions should be dealt
with greater care, as was done for many years before the deep learning era.

Cost Unrolling, a novel pipeline, in which the commonly used unsupervised
cost function consisting of a data term and TV smoothness regularization is
unrolled to obtain an iterative proxy, has been introduced in [13]. Following the
well-known Alternating Direction Method of Multiplies (ADMM) [2] algorithm,
the hard initial optimization problem is iteratively decomposed into a set of
sub-problems, each one featuring a differentiable cost function. Gradients accu-
mulated using all sub-cost functions at each training step have been shown to be
more accurate in the regions where the gradients of the original cost function are
hard to evaluate or undefined, improving convergence. In this paper, we expand
Cost Unrolling to the dense 3D domain. Specifically, testing our method on
unsupervised image registration tasks, using both synthetic data and real-world
raw lung 3DCT scans, we find training a DNN model using the unrolled cost
improves results, convergences faster and enables smooth, yet edge-preserving
displacement fields, without modifying the model architecture.

We demonstrate here that unlike all other methods, improving the ability of a
model to predict more accurate displacement fields can be achieved simply through
improving the computed gradients during training.

2 Cost Function Unrolling

A general formulation of the cost function used for unsupervised learning consists
of a data term, measuring the likelihood of a given prediction over the given
data, as well as a prior term, constraining probable predictions. In this work
we consider the TV regularized unsupervised cost function case and unroll it
to obtain our novel smoothness regularizer. Denote by Θ the set of trainable
parameters of a DNN model, its predicted output F and the set of unlabeled
training data I. The unsupervised TV regularized cost function takes the form:

L(I, Θ) = Φ (F, I) + λ‖∇F‖1 (1)

where Φ(·) is a differentiable function measuring the likelihood of F over the
training data I, ∇F are its spatial gradients, ‖ · ‖1 is the L1 norm and λ is a
hyperparameter controlling regularization. Note that the used L1 norm function
is non-differentiable, specifically around its optimum, and therefore we wish to
obtain an iterative differentiable proxy.

2.1 Unrolling the Unsupervised Cost Function

Our goal is to minimize the objective function in (1). Following the ADMM [2]
algorithm, we derive the iterative update steps minimizing (1), which are then
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used to construct our unrolled cost function. Introducing an auxiliary variable
Q, the Lagrange Multipliers matrix β and a penalty parameter ρ, the iterative
ADMM update steps solving (1) are:

F̂ = min
F

{
Φ (F, I) +

ρ

2
‖Q − ∇F + β‖22

}
(2a)

Q̂ = min
Q

{
λ‖Q‖1 +

ρ

2
‖Q − ∇F + β‖22

}
(2b)

β ←β + η(Q − ∇F) (2c)

with η an update rate.

2.2 Solving the Sub-optimization Problems

The solution to (2b) is given by the well known Soft Thresholding operator
Q̂ = Sλ/ρ (∇F − β), defined:

Sλ/ρ(x) =

{
0, |x| < λ/ρ

x − λ
ρ sign(x), |x| ≥ λ/ρ

(3)

The Soft Thresholding operator performs shrinkage of the input signal, thus
it promotes sparse solutions. In contrast, deriving a closed form solution for
the problem in (2a) is not trivial, as Φ can be any function. However, note
that (2a) consists of the same data term as in (1) with the TV smoothness
regularizer replaced by a softer, differentiable constraint. Recall that minimizing
the TV of a function promotes sparse output gradients. In fact, (2a) yields a
differentiable alternative for TV minimization, as it suggests minimizing the
L2 distance between the true and sparsified output gradients in each ADMM
iteration. This realization stands in the core of our approach.

2.3 Unrolled Cost Function

Our proposed unrolled cost function takes the form:

LF(I, Θ) =Φ (F, I) +
ρ

2
1
T

T−1∑
t=0

‖Q(t) + β(t) − ∇F‖22 (4)

where T is a hyperparameter stating the number of update steps carried. Being
fully differentiable, specifically around its optimum, our unrolled smoothness
constraint produces more accurate gradients, converges more efficiently and
improves performance without increasing model complexity, as is shown in the
experimentation section.

3 Experimentation

Our experimentation consists of unsupervised 2D optical flow tests, as well as
the problem of unsupervised volumetric displacement fields. The availability of
ground truth for our optical flow tests enables the demonstration of the effec-
tiveness of our method.



156 G. Lifshitz and D. Raviv

Fig. 1. Unsupervised optical flow. (top) We compare qualitative flow benchmark
results of ours, the ARFlow [14] and UFlow [12] baselines. (bottom) Validation error,
as well as gradients recorded during training.

3.1 2D Unsupervised Optical Flow

Tests of our unrolled cost on the unsupervised optical flow problem are detailed
in [13]. Cost Unrolling is introduced to the recently published ARFlow [14] base-
line, rigorously following their proposed training scheme and model architecture,
yet replacing their used TV regularization with our unrolled cost. Our method is
evaluated the on well-known optical flow benchmarks: the synthetic MPI Sintel
[3] and autonomous driving KITTI 2015 [15]. Qualitative examples are taken
from [13] and are given in Fig. 1 (bottom). Improved results are reported in
all scenarios compared to standard TV. We also compare performance on the
occluded regions, i.e. pixels with no correspondence, as they are highly affected
by the smoothness constraint. Producing more accurate gradients during train-
ing, our method decreases the AEPE measured in occluded regions by up to
15.82% in all scenarios, enabling the detection of sharper motion edges.

Furthermore, inspecting the gradients (see Fig. 1 top) generated during train-
ing reveals that gradients of the TV suffer from severe oscillations as a result
of its non-differentiability at zero. These oscillations cause the measured gradi-
ent norms to increase rather than decrease, suggesting an unstable optimum. In
contrast, the gradients of our unrolled cost decrease smoothly to zero thanks to
its differentiability around the optimum, enabling faster and more stable con-
vergence.
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Fig. 2. Lung 3DCT displacement fields qualitative example. Displayed are pre-
dicted displacement fields, as well as reference and warped target scans one on top of the
other (color represents misaligned regions), generated using both our unrolled cost and
standard TV regularization. Our method enables the capturing of motion boundaries
as opposed to baseline.

3.2 Lung 3DCT Volumetric Displacement Fields

We evaluate our method on the real-world lung expiration-inspiration 3DCT
unsupervised registration task, as part of the Learn2Reg challenge [8]. We expand
our 2D optical flow model to the 3D domain using 3D convolution layers.

