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Preface

NetSci-X, the annual Network Science Society’s signature winter conference, extends
the popular NetSci conference series to provide an additional forum for a growing
community of academics and practitioners working on networks. The series started
in 2015. Its 7th edition, NetSci-X 2022, held in Porto from February 8 to February
11, 2022, was the first NetSci conference held in Portugal. The conference was jointly
organized by the University of Porto, the University of Aveiro, and Iscte – Instituto
Universitário de Lisboa and was hosted at the University of Porto, Faculty of Sciences,
Computer Science Department. Previous NetSci-X conferences took place in Rio de
Janeiro (Brazil), Wroclaw (Poland), Tel Aviv (Israel), Hangzhou (China), Santiago
(Chile), and Tokyo (Japan). More information on the NetSci conference series and
organization is available on the website at https://netscisociety.net.

The conference fosters interdisciplinary communication and collaboration in
network science research across computer and information sciences, physics,
mathematics, statistics, the life sciences, neuroscience, environmental sciences, social
sciences, finance and business, and others. The conference aims to promote the
dissemination of high-quality research as well as to engage researchers in their early
career stages. Of special interest are applications which demonstrate the effectiveness
of the main network science topics.

The call for papers attracted 163 submissions, representing 42 countries. The authors
submitted their contributions to either the full papers track (19 submissions) or the
extended abstract track. Each paper in both tracks was peer reviewed by at least two
(typically three) independent reviewers from an international Program Committee. This
proceedings volume is the collection of the 13 accepted full papers.

The great success of NetSci-X 2022 owes to these and other authors, who presented
their work either in person in Porto or remotely. Needless to say, the success also
owes to the keynote and invited speakers, who delivered impressive talks. Our keynote
speakers were Jure Leskovec, JurgenKurths,Manuela Veloso, StefanoBoccaletti, Tijana
Milenkovic, and Tiziana Di Matteo; our invited speakers were Angélica Sousa de Mata,
Francisco Santos, Marcus Kaiser, Maria Angeles Serrano, Marta C. González, and Sune
Lehmann.

As part of NetSci-X 2022, a school was held on February 8, dedicated to introducing
young researchers to a diversity of fundamental topics in network science, including
a tutorial about science communication. A poster session was also organized as part
of the conference program to allow authors to briefly present their work and have the
opportunity to be challenged with questions.

The 7th NetSci-X conference in Porto would not have been possible without the
support of many individuals and organizations. We owe special thanks to the authors
of all submitted papers, the members of the Program Committee, and the reviewers for
their contributions to the success of the conference. We would also like to express our
gratitude to the members of the organizing committee. Moreover, we are indebted to the
members of the Network Science Society for their trust, guidance, and support. Finally,

https://netscisociety.net
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a number of institutional and industrial sponsors contributed to the organization of the
conference. Their names and logos appear on the NetSci-X 2022 website at https://net
scix.dcc.fc.up.pt.

It was a pleasure and an honor to organize and host NetSci-X 2022 in Porto. We
hope that all participants enjoyed the technical program and the social events organized
during the conference, as well as the city of Porto and Portugal.

February 2022 Pedro Ribeiro
Fernando Silva

José Fernando Mendes
Rosário Laureano

https://netscix.dcc.fc.up.pt
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Using Localized Attacks
with Probabilistic Failures to Model
Seismic Events over Physical-Logical

Interdependent Networks

Ivana Bachmann(B) and Javier Bustos-Jiménez

NIC Labs, University of Chile, Santiago, Chile
ivana@niclabs.cl

Abstract. Natural catastrophes can affect different structures with
varying intensities depending on the global and local characteristics of
the event. For example, for earthquakes we have global characteristics
such as the depth, magnitude, and type (interface or intraslab). Whereas
soil conditions, and the hypocentral distance are local characteristics.
Here we study the robustness against seismic events of physical-logical
interdependent networks used to represent Internet-like systems. To do
this we present a novel type of localized attack: Localized Attacks with
Probabilistic Failures (LAPF). We use LAPF to model seismic events as
Seismic Attacks (SA). We compare the effect of seismic attacks with the
effect of localized attacks. To generate these seismic attacks we use real
data from earthquakes registered in Chile. We find that seismic attacks
can result in catastrophic system failure, and can cause more damage
than localized attacks by damaging a smaller fraction of nodes in the
physical network. The results also show that catastrophic damage can be
prevented by simply adding more interlinks between the logical network
and the physical network. We found that seismic attacks that resulted
in the loss of more than half of the logical network are related to the
removal of logical bridge nodes during the cascading failure, suggesting
that the robustness of physical-logical interdependent networks may be
improved by identifying and protecting these types of nodes.

Keywords: Localized attacks · Robustness · Interdependent
networks · Spatially embedded networks

1 Introduction

Natural disasters such as floods, tsunamis, earthquakes, volcanic eruptions, etc.
cause damages within a geographic area. Localized Attacks (LA) have been
used to model this type of events as they affect a circular area of the physi-
cal space [5,6,23]. However, while localized attacks cause everything within its
attack area to fail, natural disasters can cause different levels of damage for dif-
ferent infrastructures located in the same area. Thus, some elements may be fully
c© Springer Nature Switzerland AG 2022
P. Ribeiro et al. (Eds.): NetSci-X 2022, LNCS 13197, pp. 1–14, 2022.
https://doi.org/10.1007/978-3-030-97240-0_1
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functional even after being affected by the event. Here, the damage perceived by
an infrastructure depends on the characteristics of the event, local geographical
conditions, infrastructure characteristics, etc.

For tsunamis, the damage level perceived by an infrastructure will depend
on variables such as the distance to the shore, the elevation at which the infras-
tructure was built, the tsunami characteristics, etc. In the case of earthquakes,
the damage level perceived by an infrastructure will depend on local conditions:
hypocentral distance, and soil characteristics, as well as global conditions: earth-
quake magnitude, earthquake type (interface or intraslab), depth, etc. Because
of this, two infrastructures that are geographically close to each other can expe-
rience different damage levels despite being affected by the same event. Assimaki
et al. [2] observed that, after the 2010 earthquake in Chile, two adjacent multi-
story buildings located in downtown Concepción suffered vastly different damage
levels due to the soil conditions assumed when designing each building. Here,
one of the buildings collapsed, whereas the other building only suffered minor
damages. The distance between these buildings was approximately 20 m.

Differences as the ones observed by Assimaki et al. are not captured by
localized attacks. To capture these differences we need to consider the specific
characteristics that contribute to the damage caused by a natural disaster. Fur-
thermore, since the damage caused by an earthquake cannot be modeled in the
same way as the damage caused by a tsunami, flood, or tornado, we need to
consider the characteristics specific to the type of natural disaster that we want
to represent.

To have a more accurate representation of the damage caused by natural
disasters over physical networks we propose a novel type of localized attack:
Localized Attack with Probabilistic Failures (LAPF). Given an adverse event,
LAPFs allow us to assign a different failure probability to each node according to
the local and global characteristics of the event. That is, the failure probability
distribution can be tailored to consider the specific characteristics that contribute
to the damage caused by a particular natural catastrophe. To the best of our
knowledge this is the first time that localized attacks have been used considering
a probabilistic approach as they have been mostly modeled to be uniform within
a certain radius [25].

Here, we use LAPFs to model seismic events as Seismic Attacks (SA). We
test the effect of SA over physical-logical interdependent networks used to model
Internet-like systems [5]. To generate these seismic attacks we use real data from
earthquakes registered in Chile. We compare the effect of SA with the effect
of LA. Our findings suggest that seismic attacks can reduce the functionality
of physical-logical systems as much as localized attacks, despite damaging less
physical nodes. It is shown that both seismic attacks, and localized attacks can
result in total system failure. Our results also show that physical attacks causing
higher damage can be prevented by increasing the number of interlinks between
the logical network and the physical network.

This article is organized as follows: In Sect. 2 related work is presented. In
Sect. 3 we define LAPF and seismic attacks. Section 4 presents the physical-
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logical interdependent network model used along with the networks tested.
Results are presented in Sect. 5. In Sect. 6 we discuss the results, and in Sect. 7
the main conclusions are presented.

2 Related Work

In the literature we can find several ways to attack interdependent networks,
such as random attacks, targeted attacks, and localized attacks [4]. The most
common way to attack or damage a system is by using random attacks, that is,
randomly removing a set nodes from the system [4,7,17,29]. Targeted attacks on
the other hand, pick the network elements to attack according to some param-
eter associated with said element. These attacks can pick nodes or edges using
centrality measures [8,10,14], system values such as loads [28], etc.

However, these attacks do not offer an accurate representation of adverse
events with local physical conditions such as natural catastrophes. To repre-
sent these scenarios we have localized attacks. Given a network allocated into a
space S, localized attacks damage all the nodes and/or links contained within
an area of radius r and centered in c ∈ S [6,23]. It has been shown that localized
attacks cause substantially more damage than an equivalent random attack in
interdependent lattices when measuring the damage using percolation methods
[6], making these attacks especially interesting to test over systems that contain
physically embedded networks.

Localized attacks have been used to measure the effect of natural catastrophes
or man-made threats over power-grids [21], the Internet network [5,20], and
more generic networks [6,23,26]. Although most of these studies consider that
localized attacks affect a circular area, there are some exceptions that consider
other geometrical shapes [20,25]. To the best of our knowledge none of these
works have considered localized attacks that cause damage according to a failure
probability described by the conditions affecting the network elements.

3 Localized Attacks with Probabilistic Failures

Consider a physical network P = (VP , EP ). We define a localized attack with
probabilistic failures or (LAPF) as an attack that affects a circular area of radius
r ∈ [0,∞), where each node u ∈ VP contained within the attack area has a failure
probability given by the failure probability distribution F . In Fig. 1 we can see a
visualization of a LAPF. Here we observe that different areas within the circular
area affected by the LAPF have different failure probabilities.

The failure probability distribution F is defined as a function F : X −→ [0, 1],
where X is the set of network elements that can be affected by the attack. In
order to capture the conditions affecting the failure probability of an element
we define the function g : X −→ Γ where Γ contains n-tuples that describe the
necessary data to determine the failure probability of a node, and the function
Φ : Γ −→ [0, 1] that determines the failure probability that an event induces
given the conditions described by γ ∈ Γ . Using functions g and Φ we can define
F as the function composition of Φ and g (F = Φ ◦ g).
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Fig. 1. LAPF graphic example.

3.1 Seismic Attacks

Given an infrastructure located at a geographic point x, the damage caused by
an earthquake or seismic event over said infrastructure will depend on variables
such as the event magnitude, the distance from the x to the epicenter, the depth
of the event, the soil type at x, etc. Some of these variables are characteristics of
the seismic event itself, such as the event magnitude and depth. Whereas other
variables are related to local characteristics at point x, such as the soil type, and
the hypocentral distance. Variations in the local properties of a point can lead
to infrastructures located in different points to experience vastly different levels
of damage. Thus, the same seismic event may have different effects over different
nodes. To capture this behavior we model seismic events using localized attacks
with probabilistic failures. Here, we will refer to a LAPF intended to model a
seismic event as a Seismic Attack (SA). To model seismic attacks, we estimate the
damage perceived by a node after a seismic event using the Ground Acceleration
at the node’s location. Then, we use this data to define the failure probability
distribution F used by the LAPF.

The ground acceleration describes the acceleration perceived in a given loca-
tion during an earthquake and it can be measured using instruments. This accel-
eration can be used to estimate how strong the shaking produced by an earth-
quake in a specific location is. In the literature we can find different Ground
Motion Prediction Equations (GMPE) to estimate or predict the acceleration
perceived in a given point in space given the local conditions [9,15,19,27]. In
this work we aim to represent the conditions of Chile, thus we use the equations
presented by Idini et al. [15] which were developed for the specific case of the
Chilean subduction zone.

The equations presented by Idini et al. consider the contribution of the seis-
mic source FF , the path contribution FD, and the local site effects FS as follows.

log10Y = FF (Mw,H, Feve) + FD(R,Mw, Feve) + FS(Vs30, sT∗)
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Where Y is the ground acceleration, Mw is the moment magnitude of the event,
Feve is a variable representing whether the event is an interface event (Feve = 0)
or an intraslab event (Feve = 1), H is the hypocentral depth, R is the hypocentral
distance, Vs30 is the average shear wave velocity down to 30 m depth, and sT∗ is
the site effect coefficient given by the local soil.

Using the GMPE provided by Idini et al. [15] we estimate the failure proba-
bility of a physical node after a seismic event. Here, X = VP is the set of physical
nodes. The set Γ contains all the necessary data to calculate the ground accel-
eration. Thus, γ ∈ Γ is a 6-tuple that contains the moment magnitude of the
event Mw, the depth of the event H, the type of event Feve, the hypocentral
distance from the node to the event R, the average shear wave velocity down to
30 m depth Vs30 at the node’s location, and the site effect coefficient of the soil
in which the node is located sT∗ .

Given a physical node v ∈ VP , and a seismic event ev, we have that the failure
probability of node v during a seismic event ev is given by Fev(v) = Φ(gev(v))
where gev : VP −→ Γ is the function that returns the 6-tuple that contains all the
necessary data to calculate the ground acceleration perceived by a node given the
seismic event ev. Given γ ∈ Γ , we define the function Φ(γ) = Φ2(Φ1(γ)) where
Φ1 corresponds to the equation provided by Idini et al. [15], that is, the equation
that returns the ground acceleration associated to the conditions described by
γ, and function Φ2 gives us the failure probability given a ground acceleration
value. Here, we define Φ2 as follows.

Φ2(a) =

⎧
⎪⎨

⎪⎩

0 if a ≤ c1

φ(a) if c1 ≤ a ≤ c2

1 if a ≥ c2

Where a = Φ1(γ). Here, we assume that below c1 node failure will not occur,
and that above c2 failure will always occur. Limits c1 and c2 have been selected
based on the Japan Meteorological Agency (JMA) Seismic Intensity Scale [16].
The JMA Seismic Intensity Scale describes 10 intensity levels, with the lowest
intensity level being 0 and the highest intensity level being 7. Each intensity
level is associated to a seismic intensity defined by the JMA as IJMA, with

IJMA = 2log(a) + 0.94

where a is the ground acceleration measured in gal (1gal = 0.01m/s2) at time
period τ = 0.3 s [16]. Thus, we set Φ1 using the coefficients associated to τ = 0.3 s
as described in [15]. Using the JMA Seismic Intensity Scale as guideline we
chose c1 as the lowest ground acceleration for intensity 3 of the seismic scale
(c1 = 0.06m/s2), and c2 as the ground acceleration above which the seismic
event is considered to have an intensity of 7 (c2 = 6m/s2). For simplicity in this
application we define φ as a linear function with φ(c1) = 0 and φ(c2) = 1.

3.2 Seismic Data

For the data regarding the seismic event conditions we use the data set provided
in the work of Idini et al. [15] which describes the moment magnitude Mw, depth
H, and type Feve of 103 seismic events registered in Chile. Here Mw ranges from
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5.5 to 8.8. The average shear wave velocity down to 30 m depth Vs30 at each
node location was approximated from the image provided on Rauld et al. work
[22]. We must note that the raw data used by Rauld et al. to generate this map
is currently not available for public use, and efforts to gain access to this data
were unsuccessful. Finally, since not enough data regarding the soil types as
described in [15] is available, the soil type for the entire physical space has been
approximated to sII soil. Soil sII was selected because it has been found to be
present in similar proportions in both soil (55%) and rock (45%) [18].

4 Network Model

We model the Internet using a model presented in depth in our previous work [5].
Here, we have a logical network representing the BGP network, and a physical
network representing the Internet Backbone. Consider P = (VP , EP ) the physical
network, and L = (VL, EL) the logical network. The interactions between both of
these networks are modeled as a set I of bidirectional interlinks. The physical-
logical interdependent network is described by the tuple (P,L, I). Here, the
physical network must be spatially embedded, that is, each physical node v ∈ VP

must be allocated into a physical space.
Each network contains provider nodes to represent ISPs, and consumer nodes

that represent the users. A consumer node is considered to have Internet access if
it has a path to a provider node. Physical nodes interconnected through an inter-
link with a logical provider node are considered to be provider nodes within the
physical network. There are pP physical provider nodes, and pL logical provider
nodes. Since each logical provider node must have at least one interlink we have
that pP ≥ pL.

This model is a multiple dependencies model [4], meaning that it supports
many-to-many interdependencies and thus each node can have multiple inter-
links. Here, a node u will remain functional if at least one of its interlinks is func-
tional. Conversely, if all the interdependent nodes of a given node u fail, u will
also fail. This condition is applied to physical nodes, and logical nodes. For each
logical node uL we add a total of NI(uL) interlinks, with NI(uL) ∈ {1, . . . , Imax}.
For each logical consumer node uc

L we randomly select a value NI(uc
L) from

the set {1, . . . , Imax} following a uniform distribution. Whereas for each logical
provider node up

L we always add NI(u
p
L) = Imax interlinks.

4.1 Tested Networks

In this work we use a subset of the networks data set used in our previous work
[5]. Since we use seismic data for seismic events registered in Chile, we use all
the physical networks built using a long and narrow space shape with a width
to length ratio of (1:25) as this space is based on Chile’s continental geography.
We also use the logical network used in this previous work. Each network in this
data set starts with a single connected component.
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In this data set the physical network can be model after Gabriel graphs (GG)
[13], n-nearest neighbors (nNN) model with n = 5 [11], or Relative Neighborhood
Graphs (RNG) [24]. These networks have been used because they heavily depend
on physical conditions to be built. For each model m ∈ {GG, 5NN, RNG} the
network data set contains 10 different physical networks. Each of these networks
is built using a different set of physical nodes allocations locj(VP , s) with j ∈
{1, . . . , 10}, and s = (1:25) the space shape. Thus, we generate each physical
network as follows

Pj(m, s) = (VP , Em
P (locj(VP , s)))

where Em
P (locj(VP , s)) is the set of links generated according to the physical

model m, given the set of physical nodes allocations locj(VP , s).
As for the logical network we use a single instance of a scale-free network with

λ = 2.5 [12]. This logical network L = (VL, EL) is coupled with each physical
network Pj(m, s) to obtain each final system. We must note that since we use
the same logical network used in [5], we observe that this network contains the
bridge node ub

L. A “bridge node” is a cut node that acts as a bridge between com-
ponents with no provider nodes, and components with provider nodes. Although
all bridge nodes are cut nodes, we have that if pL > 1, then being a cut node
is not sufficient to be a bridge node since it is possible to remove a cut node
and end up with each connected component containing a provider node. For the
case of the logical bridge node ub

L we have that removing this node during the
cascading failure process always results in a loss of half of the logical network
[5]. Although in the present work we only test one logical network, we must note
that other logical networks have been tested, and we have found that bridge
nodes are a common occurrence in Scale-Free networks [3].

For the interlink set we generated interlinks using Imax ∈ {3, 10}. These
interlinks sets differ from the ones tested in [5], since the interlink set tested in
the present work assigns exactly Imax interlinks to logical provider nodes, that is
NI(u

p
L) = Imax for each logical provider node up

L. Whereas in our previous work,
given logical node uL, we considered NI(uL) to be selected at random from the
set {1, . . . , Imax} regardless of whether uL was a consumer node or not.

Since these systems are built using Chile as reference, parameters such as
the number of physical nodes, the number of logical nodes, and the number of
logical providers are set to simulate the conditions of this country. Thus, we have
pL = 6, NL = 300 logical nodes, and NP = 2000 physical nodes. Please note
that as of the writing of this work the number of logical nodes for the case of
Chile has increased to 378 [1].

5 Results

To test the effect of seismic attacks we measure the system’s robustness as the
fraction of functional logical nodes after a failure using the GL index as defined
in [5]:

GL =
Nf

L

NL
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where NL is the initial number of functional logical nodes, and Nf
L is the number

of functional logical nodes after the system has been damaged, and the cascading
failure has stopped. Please note that, given the interdependent networks model
used, it is possible to have up to pL functional connected components on the logi-
cal network after an attack. Here we also test the effect of localized attacks (LA)
to compare their effect over the robustness of physical-logical interdependent
networks with the effect of SA. Both of these attacks can remove any physical
node regardless of whether the node is a consumer node or a provider node.
If a single attack removes all the provider nodes of either network during the
cascading failure, then the attack will result in GL = 0.

The localized attacks tested remove all physical nodes within a circular area
of radius r in the physical network. We must notice that two LAs with the same
radius but different centers may contain different fractions (1 − p) of physical
nodes within their attack areas.

5.1 Localized Attacks

Given space shape s = (1:25) a set C(s) of 100 uniformly spread centers were
tested. On each center we perform a localized attack of radius r = wln, with wln

the width of the (1:25) space. Figures in this section show each LA tested over
each of the 30 interdependent systems considered for a given Imax value, thus
each figure shows the effect of a total of 3000 LAs.

In Fig. 2 we see the comparison of GL versus the fraction of failed physical
nodes. Here, each point shows the effect of a single localized attack over an inter-
dependent system. In Fig. 2 we can observe that there is not a clear correlation
between (1 − p) and the GL value. Furthermore most localized attacks resulted
in high GL values, meaning that most logical nodes remained functional once
the cascading failure stopped. However, we can also observe that for systems
built using Imax = 3 there are localized attacks that result in a GL ≤ 0.5, mean-
ing that at least half of the logical nodes failed during the cascading failure.
Even more, some of these attacks resulted in the total loss of the logical network
(GL = 0). These attacks do not appear as a continuum, but rather as a distinct
group that always damages at least half of the logical network.

Localized attacks that result in a GL ≤ 0.5 correspond to High Damage
Localized Attacks (HDLAs) and are likely to be caused by logical bridge node
ub
L (see Sect. 4.1). Consider CF (x) the set of nodes removed during the cascading

failure caused by a localized attack x. In Fig. 3 we observe that HDLAs remove
node ub

L during the cascading failure process (ub
L ∈ CF ), whereas non-HDLAs

do not.
We must note that only a small percentage of the localized attacks tested

resulted in GL ≤ 0.5. Indeed, as we can see in Table 1 less than 4% of the
localized attacks tested result in HDLA for systems built using Imax = 3. For
the case of systems built using Imax = 10 we observe that there are no attacks
that result in HDLA.
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(a) Imax = 3 (b) Imax = 10

Fig. 2. Each localized attack GL value versus (1 − p).

(a) Imax = 3 (b) Imax = 10

Fig. 3. Each localized attack GL value versus (1 − p). Red nodes correspond to LA x
with ub

L ∈ CF (x). Black nodes correspond to LA x with ub
L /∈ CF (x). (Color figure

online)

5.2 Seismic Attacks

The considered seismic data set contains 103 different seismic events registered in
Chile. Given an interdependent system, we perform a seismic attack for each pair
(c, ev) with c ∈ C(s) (see Sect. 5.1) and ev a seismic event. Figures in this section
show each SA tested over each of the 30 interdependent systems considered for
a given Imax, thus each figure shows a total of 309,000 SAs.

In Fig. 4 we can see the effect of each SA tested over each interdependent
system. We can see that, similar to localized attacks, seismic attacks can cause
High Damage Seismic Attacks (HDSAs): seismic attacks that result in GL ≤ 0.5.
In Fig. 4 we can see that HDSAs occur on systems with Imax = 3 and Imax = 10.
As we can see in Fig. 5, HDSAs remove the logical bridge node ub

L described
in Sect. 5.1. This suggests that, for seismic attacks, HDSAs are caused by the
removal of the logical node ub

L during the cascading failure process.
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Table 1. Summary of localized attacks.

% HDLA GL range (HDLA) GL range (Non-HDLA)

Imax = 3

RNG 3.6 (0.0, 0.459) (0.893, 1.0)

GG 3.4 (0.4, 0.5) (0.893, 1.0)

5NN 3.5 (0.423, 0.5) (0.893, 1.0)

Total 3.5 (0.0, 0.5) (0.893, 1.0)

Imax = 10

RNG 0 – (0.96, 1.0)

GG 0 – (0.96, 1.0)

5NN 0 – (0.96, 1.0)

Total 0 – (0.96, 1.0)

Table 2. Summary of seismic attacks.

m % HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)

Imax = 3

RNG 3.26 (5.5, 8.8) (0.0, 0.487) (0.82, 1.0)

GG 1.9 (5.5, 8.8) (0.027, 0.5) (0.84, 1.0)

5NN 1.61 (5.5, 8.8) (0.027, 0.5) (0.86, 1.0)

Total 2.26 (5.5, 8.8) (0.0, 0.5) (0.82, 1.0)

Imax = 10

RNG 0.0058 (7.8, 8.8) (0.46, 0.467) (0.943, 1.0)

GG 0.0029 (7.8, 8.3) (0.48, 0.48) (0.95, 1.0)

5NN 0.0010 (8.8, 8.8) (0.483, 0.483) (0.95, 1.0)

Total 0.0032 (7.8, 8.8) (0.46, 0.483) (0.943, 1.0)

Figure 6 shows the effect of each seismic attack tested over each of the
physical-logical systems, and the moment magnitude Mw of the event associ-
ated with each seismic attack. Here we observe that for Imax = 3 the magnitude
of the event is not correlated with the occurrence of HDSAs. However, we observe
that for Imax = 10 HDSAs only occur with higher Mw events. This can be fur-
ther observed in Table 2, here we can see the detailed information regarding the
percentage that these HDSAs represent from the total, the Mw range associated
to HDSAs, and the range of GL values associated to HDSAs and non-HDSAs.
In Table 2 we can see that HDSA represent a very small percentage of the total
number of seismic attacks tested. For Imax = 3, all the HDSAs combined repre-
sent less than 3% of all the seismic attacks tested. For Imax = 10 this percentage
drops to less than 0.004%.
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(a) Imax = 3 (b) Imax = 10

Fig. 4. Each seismic attack GL value versus (1 − p).

(a) Imax = 3 (b) Imax = 10

Fig. 5. Each seismic attack GL value versus (1 − p). Red nodes correspond to SA x
with ub

L ∈ CF (x). Black nodes correspond to SA x with ub
L /∈ CF (x). (Color figure

online)

(a) Imax = 3 (b) Imax = 10

Fig. 6. Each seismic attack GL value versus (1−p). Colors show the moment magnitude
Mw associated to the SA. (Color figure online)
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6 Discussion

From the results shown in Sect. 5 we can see that seismic attacks have the poten-
tial to completely destroy the logical network. Particularly, they can cause more
damage than localized attacks that remove a similar fraction (1 − p) of physical
nodes. This can be seen as high damage seismic attacks (HDSAs) can occur by
initially removing less than 6% of the physical nodes (see Fig. 5), whereas for
localized attacks at least 6% of the physical nodes must be removed for an attack
to result in a GL ≤ 0.5 (see Fig. 3).

However, the percentage of HDSA is very low. In Table 2 we can see that,
for Imax = 3 HDSAs represent less than 2.3% of all the seismic attacks tested.
Whereas for localized attacks over systems with Imax = 3 we have that 3.5% of
the LAs tested result in HDLAs (see Table 1). We also observe that increasing
the Imax value results in no HDLA. This is not the case for high damage seismic
attacks. After adding more interlinks we can see that the percentage of HDSA is
greatly reduced but they still occur. This suggests that the system’s robustness
against seismic events can be greatly improved by having a higher Imax value.
This may be explained because having a higher Imax may result in the logical
bridge node ub

L having more interlinks, and thus being less likely to fail.
We observe that the magnitude Mw is related to the fraction of nodes removed

(1 − p) by the seismic attack. We also observe that for systems with Imax = 3,
neither the GL value nor the HDSA incidence are related to Mw. For Imax = 10
we observe that HDSAs only occur for events with Mw ≥ 7.8. This further
suggests that adding more interlinks improves the system robustness against
HDSA. We also observe that systems built using m = 5NN only present HDSAs
for events of magnitude Mw = 8.8, suggesting that the model used to build the
physical network also influences the systems’ robustness against seismic attacks.

Another interesting thing to note is that the fraction of nodes removed (1−p)
does not appear to be strictly correlated to the magnitude of the seismic attack
(see Fig. 6). This can be explained because the ground acceleration that a node
experiences does not only depend on the magnitude of the seismic event. The
depth, and event type (interface or intraslab) can greatly impact the ground
acceleration [15], and thus the failure probability of each physical node.

7 Conclusion

In this work we presented a novel way to model physical attacks: localized attacks
with probabilistic failures (LAPF). Here, we show a LAPF application by using
LAPFs to model seismic events as “seismic attacks”. We then compared the
effect of seismic attacks, and localized attacks over physical-logical interdepen-
dent networks designed to model the Internet network.

We found that seismic attacks can result in catastrophic damage by inducing
failure on a small fraction of physical nodes. Compared to localized attacks, seis-
mic attacks can cause catastrophic damage by damaging fewer physical nodes.
However, we found that very few seismic attacks have the potential to lead to
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catastrophic events, and that their effect can be greatly mitigated by increasing
the number of interlinks between the physical network and the logical network.

Our results show that logical bridge node ub
L plays a key role over the robust-

ness of physical-logical interdependent networks. We found that the failure of
node ub

L during the cascading process results in the loss of more than half of
the logical network for both seismic attacks and localized attacks. This is consis-
tent with previous findings [5]. This suggests that protecting these specific nodes
might prove crucial to protect these types of systems against seismic events.

As for the future there are several types of events that can be modeled using
LAPF, such is the case of other natural catastrophes (tsunamis, floods, volcanic
eruptions, etc.), and man made threats (bombs, gas explosions, etc.). As for seis-
mic attacks, it would be interesting to test the effect of seismic attacks over other
physically embedded networks, such as the transportation network or the power
grid network. Finally, the protective effect of increasing the number of interlinks
of bridge nodes, changing the location of the physical nodes interconnected to
it, or adding backup nodes to avoid its failure remains to be tested.
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21170165, and supported by the supercomputing infrastructure of the NLHPC (ECM-
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Abstract. An alliance is a formal contingent commitment by two or
more states to some future action. Alliances have been widely discussed
in the international relations community because hundreds or perhaps
thousands of interactions may take place between states in any given
year, but few interactions create the impact intended by alliance for-
mation. In this paper, we investigate the historical dynamics of interna-
tional alliances from a hypernetwork science perspective. Exploring the
Formal Alliances dataset from the Correlates of War Project, we focus
on three time periods: pre-World War I, pre-World War II, and current
day. By using centrality measures such as the notions of s-closeness, s-
betweenness, s-eccentricity, and s-local clustering coefficient, we provide
a rating benchmark to classify the impact of an alliance.

Keywords: Hypergraphs · Hypernetwork science · International
treaties · Centrality measures

1 Introduction

Alliance theory was originally developed as an extension of balance of power
theory; alliances were formed to make sure that the capabilities of major state
coalitions remained relatively equal. Equality of power was believed to promote
peace: alliances that “correctly” balance the system are supposed to lead to
peace, while incorrect balancing makes war more likely [12].

Alliance commitments are also said to reduce the level of uncertainty in the
system and minimize the likelihood of war that may result owing to misper-
ception and miscalculation. These commitments can also reduce the chances of
catastrophic shifts in the systemic balance of power. Some balance of power the-
orists claim that alliances are also necessary to avoid the most dangerous wars. A
belligerent world power, seeking domination of the system, would likely restrain
itself when confronted with an alliance system poised against it. Alliances, then,
are an indispensable means of maintaining equilibrium in the system [4].

Balance of power theory can also support the existence of large, system-wide
wars against potential dominance caused by alliance formation. These include
the wars against Philip of Spain in the late sixteenth century, against Louis XIV
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2022
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in the late seventeenth century, against revolutionary and Napoleonic France a
century later, and against Germany twice in the past century [7].

Based mostly on logical reasoning, historical anecdote, and often post hoc
balance of power explanations, the traditional literature has not produced a con-
vincing, consistent, theoretical explanation of the relationship between alliances
and war. Not until the investigatory process turned empirical did researchers
begin a process of accumulation that has provided many of the answers to the
alliance-war puzzle. In this work, we aim at shedding some light on this interplay
while relying on the newly emerging field of hypernetwork science.

In contrast with the traditional network science field based on the mathe-
matical concept of graphs, higher-order network analysis uses the ideas of hyper-
graphs, simplicial complexes, multilinear and tensor algebra to study complex
systems. We restrict our attention to hypergraphs, defined simply as a general-
ization of graph structures, where edges represent relationships among two or
more entities. They are perhaps the most general representation of higher-order
relationships, and were first discussed in the 1960’s and 1970’s (see [2] as an
example).

The current paper is organized as follows. After this brief introduction, we
give an overview of the field of hypernetwork science in Sect. 2. Section 3 describes
the methodology used to calculate the centrality measures based on the hyper-
graphs created from international alliances. We explain the intuition as well as
the technical details of our chosen methods. In Sect. 4, we record the results and
discuss our findings to highlight the level of impact a treaty ought to have. We
conclude our work in Sect. 5 and pose some open questions and future research
directions.

2 Prerequisites

In this section, we give a brief introduction to the field of hypernetwork science
as discussed in [6]. For more technical details, the reader is encouraged to consult
[1] and the references therein.

The underlying objects of study in network science are graphs. For a finite set
of elements V , denote by V × V the set of all ordered pairs {vi, vj} of elements
of V , where × denotes the Cartesian product. A relation on the set V is any
subset E ⊆ V × V . A simple undirected graph, or a graph, is a pair G = (V,E),
where V is a finite set of nodes (or vertices) and E is a relation on V such that
{vi, vj} ∈ E implies {vj , vi} ∈ E and vi �= vj , that is, G has no loops. The
elements of E are called edges or links.

As abstract mathematical objects, graphs benefit from their simplicity but
are limited to representing pairwise relationships between entities. Depicting
group interactions is not possible in graphs natively, hence the concept of hyper-
graphs. A hypergraph is a pair H = (V,E), where V is a finite set of vertices as
above but E is now a set of subsets of V . More precisely, a hyperedge e ∈ E is
an arbitrary subset of V consisting of k vertices, thereby representing a k-way
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relationship for any integer k > 0. When k = 2 for all hyperedges, we recover
the definition of graphs; hence hypergraphs are a generalization of graphs in this
sense.

An example of a hypergraph is shown in Fig. 1. Multi-way relationships can be
seen as follow: Ross, Mom, Dad, and grandparents are family members; Andrew,
Ross, and Hailey are high school friends; Philip, Becky, Ross, and Hailey are
college friends; while Ross and Hailey are a couple.

Fig. 1. An example of a hypergraph.

While adjacency matrices are generally used to represent graphs, the most
common way to represent hypergraphs is incidence matrices. For a hypergraph
H = (V,E), where V = {v1, . . . , vn} is the set of vertices and E = {e1, . . . , em}
is the set of hyperedges, the incidence matrix S of H is a rectangular Boolean
matrix defined by S(i, j) = 1 if vi ∈ ej and 0 otherwise. Figure 2 shows the
incidence matrix of the previous hypergraph.

Fig. 2. Incidence matrix of the hypergraph.
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In a graph G = (V,E), a walk from a node vi to a node vj is a collection
of ordered vertices {vi, vi+1, . . . , vj−1, vj} ⊆ V and a collection of ordered edges
{(vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj)} ⊆ E. The length of a walk is the number
of edges traversed along the walk. A shortest walk, or a geodesic walk, from a
node vi to a node vj , is a walk of shortest length. In the context of hypergraphs,
this definition of a walk does not naturally extend since two hyperedges can
intersect at any number of vertices, and two vertices can belong to any number
of shared hyperedges. As such, for a positive integer s, an s-walk of length k
between two hyperedges a and b is defined as a sequence of hyperedges

a = ei0 , ei1 , . . . , eik = b, where |eij−1 ∩ eij | ≥ s for all j = 1, . . . , k and ij−1 �= ij .

To each hypergraph H, one can associate a special graph, the s-line graph
Ls(H), as follows. Each hyperedge in H represents a vertex in Ls(H), and two
vertices in Ls(H) are connected by an edge if their corresponding hyperedges
intersect in at least s vertices in H. The linegraphs for s = 1 and s = 2 of the
example in Fig. 1 are shown in Fig. 3.

Fig. 3. Example of s-linegraphs for s = 1, 2.

For two hyperedges a and b of size greater than or equal to s, the s-distance
ds(a, b) is the length of the shortest s-walk between a and b if such an s-walk
exists, and ∞ otherwise. By letting Es denote the set of hyperedges e ∈ E such
that |e| ≥ s, one can define the following:

1. The s-eccentricity of a hyperedge e is max
f∈Es

ds(e, f).

2. The s-diameter is the maximum s-eccentricity over all edges e ∈ Es, while
the s-radius is the minimum.

3. The average s-distance of H is
(|Es|

2

)−1 ∑

e,f∈Es

ds(e, f).

4. The s-closeness centrality of a hyperedge e is |Es|−1∑
f∈Es

ds(e,f)
.



A Historical Perspective on International Treaties via Hypernetwork Science 19

5. The s-betweenness centrality of a hyperedge e ∈ Es is equal to the between-
ness centrality of the corresponding vertex in the s-linegraph. In a graph, the
betweenness centrality of a vertex v is the ratio of the number of shortest
paths between any pair of vertices in the graph that pass through v divided
by the total number of shortest paths in the graph.

6. The s-local clustering coefficient of a hyperedge e is the number of closed s-
paths of length three containing e divided by the number of s-paths of length
two centered at e.

7. The s-global clustering coefficient of a hypergraph is triple the total number
of s-paths of length three (i.e., s-triangles) divided by the total number of
s-paths of length two (i.e., s-wedges).

3 Methodology

In this section, we give a technical description of the features in the dataset used
in our experiments. We then explain the details of the techniques employed for
finding hypernetwork science metrics. This leads to the layout of our computa-
tional setting.

3.1 The Dataset

The first dataset on international alliances was released in 1966 [9] and then
updated in the next couple of years [10]; it established detailed coding criteria
upon which all Correlates of War formal international alliance datasets have
since been assembled. Implicit among such criteria are the effective dates of an
alliance and its nature (defense, neutrality/non-aggression, or entente) [11].

The most current dataset contains 415 treaties involving 180 countries and
dating back to the year 1648. Each data point contains the country name, one of
the alliances it is a part of, the start and end dates of the alliance, the start and
end dates of that country’s entry and exit to/from the alliance, as well as other
information about the treaty including whether it was a Type I: Defense Pact,
Type II-a: Neutrality, Type II-b: Non-aggression, or Type III: Entente. Defense
pacts commit states to intervene militarily if another partner is attacked. Neu-
trality and non-aggression pacts specify that parties remain militarily neutral if
any cosignatory is attacked. Finally, ententes pledge consultation or cooperation
during armed attacks [3].

For the sake of illustration, we mention two type I treaties of different time
periods: the Peace of Westphalia and the North Atlantic Treaty Organization
(NATO). The former has often been considered the beginning of the international
state system as it was the first peace to recognize both territorial sovereignty
and autonomy. The latter is a prime example of extended deterrence alliances,
in which one state dominates bilaterally or a few states dominate multilaterally
while the smaller states gain security against rivals or possible predatory states.
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3.2 Methods

The dataset is divided into three main timelines: pre-World War I, pre-World
War II, and current day status based on the alliance start and end dates. With
this in mind, we create three hypergraphs in which vertices represent countries
and hyperedges represent alliances. Each treaty is given a unique identification
number, and different types of treaties are distinguished by different colors: red
for type I, green for type II a-b, and blue for type III. All hypergraph calcula-
tions and visualizations in this paper were created using HyperNetX (HNX) [8],
a recently released Python library echoing NetworkX [5] for exploratory hyper-
graph data analytics.

For each of the three hypergraphs, we compute the average s-distance, the
s-diameter, and the s-global clustering coefficient. Moreover, we rank hyperedges
within each hypergraph based on their s-closeness centrality, s-betweenness cen-
trality, and s-local clustering coefficient. Finally, we measure the total impact
of a treaty by combining several factors such as the (normalized) GDP of the
countries involved, the length and the type of the treaty, the centrality metrics,
and the fact of it being cross-continental or not. We use a weighted sum of these
factors with weights adjusted to emphasize the importance of the GDP com-
pared to the rest of the factors. The results of our experiments for several values
of s are reported in the next section.

4 Results and Discussion

In this section, we adopt the following abbreviations: CC - closeness centrality,
BC - betweenness centrality, E - eccentricity, LCC - local clustering coefficient,
and P - weigthed sum.

4.1 World War I Results

World War I began in 1914 when Austria-Hungary attacked Serbia after Arch-
duke Franz Ferdinand and his wife Sophie were assassinated. The first hyper-
graph includes 19 countries and 14 treaties as follows: 7 of type I, 3 type II, and
4 of type III. Figure 4 shows the dynamics of the international alliances in the
final years leading to the war.

Due to the small size and the sparsity of the WWI hypergraph, s = 1 is the
only significant value in this case. The average 1-distance is 1.8, the 1-diameter
is 4, and the 1-global clustering coefficient is 0.49. The treaty that had the
highest impact is the one between France, the United Kingdom, and Spain in
1907. Figure 5 records the five most impactful treaties in the early twentieth
century, where P denotes the impact of a treaty as an aggregate sum of the
factors previously mentioned.
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Fig. 4. The hypergraph for WWI.

Fig. 5. Top 5 treaties before WWI.

4.2 World War II Results

The second World War began when Germany invaded Poland in 1939. The
induced hypergraph includes 50 countries and 46 international treaties: 16 of
type I, 26 of type II, and 4 of type III. Figure 6 gives a rough idea of the com-
plex set of interactions between countries in the 1930’s.

The 1-diameter of the second hypergraph is 5, the average 1-distance is 1.87,
and the 1-global clustering coefficient is 0.69. The most impactful treaty is the
one that England signed with a handful of countries to deal with the large number
of attacks on merchant vessels in the Mediterranean sea. Figure 7 indicates the
top 5 treaties for the values s = 1, 2.
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Fig. 6. The hypergraph for WWII.

Fig. 7. Top 5 treaties before WWII.

4.3 Current Day Results

As of 2021, there are 99 active treaties involving 145 countries: 37 are defense
pacts, 54 are non-aggression pacts, and 8 are ententes. For the third hypergraph,
the 1-diameter is 7, the average 1-distance is 2.78, and the 1-global clustering
coefficient is 0.671. On the other hand, the 2-diameter is 3, the average 2-distance
is 1.76, and the 2-global clustering coefficient is 0.26. It is not surprising that
the most impactful treaty of our modern time is the North Atlantic Treaty
Organization (NATO). Figures 8 and 9 summarize the current day status of the
international alliances’ picture.
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Fig. 8. The hypergraph for the current day status.

Fig. 9. Top 5 currently active treaties.

4.4 Discussion

Over a period of 100+ years, the average 1-distance increased, a fact that indi-
cates the spread of treaties to involve almost all countries in the world. Regional
pacts became more common after World War II and continue to evolve in some
contentious areas more than others. This is also reflected in the increase of the 1-
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diameter as well, which almost doubled over the same period of time. On another
note, the 1-global clustering coefficient stabilized after WWII mainly due to the
continuity of the main pacts signed after the end of the war and that remain
active to this day.

Zooming in on some of the most influential treaties, we find that the three
mentioned in the previous sections played a crucial role in dictating global power
balance and affecting major world events. The treaty between the UK, France,
and Spain was a game changer in WWI, while the one between the UK and
several countries in the Mediterranean region shaped the course of WWII. At
the moment, the NATO alliance is definitely considered the most dominant one
on the international stage and we witness many smaller states working on many
political levels to join the defense pact.

