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Abstract The past 35 years, beginning with the identification of ZO-1  in 1986, 
have been an exciting time during which critical tight junction proteins were discov-
ered. We have, however, only begun to define the mechanism by which tight junc-
tions are regulated, their impact on health and disease, and noncanonical functions 
of individual tight junction-associated proteins. Here, we provide an overview of 
advances in understanding mechanisms of tight junction barrier regulation within 
the intestinal epithelium and discuss recent discoveries related to claudin-2 and 
occludin in greater detail. We anticipate that the next 35  years will yield major 
advances in fundamental understanding of tight junction protein interactions, regu-
lation, and canonical and noncanonical functions that result in translational applica-
tions in which tight junction modulation is established as a therapeutic approach.
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Abbreviations

CK2 Casein kinase 2
DSS Dextran sulfate sodium
FRAP Fluorescence recovery after photobleaching
MLC Myosin II regulatory light chain
MLCK Myosin light -chain kinase
TER Transepithelial electrical resistance
TNBS Trinitrobenzenesulfonic acid
TNF Tumor necrosis factor

 Introduction

The viability of multicellular life forms requires the presence of barrier-forming 
tissues that partition distinct compartments within the organism and separate the 
external environment from the internal milieu. In mammals, examples of surfaces 
that interact with the external environment include the skin as well as oral, gastroin-
testinal, and genitourinary mucosae. At each of these sites, the tight junction creates 
a selectively permeable seal that restricts flux across the paracellular space between 
cells. Tight junctions in the skin are nearly impermeant, and, in burn patients, the 
extent of epidermal barrier loss is a strong prognostic indicator of outcome. The 
gastrointestinal epithelium, particularly within the distal gut, interfaces with a dense 
and complex luminal microbiome that can include invasive pathogens as well as 
potentially harmful bacterial components and metabolites. Dysregulated systemic 
exposure to these luminal materials, which could lead to immune-mediated, meta-
bolic, and infectious diseases, emphasizes the essential nature of the intestinal epi-
thelial barrier. However, in contrast to the skin, the intestinal barrier must allow 
paracellular flux of water, ions, and nutrients. The charge and size selectivity of this 
barrier are determined by the tight junction, which is the rate-limiting step in para-
cellular flux.

 Tight Junctions Are Regulated by Pharmacological 
and Physiological Stimuli

Farquhar’s descriptions of the tight junction and apical junctional complex were 
remarkably consistent across samples and tissues [1]. Together with other data, this 
led many to conclude that tight junctions are static structures with unchanging per-
meabilities. Ussing’s report [2], only 1 year after Farquhar’s landmark publication, 
that application of an osmotic gradient could markedly increase paracellular flux 
across was interpreted as tight junction disassembly. Subsequent studies showing 
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that osmotic gradients reduced [3], while phalloidin and proliferative stimuli 
increased [4, 5], the complexity of strand networks were generally dismissed as 
non-physiological. This changed in 1987 when Pappenheimer et  al. published a 
series of papers demonstrating that increased intestinal epithelial tight junction per-
meability was a physiological response to Na+-nutrient cotransport [6–8]. These 
first studies showing physiological tight junction regulation also led to the discovery 
of “solvent drag” [8–10], a mechanism by which paracellular flux allows continued 
nutrient absorption despite saturation of transcellular transport pathways. Although 
initially controversial [11–15], subsequent in vitro and in vivo studies demonstrated 
that solvent drag occurs in many species, including humans [16, 17], as a result of 
increased paracellular permeability [18–20]. Subsequent work has documented 
similar paracellular amplification of transcellular transport in the renal tubule 
[21, 22].

Ex vivo studies of rodent mucosae showed that Na+-nutrient cotransport-induced 
tight junction permeability increases were associated with morphological changes 
including expansion of spaces between tight junction strands and condensation of 
perijunctional microfilaments [6]. This led to the hypothesis that actomyosin con-
traction might contribute to Na+-nutrient cotransport-induced tight junction regula-
tion. However, methods available at that time precluded mechanistic analysis in 
intact mucosae. This obstacle was overcome by the development of a cell culture 
model of intestinal epithelial tight junction regulation in response to Na+-glucose 
cotransport [23]. Using a model facilitated the discovery that actomyosin contrac-
tion driven by myosin light  chain kinase (MLCK)-mediated phosphorylation of 
myosin II regulatory light chain (MLC) was essential for physiological tight junc-
tion regulation. Moreover, enzymatic MLCK inhibition blocked Na+-glucose 
cotransport-induced tight junction regulation in cultured monolayers and isolated 
rodent mucosae [23]. Subsequent studies showed that Na+-glucose cotransport led 
to increased tight junction permeability and MLC phosphorylation in human intes-
tinal mucosae [19]. Importantly, both in vitro and in vivo studies showed that these 
alterations were size selective in that mannitol (~7 Å diameter) permeability was 
increased, but there were no detectable changes in paracellular inulin (30–40  Å 
diameter) flux [20, 23]. Thus, MLCK activation by physiological stimuli is a canon-
ical mechanism of epithelial tight junction regulation.