Training. Our training scheme consists of pretraining on raw Cardiac 4DCT
scans, followed by finetuning on the provided training data. We train our model
in a fully unsupervised manner setting Φ as the NCC between corresponding
scans, using no lung segmentation masks. We used masked TV regularization
replacing ∇F with W � ∇F in Eq. (4), where W is a deterministic importance
matrix, aiming to increase the penalty on the boundaries, defined:

W = exp {−α|∇I1|} = exp
{

−α

[∣∣∣∣
∂I1
∂x

∣∣∣∣ ,

∣∣∣∣
∂I1
∂y

∣∣∣∣
]}

(5)

Furthermore, we acquire self-supervision from cyclic constraints, defined as fol-
lows. Given a 3DCT scan pair Ii, Ij and field predictions Fi→j mapping Ii into
Ij , we constrain non-occluded voxels to perform a closed loop:

LC =
∑
x∈N

(Fi→j (x) + Fj→i (x))2 (6)

where N is the set of non-occluded voxel locations. We define our NCC window
size to 7, and our ADMM parameters to λ = ρ = 0.1, α = 50 and T = 1, i.e.
performing two cost update steps as in [13].
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Table 1. L2R results. Our method, ranked 7 on the L2R test data, is compared
with several DL based challenge finalists. We report competitive results being fully
unsupervised and using no lung segmentation.

Method L2R Valid. L2R Test

TRE SDlogJ TRE TRE30 SDlogJ RT

Ours-TV-valid 0.06 3.50 - - - -

Ours-unrolled-valid 0.08 3.42 - - - -

LapIRN [16] - - 1.98 2.95 0.06 10.3

corrField [5,7] - - 1.75 2.48 0.05 2.91

PDD-Net [6] - - 2.46 3.81 0.04 4.22

Ours-unrolled-test - - 2.26 3.01 0.07 2.90

Results. The results on the Learn2Reg data are given in Table 1, and a qualita-
tive example is given in Fig. 2. Training using our unrolled cost achieved reduced
error rates on the Learn2Reg validation set, capturing sharper motion bound-
aries along the rib cage, compared to standard TV regularization. Furthermore,
declared a challenge finalist, our method achieved results on par with the chal-
lenge winners on the official test data, simply through expanding a model to the
3D domain and improving its gradients during training.

4 Conclusions

We introduced the concept of Cost Unrolling, shifting algorithm unrolling to
the cost function, while preserving model architecture. Our method enables
improved training of a TV regularized model as a result of more accurate gradi-
ents, thanks to its differentiability around its optimum. We have demonstrated
the effectiveness of our method in synthetic problems as well as the real-world
unsupervised volumetric displacement fields problem. Our unrolled cost achieved
superior results in all tested scenarios. We believe that the proposed framework
can be applied on top of other model architectures for boosting their results next
to non-differentiable optimum solutions.
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Abstract. Hyperparameter tuning is extremely tedious and costly in
the deep learning-based deformable image registration methods. In this
paper, we present our contribution to the Learn2Reg challenge and
demonstrate how hyperparameter tuning can be accelerated and sim-
plified with the proposed conditional image registration framework. We
exemplify the conditional image registration framework with the deep
Laplacian pyramid image registration network (cLapIRN) and apply it
comprehensively to all three tasks in the challenge. Our method was
ranked the first place in the Learn2Reg 2021 challenge.

Keywords: Image registration · Hyperparameter tuning · Learn2Reg
challenge

1 Introduction

Medical image registration is essential in a variety of medical image analysis
tasks. Image registration aligns a pair of fixed and moving images with max-
imizing the spatial similarity between the transformed moving image and the
fixed image. Recently, a variety of deep learning-based image registration meth-
ods [7,10,16,19] have been developed and proposed to circumvent the tedious
iterative optimization process in the conventional image registration methods.
While deep learning-based methods are starting to show promising registration
performance and speed, hyperparameter tuning in deep learning-based methods
remains a challenge. To address this issue, we propose a conditional image reg-
istration framework [18] dedicated to enabling rapid hyperparameter tuning in
a deep learning-based method. To further ensure comparability and compare to
the state-of-the-art image registration algorithms, we have applied our method
to the Learn2Reg: 2021 MICCAI Registration Challenge [1,11]. It consists of
three different registration tasks: lung CT expiration-inspiration registration
[12], thorax-abdomen CT-MR registration [4,14,20], and brain MR inter-patient
registration [13,15]. In this paper, we present our solutions to the three tasks in
the challenge.
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2 Methods

2.1 Conditional Deformable Image Registration

Given a fixed image F , a moving 3D image volume M , deep learning-based
deformable image registration methods parameterize the image registration
problem as a function fθ(F,M, c) = φ, where fθ is the convolutional neural
network (CNN). Our conditional deformable image registration framework [18]
further extends this formulation to take the hyperparameter of smoothness regu-
larization λ as input, i.e., fθ(F,M, λ) = φ. The proposed conditional deformable
image registration framework aims to learn the effect of the hyperparameter
of smoothness regularization on the output deformation field. To condition a
CNN model on a conditional variable, we utilize a recently proposed conditional
instance normalization (CIN) module [5,18] to replace the high-level layers in the
CNN model. Originally, the CIN layer used instance normalization to normalize
the data distribution of the feature map before shifting the feature statistics. We
found that the instance normalization can be pruned, and the CIN module can
still capture the hyperparameter effect. Formally, the simplified CIN operation
for each feature map hi is defined as

h′
i = γθ,i(z)hi + βθ,i(z), (1)

where γθ,i, βθ,i ∈ R denote learning parameters learned from the latent code z.

2.2 Deep Laplacian Pyramid Image Registration Network

All three tasks are comprehensively tackled by a deep learning-based deformable
image registration method as the backbone network. Specifically, we modify the
deep Laplacian pyramid image registration network (LapIRN) [19] by replacing
all the residual blocks with the proposed conditional image registration module
(denoted as cLapIRN [18]). LapIRN is particularly well suited for all tasks in
the challenge because of its versatile design and promising registration accu-
racy under large deformation settings. LapIRN utilizes a multi-level, coarse-
to-fine CNN architecture to mimic the multi-resolution optimization strategy
in the conventional image registration method. Since registration accuracy is
more favourable over the diffeomorphic properties, we parameterize the LapIRN
model with displacement vector fields. During training, with reference to [13],
our method learns to minimize the following objective function:

φ∗ = arg min
φ

(1 − λp)Lsim(F,M(φ)) + λpLreg(φ), (2)

where φ∗ denotes the optimal displacement field φ, Lsim(·, ·) denotes the dissimi-
larity function, Lreg(·) represents the smoothness regularization function and λp

is uniformly sampled over [0, 1]. We use a diffusion regularizer on the spatial gra-
dients of displacement fields, i.e., Lreg(φ) = ||∇φ||22. The dissimilarity functions
Lsim utilized in this work are different between the three tasks in the challenge,
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(a) M (b) F (c) M(φ)

Fig. 1. Example coronal slices from a exemplary case in the validation set for task 1:
a) the moving CT scan, b) the fixed MR scan and c) the transformed moving scan.
Each scan is overlaid with the corresponding anatomical segmentation maps.

which will be discussed in the following sections. The model is trained using a
progressive training scheme in a coarse-to-fine manner. The pyramid level and
the number of conditional image registration modules for cLapIRN are set to 3
and 5 for all tasks, respectively. For all tasks, we manually balance the trade-off
between registration accuracy and the plausibility of the deformation by varying
the lambda and grid search with step size 0.01 on the validation set provided by
the challenge. For more details of the conditional image registration framework,
we recommend the readers refer to our previous works [18,19].

