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Abstract. We discuss a unified framework for the statistical analysis
of streaming data obtained by networks with a known neighborhood
structure. In particular, we deal with autoregressive models that make
explicit the dependence of current observations to their past values and
the values of their respective neighborhoods. We consider the case of both
continuous and count responses measured over time for each node of a
known network. We discuss least squares and quasi maximum likelihood
inference. Both methods provide estimators with good properties. In par-
ticular, we show that consistent and asymptotically normal estimators
of the model parameters, under this high-dimensional data generating
process, are obtained after optimizing a criterion function. The method-
ology is illustrated by applying it to wind speed observed over different
weather stations of England and Wales.
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1 Introduction

Measuring the impact of a network structure to a multivariate time series process
has attracted considerable attention over the last years, mainly due to the grow-
ing availability of streaming network data (social networks, GPS data, epidemics,
air pollution monitoring systems and more generally environmental wireless sen-
sor networks, among many other applications). The methodology outlined in this
work has potential application in several network science fields. In general, any
stream of data for a sample of units whose relations can be modeled as an adja-
cency matrix (neighborhood structure) the statistical techniques reviewed in this
work are directly applicable. Indeed, a wide variety of available spatial stream-
ing data related to physical phenomena can fit this framework. As an illustrative
example, we analyze wind speed data observed over different weather stations
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of England and Wales. Network autoregressions allows meaningful analysis of
the actual wind speed, for each node, based on the effect of past speeds and
the velocity measured on its neighbor stations; see Sect. 4. This methodology is
potentially useful to model sensor networks for environmental monitoring. See
[6,8,22,25], among others, who discuss application of wireless sensor network
for environmental, agricultural and intelligent home automation systems. See
also [41] for an application to social network analysis. We discuss a statistical
framework which encompasses the case of both continuous and count responses
measured over time for each node of a known network.

1.1 The Case of Continuous Responses

When a response random variable, say Yi,t, is measured for each node i of a
known network, with N nodes, at time t, a N × 1-dimensional random vec-
tor is obtained, say Yt ∈ R

N = (Y1,t . . . Yi,t . . . YN,t)′, for each measured time
t = 1, . . . , T . The Vector Autoregressive (VAR) model, is a standard tool for
continuous time series analysis and it has been widely applied to model multi-
variate processes. However, if the size of the network is N , then the number of
unknown parameters to be estimated is of the order O(N2) which is much larger
than the temporal sample size T . The VAR model cannot then be applied for
modeling such data.

Other modelling strategies have been proposed to describe the dynamics of
such processes. One method is based on sparsity, see for example [21], among
other. Accordingly, the parameters of the model which have less impact to the
response are automatically set to zero, allowing to estimate the remaining ones.
Alternatively, a dimension reduction method which accounts for network impact
has been recently developed by [41], who introduced the Network vector Autore-
gressive model (NAR). In this methodology, for each node i = 1, . . . , N the
current response, Yi,t, for the node i, at time t, is assumed to depend only on
the lagged value of the response itself, say Yi,t−1, and the mean of the past
responses computed only over the nodes connected to the node i; this can be
broadly thought as a factor which accounts for the impact of the network struc-
ture to node i. The NAR representation allows considerable simplification for the
final model fitted to the data as it depends only on a few parameters. In addi-
tion, such representation still includes all essential information, i.e. the impact
of the past values of the response and the influence of the network neighbors on
each node.

NAR models are tailored to continuous response data. The parameters of
the model are estimated via ordinary least squares (OLS), under two asymptotic
regimes (a) with increasing time sample size T → ∞ and fixed network dimension
N (which is standard assumption for multivariate time series analysis) and (b)
with both N,T increasing, i.e. min {N,T} → ∞. The latter is important in
network science, since the asymptotic behavior of the network when its dimension
grows (N → ∞) is a crucial interest in network analysis. In practice, when only
a sample of the network is available, the results obtained under (b) guarantee
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that the estimates of unknown parameters of the model have good statistical
properties, even if N is big and, ultimately, bigger than T .