5 Conclusion

One of the first empirical tests of the alliance-war relationship found that states
ranking high on alliance activity also rank high on war engagement, initia-
tion, and battle deaths [9]. In this paper, hypernetwork science techniques were
employed to validate this correlation. In particular, we focused on the alliances
leading to WWI, the ones leading to WWII, and the ones currently active. Using
centrality measures, we identified the most impactful treaties and provided a “big
picture” view of the world dynamics in each of the three time phases.

Measuring the impact of an alliance is a non-trivial task and pinpointing all
the factors that contribute to such a task is difficult. Besides the length and
the size of a treaty, its geographical bound, and the economical power of the
countries involved in it, one can study the evolution of a treaty over time to
understand its growing or shrinking impact regionally or internationally. There
is no guaranteed way to predict future conflict or war, but alliances are definitely
a major player in shaping balance around the world. In an upcoming paper, we
intend to use the toolkit developed herein to investigate the trade pacts all over
the globe with the hope of devising methods to measure the economical impact
of such pacts and their influence on international relations.
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Abstract. The availability of large datasets composed of graphs creates
an unprecedented need to invent novel tools in statistical learning for
graph-valued random variables. To characterize the average of a sam-
ple of graphs, one can compute the sample Frechet mean and median
graphs. In this paper, we address the following foundational question:
does a mean or median graph inherit the structural properties of the
graphs in the sample? An important graph property is the edge density;
we establish that edge density is an hereditary property, which can be
transmitted from a graph sample to its sample Frechet mean or median
graphs, irrespective of the method used to estimate the mean or the
median. Because of the prominence of the Frechet mean in graph-valued
machine learning, this novel theoretical result has some significant prac-
tical consequences.

Keywords: Frechet mean and median graphs · statistical network
analysis

1 Introduction

We consider the set G formed by all undirected unweighted simple labeled graphs
with vertex set {1, . . . , n}. We equip G with a metric d to measure the distance
between two graphs.

We characterize the “average” of a sample of graphs
{
G(1), . . . , G(N)

}
, which

are defined on the same vertex set {1, . . . , n}, with the sample Fréchet mean and
median graphs, [6].

Definition 1. The sample Fréchet mean graphs are solutions to

μ̂N

[
G

]
= argmin

G∈G
1
N

N∑

k=1

d2(G,G(k)), (1)

and the sample Fréchet median graphs are solutions to

m̂N

[
G

]
= argmin

G∈G
1
N

N∑

k=1

d(G,G(k)). (2)
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Solutions to the minimization problems (1) and (2) always exist, but the
minimizers need not be unique. All our results are stated in terms of any of the
elements in the set of minimizers of (1) and (2).

Because the focus of this work is not the computation of the Fréchet mean
or median graphs, but rather a theoretical analysis of the properties that these
graphs inherit from the graph sample, we assume that the graphs in the sample
are defined on the same vertex set.

The vital role played by the Fréchet mean as a location parameter [9,10,13],
is exemplified in the works of [1,14], who have created novel families of random
graphs by generating random perturbations around a given Fréchet mean graph.

1.1 Our Main Contributions

We consider a set of N unweighted simple labeled graphs,
{
G(1), . . . , G(N)

}
,

with vertex set {1, . . . , n}. In this paper, we address the following foundational
question: does a mean or median graph inherit the structural properties of the
graphs in the sample? Specifically, we establish that edge density is an hereditary
property, which can be transmitted from a graph sample to its sample Fréchet
mean or median.

Because sparse graphs provide prototypical models for real networks, our
theoretical analysis is significant since it provides a guarantee that this structural
property is preserved when computing a sample mean or median. In a similar
vein, the authors in [8] construct a sparse median graph, which provides a more
interpretable summary, from a set of graphs that are not necessarily sparse.

Our work answers the question raised by the author in [7]: “does the average
of two sparse networks/matrices need to be sparse?” Specifically, we prove the
following result: the number of edges of the Fréchet mean or median graphs of
a set of graphs is bounded by the sample mean number of edges of the graphs
in the sample. We prove this result for the graph Hamming distance, and the
spectral adjacency pseudometric, using different arguments.

2 Preliminary and Notations

We denote by S the set of n × n adjacency matrices of graphs in G,

S =
{
A ∈ {0, 1}n×n; where aij = aji, and ai,i = 0; 1 ≤ i < j ≤ n

}
. (3)

For a graph G ∈ G, we denote by A its adjacency matrix, and by e
(
A

)
the

number of edges – or volume – of G,

e
(
A

)
=

∑

1≤i<j≤n

aij . (4)

We denote by λ(A) =
[
λ1(A) · · · λn(A)

]
, the vector of eigenvalues of A, with

the convention that λ1(A) ≥ . . . ≥ λn(A).
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2.1 Distances Between Graphs

In this work, we consider two metrics: the Hamming distance and the spectral
adjacency pseudometric. We briefly recall the definitions of these.

Definition 2. Let G,G′ ∈ G be two unweighted graphs with known vertex cor-
respondence and with adjacency matrix A and A′ respectively. We define the
Hamming distance between G and G′ as

dH(A,A′) def=
∑

1≤i<j≤n

|aij − a′
ij | = e

(
A

)
+ e

(
B

) − 2
∑

1≤i<j≤n

aijbij . (5)

The Hamming distance is very sensitive to fine scale fluctuations of the graph
connectivity. In contrast, a metric based on the eigenvalues of the adjacency
matrix can quantify configurational changes that occur on a graph at many
more scales [5,17].

Definition 3. Let G,G′ ∈ G with adjacency matrix A and A′ respectively. We
define the adjacency spectral pseudometric as the �2 norm between the vectors of
eigenvalues λ(A) and λ(A′) of A and A′ respectively,

dλ

(
A,A′) = ||λ(A) − λ(A′)||2. (6)

The pseudometric dλ satisfies the symmetry and triangle inequality axioms,
but not the identity axiom. Instead, dλ satisfies the reflexivity axiom, ∀G ∈ G,
dλ(G,G) = 0. We note that the adjacency spectral pseudometric does not require
node correspondence.

3 Main Results

In the following, we consider a set of N unweighted simple labeled graphs,{
G(1), . . . , G(N)

}
, with vertex set {1, . . . , n}. We denote by A(k) the adjacency

matrix of graph G(k). We equip the set G of all unweighted simple graphs on
n nodes with a pseudometric, or a metric, d. The Fréchet mean and median
graphs encode two notions of centrality (1) and (2) that minimise the following
dispersion function, also called the Fréchet function.

Definition 4. We denote by F̂q(A) the sample Fréchet function associated with
a sample Fréchet median (q = 1) or mean (q = 2),

F̂q(A) =
1
N

N∑

k=1

dq(A,A(k)). (7)

To quantify the connectivity of the graph sample,
{
G(1), . . . , G(N)

}
, we define

the sample mean and variance of the number of edges.
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Definition 5. The sample mean and variance of the number of edges are defined
by

eN =
1
N

N∑

k=1

e
(
A(k)

)
, and σ2

N (e) =
1
N

N∑

k=1

[
e
(
A(k)

)]2 − [
eN ]2. (8)

We now turn our attention to the main problem. We consider the following
question: if the graphs G(1), . . . , G(N) all have a similar edge density, can one
determine the edge density of the sample Fréchet mean or median graphs? and
does that number of edges depend on the choice of metric d in (1) and (2)? We
answer both questions in the following theorem.

Theorem 1. Let
{
G(1), . . . , G(N)

}
be a sample of unweighted simple labeled

graphs with vertex set {1, . . . , n}. Let μ̂N

[
A

]
be the adjacency matrix of a sam-

ple Fréchet mean graph, and let m̂N

[
A

]
be the adjacency matrix of a sample

Fréchet median graph. Let eμ̂ and em̂ be the number of edges of μ̂N

[
A

]
and

m̂N

[
A

]
respectively.

If the Fréchet mean and median graphs are computed using the Hamming
distance, then

eμ̂ < 2eN +
σN (e)√

2
, and em̂ < 2 eN , (9)

and if the Fréchet mean and median graphs are computed using the adjacency
spectral pseudometric, then

eμ̂ < 9 eN , and em̂ < 9eN . (10)

Proof. The proof is a direct consequence of Lemmata 6 and 12.

Remark 1. When the graph G(k) are sampled from the inhomogeneous Erdős-
Rényi random graph probability space G(

n,P
)

[3], and if the distance on G is
the Hamming distance, then μ̂N

[
A

]
= m̂N

[
A

]
with high probability [15]. In

this case, a tight bound on eμ̂ or em̂ in (9) is 2eN , which – unlike (9) – does not
involve σN (e).

The fact that we overestimate the bound on eμ̂ by the addition of the term
σN (e)/

√
2 comes from our technique of proof, which relies on an estimate of the

Fréchet function. As explained in Remark 4, our estimate of the Fréchet function
is almost tight; it does include the term σN (e), as it should.

Finally, the following corollary answers the question raised by the author in [7]:
“does the average of two sparse networks/matrices need to be sparse?”

Corollary 1. Let
{
G(1), . . . , G(N)

}
be a sample of unweighted simple labeled

graphs with vertex set {1, . . . , n}. We assume that the number of edges of each
G(k) satisfies

e
(
A(k)

)
= O

(
n2

)
, but e

(
A(k)

)
= ω(n). (11)

Then the sample Fréchet mean and median graphs – computed according to either
the Hamming distance or the adjacency spectral pseudometric – are sparse, as
defined by (11).
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Proof of Corollary 1. The corollary is a direct consequence of Theorem 1.

4 Proofs of the Main Result

We give in the following the proof of Theorem 1. The key observation is that it
is relatively easy to derive tight bounds on the number of edges of the sample
Fréchet median graph. Inspired by the results in [15] that show that for large
classes of random graphs the sample Fréchet median and mean graphs are iden-
tical, we prove that the bounds derived for the Fréchet median graphs also hold
for the Fréchet mean graphs.

Our analysis begins in Subsect. 4.1 with the sample median graphs com-
puted using the Hamming distance, we then move to the sample mean graphs in
Subsect. 4.2. In Subsects. 4.4 and 4.5, we extend these results to the sample
mean and median graphs computed with the adjacency spectral pseudometric.

When possible, we use the probability space G(
n,P

)
of inhomogeneous Erdős-

Rényi random graphs [3], equipped with the Hamming distance to test the tight-
ness of our results [15].

4.1 The Median Graphs Computed Using the Hamming Distance

The Hamming distance, by nature, promotes sparsity [5,17], and we therefore
expect that the volumes of the sample Fréchet mean and median graphs com-
puted with this distance be similar to the sample mean number of edges.

When the distance is the Hamming distance, the sample Fréchet median
graphs can in fact be characterized analytically.

Lemma 1. The adjacency matrix m̂N

[
A

]
of a sample median graph m̂N

[
G

]

is given by the majority rule,

[
m̂N

[
A

]]

ij
=

{
0 if

∑N
k=1 a

(k)
ij < N/2,

1 otherwise.
∀i, j ∈ {1, . . . , n} . (12)

Proof of Lemma 1. The result is classic and we omit the proof, which can be
found for instance in [4].

In the following lemma, we derive an upper bound on the number of edges of a
Fréchet median graph, em̂ .

Lemma 2. Let eN be the sample mean number of edges, given by (8). Then the
number of edges of a Fréchet median graph m̂N

[
G

]
is bounded by

em̂ ≤ 2eN . (13)

Remark 2. The bound (13) is tight for large N . Indeed, consider a sample of 2N
graphs, where

G(k) =

{
the complete graph Kn if 1 ≤ k ≤ N + 1,

the empty graph if N + 2 ≤ k ≤ 2N.
(14)
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A Fréchet median graph m̂N

[
A

]
, given by the majority rule (12) is Kn, and

thus em̂ = n(n − 1)/2. On the other hand, the sample mean number of edges is
eN = em̂ /2 + em̂ /(2N). As the sample size N goes to infinity, we have

lim
N−→∞

em̂ = 2eN , (15)

which proves that the bound (13) is asymptotically tight.

Proof of Lemma 2. Let Em̂ =
{
(i, j), i < j, [m̂N

[
A

]
]ij = 1

}
be the set of

edges of m̂N

[
G

]
. We have |Em̂ | = em̂ . Now,

N∑

k=1

e
(
A(k)

)
=

∑

1≤i<j≤n

N∑

k=1

a
(k)
ij =

∑

i,j∈Em̂

N∑

k=1

a
(k)
ij +

∑

i,j∈Ec
m̂

N∑

k=1

a
(k)
ij . (16)

Neglecting the edges (i, j) not in Em̂ , we have

N∑

k=1

e
(
A(k)

) ≥
∑

i,j∈Em̂

N∑

k=1

a
(k)
ij >

∑

i,j∈Em̂

N

2
=

N

2
em̂ ,

whence we conclude

em̂ ≤ 2
N

N∑

k=1

e
(
A(k)

)
= 2eN . (17)

��

4.2 The Mean Graphs Computed Using the Hamming Distance

First, we recall the following lower bound on the Hamming distance.

Lemma 3. Let A and B be the adjacency matrices of two unweighted graphs
with number of edges e

(
A

)
and e

(
B

)
respectively. Then

∣
∣e

(
A

) − e
(
B

)∣∣ ≤ dH(A,B). (18)

Proof of Lemma 3. The proof is elementary and is skipped.

Next, we derive an upper bound on the deviation of the volume of a Fréchet
mean, eμ̂ , away from the sample average volume, eN , given by (8).

Lemma 4. Let μ̂N

[
A

]
be the adjacency matrix of a sample Fréchet mean com-

puted using the Hamming distance, with eμ̂ edges. Let eN be the sample mean
number of edges. Then

[
eμ̂ − eN

]2

<
1
N

N∑

k=1

d2H(μ̂N

[
A

]
,A(k)) = F̂2(μ̂N

[
A

]
). (19)
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Remark 3. This bound is not tight. We consider again the probability space of
inhomogeneous Erdős-Rényi random graphs equipped with the Hamming dis-
tance. In that case, one can show that the population Fréchet mean and median
coincide [15], and the adjacency matrix of the population Fréchet mean graph,
μ

[
A

]
, is given by the majority rule,

[
μ

[
A

]]

ij
=

{
1 if pij > 1/2,

0 otherwise.
(20)

Also, the population Fréchet function, F2, evaluated at μ
[
A

]
is given by [15]

F2(μ
[
A

]
) =

[ ∑

1≤i<j≤n

pij −
∑

(i,j)∈E
(
μ
[
A

])
(2pij − 1)

]2
+

∑

1≤i<j≤n

pij(1 − pij), (21)

where E(
μ

[
A

])
is the set of edges of the population Fréchet mean, μ

[
A

]
. We

claim that the lower bound on F̂2(μ̂N

[
A

]
) in (19),

[
eN − eμ̂

]2
, (22)

can be identified with the first term of F2(μ
[
A

]
) in (21),

[ ∑

1≤i<j≤n

pij −
∑

(i,j)∈E
(
μ
[
A

])
(2pij − 1)

]2
. (23)

Indeed, the first sum inside (23) is the population mean number of edges, E [e],
which matches the sample mean eN in (22). Also, the second sum in (23) is
bounded by e

(
μ

[
A

])
, the number of edges of the population Fréchet mean,

0 <
∑

(i,j)∈E
(
μ
[
A

])
(2pij − 1) <

∑

(i,j)∈E
(
μ
[
A

])
1 = e

(
μ

[
A

])
. (24)

The number of edges e
(
μ

[
A

])
matches the sample estimate, eμ̂ , in (22). In

summary, the first term (23) of the population Fréchet function (21) matches
the corresponding sample estimate (22).

However, the second term,
∑

1≤i<j≤n pij(1 − pij) in (21), which accounts for
the variance of the n(n−1)/2 independent Bernoulli edges, is not present in the
lower bound on in F2[μ

[
A

]
] given by (19), confirming that the lower bound in

(19) is missing a variance term, and is therefore not tight.

Proof of Lemma 4. Because of Lemma 3, we have
∣
∣e

(
A(k)

) − eμ̂

∣
∣2 ≤ d2H(μ̂N

[
A

]
,A(k)). (25)

Now, the function
x 	−→ (

eμ̂ − x
)2 (26)
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is strictly convex so,

∣
∣eN − eμ̂

∣
∣2 =

∣
∣
∣
∣
∣
1
N

N∑

k=1

e
(
A(k)

) − eμ̂

∣
∣
∣
∣
∣

2

<
1
N

N∑

k=1

∣
∣
∣e

(
A(k)

) − eμ̂

∣
∣
∣
2

, (27)

and substituting (25) for each k in (27), we get the advertised result. ��
Finally, we compute an upper bound on the Fréchet function evaluated at a
sample Fréchet median graph, F̂2(m̂N

[
A

]
).

Lemma 5. Let eN and σ2
N (e) be the sample mean and variance of the number

of edges (see (8)). Then the Fréchet function F̂2(m̂N

[
A

]
) evaluated at a Fréchet

median graph is bounded by

F̂2(m̂N

[
A

]
) ≤ 2

[
eN

]2 + σ2
N (e). (28)

Remark 4. As explained in Remark 3, when the graphs G(k) are sampled
from G(

n,P
)
, then the population Fréchet mean and median graphs coincide,

μ
[
G

]
= m

[
G

]
. Also, the population Fréchet function F2(m

[
A

]
) evaluated at a

population Fréchet median graph is given by

F2

[
m

[
A

]]
=

[ ∑

1≤i<j≤n

pij −
∑

(i,j)∈E
(
m

[
A

])
(2pij − 1)

]2
+

∑

1≤i<j≤n

pij(1 − pij), (29)

where the term
∑

(i,j)∈E
(
m

[
A

])(2pij − 1) is always positive (since the median

graphs are constructed using the majority rule (12)). Therefore, we have

F2

[
m

[
A

]] ≤
[ ∑

1≤i<j≤n

pij

]2
+

∑

1≤i<j≤n

pij(1 − pij). (30)

The term
∑

1≤i<j≤n pij is the expectation of the number of edges, whereas∑
1≤i<j≤n pij(1 − pij) is the variance of the number of edges. In summary, we

have the following bound on the population Fréchet function,

F2(m
[
A

]
) ≤ [

E [e]
]2 + var [e] , (31)

where e denotes the number of edges in graphs sampled from G(
n,P

)
. If we

replace E [e] and var [e] by their respective sample estimates, eN and σ2
N (e),

then the bound (28) is only slightly worse (by a factor 2 in front of eN ) than
the population bound, (31). Interestingly, the variance of the number of edges is
present in both expressions.

Proof of Lemma 5. From (5), one can derive the following expression for the
Hamming distance from a Fréchet median graph m̂N

[
G

]
to a graph G(k),

dH(m̂N

[
A

]
,A(k)) = em̂ + e

(
A(k)

) − 2
∑

(i,j)∈Em̂

a
(k)
ij , (32)
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where we recall that Em̂ =
{

(i, j), i < j,
[
m̂N

[
A

]]

ij
= 1

}
is the set of edges of

m̂N

[
G

]
. Taking the square of the Hamming distance given by (32), and summing

over all the graphs, yields

F̂2(m̂N

[
A

]
) =

1
N

N∑

k=1

{[
em̂ + e

(
A(k)

)
]2

+ 4
[ ∑

(i,j)∈Em̂

a
(k)
ij

]2

− 4
(
em̂ + e

(
A(k)

))[ ∑

(i,j)∈Em̂

a
(k)
ij

]
}

.

Expanding all the terms, and using the definition of σ2
N (e) and eN in (8), we get

F̂2(m̂N

[
A

]
) =

[
em̂

]2 + 2em̂ eN + σ2
N (e) +

[
eN

]2 +
4
N

N∑

k=1

[
∑

(i,j)∈Em̂

a
(k)
ij

]2

− 4
N

N∑

k=1

e
(
A(k)

)[ ∑

(i,j)∈Em̂

a
(k)
ij

]
− 4em̂

[ ∑

(i,j)∈Em̂

1
N

N∑

k=1

a
(k)
ij

]

=
[
em̂ + eN

]2 + σ2
N (e) + 4

1
N

N∑

k=1

[
∑

(i,j)∈Em̂

a
(k)
ij

]2

− 4
N

N∑

k=1

e
(
A(k)

)[ ∑

(i,j)∈Em̂

a
(k)
ij

]
− 4em̂

[ ∑

(i,j)∈Em̂

1
N

N∑

k=1

a
(k)
ij

]
. (33)

Now, because of the definition of the median graphs (12), we have the following
upper bound

− 4em̂

[ ∑

(i,j)∈Em̂

1
N

N∑

k=1

a
(k)
ij

]
≤ −2

[
em̂

]2
. (34)

Because e
(
A(k)

) ≥ ∑
(i,j)∈Em̂

a
(k)
ij , we get the following upper bound,

− 4
N∑

k=1

e
(
A(k)

) ∑

(i,j)∈Em̂

a
(k)
ij ≤ −4

N∑

k=1

[ ∑

(i,j)∈Em̂

a
(k)
ij

]2
. (35)

Finally, after substituting (34) and (35) into (33), we get the bound announced
in the lemma,

F̂2(m̂N

[
A

]
) ≤[

em̂ + eN

]2 − 2
[
em̂

]2 + σ2
N (e) = −[

em̂ − eN

]2 + 2
[
eN

]2 + σ2
N (e)

≤2
[
eN

]2 + σ2
N (e). �

4.3 The Number of Edges of m̂N

[
G

]
and μ̂N

[
G

]
when d = dH

The following lemma provides the bounds given by Theorem 1 when d is the
Hamming distance.



On the Number of Edges of the Fréchet Mean and Median Graphs 35

Lemma 6. Let
{
G(1), . . . , G(N)

}
be a sample of unweighted simple labeled

graphs with vertex set {1, . . . , n}. Let μ̂N

[
A

]
be the adjacency matrix of a sample

Fréchet mean graph, and m̂N

[
A

]
be the adjacency matrix of a sample Fréchet

median graph, computed according to the Hamming distance. Then

e
(
μ̂N

[
A

])
< 2eN +

σN (e)√
2

, and e
(
m̂N

[
A

]) ≤ 2eN . (36)

Proof of Lemma 6. The bound on e
(
m̂N

[
A

])
is a straightforward conse-

quence of Lemma 4. Indeed, (13) and (8) yield the bound in (36),

e
(
m̂N

[
A

]) ≤ 2
N

N∑

k=1

e
(
A(k)

) ≤ 2eN .

We now move to e
(
μ̂N

[
A

])
. We use m̂N

[
A

]
to derive an upper bound on the

Fréchet function computed at μ̂N

[
A

]
. By definition of the sample Fréchet mean

graphs, we have

1
N

N∑

k=1

d2H(μ̂N

[
A

]
,A(k)) ≤ 1

N

N∑

k=1

d2H(m̂N

[
A

]
,A(k)). (37)

Using (19) as a lower bound and (28) as an upper bound in (37), we get
[
eμ̂ − eN

]2

< 2
[
eN

]2 + σ2
N (e),

and thus

∣
∣eμ̂ − eN

∣
∣ ≤

√
2
[
eN

]2 + σ2
N (e) ≤ 1√

2

{√
2eN + σN (e)

}
= eN +

σN (e)√
2

, (38)

from which we get the advertised bound on eμ̂ . ��

4.4 The Mean Graphs Computed Using the Adjacency Spectral
Pseudometric

The technical difficulty in defining the sample Fréchet mean and median graphs
according to the adjacency spectral pseudometric stems from the fact that the
sample Fréchet function, F̂q(A), is defined in the spectral domain, but the
domain over which the optimization takes place is the matrix domain. This leads
to the definition of the set, Λ, of real spectra that are realizable by adjacency
matrices of unweighted graphs (elements of S, defined by (3)) [11],

Λ =
{
λ(A) =

[
λ1(A) · · · λn(A)

]
; where A ∈ S}

. (39)

Let
{
G(1), . . . , G(N)

}
be a sample of unweighted simple labeled graphs with

vertex set {1, . . . , n}. Let A(k) be the adjacency matrix of graph G(k), and let



36 D. Ferguson and F. G. Meyer

λ(A(k)) be the spectrum of A(k). The adjacency matrix, μ̂N

[
A

]
, of a sample

Fréchet mean graph computed according to the adjacency spectral pseudometric,
has a vector of eigenvalues, λ(μ̂N

[
A

]
) ∈ Λ, that satisfies

λ(μ̂N

[
A

]
) = argmin

λ∈Λ

N∑

k=1

||λ − λ(A(k))||2. (40)

Similarly, the adjacency matrix, m̂N

[
A

]
, of a sample Fréchet median computed

according to the adjacency spectral pseudometric, has a vector of eigenvalues,
λ(m̂N

[
A

]
) ∈ Λ, that satisfies

λ(m̂N

[
A

]
) = argmin

λ∈Λ

N∑

k=1

||λ − λ(A(k))||. (41)

We recall the following result that expresses the number of edges as a function
of the �2 norm of the spectrum of the adjacency matrix.

Lemma 7. Let G ∈ G with adjacency matrix A. Let λ1(A) ≥ . . . ≥ λn(A) be
the eigenvalues of A. Then

2e
(
A

)
=

n∑

i=1

λ2
i (A) = ‖λ(A)‖22. (42)

Proof of Lemma 7. The result is classic; see for instance [2,16].

We derive the following lower bound on the sample mean number of edges.

Lemma 8. Let ÊN

[
λ(A)

]
= 1

N

∑N
k=1 λ(A(k)) be the sample mean spectrum.

Then
1
2

∥
∥
∥ÊN

[
λ(A)

]∥∥
∥
2

≤ eN , (43)

where eN is the sample mean number of edges, given by (8).

Proof of Lemma 8. The result is a straightforward consequence of the convex-
ity of the norm combined with (42).

If Λ were to be a convex set, then the spectrum of a sample Fréchet mean
graph would simply be the sample mean spectrum, which would minimize (40).
Unfortunately, Λ is not convex [12]. We can nevertheless relate the spectrum of
a sample Fréchet mean graph, λ(μ̂N

[
A

]
), to the mean spectrum ÊN

[
λ(A)

]
. We

take a short detour to build some intuition about the geometric position of the
spectrum of μ̂N

[
A

]
with respect to λ(A(1)), . . . ,λ(A(N)).

Warm-Up: The Sample Mean Spectrum. Let
{
G(1), . . . , G(N)

}
be a sample

of unweighted simple labeled graphs with vertex set {1, . . . , n}. Let A(k) be the
adjacency matrix of graph G(k), and let λ(A(k)) be the spectrum of A(k).
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Lemma 9. Let ÊN

[
λ(A)

]
be the sample mean spectrum. Then ∃ k0 ∈

{1, . . . , N} such that
‖λ(A(k0))‖ ≤ ‖ÊN

[
λ(A)

]‖. (44)

Proof of Lemma 9. A proof by contradiction is elementary.

Using the characterization of a sample Fréchet mean graph, μ̂N

[
A

]
, given by

(40), we can extend the above lemma to λ(μ̂N

[
A

]
), and derive the following

result.

Lemma 10. Let λ(μ̂N

[
A

]
) be the spectrum of a sample Fréchet mean graph.

Let eN be the sample mean number of edges of the graphs G(1), . . . , G(N). Then

‖λ(μ̂N

[
A

]
)‖ ≤ 3

√
2eN . (45)

Proof of Lemma 10. Because of Lemma 9,

∃ k0 ∈ {1, . . . , N}, ‖λ(A(k0))‖ ≤ ‖ÊN

[
λ(A)

]‖. (46)

Now, because of Lemma 8, (46) implies that

‖λ(A(k0))‖ ≤ √
2eN . (47)

Because the vector λ
(
A(k0)

)
is in Λ (defined by (39)), we have

1
N

N∑

k=1

‖λ(μ̂N

[
A

]
) − λ

(
A(k)

)‖2 ≤ 1
N

N∑

k=1

‖λ
(
A(k0)

) − λ
(
A(k)

)‖2.

Expanding the norms squared on both sides yields

‖λ(μ̂N

[
A

]
)‖2 − 2〈λ(μ̂N

[
A

]
), ÊN

[
λ(A)

]〉 +
1
N

N∑

k=1

‖λ
(
A(k)

)‖2

≤‖λ(
A(k0)

)‖2 − 2〈λ(
A(k0)

)
, ÊN

[
λ(A)

]〉 +
1
N

N∑

k=1

‖λ
(
A(k)

)‖2. (48)

Subtracting 1
N

∑N
k=1 ‖λ

(
A(k)

)‖2 and adding
∥
∥ÊN

[
λ(A)

]∥∥2 on both sides we get

∥
∥λ(μ̂N

[
A

]
) − ÊN

[
λ(A)

]∥∥2 ≤ ∥
∥λ

(
A(k0)

) − ÊN

[
λ(A)

]∥∥2
,

and therefore
‖λ(μ̂N

[
A

]
)‖ ≤ ‖λ(

A(k0)
)‖ + 2

∥
∥ÊN

[
λ(A)

]∥∥. (49)

Finally, using Lemma 8 and (47) in the equation above, we obtain

‖λ(μ̂N

[
A

]
)‖ ≤ 3

√
2eN , (50)

which completes the proof of the bound on the spectrum of the Fréchet mean. ��



38 D. Ferguson and F. G. Meyer

4.5 The Median Graphs Computed Using the Adjacency Spectral
Pseudometric

We finally consider the computation of the median graphs. We have the following
bound on the norm of the spectrum of m̂N

[
A

]
.

Lemma 11. Let λ(m̂N

[
A

]
) be the spectrum of a sample Fréchet median graph.

Let eN be the sample mean number of edges of the graphs G(1), . . . , G(N). Then,

‖λ(m̂N

[
A

]
)‖ ≤ 3

√
2eN . (51)

Proof of Lemma 11. The function Φ,

Φ : Rn −→ [0,∞)

x 	−→ Φ(x) =
∥
∥λ(m̂N

[
A

]
) − x

∥
∥

is strictly convex, and therefore

Φ
(
ÊN

[
λ(A)

])
= Φ

(
1
N

N∑

k=1

λ
(
A(k)

)
)

≤ 1
N

N∑

k=1

Φ
(
λ

(
A(k)

))
. (52)

Now, the right-hand side of (52) is the Fréchet function evaluated at one of its
minimizers. Thus F1(λ(m̂N

[
A

]
)), is smaller than F1(λ

(
A(k0)

)
), where A(k0) is

defined in Lemma 9, and (52) becomes

‖λ(m̂N

[
A

]
) − ÊN

[
λ(A)

]‖ ≤ 1
N

N∑

k=1

‖λ
(
A(k0)

) − λ
(
A(k)

)‖. (53)

Also, because of Lemma 8 and (47), we get

1
N

N∑

k=1

‖λ
(
A(k0)

) − λ
(
A(k)

)‖ ≤ ‖λ(
A(k0)

)‖ +
√

2eN ≤ 2
√

2eN . (54)

Combining (53) and (54), and using Lemma 8 we conclude that
∥
∥λ(m̂N

[
A

]
)
∥
∥ ≤ ∥

∥ÊN

[
λ(A)

]∥∥ + 2
√

2eN ≤ 3
√

2eN .

This completes the proof of the bound on the spectrum of a Fréchet median. ��

4.6 The Number of Edges of m̂N

[
G

]
and μ̂N

[
G

]
when d = dλ

The following lemma provides the bounds given by Theorem 1 when d is the
spectral adjacency pseudometric.

Lemma 12. Let
{
G(1), . . . , G(N)

}
be a sample of unweighted simple labeled

graphs with vertex set {1, . . . , n}. We consider a sample Fréchet mean, μ̂N

[
A

]
,

and a sample Fréchet median, m̂N

[
A

]
, computed according to the spectral adja-

cency pseudometric. Then

max
{
e
(
μ̂N

[
A

])
, e

(
m̂N

[
A

])} ≤ 9 eN , (55)

where eN is the sample mean number of edges given by (8).
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Proof of Lemma 12. We first analyse the case of a sample Fréchet mean
graph; a sample Fréchet median graph is handled in the same way. From lem-
mata 10 and 11, we have

‖λ(μ̂N

[
A

]
)‖2 ≤ 18 eN . (56)

Now, from (42) we have e
(
μ̂N

[
A

])
= 1

2‖λ(μ̂N

[
A

]
)‖2, and therefore

e
(
μ̂N

[
A

]) ≤ 9 eN ,

which completes the proof of the lemma. ��
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Abstract. As social interactions are increasingly taking place in the
digital environment, online friendship and its effects on various life out-
comes from health to happiness attract growing research attention. In
most studies, online ties are treated as representing a single type of rela-
tionship. However, our online friendship networks are not homogeneous
and could include close connections, e.g. a partner, as well as people we
have never met in person. In this paper, we investigate the potentially
differential effects of online friendship ties on mental health. Using data
from a Russian panel study (N = 4, 400), we find that - consistently
with previous research - the number of online friends correlates with
depression symptoms. However, this is true only for networks that do
not exceed Dunbar’s number in size (N ≤ 150) and only for core but
not peripheral nodes of a friendship network. The findings suggest that
online friendship could encode different types of social relationships that
should be treated separately while investigating the association between
online social integration and life outcomes, in particular well-being or
mental health.

Keywords: social network · digital traces · depression

1 Introduction

Individual’s mental health is known to be associated with their position within
the social network. One of the most well-established relationships is the associ-
ation between social integration and depressive symptoms [3,8,18,29,49]. Gen-
erally, social integration is understood as a structural aspect of people’s rela-
tionships, that indicates how those relationships are patterned or organized [50].
However, in most of the studies, social integration is simply defined as the num-
ber of social contacts.

1.1 Social Integration and Depression

Longitudinal studies demonstrate that the association between social integration
and depression might be explained by the protective role of social connections
c© Springer Nature Switzerland AG 2022
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that serve as a stress buffer mitigating the depressive symptoms [22,26,50], or by
the changes in friendship formation and interactions of individuals with depres-
sive symptoms (i.e. such individuals tend to withdraw from existing contacts
or create fewer new connections) [11,39]. Based on the National Longitudinal
Study of Adolescent Health data (Add Health, N = 11, 023), Ueno studied the
association between the depressive symptoms and a variety of ego-network pat-
terns [52]. He concluded that the number of friends was the strongest predictor
of depressive symptoms. Although other variables generally showed significant
correlations with depressive symptoms in the expected directions, the associ-
ations were very weak, especially when controlling for the number of friends.
Employing the same longitudinal dataset Shaefer et al. [45] analyzed the role of
depressive symptoms in the evolution of friendship networks and demonstrated
that depressed persons withdrew from friendships over time, leaving them with
fewer friends. Depressed individuals were also less likely to be selected as friends
by others because they tend to occupy peripheral network positions. Negriff [39]
found that higher levels of depressive symptoms led to smaller, less connected
networks with fewer friends in the largest connected component of the network
two years later. She concluded that individuals with depressive symptoms lack
the social skills needed to form and maintain close relationships, which leads to
the dissolution of friendship ties.

Previously reported results on the relationship between social network struc-
ture and depressive symptoms were mostly obtained for complete networks based
on self-reported data [18,45], e.g. by asking school students to nominate their
friends. Having information about the whole network structure allows control-
ling for a variety of network effects. However, it limits the generalizability of the
findings as it is not clear if they are specific to particular schools or could be
generalized to a large population. As a result, the association between depressive
symptoms and ego network structure is not well understood at the population
level. Self-reports on social networks can also be biased [32] which makes it
essential to search for more objective measures of social interactions.

1.2 Online Social Integration

In the past decade, a significant fraction of social interactions migrated online,
for example to social media platforms [33,57]. This process was accelerated in
2020 due to the COVID-19 pandemic and associated restrictions on face-to-face
meetings, making social media and other digital platforms one of the key com-
munication tools for a large part of the population. Given the central role that
social media plays in interpersonal communication, it is important to understand
the relationship between the online social environment of an individual and their
depressive symptoms.

Empirical results for online networks largely agree with studies of offline net-
works. Users suffering from depression have smaller networks [39,42,54] with
densely clustered pockets and less frequently explicitly mention their network
partners compared to the non-depressed users [54]. Individuals with suicide
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ideation and depressive symptoms also have less clustered personal social net-
works and tend to connect with individuals similarly oriented toward suicide and
depression [37].

Existing literature on the association between online networks and depressive
symptoms mostly does not differentiate online friends, although online networks
are known to consist of multiple layers, which differ in both emotional closeness
with alters [15] and levels of support [9]. Moreover, network studies based on
data on offline networks highlight the distinct impact of different ties on personal
well-being [17,25,50]. This can also apply to online networks. For instance, Lup
et al. [34] showed that the association between Instagram use and depressive
symptoms is moderated by the number of strangers followed: more Instagram
use is related to greater depressive symptoms only for those at highest levels of
strangers followed, and for those at lower levels, Instagram use and depressive
symptoms are unrelated.

In this paper, we investigate the potentially differential effect of online friend-
ship ties on mental health, based on the survey data and data from a social
networking site in a sample of young adults.

2 Methods

2.1 Survey Data

We used data from an ongoing Russian Longitudinal Panel Study of Educational
and Occupational Trajectories (TrEC) [36] that tracks 4,399 students from 42
Russian regions who participated in the Programme for International Student
Assessment (PISA) [40] in 2012. The initial TrEC sample was nationally repre-
sentative for one age cohort (14–15 years old in 2012).

In the 2018 wave, the eight-item Patient Health Questionnaire depression
scale (PHQ-8) [31] was included in the survey to measure depressive symptoms
of participants. PHQ-8 asks individuals to self-rate the frequency of various
depressive symptoms over the past 2 weeks using a 4-point verbal scale: “not at
all,” “several days,” “more than half the days,” and “nearly every day.” Depres-
sion symptoms are scored as the sum of all items, ranging from 0 to 24. The
depression questionnaire was filled by 2, 554 participants.

The PHQ-8 scale has been shown to be a valid tool in detecting depression
across various cultures [6,19,23,44,51] in both clinical and population-based
studies.

2.2 Data on Online Friendship

In addition to survey data, the data set includes information on the online friend-
ship of respondents on VK. VK was created in 2006 as a clone of Facebook
and became the most popular Russian social networking site with more than
97, 000, 000 monthly active users. It is particularly popular among young adults:
more than 90% of 18–24 years old use it regularly [43].
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Fig. 1. The distribution of the number of online friends. The median number of
friends is 132, the majority of users (56%) have between 50 and 200 friends, however,
some users have as many as 4,476 online friends.

VK provides an application programming interface (API) that enables the
downloading of information systematically from the site. The public API could
be used for research purposes according to the VK team.

In 2018, publicly available information from VK was collected for TrEC par-
ticipants. This online data is available only for those respondents who provided
consent to use their VK data for research purposes (79%). Information on non-
participant was anonymized, i.e. VK ID’s of participants’ friends were removed.
The VK data collection procedure was approved by the Institutional Review
Board.

For the purposes of this study, we have analyzed the structure of 1.5 radius
ego networks, i.e. the networks that include friends of a participant on VK and
friendship connections between them.



Core But Not Peripheral Online Social Ties is a Protective Factor 45

Fig. 2. Different approaches to identifying the core friends. Core (red) and
periphery (grey) nodes of an empirical ego network without the ego. Core friends
include (a) all nodes of the network, (b) only the nodes in the largest connected com-
ponent, (c) only the nodes in 3-core. (Color figure online)

2.3 Network Size

Typically to empirical social networks [1,53], there is a large variability in the
number of users’ friends: while the majority (56%) has between 50 and 200
friends, some users have more than 2,000 connections (see Fig. 1). Such large
networks cannot represent meaningful social ties indicating that users employ
different strategies when accepting or sending friend requests on social media.
While for some, online friendship might indicate relatively close social connec-
tions, others probably indiscriminately accept or send requests resulting in thou-
sands of online “friends”. To account for that, we consider separately those who
have an unreasonably large number of friends and everyone else. We choose
Dunbar’s number (N = 150) as a threshold to separate these two groups as it is
thought to be a soft upper limit of the personal social network size [14] and was
empirically confirmed in both offline and online settings [24,27,41,55].

The exact Dunbar’s number is to a certain degree an arbitrary threshold as it
is not fixed for every individual but rather is an approximate estimate. However,
we find that in our particular case this choice is reasonable based on empirical
observations (see Results).

2.4 Core

We further assume that even for users with reasonably sized networks not all
connections are necessarily equally important. One way to identify meaning-
ful connections is to look at the cohesive structures within the ego networks.
Borgatti and Everett [4] argue that networks tend to follow the core-periphery
model. It means that the network consists of two classes of nodes, namely a cohe-
sive subgraph (the core) in which actors are connected to each other in some
maximal sense and a class of actors that are loosely connected to the cohesive
subgraph (the periphery). Core-periphery structures are often analyzed with
respect to complete networks. For example, differences between the core and
peripheral nodes were studied in motion industry [7], metabolic networks [12],
and liner shipping network [30]. These two different structural types of social
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connections might also play different roles in network functioning on an individ-
ual level [25]. Cohesive network connections of the ego network are more likely
to provide emotional support and resource exchange, whereas periphery ties do
not have these properties as they serve different functions (e.g. binding groups
together or provide information) [21,25]. In the case of VK, isolated friends are
also more likely to be bots or accounts with fake information [47].

For that reason, we separate online connections of the individuals into core
and periphery nodes on the ego network level. For comparison, we use three
different approaches. First, we include all friends in the core, Fig. 2a. Second,
we include in the core only the nodes that are part of the largest connected
component [56], Fig. 2b. Finally, we consider only friends that belong to the
network k-core (k = 3), Fig. 2c, where k-core is a subgraph in which each node
is adjacent to at least a minimum number, k, of the other nodes in this subgraph
[46,56]. We choose k = 3 as it is the largest nontrivial value for our data, i.e. for
k ≥ 4 the size of k-core is zero for a large fraction of networks.

3 Results

3.1 Depressive Symptoms and Size of the Network Core

The prevalence of depression (PHQ-8 ≥ 10) is 16.6% in our sample (N = 2, 554).
The average PHQ-8 score is 5.3 (SD = 4.7). Similar depression rates have been
previously found in samples of students and young adults [16,17,38]. The preva-
lence of depression among men (51.3% of a sample) is lower than among women:
11.5% for men vs 21.9% for women (p − value = 2.8 · 10−9, χ2-test). This is
expected given that prevalence of depression among women is approximately
two times larger than among men [5,35].

The mean number of friends on VK is 190, the median is 132, similar to
other online social networks [24,53]. The average size of the largest connected
component is 112 nodes (the median is 70). The mean size of the network k-core
is 117 (the median is 76).

We find no association between the number of online friends and depressive
symptoms for the whole sample: the correlation between PHQ-8 scores and total
number of friends is Pearson’s r = −0.01, p − value = 0.51, for the size of the
largest connected component, r = −0.02, p−value = 0.43, and for the core size,
r = −0.02, p − value = 0.36.

