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To those who have died from COVID-19



Preface

Coronavirus disease 2019 (COVID-19) is a disease that was first reported in China in
December 2019. The disease is caused by the SARS coronavirus 2 (SARS-CoV-2).
Since December 2019, the disease turned into a deadly pandemic. At the time of
writing this book, the pandemic is still ongoing.

From an epidemiological point of view, populations are composed of interacting
subpopulations. Likewise, the virus dynamics in an individual is characterized by
several components that evolve in time and interact with each other. In view of this
key feature of virus infections in populations and individuals, the question arises
what is the appropriate physics perspective to address the pandemic and the disease?
In general, what is the appropriate physics perspective to address epidemics and virus
infections in individuals?

This book provides answers to this question. An analysis of the subpopulation
dynamics reveals that epidemics in populations arise from instabilities in which
subpopulations organize themselves to a whole in a certain way. Likewise, a virus
infection in a human body arises from an instability and is characterized again by a
certain organization of the cell populations and viruses involved. In short, the book
demonstrates that epidemics in populations as well as virus infections in individuals
are characterized by instabilities and an emerging order. The appropriate theoret-
ical framework to address such phenomena is the theory of nonlinear physics and
synergetics.

The aim of this book is to study COVID-19 epidemics in countries and SARS-
CoV-2 infections in individuals from the nonlinear physics perspective and to model
explicitly COVID-19 data observed in countries and viral load data observed in
COVID-19 patients. The first part of this book provides a short technical introduction
into amplitude spaces given by eigenvalues, eigenvectors and amplitudes. Emphasis
is given to the description of positive eigenvalues and their corresponding unstable
eigenvectors and amplitudes. The triple given by a positive eigenvalue, an unstable
eigenvector, and its amplitude captures within the amplitude space description the
key dynamics that underlies any instability-induced phenomenon of interest. In the
second part of the book, mathematical models of epidemiology are introduced such
as the SIR and SEIR models. The nonlinear physics descriptions of these models
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are worked out in amplitude space and the positive eigenvalues and the unstable
eigenvectors are identified. COVID-19 outbreaks in various countries around the
globe are analyzed. It is shown that these outbreaks were characterized by positive
eigenvalues and evolved in time along unstable eigenvectors. The unstable eigenvec-
tors define the characteristic order in which these outbreaks took place and, using
the terminology of synergetics, are referred to as order parameters. The impacts of
measures implemented to stop the spread of COVID-19 are also discussed. In partic-
ular, it is shown how intervention measures can lead to bifurcations that stabilize the
originally unstable disease-free states of populations. Stabilizing disease-free states
causes COVID-19 epidemics to subside at least locally and temporarily until these
states are destabilized again and newCOVID-19waves are triggered. In the third part
of the book, the individual level is considered.Virus dynamicsmodels such as theTIV
and TIIV models are described and, again, amplitude space descriptions involving
eigenvalues, unstable eigenvectors, and amplitudes are worked out. Viral load data
from a sample of COVID-19 patients are analyzed. It is shown that the disease in the
bodies of those patients emerged from instabilities characterized by positive eigen-
values and that the disease states of those patients evolved along patient-specific
unstable eigenvectors. Subsequently, the disease dynamics branched off from the
unstable eigenvectors. According to the TIV and TIIV models, the disease induced
a stabilization of the original instabilities leading to a recovery of the patients.

This book is written for researchers, modelers, and graduate students in physics
and medicine, epidemiology and virology, biology, applied mathematics, and
computer sciences. This book identifies the relevant mechanisms behind past
COVID-19 outbreaks and in doing so can help efforts to stop future COVID-19
outbreaks and other epidemic outbreaks. Likewise, this book points out the physics
underlying SARS-CoV-2 infections in individuals and in doing so supports a physics
perspective to address human immune reactions to SARS-CoV-2 infections and
similar virus infections.

Storrs, CT, USA
December 2021

Till D. Frank
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Chapter 1
Introduction

This introductory chapter reviews some tragic milestones of the COVID-19 pan-
demic. Subsequently, the chapter introduces some basic concepts of epidemic viral
infections and virus dynamics. The key concepts of nonlinear physics relevant for
understanding the spreading of viral infections in populations and viral infections in
individuals are also presented. The chapter is closed with considerations on religion
and physics in order to set up the general framework of this book.

1.1 COVID-19 Outbreaks and SARS-CoV-2 Infections
and the Physics Behind Them

The coronavirus disease 2019 (COVID-19) is an infectious disease that is caused by
the SARS coronavirus 2 (SARS-CoV-2) [1]. Patients suffering fromCOVID-19were
first reported in December 2019 in Wuhan city, China [2]. During 2020, the disease
spread out over other Asian countries, subsequently hit Europe and, eventually, by
January 2021, could be found in all 8 geographic regions of the world: Africa, Asia,
theCaribbean,CentralAmerica,Europe,NorthAmerica,Oceania andSouthAmerica
[3]. While some people infected by SARS-CoV-2 do not experience any symptoms
or experience only mild symptoms, for other people COVID-19 is a deadly disease.
After just one year, by January 2021, the worldwide death toll was about 2,000,000
people [4]. Half a year later, by July 2021, a total of about 4,000,000 deaths associated
with COVID-19 were reported worldwide [5]. For comparison purposes, Croatia, a
European country, has a population of 4,100,000 people and Oklahoma, a US state,
has a population of 4,000,000 people. That is, COVID-19 claimed within one and a
half years the lives of as many people as there are living in Croatia or in the US state
of Oklahoma. Other countries and US states in the range of 3.5 to 5 million people
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2 1 Introduction

Table 1.1 WorldwideCOVID-19 associated deaths as of July 2021 by comparisonwith populations
counts of some countries and US states (with population counts taken from Ref. [6] accessed in
August 2021). The down-arrow⇓ in the first column indicates that the number of COVID-19 deaths
is increasing and, consequently, over time will shift down the rows of the table

COVID-19 deaths
Jan. 2020–July 2021

Countries and their
populations

US states and their populations

4,000,000
⇓

Uruguay 3,500,000

Eritrea 3,600,000 Connecticut 3,600,000

Croatia 4,100,000 Oklahoma 4,000,000

Kuwait 4,300,000 Oregon 4,200,000

Panama 4,400,000 Kentucky 4,500,000

Mauritania 4,800,000 Louisiana 4,700,000

Ireland 5,000,000 Alabama 5,000,000

are listed in Table1.1. They may also be used to put the number of 4,000,000 people
into perspective.

Research on COVID-19 is an interdisciplinary effort. Efforts to model the spread
of the disease in populations and the virus dynamics in individuals are frequently
based on the principles of nonlinear physics [7, 8] and bifurcation theory [9]. In this
context, synergetics, a particular school of nonlinear physics and self-organization
[10–14] provides a promising framework since it traditionally is concerned with
pointing out the general principles that underly seemingly unrelated phenomena in
a variety of disciplines ranging from physics to biology, chemistry, economics, and
medicine [10–15]. This book presents a detailed discussion of the general nonlin-
ear physics principle that underly the spread of COVID-19 in populations and the
multiplication of the virus causing COVID-19 in the bodies of COVID-19 patients.
In doing so, fundamental mechanisms that determine COVID-19 outbreaks on the
population level and SARS-CoV-2 infections on the level of individuals are revealed.
According to such a mechanistic, nonlinear physics point of view, COVID-19 out-
breaks and infections can be seen in the context of similar well-studied phenomena
in a plenitude of systems and disciplines. Identifying the relevant nonlinear physics
principles of COVID-19 outbreaks in populations and SARS-CoV-2 infections in
individuals provides researchers with a departure point and a sound basis to discuss
details and peculiarities of COVID-19 on the level of populations and individuals.

1.2 Epidemic Viral Infections

Infectious diseases, in general, are diseases caused by certain particles (or agents)
that enter humans or animals and cause certain diseases in their bodies [16, 17].
Such particles can be for example viruses, bacteria, and worms [16, 17]. This book
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is concerned with infectious diseases caused by viruses, that is, with virus infections
and viral infectious diseases. Viruses can be transmitted between people in various
ways, for example, by person-to-person transmissions or airborne transmissions. In a
person-to-person transmission virus is transmitted from a person X to another person
Y. The transmission may involve direct or indirect contact. The human immunode-
ficiency virus (HIV) causing AIDS is frequently transmitted by sexual contact, that
is, direct contact [16–18]. Syphilis and gonorrhea are further examples of sexually
transmitted diseases that involve direct contact. However, they are bacteria (i.e., not
viral) infections. Influenza is a viral infection that is typically transmitted between
people by indirect contact. An infected person X can create droplets in the air that
contain the influenza virus when coughing, sneezing, or talking. If a person Y stand-
ing nearby inhales some of those droplets, the virus enters the body of that person and
the person may become infected [17, 19]. This transmission mechanism via air and
droplets is referred to as airborne transmission. Objects may have influenza viruses
produced by X on them. There is a chance that when a person Y touches such objects
and, subsequently, touches his or her mouth, nose, or eyes, some viruses are picked
up and enter the body of Y [17, 19]. Just like the influenza virus, it is believed that
SARS-CoV-2 is transmitted by respiratory droplets and surface contacts [20, 21].

If a virus spreads out in a population of a particular region or country, the occur-
rence of the disease is referred to as an epidemic. If the infectious disease spreads
out across several countries or continents, then the disease emergence is referred to
as a pandemic. In view of the worldwide presence of COVID-19, not surprisingly,
the World Health Organization (WHO) declared in 2020 the spread of COVID-19 as
a pandemic [22]. In this context, note however, that in this book the term COVID-19
epidemic will be used when referring to the spread of COVID-19 in a certain country
(e.g., China) or region (e.g., the European countries), respectively.

Historically, several epidemics and pandemics of viral infectious diseases have
claimed millions of lives. Table1.2 lists three of them. During 1918 and 1919 the
influenza virus triggered a pandemic. Conservative estimates state that about 20
million people died during this pandemic [17, 23]. AIDS was first reported in 1981.
TheWHOestimates that since the beginning of theHIVpandemic up to the year 2020
about 36 million people died from HIV-related causes [24]. Finally, as mentioned
above, as of July 2021, about 4 million COVID-19 associated deaths have been
reported.

Looking at annual data, while in many parts of the world vaccines for influenza
are available, influenza is still claiming the lives of many people every year. It is

Table 1.2 Three infectious disease epidemics/pandemics and their death tolls (as of 2020/2021)

Years Epidemic/pandemic Deaths

1918–1919 Influenza 20 million

1981–2020 AIDS 36 million

Jan. 2020–July 2021 COVID-19 4 million
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Fig. 1.1 Cumulative,
worldwide COVID-19
deaths during the period
from January 26, 2020 to
August 15, 2021. Weekly
data retrieved from Ref. [27]
accessed on August 16, 2020
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estimated that there are 300,000 to 600,000 influenza-related deaths worldwide every
year [25, 26]. HIV-related deaths peaked around 2005 with about 2 million per year.
The number dropped to about 700,000 deaths per year in the year 2020 [24]. As
mentioned above, in the first year of the COVID-19 pandemic (more precisely by
January 2021), COVID-19 had claimed 2 million lives. Since by July 2021 COVID-
19 reached the tragic death toll of 4 million, it follows that the COVID-19 deaths per
year for the year 2021 will be more than 2 million. Figure1.1 shows a graph of the
worldwide cumulative deaths associated with COVID-19 in the period from January
2020 to August 2021. The tragic milestones of 2 million and 4 million deaths are
indicated as well.

The time course of epidemics has often been modeled with the help of differential
equations [16–18]. Differential equations can describe the increase and decrease of
the number of individuals belonging to a certain population. Two populations are
of particular interest. The population of healthy individuals that do not infect others
and the population of infectious individuals that infect others. The former are also
called the susceptible individuals. Accordingly, the infectious individuals infect the
susceptibles. In doing so, susceptibles become infectious individuals. Frequently, a
third population is added and placed in-between the two aforementioned populations:
the population of exposed individuals. Exposed individuals are those that have been
infected by the infectious people [18]. However, they are not yet infectious.Only after
a certain period, they become infectious and, consequently, make a transition from
the population of exposed individuals to the population of infectious individuals. In
the context of the three-population model, individuals make two transitions. They
begin with as healthy individuals. Some of the healthy individuals become infected
and make transitions to the population of exposed individuals. Subsequently, after
a certain period, they become infectious themselves and make the transition to the
class of infectious individuals. Note also that in the context of the three-population
model, being infected does not mean the same as being infectious.
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As wewill see in the following section (Sect. 1.3), on the level of the virus dynam-
ics within individuals there is a three-variable model that can be regarded as coun-
terpart to the three-population model. In fact, the mathematical structures of both
models are almost identical (Sect. 9.3.3). Therefore, according to those models, epi-
demic viral infections on the population level and the course of virus infections in
individuals should exhibit similar characteristic properties.

1.3 Virus Dynamics

There are hundreds of different viruses causing diseases in humans, animals, and
plants [23, 28]. Viruses are particles that contain deoxyribonucleic acid (DNA) or
ribonucleic acid (RNA), enter certain cells, and are replicated by them [23, 29, 30].
That is, two key features of viruses are: they contain genetic material in terms of
DNA or RNA and are produced by certain cells once they have entered them. The
cells that are invaded and infected by a virus are often referred to as target cells [17,
25]. The humans, animals, or plants to which those target cells belong are referred
to as hosts. The production of viruses by infected target cells may be described in
terms of the following steps [23, 31]:

1. A virus enters a target cell.
2. The virus changes the biochemical reactions of the target cell.
3. As a result, the target cell produces the genetic material of the virus.
4. In addition, the target cell produces the remaining material that constitutes the

virus.
5. The genetic material and the constituents are put together to form virus particles

and the fully assembled particles are released from the cell.

As far as viral human infections are concerned, there is an important follow-up
step: the viruses released from a virus-producing cell spreads around and enters other
target cells. They, in turn, begin with the production of the virus and release viruses.
This mechanism typically leads to an increase of the viral load in the body of an
infected individual (i.e., the human host). In order to describe epidemic or pandemic
viral infections, that is, the spread of a virus across a population in a given country
or region and beyond, additional steps may be added such as that the virus enters the
body of an individual in the first place and that it leaves the body of that individual,
for example, by sneezing and talking or during sexual intercourse (see Sect. 1.2). In
this context, the aforementioned five-step sequence may be modified like:

1. A virus enters the body of an individual.
2. The virus enters a target cell of the individual.
3. The virus changes the biochemical reactions of the target cell.
4. As a result, the target cell produces the genetic material of the virus.
5. In addition, the target cell produces the remaining material that constitutes the

virus.
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Table 1.3 Common entities of epidemics in populations and virus infections in individuals

Entities Epidemics (population level) Virus infections (individual
level)

Healthy entities Susceptible individuals Target cells

Entities turning into or
producing infectious entities

Exposed individuals Infected, virus producing
cells

Infectious entities Infectious individuals Viruses

6. The genetic material and the constituents are put together to form virus particles
and the fully assembled particles are released from the cell.

7. The produced viruses enter further target cells (see step 2).
8. The individual transmits a part of the produced viruses to other individuals.

As far as human diseases are concerned, the influenza A virus causes seasonal
influenza also called the flu [25]. The human immunodeficiency virus (HIV) causes
the acquired immunodeficiency syndrome (AIDS) [16–18, 23]. The SARS coron-
avirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) [1].

The time course of the virus concentration or viral load in an infected individual
may be described with the help of a three-variable model given in terms of three
coupled differential equations. The model involves the target cells, the infected,
virus producing cells, and the virus [17, 23, 25]. Accordingly, viruses enter target
cells and turn them into infected, virus producing cells. The infected, virus producing
cells produce and release viruses that in turn infect other target cells. As mentioned
in Sect. 1.2, there is an analogy between the three-population model for epidemics
and the three-variable model for virus infections. Table1.3 illustrates this analogy.

As will be shown in this book, the mathematical models are almost identical (see
Chap. 9 and Sect. 9.3.3 in particular). The equations of both models exhibit the same
structure. However, they differ with respect to the number of parameters. The virus
dynamics model exhibits an additional parameter. The reason for this is that in the
epidemiological model one exposed individual can only “produce” one infectious
individual, namely, by turning into an infectious individual. In contrast, in the virus
dynamics model, an infected, virus producing cell can produce many copies of the
virus. Therefore, the virus dynamics model exhibits an additional parameter that
describes how many viruses are produced (per time unit) by a single infected, virus
producing cell. Overall, in view of the analogy between the two three-variablemodels
and similar models in epidemiology, on the one hand, and models of virus dynamics,
on the other hand, epidemics in populations and virus infections in individuals share
common properties and exhibit similar phenomena. What can be seen in epidemics
on the level of populations may be seen in individuals when looking at their disease
progressions and vice versa (see also Sect. 1.5).
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1.4 Instabilities

It has been argued above that the spread of infectious diseases in populations mim-
ics what happens in the bodies of infected individuals and vice versa. However,
there is a much broader perspective to address epidemics and virus dynamics: the
perspective of nonlinear physics. An infectious disease spreads out in a population
due to an instability [32, 33]. Likewise, a virus multiplies in the body of an individ-
ual due to an instability. Instabilities are very well-studied phenomena in nonlinear
physics. Consequently, what happens during a pandemic such as the COVID-19
pandemic and what happens in a patient suffering from a viral infection such as a
SARS-CoV-2 infection are not unpresented phenomena. From a nonlinear physics
perspective, there is nothing fundamentally novel or special about infectious diseases
in populations and individuals. Infectious diseases in population and individuals and,
in particular, the COVID-19 pandemic and SARS-CoV-2 infections in COVID-19
patients, belong to the class of instability-related phenomena that have been exten-
sively and thoroughly studied in nonlinear physics over more than 40 years [7, 8,
10–12].

A mechanical example of an instability is a marble placed on the top of a surface
that is curved like a hill. If the marble is placed perfectly on the top, it remains in
this position forever. However, a small perturbation of the marble makes that it rolls
down the curved surface. Another mechanical example of an instability is the famous
buckling instability of solid materials. If a straight, solid bar is pushed together (i.e.,
squeezed) a little bit, then the bar typically shortens a bit but remains its straight
shape. If the squeezing forces become stronger and exceed a certain critical value,
then the bar buckles. That is, the straight bar is deformed and a kink emerges. Heated
fluids and gases are further examples of systems that exhibit instabilities [7, 10,
12, 34]. Many of those instabilities occur when fluids or gases are heated from one
side such that there is a temperature difference across the layer or volume under
consideration. A prominent example is the instability in the earth mantle. A part of
the earth mantle is fluid. This part is not at rest. Due to temperature differences across
the earth mantle the resting, homogeneous state is unstable. Rather, the fluid part of
the earth mantle exhibits huge convection rolls in which fluid is streaming up and
down like the cabins of a Ferris wheel in an amusement park [10]. Likewise, the
air of the earth atmosphere does not show a resting, spatially homogeneous pattern.
Such a pattern is unstable because the earth surface is hot relative to the outer space.
Huge rotating cells composed of flowing air have emerged from that atmospheric
instability anddetermine the spatio-temporal dynamic pattern of the earth atmosphere
[10]. While the spatio-temporal dynamic fluid and gas patterns in the earth mantle
and the earth atmosphere exists day after day, various short-lived patterns in the
earth atmosphere emerge from instabilities as well. Roll-shaped clouds emerge under
appropriate circumstances from instabilities of the clear sky air. Hurricanes emerge
over the Atlantic Ocean during the fall months, when the temperature over the ocean
is sufficiently high [10]. Moreover, lightening is an electrical instability of the air
atmosphere.
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In optical engineering, laser devices produce laser light when the ordinary light in
their cavities becomes unstable [12]. In chemistry, spatially homogeneous states in
which all chemicals are evenly distributed over space become unstable under appro-
priate conditions and colorful spiral patterns may emerge. Stripe and dot patterns on
the skin of animals emerge from similar instabilities of the relevant biochemical sys-
tems [12, 35]. Human and animals make gait transitions when certain gaits become
unstable [10]. For example, human walking becomes unstable at a certain speed
such that individuals switch from walking to running. Likewise, horses switch from
walk to trot at a certain speed at which the walking pattern becomes unstable. Brain
activity patterns in humans emerge due to instabilities [10, 36]. Signaling pathways
in cells can become unstable under certain circumstances such that the biochemistry
in the cells switches from one biochemical reaction chain (or signaling pathway)
to another chain (or pathway) [10]. Importantly, for all those instabilities the same
principles of nonlinear physics apply. Moreover, all those instabilities are described
by the same type of fundamental equations. These equations are called amplitude
equations and will be discussed in general in Chap. 2. They will discussed in the
context of epidemics of virus disease in Chaps. 4, 5, 6, and 8. They will be discussed
in the context of viral infections in individuals in Chap. 10.

In order to illustrate the generality of the phenomenon that underlies epidemics
and viral infections, Fig. 1.2 shows the increase of task-related brain activity in a
certain area of a monkey brain due to an instability of the corresponding neural
system (panel(a)) as discussed in Ref. [10] and the increase of COVID-19 cases in
Italy during 2020 due to an instability of the state with zero COVID-19 infections
(panel (b)). The respective data are shown by circles. In panel (b) the confirmed
(i.e., diagnosed) COVID-19 cases are shown and modeled. In panels (a) and (b)

Fig. 1.2 Amplitude equation descriptions in neuroscience and epidemiology. Panel (a): Increasing
firing activity of neurons (measured in spikes per seconds) in a particular region of the monkey
brain (full gray circles) is described in terms of an amplitude A(t) (black line) that evolves over
time [10]. Panel (b): The number of confirmed individuals infected with COVID-19 in Italy during
the first COVID-19 wave in 2020 (open gray circles) when rescaled by a scaling parameter z is
described in terms of an amplitude A2(t) (black line) that evolves over time (see Sect. 4.5)
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the model solutions of the relevant amplitude equations are shown by solid lines.
Panel (b) will be discussed in Sect. 4.5. Figure1.2 and the examples presented in
the aforementioned paragraph should illustrate that whether we talk about a marble
rolling down from an unstable position, lightening in the sky, stripe patterns on a
zebra, a person switching from walking to a bus stop to running to a bus stop when
a bus approaches, a task-related brain activity emerging in a human or animal brain,
a SARS-CoV-2 infection increasing the viral load in a COVID-19 patient, or the
COVID-19 pandemic emerging in the year 2020 in the human population of the
planet Earth, then we talk always about the same fundamental phenomenon: the
phenomenon of an instability.

1.5 Phase Transitions, Bifurcations, Unstable Eigenvectors,
and Order Parameters

Instabilities are frequently induced by bifurcations [7, 10, 12]. Figure1.3 illustrates
three bifurcations: a bifurcation in a magnetic material (panel (a)), a bifurcation in a
fluid heated from below (panel (b)), and a bifurcation in a population affected by a
virus (panel (c)).As shown inpanel (a), some typeofmagneticmaterials donot showa

Fig. 1.3 Bifurcations in three systems. Panel (a): Bifurcation of a magnetic material from a non-
magnetic to a magnetic state when temperature is lowered (circles describe data, while the solid line
is the solution of theoretical model) [10]. Panel (b): Bifurcation of a fluid heated from below when
the temperature difference is increased (circles describe data, while the solid line is the solution
of an amplitude equation model) [10]. Panel (c): Bifurcation of the health or disease state of a
population from a disease-free state to a state with an endemic fixed point (i.e., a state for which
permanently a certain proportion of the population is infected)
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magnetization at relatively high temperatures. At such temperatures their elementary
magnets (i.e., spins) point in randomdirections.At sufficiently high temperatures, this
kind of disordered state is stable. However, when the temperature is decreased below
a critical value, the disordered state becomes unstable. The elementarymagnets begin
to point in the same direction. The material under consideration exhibits a non-zero
magnetization that increases in magnitude when the temperature is lowered further
(see panel (a)). Panel (a) shows experimental data as circles and the fit of a theoretical
model as solid line [10]. The bifurcation from the non-magnetic to the magnetic state
takes place at a temperature of about 770 ◦C.

Roll-shaped cloud-like patterns emerge in fluid and gas layers in laboratory experi-
mentswhen the layers are heated frombelowand the temperature differences between
the bottom and top of the layers exceed critical values [34]. That is, in those exper-
iments increasing temperature differences make resting, homogeneous states unsta-
ble. In experimental studies such bifurcations can be revealed by measuring the roll
velocity of the emerging rolls. Panel (b) shows measured roll velocities (as circles)
as functions of the temperature differences in an experimental study on a fluid layer
heated from below [10]. As can be seen in panel (b), in this experiment, rolls emerged
at a critical temperature difference of about 4.5 ◦C. The stationary solution of a the-
oretical model given in terms of the cubic amplitude equation dA/dt = λA − cA3

is shown in panel (b) as well (solid line) and fits the data very well [10].
In general, when a state of a system becomes unstable due to a change of the

conditions or a change of the structural properties of a system, we talk about a
bifurcation. In particular, a change in the conditions or a change of the structure of a
system such that the state of the system becomes unstable and a new state emerges is
an example of a bifurcation [7, 9, 10, 12, 37]. The conditions and structural properties
of a system are typically described by parameters. Those parameters that determine
the stability of states are called bifurcation parameters. For example, the temperature
of magnets and the temperature difference across fluid layers in the aforementioned
laboratory experiments are bifurcation parameters.

Panel (c) of Fig. 1.3 shows the number of infected people in a population for an
infectious disease that remains in the population over several generations (i.e., for an
endemic infectious disease). Panel (c) shows the prediction for such circumstances as
obtained from the three-variable epidemiological model addressed in Sect. 1.2. The
so-called effective contact rate between individuals is shown on the horizontal axis
and is varied from small to large values. For sufficiently small values the disease-free
state is stable. Here and in what follows the disease-free state is defined as state with
zero infected individuals [18, 32, 33]. When the contact rate becomes larger than a
critical value, the disease-free state becomes unstable. A bifurcation occurs. In the
population an endemic disease state emerges that describes that a certain proportion
of the population under consideration is infected all the time. For the example shown
in panel (c), the critical effective contact rate at which the bifurcation from a disease-
free state to an endemic disease state takes place is 0.5 contacts per day. The notion
of an effective contact rate will be explained in Chap. 3 and the graph shown in panel
(c) of Fig. 1.3 will be derived in Sect. 3.5.2.
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Figure1.3 exemplifies bifurcations for three types of systems.As such bifurcations
occur in all kind of systems [7, 10, 12]. Bifurcations take place when lightening
emerges in a thunderstorm, hurricanes emerge over the oceans, lasers start to produce
laser light, humans and animals make transitions from walking to running and so on.
For laser devices the pumping current is a bifurcation parameter. When it exceeds
a critical value, the ordinary light in the cavity becomes unstable [12]. For humans
and animals locomotion speed is a bifurcation parameter. When locomotion speed
exceeds certain critical values walking for humans and walking for horses become
unstable [10]. Human and horses switch to run and trot, respectively.

Figure1.4 illustrates that instabilities and bifurcations are related phenomena. In
particular, as mentioned in Sect. 1.4, amplitude equations capture both bifurcation-
and instability-phenomena. In fact, the theory of amplitude equations has been
worked out in detail for bifurcations, as will be discussed in Chap. 2. Amplitude
equations come with eigenvalues and eigenvectors that will be discussed in Chap. 2
as well. Among those eigenvectors there are special eigenvectors, the unstable eigen-
vectors, that determine how systems evolve close to instabilities. There is a general
agreement across the various schools of nonlinear physics that unstable eigenvectors
are at the heart of any instability-related phenomenon. Since epidemic outbreaks
in populations and viral infections in individuals belong to the class of instability-
phenomena, these entities of nonlinear physics, namely, unstable eigenvectors, have
determined every epidemic outbreak and every individual viral infection that took
place so far. In particular, unstable eigenvectors have determined every SARS-CoV-2
infection and every COVID-19 outbreak that took place so far and they will continue
to do so at least in the near future.

Synergetics, which is a special school of nonlinear physics and self-organization,
has the unique benefit to see beyond the scope of other schools. Synergetics relates
bifurcations to phase transitions. Examples of phase transitions are transitions from
water to ice and transitions of non-magnetic pieces of material to magnetic ones.
Synergetics points out that bifurcations and phase transitions have some key prop-
erties in common as indicated in Fig. 1.4. A detailed discussion of this topic can be

Fig. 1.4 Epidemics and
viral dynamics are
phenomena belonging to the
broader classes of
instability-, bifurcation-, and
phase transition phenomena
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found in the literature (e.g., see Refs. [10, 12]). At this stage only two comments
will be made. The first comment is that phase transitions involve instabilities. For
example, if water is put into a fridge, then it typically turns into ice at the freezing
point, which is, zero degrees Celsius. However, under certain circumstances water
can be cooled below the freezing point and remains in its liquid state. This so-called
supercooled water is an unstable state. For example, throwing a dust particle into
the supercooled water, it immediately turns into ice. Likewise, when experimental
conditions are changed appropriately such that a non-magnetic piece of material
becomes magnetic, then under the changed conditions the non-magnetic state still
exists. However, it is unstable. The second comment is about terminology. Syn-
ergetics refers to the aforementioned key players of any instability, the unstable
eigenvectors, as order parameters. The reason for this is that phase transitions (such
as the transitions of non-magnetic materials to magnetic ones) feature order param-
eters that determine the emerging order. As mentioned above and as will be shown
in detail in this book, populations exhibiting epidemic outbreaks such as COVID-19
outbreaks satisfy certain relationships that are determined by unstable eigenvectors.
In other words, epidemic outbreaks, in general, and COVID-19 outbreaks, in par-
ticular, take place with certain organizations of their parts. They take place with a
certain order. The unstable eigenvectors determine this kind of order. Following the
terminology of synergetics, unstable eigenvectors are the parameters that determine
the emerging order within populations at the beginning of epidemics and pandemics.
They are order parameters. Likewise, the biological entities (e.g., the three entities
mentioned in Sect. 1.3: target cells, infected cells, and virus concentration) that are
changing in their numbers in the bodies of infected individuals satisfy certain rela-
tionships. Infectious diseases emerge in the body of infected individuals in some kind
of order. This order is determined again by unstable eigenvectors. Again, following
the terminology of synergetics, this means that viral infections in humans and, in
particular, SARS-CoV-2 infections in COVID-19 patients are determined by certain
order parameters.

Figure1.4 points out that the three phenomena, phase transitions, bifurcations,
and instabilities, have common properties. Viral infectious diseases on the level of
populations and viral infections in individuals are placed in the middle of these
phenomena. The spread of a virus in a population or in the body of an individual is
an instability-phenomenon. Such epidemics and infections in individuals also feature
key elements of bifurcation theory. Order parameters as used in the theory of phase
transitions determine how infectious diseases (e.g., COVID-19) and viruses (e.g.,
SARS-CoV-2) spread out on the level of populations and in the bodies of individuals,
respectively.

Finally, Fig. 1.5 presents results that will be obtained in later parts of this book
(see Sections 5.8 and 10.2.1). Panel (a) shows the number of individuals diagnosed
with COVID-19 in Wuhan city, China, as function of time (gray full circles) during
the COVID-19 outbreak of the year 2020. The solution of an epidemiological model
(solid black line) of the outbreak is shown as well. The reporting period shown on the
horizontal axis is January 23 to February 11, 2020. The epidemiological model that
was used to generate the solution shown in panel (a) is similar to the three-population
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Fig. 1.5 COVID-19 outbreaks in populations and SARS-CoV-2 infections in individuals are
instability-phenomena determined by unstable eigenvectors or order parameters. Panel (a) shows
confirmed cumulative COVID-19 cases observed (gray circles) and modeled (solid line) for Wuhan
city, China, as reported in Ref. [38] and will be discussed in Sect. 5.8. Panel (b) shows the under-
lying dynamics (solid line) in the state space of exposed (E) and infectious (I ) individuals and
the corresponding unstable eigenvector or order parameter of the unstable disease-free state (dotted
black line). Panel (c) presents viral load observed (gray circles) and modeled (solid line) for a
COVID-19 patient as reported in Ref. [39] and will be discussed in Sect. 10.2.1. Panel (d) presents
the underlying dynamics (solid line) in the three-variable model space of target cells (T ), infected
cells (I ), and viral load (V ) and the corresponding unstable eigenvector or order parameter of the
disease instability (dotted black line)

model discussed in Sect. 1.2 and involves exposed and infectious individuals. In panel
(b) the number of infectious individuals is plotted versus the number of exposed
individuals over time. In doing so, a so-called phase curve of the COVID-19 outbreak
is obtained. In addition, panel (b) shows the unstable eigenvector or order parameter
of the COVID-19 outbreak (dotted thick line). The circle shown in panel (b) indicates
the initial disease state of the population of Wuhan city on January 23. Panel (b)
demonstrates that after a short period, the population numbers of exposed and infected
individuals approached the order parameter (unstable eigenvector) and, subsequently,
the epidemic evolved along that vector. Overall, as can be seen in panel (b), the
order parameter (unstable eigenvector) determined the way the number of exposed
individuals increased relative to the number of infected individuals.

Panel (c) of Fig. 1.5 presents viral load data over time from a patient suffering
from a mild SARS-CoV-2 infection (gray circles). Details about the patient data will
be given in Sect. 10.2.1. On the horizontal axis, time is given in days after symptoms
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onset. The solution of the three-variable virus dynamicsmodel introduced in Sect. 1.3
for that patient is shown as well (solid black line). Panel (d) shows the solutions for
the three variables (target cells, infected target cells, and viral load) over time in
the three-dimensional model space as a phase curve (solid thick line). All variables
are presented as percentage values of their maximal values. The order parameter or
unstable eigenvector of the SARS-CoV-2 infection of that patient is shown in the
three-dimensional space as well (dotted thick line). Comparing the order parameter
(unstable eigenvector) and the model solution, it follows that the disease in the
patient under consideration evolved initially along the order parameter (unstable
eigenvector) and, subsequently, branched off.

In summary, Fig. 1.5 illustrates that a key principle of nonlinear physics, namely,
that the relevant initial dynamics of an unstable state is determined by its unstable
eigenvector or order parameter, holds for COVID-19 outbreaks in populations and
SARS-CoV-2 infections in individuals. Moreover, Fig. 1.5 illustrates that what hap-
pens on the population level during the COVID-19 pandemic that started in the year
2019/2020 may mimic what is going on in the bodies of COVID-19 patients. Vice
versa, what happens in the bodies of COVID-19 patients may mimic what happens
on the level of populations.

1.6 Religion and Physics

This book is the straightforward consequence of a previously published book by the
same author [10] that is about the nonlinear physics perspective of the world, in
general, and humans, in particular. In this context, the author would like to point out
what physics, in general, can do and what physics cannot do. Physics, in general, is
a particular perspective of this world. This perspective considers humans as special
cases of entities that are part of this world together with many other entities that are
also part of this world. All those entities satisfy the same physical principles. There
is only one physics that holds for all and everything. There exist many alternative
perspectives of this world andmany perspectives of humans alternative to the physics
perspective, in particular. For example, there are religious and spiritual perspectives.
Physics describes the world within the physics perspective [10]. Physics does not
address alternative perspectives. In particular, physics does not address mystic and
religious concepts. That is, what physics cannot do is to address or explain such
concepts.Mystic and religious concepts are outside of the scope of physics. However,
physics does not negate such concepts as such. In other words, while mystic and
religious concepts do not have a place in physics, this does not mean that they do not
have a place at all. In a similar vein, while religious content is not part of physics,
this does not mean that physics states that religious content is irrelevant at all. In
summary, on the one hand, mystic and religious elements are not part of physics.
On the other hand, physics does not make statements about the elements of religious
and spiritual perspectives.
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There are many mystic, religious-motivated concepts in modern medicine, biol-
ogy, epidemiology, and virology. In view of what has been said before, it follows that
physics does not explain such concepts. Not explaining such concepts does not mean
that from a physics perspective there is something missing. In contrast, the concepts
of physics, in general, and nonlinear physics, in particular, are completely sufficient
to describe any aspect of the world including any phenomenon related to infectious
diseases such as COVID-19.

The author as a physicist presents in the subsequent chapters of this book some
key nonlinear physics aspects of infectious diseases, in general, and COVID-19, in
particular. The author as a private person, not as a physicist, believes that religion is
important. The author also believes that religious-motivated concepts in medicine,
biology, epidemiology, and virology are important andwould be evenmore important
if researchers would address them as what they are: religious concepts. This book
provides the reader with the nonlinear physics perspective of epidemics and viral
infections such as COVID-19 epidemics and SARS-CoV-2 infections, respectively.
In view of this perspective, the reader may discover various mystic and religious
concepts that are currently used in medicine, biology, epidemiology, and virology to
deal with COVID-19 and other infectious diseases (e.g., HIV/AIDS). These concepts
are not part of the physics of COVID-19 or any other infectious disease. However,
this does not mean that they are useless, “wrong”, or irrelevant.
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Chapter 2
Nonlinear Physics and Synergetics

This chapter presents in a condensed form several key concepts of nonlinear physics
such as fixed points, stability, bifurcations, the linearization matrix, eigenvalues,
eigenvectors, and amplitudes. It introduces into the dual description of dynamical
systems in state and amplitude spaces. The derivation of amplitude equations is
discussed that allow for the description of systems in amplitude spaces. The chapter
introduces the order parameter concept of synergetics and discusses why unstable
eigenvectors of fixed points are order parameters.

2.1 State and Time

State space

A state of a system is a collection of variables that depend on time t and describe
the evolution of the system of interest. Throughout this book, discrete systems [1]
will be considered that are described by a finite number of state variables Xi . Let n
denote the number of state variables: X1, . . . , Xn . The vector X = (X1, . . . , Xn) is
then referred to as state vector. Let Di denote the range of definition of Xi such that
Xi ∈ Di . The state space is the collection of all possible states and corresponds to
the product space

∏n
i=1 Di . For example, if n = 1 and X1 ∈ lR holds, then the state

space is the real line. If n = 2 and X1, X2 ∈ lR holds, then the state space is the two-
dimensional plane lR2. In classical mechanics, a harmonic oscillator that oscillates in
a single spatial dimension is described by two variables: the position variable x ∈ lR
and the velocity variable v ∈ lR. Consequently, the state space of the oscillator is
given by the plane lR2 with two orthogonal axes that show x and v, respectively.

In the context of epidemics and pandemics, the stateX describes the disease state
or health state of a population under consideration. In this context note that in
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this book the phrases disease state and health state are considered as synonyms. For
example, the special disease state for which there are no infected individuals in a
population corresponds to the healthy state or disease-free state of a population. Vice
versa, a health state of a population that is characterized by a finite number of infected
individuals describes that the health state of the population has moved away from the
disease-free state and that the population has been invaded by an infectious disease.
On the level of individuals, X describes the disease or health state of an individual
(e.g., a COVID-19 patient) or affected sites of an individual (e.g., affected areas in
the lung of a COVID-19 patient).

Time and dynamical systems

As mentioned above, state variables are time-dependent functions like X1(t) , . . .
,Xn(t), where t denotes time. Consequently, the state vector X depends on time like
X(t). Throughout this book discrete systems are considered whose dynamics can be
described by means of first-order differential equations of the form

d

dt
X = N(X). (2.1)

Here the right-hand side (RHS) vector-function N describes the change of the state
vector (or the change of the state variables or simply the change of the state). The
components ofN areN = (N1, . . . , Nn). Consequently, Eq. (2.1) corresponds to the
coupled set of first-order differential equations

d

dt
X1 = N1(X1, . . . , Xn),

d

dt
X2 = N2(X1, . . . , Xn),

. . .
d

dt
Xn = Nn(X1, . . . , Xn). (2.2)

The vector-function N may depend explicitly on time: N(X, t). Note that Eq. (2.1)
describes a dynamical system.

For example, the evolution equation of the harmonic oscillator that oscillates in a
single dimension reads

d

dt
x = v ,

d

dt
v = −kx/m, (2.3)

where m and k denotes mass and the spring constant, respectively. Using the state
vector X = (x, v), Eq. (2.3) can be written like

d

dt
X = N , N =

(
v

−kx/m

)

(2.4)

and is a special case of Eq. (2.1).
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Trajectory and initial conditions

The initial conditions are the values of the state variables at the initial time t0. That
is, they constitute the initial state vector or initial state X0 with X0 = X(t0). For
example, the harmonic oscillator may be considered for the initial conditions at
t0 = 0 s defined by x(0) = 0 m, v(0) = 1 m/s (here time and space are measured in
seconds and meters, respectively). A trajectory of the state of a system or a solution
of a dynamical system is defined as the time-dependent vector function X(t) for a
given initial state X(t0) = X0.

Phase portrait and phase curves

The phase portrait of a system is a collection of all possible trajectories or solutions in
state space obtained by considering all possible initial conditions. A single trajectory
plotted in the state space is also referred to a phase curve. Consequently, a phase
portrait is a collectionof all possible phase curves.Aphase portrait canbedrawnusing
the following steps. First, an initial time is fixed. Second, an initial state is selected and
the corresponding trajectory is plotted. Subsequently, another initial state is selected
and, again, the corresponding trajectory is plotted. This step, namely, selecting an
initial state and plotting the trajectory is repeated again and again. Throughout this
book, systems will be considered with continuous state variables (e.g., X ∈ lR). For
continuous state variables there are infinitely many initial conditions. Consequently,
it is impossible to plot all possible trajectories. Typically, phase portraits involving
continuous variables are drawn that show a certain selection of trajectories. In doing
so, phase portraits with arbitrarily fine-grained or course-grained resolutions can be
created.

The benefit of a phase portrait is that it shows how states evolve over time for all
kind of initial states. Consequently, they are illustrations of attractors and repellors
(see below, Sect. 2.4). In the context of this book, a repellor means an instability
and vice versa. Consequently, instabilities that play a key role for the underlying
physics of infectious diseases (see Chap. 1) can be illustrated by phase portraits. In
addition, phase portraits can be used to visualize order parameters that again are key
elements in the nonlinear physics perspective of infectious diseases (see Chap. 1).
The disadvantage of a phase portrait is that it does not present time. A phase portrait
does not show at what point in space the system is located at a particular time.

An example of a phase portrait that was obtained in [2] is shown in Fig. 2.1.
Figure 2.1 shows a phase portrait of an epidemiological model that involves infec-
tious (I ) and exposed (E) individuals (see Sect. 1.2). Trajectories for various initial
conditions are shown. The arrows indicate the flow (i.e., dynamics) along the tra-
jectories. States evolve away from the disease-free state E = I = 0. In particular,
the states approach in time a particular direction indicated by the dotted gray line.
In fact, the phase portrait shown in Fig. 2.1 captures the COVID-19 outbreak in the
beginning of the year 2020 in Wuhan City, China (see Sect. 1.5). The phase portrait
demonstrates that the disease-free fixed point in 2020 was an instability (or repellor)
[2–4]. The disease dynamics followed an order parameter (dotted gray straight line).
This order parameter is also shown in panel (b) of Fig. 1.5. That is, the dotted black
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Fig. 2.1 Phase portrait of the dynamical systemgiven in terms of exposed and infectious individuals
that supposedly determined the COVID-19 outbreak in Wuhan city, China, in the beginning of the
year 2020 (for details see Sects. 1.5 and 6.3)

line in panel (b) of Fig. 1.5 corresponds to the dotted gray line in Fig. 2.1. In other
words, as already pointed out in the context of Fig. 1.5, the phase portrait shown
in Fig. 2.1 and the underlying model-based analysis [2–4] suggest that there was
a certain order parameter that determined the course of the COVID-19 outbreak in
Wuhan city, China. This order parameter of theWuhan city COVID-19 outbreak will
be discussed in Sect. 6.3.

2.2 Structure

Structure refers to all quantities that describe the system and do not change over time
[1]. Structure is described in terms of parameters. For example, the structure of the
harmonic oscillator oscillating in a one-dimensional space is given by the mass m
and the spring constant k. That is, the system exhibits two parameters that describe
its structure. However, there are situations in which the distinction between structure
(constant over time) and state (changing over time) is not so obvious [1]. A quantity
Z may be constant over time under certain circumstances A. Under alternative cir-
cumstances B, the same quantity Z may change over time. In such situations, under
B the quantity Z becomes time-dependent. It becomes part of the state of the sys-
tem under consideration. For a more detailed discussion of structure variables that
become time-dependent see Sect. 1.6.2 and Chap. 7 in [1].

