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Abstract

The mass spectrometer is an instrument that 
observes particular masses of molecules of 
interest. Over the past century, it has grown to 
become a highly sensitive and robust tool in 
laboratorial and clinical research to identify 
and quantify thousands of proteins in a given 
sample in an unbiased manner leading to the 
quick rise in its use. This unbiased and high-
throughput nature is extremely important in 

discovery-based studies, since no preset tar-
gets can be selected, as is the case with several 
other proteomic methods. In studying multi-
factorial diseases such as schizophrenia, mass-
spectrometry-based proteomics has been 
frequently used and new improvements to the 
technique have been quickly taken advantage 
of. Over the past 15 years, mass spectrometry 
has evolved greatly, and with it, the proteomic 
analyses and data have evolved. In this chap-
ter, a brief history of the evolution of mass 
spectrometry is covered along with how 
schizophrenia research has grown alongside 
this valuable methodology.
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1	� Introduction

The continuous evolution of mass spectrometers 
in terms of their sensibility, velocity of ion acqui-
sition, capacity for ion separation, and fragmen-
tation methods has improved the quantity and 
reliability of the data generated by mass spec-
trometry (MS). One main consequence of these 
improvements is the spread of this methodology 
from laboratorial research to the biomedical field 
(Banerjee, 2020). Even with liquid chromatogra-
phy separation, multiple peptides can coelute, 
and, in the case of shotgun proteomics, often all 
possible fragmentation transitions are measured. 
This causes extreme complexity of the MS spec-
tra, demanding improvements not only in the 
capabilities of mass spectrometer analyzers, 
instrument settings, and software analysis tools 
but also in the methods by which samples are pre-
pared (Wang et al., 2014). Many of these improve-
ments include ways to minimize sample 
complexity and remove any possible confound-
ing contaminants (such as salts, detergents, cell 
debris, etc.) from the peptide mixture; this results 
in less background noise during an MS analysis, 
a factor which suppresses the obtention of low 
abundant peptide ions.

Schizophrenia is a multifactorial disorder in 
which dysregulations in the expression of various 
proteins trigger the development of the disease. 
In this type of disorder, information is often lack-
ing as to how the biochemical mechanisms and 
pathways interact to generate the pathological 
phenotype, as is the case with schizophrenia. 
Currently, no molecular target has been found to 
be definitive of the disorder, and its diagnosis is 
performed exclusively clinically. As such, finding 
biomarkers to assist in earlier and more confident 
diagnoses is a critical focus of study. Shotgun 
proteomics, a broad-reaching approach to pro-
teomics, can identify qualitatively and quantita-
tively thousands of proteins in a single 
experiment, which can be a great advantage in 
studies without any predefined targets or with 
multiple targets to be investigated (Li et  al., 
2017). Due to this capability, shotgun proteomics 
is an important tool in the study of schizophrenia 
and other multifactorial diseases and has been 

proven to be much more suitable for discovery-
based studies of molecular mechanisms than 
other proteomic methods, immunoprecipitation, 
antibody-dependent analyses, and multiplex 
techniques. There is no need for any previous 
knowledge about the sample or dysregulations of 
the biological system to be analyzed, therefore 
removing the need for preexisting molecular tar-
gets or protein panels to focus the investigation 
(Meyer & Schilling, 2017).

Several laboratories have applied shotgun pro-
teomics to many facets of schizophrenia, discov-
ering and investigating dysregulations in several 
metabolic pathways and molecular disturbances 
in schizophrenia. These investigations have been 
performed for well over a decade with postmor-
tem brain tissue (Martins-De-Souza et al., 2010; 
Mei et  al., 2006; Nascimento & Martins-de-
Souza, 2015; Reis-de-Oliveira et al., 2020; Saia-
Cereda et al., 2015, 2017; Velásquez et al., 2019), 
induced pluripotent stem cells (Brennand et al., 
2011, 2015; Notaras et al., 2021; Pedrosa et al., 
2011), and peripheral fluids such as blood, 
plasma, and cerebrospinal fluid (Campeau et al., 
2021; Garcia et al., 2017b; Herberth et al., 2011; 
Huang et al., 2006; Jiang et al., 2003; Li et al., 
2012; Liu et  al., 2015; Sabherwal et  al., 2016; 
Vasic et al., 2012; Yang et al., 2006). Information 
about the mechanisms and development of the 
disease has been mounting, implicating neuro-
transmission, oxidative stress, neurodevelop-
ment, glycolytic pathways, and cell signaling, 
among other dysregulations. Although a consid-
erable number of discoveries have already been 
made in this field, there is still much more to be 
done, taking advantage of new methods and tech-
nologies in mass spectrometry and combining 
them to obtain new insight into the bases of 
schizophrenia.