 Tight Junctions Are Differentially Regulated by 
Inflammatory Stimuli

The discovery of MLCK as the mediator of Na+-glucose cotransport-induced per-
meability increases provided the first mechanistic insight into physiological tight 
junction regulation. This also created opportunities to discover mechanisms of 
pathophysiological barrier regulation. Of these, the most well-established is the dis-
covery that MLCK also mediates tight junction regulation induced by 
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proinflammatory cytokines, including TNF, LIGHT, and IL-1β [24–26]. The effi-
cacy of anti-TNF therapies and their ability to restore barrier function in patients 
highlights the clinical relevance of this discovery, although efficacy is more likely 
due to immunomodulation [27, 28]. Experimentally, barrier loss induced by TNF 
was completely reversed by  a specific membrane-permeant inhibitor of MLCK 
(PIK). MLC phosphorylation, which was increased following TNF treatment, was 
also corrected by PIK [29]. PIK was, however, only able to restore barrier function 
in response to modest degrees of barrier loss [29], indicating that the effect was due 
to reversal of TNF-induced tight junction regulation rather than inhibition of TNF-
induced apoptosis [30–32]. Moreover, PIK or genetic epithelial MLCK inhibition 
each prevented acute, TNF-induced barrier loss and diarrhea in vivo [33]. Further, 
epithelial MLC phosphorylation and MLCK expression were found to be increased 
in human inflammatory bowel disease and to correlate with disease activity [34]. 
Thus, TNF and more complex inflammatory stimuli hijack physiological mecha-
nisms of tight junction regulation to increase intestinal permeability. There are, 
however, differences between tight junction regulation by physiological Na+-
glucose cotransport and that induced by TNF in that only TNF increases permeabil-
ity of molecules larger than small sugars [23, 30]. Thus, although both are driven by 
MLCK, the barrier loss induced by TNF is qualitatively different from that induced 
by Na+-glucose cotransport. This may reflect a second signal induced by TNF, as 
TNF, but not Na+-glucose cotransport, triggers occludin endocytosis in vivo [33, 34].

Once claudins were discovered and antibodies became available, several groups 
began to assess patterns of expression in health and disease [35–38]. These demon-
strated markedly increased claudin-2 expression during active inflammatory bowel 
disease and showed that IL-13, which is elevated in both ulcerative colitis and 
Crohn’s disease, was able to induce claudin-2 expression in cultured intestinal epi-
thelial monolayers [36, 37]. Further study showed that, although IL-13, like TNF, 
reduced transepithelial electrical resistance (TER), only TNF increased paracellular 
permeability to 4 kDa dextran (28 Å diameter) and reduced charge selectivity [39]. 
In contrast to TNF, IL-13-induced barrier loss,  was due to a claudin-2- 
mediated increase in paracellular Na+ permeability and was unaffected by PIK [39]. 
In vivo studies confirmed that IL-13 was sufficient to increase cation permeability, 
and subsequent studies demonstrated that IL-13 was unable to affect paracellular 
permeability of claudin-2 knockout mice, while transgenic claudin-2 overexpres-
sion was sufficient to replicate the effects of IL-13 in the absence of cytokine treat-
ment [40]. These data demonstrated that the IL-13 and TNF modify paracellular 
permeability by different mechanisms, claudin-2 upregulation and MLCK activa-
tion, respectively, that have distinct functional effects.

 Distinct Tight Junction Pore and Leak Pathways

In parallel with the studies above, analyses of genetically modified MDCK mono-
layers showed that claudin-2 expression increased paracellular permeability of 
small molecules across pores with diameter of ~8  Å but had no effect on 
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paracellular flux of larger probes [41]. In contrast, knockdown of either ZO-1 or 
occludin increased paracellular permeability to larger macromolecules [42, 43]. 
Specifically, occludin knockdown increased flux across a pathway that accommo-
dates macromolecules up to ~125 Å in diameter [43]. Thus, TNF treatment or occlu-
din knockdown increased macromolecular permeability and reduced charge 
selectivity, while IL-13 treatment or claudin-2 overexpression increased cation 
selectivity without affecting macromolecular permeability. This confluence of 
observations led to the hypothesis that two distinct pathways, termed pore and leak, 
mediate paracellular flux (Fig. 1) [44, 45]. The pore pathway, exemplified by clau-
din-2 channels, is a high-conductance route that is both charge- and size-selective, 
with a maximum diameter of 6 to 8  Å. The low-capacity leak pathway is size-
selective, with an estimated maximum diameter of 100 to 125 Å and is not charge-
selective. In contrast to the pore pathway, which is created by claudin-based, gated 
channels [46], the anatomy of the leak pathway has not been defined; some have 
suggested that leak pathway flux may occur primarily at tricellular tight junc-
tions [47].