Let us illustrate this issue bymeans of a damped harmonic oscillator that oscillates
in one-dimension. The evolution equations read

d

dt
x = v ,

d

dt
v = −kx/m − γv, (2.5)

where γ denotes the friction parameter and the term−γv describes the friction force.
Let us assume that due to friction the mass m decays over time. Consequently, the
structure parameter m becomes time-dependent and the above equations read
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d

dt
x = v ,

d

dt
v = −kx/m(t) − γv. (2.6)

A possible interpretation of the model is to introduce a three-dimensional state with
the state vector X = (x, v,m). If so, we would add another evolution equation that
describes how the mass changes over time and that formally would read dm/dt =
N3(x, v,m), where N3 is the RHS function of the mass variable.

Structure variables that become time-dependent play a key role in epidemics under
the impacts of intervention measures. Intervention measures may change parame-
ters of human-virus systems such that the viral infectious diseases in those systems
subside. This issue will be addressed in Chap. 8.

2.3 Fixed Points and Stability

Fixed points and stationary states

In this book, the phrases fixed point and stationary state are considered as synonyms.
A fixed point or stationary state of a dynamical system described by Eq. (2.1) is
defined by [1, 5–7]

N(Xst ) = 0 ⇒ d

dt
X = 0 (2.7)

and is denoted by Xst . Accordingly, a fixed point is a state for which the state does
not change over time. A system may exhibit no fixed point at all, one fixed point,
a number m of fixed points, or infinitely many fixed points (e.g., all points that
line up on a particular axis in state space). Fixed points exhibit stability properties.
Accordingly, they can be classified into asymptotically stable, stable, and unstable
fixed points [6, 8–10].

Stable fixed point

A stable fixed point in the sense of Lyapunov is a fixed point Xst such that for any
arbitrarily small neighborhood A of Xst an even smaller neighborhood B can be
found such any solution X(t) starting in B does not leave A over time [6, 8, 10].

Asymptotically stable fixed point

An asymptotically stable fixed point is a stable fixed point Xst such that any state
in any arbitrary small neighborhood converges back to Xst [6, 8, 10]. This property
may be formulated like [10]

∀X(t0) : {X(t0) �= Xst ∧ |X(t0) − Xst | < ε} ⇒ X(t → ∞) = Xst (2.8)

for any sufficiently small ε. That is, ε is used to describe initial states X(t0) in
arbitrarily small neighborhoods ofXst like |X(t0) − Xst | < ε . Throughout this book,

the symbol | · | means the amount of a vector: |X| =
√∑n

i=1 X
2
i .
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Note that if Eq. (2.8) holds for all states with ε < 0.001 but not for states with
ε > 0.001 (where the explicit number, here 0.001, does not matter), then the fixed
point is asymptotically stable. That is, it does not matter whether or not states at a
larger distance from the fixed point are evolving towards the fixed point. For example,
a one-dimensional system with a fixed point at Xst = 0 may be setup such that all
states for |X (t0)| < 0.001 converge to Xst = 0 but all states for |X (t0)| > 0.001
converge to either plus or minus infinity. In this case, the fixed point Xst = 0 is
asymptotically stable although from the perspective of fixed point Xst = 0 all initial
states with ε > 0.001 do not converge to Xst = 0. For more illustrations see [1, 5].

Perturbations and relative states

In nonlinear physics, a frequently used concept is the concept of a perturbation. A
perturbation u at time t out of a fixed point Xst is defined by

u(t) = X(t) − Xst . (2.9)

Throughout this book the variable u will be considered as perturbation or relative
state. In the latter context, u is the state of a system under consideration relative to a
given fixed pointXst . In this context, no other assumptions are made. In particular, u
does not have to be a small quantity. In contrast, when the variable u is regarded as a
perturbation, it is frequently assumed that its magnitude |u| reflects a small quantity.
Using the concept of small perturbations, an asymptotically stable fixed point is a
stable fixed point for which all sufficiently small perturbations out of the fixed point
decay to zero over time.

Unstable fixed points

In general, an unstable fixed point is a fixed point that is not stable, that is, a fixed
point for which the stability property formulated above does not hold [6, 8, 10].
For practical purposes, a sufficient condition for a fixed point to be unstable is the
following. If a fixed point Xst exhibits the property that there exists in any arbitrary
small neighborhood of the fixed point at least one perturbation that originates at Xst

and increases inmagnitude over time, then the fixed point is unstable.Mathematically
speaking, if there exists at least one solution X(t) that originates at Xst and satisfies

{X(t0) �= Xst ∧ |X(t0) − Xst | < ε ∧ d

dt
|X(t) − Xst | > 0 for t ∈ [t0, t0 + δ] }

(2.10)

for any sufficiently small ε, then the fixed pointXst is unstable. The requirement that
X(t) originates atXst means that if time is reversed than the solutionX(t) converges
to Xst like limt→−∞ X(t) = Xst . In Eq. (2.10) the parameter δ is positive and can be
arbitrarily small. Graphically speaking there must be at least one way out of the fixed
point (i.e., an “escape route”) such that at least for a small period δ the state X of the
system can get away from the fixed point Xst . The sufficient condition follows from
the general definition of an unstable fixed point because if the sufficient condition
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holds then the stability property formulated above (under the subsection “stable fixed
point”) cannot be satisfied.

An example of an unstable fixed point is illustrated in Fig. 2.1. The disease-free
state E = I = 0 or Xst = (0, 0) under the conditions illustrated in Fig. 2.1 is an
unstable fixed point. As can be seen from the phase portrait shown in Fig. 2.1, if the
stateX is perturbed out of the fixed pointXst = (0, 0), then it will never return to the
fixed point. Consequently, the fixed point is not stable, which (in view of the general
definition of being unstable) implies that the fixed point is unstable. In particular,
if the stationary state is perturbed along the dotted gray line, then X(t) corresponds
to a solution that originates from Xst . In this case X(t) also evolves away from Xst .
Consequently, the more applied sufficient condition for instability formulated in Eq.
(2.10) applies. The dotted line describes a way out of the fixed point.

Neutrally stable fixed point

In this book, fixed points that are stable but not asymptotically stable will be referred
to as neutrally stable [8]. Examples of neutrally stable fixed points will be given in
the following chapters.

2.4 Attractors and Repellors

Attractors and repellors are generalizations of stable and unstable fixed points.While
fixed points are described by single points in state spaces, in general, attractors and
repellors are described by certain sets of points of state spaces. For example, a limit
cycle attractor is described by the set of points that form a closed line or curve in the
state space [1, 6, 10]. Stable and unstable fixed points in turn are special cases of
attractors and repellors. An asymptotically stable fixed point is a fixed point attractor.
An unstable fixed point is a fixed point repellor.

Figure 2.2 provides an overview over some attractors and repellors. Accordingly,
some attractors and repellors come as fixed points. Fixed points, in turn, correspond
to nodes, saddles, or foci. While nodes and foci can be asymptotically stable or
unstable, saddle points correspond to unstable fixed points in any case. Nodes and
saddle points are fixed points for which solutions do not exhibit oscillations close to
the fixed points. Unstable nodes and saddle points are both unstable fixed points. The
difference between an unstable node and a saddle is given in terms of the number of
directions, inwhich perturbations increase. For unstable nodes perturbations increase
in all directions. For saddles there is a mixture of stable and unstable directions in the
sense that there is at least one direction in the state space under consideration along
which perturbations decrease in magnitude over time. Foci are fixed points for which
solutions exhibit oscillations close to the fixed points. For more details the reader
may consult [1, 5]. In Sect. 2.7 it will be shown that fixed points can conveniently
be classified by means of its eigenvalues.

As indicated in Fig. 2.2, some attractors and repellors come as limit cycles. Limit
cycles in turn can be stable or unstable. Consequently, a stable limit cycle and a
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Fig. 2.2 Overview over different types of attractors and repellors

Table 2.1 Fixed points in one- and two-dimensional state spaces and their terminology

Attractor/repellor Dimension of state
space

Synonym Subtype

Fixed point attractor 1 Asymp. stable fixed
point

Stable node

Fixed point repellor 1 Unstable fixed point Unstable node

Fixed point attractor ≥2 Asymp. stable fixed
point

Stable node

Stable focus

Fixed point repellor ≥2 Unstable fixed point

Unstable node

Saddle

Unstable focus

Limit cycle attractor ≥2 Stable limit cycle

Limit cycle repellor ≥2 Unstable limit cycle

limit cycle attractor denote the same physical or mathematical object. Likewise, the
phrases unstable limit cycle and limit cycle repellor have the same meaning.

Table 2.1 illustrates that certain attractors and repellors only exists in two-
dimensional or higher-dimensional state spaces. Systems described by a single vari-
able (i.e., featuring a one-dimensional state space) can exhibit only fixed point attrac-
tors and repellors. Let X denote the state variable of a one-dimensional system. Let
us assume that Eq. (2.1) for the system reads

d

dt
X = −aX (2.11)
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with parameter a > 0. The fixed point is given by Xst = 0. Solutions for t0 = 0
are given by X (t) = X (0) exp{−at}. Accordingly, all perturbations starting with
X (0) �= 0 decay in the amount. Consequently, Xst = 0 is an asymptotically stable
fixed point. Since the solutions do not exhibit oscillations, we may refer to the fixed
point as a stable node. Next, let us assume the dynamics satisfies

d

dt
X = aX (2.12)

with a > 0 again. Note that there is no minus sign in front of the parameter. Con-
sequently, solutions X (t) = X (0) exp{at} for X (0) �= 0 increase in magnitude over
time. The fixed point is unstable and corresponds to a fixed point repellor. We may
refer to it as an unstable node.

While for single variable systems (n = 1) with one-dimensional state spaces,
solutions close to fixed points can only be non-oscillatory, for systems described
by two or more than two variables (n ≥ 2) exhibiting two-dimensional or higher-
dimensional state spaces, solutions close to fixed points can be non-oscillatory or
oscillatory. Moreover, in such spaces fixed points exhibiting mixtures of stable and
unstable directions can exist. Consequently, two types of fixed point attractors exist:
nodes and foci. Moreover, three types of fixed point repellors exist: nodes, foci, and
saddle (see Table 2.1 again).

2.5 Phase Transitions and Bifurcations

About jumps and kinks

When structural properties of a systemare changed, the state of the systemcan change
as well. There are quantitative and qualitative state changes. In order to distinguish
between quantitative and qualitative changes the concept of jumps and kinks can be
used [1]. In short, if a structural change induces a state change and there is a jump or
kink of an appropriately defined system variable, then the state change is qualitative.
Otherwise, the state change is quantitative. Let us dwell on this issue.

Let α denote a structural property of a system that can be changed in a continuous
way. Let X denote the state of the system and Y a physical quantity that corresponds
to one of the components of X or can be computed from X: Y = Y (X). It what
follows it is assume that X and Y are selected in such as way that they depend on α
like

Y = f (α). (2.13)

The function f describes the dependency of Y on α. Let us consider the case in
which α is varied at α0 by a small amount z. There are two scenarios.

First, the change z induces a smooth change in Y such that Y and all of its
derivatives (first, second, third order an so on) with respect to α at α0 are continuous
functions. For example, for Y = Y0 + c α (i.e., a linear dependency), any change
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in α results in a smooth change of Y . If for all physical properties Y such smooth
changes take place, then the change of X induced by α at α0 is quantitative.

Second, the change z induces a jump in Y defined by

Y (α0 − z) �= Y (α0 + z) for z → 0 (2.14)

or a kink in Y defined by

d

dα
Y (α0 − z) �= d

dα
Y (α0 + z) for z → 0. (2.15)

As indicated above, what matters are small changes in α at α0. If a jump or kink
takes place, then the system changes at α0 from a state X to a qualitatively different
state X when α is increased from values smaller than α0 to values larger than α0. In
this case, α0 is denoted by αcri t and referred to as critical value of the parameter α.

In summary, the first scenario that involves only smooth changes of physical
quantities describes changes of X within the same type of state. The first scenario
describes quantitative changes of X. In contrast, the second scenario that involves
jumps and kinks describes transition between qualitatively different states X.

Equilibrium phase transitions are such qualitative changes that take place in
systems in thermal equilibrium with their environments. For example, transitions
between aggregate states such as solid, liquid, and gas andmagnetic phase transitions
between magnetic and non-magnetic phases of materials exhibit kinks and jumps at
the transition points and belong to the class of equilibrium phase transitions [1]. In
particular, the bifurcation of the state of the magnetic material shown in panel (a) of
Fig. 1.3 is characterized by a kink of the magnetization Y . In this example α cor-
responds to the temperature T . In general, in thermodynamics, transitions between
states that exhibit a discontinuity, meaning a jump, are referred to as first-order phase
transitions [11]. The aforementioned solid-liquid transitions are first-order phase
transitions. In contrast, transitions between states that are continuous but exhibit
a kink are referred to as second-order phase transitions or continuous phase tran-
sitions [11–13]. The aforementioned magnetic phase transitions are second-order
phase transitions.

By analogy to equilibrium phase transitions, non-equilibrium phase transitions
take place in systems that are not in thermodynamic equilibrium with their envi-
ronments. For example, layers of fluids and gases heated on one side are such non-
equilibrium systems, see Sect. 1.5. In such layers various kinds of spatio-temporal
patterns can emerge such as cloud patterns, tornados, hurricanes, and Earth mantle
and Earth atmospheric rotating cells (Sect. 1.5). They correspond to states that are
qualitatively different from the respective resting or stationary states. As far as jumps
and kinks as indicators for qualitatively new states are concerned, as exemplified in
panel (b) of Fig. 1.3, the roll velocity Y exhibits a kink when rotating roll patterns
in fluids and gases emerge [1]. In this context, α corresponds to the temperature
difference across the fluid or gas layer. Lasers exhibit a kink in the light intensity at
the threshold at which they start to produce laser light [5]. The kink indicates that
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the laser light is a state qualitatively different from the ordinary light that lasers pro-
duce at pumping currents below the threshold. Lasers with two different laser modes
exhibit jumps in output power when the lasers switch between the modes [14]. When
plotting the oxygen consumption of horses over locomotion speed, then the oxygen
consumption functions of horses exhibit kinks at the critical locomotion speeds at
which they switch gaits from walk to trot [1].

Bifurcations, bifurcation parameters, and critical values

The notion of a bifurcation was introduced in Sect. 1.5. Let us dwell on this issue. A
bifurcation is a qualitative change of the state of a system induced by a change of the
structure of the system and related to a change in the set of attractors and repellors
characterizing the system. That is, in the case of a bifurcation it is required that the
qualitative change of the state of the system is related to a change in the circumstances
regarding the attractors and repellors of the system. For example, a stable fixed point
may become unstable. An attractor may disappear. A new attractor may appear. In
summary, a bifurcation is a jump-like or kink-like change of an appropriately defined
variable characterizing the (state of the) system induced by a change of a structural
parameter and related to

1. A change of the stability of attractors and repellors
2. And/or the appearance and disappearance of attractors and repellors

(see Sect. 3.2.1 in [1], see also [6, 8, 10]). The structural parameter is called bifur-
cation parameter. The value of the bifurcation parameter (structural parameter) at
which the bifurcation occurs is referred to as critical value or bifurcation point.

2.6 The Linear Domain: Basic Concepts

2.6.1 Linearization

Given the fundamental equation dX/dt = N(X), see Eq. (2.1), and a fixed point Xst

defined byN(Xst ) = 0, see Eq. (2.7), any stateX can be seen relative to a fixed point
Xst with the help of the difference vector u = X − Xst . The vector u was introduced
in Eq. (2.9) as a perturbation out of the fixed point Xst . As stated there, in general, u
describes a relative state. Let us consider states close to the fixed point Xst such that
u is small in the amount. In this case, the vector-function N that in general expresses
nonlinear dependencies can be approximated by means of linear relationships. In
other words, N can be linearized at Xst . In doing so, the fundamental Eq. (2.1)
becomes an evolution equation for the relative state or perturbation u and reads

d

dt
u = Lu (2.16)
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where L is the n × n matrix derived from N. Explicitly, the components Lik are
defined by

Lik = ∂Ni

∂Xk

∣
∣
∣
∣
Xst

. (2.17)

For example, let us consider a state vector X = (X1, X2, X3) for a n = 3 variable
system and a perturbation vector u = (u1, u2, u3). In this case, Eq. (2.16) reads
explicitly

d

dt

⎛

⎝
u1
u2
u3

⎞

⎠ =
⎛

⎝
L11 L12 L13

L21 L22 L23

L31 L32 L33

⎞

⎠

⎛

⎝
u1
u2
u3

⎞

⎠ , (2.18)

where Lik correspond to the matrix elements of L . As stated above, the right-hand
side of Eq. (2.16) is linear with respect to u, which can be seen explicitly in Eq.
(2.18). For example, from Eq. (2.18) it follows that the evolution equation for u1
reads du1/dt = L11u1 + L12u2 + L13u3.

While Eq. (2.17) gives a short computational equation for linearizing Eq. (2.1),
the linearization procedure can also be carried out in a step by step fashion. Let us
illustrate the step by step approach for the single-variable dynamical system

d

dt
X = αX − X3. (2.19)

The model describes a so-called pitchfork bifurcation [1, 6, 10]. For α < 0 there
exists a single fixed point Xst = 0. Consequently, the relative state is given by u = X .
Substituting u = X into Eq. (2.19) and separating linear and nonlinear terms, we
obtain

d

dt
u = αu − u3 = αu + nonlinear terms. (2.20)

The linearized equation is obtained by neglecting nonlinear terms. Accordingly, it
reads

d

dt
u = αu (2.21)

and describes an asymptotically stable fixed point at u = 0 (or Xst = 0), see Eq.
(2.11) and note that α < 0. Next, let us consider the case α > 0. In this case the
model may be written like

d

dt
X = αX − X3 = X (α − X2) (2.22)

and exhibits Xst = 0 and Xst = ±√
α as fixed points. The linearized equation for the

fixed point Xst = 0 is again given by Eq. (2.21). Since α > 0 the fixed point Xst = 0
is unstable, see Eq. (2.12). Let us consider the fixed point Xst = √

α for which
perturbations read like u = X − √

α ⇒ X = u + √
α. Substituting these relations
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into (2.19), we obtain

d

dt
u = α(u + √

α) − (u + √
α)3

= αu + α
√

α −
[
u3 + 3u2

√
α + 3uα + √

α
3
]

= −2αu − u3 − 3u2
√

α = −2αu + nonlinear terms. (2.23)

Again, neglecting the nonlinear terms, we obtain the linearized equation

d

dt
u = −2αu. (2.24)

This equation describes an asymptotically stable fixed point located at u = 0 (see
Eq. (2.11) and note that α > 0), which corresponds to an asymptotically stable fixed
point at Xst = √

α. Alternatively, Eqs. (2.21) and (2.24) can be obtained from Eq.
(2.17). For the pitchfork bifurcation model, N reads N = αX − X3, which implies
that dN/dX = α − 3X2. Consequently, for Xst = 0 the linearization coefficient L =
dN/dXst is given by L = α, which yields Eq. (2.21). In contrast, for Xst = √

α the
coefficient L is given by L = α − 3α = −2α, which yields Eq. (2.24).

2.6.2 Eigenvalues and Eigenvectors

The matrix L defined by Eq. (2.17) has vectors vi that satisfy

Lvi = λivi (2.25)

with i = 1, 2, ...n. The vector vi is called the i th eigenvector and the variable λi is
called the i th eigenvalue [1, 6, 8–10]. Note that in what follows the assumption is
made that in fact the matrix L is such that n eigenvectors exist that can be considered
as different from each other. Mathematically speaking, this means that it is assumed
that the matrix L exhibits n linearly independent eigenvectors.

The eigenvalues λi may be real-valued or complex. Accordingly, let us defined
type I and II eigenvectors by

Type I eigenvector vi : λi ∈ lR ⇒ Imag(λi ) = 0 , (2.26)

Type II eigenvector vi , vk :
Re(λi ) = Re(λk) ∧ Imag(λi ) = −Imag(λk) �= 0. (2.27)

As indicated, type II eigenvectors only occur in pairs. That is, if λi is complex with
eigenvector vi , then there exists also an eigenvalue λk with λk = λ∗

i and eigenvector
vk = v∗

i , where z∗ denotes the complex-conjugate of z (and z may be a scalar or
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vector). Eigenvectors are normalized such that |vi | = 1 holds. Note that if vi corre-
sponds to a complex-valued vector this implies that the scalar product (dot product)
of vi with its complex-conjugate vector v∗

i is used like viv∗
i = 1.

Under the aforementioned assumption that there exists a set of n linearly indepen-
dent eigenvectors vi , there exists a second set of special vectorswi with i = 1, . . . , n
that are orthogonal to vi like

wivk = δik, (2.28)

where δik is the Kronecker symbol. Typically, the vectors wi are not normalized.
This is, in general, for the length or magnitude of wi we obtain |wi | �= 1. However,
each vector wi is normalized with respect to its corresponding eigenvector vi like

wivi = 1. (2.29)

The vectors wi are also called the left eigenvectors because they satisfy

wi L = λiwi . (2.30)

In this context, vi are also referred to as right eigenvectors. The two sets of vectors
v1, . . . , vn and w1, . . . ,wn are said to form a biorthogonal system. For this reason,
in what follows the vectors w1, . . . ,wn will be referred to as biorthogonal vectors of
the eigenvectors v1, . . . , vn .

The biorthogonal vectors wk can be used to derive the amplitude descriptions of
systems defined by Eq. (2.1), epidemiological models, and virus dynamics models
(as will be shown in Sect. 2.9.3). The vectors can be derived from Eq. (2.28). To this
end, let us define the n × n matrix M of (right) eigenvectors vi like

M = (v1v2 . . . vn) . (2.31)

In Eq. (2.31) the vectors vi are considered as column vectors. Since vi are linearly
independent, the inverse matrix M−1 exists and satisfies

M−1M = E, (2.32)

where E is the identity matrix (i.e., the diagonal matrix with diagonal elements given
by 1). Let us cast the inverse matrix M−1 (which is again a n × n matrix) in the form

M−1 =

⎛

⎜
⎜
⎝

w1

w2

. . .

wn

⎞

⎟
⎟
⎠ . (2.33)

Here wk are row vectors. From Eqs. (2.31) and (2.32) it follows that the row vectors
wk satisfy Eq. (2.28).
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In summary, the biorthogonal vectors wk can be derived by forming the matrix
M out of the vectors vi , computing the inverse M−1 of M , and identifying the
rows of M−1 as vectors wk . Note that in linear algebra the matrix M is called
the diagonalization matrix because the matrix product M−1LM yields a diagonal
matrix, whose diagonal elements are the eigenvalues λi . This property will be used in
Sect. 2.9.4 in the context of the matrix method to derive amplitude equations.

2.6.3 Amplitudes, Amplitude Description, and Amplitude
Space

Any relative state u can be expressed in terms of the eigenvectors vi by means of the
superposition

u =
n∑

i=1

Aivi , (2.34)

where Ai are called amplitudes [1]. Since u = X − Xst holds (see Eq. (2.9)) any
state X can be expressed like

X = Xst +
∑

i

Aivi . (2.35)

The vectors vi span a new basis in the state space. The amplitudes Ai measure
distances along the directions defined by vi . That is, they can be considered as
coordinates. Importantly, the location A1 = · · · = An = 0 corresponds to the fixed
point under consideration:X = Xst . That is, the axes vi of the new basis are attached
to the fixed point Xst . The fixed point corresponds to the point of origin in the new
basis. For detailed graphical illustrations see [1].

The eigenvectors are taken as dimensionless quantities. Consequently, the ampli-
tudes A1, . . . , An have the unit of the state variables X1, . . . , Xn . For epidemiological
models the state variables typically count humans or animals and, consequently, are
given in units of human individuals or animals. If so, the amplitudes A1, . . . , An

reflect individuals or animals (e.g., see Chaps. 4 and 5). For virus dynamical models
we will return to the issue of the units of amplitudes in Chaps. 9 and 10.

In the context of the new basis, recall that a state vector X = (X1, . . . , Xn) can
be expressed by means of the orthogonal basis vectors

e1 =

⎛

⎜
⎜
⎝

1
0
...

0

⎞

⎟
⎟
⎠ , e2 =

⎛

⎜
⎜
⎝

0
1
0
...

⎞

⎟
⎟
⎠ ... en =

⎛

⎜
⎜
⎝

0
...

0
1

⎞

⎟
⎟
⎠ (2.36)

like
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X = X1e1 + X2e + · · · + Xnen. (2.37)

Equation (2.35) exhibits a structure similar to Eq. (2.37). However, in general, the
eigenvectors v1, . . . , vn are not orthogonal to each other. Consequently, Eq. (2.35)
describes the decomposition of a state with respect to a non-orthogonal basis.

The decomposition definedbyEq. (2.35) allows to introduce an amplitude descrip-
tion of a system. Just like the state variables X1, . . . , Xn describe a system in state
space, the amplitude variables A1, . . . , An describe the system in amplitude space.
The two spaces (i.e., state space and amplitude space) are connected to each other
by means of two mappings: a mapping from state space to amplitude space and, vice
versa, a mapping from amplitude space to state space. Equation (2.35) describes the
mapping (A1, . . . , An) → (X1, . . . , Xn) from amplitude space to state space. Mul-
tiplying Eq. (2.35) with a biorthogonal vectorwi , the amplitude Ai can be expressed
in terms of the state variables X1, . . . , Xn like

Ai = wi (X − Xst ). (2.38)

This equation describes themapping (X1, . . . , Xn) → (A1, . . . , An) from state space
to amplitude space. Finally, by means of the relative state vector u and the amplitude
vector A = (A1, . . . , An) the two mappings defined by Eqs. (2.34) and (2.38) can
alternatively be expressed like

u = MA , A = M−1u, (2.39)

where u and A are column vectors.

2.7 Linear Domain Dynamics and Characterization
of Fixed Points

Close to the fixed point Xst the evolution of the state X(t) is determined by Eq.
(2.16). Substituting Eq. (2.34) into Eq. (2.16), we obtain

∑

i

vi
d

dt
Ai =

∑

i

Ai Lvi =
∑

i

λivi Ai , (2.40)

where also Eq. (2.25) has been used.Multiplying this equationwithwk and exploiting
the orthogonality relation given by Eq. (2.28), we obtain

d

dt
Ai = λi Ai . (2.41)

Equation (2.41) describes the evolution of amplitudes when the state is close to its
fixed point, that is, when all amplitudes are small (Ai ≈ 0). Equation (2.41) is a linear
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equation, just like the linearized Eq. (2.16) describing the evolution of the stateX. In
other words, Eqs. (2.16) and (2.41) are counterparts to each other. Both describe the
evolution of the system under consideration close to the fixed point of interest. Both
are linear. However, Eq. (2.16) provides the state space description, while Eq. (2.41)
provides the amplitude space description. Solutions X(t) and A(t) can be mapped
to each other using the mappings defined by Eqs. (2.34), (2.35), (2.38), and (2.39).

Importantly, the amplitude space description given by Eq. (2.41) is given in terms
of a diagonal form. The amplitudes Ai evolve independent form each other like

Ai (t) = Ai (t0) exp{λi (t − t0)}, (2.42)

with the initial amplitudes Ai (t0) defined by

Ai (t0) = wi (X(t0) − Xst ), (2.43)

see Eq. (2.38).
As mentioned above, the evolution of the amplitudes A1, . . . , An determines the

evolution of the state variables X1, . . . , Xn and vice versa. Consequently, the explicit
solutions for Ai (t) can be used to construct explicit solutions for the state variables.
Substituting Eq. (2.42) into Eqs. (2.34) and (2.35), we obtain

u(t) =
n∑

i=1

Ai (t0) exp{λi (t − t0)}vi (2.44)

and

X(t) = Xst +
n∑

i=1

Ai (t0) exp{λi (t − t0)}vi , (2.45)

respectively. In particular, the initial state X(t0) is related to the initial amplitudes
A1(t0), . . . , An(t0) like

X(t0) = Xst +
n∑

i=1

Ai (t0)vi . (2.46)

Equation (2.46) is the inverse mapping of Eq. (2.43).
The analytical expressions given by Eqs. (2.44) and (2.45) for the dynamics of

perturbations u(t) and states X(t), respectively, close to fixed points can be used to
classify fixed point attractors and repellors by means of the eigenvalues λi . Using
this approach, Table 2.2 describes nodes, foci, and saddles for single-variable and
two-variable systems in terms of eigenvalues λi [1, 6, 9, 10]. In particular, when
eigenvalues are complex, then solutions exhibit an oscillatory dynamics. Conse-
quently, the fixed point is a stable or unstable focus depending on whether the real
part of the pair of eigenvalues under consideration is negative (stable case) or positive
(unstable case).
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Table 2.2 Eigenvalue characterization of fixed point attractors and repellors in one- and two-
dimensional state spaces

Dimension Attractor/repellor Subtype Eigenvalue(s) λ

1 Attractor Stable fixed point λ negative

Repellor Unstable fixed point λ positive

2 Attractor Stable node λ1, λ2 real and
negative

Stable focus λ1, λ2 complex

real parts negative

Repellor Unstable node λ1, λ2 real and
positive

Saddle λ1, λ2 real,

one positive, one
negative

Unstable focus λ1,λ2 complex,

real parts same and
positive

Table 2.3 Eigenvalue characterization of fixed point attractors and repellors for arbitrary dimen-
sions n

Dimension Attractor/repellor Subtype Eigenvalue(s)

n Attractor ∀i : {λi ∈ lR ∧ λi < 0} or Re(λi ) < 0

n Attractor Stable node ∀i : λi ∈ lR ∧ λi < 0

n Repellor ∃i : {λi ∈ lR ∧ λi > 0} or Re(λi ) > 0

For systems described by an arbitrary number n of variables, the eigenvalues
can be used to distinguish between fixed point attractors and repellors, as shown in
Table 2.3. The characterization of a node is shown in Table 2.3 as well. A fixed point
that exhibits only negative real-valued eigenvalues or eigenvalues that are complex
and show a negative real part is a fixed point attractor. In contrast, a fixed point that
exhibit at least one positive eigenvalue or at least a pair of complex eigenvalues with
a positive real part is a fixed point repellor.

Special case of a single positive eigenvalue

Let us assume that only one eigenvalue is positive, say, λk . All other eigenvalues are
negative or complex-valued with negative real parts. In this case, the fixed point cor-
responds to a saddle with a single unstable direction vk . If furthermore, the negative
eigenvalues (or negative real parts of the eigenvalues) are relative large in the amount
such that |λi | > λk (or |lR(λi )| > λk) for i �= k holds, then during an intermediate
period Ti all amplitudes Ai decay in magnitude relatively quickly to zero. If the
period during which the linearized evolution equations hold TL is sufficiently long
TL > Ti , then after the intermediate period, the exponential increase of Ak entirely
determines the evolution of the system under consideration. In this case, Eq. (2.45)
becomes
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X(t) ≈ Xst + Ak(t0) exp{λk(t − t0)}vk . (2.47)

The approximative description given by Eq. (2.45) holds during the interval [Ti , TL ]
and becomes inaccurate when nonlinear terms become relevant, that is, for t > TL .
However, under certain circumstances this dominance of the unstable amplitude (or
a set of unstable amplitudes) can be generalized such that it holds for t > TL , which
will be discussed in Sect. 2.10.

Diagonal form of linear amplitude equations: matrix calculations

The diagonal form of the linear part of amplitude equations is given by Eq. (2.41)
and has been derived using vector calculations. In what follows Eq. (2.41) will be
derived using matrix calculations. As will be shown in Sect. 2.9 vector calculations
and matrix calculations are two methods that can also be used to derive the full,
nonlinear amplitude equations of a system.

To simplify the presentation, the matrix calculation method will be demonstrated
for the case of a two-variable system with state vector X = (X1, X2) and fixed point
Xst = (X1,st , X2,st ). The following calculations are taken from [15]. Letu = (u1, u2)
denote the relative state vector u = X − Xst . Then, Eq. (2.16) reads

d

dt

(
u1
u2

)

= L

(
u1
u2

)

. (2.48)

The eigenvalues λ1,2 and eigenvectors v1,2 of L are defined by Eq. (2.25). It is
assumed that v1 and v2 exist and that they are linearly independent from each other.
Using v1,2 the relative state u can be cast into the form

(
u1
u2

)

=
∑

i=1,2

Aivi , (2.49)

see Eq. (2.34). Using the aforementioned matrix M composed of eigenvectors, Eq.
(2.49) can be equivalently expressed as

(
u1
u2

)

= M

(
A1

A2

)

, M = (
v1 v2

)
, (2.50)

see also Eqs. (2.31) and (2.39). The inverse matrix M−1 is composed of row vectors
that will be denoted by w1 and w2 such that

M−1 =
(
w1

w2

)

,M−1M =
(
1 0
0 1

)

⇒ wkvi = δik . (2.51)

Using M−1, the mapping (2.50) can be inverted and reads

(
A1

A2

)

= M−1

(
u1
u2

)

, (2.52)
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see again Eq. (2.39).
The actual matrix calculations are conducted in the following steps. Applying

M−1 to the left-hand side of Eq. (2.48), we obtain

d

dt
M−1

(
u1
u2

)

= d

dt

(
A1

A2

)

. (2.53)

Applying M−1 to the right-hand side of Eq. (2.48) and using Eq. (2.50), we obtain

M−1L

(
u1
u2

)

= M−1LM

(
A1

A2

)

. (2.54)

As mentioned above, the product M−1LM of the three matrices yields a diagonal
matrix D. Explicitly, D reads

LM = L
(
v1 v2

) = (
λ1v1 λ2v2

)

⇒ D = M−1LM =
(
w1

w2

)
(
λ1v1 λ2v2

) =
(

λ1 0
0 λ2

)

, (2.55)

as expected. That is, as expected, the matrix M is the diagonalization matrix that
transforms L into diagonal form. Finally, from Eqs. (2.53), (2.54), and (2.55) it
follows that

d

dt

(
A1

A2

)

=
(

λ1 0
0 λ2

) (
A1

A2

)

. (2.56)

As can be seen from Eq. (2.56), the evolution equation for A1 does not con-
tain an A2 term. Likewise, the evolution equation for A2 does not contain an A1

term. Consequently, in components, the linear parts of the amplitude equations read
dA1/dt = λ1A1 and dA2/dt = λ2A2. In summary, the matrix approach yields the
same result as the vector calculation approach: in the linear domain, amplitudes
evolve independent of each other and amplitude equations assumes diagonal form.

2.8 Stable and Unstable Amplitudes and Eigenvectors,
Order Parameters Amplitudes, and Order Parameters

Amplitudes Ai that are related to eigenvalues λi that are positive or complex with
positive real parts increase in magnitude over time as long as they describe states
sufficiently close to thefixedpoint of interest (i.e., as long as they are sufficiently small
in magnitude). Therefore, these amplitudes are referred to as unstable amplitudes.
In contrast, amplitudes Ai that are related to eigenvalues λi that are negative or
complex with negative real parts decrease in magnitude over time sufficiently close
to the fixed point of interest. Perturbations described by those amplitudes decay. The
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Table 2.4 Terminology used to distinguish between amplitudes and eigenvectors related to positive
and negative eigenvalues (or related to eigenvalues with positive and negative real parts)

Physical Eigenvalue λi positive or Eigenvalue λi negative or

quantity positive real part negative real part

Amplitude Ai Unstable amplitude Stable amplitude

Order parameter amplitude

Eigenvector vi Unstable eigenvector Stable eigenvector

Order parameter

amplitudes describe a dynamics that is stable against perturbations. Accordingly,
the amplitudes are referred to as stable amplitudes. By analogy, the eigenvectors are
called in the same way as stable and unstable eigenvectors. Since an eigenvector
describes a direction in a state space, an unstable eigenvector describes an unstable
direction. That is, the vector describes a direction in which the state escapes away
from the fixed point of interest. In contrast, a stable eigenvector describes a stable
direction in which a perturbation decays such that the state returns to the fixed point
(for more details see [1, 5]).

Table 2.4 summarizes the terminology introduced so far. As pointed out in Sect.
1.5, there are directions that determine the order in which the state of a system
evolves away from an instability. These directions are the order parameters using
the terminology of synergetics (see Sect. 1.5). In short, order parameters correspond
to the unstable eigenvectors. Likewise, unstable amplitudes are referred to as order
parameter amplitudes using the terminology of synergetics.

Outstanding properties of positive eigenvalues and unstable eigenvectors and
amplitudes

Positive eigenvalues or eigenvalues with positive real parts and their correspond-
ing unstable eigenvectors and amplitudes (or order parameters and order parameter
amplitudes) exhibit the following outstanding properties.

1. The evolution of a state away from an unstable fixed point is determined in state
space by the directions defined by the unstable eigenvectors (order parameters).
The unstable amplitudes (order parameter amplitudes) describe explicitly how
the state evolves in time along those directions.

2. The evolution of a state away from an unstable fixed point is determined in
amplitude space by the increase of the unstable amplitudes.

3. The positive eigenvalues or the positive eigenvalue real parts determine the rel-
evant time scales on which the state evolves away from the unstable fixed point.
That is, they determine the speed of the initial dynamics that takes the system
away from the unstable fixed point.
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2.9 The Linear and Nonlinear Domain: Amplitude
Equations

2.9.1 Where We are and Where We Go Next

So far, it has been worked out that in general there is a mapping between amplitude
space and state space likeX(t) = Xst + ∑n

i=1 Ai (t)vi (see Eq. (2.35)) such that if the
amplitudes Ai (t) as functions of time are given, then the evolution of the state X(t)
can be computed from those functions. Moreover, it has been worked out that the
states close to a fixed point evolve according to linearized equations. Exact analytical
solutions for the amplitudes can be found in terms of exponential functions Ai (t) =
Ai (t0) exp{λi (t − t0)} (see Eq. (2.42)), which implies that the evolution of the state
X(t) can be computed from a superposition of such exponential functions (see Eq.
(2.45)). At issue is to answer the question: what happens next? What happens when
a state is no longer in the vicinity of a fixed point? What happens when amplitudes
can no longer be considered to be small?

Primarily, we are interested into two related phenomena: the dynamics of systems
close to instabilities and the dynamics of systems in which bifurcations take place
(see Sect. 1.5).

Instability scenario

When studying instability phenomena, systems are considered that exhibit an insta-
bility. For our purposes to discuss the time course of epidemics in populations and
infectious diseases in individuals, it is sufficient to consider instabilities that corre-
spond to fixed point repellors such as unstable nodes, saddles, and foci. The systems
under consideration simply exist with the instabilities at hand. That is, we are con-
fronted with systems exhibiting instabilities that come “out of the blue”. In fact, this
situation describes COVID-19 outbreaks in populations and SARS-CoV-2 infections
in individuals as will be shown in the remaining chapters of this book. For a novel
virus that spreads out in a population, it typically can be assumed that the initial
disease state of the population is close to the disease-free state. Likewise, it might
be plausible to assume that a virus that invades certain regions in the body of an
individual shifts the disease or health state of the individual only by relatively small
amount such that at the onset of the disease the state of the individual or the affected
regions can be considered to be close to the virus-free state. If the initial state is
sufficiently close to the unstable fixed point, then during an initial period the linear
amplitude dynamics as described in Sect. 2.7 holds. Subsequently, the linear approx-
imation will become inaccurate such that more accurately the dynamics is described
by a full amplitude equation model that contains both linear and nonlinear terms.
In contrast, if for a given situation the aforementioned assumption of an initial state
close to its respective fixed point does not hold, then the linear amplitude dynamics
as given in terms of exponential functions does not accurately describe the dynamics
of the system. However, the dynamics of the system can accurately be described by
amplitude equations that contain both linear and nonlinear terms.
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Bifurcation scenario

The bifurcation scenario most relevant for discussing epidemics in populations and
viral infections in individuals is the following. The system under consideration under
circumstances A exhibits a fixed point attractor (e.g., a stable node or stable focus).
Moreover, the system is prepared in the stationary state defined by the fixed point
attractor at hand. Subsequently, the bifurcation parameter is changed such that it
reaches a critical value at which a bifurcation occurs. The bifurcation turns the
asymptotically stable fixed point into an unstable one (i.e., turns it into an unstable
node, unstable focus, or saddle). The system is then considered under circumstances
B in which the bifurcation parameter is slightly above the critical value. Detailed
discussions of this scenario can be found in [1, 5]. There are two key issue of the
bifurcation scenario. First, the initial state can be considered to be close to the unstable
fixed point. That is, unlike the instability scenario, it follows that all amplitudes are
initially sufficiently small such that the linear dynamics Ai (t) = Ai (t0) exp{λi (t −
t0)} is a good approximation. Second, if the bifurcation parameter is larger than
the critical value but sufficiently close to the critical value, then from theoretical
consideration [1, 5] it follows that there exist only a single positive eigenvalue or a
relative small number of eigenvalues that are real and positive or complex and exhibit
positive real parts. If so, the initial dynamics is determined by the corresponding
unstable eigenvector or the small number of unstable eigenvectors. The bifurcation
phenomenon under consideration exhibits an order parameter or a small number of
order parameters. This issue will be discussed in Sect. 2.10.

In both scenarios, at best, it can only be assumed that for a certain initial period
the state of the system under consideration is close to the vicinity of the fixed point
under consideration and that the amplitudes are relatively small. In order to describe
the dynamics of the system under consideration over a longer period by means of
the amplitude description, amplitude equations can be used that exhibit both linear
and nonlinear terms.

Bifurcation and instability scenarios

In both scenarios the full description of the dynamics can either be obtained by
solving the state spacemodel defined byEq. (2.1) or an amplitude equationmodel that
goes beyond Eq. (2.41) and contains nonlinear terms. Formally, such an amplitude
equation model can be expressed like

d

dt
Ai = NA,i (A1, . . . , An), (2.57)

where NA,i are nonlinear functions of the amplitudes. That is, the amplitude equa-
tion model corresponds to a set of n coupled first-order differential equations. The
subindex A of NA,i indicates that the functions NA,i are related to the amplitude
description of the system of interest. Using the amplitude vector A and the vector-
function NA = (NA,1, . . . , NA,n), Eq. (2.57) can be written like
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d

dt
A = NA(A1, . . . , An). (2.58)

Equation (2.58) is the counterpart to Eq. (2.1). Likewise, Eq. (2.57) is the counterpart
to Eq. (2.2). Eq. (2.1) (or in components Eq. (2.2)) describes the evolution of the
state of a system under consideration in state space. Likewise, Eq. (2.58) (or in
components Eq. (2.57)) describes the evolution of the system in amplitude space.
In view of the linear amplitude dynamics defined by Eq. (2.41), the functions NA,i

can be decomposed into a linear part and purely nonlinear part. Using this approach,
Eq. (2.57) becomes [1]

d

dt
Ai = λi Ai + Gi (A1, . . . , An), (2.59)

where λi are the eigenvalues occurring in Eq. (2.41) and Gi are functions that do
not exhibit any terms linear in A1, . . . , An . That is, the functions Gi contain terms
like A2

1 or A1A2. There are several methods to derive the explicit expressions of the
purely nonlinear parts Gi .