2.3 Task 1 - Thorax-Abdomen CT-MR Registration

The goal of the first task is related to the thorax-abdomen CT-MR intra-patient
registration. Our submitted method combines a modality-independent neighbor-
hood descriptor (MIND-SSC) [8,9] with cLapIRN. First, we extract the MIND-
SSC features of the fixed image and moving image. Then, cLapIRN take as input
the MIND-SSC features of the fixed and moving images. We use the mean square
error (MSE) and the Dice coefficient of the provided anatomical segmentation
map as dissimilarity functions. Due to the limited GPU memory, we further
downsample the input data to half-resolution. Yet, the evaluation and similarity
measures are computed at full resolution by upsampling the output deformation
field with bilinear interpolation. We mask the similarity measure with the region
of interest (ROI) mask of the fixed image. To alleviate the overfitting issue as
well as fully utilize the unpaired data, we first train our model with all training
data and treat it as an inter-patient registration problem. Then, we finetune our
model on the 8 paired training data (5 and 3 pairs for training and validation,
respectively). Throughout the training, a fast affine augmentation is adopted to
diversify the training data further.

2.4 Task 2 - Lung CT Expiration-Inspiration Registration

The aim of the second task is related to lung CT expiration-inspiration regis-
tration. We utilize the vanilla cLapIRN with instance optimization as postpro-
cessing to address the challenges in this task. We use the local normalized cross-
correlation (NCC) similarity measure with the similarity pyramid for training
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(a) M (b) F (c) M(φ) (d) |F − M | (e) |F − M(φ)|

Fig. 2. Example coronal slices from a exemplary case in the validation set for task 2:
a) the expiration CT scan, b) the inspiration CT scan, c) the registered inspiration CT
scan, d) the difference image before the registration and e) the difference image after
registration. For better visualization, we masked the difference images with the ROI of
the expiration scan.

and the normalized gradient fields (NGF) [6] with ε = 0.1 as distance measure
for the instance optimization. Although massive pseudo landmarks are provided,
we use the pseudo landmarks for validation only. Similar to task 1, we use affine
augmentation to alleviate the overfitting issue during training. We also mask
the NCC and NGF similarity measure with the expiration lung mask. For the
instance optimization, we use the output deformation field from cLapIRN as
initialization and utilize Adam optimizer with a learning rate of 0.005 to mini-
mize the similarity function and the weighted smoothness regularization for 60
iterations.

2.5 Task 3 - Brain MR Inter-patient Registration

The objective of the third task is brain MR inter-patient registration. Since the
main source of misalignment in the provided data is non-linear, our submitted
method uses the vanilla cLapIRN to address the challenge in this task. We use
the NCC similarity measure with the similarity pyramid and the Dice score of
the subcortical structures segmentation map as similarity measures, as shown in
our previous work [17]. Unlike previous tasks, our submitted method does not
use affine augmentation during training, as we observe that affine augmentation
does not improve the registration performance in the validation set.

3 Results

The Learn2Reg challenge computes a sequence of metrics, including TRE,
TRE30, DSC, DSC30, HD95 and std(|Jφ|), in order to provide a comprehen-
sive evaluation of the registration performance. Specifically, DSC and HD95 are
the dice similarity coefficient of segmentations and 95% percentile of Hausdorff
distance of segmentations, which quantify the registration accuracy for tasks 1
and 3. TRE denotes the target registration error of manual landmarks, which is
used to measure the registration accuracy for task 2. The plausibility of the solu-
tions is measured using the standard deviation of log Jacobian determinant of
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Table 1. Results of our method on the validation set in the Learn2Reg challenge. More
results can be found at the validation leaderboard of the challenge [2].

Method
Task 1 Task 2 Task 3

DSC DSC30 HD95 std(|Jφ|) Ttest TRE std(|Jφ|) Ttest DSC DSC30 HD95 std(|Jφ|) Ttest

Initial 0.30 0.23 22.89 - - 14.64 - - 0.57 0.55 3.83 - -

Ours 0.90 0.90 2.75 0.08 0.35 2.13 0.07 8.21 0.86 0.86 1.51 0.07 0.24

Table 2. Results of our method on the test set in the Learn2Reg challenge. The
comprehensive results of the other participants are shown on the official website of the
Learn2Reg Challenge [3].

Method
Task 1 Task 2 Task 3

DSC DSC30 HD95 std(|Jφ|) Ttest TRE TRE30 std(|Jφ|) Ttest DSC DSC30 HD95 std(|Jφ|) Ttest

Ours 0.76 0.69 18.6 0.12 1.5 2.0 3.0 0.06 10.3 0.82 0.68 1.98 0.07 1.2

the deformation field (denoted as std(|Jφ|) for all tasks. DSC30 and TRE30 are
computed by averaging the lowest 30% of the lowest DSC and TRE, respectively.
Furthermore, the registration time per case, excluding the GPU initialization, is
measured in the unit of seconds and denoted as Ttest in Tables 1 and 2.

Tables 1 and 2 summarize our results in the validation set and test set of the
challenge. Figures 1 and 2 show the qualitative results of tasks 1 and 2, respec-
tively. While our method is able to achieve remarkable results in the validation
set of tasks 1 and 3 (improving the DSC from 0.30 to 0.90 and from 0.57 to
0.86, respectively), we observe a significant drop in registration performance in
tasks 1 and 3. The degraded registrations could be the result of overfitting to the
particular imaging protocol, and the generalization ability of our model needs
further investigation. Yet, with a mean DSC of 0.76 and 0.82 along with the 1.5
and 1.2 average inference time in tasks 1 and 3, respectively, our method can
achieve the best overall result in task 3 and the second place in task 1. Moreover,
our method achieves an average TRE of 2.13 and 2.0 in the validation and test
set of task 2, suggesting that our method is capable of generating comparable
results with the conventional image registration approaches with a small amount
of training data.

4 Conclusion

We have successfully applied the cLapIRN to all three tasks in the Learn2Reg
challenge. Our method can achieve promising results among all tasks, including
intra- and inter-patient registration tasks, cross-modalities and anatomies reg-
istration tasks, implying that cLapIRN is a generic and versatile deep learning-
based method. Our method has achieved the first place in the challenge. Fur-
thermore, not only did we obtain the best overall result in task 3, we have
demonstrated that our proposed method is capable of generating comparable
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solutions with the conventional image registration methods even in tasks with a
small training dataset, i.e., 20 paired CT scans in task 2.
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Abstract. This paper summarizes our approaches and results for the
three tasks of the Learn2Reg 2021 MICCAI Grand Challenge focused
on the registration of: (1) intra-patient abdominal CT and MR images,
(2) intra-patient expiration and inspiration lung CT scans, and (3) inter-
patient brain MR images. These registration tasks have multiple chal-
lenges including dealing with multi-modal scans, estimating large defor-
mations, lack of training data, and missing data. For Task 1, we first
segmented four organs in both CT and MRI and, second, used them in
a two-stage deformable registration pipeline. Our approach has achieved
a Dice coefficient of 0.71. For Task 2, we handled missing data in the
expiration CT by using a pairwise geodesic density registration algo-
rithm that excludes data outside the lungs. Our approach has achieved
a target registration error of 2.3 mm. For Task 3, we modified the Voxel-
Morph architecture to give more degrees of freedom to the registration
model and used it to register brain MRI across patients. Our approach
has achieved a Dice coefficient of 0.78. Overall, our team has won second
place out of 35 submissions from 15 teams.