More recently, an extension to network quantile autoregressive models has
been studied by [42]. Further works in this line of research includes the grouped
least squares estimation, [40], and a Network GARCH model, see [39] under
the standard asymptotic regime (a). Related work was developed by [23] who
specified a Generalized Network Autoregressive model (GNAR) for continuous
random variables, by taking into account different layers of relationships within
neighbors of the network. All network time series models discussed so far are
defined in terms of Independent Identically Distributed (IID) error random inno-
vations; such an assumption is crucial for most of theoretical analysis.

1.2 The Case of Discrete Responses

Increasing availability of discrete-valued data, from diverse applications, has
advanced the growth of a rich literature on modelling and inference for count time
series processes. In this contribution, we consider the generalized linear model
(GLM) framework, see [27], which includes both continuous-valued time series
and integer-valued processes. Likelihood inference and testing can be developed
in the GLM framework. Some examples of GLM models for count processes
include the works by [9,15] and [14], among others. In [17] and [19], stability
conditions and inference for linear and log-linear count time series models are
developed. Further related contributions can be found in [5] for inference of
negative binomial time series, [1,7,10,11] and [12], among others, for further
generalizations. Even though a vast literature on the univariate case is avail-
able, results on multivariate count time series models for network data are still
missing; see [26,30–32] for some exceptions. Recently [18], introduced multivari-
ate linear and log-linear Poisson autoregression models. These authors described
the joint distribution of the counts by means of a copula construction. Copulas
are useful because of Sklar’s theorem which shows that marginal distributions
are combined to give a joint distribution when applying a copula, i.e. a N -
dimensional distribution function all of whose marginals are standard uniforms.
Further details are also available in the review of [16]. Recent work by [2] stud-
ied linear and log-linear multivariate count-valued extensions of the NAR model,
called Poisson Network Autoregression (PNAR). These authors developed asso-
ciated theory for the two types of asymptotic inference (a)–(b) discussed earlier,
under the α-mixing property of the innovation term, see [13,33]. Intuitively,
this assumption requires only asymptotic independence over time. The marginal
distribution of the resulting count process is Poisson (but other marginals are
possible including the Negative Binomial distribution) whereas the dependence
among them is captured by the copula construction described in [18]. Inference
relies on the Quasi Maximum Likelihood Estimation (QMLE), see [20], among
others.
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1.3 Outline

This paper summarizes some of the work by [41] and [2] and provides a unified
framework for both continuous and integer-valued data. In addition it reviews the
recent developments in this research area and illustrates the potential usefulness
of this methodology. The paper is divided into three parts: Sect. 2 discusses
the linear and log-linear NAR and PNAR model specifications. In Sect. 3, the
quasi likelihood inference is described, for the two types of asymptotics (a)–(b).
Finally, Sect. 4 reports the results of an application on a wind speed network in
England and Wales, and gives a model selection procedure for the lag order of
the NAR model.

Notation

For a q × p-dimensional matrix A whose elements are aij , for i = 1, . . . , q,
j = 1, . . . , p, denotes generalized matrix norm, defined as |||A|||r =
max|x|r=1 |Ax|r. If r = 1, |||A|||1 = max1≤j≤p

∑q
i=1 |aij |. |||A|||2 = ρ1/2(A′A),

where ρ(·) is the spectral radius, if r = 2. |||A|||∞ = max1≤i≤q

∑p
j=1 |aij |, if

r = ∞. If q = p, then these norms are matrix norms.