2.9.2 Method 1: Scalar Calculations

This method uses all state variables X1, . . . , Xn and amplitude variables A1, . . . , An

one at a time. That is, the method works with scalars. The mappings A → X and
X → A, see Eqs. (2.34), (2.35), (2.38), and (2.39), are written out explicitly for each
state and amplitude like

Xi = Xi,st +
n∑

k=1

Akvk,i , Ai =
n∑

k=1

wi,k(Xk − Xst,k), (2.60)

where vk,i is the i th component of vk and wi,k is the kth component of wi like

vk =
⎛

⎝
vk,1
. . .

vk,n

⎞

⎠ , wi =
⎛

⎝
wi,1

. . .

wi,n

⎞

⎠ . (2.61)

Subsequently, using the mappingX → A described in components in Eq. (2.60), A1

is differentiated with respect to time to arrive at

d

dt
A1 =

n∑

k=1

w1,k
d

dt
Xk =

n∑

k=1

w1,k Nk(X1, . . . , Xn), (2.62)

where dXk/dt = Nk (see Eq. (2.2)) has been used as well. The state variables occur-
ring in the functions Nk are expressed in terms of amplitudes using the mapping
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A → X described in components in Eq. (2.60) again. In doing so, formally, we
arrive at

d

dt
A1 =

n∑

k=1

w1,k Nk(X1(A1, . . . , An), . . . , Xn(A1, . . . , An)) = NA,1 (2.63)

for A1. When carrying out the calculations, the function NA,1 will show a structure
as indicated in Eq. (2.59): NA,1 = λ1A1 + G1. The calculations may be simplified
by taking this structure into account. That is, the calculations of terms linear in A1,
A2 and so on, may be skipped since the result is given and reads: λ1A1. That is,
in the evolution equation of A1 all coefficients of terms involving only A1 add up
to λ1. In the evolution equation of A1, all coefficients of terms involving only A2

will add up to zero. All coefficients of terms involving only A3 will add up to zero,
and so on. The steps presented above to derive the evolution equation of A1 can
then be repeated in a similar vein to obtain the evolution equations of the remaining
amplitudes A2, . . . , An .

Illustration for an epidemiological model

Following [3, 15], let us use the scalar method to derive the amplitude equations of
a fundamental epidemiological model, the susceptible-exposed-infectious-removed
(SEIR) model. The SEIRmodel will be discussed in detail in Chap. 3. The amplitude
equations of the SEIR model will be discussed in detail in Chap. 5.

The following calculations primarily demonstratemethodological aspects, namely,
how the scalar method works in an application. Other aspects will be addressed in
Chaps. 3 and 5. Let S denote the susceptible individuals, E describe the exposed
individuals, I describe the infected individuals, and R describe the number of recov-
ered individuals. The total population is given by N = S + E + I + R. The reader
should watch out. N does not refer to a component of the RHS vector-function N of
Eq. (2.1). The SEIR model assumes the form of Eq. (2.1) withX = (S, E, I, R) and
reads [15, 16]

d

dt
S = − β

N
I S ,

d

dt
E = β

N
I S − αE ,

d

dt
I = αE − γ I ,

d

dt
R = γ I.

(2.64)

The model exhibits the parameters β > 0, α > 0, and γ > 0 that will be explained
in Chap. 3. Since N is constant, N is considered to be another parameter. However,
since N is constant, the variable R can be computed from R = N − S − E − I . It is
sufficient to consider the three-variable model with state vector X = (S, E, I ) that
was also briefly introduced in Sect. 1.2. The fixed point under consideration is the
disease-free state with Xst = (N , 0, 0).

In linewith the general index notation of state variables as X1, . . . Xn , the variables
S, E , and I may be referred to as X1, X2, and X3, respectively. However, in this
demonstration, an alternative notation will be used and S, E , and I will be referred
to as XS , XE , and XI such that X = (XS, XE , XI ).
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Linearization of Eq. (2.64) atXst taking only the first three variables into account,
yields the linear model defined by Eq. (2.16) with the relative state u = (uS, uE , uI ),
uS = S − N , uE = E , uI = I , and the 3 × 3 matrix

L =
⎛

⎝
0 0 −β
0 −α β
0 α −γ

⎞

⎠ . (2.65)

The matrix is singular and exhibits the eigenvalues λ1 = 0 and [17]

λ2,3 = T̂

2
±

√

T̂ 2

4
+ D̂neg. (2.66)

In Eq. (2.66) the trace T̂ = −(α + γ) < 0 is computed from the non-singular sub-
matrix Lsub defined by

Lsub =
(−α β

α −γ

)

. (2.67)

Moreover, D̂neg = α(β − γ) is the negative value of the determinant of Lsub. The
eigenvalue λ1 = 0 is associated with the eigenvector

v1 =
⎛

⎝
1
0
0

⎞

⎠ . (2.68)

In this application, the amplitude space description will only be applied to the two-
dimensional subspace spanned by the variables E and I . The motivation for this
step will be explained in Chap. 6. This subspace is the plane orthogonal to v1. The
eigenvectors in the E-I subspace can be obtained from the submatrix Lsub. In doing
so, the E and I components of v2 and v3 can be obtained. The S components of v2
and v3 are zero (because v2 and v3 are in the plane orthogonal to v1 as mentioned
above). A detailed calculation [3, 15] (see also Sect. 6.2.2) yields

v2 = 1

Z2

⎛

⎝
0
β

λ2 + α

⎞

⎠ , v3 = 1

Z3

⎛

⎝
0
β

λ3 + α

⎞

⎠ (2.69)

with Z j = √
β2 + (λ j + α)2 for j = 2, 3. The vectors v1, v2, and v3 are linearly

independent of each other provided that λ2 �= λ3 holds, which is always the case
because T̂ 2/4 + D̂neg > 0 holds for α,β, γ > 0, see [3]. Since the assumption of
linear independency is satisfied, in analogy to Eq. (2.35), the state X can be decom-
posed like
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X = Xst + uSv1 + A2v2 + A3v3 = Xst +
3∑

i=1

Aivi . (2.70)

As indicated in Eq. (2.70), the relative state uS will be denoted as A1 in order to
simplify the presentation. In order to conduct the scalarmethod, themappingsA → X
andX → A should be given in components. Themapping (A1, A2, A3) → (S, E, I )
defined by Eq. (2.70) reads in components

S = N + A1 , E = A2v2,E + A3v3,E , I = A2v2,I + A3v3,I . (2.71)

with v j = (0, v j,E , v j,I ) for j = 2, 3 defined by Eq. (2.69). The inverse mapping
(S, E, I ) → (A1, A2, A3) reads [3]

A1 = S − N , A2 = (v3,I E − v3,E I )/B , A3 = (v2,E I − v2,I E)/B. (2.72)

InEq. (2.72) the parameter B is computed from the determinant of the diagonalization
matrix

M =
(
v2,E v3,E
v2,I v3,I

)

(2.73)

and reads B = |M | = β(λ3 − λ2)/(Z2Z3) < 0 for α > 0,β > 0 [3].
Before conducting the key steps of the scalar calculationmethod (centered around

Eqs. (2.62) and (2.63)), it is convenient to discuss the nonlinear term βSI/N of the
SEIR model defined by Eq. (2.64). As indicated in Eq. (2.63), eventually, the state
variables Xi that occur in the nonlinear terms NA,k are expressed in termsof amplitude
variables. Accordingly, substituting the relations of Eq. (2.71) into the βSI/N term,
we obtain

β

N
SI = N + A1

N
β

(
v2,I A2 + v3,I A3

) = (N + A1)k0(A2, A3) (2.74)

with

k0 = β

N
(v2,I A2 + v3,I A3). (2.75)

Now, the steps related to Eqs. (2.62) and (2.63) can be carried out. From A1 =
S − N (see Eq. (2.72)) and dS/dt = −βSI/N (see Eq. (2.64)), it follows that

d

dt
A1 = d

dt
S = − β

N
SI (2.76)

Using Eq. (2.74), the evolution equation

d

dt
A1 = −(N + A1)k0(A2, A3) (2.77)
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for the amplitude A1 can be obtained. As far as A2 is concerned, differentiating the
variable transformation A2 = (v3,I E − v3,E I )/B (see Eq. (2.72)) with respect to
time, leads to

d

dt
A2 = v3,I

B

d

dt
E − v3,E

B

d

dt
I. (2.78)

The evolution equation of I is linear (see Eq. (2.64)). Let us first focus on the
evolution equation of E that involves the nonlinear term βSI/N . Replacing dE/dt
by NE defined by NE = βSI/N − αE , Eq. (2.78) becomes

d

dt
A2 = v3,I

B

β

N
SI + linear terms. (2.79)

Using Eq. (2.74) again, Eq. (2.79) can be written as

d

dt
A2 = v3,I

B
A1k0(A2, A3) + v3,I N

B
k0(A2, A3) + linear terms. (2.80)

The second term on the right-hand side of the equals sign is a linear term. From
Eq. (2.41) it follows that all linear terms taken together yield the term λ2A2. Conse-
quently, Eq. (2.80) can be cast into the form

d

dt
A2 = λ2A2 + v3,I

B
A1k0(A2, A3). (2.81)

Conducting the analogous steps for A3, the following result can be obtained [3]:

d

dt
A3 = λ3A3 − v2,I

B
A1k0(A2, A3). (2.82)

Note that there is a minus sign in front of the nonlinear term, which is due to the fact
that A3 depends on E like A3 = (v2,E I − v2,I E)/B, see Eq. (2.72). The evolution
equations for A2 and A3 assume diagonal form. That is, the linear parts are given by
dAi/dt = λi Ai . In contrast, the evolution equation of A1 exhibits in addition to the
term λ1A1 that equals zero (because of λ1 = 0) two linear terms in A2 and A3 like

d

dt
A1 = Nk0(A2, A3) + nonlinear terms

= β(v2,I A2 + v3,I A3) + nonlinear terms. (2.83)

The reason for this is that A1 actually corresponds to the relative state uS . That is, A1

is not an amplitude derived from a diagonalization procedure. As stated above, the
amplitude space description was only applied to the E-I subspace. Therefore, only
A2 and A3 are amplitudes. Using uS rather than A1, the SEIR model defined by Eq.
(2.64) in the partial amplitude space description worked out in this example reads
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d

dt
uS = −(N + uS)k0(A2, A3) ,

d

dt
A2 = λ2A2 + v3,I

B
uSk0(A2, A3) ,

d

dt
A3 = λ3A3 − v2,I

B
uSk0(A2, A3). (2.84)

In summary, the SEIR model is defined in state space and amplitude space by Eqs.
(2.64) and (2.84), respectively. The two descriptions are connected to each other by
the mappings defined by Eqs. (2.71) and (2.72), in which A1 is replaced by uS . The
model Eq. (2.84) will be discussed in a more general context in Sect. 6.2 and applied
to the COVID-19 epidemic of the year 2020 in Wuhan city, China, in Sect. 6.3.

2.9.3 Method 2: Vector Calculations

The vector calculations method makes explicit use of the biorthogonal vectors wi .
First of all, the right-hand side vector-function N of Eq. (2.1) is decomposed into
a linear and nonlinear part. To illustrate this decomposition, let us consider a func-
tion f (x) depending on the coordinate x that vanishes at a particular value xst like
f (xst ) = 0. The Taylor expansion of f using the relative state u = x − xst reads

f (x) = f (xst ) + Lu + 1

2
f ′′u2 + 1

6
f ′′′u3 + . . . , (2.85)

where L = d f/dx is the first derivative of f at xst and f ′′ and f ′′′ are the second
and third derivatives of f at xst , respectively. If the Taylor expansion is truncated
after a particular term, then the truncated Taylor expansion of f differs from f by a
remainder term R. Adding the remainder term to the truncated Taylor expansion, the
original function f is re-obtained. In particular, truncating after the linear term gives
f (x) = f (xst ) + Lu such that the remainder term is R = f (x) − [ f (xst ) + Lu]. In
short, f (x) can be written like

f (x) = f (xst ) + Lu + R = f (xst ) + Lu + R(u, xst ). (2.86)

While R originally is a function of x , using x = xst + u, the function R can also be
expressed as a function of u, as indicated above. Moreover, the term f (xst ) equals
zero by definition of xst . Applying this type of decomposition to N, gives us

N(X) = N(Xst + u) = N(Xst ) + Lu + R(u,Xst ) = Lu + R(u,Xst ), (2.87)

whereR does not exhibit any linear terms. Equation (2.87) may be considered as the
definition of the remainder term like
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R(u,Xst ) = N(Xst + u) − Lu. (2.88)

Substituting into the left-hand side of Eq. (2.1) the relative state u = X − Xst , from
Eqs. (2.1) and (2.87), it follows that

d

dt
u = Lu + R(u,Xst ). (2.89)

This equation is the departure point for the vector calculation method and the matrix
calculation method to derive amplitude equations. In the context of the vector cal-
culation method, the left-hand and right-hand sides of Eq. (2.89) are multiplied with
the vector wi such that

LHS : wi
d

dt
u = d

dt
wi

n∑

k=1

vk
d

dt
Ak = d

dt
Ai , (2.90)

where Eqs. (2.28) and (2.34) have been used, and

RHS : wi (Lu + R) = wi

(
n∑

k=1

λk Akvk

)

+ wiR = λi Ai + wiR, (2.91)

where Eqs. (2.28) and (2.34) have been used again. By putting LHS = RHS and
taking again advantage of Eq. (2.34), the amplitude equations of the form

d

dt
Ai = λi Ai + wiR

(
n∑

k=1

Akvk,Xst

)

(2.92)

are obtained. A comparison of Eq. (2.92) with Eq. (2.59) shows that within the frame-
work of the vector-calculation method the purely nonlinear terms Gi are computed
from

Gi = wiR

(
n∑

k=1

Akvk,Xst

)

. (2.93)

In Sect. 2.9.2 the amplitude equations of the SEIR model defined by Eq. (2.64)
have been derived for a partial two-dimensional amplitude space description using
the scalar calculation method. In Sect. 6.1.2 it will be shown how to apply the
vector calculation method (and the matrix calculation method) to derive Eq. (2.64).
Moreover, in Sect. 5.7.1 the amplitude equations of the SEIR model in the full three-
dimensional amplitude space will be derived using the vector calculation method.
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2.9.4 Method 3: Matrix Calculations

According to the vector calculation method, Eq. (2.89) is multiplied by w1 and the
amplitude equation for A1 is obtained. Subsequently, Eq. (2.89) is multiplied by w2

and the amplitude equation for A2 is obtained. This procedure is repeated for all
vectors wi and corresponding amplitudes Ai . Consequently, the method involves n
steps. The matrix calculation method formally takes these n steps together. To this
end, vector multiplications are replaced by matrix multiplications [18]. Just as for
the vector calculation method, the departure point is Eq. (2.89). Then, differentiating
the mapping A = M−1u (see Eq. (2.39)) with respect to time and replacing du/dt
by the right-hand side of Eq. (2.89), the intermediate result

d

dt
A = M−1 d

dt
u = M−1[Lu + R(u,Xst )] (2.94)

is obtained. Substituting u = MA (see Eq. (2.39) again) into Eq. (2.94), leads to

d

dt
A = M−1LMA + M−1R (MA,Xst ) . (2.95)

Using the fact that M is the diagonalization matrix of L such that M−1LM = D,
Eq. (2.95) can equivalently be expressed as

d

dt
A = DA + M−1R (MA,Xst ) , D =

⎛

⎝
λ1 . . . 0
. . . . . . . . .

0 . . . λn

⎞

⎠ . (2.96)

Consequently, Eq. (2.96) assumes the general from of Eq. (2.58). Within the frame-
work of the matrix calculation method the nonlinear term NA of Eq. (2.58) can be
decomposed into the linear part involving the diagonal matrix D and the vector-
function G that contains only nonlinear terms:

d

dt
A = NA = DA + G(A) , G = M−1R (MA,Xst ) . (2.97)

In components, Eq. (2.97) reads

d

dt
Ai = λi Ai +

n∑

k=1

M−1
ik Rk, (2.98)

where M−1
ik are the matrix elements of M−1 and Rk are the components of R like

R = (R1, . . . , Rn). Therefore, it follows that the components of the purely nonlinear
terms Gi can be computed from
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Gi =
n∑

k=1

M−1
ik Rk

⎛

⎝
n∑

j=1

A jv j ,Xst

⎞

⎠ . (2.99)

Since (as it was stated in the context of Eq. (2.33)) the i th row of M−1 is given by
the vector wi (when considering wi as a row vector), Eq. (2.99) is equivalent to Eq.
(2.93).

2.10 Reduced Amplitude Spaces

The two scenarios addressed in Sect. 2.9.1, the instability and bifurcation scenarios,
both are such that we are confronted with systems that exhibit a number of positive
real-valued eigenvalues or eigenvalues that are complex with positive real parts. For
instabilities arising due to bifurcations, it can be argued that the number of such eigen-
values is relatively small [1]. In particular, under some relatively weak assumptions
that are described in detail in [1], systems close to their bifurcation points exhibit
a single real-valued positive eigenvalue. In what follows, we assume that among
the n eigenvalues there are m eigenvalues that are either real-valued and positive or
complex with positive real parts. For sake of simplicity, let denote λ1, . . . ,λm pos-
itive eigenvalues of this kind. The corresponding eigenvectors and amplitudes are
the unstable ones (see Sect. 2.8). Moreover, it is assumed that λm+1, . . . ,λn are real-
valued and negative or complex with negative real parts such that the corresponding
eigenvectors and amplitudes are the stable ones (see Sect. 2.8). In summary, we have

i = 1, . . . ,m : (λi ∈ lR ∧ λi > 0) or Re(λi ) > 0 ⇒ vi , Ai unstable

i = m + 1, . . . , n , : (λi ∈ lR ∧ λi < 0) or Re(λi ) < 0 ⇒ vi , Ai stable.

(2.100)

In the context of the bifurcation scenario, it can also be argued that there is a time-scale
separation. The eigenvalues that are positive or exhibit positive real parts are close
to zero and in magnitude smaller than the negative eigenvalues or the eigenvalues
with negative real parts such that

|Re(λi )| � Re(λk) for i = m + 1, . . . , n , k = 1, . . . ,m. (2.101)

This implies that in the linear domain, in which Eq. (2.41) holds, the amplitudes
Ai with i = 1, . . . ,m are slowly evolving, whereas the amplitude Ak with k = m +
1, . . . , n are fast evolving. There is a time-scale separation [1, 5] at least during
the initial dynamics away from the fixed point under consideration for which all
amplitudes are relatively small:
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i = 1, . . . ,m : Ai slowly evolving ,

i = m + 1, . . . , n : , Ai fast evolving. (2.102)

That is, the stable amplitudes are fast evolving, whereas the unstable amplitudes are
slowly evolving.

In what follows, it is further assumed that the amplitude equations defined by Eq.
(2.59) for the stable amplitudes exhibit nullcline points. That is, they exhibit fixed
points if the values of the slowly evolving amplitudes are assumed to be constants. If
so, the key idea that has been frequently used in the literature (adiabatic elimination
[1, 5, 19]) is to assume that the fast variables quickly converge to these fixed
points (nullcline points) even when the slow variables are actually slowly changing
in time. That is, the amplitude Ai for i = m + 1, . . . , n can be replaced by their
fixed point (or nullcline) values. More explictly, putting dAi/dt = 0 in Eq. (2.59)
for i = m + 1, . . . , n, we obtain

Ai = Gi (A1, . . . , An)

|λi | , (2.103)

when λi < 0 is real and

Ai = −λ∗
i

Gi (A1, . . . , An)

|λi |2 , (2.104)

when λi is complex. Eqs. (2.103) and (2.104) describes a set of n − m equations for
n − m stable amplitudes Ai . Of particular interest is the case in which this set of
implicit algebraic equations can be solved for the n − m amplitudes Am+1, . . . , An .
If so, the result reads

Ai = fi (A1, . . . , Am), (2.105)

where fi are certain functions. Eq. (2.105) describes a mapping (A1, . . . , Am) →
(Am+1, . . . , An) from the slowly evolving amplitudes to the fast evolving ampli-
tudes in terms of n − m functions fi . Accordingly, the fast evolving amplitudes are
considered as dependent variables. They depend on the slowly evolving variables.
Importantly, substituting these relations into the amplitude equations defined by Eq.
(2.59) again, but this time for the slowly evolving amplitude, then we obtain

d

dt
Ai = λi Ai + Gi,e f f (A1, . . . , Am) , i = 1, . . . ,m (2.106)

with the effective purely nonlinear functions

Gi,e f f (A1, . . . , Am) = Gi (A1, . . . , Am, fm+1, . . . , fn), (2.107)

where fi only depend on A1, . . . , Am , see Eq. (2.105).
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Equation (2.106) is a closed set of m coupled first-order differential equations
for the unstable amplitudes A1, . . . , Am . The unstable amplitudes A1, . . . , Am span
the reduced amplitude space. The dynamics in this reduced amplitude space plays
the key role for the dynamics of the system in the entire original n-dimensional
state space. The dynamics of the state X can be reconstructed from the dynam-
ics in this m-dimensional reduced amplitude space using the mappings fi from
(A1, . . . , Am) → (Am+1, . . . , An) and the general mapping A → X. In summary,
the reduced amplitude space allows for

1. Simplification of the analysis of the system dynamics under consideration (by
reducing the dimensionality of the system).

2. Identification of the relevant dynamics and mechanisms (by pointing out the
subspace in which the relevant dynamics takes place).

As mentioned in the beginning of this section, a system under consideration fea-
turing an instability might exhibit only a single positive, real-valued eigenvalue. If
so, there is a single order parameter v1 and a single order parameter amplitude A1.
The order parameter amplitude satisfies the equation

d

dt
A1 = λ1A1 + G1,e f f (A1). (2.108)

For such a system, the key aspects of the phenomena of interest can be captured by a
nonlinear evolution equation for a single variable. In fact, for the SEIRmodel defined
by Eq. (2.64) it can be shown that only one of the two eigenvalues λ2,3 defined by
Eq. (2.66) can be positive [3]. That is, the SEIR model is an example of models that
describe populations with instabilities characterized by single positive eigenvalues.

In the context of the reduced amplitude space, the dependency of the stable ampli-
tudes on the unstable amplitudes and vice versa may be studied in more detail. For
a given system, we may ask the question: Do the stable amplitudes depend on the
unstable ones? We may distinguish between the de-coupled case in which they do
not and the coupled case in which they do so [1]. Likewise, for a given system, we
may ask the question: Do the unstable amplitudes depend on the stable ones? We
may distinguish again between the de-coupled case in which they do not and the
coupled case in which they do so [1]. For a detailed discussion of this matter the
reader is referred to [1].

Haken-Zwanzig model

Originally the Haken-Zwanzig model was used in thermodynamics to discuss how
heat bath variables can be eliminated [20–23]. Nowadays, it is frequently used in
nonlinear physics to demonstrate the elimination of the stable amplitudes and the
construction of reduced amplitude spaces [1, 5, 24–27]. The model involves two
amplitudes with one stable and the other unstable such that n = 2, m = 1, λ1 > 0,
λ2 < 0. In the case of the Haken-Zwanzig model, Eq. (2.59) reads [1, 5]

d

dt
A1 = λ1A1 − A1A2 ,

d

dt
A2 = λ2A2 + A2

1. (2.109)
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Consequently, the purely nonlinear terms are given by

G1 = −A1A2 , G2 = A2
1. (2.110)

Eliminating the stable amplitude A2 by putting dA2/dt = 0, yields the mapping f2
in form of

G2 = A2
1 ⇒ A2 = f2(A1) = G2/|λ2| = A2

1/|λ2|. (2.111)

Subsequently, the effective function G1,e f f can be obtained:

G1 = −A1A2 ⇒ G1,e f f = −A1 f2(A1) = −A3
1/|λ2|. (2.112)

The reduced amplitude space description is given by Eq. (2.108), which reads explic-
itly

d

dt
A1 = λ1A1 − 1

|λ2| A
3
1. (2.113)

The amplitude equation for A1 describes a pitchfork bifurcation, see Sect. 2.6.1 and
Eq. (2.19).
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Chapter 3
Epidemiological Models and COVID-19
Epidemics

This chapter focuses on epidemiologicalmodels and their applications to theCOVID-
19 pandemic. It begins by introducing four basic compartments of epidemiological
models. Subsequently, two fundamental compartmental models, the SIR and SEIR
models, are discussed in detail. Stability properties of these models are analyzed in
an ad-hoc fashion. The chapter also presents applications to COVID-19 outbreaks in
Italy and China during the year 2020.

3.1 Type of Models and Some Definitions

Compartments and compartmental models

As discussed in Sect. 1.2, populations such as the population of a country can be
decomposed into different subpopulations, groups, or classes. In this context, the
phrase compartments is frequently used [1, 2]. Compartments describe individuals
with certain characteristic properties. A compartment may be used to describe the
under 60 years old people of a population. A second compartment may be used to
describe the remaining people who are at the age of 60 years or older. In particular,
compartments may describe individuals with certain disease-related characteristics.
For example, a fundamental compartment are healthy, disease-free individuals,where
the phrase disease-free frequently just means that they have not been infected by the
virus under consideration. They may have other health issues. On the one hand,
compartments are non-overlapping in the sense that an individual can only belong to
one compartment. On the other hand, compartments should be complete in the sense
that any individual of the population can be assigned to a compartment. Importantly,
individuals typically make transitions between compartments. The epidemiological
models that will be studied throughout this book describe populations in terms of
compartments and the number of individuals belonging to those compartments. In
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particular, the models describe how these numbers change over time, for example,
during a COVID-19 outbreak. Thesemodels are referred to as compartmental models
[1–3]. Let Xi denote the number of individuals in compartment i , then the vector
X = (X1, . . . , Xn) describes the state of the population in terms of n compartments.

The number of individuals of the whole population under consideration (i.e., the
population size) is denoted by N . If death and birth processes are neglected, then N
is constant. If so, N corresponds to the sum of the individuals in all compartments
like N = ∑n

i=1 Xi .

Basic compartments

Some basic compartments are those addressed in Sect. 1.2. They will be denoted by
certain symbols rather than by X1, X2, and so on. Let us consider the following four
compartments [2–4]:

• Susceptible individuals are healthy individuals who can be infected. They have not
been infected before or they have previously been infected and have recovered.
If after recovery they achieved some kind of immunity, then only those recov-
ered individuals who lost their immunity against the virus infection belong to
the compartment of susceptibles. The symbol S is used for susceptibles and has
a qualitative and quantitative aspect. On the one hand, S is used as compartment
label for the susceptibles. On the other hand, S describes the number of susceptible
individuals.

• Exposed individuals are individuals that are infected but not yet infectious. That
is, they cannot infect others. The symbol E is used for exposed individuals.

• Infectious individuals are infected individuals who can infect others. They are
denoted by I .

• Recovered individuals are individuals recovered from an infection and are no
longer infectious. They may have achieved some level of immunity against the
virus. For example, they cannot get infected at all or the chances that they get
infected are relatively low. If so, this level of immunity may not hold for a lifetime
[5]. It may lasts only for some finite period. Recovered individuals are denoted by
the symbol R.

Epidemic versus endemic models

From a purely modeling point of view, epidemic and endemic models may be distin-
guished as follows [1]. Epidemic models describe rapid outbreaks of an infectious
disease in a population during relatively short periods (for example, a few months or
less than one year). On such time scales the impacts of births and deaths by natural
causes can be neglected and are not taken into account in the models. In this context,
deaths by natural causes are understood as deaths that are not related to the infectious
disease. Deaths associated with the disease may or may not be considered depending
on the aims of the study at hand. In this context, birth rates and mortality rates in
the absence of the infectious disease are called demographic terms and describe the
vital dynamics of populations. In summary, when constructing an epidemic model
the vital dynamics of a population in terms of demographic terms is ignored because
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the outbreak or epidemic under consideration usually is more rapid than the vital
dynamics.

As far as the population variable N of epidemicmodels is concerned, if the number
of deaths associated with the infectious disease is small relative to N , then N can be
regarded as a constant.

Endemic models describe the spread of infectious diseases in populations over
longer periods (e.g., several years or generations). Therefore, it is taken into account
that new susceptibles show up by birth. Likewise, the death of individuals due to
causes unrelated to the infectious disease is taken into account as well. In short, an
endemic model features birth and death terms that describe the vital dynamics of a
population in the absence of the infectious disease.

Taking a phenomenological point of view, we may distinguish between infectious
diseases that are short-lived and disappear in populations after relatively short periods
and infectious diseases that persist in populations for longer periods such as years
and decades. For example, seasonal influenza infections are short lived, whereas
HIV infections persist in the world population since 1981 (see Sect. 1.2). From this
perspective, endemic models are models that exhibit stable fixed points (or, in more
general terms, attractors) and, in doing so, describe that under appropriate initial
conditions infectious diseases persist in populations forever [2, 3, 5].

These two perspectives (i.e., the time-scale-focused birth and death term perspec-
tive and the phenomenologically-motivated endemic fixed point perspective) are to
some extent consistent with each other. Compartmental models without birth and
death terms frequently do not exhibit stable, endemic fixed points, that is, fixed
points that describe that portions of populations suffer permanently from infectious
diseases. In contrast, taking birth and death terms into account when constructing
epidemiological models, is frequently a necessary (but not sufficient) step to arrive
at models that exhibit stable, endemic fixed points.

In the COVID-19 literature, various epidemiological models describing COVID-
19 outbreaks have been proposed and used to fit COVID-19 data. Some of those
models take the vital dynamics of populations into account by considering explicitly
birth processes and death processes due to natural causes. It is questionable if this
makes sense, in particular,when only relatively short periods of one or twomonths are
considered. For studies that describe the evolution of COVID-19 data over relatively
short periods of a few months, epidemic models that do not feature vital dynamics
terms may be more appropriate than endemic models. Having said that, since from
a mathematical point of view the effects of vital dynamics terms on the solutions
of the models are negligibly small, taking these terms into account does not do any
harm.

Time-discrete versus time-continuous models

Time-discrete models study the dynamics of epidemics on a discrete time grid. Fre-
quently, the grid size is one day. For example, it is modeled how the number I of
infectious individuals varies from day to day. In general, time-discrete models corre-
spond to iterativemaps (also called difference equations). For example, the dynamics
of I (t) within the framework of a time-discrete model may be given by
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I (t + 1) = I (t) + NI , (3.1)

where NI is a function that depends on all compartment variables at time t . In contrast,
time-continuous models involve a time variable t that is a real number. The models
are frequently given in terms of differential equations. For example, in the context
of a time-continuous model, the evolution of I (t) may be described like

d

dt
I (t) = NI , (3.2)

where NI is again a function that depends on all compartment variables taken at
time t . Throughout this book only time-continuous models will be considered. More
precisely, time-continuous models will be considered that assume the general form
of dynamical systems defined by Eq. (2.1).

3.2 Effective Contact Rate, Rate Constant k0, and “Force
of Infection”

A key concept in epidemiology is the effective contact rate [4]. The effective contact
rate β describes the rate (or frequency per time unit) of contacts between individuals
that lead to infections of individuals. As such the rate of contacts is the number of
contacts of an individual with other individuals per time unit (e.g., per day). The
effective contact rate can be computed from two quantities. Let ν denote the contact
rate between people of a population. That is, ν describes howmany contacts a person
has with other people per time unit. Let p denote the probability of a susceptible
to get infected when having a contact with an infectious person. Then, the effective
contact rate β is given by [1, 2]

β = pν. (3.3)

For example, a susceptible individual has 5 contacts per day with other people (ν =
5/d) and all contact people are infectious. Moreover, let us assume that on average
1 out of 10 contacts with an infectious individual leads to an infection (p = 10%).
This implies β = pν = 0.1 · 5 = 0.5/d. That is, within two days the individual gets
infected. In the literature, β is also called the number of adequate contacts of a person
per time unit, where an adequate contact is a contact that leads to a transmission of
the virus [1, 6]. Frequently, the adjectives effective or adequate are dropped and
β is simply referred to as contact rate. Note however that (as explained above)
the parameter β accounts for the number of contacts per time unit as well as the
chance that a transmission of the virus takes place during such a contact. That is, the
parameter β describes more than just a contact rate. Finally, the parameter β has also
been called the transmission rate [3, 7].

The parameter β describes the rate with which a susceptible individual becomes
infected due to contacts with others assuming that the contacts are exclusively con-
tacts with infectious individuals. Let us assume that there is a complete mixing of
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the individuals of a population. Any susceptible individual can make contacts with
other individuals of all sub-populations or compartments. Then, the probability of a
susceptible individual to make contact with an infectious individual is I/N . Conse-
quently, the rate withwhich a susceptible individual becomes infected due to contacts
that involve both infectious individuals and other individuals is smaller than β and
is given by

k0 = β
I

N
. (3.4)

As such k0 is the rate constant of the transformation reaction S → Y that transforms
susceptible individuals S into infected individuals Y . The infected individuals Y
may correspond to exposed individuals E or infectious individuals I or other kind of
infected individuals. The quantity k0 has also been called the “force of infection” [1,
2] although k0 does not correspond to any force in the sense of classical mechanics.
Rather, in analogy to the rate constants of chemical reactions that describe how
quickly reaction products are built, k0 describes the rate with which a susceptible
individual becomes infected. In a population with S susceptibles the rate with which
those individuals become infected is given by multiplying k0 by S such that

k0S = β
I S

N
(3.5)

describes the rate with which the number of infected individuals increases. Let Y
denote this number.Within the time-continuous modeling framework, it then follows
that [1, 2]

d

dt
Y = k0S = β

I S

N
(3.6)

when neglecting all other impacts that cause a change of the number of infected
individuals. Note that in some applications the population size N is included in the
effective contact rate. That is, Eq. (3.3) may be replaced by

β = pν

N
. (3.7)

In this case, the rate constant k0 (i.e., the “force of infection”) reads

k0 = β I. (3.8)

3.3 Continuity Equations

Compartmental models typically describe transitions between compartments. If indi-
viduals leave a compartment X1 at a rateU and enter a compartment X2 at the same
rate U and all other impacts on the two compartments X1 and X2 can be ignored,
then the number of individuals is constant across X1 and X2. In such a situation
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d

dt
X1 = −U,

d

dt
X2 = U ⇒ X1 + X2 = const (3.9)

holds. As a proof, the two differential equations listed in Eq. (3.9) can be added
together such that

d

dt
(X1 + X2) = −U +U = 0. (3.10)

Continuity equations like X1 + X2 = const may be used to reduce the number of
variables. In the example, X2 may be expressed in terms of X1 like X2 = C − X1,
where C is a constant.

3.4 Linear Terms and Their Coefficients

Epidemiological models frequently involve terms that are linear in the state variables
X1, . . . , Xn such as aX1, bX2, and so on. These terms involve coefficients (e.g., a
and b). In particular, if the evolution of a state variable Xi involves a term cXi , then
the coefficient c can be interpreted in terms of an exponential law. For example, let
us consider

d

dt
I = −γ I ⇒ I (t) = I0 exp{−γt}, (3.11)

where I denotes the number of infectious individual and I0 = I (t = 0) is the initial
state (or number). The parameter γ is positive. Only the impact of the linear term
on the evolution is considered. The model describes an exponential decay due to
recovery of the infectious individuals. The parameter γ corresponds to the recovery
rate, that is, the rate at which individuals recover and leave the compartment I . The
reciprocal of γ is a time constant τ = 1/γ. The parameter τ can be interpreted in
two ways. First of all, τ is the characteristic time at which the number of infectious
individuals decays by factor e (with e ≈ 2.7). That is, I (τ ) = I0/e ≈ I0/2.7.

Alternatively, in order to get insights into the nature of the parameter γ, an analo-
gous problem from atomic physics may be exploited. In order to compute the mean
life time of a radioactive atom, it is typically assumed that the probability density
P(tl) of life times tl is an exponential function and reads

P(tl) = γ exp{−γtl}. (3.12)

Note that the pre-factor γ has been chosen such that the function is normalized like∫ ∞
0 P(tl) dtl = 1. The mean life time tl,mean can be computed from

tl,mean =
∫ ∞

0
tl P(tl) dtl = 1

γ
(3.13)
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and equals τ = 1/γ. Next, let us relate the life time distribution P(tl) to the law that
describes the decay of radioactive atoms. To this end, let psurv(tl > t) denote the
probability to have atoms with life times tl larger than t . These are the radioactive
atoms that still exist at time t . They are the survivor atoms. Accordingly, psurv is a
survival probability, as indicated. We obtain

psurv(tl > t) =
∫ ∞

t
P(tl) dtl = exp{−γt}. (3.14)

This holds for a single atom. If there are N0,atom radioactive atoms initially at time
t = 0 and the decays of the atoms can be considered as independent events, then the
number of radioactive atoms Natom(t) at time t is Natom(t) = N0,atom psurv(tl > t).
Consequently, the law of radioactive decay reads

Natom(t) = N0,atom exp{−γt}. (3.15)

Note again that N (t) describes the number of atoms that have not yet decayed at
time t (i.e., that are still radioactive).

If we interprete Eq. (3.11) in the sense of the radioactive decay law defined by
Eq. (3.15) and assume that the recovery times of the infectious individuals satisfy an
exponential waiting time distribution [1, 3] as defined by Eq. (3.12), then the time
constant τ = 1/γ of the linear coefficient γ may be interpreted as the mean duration
of individuals being infectious. In other words, τ is the duration that individuals
spend on average in the compartment I . It is the mean recovery time of infectious
individuals. In general, linear coefficients (like γ) may be interpreted as reciprocals
of time constants τ that describe mean durations of individuals in compartments
[1, 3]. Importantly, if data is available about such mean durations τ , then the linear
coefficients can be estimated on the basis of those time constants. For example, if
the mean recovery time is τ = 14 d then γ = 1/τ ≈ 0.07 d−1.

3.5 SIR Model

In this section the susceptible-infectious-recovered (SIR) model is introduced. It
involves only three compartments. The susceptible individuals S, the infected and
infectious individuals I , and the recovered individuals R, see Sect. 3.1. That is, there
are no exposed individuals. If an individual gets infected, then the individual imme-
diately can infect others. The SIR model was introduced in a benchmark study by
Kermack and McKendrick in 1927 [8].
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3.5.1 Without Demographic Terms

The model

Let us consider an epidemic (Sect. 3.1) and, consequently, neglect effects of demo-
graphic terms (i.e., vital dynamics). In this case, the SIR model reads [1–3, 7]

d

dt
S = −β

I S

N
,

d

dt
I = β

I S

N
− γ I,

d

dt
R = γ I, (3.16)

where S, I , R are susceptible, infectious, and recovered individuals, respectively. The
parameters β > 0 and γ > 0 denote the effective contact rate and the mean recovery
rate of individuals, respectively. The total population N is given by N = S + I + R
and is constant:

d

dt
N = d

dt
(S + I + R) = −β

I S

N
+ β

I S

N
− γ I + γ I = 0. (3.17)

Fig. 3.1 illustrates the three compartments S, I , and R and the transitions performed
by individuals between the compartments. Taking the three variables together, the
state vector X = (S, I, R) describes the disease (or health) state of a population of
interest.

Fixed points

Putting the left-hand sides inEq. (3.16) equal to zero,weobtain dR/dt = 0 ⇒ I = 0
and I = 0 ⇒ dS/dt = dI/dt = 0. Consequently, the SIR model exhibits fixed
points described by

Ist = 0, Sst ∈ [0, N ], Rst = N − S. (3.18)

These fixed points describe disease-free states (i.e., states with zero infectious indi-
viduals). When applied to COVID-19 epidemics that took place at the beginning of
the pandemic in the years 2019/2020, the fixed point of interest is given by

Sst = N , Ist = 0, Rst = 0. (3.19)

Accordingly, COVID-19 was a novel disease at the beginning of the pandemic.
Nobodyhadbeen infected before by that disease and, consequently,when considering
a particular population of N individuals all individuals were susceptibles to COVID-
19: Sst = N . A COVID-19 outbreak that took place at an initial time t0 is considered
as a perturbation that exhibited a small number of infectious individuals I (t0) > 0

Fig. 3.1 Compartments and
flow-chart of the SIR model
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and, in doing so, moved the disease (or health) states X of the population out of the
disease-free fixed point (3.19). The initial state S0 = S(t0), I0 = I (t0), R0 = R(t0)
of a COVID-19 epidemic that took place at time t0 was given in terms of a perturbed
fixed point of the form

I0 > 0, but small, S0 = N − I0, R0 = 0. (3.20)

In applications, typically, N is relatively large as compared to I0 (e.g., N =
1, 000, 000 and I0 = 1) such that

S0
N

≈ 1. (3.21)

Consequently, the assumption that local COVID-19 epidemics started as small per-
turbations, whose initial dynamics can be studied by linearized equations (see Chap.
2), is justified. Although the SIR model (3.16) features fixed points that are located
anywhere on the S-axis with Sst ≤ N (see Eq. (3.18)), in general, for novel infectious
diseases (such as COVID-19) Eqs. (3.19) and (3.20) are the disease-free fixed points
and the initial disease states of interest.

The SIR model can be reduced to a two variable model by exploiting that S +
I + R = N and N is constant. Accordingly, the two-variable model reads

d

dt
S = −β

I S

N
,

d

dt
I = β

I S

N
− γ I (3.22)

with R(t) = N − S(t) − I (t). Comparing Eqs. (3.16) and (3.22), we see that we just
dropped the evolution equation for R in Eq. (3.16) and replaced it by the mapping
I, S, N → R defined by R(t) = N − S(t) − I (t).

Trajectories

Solutions of the SIR model can be visualized as trajectories S(t), I (t) and R(t) (i.e.,
functions over time). From Eq. (3.16) it follows that S(t) is a monotonically decay-
ing function over time (i.e., dS/dt < 0 for S, I > 0), while R is a monotonically
increasing function over time (i.e., dR/dt > 0 for I > 0). The solutions I (t) are of
particular interest. Let us write the evolution equation of I (t) of the SIRmodel (3.16)
like

d

dt
I = I

(

β
S

N
− γ

)

. (3.23)

If the expression Z(t) = βS(t)/N − γ is zero at the initial time t0 or any time point
tp > t0, then I does not change at that particular moment in time. However, S decays
over time which implies that Z becomes negative and remains negative for t > t0
or t > tp. In particular, if Z = βS/N − γ < 0 holds at t0 then Z < 0 for t > t0,
which implies that I decays monotonically. In contrast, if initially Z > 0 holds, then
from Eq. (3.23) it follows that I increases. However, S decreases, which implies
that at a certain time point tp > t0, the expression Z becomes zero. At that time
point I reaches its maximum. For t > tp we have Z < 0 and I decays over time.
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Fig. 3.2 Monotonically decaying (panel (a)) and wave-like (panel (b)) solutions I (t) of Eq. (3.22)
for ξ < 1 with β = 0.4/d (panel (a)) and ξ > 1 with β = 0.8/d (panel (b)). Parameters and initial
conditions for both simulations: N = 1, 000, γ = 0.5/d, I (0) = 10, and S(0) = N − I (0)

Consequently, there are two types of I (t) trajectories [1, 3]. They either describe a
monotonic decay or a wave. In the later case, the function I (t) initially increases,
reaches a peak at tp > t0 at which Z = 0 holds, and subsequently decays towards
zero. In order to distinguish between these two cases, the expression Z(t) for t = t0
may be written like Z = γ(ξ − 1), where ξ is defined by [1, 3]

ξ = β

γ

S0
N

(3.24)

and will be referred to as stability parameter. From the discussion above about the
expression Z at t0 it follows that for ξ ≤ 1 the epidemic under consideration decays
monotonically. In contrast, for ξ > 1 there is an epidemic wave. The stability param-
eter ξ that plays a crucial role for solutions of the SIR model (3.16) will be derive in
Chap. 4 in a more systematic way using the nonlinear physics perspective discussed
in Chap. 2.

Figure3.2 presents solutions I (t) for the two qualitatively different cases ξ ≤ 1
and ξ > 1. The reader should pay attention to the following: a monotonic decay of I
does not simply mean that the initial infectious individuals recover over time. That
is, the graph I does not show how the initial infectious people recover. For example,
in panel (a) of Fig. 3.2 there are initially 10 infectious individuals. They recover over
time. However, they also infect new individuals such that the cumulative number of
infectious individuals during the whole time course is larger than 10. The function
I (t) in panel (a) (and also in panel (b)) shows the number of infectious people at a
give time point t . Some of them may correspond to the initial infectious individuals.
In general, the compartment I of the SIR model does not distinguish between the
initial infectious individuals, secondary cases of infectious individuals infected by
initial cases, third generation cases of infectious individuals infected by secondary
cases, and so on.