2	� Evolution of Mass 
Spectrometers 
for Proteomics

Despite mass spectrometers having been used for 
over a century, J.J.  Thomson’s first parabola 
spectrograph (Thomson, 1912) and later modifi-
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cations over the following decades (Kingdon, 
1923; Smythe et al., 1934) came far from being 
able to work with macromolecules like polypep-
tides. This was only first achieved in 1988 by 
Tanaka and colleagues using matrix-assisted 
laser desorption ionization (MALDI) with a 
time-of-flight (TOF) instrument (Tanaka et  al., 
1988). Over the years, mass spectrometers have 
grown exponentially in their capabilities and 
applications with more complex samples. 
Multiple methods of ionization have also been 
developed, though not all are compatible with 
proteomics due to high energy levels that cause 
extensive fragmentation. Softer ionization meth-
ods such as ESI (electrospray ionization) enable 
clean polypeptide ionization without generating 
extraneous fragments, thereby preserving struc-
tural information; ESI has therefore become the 
most commonly used ionization method for 
proteomics.

Even with the capability of analyzing poly-
peptides, mass spectrometry was only applied to 
discovery-based, large-scale studies at the turn of 
the century with high-capacity and fast, full-scan 
data acquisition of the quadrupole time-of-flight 
(Q-TOF) instrument, which quickly gained popu-
larity. The first of these studies that aimed to 
understand alterations in molecular pathways in 
schizophrenia were carried out by MS analysis 
after separation by two-dimensional electropho-
resis (2-DE), whereupon the Q-TOF identified 
proteins of interest on the gels (Beasley et  al., 
2006; Behan et  al., 2009; Clark et  al., 2006; 
English et  al., 2009; Johnston-Wilson et  al., 
2000; Martins-de-Souza et al., 2009a, b, c, d, e, 
2010; Pennington et al., 2008; Prabakaran et al., 
2004; Sivagnanasundaram et  al., 2007). This 
two-dimensional separation was required due to 
the level of resolution available to TOF analyzers 
of the 2000s, restricting protein identification.

Increasingly higher resolutions were then 
achieved with the development of mass analyzers 
such as the Orbitrap – invented in 2005 – and the 
creation of hybrid instruments such as the QTOF 
(quadrupole time-of-flight) instrument, applied 
to proteomics in 2000, all of which led to 
increases in sensibility/resolution and also the 

velocity of the duty cycle. These improvements 
made it possible to isolate and subsequently frag-
ment a larger number of ions, thereby conferring 
the ability to analyze more complex samples 
without losing information. Hybrid instruments 
also solved some of the shortcomings of prior 
instruments, such as the mechanical complexity 
and size of Fourier-transform ion cyclotron reso-
nance (FT-ICR) analyzers; the low sensitivity, 
limited dynamic range, and (at that time) lower 
resolution of orthogonal time-of-flight (TOF) 
analyzers; and the limited mass accuracy of ion 
trap analyzers.