2 Models

We study a network of size N (number of nodes), indexed by i = 1, . . . N , and
adjacency matrix A = (aij) ∈ R

N×N where aij = 1, if there is a directed
edge from i to j, i → j (e.g. user i follows user j on Twitter), and aij = 0
otherwise. Undirected graphs are also allowed (i ↔ j). The neighborhood struc-
ture is assumed to be known but self-relationships are not allowed, i.e. aii = 0
for any i = 1, . . . , N (this is reasonable because e.g. user i cannot follow him-
self). For more on networks see [24,36]. Define a variable Yi,t ∈ R for the node
i at time t. The interest in on assessing the effect of the network structure
on the stochastic process {Yt = (Yi,t, i = 1, 2 . . . N, t = 0, 1, 2 . . . , T )}, with the
corresponding N -dimensional conditional mean process defined in the follow-
ing way {λt = (λi,t, i = 1, 2 . . . N, t = 1, 2 . . . , T )}, where λt = E(Yt|Ft−1) and
Ft−1 = σ(Ys : s ≤ t − 1) is the σ-algebra generated by the past of the process.

2.1 NAR Model

For i = 1, . . . , N , the Network Autoregressive model of order 1, NAR(1), is given
by

λi,t = β0 + β1n
−1
i

N∑

j=1

aijYj,t−1 + β2Yi,t−1 , (1)

where ni =
∑

j �=i aij is the out-degree, i.e. the total number of nodes which i
has an edge with. The NAR(1) model implies that, for every single node i, the
conditional mean of the process is regressed on the past of the variable itself
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for node i and the weighted average over the other nodes j �= i which have a
connection with i. Hence only the nodes which are directly followed by the focal
node i (neighborhoods) may have an impact on the mean process of the focal
node i. It is a reasonable assumption in many applications; for example, in a
social network the activity of node k, which satisfies aik = 0, does not affect
node i. However, extensions to several layers of neighborhoods are also possible,
see [23] and [2, Rem. 2]. The parameter β1 is called network effect and it measures
the average impact of node i’s connections n−1

i

∑N
j=1 aijYj,t−1. The coefficient

β2 is called autoregressive (or lagged) effect because it provides a weight for the
impact of past process Yi,t−1.

For a continuous-valued time series Yt, [41] defined Yi,t = λi,t+ξi,t, where λi,t

is specified in (1) and ξi,t ∼ IID(0, σ2) across both 1 ≤ i ≤ N and 0 ≤ t ≤ T and
with finite fourth moment. Then first two moments of the process Yt modelled
by (1) are given by [41, Prop. 1]

E(Yt) = β0(1 − β1 − β2)−11N ,

vec[Var(Yt)] = σ2(IN2 − G ⊗ G)−1vec(IN ) ,

where 1N = (1, 1, . . . , 1)′ ∈ R
N and IN is the identity matrix N × N and

G = β1W + β2IN , with W = diag
{
n−1
1 , . . . , n−1

N

}
A being the row-normalized

adjacency matrix. Note that the matrix W is a stochastic matrix, as |||W|||∞ = 1,
[34, Def. 9.16].

More generally, the NAR(p) model is defined by

λi,t = β0 +
p∑

h=1

β1h

⎛

⎝n−1
i

N∑

j=1

aijYj,t−h

⎞

⎠ +
p∑

h=1

β2hYi,t−h , (2)

allowing dependence on the last p values of the response node. Obviously, when
p = 1, β11 = β1, β22 = β2 and we obtain (1). Without loss of generality,
coefficients can be set equal to zero if the parameter order is different for the
summands of (2).

2.2 PNAR Model

Consider the process Yi,t, for i = 1, . . . , N , is integer-valued (that is Yt ∈ N
N )

and it is assumed to be marginally Poisson, such as Yi,t|Ft−1 ∼ Poisson(λi,t).
Other models can be developed, including the Negative Binomial distribution,
but the marginal mean has to parameterized as in (1). The univariate conditional
mean of the count process is still specified as (1), more generally (2), above. The
interpretation of all coefficients is identical to the case of continuous-valued case.
The innovation term is given by ξt = Yt − λt and forms a martingale difference
sequence by construction but, in general, it is not an IID sequence. This adds a
level of complexity in the model because a joint count distribution is required
for modelling and inference. Several alternatives of multivariate Poisson-type
probability mass function (p.m.f) have been proposed in the literature, see the
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review in [16, Sect. 2]. However, they usually have a complicated closed form,
the associated inference is theoretically cumbersome, and numerically difficult;
moreover, the resulting model is largely constrained. Then, a copula approach
has been preferred as in [2], where the joint distribution of the vector {Yt} is
constructed imposing a copula structure on waiting times of a Poisson process,
see [18, p. 474]. More precisely, consider a set of values (β0, β1, β2)′ and a starting
vector λ0 = (λ1,0, . . . , λN,0)′,