Epidemic waves (ξ > 1) exhibit a peak value Imax given by [1, 3]
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Imax = I0 + S0

(

1 − 1

ξ
[1 + ln(ξ)]

)

. (3.25)

For ξ = 1, we obtain Imax = I0. The function f (ξ) = [1 + ln(ξ)]/ξ occurring Eq.
(3.25) is a monotonically decaying function of ξ and decays from f = 1 for ξ = 1
to f = 0 for ξ → ∞. Consequently, the peak value Imax of the wave increases from
Imax = I0 at ξ = 1 to Imax = I0 + S0 in the limiting case ξ → ∞, which implies
Imax = N for R0 = 0. Note that for ξ = 1 the function I (t) still corresponds to a
monotonically decaying function. However, if a value slightly larger than ξ = 1 is
chosen, then the SIR dynamics produces a wave with a peak slightly larger than I0.

In the special case γ = 0, there is no recovery of infectious individuals (see Eq.
(3.16)). Consequently, all susceptible individuals become infectious over time and
remain infectious forever. Thewave degenerates to amonotonic increase of I towards
Imax, which is given by Imax = I0 + S0 (and Imax = N for R0 = 0). As mentioned
above, we obtain this maximum value also from Eq. (3.25) in the limiting case
ξ → ∞, which is consistent with the fact that γ → 0 for a constant β > 0 implies
ξ → ∞ (see Eq. (3.24)).

Finally, note that in the context of novel infectious diseases, in general, and, in
particular, COVID-19 outbreaks during the years 2019/2020, we have S(0)/N ≈ 1
(see Eq. (3.21)), such that the stability parameter (3.24) reads

ξ = β

γ
. (3.26)

According to the SIRmodel, whether an initial group of infectious people I (t0) = I0
in a population leads to a monotonically decaying infection dynamics or to a wave
with Imax > I0 depends on the ratio β/γ between the effective contact rate β and the
mean recovery rate γ. If infectious individuals recover faster than they induce new
infections (γ > β), then, subsequent to that initial perturbation event, the number of
infectious individuals decays over time to zero. If not, that is, if infectious individuals
infect other individuals faster than they recover (β > γ), then the initial group of
infectious people triggers a wave of infections.

Phase portrait and stability of fixed points

In what follows a small population of N = 1000 individuals will be considered. First
the caseβ > γwithβ = 0.8/d andγ = 0.5/dwill be considered. Figure3.3 illustrates
the construction of a phase portrait for the SIR model (3.16) as it was discussed in
Sect. 2.1. In line with the reduced SIR model (3.22) only the two-dimensional S-
I subspace is considered. Panel (a) shows the solutions S and I of Eq. (3.22) as
functions of time for the initial conditions R0 = 0 individuals, I0 = 10 individuals,
and S0 = N − I0 individuals. Panel (b) shows the corresponding phase curve in the
two-dimensional S-I subspace.

Figure3.4 shows two phase portraits that were drawn by repeating the procedure
used for panel (b) of Fig. 3.3. For both phase portraits shown in Fig. 3.4 the parameters
β = 0.8/d, γ = 0.5/d, and N = 1000 were used.
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Fig. 3.3 Wave-like solution of the SIR model (3.22) presented in terms of the trajectories S(t) and
I (t) (panel (a)) and the phase curve I (S) (panel (b)). Parameters and initial conditions as for the
simulation shown in panel (b) of Fig. 3.2

Fig. 3.4 Phase portraits of the SIR model (3.22) for β > γ. Panels (a) and (b) show a detail of the
S-I plane and the full plane, respectively. Parameters as for the simulation shown in panel (b) of
Fig. 3.2

Let us first consider the phase portrait in panel (a). To this end, let us have a
look at the horizontal axis (i.e., the S-axis) and the phase curves that originate at
states slightly above the horizontal axis. From Eq. (3.18) it follows that states on the
axis correspond to fixed points. Since the states can be shifted along the axis (e.g.,
the fixed point Sst = 1000, Rst = 0 can be shifted to Sst = 999, Rst = 1), the fixed
points do not satisfy the conditions of asymptotically stable fixed points as defined
in Eq. (2.8). They either correspond to unstable fixed points or neutrally stable fixed
points. Following the initial states with I0 = 1, R0 = 999 − S0, and S0 ranging from
S0 = 999 down towards the value indicated by the square, we see that all trajectories
depart from the S-axis. More precisely, for those trajectories I (t) increases initially.
Consequently, the fixed points do not satisfy the property of stable fixed points as
described in Sect. 2.3, which implies that they are unstable. In particular, Eq. (2.10)
is satisfied (since solutions I (t) with I0 = 1 originate on the S-axis at I = 0, i.e.,
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converge to I = 0when time is reversed), which shows explicitly that the fixed points
with Ist = 0 and Sst > S0,cri t are unstable. The critical value S0,cri t indicated by the
square can be obtained from Eq. (3.24). Putting ξ = 1 and solving for S, we obtain

S0,cri t = γ

β
N . (3.27)

For β = 0.8/d, γ = 0.5/d, and N = 1000 Eq. (3.27) yields S0,cri t = 625. Looking
to the fixed points along the S-axis with Sst < S0,cri t (i.e., to the left of the square),
we see that trajectories approach those fixed points on the S-axis. Consequently, if
fixed points with Sst < S0,cri t and Ist = 0 are perturbed by increasing I to a finite
value, then the perturbation of I disappears over time. I decays to zero. States that
correspond to fixed points and exhibit perturbations that decay in this manner are
consistent with the notion of stable fixed points. However, as mentioned above, there
is a direction along which the fixed points can be perturbed (i.e., shifted) such that
perturbations do not decay, namely, the direction given by the S-axis. Therefore, fixed
points with Sst ≤ S0,cri t , Ist = 0, and Rst = N − Sst are neutrally stable (rather than
asymptotically stable).

Next, let us follow phase curves with initial states defined by R0 = 0 along the
line I0 = N − S0. More precisely, panel (a) shows trajectories X(t) = (S(t), I (t))
in terms of phase curves I (S) that were computed for initial conditions I0 and S0 =
1000 − I0, where I0 was varied in steps of 20 in the range from I0 = 1 up to I0 = 281.
Consequently, the initial states X0 = (S0, I0) when plotted in the S-I subspace form
the straight line I0(S0) = 1000 − S0.As canbe seenwhen following the phase curves,
for all trajectories I (t) initially increases. From Eq. (3.24) it follows that the critical
value of β at which ξ = 1 holds is given by

βcri t = γ
N

S0
. (3.28)

Alternatively, Eq. (3.28) can be obtained by solving Eq. (3.27) for β. For the most
extreme initial condition I0 = 281 we have S0 = 719 and βcri t = 0.70/d. Since β =
0.8/d holds in the simulations under consideration, for all initial states along the line
with S0 = 1000 − I0 and I0 ≤ 281 the effective contact rate β = 0.8 is larger than
the critical values βcri t defined by Eq. (3.27) such that the solutions correspond to
waves.

Panel (b) of Fig. 3.4 shows an extension of the phase portrait presented in panel
(a). In panel (b) the initial state I0 was varied in steps of 30 individuals from I0 = 1
up to I0 = 961. Given N = 1000 this implies that S0 decayed from S0 = 999 down
to S0 = 39. The value S0,cri t determined in the previous discussion and defined by
Eq. (3.27) also applies in the current context. When S0 drops below S0,cri t = 625,
that is, I0 exceeds Icri t = 375, then the stability parameter ξ becomes smaller than
1. The dynamics of the SIR model is no longer a wave dynamics. Rather, solutions
I (t) correspond to monotonically decaying functions. The square in panel (b) of
Fig. 3.4 indicates the first initial condition for which I0 > Icri t = 375 holds. For this
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Fig. 3.5 Phase portraits of
the SIR model (3.22) for the
case ξ < 1. Parameters as for
the simulation shown in
panel (a) of Fig. 3.2

initial condition and all remaining initial conditions with even large initial values I0
visual inspection of the phase curves I (S) shows that the solutions I (t) are given by
monotonically decaying functions.

Panel (b) of Fig. 3.4 features a phase portrait of the state dynamics of a SIR
model for a scenario in which the SIR model exhibits unstable fixed points on the
S-axis in the interval [S0,cri t , N ] and exhibits under appropriate initial conditions
wave-solutions. Similar phase portraits can be obtained for all SIR models with
β > γ. In contrast, for β ≤ γ from Eq. (3.24) it follows that ξ ≤ 1 and, likewise,
from Eq. (3.23) it follows that dI/dt < 0 holds irrespective of the initial conditions
for any S, I > 0. Consequently, SIR models with β ≤ γ exhibit only monotonically
decaying solutions I (t) and neutrally stable fixed points. They do not exhibit unstable
fixed points that give rise to wave-solutions. Figure3.5 present a phase portrait of a
SIR model for β < γ with γ = 0.5/d again, but β = 0.4/d. Clearly, I (t) decays over
time monotonically for all initial states. All fixed points on the S-axis are neutrally
stable.

3.5.2 With Demographic Terms

The model

Let us include vital dynamics in terms of birth processes, on the one hand, and deaths
not related to the infectious disease under consideration, on the other hand. In this
case, the SIR model (3.16) becomes [1–3, 7]

d

dt
S = −β

I S

N
+ B − μS,

d

dt
I = β

I S

N
− (γ + μ)I,

d

dt
R = γ I − μR. (3.29)

The parameter B is referred to as birth rate. The B-term describes a linear increase of
the population like S(t) = S(t0) + B(t − t0). In contrast, the parameter μ describes
a death rate related to an exponential decay of the number of individuals in all
compartments like Xi (t) = Xi (t0) exp{−μ(t − t0)}, where Xi can be S, I , or R. The
total population is given by N (t) = S(t) + I (t) + R(t) and satisfies the dynamics
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d

dt
N = d

dt
(S + I + R) = B − μS − μI − μR = B − μN . (3.30)

Frequently the situation is considered for which N is constant over time [1, 7] such
that

B = μN . (3.31)

In this case, the SIR model reads

d

dt
S = −β

I S

N
+ μ(N − S),

d

dt
I = β

I S

N
− (γ + μ)I,

d

dt
R = γ I − μR (3.32)

and can be reduced to a two-variable model like

d

dt
S = −β

I S

N
+ μ(N − S),

d

dt
I = β

I S

N
− (γ + μ)I (3.33)

with R(t) = N − S(t) − I (t). In what follows, the SIR model for a constant pop-
ulation will be discussed either on the level of the three-variable model (3.32) or
the two-variable model (3.33). Note that although the SIR model (3.32) with vital
dynamics and constant N and the SIR model (3.16) without vital dynamics exhibit
both a constant population N , they have different characteristic properties, as will
be shown below.

Fixed points

It is plausible to assume that disease-free states with I = 0 are fixed points of the
model. In order to check if this is the case, let us substitute I = 0 into Eq. (3.32),
which leads to dI/dt = 0, dS/dt = μ(N − S), and dR/dt = −μR. The last two
relations imply that the fixed point must satisfy Sst = N and Rst = 0 such that

Sst = N , Ist = Rst = 0. (3.34)

The fixed points Sst < N and Ist = 0 of the SIR model (3.16) without demographic
terms do not exist. The fixed point (3.34) relates to the state of a population before
an epidemic outbreak or long after the epidemic has disappeared. In the latter case,
due to the epidemic some individuals have been infectious for some period and
have subsequently recovered. On long demographic time scales, however, all of
those recovered individuals will die at some point in time. Consequently, after a
sufficiently long waiting period, the number of recovered individuals decays to zero.
Other fixed points can be obtained by putting dI/dt = 0 in the reduced two-variable
model (3.33). We either have I = 0, which leads us to the disease-free fixed point
(3.34), or I > 0 and

β
S

N
− (γ + μ) = 0 ⇒ Sst = γ + μ

β
N (3.35)
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Substituting this result into the evolution equation of S shown in Eq. (3.33), we obtain

Ist = μ

β(γ + μ)
N (β − (γ + μ)). (3.36)

As such the term β − (γ + μ) can be positive or negative. However, in the context of
a fixed point with Ist infectious individuals only semi-positive values are considered.
Consequently, Eq. (3.36) suggests that for the SIR model with demographic terms a
stability parameter exists similar to the parameter defined by Eq. (3.26) that describes
the emergence of fixed points with Ist > 0. In fact, it can be shown that the stability
parameter of the SIR model (3.32) reads [1]

ξ = β

γ + μ
, (3.37)

which reduces to Eq. (3.26) for μ = 0. Note that the term S(0)/N as in Eq. (3.24)
does not show up in Eq. (3.37) because the stability parameter defined by Eq. (3.37)
does not refer to initial states. It refers to the disease-free fixed point (3.34) for
which Sst/N = 1. The stability parameter (3.37) will be derived in Chap. 4 using
the nonlinear physics perspective discussed in Chap. 2.

If β > γ + μ ⇒ ξ > 1 holds, then the fixed point (3.36) with a finite number of
infectious individuals exists. The fixed point describes an endemic in the population
of interest. The infectious disease under consideration persists in the population
forever (see Sect. 3.1). Taking Eqs. (3.35) and (3.36) together, the fixed point Xst =
(Sst , Ist , Rst ) reads (see also Ref. [1])

Sst = γ + μ

β
N = N

ξ
, Ist = μ

β(γ + μ)
N (β − (γ + μ)) = N

μ

β
(ξ − 1) (3.38)

with Rst = N − Sst − Ist .
If β ≤ γ + μ ⇒ ξ ≤ 1 holds, then only the disease-free fixed point (3.34) exists.

Consequently, the SIR model (3.29) features a bifurcation at β = γ + μ or ξ = 1.
At the bifurcation point the fixed point with a finite number of infectious individuals
emerges. Let us illustrate this bifurcation with the help of phase portraits and a
bifurcation diagram.

Phase portraits

Fig. 3.6 shows solutions S(t) and I (t) for the case β < γ + μ (panel (a)) and β >

γ + μ (panel (b)) for a small population with N = 1000 individuals. The SIR model
parameters γ = 0.5/d and μ = 0.013/d will be used, whereas β will be varied from
β = 0.4/d to β = 0.8/d. As expected, for β < γ + μ (i.e., β = 0.4/d) the solutions
converge to zero (panel (a)). For β > γ + μ (i.e., β = 0.8/d) the solutions converge
to the non-vanishing fixed point (3.38) describing an endemic in the population of
interest (panel (b)). A period of 700 days (about 2 years) is simulated. At the end
of the period the number of infectious individuals as obtained from the numerical
simulation is I = 9.28 (i.e., about 9 people). Substituting the model parameters into
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Fig. 3.6 Solutions S(t) and I (t) of the SIR model (3.27) in the absence (panel (a)) and presence
(panel (b)) of an endemic fixed point. Parameters and initial conditions for both simulations: N =
1, 000, γ = 0.5/d, μ = 0.013/d, I (0) = 10, S(0) = N − I (0). The effective contact rates are β =
0.4/d for panel (a) and β = 0.8/d for panel (b)

Eq. (3.36), we obtain a stationary value Ist = 9.30. That is, the simulated value
obtained at t = 700 days is close to the stationary value.

Figure3.7 presents the phase portraits of the SIR model (3.33) for the two cases
β < γ + μ and β > γ + μ in the two-dimensional S-I subspace. For β < γ + μ all
trajectories converge to the disease-free fixed point (3.34) indicated by the full cir-
cle at Sst = N = 1000 and Ist = 0 (see panel a). This suggests that perturbations
out of the fixed point satisfy Eq. (2.8) and the fixed point is asymptotically stable
[1]. A proof for the asymptotic stability of the fixed point will be given in Chap.
4. In contrast, as shown in panel (b), for β > γ + μ trajectories evolve away from
the disease-free fixed point Sst = N = 1000 and Ist = 0, which is indicated by an
open circle in panel (b). That is, perturbations of the disease-free fixed point increase
initially in magnitude such that the fixed point does not satisfy the property of stable
fixed points as described in Sect. 2.3. In particular, the trajectory drawn above the
fixed point (i.e., drawn right above the open circle) indicates (at least in good approx-
imation) an “escape route” of a solution that originates at the fixed point such that Eq.
(2.10) is satisfied. In summary, the disease-free fixed point is unstable. For the model
parameters used in the simulation, solutions I (t) and S(t) converge in an oscillatory
manner to the non-vanishing fixed point (3.38) that describes an endemic. The fixed
point is asymptotically stable [1, 7] and corresponds to a stable focus. Substituting
the model parameters into Eq. (3.38), we obtain Ist = 9.3 (as mentioned above) and
Sst = 641.7, which, by visual inspection is consistent with the center of the focus
shown in panel (b) of Fig. 3.7.

In summary, for β ≤ γ + μ (i.e., ξ ≤ 1), the SIRmodel (3.32) describes a monos-
table system. It exhibits a single fixed point, the disease-free state (3.34), which
corresponds to an asymptotically stable fixed point. For β > γ + μ (i.e., ξ > 1), the
SIR model (3.32) is monostable as well. However, it exhibits two fixed points. The
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Fig. 3.7 Phase portraits of the SIR model (3.27) in the absence (panel (a)) and presence (panel (b))
of an endemic fixed point. Parameters as reported in Fig. 3.6

disease-free fixed point (3.34), which is unstable, and the endemic fixed point (3.38),
which is asymptotically stable.

Bifurcation diagram

We may vary any of the parameters β, μ, γ or the stability parameter ξ to induce a
bifurcation. Let us fix γ = 0.5/d and μ = 0.013/d (as in the previous examples) and
consider β as bifurcation parameter (see Sect. 2.5). Plotting all possible stationary
solutions Ist versus β yields the bifurcation diagram shown in Fig. 3.8. Here, the
critical value for β can be obtained from Eq. (3.37) by putting ξ = 1 and reads

βcri t = γ + μ. (3.39)

For γ = 0.5/d andμ = 0.013/d the parameter reads βcri t = 0.5133/d. In line with the
previous discussion, Fig. 3.8 shows that for β ≥ βcri t there exists only one stationary
state Ist with Ist = 0. The state Ist = 0 for β < βcri t is depicted in Fig. 3.8 by a solid
line in order to indicate that it corresponds to an asymptotically stable fixed point. For
β > βcri t the fixed point Ist = 0 still exist as indicated by the dashed line in Fig. 3.8.
However, the fixed point is unstable. The switch from a solid to a dashed line should
indicate the change of the stability of the disease-free fixed point. At the bifurcation
point, a new stationary solution with Ist > 0 emerges that is given by Eq. (3.36). The
states Ist > 0 corresponds to asymptotically stable fixed points and, consequently, are
described by a solid line. They describe endemic states of populations. Ist increases
monotonically as a function of β, which follows from Eq. (3.36). Importantly, at
the bifurcation point β = βcri t the function Ist (β) that describes the asymptotically
stable fixed points (i.e., the solid line) exhibits a kink, which is a key characteristics
of phase transitions and bifurcations (see Sect. 2.5). This result was anticipated in
Sect. 1.5. Panel (c) of Figure 1.3 corresponds to Fig. 3.8 when presenting Ist as a
percentage value. As argued in Sects. 1.5 and 2.5, bifurcation diagrams such as shown
inFig. 3.8 demonstrate that bifurcations that describe the emergenceof endemic states
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Fig. 3.8 Bifurcation
diagram of the SIR model
(3.27) for the parameters as
reported in Fig. 3.6 except
for β. The effective contact
rate β is varied in the range
[0, 2]. Solid and dashed lines
indicate stable and unstable
fixed points, respectively

in populations belong to the class of instability-, bifurcation-, and phase transition-
phenomena that range from the buckling of an iron bar under pressure to magnetic
phase transitions and the production of laser light.

Focus or node

The endemic fixed point presented in panel (b) of Fig. 3.6 and, likewise, panel (b)
of Fig. 3.7 corresponds to a stable focus. Solutions spiral in an oscillatory fashion
towards the fixed point. In general, close to the endemic fixed point (3.38) solutions
I (t) and S(t) satisfy linearized equations that assume the form of damped harmonic
oscillator equations (e.g., see page 45 in Ref. [7]). The damping constant corresponds
to ξ. The spring constant K of the damped oscillator is given by [7]

K =
(

1 + β

μ

)

(ξ − 1). (3.40)

In general, damped harmonic oscillators feature a so-called damping ratio ζ that
is proportional to the ratio between the damping constant and the spring constant.
The damping ratio ζ determines whether solutions decay in an oscillatory fashion or
decay monotonically. Explicitly, for the endemic fixed point (3.38) of the SIR model
(3.32), the damping ratio ζ reads

ζ = ξ

2
√
K

= ξ

2
√
(1 + β/μ) (ξ − 1)

. (3.41)

For ζ < 1 (when the spring constant is relatively strong) solutions are oscillatory,
which implies that the SIR model exhibits an endemic fixed point in terms of a
stable focus. In contrast, for ζ ≥ 1 (when the damping is relatively strong) solutions
are non-oscillatory, which implies that the endemic fixed point of the SIR model
corresponds to a stable node. When the stability parameter is sufficiently large such
that ξ − 1 ≈ ξ, then ξ/

√
(ξ − 1) ≈ 1/

√
ξ < 1 which implies ζ < 1. That is, the

endemic fixed point is a stable focus. In contrast, sufficiently close to the bifurcation
point, when ξ > 1 but ξ ≈ 1 holds, then ξ/

√
ξ − 1 is relatively large and becomes
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larger than the factor 2
√
(1 + β/μ). In this case, the systems exhibits a damping

ratio ζ > 1. Consequently, sufficiently close to the bifurcation point the endemic
fixed point is a stable node. For the parameters used to produce the solution shown
in panel (b) of Fig. 3.6 we have ζ = 0.17, which is consistent with the observed
oscillatory character of the solution I (t).

3.6 SIR Models Describing COVID-19 Epidemics

3.6.1 SIR Model-Based COVID-19 Studies

The SIR model has been applied in a number of studies to address epidemiologi-
cal data of COVID-19 epidemics [9–24]. Such SIR model-based studies frequently
aimed to clarify the impact of intervention measures on the spread of COVID-19.
In this context, several studies have used the SIR model to shown that intervention
measures were implemented successfully and changed infection dynamics param-
eters such that respective COVID-19 epidemics subsided [10, 20, 22, 23]. Other
studies have used the SIR model to predict the time course of COVID-19 epidemics
under various types of interventions [13, 14, 17, 19]. Table3.1 presents a list of SIR
model-based studies that have been used for forecasting COVID-19 epidemics and
studying the impact of intervention measures in those countries (see also Ref. [25]).
The list starts which China andmoves from there geographically in a westward direc-
tion towards the USA and Brazil. The table reports the purpose of each study. Note
that Table3.1 does not provide a comprehensive review of SIR model-based studies.
Rather, Table3.1 illustrates that SIR models have been applied to describe COVID-
19 epidemics in various countries around the globe. While the SIR model (3.16)
as such is a three-variable model, some of the studies listed in Table3.1 involved
further variables such as COVID-19 diagnosed, quarantined individuals or individ-
uals deceased due to COVID-19. Some examples in this regard will be presented
in Sect. 3.6.2 below and in Sect. 4.4. However, such models may be regarded as
SIR-type models as defined in Sect. 4.1 and are included in Table3.1.

3.6.2 COVID-19 Outbreaks in China and Italy 2020

In early 2020, Fanelli and Piazza [14] conducted a model-based analysis of the
emergence of COVID-19 in China and Italy. To this end, the SIR model (3.16)
without demographic terms was used. The model parameter were estimated from
data. More precisely, the parameter β/N was estimated rather than β. Moreover, the
three-compartment SIRmodel (3.16) was supplemented by a forth compartment that
described COVID-19 associated deaths. In what follows, this compartment will be
ignored. Nevertheless, it will be taken into account that in the model by Fanelli and
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Table 3.1 Studies that have used SIR models and SIR-type models to study COVID-19 epidemics.
Studies are grouped into three categories according to their study objectives. The countries addressed
by the studies are listed as well

Forecasting Discussion of
interventions

Forecasting and
discussion
of interventions

Country

Refs. [18, 21, 26] Ref. [20] Refs. [14, 15, 22] China

Ref. [18] Ref. [23] S. Korea

Ref. [9] Japan

Ref. [17] Thailand

Ref. [15] Bangladesh, India,
Pakistan

Refs. [24, 26] Ref. [19] Iran

Ref. [18] Russia

Refs. [18, 21, 26] Ref. [27] Refs. [10, 14, 22] European countries

(Austria, Belgium,
Denmark,

France, Germany,
Greece,

Italy, Netherlands,
Spain,

Sweden, Switzerland,
Turkey,

United Kingdom)

Ref. [16] Morocco

Refs. [18, 21, 26] Refs. [11, 20] Ref. [10] USA

Refs. [12, 13] Brazil

Piazza the parameter γ occurring in Eq. (3.16) is given by a mean removal rate that
is composed of two terms: the mean recovery rate of individuals that recover and
the death rate of individuals who decease due to COVID-19. As mentioned above,
Fanelli and Piazza considered the ratio β/N as fixed parameter. Therefore, N will be
considered as a constant irrespective of the fact that the model actually considered
COVID-19 associated deaths. This can be motivated by noting that for the data under
consideration from China and Italy the death numbers D were much smaller than
the respective population sizes N : D/N 
 1. Importantly, in Ref. [14] the initial
numbers of susceptibles S0 and infectious individuals I0 were estimated as well.
R0 was put to zero. Consequently, the relevant population sizes N = S0 + I0 were
estimated. We will return to this issue below.

Let us first review the analysis of the COVID-19 outbreak in China by Fanelli
and Piazza [14]. In this analysis the period from January 22 to February 19, 2020,
was considered. Data were taken from the data repository of the Johns Hopkins
University [28]. It was assumed that the infectious individuals I of the SIR model
correspond to the so-called active COVID-19 cases. The active cases are computed
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Table 3.2 Parameters of the SIR model (3.16) describing the COVID-19 outbreak in China during
January 22 to February 19, 2020

β γ ξ = S0β/(γN ) ξ = β/γ Imax

0.2671/d 0.0210/d 12.6 12.7 57,935

Fig. 3.9 SIRmodel (3.16) solutions S(t) (dashed lines) and I (t) (solid lines) describing theCOVID-
19 epidemics in China (panel (a)) and Italy (panel (b)) in the beginning of the year 2020. Gray
circles show reported active cases [29]

by subtracting the recovered cases and reported cumulative deaths from the cumula-
tive confirmed COVID-19 cases. We will return briefly to this issue below. The esti-
matedmodel parameterswereβ/N = 3.33 · 10−6/d and γ = a + d = (1.80 + 0.3) ·
10−2 = 0.021/d (where a is the mean recovery rate and d the death rate). The esti-
mated initial states were S0 = 79, 200 and I0 = 999. Using N = S0 + I0 = 80, 199
and β = (β/N ) · N , leads to the parameters β and γ shown in Table3.2. Since
S0/N = 0.9875 ≈ 1, the SIR model stability parameter ξ = S0β/(γN ) (see Eq.
(3.24)) is approximately given by ξ = β/γ (see Eq. (3.26)). Both parameters are
reported in Table3.2 as well together with Imax computed from Eq. (3.25).

Panel (a) of Fig. 3.9 shows the COVID-19 data and the simulation results. The
COVID-19 data taken from [29] are shown as gray circles. The jump of cases between
February 12 and February 13 was due to a change of the reporting procedure of the
Chinese authorities [14, 30]. The solid and dashed lines show S(t) and I (t) as
computed numerically from the SIR model (3.16) for the aforementioned model
parameters and initial conditions. The horizontal dotted line corresponds to Imax as
computed from Eq. (3.25)). By visual inspection, the solution I (t) provides a good
fit to the data. As expected the model solution I (t) exhibits a peak at Imax. The
model-based analysis reveals that during the 2020 COVID-19 outbreak in China the
effective contact rate β was by a factor 10 larger than the removal rate γ, which
implies that the stability parameter ξ was much larger than the critical value of 1,
see Table3.2. This indicates that the disease-free fixed point was unstable during the
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Table 3.3 Parameters of the SIR model (3.16) describing the COVID-19 outbreak in Italy during
February 11 to March 15, 2020

β γ ξ = S0β/(γN ) ξ = β/γ Imax

0.3263/d 0.0376/d 8.7 8.7 26,260

COVID-19 outbreak. Moreover, in this case, for fixed model parameters, the SIR
model predicts a wave-solution as it is shown in panel (a) of Fig. 3.9.

In the study by Fanelli and Piazza [14] the COVID-19 outbreak in Italy was
analyzed as well. The period from February 11 to March 15, 2020 was considered.
Again, COVID-19 active cases from the Johns Hopkins data repository were used
[28]. From the active case data the parameters β/N , γ and S(0) were estimated as
β/N = 7.90 · 10−6/d, γ = 0.0376/d and S0 = 41, 300. The initial value I0 = 3 was
taken from the active case data set at February 11. Using N0 = S0 + I0 = 41, 303,
the model parameter β can be determined (see above) as well as ξ and Imax. Table3.3
shows the model parameters and characteristic measures thus obtained (with Imax

computed from Eq. (3.25)).
Panel (b) of Fig. 3.9 shows the COVID-19 data [29] (gray circles) and the simula-

tion results (dashed line for S(t) and solid line for I (t) as computed from Eq. (3.16))
for the COVID-19 outbreak in Italy. The horizontal dotted line corresponds to Imax

again, as listed in Table3.3. By visual inspection, the solution I (t) provides a good
fit to the data. As expected, I (t) exhibits a peak at Imax. The analysis shows that
the effective contact rate β was much larger (by a factor 10) than the mean removal
rate γ (which implies ξ > 1), see Table3.3. Accordingly, the disease-free fixed point
was unstable during the COVID-19 outbreak in Italy. Moreover, in this case, when
assuming fixed model parameters, the SIR model predicts a wave-solution as it is
shown in panel (b) of Fig. 3.9.

The study by Fanelli and Piazza [14] was published early in the year 2020 and,
consequently, considered only the first few months of the COVID-19 pandemic. It
might be of interest to compare the SIR model predictions of the study with the
actual dynamics of the epidemics in China and Italy in the later months of 2020.
Figure3.10 shows active cases as gray circles reported from Italy during the period
from February 11 to October 1, 2020 [29]. The solid line in Fig. 3.10 shows the SIR
model solution I (t) that was already presented in panel (b) of Fig. 3.9. The dotted
vertical line indicates March 15, which is the end of the period for which the model
fit was optimized. While the model predicted a peak of about 26,000 infectious
individuals (see Table3.3), the epidemic in Italy took an even more dramatic turn
and reached a four times higher peak of about 110,000 active cases.

Active cases and infectious individuals

Let us return to the issue of how to relate COVID-19 data to model variables. Fanelli
and Piazza [14] interpreted the infectious individuals I of the SIR model in terms of
active cases. Active cases as reported in the data repository [29] are computed like
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Fig. 3.10 Active COVID-19
cases in Italy (gray circles)
[29] reported for a longer
period until October 1, 2020,
versus the model solution
I (t) (solid black line) of the
SIR model (3.16) as
computer for the parameters
of the simulation shown in
panel (b) of Fig. 3.9

active cases at a given day

= cumulative confirmed COVID cases up to that day

−recovered cases up to that day

−cumulative deaths up to that day. (3.42)

Consequently, the active cases reflected diagnosed COVID-19 cases. In contrast, the
infectious individuals I described by the SIRmodel do not necessarily correspond to
diagnosed individuals. Moreover, diagnosed cases are frequently quarantined or hos-
pitalized. It is plausible to assume that both the contact rate ν and transmission prob-
ability p (see Eq. (3.3)) for diagnosed cases is lower as compared to non-diagnosed
infectious individuals. This implies that it is plausible to assume that the effective
contact rate β = pν is lower for diagnosed infectious individuals as compared to
non-diagnosed infectious individuals. The active cases in the data repository reflect
diagnosed cases with presumably lower effective contact rates. In view of these dif-
ficulties, in the following chapters a variety of studies on COVID-19 epidemics will
be presented that used alternative approaches to relate COVID-19 data to variables
of compartmental models.

When N is not taken from demographic records

The population size N of a population in a given region is typically taken from demo-
graphic records as the number of people living in that region at the time of interest.
For example, in the COVID-19 study on China by Tao [20] that is listed in Table3.1
the population size N = 1.4 · 109 was used, which is the population of China during
2019/2020. In the absence of vaccination or other intervention measures, that is,
for a novel infectious disease such as COVID-19 in the years 2019/2020, the entire
population is typically considered to be susceptible. In line with this argument and in
the context of the SIR model for a novel infectious disease with R0 = 0, the number
of susceptibles S0 is given by S0 = N in the absence of infectious individuals and
S0 = N − I0 if there is a number I0 of infectious individuals. In contrast, Fanelli and
Piazza [14] estimated the initial sizes S0 of susceptible individuals for China and
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Italy. In particular, the total number of individuals N = S0 + I0 + R0 considered in
their SIR models for China and Italy were much smaller than the respective popu-
lation sizes N of China and Italy (e.g., N = 80, 199 for the SIR model addressing
the COVID-19 epidemic in China versus N = 1.4 · 109 reflecting the population of
China during 2019/2020). Just like Fanelli and Piazza [14], a few other COVID-19
studies [11, 31, 32] estimated also S0. Therefore, the question arises to what extent
the results obtained in the study by Fanelli and Piazza [14] and in similar stud-
ies involving S0 estimates change when N is taken from demographic records and
S0 = N − I0 is used [33].

3.7 SEIR Model

The model

The susceptible-exposed-infectious-recovered (SEIR) model involves all four com-
partments introduced in Sect. 3.1. The transitions of individuals between compart-
ments are illustrated in the Fig. 3.11.

In what follows the SEIR model without demographic terms will be discussed.
The model reads [2]

d

dt
S = −β

I S

N
,

d

dt
E = β

I S

N
− αE,

d

dt
I = αE − γ I,

d

dt
R = γ I. (3.43)

Just as the SIR model (3.16), the SEIR model (3.43) involves as parameters the
effective contact rate β and the recovery rate γ. In addition, it involves the rate of
progressionα frombeing exposed to being infectious (i.e., the rate of transitions from
E to I ). In line with the discussion of coefficients of linear terms (see Sect. 3.4) it
is frequently assumed that τ = 1/α corresponds to the latent period of an infectious
disease (i.e., the average time it takes to become infectious after being infected).
The total population is given by N = S + E + I + R. The variable N is constant,
which follows from

Fig. 3.11 Compartments
and flow-chart of the SEIR
model
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d

dt
N = d

dt
(S + E + I + R) = −β

I S

N
+ β

I S

N
− αE + αE − γ I + γ I = 0.

(3.44)
Consequently, the SEIR model can alternatively be expressed in terms of a reduced
three-variable model like

d

dt
S = −β

I S

N
,

d

dt
E = β

I S

N
− αE,

d

dt
I = αE − γ I (3.45)

with R(t) = N − S(t) − I (t) − E(t).

Fixed points

Putting the left-hand sides in Eq. (3.43) equal to zero, yields in a first step dR/dt =
0 ⇒ I = 0. From I = 0 it follows that dI/dt = 0 ⇒ E = 0. Finally, for any S ≥
0 the conclusion I = E = 0 ⇒ dS/dt = dE/dt = 0 can be made. Consequently,
fixed points are given by

Ist = Est = 0, Sst ∈ [0, N ], Rst = N − Sst . (3.46)

They describe disease-free states (i.e., states with zero exposed and infectious indi-
viduals).

Trajectories

Just as in the case of the SIR model, the number of susceptibles S decays monoton-
ically over time, while the number of recovered individuals R increases monotoni-
cally.Moreover, just as for the SIRmodel, the SEIRmodel exhibits two types of qual-
itatively different solutions: monotonically decaying solutions and wave-solutions.
Unlike the SIR model, these types of solutions are defined on the basis of the total
infected individuals given by

C = I + E . (3.47)

Differentiating C with respect to time and using the evolution equations for I and E
occurring in Eq. (3.43), the evolution equation for C can be obtained. Subsequently,
eliminating E in the evolution equation for E like E = C − I , the reduced, three-
variable SEIR model (3.45) becomes the three-variable model

d

dt
S = −β

I S

N
,

d

dt
C =

(

β
S

N
− γ

)

I,

d

dt
I = αC − (α + γ)I (3.48)
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with R(t) = N − S(t) − C(t). The SCIR model (3.48) does not describe a compart-
mental model because infectious individuals show up both in the variables I and C .
Irrespectively, at issue is that the evolution equation forC of the SCIRmodel exhibits
a similar structure as Eq. (3.23). Therefore, the discussion about wave-solutions ver-
sus monotonically decaying solutions can be carried out in analogy to what was
written there.

If Z = βS/N − γ < 0 holds at the initial time point t0, then Z < 0 for t > t0,
which implies that the total number of infected individuals C decays monotonically.
If the expression Z(t) = βS(t)/N − γ is zero either at the initial time point t0 or
any later time point tp > t0, then C does not change at that particular moment in
time. However, S is a monotonically decaying function of time, which implies that
Z becomes negative and remains negative for t > t0 or t > tp. This implies that if
Z = 0 at t0, then C is a monotonically decaying function just as for Z < 0 at t0. In
contrast, if Z > 0 holds at the initial time t0, then from the evolution equation of
C in Eq. (3.48) it follows that C increases. While C increases, S decreases, which
implies that at a certain time point tp > t0 the expression Z becomes zero. At that
time point C reaches its maximum. For t > tp we have Z < 0 and C decays over
time. Consequently, for the SEIR model the stability parameter ξ can be defined by
Eq. (3.24) again [2]. Moreover, if S(0)/N ≈ 1 holds, the stability parameter reduces
to Eq. (3.26). With respect to the parameter ξ it follows that if ξ ≤ 1 holds there is a
monotonic decay of the variable C = E + I of the SEIR model. During a transient
period I (t)may increase at the cost of E(t) (i.e., when exposed individuals become
infectious). That is, I (t) does not necessarily decrease monotonically for ξ ≤ 1. For
ξ > 1 the SEIR model exhibits wave-solutions that describe a temporary increase in
the total number of infected individuals C that is followed by a decrease of the total
number of infected individuals C towards zero (i.e., towards one of the stationary
fixed points defined by Eq. (3.46) with Cst = 0). The case ξ > 1 describes epidemic
waves. In Chap. 5 the stability parameter ξ of the SEIR model will be derive in a
more systematic way using the nonlinear physics perspective presented in Chap. 2.

Figure3.12 exemplified the two type of solutions of the SEIR model (3.43). Panel
(a) shows the variables C , E , and I as functions of time as computed from Eq. (3.43)
for the case ξ < 1. For the selected parameters and initial conditions I (t) is increasing
initially. However, C(t) decays over time. Panel (b) presents a wave-solution as
obtained by solving Eq. (3.43) numerically for ξ > 1. For the selected parameters
and initial conditions there is a wave of exposed individuals that is followed by a
wave of infectious individuals. That is, the wave in E(t) precedes the wave in I (t).

Applications of the SEIR model and similar models to COVID-19 epidemics will
be discussed in Chap. 5.
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Fig. 3.12 Solutions C(t), E(t), and I (t) of the SEIR model (3.43) for ξ < 1 (panel (a)) and
ξ > 1 (panel (b)). Parameters and initial conditions for both simulations: N = 1, 000, γ = 0.5/d,
α = 0.4/d, E(0) = 10, I (0) = 0, S(0) = N − E(0). The effective contact rates are β = 0.4/d for
panel (a) and β = 2.0/d for panel (b)
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Chapter 4
Nonlinear Physics of Epidemics: Part A

This chapter is the first of three chapters that present the nonlinear physics of epi-
demics and pandemics that can be described in terms of deterministic dynamical
systems. The chapter focuses on the SIRmodel and SIR-type models. The amplitude
space description is worked out in detail and the SI order parameter is determined.
It is demonstrated that within the SIR modeling framework, the SI order parameter
determines the initial stage of epidemics. An application to the COVID-19 outbreak
in Italy during the year 2020 is also presented.

4.1 SIR-Type Models and 2D Autonomous Amplitude
Descriptions

4.1.1 n-Dimensional Approach

LetX = (X1, . . . , Xn) denote the state vector describing an epidemic whose dynam-
ics satisfies the general evolution equation dX/dt = N(X) (see Chap. 2). In what fol-
lows the notion of susceptible and infectious individuals as used in the SIRmodel (see
Chap. 3) will be used. More precisely, the population under consideration is decom-
posed in healthy individuals S, who have not been infected but can be infected, and
individuals I , who have been infected and are infectious. In addition, other individ-
uals who have been infected but cannot infected others are considered. This latter
group of individuals can be decomposed in an arbitrary number of subgroups. In
what follows, the individuals in the compartment I will be referred to as infectious
individuals. Let X1 = S denote the susceptibles and X2 = I denote the infectious
individuals. Then, X3, . . . , Xn denote n − 2 compartments of individuals who have
been infected at some point in time but cannot infect others any more. For example,
hospitalized individuals (assuming a perfect isolation such that they cannot infect
others) and recovered individuals belong to these compartments k = 3, . . . , n. Since
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there is only one group of individuals who can infect others, it is assumed that the rate
constant k0 is given byEq. (3.4).Models that satisfy all of the above assumptions read

d

dt
S = −k0S + B − μS,

d

dt
I = k0S − (γ + μ)I,

d

dt
Xk = Nk(X1, . . . , Xn) for k = 3, . . . , n (4.1)

with k0 = β I/N (see Eq. (3.4)), where Nk are the standard right-hand side functions
of dynamical systems discussed in Chap. 2. They include the death terms −μXk

provided demographic effects are considered and Xk does not correspond to a com-
partment of deceased individuals. Models that can be cast into the form of Eq. (4.1)
will be referred to as SIR-type models.

If the functions Nk only reflect linear transition mechanisms, Eq. (4.1) becomes

d

dt
S = −k0S + B − μS,

d

dt
I = k0S − (γ + μ)I,

d

dt
X3 =

n∑

k=1

a3,k Xk,

. . .

d

dt
Xn =

n∑

k=1

an,k Xk, (4.2)

In Eq. (4.1) the coefficients ai,k describe transition rates of the aforementioned lin-
ear transition mechanisms. They also account for the death terms −μXk provided
demographic effects are considered and Xk does not correspond to a compartment
of deceased individuals. The models (4.1) and (4.2) involve birth and death terms,
where the death terms reflects only death to causes other than the infectious disease
under consideration. For epidemics over short periods we put B = μ = 0.

Let us discuss two examples. The SIR model without demographic terms given
by dS/dt = −β I S/N , dI/dt = β I S/N − γ I , dR/dt = γ I (see Eq. (3.16)) corre-
sponds to Eq. (4.2) withX = (S, I, R) and n = 3, X3 = R, B = μ = 0, k0 = β I/N ,
and a3,2 = γ. All other coefficients ai,k are zero. The study by Fanelli and Piazza [1]
discussed in Sect. 3.6.2 used the SIR-type model

d

dt
S = −r I S,

d

dt
I = r I S − (a + b)I,

d

dt
R = aI,

d

dt
D = bI. (4.3)

In this model D denotes the individuals deceased due to COVID-19. The state vector
of the model is given by X = (S, I, R, D). The model can be cast into the form
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of a SIR-type model (4.2) with n = 4, B = μ = 0, r = β/N , γ = a + b, a3,2 = a,
a4,2 = b. All other coefficients ai,k are zero.