3.2 Role of the Network Size

We then compared the relationship between depressive symptoms and network
size separately for smaller (N ≤ 150) and larger networks (N > 150) using
a bootstrap test. For that purpose, we repeatedly drew a sample of networks
from both groups with replacement and computed Pearson correlation coefficient
between the size of the largest connected component and PHQ-8 scores. The
results of simulations are presented in Fig. 3. The median value of correlation
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Fig. 3. The effect of network size on association between depressive symp-
toms and the size of network core. The distribution of the correlations between
network core size (largest connected component) and depressive symptoms for smaller
(N ≤ 150) and larger ego networks (N > 150). The distributions are from 10, 000
bootstrap simulations.

over 10,000 simulations for smaller networks is -0.08 and for larger networks is
0.05, the difference is significant with p − value < 10−3.

We then check for the robustness of this result with respect to changing
the threshold, N . For that purpose we have computed the correlation between
network size and depression score for networks of various sizes. We, first, com-
puted the correlation for the smallest 30% of all networks, i.e. networks whose
size is between the 0th and 30th percentile. We then repeated the procedure by
sliding the network size thresholds with a one percent step, i.e. computing cor-
relation for networks lying between the 1st and 31st percentile, between the 2nd
and 32nd, etc. The results (see Fig. 4) suggest that the relationship of interest
is indeed different for smaller and larger networks. While there is a consistent
significantly negative correlation for smaller networks, for larger networks it con-
sistently does not differ from zero. Curiously, the change in the pattern seems
to approximately correspond to Dunbar’s number.

For the sample of networks that are smaller or equal than 150 nodes
(N = 1, 382), we find statistically significant associations between the size of the
largest connected component and depressive symptoms (Pearson’s r = −0.08,
p − value = 0.003), and size of k-core and depressive symptoms (r = −0.07,
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p−value = 0.006). Intriguingly, the relationship between the overall network size
and depressive symptoms remain non-significant (r = −0.02, p − value = 0.39).
When the size of the periphery was considered separately it even correlated pos-
itively with depression: r = 0.06 (p − value = 0.02) for the largest connected
component and r = 0.05 (p − value = 0.05) for the k-core.

Our findings suggest that depressive symptoms of an individual are associated
with their online friendship networks. The size of the network core, but not
the network periphery, is negatively correlated with depressive symptoms. We
also find that these results hold only for networks that do not exceed Dunbar’s
number in size and, thus, probably represent the actual social connections.

4 Discussion

Social networking sites such as Facebook, Twitter, or VK, allow their users to
establish and maintain social connections with others. These connections have
the potential to affect important life outcomes including an individual’s well-
being and mental health. The strength and direction of these effects are still
not clear. In particular, most of the studies treat online ties as homogeneous,
although they might represent different kinds of relationships and as a conse-
quence have different impacts on mental health.

In our study, we examine the relationship between the structure of online
ego networks and depressive symptoms in a nationally representative sample of
young adults. The results could potentially be generalized to a population level,
albeit for one age cohort. We find that the size of the network is negatively
associated with depressive symptoms, however, this is true only for core but
not peripheral nodes. The size of the periphery is positively correlated with
depression. Social comparison theory provides one possible explanation of this
association. Peripheral ties may represent people we do not know personally.
Previous research has shown that Facebook users with more friends who are
strangers are more likely to exhibit attribution error toward those users they
do not know, i.e. to attribute the positive content presented on Facebook to
others’ personality, rather than situational factors [10]. Thus these users are
more vulnerable to social media’s positivity bias, which can lead to negative
social comparison, and, in turn, emotional distress and depression [2,20,34,48].

We also find that some users have a very large number of online friends.
These online ties are unlikely to represent meaningful social connections and,
perhaps not surprisingly, for users with such large networks, the size of their
core network is not associated with depressive symptoms.

These findings further support the notion that online friendship could repre-
sent different types of social relationships and, thus, online ties should be treated
deferentially while investigating the association between online social integration
and mental health.
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Fig. 4. The relationship between the network size and depressive symptoms.
The change in the strength of correlation between the number of friends and depression
depending on the network size. For smaller networks, there is a consistent significantly
negative correlation between the size of the network core and depressive symptoms but
not for the size of the whole network. For larger networks, the correlation consistently
does not differ from zero. The 90% confidence intervals are computed via bootstrap.

4.1 Limitations and Further Research

Our study is limited by the cross-sectional nature of the data and does not allow
exploring the causal relationships between the structure of online ego networks
and depressive symptoms. Furthermore, the online friendship networks are rel-
atively stable: once added friends are rarely removed while the manifestation of
depressive symptoms is typically limited in time. This might explain the weak-
ness of found relationships. The small effect sizes should be taken into account
when considering future research as it does not allow detecting potentially dif-
ferential effects for different groups, e.g. depending on users’ gender, ethnicity, or
socio-economic status. One potential solution is to collect data on specific groups
of users, for example, those who might benefit most from online integration.

Further research might also go beyond the information on friendship net-
works and consider other types of communication information, such as com-
ments, direct messages, or likes. This might serve as a better proxy for social
integration, see, for example, [28].
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We used Dunbar’s number to differentiate networks on their size, follow-
ing previous findings on both online and offline social networks [24,27,41,55].
Still, we should note that according to the social brain hypothesis introduced
by Dunbar, 150 is the limit on the number of people with whom a typical per-
son can maintain stable social relationships [13]. Online friendship ties that we
consider in this paper do not necessarily reflect the actual stable social connec-
tions. Potentially, other communication patterns from social networking sites
(e.g. posts, comments, and likes) might be used to infer more precise social rela-
tionships. We suggest this direction as a potential avenue for future research.

Overall, our results suggest that future studies of the effects of online social
integration on depression should focus on refined measurements of social inte-
gration to identify actual and active connections at several time points.
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Abstract. The classification of complex networks allows us to compare
sets of networks based on their topological characteristics. By being able
to compare sets of known networks to unknown ones, we can analyze real-
world complex systems such as neural pathways, traffic flow, and social
relations. However, most network-classification methods rely on vertex-
level measures or they characterize single fixed-structure networks. Also,
these approaches can be computationally costly when analyzing a large
number of networks, as they need to learn the network embeds. To
address these issues, we propose a hand-crafted embedding method called
Deep Topological Embedding (DTE) that builds multidimensional and
deep embeddings from networks, based on the joint distribution of vertex
centrality, that combined represents the global structure of the network.
The DTE can be approached as a two or three-dimensional visual repre-
sentation of complex networks. In this sense, we present a convolutional
architecture to classify DTE representations of different topological mod-
els. Our method achieves improved classification accuracy compared to
related methods when tested on three benchmarks.

Keywords: Complex Networks · Neural Networks · Convolutional
Neural Networks

1 Introduction

Complex networks are ideal computational tools for modeling many real-world
phenomena especially those consisting of systems of various inter-related pro-
cesses and interacting components, e.g., COVID-19 contagion [16,25], urban
crime dynamics [20], neural connectivity [23], and texture analysis in computer
vision [24]. These complex systems are only particular examples of a great class
c© Springer Nature Switzerland AG 2022
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of evolving networks [8] which cannot be properly analyzed based only on knowl-
edge of the system’s individual components [2]. However, network analysis allows
us to model the structure and functioning of connected phenomena by combining
tools from graph theory, physics, and statistics.

A promising network-analysis tool is supervised classification, which distin-
guishes between types of networks [1] by learning topological characteristics from
a set of known networks. In the sense of large-scale datasets and models, deep
learning is the predominant approach lately, especially with artificial neural net-
works. However, graphs and Complex Networks are non-Euclidean data that
cannot be directly inputted into most neural network architectures. There is
a class of Machine Learning techniques, usually referred to as Geometric Deep
Learning [6], which focus on generalizing deep neural networks to such data. Var-
ious models have been proposed for graphs into this paradigm, such as Graph
Neural Networks [26], Graph Kernels [21], and Graph Convolutional Networks
[13].

However, most of the mentioned models characterize vertex-level informa-
tion or describe single networks instead of groups of them. The process of map-
ping networks into an Euclidean space can be costly, as all embeddings must
be learned (i.e., needing a consistent number of parameters). In addition, such
methods are often limited to fixed network structures. Hand-crafted embed-
dings (or feature extraction) from complex networks is an alternative to learned
embeddings which is useful to reduce the computational cost, or when there is
not sufficient data to properly learn the embeds. This approach, combined with
supervised learning from sets of networks, has been explored by [17,18,22], who
embed networks based on the dynamics of the life-like automaton. One limita-
tion of automaton methods is that the cost of automaton’s rule selection, which
is performed during the network embedding, can become prohibitive for large
network samples.

Convolutional Neural Networks (CNN) combined with a global network
embedding has been used for complex network classification. Xin et al. [29] uses
a random walk-based embedding to map a complex network into a 2-D image
which is then input to a CNN. The image results from performing principal-
component analysis on the high-dimensional random-walk data. While Xin et
al.’ method is a direct application of image-based CNNs to classify complex net-
works, the method is a good step towards applying CNN to complex networks.
One limitation of such an approach is that random walks are non-deterministic
and a considerable number of repetitions should be performed to achieve robust
embeddings.

In this work, we propose a new model for complex network classification
combining centrality measures and CNNs. Our main contribution is a hand-
crafted technique called deep topological embedding (DTE) that builds visual
representations of complex networks by combining the distribution of centrality
measures into two or three-dimensional matrices (Sect. 3). This approach works
on networks with varying properties and sizes. The DTE is input to a CNN that
learns to distinguish networks. In this sense, the network embedding is done
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through a hand-crafted technique (DTE), based on known network properties,
rather than learned from random weights. We tested our method on complex net-
work datasets and compared the results with similar methods (Sect. 4), achieving
promising classification accuracy.

2 Theoretical Background

2.1 Complex Networks

A complex network can be defined by a graph G = (V,E), where V =
{v1, . . . , vn} is the set of its n vertices and E = {e(vi, vj)} are the edges (or
connections) between vertex pairs. In this paper, we consider complex networks
with undirected, unweighted edges, i.e., e(vi, vj) = 1 if vi and vj are linked (0
otherwise), and e(vi, vj) = e(vj , vi), respectively. Given its graph representation,
we can quantify the topology of a complex network by calculating different met-
rics [7]. Next, we summarize the two types of networks that we will classify in
this paper, i.e., scale-free networks and small-world networks.

Scale-Free Networks. A classical metric is the degree of a vertex vi, i.e.,
k(vi) =

∑
j a(vi, vj). Its value represents the number of edges linked to vi. The

degree is a type of centrality measure, which ranks the topological importance of
nodes within the network. The network’s degree distribution underpins several
properties, such as the scale-free networks [3]. These networks’ degree distribu-
tion follows a power law P (k) ≈ k−γ , where γ varies according to the network
structure. Scale-free networks usually contain hubs, i.e., some vertices have a
large degree and in turn, play a critical role in the network’s internal function-
ing.

Small-World Networks. These networks allow for efficient spreading of infor-
mation [28], as they have a small average shortest-path distance where ver-
tices are reached easily. Small-world networks also have high clustering coef-
ficient, which describes the degree of interconnectivity between neighboring
vertices. This measure counts the fraction of triangles (i.e., fully connected
triple) that occurs between a vertex vi and its neighbors, and is given by
c (vi) = 2�(vi)

k(vi)(k(vi)−1) , where �(vi) is the number of triangles in which vi partic-
ipates, or simply the number of edges between the neighbors of vi.

Other Network-Characterization Measures. In addition to vertex degree,
the classification method proposed uses the following centrality measures to char-
acterize complex networks (See [7] for a survey of measures):

– Eigenvector centrality [4] computes vertex centrality based on the central-
ity of its neighbors:

ev(i) = λ−1
1

n∑

j

Aijev(j), (1)

where A represents the network’s adjacency matrix, and uj is an eigenvector
of A corresponding to the eigenvalue λj .
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– Current Flow betweenness [5] quantifies the importance of vertices
inspired by the electric flow in circuits, flowing through all possible paths:

CFb(i) =

n∑

a

n∑

b=a+1

U
(a,b)
i

(n − 1)(n − 2)
, (2)

where current is injected at a source a and drained at a target vertex b. The
Laplacian matrix L = D − A is computed, where D is the degree matrix,
and then a new matrix Y is obtained by setting the first row and column of
the inverse Laplacian L−1 as zero. Then, the matrix U = Y B [5] is obtained,
where B is a vector that indicates the input and output current in each vertex
i for the source-drain pair a and b, i.e., all its elements are zero except for the
source and drain vertices.

– Current Flow closeness [5] measures the vertex’s average distance to all
other vertices through all possible paths:

CFc(i) =
n − 1

n∑

j �=i

U
(i,j)
i − U

(i,j)
j

. (3)

Under the electric-network analogy, this is equivalent to computing the effec-
tive resistance between vertices.

– Subgraph centrality [9] is the sum of weighted closed walks (as weights
decrease with path length) of all lengths starting and ending at a given vertex:

sg(i) =
n∑

j

(ui
j)

2eλj . (4)

2.2 Convolutional Neural Networks

The main contribution of this paper is a novel complex network embedding based
on centrality measures that can be employed for classification tasks with neural
networks. One neural network architecture that attracted notorious visibility
lately is the deep CNN [14]. This kind of model focuses on multidimensional data
with spatial/temporal relations such as time series, images, and videos. Since
then, the growth performance of these models has motivated many successful
applications [19]. We can identify two well-defined components in a CNN: (i) the
feature extraction part and (ii) the classification part. The latter component is
usually organized into one or more sequential fully-connected layers (all neurons
of a layer connect to all neurons from the previous and next layers). On the
other hand, the feature extraction part has evolved throughout the years, with
several innovative architectural properties and modules. In this work, we focus
on architectures with standard sequential convolutional layers.

The input of a CNN layer in the feature extraction part consists of a set of
Md

z = [A1, ..., Ai, ..., Az] 2-D matrices of equal size, where z indicates the layer’s
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depth, d the layer position and Ai represents the i-th input matrix. In the case of
convolutional layers, the trainable weights are organized into a set of (1 ≤ j ≤ n)
filters W = [fj(x, y, z)], where x and y are its width and height, respectively. The
weights are randomly initialized, usually considering optimized techniques such
as the Glorot Normal Initialization [10]. The set of weights, also known as the
filter bank, is in charge of computing the layer’s output Md+1

n by convolving Md
z

with every filter fj . An activation function φ(Md+1
n ) is applied, which intends to

project the inputs in nonlinear space. In deep CNNs, this is usually done using
the Rectifier-Linear-Unit [11] function (φ(Md+1

n ) = max(0,Md+1
n ).

Another common practice is to use pooling layers that summarize the input
matrix dimensions by combining a neuron window (usually 2× 2) into a single
neuron in the next layer, typically by computing the maximum or average value.
After all convolutional and pooling layers, the last output matrix is flattened to
fit in the activation step’s first fully-connected layer. As we focus on a super-
vised classification problem, the last layer of the CNN is then fully connected,
with its number of neurons corresponding to the number of classes the network
will address. In this scenario, the CNN can then be trained, for instance, using
Stochastic Gradient Descent (SGD) [27].

3 Proposed Method

Our goal is to manually embed complex networks and use CNNs to learn to
classify them. This requires the network graph to be embedded in an Euclidean
space. Thus, we propose to create network embeds from vertex-centrality mea-
sures. Consider a network G = (V,E) with |V | = n nodes, and some local
measure f(vx) computed at node vx. Measures calculated at each vertex are
then combined into a feature vector ϕf = [f(v1), . . . , f(vn)] to form a network
descriptor for a given measure f .

However, the size of vector ϕf varies with the number of vertices in the
network. To obtain a set of descriptors of same size, we perform vector quanti-
zation (i.e., a bag-of-features approach) to create frequency histograms of fixed
bin size, and then normalize them into probability functions. Consider P (ϕf ) as
the frequency vector for a given network and measure f , where |P (ϕf )| = b is
the chosen bin size. To compute the histogram, we consider a discretization with
bins i ∈ [min(ϕf ),max(ϕf )], divided into b equal-width bins. The frequency is
then obtained by dividing each bin occurrence by the sum of total occurrences,
i.e., the number of nodes n. Let us rewrite P (ϕf ) as ϕb,f , a one-dimensional
vector representing the distribution of a given local complex network measure f
and a bin size b

ϕb,f (i) =
1
n

∑

∀vx∈V

δ(f(vx), i), (5)

where δ is the Kronecker’s delta, that returns 1 when f(vx) = i, and 0 otherwise.
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3.1 Creating Higher-Dimensional Complex Network
Representations

We combine two or more topological measures into higher-dimensional combi-
natorial histograms, obtaining arrays of two or three dimensions. Consider two
measures f1 and f2 computed to each network node. Instead of computing
their individual frequencies ϕb,f1 and ϕb,f2, we propose a new feature repre-
sentation ϕb,f1,f2(i, j) ∈ R

b×b, a 2-D matrix of order b that represents the
combinatorial frequency of the pairs (f1(vx), f2(vx)),∀vx ∈ V . The matrix
indexes are the bins of each measure, thus i ∈ [min(ϕb,f1),max(ϕb,f1)] and
j ∈ [min(ϕb,f2),max(ϕb,f2)]. In other words, each cell ϕb,f1,f2(i, j) represents
the normalized occurrence (frequency) of nodes with measures f1(vx) = i and
f2(vx) = j

ϕb,f1,f2(i, j) =
1
n

∑

∀vx∈V

δ(f1(vx), i)δ(f2(vx), j). (6)

The proposed matrix ϕb,f1,f2 can be built using any given pair of complex
network local measures. By considering more than two measures, it is possible
to obtain different matrices. For instance, using 3 measures f1, f2, and f3, it
is possible to obtain matrices ϕf1,2, ϕf1,3, and ϕf2,3. This allows us to stack-
up them to compose a 2-D or 3-D matrix ϕf1,f2,f3. When concatenating the
three matrices, the resulting feature representation is similar to traditional color
images composed of z = 3 channels. This approach also allows matrices with a
higher number of channels according to an order-2 combinatorial of m measures,
thus z = m!

2!(m−2)! . Let us define the new matrix as Φz, according to the resulting
number of matrices z obtained with a set of m complex network measures, and
then we can also rewrite the 2-D matrix ϕf1,f2 = Φ1. Later we will define
the order to combine measures when constructing Φz (see Sect. 4.2). Therefore,
given a set of m measures and a bin number b, we can obtain a complex network
embedding (DTE) Φb,z ∈ R

b×b×z as a stack of one or more 2-D matrices, as
shown in Fig. 1(a).

The resulting complex network embeds Φb,z represents the network topology
and is invariant to the number of nodes n, as we normalize the histograms.
We name this technique as Deep Topological Embedding (DTE), as it may be
built with different depths (z value), given sufficient topological measures. To
visualize how the matrices Φb,z are spatially organized, we compute them for a
set of known complex network models and convert the results into images by
changing the real space to 8-bit pixel values; the results are shown in Fig. 1.
These spatial patterns summarize the studied CN, a wide range of structural
information mapped into a b-by-b-by-z space. The patterns show that the DTE
changes when the CN’s internal parameters change (k) but varies more when
analyzing a different model. Thus, DTE is robust to within-class variations and
can detect between-class differences.
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Fig. 1. The structure of the proposed DTE method Φb,z (a). DTE representations
are then obtained (b = 56) to different topological classes (b–c), with varying average
degree (columns represent k = 2, 10, 16). The images (b–c) are obtained by normalizing
the frequency values into 8-bit pixels (grayscale for z = 1, top row, and RGB for z = 3,
bottom row).

3.2 Learning Complex Network Properties from DTE

Finally, we can employ the DTE representation Φb,z, approached as an image,
for pattern recognition through convolutional neural networks. Figure 2 shows
the details of the deeper architecture we propose (5 convolutional and 4 fully-
connected layers). We also consider a shallower model with 3 convolutional
and 3 fully-connected layers, and two variants from these models: The “large”
variant of each architecture uses double-layer width, e.g., instead the layer
sizes (8, 32, 128, 256) of the “shallow” model, the “shallow large” model uses
(16, 64, 256, 512). For the deep model, the thinner architecture uses half layer
sizes of deep-large, i.e., (8, 16, 32, 64, 128, 256, 128). In all cases, we flatten the
output of the last convolutional layer using Global Average Pooling [15]. To
mitigate overfitting, we apply a 50% dropout regularization [14] (a.k.a. dilu-
tion, randomly omitting half the weights) at the fully-connected layers during
training.

3.3 DTE Computational Complexity

The computational cost for building DTEs Φb,z for a given network is directly
related to the cost of the employed centrality measures f (which depends on
the number of nodes n and edges m). For instance, one of the most costly cen-
trality measures is the current flow betweenness CFb, which has computational
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Fig. 2. The convolutional architecture proposed for complex network classification
using DTE.

complexity O(n3 + mn log n) for its complete solution in the worst-case. On the
other hand, the clustering coefficient c of nodes in a non-complete network with
average degree

√
n can be computed with cost O(n2). We will not discuss in

depth the complexity of each centrality measure here, as it is outside the scope
of our work (the reader may refer to the references). Let us refer to the cost
of computing a given centrality measure f as O(f). The cost for computing
the joint frequency is negligible compared to O(f), regardless of b, as it only
requires that each vertex is visited to check its measures (O(n), or O(1) if done
together with the measure’s calculation). Thus b has no impact on the overall
computational cost and can be ignored. As the dimension of Φb,z increases with
additional measures (increasing z), we can define the final complexity by O(fz).
If we consider that z<<n, we can simply consider the complexity as O(f). In
other words, the complexity is limited by the chosen measure with the high-
est cost, i.e., in our study, it would be the current flow betweenness CFb with
O(n3 + mn log n). Nevertheless, it is important to stress that although b and
z have minimal impacts on the cost of building the DTE, the size of the final
embedding impacts directly the CNN training and predicting costs, so smaller
values are preferable.

4 Experiments and Results

4.1 Datasets

To validate our approach, we considered the datasets proposed in [18] com-
posed of complex network models with varying parameters. The 4-models (4
classes) dataset comprises complex networks generated according to the fol-
lowing models: 1) random, small-world, scale-free, and geographical. Network
sizes (number of nodes) vary between [500, 2000], and the average degree
<k> = 4, 6, 8, 10, 12, 14, 16, with 400 samples for each configuration, totalling
11200 samples. 4-models + k is an extension of the previous dataset, where the
goal is to classify both the network model and average degree; therefore, there
are 28 classes (4 models and 7 degrees). The scale-free (5 classes) dataset consists
of 5 different specific models of only scale-free networks, with both linear and
nonlinear preferential attachment. All networks have 1000 nodes and <k> = 8,
in a total of 500 samples (100 per class).
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4.2 Parameter Analysis

Centrality measures are considered to first build a 1-dimensional complex net-
work representation |ϕf | = b (Eq. 5). For choosing specific measures, we con-
sidered a set of properties to construct network representations: the measure
must discriminate traditional complex network models (e.g., scale-free and small-
world) independently from the number of nodes, be computed fast, and be avail-
able in known libraries. We then empirically tested and chose a set of 5 measures
that satisfy these premises. They are imported from the NetworkX 2.4 library1

[12], which is one of the most complete and diffused code implementations for
network analysis. In the following, we give specific details on the use of each
measure:

– Local clustering (c): Traditional clustering coefficient.
– Eigenvector centrality (ev): This measure is calculated using a maximum

of 100 iterations and an error tolerance of 10−6.
– Current flow betweenness (CFb): We employ an approximation technique

[5], using a limited number of source-target pairs of at most 104 choices and
error tolerance of 0.6.

– Current flow closeness (CFc): The complete solution is considered.
– Subgraph centrality (sc): Computed considering all closed walks of all

lengths.

Our first experiment seeks to highlight the impact of the bin size (b). To
build feature vectors ϕb,f , we calculated the local clustering measure f = c
with bin sizes b = [14, 28, 56, 121, 224]. We then couple this approach to a fully-
connected neural network (MLP). We use a 4-layers deep architecture, with 2
hidden layers of 128 and 64 neurons, Glorot Normal initialization, ReLU acti-
vation function, and 30% dropout. They are trained using SGD with a learning
rate 10−2 and Nesterov momentum 0.9, optimizing a categorical cross-entropy
loss function (output layer equals the number of classes). The model was trained
for 150 epochs, using batches of size 128. The validation consists of 10 repeti-
tions of a stratified 10-fold cross-validation approach (total of 100 iterations).
We considered the 4-models + k dataset, divided into training, validation, and
test independent sets with proportions of 80%, 10%, and 10%, respectively. We
performed a z-score normalization on each of the three sets individually. After
training, we selected the weights that produce the best validation accuracy to be
applied on the test samples. We then measured the neural network accuracy aver-
age and standard deviation over the cross-validation iterations. Figure 3 shows
the results throughout the training epochs for each different bin size. From the
figure, we can see that b = 112 and b = 224 yielded the best results within each
other’s error margins. Therefore, we consider b = 112 as the best approach, as
it needs half the precision of b = 224.

The next experiment focuses on each measure (f), using the same experimen-
tal protocol as the previous experiment, aside from the fixed bin size b = 112.

1 https://networkx.org/documentation/networkx-2.4/.

https://networkx.org/documentation/networkx-2.4/
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Fig. 3. MLP validation accuracy by epoch on complex network classification using
different bin sizes b and f = c.

Table 1. MLP performance for different complex network topological measures using
b = 112.

f train acc. test acc.

c 92.03(±0.32) 90.08(±0.19)

CFc 78.15(±0.43) 74.03(±0.26)

ev 52.76(±0.47) 47.95(±0.46)

CFb 48.43(±0.50) 42.57(±0.66)

sc 42.80(±0.51) 35.13(±0.42)

The results are shown in Table 1, where we can notice that the clustering coeffi-
cient yields the best results, while the worst is the subgraph centrality. The small
difference between train and test accuracy indicates that the approach can learn
topological patterns without overfitting. We then use these results for ranking
the best measures for constructing our DTE (Φb,z).

To analyze the proposed DTE (Φb,z), we consider b = 112 and vary the
parameter z, which determines the depth of the obtained features. In this con-
text: z = 1 implies using the two best measures (c and CFc, thus m = 2); z = 3
considers the top three measures (m = 3); and z = 10 all the five measures
(m = 5). The CNN models are trained with SGD, learning rate 10−3, Nesterov
momentum 0.9, and 100 epochs with batch size 32. The remaining experimental
protocol is the same as the previous experiment. The classification results are
given in Table 2, along with the total number of parameters of each model. The
highest results are achieved with the deep-large model using Φ112,z=1. Another
insight here is each model’s particularity; for instance, using Φ112,z=3, the shal-
low approach achieves 0.79% lower accuracy while compared to deep-large. Still,
it uses only 13% of its number of parameters.
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Table 2. Accuracy of each proposed convolutional network on the 4-models + k (28
classes) dataset, for DTEs Φ112,z using different depths z = 1, 3, 10.

architecture parameters test acc.

z= 1 shallow 85,740 97.36(±1.14)

shallow-large 323,516 98.06(±0.47)

deep 172,668 98.53(±0.20)

deep-large 676,316 98.73(±0.16)

z= 3 shallow 86,524 97.94(±0.26)

shallow-large 325,084 98.07(±0.31)

deep 173,452 97.89(±0.21)

deep-large 677,884 98.39(±0.12)

z= 10 shallow 89,268 97.24(±0.46)

shallow-large 330,572 97.97(±0.25)

deep 176,196 96.31(±0.48)

deep-large 683,372 97.40(±0.28)

4.3 Literature Comparison

Finally, we compare the proposed deep-large (Φ112,1) and shallow (Φ112,3) models
with the available literature results on all datasets. We considered the method
Life-Like Network Automata Descriptor (LLNA) [18], LLNA-BP [22] and net-
work descriptors composed of global centrality measures as a baseline approach
(as in [22]). Table 3 shows the obtained results, where we can notice that the pro-
posed methods overcome the compared approaches. The deep-large architecture
achieves the highest accuracy in all datasets. The shallow architecture alone also
achieves significant performance while using a smaller hyperparameter number.

Table 3. Comparison of methods classification performance on the studied complex
network datasets.

proposed DTE + CNN literature

dataset deep-large shallow LLNA-BP LLNA centrality

4 models 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 99.99(±0.00) 100.0(±0.00)

4 models + k 98.73(±0.16) 97.94(±0.26) 98.31(±0.02) 90.76(±0.07) 60.20(±0.20)

scale-free 100.0(±0.00) 99.96(±0.12) 99.52(±0.19) 98.30(±0.20) 96.20(±0.04)

5 Conclusion

We proposed a technique for classifying complex networks using CNNs. Our
method uses network embedding called Deep Topological Embedding (DTE)
that combines centrality measures and deep convolutional neural networks.
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When compared to other classification methods, ours achieved high-
classification accuracy and produced promising results when using DTE with
both deeper or shallow CNNs. These results show that the proposed DTEs con-
tain rich topological information suitable for complex network characterization,
regardless of the employed neural architecture. This flexibility is a desirable fea-
ture as it allows for low computational costs when deploying the method to
various applications.

For future works, we plan to test our method on different and deeper CNN
architectures as well as analyze whether knowledge learned from synthetic data
could be transferred to real-world networks.
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Abstract. The constantly growing size of real-world networks is a great
challenge. Therefore, building a compact version of networks allowing
their analyses is a must. Backbone extraction techniques are among the
leading solutions to reduce network size while preserving its features.
Coarse-graining merges similar nodes to reduce the network size, while
filter-based methods remove nodes or edges according to a specific sta-
tistical property. Since community structure is ubiquitous in real-world
networks, preserving it in the backbone extraction process is of prime
interest. To this end, we propose a filter-based method. The so-called
“modularity vitality backbone” removes nodes with the lower contribu-
tion to the network’s modularity. Experimental results show that the
proposed strategy outperforms the “overlapping nodes ego backbone”
and the “overlapping nodes and hub backbone.” These two backbone
extraction processes recently introduced have proved their efficacy to
preserve better the information of the original network than the popular
disparity filter.

Keywords: Backbone · Modular structure · Modularity · Weighted
networks

1 Introduction

Complex networks, such as communication, biological, transportation, and con-
tact networks, are widely analyzed. The daily production of data results in
tremendously large real-world networks. Consequently, the analysis of such net-
works containing millions of nodes and billions of edges is more and more chal-
lenging, if not impossible, due to memory and time constraints. Thus, suitable
extraction of the pertinent nodes and edges that preserve the essential informa-
tion while reducing the size of the network is fundamental. Network backbones
offer a way to do so. Two main research paths tackle this problem: coarse-grain
backbones or filter-based backbones. In the former, one clusters together nodes
sharing similarities to reduce the network size [1,2]. In the latter, one removes
nodes or edges from the network based on a given property [3,4]. The commu-
nity structure is one of the significant properties in real-world networks. Indeed,
it heavily determines their dynamics and their underlying functionalities [5]. It
c© Springer Nature Switzerland AG 2022
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is generally illustrated by dense regions of connected nodes that barely connect
from one region to another. Communities can be non-overlapping or overlapping
[6], hierarchical [7], and attributed [8]. Community detection is one of the most
prolific research areas in network science. It relies on numerous measures quan-
tifying the quality of the community structure. Modularity is among the most
popular[9]. It compares the density of connections of the uncovered community
structure with a similar random network. The higher the modularity, the higher
the confidence in the tight community structure of the network.

Recent works have shown that one can exploit the community structure effi-
ciently to extract backbones [10,11]. Inspired by these works, we propose a fil-
tering technique based on the preservation of the community structure of the
network. It exploits the community structure using the concept of vitality. Vital-
ity quantifies the contribution of a node to a given quality measure by removing
this node and computing the variation of the quality measure. To assess its
importance, we compute modularity as a quality measure, with and without the
node in question. Then, one ranks the nodes from the lowest contribution on
modularity to the highest. Subsequently, nodes with the lowest contribution are
removed until one reaches the desired size of the network.

Comparative experimental evaluations are conducted on real-world weighted
networks of different sizes and domains. The developed backbone extraction
technique called “modularity vitality backbone” is compared with the recently
introduced community-based method “overlapping nodes ego backbone” [10].
Results show that it is more effective in preserving the core information of the
network and the community structure.
The main contributions of the paper summarize as follows:

– We propose a backbone filtering technique exploiting the community structure
of networks.

– Experiments with weighted networks show that it outperforms another alter-
native measure.

– It can be easily adapted to any type of network (i.e., undirected, unweighted,
and directed networks).

The remaining of the article is organized as follows. Section 2 discusses
briefly the related works. Section 3 introduces the modularity vitality backbone.
Sections 4 and 5 present respectively the datasets and the evaluation measures
used in this study. Section 6 reports the results of the comparative evaluation.
Section 7 discusses the results. Finally, Sect. 8 concludes the paper.

2 Related Works

Backbones offer an ideal solution to the trade-off between preserving essential
information in the network and reducing the network size. Backbone extraction
studies concerns mainly two types of networks: mono-mode networks [4,12,13]
and bipartite networks [14–16]. In this work, we consider mono-mode networks.
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Within this class of networks, there are two leading approaches for extracting
backbones. The first is coarse-graining, and the second is filtering.

In coarse-graining methods, one group nodes with similar characteristics into
a single node. For instance, authors in [17] merge the nodes based on random
walks. In the work of [18], authors use the k-nearest neighbors algorithm (k-NN)
to group similar nodes based on the nearest higher-density-neighbor.

In filter-based methods, the goal is to remove redundant information by prun-
ing nodes or edges in the network. Redundancy is assessed based on a statistical
property.

Most of the works reported in the literature concern edge-filtering tech-
niques. Serrano et al. propose the disparity filter. It uses a null model of the
edge weights to preserve statistically significant edges [19]. Authors in [20] com-
pute the betweenness centrality of edges and remove the ones that don’t exceed a
specific threshold. Authors in [21] use a combination of local and global informa-
tion to extract the backbone. More precisely, they use the link weights to build
the h-strength graph and the betweenness centrality to build the h-bridge graph.
Then one obtains the backbone by merging h-strength and h-bridge. Simas et al.
[4] present the distance backbone based on the triangular organization of edges
which preserves all shortest paths.

Node filtering techniques are less frequent. They rely on topological features
to associate a score to the nodes. Nodes with the higher scores are then extracted
[22,23]. In this line, in their recent work, Ghalmane et al. prune nodes based on
the community structure characteristics of the network [10]. They propose two
node-filtering techniques. The first one preserves the overlapping nodes and the
hubs of the network. In contrast, the second conserves the overlapping nodes
and their one-step neighbors to form the backbone. These two algorithms exhibit
superior performances as compared to the popular disparity filter. These results
illustrate the community structure’s importance in preserving the core informa-
tion in a network while reducing its size. Inspired by these findings, we propose
the “modularity vitality backbone” algorithm. This node filtering technique also
exploits the community structure of the network. It uses a measure of the node
contribution to the modularity. Roughly speaking, nodes with the lowest con-
tribution to the quality measure of the community structure are filtered. The
remaining nodes form the backbone.

3 Modularity Vitality Backbone

This section presents the vitality concept. Then, we briefly discuss various meso-
scopic quality measures. We explain why we choose Newman’s modularity as a
quality measure. Finally, the algorithm of the proposed backbone extractor is
given.

Vitality Index. Let G(V,E) be a simple and undirected graph where V =
{v1, v2, ..., vN} is the set of nodes totaling N = |V | and E = {(vi, vj)|vi, vj ∈ V }
is the set of edges. Denote f(G) and f(G \ {u}) as two real-valued functions



70 S. Rajeh et al.

defined on the complete graph G and on graph G \ {u} without node or edge
u. Then, the vitality index is the difference between both functions, defined as
ν(G, u) = f(G) − f(G \ {u}). The resulting value is a signed value, indicating
the positive or negative contribution of the node or edge u on graph G [24].

Mesoscopic Quality Measures. There are numerous quality measures to
characterize communities [25–27]. Their goal is to answer how good is the com-
munity structure in a network. They use topological properties defined at the
mesoscopic level. Let set C = {c1, c2, ..., cl, ..., cnc

} represent nc = |C| communi-
ties of a graph G and f(cl) represents a quality function of community cl. One
can categorize the quality functions into three main groups:
1. Based on internal connectivity: such as internal density characterizing
how densely connected the nodes are in a community compared to other com-
munities.
2. Based on internal and external connectivity: such as Flake-ODF mea-
suring the fraction of nodes in a community with fewer internal edges than
external ones.
3. Based on a network model: such as Newman’s modularity [9] which
assesses the difference between the real connections in the community cl and
the random connections in the same community.

All of these quality functions characterize a single community. Hence, to
quantify the quality of the overall community structure, one averages f(cl) over
all the communities.

Newman’s modularity is one of the most popular mesoscopic quality mea-
sures. Indeed, it is widely used in community detection algorithms as an opti-
mization criterion [28–30]. This is the main reason why it is one of the well-
accepted benchmarks for characterizing the community structure of the net-
works. Numerous extensions have also been proposed for modularity to account
for networks with overlapping and hierarchical community structure [31]. In this
work, we use Newman’s modularity as a quality measure to assess the vitality
of nodes due to the following reasons:
1. Modularity can naturally be extended to unweighted, undirected, and directed
networks.
2. Modularity vitality ensures that nodes that are the main contributors to the
community structure are retained, regardless of their type (i.e., hub- or bridge-
like).
3. Previous works on modularity vitality centrality has proved to assign high
scores to the most influential nodes [32].

Algorithm. The “modularity vitality backbone” is based on the vitality con-
cept, where one can measure the contribution of a node or an edge using any
quality measure computed on graphs. We use Newman’s modularity as a quality
measure. Nonetheless, one can opt for other quality measures to quantify the
node and edge influence.
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Newman’s modularity enables us to differentiate between highly internally
connected nodes (hubs) and nodes at the borders of the communities (bridges).
Indeed, hubs increase the internal density of the communities. Therefore, they
contribute positively to modularity. In contrast, bridges increase the connec-
tions between the communities. Consequently, they tend to decrease the modu-
larity. As we choose to give equal importance to both types of nodes, we rank
the nodes according to the absolute value of their modularity vitality score. It
allows keeping nodes with the highest contribution to modularity, regardless of
their role (i.e., hub nodes or bridge nodes). Then, one removes the nodes that
barely contribute to modularity. The backbone extraction procedure is given in
Algorithm 1.

Algorithm 1: Modularity Vitality Backbone Extraction
Input: Graph G(V, E), Community set: C = {c1, c2, ..., cnc}, Size s
Output: Pruned graph Ĝ(V̂ , Ê)

1 Q(G) ← Modularity(G, C) // Computing modularity vitality of nodes

2 D ← ∅

3 for v ∈ V do

4 Q(G \ {v}) ← ∑
c∈C

[
|Ein

c |−|Ein
v,c|

|E|−|Ev| −
(

2(|Ein
c |−|Ein

v,c|)+(|Eout
c |−|Eout

v,c |)
2(|E|−|Ev|)

)2
]

5 α(v) ← Q(G) − Q(G \ {v})
6 D[v] = |α(v)|
7 D ← sort(D)
8 while |V | > s do
9 η ← D.pop(v) // Extracting the backbone

10 G ← G \ η
11 V ← V \ η
12 if G is disconnected then
13 G ← LCC(G)

Note that the vitality computation is not naively computed two times for
each node. In such a case, the complexity can rapidly become prohibitive. Indeed,
one computes instead the modularity variation reducing the computation’s com-
plexity to O(|E| + Nnc). It makes the vitality measure suitable for large-scale
weighted networks. We also note that the symbol |E| is extended to weighted
networks.

4 Datasets

We use a set of seven real-world networks originating from various domains
(social, collaborative, ecological, and technological) in the experiments. The
nodes and edges range from hundreds to thousands. We choose to integrate
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small networks in the experiments in order to get a better understanding on the
filtering process. Table 1 presents their basic topological characteristics. All the
networks are freely available online12. As there is no ground truth available, we
rely on the Louvain community detection algorithm to uncover their community
structure [30].
1. Zachary’s Karate Club: Nodes are members of a karate club and are con-
nected if they are friends inside and outside the club. Edges are weighted by the
relative interactions occurring between the members.
2. Wind Surfers: Nodes are windsurfers in southern California in the fall of
1986. They are connected if they’re friends. Edges are weighted based on the
social closeness of the surfers to one another.
3. Madrid Train Bombing: Nodes are terrorists in the train bombing of
March 11, 2004, in Madrid. Edges represent contacts between the terrorists and
are weighted based on the strength of their underlying relationship.
4. Les Misérables: Nodes are the characters in the novel “Les Misérables.”
Edges represent characters’ co-appearances in the same chapter. They are
weighted by the number of co-appearances.
5. Wiki Science: Nodes are either applied, formal, natural, or social sciences
Wikipedia pages. They’re weighted by the cosine similarity between them.
6. Unicode Languages: A bipartite network representing languages and coun-
tries. Weights represent the fraction of people in a given country having the
literacy (reading and writing) of a specific language.
7. Scientific Collaboration: Nodes are authors of articles in the “Condensed
Matter” category of arXiv. Edges represent co-authorship and are weighted by
the number of joint papers among the authors.

Table 1. Basic topological properties of the real-world networks under study. N is the
number of nodes. |E| is the number of edges. <k> is the average weighted degree. ω
is the density. ζ is the transitivity. knn(k) is the assortativity. ε is the efficiency. Q is
the weighted modularity of the network.

Network N |E| <k> ω ζ knn(k) ε Q

Zachary’s Karate Club 33 77 13.59 0.139 0.256 –0.476 0.492 0.444

Wind Surfers 43 336 56.09 0.372 0.564 –0.147 0.679 0.371

Madrid Train Bombing 62 243 8.81 0.121 0.561 0.029 0.448 0.435

Les Misérables 77 254 21.30 0.087 0.499 –0.165 0.435 0.565

Wiki Science 687 6,523 7.35 0.028 0.469 0.244 0.323 0.631

Unicode Languages 868 1,255 0.697 0.003 0.00 –0.171 0.255 0.772

Scientific Collaboration 16,726 47,594 9.23 0.0003 0.360 0.185 0.117 0.873

1 Aaron Clauset, Ellen Tucker, and Matthias Sainz, “The Colorado Index of Complex
Networks.” https://icon.colorado.edu/ (2016).

2 Tiago P. Peixoto, “The Netzschleuder network catalogue and repository,” https://
networks.skewed.de/ (2020).

https://icon.colorado.edu/
https://networks.skewed.de/
https://networks.skewed.de/
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5 Evaluation Measures

We compare the effectiveness of the proposed backbone extraction technique
and the “overlapping nodes ego backbone” based on four different evaluation
measures classically used.
1. Average weighted degree: The weighted degree of a node is the sum of
the weights of all the edges connected to it. Hence, a higher average weighted
degree backbone means that important nodes are kept in the graph, reflecting
its connectedness. It is defined as follows:

<k> =
1
N

N∑

i=1

ki =
∑

j∈N (1)

wij (1)

where N (1) is the first-order neighborhood of node i.
2. Average link weight: Links in the backbone preserve the information flow
of the network. In other words, the higher the value of the links, the better
the backbone in maintaining the core information of the graph. It is defined as
follows:

<w> =
1
N

∑

i,j∈V

wij (2)

3. Average betweenness: Nodes with higher betweenness can disseminate
information quickly. Hence, a backbone with higher average betweenness indi-
cates that the speed of information dissemination is barely altered. It is defined
as follows:

<b> =
1
N

N∑

i=1

bi =
∑

i�=s �=t

σi
s,t

σs,t
(3)

where σs,t denotes the number of shortest paths between nodes s and t and
σi
s,t denotes the number of shortest paths between nodes s and t passing through

node i.
4. Weighted modularity: Modularity assesses the quality of the community
structure based on the difference between the actual and the expected fraction
of edges in the communities. A backbone with higher modularity suggests that
the community structure is less altered. It can be computed on unweighted and
weighted networks [33]. It is defined as follows:

Q =
1

2|E|
∑

i,j

[
Aij − wiwj∑

i,j wij

]
δ(ci, cj) (4)

where Aij is the weighted adjacency matrix of graph G and δ(ci, cj) equals 1 if
nodes i and j belong to the same community, otherwise it equals 0.