1. Let Ul = (U1,l, . . . , UN,l), for l = 1, . . . , L a sample from a N -dimensional
copula C(u1, . . . , uN ), where Ui,l follows a Uniform(0,1) distribution, for i =
1, . . . , N .

2. The transformation Xi,l = − log Ui,l/λi,0 is exponential with parameter λi,0,
for i = 1, . . . , N .

3. If Xi,1 > 1, then Yi,0 = 0, otherwise Yi,0 = max
{

k ∈ [1,K] :
∑k

l=1 Xi,l ≤ 1
}

,
by taking K large enough. Then, Yi,0 ∼ Poisson(λi,0), for i = 1, . . . , N . So,
Y0 = (Y1,0, . . . , YN,0) is a set of marginal Poisson processes with mean λ0.

4. By using the model (1), λ1 is obtained.
5. Return back to step 1 to obtain Y1, and so on.

This constitutes an innovative data generating process with desired Poisson
marginal distributions and flexible correlation. With the distribution structure
presented above, the resulting model for the count process Yt, with conditional
mean specified as in (1) for all i, has been introduced by [2], called linear Poisson
Network Autoregression of order 1, PNAR(1), written in matrix notation:

Yt = Nt(λt), λt = β0 + GYt−1 , (3)

where {Nt} is a sequence of independent N -variate copula-Poisson process (see
above), which counts the number of events in the time intervals [0, λ1,t] × · · · ×
[0, λN,t]. Moreover, β0 = β01N ∈ R

N . By considering the conditional mean
specified as in (2) for all i, it is immediate to define the PNAR(p) model:

Yt = Nt(λt), λt = β0 +
p∑

h=1

GhYt−h , (4)

where Gh = β1hW+β2hIN for h = 1, . . . , p. Clearly, λi,t > 0 so β0, β1h, β2h ≥ 0
for all h = 1 . . . , p. Although the network effect β1 of model (1) is typically
expected to be positive, see [4], in order to allow a connection to the wider GLM
theory, [27], and allow coefficients which take values on the entire real line the
following log-linear version of the PNAR(p) is proposed in [2]:

νi,t =β0 +
p∑

h=1

β1h

⎛

⎝n−1
i

N∑

j=1

aij log(1 + Yj,t−h)

⎞

⎠ +
p∑

h=1

β2h log(1 + Yi,t−h) , (5)

where νi,t = log(λi,t) for every i = 1, . . . , N . The model (5) do not require any
constraints on the parameters, since νi,t ∈ R. The interpretation of coefficients
and the summands of (5) is similar to that of linear model but in the log scale.
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The condition
∑p

h=1(|β1h| + |β2h|) < 1 is sufficient to obtain the process
{Yt, t ∈ Z} to be stationary and ergodic for every Network Autoregressive
model of order p. See [41, Thm. 4] and [2, Thm. 1–2]. For model (3), such
stationary distribution has the first two moments

E(Yt) = (IN − G)−1β0 = β0(1 − β1 − β2)−11N ,

vec[Var(Yt)] = (IN2 − G ⊗ G)−1vec[E(Σt)] ,

where Σt = E(ξtξ
′
t|Ft−1) denotes the true conditional covariance matrix of the

vector Yt.