Let us return to the general case of SIR-type models defined by Eq. (4.1). The
disease-free fixed point of the model (4.1) for novel infectious diseases (i.e., all indi-
viduals are susceptible) is given by Xst = (N , 0, 0, . . . , 0) assuming Nk(Xst ) = 0
holds for k = 3, . . . , n and B = μN holds (see Sect. 3.5.2) if demographic terms are
considered. Linearizing themodel (4.1)with the help of the perturbationu = X − Xst

at the fixed point Xst yields the linearized evolution equation du/dt = Lu (see
Eq. (2.16)). From the matrix L the eigenvalues λk and eigenvectors vk can be
obtained (see Sect. 2.6). It is assumed that vk constitute a set of n linearly inde-
pendent vectors. The state X can then be expressed with the help of the eigen-
vectors like u(t) = ∑n

k=1 Ak(t)vk and X(t) = Xst + u = Xst + ∑n
k=1 Ak(t)vk (see

Eqs. (2.34) and (2.35)), where A1, . . . , An denote the amplitudes of the SIR-type
model under consideration. The amplitudes evolve according to the amplitude equa-
tions dAk/dt = λk Ak + Gk(A1, . . . , An) for k = 1, . . . , n introduced in Sect. 2.9,
see Eq. (2.59). Accordingly, SIR-type models of the form (4.1) are described
in amplitude space by the amplitudes A1, . . . , An satisfying amplitude equations
of the general form dAk/dt = λk Ak + Gk(A1, . . . , An). Importantly, the ampli-
tude equations holds for the whole course of the epidemic under consideration
(i.e., also far away from the disease-free fixed point). The state space descrip-
tion via X = (S, I, X3, . . . , Xn) and Eq. (4.1) and the amplitude space description
via A = (A1, . . . , An) and dAk/dt = λk Ak + Gk(A1, . . . , An) are equivalent, see
Chap. 2. In contrast, the linearized dynamics du/dt = Lu only holds close to the
fixed point. In this case, the amplitude equations decouple from each other and reduce
to dAk/dt = λk Ak as discussed in Chap. 2.

4.1.2 Two-Dimensional Approach

In the previous section, the description of SIR-type models in n-dimensional state
spaces and n-dimensional amplitude spaces has been considered. SIR-models of
the form (4.1) can be decomposed into two subsystems: a two-dimensional closed or
autonomous subsystem that describes the S-I dynamics and a n − 2 dimensional sub-
systems that is not closed or non-autonomous and depends on the dynamics of the S-I
subsystem. Importantly, typically the stability properties of the S-I subsystem deter-
mine the stability of the entire system. For example, if the S-I subsystem exhibits
an unstable fixed point (Sst = N , Ist = 0) related to the disease-free fixed point
Xst = (N , 0, . . . , 0), then the disease-free fixed point Xst = (N , 0, . . . , 0) corre-
sponds to an unstable fixed point of the entire system. Likewise, if (Sst = N , Ist = 0)
corresponds to a (neutrally or asymptotically) stable fixed point of the S-I subsystem,
then, frequently, it can be shown that the disease-free fixed pointXst = (N , 0, . . . , 0)
corresponds to a stable fixed point of the entire system.

In view of the pivot role of the S-I subsystem, the amplitude equation description
may be only derived for that specific subsystem. In doing so, a two-dimensional
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amplitude space is constructed spanned by the amplitudes A1 and A2 that is mapped
to the S-I space like (A1, A2) ↔ (S, I ). The remaining state variables X3, . . . , Xn

are not transformed. For SIR-models of the form (4.1) amplitude space descriptions
using such two-dimensional amplitude spaces read

d

dt
A1 = λ1A1 + G1(A1, A2),

d

dt
A2 = λ2A2 + G2(A1, A2),

d

dt
Xk = Nk(S(A1, A2), I (A1, A2), X3, . . . , Xn) for k = 3, . . . , n, (4.4)

where S(A1, A2) and I (A1, A2) describe the mapping (A1, A2) → (S, I ) from
amplitude space to state space. Note that the coupled amplitude equations for A1

and A2 describe a closed or autonomous dynamical system and can be solved inde-
pendently of the state variables Xk with k = 3, . . . , n. The amplitudes A1 and A2

span a two-dimensional amplitude space and provide a two-dimensional autonomous
amplitude description. The explicit expression for λ1, λ2, G1, G2 will be derived in
the subsequent sections and summarized in Sect. 4.4. With the help of A1 and A2,
the state vector X can be expressed like

X =

⎛

⎜⎜⎜⎜⎝

Sst
Ist
0
. . .

0

⎞

⎟⎟⎟⎟⎠
+

2∑

k=1

Ak ṽk +
n∑

k=3

Xkek, (4.5)

where ek = (δ1,k, δ2,k, . . . , δn,k) are the orthogonal basis vectors listed in Eq. (2.36).
In Eq. (4.5) the vectors ṽk are the two-dimensional eigenvectors vk = (vk,S, vk,I ) of
the S-I subspace extended to the n-dimensional space like

ṽk =

⎛

⎜⎜⎜⎜⎝

vk,S
vk,I
0
. . .

0

⎞

⎟⎟⎟⎟⎠
. (4.6)

4.2 SIR Model Without Demographic Terms

The two-variable version of the SIR model (3.16) reads, see Eq. (3.22),

d

dt
S = − β

N
I S,

d

dt
I = β

N
I S − γ I (4.7)
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with R(t) = N − S − I (t). Let us introduce the two-dimensional state vector X =
(S, I ). As discussed in Sect. 3.5, the model exhibits the fixed points Xst = (Sst , 0),
Sst ∈ [0, N ], Rst = N − Sst that describe disease-free states. For novel virus infec-
tions such as COVID-19 outbreaks in the year 2020, the fixed point Xst = (N , 0)
corresponds to the disease-free state with all individuals susceptible.

4.2.1 Eigenvalues and Eigenvectors

Let us linearize Eq. (4.7) at Xst = (Sst , 0). To this end, I is assumed to be small and
we put S = Sst + δ, where δ is a small quantity. In doing so, we obtain I S = I (Sst +
δ) = Sst I + Iδ = Sst I + nonlinear terms.Moreover, it follows that dS/dt = dδ/dt .
Substituting these results into Eq. (4.7), we obtain

d

dt
δ = −β

Sst
N

I,
d

dt
I =

(
β
Sst
N

− γ

)
I. (4.8)

Using vector and matrix notations, Eq. (4.8) can equivalently be expressed like

d

dt

(
δ
I

)
= L

(
δ
I

)
, L =

(
0 −βSst/N
0 βSst/N − γ

)
(4.9)

and exhibits the form du/dt = Lu (see Eq. (2.16)). The eigenvalues λ and eigen-
vectors v = (vS, vI ) of L correspond to the solutions of Lv = λv, which implies
Lv − λv = 0 and

(−λ −βSst/N
0 βSst/N − γ − λ

) (
vS

vI

)
=

(
0
0

)
. (4.10)

From Eq. (4.10) it follows that the determinant of the matrix must equal zero like

∣∣∣∣
−λ −βSst/N
0 βSst/N − γ − λ

∣∣∣∣ = 0. (4.11)

Explicitly, this requirement reads

∣∣∣∣
−λ −βSst/N
0 βSst/N − γ − λ

∣∣∣∣ = −λ(βSst/N − γ − λ) = 0 (4.12)

such that the two eigenvalues are given by

λ1 = 0, λ2 = β
Sst
N

− γ. (4.13)
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The vanishing eigenvalue reflects the property that the fixed point (Sst , 0) can be
shifted along the S-axis in theSIRmodelwithout demographic terms (seeSect. 3.5.1).
The eigenvector of the eigenvalue λ1 = 0 can be obtained by substituting λ = 0 into
Eq. (4.10) such that

(
0 −βSst/N
0 βSst/N − γ

) (
vS

vI

)
=

(
0
0

)
⇒

(
vS

vI

)
=

(
1
0

)
(4.14)

Likewise, the eigenvector associated with the eigenvalue λ2 = βSst/N − γ can be
obtained by substituting λ = λ2 into Eq. (4.10). Thus, we obtain

(−λ2 −βSst/N
0 0

) (
vS

vI

)
=

(
0
0

)
⇒ λ2vS + βSst

N
vI = 0. (4.15)

Solutions can bewritten as vS = −Z · βSst/N ⇒ vI = Zλ2, where Z is an arbitrary
parameter. The normalization requirement (i.e., v2

S + v2
I = 1) determines the value

of Z such that

v2 = 1√
(βSst/N )2 + (λ2)2

(−βSst/N
λ2

)
. (4.16)

In order to simplify the notation, let us introduce the parameter

g = βSst/N − γ

βSst/N
= λ2

βSst/N
= λ2

β

N

Sst
. (4.17)

Then
(−βSst/N

λ2

)
= β

Sst
N

(−1
g

)
⇒ v2 = 1√

1 + g2

(−1
g

)
. (4.18)

COVID-19 Outbreaks at the Beginning of the Pandemic and Outbreaks
of Other Novel Infectious Diseases

For the special case Sst = N ⇒ Sst/N = 1 that describes COVID-19 outbreaks at
the beginning of the pandemic in the years 2019/2020 (and, in general, outbreaks of
novel infectious diseases), we obtain

λ1 = 0, λ2 = β − γ, g = (β − γ)/β (4.19)

and

v2 = 1√
β2 + (λ2)2

(−β
λ2

)
= 1√

1 + g2

(−1
g

)
. (4.20)
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4.2.2 State Space and Amplitude Space

The mapping from amplitude space to state space (A1, A2) → (S, I ) is given by Eq.
(2.35) for n = 2 and reads

X = Xst + A1v1 + A2v2. (4.21)

Using Eq. (4.18), the mapping reads explicitly

(
S
I

)
=

(
Sst
0

)
+ A1

(
1
0

)
+ A2

1√
1 + g2

(−1
g

)
. (4.22)

In components, the mapping reads

S = Sst + A1 − A2√
1 + g2

, I = g√
1 + g2

A2. (4.23)

The sign of the amplitude A2 is determined by the sign of λ2 irrespective of the initial
conditions S0 and I0. For βSst/N > γ ⇒ λ2 > 0 the inequality g > 0 holds, which
implies that A2 ≥ 0. In contrast, for βSst/N < γ ⇒ λ2 < 0 we have g < 0, which
implies that A2 ≤ 0.

In order to obtain the inverse mapping S, I → A1, A2, first, the mapping A2 → I
can be inverted like A2 = √

1 + g2 I/g. Second, A2/
√
1 + g2 = I/g can be sub-

stituted into the equation for S in Eq. (4.23) to eliminate A2, which leads to
S = Sst + A1 − I/g. Solving this result for A1, the mapping

A1 = S + I

g
− Sst , A2 =

√
1 + g2

g
I (4.24)

can be obtained. The mappings (4.23) and (4.24) hold for any states S, I and ampli-
tudes A1, A2. They are not limited to states close to the fixed point Xst or small
amplitudes.

4.2.3 Stability Analysis

As argued in Sect. 2.7, the eigenvalues λ1 and λ2 determine the stability of the fixed
point Xst = (Sst , 0). In particular, for n = 2 substituting Eq. (4.21) expressed like
u = X − Xst = A1v1 + A2v2 into the linearized equation du/dt = Lu, we obtain
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LHS : d

dt
u = v1

d

dt
A1 + v2

d

dt
A2

RHS : Lu = A1Lv1 + A2Lv2 = A1λ1v1 + A2λ2v2

LHS = RHS : v1 d
dt

A1 + v2
d

dt
A2 = λ1A1v1 + λ2A2v2. (4.25)

Let us consider the case λ2 �= 0 (i.e., βSst/N �= γ) in which the eigenvectors v1, v2
are linearly independent. From the last relation in Eq. (4.25) and the linear indepen-
dency of v1 and v2 (or by constructing biorthogonal eigenvectors w1 and w2 and
multiplying the last relation in Eq. (4.25) by wk as in Sect. 2.9.3) it follows

d

dt
A1 = λ1A1 = 0 ⇒ A1 = const,

d

dt
A2 = λ2A2 ⇒ A2(t) = A2(0) exp{λ2t} (4.26)

for t0 = 0. Using λ2 = βSst/N − γ, the bifurcation parameter

α = β

γ

Sst
N

(4.27)

can be defined that exhibits a critical value of 1. The bifurcation parameter α allows
to distinguish between the cases

α > 1 ⇒ λ2 > 0

⇒ A2(t) initially increases ⇒ I (t) initially increases

⇒ Xst unstable (4.28)

and

α < 1 ⇒ λ2 < 0

⇒ |A2(t)| decreases for arbitrarily small |A2(0)|
⇒ I (t) decreases for arbitrarily small I0
⇒ Xst neutrally stable. (4.29)

The two conclusions presented in Eqs. (4.28) and (4.29) that (i) an increase in A2

implies an increase in I and (ii) a decrease in |A2| for A2 < 0 implies a decrease in I
follow from the mapping A2 → I shown in Eq. (4.23). The conclusion presented in
Eq. (4.29) that λ2 < 0 implies thatXst = (Sst , 0) is neutrally stable cannot be drawn
from Eq. (4.26) alone. Since λ1 = 0 holds, it must be shown that for λ2 < 0 the
nonlinear terms determining the evolution of A1 result in a decay of a perturbation
of A1 out of A1,st = 0. For example, if λ2 < 0 holds but the nonlinear terms in the
evolution equation A1 are such that A1 evolves away from A1,st = 0, then the fixed
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point would be a saddle, that is, an unstable fixed point. As it will be shown in
Sect. 4.2.7, for λ2 < 0 the nonlinear terms are indeed such that perturbations of A1

out of A1,st = 0 decay. Therefore, as stated in Eq. (4.29), a negative eigenvalue λ2

indeed implies that the fixed point characterized by A1,st = A2,st = 0, that is, the
fixed point Xst = (Sst , 0), is neutrally stable.

From Eq. (4.28) it follows that for α > 1 there is an increase of the num-
ber of infectious individuals I that initiates an epidemic wave. In contrast, from
Eq. (4.29) it follows that for α < 1 the epidemic given in terms of the num-
ber of infectious individuals I (t) subsides initially. Since the disease dynamics
described by the SIR model (4.7) does not exhibit any fixed points with Ist > 0,
the epidemic not only initially subsides in the population under consideration
but subsides entirely, that is, I (t) decays monotonically to zero over time. The
bifurcation parameter defined by Eq. (4.27) corresponds to the stability parame-
ter ξ = βS0/N discussed in Sect. 3.5.1 (see Eq. (3.24)) provided the case Sst = S0
is considered and I0 can be regarded as a small quantity. If I0 is sufficiently
small, then an initial state S0 and I0 describes a small perturbation out of the
fixed point defined by Sst = S0 and Ist = 0 such that the linear stability analysis
applies. Mathematically speaking, the small perturbation shifts the disease state out
of Xst = (Sst , 0) by increasing I0 (and reducing R0 such that N = Sst + I0 + R0

is still satisfied), while S is kept constant, which implies that the initial disease
state after the perturbation is given by S0 = Sst and I0 > 0. From the linear sta-
bility analysis (conducted above) it follows that the dynamics of the SIR model
(4.7) under the initial condition S0 and I0 exhibits a wave-solution for α > 1 with
Sst = S0, which means for α = βSst/N = βS0/N = ξ > 1. Likewise, the dynam-
ics under that initial condition S0 and I0 exhibits a monotonically decaying solu-
tion I (t) for α < 1 with Sst = S0, which means for α = βSst/N = βS0/N =
ξ < 1. That is, the systematic stability analysis of the disease-free fixed point
Xst = (Sst , 0) conducted within the nonlinear physics perspective of the SIR model
reproduces the stability parameter ξ that was derived in an ad hoc manner in
Sect. 3.5.1.

COVID-19 Outbreaks at the Beginning of the Pandemic

For the epidemics of novel infectious diseases for which all individuals of a popula-
tion can be considered to be susceptibles and, in particular, for COVID-19 outbreaks
at the beginning of the pandemic (i.e., during the years 2019/2020) the disease-free
fixed point is given by Xst = (N , 0), that is, Sst = N . In this special case, we have
λ1 = 0 and λ2 = β − γ (see Eq. (4.19)) and

α = β

γ
. (4.30)

The case α > 1 or β > γ implies λ2 > 0 and corresponds to the case ξ > 1 of
the stability parameter. The disease-free fixed point is unstable. An epidemic wave
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emerges. The alternative case β < γ or α < 1 implies λ2 < 0 and corresponds to
the case ξ < 1. In this case, the disease-free fixed point is neutrally stable and I (t)
decays monotonically as a function of time.

4.2.4 Special Case λ2 = 0

For βSst/N = γ the second eigenvalue vanishes λ2 = 0. The corresponding eigen-
vector v2 becomes v2 = (−1, 0) (see Eq. (4.18)) and is linearly dependent with
v1. Consequently, the two vectors do no longer span a two-dimensional plane and
Eq. (4.21) does not hold. In this special case, the three-variable SIR model (3.16)
reads dS/dt = −β I S/N , dI/dt = β I S/N − γ I , and dR/dt = γ I andmay be ana-
lyzed in a direct manner. Substituting S = Sst + δ into the evolution equation for I ,
where δ, I are assumed to be small quantities, we obtain

d

dt
I =

(
β

N
Sst − γ

)
I + nonlin. terms. (4.31)

Consequently, the linearized equation reads dI/dt = 0, as expected from the fact that
λ2 = 0. This implies that I is constant over time (as long as the linear approximation
holds). Accordingly, let us substitute I = Iconst , where Iconst is a constant, and S =
Sst + δ into the evolution equation for δ as derived from dS/dt = −β I S/N and let
us neglect nonlinear terms, we obtain

d

dt
δ = − β

N
(Sst Iconst + δ Iconst ) = −γ Iconst ,

d

dt
R = γ Iconst . (4.32)

Above, the evolution equation of R(t) is also presented. Summarizing Eq. (4.32), the
dynamics of the linearized system is such that the number of infectious I remains
constant. Susceptibles S decay linearly. Recovered R increase linearly. That is, there
is a flow from susceptibles to infectious and from infectious to recovered individuals
like

I = Iconst , S(t) = Sst − γ Iconst t, R(t) = Rst + γ Iconst t. (4.33)

This dynamics featuring linear changes over time holds as long as δ is small, that
is, γ Iconst t 	 Sst holds. When there is a substantial decay of S away from Sst , then
the linearized model fails and nonlinear terms become important. In particular, let
us assume that at the time point t∗ there is a substantial decay of S with S(t∗) <

Sst . This implies that βS(t∗)/N < γ. Consequently, if we consider the fixed point
Xst = (S(t∗), 0)with Sst = S(t∗), then the fixed point exhibits an eigenvalueλ2 < 0.
Consequently, as soon as the linear flowapproximationwith I = Iconst does no longer
hold, the epidemic subsides in the sense that I (t) decays over time.
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4.2.5 Nonlinear Parts Gk: Scalar Calculation Method

Asdiscussed inChap. 2 and reiterated in Sect. 4.1.1, the SIRmodel (4.7) can be equiv-
alently expressed in terms of amplitude equations of the form dAk/dt = λk Ak + Gk .
In Eq. (4.26) the linear parts of those amplitude equations are shown. Let us derive the
nonlinear parts Gk for the special case of infectious disease outbreaks in completely
susceptible populations: Sst = N . To this end, we will use the scalar calculation
method presented in Sect. 2.9.2.

To begin with, let us differentiate the mapping A1 = S + I/g − N (see Eq.4.24))
with respect to time to determine the evolution equation of A1, which leads to
dA1/dt = dS/dt + dI/dt/g. Substituting the evolution equations of the SIR model
(4.7) into the terms on the right-hand side, it follows that

d

dt
A1 = − β

N
I S + 1

g

β

N
I S − 1

g
γ I = (−1 + 1

g
)
β

N
I S − γ

g
I. (4.34)

Using the mappings S = N + A1 − A2/
√
1 + g2 and I = gA2/

√
1 + g2 (see Eq.

(4.23) for Sst = N ), the product term I S can be expressed as

I S = g√
1 + g2

A2

(
N + A1 − A2√

1 + g2

)
. (4.35)

Substituting Eq. (4.35) into Eq. (4.34), we obtain

d

dt
A1 = (

1 − g

g
)
β

N

g√
1 + g2

A2

(
N + A1 − A2√

1 + g2

)
− γ√

1 + g2
A2

=
(

(1 − g)β√
1 + g2

− γ√
1 + g2

)
A2 + 1 − g√

1 + g2
β

N
A2

(
A1 − A2√

1 + g2

)
.

(4.36)

Note that from the previous consideration it follows that the linearized evolution
equation reads dA1/dt = λ1A1 = 0. That is, the equation for A1 does not exhibit a
linear term in A2. Consequently, the coefficient of the linear A2 term occurring in
Eq. (4.36) must vanish. Let us check that this is indeed the case by computing

(1 − g)β = (1 − β − γ

β
)β = γ. (4.37)

Consequently, from Eq. (4.36) it follows

d

dt
A1 = 1 − g√

1 + g2
A2 p(A1, A2) = C1A2 p(A1, A2), (4.38)
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where p is a function linear in A1 and A2 defined by

p = β

N

(
A1 − A2√

1 + g2

)
≤ 0. (4.39)

As indicated p ≤ 0 holds, which follows from S = N + A1 − A2/
√
1 + g2 ⇒ p =

β(S − N )/N (see Eq. (4.23) for Sst = N ) and S − N ≤ 0. Moreover, the factor
C1 = (1 − g)/

√
1 + g2 occurring in Eq. (4.38) reads C1 = β/[γ√

1 + g2] > 0 and
is positive (as indicated) for β, γ > 0. Alternatively, Eq. (4.38) can be written like

d

dt
A1 = G1(A1, A2), G1 = 1 − g√

1 + g2
A2

β

N

(
A1 − A2√

1 + g2

)
. (4.40)

The evolution equation for A2 can be derived by analogy. To begin with, let us differ-
entiate the mapping A2 = √

1 + g2 I/g, which gives dA2/dt = g−1
√
1 + g2dI/dt .

Substituting the evolution equation for I (t) of the SIR model (4.7) into this result,
we obtain

d

dt
A2 =

√
1 + g2

g

d

dt
I =

√
1 + g2

g

(
β

N
I S − γ I

)

=
√
1 + g2

g

β

N
I S − γA2. (4.41)

Substituting Eq. (4.35) into Eq. (4.41), we obtain

d

dt
A2 = β

N
A2

(
N + A1 − A2√

1 + g2

)
− γA2

= (β − γ)A2 + β

N
A2

(
A1 − A2√

1 + g2

)

= λ2A2 + A2 p(A1, A2), (4.42)

where p is again given by Eq. (4.39). Alternatively, Eq. (4.42) can be written like

d

dt
A2 = λ2A2 + G2(A1, A2), G2 = β

N
A2

(
A1 − A2√

1 + g2

)
. (4.43)

The amplitude equations may be expressed with the help of the the rate constant k0
and the relative state δ that read

k0(A2) = β

N
I = β

N

g√
1 + g2

A2 (4.44)
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and

δ(A1, A2) = S(A1, A2) − N = A1 − A2√
1 + g2

, (4.45)

respectively. From Eqs. (4.40) and (4.25) it then follows that

d

dt
A1 = U1k0(A2)δ(A1, A2),

d

dt
A2 = λ2 +U2k0(A2)δ(A1, A2) (4.46)

with U1 = (1 − g)/g and U2 = √
1 + g2/g.

4.2.6 SIR Model State Space and Amplitude Equations:
Equivalence, SI Order Parameter, and Case λ2 > 0

Equivalence

Let us summarize the state space equations and amplitude equations of the SIR
model. The state space equations for S and I of the SIR model read (4.7)

d

dt
S = − β

N
I S,

d

dt
I = β

N
I S − γ I. (4.47)

The third model variable R can be computed from R(t) = N − S(t) − I (t). Within
the state space description, the initial conditions at time t0 are given by S(t0) = S0
and I (t0) = I0. The amplitude equations of the SIR model as presented above and
derived in Refs. [2, 3] read (see Eqs. (4.38), (4.39), and (4.42))

d

dt
A1 = C1A2 p(A1, A2),

d

dt
A2 = λ2A2 + A2 p(A1, A2),

p = β

N

(
A1 − A2√

1 + g2

)
(4.48)

with p ≤ 0, C1 = (1 − g)/
√
1 + g2 > 0, g = λ2/β, and

λ2 = β − γ = γ(α − 1) (4.49)
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(see Eqs. (4.19) and (4.30)), where α is the bifurcation parameter. As far as the
amplitude space description is concerned, the initial conditions can be computed
from

A1(t0) = S0 + I0
g

− N , A2(t0) =
√
1 + g2

g
I0 (4.50)

(see Eq. (4.24)). Solutions S(t) and I (t) computed from Eq. (4.47) for S0 and I0
are equivalent to solutions A1(t) and A2(t) computed from Eq. (4.48) for A1(t0)
and A2(t0) obtained from Eq. (4.50) in the sense that they describe the same epi-
demic. They just view the epidemic from two different perspectives: the state space
perspective and the amplitude space perspective. In other words, they describe the
same spread of the infectious disease by means of two different coordinate systems:
a coordinate system with orthogonal basis e1 = (1, 0) and e2 = (0, 1) and another
coordinate system with a non-orthogonal basis given by e1 = (1, 0) and v2 (see Eq.
(4.20)) and an origin shifted to Xst = (N , 0). This equivalence of the two model
equations (4.47) and (4.48) or the two different perspectives or descriptions, can
be illustrated by computing S(t), I (t) by means of A1(t), A2(t) via the mapping
Eq.(4.23) like

S(t) = N + A1(t) − A2(t)√
1 + g2

, I (t) = g√
1 + g2

A2(t). (4.51)

Since the nonlinear amplitude equation model (4.48) is not an approximation and in
this sense is an exact model, solutions S(t), I (t) of the state space equations (4.47)
and solutions S(t), I (t) obtained bymeans of Eq. (4.51) and the amplitude equations
(4.48) are identical. However, close to the fixed point Xst = (N , 0), that is, for X =
(S, I ) ≈ Xst = (N , 0), the amplitude equations listed in Eq. (4.48) may be replaced
by their linear approximations given in terms of dA1/dt = 0 and dA2/dt = λ2A2.
Solutions S(t) and I (t) obtained via the mapping (4.51) are then approximations to
the solutions computed directed from the state space equations (4.47).

Figure4.1 present simulation results of the state space equations (4.47) and ampli-
tude equations (4.48) of the SIRmodel. Panel (a) of Fig. 4.1 shows simulation results
for an SIR model characterized by a stable disease-fixed point Xst = (N , 0) with
α < 1. The solutions S(t) and I (t) computed from the state space equations (4.47)
are shown as solid lines. The model parameters and initial conditions are used as in
panel (a) of Fig. 3.2. Therefore, the functions I (t) in panel (a) of Fig. 4.1 and panel
(a) of Fig. 3.2 are identical. Importantly, panel (a) of Fig. 4.1 presents the functions
S(t) and I (t) as obtained by solving the amplitude equations (4.48) under the appro-
priate initial conditions and mapping the solutions A1(t) and A2(t) to S(t) and I (t)
via Eq. (4.51). The solutions thus obtained are shown as full circles. As expected,
they are identical with the solutions S(t) and I (t) computed directly from the state
space equations.

Panel (b) shows the simulation results for a SIR model with an unstable disease-
free fixed point Xst = (N , 0) characterized by α > 1. The solid lines show again
the solutions S(t) and I (t) computed from Eq. (4.47), whereas the full circles show
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the solutions S(t) and I (t) computed from Eqs. (4.48) and (4.51). As expected,
the two approaches produced identical results. Note that for the simulation results
presented in panel (b) the samemodel parameterswere used as in panel (a) of Fig. 3.3.
Therefore, curves S(t) and I (t) for the epidemic wave shown in panel (b) Fig. 4.1
are identical to the curves S(t) and I (t) presented in panel (a) of Fig. 3.3.

TheSIRmodel in the state spacedescription (4.47) exhibits in the two-dimensional
S-I state space the fixed points Xst = (Sst , 0) that correspond to disease-free states.
The SIR model in the amplitude space description (4.48) exhibits the fixed points
Ast = (A1,st , 0). That is, the stationary value of A2 is A2,st = 0, whereas A1 can
assume any value A1,st (see Eq. (4.48)). However, since the amplitude equations
(4.48) are interpreted in the context of the state space equations (4.47) the stationary
value A1,st is subjected to some limitations. From the mapping A1, A2 → S shown
in Eq. (4.51) with A1 = A1,st , A2 = A2,st = 0, and S = Sst it follows that A1,st =
Sst − N , which implies A1,st ∈ [−N , 0] (since Sst ∈ [0, N ]). In summary, the fixed
points of the SIR model in state space and amplitude space read and are related to
each other like

Xst = (Sst , 0), Sst ∈ [0, N ], Ast = (A1,st , 0), A1,st ∈ [−N , 0],
A1,st = Sst − N . (4.52)

Note that the amplitude equations (4.48) have been derived by taking the fixed
point Xst = (N , 0) as reference point. This does not mean that they only hold if
the system is initially close to Xst = (N , 0). As pointed out above, the amplitude
equations (4.48) are mathematically equivalent to the state space equations (4.47)
regardless of the initial values S0 and I0 under consideration. That is, if the initial

Fig. 4.1 Monotonically decaying solution (panel (a)) and wave-solution (panel (b) of the SIR
model as obtained from state space (4.48) and amplitude space (4.51) descriptions. Solutions S(t)
and I (t) computed from Eq. (4.48) (solid lines) and indirectly by means of Eq. (4.51) (full circles)
are shown for α < 1 ⇒ λ2 < 0 (panel (a)) and α > 1 ⇒ λ2 > 0 (panel (b)). Parameters and
initial conditions as in Figures 3.3 and 3.4: N = 1, 000, γ = 0.5/d, I (0) = 10, S(0) = N − I (0),
β = 0.4/d (for α < 1), and β = 0.8/d (for α > 1)
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state does not correspond to a state close to Xst = (N , 0), then the two descriptions
still yield identical solutions S(t) and I (t) just like in Fig. 4.1. However, if the initial
state is located in the vicinity ofXst = (N , 0), then this implies that during an initial
period the linearized equations dA1/dt = 0 and dA2/dt = λ2A2 describe a good
approximation of the dynamics of the system (as mentioned above). Moreover, the
SIR model order parameter v2 determines in the case of an instability with λ2 > 0
the system dynamics, as will be shown below. In contrast, if the initial state is not
located in the vicinity of Xst = (N , 0), then the full nonlinear amplitude equations
must be considered in order to arrive within the amplitude space perspective at an
accurate description of the dynamics of the system. For sake of completeness, let
us point out that the reference point of the amplitude equation description (4.48) is
defined in state space and amplitude space like

Xst = (N , 0) ⇔ A = (A1, A2) = (0, 0). (4.53)

In general, both for monotonically decaying solutions I (t) and wave-solutions
I (t) (see Sect. 3.5.1) as exemplified in Fig. 4.1, the dynamics starts at an initial
location that is described in state space and amplitude space like

X0 = (S0, I0) ⇔ A0 = (A1(t0), A2(t0)), (4.54)

where Eq. (4.50) holds. From this location, the dynamics evolves towards one of the
fixed points of the SIR model as described in Eq. (4.52). That is, for t → ∞ the
dynamics converges to a location that is described in state space and amplitude space
like

X(t → ∞) = (S(∞), 0), A(t → ∞) = (A1(∞), 0), A1(∞) = S(∞) − N .

(4.55)

Consequently, the magnitude |A1(∞)| of the stationary value A1(∞) reflects the
decrease of susceptibles during the entire course of the epidemic under consideration
like |A1(∞)| = N − S(∞) (which includes the drop in S from S = Sst = N to
S = S0 = N − I0 due to the initially infectious individuals I0). In the context of the
SIRmodel, this decreases also reflects the number of eventually recovered individuals
such that

|A1(∞)| = N − S(∞) = R(∞). (4.56)

Wave-Solutions for λ2 > 0 and the SI Order Parameter

For bifurcation parameters α > 1, we have λ2 > 0 and an unstable fixed pointXst =
(N , 0). In what follows we assume that the initial state X0 = (S0, I0) is located in
the vicinity of the unstable fixed point. It is plausible to assume that this situation
was given during COVID-19 outbreaks at the beginning of the pandemic in the years
2019/2020 (some examples will be presented in Sect. 4.5 and Chap. 5). Let us follow
the considerations in Ref. [2].
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For α > 1 it follows β > γ and g > 0. This implies that A2 ≥ 0 holds (see the
mapping I → A2 in Eq. (4.24) that also holds for Sst = N and take into account
that I ≥ 0). However, the amplitude A1 can be positive or negative (see the mapping
S, I → A1 in Eq. (4.24) and put Sst = N ). For example, for I = 1 and Sst = N
Eq. (4.24) reads A1 = S − N + 1/g such that in the limiting case β → γ ⇒ g → 0
we have A1 > 0 (irrespective of S and N ). In contrast, for β → ∞ ⇒ g → 1 we
have A1 < 0 if S < N − 1.

For initial states X0 = (S0, I0) close to Xst during an initial period the trajectory
X(t) = (S(t), I (t)) remains close to Xst . We introduce a small parameter ε with
ε 	 N and assume that during the initial period I ∝ O(ε), N − S ∝ O(ε). From
Eq. (4.24) with Sst = N it then follows that A1 ∝ O(ε) and A2 ∝ O(ε). From the
definition of p (see Eq. (4.48)) it follows that p ∝ O(ε)β/N , where β/N is typically
a relatively small quantity. In particular, in applications typically β/N 	 λ2 holds
(e.g., see Sect. 4.5). Consequently, as far as the initial dynamics of A1 is concerned,
from Eq. (4.48) it follows that dA1/dt ∝ O(ε2)β/N . In contrast, with respect to the
initial dynamics of A2 we have dA2/dt ∝ λ2O(ε) and we assume that λ2 � β/N .
This implies that the amplitude A1 varies initially to a small amount as compared
to the amplitude A2. Consequently, the dynamics along v2 as described by A2 dom-
inates initially the overall dynamics and, in doing so, determines the course of the
disease outbreak under consideration. As discussed in Sect. 2.9, in general, the unsta-
ble eigenvector and the corresponding unstable amplitude determine the dynam-
ics of a system close to an instability. In this context, the unstable eigenvector is
called the order parameter and the unstable amplitude is called the order parameter
amplitude. Accordingly, v2 is the order parameter [2, 3] in the susceptible-infectious
two-dimensional state space. For sake of brevity, v2 will be referred to as SI order
parameter. The amplitude A2 is the order parameter amplitude [2, 3].

As argued above, the order parameter amplitude A2 increases initially in an expo-
nential manner satisfying the linear dynamics dA2/dt = λ2A2, while variations in
A1 can be neglected such that A1 can be regarded as constant. From Eq. (4.21) it
then follows that [3]

d

dt
X ≈ v2

d

dt
A2 ⇒ ΔX ≈ v2ΔA2 (4.57)

with ΔX = X(t) − X0 and ΔA2 = A2(t) − A2(t0), where X0 and t0 are the initial
state and time point, respectively. Equation (4.57) may be expressed like

X(t) ≈ v2ΔA2 + X0. (4.58)

It is worth noting that Eq. (4.58) can be derived from Eq. (4.21) in an alterna-
tive way. Assuming that A1 is approximately constant such that A1(t) ≈ A1(0) with
t0 = 0, then fromEq. (4.21) it follows thatX(t) ≈ Xst + v2A2(t) + v1A1(0). Putting
A2(t) = A2(t) − A2(0) + A2(0) = ΔA2 + A2(0), we obtain X(t) ≈ v2ΔA2 +
Xst + v1A1(0) + v2A2(0). This result is equivalent to Eq. (4.58) because
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X0 = Xst + v1A1(0) + v2A2(0) (4.59)

holds (see Eq. (4.21) again and put t = t0 = 0).
If the initial state X0 corresponds to a small perturbation out of the fixed point

Xst , then in Eq. (4.58) the initial state approximately corresponds to the fixed point
(X0 ≈ Xst ) and A1(t0) = A2(t0) ≈ 0 ⇒ ΔAk ≈ Ak such that Eq. (4.58) becomes

X(t) ≈ v2A2(t) + Xst . (4.60)

Let us return to the somewhatmore general expression (4.57). Equation (4.57) implies
that the direction given by v2 determines the relative changes in the sizes of com-
partments S and I like

ΔS

ΔI
≈ v2,S

v2,I
= − β

β − γ
. (4.61)

Figure4.2 illustrates the considerations above and shows a wave-solution of the
SIR model in state space (panel (a)) and amplitude space (panel (b)) and the corre-
sponding trajectory together with the order parameter in the S-I plane (panel (c)).
Panel (a) of Fig. 4.2 show S(t) and I (t) computed from Eq. (4.47). The same param-
eters as used in Fig. 3.3 and panel (b) of Fig. 4.1 were used (i.e., the curves shown in
panel (a) of Fig. 3.3, panel (b) of Fig. 4.1, and panel (a) of Fig. 4.2 are identical). As
can be seen in panel (a) of Fig. 4.2, S(t) decays monotonically over time, while I (t)
increases initially, reaches a maximum Imax, and subsequently decays monotonically
to zero (see also Sect. 3.5.1). Panel (b) shows A1 and A2 computed from Eq. (4.48).

Fig. 4.2 Characteristic features of wave-solutions of the SIR model for λ2 > 0 (i.e., α > 1). Panel
(a): wave-solution in terms of functions S(t) and I (t). Panel (b): wave-solution in terms of ampli-
tudes A1(t) (dashed line) and A2(t) (solid line). Panel (c): wave-solution as phase curve I (S)

determined initially by v2 and A2(t). Parameters and initial conditions as for the simulation shown
in panel (b) of Fig. 4.1
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As expected, A2(t) > 0 holds any time. Importantly, during an initial period, A2

increases monotonically (and exponentially), while A1 does not vary substantially
over time. Only at a later time point t∗, A1 starts to decay. A1 decays monotonically,
which follows from Eq. (4.48). More precisely, from Eq. (4.48) it follows that

d

dt
A1 = C1A2 p ≤ 0 (4.62)

because p ≤ 0 (see Eq.4.39),C1 > 0 (see the comment below Eq. (4.39)), and A2 >

0. Returning to A2, the function A2 increases to a maximum A2,max at a time point
tp at which

tp : p(A1(tp), A2(tp)) = −λ2, A2(tp) = A2,max (4.63)

holds. When A1 decays (becomes “more negative”) for t > tp, then p decays as well
(note that p = β(S − N )/N , which implies that p monotonically decreases). The
decay in p implies |p| > λ2 with p < 0 such λ2 + p < 0 and A2 decays like

d

dt
A2 = (λ2 + p)A2 < 0. (4.64)

As a result, for any t > tp we have λ2 + p < 0 and dA2/dt < 0 (see Eq (4.64)) as
long as A2 > 0, which implies that A2(t) decays monotonically towards the fixed
point A2,st = 0.

Panel (c) presents the plot of I (t) versus S(t) in the S-I plane. The plot was shown
previously in panel (b) of Fig. 3.3. In panel (c) of Fig. 4.2 the order parameter v2 as
computed from Eq. (4.20) is shown two times located at two different positions: the
reference fixed pointXst = (N , 0) and the initial stateX0 = (S0, I0). The eigenvector
v1 = (1, 0) is shown as well for both cases and forms the corresponding horizontal
axes of the non-orthogonal basis systems spanned by v1 and v2. In the initial period,
the trajectoryX(t) follows the direction of the order parameter as stated byEq. (4.57).
When shifting v2 to the location X0 then distances along v2 correspond to ΔA2, (see
Eq. (4.58)) and the same holds for v1 and ΔA1. As can be seen in panel (c), the
changes ΔA2 completely determine the time course of the epidemic in the initial
state. At a certain time point t∗ the trajectory X(t) branches off from the order
parameter v2. A precise definition of the time point t∗ will not be given here. Rather,
the square shown in panel (c) indicates the region in the S-I plane obtained by visual
inspection in which the branching off event takes place. The square shown in panel
(c) corresponds to the squares shown in panels (a) and (b) and, in doing so, identifies
approximately the time point t∗. As can be seen in panel (b), at the time point t∗ the
amplitude A1 begins to increase in magnitude (i.e., starts to decay). This increase in
A1 results in the branching off dynamics of the phase curve I (S) from v2 illustrated
in panel (c). Subsequent to this branching off event, I (t) reaches its maximum. From
that maximum value I (t) decays monotonically. During the whole time course S(t)
decays monotonically. The combination of an “up and down movement” of I (t) and
a “leftwards movement” of S(t) creates an inverted parabola in the S-I plane.
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Panel (c) illustrates that v2 determines the relationship between size changes
ΔS and ΔI of S and I , respectively, during the initial outbreak as described by
Eq. (4.61). Moreover, the time course of S and I is quantitatively determined by the
change ΔA2 of the order parameter amplitude that involves an exponential increase
of A2. Equation (4.58) reads explicitly

S(t) ≈ S0 + v2,S[A(t) − A(t0)] = S0 + v2,S A2(t0) (exp{λ2(t − t0)} − 1) ,

I (t) ≈ I0 + v2,I [A(t) − A(t0)] = I0 + v2,I A2(t0) (exp{λ2(t − t0)} − 1) ,

⇒ I (t) ≈ v2,I A2(t0) exp{λ2(t − t0)} = I0 exp{λ2(t − t0)}. (4.65)

That is, the number of infectious individuals increases exponentially just like the
order parameter amplitude A2. Note that the expression for S(t) cannot be simplified
in the same way. The reason for this is that I0 = v2,I A2(t0) holds (see Eq.4.23)
or Eq. (4.59)). In contrast, S0 = Sst + A1(t0) + v2,S A2(t0) holds (see Eq.4.23) or
Eq. (4.59)). That is, while the term I0 − v2,I A2(t0) equals zero, the corresponding
term S0 − v2,I A2(t0) = Sst + A1(t0) does not necessary vanish.

As such Eq. (4.61) can be obtained in various alternative ways. For example, using
the linearized versions of Eq. (4.7) at Xst , Eq. (4.61) can be derived like

dS = −β Idt, dI = (β − γ)Idt ⇒ dS

dI
= − β

β − γ
. (4.66)

However, the systematic nonlinear physics approach via Eqs. (4.21) and (4.57) allows
to interpret Eqs. (4.57) and (4.61) in the broader context of bifurcation-phenomena
and the dynamics of systems close to instabilities (see Sects. 1.4 and 1.5).

4.2.7 Case λ2 < 0 and the Impact of Nonlinear Terms

In the pervious Sect. 4.2.6, the case λ2 > 0 leading to wave-solutions was discussed
in the context of the amplitude space description of the SIR model. Let us turn to the
caseλ2 < 0 related to bifurcation parametersα < 1 and parameters g < 0. The linear
stability analysis conducted in Sect. 4.2.3 suggest that the fixed point Xst = (N , 0)
is a neutrally stable fixed point such that small perturbations out of the fixed point do
not increase in magnitude. They decay to some degree over time and converge to one
of the other neutrally stable fixed points. However, this conclusion was drawn under
the assumption that the nonlinear terms in the evolution equation of A1 for the case
λ2 < 0 do not result in a destabilization of the fixed point Xst = (N , 0). Therefore,
let us discuss this case λ2 < 0 in more detail.

First of all, from the mapping I → A2 in Eq. (4.24) (which also holds for Sst =
N ) and g < 0 it follows that A2 ≤ 0. Likewise, from the mapping S, I → A1 in
Eq. (4.24), Sst = N , and g < 0, it follows that A1 = S − N − I/|g|, which implies
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A1 ≤ 0. Consequently, for λ2 < 0 both amplitudes A1 and A2 are negative or zero.
From the evolution equation of A2 in Eq. (4.48) it then follows that

d

dt
A2 = λ2A2︸ ︷︷ ︸

≥ 0

+ A2 p︸︷︷︸
≥ 0

(4.67)

(where we have used λ2 < 0 and p < 0) such that dA2/dt > 0 for A2 < 0 and
dA2/dt = 0 for A2 = 0. Consequently, A2 increase monotonically and exhibits the
limiting case A2(t → ∞) = A2,st = 0. Likewise, from the evolution equation of A1

in Eq. (4.48) it follows that
d

dt
A1 = C1A2 p ≥ 0 (4.68)

because of C1 > 0, p < 0, and A2 ≤ 0. In particular, we see that dA1/dt ≥ 0 holds
for A2 < 0 and dA1/dt = 0 holds for A2 = 0. The nonlinear termC1A2 p in the case
λ2 < 0 indeed does not result in a increase of the magnitude |A1| of the amplitude
A1. Rather, the term results in a decrease of |A1| over time. Eventually, the limiting
case A1(t → ∞) = A1,st ≤ 0 holds. In summary, the amplitudes A1, A2 are both
negative and monotonically increasing functions of time:

λ2 < 0 ⇒ A1, A2 ≤ 0,
d

dt
A1 ≥ 0,

d

dt
A2 ≥ 0,

A1(t → ∞) = A1,st ≤ 0, A2(t → ∞) = A2,st = 0. (4.69)

In other words, while the linear term in the evolution equation for A1 vanishes such
that in linear approximation we have dA1/dt = 0, the nonlinear term G1 in the evo-
lution equation of A1 for λ2 < 0 makes that any perturbation of A1 out of A1,st = 0
(related to S = Sst = N ) to an initial value A1(0) < 0decays inmagnitudeor remains
constant: d|A1(t)|/dt ≤ 0. This was anticipated in Sect. 4.2.3 when conducting the
stability analysis of the SIR model (4.7).