Fig. 1 The intestinal barrier. The space between epithelial cells is sealed by selectively permeable 
tight junctions that allow paracellular flux by two distinct pathways. The pore pathway (left) is a 
size- and charge-selective, high-conductance pathway that accommodates molecules up to 6–8 Å 
in diameter. Upregulation of claudin-2, which forms paracellular channels, increases pore pathway 
permeability. The mucosal immune system can induce claudin-2 transcription via IL-13 or IL-22 
secretion. The leak pathway (center) is a charge-nonselective, low-capacity macromolecular flux 
route that accommodates molecules up to 100–125 Å in diameter. TNF and IL-1β are each able to 
increase leak pathway permeability by upregulating myosin light chain kinase (MLCK) expression 
and activity and recruiting the MLCK1 splice variant to the perijunctional actomyosin ring. This 
triggers removal of occludin by caveolar endocytosis and leads to increased leak pathway flux. A 
potential third route, the unrestricted pathway (right panel), is tight junction-independent, size- 
nonselective, and charge-nonselective. It is created by epithelial damage and can become the domi-
nant route of intestinal barrier loss
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The increases in intestinal epithelial tight junction permeability induced by Na+-
nutrient cotransport to amplify transcellular nutrient absorption are charge- 
nonselective, permit flux of molecules too large to traverse claudin channels, and 
are regulated by the cytoskeleton [8, 19, 23, 48]. These changes, therefore, reflect 
leak pathway flux. In an analogous fashion, claudin-2-mediated pore pathway flux 
allows paracellular Na+ absorption to amplify transcellular Na+ absorption in the 
renal proximal tubule [21]. Thus, defined flux across both pore and leak pathways is 
of physiological benefit.

 Claudin-2: A Paracellular Cation and Water Channel

In normal human and rodent development, intestinal epithelial claudin-2 expression 
is highest in the immediate perinatal period, where it is expressed in villous and 
crypt epithelial cells [35, 49, 50]. Claudin-2 expression is then progressively down-
regulated until, by weaning, expression is low and restricted to crypt epithelial cells 
[35, 49, 50]. Claudin-15, which also forms a paracellular cation and water channel 
[51–55], has a reciprocal temporal expression pattern and is present at low levels 
prior to weaning but is expressed at higher levels in both villous and crypt epithelia 
by adulthood [35, 49, 50].

Although the reasons for developmental regulation of claudin-2 expression have 
not been defined, it may reflect differences in nutrient demand, which is greatest 
during the rapid growth that characterizes the neonatal and pre-weaning periods. 
This is best understood by recognizing that expression of claudin-2 or claudin-15 is 
required for ongoing Na+-nutrient cotransport; mice lacking either claudin survive 
while those lacking both die of malnutrition by 3 weeks of age [56]. It is also nota-
ble that paracellular Na+ conductance is significantly greater in neonatal mice, rela-
tive to adults [49]. Thus, it may be that claudin-2 is able to more effectively conduct 
Na+ than claudin-15. This has not, however, been demonstrated experimentally. In 
the context of inflammatory stimuli, including disease, intestinal epithelial claudin-
 2 expression is upregulated, while claudin-15 expression is largely unchanged 
(Fig.  2) [36, 39, 40, 50, 57–60]. This could  therefore represent a compensatory 
mechanism that restores nutrient absorption in the face of mucosal damage. 
However, the observation that claudin-2 is not upregulated in claudin-15-deficient 
mouse intestine [61] suggests that alternative explanations should also be considered.

 Claudin-2-Dependent Fluid Efflux Promotes 
Pathogen Clearance

One major limitation of most in vivo studies of permeability is that the probe or 
probes used do not allow discrimination between changes in pore, leak, and damage- 
induced (unrestricted pathway) permeability. Lactulose and mannitol, the most 
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extensively used probes in human studies, are both able to traverse leak and unre-
stricted pathways. Mannitol is too large to be accommodated by claudin-2 channels 
in vitro, but it remains to be determined if it can cross the pore pathway in vivo [41]. 
In mouse models, most investigators simply use 4 kDa FITC-conjugated dextran. 
Serum recovery of this probe can reflect increased permeability across both leak and 
unrestricted, but not pore, pathways [62]. Experimental data suggest that greater 
than two-fold increases in 4 kDa dextran flux are most likely to reflect unrestricted 
pathway activation as consequence of epithelial damage [62]. To overcome this 
limitation, we established a method using creatinine (6 Å diameter), 4 kDa dextran 
(28 Å diameter), and 70 kDa dextran (120 Å diameter), to measure flux across pore, 
leak, and unrestricted pathways, respectively [60, 62]. This approach, which has 