3 Inference

We approach the estimation problem by using the theory of estimating func-
tions; see [3,37] and [20], among others. Consider the vector of unknown param-
eters θ = (β0, β11, . . . , β1p, β21, . . . , β2p)′ ∈ R

m, satisfying the stationarity con-
dition, where m = 2p + 1. Define the quasi-log-likelihood function for θ as
lNT (θ) =

∑T
t=1

∑N
i=1 li,t(θ), which is not constrained to be the true log-

likelihood of the process. The quasi maximum likelihood estimator (QMLE) is
the vector of parameters θ̂ which maximize the quasi-log-likelihood lNT (θ). Such
maximization is performed by solving the system of equations SNT (θ) = 0m,
with respect to θ, where SNT (θ) = ∂lNT (θ)/∂θ =

∑T
t=1 sNt(θ) is the quasi-

score function, and 0m is a m× 1-dimensional vector of 0’s. Moreover define the
matrices

HNT (θ) = −∂2lNT (θ)
∂θ∂θ′ , BNT (θ) = E

(
T∑

t=1

sNt(θ)sNt(θ)′
∣
∣
∣
∣Ft−1

)

, (6)

as the sample Hessian matrix and the sample conditional information matrix,
respectively. We drop the dependence on θ when a quantity is evaluated at the
true value θ0.

Define Xi,t = n−1
i

∑N
j=1 aijYj,t−1 and Zi,t−1 = (1,Xi,t−1, Yi,t−1)′. For con-

tinuous variables, the QMLE estimator for the NAR(1) model defined in (1)
maximizes the quasi-log-likelihood

lNT (θ) = −
T∑

t=1

(Yt − Zt−1θ)′ (Yt − Zt−1θ) , (7)

where Zt−1 = (Z1,t−1, . . . ,ZN,t−1)′ ∈ R
N×m, with associated score function

SNT (θ) =
T∑

t=1

Z′
t−1 (Yt − Zt−1θ) . (8)

The maximization problem (8) has a closed form solution,

θ̂ =

(
T∑

t=1

Z′
t−1Zt−1

)−1 T∑

t=1

Z′
t−1Yt (9)
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which is equivalent to perform an OLS estimation of the model Yt = Zt−1θ+ξt.
The extension to the NAR(p) model is straightforward, by defining Zi,t−1 =
(1,Xi,t−1, . . . , Xi,t−p, Yi,t−1, . . . , Yi,t−p)′ ∈ R

m, see [41, Eq. 2.13]. Under regular-
ity assumptions on the matrix W and ξi,t ∼ IID(0, σ2), the OLS estimator (9)

is consistent and
√

NT (θ̂ − θ0)
d−→ N(0m, σ2Σ), as min {N,T} → ∞, where Σ

is defined in [41, Eq. 2.10]. For details see [41, Thm. 3, 5]. The limiting covari-
ance matrix Σ is consistently estimated by the Hessian matrix in (6), which
takes the form (NT )−1HNT = (NT )−1

∑T
t=1 Z′

t−1Zt−1. The error variance σ2

is substituted by the sample variance σ̂2 = (NT )−1
∑

i,t(Yi,t − Z′
i,t−1θ̂).

For count variables, the QMLE defined in [2] maximizes the following quasi-
log-likelihood

lNT (θ) =
T∑

t=1

N∑

i=1

(
Yi,t log λi,t(θ) − λi,t(θ)

)
, (10)

which is the independence log-likelihood, such as the likelihood obtained if pro-
cesses Yi,t defined in (4), for i = 1, . . . , N were independent. This simplifies
computations but guarantees consistency and asymptotic normality of the esti-
mator. Note that, although for this choice the joint copula structure C(. . . ) does
not appear in the maximization of the “working” log-likelihood (10), this does
not imply that inference is carried out under the assumption of independence
of the observed process; dependence is taken into account because of the depen-
dence of the likelihood function on the past values of the process through the
regression coefficients.