Keywords: Image registration · Diffeomorphic registration · Deep
learning image registration · CT · MRI

1 Introduction

The goal of image registration is to find a geometric transformation that defines
the point-to-point correspondences between two images. Image registration is
a challenging task due to multiple modalities, lack of training dataset, large
displacement deformation, missing information, alignment of small structures,
and inter-patient alignment. The Learn2Reg 2021 MICCAI Grand Challenge [4]
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provides an accessible medical image registration benchmark for comprehensive
evaluation of traditional and deep learning registration methods on three tasks
that cover the above mentioned challenges. The first task is the multi-modal
registration of CT and MR images of the abdomen. The second task is to estimate
the large displacement deformation between the expiration and inspiration CT
scans. The third task is the inter-patient registration of brain MR images. For
each task, we have developed a customized approach using either traditional
and/or deep learning registration. Our approaches are summarized below.

2 Methods

2.1 Dataset

For Task 1, paired abdomen CT and MR images of five, three and eight patients
from The Cancer Imaging Archive (TCIA) [2] were provided for the training,
validation, and testing, respectively. Additional unpaired 50 CT and 40 MR
images were also provided for the training. Manual segmentation of the liver,
spleen, left kidney, and right kidney on the CT and MR images were also provided
for the training. For Task 2, 20, three, and 10 paired expiration-inspiration CT
scans were provided for the training, validation, and testing, respectively. Binary
lung segmentations were also provided for both training and testing. For Task
3, skull-stripped 3D MR scans of 400, 19, and 38 patients were provided for the
training, validation, and testing, respectively. The images were normalized and
cropped to 160 × 192 × 224 volumes. The segmentation masks for four brain
anatomical regions (white matter, gray matter, hippocampi and ventricles) were
also provided for training and validation set only.

2.2 Task 1: Intra-patient CT-MR Registration

We tackled the multi-modal CT-MR image registration problem in two steps
(Fig. 1). First, we segmented the liver, spleen, left kidney, and right kidney on
both CT and MR images by training three 2D U-Net segmentation networks [6]
with 2D slices from the axial, coronal, and sagittal views. We augmented the data
by applying random affine and elastic deformations, cropping, flipping, blurring,
and Gaussian-noise to the training images, as well as varying the brightness and
contrast of the training images. The average of the three views produced the final
3D segmentations on CT and MR images. We trained using the Adam optimizer,
a learning rate of 10−4 for the first 200 epochs and a learning rate of 10−5 for
the remaining 100 epochs. Second, we registered the MRI and CT in two steps.
For the first step, we estimate a rigid transformation between the two images
by using CT and MR segmentations of the liver, spleen, left kidney, and right
kidney. For second step, we estimated a diffeomorphic transformation using a
segmentation loss (sum of squared differences) and an intensity loss (normalized
cross correlation). If all four organs were segmented, we gave a weight of 0.75 to
the segmentation loss and a weight of 0.25 to the intensity loss . If not all the
organs were segmented due to pathologies or poor data quality, we gave equal
weight of 0.5 to the segmentation and the intensity losses.
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NCC (ImageCT, ImageMR)
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Segmentation Model

Fig. 1. The framework for multi-modal CT-MR registration, which includes a segmen-
tation network and a subsequent deformable registration model.

2.3 Task 2: Intra-patient Expiration-Inspiration CT Registration

We registered the expiration-inspiration CT scans with a pairwise geodesic den-
sity registration algorithm [5] that is robust to missing information in the expi-
ration CT by using a binary mask to exclude data outside the lungs from the
registration. The binary mask indicated the locations that do not belong to the
lungs. Our geodesic registration algorithm also considers changes in CT inten-
sity that are associated with local lung volume change. We first convert each CT
image in the Hounsfield unit into a tissue density image via

I =
CT − HUair

HUtissue − HUair
=

CT + 1000
1055

(1)

The intensity of a tissue density image ranges from 0 to 1, where 0 corre-
sponds to 0% lung tissue at a voxel and 1 corresponds to 100% lung tissue at
a voxel. Our geodesic density registration algorithm uses tissue density images
instead of CT intensity images for the registration. We used the following tissue
density deformation action to deform a tissue density image by a transformation.

φ · I := |Dφ−1|I ◦ φ−1 (2)

Here, the Jacobian determinant of the transformation accounts for tissue den-
sity change associated with local lung volume change. The inputs to our geodesic
density registration algorithm are two tissue density images and the correspond-
ing binary artifact masks. The output of the algorithm is a time-varying velocity
field vt that parameterizes a flow of diffeomorphisms φt to deform the image I0

into a geodesic image flow. The cost function consists of two terms.

E(vt) =
1
2

∫ 1

0

< vt, vt >g dt

︸ ︷︷ ︸
smoothness

+
1
σ2

||(φ1 · I0 − I1)M1||2L2︸ ︷︷ ︸
image difference

(3)

The first term measures the smoothness of the transformation, and the second
term measures the difference between the predicted image flow and the input
tissue density image at time 1. Notice that the difference image in the second
term is multiplied by a binary mask M1 that indicates the location of the lungs,
so that image differences were only computed for voxels inside the lungs.
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Table 1. Summary of registration results on testing datasets for all three tasks.

Task Dice TRE (mm) HD95 (mm) SDLogJ Run time (s)

Task 1 0.71 N/A 14.2 0.07 59

Task 2 N/A 2.34 NA 0.04 623

Task 3 0.78 N/A 1.84 0.06 5.9

2.4 Task 3: Inter-patient Brain MRI Registration

Prior VoxelMorph [1] network is a state-of-the-art deep learning approach for
brain MR image registration. Inspired by this approach, we replaced the regular
U-Net with the residual U-Net to give more complexity to the network. We
trained our network by using the following cost function, which is a weighted
Sum of the Sum of Squared Differences loss LSSD, a regularization loss Lsmooth

and a multi-class weighted dice loss LDice.

L = λ1LSSD + λ2Lsmooth + λ3LDice (4)

where λ1 = 1.0, λ1 = 0.01 and λ3 = 0.05 are the weights controlling the effect of
each term. We augmented the data by applying horizontal flipping and contrast
enhancement. We trained our network by using the Adam optimizer, a learning
rate of 10−4 for the first 1500 epochs and 10−5 for the rest 500 epochs.

2.5 Evaluation Metrics

We utilized several metrics provided by the challenge organizer for each task
to evaluate the performance of our registration methods. These metrics include
the Target Registration Error (TRE) of landmarks, Dice Similarity Coefficient
(DSC), Hausdorff Distance (HD95) of segmentations, and standard deviation of
log Jacobian determinant (SDlogJ) of the deformation field [3]. Moreover, we
reported the run time of each registration method on test patients.