Fig. 2 Regulation of claudin-2, claudin-15, and occludin expression in healthy and diseased adult 
human intestine. Claudin-2 (green) is primarily expressed in the crypts of the small intestine and 
colon, and this is increased in inflammatory disease. In contrast, expression of claudin-15 (green), 
which also forms paracellular cation-selective pores, is present throughout the crypt-villus axis and 
is unchanged in disease. Occludin (green) expression is reduced in inflammatory disease. 
E-cadherin (magenta), ZO-1 or γ-actin (red), and nuclei (blue) are shown for reference. Bar, 
50 μm; 20 μm (insets)
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been validated by other groups [63], readily distinguishes between barrier defects 
induced by C. rodentium infection, TNF, and DSS [62].

Using the three-probe in vivo permeability assay, we discovered that creatinine 
flux is uniquely increased 2 days after C. rodentium infection in mice [60]. This 
correlated with increased epithelial expression of claudin-2, but not other tight junc-
tion proteins, and elevated mucosal IL-22 levels [60]. Analyses using recombinant 
IL-22 demonstrated that this member of the IL-10 superfamily is responsible for the 
increased intestinal epithelial claudin-2 transcription and translation  seen after 
C. rodentium infection.

In order to understand the impact of claudin-2 upregulation in C. rodentium 
infectious colitis, we took advantage of claudin-2 knockout and claudin-2 trans-
genic mice [60]. The very low claudin-2 expression observed in healthy adults was 
similar to the absence of claudin-2 in knockout mice, while the increased expression 
in claudin-2 transgenic mice was comparable to levels detected at the peak of 
C. rodentium infection [60]. The genetically modified mice therefore model the 
extremes of claudin-2 expression in wild-type mice.

The severity of C. rodentium colitis was exacerbated by claudin-2 knockout, as 
indicated by increased histopathology scores, increased mucosa-associated 
C. rodentium, prolonged C. rodentium shedding, and markedly elevated mucosal 
TNF, IL-1β, IL-6, and IL-22 (Fig. 3) [60]. The observation that fecal water and Na+ 
were increased in healthy claudin-2 transgenic mice suggested that the greater 
severity of disease in claudin-2 knockout mice might be secondary to reduced water 
and Na+ efflux. Consistent with this hypothesis, induction of mild osmotic diarrhea 
by adding polyethylene glycol to the drinking water reduced histopathology scores, 
mucosa-associated C. rodentium, fecal C. rodentium shedding, and mucosal TNF, 
IL-1β, IL-6, and IL-22 levels such that all measures of disease were similar in poly-
ethylene glycol-treated claudin-2 knockout, transgenic, and wild-type mice [60]. 
These data suggest that the primary means by which claudin-2 upregulation acceler-
ates pathogen clearance and reduces infectious enterocolitis severity is by promot-
ing paracellular water and Na+ efflux [60]. Because epithelial cell turnover is 
accelerated in C. rodentium-induced colitis, this cannot be simply due to bacterial 
washing from the epithelial surface but is more likely to reflect disruption of the 
cycle by which newly formed epithelial cells are infected (Fig. 3a). The increased 
fecal water resulting from claudin-2 overexpression likely also dilutes and reduces 
local DSS concentrations to attenuate mucosal damage, thereby explaining the pro-
tection fromm DSS-induced injury observed in claudin-2 transgenic mice [64]. 
Thus, claudin-2 increases luminal water efflux to promote pathogen clearance and 
dilute offending chemical agents in infectious and chemical colitis, respectively. 
Intestinal claudin-2 upregulation and the water efflux that follows can therefore be 
considered a primitive form of innate immunity.

Y. Y. Sweat et al.



93

Fig. 3 IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. (a) 
IL-22 released in response to enteric infection upregulates claudin-2 expression to enhance para-
cellular Na+ and water efflux and promote pathogen clearance. Here, polyethylene glycol (PEG) is 
shown as an inducer of osmotic diarrhea. (b) C. rodentium (red) and nuclei (blue) 11 days after 
infection. Colonization of crypt spaces in claudin-2 knockout mice is prevented by PEG treatment. 
Bar, 50 μm. (c) Mucosa-associated C. rodentium numbers are reduced in Cldn2Tg and increased in 
Cldn2−/−, relative to wild-type  (Cldn2+/+), mice. PEG treatment eliminated differences between 
genotypes. (d) Histopathology was increased in Cldn2−/− mice and reduced by PEG treatment. (e 
and f) Mucosal TNF and IL-22 were markedly greater in Cldn2−/− mice relative to wild-type or 
Cldn2Tg mice, at day 11 after infection in the absence, but not presence, of PEG treatment. (Data 
from Tsai et al. Cell Host Microbe, 2017, with permission)
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 Claudin-2 Exacerbates Immune-Mediated Colitis