With the same notation, the score function is

SNT (θ) =
T∑

i=1

∂λ′
t(θ)

∂θ
D−1

t (θ)
(
Yt − λt(θ)

)
, (11)

where
∂λt(θ)

∂θ′ = (1N ,WYt−1, . . . ,WYt−p,Yt−1, . . . ,Yt−p)

is a N×m matrix and Dt(θ) is the N×N diagonal matrix with diagonal elements
equal to λi,t(θ) for i = 1, . . . , N . It should be noted that (11) equals the score
(8), up to a scaling matrix D−1

t (θ), as Zt−1 = ∂λt(θ)/∂θ′ and λt(θ) = Zt−1θ.
The Hessian matrix has the form

HNT (θ) =
T∑

t=1

∂λ′
t(θ)

∂θ
Ct(θ)

∂λt(θ)
∂θ′ , (12)

with Ct(θ) = diag
{
Y1,t/λ2

1,t(θ) . . . YN,t/λ2
N,t(θ)

}
and the conditional informa-

tion matrix is

BNT (θ) =
T∑

t=1

∂λ′
t(θ)

∂θ
D−1

t (θ)Σt(θ)D−1
t (θ)

∂λt(θ)
∂θ′ , (13)
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where Σt(θ) = ξt(θ)ξ′
t(θ) and ξt(θ) = Yt−λt(θ). Consider the linear PNAR(p)

model (4). By [2, Thm. 3–4], under regularity assumptions on the matrix W and
the α-mixing property of the errors {ξi,t, t ∈ Z, i ∈ N}, the system of equations
SNT (θ) = 0m has a unique solution, say θ̂ (QMLE), which is consistent and√

NT (θ̂ − θ0)
d−→ N(0m,H−1BH−1), as min {N,T} → ∞, where

H = lim
N→∞

N−1E

[
∂λ′

t(θ0)
∂θ0

D−1
t (θ0)

∂λt(θ0)
∂θ′

0

]

,

B = lim
N→∞

N−1E

[
∂λ′

t(θ0)
∂θ0

D−1
t (θ0)Σt(θ0)D−1

t (θ0)
∂λt(θ0)

∂θ′

]

.

Both H and B are consistently estimated by (12)–(13), respectively after divided
by NT and evaluated at θ̂ [2, Thm. 6]. Similar results are developed for the log-
linear PNAR(p) model [2, Thm. 5].

All the results of this section work immediately for the classical time series
inference, with N fixed and T → ∞, as a particular case.

4 Applications

4.1 Simulated Example

In this section a limited simulation example regarding the estimation of the linear
PNAR model is provided. First, a network structure is generated following one
of the most popular network model, the stochastic block model (SBM), [28,35]
and [38] which assigns a block label k = 1, . . . ,K for each node with equal
probability and K is the total number of blocks. Define P(aij = 1) = αN−0.3

the probability of an edge between nodes i and j, if they belong to the same
block, and P(aij = 1) = αN−1 otherwise. In this way, the model implicitly
assumes that nodes within the same block are more likely to be connected with
respect to nodes from different blocks. Here we set K = 5, α = 1 and N =
30. This allow to obtain the weighted adjacency matrix W. Now a vector of
count variables Yt is simulated according to the data generating mechanism
(DGM) described in Sect. 2.2, for t = 1, . . . , T , with T = 400 and starting value
λ0 = 1N . The PNAR(1) model is employed in the simulation with (β0, β1, β2) =
(1, 0.3, 0.4). The Gaussian copula is selected in the DGM, with copula parameter
ρ = 0.5, that is C(u1, . . . , uN ) = ΦR

(
Φ−1(u1), . . . ,Φ−1(uN )

)
, where Φ−1 is the

inverse cumulative distribution function of a standard normal and ΦR is the joint
cumulative distribution function of a multivariate normal distribution with mean
vector zero and covariance matrix equal to the correlation matrix R = ρN×N ,
i.e. an N × N matrix whose all elements are equal to ρ. Results are based on
100 simulations.

Then, a PNAR model with one and two lags is estimated for the generated
data by optimizing the quasi log-likelihood (10) with the nloptr R package.
Results of the estimation are presented in Table 1. The standard errors (SE) are
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estimated as the square root from the main diagonal of the sandwich estimator
matrix H−1

NT (θ̂)BNT (θ̂)H−1
NT (θ̂), coming from (12) and (13). The t-statistic col-

umn is given by the ratio Estimate/SE. The first-order estimated coefficients
are significant and close to the real values while the others are not significantly
different from zero, as expected.