Figure4.3 illustrates the amplitude space description of the SIR model for the
case λ2 < 0. Panel (a) of Fig. 4.3 shows the solutions S(t) and I (t) computed from
Eq. (4.47) as presented earlier in panel (a) of Fig. 4.1. Unlike Fig. 4.1, panel (b) of
Fig. 4.3 presents the corresponding solutions A1(t) (dashed line) and A2(t) (solid
line) as computed from Eq. (4.48). As summarized in Eq. (4.69), both amplitudes A1

and A2 are negative and increases monotonically as functions of time. A2 converges
to A2,st = 0. A1 converges to a finite stationary value A1,st < 0. The magnitude
|A1,st | corresponds to the decrease of susceptibles |A1,st | = ΔS = N − S(∞) (see
Eq. (4.55)) during the course of the simulated epidemic and the final cumulative
number of recovered individuals |A1,st | = R(∞).
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Fig. 4.3 Solutions of the SIR model in state space (panel (a)) and amplitude space (panel (b)) as
obtained from Eqs. (4.47) and (4.48), respectively, for λ2 < 0 (i.e., α < 1). S(t) decreases from
S0 = 990 to a stationary value S(∞) = 955. The total decay ΔS = 45 from S = Sst = N = 1000
to S = S(∞) = 955 corresponds to the final number of recovered individuals ΔS = R(∞). The
stationary value A1,st = −45 is the negative of that number. The solid (dashed) line in panel (b)
stands for A2(t) (A1(t))

4.2.8 Fixed Points with Sst < N and Nonlinear Parts Gk

Let us consider fixed points Xst = (Sst , 0) with Sst < N . In this case, the nonlinear
terms Gk can be obtained following the approach presented in Sect. 4.2.5 for Xst =
(N , 0). In doing so, it can be shown that forXst = (Sst , 0)with Sst < N the amplitude
equations for A1 and A2 are defined by Eq. (4.48) again. However, for λ2 and g the
general definitions presented in Sect. 4.2.1 must be applied. That is, λ2 = βSst/N −
γ (see Eq. (4.13)) and g = (βSst/N − γ)/(βSst/N ) (see Eq. (4.17)). Note that p
is defined as in Eq. (4.48). That is, the factor β/N occurring in p is not changed.
The SIR model amplitude equations (4.48) for fixed points Xst = (Sst , 0) are solved
under initial conditions computed from

A1(0) = S0 + I0
g

− Sst , A2(0) =
√
1 + g2

g
I0 (4.70)

(see Eq. (4.24)). The solutions S(t) and I (t) of the state space equations (4.47) can
be re-obtained by solving the amplitude equations (4.48) under the initial conditions
(4.70) to arrive at A1(t) and A2(t) and computing S(t) and I (t) from A1(t) and A2(t)
like

S(t) = Sst + A1(t) − A2(t)√
1 + g2

, I (t) = g√
1 + g2

A2(t) (4.71)

(see Eq. (4.23)). In short, the state space equations (4.47) and amplitude equations
(4.48) of the SIRmodel are equivalent descriptions irrespective of the reference fixed
point Xst = (Sst , 0) that is considered.
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Fig. 4.4 Simulation results as in Fig. 4.2 for λ2 > 0 (i.e., α > 1) but for Sst < N . Panels (a),
(b), and (c) show the same quantities as in Fig. 4.2. All parameters as for the simulation shown
in Fig. 4.2: N = 1, 000, β = 0.8/d, and γ = 0.5/d. Fixed point and initial conditions: Rst = 100,
Sst = N − Rst , Ist = 0, I (0) = 10, S(0) = Sst , R(0) = Rst − I (0)

Equation (4.54) holds also for amplitude equations models with Xst = (Sst , 0).
Equations (4.53) and (4.55) become

Xst = (Sst , 0) ⇔ A = (A1, A2) = (0, 0) (4.72)

and

X(t → ∞) = (S(∞), 0), A(t → ∞) = (A(∞), 0), A1(∞) = S(∞) − Sst ,
(4.73)

respectively. The arguments made in Sects. 4.2.6 and 4.2.7 about wave-solutions
for λ2 > 0 and monotonically-decaying solutions for λ2 < 0 hold. In particular,
Eqs. (4.58) to (4.69) hold for the SIR amplitude equation model (4.48) based on
reference fixed points Xst = (Sst , 0) with Sst < N .

Figure4.4 illustrates the considerations for a reference fixed point Xst = (Sst , 0)
with Sst < N and a population with an unstable disease-free fixed point with λ2 > 0
(i.e., α > 1). Panels (a), (b), and (c) show the same quantities as panels (a), (b), and
(c) of Fig. 4.2. Panel (a) of Fig. 4.4 shows the functions S(t) and I (t) computed from
Eq. (4.47) as solid lines. Panel (b) shows the amplitudes A1 and A2 computed from
Eq. (4.48). Using these amplitudes A1(t) and A2(t), the original state variables S(t)
and I (t) were reconstructed by means of Eq. (4.71) and were plotted as circles in
panel (a). As expected, the two approaches produced identical results.
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Panel (c) shows I (t) versus S(t) as phase curve I (S) in the S-I plane. The
unstable eigenvector (i.e., order parameter) v2 computed from Eq. (4.18) is shown at
the location of the initial stateX0 = (S0, I0) togetherwith the eigenvector v1 = (1, 0)
(pointing in the horizontal direction). As can be seen in panel (c), the trajectoryX(t)
in terms of the phase curve I (S) in the S-I plane follows initially the direction of v2 as
stated byEq. (4.57).During that initial period, changesΔA2 of the unstable amplitude
A2 determine the time course of the epidemic simulated in Fig. 4.4. At a certain time
point the phase curve I (S) branches off from the unstable eigenvector v2. Subsequent
to this branching off event, I (t) reaches its maximum. From that maximum value
I (t) decays monotonically. During the whole time course S(t) decays monotonically
such that the phase curve I (S) corresponds again to an inverted parabola in the S-I
plane.

4.3 SIR Model with Demographic Terms

The two-variable version of the SIRmodel with demographic terms (3.29) reads (see
Eq. (3.33))

d

dt
S = − β

N
I S + μ(N − S),

d

dt
I = β

N
I S − (γ + μ)I (4.74)

for a population whose size is constant over time. Consequently, the third variable
of the SIR model (i.e., the recovered individuals) can be obtained from R(t) =
N − S(t) − I (t). The two-dimensional state vector of Eq. (4.74) reads X = (S, I ).
The model exhibits the fixed pointXst = (N , 0) reflecting the disease-free state (see
Sect. 3.5.2). In addition, theremight be an endemic fixed point with Ist > 0 (see Sect.
3.5.2 again). Using the approach discussed in Sect. 4.2, for the SIR model (4.74) the
amplitude equations

d

dt
A1 = λ1A1 + 1 − g√

1 + g2
A2 p(A1, A2),

d

dt
A2 = λ2A2 + A2 p(A1, A2) (4.75)

with

λ1 = −μ, λ2 = β − γ − μ,

g = β − γ

β
, p = β

N

(
A1 − A2√

1 + g2

)
(4.76)

can be derived. That is, comparing the amplitude equations (4.75) with the amplitude
equations (4.48) for the SIR model without demographic terms, we see that formally
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in the evolution equation for A1 the linear term λ1A1 must be added. The eigenvalue
λ1 is negative and corresponds to the death rate −μ. Furthermore, the eigenvalue
λ2 is modified by the death rate μ. The parameter g is identical to the g parameter
of the SIR model without demographic terms based on the reference fixed point
Xst = (N , 0). The linear function p is identical to the function p of the SIR model
without demographic terms (see Eq. (4.48)). In summary, the eigenvalues λ1 and λ2

depend on the death rate μ and, consequently, are different for the cases μ = 0 and
μ > 0. In contrast, g and p do not depend on μ and, consequently, correspond to the
respective quantities derived for the SIR model without demographic terms based
on Xst = (N , 0).

The amplitude equation description in terms of Eqs. (4.75) and (4.76) of the
SIR model with demographic terms includes as special case the amplitude equa-
tion description (4.48) of the SIR model without demographic terms based on the
stationary state Xst = (N , 0) when putting μ = 0.

The initial conditions for the amplitude space description are given by Eq. (4.50).
The amplitude equations (4.75) are equivalent to the state space equations (4.74) in
the sense that the solution S(t), I (t) of Eq. (4.74) can be obtained by solving the
amplitude equations (4.75) for the initial conditions (4.50) to obtain the solutions
A1(t), A2(t) and computing S(t), I (t) from A1(t), A2(t)with the help of Eq. (4.51).

In view of the eigenvalues listed in Eq. (4.76) and the general discussion of the
stability of fixed points presented in Sect. 2.7, the bifurcation parameter

α = β

γ + μ
(4.77)

with a critical value of 1 can be introduced and the following two cases can be
distinguished. First, for α < 1, which implies β < γ + μ and λ2 < 0 the fixed point
Xst = (N , 0) is asymptotically stable because both eigenvalues λ1,λ2 are negative.
The fixed point corresponds to a stable node. Second, for α > 1, which implies
β > γ + μ and λ2 > 0, the fixed point Xst = (N , 0) corresponds to an unstable
saddle point because it is characterized by a negative and a positive eigenvalue. The
bifurcation parameter α corresponds to the stability parameter ξ = β/(γ + μ) that
was introduced in Eq. (3.37) and discussed in Sect. 3.5.2. In particular, as discussed in
Sect. 3.5.2, in the case ofα > 1 (i.e., ξ > 1) the SIRmodel (4.74) exhibits an endemic
fixed point Xst with Ist > 0. Fixing γ and μ and using β as bifurcation parameter
(instead of α), the two cases (α < 1 ⇒ β < γ + μ and α > 1 ⇒ β > γ + μ)
can be connected with each other in the bifurcation diagram shown in Fig. 3.8. The
bifurcation diagram shows the bifurcation of the SIRmodel atα = 1 ⇒ β = γ + μ
in terms of a change of the stability of the disease-free state and fixed point Xst =
(N , 0) from a stable node to an unstable saddle. In addition, at the bifurcation point
an attractor in terms of an endemic stable fixed point emerges.
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4.4 SIR-Type Models Revisited: 2D Autonomous
Amplitude Descriptions

In Sect. 4.1.2 the amplitude equation description of SIR-type models was formally
defined by Eq. (4.4) using the two-dimensional amplitude space approach. We are
now in the position to present the explicit form of Eq. (4.4). To this end, we consider
the model (4.1) in the absence of demographic terms μ = B = 0 but for an arbitrary
reference fixed point Xst = (Sst , 0). In this case, from Eq. (4.48) and the discussion
in Sect. 4.2.8 it follows that the amplitude equation description (4.4) reads explicitly

d

dt
A1 = C1A2 p(A1, A2),

d

dt
A2 = λ2A2 + A2 p(A1, A2),

d

dt
Xk = Nk(S(A1, A2), I (A2), X3, . . . , Xn) (4.78)

with

λ2 = β
Sst
N

− γ, g = λ2N

βSst
, C1 = 1 − g√

1 + g2
, p = β

N

(
A1 − A2√

1 + g2

)
(4.79)

and

S(A1, A2) = Sst + v1,S A1 + v2,S A2 = Sst + A1 − A2√
1 + g2

,

I (A2) = v2,I A2 = g√
1 + g2

A2, (4.80)

where the relations in Eq. (4.80) are copied from Eq. (4.71) and vk,S , vk,I for k =
1, 2 are the eigenvector components (v1,S = 1, v1,I = 0, v2,S = −1/

√
1 + g2, and

v2,I = g/
√
1 + g2) that have been derived in Sect. 4.2.1 (see Eq. (4.18)).

For example, the SIRD model (4.3) for r = β/N involving the compartment D
of individuals deceased from COVID-19 reads in the amplitude space description

d

dt
A1 = C1A2 p(A1, A2),

d

dt
A2 = λ2A2 + A2 p(A1, A2),

d

dt
R = a v2,I A2,

d

dt
D = b v2,I A2 (4.81)
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with γ = a + b. In Eq. (4.81) N = S + I + R + D is constant. As such the variable
N occurring in the factor β/N should reflect the size of a population and should
not include disease-related deaths. Therefore, it is assumed that D makes only a
negligibly small contribution to N .

As another application let us consider the SIQR model that was used by Pedersen
andMeneghini to describe the COVID-19 first-wave epidemic in Italy [4]. They used
the model [4]

d

dt
S = − β

N
I S,

d

dt
I = β

N
I S − (a + b)I,

d

dt
Q = bI − kQQ,

d

dt
R = kQQ.

(4.82)

The compartment I describes non-diagnosed infectious individuals. In contrast, the
compartment Q describes individuals diagnosed with COVID-19 that have been
quarantined and cannot infected others. The compartment R describes recovered
individuals or individuals deceased from COVID-19 out of the group of quarantined
individuals. That is, according to the model, it is assumed that any individual who is
diagnosed with COVID-19 is immediately quarantined and put in isolation such that
the individual cannot infect others. Pedersen and Meneghini argued that this was at
least in good approximation the case during the first wave of COVID-19 that hit Italy
in February/March 2020.

The model (4.82) does not describe explicitly the group of non-diagnosed indi-
viduals recovered or deceased from COVID-19. This group, say R2, satisfies the
equation dR2/dt = aI . That is, the coefficient a describes the transition rate from I
to R2, whereas the coefficient b describes the diagnosis rate and, consequently, the
transition rate from I to Q. Finally, the coefficient kQ describes both the combined
recovery rate and death rate of quarantined individuals. The model has the advantage
that it can be conveniently linked to data of confirmed COVID-19 cases [4]. Let
C = Q + R denote the diagnosed cases (quarantined, recovered, or deceased from
COVID-19). Then, from Eq. (4.82) it follows that

d

dt
C = bI. (4.83)

The model involving S, I , and C formally has a similar structure as a SIR model.
However, S + I + Q + R = S + I + C is not constant. If the evolution equa-
tion dR2/dt = aI is added to the SIC model to obtain a SIC-R2 model, then
N = S + I + C + R2 is constant and all individuals are mapped to one of the four
compartments. In this context is should again be assumed that the number of disease-
related deaths makes only a negligible contribution to N . The SIQR model (4.82)
and the corresponding extended SIQR-R2 model are SIR-type models of the form
(4.2). From Eqs. (4.78)-(4.80) it follows that the amplitude equation descriptions of
the SIQR and SIQR-R2 models read
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d

dt
A1 = C1A2 p(A1, A2),

d

dt
A2 = λ2A2 + A2 p(A1, A2),

d

dt
Q = b v2,I A2 − kQQ,

d

dt
R = kQQ,

d

dt
R2 = a v2,I A2 (4.84)

with γ = a + b, where the R2 dynamics is ignored in the SIQR model. The SIQR
model (4.82) has also been used in studies on the COVID-19 epidemic in Brazil
during the year 2020 [5, 6]. A slightly revised version was used [5, 6]:

d

dt
S = − β

N
I S − wS,

d

dt
I = β

N
I S − (a + b)I,

d

dt
Q = bI − kQQ,

d

dt
R = kQQ + aI. (4.85)

Here, the parameter w ≥ 0 describes the impact of intervention measures that are
assumed to reduce the number of susceptibles. However, it is plausible to assume
that during the initial stage of the COVID-19 epidemic in Brazil the parameterw was
zero or close to zero [5]. Puttingw = 0, the key difference between themodels (4.82)
and (4.85) is that in Eq. (4.85) in the evolution equation for R the term aI occurs.
Consequently, the compartment R and the lump variable C = Q + R are somewhat
difficult to relate to reported COVID-19 data. The compartment R contains both
diagnosed and non-diagnosed cases. Likewise, the variableC = Q + R that satisfies
dC/dt = (a + b)I reflects both diagnosed and non-diagnosed cases. The issue at
hand is that non-diagnosed cases typically do not show up in COVID-19 records.

4.5 COVID-19 Outbreak in Italy 2020 and Its SI Order
Parameter

The COVID-19 pandemic reached Italy in February 2020 (see Sect. 3.6.2). Active
COVID-19 cases (defined as the number of individuals who were diagnosed with
COVID-19 and had not yet recovered or died) increased dramatically, see Fig. 3.10.
The active case count reached a peak of 108,000 individuals in April 2020, see
Fig. 3.10. In Sect. 3.6.2 the study by Fanelli and Piazza [1] was presented that
analyzed the very early period from February 11 to March 15 of the epidemic in
Italy by means of a SIR model. As discussed in Sect. 3.6.2 the study had three
disadvantages. First, only data from February 11 to March 15 were considered such
that the SIR model describes a peak 4 times less than the actual peak of 108,000
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cases. Second, the size of the susceptible populationwas not taken from demographic
records and was considerably smaller than the population of Italy in the year 2020.
Third, the variable I of the SIRmodel was identified with the active COVID-19 cases
such that the presumably large group of non-diagnosed individuals with COVID-19
were not reflected by I . In what follows these three disadvantages will be overcome
within the SIR and SIR-type modeling framework.

4.5.1 Active Cases Within the SIR Model Interpretation
by Fanelli and Piazza (2020)

Let us address the first two issues listed above but keep the interpretation by Fanelli
and Piazza of the variable I as active cases. Accordingly, let us apply the SIR model
(4.7) to reported active cases [7] from Italy. The modeling results are summarized
in Fig. 4.5. Panel (a) of Fig. 4.5 shows the active cases since February 7, 2020, over
a period of 100 days. In general, when modeling COVID-19 epidemics in countries
around the world, it has been acknowledged that structure parameters (like β, γ,λ2)
of populations, in which the epidemics under consideration take place, change over
time, in particular, due to the implementations of intervention measures. We will
return to this issue in Chap. 8. Therefore, in what follows it is assumed that the
SIR model parameters β, γ and, consequently, λ2 were approximately constant only
during an initial stage of the COVID-19 epidemic in Italy. Under this assumption
and the assumption that the linear approximation of the SIR model holds during the
initial epidemic stage, the solution I (t) = I0 exp{λ2(t − t0)} (see Eq. (4.65)) was
fitted to the data. March 15 was used as end date of the initial stage (which happens
to be the last day of the modeling period in the study by Fanelli and Piazza) and is
indicated as vertical line in panel (a) of Fig. 4.5. The March 15 date can be put into
the perspective of the whole first 100 days of the COVID-19 epidemic in Italy and
can be identified at least by visual inspection as the date at which the exponential
increase ended and switched over to a more linear increase. The linear increase is
consistent with a bifurcation point characterized by λ2 = 0 (see Sect. 4.2.4). The
issue of a switch from λ2 > 0 to a critical stage with λ2 = 0 will be discussed in
detail in Chap. 8.

The initial date t0 was varied in the range from January 31 to February 20 to find
the best fit of the data to the exponential function I (t) = I0 exp{λ2(t − t0). The best
fit was obtained for t0 corresponding to February 7. As a result, the period from
February 7 to March 15 was fitted, which is a 38 days period. Panel (b) of Fig. 4.5
shows the reported active cases again during the 38 days period from February 7 to
March 15 (gray circles). The best fit solution I (t) = I0 exp{λ2(t − t0)} is shown as
well (solid line; we will return to the full black circles below). Note that I0 was not
fitted but taken from the data [7] as the active cases on February 7 (i.e., I0 = 3 as
reported in Ref. [7]). As can be seen in panel (b) the model solution fits the data with
moderate accuracy.
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Fig. 4.5 Intermediate modeling step to describe active COVID-19 case data from Italy during the
first COVID-19 wave in 2020 via the SIR model (4.7). Panel (a): active case data [7]. Panel (b):
initial stage data (gray circles) and exponential fit (solid line). Panels (c) and (d): solutions S and I
as function of time and as phase curve I (S). In panel (d) the unstable eigenvector v2 is shown as
well

The aforementioned data fitting procedure produced an eigenvalue λ2 = 0.24/d.
It was further assumed that the recovery rate γ was related to the mean recovery
duration T = 14 days like γ = 1/T = 0.07/d (see Sect. 3.4). Consequently, λ2 =
β − γ ⇒ β = λ2 + γ = 0.31/d. Importantly, the susceptible population was given
by the population of Italy during the year 2020, which is about 60 million. That is,
N = Sst = 60, 000, 000 was used. Using those model parameters and I0 = 3, S0 =
N − I0, the SIR model (4.7) was solved numerically. The solutions thus obtained
are considered as the exact solutions of the SIR model that go beyond the linear
approximation. The solutions S(t) and I (t) are shown in panel (c). As expected,
S(t) decayed monotonically. I (t) increased in an exponential manner as expected
from the linear approximation to the SIR model. In fact, the exact solution I (t)
obtained from the numerical simulation of the SIR model is shown in panel (b)
as well (black full circles). By visual inspection, the difference between the exact
solution (black full circles) and the solution I (t) = I0 exp{λ2t} (black solid line) of
the linear approximation of the SIR model is negligibly small. In this context, note
that the initial stateX0 = (N − 3, 3) can indeed be considered as a small perturbation
to the stationary pointXst = (N , 0). Furthermore, note that during the initial 38 days
period S(t) dropped by about 30,000 (see panel (c) of Fig. 4.5). Consequently, the
change in size ΔS(t) = S(t) − N was relatively small during the initial stage such
that S(t)/N ≈ 1. Therefore, the linear approximation of the SIR model is justified
for the whole initial 38 days period under consideration.
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As discussed in Sect. 4.2.6, COVID-19 outbreaks in the year 2019/2020 and, in
general, outbreaks of other novel infectious diseases, are characterized by exponen-
tially increasing amplitudes A2 and amplitudes A1 that are approximately constant
provided the modeling framework of SIR-type models can be applied. In order to
arrive at that conclusion, it was assumed that β/N 	 λ2 holds. For the SIR model
describing active cases data of the COVID-19 outbreak in Italy this assumption is
satisfied because we found β = 0.31/d, N = 60, 000, 000 and λ2 = 0.24/d.

Importantly, the analysis presented above reveals that λ2 was positive during the
COVID-19 outbreak in Italy. In doing so, the model-based analysis indicates that the
disease-free fixed point Xst = (N , 0) in Italy during February and March 2020 was
an unstable fixed point. According to the nonlinear physics description discussed in
Sect. 4.2.6, the course of the epidemic followed the unstable eigenvector (or order
parameter) v2. The vector v2 was computed from Eq. (4.20) and the coefficients
v2,S = −0.79 and v2,I = 0.61 were found. Panel (d) presents v2 (dotted line) in the
S-I state space. The vector was magnified for the sake of visibility. Panel (d) also
presents I (t) versus S(t) (solid line), that is, the phase curve I (S). It can be seen that
the phase curve followed the order parameter during the whole initial 38 days period.
That is, the nonlinear physics analysis of the COVID-19 data from Italy suggests
that the COVID-19 outbreak in Italy in February/March 2020 was determined by
an unstable disease-free fixed point Xst = (N , 0) and a susceptible-infectious order
parameter (SI order parameter) with v2,S = −0.79 and v2,I = 0.61. The dynamics
was determined by the corresponding order parameter amplitude A2 with eigenvalue
λ2 = 0.24/d and a time constant τ = 1/λ2 = 4.12 d. Accordingly, A2(t) increased
exponentially along v2 with a time constant (or e-folding time) of 4.12 days, which
resulted in an exponential increase of active cases I (t) with the same time constant.

4.5.2 Confirmed Cases and SIQR Modeling

As argued in Sect. 3.6.2, it is questionable whether the infectious individuals I
described by the SIR model should be identified with the number of diagnosed
active COVID-19 cases. A better method to relate the SIR model to reported data is
the SIQR approach described in Sect. 4.4. Therefore, in what follows, let us apply
the SIQRmodel (4.82) to COVID-19 data from Italy. Figure4.6 summarizes some of
the basic modeling results in this regard. Panel (a) shows the confirmed cumulative
COVID-19 cases (i.e., the diagnosed cumulative cases) in Italy over a 250 days
period starting on January 31, 2020 [7]. As indicated, these cases are identified with
the variable C = Q + R of the SIQR model (4.82) that describes quarantined and
removed (i.e., recovered or deceased) individuals, who have been diagnosed with
COVID-19 (see Sect. 4.4). From the graph shown in panel (a) it follows that there
was an initial stage with an exponential-like increase in confirmed COVID-19 cases
that was followed by a more or less linear increase. Subsequently, the COVID-19
cases reached a plateau (with a slight positive slope). At the end of this plateau
(i.e., about 200 days after January 31, which is in the days around August 18, 2020)
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Fig. 4.6 Final step to describe COVID-19 case data from Italy during the first COVID-19 wave in
2020 within a SIQR modeling framework (see Eq. (4.82)) that allows to use the class of diagnosed
casesC = Q + R. Panel (a): cumulative confirmed COVID-19 cases of Italy over the first 250 days
of the epidemic in Italy [7]. Panel (b): initial stage definition. Panel (c): fit (solid black line) of Eq.
(4.86) to the initial stage data (gray circles). Panel (d): explanation of the cumulative cases C when
expressed in units z by means the order parameter amplitude A2 (solid line describes A2(t) + h,
see Eq. (4.88) and text)

the confirmed COVID-19 cases started to increase again. Italy was hit by a second
COVID-19 wave. The objective is to model the initial COVID-19 outbreak during
February/March 2020 using the SIQR model (4.82). During such an initial stage
from the linearized SIQR model it follows that the number of infectious individuals
increases exponentially like I (t) = I0 exp{λ2(t − t0)} (see Eq. (4.65)). Substituting
this function into Eq. (4.83), we obtain

C(t) = C0 + V (exp{λ2(t − t0)} − 1) , (4.86)

with V = bI0/λ2. The coefficient V may be interpreted as slope parameter determin-
ing the initial linear increase of C(t) for t ≈ t0 like C(t) ≈ C0 + V (t − t0)/τ with
τ = 1/λ2. In order to fit the analytical solution (4.86) to the data shown in panel (a),
the initial time point t0 was defined as the first day for which diagnosed cumulative
cases increased every day for at least one week. This day was February 20, 2020, for
the data reported in Ref. [7]. Panel (b) shows the diagnosed cumulative cases in Italy
during a 50 days period starting February 20 (i.e., the graph in panel (b) is a zoom-in
detail of the graph shown in panel (a)). The data shown in panel (b) was then fitted
to Eq. (4.86) for a 26 days period. By visual inspection at the end of that period the
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graph started to increase more or less in a linear manner. The end of the 26 days
period is indicated by a vertical line. More sophisticated data fitting procedures will
be presented in Chap. 8.

Thebest-fit estimates ofλ2 andV wereλ2 = 0.17/d andV = 441.46, respectively.
Panel (c) shows the diagnosed cases again (as gray circles) during the 26 days fitting
period from February 20 to March 16. The analytical solution (4.86) is shown as
well (solid black line) for the best-fit parameters. The solution (4.86) produced a fit
to the data with moderate accuracy.

Importantly, within the SIQR framework the nonlinear physics of COVID-19
outbreaks is described in terms of the amplitude equations listed in Eq. (4.84). From
Eq. (4.84) and C = Q + R it follows that

d

dt
C = bv2,I A2, (4.87)

which is consistent with I (t) = v2,I A2(t) and Eq. (4.83). During the initial stage,
the linear approximation holds with dA2/dt = λ2A2 and

A2(t) = A(t0) exp{λ2(t − t0)}. (4.88)

Substituting Eq. (4.88) into Eq. (4.87) and solving for C(t) (i.e., integrating over
time), we arrive again at Eq. (4.86) with I0 = v2,I A0. Consequently, Eq. (4.86) reads
in terms of A2 like

C(t) = C0 + zA2(t0) (exp{λ2(t − t0)} − 1) ⇒ C(t)

z
= A2(t) + h (4.89)

with z = bv2,I /λ2 and h = C0/z − A2(t0). In words, the order parameter amplitude
(or unstable amplitude) A2 determines up to an additive constant h the diagnosed
cumulative COVID-19 cases C during the initial stage of an epidemic provided that
C is rescaled by the factor z. The parameters b, v2,I and the initial amplitude A2(t0)
can be determined as described below. In doing so, z, h, and the analytical solution
A2(t) = A(t0) exp{λ2(t − t0)} can be obtained. Panel (d) of Fig. 4.6 presents the
expression C/z as function of time. The shifted order parameter amplitude, that
is, the expression A2(t) + h with A2(t) = A(t0) exp{λ2(t − t0)}, is plotted as well
(solid black line). Panel (d) demonstrates explicitly for the COVID-19 outbreak in
Italy duringFebruary/March 2020 the role of the unstable amplitude A2.Accordingly,
A2 determined the confirmed COVID-19 cases. Note that from a mathematical point
of view, the curves shown in panel (d) are the same as the curves shown in panel (c)
except for the scales of the vertical axes.

With the help of the estimates λ2 and V the remaining parameters a, b, γ =
a + b,β of the SIQR model (4.82) and the initial values I0 and A2(t0) were deter-
mined as follows. Since V = bI0/λ2 the approach conducted above only yields
the product bI0 = Vλ2 and does not provide separate estimates for b and I0. The
following analysis was conducted for an assumed initial group of I0 = 100 infec-
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Fig. 4.7 Characteristic features of the COVID-19 outbreak in Italy during February/March 2020:
Panel (a): state space functions S(t) and I (t). Panel (b): amplitudes A1(t) (dashed line) and A2(t)
(solid line). Panel (c): COVID-19 outbreak as phase curve I (S) determined by v2 and A2(t)

tious individuals. This selected value affects a, β, g, and the order parameter coeffi-
cients v2,S and v2,I . Therefore, the following analysis results only reflect the inferred
dynamics of the epidemic for that particular selected value. From I0 = 100 and
b = Vλ2/I0 we obtain a diagnoses rate b of b = 0.74/d for a single infectious
individual. Assuming a recovery rate a = 1/T = 0.07/d with T = 14d, we obtain
γ = a + b = 0.81/d, β = λ2 + γ = 0.98/d, and the order parameter coefficients
v2,S = −0.99 and v2,I = 0.17 (more precisely: v2,S = −0.9857 and v2,I = 0.1688).
The SIQR model (4.82) for S, I and C (see Eq. (4.83)) rather than Q and R was
solved numerically using N = Sst = 60, 000, 000, S0 = N − I0 and the parameters
mentioned above. Figure4.7 shows the simulation results. Panel (a) shows S(t) and
I (t) as functions of time. As expected, S(t) decayed monotonically. I (t) increased
in an exponential manner.

Furthermore, the amplitude equations for A1 and A2 occurring in Eq. (4.84) were
solved numerically using the initial conditions computed from Eq. (4.50). In par-
ticular, Eq. (4.50) for A2(t0) reads A2(t0) = I0/v2,I . Panel (b) of Fig. 4.7 shows the
numerical solutions. As expected, A2 increased in an exponential manner up. During
the period under consideration A2 increased to a value of about 40,000 individuals.
In contrast, A1 varied only to a small degree. A1 decayed from 581 individuals to
522 individuals, that is, it varied by about 60 individuals (see panel (b) of Fig. 4.7
again).

Let us identify again theCOVID-19outbreak in Italy as an instability-phenomenon
characterized by a SI order parameter. Panel (c) shows v2 (dotted line; v2 was magni-
fied) in the S-I state space. In addition, the functions S(t) and I (t) shown in panel (a)
are plotted in panel (c) as I (S) phase curve (solid line). As can be seen, the trajectory
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of the disease state when plotted as phase curve in the S-I state space followed the
order parameter v2 during the entire initial 26 days period. In summary, the SIQR
modeling analysis based on confirmed COVID-19 cases suggests that the COVID-19
outbreak in Italy in February/March 2020was determined by an unstable disease-free
fixed point Xst = (N , 0) and a SI order parameter v2. The dynamics of the outbreak
was determined by the order parameter amplitude A2 with an eigenvalue λ2 = 0.17/d
and a time constant τ = 1/λ2 = 5.88d. Accordingly, the amplitude A2(t) increased
exponentially along v2 with a time constant of 5.88 days, which resulted in an expo-
nential increase of infectious individuals I (t) and a decrease of susceptibles S(t).
When making the additional assumption that the epidemic was induced by an ini-
tial group of I0 = 100 infectious individuals, then the SI order parameter was given
by v2,S = −0.99 and v2,I = 0.17 and the evolution of the epidemic along the order
parameter can be illustrated as shown in panel (c).

Let us compare the analytical solutions defined by Eqs. (4.86) and (4.88) for C(t)
and A2(t), respectively, with the corresponding solutions of the full nonlinear SIQR
model. The solutions obtained from the simulation correspond to exact solutions
that go beyond the analytical solutions obtained from the linear approximation of the
model. In order to compare the exact model solutions with the analytical solutions
obtained for the linearized model, we only considered the variable C(t). C(t) as
computed from Eq. (4.82) and (4.83) is shown in panel (a) of Fig. 4.8 as full black
circles. The analytical solution defined by Eq. (4.86) is presented in panel (c) of
Fig. 4.6 and is plotted in panel (a) of Fig. 4.8 as solid line. By visual inspection, there
was no difference between the exact solutionC(t) (full black circles) and the approx-
imative solution C(t) (solid line) as obtained from Eq. (4.86). This observation does
not come as a surprise. The initial stateX0 = (N − I0, I0) in the S-I subspace can be
considered as a small perturbation to the disease-free fixed point Xst = (N , 0) even
for an initial value of I0 = 100. The reason for this is that the scale is characterized
by the enormous population size of N = 60, 000, 000. Moreover, according to the
model-based analysis, S(t) decreased from S0 ≈ Sst = N during the 26 days period

Fig. 4.8 Equivalence of the state and amplitude space descriptions of the COVID-19 outbreak in
Italy during February/March 2020. Panels (a) and (b) shows C(t) and A2(t), respectively, when
computed in a direct way (solid lines) and indirectly (full circles)
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by about 40,000 (see panel (a) of Fig. 4.7). The change ΔS = S(t) − N of about
40,000 at the end of this period was still relatively small such that S(t)/N ≈ 1 was
satisfied during the whole initial 26 days period. The exact solution A2 obtained by
the numerical simulation is shown in panel (b) of Fig. 4.7. It is also shown in panel
(b) of Fig. 4.8 as full black circles. The analytical solution defined by Eq. (4.88)
is plotted as solid black line in panel (b) of Fig. 4.8. Comparing the exact solution
(full black circles) with the approximative exponential solution (solid black line),
we see that differences between these solutions are negligibly small on the scale of
interest. The reason for this is again that the COVID-19 epidemic in Italy during the
COVID-19 outbreak in February/March 2020 evolved relatively close to the disease-
free fixed point. In this context, also note that the assumption β/N 	 λ2 discussed in
Sect. 4.2.6 holds because we have β = 0.98/d, N = 60, 000, 000 and λ2 = 0.17/d.
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Chapter 5
Nonlinear Physics of Epidemics: Part B

This chapter focuses on theSEIRmodel, SEIR-typemodels, andmore comprehensive
models. It begins with the classification of variables into those variables that are
minimally necessary to obtain an autonomous description in amplitude space and
all remaining variables. The nonlinear physics approach is then presented for this
minimal closed space. Amplitude equations for the SEIR model and SEIR-type
models are explicitly derived and their SEI order parameters are determined. It is
demonstrated that within the SEIR modeling framework, the SEI order parameter
determines the initial stage of epidemics. An application to the COVID-19 outbreak
in Wuhan, China, during the year 2020 is also presented.

5.1 Grouping Compartment Variables into Two Classes

Our departure point is again an epidemic model involving n variables described by
the state vector X = (X1, . . . , Xn). The dynamics of the state satisfies the general
evolution equation dX/dt = N(X), see Chap. 2. There are several ways to group the
state variables Xk into certain classes. Inwhat follows twomethodswill be presented.

Grouping into compartments of infected and non-infected individuals while
ignoring whether or not they are infectious

Variables may be grouped into variables describing infected people, on the one hand,
and variables describing non-infected people, on the other hand. This distinction can
be used to figure out how many individuals are infected by a single infected person
during the course of the infectious disease of that person. Thismeasure can be used as
a substitute for the eigenvalues discussed in Chap. 2. The basic idea is that if a person
during the course of his or her infection infects more than one other person, then the
disease-free fixed point is unstable and an epidemic wave is triggered. In contrast,
if a single infected person can infect less than one other person (i.e., if, say, 100
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infected individuals, on average, can only infect 80 individuals), then the disease-
free fixed point is stable and the infectious disease dies out in the population under
consideration. A model-based approach to determine this number will be discussed
in Chap. 7. Importantly, this approach does not distinguish between infectious and
non-infectious individuals. That is, for this classification approach, it is irrelevant
whether or not an infected individual can infect another individual.

Grouping into compartments of infectious and non-infectious individuals and
adding individuals necessary to obtain closed, minimal descriptions

The second method is to follow the ideas presented in Sect. 4.1.2 and to decom-
pose the dynamical system dX/dt = N(X) into the following two subsystems. The
first subsystem contains the compartment variables of all infectious individuals that
actually are in the position to infect others. Let us refer to this kind of infectious
individuals as actually infectious individuals. For example, infectious individuals
who are in perfect isolation do not belong to the class of actually infectious individu-
als. In addition, variables are added to the first subsystem in order to obtain a closed
description in terms of an autonomous dynamical system. The key idea is to add only
those variables that are minimally necessary to obtain such a description. In doing so,
a closed, minimal description of the epidemic model can be obtained that involves all
kind of actually infectious individuals addressed by the model. For example, suscep-
tibles are added to the first subsystem. Moreover, certain infected individuals who
cannot infect others (e.g., exposed individuals as defined in Sect. 3.1) are added to
the first subsystem if they are necessary to obtain a closed dynamical system. The
second subsystem contains all remaining variables. This second subsystem depends
on the variables of the first subsystem (if this is not the case, we simply deal with two
completely separated systems that can be studied independently from each other).
Consequently, the second subsystem is a driven (i.e., non-autonomous) system.

For example, the SIR-type models defined by Eq. (4.1) are systems that can
be decomposed into a two-dimensional S-I subsystem, which allows for a closed
description of the variables S and I , and subsystems that describe all remaining
variables Xk with k = 3, . . . , n.

This second approach to decompose populations into two subsystems provides
a basis for the derivation of closed amplitude space descriptions (or autonomous
amplitude descriptions) that exhibit dimensions r that are smaller than the dimensions
n of the state spaces at hand. Such a reduction of the dimensionality of the systems
under consideration helps to carry out analytical approaches. In particular, it can
frequently be shown that the stability of the whole dynamical system is determined
by the stability of the first subsystem. For example, it frequently can be shown that
if the autonomous subsystem dynamics exhibits a neutrally or asymptotically stable
disease-free fixed point, then the whole system dynamics exhibits such a fixed point
(for an explicit example see Sect. 4.1.2). In view of the second classification method,
it is useful to describe populations in terms of models that immediately reveal the two
aforementioned subsystems. SIR-type models defined by Eq. (4.1) and SEIR-type
epidemic models that will be defined below are examples in this regard.
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Fig. 5.1 Schematic figure demonstrating different time periods during the course of an infection

5.2 SEIR-Type Models

5.2.1 Latent Versus Incubation Period and SEIR-Type
Models

In the context of SEIR-type models the distinction between the latent and incubation
period becomes in particular relevant. Figure5.1 provides a scheme of the typical
course of an infection. The scheme involves three levels. Themodeling level is shown
in the top part. The level describing the infectiousness of individuals is shown in the
middle part and the level describing the degree to which individuals show symptoms
of an infectious disease is shown in the bottom part.

According to the scheme and as stated in Sect. 3.1 infectious diseases may involve
a period during which infected individuals do not infect others. This non-infectious
period is called the latent period. For example, during the latent period the virus may
move without multiplying within bodies of individuals to specific locations or organs
with target cells. Subsequent to the latent period, the individuals typically become
infectious. Accordingly, they enter the infectious period of their disease. As far as the
symptoms related to the infectious disease under consideration is concerned, after
being infected, individuals typically enter a period in which they do not show any
symptoms. This symptom-free period is called the incubation period. Subsequent to
the incubation period, individuals typically show symptoms (i.e., clinical signs) of
the disease (for exceptions see below). As illustrated in Fig. 5.1, being infectious or
not is not necessarily related in a one-to-one mapping with experiencing symptoms
(i.e., clinical signs) of the infectious disease. That is, the latent period and the incu-
bation period may or may not correspond to each other. Figure5.1 illustrates the case
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in which the symptom-free period is longer than the non-infectious period (i.e., the
incubation period is longer than the latent period). This is the case for HIV infections
[1] and SARS-CoV-2 infections [2–6]. Consequently, there is a period during which
individuals (towhich the scheme shown in Fig. 5.1 applies) can infect others although
they do not show any symptoms. This period will be called the asymptomatic infec-
tious period, as indicated in Fig. 5.1. An alternative terminology will be addressed
below.

As far as the modeling of the course of an infectious disease is concerned, there
are two approaches to deal with the issue of asymptomatic infectious individuals
within the SEIR framework. The standard SEIR modeling approach discussed in
Sect. 3.7 distinguishes between non-infectious individuals in the latent period and
infectious individuals. Consequently, E addresses non-infectious individuals, while
I addresses both asymptomatic and symptomatic infectious individuals. This is also
consistent with the terminology discussed in Sect. 3.1. The rate constant k0 (i.e.,
“force of infection”) is given by k0 = β I/N and involves a single effective contact
rate because there is only one compartment of infectious individuals (see also Sect.
3.7). Consequently, we deal with a model that involves a single β parameter. In
Fig. 5.1 this kind of SEIR modeling approach is illustrated and called the 1β SEIR
approach.

In the context of the second approach, the compartment E is used to denote indi-
viduals that are infected and do not show symptoms. In the case of a latent period
shorter than the incubation period, as illustrated in Fig. 5.1, this implies that the
individuals of compartment E correspond to infected and possibly asymptomatic
infectious individuals [7, 8]. In contrast, the compartment I denotes symptomatic
infectious individuals. Since this approach involves two compartments with infec-
tious individuals, the rate constant k0 of the reaction transforming susceptibles into
infected individuals (i.e., the “force of infection”) reads [7–10]

k0 = βI I + βE E

N
, (5.1)

and involves two effective contact rates βI and βE with

βI = pIνI , βE = pEνE , (5.2)

where μI ,μE denote contact rates between susceptibles and individuals of the com-
partments I and E , respectively, and pI , pE denote the corresponding probabilities
that during such contacts susceptibles get infected (see also Sect. 3.2). The rate
constant k0 involves two parameters β. Consequently, the SEIR-type models may
be referred to as 2β SEIR-type models. Figure5.1 illustrates the assignment of the
compartments E and I to the stages of infectious diseases for these 2β SEIR-type
models (see top part).

In summary, there are two key differences between the two approaches. First, the
compartment E of 1β models is related to the latent period, whereas the compart-
ment E of 2β models is related to the incubation period. The 1β models involve a
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single parameter β and a single term occurring in k0, whereas the 2β models feature
two β parameters and two terms in k0. Models that involves a compartment E of
infected and possibly asymptomatic infectious individuals have been used in several
epidemiological studies on COVID-19 [9–17].