6 Experimental Results

The effectiveness of “modularity vitality backbone” is compared with another
community-aware backbone extraction technique recently introduced [10]. The
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authors propose two backbones in their work, namely “overlapping nodes ego
backbone” and “overlapping nodes and hubs backbone.” In their comparative
evaluation, they show that both techniques perform favorably compared to the
popular disparity filter.

Therefore, in this work, we restrict our comparison to the most effective:
overlapping nodes ego backbone. Table 2 reports the experimental results for
seven real-world networks under study. The backbones quality measures are the
average weighted degree (<k>), the average link weight (<w>), the average
betweenness (<b>), and the weighted modularity (Q). As in their paper, we fix
the backbone size to 30% of the original network.

Let’s first discuss the average weighted degree. The higher its value, the bet-
ter the backbone is in keeping the salient nodes maintaining its connectedness.
Table 2 reports that the modularity vitality backbone outperforms overlapping
nodes ego backbone in all of the networks under study. Moreover, the difference
ranges from very small magnitudes to orders of magnitude higher. For example,
in Wiki Science, the average weighted degree in the modularity vitality back-
bone is eleven times higher than the “overlapping nodes ego backbone.” On the
contrary, in Scientific Collaboration, the difference is barely noticeable (0.02).

Let’s turn to average link weight. The average link weight characterizes the
relevance of the links kept in a backbone. Hence, the higher its value, the better
the backbone is in preserving essential links. The results show that the modu-
larity vitality backbone outperforms the overlapping nodes ego backbone in six
out of the seven networks.

Now, we discuss the average betweenness. This measure indicates the amount
of information flow that can pass through the nodes of a given backbone. The
higher its value, the higher the efficiency of the backbone in information spread-
ing. The modularity vitality backbone outperforms the overlapping nodes ego
backbone in only one out of the seven networks. In Scientific Collaboration net-
works, their values are comparable. It indicates that the information spread
within the modularity vitality backbone is not as efficient as overlapping nodes
ego backbone. Note, however, that the differences between the two backbones
are less pronounced.

Finally, we turn to weighted modularity. The higher the modularity of the
backbone, the better the quality of its community structure. As reported in
Table 2, the modularity vitality backbone outperforms the overlapping nodes
ego backbone on all the networks under study. These results are not surprising.
Indeed, the modularity vitality backbone prunes the nodes contributing less to
the modularity of the network. Hence, it tends to preserve the modularity as
pruning proceeds.

To summarize, the modularity vitality backbone exhibits a higher weighted
modularity than the overlapping nodes ego backbone. It preserves essential nodes
in the network (i.e., hubs and bridges), thus achieving a higher average weighted
degree and average link weight. However, maintaining the community structure
comes at a price of a lower average betweenness.
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Table 2. The computed values for the average weighted degree (<k>), link weight
(<w>), and betweenness (<b>) alongside the weighted modularity (Q) of the back-
bones with 30% of the initial size of the network. For brevity, MV stands for “modu-
larity vitality backbone,” and OE stands for “overlapping nodes ego backbone.”

Network <k> <w> <b> Q

MV OE MV OE MV OE MV OE

Zachary’s Karate Club 13.00 8.40 6.05 4.07 0.12 0.27 0.35 0.32

Wind Surfers 71.38 35.08 35.69 17.54 0.11 0.15 0.36 0.32

Madrid Train Bombing 8.53 3.90 4.26 1.95 0.09 0.14 0.38 0.17

Les Misérables 39.48 19.08 19.74 9.54 0.08 0.14 0.49 0.48

Wiki Science 10.16 0.92 5.08 0.46 0.01 0.08 0.73 0.72

Unicode Languages 1.46 1.28 0.73 0.64 0.03 0.02 0.79 0.78

Scientific Collaboration 17.22 17.20 4.71 8.60 0.001 0.001 0.81 0.71

7 Discussion

The constant increase of real-world networks size has prompted researchers to
design a smaller yet accurate representation of networks. This problem is tackled
either with coarse-graining or filter-based methods. A recent work by Ghalmane
et al. [10] has shown interest in exploiting the modular structure of the network
to deal with this issue. Building on this finding, we propose a new backbone
extractor, “modularity vitality backbone,” that aims to preserve the quality of
the community structure. Assigning a modularity vitality score to the nodes, it
prunes those with a low contribution to the network’s modularity.

We performed a comparative analysis with the recently introduced “over-
lapping nodes ego backbone. These investigations on a set of seven real-world
networks from various domains are globally at the advantage of the proposed
technique. After pruning 70% of the network, results show that the modular-
ity vitality backbone maintains higher modularity than overlapping nodes ego
backbone. This expected behavior comes with higher performance in terms of
average node degree and average link weight. Nonetheless, information efficiency
isn’t guaranteed. Indeed, one can point out that in five out of seven networks,
the modularity vitality backbone suffers from lower information efficiency.

It can be explained by how the modularity vitality backbone proceeds.
Indeed, one removes nodes that barely affect modularity. Those nodes may have
high betweenness, yet they do contribute much to the network’s modular struc-
ture. If we consider the overlapping nodes ego backbone, it appears that nodes
with high betweenness tend to be overlapping nodes or nodes near the overlaps.
Consequently, they are preferred and kept in the backbone. Nonetheless, they
may not contribute to the modularity of the network as other less influential
nodes. Another distinction lies in the fact that the modularity vitality backbone
doesn’t remove edges with low weights. On average, it has a higher number of
links compared to the overlapping nodes ego backbone. Thus, it is normal to
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have lower average betweenness values due to the existence of those edges that
play a role in maintaining the network’s modularity. In other words, they play
a role in showing a clearly defined community structure.

Fig. 1. The backbone extraction of two networks: Zachary Karate Club on the left
and Wind Surfers on the right. (A) represents the original network. (B) represents the
modularity vitality backbone. (C) represents the overlapping nodes ego backbone. The
different colors of the nodes correspond to the various communities uncovered using
the Louvain community detection algorithm. The size of the nodes is proportional to
their weighted degree. The size of the edges is proportional to their edge weight.

To illustrate these differences, we refer to two small networks, namely Zachary
Karate Club and Wind Surfers, given in Fig. 1. Let’s discuss Zachary Karate Club
first, represented on the left side of Fig. 1. One can point out that the modularity
vitality backbone represented in (B) has a clique-like topology. In contrast, the
overlapping nodes ego backbone reported in (C) exhibits a star-like structure.
It is a good illustration of why the modularity vitality backbone has higher
modularity while “overlapping nodes ego backbone” is characterized by higher
information spreading efficiency. Moreover, one can note that the number of
communities is the same as the original network using the proposed technique. In
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contrast, there are no more nodes from the green community in the overlapping
nodes ego backbone. Diving deeper, the modularity vitality backbone keeps node
24 in the blue community and node 5 in the green community. They are discarded
by overlapping nodes ego backbone and replaced by node 13 from the yellow
community and node 8 from the red community. If we look at the modularity
vitality and betweenness scores of these nodes, we find that nodes 24 and 5 have
high modularity but low betweenness. In contrast, nodes 13 and 8 have high
betweenness and low modularity vitality scores.

The Wind Surfers network exhibits similar behavior. Indeed, the modularity
vitality backbone shows a clear clique-like structure while a star-like structure
emerges in the “overlapping nodes ego backbone.” Overall, the modularity vital-
ity backbone integrates more peripherical nodes while the overlapping nodes ego
backbone tends to retain more nodes at the core of the communities.

Note that the proposed backbone extraction process can also integrate a fur-
ther step reducing the number of edges. One may consider several strategies to do
so. For instance, one may remove the links based on their weights in each commu-
nity, preserving its connectedness. Another approach is to use the disparity filter
to prune these edges. Additionally, one may prune edges in proportion to the
size of the edge set in each community of the original network. So doing allows
better preservation of the original community structure. Additionally, preserv-
ing the nodes in the backbone according to the absolute value of the modularity
vitality scores can be too brutal. One may integrate more information about
the community structure, such as the community size, to better deal with the
resolution limit issue [34].

8 Conclusion

Analyzing large-scale networks is essential to characterize their underlying topol-
ogy and dynamics. However, the large size of networks hinders this process.
Therefore, it is vital to remove redundant information from the network while
keeping nodes and edges that preserve the relevant information. Backbones,
whether coarse-grained or filter-based, tackle this problem.

Aware of the ubiquity of the modular structure of real-world networks, we
propose a filter-based technique called “modularity vitality backbone.” The pro-
posed algorithm aims to preserve the network’s modularity as nodes are removed.
This enables researchers to conduct studies on networks with smaller sizes yet
maintain their dense regions, which in turn represent the main building blocks of
the network. The proposed method extracts the backbone of real-world weighted
networks after quantifying the contribution of the nodes to the overall modu-
larity of the network. Based on these scores, one prunes the nodes that barely
contribute to the network’s modularity until one reaches the desired size of the
backbone.

Experiments show that the modularity vitality backbone compares favorably
with its alternative in terms of weighted modularity, average weighted degree,
and average link weight. However, it doesn’t necessarily keep the nodes contribut-
ing to the efficiency of information spreading. Instead, it preserves the nodes and



78 S. Rajeh et al.

their edges that strategically contribute to the modularity of the network. These
results pave the way to developing a filtering backbone extractor dedicated to
optimizing several quality measures simultaneously using the vitality framework.

In the short term, we plan to extend this preliminary work in various direc-
tions. Since modularity has known drawbacks, we plan to evaluate alternative
mesoscopic quality measures. Moreover, we will develop the analysis using mul-
tiple mesoscopic and macroscopic evaluation measures. Additionally, we aim to
investigate the influence of community detection algorithms on the backbone
extraction process.
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12. Van Den Heuvel, M.P., Kahn, R.S., Goñi, J., Sporns, O.: High-cost, high-capacity
backbone for global brain communication. Proc. Natl. Acad. Sci. 109(28), 11372–
11377 (2012)

13. Cao, J., Ding, C., Shi, B.: Motif-based functional backbone extraction of complex
networks. Physica A Stat. Mech. Appl. 526, 121123 (2019)

14. Katharina Anna Zweig and Michael Kaufmann: A systematic approach to the one-
mode projection of bipartite graphs. Soc. Netw. Anal. Min. 1(3), 187–218 (2011)

15. Neal, Z.: Identifying statistically significant edges in one-mode projections. Soc.
Netw. Anal. Min. 3(4), 915–924 (2013). https://doi.org/10.1007/s13278-013-0107-
y

16. Neal, Z.: The backbone of bipartite projections: inferring relationships from co-
authorship, co-sponsorship, co-attendance and other co-behaviors. Soc. Netw. 39,
84–97 (2014)

http://arxiv.org/abs/2009.07525
https://doi.org/10.1007/s10618-021-00741-z
https://doi.org/10.1007/s13278-013-0107-y
https://doi.org/10.1007/s13278-013-0107-y


Modularity-Based Backbone Extraction 79

17. Gfeller, D., De Los Rios, P.: Spectral coarse graining of complex networks. Phys.
Rev. Lett. 99(3), 038701 (2007)

18. Chen, M., Li, L., Wang, B., Cheng, J., Pan, L., Chen, X.: Effectively clustering by
finding density backbone based-on KNN. Pattern Recogn. 60, 486–498 (2016)
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24. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-
towski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Anal-
ysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-31955-9 3

25. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2013). https://doi.org/10.1007/
s10115-013-0693-z

26. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 631–640 (2010)

27. Rajeh, S., Savonnet, M., Leclercq, E., Cherifi, H.: Characterizing the interactions
between classical and community-aware centrality measures in complex networks.
Sci. Rep. 11(1), 1–15 (2021)

28. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

29. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng.
20(2), 172–188 (2007)

30. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

31. Chen, M., Szymanski, B.K.: Fuzzy overlapping community quality metrics. Soc.
Netw. Anal. Min. 5(1), 1–14 (2015). https://doi.org/10.1007/s13278-015-0279-8

32. Magelinski, T., Bartulovic, M., Carley, K.M.: Measuring node contribution to com-
munity structure with modularity vitality. IEEE Trans. Netw. Sci. Eng. 8(1), 707–
723 (2021)

33. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131
(2004)

34. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc.
Nat. Acad. Sci. 104(1), 36–41 (2007)

https://doi.org/10.1007/978-3-540-31955-9_3
https://doi.org/10.1007/978-3-540-31955-9_3
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s13278-015-0279-8


Vessel Destination Prediction Using
a Graph-Based Machine Learning Model

Racha Gouareb1, Francois Can2, Sohrab Ferdowsi1,3,
and Douglas Teodoro1,3(B)

1 University of Geneva, Geneva, Switzerland
{racha.gouareb,douglas.teodoro}@unige.ch
2 Riverlake Shipping SA, Geneva, Switzerland

can@riverlake.ch
3 HES-SO University of Applied Sciences and Arts of Western Switzerland,

Geneva, Switzerland
sohrab.ferdowsi@hesge.ch

Abstract. As the world’s population continues to expand, maritime
transport is critical to ensure economic growth. To improve security and
safety of maritime transportation, the Automatic Identification System
(AIS) collects real-time data about vessels and their positions. While
a large portion of the AIS data is provided via an automatic tracking
system, some key fields, such as destination and draught, are entered
manually by the ship navigator and are thus prone to errors. To support
decision making in maritime industries, in this paper we propose a data-
driven vessel destination prediction algorithm based on heterogeneous
graph and machine learning models. We design the task as a multi-class
classification problem, where the destination port is the category to be
predicted given the vessel and origin information. Then, we use a link
prediction model in a weighted heterogeneous graph to predict the vessel
destination. Experimental comparison against baseline methods, such
as logistic regression and k-nearest neighbors, showed that our model
provides a robust performance, outperforming the baseline algorithms
by 9% and 33% in terms of accuracy and F1-score, respectively. Thus,
heterogeneous graph models provide a powerful alternative to predict
port destination, and could support enhancing AIS data quality and
better decision making in maritime transportation industries.

Keywords: Destination prediction · Maritime transportation ·
Machine learning · Graph model · Link prediction · AIS ·
Heterogeneous graph

1 Introduction

Maritime shipping is one of the main pillars of freight transportation around the
world. Due to its economic and environmental advantages, 90% of commodity
shipment travels by the sea. With the expected world’s population increase of
3.3 billion people by the end of the century [35], maritime traffic will continue
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to expand due to strong commodity needs. In turn, this expansion will lead
to high transportation demand and increased traffic congestion, collisions, and
accidents [18]. Thus, it is important to enhance available maritime data quality
and explore different solutions for decision-making in the maritime industry.

The Automatic Identification System (AIS) is an automatic tracking system
used by vessel traffic services and boats [19]. AIS uses a transceiver placed on
ships to transmit their data. As of December 2004, installing AIS aboard vessels
of a specific size and tonnage has become mandatory [20]. This regulation facili-
tated in the past two decades the collection of vessel information, including static
data, such as vessel size, in addition to voyage information, such as position and
destination. Since 2008, satellites equipped with receivers are able to receive AIS
signals sent by the transceivers and easily collect AIS data [45]. By automati-
cally sharing this information between ships and coastal authorities, the safety
of ship management can be improved [4]. AIS information can be divided into
three subcategories [1]. First, static data contain vessel-related information that
defines the vessel’s identity, such as MMSI and IMO, and are specified when the
AIS system is installed on the ship. Second, navigational data, such as position
coordinates, are transmitted automatically to track vessel movements every two
to ten seconds, depending on the type and speed of the vessel. Finally, voy-
age data give general information about the voyage, including destination port,
estimated time of arrival, and draught, and are entered manually before each
journey.

The quality of AIS data can vary depending on the class of AIS equipment,
that is, class A or class B. The choice of equipment is based on the type and size
of vessels and the type of voyages a ship makes [43]. Despite its tabular format,
AIS data is complex, requiring significant processing before it can be useful. For
example, voyages’ start and end flags are not readily available from the data.
Moreover, due to technical failures, such as instability of the signal transmission
rate, data transmission congestion [7], or environmental and human factors, it is
estimated that as much as 80% of AIS messages contain errors [2,49], resulting
in incorrect vessel name, Maritime Mobile Service Identity (MMSI) number,
International Maritime Organization (IMO) number, position, and speed over
ground [16], among others. Yang et al. [44] estimated that 40% of the data are
wrongly entered on purpose or involuntarily, while Wu et al. [42] estimated that
62% of AIS destinations are mistaken and not always updated. For some ports,
some studies showed that the accuracy of the reported destination information
can be as low as 4% [27].

To improve the quality of AIS data and support maritime shipping decision-
making, in this paper, we propose a link prediction algorithm in a heterogeneous
graph model to address the problem of predicting voyage destinations using
historical AIS data. Historical AIS data, such as latitude, longitude, and speed
over ground (SOG), are used to construct the voyages. The resulting segments
are used to create the navigation network, which is modeled as a heterogeneous
graph and used to train and validate the prediction models. We defined the
problem as a multi-label classification task. The algorithm’s goal is to predict
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one of the destination ports from a pre-defined list extracted from the navigation
network. Then, using the graph model, a link prediction algorithm is used to
predict the next port for a vessel.

The remainder of the paper is divided into the following sections. Section 2
summarizes previous and most recent research work related to AIS data, includ-
ing destination and trajectory predictions. Section 3 illustrates the data pre-
processing and voyages creation process and describes the data and the proposed
prediction models. Section 4 shows the results of prediction algorithms, followed
by Sect. 5 that illustrates limitations and potential extensions of this work and
concludes the study.

2 Related Work

Due to the high demand for shipping services [22], the development of maritime
industries, and the increase in maritime traffic, accidents, and collisions [23],
AIS data-driven solutions have received considerable attention from researchers.
Thus, several studies were conducted to investigate research questions in the field
of maritime traffic using historical AIS data. Examples of these studies include
the detection of abnormal ship behavior [48], prediction of vessel trajectory [32,
47], data analysis, such as outlier detection [5] and collision risk analysis [29],
and the application of machine learning algorithms [46] to improve the quality
of AIS data and enhance the performance of handling maritime processes.

AIS data were used to develop various destination prediction models using
both classic and deep learning-based machine learning approaches. Zhang
et al. [46] used a random forest-based model supported by historical AIS data
to create a destination prediction model based on similarities between trajecto-
ries. The data were labeled using a data clustering algorithm, the density-based
spatial clustering of applications with noise method [14]. Their results showed
better model accuracy when predicting cities rather than ports. Wang et al. [39]
also used a random forest-based model combined with a port frequency-based
decision strategy for destination prediction problems for ships. The authors high-
lighted different approaches used to pre-process and construct ship trajectories
from raw AIS data and noise filtering methods, such as the average and Kalman
filters and heuristic-based outlier detection methods. Lin et al. [24] used deep
learning models for destination and arrival time prediction for different ship
types. They proposed an incremental majority filter, which captures the most
frequently predicted port instead of the last predicted one.

Artificial neural networks was applied to trajectory prediction using AIS data
[25,33,37,38]. Chen et al. [7] highlighted the noise issue affecting the quality of
AIS data and proposed a method to predict trajectories using neural networks.
They followed a three-step pre-processing approach: i) organised the data, ii)
removed outliers and iii) normalised the data into data samples using cubic
spline interpolation and a moving average model. Their study is limited in the
number of trajectories and vessels used to validate the results (only two). Zhang
et al. [34] proposed an ensemble learning model for AIS trajectory prediction
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using a 200-segments sample from AIS data. They trained models on clusters
of patterns to improve the prediction accuracy, where each cluster represents
a boat trajectory. Similarly, Suo et al. [33] presented a real-time ship track
prediction model using different recurrent neural network (RNN) architectures
[13], focusing on the port of Zhangzhou in China. The authors showed that the
vanilla RNN had similar accuracy to that of long short-term memory (LSTM)
architecture [17], while the gated recurrent unit (GRU) [9] model outperformed
the LSTM in terms of computational time. Wang et al. proposed a trajectory
prediction model for multiple vessels simultaneously sharing the same area. The
authors used a generative adversarial network with attention and interaction
module [15]. They improved the accuracy compared to sequence to sequence,
plain GAN, and the Kalman models by a minimum of 20%.

More recently, graph-based models have been proposed to improve predic-
tive outcomes by representing data as a graph, such as the work in [26]. Carlini
et al. [6] presented a network analysis using an AIS dataset to build a set of
voyage graphs and capture the evolution of networks based on several topolog-
ical features. Another example of a graph-based method is the work proposed
by Magnusen et al. [26]. The authors represented the sea traffic in a graph,
where vertices represent sea areas that can be a turning or staying point, and
links are created by splitting a trajectory into several sub-trajectories. A port-
to-port trajectory is described in this work by a sequence of vertices used to
train a recurrent neural network model to predict destinations for oil tankers on
both port and regional levels. The proposed model achieved 41% accuracy when
predicting destination ports versus 87% predicting regions.

To the best of our knowledge, little attention has been given to heteroge-
neous graph methods for voyage destination prediction, despite being a power-
ful framework for modelling maritime navigation networks and capturing rela-
tions between heterogeneous entities, such as ports and vessels. Furthermore, the
graph modelling approach allows the destination prediction task to be designed
as a link prediction algorithm, which is also new and little explored.

3 Methods

This section describes the AIS data pre-processing, voyage creation algorithms,
the voyage destination prediction model, and the evaluation approach. We mod-
eled the destination prediction problem as a multi-classification problem to pre-
dict the destination port. Given a vessel, a departure port, and the list of des-
tination ports available in the network, the algorithm predicts the most likely
destination for the ship. We will first describe the cleaning, filtering, and orga-
nizing methods applied to AIS data. This process is critical, particularly as we
cannot use the destination information found in AIS messages as a validation
gold-standard [27,42]. Therefore, we propose a heuristic algorithm to create dif-
ferent voyages per vessel, and positional-based validated moored ports.
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3.1 AIS Dataset

In our experiments, voyage segments were created using the publicly available
historical AIS data from the Danish maritime authority website (www.dma.dk).
This dataset covers the region around Danish waters. Nevertheless, destination
ports can cover ports outside of the specified area. We have processed a snapshot
from January 2014 until March 2021 containing around 10TB. However, for
computational reasons, we are using a randomly generated sample containing
2757 tanker vessels, 58690 voyage samples, and 620 ports (see Table 1). We have
focused on ships of type tankers due to their high rate of data completion and
availability for most attributes.

Table 1. Statistics for the training and test sets.

Training Test

Number of vessels 2399 1713

Number of unique source ports 539 413

Number of unique destination ports 499 391

Number of segments 35214 11738

Median segments per vessel 3 2

Minimum segments per vessel 1 1

Maximum segments per vessel 5614 1897

3.2 AIS Pre-processing Approach

In this work, we define a vessel voyage segment as a voyage from a source port A
to a destination port B and describe every voyage by a unique id, departure date
and port, and arrival date and port. We used the attributes of AIS messages,
such as coordinates, speed, and navigational status (under way using engine, at
anchor, moored, etc.) to generate the voyages. Speed is used since ships will slow
down when approaching a port and then stop at the voyage destination.

AIS historical data offer numerous dynamic attributes related to voyages,
such as draught, estimated arrival time, and destination. However, as such data
are entered manually, human errors often occur. We defined vessel stops using dif-
ferent AIS attributes such as speed and position to determine the actual moored
ports to overcome this issue. Additionally, we used the World Port Index (WPI)
2019 database [40] to link vessel positions to the closest ports.

Draught is the only AIS data that provides information about the activity
of a ship in a port. If it increases, the boat is heavier and therefore loaded
commodities in the port. If it decreases, the boat unloaded in the last port.
While we cannot trust the value of the draught at every signal as it is entered
manually, every ship must have the correct value of draught when entering a
port. Thus, at every stop, we get the valid value of the draught related to the
previous voyage and correct the draught value if it is different.

www.dma.dk
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3.3 Voyage Creation

To generate port stops and construct voyages for every vessel, we calculated the
distance between every vessel stop position and ports listed in the WPI using
the Haversine Formula [8]. The port with the minimum distance to the vessel
position is defined as the closest (moored) port. Then, using the nearest defined
ports, we create the voyage following Algorithm 1. For each ship, we traverse
its positions. Based on the speed of the vessel at every position, we predefined
V esselMoving. If the boat has stopped (V esselMoving = 0), we define the
current timestamp as the date and time of arrival and the nearest port as the
arrival port of the current voyage. Once the vessel starts moving away from the
current port (V esselMoving = 1), we define it as the departure port of the next
voyage and set the departure date as the current timestamp.

To avoid ill-defined segments, e.g., as a result of ships travelling outside the
coverage area, an empirical 12 min no-signal threshold is defined (that is, twice
the maximum time span of shared static data). A voyage is then suppressed if
the time interval between two consecutive signals exceeds the defined threshold.

Algorithm 1. Voyage creation
For Each Vessel

V esselDeparted = 0
InPort = 0
For Each VesselPosition

If VesselMoving == 0
If (VesselDeparted == 0) and (InPort == 0)

Assign DepartPort←ClosestPort
InPort = 1

Else If VesselDeparted == 1
Assign ArrivalPort←ClosestPort
Assign ArrivalDate←TimeStamp
V esselDeparted = 0

Else If InPort == 1
Assign DepartDate←TimeStamp
V esselDeparted = 1
InPort = 0

EndFor
EndFor

3.4 Proposed Graph-Based Machine Learning Model

The heterogeneous graph abstraction proposed to model the maritime trans-
portation network is described in Fig. 1. A heterogeneous graph is denoted by
G = (V, E ,A,R) where V and E denote the node and link sets, respectively. Each
node v, p ∈ V and each link e ∈ E is associated with a mapping function, where
φ(v) : V ← A and ρ(e) : E ← R represent the node mapping function and edge
mapping function, respectively. A graph is defined as heterogeneous if it contains



86 R. Gouareb et al.

more than one node type and/or more than one edge type. Therefore, A and R
denote the sets of node and edge types satisfying |A| + |R| > 2.

Figure 1a shows that nodes represent vessels (blue) and ports (yellow), while
edges wi define links between the vessel node vi and a destination port node pj
for a specific voyage. Vessel nodes are described by three features - length, width,
and MMSI - while port nodes’ features include port name, country, and region
id information. On the other hand, link features describe specific vessel voyage
information, including the departure port, month, draught, and cargo type. The
departure time is added as weights to the link to represent voyages of the same
vessel with the same source-destination occurring at different dates.

Figure 1b shows a real example of seven voyages related to three vessels and
three ports. The vessel with MMSI 255806151 is traveling in March (03) from
Kalundborg to Malmo with a cargo type of Category Y and a draught of value
6.1. Each node type is defined by different features. Port node Malmo is described
by the country SE, which represents Sweden and a region id 23860. Vessel node
564517000 is described by its length (183 m) and width (28 m). The weight
of each link is defined by the departure date of a voyage. For example, w1 is
the weight of the link representing a voyage of the boat with MMSI 255806151
traveling on the 2020-10-02 to the Kiel port.

Following the methodology described in [12,28], we use word2vec [30] to per-
form link prediction task. To create a low dimensional representation of a node,
that is, a node embedding, random walks are computed using the heterogeneous
graph model. The node embedding shall ensure that the distance between nodes
is preserved in the embedding space. If two nodes are close to each other in the
graph, their closeness shall be maintained in the embedding space. The resulting
list of paths created by the random walk for a node is then provided to a word2vec
model to generate the node embedding for the respective nodes. Then, using the
vessel and destination node embeddings, link embedding is computed for the voy-
age segments. Negative voyage segments are randomly generated using possible
vessel-port connections available in the network to provide negative examples to
the learning algorithms. Link embeddings are similarly created for the negative
samples. Finally, link embedding is used to train the predictive model. The entire
destination prediction pipeline is shown in Fig. 2.

3.5 Experiments

We divided the data into training, dev, and validation sets (60% training, 20%
dev, and 20% validation), as shown in Table 1, where the test set statistics include
both dev and validation samples. Scikit-learn and Stellargraph were used to build
the machine learning models. We use the Stellar graph library [11] to create
the heterogeneous graph, and node and link embeddings. A k-nearest neighbors
(kNN) algorithm was used as the machine learning model for our graph-based
methodology (after an empirical comparison with other classic machine learning
models). The graph-based model was compared to different traditional machine
learning approaches (logistic regression, kNN, random forest, and Catboost [3,
10,31,41]) using only the vessel-, port- and voyage-related features, without the



Graph-Based Machine Learning for Destination Prediction 87

link embeddings. The experiments were conducted on a server with 40 Intel R©
Xeon R© CPU E5-2690 v2 @ 3.00 GHz cores and 756 GB RAM.

(a) (b)

Fig. 1. A heterogeneous graph with blue and yellow nodes referring to vessels and
ports respectively, and edges between vessels and destination ports. (a) Feature types
related to vessels, ports and voyages are shown for nodes p4 and v4, and for edge w6,
respectively. (b) A real example of seven voyages for three vessels and three ports.
(Color figure online)

4 Results

Macro-averaged results for the destination prediction models are presented in
Table 2. As we can notice, the graph-based machine learning model outperforms
all the classic models that do use graph-based features. It outperforms the best
baseline algorithm - random forest - with an increase in accuracy of approxi-
mately 3%, the precision almost doubled, going from 34% to 69%, and recall
and F1-score improved by 7% and 23% respectively. While our best model is
able to predict the correct destination port nearly 70% correct, it is only able
to do so for around 1/3 of the ports in the network. If we only compare among
the baseline models, the random forest algorithm performs the best, with an
accuracy of 61%, precision of 34%, recall of 29%, and F1-score of 31%, followed
closely by Catboost. Surprisingly, the logistic regression, despite being a strong
classification method, performs the worst.

Lastly, we can verify the power that the graph-based features bring to the
model by comparing the performance of the kNN model (without graph-based
features) and our model, that is, a kNN enhanced with graph-based features.
As we can see from Table 2, there is a significant increase in precision, more
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than doubling with a subsequent impact on the F1-score (which is also almost
double). We believe that the addition of the topological features derived from
the heterogeneous graph are thus able to better characterise a voyage segment.

Table 2. Destination prediction models results

Model Accuracy Precision Recall F1-score

Logistic regression 0.5574 0.2225 0.2211 0.2217

kNN 0.5822 0.2995 0.2774 0.2880

Catboost 0.6036 0.3136 0.2620 0.2854

Random forest 0.6133 0.3369 0.2873 0.3101

Graph-based (ours) 0.6472 0.6877 0.3604 0.5426

4.1 Comparison with AIS Manually Entered Destinations

To have a better reference, we compare the destination information available
in the AIS message with the destination derived by our voyage reconstruction
algorithm, which uses automatic AIS position and speed data, and an external
port database (WPI). Before comparing the datasets, we cleaned AIS destina-
tions by removing samples with meaningless or random destination values, such
as HERE WE GO AGAIN, HOME, etc. We also created various rules to link
AIS destination codes with WPI port names. We can cite examples of ports in
AIS data with values SEGOT and SE GBG destinations, both equivalent to
GOTEBORG in the generated voyage dataset.

The resulting comparison shows that we covered around 48% of AIS destina-
tion ports, which means that we generated the same AIS destination for almost
half of our data. As a comparison, the graph-based model is accurate in 65%
of its predictions. If we relax the matching process between AIS and the port
names of WPI, using a fuzzy search with a minimum similarity percentage of
90%, still only 55% of AIS destinations matches, which is a similar accuracy
to the worst baseline model. These can be explained by the high risk of errors
within manually entered AIS data.

Fig. 2. Overview of the proposed graph-based voyage destination prediction model.
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4.2 Error Analysis

We present a summary of prediction results for our graph-based model in the
confusion matrix of Fig. 3. Due to the high number of ports available in the test
set, we show the results only for the 10 top destination ports. We added “Other
ports” to represent any port that is not in the list of ports displayed in the
confusion matrix. As we can notice, most of the confusions of the top ports are
with ports lower-destination ports (“Other ports”), e.g., Nysted, Rostock, etc.
Among the top ports, Karsto is confused often with Nykobing (MOR) (20%),
and Skudeneshavn with Karsto (22%) and Nykobing (MOR) (22%). We believe
this might be due to the fact that Skudeneshavn and Karsto are very close
geographically and also visited by the same boat 257144700 in Fig. 4.

Fig. 3. Link prediction confusion matrix for the top destination ports. “Other ports”
represent the remainder predictions.

Figure 4a shows an overview of the distribution of data related to the top 10
destination ports with the highest number of voyages in test set. We notice that
vessel with MMSI 219000737, during 2000 voyages, has been visiting Rodby Havn
port 50% of the time and Orth port the rest of the voyages. This means that
the probability of predicting the right port is 0.5. The dominant ports have little
diversity in terms of visiting boats. Only three of the five ports have been visited
by one to three boats. This explains why ports, such as Rodby Havn and Orth,
have such good performance as shown in Fig. 3. Figure 4b shows the distribution
of data in the test set related to the top destinations that a maximum number
of vessels has visited. We can see that for ports such as Skagen Haven, a much
higher confusion is found (see Fig. 3), indicating that the algorithm is biased
towards the majority classes, having significantly better performance for ships
that always go to the same destination than for ships that make voyages to
different destinations.
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(a) (b)

Fig. 4. Test set. (a) Number of port destinations per vessel for the top 10 destinations
with the maximum number of voyages. (b) Number of port destinations per MMSI for
top destinations shared by a maximum number of vessels.

5 Discussion

In this paper, we designed a novel method based on graph-based machine learn-
ing models to predict voyage destination. Such methods can be used to improve
AIS data quality and promote better decision making in the maritime trans-
portation. In addition to the usual tasks of cleaning and removing conflicting
data, and filling in missing information wherever is possible, we created voyage
segments by combining historical AIS data with a world port database (WPI).
In our experiments, we cover the region around Danish waters, nevertheless, the
methodology is readily applied to the world maritime transportation network.

In the proposed model, we organized AIS data by vessels and created voy-
ages based on a set of rules using different AIS attributes combined with the
WPI dataset. Then, voyages are abstracted using a heterogeneous undirected
graph, which is used to train a machine learning model that solves the voyage
destination port prediction problem as a multi-class classification based on a
link prediction algorithm. The graph-enriched model was compared to baseline
models that do not exploit the network properties, achieving significant perfor-
mance improvement upon them. While more complex graph-based models exist,
such as those based on graph neural networks, e.g., graph convolution neural
network [21] and graph attention network [36], the objective here is to demon-
strate that the topological features can contribute positively to the performance
of the predictive models. Their investigation is left for a future work.

To represent the time factor in the proposed model, we conducted two exper-
iments. First, the one presented in this paper, where time is added as a link prop-
erty, that is, new travels have a higher weight. Second, we evaluated a recurrent
model, where previous voyage features (time - n), e.g., previous voyage departure
and destination ports, are added to the current set of features. However, adding
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recurrent information did not make any significant change to the performance
of the models, only improved their complexity. Therefore, these results were not
presented in this paper, but they could still be relevant in a wider coverage
database.

Our work has some limitations. The AIS used only covers a region around
the Danish waters. The destination mentioned can be outside the covered region.
Therefore, we do not capture the position information of the ship at the final
destination. Using data covering the whole world and considering other types of
ships will increase the diversity of the data and improve the analysis of the ships’
behaviours. Moreover, enhanced learning models, such as graph neural networks,
as aforementioned, could be also analysed. Finally, some features, such as ships’
id, while might help to enhance the learning of ships’ behaviours, they open
the risk of overfitting. Therefore, more robust evaluation methods, such as a
cross-validation, could be employed.

To conclude, by approaching the voyage destination prediction problem as
a multi-class link prediction task, we have explored the possibility of using the
network features, such as link embeddings, in a graph-based model to improve
the predictive power of learning algorithms. Despite the significant performance
enhancement, voyage destination prediction remains as a challenge. Neverthe-
less, our results show that the performance of the graph-based predictive model
outperforms the manually entered AIS destination data. Therefore, they could
be used to augment AIS data quality and support data-driven maritime support
systems.
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Abstract. In the past decades, complex networks have proved to be
an exceedingly powerful and efficacious tool for describing a wide range
of systems in nature and society. Thereafter, random search processes,
as an effective and informative way of exploring these networks, have
attracted considerable attention towards them. In this work, we study
the problem of partial cover time in a dual-target search when performing
a random walk on a (1,2)-flower network. For the first time, we derive an
exact expression for the partial cover time of a random searcher on such
a network to hunt both target nodes of interest. The introduced formula
for calculating this quantity outranks previous work in the sense that
it can be conveniently applied to general types of networks. Utilizing
this expression can introduce a pivotal change for efficiently solving the
problem of partial cover time in its wide range of applicable fields.

Keywords: Partial Cover Time · Dual-target Search · Pseudofractal
Scale-free Web · Mean First Passage Time · Probability Generating
Function

1 Introduction

Random search processes have become vastly popular and investigated due to
their applications in various domains over the past decades. The theoretical
developments in this field have affected wide mathematics areas especially prob-
ability theory, computer science, statistical physics, operations research, and
more. Random walks have also been applied in areas such as locomotion and
foraging of animals [1,2], disease and information spreading [3], decision mak-
ing in the brain [4,5], gene transcription [6], and also descriptions of financial
markets [7,8], ranking systems [9], and dimension reduction and feature extrac-
tion from high-dimensional data [10] and network embedding [11–13] as well as
socially responsible network science studies [14,15]. On the other hand, there has
been a large trend towards modeling many real-world phenomena with complex
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networks [16]. Coupled biological and chemical systems, neural networks, social
interacting species, the Internet and the World Wide Web are just a few exam-
ples of real systems which are characterized by complex networks. Also covering
problems are being widely studied specifically in fields like discrete optimiza-
tion [17,18]. To mention a classical problem in this framework, we can name the
general set cover problem [19].

The wide and common requirements for the simultaneous search for multiple
targets in many fields of chemistry, biology, and social interactions motivates us
to study a dual-target search. Figure 1 presents a general overview of the dual-
target search problem on a typical network where a random walker (starting
from node S) explores the network until meeting both targets of interest (T1

and T2). To be able to characterize this type of search on a network, we use
the partial cover time that can quantify the required time for a random walker
to hit several different targets in the network. The specific designation of this
concept has been a persistent problem in the realm of random walk theory since
its birth [20,21]. Despite the long-lasting trend to solve this problem, the studies
in this field are still in the early stages and not much effort has been made for
finding a precise solution for it. Most recent studies in mathematics or physics
literature focus on the boundary of cover time on regular graphs [22] or provide
numerical results of the cover time [23]. It is worth mentioning that in one
of the valuable contributions to this field [24], a global expression for the full
distribution of the cover time in a graph is proposed. Though, all these past
studies were concentrated on simply the cover time and not specifically partial
cover time until a recent study [25] where for the first time, an iterative approach
has been proposed to analytically determine the partial cover time of complex
networks.

Here, despite most recent efforts which study random walks and covering
problems on complex networks and mainly focus on a single-target case [6,26–
28], we are trying to study multi-target search on complex systems. We specif-
ically focus on the problem of hunting a target set containing two members on
(1,2)-flowers (pseudofractal scale-free web) as an example of hierarchical net-
works. Several key characteristics of complex networks can be modeled using
these recursive, finitely articulated models. At the same time, these models can
be precisely analyzed, giving us important insights into the nature of complex
networks in everyday life. Our proposed method can easily be applied to more
general topologies of hierarchical lattices like (u,v)-nets and also the structures
exhibiting a self-similar construction as well. In this paper, we attempt to derive
an exact expression for computation of the partial cover time on (1,2)-flowers
when our target domain consists of two members. We have successfully achieved
an explicit expression for this quantity in terms of mean first passage time
(MFPT) for a single absorbing domain which can be exactly calculated utilizing
the concept of probability generating functions. Our achievements in this work
can be exploited as a pivotal method to solve the problem of partial cover time
in general networks and also establish the groundwork for future investigation
in problems with a target set which includes an arbitrary number of nodes.
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This paper is organized as follows. Section 2 provides brief properties and con-
struction methods of (1,2)-flowers. The comprehensive analysis of the dual-target
search and its presentation in terms of MFPT are explained in Sect. 3. Section 4
illustrates the general method to analytically compute the MFPT employing
the probability generating function and then introduces the exact expression of
partial cover time for dual-target set in (1,2)-flowers. Finally, we present our
conclusions in Sect. 5.

Fig. 1. An extensive visualization for the problem of dual-target hunt by a random
searcher on a general network. The searcher (starting from node S) is hunting for two
target nodes (T1 and T2) by performing a random walk on the network.

2 Properties and Construction of (1,2)-Flowers

In this section, we introduce the utilized model which is called (1,2)-flower (also
denoted as pseudofractal scale-free web, PSFW) in the family of (u,v)-flowers
[29], that is a large class of scale-free hierarchical networks. These networks are
built using an iterative method. We convey our investigations on (1,2)-flower
model because of its decisive structure which has attracted a surge of interest
in the past decade and allows one to study the diffusion processes on it [30–32].
Let us denote the (1,2)-flower after t (t ≥ 0) number of iterations by G(t). This
number of iterations is also called the generation of the network. The construc-
tion initially starts from t = 0 (G(0)) where we have a triangle of three nodes.
For t ≥ 1, G(t) is obtained from G(t − 1) by performing the following operation
on each edge: Attaching a new node to both ends of the edge. Figure 2.a illus-
trates the evolution process of a (1,2)-flower showing the first several generations.
According to the mentioned algorithm for building PSFW, at each step ti, the
number of newly added nodes is V̄ (ti) = 3ti . Therefore, we can easily know that
the total number of nodes in G(t) is equal to V (t) =

∑t
ti=0 V̄ (ti) = (3t+1 +3)/2.

From this perspective, the nodes of G(t) can be classified into different levels.
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The nodes existing at iteration t = 0 belong to level 0 while nodes present at
the kth generation are considered to be of level k. As a consecution, the nodes
of level 0 are just the three main hubs of G(t), and any node of G(t) belongs to
level t.

This class of networks exhibits some intriguing characteristics of real-life net-
works existing in nature. The degrees of nodes obeys the power law distribution
P (k) ∼ k−γ with the exponent γ = 1 + ln(3)/ln(2) ≈ 2.585 [29]. Also, the aver-
age clustering coefficient tends to 0.8 when the network order is large enough
and the average path length increases logarithmically with the size of the net-
work [33]. Hence, we can conclude that the (1,2)-flower expresses small-world
behavior [34].