High-throughput proteomics quickly discov-
ered the need for higher resolutions to detect par-
ent ions with faster and more sensitive 
fragmentation (MS/MS) analyses, a need that 
was met by the linear ion trap mass analyzer. The 
architecture of Orbitrap hybrid instruments has 
filled this need and quickly becomes a crucial 
analytical tool in the development of the field, 
providing both the speed and sensitivity neces-
sary for online liquid chromatography (LC) cou-
pling and full MS/MS scans. With increasing 
accuracy and acquisition capacity, many of other 
mass spectrometry advances followed suit, 
resulting in the development of multiple new 
Orbitrap hybrid instruments (Eliuk & Makarov, 
2015). In parallel, other methods for ion separa-
tion and isolation have emerged without using an 
Orbitrap analyzer, including ion mobility separa-
tion (IMS). Different from the Orbitrap analyzer, 
ion mobility technology does not use Fourier 
transformation to determinate the position of the 
injected ions; it takes physical properties like size 
and charge of each ion into account to determine 
how they drift through a gas under the influence 
of an electric field. Ion mobility technology is 
usually coupled with a TOF analyzer and used in 
data-independent acquisition (DIA) mode, pro-
viding bias-free and more reproducible data. 
Accompanying this evolution of mass spectrom-
eters, proteomic studies of schizophrenia have 
also evolved, increasing not only the number of 
identified proteins but also unlocking high-
throughput quantitative proteomics without the 
need for labels or tags (Distler et al., 2016).
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3	� Advantages 
and Disadvantages 
of Acquisition Modes 
for Proteomics

A great majority of studies using mass 
spectrometry-based proteomics employ shotgun 
approaches, as already mentioned above; digested 
peptides are analyzed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). The 
first methods analyzed these molecules in a data-
dependent acquisition (DDA) manner (Link 
et al., 1999). DDA works by selecting the most 
intense peptide ions from a full mass spectrum 
(MS) scan, also called precursor or parent ions; 
these peptides are then filtered for further frag-
mentation (MS/MS). Several MS and MS/MS 
parameters (e.g., mass resolution, monoisotopic 
precursor selection, preview mode for FT-MS 
master scans, and ion population) are defined by 
the user, allowing flexibility to decide which of 
these parameters will be used and which values 
will be selected. Despite being seemingly advan-
tageous, at the same time, these various parame-
ters and their broad ranges of possible values are 
compounding factors in the design of a DDA 
experiment (Chapman et  al., 2014). The main 
advantage of this method is its high accuracy and 
sensibility for the selected targets; however, pro-
teins not included in the list of the most intense 
peptide ions may not be acquired, resulting in a 
lack of data on proteins with very low abundance 
and short elution profiles.

DDA is juxtaposed with data-independent 
acquisition (DIA), in which all precursor ions 
within an LC-MS scan can be destined for frag-
mentation, independently of their intensity or 
charge state (Chapman et al., 2014). MSe (styl-
ized as MSE) is one such DIA method that was 
first commercialized in 2005 by Waters 
Corporation, in which two alternating MS scans 
are recorded at low and high collision energies 
along the full MS spectrum, generating precursor 
and product ion information, respectively 
(Bateman et  al., 2002; Silva et  al., 2005). The 
greatest advantage of DIA is the ability to have 
complete information about all the peaks detected 
in the full MS scans, increasing the chances to 

identify low-abundance proteins in complex sam-
ples. It is for this reason that DIA has been largely 
used for recent proteomics studies. Despite its 
benefits, the data generated by DIA in proteomics 
are extremely complex and difficult to deconvo-
lute, making it challenging to correlate fragment 
ions with their precursor ions.

To overcome this problem, database-driven 
peptide and subsequent protein identification use 
the chromatographic elution profile to assign 
fragment ions to their respective precursor from 
the MS scan. Nevertheless, samples from biolog-
ical tissues, cells, and fluids have a very complex 
protein profile, resulting in the coelution of pep-
tides with similar chromatographic 
characteristics. In this way, fragments derived 
from coeluted peptides could be misassigned to 
multiple precursor ions present at that specific 
retention time, causing incorrect peptide and pro-
tein identification. This issue was solved through 
the application of ion mobility technology, which 
provides an additional dimension of separation 
that increases the overall system peak capacity in 
multiple LC-MS workflows, even allowing for 
the separation of isobaric precursor ions (Ogata 
& Ishihama, 2020; Shliaha et  al., 2014; Sturm 
et al., 2014). The combination of DIA MSe with 
ion mobility was named HDMSe by Waters 
Corporation and has been a valuable tool in many 
proteomics studies (Baker et  al., 2010; Fenn 
et al., 2009; Valentine et al., 2005).