In the context of the modeling of COVID-19 epidemics, it is frequently assumed
that the probability of infection pA due to contact with asymptomatic cases is lower
as compared to the probability pI of symptomatic cases: pA < pI . Since E is a
mixture of non-infectious and asymptomatic cases, we have pE ≤ pA ⇒ pE < pI .
Consequently, if the contact frequencies of susceptibles with individuals of com-
partments E and I are the same (νE = νI ), then βE < βI holds. In this context, in
Ref. [12] it has been suggested to put βE = θβI and to relate the factor θ ≤ 1 to
the durations TL and TI of the latent and incubation periods. If TL = TI then θ = 0
and βE = 0. We deal with a 1β model because the latent period corresponds to the
incubation period. In contrast, if TL = 0 we have θ = 1 and βE = βI . In this special
case the compartment E actually does not exist because TL = 0. The SEIR model
reduces to a SIR model and the compartment I describes individuals who become
infectious immediately after being infected. For 0 < θ < 1 the inequality βE < βI

holds. In this case, the latent period is finite but shorter than the incubation period.
Finally, as indicated in Fig. 5.1, the 2β SEIR-type models may be written as

compartment models involving two compartments I1 and I2 of infectious individuals
with a different degree of infectiousness. Infectious individuals of the first infectious
compartment I1 progress to the second infectious compartment I2. In doing so, the
degree of infectiousness changes. The interpretation will be addressed in Sect. 5.2.3.

Asymptomatic individuals who do not develop symptoms at all

The scheme illustrated in Fig. 5.1 suggest that every individual eventually enters
the symptomatic period. However, this is not necessarily the case for all infectious
diseases. Virus infections may take place in the bodies of individuals without the
individuals noticing any symptoms. That is, individuals can become infectious and,
subsequently, non-infectious again, while experiencing no clinical signs of their
disease. SEIR-type models may address asymptomatic infectious individuals of this
kind: individuals who can infect others but do not show symptoms during the course
of their infections. COVID-19 is a disease that can be transmitted by this kind of
asymptomatic individuals [2, 6, 18].

Epidemic models as described in this book and based on deterministic differential
equations as discussed in Chap. 2 describe how individuals on average make transi-
tions from one stage (i.e., compartment) to another stage (i.e., compartment) during
their course of disease. The model parameters reflect averages (see also Sect. 3.4).
For example, as far as COVID-19 patients are concerned, incubation and infection
periods vary across individuals [19].

In the context of 1β SEIR-type models (see top part of Fig. 5.1 for the assignment
of E and I to the stages of an infectious disease), we first note again that on the
level of individuals asymptomatic and symptomatic periods vary. Model parameters
refer to averaged transition rates and, consequently, reflect asymptomatic and symp-
tomatic periods when averaged across all kind of individuals. The asymptomatic
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cases defined above who stay symptom-free correspond to individuals of the com-
partment I for which the symptomatic period equals zero. That is, the compartment
I includes asymptomatic individuals who remain symptom-free as special cases.
For those individuals the symptom-free period equals the sum of the non-infectious
and infectious periods. The model parameters of 1β SEIR-type models reflect aver-
ages across individuals and take into account that in the compartment I there are
individuals with vanishing symptomatic periods.

In the context of 2β SEIR-typemodels, asymptomatic caseswho remain symptom-
free are modeled by individuals of the compartment E that switch from being non-
infectious to being infectious while they belong to the compartment E and show no
symptoms. Eventually, these individuals make transitions from E to I but, subse-
quently, immediately leave the compartment I . For those individuals, the duration
in the compartment I (i.e., the symptomatic period) is zero. Consequently, the decay
term −γ I of the SEIR model (3.43) that occurs also in the 2β SEIR-type models
(see Sect. 5.2.2 below) is interpreted as a term that describes how fast individuals on
average are removed out of the compartment I and takes as a special case the asymp-
tomatic individuals who remain symptom-free during their whole disease history
into account.

In short, for 1β models the asymptomatic and permanently symptom-free cases
can be found in the compartment I , whereas for 2β models they can be found in the
compartment E .

Presymptomatic versus asymptomatic period

In the context of the role of infections due to contact with infected but symptom-free
individuals, the distinction between presymptomatic and asymptomatic periods can
be made [6]. Accordingly, for individuals who become in a first stage infectious
without symptoms but later develop systems, the symptom-free infectious period
is referred to as presymptomatic infectious period. In contrast, for individuals who
become infectious during their course of disease but never develop any symptoms,
the infectious period is referred to as asymptomatic infectious period. The rational
is that the degree to which individuals can infect others during their symptom-free
periods depends on whether or not they develop in a later stage symptoms. Some
COVID-19 epidemicmodels have been proposed that specifically take this distinction
into account [20, 21]. In Sect. 5.3.2 the model by Gatto et al. [21] that involves
presymptomatic cases will be briefly addressed. As such, in this book a distinction
between presymptomatic and asymptomatic periods or individuals will not be made
except when reviewing the literature in Sect. 5.3.2.

Asymptomatic cases in models beyond SEIR-type models

As discussed above, SEIR-type models allow to address asymptomatic infectious
individuals in two ways. They belong either to the compartment I (1β models) or
E (2β models). Alternative modeling approaches use a separate compartment that is
typically denoted by A or Ia to describe asymptomatic infectious cases. In doing so,
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SEIAR models are obtained [22] that have been used in COVID-19 research as well
[11, 21, 23–27]. Some examples of such alternative approaches will be presented
below in Sect. 5.3.2.

5.2.2 SEIR-Type Models and 3D Autonomous Amplitude
Descriptions

Let us consider epidemic models that involve n compartment variables X1, . . . , Xn ,
where X1 = S denotes the susceptibles, X2 = E denotes exposed individuals, and
X3 = I denotes infectious individuals. The compartments E and I describe individ-
uals as discussed in Sect. 5.2.1 and illustrated in Fig. 5.1. In the context of 1β mod-
els, E and I describe infected, non-infectious individuals (E) and asymptomatic
or symptomatic infectious individuals (I ). In the context of 2β models, E and I
describe infected and possibly asymptomatic infectious individuals (E) and symp-
tomatic infectious individuals (I ). The remaining variables Xk denote individuals
that cannot infect others. For example, such a variable could describe infected indi-
viduals that are as such infectious but are quarantined and in perfect isolation such
that they cannot infect others. In analogy to the standard SEIR model (see Sect. 3.7
and Eq. (3.43)), let us define 1β and 2β SEIR-type models by

d

dt
S = −k0S + B − μS ,

d

dt
E = k0S − (α + μ)E ,

d

dt
I = αE − (γ + μ)I ,

d

dt
Xk = Nk(S, E, I, X4, . . . , Xn) for k = 4, . . . , n , (5.3)

where B and μ denote birth and death rate parameters, respectively. Furthermore
we have k0 = β I/N for 1β models and k0 defined by Eq. (5.1) for 2β models. The
remaining model parameters are: the rate of progression α from compartment E
to I and the recovery rate γ. As discussed in Sect. 3.4, α may be related to the
mean duration T that individuals spend time in the compartment E like α = 1/T .
Consequently, for 1β SEIR-type models, we may put α = 1/T , where T is the
latent period. In contrast, for 2β SEIR-type models, we may put again α = 1/T but
consider T as incubation period [10]. Frequently, the right-hand side functions Nk

in Eq. (5.1) involve only linear terms and read

Nk =
n∑

i=1

aki Xi (5.4)
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(see also Eq. (4.2)). When considering epidemics over short periods demographic
terms can be neglected such that B = μ = 0.

SEIR-type models exhibit a closed or autonomous three-dimensional subsystem
characterized by the variables S, E , and I . The remaining variables X4, . . . , Xn form
a driven (i.e., non-autonomous) system. The three-dimensional SEI subspace can be
equivalently described by a three-dimensional amplitude space using the techniques
described in Chap. 2. The corresponding amplitude equations describing the evolu-
tion of the amplitudes A1, A2, and A2 in this space form a closed and autonomous
system. In this sense SEIR-type models exhibit 3D autonomous amplitude descrip-
tions and can be described by

d

dt
A1 = λ1A1 + G1(A1, A2, A3) ,

d

dt
A2 = λ2A2 + G2(A1, A2, A3) ,

d

dt
A3 = λ3A3 + G3(A1, A2, A3) ,

d

dt
Xk = Nk(S(A), E(A), I (A), X4, . . . , Xn) , for k = 4, . . . , n (5.5)

withA = (A1, A2, A3)denoting the three-dimensional amplitude vector. The explicit
form of Eq. (5.5) will be derived in Sect. 5.7 and presented in Sect. 5.7.3.

Standard SEIR model revisited

The standard SEIR model for B = μ = 0 was discussed in Sect. 3.7 and is defined
by Eq. (3.43). The model is a special case of Eq. (5.3) with n = 4, k0 = β I/N , and
X = (S, E, I, R). Using vector notation, the SEIR model (3.43) can be written like

d

dt

⎛

⎜⎜⎝

S
E
I
R

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 0 0 0
0 −α 0 0
0 α −γ 0
0 0 γ 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

S
E
I
R

⎞

⎟⎟⎠ + k0S

⎛

⎜⎜⎝

−1
1
0
0

⎞

⎟⎟⎠ , (5.6)

where the first term on the right-hand side describes the linear part, while the second
term on the right-hand side corresponds to the nonlinear part of the model. Note
that this distinction between linear and nonlinear part refers to the original state
space variables X. In the context of the relative state u and the linearization matrix
L elements of the aforementioned nonlinear part k0S(−1, 1, 0, 0) show up in L . The
linear part involves a matrix composed of matrix elements aik : a11 = a12 = a13 =
a14 = 0, a21 = 0, a22 = −α, a23 = a24 = 0, a31 = 0, a32 = α, a33 = −γ , a34 = 0,
a41 = a42 = 0, a43 = γ, a44 = 0. The matrix also includes the coefficients that show
up in N4 as defined by Eq. (5.4) like dR/dt = N4 = a43 I = γ I .
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5.2.3 SEIR-Type Models as Staged-Progression
or Age-Structured Models

When replacing formally the labels E and I by I1 and I2, models of SEIR-type read

d

dt
S = −k0S + B − μS ,

d

dt
I1 = k0S − (α1 + μ)I1 ,

d

dt
I2 = α1 I1 − (α2 + μ)I2 ,

d

dt
Xk = Nk(S, I1, I2, X4, . . . , Xn) for k = 4, . . . , n ,

k0 = β1 I1 + β2 I2
N

, (5.7)

where we have also replaced βI and βE by β1 and β2 and the parameters α and γ by
α1 and α2. The models describe individuals that pass through two different phases
1 and 2 (or stages) during the course of the infectious disease under consideration.
During the phases individuals exhibit different degrees of infectiousness, which is
accounted for in the model with the help of the two effective contact rate parameters
β1 and β2. Such models have been referred to as staged-progression models [28, 29].
In general, staged-progressionmodelsmay involvemore than just two phases 1 and 2.
The models defined by Eq. (5.7) also correspond formally to aged-structured models
[30] that involve two infectious age groups 1 and 2 such as children and adults. In this
example, the parameter α1 describe the transition from childhood to adulthood. In
general, infectious individuals of different age groups may differ in their degrees of
infectiousness, which, again, can be accounted for by the two effective contact rate
parametersβ1 andβ2. Equation (5.7) reflects a relatively simple age-structuredmodel
that exhibits only a single compartment of susceptibles. Frequently, when discussing
age-structured models, separate compartments of susceptibles are defined for all age
groups under consideration [30]. Again, in general, age-structured epidemic model
may feature more than just two age groups. Finally, note that in the context of aged-
structures models the overall death rate parameter μ should be replaced by a set of
age-specific parameters [30].
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5.3 Beyond SEIR-Type Models

5.3.1 r < n-Dimensional Approaches: Epidemic Models
with r-Dimensional Autonomous Amplitude
Descriptions

SIR-type models exhibit 2D autonomous amplitude descriptions (see Sect. 4.4).
SEIR-type models exhibit 3D autonomous amplitude descriptions (see Sect. 5.2.2
above). It is clear that more comprehensive models may exhibit autonomous ampli-
tude descriptions beyond the dimension 3. To demonstrate this point, let us consider
disease states X of infectious diseases in populations that are described by n state
variables X1, . . . , Xn and exhibit r < n variables that from the smallest closed sys-
tem that involves all variables referring to actually infectious individuals (in the
sense of Sect. 5.1, namely, infectious individuals that are actually in the position to
infect others). Without loss of generality, these variables Xk can be labeled with
indices k = 1, . . . , r . Furthermore, the state variable X1 = S is assumed to denote
the susceptibles. Since the first r compartment variables involve all types of actually
infectious individuals, the rate constant k0 of S → Y reactions (where Y are infected
individuals) reads

k0 = 1

N

r∑

k=2

βk Xk (5.8)

and maximally involves r − 1 effective contact rates and r − 1 terms βk Xk that refer
to the variables X2, . . . , Xr of the first subsystem. If compartments of non-infectious
individuals have been added to the first subsystem in addition to X1 = S in order
to arrive at a closed description, then the corresponding effective contact rates βk

vanish. Having defined k0 (i.e., the “force of infection”), the evolution equations of
the compartments Xk are defined by

d

dt
S = −k0S + B − μS ,

d

dt
Xk = Nk(S, X2, . . . , Xr ) for k = 2, . . . , r ,

d

dt
Xk = Nk(S, X2, . . . , Xn) for k = r + 1, . . . , n . (5.9)

As can be seen from Eq. (5.9), the first r equations provide a closed set of r cou-
pled first-order differential equations. They describe the first subsystem composed of
susceptibles, the various kinds of actually infectious individuals, and possibly some
additional non-infectious individuals. The first r equations describe the disease state
in state space (more precisely, in a r -dimensional subspace of the state space). The
state space description can be transformed into an amplitude space description (see
Chap. 2). In doing so, a set of r coupled amplitude equations can be obtained.
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That is, the first subsystem of the epidemic model (5.9) spanned by S, X2, . . . , Xr

can alternatively be expressed in terms of a r -dimensional autonomous amplitude
description involving the amplitudes A1, . . . , Ar . The evolution equations for the
remaining n − r variables Xk of the second subsystem can then be described in
terms of the n − r variables Xr+1, . . . , Xn of the second subsystem and the r ampli-
tudes A1, . . . , Ar . In summary, the model (5.9) can be expressed by means of a
r -dimensional autonomous amplitude description and a r − n-dimensional driven
(i.e., non-autonomous) system like

d

dt
Ak = λk Ak + Gk(A1, . . . , Ar ) , for k = 1, . . . , r ,

d

dt
Xk = Nk(X1(A), . . . , Xr (A), Xr+1, . . . , Xn) , for k = r + 1, . . . , n(5.10)

with A = (A1, . . . , Ar ) denoting the r -dimensional amplitude vector.

5.3.2 Examples

Epidemic model by Arcede et al. (2020)

Arcede et al. [11] studied COVID-19 epidemics during the year 2020 in several
countries and regions. They focused on France, Italy, Philippines, Spain and the
United Kingdom, on the one hand, and the Hubei province (China) and the state of
NewYork (USA), on the other hand. They proposed a model involving the following
compartments: susceptibles (S), exposed and possibly infectious but symptom-free
individuals (E), asymptomatic infectious individuals (Ia), symptomatic infectious
individuals (Is), individuals under treatment (U ), recovered individuals (R), and
individuals deceased due to the disease (D). In particular, the model by Arcede et
al. exhibits explicitly a compartment Ia denoting asymptomatic cases in the sense of
individuals who can infect others during their course of disease but never develop
symptoms. Furthermore, as stated above, themodel assumes that at least someportion
of the individuals in the compartment E can infect others. The infections due to
contactwith those subset of individuals are characterizedby a certain effective contact
rate β∗

E . The effective contact rate for all individuals of the compartment E is given
by βE with βE < β∗

E . Since in the model individuals from the compartment E can
make a transition to Ia or Is , that is, they either remain asymptomatic or become
symptomatic, this portion of infectious individuals in the compartment E reflects
asymptomatic or presymptomatic cases. The distinction between individuals in E
and Ia is that they differ with respect to their degree of infectiousness. Accordingly,
the model features contact rate parameters β∗

E , βE , and βa . Effectively, the parameter
β∗
E does not appear in the model. Only βE and βa are used.
While the number of reported COVID-19 deaths from the countries and regions

studied by Arcede et al. are tragic numbers, these numbers are negligibly small
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compared to the population sizes N (ranging between 20 and 100 millions [11]) of
the respective countries or regions. In order to simplify the presentation, in what
follows, we will neglect the COVID-19 associated deaths and N will be taken as a
constant.

The infectious compartments of the model are: E , Ia , Is ,U . Arcede et al. assumed
that individuals under treatment are in perfect isolation such that they cannot infect
others. Consequently, the compartments describing individuals who are infectious
and in the position to infect others (i.e., the actually infectious individuals) are:
E ,Ia ,Is . This implies that the “force of infection” of the model reads

k0 = βE E + βa Ia + βs Is
N

(5.11)

and exhibits three terms and three effective contact rate parameters βE , βa , and βs . As
can be seen below, the variables E , Ia , Is together with the variable S form a closed
description and, consequently, describe the first subsystem. The second subsystem
is given by the remaining variables U and R. In order to simplify the presentation
again, let us introduce the compartment of removed individuals R2 that contains both
the recovered individuals and those under treatment like R2 = U + R. This implies,
that the second subsystem is composed of a single variable: R2. Taking the two
simplifications (i.e., ignoring deaths and using R2 rather than R andU ) into account,
the state vector of the model readsX = (S, E, Ia, Is, R2). The model equations read

d

dt
S = −k0S ,

d

dt
E = k0S − (α + νE )E ,

d

dt
Ia = f αE − γa Ia ,

d

dt
Is = (1 − f )αE − (γs + νs)Is ,

d

dt
R2 = νE E + γa Ia + (γs + νs)Is . (5.12)

The parameters γa and γs denote recovery rates for asymptomatic and symptomatic
individuals, respectively. The parameters νE and νS reflect impacts of interventions
that put exposed and symptomatic individuals under treatment (note that a simi-
lar parameter for the asymptomatic individuals is missing in the model). That is,
νE and νS describe transition rates from E and Is to U (and, consequently, to R2)
due to interventions (e.g., contact tracing, testing, and quarantining). Importantly,
while α describes the leaving rate with which individuals make transitions out of
the compartment E , the parameter f ∈ [0, 1] is used to describe to which compart-
ment those transitions take place. Accordingly, the product f α describes the rate of
transitions from E to Ia (exposed and possibly infectious symptom-free individuals
become asymptomatic), while (1 − f )α describes the rate of transitions from E to Is
(exposed and possibly infectious symptom-free individuals become symptomatic).
The model (5.12) can be considered as a SEIAR model, for which the variable nota-
tions Is , Ia , R2 are used rather than I , A, and R. Using vector and matrix notations,
the model (5.12) can be written like
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d

dt

⎛

⎜⎜⎜⎜⎝

S
E
Ia
Is
R2

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 −(α + νE ) 0 0 0
0 f α −γa 0 0
0 (1 − f )α 0 −(γs + νs) 0
0 νE γa (γs + νs) 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

S
E
Ia
Is
R2

⎞

⎟⎟⎟⎟⎠
+ k0S

⎛

⎜⎜⎜⎜⎝

−1
1
0
0
0

⎞

⎟⎟⎟⎟⎠
.

(5.13)

From Eqs. (5.12) and (5.13) it follows that the first four variables form a closed set
of differential equations (as anticipated above). Consequently, the model by Arcede
et al. (as presented in our simplified way) exhibits a four-dimensional closed (i.e.,
autonomous) and minimal subsystem that captures how the numbers of infectious
individuals of the three types E , Ia , and Is vary over time. The evolution equations
for S, E , Ia , Is provide the state space description for the autonomous subsystem.
The evolution of the second subsystem is given in state space by the last equation
in Eq. (5.12) that can also be written like dR2/dt = N5 = a52E + a53 Ia + a54 Is
with a52 = νE , a53 = γa , and a54 = γs + νs , when interpreting the linear part of Eq.
(5.13) as a matrix with coefficients aik . According to Eq. (5.10), the model (5.12) can
equivalently be expressed with the help of a four-dimensional autonomous amplitude
description of the form

d

dt
Ak = λk Ak + Gk(A1, . . . , A4) (5.14)

for k = 1, . . . , 4 and the driven system

d

dt
R2 = a52E(A) + a53 Ia(A) + a54 Is(A) , (5.15)

where A = (A1, . . . , A4) denotes the four-dimensional amplitude vector.

Epidemic model by Gatto et al. (2020)

Gatto et al. (2020) studied the first wave of COVID-19 in Italy during February and
March 2020 [21]. To this end, an epidemic model with 9 compartments was used.
The model can be decomposed into two subsystems according to the second method
described in Sect. 5.1. The first subsystem forms a closed description and involves
the following compartments: susceptibles (S), exposed (E), presymptomatic (P),
asymptomatic infectious (A), and symptomatic infectious (I ). The second subsystem
describes a driven (i.e., non-autonomous) system and involves only compartments of
individuals that cannot infect other individuals (although they might be infectious).
The compartments of this second subsystem are: hospitalized individuals (H ), quar-
antined individuals (Q), recovered individuals (R), and individuals deceased from
COVID-19 (D). Again, in what follows a simplified version of the model will be pre-
sented. The initial susceptible population S(0) was taken from resident population
records of Italy [21]. When applying the model to the overall COVID-19 epidemic in
Italy, the initial value S(0) is close to 60 millions. In contrast, the confirmed COVID-
19 cases increased up to a number of 100,000 (or 0.1millions) during the study period



132 5 Nonlinear Physics of Epidemics: Part B

considered by Gatto et al. (and the number eventually increased to a plateau value
of 200,000 cases, i.e., 0.2 millions, during the summer 2020, as shown in Fig. 4.6,
see also Sect. 4.5). The number of 0.1 millions is relatively small as compared to the
initial number of 60 millions susceptibles. Likewise, while the number of COVID-
19 associated deaths is a tragic number that motivated in Italy the implementation
of intervention measures, the number is again relatively small as compared to the
number of susceptibles. In summary, in what follows the model is simplified by
acknowledging that during the COVID-19 outbreak in Italy in February and March
2020 the size of the population N was approximately 60 millions and did not show
considerable variations due to COVID-19 associated deaths. In this context, note that
the model was in fact applied to several local regions of Italy. It would be open for
debate if the argument made above when considering the population of Italy as a
whole also holds for this local regions.

The epidemic model proposed by Gatto et al. comes with the actually infectious
compartments P , I , and A. Note that in the study by Gatto et al. exposed individuals
were regarded as in 1β SEIR models as individuals in the latent period and, con-
sequently, as individuals who cannot infect others. When taking the simplification
about a constant population size into account, the rate constant k0 reads

k0 = βP P + βA A + βI I

N
(5.16)

and exhibits three different effective contact rate parameters βP , βA, and βI . Accord-
ing to the study by Gatto et al. [21], The dynamics of the compartment P satisfies
the evolution equation dP/dt = aE − bP with a, b > 0. If E is fixed, then P con-
verges to P = aE/b (which is a stationary point for fixed E and, in general, a
nullcline point). Let us consider the following simplification. Let us consider the
case in which the time constant T = 1/b that describes how fast P converges to a
fixed value of E is small relative to the time constant that describes changes of E .
In other words, let us consider the case in which P exhibits a fast dynamics relative
to E . In this case, we can put P(t) = aE(t)/b as an approximation to eliminate the
compartment P . In this case, Eq. (5.16) becomes

k0 = βE E + βA A + βI I

N
(5.17)

with βE = aβP/b. When eliminating P in this way, the first subsystem of the model
consists of the variables S, E , A, I . The second subsystem remains unchanged.
However, it can be shown that the variables H , Q, R, and D can be taking together to
a single variable R2 like R2 = R + Q + H + D describing the removed individuals
that cannot infect others. If so, the second subsystem is given by a single variable:
R2. Using the simplifications discussed above, the original nine-variable model can
be described in terms of the five variables S, E , A, I , and R2. The model becomes a
SEIAR model. The state vector reads X = (S, E, A, I, R2). From the original study
[21] it follows that the dynamics of X is given by
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d

dt
S = −k0S ,

d

dt
E = k0S − αE ,

d

dt
A = (1 − f )αE − γA A ,

d

dt
I = f αE − γI I ,

d

dt
R2 = γA A + γI I (5.18)

with k0 defined by Eq. (5.17). The parameter α describes the rate of transitions from
E via the eliminated compartment P to A and I . These transitions occur with rates
defined by the products (1 − f )α and f α, respectively, where f ∈ [0, 1]. Comparing
the models (5.12) and (5.18), we see that the terms (1 − f )α and f α are switched.
That is, a value of f = 0.2 in the model (5.12) corresponds to a value of f = 0.8
in the model (5.18). The coefficients γA and γI occurring in Eq. (5.18) describe
transition rates of the asymptomatic and symptomatic individuals, respectively, into
the various compartments H , Q, R, and D that are all captured by the single variable
R2. Equation (5.18) can be written using vector and matrix notations like

d

dt

⎛

⎜⎜⎜⎜⎝

S
E
A
I
R2

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 −α 0 0 0
0 (1 − f )α −γA 0 0
0 f α 0 −γI 0
0 0 γA γI 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

S
E
A
I
R

⎞

⎟⎟⎟⎟⎠
+ k0S

⎛

⎜⎜⎜⎜⎝

−1
1
0
0
0

⎞

⎟⎟⎟⎟⎠
. (5.19)

Comparing the models by Arcede et al. and Gatto et al. taking all the aforementioned
simplifications of both studies into account, we see from Eqs. (5.13) and (5.19)
that they involve identical autonomous four-variable subsystems if we put γa = γA,
put νE = νs = 0, put γs = γI , and replace f by 1 − f . Irrespective of this analogy
between the two models, the four-variable subsystem S, E , A, I described by Eq.
(5.18) can be addressed from the amplitude space perspective presented in Chap. 2.
In doing so, the model (5.18) can be expressed in terms of Eq. (5.9) with the help of
a four-dimensional autonomous amplitude description given again in terms of Eq.
(5.14) for k = 1, . . . , 4 and a driven system defined by

d

dt
R2 = γA A(A) + γI I (A) (5.20)

with A = (A1, . . . , A4).

Stability analyses of the Arcede et al. (2020) and Gatto et al. (2020) models

From the amplitude space descriptions in terms of Eqs. (5.14), (5.15), and (5.20)
involving four-dimensional autonomous amplitude systems it follows that the sta-
bility of the disease-free fixed point of the SEIAR models (5.12) and (5.18) is deter-
mined by the stability of the four-dimensional amplitude systems. The stability of
those amplitude systems, that is, the stability of the disease-free fixed point with
A1 = A2 = A3 = A4 = 0 in amplitude space is in turn determined by the eigenvalues
λ1, . . . ,λ4. From the evolution equation dS/dt = −k0S occurring in Eqs. (5.12) and
(5.18) it follows that in the four-dimensional subspace spanned by X1, . . . , X4 at the
fixed point X1 = N , X2 = X3 = X4 = 0 the systems exhibit the eigenvalue λ1 = 0
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related to the eigenvector v1 = (1, 0, 0, 0). The remaining eigenvalues λ2, . . . ,λ4

need to be determined analytically by more detailed calculations or with the help of
numerical methods.

5.4 Eigenvalues and Eigenvectors Revisited: Explicit
Approaches

5.4.1 Road Map: Asking and Solving Nonlinear Physics
Questions

In the context of the standard SEIR model (5.6) and SEIR-like models (5.3), in the
subsequent sections, the following questions will be asked and the corresponding
solutions will be derived.

About the stability analysis of the disease-free fixed point of SEIR models

We ask

• Underwhat conditions is there an infectious disease outbreak?That is, underwhich
conditions is the disease-free fixed point unstable.

• Under what conditions does an initial epidemic subside? That is, under which
conditions is the disease-free fixed point neutrally stable or asymptotically stable?

• What is the initial direction of an infectious disease outbreak in the SEIR state
space? That is, what is the order parameter of the system?

• How do the compartment sizes evolve relative to each other during an outbreak?

A solution for the first two questions has been presented in Sect. 3.7 using an ad-
hoc analysis method. In the following sections, a more systematic approach will be
presented based on the nonlinear physics principles presented in Chap. 2 and similar
to the one presented in Chap. 4 for the SIR model. The advantage of the systematic
approach is that it can be applied to all kind of epidemic models (e.g., the SEIAR
models as reviewed in Sect. 5.3.2).

About the mathematical tools to conduct the stability analysis and identify the
order parameter

In order to conduct the stability analysis, at issue iswhat tools are needed to determine
explicitly eigenvalues and eigenvectors for a given dynamical system such as the
SEIRmodel (5.6)? In particular, how can the unstable eigenvector of the SEIRmodel
be derived that corresponds to the order parameter?

About the SEIR dynamics in the amplitude space

We may ask

• How do the amplitudes evolve subsequent to the initial stage that is addressed by
the linear stability analysis? In other words, if one takes a step beyond the stability
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analysis, which addressed only the linearized SEIR model, how do the amplitudes
evolve when nonlinearities play a role? How do amplitudes evolve in the general
case?

• How do the functions Gk of SEIR-like models occurring in Eq. (5.5) look like?

About the mathematical tools to derive the SEIR model amplitude equations

In order to determine explicitly amplitude equations, the three approaches discussed
in Sect. 2.9 can be used. In the context of the SIR model, for that purpose, the scalar
calculation method was used (see Sect. 4.2.5). While the scalar calculation methods
as such works for any kind of problem, it becomes inconvenient when state spaces of
more than two dimensions are considered. The vector calculation method provides
a more convenient approach to derive analytical results in such cases. In order to
conduct the vector calculation method, at issue is to determine the biorthogonal
vectors related to the eigenvectors that are determined in the first place in the context
of the stability analysis.

5.4.2 Case n

Let us begin with the derivation of eigenvalues and eigenvectors. As in Chap. 2,
a dynamical system of dimension n is considered described by a state vector X.
The state evolves like dX/dt = N(X). The evolution equation describes an epidemic
model such as the SEIR model (5.6). The fixed point of interest is given by Xst and
relative states with respect to the fixed point are written like u = X − Xst . Lineariza-
tion of the dynamical system at the fixed point yields the linear dynamical system
du/dt = Lu, (see Eq. (2.16)) with the linearization matrix L defined by Eq. (2.17).
Any eigenvalue λ and its corresponding eigenvector v of the linearized system satisfy
Eq. (2.25), which can be written like

Lv = λv ⇒ (L − λE)v = 0 (5.21)

with the n × n identity matrix E given by

E =

⎛

⎜⎜⎝

1 0 ... 0
0 1 ... 0
... ... ... ...

0 0 ... 1

⎞

⎟⎟⎠ . (5.22)

The eigenvalues λ are obtained by putting the determinant of L − λE to zero like

|L − λE | = 0 ⇒ λn + cn−1λ
n−1 + . . . c1λ + c0 = 0 . (5.23)

As indicated, this leads to a polynomial of order n. The roots (solutions) of the poly-
nomial are the eigenvalues of interest: λ1, . . . ,λn . Substituting a given eigenvalue
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λi into the second relation in Eq. (5.21), and solving for v, yields the eigenvector vi
associated with the eigenvalue λi . In general, the analytical treatment for n = 3 and
in particular for n ≥ 4 is mathematically involved.

Numerical approach

If the explicit numerical values of all parameters of an epidemic model are given,
then the coefficients of the matrix L can typically be determined in terms of numer-
ical values as well. Once the numerical values of matrix elements of L are given,
numerical approaches can be used to determine eigenvalues and eigenvectors. Such
numerical methods work well for dimensions n = 3, n = 4 or higher dimensions for
which analytical methods become mathematically involved.

5.4.3 Case n = 2

In order to illustrate the analytical approach to determine eigenvalues and eigenvec-
tors let us consider the simplest, non-trivial case, which is the case n = 2. In this
case, the state vector reads X = (X1, X2). A perturbation u out of a fixed point Xst

can be written like u = (δ, ε) = X − Xst . The linear dynamical system du/dt = Lu
becomes

d

dt

(
δ
ε

)
= L

(
δ
ε

)
=

(
L11 L12

L21 L22

) (
δ
ε

)
, (5.24)

where Lik denote the matrix elements of L . As stated above, the eigenvector v =
(v1, v2) can be obtained from (L − λD)v = 0, which reads explicitly

(
L11 − λ L12

L21 L22 − λ

)(
v1
v2

)
=

(
0
0

)
. (5.25)

Putting the determinant to zero like

∣∣∣∣
L11 − λ L12

L21 L22 − λ

∣∣∣∣ = 0 , (5.26)

a quadratic equation in λ can be obtained. The quadratic equation can be solved for
λ and produces two eigenvalues λ1 and λ2. The result reads

λ1,2 = T̂

2
±

√
T̂ 2

4
− D̂ (5.27)

with the trace T̂ of the matrix L defined by T̂ = L11 + L22 and the determinant of
L given by D̂ = L11L22 − L12L21. The upper sign (i.e., plus sign) holds for λ1. The
lower sign (i.e., minus sign) holds for λ2. In order to compute the eigenvector v, the
first row of the matrix equation (5.25) can be evaluated like
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(L11 − λ)v1 + L12v2 = 0 ⇒ v1 = L12

λ − L11
v2. (5.28)

Let us put v2 = Z(λ − L11), where Z �= 0 is an arbitrary factor, such that

v = Z

(
L12

λ − L11

)
. (5.29)

The vector vmust be normalized to 1 like v2
1 + v2

2 = 1 (or alternatively
√

v2
1 + v2

2 =
1). Taking the normalization condition into account and acknowledging that there
are two eigenvectors v1 and v2 for the two eigenvalues λ = λ1 and λ = λ2, we obtain

vi = 1√
(λi − L11)2 + L2

12

(
L12

λi − L11

)
(5.30)

with i = 1, 2. Using the eigenvectors, any time-dependent relative state u(t) or state
X(t) can be expressed with the help of the time-dependent amplitudes A1(t) and
A2(t) like

u(t) = A1(t)v1 + A2(t)v2 , X(t) = Xst + A1(t)v1 + A2(t)v2 . (5.31)

The relations in Eqs. (5.31) describe mappings from the amplitude space (A1, A2)

to the state space (X1, X2) and correspond to special cases of the general mappings
defined by Eqs. (2.34) and (2.35) discussed in Sect. 2.6.3. For initial statesX(t0) close
to the fixed point Xst (i.e., for initial amplitudes A1(t0), A2(t0) ≈ 0) the linearized
model (5.24) holds, which implies that dA1/dt = λ1A1 and dA2/dt = λ2A2 (see Eq.
(2.41)). Consequently (using the initial time t0 = 0), we obtain

u(t) = v1A1(0) exp{λ1t} + v2A2(0) exp{λ2t} . (5.32)

From Eq. (5.32) and the definitions of stable and unstable fixed points (see Sect. 2.3
and Eqs. (2.8) and (2.10) or Sect. 2.7 and Table 2.2) it follows that

• The fixed point Xst is asymptotically stable if
(a) Both eigenvalues λ1 and λ2 are real and negative or
(b) the two eigenvalues are complex and exhibit negative real parts.

• The fixed point Xst is unstable if
(a) both eigenvalues λ1 and λ2 are real and there is at least one positive eigenvalue
or
(b) the two eigenvalues are complex and exhibit positive real parts.
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Discussion of the eigenvalue equation (5.27)

Equation (5.27) can be expressed like

λ1,2 = T̂

2
±

√
T̂ 2

4
− D̂ = T̂

2
± √

U , U = T̂ 2

4
− D̂ , (5.33)

where the plus sign holds for λ1 and the minus sign holds for λ2, as stated in the
context of Eq. (5.27). At this stage, we would like to reiterate that T̂ = L11 + L22,
while the determinant D̂ = L11L22 − L12L21 depends on all fourmatrix coefficients.
Therefore, in general, it may not be possible to vary the determinant D̂ independently
from the trace T̂ . Nevertheless, in what follows, let us consider the situation in which
T̂ can befixed,while D̂ can be decreased froma large positive value to a large negative
value. Table5.1 provides an overview of the six possible cases that can occur in this
kind of scenario.

Let us assume that T̂ < 0 holds. For D̂ > T̂ 2/4 (see case A1) we haveU < 0 and,
consequently, both eigenvalues are complex. The real parts of the eigenvalues are
given by T̂ /2 < 0, which implies that the fixed point is a stable focus. Decreasing D̂
such that T̂ 2/4 > D̂ > 0 (see case A2) the eigenvalues become real-valued numbers.
They differ from each other. However, both are negative such that in case A2 the
fixed point corresponds to a stable node. Decreasing D̂ even further such that D̂ < 0
(see case A3) the eigenvalues remain real-valued. However, λ1 becomes positive,
while λ2 is still negative. For case A3 the fixed point is unstable. It corresponds to a
saddle.

Table 5.1 Overview of different cases of stability that occur when D̂ is decreased from a large
positive value to a large negative value, while T̂ is fixed

Case Trace
T̂

Determinant
D̂

U λi
real/compl.

λ1,λ2 Fixed
point
type

A1 <0 D̂ > T̂ 2/4 ⇒ U < 0 Compl. lR(λ1) =
lR(λ2) =
T̂ /2 < 0

Stable
focus

A2 <0 0 < D̂ <

T̂ 2/4 ⇒
0 < U < T̂ 2/4 Real λ1 < 0,λ2 <

0
Stable
node

A3 <0 D̂ < 0 ⇒ U > T̂ 2/4 Real λ1 > 0,λ2 <

0
Saddle

B1 >0 D̂ > T̂ 2/4 ⇒ U < 0 Compl. lR(λ1) =
lR(λ2) =
T̂ /2 > 0

Unstable
focus

B2 >0 0 < D̂ <

T̂ 2/4 ⇒
0 < U < T̂ 2/4 Real λ1 > 0,λ2 >

0
Unstable
node

B3 >0 D̂ < 0 ⇒ U > T̂ 2/4 Real λ1 > 0,λ2 <

0
Saddle
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Next, let us assume that T̂ > 0 holds. For D̂ > T̂ 2/4 (see case B1) we have
U < 0 again (just as for case A1) and, consequently, both eigenvalues are complex.
The real parts of the eigenvalues are given again by T̂ /2. However, for case B1 this
implies that the real parts are positive such that the fixed point is an unstable focus.
Decreasing D̂ such that T̂ 2/4 > D̂ > 0 (see case B2) the eigenvalues become real-
valued, positive numbers. Consequently, in case B2 the fixed point corresponds to an
unstable node. Decreasing D̂ even further such that D̂ < 0 holds (see case B3) the
eigenvalues remain real-valued. However, only λ1 is positive, while λ2 is negative.
Consequently, in case B3 the fixed point corresponds to a saddle.

On a bifurcation scenario relevant for the SEIR model

The eigenvalue equation (5.33) in combination with Table5.1 allows to discuss bifur-
cations that occur in two-dimensional dynamical systems with evolution equations
dX/dt = N(X). Such bifurcations describe how asymptotically stable fixed points
Xst become unstable fixed points and vice versa. Let us consider a particular bifurca-
tion. Let us assume that the system parameters that constitute the diagonal elements
L11 and L22 can be fixed such that T̂ < 0 holds and remains constant, while other
parameters related to the off-diagonal elements L12 and L21 can be freely varied. Let
us assume they are varied such that D̂ decreases from a positive to a negative value. If
D̂ > 0 holds for sufficiently small values of D̂ (i.e., D̂ < T̂ 2/4) the system exhibits
an asymptotically stable fixed point in terms of a stable node. Varying the system
parameters such that D̂ becomes zero, we reach the bifurcation point at which the
stability of the fixed point changes. For D̂ < 0 the fixed point becomes unstable and
is given by a saddle point. As will be shown in Sect. 5.5 (see below) and Chap. 8 this
scenario is relevant for the SEIR-model and SEIR-type models.

5.5 Application: Stability Analysis of SEIR Models

5.5.1 Eigenvalues and Stability of Disease-Free States

In this section SEIR-type models are considered with the rate constant k0 (i.e., “force
of infection”) defined by

k0 = βI I + βE E

N
(5.34)

(see Eq. (5.1)) and the evolution equations for S, E , I that read

d

dt
S = −k0S ,

d

dt
E = k0S − αE ,

d

dt
I = αE − γ I . (5.35)

If, in addition, R(t) = N − S(t) − E(t) − I (t) holds, then 1β and 2β SEIR models
are considered, and, in this context, for βE = 0 the standard SEIR model (3.43) is
considered. In general, Eq. (5.35) describes the autonomous subsystem of 1β and
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2β SEIR-type models (5.3) when demographic terms are neglected. In particular, 1β
models correspond to the special case when in Eq. (5.34) the parameter βE is put to
zero.

The disease-free fixed pointXst = (N , 0, 0) is considered. Let δ, E , and I denote
a perturbation out of Xst with S = N + δ and δ ≤ 0, then substituting S = N + δ
into the evolution equation of E shown in Eq. (5.35), the intermediate result

d

dt
E = βI I + βE E − αE + βI I + βE E

N
δ (5.36)

can be obtained. The first three terms on the right-hand side of the equals sign con-
stitute the linear part of the evolution equation of E , while the expression involving
the variable δ corresponds to the nonlinear part. Let us consider next the dynamics of
solutions close to the fixed point Xst . In this case δ, E, I correspond to small quan-
tities and evolve according to linearized equations that can be obtained from Eqs.
(5.35) and (5.36). More precisely, using the evolution equation of I in Eq. (5.35)
and the linearized evolution equation for E given by Eq. (5.36) when neglecting the
nonlinear part, leads to the evolution equations for E and I defined by

d

dt

(
E
I

)
= L

(
E
I

)
, L =

(
βE − α βI

α −γ

)
. (5.37)

Importantly, the linearized evolution equations for E and I do not depend on δ. Since
dS/dt ≤ 0 holds in any case (see Eq. (5.35)), the objective is to study the dynamics
of the E-I subsystem.

The trace T̂ and the determinant D̂ of the linearization matrix L read T̂ = βE −
α − γ and D̂ = −[(βE − α)γ + βIα], respectively. From Eq. (5.27) it then follows
that the eigenvalues of L are given by

λ1,2 = βE − α − γ

2
± √

U , U = [βE − α − γ]2
4

+ (βE − α)γ + βIα . (5.38)

The eigenvalues are in any case real-valued because U can be cast into the form

U = [βE − α + γ]2
4

+ βIα ≥ 0 . (5.39)

Consequently, the fixed point (E, I ) = (0, 0) in the E-I subsystem corresponds to a
stable node, unstable node, or saddle under the assumption that the linearized system
(5.37) determines the dynamics in the E-I subspace (i.e., the impact of the nonlinear
δ term in Eq. (5.36) can be neglected). The following three cases can be studied.

Case I: T̂> 0

This case holds only if βE > α + γ holds (i.e., βE is large relative to α and γ) and it
cannot occur in 1β models with βE = 0. From βE > α + γ it follows that βE > α
and, consequently, U > T̂ 2/4 (see Eq. (5.38)). Furthermore, from Eq. (5.38) and
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U > T̂ 2/4 it follows that λ1 > 0 and λ2 < 0. The fixed point (E, I ) = (0, 0) is an
unstable fixed point in terms of a saddle. Consequently, the SEIR model describes
epidemic outbreaks in terms of wave-solutions. The case I corresponds to the case 3B
described inTable5.1with T̂ > 0, D̂ < 0, andU > T̂ 2/4.Note that the classification
of (E, I ) = (0, 0) as a saddle point only holds as long as S(t) ≈ N or δ ≈ 0. That
is, (E, I ) = (0, 0) reflects a saddle point in the initial stage of the wave-solution
under consideration. When time elapses the nonlinear term (i.e., the δ term) in Eq.
(5.36) becomes relevant. This termmakes that for t → ∞ the dynamics converges to
(E, I ) = (0, 0) in analogy to the discussion for the standard SEIR model presented
in Sect. 3.7.