Although claudin-2 upregulation reduces severity of infectious and chemical colitis, 
it is not clear if it represents a beneficial adaptation or contributes to progression of 
immune-mediated colitis. To address this, claudin-2 knockout and transgenic mice 
were crossed onto an immunodeficient Rag1 knockout background and studied 
using the adoptive T-cell transfer colitis model [40, 65]. In contrast to infectious and 
chemical colitis models, immune-mediated disease severity was increased by trans-
genic claudin-2 expression and reduced by claudin-2 knockout, as measured by 
weight loss, disease activity index, cytokine production, T-cell infiltration, and his-
topathology scores (Fig. 4) [40]. Conversely, the same measures showed that clau-
din- 2 knockout ameliorated immune-mediated colitis [40]. It therefore appears that 
claudin-2 upregulation is a maladaptive response to mucosal immune activation in 
the absence of offending exogenous agents, such as pathogenic bacteria or toxic 
chemicals. Further study is needed to understand how claudin-2 modifies mucosal 
immune activation and whether this contributes to the relative protection afforded 
by claudin-2 overexpression in C. rodentium colitis.

Despite reduced disease severity, survival after T-cell transfer was reduced in 
claudin-2 knockout mice. This was unexpected and, in most cases, followed an 
unusual clinical pattern. Wild-type and claudin-2 transgenic mice displayed pro-
gressive increases in disease activity and weight loss over weeks. In contrast, clau-
din- 2 knockout mice appeared well until they became acutely ill in the few days 
before death. Necropsy showed that these mice suffered from intestinal obstruction 
[40]. This was not due to fibrosis or dysmotility. We therefore considered the pos-
sibility that insufficient luminal hydration could result in fecalith formation and 
obstruction. In contrast to humans, this led to obstruciton in mice, where the luminal 
space is dramatically narrowed by mucosal inflammatory expansion. To prevent 
obstruction, polyethylene glycol was added to the drinking water of claudin-2 
knockout and wild-type mice. This did not affect disease severity but improved 
survival of claudin-2 knockout mice [40]. Thus, increasing luminal water was suf-
ficient to prevent obstruction and death in claudin-2 knockout mice. Notably, clau-
din- 2 knockout, but not wild-type, mice upregulated intestinal epithelial claudin-15 
expression during colitis. This can be taken as an additional piece of evidence that, 
despite our inability to detect functional differences at present [52], claudin-2 and 
claudin-15 are not functionally interchangeable, as such claudin-15 upregulation 
did not disrupt the effects of claudin-2 knockout.

 Occludin S408 Phosphorylation Regulates Claudin-2 
Channel Function

The occludin C-terminal tail can be separated into membrane-proximal and distal 
portions. The distal half (residues 373 to 522) is most highly conserved [66] and can 
be broken into an unstructured region (373–412) and a coil-coil domain (413–522) 
composed of three alpha helices [67]. Biochemical studies found that the 
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Fig. 4 Intestinal epithelial claudin-2 overexpression exacerbates, and claudin-2 knockout limits 
immune-mediated colitis severity. (a) Weight loss and disease activity induced by T-cell transfer in 
Cldn2+/+Rag1−/− mice (blue circles), Cldn2−/–Rag1−/− mice (red circles), and Cldn2TgRag1−/− mice 
(green circles). (b) Histopathology of mice sacrificed at day 56 after T-cell transfer shows more 
severe disease in Cldn2TgRag1−/− mice and milder disease in Cldn2−/–Rag1−/− mice, relative to 
Cldn2+/+Rag1−/− mice. (c) T-cell recruitment (CD3, green) parallels disease severity. ZO-1 or 
E-cadherin (red) and nuclei (blue) are shown for reference. Bars, 50 μm (Data from Raju et al. J 
Clin Invest, 2020, with permission)
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unstructured region within the distal occludin tail contains multiple sites that can be 
phosphorylated by casein kinase 2 (CK2) [68–70]. The development of highly spe-
cific CK2 inhibitors as pharmacological therapies for neoplastic disease created an 
opportunity to assess the impact of CK2-mediated occludin phosphorylation on a 
barrier function. In Caco-2 intestinal epithelial cell monolayers, enzymatic CK2 
inhibition reduced paracellular permeability of small cations, consistent with inhibi-
tion of the claudin-2 channel [71]. CK2 inhibitors had no effect in the absence of 
CK2, occludin, or claudin-2 expression [71]. Mutagenesis studies showed that ser-
ine- 408 dephosphorylation was required for the effect of CK2 inhibition on barrier 
function. Fluorescence recovery after photobleaching (FRAP) studies showed that 
CK2 inhibition reduced the occludin mobile fraction and that this behavior also 
mapped to serine-408 [71]. Further analyses using pull-down assays showed that 
the non-phosphorylatable tail of occludinS408A captured greater amounts of endoge-
nous occludin, claudin-1, and claudin-2 from Caco-2 cell lysates than the phospho-
mimetic occludinS408D [71]. Although no direct binding sites between claudins and 
occludin are known, ZO-1 includes PDZ1 and U5-GuK domains that bind to each 
of these, respectively [72, 73]. Consistent with an essential role for ZO-1-mediated 
interactions between occludin and claudins, neither S408A nor S408D occludin 
tails effectively recovered claudin-2 from ZO-1-deficient Caco-2 cell lysates [71]. 
Moreover, CK2 inhibitors had no effect on TER of ZO-1-deficient Caco-2 monolay-
ers. The TER response to CK2 inhibition could be restored by expression of full- 
length ZO-1, but not ZO-1ΔPDZ1 or ZO-1ΔU5GuK [71]. Together, these data demonstrate 
that dephosphorylation of occludinS408 triggers assembly of an occludin-ZO-1- 
claudin-2 complex that interferes with claudin-2 channel function (Fig. 5a) [73]. As 
a final test of this hypothesis, T84 cell monolayers, which do not ordinarily express 
significant levels of claudin-2, were treated with IL-13 to induce claudin-2 expres-
sion. This reduced TER and increased cation selectivity, and both of these changes 
could be reversed by CK2 inhibition. Thus, occludin phosphorylation at S408 is a 
molecular switch that, indirectly, regulates claudin-2 channels [71].