It is worth mentioning that the PSFW can also be constructed using another
method (see Fig. 2.b for details of this construction method). Given the genera-
tion t− 1, G(t) will be obtained by joining three sub-units, which are replicas of
G(t − 1), denoted as G1, G2, and G3 respectively, at their hubs (nodes with the
highest degree) denoted by A, B, C. Also, each of G1, G2, and G3 is in turn com-
posed of three replicas of G(t − 2) and the algorithm continues similarly. These
sub-units can be classified into different levels; Recursively, for any k ≥ 0, Lk is
supposed to be a copy of G(t − k) and hence, it is clear that 3k sub-units of Lk

exist in G(t). To discern the sub-units of the same level, we label Lk (1 ≤ k ≤ t)
by a sequence {i1, i2, . . . , ik}, where each ij ∈ {1, 2, 3} (1 ≤ j ≤ k) based on its
location in the parent sub-unit Lk−1 [31,35]. Figures 3.a and 3.b illustrate this
labeling process. For convenience, we show the three hubs of all sub-units Lk as
Ak, Bk, Ck in Fig. 3.b.

Fig. 2. (a) An illustration of the hierarchical building process of a typical (1-2)-flower
for the first three generations. (b) An alternative method of construction for a typi-
cal (1-2)-flower using three replicas of each generation. The network of generation t,
denoted by G(t), is composed of three copies of G(t − 1) labeled as L1

1, L2
1, and L3

1.
Each copy encompasses three main hubs (say, A, B, and D in L1

1). These hubs in each
of L1

1, L2
1, and L3

1 are topologically equivalent due to the intrinsic symmetry of the
model. For the generation of G(t), two out of three main hubs are selected (say, A and
B in L1

1) and merged pairwise with the other selected hubs from the other copies. The
resulting structure displays A, B, and C as main hubs of generation t, while nodes
labeled as D, E, and F , are the second most connected nodes.
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Fig. 3. (a) An illustration of the labeling process for distinguishing sub-units in each
level of the network. The relation between the value of i and the location of sub-unit
Lk (colored in red, bottom row) in Lk−1 (upper row). Sub-unit represented by solid
red triangle is the sub-unit Lk corresponding to value of i below. The hubs labeled as
Ak−1 and Bk−1 in Lk−1 are also the hubs of Lk labeled as Ak and Bk while i = 1; the
hubs labeled as Ak−1 and Ck−1 in Lk−1 are also the hubs of Lk labeled as Ak and Bk

while i = 2; and finally the hubs labeled as Bk−1 and Ck−1 in Lk−1 are also the hubs
of Lk labeled as Bk and Ak while i = 3. (b) A bigger picture of a more developed
(1-2)-flower with sub-units from different levels being labeled with different colors. The
three hubs of each sub-unit Lk are shown as Ak, Bk, Ck. In this network, the blue
sub-unit corresponds to level 2 and is labeled by the sequence {2, 1}; The yellow sub-
unit is also from level 2 and represented by {1, 1}; Whereas the red one from the same
level is shown with {3, 1}. Moreover, the purple structure from level 3 is labeled with
{1, 2, 3} and the green sub-unit in the same level has {3, 3, 2} as its labeling sequence
(Color figure online).

3 The Problem of Partial Cover Time for a Two Target
Search

In this section, we try to find an exact solution for a dual-target search problem
in general types of networks. We start from an undirected connected network
with V nodes (i = 1, . . . , V ), described by a symmetric adjacency matrix A,
whose element aij = 1(0) if there is (not) a link between nodes i and j. Consider
a random searcher (walker) on this network who jumps from the current node i to
one of its ki neighbors (e.g., node j) at each time step with transition probability
which is defined as pij = 1/ki. Without loss of generality, we assume that the
two targets are located at distinct nodes 1 and 2. Here, it is appealing for us to
compute the partial cover time Ti,{1,2} which alternatively means how long it
takes for the searcher to reach both target nodes for the first time starting from
node i. This is precisely the expected time to thoroughly cover the nodes {1, 2}.
In this case, if the first step of the walk is to node 1 (or 2), the required partial
cover time is 1 + T12 (or 1 + T21), where T12 (or T21) is the mean first passage
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time (MFPT) from node 1 (or 2) to node 2 (or 1). However, if the first step is
to another node j, the required partial cover time will be equal to 1 + Tj,{1,2}.
Thus, for i �= 1, 2, we obtain the following equation:

Ti,{1,2} = pi1(1 + T12) + pi2(1 + T21) +
∑

j �=1,2

pij(1 + Tj,{1,2}) (1)

It is obvious that T12 = T1,{1,2} and T21 = T2,{1,2}. So, the previous equation
can be deduced to:

Ti,{1,2} = 1 +
∑

j

pijTj,{1,2} (2)

Analogously, let r1,{1,2} denote the expected number of steps needed to revisit
nodes 1 and 2 starting from node 1. It can be expressed as:

r1,{1,2} =
∑

j

p1j(1 + Tj,{1,2}) (3)

Now, merging Eq. (2) and Eq. (3), we obtain the following matrix relation:

(I − P )T = C − R (4)

where I denotes the identity matrix and T , C, and R are respectively determined
as the following:

T =

⎛
⎜⎜⎜⎜⎝

T1,{1,2} . . . T1,{1,V } T1,{2,3} . . . T1,{V −1,V }
T2,{1,2} . . . T2,{1,V } T2,{2,3} . . . T1,{V −1,V }

..

.
..
.

..

.
..
.

..

.
..
.

TV,{1,2} . . . TV,{1,V } TV,{2,3} . . . TV,{V −1,V }

⎞
⎟⎟⎟⎟⎠

V ×
(
V
2

)

;C =

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
.
.
.
.
.
.

.

.

.
.
.
.

1 1 . . . 1

⎞
⎟⎟⎟⎠

V ×
(
V
2

)

;

R =

⎛
⎜⎜⎜⎜⎝

r1,{1,2} − T12 r1,{1,3} − T13 . . . 0

r2,{1,2} − T21 0 . . . 0

.

..
.
..

.

..
.
..

0 0 . . . rV,{V −1,V } − TV V −1

⎞
⎟⎟⎟⎟⎠

V ×
(
V
2

)

Multiplying both sides of Eq. (4) by the matrix W , in which each row is the
stationary distribution of the random walk and which is, in fact, an ergodic
Markov chain, gives:

W (I − P ) = 0 −→ WC − WR = 0 (5)

and
w1(r1,{1,2} − T12) + w2(r2,{1,2} − T21) = 1 (6)

where wi is the ith component of the stationary distribution.
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It is well known that for generic types of random walks, the MFPT or Tij can
be represented exactly in terms of the elements zij of the fundamental matrix Z
for the corresponding Markov process [36,37]. This is defined by:

Z = (I − P + W )−1 (7)

Now, multiplying both sides of Eq. (4) by Z we obtain:

T = C − ZR + WT (8)

which gives us:

Ti,{1,2} = 1 − zi1(r1,{1,2} − T12) − zi2(r2,{1,2} − T21) +
∑

j

wjTj,{1,2} (9)

Achieving T1,{1,2} and T2,{1,2} from above equation and merging them with
Eq. (6), it gives:

r1,{1,2} = T12 +
T21

w1(T12 + T21)
; r2,{1,2} = T21 +

T12

w2(T12 + T21)
(10)

Eventually, inserting the above equation in Eq. (9), we gain the following exact
expression for partial cover time:

Ti,{1,2} =
T12T21 + Ti1T21 + Ti2T12

T12 + T21
(11)

So we have now derived an analytical representation for the problem of dual-
target search and computed it in terms of mean first passage times in any arbi-
trary undirected network.

4 General Method Based on Probability Generating
Function

In this section, by employing a method based on the probability generating
function (PGF) [38], we try to derive an exact expression for the partial cover
time for a two target search in a (1,2)-flower. This technique can be applied to
other self-similar structures in the same fashion and solve the problem of hunting
dual-target set on such networks.

Firstly, we bring a brief description of the properties of probability generating
functions and thereafter, by utilizing these features, we attack on our main goal
of this work. Now let X be a discrete random variable which takes only non-
negative integers {0, 1, . . . }. By definition the probability generating function of
X is:

ΨX(z) = E(zX) =
∞∑

x=0

p(x)zx (12)
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where p is the probability mass function of X. Given ΨX(z), p(x) can be recovered
as the coefficient of zx in the Taylor’s series expansion of ΨX(z) around z = 0
as the following:

p(x) =
∂xΨX(z)

∂zx |z=0

x!
(13)

Also, the expectation of X can be written as:

E(X) =
∂ΨX(z)

∂z
|z=1 (14)

And eventually, it must be mentioned that the probability generating function
has a peculiar property in dealing with the summation of independent ran-
dom variables which is beneficial in this work. To clarify this property, let N
be a random variable with PGF ΨN (z), and X1,X2, . . . , XN be a sequence of
independent and identically distributed random variables with PGF ΨX(z), and
SN =

∑N
i=1 Xi. The PGF of SN is given by

ΨSN
(z) = ΨN (ΨX(z)) (15)

Following this preface, we will introduce a precise presentation for the gener-
ating function of the first passage probability. Corresponding to different choices
for an absorbing domain, here we particularly focus on nodes of level 1 (nodes
with the largest and the second largest degree) and without loss of generality, we
suppose that nodes A and F constitute the dual-target set in the (1,2)-flower. In
the following section, we drive an explicit expression of the first passage prob-
ability and mean first passage time for A and F separately and then utilizing
Eq. (11), we obtain the exact value of partial cover time.

4.1 First Passage Properties to Node A

In order to compute the probability generating function from an arbitrary source
node to node A, we first consider the case where the starting and the absorbing
nodes are from the main hubs (i.e., A, B, and C). This assumption provides us
with a useful framework to calculate the PGF of starting nodes from different
levels recursively. Due to the existing structural symmetry in a (1,2)-flower, we
assume node C is the starting node and D = {A,B} is the absorbing domain.
We want to find the probability generating function from node C to any of the
other two hubs A and B.

Let XC(t) indicate the first passage time from node C to D and PC(t, n)
denote the first passage probability that X(t) = n, where t is the generation of
the (1,2)-flower. So, the PGF of X(t) can be expressed as the following:

θ(t, z) =
∞∑

n=0

PC(t, n)zn (16)
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Now, one can show any path from hub C to the absorbing domain D as:

Ω = (vτ0 = C, vτ1 , . . . , vτN = A(or B)) (17)

where τ0 = 0, vτ1 , vτ2 , . . . , vτN−1 ∈ Γ = {C, D, E, F | nodes of level 1 except{A, B}},
and N − 1 indicates the number of times that the random searcher has visited any
node in Γ until attaining node A or B for the first time. Therefore, Ω contains only
the nodes of level 1 where the time interval between each two steps is stochastic and
N is the first passage time from node C to any of nodes A and B from generation
1. Thus, the PGF of N is θ(1, z). Let us define the random variable ηi = τi − τi−1

as the time needed for the walker to relocate from vτi−1 to vτi . It is noticeable that
ηi s (i = 1, . . . , N) are independent and identically distributed random variables.
Each of these variables is the first passage time from node C to any of the other two
hubs of generation t−1 since nodes of level 1 are the hubs of G1, G2, and G3 which
are replicas of G(t − 1). Hence, the PGF of each ηi is θ(t − 1, z). Now, whereas
X(t) =

∑N
i=1 ηi and according to Eq. (15), we have:

θ(t, z) = θ(1, θ(t − 1, z)) (18)

To compute the above equation, it is sufficient to find θ(1, z) and then, θ(t, z) can
be achieved in a straightforward manner. Let P denote the transition probability
matrix of the generation 1 on the (1,2)-flower such that the absorbing domain
is D = {A,B}. So all elements of the first and second row of P are equal to 0:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
1/4 1/4 0 0 1/4 1/4
1/2 1/2 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 1/2 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

6×6

(19)

The probability generating function matrix [Ψij(z)]6×6 of matrix P can be cal-
culated as:

[Ψij(z)]6×6 =
∞∑

n=0

(zP)n = (I − zP)−1 (20)

where Ψij(z) is the PGF of passage time from node i to j. Substituting Eq. (19)
into Eq. (20), the probability generating function of the first passage time from
node C to any of the other two hubs A or B will be equal to:

θ(1, z) = Ψ31(z) + Ψ32(z) =
z

2 − z
(21)

Now, combining Eq. (21) and Eq. (18), we get:

θ(t, z) =
z

2t − z(2t − 1)
(22)
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At this point, we return to our main goal, namely computing the probability
generating function Ψv(t, z) =

∑∞
n=0 Pv(t, n)zn from an arbitrary source node v

to target node A. In other words, the absorbing domain in this case is D = {A}
and the aforementioned achievements are now useful for our aim.

For any sub-unit Lk, it can be easily deduced that:

ΨCk
(t, z) =

1
2

θ(t − k, z) [ΨAk
(t, z) + ΨBk

(t, z)] (23)

Inserting ΨA(t, z), ΨB(t, z), and ΨC(t, z) as the initial conditions of the above
equation, it can be calculated recursively. It is clear that ΨA(t, z) = 1 and based
on the existing similarity ΨB(t, z) = ΨC(t, z) and also analogous to what we had
in Eq. (16) and Eq. (18), we get:

ΨC(t, z) = ΨC(1, θ(t − 1, z)) (24)

It is sufficient to find ΨC(1, z) and use Eq. (22) to compute the above equation.
In this case the transition probability matrix P is:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
1/4 0 1/4 1/4 0 1/4
1/4 1/4 0 0 1/4 1/4
1/2 1/2 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 1/2 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

6×6

(25)

Calculating [Ψij(z)]6×6 by inserting the above P into Eq. (20), we obtain:

ΨC(1, z) = Ψ31(z) =
z

4 − 3z
(26)

Now, combining Eq. (22) and Eq. (24), we have:

ΨC(t, z) =
z

2t+1 − z(2t+1 − 1)
(27)

As it is forenamed previously in Eq. (14), the mean first passage time from node
C to node A can be derived as:

TCA = E(XC(t)) =
∂ΨXC

(t, z)
∂z

|z=1= 2t+1 (28)

Now, exploiting Eq. (23) in addition to the achieved results regarding the main
hubs (i.e., A, B, and C), we can also calculate the PGF and MFPT from an
arbitrary node of level k (0<k ≤ t) to the target node A. As an example, suppose
three sub-units L1

k, L2
k, and L3

k which are labeled by sequences {1, 1, . . . , 1
︸ ︷︷ ︸

k−1

},

{2, 1, . . . , 1
︸ ︷︷ ︸

k−1

}, and {3, 1, . . . , 1
︸ ︷︷ ︸

k−1

} respectively. We compute ΨCk
(t, z) and TCkA for

each sub-unit as follows:
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Case 1:

L1
k :

{
Ak = Ak−1 = · · · = A1 = A

Bk = Bk−1 = · · · = B1 = B

Inserting the value of θ(t − k, z) from Eq. (22) into Eq. (23), we obtain:

ΨCk
(t, z) =

1
2z

2t−k − z(2t−k − 1)
+

1
2z2

[2t−k − z(2t−k − 1)] [2t+1 − z(2t+1 − 1)]
(29)

Also, the mean first passage time from node Ck to main hub A is:

TCkA = E(XCk
(t)) =

∂ΨXCk
(t, z)

∂z
|z=1= 2t(2−k + 1) (30)

As a consequence, the MFPT vector of the three hubs Ak, Bk, and Ck of L1
k,

can be represented as:

T (k) ≡
⎛

⎝
TAkA

TBkA

TCkA

⎞

⎠

3×1

=

⎛

⎝
0

2t+1

2t(2−k + 1)

⎞

⎠

3×1

(31)

Similarly, for the other two cases L2
k and L3

k, we have:
Case 2:

L2
k :

{
Ak = Ak−1 = · · · = A1 = A

Bk = Bk−1 = · · · = B1 = C

ΨCk
(t, z) =

1
2z

2t−k − z(2t−k − 1)
+

1
2z2

[2t−k − z(2t−k − 1)] [2t+1 − z(2t+1 − 1)]
(32)

TCkA = E(XCk
(t)) =

∂ΨXCk
(t, z)

∂z
|z=1= 2t(2−k + 1) (33)

T (k) ≡
⎛

⎝
TAkA

TBkA

TCkA

⎞

⎠

3×1

=

⎛

⎝
0

2t+1

2t(2−k + 1)

⎞

⎠

3×1

(34)

Case 3:

L3
k :

{
Ak = Ak−1 = · · · = A1 = C

Bk = Bk−1 = · · · = B1 = B

ΨCk
(t, z) =

z2

[2t−k − z(2t−k − 1)] [2t+1 − z(2t+1 − 1)]
(35)

TCkA = E(XCk
(t)) =

∂ΨXCk
(t, z)

∂z
|z=1= 2t(2−k + 2) (36)
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T (k) ≡
⎛

⎝
TAkA

TBkA

TCkA

⎞

⎠

3×1

=

⎛

⎝
2t+1

2t+1

2t(2−k + 2)

⎞

⎠

3×1

(37)

At this stage, it is also important to compute the average MFPT over all
possible starting nodes of level k. To reach this goal, one can first calculate the
following statement over all possible sub-units:

ΣA
k =

∑

{i1,...,ik}
(
⊕

T (k)) (38)

where
⊕

T (k) adds all elements of vector T (k). Then, to obtain the summation
of mean first passage time for all nodes in level k, the repetition of each node in
ΣA

k should be subtracted. In other words, since each arbitrary starting node v

of level i emerges 2k−i times in ΣA
k and just once in ΣA

k − ∑k−1
i=0 ΣA

i , the sum
of MFPT for all nodes in level k will be ΣA

k − ∑k−1
i=0 ΣA

i .
To calculate the Σk, we pursue the same manner as [35,39] in the following.
For any k ∈ {1, . . . , t}, it is straightforward to acknowledge that:

T (k) = MikT
(k−1) + V(k); ik = 1, 2, 3 (39)

where

M1 =

⎛
⎝

1 0 0
0 1 0
1
2

1
2
0

⎞
⎠

3×3

,M2 =

⎛
⎝

1 0 0
0 0 1
1
2
0 1

2

⎞
⎠

3×3

,M3 =

⎛
⎝
0 0 1
0 1 0

0 1
2

1
2

⎞
⎠

3×3

,V(k) =

⎛
⎝

0
0

2t−k

⎞
⎠

3×1

In the recursive procedure of Eq. (39), we obtain:

∑

{i1,...,ik}
T (k) = Mk

totT
(0) +

k∑

l=1

3lMk−l
tot V(l) (40)

where

T (0) ≡
⎛

⎝
TAA

TBA

TCA

⎞

⎠

3×1

=

⎛

⎝
0

2t+1

2t+1

⎞

⎠

3×1

; Mtot = M1 + M2 + M3 =

⎛

⎝
2 0 1
0 2 1
1 1 1

⎞

⎠

3×3

Hence, by using orthogonal decomposition of matrix Mtot we get:

MtotT
(0) = 2t+1

⎛
⎝

2k + 2× 3k−1

−2k + 2× 3k−1

2× 3k−1

⎞
⎠

3×1

;

k∑
l=1

3lMk−l
tot V(l) = (2t − 3t−k)3k−1

⎛
⎝

1
1
1

⎞
⎠

3×1

(41)
Substituting from Eq. (41) into Eq. (40) and calculating

⊕
T (k), we gain:

ΣA
k = 3k(2t+2 + 2t − 2t−k) (42)
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Eventually, the average MFPT over all the staring nodes of level k, can be
captured as:

〈T (k)
A 〉 =

ΣA
k − ∑k−1

i=0 ΣA
i

V (k) − 1
= 2t

[3k × 5 + (32 )k × 2 + 1
3k+1 + 1

]
(43)

By replacing k = t in the above equation, we find the global MFPT to node A

as 〈T (t)
A 〉 = 5×6t+2×3t+2t

3t+1+1 , which is in agreement with the results in [30].

4.2 First Passage Properties to Node F

In this section, the followed procedure resembles the previous part. Here, the
absorbing domain is D = {F} and once more, we find the first passage properties
from the main hubs (A, B, and C) to the target node F . Then, utilizing Eq. (23),
PGF and MFPT values from any arbitrary source node can be computed. It is
obvious that by symmetry, ΨB(t, z) = ΨC(t, z). So, it is adequate to derive
ΨA(t, z) and ΨC(t, z). In this case, the transition probability matrix P of the
generation 1 on the (1,2)-flower is:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1/4 1/4 1/4 1/4 0
1/4 0 1/4 1/4 0 1/4
1/4 1/4 0 0 1/4 1/4
1/2 1/2 0 0 0 0
1/2 0 1/2 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

6×6

(44)

Inserting P from the above equation in Eq. (20), gives:

ΨA(1, z) = Ψ16 =
−z2

z2 + 6z − 8
; ΨC(1, z) = Ψ36 =

z(z − 2)
z2 + 6z − 8

(45)

Now, using above relations and combining Eq. (22) and Eq. (24), we obtain:

ΨA(t, z) =
−z2

−z2[22t+1 − 5(2t) + 1] + z[22t+2 − 5(2t)] − 22t+1
(46)

ΨC(t, z) =
z2(2t − 1) − z(2t)

−z2[22t+1 − 5(2t) + 1] + z[22t+2 − 5(2t)] − 22t+1
(47)

And, the mean first passage time from nodes A, B, and C to node F can be
derived as:

TAF =
∂ΨXA

(t, z)
∂z

|z=1= 5 × 2t; TBF = TCF =
∂ΨXC

(t, z)
∂z

|z=1= 4 × 2t (48)

By substituting Eq. (46) and Eq. (47) in Eq. (23), the probability generating
function of any arbitrary node from level k can be captured recursively. Similar
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to Eqs. (29–37) and as an example, we derive the first passage properties of Ck

to the absorbing domain D = {F} in L1
k, L2

k, and L3
k.

Case 1:

L1
k :

{
Ak = Ak−1 = · · · = A1 = A

Bk = Bk−1 = · · · = B1 = B

Inserting the value of θ(t − k, z) from Eq. (22) into Eq. (23), we obtain:

ΨCk
(t, z) =

−z3(2t−1 − 1) + z2(2t−1)[
2t−k − z(2t−k − 1)

][
z2[22t+1 − 5(2t) + 1]− z[22t+2 − 5(2t)] + 22t+1

] (49)

Hence,

TCkF =
∂ΨXCk

(t, z)
∂z

|z=1= 2t(2−k +
9
2
) (50)

and again, the MFPT vector of the three hubs Ak, Bk, and Ck equals:

T (k) ≡
⎛

⎝
TAkA

TBkA

TCkA

⎞

⎠

3×1

=

⎛

⎝
5 × 2t

4 × 2t

2t(2−k + 9
2 )

⎞

⎠

3×1

(51)

Case 2:

L2
k :

{
Ak = Ak−1 = · · · = A1 = A

Bk = Bk−1 = · · · = B1 = C

ΨCk
(t, z) =

−z3(2t−1 − 1) + z2(2t−1)[
2t−k − z(2t−k − 1)

][
z2[22t+1 − 5(2t) + 1]− z[22t+2 − 5(2t)] + 22t+1

] (52)

TCkF =
∂ΨXCk

(t, z)
∂z

|z=1= 2t(2−k +
9
2
) (53)

T (k) ≡
⎛

⎝
TAkA

TBkA

TCkA

⎞

⎠

3×1

=

⎛

⎝
5 × 2t

4 × 2t

2t(2−k + 9
2 )

⎞

⎠

3×1

(54)

Case 3:

L3
k :

{
Ak = Ak−1 = · · · = A1 = C

Bk = Bk−1 = · · · = B1 = B
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ΨCk
(t, z) =

−z3(2t − 1) + z2(2t)[
2t−k − z(2t−k − 1)

][
z2[22t+1 − 5(2t) + 1]− z[22t+2 − 5(2t)] + 22t+1

] (55)

TCkF =
∂ΨXCk

(t, z)
∂z

|z=1= 2t(2−k + 4) (56)

T (k) ≡
⎛

⎝
TAkA

TBkA

TCkA

⎞

⎠

3×1

=

⎛

⎝
4 × 2t

4 × 2t

2t(2−k + 4)

⎞

⎠

3×1

(57)

Calculating the average MFPT for all starting nodes of level k is analogous
to the case where the absorbing domain is D = {A}. Here, since we know all the
values of TAF = 5×2t, TBF = 4×2t, TCF = 4×2t, TDF = 5×2t, TEF = 5×2t,
and TFF = 0, T (1) can be provided for all cases of i1 = {1, 2, 3}. Similar to
Eq. (40), we can derive the following relation:

∑

{i1,...,ik}
T (k) = Mk−1

tot

3∑

i1=1

T (0) +
k∑

l=2

3lMk−l
tot V(l) (58)

Again, by orthogonal decomposition of matrix Mtot and calculating
⊕

T (k), we
reach:

ΣF
k = 3k(2t+2 + 13 × 2t − 9 × 2t−1 − 2t−k) (59)

Also note that Σ0 = TAF + TBF + TCF = 13 × 2t. Consequently, the average
MFPT over all the staring nodes of level k to node F is:

〈T (k)
F 〉 =

ΣF
k − ∑k−1

i=0 ΣF
i

V (k) − 1
= 2t+2

[3k( 258 − 2−k−1) + (32 )k + 11
8

3t+1 + 1
]

(60)

4.3 Partial Cover Time for Two Targets A and F

Now, it is time to reach our ultimate goal in this paper by following the previously
proposed steps. The partial cover time from any arbitrary source node i to the
target set of {A,F} can be derived by substituting the associated values of mean
first passage time to nodes A and F into Eq. (11). For example, suppose the node
Ck of sub-unit L1

k as the starting node. From Eq. (30), Eq. (48), and Eq. (50),
we know that TCkA = 2t(2−k + 1), TAF = 5 × 2t, and TCkF = 2t(2−k + 9

2 ). Also,
it can be simply acquired that TFA = 5 × 2t. Therefore, we obtain:

TCk,{A,F} =
TAF TFA + TCkA TFA + TCkF TAF

TAF + TFA
= 2t(2−k +

21
4

) (61)

In the last step, we try to calculate the global partial cover time which is the
averaged value over all starting nodes from all possible values of k ∈ {1, 2, . . . , t}.
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One can obtain the accumulated quantity of mean first passage times from all
source nodes to node A (similarly to node F ) by ΣA

t − ∑t−1
i=0 ΣA

i as:

(
ΣA

t −
t−1∑
i=0

ΣA
i

)
=

5

2
× 6t + 3t +

1

2
× 2t;

(
ΣF

t −
t−1∑
i=0

ΣF
i

)
=

25

4
× 6t + 3t +

11

4
× 2t

Ultimately, the global partial cover time can be expressed precisely in the
following form:

〈T (t)
{A,F}〉 =

V (t) · (TAF TFA) + TFA(ΣA
t − ∑t−1

i=0 ΣA
i ) + TAF (ΣF

t − ∑t−1
i=0 ΣF

i )
V (t) · (TAF + TFA)

= 2t
[3t × 65

4 + (32 )t × 2 + 43
4

3t+1 + 3
]

(62)

We have now delivered the exact solution for the problem of partial cover
time in a dual-target search on a (1,2)-flower as it was the final goal of this study.

5 Conclusions

In this work, we investigate the problem of global partial cover time in a dual-
target search as the averaged cover time value over all possible starting nodes to
visit two target nodes. We utilize a (1,2)-flower as the network of interest. These
scale-free networks have recently attracted much interest due to being prevalent
in scientific research and real-life applications. These recursively constructed
networks exhibit rich behaviors such as the small-world phenomenon and pseud-
ofractal properties. For the first time, we capture an expression to explicitly
compute the partial cover time of the random walker until reaching both target
nodes. This is in contrary to most previous efforts which only focus on cover
time calculation or more straightforward single-target search problems. Random
search processes have long been recognized as an important branch of network
science based on their broad applications including disease spreading, animal for-
aging, and biochemical reactions. Nevertheless, much remains unknown about
the search time for finding more than one target at a time. The derived formula
in this work is extremely efficacious and has the capacity to be simply generalized
to other types of generic networks. This study can make a valuable contribution
to the field of multi-target search and also prompt future work towards formu-
lating an expression for partial cover time in case of having an arbitrary number
of target nodes.
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Abstract. We discuss a unified framework for the statistical analysis
of streaming data obtained by networks with a known neighborhood
structure. In particular, we deal with autoregressive models that make
explicit the dependence of current observations to their past values and
the values of their respective neighborhoods. We consider the case of both
continuous and count responses measured over time for each node of a
known network. We discuss least squares and quasi maximum likelihood
inference. Both methods provide estimators with good properties. In par-
ticular, we show that consistent and asymptotically normal estimators
of the model parameters, under this high-dimensional data generating
process, are obtained after optimizing a criterion function. The method-
ology is illustrated by applying it to wind speed observed over different
weather stations of England and Wales.

Keywords: Adjacency matrix · autocorrelation · least squares
estimation · link function · multivariate time series · network analysis ·
quasi-likelihood estimation

1 Introduction

Measuring the impact of a network structure to a multivariate time series process
has attracted considerable attention over the last years, mainly due to the grow-
ing availability of streaming network data (social networks, GPS data, epidemics,
air pollution monitoring systems and more generally environmental wireless sen-
sor networks, among many other applications). The methodology outlined in this
work has potential application in several network science fields. In general, any
stream of data for a sample of units whose relations can be modeled as an adja-
cency matrix (neighborhood structure) the statistical techniques reviewed in this
work are directly applicable. Indeed, a wide variety of available spatial stream-
ing data related to physical phenomena can fit this framework. As an illustrative
example, we analyze wind speed data observed over different weather stations
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of England and Wales. Network autoregressions allows meaningful analysis of
the actual wind speed, for each node, based on the effect of past speeds and
the velocity measured on its neighbor stations; see Sect. 4. This methodology is
potentially useful to model sensor networks for environmental monitoring. See
[6,8,22,25], among others, who discuss application of wireless sensor network
for environmental, agricultural and intelligent home automation systems. See
also [41] for an application to social network analysis. We discuss a statistical
framework which encompasses the case of both continuous and count responses
measured over time for each node of a known network.

1.1 The Case of Continuous Responses

When a response random variable, say Yi,t, is measured for each node i of a
known network, with N nodes, at time t, a N × 1-dimensional random vec-
tor is obtained, say Yt ∈ R

N = (Y1,t . . . Yi,t . . . YN,t)′, for each measured time
t = 1, . . . , T . The Vector Autoregressive (VAR) model, is a standard tool for
continuous time series analysis and it has been widely applied to model multi-
variate processes. However, if the size of the network is N , then the number of
unknown parameters to be estimated is of the order O(N2) which is much larger
than the temporal sample size T . The VAR model cannot then be applied for
modeling such data.

Other modelling strategies have been proposed to describe the dynamics of
such processes. One method is based on sparsity, see for example [21], among
other. Accordingly, the parameters of the model which have less impact to the
response are automatically set to zero, allowing to estimate the remaining ones.
Alternatively, a dimension reduction method which accounts for network impact
has been recently developed by [41], who introduced the Network vector Autore-
gressive model (NAR). In this methodology, for each node i = 1, . . . , N the
current response, Yi,t, for the node i, at time t, is assumed to depend only on
the lagged value of the response itself, say Yi,t−1, and the mean of the past
responses computed only over the nodes connected to the node i; this can be
broadly thought as a factor which accounts for the impact of the network struc-
ture to node i. The NAR representation allows considerable simplification for the
final model fitted to the data as it depends only on a few parameters. In addi-
tion, such representation still includes all essential information, i.e. the impact
of the past values of the response and the influence of the network neighbors on
each node.

NAR models are tailored to continuous response data. The parameters of
the model are estimated via ordinary least squares (OLS), under two asymptotic
regimes (a) with increasing time sample size T → ∞ and fixed network dimension
N (which is standard assumption for multivariate time series analysis) and (b)
with both N,T increasing, i.e. min {N,T} → ∞. The latter is important in
network science, since the asymptotic behavior of the network when its dimension
grows (N → ∞) is a crucial interest in network analysis. In practice, when only
a sample of the network is available, the results obtained under (b) guarantee
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that the estimates of unknown parameters of the model have good statistical
properties, even if N is big and, ultimately, bigger than T .

More recently, an extension to network quantile autoregressive models has
been studied by [42]. Further works in this line of research includes the grouped
least squares estimation, [40], and a Network GARCH model, see [39] under
the standard asymptotic regime (a). Related work was developed by [23] who
specified a Generalized Network Autoregressive model (GNAR) for continuous
random variables, by taking into account different layers of relationships within
neighbors of the network. All network time series models discussed so far are
defined in terms of Independent Identically Distributed (IID) error random inno-
vations; such an assumption is crucial for most of theoretical analysis.

1.2 The Case of Discrete Responses

Increasing availability of discrete-valued data, from diverse applications, has
advanced the growth of a rich literature on modelling and inference for count time
series processes. In this contribution, we consider the generalized linear model
(GLM) framework, see [27], which includes both continuous-valued time series
and integer-valued processes. Likelihood inference and testing can be developed
in the GLM framework. Some examples of GLM models for count processes
include the works by [9,15] and [14], among others. In [17] and [19], stability
conditions and inference for linear and log-linear count time series models are
developed. Further related contributions can be found in [5] for inference of
negative binomial time series, [1,7,10,11] and [12], among others, for further
generalizations. Even though a vast literature on the univariate case is avail-
able, results on multivariate count time series models for network data are still
missing; see [26,30–32] for some exceptions. Recently [18], introduced multivari-
ate linear and log-linear Poisson autoregression models. These authors described
the joint distribution of the counts by means of a copula construction. Copulas
are useful because of Sklar’s theorem which shows that marginal distributions
are combined to give a joint distribution when applying a copula, i.e. a N -
dimensional distribution function all of whose marginals are standard uniforms.
Further details are also available in the review of [16]. Recent work by [2] stud-
ied linear and log-linear multivariate count-valued extensions of the NAR model,
called Poisson Network Autoregression (PNAR). These authors developed asso-
ciated theory for the two types of asymptotic inference (a)–(b) discussed earlier,
under the α-mixing property of the innovation term, see [13,33]. Intuitively,
this assumption requires only asymptotic independence over time. The marginal
distribution of the resulting count process is Poisson (but other marginals are
possible including the Negative Binomial distribution) whereas the dependence
among them is captured by the copula construction described in [18]. Inference
relies on the Quasi Maximum Likelihood Estimation (QMLE), see [20], among
others.
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1.3 Outline

This paper summarizes some of the work by [41] and [2] and provides a unified
framework for both continuous and integer-valued data. In addition it reviews the
recent developments in this research area and illustrates the potential usefulness
of this methodology. The paper is divided into three parts: Sect. 2 discusses
the linear and log-linear NAR and PNAR model specifications. In Sect. 3, the
quasi likelihood inference is described, for the two types of asymptotics (a)–(b).
Finally, Sect. 4 reports the results of an application on a wind speed network in
England and Wales, and gives a model selection procedure for the lag order of
the NAR model.

Notation

For a q × p-dimensional matrix A whose elements are aij , for i = 1, . . . , q,
j = 1, . . . , p, denotes generalized matrix norm, defined as |||A|||r =
max|x|r=1 |Ax|r. If r = 1, |||A|||1 = max1≤j≤p

∑q
i=1 |aij |. |||A|||2 = ρ1/2(A′A),

where ρ(·) is the spectral radius, if r = 2. |||A|||∞ = max1≤i≤q

∑p
j=1 |aij |, if

r = ∞. If q = p, then these norms are matrix norms.

2 Models

We study a network of size N (number of nodes), indexed by i = 1, . . . N , and
adjacency matrix A = (aij) ∈ R

N×N where aij = 1, if there is a directed
edge from i to j, i → j (e.g. user i follows user j on Twitter), and aij = 0
otherwise. Undirected graphs are also allowed (i ↔ j). The neighborhood struc-
ture is assumed to be known but self-relationships are not allowed, i.e. aii = 0
for any i = 1, . . . , N (this is reasonable because e.g. user i cannot follow him-
self). For more on networks see [24,36]. Define a variable Yi,t ∈ R for the node
i at time t. The interest in on assessing the effect of the network structure
on the stochastic process {Yt = (Yi,t, i = 1, 2 . . . N, t = 0, 1, 2 . . . , T )}, with the
corresponding N -dimensional conditional mean process defined in the follow-
ing way {λt = (λi,t, i = 1, 2 . . . N, t = 1, 2 . . . , T )}, where λt = E(Yt|Ft−1) and
Ft−1 = σ(Ys : s ≤ t − 1) is the σ-algebra generated by the past of the process.

2.1 NAR Model

For i = 1, . . . , N , the Network Autoregressive model of order 1, NAR(1), is given
by

λi,t = β0 + β1n
−1
i

N∑

j=1

aijYj,t−1 + β2Yi,t−1 , (1)

where ni =
∑

j �=i aij is the out-degree, i.e. the total number of nodes which i
has an edge with. The NAR(1) model implies that, for every single node i, the
conditional mean of the process is regressed on the past of the variable itself
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for node i and the weighted average over the other nodes j �= i which have a
connection with i. Hence only the nodes which are directly followed by the focal
node i (neighborhoods) may have an impact on the mean process of the focal
node i. It is a reasonable assumption in many applications; for example, in a
social network the activity of node k, which satisfies aik = 0, does not affect
node i. However, extensions to several layers of neighborhoods are also possible,
see [23] and [2, Rem. 2]. The parameter β1 is called network effect and it measures
the average impact of node i’s connections n−1

i

∑N
j=1 aijYj,t−1. The coefficient

β2 is called autoregressive (or lagged) effect because it provides a weight for the
impact of past process Yi,t−1.

For a continuous-valued time series Yt, [41] defined Yi,t = λi,t+ξi,t, where λi,t

is specified in (1) and ξi,t ∼ IID(0, σ2) across both 1 ≤ i ≤ N and 0 ≤ t ≤ T and
with finite fourth moment. Then first two moments of the process Yt modelled
by (1) are given by [41, Prop. 1]

E(Yt) = β0(1 − β1 − β2)−11N ,

vec[Var(Yt)] = σ2(IN2 − G ⊗ G)−1vec(IN ) ,

where 1N = (1, 1, . . . , 1)′ ∈ R
N and IN is the identity matrix N × N and

G = β1W + β2IN , with W = diag
{
n−1
1 , . . . , n−1

N

}
A being the row-normalized

adjacency matrix. Note that the matrix W is a stochastic matrix, as |||W|||∞ = 1,
[34, Def. 9.16].

More generally, the NAR(p) model is defined by

λi,t = β0 +
p∑

h=1

β1h

⎛

⎝n−1
i

N∑

j=1

aijYj,t−h

⎞

⎠ +
p∑

h=1

β2hYi,t−h , (2)

allowing dependence on the last p values of the response node. Obviously, when
p = 1, β11 = β1, β22 = β2 and we obtain (1). Without loss of generality,
coefficients can be set equal to zero if the parameter order is different for the
summands of (2).

2.2 PNAR Model

Consider the process Yi,t, for i = 1, . . . , N , is integer-valued (that is Yt ∈ N
N )

and it is assumed to be marginally Poisson, such as Yi,t|Ft−1 ∼ Poisson(λi,t).
Other models can be developed, including the Negative Binomial distribution,
but the marginal mean has to parameterized as in (1). The univariate conditional
mean of the count process is still specified as (1), more generally (2), above. The
interpretation of all coefficients is identical to the case of continuous-valued case.
The innovation term is given by ξt = Yt − λt and forms a martingale difference
sequence by construction but, in general, it is not an IID sequence. This adds a
level of complexity in the model because a joint count distribution is required
for modelling and inference. Several alternatives of multivariate Poisson-type
probability mass function (p.m.f) have been proposed in the literature, see the
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review in [16, Sect. 2]. However, they usually have a complicated closed form,
the associated inference is theoretically cumbersome, and numerically difficult;
moreover, the resulting model is largely constrained. Then, a copula approach
has been preferred as in [2], where the joint distribution of the vector {Yt} is
constructed imposing a copula structure on waiting times of a Poisson process,
see [18, p. 474]. More precisely, consider a set of values (β0, β1, β2)′ and a starting
vector λ0 = (λ1,0, . . . , λN,0)′,

1. Let Ul = (U1,l, . . . , UN,l), for l = 1, . . . , L a sample from a N -dimensional
copula C(u1, . . . , uN ), where Ui,l follows a Uniform(0,1) distribution, for i =
1, . . . , N .

2. The transformation Xi,l = − log Ui,l/λi,0 is exponential with parameter λi,0,
for i = 1, . . . , N .

3. If Xi,1 > 1, then Yi,0 = 0, otherwise Yi,0 = max
{

k ∈ [1,K] :
∑k

l=1 Xi,l ≤ 1
}

,
by taking K large enough. Then, Yi,0 ∼ Poisson(λi,0), for i = 1, . . . , N . So,
Y0 = (Y1,0, . . . , YN,0) is a set of marginal Poisson processes with mean λ0.

4. By using the model (1), λ1 is obtained.
5. Return back to step 1 to obtain Y1, and so on.

This constitutes an innovative data generating process with desired Poisson
marginal distributions and flexible correlation. With the distribution structure
presented above, the resulting model for the count process Yt, with conditional
mean specified as in (1) for all i, has been introduced by [2], called linear Poisson
Network Autoregression of order 1, PNAR(1), written in matrix notation:

Yt = Nt(λt), λt = β0 + GYt−1 , (3)

where {Nt} is a sequence of independent N -variate copula-Poisson process (see
above), which counts the number of events in the time intervals [0, λ1,t] × · · · ×
[0, λN,t]. Moreover, β0 = β01N ∈ R

N . By considering the conditional mean
specified as in (2) for all i, it is immediate to define the PNAR(p) model:

Yt = Nt(λt), λt = β0 +
p∑

h=1

GhYt−h , (4)

where Gh = β1hW+β2hIN for h = 1, . . . , p. Clearly, λi,t > 0 so β0, β1h, β2h ≥ 0
for all h = 1 . . . , p. Although the network effect β1 of model (1) is typically
expected to be positive, see [4], in order to allow a connection to the wider GLM
theory, [27], and allow coefficients which take values on the entire real line the
following log-linear version of the PNAR(p) is proposed in [2]:

νi,t =β0 +
p∑

h=1

β1h

⎛

⎝n−1
i

N∑

j=1

aij log(1 + Yj,t−h)

⎞

⎠ +
p∑

h=1

β2h log(1 + Yi,t−h) , (5)

where νi,t = log(λi,t) for every i = 1, . . . , N . The model (5) do not require any
constraints on the parameters, since νi,t ∈ R. The interpretation of coefficients
and the summands of (5) is similar to that of linear model but in the log scale.
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The condition
∑p

h=1(|β1h| + |β2h|) < 1 is sufficient to obtain the process
{Yt, t ∈ Z} to be stationary and ergodic for every Network Autoregressive
model of order p. See [41, Thm. 4] and [2, Thm. 1–2]. For model (3), such
stationary distribution has the first two moments

E(Yt) = (IN − G)−1β0 = β0(1 − β1 − β2)−11N ,

vec[Var(Yt)] = (IN2 − G ⊗ G)−1vec[E(Σt)] ,

where Σt = E(ξtξ
′
t|Ft−1) denotes the true conditional covariance matrix of the

vector Yt.