3 Results and Discussion

Table 1 summarizes our results on the test dataset. For Task 1, the two-step
registration method achieved a DSC score of 0.71, HD95 of 14.2 mm, and SDLogJ
of 0.07 with a run time of 59 s. For Task 2, our pairwise geodesic registration
method achieved a TRE of 2.34 mm and SDLogJ of 0.04. The run time for this
task was 623 s, due to using a traditional registration approach. For Task 3, our
residual registration model obtained a Dice score of 0.78, HD95 of 1.84 mm, and
SDLogJ of 0.06, with a run-time of 5.9 s.

Figure 2, 3 and 4 show the registration results of one representative subject
for each task. As shown in Fig. 2, despite the fact that the CT and MR images
are significantly different in terms of contrast and anatomical organ appearance,
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(a) Moving CT (b) Fixed MR (c) Deformed CT

Fig. 2. Example MR (fixed image), CT (moving image), and deformed CT slices for
multi-modal CT-MR registration task.

(a) Moving CT (b) Fixed CT (c) Deformed CT

Fig. 3. Example lung CT slices of expiration (fixed image), inspiration (moving image),
and deformed image.

(a) Moving MRI (b) Fixed MRI (c) VM (d) Residual VM

Fig. 4. Example MR slices of input moving image, fixed image, VoxelMorph and our
residual VoxelMorph deformed image.

the deformed CT aligned quite well with the MR scan. Figure 3 shows that our
PGDR algorithm has accurately estimated the large displacement deformation
between the expiration and inspiration CT scans despite of the missing data in
the expiration CT scan. For Task 3, the residual VoxelMorph implementation
produced smoother transformations for brain MRI images than the conventional
VoxelMorph implementation, resulting in a lower SDLogJ score (Fig. 4).
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4 Conclusion

In this paper, we presented the results and methods for three different regis-
tration tasks in the Learn2Reg 2021 MICCAI Grand Challenge. To address the
challenges including missing data, multiple modalities and large deformation in
the tasks, we have developed registration methods with a combination of tradi-
tional and deep learning approaches. The proposed methods achieved promising
registration results evaluated based on various metrics. In the future, we aim to
replace the traditional registration components in our approaches with learning-
based methods to improve the run-time and model generalization across the
different datasets.
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Abstract. Current approaches for deformable medical image registra-
tion often struggle to fulfill all of the following criteria: versatile appli-
cability, small computation or training times, and the being able to esti-
mate large deformations. Furthermore, end-to-end networks for super-
vised training of registration often become overly complex and difficult to
train. For the Learn2Reg2021 challenge, we aim to address these issues by
decoupling feature learning and geometric alignment. First, we introduce
a new very fast and accurate optimisation method. By using discretised
displacements and a coupled convex optimisation procedure, we are able
to robustly cope with large deformations. With the help of an Adam-
based instance optimisation, we achieve very accurate registration per-
formances and by using regularisation, we obtain smooth and plausible
deformation fields. Second, to be versatile for different registration tasks,
we extract hand-crafted features that are modality and contrast invari-
ant and complement them with semantic features from a task-specific
segmentation U-Net. With our results we were able to achieve the over-
all Learn2Reg2021 challenge’s second place, winning Task 1 and being
second and third in the other two tasks.

Keywords: image registration · convex optimisation · instance
optimisation

1 Motivation

Deep-learning-based approaches for medical image registration usually involve
an elaborate learning procedure and yet they often struggle with the estimation
of large deformations and the versatile usability for a wide range of tasks. To
address the different registration tasks of the Learn2Reg2021 challenge1 [8], we
present a fast and accurate optimisation method for image registration that
requires little learning. Our method robustly captures large deformations by
using discretised displacements and a coupled convex optimisation. In order to
be versatile for various tasks, we include a hand-crafted feature extractor in our
method that is contrast and modality invariant and still highly discriminative
for local geometry.
1 https://learn2reg.grand-challenge.org.
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2 Methods

The main idea of our method is to perform large-deformation image registration
by using a coupled convex optimisation [6] that approximates a globally optimal
solution of a discretised cost function followed by an Adam-based instance opti-
misation to further improve the local registration accuracy. Dense correlation has
already been used extensively in learning based optical flow estimation (cf. PWC-
Net [16]) and end-to-end trainable 3D registration networks (cf. PDD-Net [5]),
however both approaches have limitations. PWC-Net requires multiple warping
steps and is difficult to extend from 2D to 3D (see [4]). PDD-Net employs a
dense 3D displacements, but substantially simplifies the optimisation strategy,
which may lead to some inaccuracies. ConvexAdam aims to combine the best of
both worlds (learning and optimisation-based) by leveraging segmentation pri-
ors where available and relying on robust hand-crafted features and fast discrete
optimisation.

Fig. 1. The structure of our registration method. It consists of a feature extractor
(MIND and/or nnUNet) and a dense correlation layer followed by a coupled convex
optimisation and an Adam-based instance optimisation.

As visualised in Fig. 1, the basic structure of our registration method consists
of a feature extractor, a correlation layer, a coupled convex optimisation, and an
instance optimisation.

The feature extractor outputs contrast and modality invariant features from
the fixed and moving input images. For this, hand-crafted MIND features
[7] ensuring versatility regarding different types of registration tasks can be
employed. Depending on the availability of labelled image data, automatic seg-
mentations as provided by the nnU-Net [10] can be used instead. Different to
other state-of-the-art supervised deep learning registration methods [14] we avoid
using the expert labels only at the end for the warping loss, which may lead to
sub-optimal results due to limited gradient backflow. We instead found that
using off-the-shelf segmentation networks produce best results.
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The obtained features are fed into a correlation layer, which computes a
sum-of-squared-differences (SSD) cost volume with a box filter and gives an
initial best displacement for each voxel (simply taking the argmin). Therefore,
we employ a search space with up to 5000 discretised displacements per voxel.
The capture range can be up to at least 48 voxels in each dimension (setting for
Task 2) and therefore estimate large motion accurately.

The correlation layer’s output is used to solve two coupled convex optimisa-
tion problems for efficient global regularisation: In several iterations, alternating
steps are performed for similarity and smoothness optimisation, i.e. a spatially
smoothed field based on the current argmin (minimal SSD costs) displacements
followed the by adding a penalty to the discreted SSD costs based on the dis-
crepancy of this current globally smooth optimum.

The resulting displacements in turn are used as a starting point for an Adam-
based instance optimisation in order to provide the final deformation grid used
for warping of the moving input image. This step is very similar to classic opti-
cal flow estimation [15]. For this purpose, the cost function is linearised and
the Adam optimiser [11] is used for gradient descent. Smoothness of the dis-
placement field is induced by adding a B-spline deformation model and diffusion
regularisation.

3 Experiments and Results

Each of the Learn2Reg2021 tasks entails certain challenges that we face with
slightly varying experimental setups as outlined in the following. The complete
implementation details can be found in our publicly available repository.2 Table 1
presents quantitative results and Fig. 2 shows qualitative results for the individ-
ual tasks.