Fig. 5 (continued) channels. (b) IL-13 administration increased claudin-2 (green) expression in 
proximal colonic crypt epithelium. This was not affected by CK2 inhibition. Nuclei (blue) are 
shown for reference. (c) Ussing chamber analyses of proximal colonic mucosae from IL-13-treated 
mice (red squares) shows specific increases in permeability of small cations relative to vehicle-
treated mice (blue circles). Treatment with CK2 inhibitor (green-outlined symbols) blocked IL-13-
induced permeability increases but had no effect in the absence of IL-13. (d) Weight loss following 
T-cell transfer was attenuated in Rag1−/− mice treated with a CK2 inhibitor (green diamonds) rela-
tive to controls receiving vehicle (blue circles). (e) Histopathology was reduced by CK2 inhibitor 
treatment. (f) T-cell (CD3, green) infiltration was reduced by CK2 inhibition. E-cadherin (red) and 
nuclei (blue) are shown for reference. Bars, 50 μm (Data from Raju et al. J Clin Invest, 2020, with 
permission)
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Fig. 5 CK2 inhibition limits immune-mediated colitis severity by inactivating claudin-2 channels. 
(a) Casein kinase-2 (CK2) inhibition results in occludin S408 dephosphorylation and triggers 
assembly of a trimolecular complex composed of occludin, ZO-1, and claudin-2 to inactivate claudin- 2 
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 Inhibition of Occludin Phosphorylation Is Therapeutic 
in Experimental, Immune-Mediated Colitis

In order to determine whether CK2 inhibition could also block claudin-2 channel 
function in vivo, mice were treated with saline or IL-13, to induce claudin-2 expres-
sion, in combination with a CK2 inhibitor or vehicle [40]. Bi-ionic potential mea-
surements were then used to characterize excised proximal colonic mucosae [40, 
53, 74, 75]. As expected, IL-13 specifically increased claudin-2 expression (Fig. 5b) 
as well as paracellular permeability to Na+, methylamine, and, to a lesser degree, 
ethylamine (Fig.  5c) [40]. CK2 inhibition failed to prevent increased claudin-2 
expression but reversed changes in paracellular permeability (Fig. 5b, c). In con-
trast, CK2 inhibition had no effect on permeability in the absence of IL-13 treat-
ment. CK2 inhibition is, therefore, able to block claudin-2 channel function in vivo.

Daily treatment with an orally bioavailable CK2 inhibitor, beginning 10 days 
after T-cell transfer, dramatically reduced immune-related colitis severity by all 
measures in claudin-2 wild-type, Rag1−/− mice [40]. In contrast, CK2 inhibition 
afforded no benefit to claudin-2 knockout Rag1−/− mice [40]. Thus, although the 
nearly ubiquitous expression and substrate promiscuity of CK2 make it impossible 
to fully exclude other targets, the requirement for claudin-2 expression suggests that 
the effect of CK2 inhibition reflects claudin-2 channel inactivation [40]. Thus, 
in vivo inhibition of CK2-mediated occludin phosphorylation prevents progression 
and attenuates severity of immune-mediated colitis [40]. CK2 inhibition can affect 
many processes and, therefore, is not an ideal therapeutic approach. However, future 
definition of how S408 phosphorylation regulates occludin tail interactions may 
lead to more specific means of inhibiting claudin-2 function.