3 Inference

We approach the estimation problem by using the theory of estimating func-
tions; see [3,37] and [20], among others. Consider the vector of unknown param-
eters θ = (β0, β11, . . . , β1p, β21, . . . , β2p)′ ∈ R

m, satisfying the stationarity con-
dition, where m = 2p + 1. Define the quasi-log-likelihood function for θ as
lNT (θ) =

∑T
t=1

∑N
i=1 li,t(θ), which is not constrained to be the true log-

likelihood of the process. The quasi maximum likelihood estimator (QMLE) is
the vector of parameters θ̂ which maximize the quasi-log-likelihood lNT (θ). Such
maximization is performed by solving the system of equations SNT (θ) = 0m,
with respect to θ, where SNT (θ) = ∂lNT (θ)/∂θ =

∑T
t=1 sNt(θ) is the quasi-

score function, and 0m is a m× 1-dimensional vector of 0’s. Moreover define the
matrices

HNT (θ) = −∂2lNT (θ)
∂θ∂θ′ , BNT (θ) = E

(
T∑

t=1

sNt(θ)sNt(θ)′
∣
∣
∣
∣Ft−1

)

, (6)

as the sample Hessian matrix and the sample conditional information matrix,
respectively. We drop the dependence on θ when a quantity is evaluated at the
true value θ0.

Define Xi,t = n−1
i

∑N
j=1 aijYj,t−1 and Zi,t−1 = (1,Xi,t−1, Yi,t−1)′. For con-

tinuous variables, the QMLE estimator for the NAR(1) model defined in (1)
maximizes the quasi-log-likelihood

lNT (θ) = −
T∑

t=1

(Yt − Zt−1θ)′ (Yt − Zt−1θ) , (7)

where Zt−1 = (Z1,t−1, . . . ,ZN,t−1)′ ∈ R
N×m, with associated score function

SNT (θ) =
T∑

t=1

Z′
t−1 (Yt − Zt−1θ) . (8)

The maximization problem (8) has a closed form solution,

θ̂ =

(
T∑

t=1

Z′
t−1Zt−1

)−1 T∑

t=1

Z′
t−1Yt (9)
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which is equivalent to perform an OLS estimation of the model Yt = Zt−1θ+ξt.
The extension to the NAR(p) model is straightforward, by defining Zi,t−1 =
(1,Xi,t−1, . . . , Xi,t−p, Yi,t−1, . . . , Yi,t−p)′ ∈ R

m, see [41, Eq. 2.13]. Under regular-
ity assumptions on the matrix W and ξi,t ∼ IID(0, σ2), the OLS estimator (9)

is consistent and
√

NT (θ̂ − θ0)
d−→ N(0m, σ2Σ), as min {N,T} → ∞, where Σ

is defined in [41, Eq. 2.10]. For details see [41, Thm. 3, 5]. The limiting covari-
ance matrix Σ is consistently estimated by the Hessian matrix in (6), which
takes the form (NT )−1HNT = (NT )−1

∑T
t=1 Z′

t−1Zt−1. The error variance σ2

is substituted by the sample variance σ̂2 = (NT )−1
∑

i,t(Yi,t − Z′
i,t−1θ̂).

For count variables, the QMLE defined in [2] maximizes the following quasi-
log-likelihood

lNT (θ) =
T∑

t=1

N∑

i=1

(
Yi,t log λi,t(θ) − λi,t(θ)

)
, (10)

which is the independence log-likelihood, such as the likelihood obtained if pro-
cesses Yi,t defined in (4), for i = 1, . . . , N were independent. This simplifies
computations but guarantees consistency and asymptotic normality of the esti-
mator. Note that, although for this choice the joint copula structure C(. . . ) does
not appear in the maximization of the “working” log-likelihood (10), this does
not imply that inference is carried out under the assumption of independence
of the observed process; dependence is taken into account because of the depen-
dence of the likelihood function on the past values of the process through the
regression coefficients.

With the same notation, the score function is

SNT (θ) =
T∑

i=1

∂λ′
t(θ)

∂θ
D−1

t (θ)
(
Yt − λt(θ)

)
, (11)

where
∂λt(θ)

∂θ′ = (1N ,WYt−1, . . . ,WYt−p,Yt−1, . . . ,Yt−p)

is a N×m matrix and Dt(θ) is the N×N diagonal matrix with diagonal elements
equal to λi,t(θ) for i = 1, . . . , N . It should be noted that (11) equals the score
(8), up to a scaling matrix D−1

t (θ), as Zt−1 = ∂λt(θ)/∂θ′ and λt(θ) = Zt−1θ.
The Hessian matrix has the form

HNT (θ) =
T∑

t=1

∂λ′
t(θ)

∂θ
Ct(θ)

∂λt(θ)
∂θ′ , (12)

with Ct(θ) = diag
{
Y1,t/λ2

1,t(θ) . . . YN,t/λ2
N,t(θ)

}
and the conditional informa-

tion matrix is

BNT (θ) =
T∑

t=1

∂λ′
t(θ)

∂θ
D−1

t (θ)Σt(θ)D−1
t (θ)

∂λt(θ)
∂θ′ , (13)
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where Σt(θ) = ξt(θ)ξ′
t(θ) and ξt(θ) = Yt−λt(θ). Consider the linear PNAR(p)

model (4). By [2, Thm. 3–4], under regularity assumptions on the matrix W and
the α-mixing property of the errors {ξi,t, t ∈ Z, i ∈ N}, the system of equations
SNT (θ) = 0m has a unique solution, say θ̂ (QMLE), which is consistent and√

NT (θ̂ − θ0)
d−→ N(0m,H−1BH−1), as min {N,T} → ∞, where

H = lim
N→∞

N−1E

[
∂λ′

t(θ0)
∂θ0

D−1
t (θ0)

∂λt(θ0)
∂θ′

0

]

,

B = lim
N→∞

N−1E

[
∂λ′

t(θ0)
∂θ0

D−1
t (θ0)Σt(θ0)D−1

t (θ0)
∂λt(θ0)

∂θ′

]

.

Both H and B are consistently estimated by (12)–(13), respectively after divided
by NT and evaluated at θ̂ [2, Thm. 6]. Similar results are developed for the log-
linear PNAR(p) model [2, Thm. 5].

All the results of this section work immediately for the classical time series
inference, with N fixed and T → ∞, as a particular case.

4 Applications

4.1 Simulated Example

In this section a limited simulation example regarding the estimation of the linear
PNAR model is provided. First, a network structure is generated following one
of the most popular network model, the stochastic block model (SBM), [28,35]
and [38] which assigns a block label k = 1, . . . ,K for each node with equal
probability and K is the total number of blocks. Define P(aij = 1) = αN−0.3

the probability of an edge between nodes i and j, if they belong to the same
block, and P(aij = 1) = αN−1 otherwise. In this way, the model implicitly
assumes that nodes within the same block are more likely to be connected with
respect to nodes from different blocks. Here we set K = 5, α = 1 and N =
30. This allow to obtain the weighted adjacency matrix W. Now a vector of
count variables Yt is simulated according to the data generating mechanism
(DGM) described in Sect. 2.2, for t = 1, . . . , T , with T = 400 and starting value
λ0 = 1N . The PNAR(1) model is employed in the simulation with (β0, β1, β2) =
(1, 0.3, 0.4). The Gaussian copula is selected in the DGM, with copula parameter
ρ = 0.5, that is C(u1, . . . , uN ) = ΦR

(
Φ−1(u1), . . . ,Φ−1(uN )

)
, where Φ−1 is the

inverse cumulative distribution function of a standard normal and ΦR is the joint
cumulative distribution function of a multivariate normal distribution with mean
vector zero and covariance matrix equal to the correlation matrix R = ρN×N ,
i.e. an N × N matrix whose all elements are equal to ρ. Results are based on
100 simulations.

Then, a PNAR model with one and two lags is estimated for the generated
data by optimizing the quasi log-likelihood (10) with the nloptr R package.
Results of the estimation are presented in Table 1. The standard errors (SE) are
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estimated as the square root from the main diagonal of the sandwich estimator
matrix H−1

NT (θ̂)BNT (θ̂)H−1
NT (θ̂), coming from (12) and (13). The t-statistic col-

umn is given by the ratio Estimate/SE. The first-order estimated coefficients
are significant and close to the real values while the others are not significantly
different from zero, as expected.

Table 1. QML estimation results for different PNAR models.

PNAR(1)

Estimate SE t-statistic

β0 1.0456 0.0732 14.29

β1 0.2999 0.0161 18.64

β2 0.3763 0.0135 27.87

PNAR(2)

β0 1.0356 0.0810 12.79

β11 0.2954 0.0209 14.16

β12 0.0082 0.0203 0.40

β21 0.3741 0.0157 23.80

β22 0.0019 0.0133 0.14

4.2 Data Example

Here an application of the network autoregressive models on real data is pro-
vided, regarding 721 wind speeds taken at each of 102 weather stations in Eng-
land and Wales. By considering weather stations as nodes of the potential net-
work, if two weather stations share a border, an edge between them will be drawn.
Then, an undirected network of such stations is drawn on geographic proximity.
See Fig. 1. The dataset is available in the GNAR R package [23] incorporating the
time series data vswindts and the associated network vswindnet. Moreover, a
character vector of the weather station location names, vswindnames, and coor-
dinates of the stations in two column matrix, vswindcoords, are reported. Full
details can be found in the help file of the GNAR package.

As the wind speed is continuous-valued, the NAR(p) model is estimated
with p = 1, 2, 3 by OLS (9). The results are summarised in Table 2. Stan-
dard errors are computed as the elements on the main diagonal of the matrix√

σ̂2
∑T

t=1 Z′
t−1Zt−1. The estimated error variance is about σ̂2 ≈ 0.15 for NAR

models of every order analysed. All the coefficients are significant at 5% level.
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The intercept and the coefficients of the lagged effect (β2h, h = 1, 2, 3) are
always positive. In particular, the lagged effect seems to have a predominant
magnitude, especially at the first lag. Some network effects are also detected but
their impact tends to become small after the first lag.

The OLS estimators is the maximizer of the quasi log-likelihood (7). This
allows to compare the goodness of fit performances of competing models through
information criteria. We compute usual Akaike information criterion (AIC) and
the Bayesian information criterion (BIC) together with the Quasi information
criterion (QIC) introduced by [29]. Such information criterion is a version of the
AIC which takes into account the fact that a QMLE is performed instead of the
standard MLE. In fact the QIC coincides with the AIC when the quasi likelihood
equals the true likelihood of the model. In Table 3, all the information criteria
select the NAR(1) as the best. This means that the expected wind speed for a
weather station is mainly determined by its past speed and the past wind speeds
detected on close stations, which gives a reasonable interpretation in practice.

Fig. 1. Plot of the wind speed network. Geographic coordinates on the axis; numbers
are relative distances between sites; labels are the site name. See [23].
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Table 2. QML estimation results for wind speed data after fitting NAR(p) models for
p = 1, 2, 3

NAR(1)

Estimate SE(×102) t-statistic

β0 0.1540 0.4616 33.37

β1 0.1568 0.2717 57.48

β2 0.7682 0.2429 316.26

NAR(2)

β0 0.1202 0.4553 26.40

β11 0.1409 0.4811 29.28

β12 –0.0263 0.4806 –5.48

β21 0.5828 0.3620 160.99

β22 0.2442 0.3618 67.52

NAR(3)

β0 0.1161 0.5297 21.91

β11 0.1457 0.4927 29.56

β12 –0.0116 0.5799 –2.00

β13 –0.0222 0.4855 –4.56

β21 0.5815 0.3623 160.53

β22 0.2467 0.3637 67.84

β23 0.0046 0.1763 2.63

Table 3. Information criteria for wind speed data model assessment

Model AIC (×10−3) BIC (×10−3) QIC (×10−3)

NAR(1) –22.91 –22.89 –22.91

NAR(2) –21.49 –21.47 –21.50

NAR(3) –21.44 –21.41 –21.45
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Abstract. Scale-free networks have been described as robust to random
failures but vulnerable to targeted attacks. We show that their degree
sequences admit realizations that are, in fact, provably robust against
any vertex removal strategy. We propose an algorithm that constructs
such realizations almost surely, requiring only linear time and space. Our
experiments confirm the robustness of the networks generated by this
algorithm against adaptive and non-adaptive vertex removal strategies.

Keywords: graph generators · robustness · degree sequences

1 Introduction

The construction of simple graphs with prescribed degrees is known as the graph
realization problem [29]. Constrained versions of the graph realization problem
have also been addressed [26]. For example, the realized graph can be required
to be Hamiltonian [8], to be connected [4,19], or to contain a specified type of
subgraph (e.g., a k-factor) [10,21,23].

The constraint of interest in this paper is the robustness of the realized graph.
Robustness is measured by the invariance of the structural properties of the
network (e.g., connectivity) when its elements (e.g., vertices) are removed [20].
While robustness criteria are commonly applied in network design problems,
we are not aware of any results with theoretical guarantees for the constrained
graph realization problem where robustness against arbitrary (e.g., adaptive and
adversary) vertex removal strategies is required. We present the first results for
this problem, focusing mainly on scaling (power-law) sequences because they
have been claimed to be empirically prevalent [5] and have found wide interest.

Our main contribution is an algorithm that almost surely requires only linear
time and space to construct robust realizations for the class of extremely scaling
integer sequences, where each integer sequence has a near-perfect power-law
fit. When provable robustness is desired instead of almost sure robustness, and
efficiency is not the primary concern, we show how the proposed algorithm can be
modified to become fully deterministic and produce provably robust realizations
in polynomial time.

Our results confirm the existence of scale-free networks, which are provably
robust against any vertex removal strategy. One of the main implications is that
c© Springer Nature Switzerland AG 2022
P. Ribeiro et al. (Eds.): NetSci-X 2022, LNCS 13197, pp. 126–139, 2022.
https://doi.org/10.1007/978-3-030-97240-0_10
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there is no inherent trade-off between robustness against one vertex removal
strategy (e.g., targeted attack) and another (e.g., random failure) for the class
of scale-free networks. Therefore, previous claims that these networks have a
“robust-yet-fragile” nature [9] should be considered stylized rather than absolute
facts.

In Sect. 2 we introduce the basic terminology, background, and notation. In
particular, in this section, we introduce and define extremely scaling integer
sequences. In Sect. 3, we introduce our proposed method and its analysis. In
Sect. 4, we present our experimental results. Finally, in Sect. 5, we conclude the
paper. The appendix contains the proofs omitted in the main text.

2 Preliminaries

2.1 Basic Notation

We use N to denote the set of positive integers, namely {1, 2, . . . }. We use
�x� to denote the integer closest to x, breaking ties in favor of higher values.
More precisely, �x� = �x� if x − �x� ≥ 0.5 and �x� = �x� otherwise. We say
that a sequence of events (or properties) An almost surely occurs (or holds) if
limn→∞ Pr[An] = 1 [12].

2.2 Graphs and Degree Sequences

In this paper, we use with a slight abuse of notation the terms network and
graph interchangeably. We consider only simple undirected graphs G = (V,E),
where V is the set of vertices and E ⊆ (

V
2

)
is the set of edges.

The vertices u ∈ V and w ∈ V are adjacent if they are endpoints of the same
edge, i.e., if {u,w} ∈ E. A vertex is incident to an edge if the vertex is one of
the endpoints of that edge.

The neighbors of v ∈ V are NG(v) = {w ∈ V : {v, w} ∈ E}. The degree
of v ∈ V is degG(v) = |NG(v)|, i.e., the number of its neighbors. We say G is
k-regular if all its vertex degrees are equal to k. A 3-regular graph is called cubic.

The graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V,E′ ⊆ E
are such that {u,w} ∈ E′ implies u,w ∈ V ′. The subgraph G′ is spanning if
|V ′| = |V |. The subgraph G′ is induced by V ′ if E′ = {{u,w} ∈ E|u,w ∈ V ′}.
The subgraph of G induced by V ′ is denoted by G[V ′].

The degree-preserving edge swap operation removes a pair of disjoint edges
{u,w}, {u′, w′} and adds a pair of previously absent edges {u, u′}, {w,w′}.

The integer sequence D = (d1, d2, . . . , dn) is graphical if there exists a graph
G with vertices {v1, v2, . . . , vn} such that degG(vi) = di, in which case we say G
realizes D. There are efficient implementations of the greedy algorithm proposed
by Havel [17] and Hakimi [15] that require only O(

∑n
i=1 di) time and space to

construct a realization of D = (d1, d2, . . . , dn) if one exists.1

1 For an example of such an implementation, see Algorithm 1.2.1 in [22].
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The reachability relation is the reflexive and transitive closure of adjacency.
The subgraphs of a graph induced by equivalence classes of the reachability
relation define the connected components of the graph. The size of a connected
component is the number of its vertices. The largest connected component of
G = (V,E) is denoted by LCC(G) and G is called connected if |LCC(G)| = |V |.

2.3 Network Robustness

The robustness of a network can be defined as the quantified invariance of one
of its structural properties when its components are removed [20]. The domain
we study in our paper is restricted to the removal of vertices, and the structural
property we are interested in is the number of vertices in the largest connected
component.

In a graph G = (V,E), let B = (b1, . . . , bT ) be the sequence of vertices in
order of removal based on a vertex removal strategy, where |B| = T denotes the
number of removed vertices. We then quantify the robustness of G by

RG(B) =
1
T

T∑

t=1

|LCC (G[V \ {b1, . . . , bt}]) |
|LCC (G) | ,

as proposed in [16]. This robustness score captures the normalized size of the
largest connected component and the rate at which it shrinks as vertices are
removed. The above robustness score can be viewed as a generalization of the
robustness score proposed in [28].

2.4 Scale-Free Networks

By adapting the definition in [24], we call an integer sequence (d1, d2, . . . , dn)
scaling if its elements follow a finite-mean power-law distribution, characterized
on the basis of a size-rank relation as di ≈ n

1
γ dni−

1
γ , where γ > 1, dn ∈ N are

constants denoting respectively the scaling factor and the minimum value in the
sequence.2 We call a graph scale-free if it realizes a scaling integer sequence.
In the following, we define the extremely scaling integer sequence as the integer
sequence closest to the respective ideally scaling integer sequence up to a possible
difference of at most one in the first index (corresponding to the largest value).

Definition 1. An integer sequence D = (d1, d2, . . . , dn) is called extremely scal-
ing if

di =

{
�n 1

γ dni−
1
γ � + 1 i = 1 and

∑n
i=1�n

1
γ dni−

1
γ �is odd

�n 1
γ dni−

1
γ � otherwise

,

where γ > 1, dn ∈ N are constants.

In the above definition, n, γ, dn respectively denote the length, the scaling factor,
and the minimum value of the extremely scaling integer sequence.
2 This notion of scaling integer sequences refers to ranks rather than frequencies.

Therefore, the scaling factor is one less than the exponent in the corresponding
power-law distribution [24].
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2.5 Cubic Expander Graphs

A graph G = (V,E) is a β-vertex-expander if for every S ⊆ V of size at most
|V |/2 there are at least β|S| vertices in V \ S adjacent to a vertex in S. We call
G an expander if it is a β-vertex-expander for some constant β > 0. It is known
that all expanders are connected [25].

Sufficiently large random cubic graphs are almost surely expanders [11]. Pro-
vided that n is sufficiently large and even, the RANDCUBIC algorithm [30] can
generate a random cubic graph with n vertices, using worst-case O(n) time and
space [14]. Thus, we can use the RANDCUBIC algorithm with worst-case linear
time and space requirements to generate cubic graphs that are almost surely
expanders.

For generating a k-regular expander graph with n vertices, a deterministic
and polynomial-time algorithm is proposed in [2] under the assumption that k
is a constant strictly greater than two, n is sufficiently large, and nk is even.
Therefore, we can use this deterministic polynomial-time algorithm to generate
cubic graphs that are expanders with certainty.

For any constant α ∈ (0, 1), the proof of Lemma 2.2 in [6] implies that if G
is an expander with n vertices and n is sufficiently large, then RG(B) = 1− o(1)
for any sequence B of at most nα vertices. Therefore, sufficiently large cubic
expanders are provably robust against any vertex removal strategy.

3 Proposed Method

In this section, we propose RR (Algorithm 1) to realize a sufficiently large and
extremely scaling integer sequence D = (d1, d2, . . . , dn) by a graph G that is
almost surely robust against any vertex removal strategy. We assume that n is
even, dn ≥ 3, and that the scaling factor of D is γ < 7. In Sect. 3.3 we present a
similar algorithm that does not require the assumption on the parity of n.

Algorithm 1: Robust Realization (RR)
Input: The sufficiently large integer sequence D = (d1, d2, . . . , dn) of even

length that is extremely scaling with a factor of γ < 7, where dn ≥ 3.
Output: The graph G realizing D such that for any constant α ∈ (0, 1) almost

surely RG(B) = 1 − o(1) for any sequence B with |B| ≤ nα.

1 Dres ← (d1 − 3, d2 − 3, . . . , dn − 3)
2 Gres ← Havel-Hakimi(Dres)
3 Greg ← RANDCUBIC(n)
4 return Combine(Gres, Greg) // See Algorithm 2 in Section 3.2

In Sect. 3.1 we prove that Dres = (d1 − 3, d2 − 3, . . . , dn − 3) is graphical and
a suitable implementation of the Havel-Hakimi algorithm can realize it in linear
time and space. We denote this realization by Gres.



130 R. Hasheminezhad and U. Brandes

We use the RANDCUBIC algorithm to generate a random cubic graph on
the vertices of Gres in O(n) time and space. We denote this cubic graph by Greg.

In Sect. 3.2 we propose COMBINE (Algorithm 2) that modifies Gres by
degree-preserving edge swaps, until E(Gres)∩E(Greg) = ∅, whereupon it outputs
G = (V (Gres), E(Gres) ∪ E(Greg)). Our analysis in Sect. 3.2 demonstrates that
COMBINE (Algorithm 2) uses worst-case O(n) space and almost surely O(n)
but worst-case o(n2) time. According to our analysis, these worst-case bounds
remain valid even if Greg is replaced by any other size-matching cubic graph.

Note that, by construction, the graph G realizes the integer sequence D and
Greg is a spanning subgraph of it. Our discussion in Sect. 2.5 implies that a
sufficiently large random cubic graph (e.g., Greg) is almost surely an expander,
and expanders are provably robust against any vertex removal strategy. Thus,
we can deduce that G is a realization of D that is almost surely robust against
any vertex removal strategy.

From the above four paragraphs, we can conclude that RR (Algorithm 1)
can realize D by a graph G almost surely in O(n) time and space such that G
is robust against any vertex removal strategy. To provide some intuition about
the reason for the almost sure robustness of a realization obtained with RR
(Algorithm 1), we illustrate such a realization in Fig. 1 and show how it changes
when we subject it to a degree-based targeted attack.

Fig. 1. Subfigure (a) shows the graph G realizing an extremely scaling integer sequence
D = (d1, d2, . . . , dn) with parameters n = 100, γ = 2, and dn = 3. We have obtained G
using RR (Algorithm 1). In our illustration of G, the size of each vertex is proportional
to its degree, the dark edges correspond to the embedded random cubic graph, and the
gray edges represent the other edges. We can observe a higher concentration of gray
edges around vertices with higher degrees, but the dark edges have a more uniform
distribution. Subfigure (b) shows the graph G after removing 20% of its vertices with
the highest initial degrees. We see that G remains fully connected after this targeted
attack. The extreme robustness of G against this targeted attack is clearly due to the
embedded random cubic graph, in which the edges are almost uniformly distributed.
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When provable robustness is desired instead of almost sure robustness, and
efficiency is not the main concern, it is sufficient to replace the random cubic
graphs used in RR (Algorithm 1) with size-matching cubic expander graphs. As
we discussed in Sect. 2.5, such cubic expanders can be constructed in determin-
istic polynomial time using the approach proposed in [2].

3.1 Graphicality of Dres

In this subsection, we state and prove Theorem 1, which indicates that Dres as
in Algorithm 1 can be realized in linear time and space, when using a suitable
implementation of the Havel-Hakimi algorithm. To prove Theorem 1, we use
Lemma 1 and Lemma 2, which are introduced below and proved in the appendix
to make the main text clearer.

Lemma 1. Let (d1, d2, . . . , dn) be an extremely scaling integer sequence with
scaling factor γ. If γ < 7 and dn ≥ 3, then

∑n
i=1(di −3) ∈ Θ(n) and there exists

a constant κ ∈ (0, 1) such that
∑d1

i=1 di ∈ O(nκ).

Lemma 2. Let (d1, d2, . . . , dn) be a non-increasing integer sequence with even
sum. If there exists k ∈ {0, 1, . . . , dn} such that

∑d1
i=1(di +k) ≤ ∑n

i=d1+1(di −k)
and nk is even, then (d1 − k, d2 − k, . . . , dn − k) is graphical.

Equipped with Lemma 1 and Lemma 2, we are now ready to prove the main
result of this subsection, stated below in Theorem 1.

Theorem 1. Let (d1, d2, . . . , dn) be an extremely scaling integer sequence of
even length with scaling factor γ < 7 and dn ≥ 3. If n is sufficiently large, then
there exists an implementation of the Havel-Hakimi algorithm that can realize
(d1 − 3, d2 − 3, . . . , dn − 3) in O(n) time and space.

Proof. Let Dres := (d1 − 3, d2 − 3, . . . , dn − 3). There are implementations of
the Havel-Hakimi algorithm that require O (

∑n
i=1(di − 3)) time and space to

construct a realization of Dres if one exists (see Algorithm 1.2.1 in [22] for an
example). Therefore, it suffices to prove: (I) There exists a realization of Dres,
and (II)

∑n
i=1(di − 3) ∈ Θ(n).

First, we prove (II). Note that (d1, d2, . . . , dn) satisfies the assumptions of
Lemma 1. Therefore, by using Lemma 1 we know that

∑n
i=1(di −3) ∈ Θ(n), and

∑d1
i=1 di ∈ O(nκ) for some constant κ ∈ (0, 1). This completes the proof of (II).
Now we prove (I). Considering that n is assumed to be sufficiently large,∑d1

i=1 di ∈ O(nκ) and
∑n

i=1(di −3) ∈ Θ(n) imply that 2
∑d1

i=1 di ≤ ∑n
i=1(di −3).

A simple rearrangement of the terms shows that
∑d1

i=1(di +3) ≤ ∑n
d1+1(di − 3).

The last inequality and the assumptions of the theorem about (d1, d2, . . . , dn)
imply the graphicality of Dres by an application of Lemma 2. This completes the
proof of (I), since by definition Dres is graphical if it has a realization. ��

Note that Lemma 2 may be of independent interest because it provides a
simple sufficient condition for the graphicality of integer sequences, and in light
of Kundu’s Theorem [23] we can also interpret it as a simple sufficient condition
for the existence of realizations with a k-factor (k-regular spanning subgraph).
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3.2 The COMBINE Algorithm

In this subsection, we propose COMBINE (Algorithm 2), which given Gres and
Greg as in Algorithm 1, performs degree-preserving edge swaps in Gres until
E(Gres) ∩ E(Greg) = ∅, and then outputs G = (V (Gres), E(Gres) ∪ E(Greg)).

Algorithm 2: COMBINE
Input: Gres, Greg // As in Algorithm 1

1 S ← E(Gres) ∩ E(Greg)
2 for e = {u, v} ∈ S do
3 if u is still adjacent to v in Gres then
4 Fe(Gres) ← {{x, y} ∈ E(Gres)|{x, y} ∩ (NGres [u] ∪ NGres [v]) �= ∅}
5 He(Gres) ← {{x, y} ∈ E(Gres)|{x, y} ∩ (NGreg(u) ∪ NGreg(v)) �= ∅}
6 e′ ∼ E(Gres) \ (Fe(Gres) ∪ He(Gres))
7 degree-preserving-edge-swap(e, e′) // Performed in Gres

8 return G = (V (Greg), E(Gres)
⋃

E(Greg))

In the remainder of this subsection, a conflicting edge or a conflict refers to
an existing edge in E(Gres) ∩ E(Greg). In the following, we present the detailed
analysis of COMBINE (Algorithm 2) after giving an outline of the analysis and
clearly explaining the presuppositions for the analysis.

Outline of Analysis: For an arbitrary conflicting edge e = {u, v}, we denote by
Fe(Gres) the edges in Gres with at least one endpoint in NGres [u] := {u}⋃

NGres(u)
or NGres [v] := {v}⋃

NGres(v). Similarly, we denote by He(Gres) the edges in Gres

with at least one endpoint in NGreg(u) or NGreg(v).
It is easy to verify that for any e′ ∈ E(Gres)\ (He(Gres)

⋃
Fe(Gres)), a degree-

preserving edge swap in Gres between e, e′ reduces the number of conflicting
edges by at least one without changing Greg or the vertex degrees in Gres at all.

Based on the above observation, we can prove that COMBINE (Algorithm 2)
is correct and has an efficient implementation by showing that for each conflicting
edge e, the set E(Gres) \ (He(Gres)

⋃
Fe(Gres)) is non-empty and a member of it

can be found efficiently.

Presuppositions for Analysis: Since we assume that Gres and Greg are as in
Algorithm 1, we know that (d1 − 3, d2 − 3, . . . , dn − 3) is the degree sequence
of Gres, where (d1, d2, . . . , dn) is a sufficiently large extremely scaling integer
sequence with scaling factor γ < 7 and dn ≥ 3. Thus, Lemma 1 implies that∑d1

i=1 di ∈ O(nκ) and
∑n

i=1(di − 3) ∈ Θ(n) for a constant κ ∈ (0, 1). These
asymptotic results and n being sufficiently large are assumptions in our analysis.

In analyzing our proposed implementation of Algorithm 2, we assume that
both Gres and Greg are represented by adjacency lists. We also implicitly assume
that any auxiliary space used is immediately released when it is no longer needed.
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Analysis of the Algorithm: The computation in line 3 or 7 of Algorithm 2
needs worst-case O(d1) time and O(1) space, where d1 ≤ ∑d1

i=1 di ∈ O(nκ). The
handshaking lemma implies that |E(Gres)| = 1

2

∑n
i=1(di − 3) ∈ Θ(n). Therefore,

the computation of E(Gres) ∩ E(Greg) in line 1 of Algorithm 2 can be performed
in O(n) time and space, since for each of the O(n) edges in E(Gres) its existence
in Greg can be checked in O(1) time, given the constant degrees in Greg.

We construct Fe(Gres) by doing a BFS of depth two in Gres from the endpoints
of e, visiting |Fe(Gres)| ≤ 2

∑d1
i=1 di ∈ O(nκ) edges.3 We construct He(Gres) by

going through the neighbors of the endpoints of e in Greg, visiting the |He(Gres)|
edges incident to them in Gres, where |He(Gres)| ≤ 2(3d1) ≤ 6

∑d1
i=1 di ∈ O(nκ).

After constructing He(Gres) and Fe(Greg), we sort both of them using merge-sort
to ensure the applicability of the binary search algorithm.4 Overall, implementing
lines 4 − 5 in Algorithm 2 needs O(nκ log n) time and O(nκ) space.

Note that, |E(Gres)| ∈ Θ(n) and |Fe(Gres)|, |He(Gres)| ∈ O(nκ) for a constant
κ ∈ (0, 1). Thus, under our assumption that n is sufficiently large, we know that
E(Gres) \ (He(Gres)

⋃
Fe(Gres)) is always non-empty for any conflicting edge e.

To find an edge e′ ∈ E(Gres) \ (He(Gres)
⋃

Fe(Gres)), we use an iterative edge
traversal algorithm (e.g., BFS) to visit one edge after another in Gres until we
find one that is neither in Fe(Gres) nor in He(Gres). Note that O(nκ) edge visits
are sufficient since |He(Gres)|, |Fe(Gres)| ∈ O(nκ). Since Fe(Gres) and He(Gres)
are sorted, checking the presence of an edge in them needs O(log n) time. Thus,
implementing line 6 in Algorithm 2 requires O(nκ log n) time and O(nκ) space.

Putting the paragraphs above together, we see that COMBINE (Algorithm 2)
requires worst-case O (|E(Gres) ∩ E(Greg)|nκ log n + n) time and O(n) space. By
using Lemma 3, we infer that |E(Gres) ∩ E(Greg)|nκ log n ∈ O(n), almost surely.
Therefore, COMBINE (Algorithm 2) almost surely needs only O(n) time and
space. We prove Lemma 3 in the appendix in favor of fluency in the main text.

If we replace the random cubic graph Greg with an arbitrary size-matching
cubic graph, then COMBINE (Algorithm 2) needs worst-case o(n2) time and
O(n) space. This is because |E(Gres)∩E(Greg)| ≤ |E(Greg)| ∈ O(n) and κ ∈ (0, 1)
is constant, thus |E(Gres) ∩ E(Greg)|nκ log n ∈ o(n2).

Lemma 3. Let Greg be a random k-regular graph with n vertices, where k ∈ N

is constant. Furthermore, let Gres be a graph with the same vertices as Greg. If
E(Gres) ∈ O(n), then there exists a constant C > 0 such that

Pr

[
|E(Gres) ∩ E(Greg)| ≥ n1−κ

log n

]
≤ C log n

n1−κ
,

for any κ ∈ (0, 1).
3 Suppose that a BFS of depth two starts from the vertex v1, where the neighbors of

v1 are v2, v3, . . . , vd1−2, respectively with degrees d2 − 3, d3 − 3, . . . , dd1−2 − 3. This
hypothetical scenario provides an upper bound of

∑d1−2
i=2 (di − 3) ≤ ∑d1

i=1 di for the
number of visited edges in any BFS of depth two, starting from any vertex in Gres.
Therefore, |Fe(Gres)| ≤ 2

∑d1
i=1 di follows by an application of the union bound.

4 In Gres we fix a vertex order v1, v2, . . . , vn and assume for any edges e, e′ that e ≤ e′

holds if and only if f(e) ≤ f(e′), where f({vi, vj}) := (n − 1) max{i, j} + min{i, j}.
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3.3 Relaxing the Assumption on the Parity of n

In this subsection, we propose GRR (Algorithm 3) to realize a sufficiently large
and extremely scaling integer sequence D = (d1, d2, . . . , dn) by a graph G that
is almost surely robust against any vertex removal strategy. We assume that
dn ≥ 3, and that the scaling factor of D is γ < 7. Note that GRR (Algorithm 3)
relaxes the assumption on the parity of n, which RR (Algorithm 1) required.

Algorithm 3: General Robust Realization (GRR)
Input: The sufficiently large integer sequence D = (d1, d2, . . . , dn) that is

extremely scaling with a factor of γ < 7, where dn ≥ 3.
Output: The graph G realizing D such that for any constant α ∈ (0, 1) almost

surely RG(B) = 1 − o(1) for any sequence B with |B| ≤ nα.
1 if n is even then
2 G ← RR(D)
3 else

4 D̂ = (d̂1, d̂2, . . . , d̂n−1) where

{
d̂i = di+1 − 1 i ∈ {1, 2, . . . , d1}
d̂i = di+1 otherwise

.

5 Ĝ ← RR(D̂) // degĜ(vi) = d̂i for all i ∈ {1, 2, . . . , n − 1}
6 V ← V (Ĝ) ∪ {vn}
7 E ← E(Ĝ) ∪ {{vn, v1}, {vn, v2}, . . . , {vn, vd1}}
8 G ← G(V, E)

9 return G

For the case when n is even and sufficiently large, the correctness of GRR
(Algorithm 3) follows from the analysis of RR (Algorithm 1). When n is odd and
sufficiently large, the definition of extremely scaling integer sequences can be used
to easily prove that D̂ = (d̂1, d̂2 . . . , d̂n−1), as defined in GRR (Algorithm 3),

is a non-increasing integer sequence where d̂n−1 ≥ 3. Since
∑d̂1

i=1 d̂i ≤ ∑d1
i=1 di

and
∑n−1

i=1 (d̂i − 3) =
∑n

i=1(di − 3) − 2d1, it follows from applying Lemma 1

that
∑d̂1

i=1 d̂i ∈ O(nκ) and
∑n−1

i=1 (d̂i − 3) ∈ Θ(n), for a constant κ ∈ (0, 1).
Based on the aforementioned properties of D̂, one can easily verify that all
our arguments for the correctness of RR (Algorithm 1) are also valid for GRR
(Algorithm 3). Finally, GRR (Algorithm 3) asymptotically has the same time
and space requirements as RR, since the additional operations within the else
condition in GRR (Algorithm 3) have O(n) overhead. Our arguments in this
subsection imply Theorem 2.

Theorem 2. Let D = (d1, d2, . . . , dn) be an extremely scaling integer sequence
with scaling factor γ < 7 and dn ≥ 3. Furthermore, let α ∈ (0, 1) be any constant.
If n is sufficiently large, then GRR (Algorithm 3) can realize D by some graph
G almost surely in O(n) time and space such that RG(B) = 1 − o(1) for any
vertex sequence B with |B| ≤ nα.
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If desired, we can achieve provable robustness by sacrificing efficiency. To
this end, we can replace the random cubic graphs used in RR (Algorithm 1)
with size-matching cubic expanders that have a deterministic polynomial-time
construction using the approach presented in [2]. This implies Theorem 3.

Theorem 3. Let D = (d1, d2, . . . , dn) be an extremely scaling integer sequence
with scaling factor γ < 7 and dn ≥ 3. Furthermore, let α ∈ (0, 1) be any constant.
If n is sufficiently large, then there exists a polynomial-time algorithm that can
deterministically realize D by some graph G such that RG(B) = 1− o(1) for any
vertex sequence B with |B| ≤ nα.

4 Experiments

We consider nine extremely scaling integer sequences with parameters n = 10000,
γ ∈ {1.5, 2, 2.5}, and dn ∈ {3, 4, 5}. We realize each integer sequence with GRR
(Algorithm 3) and illustrate in Fig. 2 how the fraction of vertices in the largest
connected component decreases when vertices are removed, based on different
strategies. We consider random failure and non-adaptive or adaptive targeted
attacks as our vertex removal strategies. In random failure, vertices are removed
uniformly at random. In the non-adaptive attack, vertices with higher initial
degrees are removed first. In the adaptive attack, vertices are removed using the
Generalized Network Dismantling (GND) algorithm proposed in [27].5

Note that in Fig. 2, for each pair of γ, dn and vertex removal strategy, we
plot the average behavior over a thousand scenarios to avoid possible biases. To
obtain these scenarios, we realize the corresponding extremely scaling integer
sequence a hundred times using GRR (Algorithm 3), such that the embedded
random cubic graph is generated independently at each realization. We then
subject each of the hundred realized networks to ten independent runs of the
removal strategy, randomly breaking ties in each run.

The results of our experiments, shown in Fig. 2, demonstrate that scale-free
graphs generated by GRR (Algorithm 3) are very robust against non-adaptive
and adaptive vertex removal strategies. None of the considered removal strategies
cause the generated networks to become noticeably disconnected as long as no
more than 20% of their vertices are removed.

If we consider only random failure and targeted attacks based on initial
degree, as originally proposed in [1], neither strategy causes the robust instances
generated by our algorithm to become noticeably disconnected unless more than
40% of their vertices are removed. Moreover, for the denser robust instances
generated by our algorithm with a minimum degree strictly greater than three,
there is little difference between these two vertex removal strategies in terms of
their performance in network dismantling.

5 We consider the variant of GND where removing each vertex has a unit cost, and the
goal is to dismantle the network at the lowest possible cost. The implementation we
use for this variant of GND was written by Petter Holme in the Python programming
language and is publicly available from https://github.com/pholme/gnd.

https://github.com/pholme/gnd
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Fig. 2. An illustration of the average reduction in the size of the largest connected
component when vertices are removed from the realizations of the extremely scaling
integer sequences obtained by our proposed method, namely GRR (Algorithm 3). We
consider removal strategies where vertices are removed uniformly at random (random
failure), vertices with a higher initial degree are preferred (non-adaptive attack), or the
GND algorithm is used as proposed in [27] (adaptive attack). For each pair of γ, dn and
vertex removal strategy, we show the average behavior over a thousand scenarios, i.e.,
a hundred independent realizations with ten thousand vertices each, exposed to ten
independently drawn removal sequences. We see that our realizations maintain near-
perfect connectivity during removals unless at least 20% of their vertices are removed.

5 Conclusion

We have shown that sufficiently large, extremely scaling integer sequences have
realizations that are provably robust against any vertex removal strategy (see
Theorem 3). Moreover, we have shown that such realizations can be obtained
almost surely in linear time and space (see Theorem 2). Our proposed proofs are
constructive and suggest an algorithmic technique that can be used to obtain
similar results for a much broader class of integer sequences.

Our results also suggest that there is no inherent trade-off between robustness
against one vertex removal strategy (e.g., targeted attack) and another (e.g.,
random failure) for the class of scale-free networks. Thus, previous assessments
that scale-free networks have a “robust-yet-fragile” nature [9] may be valid as
stylized facts pointing to empirical regularities, but not as general statements.

Since the scope of this paper is limited to vertex removal, one potential
direction for future work is realizing scaling integer sequences by graphs that are
provably robust against other perturbations, such as edge removal or rewiring.
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A Appendix: Omitted Proofs

Lemma 1. Let (d1, d2, . . . , dn) be an extremely scaling integer sequence with
scaling factor γ. If γ < 7 and dn ≥ 3, then

∑n
i=1(di −3) ∈ Θ(n) and there exists

a constant κ ∈ (0, 1) such that
∑d1

i=1 di ∈ O(nκ).

Proof. Note that Definition 1 and the assumptions of the lemma imply that
γ ∈ (1, 7) and dn ≥ 3 are constants. Moreover, based on Definition 1 we have

− 0.5 < di − n
1
γ dni−

1
γ ≤ 1.5, (1)

for all i ∈ {1, 2, . . . , n}. Let ζ(z) be the Euler’s generalized constant defined for
z ∈ (0, 1)[18]. It is shown in [3] that

t∑

i=1

i−
1
γ =

t1− 1
γ

1 − 1
γ

+ ζ(
1
γ

) + O(t−
1
γ ). (2)

Let α := 1
n

∑n
i=1(di − n

1
γ dni−

1
γ ). From (1), we know that α ∈ (−0.5, 1.5]. Thus,

we can conclude from (2) that

n∑

i=1

(di −3) = n
1
γ dn

n∑

i=1

i−
1
γ −3n+αn = (

γ

γ − 1
dn −3+α)n+o(n) ∈ Θ(n). (3)

In the last step of the derivation above, we used the fact that γ
γ−1dn is a constant

strictly larger than 3.5. Using (1) and (2), we have

d1∑

i=1

di ≤ n
1
γ dn

d1∑

i=1

i−
1
γ + 1.5d1 ≤ (d1 + 0.5)

d1∑

i=1

i−
1
γ + 1.5d1 ∈ O(d

2− 1
γ

1 ). (4)

From (1), we know that d1 ∈ O(n
1
γ ). Therefore,

∑d1
i=1 di ∈ O(nκ), where

κ := 2
γ − 1

γ2 = γ2−(γ−1)2

γ2 ∈ (0, 1) is a constant. This concludes the proof. ��
Lemma 2. Let (d1, d2, . . . , dn) be a non-increasing integer sequence with even
sum. If there exists k ∈ {0, 1, . . . , dn} such that

∑d1
i=1(di +k) ≤ ∑n

i=d1+1(di −k)
and nk is even, then (d1 − k, d2 − k, . . . , dn − k) is graphical.

Proof. Based on the lemma’s assumptions, Dk := (d1 − k, d2 − k, . . . , dn − k) is
a non-increasing sequence of non-negative integers. Based on a sufficient and
necessary condition for graphicality proposed in [7], Dk is graphical if and
only if the following conditions are satisfied: (I)

∑n
i=1(di − k) is even, and (II)

2
∑t

i=1(di −k) ≤ ∑n
i=1(di −k)+

∑t
i=1 min{di −k, t−1} for all t ∈ {1, . . . , n−1}.