Task 1 Thorax-Abdomen CT-MR. The first task aims to align multimodal intra-
patient data [1–3,12]. Besides of multimodal image registration, the objectives of
learning from few and noisy labels, as well as dealing with large deformations and
missing correspondences are challenging. For this task, we extract hand-crafted
MIND features and include an inverse-consistency constraint as introduced in
[6] to enforce a minimised discrepancy between the forward and backward trans-
formations in order to avoid implausible deformations. To further regularise the
displacement field during Adam instance optimisation, we add thin plate splines
yielding smooth deformation fields. As large deformations are to be expected,
we chose a search space that includes discretised displacements with a capture
range of 64 mm for each dimension within the scanned anatomy.

Task 2 Lung CT. The second task is to perform inspiration-expiration regis-
tration on intra-patient lung CT data [9]. In this task, there is the challenge of
estimating large breathing motion for scans with only partial visibility of the
lungs in the expiration scans. The displacement search range is selected in order
2 https://github.com/multimodallearning/convexAdam.

https://github.com/multimodallearning/convexAdam
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Table 1. Results for the different Learn2Reg2021 tasks. Accuracy is measured by
the Dice similarity of organ segmentations (Dice), the target registration error for
anatomical landmarks (TRE), and the 95% Hausdorff distance for segmentations (HD).
Robustness is measured by the 30% lowest Dice scores (Dice30), Dice scores for addi-
tional segmentations (Dice+add) and the 30% highest TRE values (TRE30). Plausibility
of the deformations is measured by the standard deviation of the logarithmic Jacobian
determinant (SDlogJ). Dice similarities are reported in %, TRE and HD values are
given in millimetres and inference time is given in seconds. The last table displays the
challenge scores and ranks for the overall 1st, 2nd, and 3rd place.

Task 1

Dice Dice+9 HD SDlogJ time

initial 33.1 22.3 44.48 − −
ours 75.4 73.1 20.75 0.09 1.30

Task 2

TRE TRE30 SDlogJ time

initial 10.24 16.80 - -

ours 1.85 2.89 0.06 1.82

Task 3

Dice Dice30 HD SDlogJ time

initial 55.9 29.7 4.07 - -

ours 79.9 64.5 2.00 0.05 12.62

Scores and ranks

Task1 Task2 Task3

score (rank) score (rank) score (rank)

LapIRN 0.86 (2) 0.79 (4) 0.94 (1)

convexAdam 0.88 (1) 0.83 (3) 0.82 (2)

PIMed 0.85 (4) 0.68 (6) 0.70 (5)

Task 1 Task 2 Task 3

Fig. 2. Qualitative results of our proposed method (top row: colourmap overlay of fixed
and moving image (Task 1 and 2) or segmentation (Task 3); bottom row: overlay of
fixed and warped moving image or segmentation).
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to capture motion with up to 42× 30 × 42 mm for the x-, y-, and z-dimension
respectively. Like in the first task, MIND features of both input images are used
to compute the SSD cost volume.

Task 3 Whole Brain MR. The third task deals with the registration of inter-
patient T1-weighted brain MRI [13]. Here, the main challenge is to precisely align
small structures of variable shape. For this reason, we chose a displacement cap-
ture range of 16 mm for each dimension within the scanned brain structures. As
this task comprises a large amount of labelled image data, nnU-Net predictions
for segmentation guidance are employed. We use the nnU-Net predictions in the
form of inverse class-weighted one-hot encodings as features for our method’s
optimisation steps.

4 Conclusion

Our contribution to the Learn2Reg2021 challenge showed that image registration
can be performed fast and accurately using an optimisation strategy with little
learning. It is highly parallelisable on a GPU and robust by using a large search
space of discretised displacements. Smoothness of the deformation fields could
be induced by a global convex regularisation, diffusion regularisation, and B-
spline interpolation. By using an efficient Adam-based instance optimisation,
our method yields very precise results and by integrating a modality-invariant
feature extractor, we achieve a wide versatility. We were able to achieve the
overall Learn2Reg2021 challenge’s second place, winning Task 1, being second
in Task 3, and being third in Task 2.
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Abstract. In this paper, we apply our proposed PCNet [12] on three dif-
ferent registration tasks assigned by the Learn2Reg challenge 2021 [1,5],
i.e., CT-MR thorax-abdomen registration [3,11,14], lung inspiration-
expiration registration [6] and whole brain registration [4,13], well cover-
ing three key demands in clinical practice, i.e., registration across modal-
ities, across phases, and across patients. In these tasks, an accurate and
reasonable deformation field plays a crucial role while it is often difficult
to estimate in large misalignments. The core conception of our PCNet is
to decompose the target deformation field into multiple sub-fields in both
progressive and coarse-to-fine manners, which dramatically simplifies the
direct estimation of deformation field and thus leads to a robust registra-
tion performance. The evaluation results on the three tasks demonstrate
a competitive performance of PCNet and its great scalability to meet
various registration demands.

Keywords: Medical image registration · Deep learning · Learn2Reg

1 Introduction

Given an image pair consisting of a fixed image and a moving image, regis-
tration requires to solve a deformation field to spatially align the fixed-moving
image pair, which is a key enabling technique for varied clinical usages. The
Learn2Reg challenge 2021 recently initiated three tasks representing typical clin-
ical scenarios, i.e., CT-MR thorax-abdomen intra-patient registration (registra-
tion across modalities), CT lung inspiration-expiration registration (registration
across phases) and MR whole brain registration (registration across patients).
Shared by these tasks, an accurate and fast estimation of deformation field is a
crucial step but challenges the academic and industrial circles.

S. Wang and J. Lv are the co-first authors.
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Fig. 1. The structure of proposed registration network which consist of a dual-encoder
U-Net backbone, and a set of DFI and NFF modules in each decoding block.

In our recent work [12], we argued that decomposition of the target deforma-
tion field is a potential and promising solution and proposed PCNet combining
the strengths of progressive registration method [15] and coarse-to-fine registra-
tion method [7]. Specifically, PCNet is built upon the backbone of dual-encoder
U-net [10] and involves two key modules, i.e., deformation field integration (DFI)
and non-rigid feature fusion (NFF), so as to decompose the target deformation
field into several sub-fields in both progressive and coarse-to-fine manners simul-
taneously. By doing so, PCNet can handily predict more accurate and reasonable
deformation fields with fewer parameters, and achieves competitive performance
in all tasks of the Learn2Reg challenge.

2 Method

In this section, we introduce our PCNet to make this paper self-included (Sect.
2.1), and implementation details to address the three specific tasks (Sect. 2.2).