With continuous modifications and improve-
ments, other DIA methods have been developed 
to increase the reliability, sensibility, and accu-
racy of data acquisition. This includes 
SWATH-MS (Gillet et al., 2012); sequential win-
dows are selected for fragmentation; however, 
this method is less sensitive than targeted meth-
ods (Gillet et al., 2012; Liu et al., 2013; Schmidlin 
et al., 2016). Complementary to MSe and using a 
windowed selection method similar to 
SWATH-MS is SONAR (Brannan et  al., 2016). 
SONAR uses pre-selected windows at the quad-
rupole going from low to high m/z, generating a 
continuum scan of the precursor mass range of 
interest during each MS cycle. By alternating 
between low and high collision energies from 
one scan to the next, data can be collected from 
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both precursor and fragmented ions with lower 
levels of convolution, making precursor and frag-
ment alignment easier and more reliable (Zhang 
et  al., 2020). To date, no proteomic studies 
employing SWATH-MS have been performed to 
study the bases of schizophrenia; current applica-
tions have been limited to lipidomics (Yan et al., 
2018) and proteomics (Heald et al., 2020) of anti-
psychotic response in schizophrenia. SONAR 
has also not been applied to any schizophrenia-
related research at this time.

These DIA methods have allowed for a mani-
fold increase in the use of proteomics in discov-
ery studies, ranging from biochemical 
mechanisms and pathway dysregulation to bio-
marker discovery. Increases in other capacities 
have also enabled deeper and more delicate stud-
ies such as studying the immunoaffinity-depleted 
proteome (depletome) of serum from patients 
with depression and schizophrenia (Carlson 
et  al., 2018; Costa et  al., 2018; Garcia et  al., 
2017a), identifying 10,390 proteins in MO3.13 
oligodendrocytic cells (Cassoli et al., 2017), and 
proteomic studies of post-translational modifica-
tions (PTMs). Due to the transient and partial 
modification of proteins, post-translationally 
modified proteins are difficult to study, requiring 
the sensitive equipment that years of advances 
have provided, along with carefully planned 
experimental designs.

4	� Proteomics 
and Schizophrenia Research 
Evolving Together

The continued evolution of mass spectrometry 
has constantly allowed for better correlations and 
collaborative studies with other omic techniques. 
The main result is an increase in knowledge 
about the origin of schizophrenia and its various 
hypotheses, including but not limited to the dopa-
minergic, GABAergic, and neurodevelopmental 
theories (reviewed by Bansal & Chatterjee, 
2021). Proteomics as a whole provides important 
information about the physiological state of a 
cell, tissue, or organism due to the transcrip-
tional, epigenetic, translational, and degradative 

levels of regulation that control protein expres-
sion. For this reason, genetics nor transcriptomics 
can be considered great indicators of the current 
biological state. A PubMed search showed that 
since 2006 after the development of DIA, 546 
articles have been published in the field of schizo-
phrenia [search terms (schizophrenia) AND (pro-
teomics)], with only 30 publications before this 
point, showing how proteomics has grown 
together with the methodology (Fig. 1).

One example of this growth in experimental 
complexity was as a screening of the proteomic 
profiles of subcellular compartments of postmor-
tem tissue of the cerebellum, posterior cingulate 
cortex, and caudate nucleus (Reis-de-Oliveira 
et al., 2020). Significant alterations were found in 
energy metabolism, oxidative phosphorylation, 
neuron development, the myelin sheath, and the 
MAPK signaling pathway. Energy metabolism 
has been repeatedly implicated in studies of 
schizophrenia, bipolar disorder, and major 
depressive disorder (Zuccoli et al., 2017).

5	� Induced Pluripotent Stem 
Cells (iPSCs) in Proteomics

One of the biggest challenges in neuropathies 
and psychiatric disorders is access to the tissue of 
interest; only postmortem tissue can be feasibly 
obtained and biofluids don’t always represent the 
biological state of the disease (Pedrosa et  al., 
2011). iPSCs enable the study of mature brain 
cells and the neurodevelopmental processes that 
occur during their differentiation, which is a great 
boon to disorders with neurodevelopmental char-
acteristics. In addition, iPSCs can be generated 
from patients with the disease or disorder in 
question and the influence of a patient’s genetic 
background on the development of the disease 
(Marchetto et  al., 2010). Over the past decade, 
iPSCs have proven themselves to be a highly use-
ful model to study schizophrenia, resulting from 
improvements of the technique itself as well.