Note that condition (I) is satisfied since
∑n

i=1 di and nk are both even under
lemma’s assumptions. If t ≥ d1 − k + 1, then condition (II) is equivalent to∑t

i=1(di−k) ≤ ∑n
i=1(di−k), which is trivial since Dk has non-negative elements.

Therefore, it suffices to show that the inequality in condition (II) is satisfied
for all t ∈ {1, . . . , d1 − k}. For all such t, we know due to the assumptions of
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the lemma that
∑t

i=1(di − k) ≤ ∑d1
i=1 di and min{di − k, t − 1} ≥ 0 for all

i ∈ {1, . . . , t}. Therefore, it suffices to show that 2
∑d1

i=1 di ≤ ∑n
i=1(di − k), but

this is just the rearranged form of
∑d1

i=1(di + k) ≤ ∑n
i=d1+1(di − k), which was

assumed in the statement of the lemma. This concludes the proof. ��
Lemma 3. Let Greg be a random k-regular graph with n vertices, where k ∈ N

is constant. Furthermore, let Gres be a graph with the same vertices as Greg. If
E(Gres) ∈ O(n), then there exists a constant C > 0 such that

Pr

[
|E(Gres) ∩ E(Greg)| ≥ n1−κ

log n

]
≤ C log n

n1−κ
,

for any κ ∈ (0, 1).

Proof. Let m denote the number of edges in Gres, where e1, e2, . . . , em is an
arrangement of them. Moreover, let X =

∑m
i=1 Xi, where Xi = 1 if ei ∈ E(Greg)

and Xi = 0 otherwise. It is easy to verify that X = |E(Gres) ∩ E(Greg)|.
The argument in the proof of Lemma 2.4 in [13] implies that E[Xi] = k

n−1

for all i ∈ {1, 2, . . . , n}, and thus by linearity of expectation E[X] = mk
n−1 . Since

m ∈ O(n) and k ∈ N is constant, we can derive that E[X] ≤ C for some constant
C > 0. Since X is by definition non-negative, Markov’s inequality implies that

Pr

[
X ≥ n1−κ

log n

]
≤ C log n

n1−κ
.

Since X = |E(Gres) ∩ E(Greg)|, the above derivation completes the proof. ��
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18. Havil, J.: Gamma: Exploring Euler’s Constant, pp. 117–118. Princeton University
Press, Princeton (2003)

19. Horvát, S., Modes, C.D.: Connectedness matters: construction and exact random
sampling of connected networks. J. Phys. Complexity 2(1), 015008 (2021)

20. Klau, G.W., Weiskircher, R.: Robustness and resilience. In: Brandes, U., Erlebach,
T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 417–437. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31955-9 15

21. Kleitman, D., Wang, D.: Algorithms for constructing graphs and digraphs with
given valences and factors. Discret. Math. 6(1), 79–88 (1973)

22. Kocay, W.L., Kreher, D.L.: Graphs, algorithms, and optimization. In: Discrete
Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton (2017)

23. Kundu, S.: The k-factor conjecture is true. Discret. Math. 6(4), 367–376 (1973)
24. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free

graphs: definition, properties, and implications. Internet Math. 2(4), 431–523
(2005)

25. Lountzi, A.: Expander Graphs and Explicit Constructions. Master’s thesis, Uppsala
University, Algebra and Geometry (2015)

26. Rao, S.B.: A survey of the theory of potentially P-graphic and forcibly P-
graphic degree sequences. In: Rao, S.B. (ed.) Combinatorics and Graph Theory.
LNM, vol. 885, pp. 417–440. Springer, Heidelberg (1981). https://doi.org/10.1007/
BFb0092288

27. Ren, X.L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network
dismantling. Proc. Natl. Acad. Sci. 116(14), 6554–6559 (2019)

28. Schneider, C.M., Moreira, A.A., Andrade, J.S., Jr., Havlin, S., Herrmann, H.J.:
Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. (PNAS)
108(10), 3838–3841 (2011)

29. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences.
I. Cybernetics 23(6), 734–745 (1988)

30. Wormald, N.C.: Generating random regular graphs. J. Algorithms 5(2), 247–280
(1984)

https://doi.org/10.1007/978-3-540-31955-9_15
https://doi.org/10.1007/BFb0092288
https://doi.org/10.1007/BFb0092288


Functional Characterization
of Transcriptional Regulatory Networks

of Yeast Species

Paulo Dias1(B), Pedro T. Monteiro1,2, and Andreia Sofia Teixeira2,3
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Abstract. Transcriptional regulatory networks are responsible for con-
trolling gene expression. These networks are composed of many inter-
actions between transcription factors and their target genes. Carrying a
combinatorial nature that encompasses several regulatory processes, they
allow an organism to respond to disturbances that may occur in the sur-
rounding environment. In this work, we study transcriptional regulatory
networks of closely related yeast species with the aim of revealing which
functions or processes are encoded in the regulatory network topology.
The first phase of this work consists of the detection of modules followed
by their functional characterization. Here, we unveil the functionality of
the species by capturing it in functional modules. In the second phase, we
move towards a cross-species analysis where we compare the functional
modules of the different species to settle the similarities between them.
Lastly, we use a multilayer network approach to combine the genetic
information of different species. We seek to identify the functional ele-
ments conserved across the different organisms by applying a detection
of modules in the multilayer network.

Keywords: Complex Networks · Transcriptional Regulatory
Networks · Multilayer Networks · Community Detection · Functional
Modules

1 Introduction

Gene expression is the biological process that allows a cell to respond to its
changing environment. Each cell is the product of specific gene expression events
involving the transcription of thousands of genes. The transcription factors (TFs)
are the core elements in the control of gene expression. These genes are responsi-
ble for activating or inhibiting the genes under their regulation, the target genes
(TGs). Normally, the expression level of a target gene is the result of the combi-
natorial regulation of multiple transcription factors. The hundreds of interactions
c© Springer Nature Switzerland AG 2022
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between transcription factors and target genes define a transcriptional regula-
tory network that underlies cellular identity and function. The morphological
differences between species/organisms arise from the gene’s differential regula-
tion encoded in the transcriptional regulatory networks. Thus, these networks
are of great biological importance since their analysis is fundamental to under-
standing differential gene expression [1,2]. Therefore, insights from the structure
and function of these networks are essential to the study of organisms. However,
despite their central role in biology, the structure and dynamics of these type
networks are still not completely understood.

In biological networks, communities can share common biological functions,
and they are studied in the investigation of cellular systems of organisms. The
study of communities have allowed the identification of important protein com-
plexes in protein-protein interaction (PPI) networks [3,4]. In gene regulatory
networks, we highlight the discovery of functionally related groups of genes [5]
and of groups of genes associated with functions that drive cancer [6].

Cross-species studies have proven to be crucial in modern biology. They are
important to study the differences and similarities between species, which is
fundamental to understanding their evolution. In PPI networks, cross-species
have been used to predict protein-protein interactions (interologues) conserved
across species [7,8]. Moreover, the characterization of interspecies differences in
gene regulation has already proven to be fundamental for understanding the
diversity and evolution of species [9,10]. Multilayer network approaches are use-
ful in studies involving different types of data since it allows its representation
and comparison. As examples, already helped to make predictions in protein
functions in yeast [11] or to recognize candidate driver cancer genes [12,13].

In this work, we characterize transcriptional regulatory networks of closely
related species. In particular, we consider data from YEASTRACT+[14], which
provides a set of closely related yeast species with annotated data, both in terms
of functional annotation and in terms of mapping between nodes of different
species. These networks are represented as graphs, the transcription factors and
target genes are represented by the nodes and the interactions between them by
the edges. We outline our approach by dividing it into two phases: (1) detection
and functional characterization of communities/modules; (2) cross-species com-
parison. With this approach, we aim to analyze the interplay between structure
and function within each species and also between species.

In the first phase, we perform a detection of modules, applying several com-
munity detection techniques to understand which one is the most suitable for
the considered networks, followed by their functional characterization to divide
the networks into functional elements that may represent the different functions
of the species. The functional characterization of communities is done using the
Gene Ontology1 [15]. Considering that transcription factors may be associated
with multiple regulatory processes, we include the study of overlapping commu-
nities, as they allow genes to belong to different functional groups. Moreover,
since the regulatory associations are negative (inhibition) or positive (activa-
tion), we also consider the division of the network in polarized communities.

1 http://geneontology.org/.

http://geneontology.org/
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Table 1. Networks Properties. CC stands for Clustering Coefficient and D for Diam-
eter, 〈k〉 for average degree. In the Diameter field, a value followed by a * represents
the value of the Diameter for the largest component of the graph.

Network #Nodes #Edges #TFs #TGs 〈k〉 CC D

S. cerevisiae 6 886 195 498 220 6 886 56.60 0.47 4

S. cerevisiae B 6 478 45 209 176 6 475 13.93 0.22 5

C. albicans 6 015 35 687 118 6 015 11.83 0.28 5

Y. lipolytica 5 288 9 238 5 5 288 3.49 0.36 4

C. parapsilosis 3 381 6 986 11 3 380 4.13 0.25 4

C. glabrata 2 133 3 508 40 2 116 3.29 0.09 6*

C. tropicalis 665 698 16 663 2.08 0.01 5

K. pastoris 561 581 4 559 2.07 0.01 5

K. lactis 111 126 10 106 2.25 0.15 2*

Z. bailii 32 31 1 31 1.94 0.00 2

K. marxianus 4 3 1 3 1.50 0.00 2

Regarding community detection algorithms, we highlight some of the most rec-
ognized. The Girvan-Newman [16] is the most commonly used divisive algorithm.
About modularity-optimization-based methods, we underline the Louvain [17],
the Clauset-Newman-Moore [18] and Leiden [19] algorithms. The spectral algo-
rithms, such as the Donetti-Muñoz algorithm [20], are also a well-known class of
techniques. Enumerating other techniques, we have the Infomap [21], the Label
Propagation [22] and the Markov Cluster algorithm [23]. In the detection of over-
lapping communities, we point to the CFinder algorithm [24]. For more details,
we refer to the review from Fortunato et al. [25].

Moving to the second stage, we start by settling the similarities among species
by comparing the functional modules between these. We also use the connections
between species to infer functional elements not previously detected in some
organisms. Finally, we use a multilayer network approach combining the genetic
information of the species in which we apply a modules detection algorithm to
find functional elements conserved across species.

2 Identification of Functional Modules

2.1 Data

We consider data from the Yeastract+2 portal which provides the transcrip-
tional regulatory networks of 10 closely-related yeast species [14]. The charac-
teristics of these networks are presented in Table 1. We can observe that the
different species have different levels of documentation, as reflected by the num-
ber of nodes and edges. The gene associations may be classified into two major
2 http://yeastract-plus.org.

http://yeastract-plus.org
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Table 2. Number of modules obtained for each network using the different algorithms.

Network GN Louvain Leiden CNM LP MC Infomap CF SC

S. cerevisiae - 5 5 3 1 1 54 - 2

S. cerevisiae B - 12 11 6 1 78 48 34 2

C. albicans - 12 12 7 1 11 23 19 -

Y. lipolytica 1 4 4 4 1 1 1 3 -

C. parapsilosis 25 8 8 6 1 2 5 4 -

C. glabrata 17 14 13 12 16 24 29 14 -

groups: (1) DNA binding evidence; (2) expression evidence. Due to the high level
of information of S. cerevisiae, we consider a new network to our set denoted
S. cerevisiae B, which consists of filtering the original network keeping only the
regulatory associations supported by binding evidence. This filtering aims to
clarify the future interpretation of the results for these species. Comparing the
characteristics of the original and filtered network, we observe that the number
of nodes, transcription factors, and target genes remains close to the original.
This indicates that filtering the original network managed to retain most of the
genetic evidence of S. cerevisiae. Unlike the species mentioned above, there are
species whose networks are small and sparse – C. tropicalis, K. pastoris, K. lactis,
Z. bailii and K. marxianus. This lack of genetic evidence suggests that the char-
acterization of these species may not reflect their biological nature. Therefore,
we discarded these networks from the current analysis.

2.2 Comparative Analysis of Modules

For the detection of modules, we select a collection of algorithms that exploit the
diverse ideas and techniques of Network Science developed over the years. The set
is composed of the following algorithms: Girvan-Newman (GN), Louvain, Leiden,
Clauset-Newman-Moore (CNM), Label Propagation (LP), Markov Clustering
(MC), Infomap, CFinder (CF), and a spectral clustering technique (SC) for
modules detection on signed networks. To execute the introduced algorithms,
we used libraries where they are already implemented. Some of the considered
algorithms are stochastic, i.e., the result may change in each run because their
procedure depends on random events. The Louvain, the Label Propagation, and
the Infomap are the non-deterministic algorithms we use in our approach. To
compare the different outputs of the algorithms, we run these algorithms 1 000
times. Next, to study the different partitions obtained, we compare each pair
of different partitions having the number of modules equal to the value of the
mode. To make this comparison, we use the package clusim [26] that allows us
to compare different partitions using similarity measures, in our case we use
Rand Index [27]. Despite the stochasticity of the algorithms, we obtain high
values for the measure of similarity of the considered pairs of partitions and
low variance between them, showing that the structural differences between the
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Fig. 1. Modules size distribution for C. albicans

partitions are minimal. Thus, regarding stochastic algorithms, we adopt one of
the results having the number of modules equal to the mode. Due to the temporal
complexity of Girvan-Newman and CFinder algorithms, it was not possible to
run them on some of the biggest networks in a reasonable time. Table 2 displays
the number of modules obtained for the networks using the different algorithms.

The results in Table 2 show that some of the algorithms fail to detect distinct
modules, such as Label Propagation, Girvan-Newman, and Spectral Clustering
algorithms in signed networks, which lead us not to choose to study these results.
In the S. cerevisiae, we detected more modules in the filtered network than in
the original network. The applied filter reveals to be essential in the study of the
species, the large number of modules found suggests the possibility of discovering
a greater diversity of behaviors in the species. Therefore, we decided to use the
results of the filtered network to study the respective species. In Y. lipolytica few
modules were detected, a consequence of the low number of transcription factors.
Regarding the other species, it was possible to extract some modules, indicating
that these species may contain genetic information about more processes than Y.
lipolytica. To better understand the division into modules, we decided to study
the distribution of their sizes for the different algorithms. In the Fig. 1 we present
the distributions for C. albicans as example.

A very large gap between the sizes of the modules can make the classifi-
cation of modules unbalanced since very large modules may aggregate a lot of
functionality and small ones may not be associated with any functionality at
all. From there, a balanced division of the networks, in which the modules have
sizes of the same magnitude, should be the case that better reflects the divi-
sion of species according to their biological function. The distribution shows
that the modularity-based algorithms (Louvain, Leiden and, Clauset-Newman-
Moore) have a more balanced division than the others. Infomap, despite having
some very small modules, produced others with equivalent size to those men-
tioned above. CFinder, although it has modules which include almost the entire
network, the smaller ones can help us understand if the species benefit from an
overlapping communities study. Lastly, the Markov Clustering algorithm gives
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Table 3. Significance of the modules obtained for S. cerevisiae.

Louvain Leiden Clauset-Newman-Moore

C C-score B-score C-score B-score C-score B-score

0 1.00 1.00 0.99 1.02e-27 0.97 6.53e-67

1 1.00 1.00 0.99 0.39 1.00 2.07e-69

2 0.99 0.29 1.00 0.01 0.98 1.17e-16

3 1.00 1.00 1.00 0.99 0.99 0.99

4 0.99 1.00 0.99 0.63 0.99 0.01

5 0.99 1.00 0.99 0.01 0.99 0.99

6 0.99 1.00 0.99 1.00 - -

7 1,00 1.00 0.99 0.83e-9 - -

8 0.99 1.00 0.99 1.00 - -

9 0.99 1.00 0.99 0.01 - -

10 1.00 1.00 0.99 0.32 - -

11 0.99 1.33e-70 - - - -

us a unbalanced division, having only two modules of same magnitude of those
found with the other algorithms, therefore, we decided to discard these results.

To close the first phase of our analysis, we calculated the C-score and B-
score [28] for the modules obtained with the modularity-based algorithms. These
measures allow us to evaluate the significance of those modules by testing their
robustness and stability against random perturbations of the graph structure.
These results are presented in Table 3. Looking at the C-score values, none of the
algorithms could identify significant modules, consequence of the restrictive null
model of the method. The B-score, which uses a less restrictive null model, iden-
tifies some modules as significant. According to the B-score values, the Louvain
algorithm only produced one significant module, which may be a consequence of
its stochasticity. Regarding the other two algorithms, both produced significant
modules. Combining the significance of some modules and the balanced division,
at that point, Leiden showed to be the one that best captures the structure of
the species. Nevertheless, in the functional analysis, we take into account the
results of Infomap, CFinder, Louvain, and Clauset-Newman-Moore, which also
presented interesting results.

2.3 Functional Analysis of Modules

In this section we provide the functional characterization of the modules pre-
viously detected through the label assignment process. These labels represent
specific functionalities of the species. The idea is to associate the modules to
the most represented and significant Gene Ontology terms among their genes.
Given the whole set of terms associated with a module, we perform a three-step
filtering of the terms to find the most representative and significant terms: (1)
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select only the most global terms (level 2 terms of the Gene Ontology hierarchy);
(2) keep only the most over-represented terms of the module using the hyper-
geometric test (we consider a term as over-represented if is p-value ∈ [0; 0.05]);
(3) retain the terms represented in at least 10% of the module.

Algorithms Performance

Using S. cerevisiae network as a reference, we compare the performance of the
considered algorithms. Beginning with the modularity-based methods, Fig. 2.
A first look shows that most modules have more than one label, exposing the
functional diversity within these. However, it is observable that not all genes
in the modules are linked to functionalities that characterize the modules they
belong to. By applying the p-value filtering, we obtain only the most specific
terms from each module. Therefore, there are always fractions of genes in the
modules that are not associated with any of the terms. These genes correspond
to behaviors that end up being captured by other modules.

In Fig. 2, we observe that some functions appear with high representation in
the modules. Such as the metabolic process, cellular process, biological regula-
tion, or response to stimulus. In contrast, others seem to be less represented.
Being specific functions, these are associated with a smaller set of genes. Repro-
duction, reproductive process, and transporter activity are good examples of
specific functions detected in the modules. The Clauset-Newman-Moore algo-
rithm captured a smaller diversity of functions, failing to identify some functions
present in the modules originated by the Louvain and Leiden algorithms. Com-
paring the results from Louvain and Leiden we can observe that some modules
are very similar in terms of functionality. However, Leiden was able to identify
functions that Louvain could not, such as the cellular process (usually heavily
represented in modules) or reproductive process. Moreover, Leiden was the algo-
rithm in whose modules it was possible to identify more functions of the species,
indicating that the division of the species obtained with this algorithm is the
one that better reflects the division of functionality of the species.

Regarding the study of overlapping communities, it was possible to retain
some new information about the species, such as the presence of functions not
previously detected: transcription regulator activity, developmental process, and
signaling. However, the study of overlapping communities is not enough to func-
tionally characterize the species, since most communities are small components
of larger communities. This results in most communities to be associated with
the same behaviors. The performance of the Infomap algorithm lacked consis-
tency. Although it managed to classify some modules of relevant size, it failed
to classify the vast majority of modules.
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Fig. 2. Modules and respective functions for modularity-based methods on S. cere-
visiae. The bar of each term symbolizes its representation in the module. The pair of
values at the top of each bar are respectively the size of the module and the fraction
of genes of the module related with at least one term (in the module).

Functional Analysis of Remaining Species

Additionally, we analyze the results of the label assignment process for the
remaining species. We use the results obtained with the Leiden algorithm, Fig. 3,
since it is the algorithm that best captures the functions of S. cerevisiae.

Starting with C. albicans, we notice the absence of terms in modules M0,
M9, M10. In M0, since the module encompasses a large part of the species,
it is difficult to detect most over-represented terms using the p-value. All the
remaining modules are associated with at least one function. Many of those are
associated with three or more terms, capturing many of the functions of the
species. An interesting point is the association of some modules to functions
such as multi-organism process and growth, which are not sufficiently represen-
tative/significant to be associated with a module in S. cerevisiae. Also in C.
parapsilosis and C. glabrata, some modules are associated with functions not
detected in S. cerevisiae. Due to the large sizes of S. cerevisiae modules, it is
difficult for specific terms to have a good representation in these, since they are
associated with few genes. In all of these species, general functions already cap-
tured in S. cerevisiae were also detected, such as metabolic process, response
to stimulus, or biological regulation. Revealing once again the central role these
have in the functionality of different organisms. It is noticed that the modules
of C. glabrata are associated with more functionality than the modules of C.
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Fig. 3. Label Assignment results for the different species using Leiden algorithm.

Fig. 4. (a) - Sankey diagram representing the connections between the modules of
S. cerevisiae and C. albicans. (b) - Heat map representing the level of connectivity
between the modules of S. cerevisiae (y axis) and C. albicans (x axis). (c) - Table with
the highest Z-score values.

parapsilosis and Y. lipolytica, although we have more generic evidence on the
last two. Whereas that C. glabrata has more transcription factors, we assume
that the information about this species contains genetic evidence about more
biological processes. This results in a more diversified classification of modules
in comparison to C. parapsilosis and Y. lipolytica.
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3 Cross-Species Comparison

3.1 Functional Comparison of Modules

To compare the modules we resort to the homology mappings between species
to establish the connections between species. Each link in a homology mapping
denotes the connection between two homologous genes. In biology, it is estab-
lished that the DNA sequence of two homologous genes derives from a common
ancestor (may or may not have the same function). For this work, the homology
mappings are also obtained from Yeastract+ [14].

S. cerevisiae vs C. albicans

We now focus on the comparison between S. cerevisiae and C. albicans. For
this purpose, we explore the level of connection between the functional modules
obtained with the Leiden algorithm. In Fig. 4(a) we present a Sankey diagram
representing the connections between the modules for both species.

To understand the level of connection between modules, we perform an anal-
ysis to assess the quality of the mappings. First, we calculate the number of
links shared between every pair of modules of the two species. Then, we com-
pare these distributions with 1 000 realizations of the same process in a null
model, which consists of maintaining the community structure of both networks
but with randomization of the nodes. Consequently, this procedure results in
different mappings between species. In Fig. 4(b) we present the heat map of the
z-scores representing the level of connection between modules. The analysis of
the heat map reveals the existence of some pairs of modules with strong connec-
tions (green and blue colors), these pairs are listed in Fig. 4(c).

Next, we consult the functions associated with the modules that are part of
strong connections and we verify the sharing of functions between some of the
modules. This circumstance points to homologous genes with the same function
as the cause for the strong connectivity in some pairs of modules. One good
example is the pair of modules M0 and M2 of S. cerevisiae and C. albicans
respectively. In both cases, the metabolic and cellular processes are widely rep-
resented terms, homologous genes associated with those functions may be the
origin for this solid connection. However, in other cases, mutual labels only rep-
resent a small part of the genes of the modules. Such as in M1 of S. cerevisiae
and M4 of C. albicans, which is by far the strongest connection between the
two species. In this case, the mutual functions between modules seem not to be
sufficient to justify the strong connection. Thus, this connection may arise from
other events, such as the sharing of functions that were only detected in one of
the modules (cellular and metabolic process). Thus, this connection may arise
from other events, such as the sharing of functions that were only detected in
one of the modules (cellular and metabolic process).
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Table 4. Strongly connected pairs of modules from different species. For each module,
we can consult the percentage of genes that have homologous with the same function
in the other module that is part of the connection. A green cell means that the term
was found in the module through the label assignment process, a cell in red denotes
the opposite (the term was not found in the module).

Terms

Connections GO:0071840 GO:0005198 GO:0008152 GO:0009987 GO:0005488 GO:0065007

M1-Sc 0.10 0.14 0.17 0.18 0.07

M4-Ca 0.13 0.16 0.21 0.23 0.11

M0-Sc 0.03 0.09 0.10 0.06 0.04

M0-Yl 0.01 0.04 0.05 0.03 0.02

M0-Ca 0.03 0.10 0.12 0.07 0.04

M0-Yl 0.03 0.09 0.10 0.06 0.04

Terms Function

GO:0071840 cellular component organization or biogenesis

GO:0005198 structural molecule activity

GO:0008152 metabolic process

GO:0009987 cellular process

GO:0005488 binding

GO:0065007 biological regulation

Detailed Analysis of Connections

We examine the terms associated with the links of the connections between
modules of different species. A term is associated with a link if the term is
common to the homologous genes in it. In Table 4 we present some of the most
relevant connections among species. The detailed analysis of the connections
demonstrates that there are functional groups of considerable size in different
species formed by homologous genes with the same functions. This evidence
reveals the conservation of functional elements across different organisms. Also,
using the information of Table 4, we can diagnose functional elements in some
modules that were not detected with the previous analysis. Such as the metabolic
and cellular processes in M1 of S. cerevisiae. Finally, we look at the connection
between M0 of C. albicans and M0 of Y. lipolytica. In this cross-species analysis,
we unveil some functional elements present in M0 of C. albicans. With this new
information, it is clear that the absence of labels assigned to this module in the
label assignment process results from its large size.

3.2 Multilayer Approach for Cross-Species Comparison

In the previous section, we found functional elements conserved across species.
However, we did not check if these elements have other associated functions or
even if they overlap, since each gene can have more than one function associated
to it. Therefore, in this final step, we build a multilayer network between species
in which we perform a module detection task using the Infomap algorithm,
which is suitable for this type of network. With the detection and functional
characterization of the modules, we seek to identify and characterize functional
structures conserved across species. In this multilayer network, the inter-layer
links are those of the homology mappings between species.
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Fig. 5. Comparison of labels between the modules of the multilayer and the respective
groups of genes from S. cerevisiae and C. albicans. The three bars side-by-side respec-
tively describe the labels of the module, of the genes from S.cerevisiae and the genes
from C. albicans. At the top of the first bar of each module is shown the module size
and the number of inter-layer links in the module.

Using S. cerevisiae and C. albicans, we create the multilayer network. From
the detection of modules, we could find 19 modules containing genes from both
species. Going further with our analysis, we study the contribution of the genes
of each species for the classification of the modules in the multilayer network.
The comparison between the functions of each module and those of the respective
gene groups can be seen in Fig. 5.

We observe that the first module represents a large part of the multilayer
network, suggesting that this one may not provide useful information about small
functional elements conserved between species. Looking at the classification of
this module, we confirm that this one does not have GO terms associated with it,
not contributing with relevant results for the analysis. Regarding the rest of the
modules, we verify that the number of pairs of homologous genes corresponds to
about half the module size, indicating that these modules are mostly composed
of pairs of homologous genes. We verify that in some modules the functionalities
result from the mutual contribution of the species, such as in M1, M2, M4, M7,
M8, M11, M12, M13 and M16. These modules result from the combination of
homologous genes that are functionally identical and that constitute functional
structures conserved among species. Some functions in the modules are equally
represented, such as the metabolic and cellular process in M1 or reproduction
and reproductive process in M7. This is a consequence of these functions being
associated to the same set of genes.
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4 Conclusions

In this work, we contribute with relevant information about transcriptional reg-
ulatory networks of the considered yeast species. From the algorithms used in
the detection of modules, the methods based on optimization of the modular-
ity achieved a better performance. Of these, we highlight Leiden, which best
managed to combine a balanced division of modules with a good functional clas-
sification. The functional characterization of modules revealed that there are
biological functions more represented than others among modules of different
species. From these processes, we highlight the metabolic process, cellular pro-
cess, biological regulation, or response to stimulus. Furthermore, we observed
that in species C. glabrata, although it has less genetic evidence, it was possible
to detect a greater diversity of functions than in species C. parapsilosis and Y.
lipolytica. The transcription factors are the main agents responsible for regulat-
ing the behavior of species, the set of interactions between these and their target
genes constitute the regulation of certain behaviors. Since C. glabrata contains
more transcription factors, it contains genetic evidence about more functions.

The cross-species comparison allowed us to establish some similarities
between species. As an example, we found that modules from different species
contain identical functions due to the presence of functionally identical homol-
ogous genes between them. With the creation of the multilayer, we were able
to verify that there are functional structures conserved across species that carry
identical genetic information.

We highlight some limitations of our approach. Firstly, the difficulty of finding
meaningful terms with the p-value approach in large modules. Therefore, in an
unbalanced division of the network, it will be difficult to label the large modules.
Secondly, the threshold used to consider a term as relevant in a module (10%)
may be too restrictive. To overcome this problem, we could test different values
for the threshold in a set of modules with different sizes. Then, we could use the
relation between the threshold values and the size of the modules to predict the
threshold values for each module considering its size.

As future work, we could consider the creation of a measure that would allow
us to evaluate the functional characterization of the modules. This one could
combine the diversity of functionality found in the modules and the proportion
of genes in the modules that are covered by the functions assigned to them.
Therefore, modules associated with functions covering almost all of their genes
would be considered as well-classified. Moreover, we would like to consider sub-
processes, i.e., GO terms at a level greater that 3, to uncover specific regulatory
processes within the identified modules. Also, we found some genes in modules
not associated with any Gene Ontology terms, we could use the functions of the
modules in which these genes belong to predict their functionality.
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Abstract. Information spreading on social networks is one of the most
important topics in network science and has long been actively stud-
ied. However, most studies only focus on the spread of a single piece of
information on random networks, even though information spreading in
the real world is much more complicated, involving a complex topology
structure and interactions between multiple information. Therefore, in
this paper, we model the competitive information spreading on modular
networks and investigate how the community structure affects compet-
itive information spreading in two spreading scenarios: sequential and
simultaneous. In the sequential spreading scenario, we find that the com-
munity structure has little effect on the final prevalence but affects the
spreading process (time evolution of the prevalence). In contrast, in the
simultaneous spreading scenario, we find that community structure has
a strong effect on not only the spreading process but also the final preva-
lence. Specifically, two competing pieces of information cannot coexist
and one drives out the other on a non-modular network, whereas they
can coexist in different communities on a modular network. Our results
suggest that the effect of community structure cannot be ignored in the
analysis of competitive spreading (especially, simultaneous spreading) of
multiple information.

Keywords: information spreading · cascade dynamics · modular
networks

1 Introduction

In modern information society, social networks are an essential platform for
information spreading. Information spreading on social networks has long been
actively studied because of its various applications. Traditional analysis of infor-
mation spreading has been motivated by analogy with disease spreading [1,2]. It
assumes that the information is spread stochastically from the infectious (i.e., an
individual who has spread the information) to the susceptible (i.e., an individual
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who has not yet spread). A contagion process that spreads through independent
interactions between the susceptible and infectious is called simple contagion
(also known as biological contagion). Typical simple contagion models include
susceptible-infectious-susceptible (SIS) and the susceptible-infectious-recovered
(SIR) models [3,4].

On the other hand, complex contagion (also known as social contagion) has
also been widely studied [5–7]. The complex contagion process is a contagion pro-
cess in which an individual requires social pressure (or social reinforcement) from
multiple individuals to adopt some kind of behavior (e.g., spreading information,
memes, and innovations and participating in political protest and signature-
collecting campaigns). The spread of information, memes, and behaviors has
been found to be better explained by complex contagion rather than by simple
contagion [8,9]. Most existing studies have modeled information spreading as
either simple or complex contagion. However, in the real world, an individual
who has a strong interest in the information may spread it immediately upon
receiving it, whereas an individual who has no interest in it may not. Therefore,
it is reasonable to assume that the ease of information spreading (i.e., the number
of exposures required to adopt spreading information) depends on the character-
istics of individuals, such as interest, attitude, and literacy. Indeed, an empirical
study that analyzed the spread of social movements on Facebook reported that
the characteristics of individuals affect the type of contagion [10]. To imitate the
complex contagion in the real world, a generalized contagion model that takes
into account both simple and complex contagion has also been proposed [11,12].

In the perspective of network structure, most existing studies consider infor-
mation spreading on random networks with an arbitrary degree distribution p(k)
(i.e., using the configuration model [13]). However, real social networks have
modular (or community) structures. A community is, roughly speaking, a group
of nodes that are densely connected with nodes within the group, and sparsely
connected with nodes between other groups. There are few studies of a complex
contagion process on modular networks [14–16]. Galstyan and Cohen studied
the dynamics of complex contagion on a random network of two loosely coupled
communities and found that when the two communities are sufficiently loosely
coupled, the spreading dynamics exhibit a two-tiered structure [14]. Glesson pro-
vides a unified framework for theoretical analysis of complex contagion models
on networks consisting of two or more communities with arbitrary degree distri-
butions [15]. Nematzadeh et al. used a linear threshold model to investigate the
impact of community structure on information spreading and found that there
is the optimal network modularity for global information spreading [16].

The above-mentioned studies focus on the spread of a single piece of infor-
mation. However, when information spreads on a real social network, it often
spreads interacting with other information. For example, when false informa-
tion is spread on a social network, in most cases, the debunking information
is also spread and hinders the spread of false information. Therefore, to accu-
rately understand the mechanism of information spreading in the real world, the
competitive spreading of multiple information needs to be considered. However,
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despite its importance, there are very few studies of multiple complex contagion
processes on a non-modular network, and none on a modular network. Liu et
al. proposed a sequential social contagion model based on susceptible-adopted-
recovered (SAR) model [7], which is a complex contagion model in which two
behaviors spread sequentially on the same non-modular network [17]. The adop-
tion of the first behavior has an inhibiting or synergistic effect on the adoption
of the second behavior. They found that these effects affect the type of phase
transition in the second behavior spreading. Min and Miguel studied the role of
dual users (i.e., users who adopt both spreading entities) in two complex conta-
gion processes and found that the presence of dual users enables the prevalence
of the later entity to override the advantage of the earlier one [18].

On the basis of this background, in this paper, we consider a spreading model
of two competing pieces of information (information A and information B) on
social networks and investigate how the community structure affects the compet-
itive information spreading. We consider two scenarios of competitive spreading:
sequential spreading and simultaneous spreading. In the sequential spreading sce-
nario, information A spreads first, and information B spreads next while being
hindered by information A. In the simultaneous spreading scenario, informa-
tion A and information B spread simultaneously while interfering with each
other. As a result of the analysis, in the sequential spreading scenario, we found
that the community structure has little effect on the final prevalence, but affects
the spreading process (i.e., the time evolution of the prevalence). However, in
the simultaneous spreading scenario, we found that the community structure
affects both the final prevalence and the spreading process. Specifically, infor-
mation A and information B cannot coexist and one drives out the other on
a non-modular network, whereas they can coexist in different communities on
a modular network. Our results suggest that the effect of community structure
cannot be ignored in the analysis of competitive spreading (especially, simulta-
neous spreading) of multiple information.

2 Models

2.1 Information Spreading Model

In this paper, as the (single) information spreading model, we use the generalized
contagion model proposed by Min and Miguel [12]. Let us consider a network
consisting of N nodes that can be in a susceptible state and an adopted state.
Each node v is assigned an adoption threshold θv (randomly drawn from thresh-
old distribution Q(θ)). A susceptible node v adopts the information when the
number of exposures to the information is larger than θv, and then attempts
to spread the information to its neighbors. The information is transmitted with
probability λ along each edge. Varying the adoption threshold, this model rep-
resents both simple and complex contagion. When θv = 1, a susceptible node
v becomes adopted by single exposure thus indicating simple contagion. When
θv > 1, it represents complex contagion since multiple exposures are needed for
adoption.
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This model can recover some representative contagion models by varying two
parameters, λ and Q(θ). SIR model [3,4] corresponds to (λ,Q(θ)) = (λ, δθ,1)
where δi,j is the Kroneckar delta function. Watts’ threshold model [5] corre-
sponds to (λ,Q(θ)) = (1, δθ,kvT ) where kv is the degree of node v and T is the
threshold. A modified version of Watts’ threshold model proposed in [14] corre-
sponds to (λ,Q(θ)) = (1, δθ,n>1). In this study, we set threshold distribution to
Q(θ) = (1 − p)δθ,1 + p δθ,n (n > 1). This means that a fraction (1 − p) of nodes
follows simple contagion and a fraction p of nodes requires n (> 1) exposures for
adoption.

2.2 Competitive Information Spreading Model

In this subsection, we present the competitive spreading model of two compet-
ing pieces of information (information A and information B). Let us assume
that each node spreads information following the generalized contagion model
in the previous subsection and can be in three states: the state that adopts
information A (state A), the state that adopts information B (state B), and the
state that still has not adopted either (state S). Moreover, we assume that each
node adopts the information of the majority from its perspective. Specifically,
for information B to be spread by a node v, the number of exposures of infor-
mation B to node v, #B

v , must be larger than not only the threshold θv but also
that of information A, #A

v . Note that the number of exposures of the informa-
tion to a node is not always equal to the number of neighbors who spread the
information if the transmissibility λ < 1.

We consider two scenarios of competitive spreading: sequential spreading
and simultaneous spreading. In the sequential spreading scenario, information A
spreads first, and then information B spreads. When information A spreads,
since there is no other information, node v spreads information if #A

v ≥ θv. On
the other hand, in the spreading phase of information B, for information B to
be spread by node v, the number of exposures of information B must satisfy
(#B

v ≥ θv) ∧ (#B
v > #A

v ). This means that information A hinders the spreading
of information B. In the real world, this corresponds to a situation in which
the spread of correct information through a social network is hindered due to
fake news having already been widely spread and believed. In the simultane-
ous spreading scenario, information A and information B spread simultaneously
while interfering with each other. In the real world, this scenario corresponds
to the situation where a hoax starts spreading on a social network, and the
debunking information spreads soon.

3 Single Information Spreading on Non-modular
and Modular Networks

In this section, for comparison with competitive information spreading, we con-
sider single information spreading on non-modular (random) and modular net-
works. We analyze the cascade condition (i.e., the condition that causes an infor-
mation cascade) and how the community structure affects information spreading



Competitive Information Spreading on Modular Networks 159

by using tree-like approximation [19,20]. The tree-like approximation analyzes
information spreading by replacing an infinite random graph with an arbitrary
degree distribution p(k) to the non-clustered tree-like structure. Contagion is
initiated from seed nodes (level 0) and spreads by level-by-level, that is from
level t − 1 to level t, and then level t + 1. This approximation gives good results
for a network that is not a tree. For the synchronous updating (i.e., all nodes
are updated simultaneously), the level t corresponds to the time step t of the
contagion process.

3.1 Spreading on Non-modular Networks

We first consider single information spreading on non-modular networks. Note
that the results of this case have been already reported by Min and Miguel [12]
in detail. Let us consider an infinite locally tree-like network with the degree
distribution p(k) and the average degree z. A contagion is initiated from the
fraction of randomly chosen seed nodes, ρ0.

The final cascade size ρ∞, the fraction of adopted nodes in the network in
the steady state, is calculated as

ρ∞ =ρ0 + (1 − ρ0)
∞∑

k=1

p(k)
k∑

m=0

(
k

m

)
qm
∞(1 − q∞)k−mF (m) =: h(q∞),

where q∞ is the steady state probability that a top level (t → ∞) node is adopted.
The probability q∞ is derived as the fixed point of the recursive equation

qt =ρ0 + (1 − ρ0)
∞∑

k=1

kp(k)
z

k−1∑

m=0

(
k − 1

m

)
qm
t−1(1 − qt−1)k−m−1F (m) =: f(qt−1),

(1)

with the initial value q0 = ρ0. Here, F (m) = F (m;λ,Q(θ)) is the probability
that more than the threshold number of neighbors out of m adopted neighbors
succeed in transmission with the probability λ, and defined as

F (m) :=
∞∑

θ=1

Q(θ)
m∑

s=θ

(
m

s

)
λs(1 − λ)m−s. (2)

Note that, if p(k) is a Poisson distribution and F (m) does not depend on k, it
satisfies ρ∞ = q∞ [14,15]. For ρ0 → 0, the equation q∞ = f(q∞) always has
a trivial solution q∞ = 0, and when f ′(0) =

∑
k

k(k−1)
z p(k)F (1) > 1, it has a

non-trivial solution q∞ > 0 (i.e., cascades occur). Hence, we have the cascade
condition

λ > λc =
〈k〉

(1 − p) (〈k2〉 − 〈k〉) , (3)

where 〈ϕ(k)〉 =
∑

k ϕ(k)p(k) is the expected value of a random variable ϕ(k).
Especially, for the Poisson distribution p(k) = e−zzk/k!, the cascade condition
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Fig. 1. Phase diagram of the final cascade size for non-modular networks (a) and mod-
ular networks with two communities (b). The red line represents the cascade condition
computed by the tree-like approximation. The simulations are averaged over 20 runs for
each combination of (λ, p) with parameters N = 2.0 × 104, z = 10, ρ0 = 10−3, n = 4.
The cascade size ρt and its change rate dρ/dt for non-modular networks (c) and modu-
lar networks with two communities (d). The black and red lines respectively represent
the theoretical curves of ρ(t) and dρ/dt, and symbols represent the simulation results
(almost all error bars are smaller than symbols). The simulations are averaged over 20
runs with parameters N = 5.0 × 104, z = 10, ρ0 = 10−3, λ = 0.8, p = 0.8, n = 4. For
modular networks, the percentage of edges between communities is set to 0.1% of all
edges, and the seed nodes are chosen from only one community. (Color figure online)

can be written as λ > 1/(z(1 − p)). For the power-law distribution p(k) ∝
k−β (2 < β < 3), the critical threshold λc vanishes since 〈k2〉 → ∞ in the
thermodynamic limit N → ∞.

The fraction of complex contagion nodes, p, affects the difficulty of the cas-
cade occurrence and the type of phase transition. Figure 1a shows the cascade size
ρ∞ to a combination (λ, p) for a non-modular network with z = 10 and n = 4.
The red curve represents the set of phase transition points λ = 1/(z(1 − p)).
From this figure, we can see that the larger p is, the harder it is for cascades
to occur. In addition, for p < pc = 0.71, the continuous phase transition of ρ∞
occurs with respect to λ, while the discontinuous phase transition occurs for
p > pc. For more detail, see [12].
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3.2 Spreading on Modular Networks

On the basis of the analysis of [15], we analyze single information spreading on
a modular network with N nodes, consisting of d communities C1, . . . , Cd. Let
z(i) and p(i)(k) be the average degree and degree distribution of nodes in the
community Ci, respectively. Then, ρ

(i)
0 denotes a fraction of seed nodes in Ci,

satisfying ρ0 =
∑d

i=1
N(i)

N ρ
(i)
0 where N (i) = |Ci|. Let γij be the probability that

the endpoints of a certain edge randomly chosen from the network are nodes
belong to Ci and Cj . Note that γij satisfies the following equations:

d∑

j=1

γij =
N (i)z(i)

∑d
i′=1 N (i′)z(i′)

,

d∑

i=1

d∑

j=1

γij = 1.

We define the probability q
(i)
t that a random node at level t − 1 in Ci is

adopted, conditional on its parents (level t) being susceptible. The recursive
equation of q

(i)
t can be written as

q
(i)
t =

1
∑d

j=1 γij

d∑

j=1

γij

[
ρ
(j)
0 + (1 − ρ

(j)
0 )

∞∑

k=1

kp(j)(k)
z(j)

×
k−1∑

m=0

(
k − 1

m

)(
q
(j)
t−1

)m(
1 − q

(j)
t−1

)k−m−1
F (m)

]
=: φi(q

(1)
t−1, . . . , q

(d)
t−1).