2.1 Progressive and Coarse-to-Fine Network

As shown in Fig. 1, given an unregistered pair of moving image (Im) and fixed
image (If ), PCNet first utilizes two separate encoders to extract multi-scale
features from Im and If respectively. Then these multi-scale feature maps in
decoding blocks is used to estimate sub-fields from coarse to fine until full-size
deformation field, i.e., target deformation field are obtained. Specifically, the
coarsest feature maps of Im and If (gray block in Fig. 1) are combined to pro-
duce the coarsest deformation field through convolution layers. The estimation
of higher level’s deformation field is quite different with the lowest level. In the
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higher level, each decoding block sets up two key modules, named Deforma-
tion Filed Integration (DFI) and Non-rigid Feature Fusion (NFF) module to
take advantage of the effort of all previous estimations and help with the next
estimation.

In each decoding block, DFI module integrates sub-fields from all previous
decoding blocks through warping the sub-fields progressively, and the integrated
field is used to warp its corresponding feature map of Im. We believe that the
estimation of deformation field can be eased through first spatially align the
feature maps of Im and If . In views of this, the NFF module dynamically fuses
the feature maps from three pathways, including the warped feature map of Im,
the feature map of the If and the up-scaled feature maps from last previous
decoding block. Through NFF module, the inference of deformation field can be
eased in the next decoding block. More details about these two modules can be
found in [12].

2.2 Implementation Details

Learn2Reg 2021 challenge consists of 3 sub-tasks: abdominal CT-MR registration
(task1), inspiration-expiration lung CT registration (task2) and whole brain MR
registration (task3). According to the data characteristics and task requirements,
we employ different loss functions and data processing schemes for each specific
sub-task.

Loss Function. For each task, the total loss (Ltotal) basically consists of image
similarity loss (Lsim), deformation regularization loss (Lreg) and weakly super-
vised loss (Lweakly) if additional segmentation labels or landmarks are provided:

Ltotal = αLsim + βLreg + γLweakly, (1)

where α, β and γ represent the weight parameters of corresponding loss respec-
tively.

The image similarity loss (Lsim) calculates the similarity between the warped
moving image and fixed image. We use Normalization Local Correlation Coeffi-
cient (LLNCC) [12] for single-modality registration as similarity loss, and Nor-
malization Mutual Information (LNMI) [4] for multi-modality registration.

The regularization loss (Lreg) ensures the continuity of the deformation field
based on its spatial gradients [12].

If the segmentation labels or landmarks are provided for training data, we
use them as weakly supervised loss (Lweakly) to help the training. We construct
the segmentation loss (Lseg) based on Dice coefficient and Cross Entropy (CE)
as in [9].

Target registration error (LTRE) of landmarks [8] are used as an additional
weakly supervise for better alignment of small structures if landmarks are pro-
vided.

We use the same regularization loss in all tasks, while similarity loss and
weakly supervised loss for each task are different. Task1 is a multi-modality reg-
istration task, thus we chose LNMI as the similarity loss. The weakly supervised
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loss is the segmentation loss Lseg that calculates the misalignment of correspond
region in fixed and warped moving image. For task2, we use LLNCC as the sim-
ilarity loss. As this task focus on the registration of the internal structure in
lung, we only calculate the similarity for internal part of lungs. The TRE loss
LTRE is utilized for better alignment of the small structure such as pulmonary
vessels. We use LLNCC as the similarity loss and Lseg for weakly supervised loss
in task3. The weight parameters {α, β, γ} are set to {1, 1, 1} in task1, {1, 1,
10} in task2, and {1, 5, 1} in task3.

Data Processing and Data Augmentation. The data processing methods
include twice down-sampling, window adjusting and min-max normalization.
Besides, we implement random rigid and elastic deformation for some tasks to
augment the limited data. Table 1 shows the implementation of data processing
and data augmentation for specific sub-task.

Table 1. Data processing and data augmentation for specific sub-task.

2× Down-
sampling

Window
adjusting

Min-max
normalization

Random rigid &
elastic deformation

Task1
√

[−170,
230]

√ √

Task2 – [0, 1100]
√ √

Task2
√

–
√

–

3 Results

Table 2 shows the result of our method for each sub-task in Learn2Reg 2021
challenge. As shown in this table, we compared the initial score with the score
after registration via our method, and the results show a great improvement in
all sub-tasks. According to the official final results [2], our method ranks third

Table 2. The results of Learn2Reg 2021 challenge. This table exhibits metrics including
the Dice similarity coefficient of segmentation, 95% percentile of Hausdorff distance
(HD) of segmentation, target registration error (TRE) of landmarks and the standard
deviation of log Jacobian determinant (SDlogJ) of the deformation field. We also exhibit
the time of predicting a deformation field. The last column shows the score which
integrates all these metrics.

Dice HD TRE SDlogJ Time Initial score Score

Task1 0.76 17.20 – 0.13 1.90 0.26 0.78

Task2 – – 2.70 0.10 2.70 0.25 0.59

Task3 0.80 2.00 – 0.08 2.00 0.17 0.80
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Fig. 2. Examples of registration results for task1, task2, and task3.

among 13 unofficial participating teams. Comparing with other top performance
teams, our method obtains deformation field in relatively less time for all tasks.
Figure 2 shows some visualization results of our method in three tasks. As shown
in the figure, the warped moving image is able to match the fixed image with
high accuracy in all tasks. These results indicate that our method works robustly
in multiple situations, such as multi-modality registration, large misalignment
registration, tiny and intricate structure registration.

4 Conclusion

In this paper, we introduce our learning-based registration network and evalu-
ate its effectiveness on Learn2Reg 2021 challenge. Our method decomposes the
target deformation field in both progressive and coarse-to-fine manners simulta-
neously, which enables the network accomplish accurate spatial alignment even
when the displacement is quite large such as in the task2, or when the structure is
complex such as in task3. The results of Learn2Reg 2021 challenge confirm that
our method can achieve relatively satisfactory results in a variety of scenarios.
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Abstract. This paper describes a contribution to the second edition of
the Learn2Reg challenge organized jointly with the MICCAI 2021 con-
ference, more specifically, to the OASIS MRI task that is related to the
registration of whole brain magnetic resonance images. The proposed
algorithm is a multi-level, learning-based, and semi-supervised proce-
dure. The algorithm consists of a multi-level input/output U-Net-like
architecture trained with additional symmetry constraints. The method
was ranked as the third-best for the brain registration task in terms of
the combined challenge evaluation criteria.

Keywords: Image registration · Deep learning · Medical imaging ·
L2R · Learn2Reg

1 Introduction

This paper presents a contribution to the Learn2Reg challenge organized jointly
with the MICCAI 2021 conference. The goal of the method is to register whole
brain magnetic resonance (MR) images and to improve the alignment of small
structures of variable shape and size with high precision [1]. The proposed
method is a learning-based, multi-level, and semi-supervised procedure. It com-
bines the unsupervised approach based on the MIND-loss [2], the weak super-
vision guided by the segmentation masks, and the symmetry enforcement based
on the inverse consistency. The paper presents a slightly improved version of the
method used during the previous edition of the challenge [3].