 Occludin Endocytosis Is Required for TNF-Induced, 
MLCK- Dependent Leak Pathway Permeability Increases

Remarkably, beyond the perijunctional actomyosin condensation seen by transmis-
sion electron microscopy, occludin internalization was the primary morphologic 
change associated with T-cell activation-induced, TNF-dependent barrier loss [33]. 
Further study showed that occludin was internalized into caveolin-1-positive endo-
somes. Although TNF-induced MLCK activation and MLC phosphorylation were 
increased, caveolin-1 knockout mice failed to internalize occludin and were pro-
tected from TNF-induced barrier loss [76]. Caveolar endocytosis is, therefore, 
required for TNF-induced, MLCK-mediated leak pathway permeability increases. 
Occludin was the only tight junction protein consistently identified within these 
endosomes, but  the data do not exclude the possibility that occludin is merely a 
marker of some other critical change in tight junction structure. To assess this, trans-
genic mice that overexpress occludin within intestinal epithelial cells were treated 
with TNF. Although endocytosis did occur, tight junction-associated occludin pools 
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were preserved in transgenic, relative to wild-type, mice [76]. Moreover, the mag-
nitude of barrier loss was attenuated, and TNF-induced diarrhea was prevented by 
transgenic occludin expression [76]. Occludin is, therefore, an essential regulator of 
leak pathway permeability. Finally, this result is consistent with leak pathway bar-
rier loss and reduced occludin expression in human inflammatory bowel disease 
[36, 77, 78].

 Occludin Regulates Epithelial Survival

The initial reports of occludin knockout mice failed to identify intestinal or renal 
barrier defects or spontaneous disease involving these organs [79]. Nevertheless, 
occludin knockout was associated with male infertility, inability of females to effec-
tively suckle pups, gastric epithelial hyperplasia, brain calcifications, testicular atro-
phy, and osteoporosis, and subsequent studies showed that occludin knockout mice 
became deaf over time [80]. Finally, our unpublished experience that the frequency 
of knockout pups when occludin heterozygotes were bred was far less than the 
expected 25% predicted by Mendelian genetics suggests embryonic loss; crosses 
of occludin floxed and occludin floxed;villin-cre transgenic mice resulted in equal 
numbers of cre-positive and cre-negative pups. Embryonic loss of occludin- deficient 
embryos is, therefore, not due to Ocln deletion within the intestinal epithelium.

The absence of intestinal disease in occludin-deficient mice could be due to com-
pensatory mechanisms that overcome occludin loss. Universal and intestinal 
epithelial- specific occludin knockout mice were, therefore, stressed in order to 
unmask functional deficits. Remarkably, dextran sulfate sodium (DSS) failed to 
induce weight loss in occludin knockout mice (Fig. 6a) [81]. Thus, intestinal epithe-
lial occludin expression sensitizes mice to chemically induced colitis.

Further analyses showed that histopathology, inflammatory cytokine production, 
and epithelial apoptosis induced by DSS or trinitrobenzenesulfonic acid (TNBS) 
were suppressed in intestinal epithelial occludin knockout mice (Fig. 6b). To better 
define the mechanism by which occludin loss reduced epithelial apoptosis, mice 
were treated with 5-fluorouracil, which triggers intrinsic pathway apoptosis, sys-
temic T-cell activation using anti-CD3, or TNF treatment to activate the extrinsic 
apoptotic pathway [81]. Occludin knockout protected intestinal epithelial cells from 
all three stimuli (Fig. 6c). Biochemical analysis of apoptotic signaling induced by 
TNF showed that ERK, p38 MAPK, IκB, and caspase-9 were all activated similarly 
in occludin-sufficient and knockout intestinal epithelia (Fig. 6d). However, TNF- 
induced caspase-3 cleavage was only detected in occludin-expressing epithelia 
(Fig. 6d). Further characterization showed that this was due to a ~ 50% reduction in 
overall caspase-3 mRNA and protein expression in the absence of occludin. 
Although it was surprising that an only 50% decrease in expression would be suf-
ficient to prevent apoptosis, mice heterozygous for Casp3 knockout (Casp3+/−), 
which express caspase-3 at ~50% of normal levels, were also protected from intes-
tinal epithelial apoptosis induced by DSS or TNF [81]. Thus, occludin promotes 
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Fig. 6 Occludin deletion reduces caspase-3 expression, limits epithelial apoptosis, and attenuates 
experimental disease in mice; both occludin and caspase-3 expression are reduced in Crohn’s dis-
ease. (a) DSS-induced colitis severity and weight loss were reduced in Ocln−/− (red circles) relative 
to wild-type (WT, blue squares) mice. (b) Numbers of apoptotic (ISOL-positive, red) epithelial 
cells were increased in DSS-treated wild-type, but not intestinal epithelial-specific occludin knock 
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caspase-3 transcription, and the reduced caspase-3 expression that follows occludin 
loss is sufficient to prevent intrinsic and extrinsic pathway apoptosis.