(4)

We have the fixed point q∞ = (q(1)∞ , . . . , q
(d)
∞ ) by iteratively calculating Eq. (4)

with the initial values q
(i)
0 = ρ

(i)
0 for i = 1, . . . , d. Eq. (4) can be linearized

around the trivial fixed point q∞ = 0 as qt = Jqt−1 where J ∈ R
d×d is the

Jacobi matrix whose (i, j)-component is

∂φi

∂q(j)

∣∣∣∣
q=0

=
γij∑d

j′=1 γij′

∞∑

k=1

k(k − 1)
z(j)

p(j)(k)F (1). (5)

Thus, we obtain the cascade condition by evaluating the largest eigenvalue of J .
For a special case, if communities are symmetric (i.e. ∀j, N (j) =

N/d, p(j)(k) = p(k), and z(j) = z), the Jacobi matrix becomes

J =
∞∑

k=1

k(k − 1)
z

p(k)F (1)Γ̃ , where (Γ̃ )ij =
γij∑d

j′=1 γij′
.

Since the largest eigenvalue of the stochastic matrix Γ̃ is 1, the cascade con-
dition of information spreading on modular networks coincides with that on
non-modular networks (3).

Indeed, Figs. 1a and 1b show that the final cascade size on non-modular and
modular networks are nearly the same, indicating that the community structure
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has little effect on how much information is finally spread. On the other hand,
the community structure affects the time evolution of the cascade size (i.e.,
how the information spreads). Figures 1c and 1d show the cascade size ρt =∑d

i=1
N(i)

N q
(i)
t and its change rate dρ/dt ≈ ρt+1 − ρt for each time step t on non-

modular and modular networks. On a non-modular network, a cascade initiated
from seed nodes first activates simple contagion nodes and then progressively
spreads throughout the network, thus its change rate forms small and large
peaks. On a modular network, the cascade first spreads and saturates in one
community, and then spreads in another community. Hence, the spreading peaks
in different communities are separated in time. This phenomenon is called two-
tiered dynamics [14]. Note that, it is easy to assume that the gap between peaks
becomes smaller and disappears as the connection between communities becomes
stronger. Similar results were reported in previous studies [14,15], although the
spreading model considered is different.

4 Competitive Information Spreading on Non-modular
and Modular Networks

When information spreads on a real social network, other information often
spreads, which hinders the spread. Hence, to accurately understand the mech-
anism of information spreading in the real world, it is necessary to consider a
situation where two competing pieces of information spread. In this section, we
analyze the spreading of two competing pieces of information, information A
and information B, in sequential and simultaneous spreading scenarios.

4.1 Sequential Spreading Scenario

In the sequential spreading scenario, we analyze the cascade condition of infor-
mation B in a network where information A has already been spread. Let at

and bt respectively be the probabilities that a node at level t is in state A and
state B, conditional on its parents at level t + 1 not being in state A or state B.
Since the spreading of information A is no different from the spreading of single
information discussed in Sect. 3.1, we have the probability that a node is state A
in steady state, a∞, by iteratively updating the recursive Eq. (1) starting from
a0 = ρA

0 . On the other hand, since the spread of information B is affected by
information A, the updating equation of bt is given as follows by using a∞:

bt =ρB
0 + (1 − ρB

0 )
∞∑

k=1

kp(k)
z

k−1∑

m+l=0

(k − 1)!
m! l! (k − m − l − 1)!

× am
∞ bl

t−1 (1 − a∞ − bt−1)k−m−l−1G(m, l) =: g(bt−1). (6)

The first term on the right-hand side of the above Eq. (6) represents the prob-
ability that a node at level t is initially in state B (i.e., is a seed node with
probability ρB

0 ) and the second term represents the probability that a node at
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level t is not a seed node but is activated by its neighbors in state B. Here,
G(m, l) = G(m, l;λA, λB , Q(θ)) is the probability that a node with m neighbors
who spread information A and l neighbors who spread information B adopts
information B, defined as

G(m, l) :=
∞∑

θ=0

Q(θ)
l∑

u=θ

(
l

u

)
λu

B(1 − λB)l−u
S∑

s=0

(
m

s

)
λs

A(1 − λA)m−s, (7)

where S := min(u−1,m). Assuming that ρB
0 → 0, for a given a∞, the fixed point

equation b∞ = g(b∞) always has a trivial solution b∞ = 0 and has non-trivial
solution b∞ > 0 if g′(0) > 1. Thus, by calculating g′(0) > 1, we have the cascade
condition of information B as follows:

λB >
z

(1 − p) d2

dα2 〈αk〉 , (8)

where α := 1 − λAa∞.
Especially, if p(k) is the Poisson distribution, the cascade condition can be

written as λB > ezλAa∞/(z(1 − p)) since 〈αk〉 = e(α−1)z. The exponent in the
numerator, zλAa∞, can be interpreted as the node’s expected exposure to infor-
mation A and when zλAa∞ > log z(1 − p), the spreading of information B
becomes impossible in principle.

In the same way as in Sect. 3.2, we can analyze the cascade condition for
a modular network. For a given (a(1)

∞ , . . . , a
(d)
∞ ) calculated by Eq. (4), b

(i)
t of

community Ci is given by

b
(i)
t =

∑d
j=1 γijg(b(j)t−1)∑d

j=1 γij

= ψi(b
(1)
t−1, . . . , b

(d)
t−1), ∀i = 1, . . . , d (9)

By linearizing b
(i)
∞ = ψi(b

(1)
∞ , . . . , b

(d)
∞ ) around the trivial fixed point b

(i)
∞ = 0, we

obtain the cascade condition. As in the case of the single information spreading,
for symmetric communities, the cascade condition is the same as in Eq. (8).

Figures 2a and 2b show the final cascade size of information B, ρB
∞, for non-

modular and modular networks with two communities. These figures indicate
that even in the sequential spreading scenario, the community structure does
not affect the final prevalence as in the case of the single information spreading.
Figures 2c and 2d show the time evolution of the cascade size of information B
at each time step t with p = 0.6. For p = 0.6, the critical point is λc = 0.25.
Thus, the result for λA = 0.2 represents a state with little interference from
information A, while the result for λA = 0.3 represents a state with interference
from information A. From these figures, we can see that the existence of prior
information has the effect of delaying the spreading of subsequent information.

4.2 Simultaneous Spreading Scenario

Next, we consider the simultaneous spreading of two competing pieces of infor-
mation. For a non-modular network, the probabilities at and bt are calculated
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Fig. 2. Phase diagram of the final cascade size ρB
∞ for non-modular networks (a) and

modular networks with two communities (b) in the sequential spreading scenario. The
red line represents the cascade condition computed by the tree-like approximation. The
simulations are averaged over 20 runs for each combination of (λA, λB) with parameters
N = 2.0 × 104, z = 10, ρA

0 = ρB
0 = 10−3, p = 0.6, n = 4. The cascade size ρt and

its change rate dρ/dt for non-modular networks (c) and modular networks with two
communities (d) in the sequential spreading scenario. The simulations are averaged
over 20 runs with parameters N = 5.0 × 104, z = 10, ρA

0 = ρB
0 = 10−3, λB = 0.8, p =

0.6, n = 4. For modular networks, the percentage of edges between communities is set
to 0.1% of all edges, and the seed nodes are chosen from only one community. (Color
figure online)

as

at =ρA
0 + (1 − ρA

0 )
∞∑

k=1

kp(k)
z

k−1∑

m+l=0

(k − 1)!
m! l! (k − m − l − 1)!

× am
t−1 bl

t−1 (1 − at−1 − bt−1)k−m−l−1F (m, l) =: f(at−1, bt−1), (10)

bt =ρB
0 + (1 − ρB

0 )
∞∑

k=1

kp(k)
z

k−1∑

m+l=0

(k − 1)!
m! l! (k − m − l − 1)!

× am
t−1 bl

t−1 (1 − at−1 − bt−1)k−m−l−1G(m, l) =: g(at−1, bt−1). (11)

where F (m, l) = F (m, l;λA, λB , Q(θ)) is the probability that a node with m
neighbors who spread information A and l neighbors who spread information B
adopts information A, and is defined in the same way as Eq. (7).
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For a modular network, the probabilities a
(i)
t and b

(i)
t of the community Ci

are calculated by using f(at−1, bt−1) and g(at−1, bt−1) of Eqs. (10) and (11) as
follows:

a
(i)
t =

∑d
j=1 γijf(a(j)

t−1, b
(j)
t−1)∑d

j=1 γij

= φi(a
(1)
t−1, . . . , a

(d)
t−1, b

(1)
t−1, . . . , b

(d)
t−1), (12)

b
(i)
t =

∑d
j=1 γijg(a(j)

t−1, b
(j)
t−1)∑d

j=1 γij

= ψi(a
(1)
t−1, . . . , a

(d)
t−1, b

(1)
t−1, . . . , b

(d)
t−1). (13)

Unfortunately, in the simultaneous spreading scenario, it is difficult to derive
the meaningful cascade condition of information B by the linear stability analy-
sis. We now assume that p(k) is the Poisson distribution. By linearizing Eqs. (10)
and (11) around the trivial fixed point (a∞, b∞) = (0, 0), we obtain the (trivial)
cascade condition λB > λc = 1/(z(1−p)). Furthermore, for a fixed λA (> λc), by
linearizing them around (a∞, b∞) = (a∞, 0), we obtain λB > ezλAa∞/(z(1−p)).
However, unlike Sect. 4.1, this condition is meaningless since a∞ depends on λB.
Therefore, we focus on the nullclines of these equations, which are the curves
such that a = f(a, b) and b = g(a, b) on the (a, b)-phase plane. The nullcline
analysis enables us to analyze the qualitative behaviors of a∞ and b∞.

Figure 3 shows the nullclines of Eqs. (10) and (11) for λA � λB and λA = λB.
When considering a trajectory on the phase plane, at increases horizontally in
the region a < f(a, b), while at decreases in the region a > f(a, b). Similarly, in
the region b < g(a, b), bt increases vertically, while in the region b > g(a, b), bt

decreases. Hence, we can roughly predict in which direction the solution starting
from (a0, b0) = (ρA

0 , ρB
0 ) will go. Intersection points of these curves represent the

possible final states (fixed points) of the system described by Eqs. (10) and (11).

Fig. 3. Nullclines of Eqs. (10) and (11) on the (a, b)-phase plane for λA � λB and
λA = λB . The red and blue curves respectively represent a = f(a, b) and b = g(a, b).
The parameters are z = 10, ρA

0 = ρB
0 = 0, p = 0.6, n = 4. (Color figure online)
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In this system, the number of fixed points varies depending on λA and λB .
First, if λA and λB are smaller than the critical threshold λc, the system has a
trivial fixed point (a, b) = (0, 0). For λA  λB, the system has the only stable
fixed point (a, b) = (a∗, 0), and conversely for λB  λA, the system has only the
stable fixed point (a, b) = (0, b∗). For λA ≈ λB, the system has two stable fixed
points (a, b) = (a∗, 0) and (0, b∗), and one unstable fixed point (a, b) = (a∗, b∗).
Therefore, in this system, it is expected that information A and information B
will never coexist in a steady state, and one drives out the other.

Indeed, as shown in Fig. 4a, the simulation results of the final cascade size of
information B, ρ∞

B , on non-modular networks show that for λB > λA, informa-
tion B spreads throughout the network, whereas information B becomes extinct
for λA > λB . Even for λA = λB, the two cannot coexist, and either information A
or information B widely spreads due to slight fluctuations of the network struc-
ture. This result is known in ecology as the competitive exclusion principle [21].

Fig. 4. Phase diagram of the final cascade size ρB
∞ for non-modular networks (a) and

modular networks with two communities (b) in the simultaneous spreading scenario.
Each inset represents the variance of the simulation results for the cascade size. The
simulations are averaged over 20 runs for each combination of (λA, λB) with parameters
N = 2.0 × 104, z = 10, ρA

0 = ρB
0 = 10−3, p = 0.6, n = 4. The cascade size ρt and

its change rate dρ/dt for non-modular networks (c) and modular networks with two
communities (d) in the simultaneous spreading scenario. The simulations are averaged
over 20 runs with parameters N = 5.0×104, z = 10, ρA

0 = ρB
0 = 10−3, λA = 0.6, λB =

0.7 p = 0.6, n = 4. For modular networks, the percentage of edges between communities
is set to 0.1% of all edges, and the seed nodes are chosen from only one community.
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On the other hand, when the network has a community structure, informa-
tion A and information B coexist in the region λA ≈ λB (Fig. 4b). Indeed, it is
also known in ecology that the spatial heterogeneity of competitive environments
breaks the competitive exclusion principle and allows coexistence [22].

Figures 4c and 4d show the time evolution of the cascade size of information A
and information B at each step t for λA ≈ λB. For non-modular networks, infor-
mation A initially spreads but is soon driven out by information B and becomes
extinct (Fig. 4c). On the other hand, for modular networks, information A and
information B coexist (Fig. 4d).

5 Conclusion

In this study, we modeled the spreading of two competing pieces of informa-
tion on a non-modular and modular network and analyzed how the community
structure affects the competitive spreading in the sequential and simultaneous
spreading scenarios under the majority assumption (i.e., assumption that each
node spreads the majority information from its perspective). In the sequential
spreading scenario, we found that the community structure has little effect on
the final prevalence but affects the spreading process; that is, the spreading peaks
in different communities are separated in time. In contrast, in the simultaneous
spreading scenario, we found that community structure has a strong effect on
not only the spreading process but also the final prevalence. On a non-modular
network, two competing pieces of information cannot coexist and one drives out
the other. However, on a modular network, they avoid competition and coex-
ist in different communities even though the majority assumption is a strong
assumption that prevents coexistence. These results suggest that the effect of
community structure cannot be ignored in the analysis of competitive spreading
(especially, simultaneous spreading) of multiple information. Further studies are
needed to analyze the spreading dynamics in other scenarios (e.g., cooperative
scenario) and/or under looser assumptions than the majority assumption.
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Abstract. Many problems such as node classification and link predic-
tion in network data can be solved using graph embeddings. However, it
is difficult to use graphs to capture non-binary relations such as commu-
nities of nodes. These kinds of complex relations are expressed more nat-
urally as hypergraphs. While hypergraphs are a generalization of graphs,
state-of-the-art graph embedding techniques are not adequate for solv-
ing prediction and classification tasks on large hypergraphs accurately
in reasonable time. In this paper, we introduce HyperNetVec, a novel
hierarchical framework for scalable unsupervised hypergraph embedding.
HyperNetVec exploits shared-memory parallelism and is capable of gen-
erating high quality embeddings for real-world hypergraphs with millions
of nodes and hyperedges in only a couple of minutes while existing hyper-
graph systems either fail for such large hypergraphs or may take days to
produce the embeddings.

Keywords: Hypergraph embedding · Network embedding

1 Introduction

A hypergraph is a generalization of a graph in which an edge can connect any
number of nodes. Formally, a hypergraph H is a tuple (V,E) where V is the set
of nodes and E is a set of nonempty subsets of V called hyperedges. Nodes and
hyperedges may have weights. Graphs are a special case of hypergraphs in which
each hyperedge connects exactly two nodes.

Hypergraphs arise in many application domains. For example, Giurgiu et al.
[11] model protein interaction networks as hypergraphs; nodes in the hypergraph
represent the proteins and hyperedges represent protein complexes formed by
interactions between multiple proteins. The DisGeNET knowledge platform [24]
represents a disease genomics dataset as a hypergraph in which nodes represents
genes and hyperedges represent diseases associated with certain collections of
genes. Algorithms for solving hypergraph problems are then used to predict new
protein complexes or to predict that a cluster of genes is associated with an
as-yet undiscovered disease.
c© Springer Nature Switzerland AG 2022
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1.1 Hypergraph Embedding

Bengio et al. [1] show that one way to solve prediction problems in graphs is
to find an embedding of the graph using representation learning. Formally, an
embedding of a network is a mapping of the vertex set into Rd where n is the
number of nodes in the network and d � n. There is a rich literature on graph
embedding methods that use a variety of techniques ranging from random walks
[13,22,27] to matrix factorization [25] and graph neural networks [14,30]. Graph
embedding techniques can be extended to hypergraphs in two ways but neither
of them is satisfactory.

One approach is to represent the hypergraph as a graph by replacing each
hyperedge with a clique of edges connecting the vertices of that hyperedge, and
then use graph embeddings to solve the prediction problems. This approach has
been explored in HGNN [9] and HyperGCN [31]. However, the clique expansion
is lossy because the hypergraph cannot be recovered from the clique expansion
in general. This information loss persists even if the dual of the hypergraph is
considered [17].

Zien et al. [36] show that another approach is to work with the star expansion
of the hypergraph. Given a hypergraph H = (V,E) where V is the set of nodes
and E is the set of hyperedges, we create a bipartite graph H∗ = (V ∗, E∗) by (i)
introducing a node ve for each hyperedge e ∈ E so in final graph V ∗ = V ∪ E,
and (ii) introducing an edge between a node u ∈ V and a hyperedge node
ve ∈ E if u ∈ e in the hypergraph, so i.e., E∗ = (u, ve) : u ∈ e, e ∈ E. Unlike the
clique expansion of a hypergraph, the star expansion is not lossy provided nodes
representing hyperedges are distinguished from nodes representing hypergraph
nodes. However, graph representation learning approaches do not distinguish
between the two types of nodes in the bipartite graph, which lowers accuracy
for prediction problems as we show in this paper.

These problems motivated us to develop HyperNetVec, a parallel multi-level
framework for constructing hypergraph embeddings. HyperNetVec leverages exist-
ing graph embedding algorithms and it performs hypergraph embedding in a
much faster and more scalable manner than current methods. We evaluate
HyperNetVec on a number of data sets for node classification and hyperedge
prediction. Our experiments show that our hierarchical framework can compute
the embedding of hypergraphs with millions of nodes and hyperedges in just
a few minutes without loss of accuracy in downstream tasks, while all existing
hypergraph embedding techniques either fail to run on such large inputs and or
take days to complete.

Our main technical contributions are summarized below.

– HyperNetVec: We describe HyperNetVec, a hierarchical hypergraph embed-
ding framework that is designed to handle variable-sized hyperedges.

– Node features: Unlike many other systems in this space, HyperNetVec
can exploit the topology of the graph as well as node features, if they are
present in the input data.

– Unsupervised hypergraph embedding system: To the best of our
knowledge, HyperNetVec is the first unsupervised hypergraph embedding
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Fig. 1. Multi-level embedding. Top left: original hypergraph. Top right: contracting
nodes of a hypergraph to create a coarser hypergraph. Bottom left: initial embedding.
Bottom right: iterative refinement of embeddings.

system. The embeddings obtained from this framework can be used in down-
stream tasks such as hyperedge prediction and node classification.

– Scalability: HyperNetVec is the first hypergraph embedding approach that
can generate embeddings of hypergraphs with millions of nodes and hyper-
edges.
Our approach can significantly reduce run time while producing comparable
and in some cases, better accuracy than state-of-the-art techniques.

2 Related Work

There is a large body of work on graph and hypergraph embedding techniques
so we discuss only the most closely related work.

2.1 Network Embedding

There are relatively few efforts on hypergraph embedding that treat hyperedges
as first-class entities. As mentioned above, one popular approach to hypergraph
embedding is to convert the hypergraph to a graph and then use a graph embed-
ding technique [9,29,33]. For example, each hyperedge can be replaced with a
clique connecting the nodes of that hyperedge to produce a graph representa-
tion. Other approaches such as HyperGCN [31] use a graph convolution on a
modified clique expansion technique where they choose what edges to keep in
the graph representation. While this method keeps more structure than methods
based on the clique expansion of a hypergraph, existing methods fail to scale to
large networks as we show in this paper.

Multi-level Embedding. Multi-level (hierarchical) approaches attempt to
improve the run-time and quality of existing or new embedding techniques.
Multi-level graph embedding consists of three phases: coarsening, initial embed-
ding, and refinement. Coarsening: A coarsened graph G′ is created by merging
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pairs of nodes in input graph G. This process is applied recursively to the coarser
graph, creating a sequence of graphs. In which the final graph is the coarsest
graph that meets some termination criterion (e.g., its size is below some thresh-
old). Initial embedding: Any unsupervised embedding methods for networks can
be used to generate an initial embedding. Refinement: For graphs G′ and G, the
embedding of G′ is projected onto G and then refined, starting from the coarsest
graph and finishing with the original graph.

There is a large body of research on multi-level graph embedding. For exam-
ple, HARP [4] generates a hierarchy of coarsened graphs and perform embedding
from the coarsest level to the original one. MILE [19] uses heavy edge match-
ing [3] to coarsen the graph and leverages GCN as a refinement method to
improve embedding quality. However, training a GCN model is very time con-
suming for large graphs and leads to poor performance when multiple GCN lay-
ers are stacked together [18]. These multi-level embedding methods only utilise
structural information (topology) of a graph. However, in many datasets such
as citations, nodes of a graph have attributes. For a high quality embedding,
it is important to exploit node attributes as well as structural information of
a graph. GraphZoom [6] first performs graph fusion to generate a new graph
that encodes the topology of the original graph and the node attribute informa-
tion and then uses a coarsening algorithm that merges nodes with high spectral
similarity. Finally, they apply a local refinement algorithm. While GraphZoom
outperforms previous multi-level embedding systems, it still takes hours, in some
cases days, to generate embeddings for a graph with millions of nodes and edges.

In general, hypergraphs are a more complicated topic and the correspond-
ing algorithms are typically more compute and memory intensive. Multi-level
approaches for hypergraphs have been used mainly for hypergraph partitioning
[7,16,20]. In principle, ideas from multi-level graph embedding approaches can
be adopted for hypergraphs. For example, for the coarsening algorithm, we can
merge pairs of nodes that have a hyperedge in common (heavy edge matching).
While this approach is able to produce coarser hypergraphs, it reduces the num-
ber of hyperedges in the coarser graphs only for those pairs of matched nodes that
are connected by a hyperedge of size two. As a result, the coarsest hypergraph
is still large in terms of the size of the hyperedges which increases the running
time of the overall algorithm. In our experience, the coarsening and refinement
algorithms proposed in multi-level graph embedding systems are not adequate
for solving inference problems on hypergraphs, as we discuss in this paper. These
limitations led us to design HyperNetVec, which scales to hypergraphs with mil-
lions of nodes and hyperedges while producing high-quality embeddings.

3 Methodology

Given a hypergraph H = (V,E), the algorithms described in this paper use
the star expansion of the hypergraph and assign a vector representation hu to
each u ∈ (V ∪ E). Intuitively, these embeddings attempt to preserve structural
similarity in the hypergraph: if two hyperedges have many nodes in common
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or if two nodes are in many of the same hyperedges, the algorithm attempts to
assign the two hyperedges/nodes to points that are close in the vector space.
Closeness can be computed using distance or other measures of vector similarity.
Embedding should also exploit the transitivity property of similarity: if a and b
are similar, and b and c are similar, we want the embedding of a and c to be close
to each other as well. Finally, if nodes have features, the embeddings should also
exploit functional similarity between nodes.

Figure 1 illustrates the high-level idea of multi-level hypergraph embedding.
This framework consists of three phases: (i) Coarsening, which iteratively merges
nodes of the hypergraph to shrink the size of the hypergraph until the hyper-
graph is small enough that any network embedding algorithm can quickly obtain
the embedding of the smallest hypergraph; (ii) Initial embedding, in which a net-
work embedding algorithm is used on the coarsest hypergraph to generate the
embedding, and (iii) Refinement, in which the embedding vectors of the coarser
hypergraph are projected onto a finer hypergraph and a refinement algorithm is
used to refine these embedding vectors. In the rest of this section, we describe
these phases in more detail. HyperNetVec is a parallel implementation of the
multilevel approach.

3.1 Coarsening

Intuitively, coarsening finds nodes that are similar to each other and merges
them to obtain a coarser hypergraph. To obtain a high quality embedding, we
need to explore both structural similarity and functional similarity. The connec-
tivity of nodes and hyperedges of a hypergraph determines structural similarity
while node features determine functional similarity.

The first step in coarsening a hypergraph is to find nodes that are similar
to each other and merge them. This is accomplished by “assigning” each node
to one of its hyperedges, and then merging all nodes {n1, n2, ..., nk} assigned to
a given hyperedge to produce a node n′ of the coarser hypergraph. We refer to
n′ as the representative of node ni in the coarse hypergraph, and denote it as
rep(ni). If all nodes of a hyperedge hj are merged, we remove that hyperedge
from the hypergraph. Otherwise, we add the hyperedge to the next level and
refer to it as rep(hj). If a node ni is contained in hyperedge hj in the finer
hypergraph and hj is present in the coarse hypergraph, then rep(ni) is made a
member of rep(hj).

If nodes of a hypergraph have features, this information can be used to find
similar nodes and merge them together. In a hypergraph with node features,
the feature vector of a hyperedge is the mean aggregation of the features of its
nodes. In this scenario, metrics of vector similarity or distance between a feature
vector of a hyperedge and a node can be used for assigning nodes to hyperedges.
However, if the hypergraph has no features, HyperNetVec can use other measures
such as weights or degrees of a hyperedge to assign nodes to hyperedges. The
datasets used in experiments in this paper for node classification are citation
networks and the node feature vectors come from bag-of-words encoding. In
these datasets, cosine similarity aligns well with class labels. However, other
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metrics of vector similarity or distance such as L2 norm, correlation distance,
etc. can also be used.

In summary, at each level of coarsening, HyperNetVec computes a feature
vector for a hyperedge by finding the mean aggregation of the feature vectors of
its nodes. Then it assigns each node v in the current hypergraph to a hyperedge

c(v), defined (for cosine similarity) as c(v) = argmaxe∈N (v)

f(e) · f(v)
|f(e)| · |f(v)| where

N (v) is the set of hyperedges that node v belongs to, f(e) is the feature vector
of hyperedge e and f(v) is the feature vector of node v.

Nodes that are assigned to the same hyperedge are merged together and the
resulting node is added to the coarse hypergraph. In case of a tie, HyperNetVec
randomly chooses a hyperedge in the neighborhood of the node.

3.2 Initial Embedding

We coarsen the hypergraph until it is small enough that any unsupervised embed-
ding method can generate the embedding of the coarsest hypergraph in just a
few seconds. We use the edgelist of the coarsest bipartite graph (star expansion)
as the input to this embedding method.

3.3 Refinement

The goal of this phase is to improve embeddings by performing a variation of
Laplacian smoothing [28] that we call the refinement algorithm. The basic idea
is to update the embedding of each node u using a weighted average of its own
embedding and the embeddings of its immediate neighbors N (u). Intuitively,
smoothing eliminates high-frequency noise in the embeddings and tries to assign
similar embeddings to nodes that are close to each other in the graph, which
improves the accuracy of downstream inference tasks. A simple iterative scheme
for smoothing is: z̃iu =

∑
v∈N (u)(

wuv∑
v∈N(u) wuv

)zi−1
v . In this formula, ziu is the

embedding of node u in iteration i, and wuv is the weight on the outgoing edge
from u to v; if there no weights in the input hypergraph, a value of 1 is used and
the denominator is the degree of node u. This iterative scheme can be improved
by introducing a hyper-parameter ω that determines the relative importance
of the embeddings of the neighboring nodes versus the embedding of the node
itself, to obtain the following iterative scheme: ziu = (1−ω)zi−1

u +ωz̃iu. The initial
embeddings for the iterative scheme are generated as follows. For the coarsest
graph, they are generated as described in Sect. 3.2. For the other hypergraphs, if
a set of nodes S in hypergraph Hi−1 was merged to form a node n in the coarser
hypergraph Hi, the embedding of n in Hi is assigned to all the nodes of S in
Hi−1.

Abstractly, this iterative scheme uses successive over-relaxation (SOR) with
a parameter ω to solve the linear system Lz = 0 where L is the Laplacian matrix
of H∗, the bipartite (star) representation of the hypergraph. The Laplacian is
defined as (D − A) where D is the diagonal matrix with diagonal elements duu
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Algorithm 1: Refinement

1: Input: Bipartite graph representation H∗ = (V ∗, E∗, W ) of hypergraph
H = (V, E, W ), vector representation zu for all u ∈ (V ∗), neighborhood function
N (u), parameter ω, parameter k for max iteration

2: Output: Refined vector representation hu, ∀u ∈ (V ∗)
3: z0u ← zu, ∀u ∈ (V ∗)
4: iter = 0
5: while iter < k do

6: for u ∈ V ∗ in parallel do
7: z̃iu ← ∑

v∈N (u) wuvzi−1
v /

∑
v∈N (u) wuv

8: ziu ← (1 − ω)zi−1
u + ωz̃iu

9: end for

10: iter += 1

11: end while
12: hu ← zku, ∀u ∈ (V ∗)

equal to the degree of node u for unweighted graphs (for weighted graphs, the
sum of weights of outgoing edges), and A is the adjacency matrix of H∗. To
avoid oversmoothing, we do not compute the exact solution of this linear system
but if we start with a good initial embedding z0, a few iterations of the iterative
scheme lead to significant gains in the quality of the embedding, as we show
experimentally in Sect. 4.

Algorithm 1 shows the psuedocode for refinement. The inputs to this algo-
rithm are H∗, the bipartite representation of the hypergraph, zu, the initial
embedding for each node and hyperedge, and a relaxation parameter ω between
0 and 1. Embeddings of the hyperedges are updated using the embeddings of
the nodes, and the embeddings of nodes are updated using the embeddings of
hyperedges. Note that if u represents a hyperedge, N (u) is the set of nodes in
that hyperedge, and if u represents a node in the hypergraph, N (u) represents
the set of hyperedges that u is contained in. Each iteration of the refinement
algorithm has a linear time complexity in the size of the bipartite representation
of the hypergraph.

4 Experiments

HyperNetVec provides an unsupervised method for representation learning for
hypergraphs. We show these representations perform well for both node classi-
fication and hyperedge prediction. Prior works such as HyperGCN and Hyper-
SAGNN have been evaluated for one or the other of these tasks but not both.

Experimental Settings. We implement HyperNetVec in Galois 6.0 [23]. All
experiments are done on a machine running CentOS 7 with 4 sockets of 14-core
Intel Xeon Gold 5120 CPUs at 2.2 GHz, and 187 GB of RAM. All the methods
used in this study are parallel implementations and we use the maximum num-
ber of cores available on the machine to run the experiments. The embedding
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dimension is 128. The hyperparameter ω in the refinement algorithm is set to
0.5 for all experiments. Once node embeddings are obtained, we apply logistic
regression with cross-entropy loss for our downstream tasks.

Table 1. Datasets used for node classification.

Dataset Nodes Hyperedges Edges Classes Features

Citeseer 1,458 1,079 6,906 6 3,703

PubMed 3,840 7,963 69,258 3 500

DBLP 41,302 22,363 199,122 6 1,425

4.1 Node Classification

Given a hypergraph and node labels on a small subset of nodes, the task is
to predict labels on the remaining nodes. We used the standard hypergraph
datasets from prior works, and these are listed in Table 1. We are given 4% of
node labels and predict the remaining 96%.

Methods Compared. We explore a number of popular methods for graph
embedding. We also compare our results with hypergraph convolutional networks
approaches for semi-supervised classification.

Random-Walk Methods: We select node2vec [13] (high performance implementa-
tion [12]) for this group. This method is properly tuned. We explored window size
{10,20}, walk length {20, 40, 80, 120}, number of walks per vertex {10,80,40},
p {1,4,0.5}, and q {1,4,0.5}. The results reported in the paper are for the best
hyper-parameter values, which are 10,80,10,4,1 respectively.

Graph Convolutional Network: We compare with GraphSAGE [14]. We use
GraphSAGE in unsupervised manner with the mean aggregator model.

Multi-level Based Embedding Methods: We compare against unsupervised
approaches MILE [19], and GraphZoom [6]. MILE is a multi-level graph embed-
ding framework. We used the default refinement technique, MD-gcn. GraphZoom
is also a multi-level graph embedding framework. For the coarsening, we used
simple.

Semi-supervised Classification on Hypergraphs. We compare with HyperGCN.
Given a hypergraph, HyperGCN [31] approximates the hypergraph by a graph
where each hyperedge is approximated by a subgraph. A graph convolutional net-
work (GCN) is then run on the resulting graph. We used 200 epochs and learning
rate of 0.01. For the multi-level approaches, we use node2vec, and GraphSAGE
as the initial embedding methods. Since MILE cannot utilise node features, we
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do not run GraphSAGE as an initial embedding method for MILE. We report the
mean test accuracy and standard deviation over 100 different train-test splits.
We optimize hyperparameters of all the baselines. For HyperNetVec, we use 80
iterations of refinement. Alternatively, other stopping criteria such as epsilon
difference between two consecutive iterations can be used.

Running Time. For HyperNetVec and other multi-level approaches, running
time includes all three phases: coarsening, initial embedding, and refinement.
For the rest of the baselines, we use the time for hypergraph embedding. For
each approach to computing the initial embeddings (node2vec, GraphSAGE), we
have a row showing the accuracy and running times when that approach is used,
and rows below those showing the accuracy and running times if that approach
is used in conjunction with HyperNetVec or other multilevel approaches. For
example, the first row in Table 2 shows the running times and accuracy when
node2vec is used on the star expansion of the hypergraph, while the second
row (HyperNetVec + nv (l=0)) shows the total running time and accuracy if
HyperNetVec is used without coarsening but with the output of node2vec being
post-processed using our refinement algorithm. The line below that (l=2) shows
the results if two levels of coarsening are used in addition.

Datasets. We used the following standard hypergraph datasets in our study.
Nodes not connected to any hyperedge, as well as hyperedges containing only
one node, were removed. Citeseer (co-citation): scientific publications classified
into six classes. All documents cited by a document are connected by a hyper-
edge. [10]. PubMed (co-citation): scientific publications from PubMed Diabetes
database. All documents cited by a document are connected by a hyperedge [10].
DBLP (co-authorship): scientific publications consist of 6 conference categories.
All documents co-authored by an author are in one hyperedge [5].

Table 2. Node classification. Accuracy in % and time in seconds. l is the number of
coarsening levels. 0 means without coarsening.

Citeseer PubMed DBLP

Accuracy Time Accuracy Time Accuracy Time

node2vec (nv) 51.3 ±1. 14 65.3 ± 2. 66 64.3 ± .4 470

HyperNetVec + nv (l=0) 59.1 ±1. 16 79.7 ±1. 70 72.4 ± .4 490

HyperNetVec + nv (l=2) 60.6 ±1. 17 80.7 ±1. 69 78.9 ±.5 216

GraphZoom + nv (l=2) 54.4 ±1. 15 74.9 ± .1 100 70.2 ± .5 434

MILE + nv (l=2) 52.2 ±1. 14 68.7 ± .2 60 71.8 ±1. 402

GraphSAGE (gs) 45.6 ±1. 1,167 60.7 ± .2 277 67.7 ± .1 925

HyperNetVec + gs (l=0) 60.3 ±3. 1,170 80.4 ±.1 296 79.9 ±.1 1,055

HyperNetVec + gs (l=2) 60.2 ±1. 843 80.8 ±.1 120 79.4 ±.4 530

GraphZoom + gs (l=2) 52.7 ±1. 853 72.4 ± .1 137 75.6 ± .4 593

HyperGCN 54.1 ±10 12 64.3 ± 10 60 63.3 ± 10 480
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These are the main takeaways from Table 2. HyperNetVec generates the
highest quality embeddings for the node classification task. HyperNetVec out-
performs HyperGCN in terms of quality for all datasets by up to 15%. The
refinement algorithm improves the quality of embeddings for all the datasets
by up to 23%. This can be seen by comparing the statistics for HyperNetVec
without coarsening (l = 0) with those for node2vec, and GraphSAGE. The ini-
tial embedding for HyperNetVec is obtained from node2vec, and GraphSAGE
so differences in the statistics arise entirely from the fact that HyperNetVec per-
forms refinement. HyperNetVec outperforms prior multi-level graph embedding
approaches (MILE and GraphZoom) for all the datasets by up to 11% for MILE
and up to 9% for GraphZoom. Coarsening reduces the overall running time of
the embedding for larger hypergraphs. Since coarsening reduces the size of the
hypergraph, the initial embedding and refinement can be done faster. This can
be seen by comparing the statistics for HyperNetVec with 2 levels of coarsening
(l = 2) with those for slower initial embedding approach such as GraphSAGE.

4.2 Hyperedge Prediction

In hyperedge prediction, we are given a hypergraph with a certain fraction of
hyperedges removed, and given a proposed hyperedge (i.e. a set of nodes) our
goal is to predict if this is likely to be a hyperedge or not. Formally, given a
k-tuple of nodes (v1, v2, ..., vk), our goal is to predict if this tuple is likely to be
a hyperedge or not.

We compare our method with the supervised hyperedge prediction method
Hyper-SAGNN [34] on four datasets listed in Table 3, and with the graph method
node2vec. Hyper-SAGNN is a self-attention based approach for hyperedge pre-
diction. We used their encoder-based approach with learning rate of 0.001 and
300 epochs.

Table 3. Datasets used for hyperedge prediction.

Nodes Hyperedges Edges

GPS 221 437 1, 436

MovieLens 17, 100 46, 413 47, 957

Drug 7, 486 171, 757 171, 756

Wordnet 81, 073 146, 433 145, 966

Friendster 7, 458, 099 1, 616, 918 37, 783, 346

Datasets. We used the following datasets in our study. GPS: a GPS network.
Hyperedges are based on (user, location, activity) relations [35]. MovieLens:
a social network where hyperedges are based on (user, movie, tag) relations,
describing peoples’ tagging activities [15]. Drug: a medicine network. The hyper-
edges are based on (user, drug, reaction) relations [8].Wordnet: a semantic net-
work from WordNet 3.0. The hyperedges are based on (head entity, relation, tail
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entity), expressing the relationships between words [2]. Friendster: an on-line
gaming network. Users can form a group on Friendster social network which
other members can then join. These user-defined groups are considered as com-
munities. Communities larger than 500 were removed [32].

We used the same training and test data setups as Hyper-SAGNN (except for
Friendster, which Hyper-SAGNN could not run). For this task, they randomly
hide 20 percentage of existing hyperedges and use the rest of the hypergraph for
training. The negative samples are 5 times the amount of positive samples. We
downloaded their code and datasets from their GitHub repository. We used the
encoder-based approach to generate the features.

For HyperNetVec, we use two levels of coarsening and two levels of refine-
ment. We first obtain the embedding of the hypergraphs with node2vec as the
initial embedding technique. To train our classifier, we used the same positive
samples as Hyper-SAGNN. For negative samples we used only the negative sam-
ples of a *single* epoch of Hyper-SAGNN. We then use the vector of the variances
of each dimension of the embedding for hyperedge prediction. The intuition is
that if nodes are spread out (high variance in the embedding), then they proba-
bly do not form a hyperedge whereas nodes that are close to each other are likely
to constitute a hyperedge. Various operators such as average, min, and max can
be used instead of variance.

Experimental Results. Table 4 summarizes the hyperedge prediction results
for HyperNetVec, node2vec, and Hyper-SAGNN. HyperNetVec achieves the best
AUC and running time compared to Hyper-SAGNN. Hyper-SAGNN took almost
a day for wordnet whereas HyperNetVec completed the task in less than a
minute. HyperNetVec achieves better AUC compared to node2vec on all datasets
except drug, and it is always faster.

HyperNetVec for Large Hypergraphs. We study the scalability of Hyper-
NetVec on a large hypergraph (Friendster) and compare HyperNetVec’s accuracy
and running time with that of MILE, and DeepWalk (a random-walk based
method [22]). (Hyper-SAGNN, GraphZoom and node2vec failed to generate
results for Friendster). We randomly hide 20% of existing hyperedges and use the
rest of the hypergraph to generate the embeddings for the nodes of the hyper-
graph and finally, use the variance operator for prediction. Since the hypergraph
is large, we used five levels of coarsening and ten levels of refinement. The other
baseline that was able to run Friendster was MILE with 15 levels of coarsen-
ing, and it failed for smaller numbers of coarsening levels. It took MILE 8 h to
generate embeddings for Friendster with an accuracy of 90.4 while it took Hyper-
NetVec only fifteen minutes to do the same task with better accuracy (92.3%).
DeepWalk was also able to generate the embeddings for Friendster after 17 h
with accuracy 84.9%.
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Figure 2 compares MILE, DeepWalk, and HyperNetVec in terms of accuracy
for different levels of coarsening for HyperNetVec (for MILE, we used 15 levels
of coarsening). The main takeaway from Fig. 2 is that using more levels of coars-
ening reduces the running time of the overall algorithm, as one would expect.
However, a large number of coarsening levels may reduce the accuracy. While
this is a fact in most multi-level approaches, Fig. 2 shows that the loss of accu-
racy for HyperNetVec is negligible and we are able to get more than 13x speed
up by using 5 levels of coarsening instead of 3 levels, while losing less than 3%
in accuracy.

Table 4. Area Under Curve (AUC) scores. Time in seconds.

GPS MovieLens Drug Wordnet Friendster

AUC Time AUC Time AUC Time AUC Time AUC Time

HyperNetVec 94.5 1 94.8 6.4 96.5 295 93.0 43.4 93.2 897

Hyper-SAGNN 90.6 1,800 90.8 11,160 95.9 39,540 87.7 82,800 - -

node2vec 94.0 10 79.8 19 97.4 895 89.0 940 - -

Fig. 2. Performance on Friendster

We also study the behaviour of HyperNetVec for the largest hypergraph,
Friendster. In Table 5, we see the effect of the coarsening on the size of the
hypergraph as well as accuracy and running time. Without coarsening, initial
partitioning using DeepWalk takes 17 h (61,260 s) but with 8 levels of coarsening,
the end-to-end running time is only 474 s. Therefore, using 8 levels of coarsening
improves running time by 130X. The table also shows the breakdown of time in
different kernels of HyperNetVec. If the coarsest hypergraph is small, most of
the time is spent in refinement whereas if the coarsest hypergraph is large, the
time is spent mostly in initial embedding.
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Table 5. Behavior of HyperNetVec at different levels of coarsening on Friendster.
COARSE-N is the number of levels of coarsening, time is in seconds.

COARSE-N 0 3 4 5 6 7 8

Hyperedges 1,616,918 564,262 460,830 419,588 404,857 399,194 396,333

Nodes 7,458,099 436,099 154,418 85,371 67,682 61,669 59,359

Coarse time 0 31 34 36 43 41 39

Init time 61,260 11,760 4,620 600 120 51 29

Refine time 0 181 237 261 261 349 406

Accuracy 84.9 95.8 95.3 93.2 92.7 92.3 92.3

5 Ongoing Work

In our ongoing research, we want to automatically learn the values of important
hyper-parameters such as the number of coarsening levels and the value of ω that
should be used in refinement. For very large hypergraphs, it may be necessary
to use distributed-memory machines, which requires partitioning the hypergraph
between the memories of the machines in the cluster. Our prior work on BiPart
can be used for this task [20,21,26].
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