2 Methods

2.1 Method

The proposed method is a learning-based registration procedure. It consists of
a multi-level U-Net-based architecture [4] with residual connections. The proce-
dure starts with creating the resolution pyramids for both the source and the
c© Springer Nature Switzerland AG 2022
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target image. The images are then concatenated and passed to the deep network
two times. First, the displacement field is calculated from the source to the tar-
get. Second, the order is reversed, and the displacement field is calculated from
the target to the source. The calculated displacement fields are used to warp
the source/target images and the corresponding segmentation masks. The pro-
cessing pipeline and the network architecture are shown in Fig. 1. The proposed
approach, apart from the inverse consistency, is based on a method dedicated to
breast tumor bed localization [5].

The objective function consists of a weighted sum of the modality indepen-
dent neighbourhood description self-similarity context (MIND-SSC) [2,6], the
diffusion regularization, the Dice loss between the segmentation masks, and the
inverse consistency of the displacement fields:

C(S, T, Sm, Tm, uST , uTS) =
MINDSSC(S ◦ uST , T ) + MINDSSC(T ◦ uTS , S)

2

+ α
R(uST ) + R(uTS)

2

+ β
DSC(Sm ◦ uST , Tm) + DSC(Tm ◦ uTS , Sm)

2
+ θIC(uST , uTS),

(1)

where S, T, Sm, Tm denotes the source, target, source mask, and target mask
respectively, uIJ is the dense displacement field from I to J , R denotes the
diffusive regularization, IC is the inverse consistency, α, β, θ are the parame-
ters controlling the transformation smoothness, the influence of segmentation
masks, and the inverse consistency respectively. The segmentation masks are
warped using the linear interpolation to make the cost function differentiable
with respect to the transformation grid. The cost function is calculated for each
decoder level and averaged before the backpropagation.

During the inference, the images are passed to the deep network only once
to calculate the displacement field from the source to the target, without using
the segmentation masks or quantitatively checking the inverse consistency.

2.2 Dataset and Experimental Setup

The dataset consists of MR images prepared for the HyperMorph article [7,8]
released under the OASIS Data Use Agreement. The images show whole brains
together with segmentations of 35 structures. The images are available both in
an original and the preprocessed format. In this work, the preprocessed cases are
used, including the skull stripping. There are 394 volumes in the training set, 19
volumes in the validation set, and 39 volumes in the test set. The training set
pairs are created by matching all training cases with each other. The segmenta-
tion masks are unavailable for the test cases. A more detailed description of the
dataset can be found in [1,7,8].
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Fig. 1. Visualization of the training pipeline and the network architecture. The seg-
mentation masks are used only for training and during the inference the images are
passed to the network only once.

The training was performed for a predefined number of iterations (300), with
the number of cases per iteration equal to 500, an exponentially decaying learn-
ing rate (initial learning rate: 0.001, decaying rate: 0.99), and batch size equal
to 1. The network consists of 11,616,665 trainable parameters. The values for
α, β, θ were 12500, 0.2 and 1500 respectively. The MIND-SSC radius and dilation
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were set to 2. The objective function was calculated for each encoder/decoder
level separately and then summed up. The method was implemented using
PyTorch [9].

3 Results

The method was evaluated using the following metrics: (i) the Dice similarity
coefficient of segmentation masks (DSC), (ii) the DSC-based robustness score
(DSC30 - 30% cases with the lowest DSC), (iii) the 95% percentile of Hausdorff
distance (HD) of segmentations (HD95), and (iv) the standard deviation of log
Jacobian determinant (SDlogJ).

The quantitative results are presented in the Table 1, together with a com-
parison to other participants. The table presents results for both the validation
and the test set. An exemplary visualization of the registered images is shown
in Fig. 2. The method was ranked as the third-best in terms of the combined
challenge evaluation criteria for the registration of whole brain MR images. A
more detailed comparison is available on the challenge website [1], and will be
summarized in the challenge overview article [10].

Fig. 2. Exemplary visualization of the registration results for three test cases. The
columns (from left) show the middle slice of source, target, and the registered source
respectively.
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Table 1. Quantitative results on the validation and test sets for the proposed method,
as well as for the other participants’ methods. The HD is presented in millimeters.
Details about the rank calculation and the participants details are available in the
challenge overview article and the challenge website [1,10].

Dataset Avg. DSC Avg. DSC30 Avg. HD95 Avg. SDlogJ Time [s] Rank

Validation (proposed) 0.83 0.81 1.71 0.05 – –

Test (proposed) 0.79 0.63 inf 0.05 2.6 0.817

Test (proposed∗) 0.79 0.63 1.8 0.05 2.6 –

cwmokab 0.82 0.68 nan 0.07 1.2 0.943

mattiaspaul 0.80 0.64 2.0 0.05 12.6 0.817

Driver 0.80 0.64 2.0 0.08 2.0 0.801

3idiots 0.80 0.65 2.0 0.08 1.5 0.779

PIMed 0.78 0.60 nan 0.06 14.9 0.701

Winter 0.77 0.59 2.4 0.08 2.6 0.583

MEVIS 0.77 0.59 2.3 0.07 10.4 0.564

lassehansen 0.77 0.59 2.2 0.09 23.8 0.503

Bailiang 0.67 0.44 2.9 0.04 1.4 0.449

smajjk 0.78 0.61 2.1 0.56 – 0.435

Imperial 0.76 0.59 nan 0.19 2611 0.413

AlexThorley 0.77 0.61 nan 0.31 – 0.405

vjaouen 0.74 0.54 2.5 0.08 – 0.358
∗ Assuming that the NaN/Inf HD95 equals to 10mm.

4 Discussion and Conclusion

The proposed method scored the third place in the task related to the regis-
tration of the whole brain MR images. The average method run-time could be
further reduced by initializing the network prior to accessing the image pairs. The
proposed method achieves low average SDlogJ and a small fraction of foldings,
showing that the deformations are smooth and regular. The method could be
further improved by a proper augmentation. The results for the test set are con-
siderably worse compared to the training/validation sets. This shows the limited
generalizability and potential problems related to the method usage on images
acquired with previously unseen scanners/protocols. This could be alleviated by
a proper domain adaptation before performing the registration. Nevertheless,
the latent spaces of networks dedicated to registration of given organs are usu-
ally organ-specific, thus, their usability is limited. Potentially more universal
approach, e.g. described in the SynthMorph article [11] could result in a more
scalable and universal registration network.

All the participants methods suffer from the relatively low robustness. The
DSC30 is significantly lower than the average DSC for all the proposed methods.
The DSC score for majority of the methods vary between 0.78 to 0.82 while the
differences between the DSC30 are way more significant. Therefore, the best-
performing method (cwmokab) won due to the highest robustness and ability
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to handle difficult cases. Interestingly, the instance optimization-based methods
achieved comparable results and the registration time at the level of several sec-
onds making it arguable whether learning-based methods are the best approach
for tasks without hard real-time requirements.

To conclude, the proposed algorithm is a multi-level, semi-supervised,
learning-based registration method with additional symmetry constraints. Nev-
ertheless, the method could still be further improved in terms of the generaliz-
bility to new, unseen cases.

Acknowledgments. This work was funded by NCN Preludium project no. UMO-
2018/29/N/ST6/00143.
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