Similar to mice, Caco-2 cells lacking occludin displayed reduced CASP3 tran-
scription and protein expression. Inducible occludin expression in these cells acti-
vated the CASP3 promoter and restored transcription to normal levels [81]. Thus, 
although occludin has not been detected within nuclei, it promotes CASP3 tran-
scription, either directly or indirectly [81]. To assess the effect of inflammation- 
induced loss of occludin expression on epithelial survival, Caco-2 monolayers were 
treated with TNF at a low concentration that was insufficient to cause apoptosis. 
This was, however, sufficient to reduce both occludin and caspase-3 expression and 
protect cells from staurosporine-induced intrinsic pathway or high-dose TNF- 
induced extrinsic pathway apoptosis. In contrast, pretreatment of occludin-deficient 
Caco-2 monolayers with low-dose TNF had no effect on subsequent responses to 
staurosporine or high-dose TNF. Thus, low-grade inflammation, modeled in vitro 
by low-dose TNF, may lead to reduced occludin and caspase-3 expression that 
results in cytoprotection [81].

In order to determine whether occludin downregulation in human disease is asso-
ciated with reduced caspase-3 expression, small intestinal and colonic biopsies 
from Crohn’s disease and ulcerative colitis patients and age- and sex-matched 
healthy control subjects were analyzed by quantitative immunohistochemistry 
(Fig. 6e). Occludin expression was significantly reduced in both Crohn’s disease 
and ulcerative colitis and was accompanied by caspase-3 downregulation (Fig. 6f). 
Moreover, reductions in caspase-3 expression correlated directly with decreased 
occludin expression. Thus, occludin downregulation in inflammatory disease may 
be an adaptive response that promotes epithelial survival. Further studies will be 
needed to understand how this cytoprotective function interfaces with the role of 
occludin in tight junction barrier regulation.

Fig.  6 (continued) out (KOIEC), mice. Nuclei (blue) are shown for reference. Bar, 20 μm. (c) 
Systemic T-cell activation induced by anti-CD3 treatment increased ISOL-positive (red) cell num-
bers in wild-type, but not KOIEC, mice. Nuclei (blue) are shown for reference. Bar, 50 μm. (d) 
Western blot of intestinal epithelia isolated from vehicle- and TNF-treated WT and Ocln−/− mice. 
With the exception of cleaved caspase-3, signaling events downstream of TNF signaling were not 
affected by occludin deletion. (e) Ileal biopsies from healthy subjects and Crohn’s disease patients 
show reduced occludin (green) and caspase-3 (green) expression in disease. E-cadherin (red) and 
nuclei (blue) are shown for reference. Bar, 50 μm. (f) Quantitative morphometry confirms similar 
reductions in occludin and caspase-3 expression intensity in ileal epithelium from Crohn’s disease 
patients (green diamonds) relative to healthy controls (yellow circles) (Data from Kuo et  al. 
Gastroenterology, 2019, with permission)
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 Summary and Future Directions

The studies discussed here demonstrate the important contributions of pore and leak 
pathway permeability to intestinal disease. They also highlight the importance of 
considering these mechanisms as separate processes that are regulated by different 
signaling events and have distinct effects on barrier function and pathophysiology. 
The data also show that the impact of increased tight junction permeability may not 
be the same in infectious and immune-mediated disorders. Although available data 
cannot explain the reasons for these differences, one might hypothesize that 
increased claudin-2 expression in infectious disease both enhanced water efflux and 
augmented mucosal immune activation. Evolutionarily, where infectious diseases 
had much greater impact on survival  than immune-mediated disorders, increased 
pathogen clearance and immune activation might be considered synergistic. The 
contradiction only occurs in the context of immune-mediated disease. Although the 
effects of occludin downregulation in infectious disease have not been defined, one 
could hypothesize that increased leak pathway permeability might promote patho-
gen clearance while simultaneously downregulating caspase-3 expression to limit 
tissue damage. Thus, regulatory mechanisms that evolved over billions of years to 
promote survival may now have unintended consequences in the context of modern 
maladies.

The growing synergy between in vitro and in vivo models makes this an exciting 
time for tight junction biology in which future studies will address the questions 
raised in this text and many others. Ultimately, we hope that both fundamental, 
foundational advances and translational studies will lead to clinical trials in which 
barrier and tight junction modulation are validated as therapeutic interventions for a 
broad range of intestinal and systemic diseases.
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