Table 1. QML estimation results for different PNAR models.

PNAR(1)

Estimate SE t-statistic

β0 1.0456 0.0732 14.29

β1 0.2999 0.0161 18.64

β2 0.3763 0.0135 27.87

PNAR(2)

β0 1.0356 0.0810 12.79

β11 0.2954 0.0209 14.16

β12 0.0082 0.0203 0.40

β21 0.3741 0.0157 23.80

β22 0.0019 0.0133 0.14

4.2 Data Example

Here an application of the network autoregressive models on real data is pro-
vided, regarding 721 wind speeds taken at each of 102 weather stations in Eng-
land and Wales. By considering weather stations as nodes of the potential net-
work, if two weather stations share a border, an edge between them will be drawn.
Then, an undirected network of such stations is drawn on geographic proximity.
See Fig. 1. The dataset is available in the GNAR R package [23] incorporating the
time series data vswindts and the associated network vswindnet. Moreover, a
character vector of the weather station location names, vswindnames, and coor-
dinates of the stations in two column matrix, vswindcoords, are reported. Full
details can be found in the help file of the GNAR package.

As the wind speed is continuous-valued, the NAR(p) model is estimated
with p = 1, 2, 3 by OLS (9). The results are summarised in Table 2. Stan-
dard errors are computed as the elements on the main diagonal of the matrix√

σ̂2
∑T

t=1 Z′
t−1Zt−1. The estimated error variance is about σ̂2 ≈ 0.15 for NAR

models of every order analysed. All the coefficients are significant at 5% level.



122 M. Amillotta et al.

The intercept and the coefficients of the lagged effect (β2h, h = 1, 2, 3) are
always positive. In particular, the lagged effect seems to have a predominant
magnitude, especially at the first lag. Some network effects are also detected but
their impact tends to become small after the first lag.

The OLS estimators is the maximizer of the quasi log-likelihood (7). This
allows to compare the goodness of fit performances of competing models through
information criteria. We compute usual Akaike information criterion (AIC) and
the Bayesian information criterion (BIC) together with the Quasi information
criterion (QIC) introduced by [29]. Such information criterion is a version of the
AIC which takes into account the fact that a QMLE is performed instead of the
standard MLE. In fact the QIC coincides with the AIC when the quasi likelihood
equals the true likelihood of the model. In Table 3, all the information criteria
select the NAR(1) as the best. This means that the expected wind speed for a
weather station is mainly determined by its past speed and the past wind speeds
detected on close stations, which gives a reasonable interpretation in practice.

Fig. 1. Plot of the wind speed network. Geographic coordinates on the axis; numbers
are relative distances between sites; labels are the site name. See [23].
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Table 2. QML estimation results for wind speed data after fitting NAR(p) models for
p = 1, 2, 3

NAR(1)

Estimate SE(×102) t-statistic

β0 0.1540 0.4616 33.37

β1 0.1568 0.2717 57.48

β2 0.7682 0.2429 316.26

NAR(2)

β0 0.1202 0.4553 26.40

β11 0.1409 0.4811 29.28

β12 –0.0263 0.4806 –5.48

β21 0.5828 0.3620 160.99

β22 0.2442 0.3618 67.52

NAR(3)

β0 0.1161 0.5297 21.91

β11 0.1457 0.4927 29.56

β12 –0.0116 0.5799 –2.00

β13 –0.0222 0.4855 –4.56

β21 0.5815 0.3623 160.53

β22 0.2467 0.3637 67.84

β23 0.0046 0.1763 2.63

Table 3. Information criteria for wind speed data model assessment

Model AIC (×10−3) BIC (×10−3) QIC (×10−3)

NAR(1) –22.91 –22.89 –22.91

NAR(2) –21.49 –21.47 –21.50

NAR(3) –21.44 –21.41 –21.45
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