It is precisely modern proteomics and its 
discovery-based analyses and high sensitivity 
that have offered justifications for such complex 
and costly models. The high costs of time and 
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Fig. 1  PubMed search for publications involving schizophrenia and proteomics [keywords (schizophrenia) AND 
(proteomics)]

resources to generate iPSC models are now coun-
terbalanced by the amount of information that 
can be extracted through unbiased, shotgun pro-
teomics. Data can be analyzed and reanalyzed in 
multiple ways even after collection as databases 
and bioinformatic tools evolve. iPSC models 
hold great potential to continue to reveal infor-
mation about the molecular mechanisms and sig-
naling pathways that are behind schizophrenia 
and its symptoms and treatment. With recent dis-
coveries involving post-translational modifica-
tions (PTMs), previously collected data can be 
looked at from a different point of view without 
the need to reacquire the data. Previous studies 
involving the phosphoproteome of plasma (Jaros 
et  al., 2012), postmortem tissue (Saia-Cereda 
et al., 2016), HEK cells in vitro (Martín-Guerrero 
et al., 2021), and a murine model (Hwang et al., 
2021), though they represent investigations into 
only a single of many interesting PTM targets of 
study for schizophrenia, have all highlighted 
their importance in schizophrenia research.

iPSCs also show potential in generating more 
personalized treatment options, unlocking the 
ability to test therapeutic options on the patient’s 
own cells in a controlled environment before 
administration to the patient (Avior et al., 2017). 
As costs for generating and analyzing cells 
decrease over time, it becomes more feasible to 
apply LC-MS-based proteomics to clinical set-
tings and applications (Smith & Martins-de-
Souza, 2021). Other future applications are the 
use of iPSCs to create molecular signatures for a 
patient and creating molecular signatures for a 
patient for anticipating interventions and accom-
panying treatment (Nascimento & Martins-de-
Souza, 2015).

The technique has been further extended to 
produce iPSC-derived brain organoids from 
patients with schizophrenia and 3D structures 
that more closely represent the in vivo state of the 
human body. These organoids were analyzed 
with isobaric labeling, whereupon 3705 proteins 
were identified and multiple dysregulated pro-
teins were found in the organoids derived from 
patients with schizophrenia when compared to 
healthy controls (Notaras et  al., 2021) and in 
iPSC-derived cerebral organoids to model the 
first trimester of in utero brain development 
(Stachowiak et  al., 2017). These dysregulated 
proteins included neuron-related development 
factors GAP43, CRABP1, NCAM1, and MYEF2, 
as well as cell-specific factors MAP2, TUBB3, 
and SV2A. Such molecular findings can indicate 
a disruption in neurogenesis, resulting in a lower 
number of neurons in the affected cerebral organ-
oids. One of the most important discoveries with 
iPSCs was that proteomic findings from this 
model are highly correlated with the dysregu-
lated pathways that have been found in fetal tis-
sue, reinforcing its strength as a model for 
molecular alterations in schizophrenia 
(Nascimento et al., 2019). Over the years the use 
of iPSCs as a model to study schizophrenia have 
increased, drastically expanding our knowledge 
about the development and molecular mecha-
nisms of the disease (Fig. 2).

6	� Conclusions

Evolutions in mass spectrometer setups have 
conferred higher resolution, faster acquisition, 
and a diversity in the methods available for a 
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Fig. 2  PubMed search for publications involving iPSCs and schizophrenia [keywords (“induced pluripotent stem 
cells”) AND (schizophrenia)]

given experiment. This has increased the capacity 
to perform high-throughput experiments with 
unbiased acquisition methods, resulting in an 
increase in robustness, reliability, and replicabil-
ity of the acquired data. In turn, a broader pan-
orama of the proteomic landscape in multifactorial 
diseases such as schizophrenia has been made 
possible, along with more complex experimental 
designs. This has all contributed to a better under-
standing of the molecular bases of the disease, its 
onset, its symptoms, and its treatment. Over the 
past decade, shotgun proteomics has grown to be 
extensively applied to discover new potential bio-
markers and elucidate ever more subtle dysregu-
lations in biomolecular pathways, providing 
insight into how to better diagnose, treat, and pre-
vent schizophrenia, and holds great potential for 
even more discoveries in the coming years.
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