Case II: T̂< 0 and bifurcations leading to subsiding epidemics

Case II holds for βE < α + γ and, in particular, for 1β models with βE = 0. In this
case, we deal either with case 2A or 3A of Table5.1. The stability depends on the
sign of the determinant D̂. Therefore, let us rewrite the determinant like

D̂ = −[(βE − α)γ + βIα] = α
(
γ − [βI + γ

α
βE ]

)
. (5.40)

Introducing the weighed effective contact rate [31, 32]

βw = βI + γ

α
βE (5.41)

with D̂ = α(γ − βw),we see thatβw > γ implies D̂ < 0. Provided that the additional
constraint δ ≈ 0 holds, the inequality D̂ < 0, in turn, implies that (E, I ) = (0, 0)
corresponds to a saddle and the SEIR model exhibits wave-solutions. In contrast,
βw < γ implies D̂ > 0 and (E, I ) = (0, 0) corresponds to a stable node. In this
case, the SEIR model describes subsiding epidemics.

The case II is of particular interest when discussing the subsiding of epidemics
due to the impact of intervention measures. Let us assume a novel infectious disease
such as COVID-19 leads to an epidemic outbreakwith βw > γ. Let us further assume
that as a reaction to the outbreak intervention measures are implemented that reduce
the effective contact rates βI and βE . For example, in the context of the COVID-
19 pandemic physical distancing, home office, shutdown of businesses and schools
may reduce the contact rates νI and νE and wearing face masks may reduce the
probabilities pI and pE of susceptibles to get infected in such contacts. Decreasing
the effective contact rates βI and βE implies that βw decreases. If the parameter
decreases below the critical value of βw,cri t = γ, then the disease-free fixed point
becomes stable. The epidemic in a certain country or region begins to subside. This
scenario can be interpreted as the backwards scenario of the scenario discussed at
the end of Sect. 5.4.3. In the final paragraph of Sect. 5.4.3, a bifurcation is discussed
that involves a stable node that turns into a unstable saddle and takes place when
the value of D̂ is decreased such that it switches from a positive to a negative value.
In contrast, the intervention-induced bifurcation scenario describes a bifurcation in
terms of a unstable disease-free state that turns into a stable state when intervention
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measures reduce βw below the critical value γ such that D̂ = α(γ − βw) switches
from a negative to a positive value.

Case III: The 1β model with βE = 0

In the case βE = 0 and βI = β the trace satisfies T̂ = −(α + γ) < 0, just as in case
II. Consequently, D̂ determines again the stability of the disease-free fixed point.
Importantly,βw = β holds. Consequently, forβ > γ (and assuming that δ ≈ 0 holds)
the fixed point (E, I ) = (0, 0) corresponds to a saddle and the SEIR model exhibits
wave-solutions describing epidemic outbreaks. Forβ < γ the fixed point is stable and
the model describes subsiding epidemics. Consequently, for 1β models, the effective
contact rate β can be used as a bifurcation parameter that exhibits a critical value
βcri t = γ. Alternatively, the dimensionless parameter

κ = β

γ
(5.42)

may be considered as bifurcation parameter with critical value κcri t = 1. The bifur-
cation parameter κ corresponds to the stability parameter ξ = β/γ (see Eq. (3.26))
that was derived by means of an ad-hoc approach in Sect. 3.7 for the standard SEIR
model. In Sect. 3.7 the stability parameter ξ = β/γ was derived under the assumption
that the initial state X0 is close to the fixed point Xst = (N , 0, 0) (i.e., S(0) ≈ N ).
This assumption holds for the stability analysis that yields Eq. (5.42). Therefore, the
two approaches address the same circumstances and produce consistent results.

The fixed point (E, I ) = (0, 0) and the fixed point Xst = (N , 0, 0)

In the previous discussion the focus was on the two-dimensional E-I subspace. It
was shown that in this space the fixed point (E, I ) = (0, 0) corresponds to a stable
node, unstable node, or saddle assuming that the stateX in the three-dimensional state
space is sufficiently close to the fixed pointXst = (N , 0, 0) (i.e., (δ, E, I ) ≈ (0, 0, 0)
holds). This classification holdswhen ignoring the dynamics of the susceptibles.With
respect to the three-dimensional state space spanned by the variables S, E , and I
at issue is to account for the neutral direction along the S-axis. That is, when fixed
pointsXst = (Sst , 0, 0) of the SEIRmodel (5.35) are shifted along the axis describing
the number of susceptibles of the population of interest, then they end up again on
fixed points. Consequently, if the fixed point (E, I ) = (0, 0) for δ ≈ 0 and βw < γ
corresponds to an asymptotically stable fixed point in terms of a stable node in the
E-I subspace, then the corresponding fixed point Xst = (N , 0, 0) only corresponds
to a neutrally stable fixed point. Perturbations out of Xst = (N , 0, 0) do not return
to Xst = (N , 0, 0). They converge to one of the fixed points Xst = (Sst , 0, 0) with
Sst < N .

The fixed points Xst = (Sst, 0,0) with Sst < N and (E,I) = (0,0)

The stability of fixed points Xst = (Sst , 0, 0) with Sst < N can be discussed by
analogy to the discussion of the fixed point with Sst = N . The key step is to put
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S = Sst + δ rather than S = N + δ. This implies that all results obtained in this
section have to be modified by replacing the effective contact rates βI and βE by
reduced effective contact rates

βI,r = Sst
N

βI , βE,r = Sst
N

βE (5.43)

that are reduced by a factor Sst/N < 1. That is, in Eqs. (5.36) to (5.42) the substitu-
tions βI → βI,r and βE → βE,r need to be made. For example, βw and κ as defined
in Eqs. (5.41) and (5.42), respectively, become

βw,r = Sst
N

(
βI + γ

α
βE

)
, κr = Sst

N

β

γ
. (5.44)

For the 2β models it follows that if βw,r > γ (βw,r < γ) holds, thenXst = (Sst , 0, 0)
is an unstable (neutrally stable) fixed point and (E, I ) = (0, 0) corresponds to a
unstable (asymptotically stable) fixed point. Likewise, for 1β models it follows that
if κr > 1 (κr < 1) holds, thenXst = (Sst , 0, 0) is an unstable (neutrally stable) fixed
point and (E, I ) = (0, 0) corresponds to an unstable (asymptotically stable) fixed
point. These classifications hold under the constraint that the state X is sufficiently
close to the fixed point Xst = (Sst , 0, 0). In particular, the constraint δ ≈ 0 must be
satisfied.

Note that if the fixed point Xst = (N , 0, 0) is considered, we have δ ≤ 0. In
contrast, if Xst = (Sst , 0, 0) is considered in the context of four-variable SEIR
models with R(t) = N − S(t) − E(t) − I (t), then S ∈ [0, N ] holds, which implies
δ ∈ [−Sst , N − Sst ]. That is, δ may assume positive values.

5.5.2 EI Order Parameters of SEIR Models in E-I Subspaces

The eigenvectors of SEIR-type models in their E-I subspaces can be computed from
Eq. (5.30). Let us consider 1β models with βI = β and βE = 0. Then, substituting
the matrix coefficients of L defined in Eq. (5.37) for βE = 0 into Eq. (5.30), we
obtain [13, 31]

vi =
(

vi,E
vi,I

)
= 1√

(λi − α)2 + β2

(
β

λi + α

)
(5.45)

for i = 1, 2 with λi defined by Eq. (5.38) and βE = 0, again. In the case of an
epidemic outbreak λ1 > 0 and λ2 < 0 holds such that v1 is an unstable eigenvec-
tor or order parameter, while v2 corresponds to a stable eigenvector (see Chap. 2).
Consequently, the initial stage of the epidemic evolves along v1.

Let us illustrate the role of the eigenvectors v1 and v2 for a wave-solution of the
standard the SEIR model defined by (5.35) and k0 = β I/N . Let us use the model
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Fig. 5.2 Eigenvector analysis of the SEIRmodel (5.35) and EI order parameter (unstable eigenvec-
tor) in the E-I subspace. Panel a: Solutions E(t) and I (t) as functions of time computed from Eq.
(5.35). Panel b: Eigenvectors v1 and v2 of the E-I subspace. Panel c: The phase curve I (E) (solid
line) computed from E(t) and I (t) and the unstable eigenvector v1 (dotted line) are shown. The
unstable eigenvector was magnified by a factor for visualization purposes. v1 corresponds to the EI
order parameter. Parameters and initial conditions: N = 1, 000, β = 2.0/d, γ = 0.5/d, α = 0.4/d,
E(0) = 10, I (0) = 0, S(0) = N − E(0)

parameters β = 2/d, α = 0.4/d, γ = 0.5/d and a small population with N = 1000
individuals. Since β > γ holds, the fixed point Xst = (N , 0, 0) is unstable and the
model solution describes an epidemic wave. Figure5.2 illustrates the eigenvector
analysis of the wave-solution. In order to produce Fig. 5.2, the SEIR model (5.35)
was solved for an initial state X0 close to the stationary state Xst = (N , 0, 0). Panel
(a) shows the trajectories E and I as function of time. In fact, the same parameters
as for the simulation presented in panel (b) in Fig. 3.12 were used. Consequently, the
curves E(t) and I (t) shown in panel (a) of Fig. 5.2 are identical with those presented
in panel (b) of Fig. 3.12. The eigenvectors v1 and v2 were computed from Eq. (5.45).
They are shown as solid lines in panel (b) of Fig. 5.2. The circle describes the unit
circle and indicates that the eigenvectors are normalized with respect to 1. The two
eigenvectors were also computed numerically from thematrix L shown in Eq. (5.37).
The numerically obtained eigenvectors are shown as gray dotted lines. As expected,
the numerical solutions were identical with the analytical ones.

Panel (c) shows the functions I (t) versus E(t) as phase curve I (E) in the E-
I subspace. Consistent with the explicit functions I (t) and E(t) shown in panel
(a), in panel (c) when following the phase curve the following can be seen. The
simulated epidemic under consideration evolves away from the unstable fixed point
(E, I ) = (0, 0). Both E and I increase over time until E reaches a maximum value
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and starts to decay. For a short period I increases even further. Subsequently, I reaches
itsmaximum and starts to decay aswell. During the remaining course of the epidemic
both the numbers of exposed and infectious individuals decrease monotonically.
The loop-shaped trajectory shown in panel (c) illustrates the observation made in
Sect. 3.7 that the wave of the exposed individuals is leading and reaches its peak
earlier as compared to the wave of infectious individuals. Importantly, panel (c) of
Fig. 5.2 shows the the unstable eigenvector v1 (dotted black line). The vector was
magnified for illustration purposes. It can be seen that the wave-solution followed in
the initial stage the direction of v1. Consequently, the initial stage of the simulated
outbreak was determined by the unstable eigenvector and the exponential increase
of the amplitude A1(t) (see Eqs. (5.31) and (5.32)). During that initial stage the
direction v2 and the corresponding amplitude A2 plays a negligible contribution to
the overall dynamics. Subsequent to the initial stage, the solution X(t) (or the phase
curve I (E))) branches off from the direction v1, performs a loop and returns to the
fixed point (E, I ) = (0, 0). Since the dynamics in the initial stage is dominated by
v1, the unstable eigenvector v1 is the order parameter of the simulated epidemic (see
Sect. 2.8).

5.6 Biorthogonal Vectors of Amplitude Spaces: 2D, 3D,
and Beyond

Amplitude equations of SEIR-type models provide an amplitude space description
of epidemics that goes beyond the initial stage. The whole course of an epidemic can
be studied in amplitude space. In order to derive amplitude equations using the vector
calculation method (see Sect. 2.9), biorthogonal vectors need to be determined (see
also the road map in Sect. 5.4.1).

Case n = 2

To begin with, the explicit construction of biorthogonal vectors wi for two-
dimensional systems is discussed. The departure point is the dynamical system
dX/dt = N(X) with X = (X1, X2) discussed in Sect. 5.4.3 exhibiting at the fixed
point Xst two (right) eigenvectors vi defined by Eq. (5.30). Let us write the eigen-
vectors in terms of

v1 =
(

v1,1
v1,2

)
, v2 =

(
v2,1
v2,2

)
. (5.46)

It is assumed that the vectors are linearly independent such that they span the two-
dimensional space (X1, X2). That is, any relative state (or perturbation) u = X − Xst

can be expressed with the help of the amplitudes A1 and A2 like u = A1v1 + A2v2
and any state can be expressed like X = Xst + A1v1 + A2v2 (see also Eq. (5.31)).
These relations describe a mapping from the amplitude space to the state space. The
biorthogonal eigenvectors (or left eigenvectors) w1 and w2 can be used to invert
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that mapping and, as mentioned above, to derive the evolution equations for the
amplitudes A1 and A2.

The biorthogonal vectors w1 and and w2 may be constructed as follows. First, let
us define the 2 × 2 eigenvector matrix M by

M =
(

v1,1 v2,1
v1,2 v2,2

)
. (5.47)

The matrix consists of columns defined by vi . Second, let us consider the inverse
matrix M−1. In this context, we note that the determinant |M | of M does not vanish
because vi are assumed to be linearly independent. Explicitly, the determinant reads
|M | = v1,xv2,y − v2,xv1,y . This implies that M−1 exists. Moreover, M−1 satisfies

M−1M =
(
1 0
0 1

)
. (5.48)

Let

M−1 =
(
a b
c d

)
. (5.49)

Then from Eq. (5.48) the following vector multiplications (i.e., dot products) hold:

(
a
b

)
v1 = 1 ,

(
a
b

)
v2 = 0 ,

(
c
d

)
v1 = 0 ,

(
c
d

)
v2 = 1 . (5.50)

Consequently, let us define the biorthogonal vectors asw1 = (a, b) andw2 = (c, d).
Then, the dot product (or scalar product) between a vector wi and an eigenvector vk
reads

wivk = δik (5.51)

as discussed in Sect. 2.6.2 (see Eq. (2.28)). That is, we have obtained a biorthogonal
system (see Sect. 2.6.2 again). As mentioned in Sect. 2.6.2, the vectors wi are also
referred to as left eigenvectors. Explicitly, from Eqs. (5.47) and (5.48) it follows that

M−1 = 1

|M |
(

v2,2 −v2,1
−v1,2 v1,1

)
, (5.52)

which can be seen by substituting Eqs. (5.47) and (5.52) into Eq. (5.48). Comparing
Eqs. (5.49) and (5.52) and taking the result w1 = (a, b) and w2 = (c, d) obtained
above into account, the explicit form of the biorthogonal vectors can be obtained as

w1 = 1

|M |
(

v2,2
−v2,1

)
, w2 = 1

|M |
(−v1,2

v1,1

)
. (5.53)

Note that |wi | = 1/|M | holds which implies that the vectors wi are not necessarily
normalized to 1.
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Fig. 5.3 Construction of biorthogonal vectors of the SEIR model in the E-I subspace. Panel
(a) shows v1 and v2 as in panel (b) of Fig. 5.2. Panel b shows again v1 and v2. In addition, the
biorthogonal vectors w1 and w2 are depicted. Dotted arcs indicate 90◦ angles. Parameters as in
Fig. 5.2

Let us illustrate this construction for the eigenvectors vi defined by Eq. (5.45) in
the in E-I subspace of 1β SEIR-type models (5.3). More precisely, let us consider
the eigenvectors shown in panel (b) of Fig. 5.2. For illustration purposes, these two
eigenvectors v1 and v2 are shown again in panel (a) of Fig. 5.3. Equation (5.45)
provides us with the coefficients vi,E and vi,I that corresponds to vi,1 and vi,2 given
that X = (X1, X2) = (E, I ). Substituting vi,1 = vi,E and vi,2 = vi,I as defined by
Eq. (5.45) into Eq. (5.53) we arrive at the analytical expressions of the vectors w1

and w2 in terms of the model parameters β, α, and γ. Panel (b) of Fig. 5.3 presents
w1 and w2 thus obtained as solid black lines. In addition, the biorthogonal vectors
wi were obtained numerically. To this end, the coefficients of the matrix M (see
Eq. (5.47)) were computed from Eq. (5.45) again. Subsequently, M was numerically
inverted to obtain M−1. In a final step w1 = (a, b) and w2 = (c, d) were extracted
as the row vectors of M−1 (see Eq. (4.52)). The numerically computed vectors wi

are shown in panel (b) as gray dotted lines. As can be seen, the numerically obtained
results are identical with the results obtained via the analytical approach. Panel (b)
also presents again the eigenvectors v1 and v2. The circle in panel (b) is the unit circle
and indicates again that v1 and v2 are normalized to unity. In contrast, for the SEIR
model parameters under consideration, the norm of the vectors wi exceeds 1.

Panel (b) illustrates the meaning of the biorthogonal condition (5.51). Accord-
ingly, w2 is orthogonal to v1. The angle between v1 and w2 is indicated by a dotted
line and corresponds to a 90◦ angle. Likewise, w1 is orthogonal to v2. Again, the
angle between v2 andw1 is indicated by a dotted line and corresponds to a 90◦ angle.
Note that the reader probably will experience some difficulties to see these angles
as 90◦ angles. The reason for this is that the angles only show up as “right angles”
if physically the horizontal and vertical axes are printed in the same scales. That is,
if the distances on the horizontal and vertical axis between the marks 0 and 1 are
physically the same in the print out (or on the screen) on which Fig. 5.3 is presented,
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then the angles show up as 90◦ angles. If this is not the case, then it requires some
imagination to see the angles as what they should indicate: 90◦ angles.

Case n = 3

For a three-dimensional problem, the biorthogonal vectors can be constructed in
a similar way. The mapping from amplitude space (A1, A2, A3) to state space
(X1, X2, X3) via the relative state u reads

u = A1v1 + A2v2 + A3v3 . (5.54)

The 3 × 3 eigenvector matrix M is defined by

M = (v1v2v3) , (5.55)

where the eigenvectors appear as columns in the matrix. That is, v1 describes the
elements in the first column of M , v2 corresponds to the elements in the second
column, and v3 constitutes the elements in the third column. Assuming that the
eigenvectors are linearly independent, the inverse matrix M−1 exists. The inverse
matrix M−1 formally reads

M−1 =
⎛

⎝
a b c
d e f
g h j

⎞

⎠ . (5.56)

Using the matrix coefficients defined in Eq. (5.56), the biorthogonal eigenvectors
can be constructed like

w1 =
⎛

⎝
a
b
c

⎞

⎠ , w2 =
⎛

⎝
d
e
f

⎞

⎠ , w3 =
⎛

⎝
g
h
j

⎞

⎠ . (5.57)

Just as in the case n = 2, the biorthogonal vectors correspond to the rows of the
inverse matrix. Since the matrix product of M−1 and M yields the identity matrix,
from Eqs. (5.55), (5.56), and (5.57) it follows that the dot product (scalar product)
between a pair vi and wk is zero for i �= k and equals 1 for i = k. That is, the
construction yields for the three-dimensional case the required biorthogonal relation
defined by Eq. (5.51).

As an alternative approach, the biorthogonal vectors may be defined via the vector
cross-product. For example, w1 can be defined by

w1 = 1

Z
(v2 × v3) (5.58)

with Z = v1(v2 × v3), which measure the volume spanned by the three vectors.
The cross-product of two vectors is orthogonal to the plane spanned by the two
vectors. Consequently, w1 satisfies the required orthogonal relations
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w1v2 = 0 , w1v3 = 0 . (5.59)

By analogy, the vectors w2 and w3 can be defined by

w2 = 1

Z
(v3 × v1) ,w3 = 1

Z
(v1 × v2) . (5.60)

General case n

The general case was previous discussed in Sect. 2.6.2 and will be reviewed in what
follows for sake of completeness. Let us consider a n-dimensional dynamical system
exhibiting a fixed point Xst . Then, the relative state u can be expressed in terms
of the superposition u = ∑n

i=1 Aivi involving n eigenvectors vi (see Eq. (2.34)).
Assuming that these eigenvectors are linearly independent, the biorthogonal vectors
can be obtained by means of the n × n eigenvector matrix

M = (v1 · · · vn) . (5.61)

The inverse matrix

M−1 =
⎛

⎝
w1

· · ·
wn

⎞

⎠ (5.62)

is composed of the biorthogonal vectors wi . As indicated in Eq. (5.62), they corre-
spond to the rows of the matrix M−1.

5.7 Applications and SEI Order Parameters

5.7.1 1β SEIR Model and Its 3D Autonomous Amplitude
Description

Having discussed the explicit construction of biorthogonal vectors, the amplitude
equations of SEIR models can be derived using the vector calculation method. To
this end, let us first consider the SEIR model defined by Eq. (5.35) and R(t) =
N − E(t) − I (t) and for the sake of simplicity the 1β model with k0 = β I/N .
Using vector and matrix notations, the model for the autonomous three-variable
system composed of S, E , I reads

d

dt

⎛

⎝
S
E
I

⎞

⎠ =
⎛

⎝
0 0 0
0 −α 0
0 α −γ

⎞

⎠

⎛

⎝
S
E
I

⎞

⎠ + β

N
SI

⎛

⎝
−1
1
0

⎞

⎠ . (5.63)
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Let us consider the fixed point Xst = (N , 0, 0). Substituting S = N + δ into Eq.
(5.63), where δ is the first component of the relative state vector u = (δ, E, I ), leads
to

d

dt

⎛

⎝
δ
E
I

⎞

⎠ = L

⎛

⎝
δ
E
I

⎞

⎠ + β

N
δ I

⎛

⎝
−1
1
0

⎞

⎠ (5.64)

with

L =
⎛

⎝
0 0 −β
0 −α β
0 α −γ

⎞

⎠ (5.65)

(see also Eq. (2.65)). Comparing Eq. (5.64) with the general case du/dt = Lu + R
(see Eq. (2.89)) discussed in Sect. 2.9.3, the remainder term R can be identified as

R(u,Xst ) = β

N
δ I

⎛

⎝
−1
1
0

⎞

⎠ . (5.66)

As previously discussed in Sect. 2.9.2, the matrix L defined by Eq. (5.65) exhibits the
eigenvalue λ1 = 0 and two additional eigenvalues λ2,3 that can be computed from
the 2 × 2 matrix shown in Eq. (2.67) (or in Eq. (5.37) for βE = 0 and βI = β). In
particular, from Eq. (5.38), βE = 0, and βI = β it follows that

λ2,3 = −α + γ

2
±

√
(α + γ)2

4
+ α(β − γ) , (5.67)

where the upper (plus) sign holds for λ2 and the lower (minus) sign for λ3. As
discussed in Sect. 5.5.1, this implies that for β > γ the fixed point Xst is unstable,
while for β < γ the fixed point Xst is neutrally stable.

The matrix L defined by Eq. (5.65) exhibits the Eigenvector v1 = (1, 0, 0) asso-
ciated with the eigenvalue λ1 = 0. In order to determine the eigenvectors associated
to λ2,3, the eigenvectors (5.45) derived for the two-dimensional E-I subspace can
be used as building blocks. Accordingly, let us put

vi ∝
⎛

⎝
s
β

λi + α

⎞

⎠ (5.68)

with i = 2, 3 and s unknown. The coefficient s can be determined from (L −
λi E)v = 0 (see Eq. (5.21)). From the first row of this matrix equation it follows
that

λi s + β(λi + α) = 0 , (5.69)

which implies s = −β(λ j + α)/λ j such that
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vi ∝
⎛

⎝
−β(λ j + α)/λ j

β
λ j + α

⎞

⎠ = 1

λ j

⎛

⎝
−β(λ j + α)

βλ j

λ j (λ j + α)

⎞

⎠ . (5.70)

Taking the normalization of vi into account, gives us the final result

vi = 1

Zi

⎛

⎝
−β(λi + α)

βλi

λi (λi + α)

⎞

⎠ =
⎛

⎝
vi,S
vi,E
vi,I

⎞

⎠ (5.71)

with Zi =
√

β2[(λi + α)2 + λ2
i ] + λ2

i (λi + α)2 and i = 2, 3 (see also Ref. [33] with
Tst = 1). Note that the eigenvectors (5.71) differ from the SEIRmodel vectors v2 and
v3 derived in Sect. 2.9.2. We will dwell on the two different perspectives in Chap. 6.
In summary, relative states u of the SEIR model can be expressed like

u =
⎛

⎝
δ
E
I

⎞

⎠ = A1

⎛

⎝
1
0
0

⎞

⎠ + A2v2 + A3v3 (5.72)

with vi defined by Eq. (5.71). Equation (5.72) also describes the mapping from
the amplitude space (A1, A2, A3) to the state space (X1 = S, X2 = E, X3 = I ) via
X = Xst + u.

The biorthogonal vectors wi may be derived in a systematic manner as described
in Sect. 5.6 by inverting the eigenvector matrix M defined by

M =
⎛

⎝
1 v2,S v3,S
0 v2,E v3,E
0 v2,I v3,I

⎞

⎠ . (5.73)

A short-cut approach can be applied in view of the relatively simple first eigenvec-
tor v1 = (1, 0, 0). Since v1 exhibits vanishing coefficients in the E-I subspace, the
biorthogonal eigenvectors derived previous for two-dimensional spaces as defined
by Eq. (5.53) can be used to construct the second and third coefficients of w2 and
w3. The first coefficient can be put to zero such that

w2 = 1

|M |

⎛

⎝
0

v3,I
−v3,E

⎞

⎠ , w3 = 1

|M |

⎛

⎝
0

−v2,I
v2,E

⎞

⎠ (5.74)

with |M | = v2,Ev3,I − v3,Ev2,I . More explicitly, |M | = βλ2λ3(λ3 − λ2)/(Z2Z3).
As a proof that this procedure yields the desired orthogonal relations, we note that
from v1 = (1, 0, 0) and Eqs. (5.71) and (5.74) it follows that w2v1 = 0, w2v2 = 1,
w2v3 = 0, w3v1 = 0, w3v2 = 0, and w3v3 = 1 holds. Finally, w1 is given by w1 =
(1, a, b) such that w1v1 = 1 irrespective of the coefficients a and b. The coefficient
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a and b are determined from the two requirements w1v2 = 0 and w1v3 = 0. The
results reads

w1 = 1

λ2λ3

⎛

⎝
λ2λ3

(λ2 + α)(λ3 + α)

−αβ

⎞

⎠ . (5.75)

Havingobtained the biorthogonal vectorswi , as described inSect. 2.9.3, the ampli-
tude equations can be obtained bymultiplying du/dt = Lu + R bywi . Accordingly,
multiplying Eq. (5.64) by wi , the intermediate result

d

dt
Ai = λi A j + Gi , Gi = wiR = β

N
δ Iwi

⎛

⎝
−1
1
0

⎞

⎠ = Ci
β

N
δ I (5.76)

can be obtained. The factors Ci introduced in Eq. (5.76) correspond to the vector
products

Ci = wi

⎛

⎝
−1
1
0

⎞

⎠ = wi,E − wi,S (5.77)

and can be explicitly obtained from Eqs. (5.74) and (5.75) as

C1 = α
λ2 + λ3 + α

λ2λ3
, C2 = v3,I

|M | , C3 = − v2,I

|M | (5.78)

(see also Ref. [33]). Finally, δ and I and, consequently, the product δ I can be
expressed in terms of amplitudes A1, A2, A3 with the help of Eq. (5.72) like

δ I =
(

3∑

i=1

vi,S Ai

) (
∑

i=2,3

vi,I Ai

)
. (5.79)

Substituting this result into Eq. (5.76), we obtain the SEIR amplitude equations in
form of

d

dt
Ai = λi Ai + Ciδ(A1, A2, A3)k0(A2, A3)

= λi Ai + Ci p2(A1, A2, A3) ,

p2 = β

N

(
3∑

k=1

vk,S Ak

) (
∑

k=2,3

vk,I Ak

)
, (5.80)

δ = ∑3
k=1 vk,S Ak , k0 = β(v2,I A2 + v3,I A3)/N , and p2 is a multivariate polynomial

of order 2 and does not contain any terms linear in the amplitudes. Moreover, let
us reiterate that λ1 = 0 holds. Furthermore, for β > γ we have λ2 > 0, while for
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β < γ we have λ2 < 0. As discussed in Sect. 5.5.1, λ3 < 0 holds for any parameters
β,α, γ > 0 (see also Eq. (5.67)).

Let TL denote the initial period duringwhich the linearizedmodel (5.64) describes
a good approximation. Variations in A1 can be neglected due to λ1 = 0. The ampli-
tude A3 decays during an intermediate period Ti towards zero because of λ3 < 0.
Assuming that λ3 in the amount is sufficiently large such that Ti < TL , it follows
that for t ∈ [Ti , TL ] the relative state u is given by u ≈ A1(t0)v1 + A2(t)v2. Conse-
quently, the stateX(t) evolves (in the initial stage but subsequent to the decay of A3)
like

X(t) ≈ Xst + A1(t0)v1 + v2A2(t) , (5.81)

which can equivalently be expressed like

X(t) ≈ X0 − A3(t0)v3 + v2ΔA2(t) , (5.82)

where we have used X0 = Xst + A1(t0)v1 + A2(t0)v2 + A3(t0)v3 and ΔA2 =
A2(t) − A2(t0). Equation (5.82) can be written like

ΔX =
⎛

⎝
ΔS
ΔE
ΔI

⎞

⎠ = v2ΔA2 − v3A3(t0) (5.83)

withΔX = X(t) − X(t0), which states that when the vector v2 is plotted at the origin
X = (0, 0, 0) then state changes ΔX take place parallel to v2 with a state shift deter-
mined by the expression −v3A3(t0). Likewise, when when the vector v2 is plotted
at the location −v3A3(t0), then v2 determines the direction of state changes ΔX and
ΔA2 determines the corresponding dynamics. If the initial state X0 is sufficiently
close toXst such that A1(t0) and A3(t0) are negligibly small, thenEq. (5.83) simplifies
to [32–34]

ΔX =
⎛

⎝
ΔS
ΔE
ΔI

⎞

⎠ = v2ΔA2 (5.84)

and Eq. (5.81) reduces to the fundamental relation [9, 20, 34]

X(t) ≈ Xst + v2A2(t) ≈ Xst + v2A2(t0) exp{λ2(t − t0)} , (5.85)

as discussed in Sect. 2.7 in the context of Eq. (2.47). The unstable eigenvector v2 and
its amplitude A2 dominate the infectious disease outbreak. They correspond to the
order parameter and order parameter amplitude of the epidemic under consideration.
Equations (5.84) and (5.85) are the counterpart relations to Eqs. (4.57) and (4.60)
obtained in Sect. 4.2.6) for SIR-type models.

Let us consider the wave-solution of the SEIR model with parameters β = 2/d,
α = 0.4/d,γ = 0.5/d, N = 1, 000 individuals that is shown inFig. 5.2.While Fig. 5.2
presents a two-dimensional analysis in the E-I subspace, with the results derived
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Fig. 5.4 Eigenvector analysis of the SEIR model (5.35) and SEI order parameter (unstable eigen-
vector) in the (S, E, I ) subspace. Panel a: Solutions S(t), E(t), and I (t) as functions of time
computed from Eq. (5.35). Panel b: The phase curve I (E) (solid line) computed from E(t) and
I (t) and the (magnified) unstable eigenvector v2 (dotted line) are shown. Panel c: The phase curve
(solid line) of the trajectory X(t) and v2 (dotted line) in the 3D (S, E, I ) state space are shown. v2
was magnified and corresponds to the SEI order parameter. Parameters and initial conditions as in
Fig. 5.2

above a full three-dimensional analysis can be presented. Figure5.4 presents the
analysis in state space. Figure5.5 presents the corresponding analysis in amplitude
space.

To begin with Fig. 5.4, panel (a) of Fig. 5.4 shows S, E , I as functions over time.
The graphs E and I have been presented above in panel (a) of Fig. 5.2. The solution
S shown in panel (a) of Fig. 5.4 describes a monotonically decaying population of
susceptibles. For the selected parameters and initial conditions almost all suscep-
tibles become eventually infected. Accordingly, the epidemic wave dies out when
the number of susceptibles has decreased to a sufficiently small value. From Eq.
(5.44) the interval of neutrally stable disease-free fixed points can be determined by
requiring κr < 1, which implies Sst < Nγ/β. For the selected model parameters the
result reads Sst < 250 individuals. That is, the epidemic wave converges to a fixed
point with less than 250 susceptible individuals. Panel (b) of Fig. 5.4 shows E and
I in the two-dimensional E-I plane, just as in panel (c) of Fig. 5.2. Unlike panel (c)
of Fig. 5.2, in panel (b) of Fig. 5.4 the projection of the unstable eigenvector v2 is
plotted. Mathematically speaking, this projection of the 3D vector is identical to the
2D vector v1 of the E-I analysis except for a scaling factor. That is, the components
v2,E and v2,I as defined by Eq. (5.70) are identical to the components v1,E and v1,I of
v1 as defined by Eq. (5.45) except for a multiplication factor (note also that λ2 of the
3D analysis corresponds to λ1 of the 2D analysis). In short, the vectors point in the
same direction in the E-I subspace. Therefore, panel (b) of Fig. 5.4 shows the same
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Fig. 5.5 SEIR model amplitude dynamics of the simulated epidemic shown in Figs. 5.2 to 5.4.
Panel a: Amplitudes A1, A2, and A3 as functions of time as computed from Eq. (5.80). Panels b
and c show the phase curves A2(A3) and A2(A1) in their respective 2D amplitude subspaces. Panel
d shows the amplitude trajectory A(t) as phase curve in the full 3D amplitude space

situation as presented above in panel (c) of Fig. 5.2: the simulated epidemic wave
initially follows the unstable eigenvector and, only in a later stage, begins to branch
off from the eigenvector. Panel (c) of Fig. 5.4 shows the wave-solution in the full
three-dimensional state space. The unstable eigenvector v2 is plotted as well (and is
located at the fixed pointXst ). It can be seen that the wave follows the eigenvector in
the initial stage. That is, not only the changes in E and I over time are determined
by v2 and its corresponding amplitude A2, but also the decay of the susceptibles S is
determined by v2 and A2. Panel (c) illustrates that the simulated epidemic satisfies
during its initial stage Eq. (5.85) (or alternatively Eq. (5.84)).

The dominant role of A2 becomes also obvious when studying the outbreak in
amplitude space. To this end, the amplitude equations (5.80) were solved numeri-
cally for the initial conditions Ai (0) = wi (X0 − Xst ) (see Eq. (2.38)). Panel (a) of
Fig. 5.5 shows the amplitudes A1, A2, A3 as functions of time thus obtained. It can
be seen that A2 increases during the initial stage, while the remaining amplitudes A1

and A3 do not vary considerably during that period. For example, in the simulated
epidemic within the first 10 days A2 increases to a number of 500 individuals, while
A1 during the same period only decreases by 50 individuals and A3 increases to a
level of 30 individuals. Having said that, when magnifying the graph of A3 it can
be seen that A3 actually assumes a negative initial value A3(0) < 0. A3(t) decays
in magnitude quickly (within an intermediate period Ti of about 1day for the sim-
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ulation under consideration) and approaches zero, as expected from the linearized
amplitude equation dA3/dt = λ3A3 with λ3 < 0. Subsequently, as described above,
A3 increases slowly in the initial stage dominated by A2. In other words, A3 describes
the dynamics in the stable direction defined by v3 of the saddle point Xst , whereas
A2 describe the dynamics in the unstable direction of the saddle as defined by v2.
Panel (b) shows the plot of A2 versus A3. The fast decay of A3 from a negative value
towards zero for t < Ti can be seen. Subsequently, that is, for t ∈ [Ti , TL ], the ampli-
tude A2 dominates the dynamics. As stated above, A2 increases to a level of about
500 individuals while A3 remains almost constant and eventually increases towards
30 individuals. This produces in the A2 versus A3 plot a graph that corresponds to
a steeply increasing, almost vertical line. Panel (c) shows the plot of A2 versus A1.
Again, the initial stage is characterized by an almost vertical line. A2 increases while
A1 remains approximately constant. Combining panels (b) and (c), we obtain the
amplitude dynamics in the full three-dimensional amplitude space shown in panel
(d). Panel (d) illustrates again the dramatic increase of A2 in the initial stage in terms
of a graph that starts off almost vertically (after A3 has decayed to zero), that is,
parallel to the A2 axis.

From Eq. (5.84) it follows that the initial changes over time of compartment sizes
(or subpopulation size) are determined by the evolution of A2 and the direction given
by v2. In analogy to Eq. (4.61) that holds for SIR-type models, Eq. (5.84) implies
that for SEIR models and SEIR-type models the changes of the subpopulation sizes
relative to each other are determined by the order parameter v2. That is, we have [32]

ΔS

ΔI
≈ v2,S

v2,I
,

ΔS

ΔE
≈ v2,S

v2,E
,

ΔI

ΔE
≈ v2,I

v2,E
. (5.86)

In closing these consideration on the 1β SEIR model, the equivalence of the
amplitude space and state space descriptions should be demonstrated. To this end,
the solutions A1(t), A2(t), A3(t) shown in panel (a) of Fig. 5.5 were used to deter-
mine the state variables S(t), E(t), I (t). That is, the solutions A1(t), A2(t), A3(t)
were substituted into Eq. (5.72) for the relative state u(t) and, subsequently, X(t) =
(S(t), E(t), I (t)) was computed from X(t) = Xst + u(t). The resulting trajectories
are depicted in panel (a) of Fig. 5.4 as black solid circles. As can be seen in panel (a)
the solutions obtained via the amplitudes were identical to those obtained directly
by solving the state space equations of the SEIR model.

5.7.2 2β SEIR Model and Its 3D Autonomous Amplitude
Description

The 2β SEIR model defined by Eq. (5.1) with k0 = (βI I + βE E)/N (see Eq. (5.3))
and n = 4 with X4(t) = R(t) = N − S(t) − E(t) − I (t) can be analyzed in a simi-
lar way as shown in Sect. 5.7.1. The linearization matrix L shown in Eq. (5.65) reads
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for the 2β model

L =
⎛

⎝
0 −βE −βI

0 βE − α βI

0 α −γ

⎞

⎠ . (5.87)

The matrix exhibits the eigenvector v1 = (1, 0, 0)with λ1 = 0. The eigenvalues λ2,3

have been discussed in Sect. 5.5.1 and are given by Eq. (5.38) when making the
replacements λ1 → λ2 and λ2 → λ3. For sake of completeness, let us write them
down explicitly as [13]

λ2,3 = βE − α − γ

2
± √

U , U = [βE − α − γ]2
4

+ (βE − α)γ + βIα , (5.88)

where the plus (minus) sign holds for λ2 (λ3). The prototype eigenvectors v2 and v3
with unknown coefficients vi,s = s can be obtained from the matrix (5.87) like [13,
32]

vi ∝
⎛

⎝
s
βI

λi + α − βE

⎞

⎠ . (5.89)

The parameter s can be determined from L again such that vi eventually reads

vi = 1

Zi

⎛

⎝
−βI (λi + α)

βIλi

λi (λi + α − βE )

⎞

⎠ =
⎛

⎝
vi,S
vi,E
vi,I

⎞

⎠ (5.90)

with Zi =
√

β2
I [(λi + α)2 + λ2

i ] + λ2
i (λi + α − βE )2 and i = 2, 3. The eigenvector

matrix M is given by Eq. (5.73) again and the biorthogonal vectorsw2 andw3 satisfy
Eq. (5.74) with |M | = v2,Ev3,I − v3,Ev2,I ⇒ |M | = βIλ2λ3(λ3 − λ2)/(Z2Z3). For
a matrix of the form (5.73) the biorthogonal vector w1 reads in general

w1 =
⎛

⎝
1
a
b

⎞

⎠ , a = v3,Sv2,I − v2,Sv3,I

|M | , b = v2,Sv3,E − v3,Sv2,E

|M | (5.91)

such that w1, w2, and w3 constitute the rows of the inverse matrix M−1 (see Eqs.
(5.56) and (5.57)). Having obtained the biorthogonal vectors, the vector calculation
method can be carried out to derive the amplitude equations of the 2β SEIR model.
In analogy to the derivation of Eq. (5.80), the result reads

d

dt
Ai = λi Ai + Ciδ(A)k0(A) = λi Ai + Ci p2(A1, A2, A3) ,

p2 = 1

N

(
3∑

k=1

vk,S Ak

) [
βI

∑

k=2,3

vk,I Ak + βE

∑

k=2,3

vk,E Ak

]
(5.92)
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Fig. 5.6 Eigenvector analysis comparing solutions of the 1β and 2β SEIR models (5.35) and their
SEI order parameters (unstable eigenvectors). Dotted (solid) lines show solutions of the 1β (2β
model) with βE = 0 (βE > 0). The solutions of the 1β model (dotted lines) have been presented
earlier in Fig. 5.4. Panel a: Solutions S(t), E(t), and I (t) as functions of time computed from Eq.
(5.35) for βE = 0 (dotted lines) and βE > 0 (solid lines). Panel b: The phase curves I (E) (thin
dotted and solid lines) computed from E(t) and I (t) and the (magnified) unstable eigenvectors
v2 (thick dotted lines) for βE = 0 and βE > 0 are shown. Panel c: The phase curves (thin dotted
and solid lines) of the trajectory X(t) and v2 (thick dotted lines) for βE = 0 and βE > 0 in the 3D
(S, E, I ) state space are shown. Panel d shows the same quantities as presented in panel (c) but
uses a different viewing angle. Parameters and initial conditions for the 1β model simulation as in
Fig. 5.2. For the 2β model simulation all parameters and initial conditions were the same except for
βE = 3.0/d

and Ci defined again as Ci = wi,E − wi,S . In Eq. (5.92) the relative state δ and the
rate constant k0 are given by δ(A) = ∑3

k=1 vk,S Ak and k0(A) = [βI
∑

k=2,3 vk,I Ak +
βE

∑
k=2,3 vk,E Ak]/N , respectively. Explicitly, C1 reads

C1 = v3,Sv2,I − v2,Sv3,I

|M | − 1 (5.93)

and C2, C3 are defined as shown in Eq. (5.78).
The impact of the second effective contact parameter βE is illustrated in Fig. 5.6.

Figure5.6 shows as dotted lines the simulation results obtained for the 1β SEIR
model with β = βI = 2/d, α = 0.4/d, γ = 0.5/d, and N = 1000 individuals as dis-
cussed above and presented in Fig. 5.4. In addition, Fig. 5.6 shows as solid lines the
simulation results for a 2β SEIR model with β = βI = 2/d, α = 0.4/d, γ = 0.5/d,



5.7 Applications and SEI Order Parameters 159

and N = 1000 individuals, again, but βE = 3/d. To this end, Eq. (5.34) with k0 given
by Eq. (5.35) was solved numerically. The order parameter v2 was computed from
Eq. (5.90). Panel (a) shows the graphs of S, I , and E for the two scenarios with
βE = 0 (1β scenario shown as dotted lines) and βE = 3/d (2β scenario shown as
solid lines). Comparing the two scenarios, it can be seen that due to the additional
infections originating from the group of exposed and possibly asymptomatic infec-
tious individuals in the 2β scenario, in the 2β scenario the epidemic evolves faster
and reaches higher Emax and Imax values as compared to the 1β scenario. Panel
(b) depicts the trajectories in the E-I subspace. The loop-like trajectory for the 2β
scenario is increased in magnitude as compared to the 1β scenario, which reflects
again that the maximal values Emax and Imax are increased under the 2β scenario.
Importantly, the direction of the order parameter v2 in the E-I space is rotated such
that the angle with the E axis becomes smaller. From the last relation in Eq. (5.86)
it follows that the initial stages of the two scenarios are characterized by

ΔI (βE = 0)

ΔE(βE = 0)
>

ΔI (βE = 3)

ΔE(βE = 3)
⇒ ΔE(βE = 0)

ΔI (βE = 0)
<

ΔE(βE = 3)

ΔI (βE = 3)
. (5.94)

In words, due to the infections caused by the exposed and possibly asymptomatically
infectious individuals, in the initial stage of the epidemics the increase ΔE when
measured in units of the increase ΔI becomes larger. In general, substituting Eqs.
(5.88) and (5.89) into the last relation of Eq. (5.86), we obtain

ΔI

ΔE
≈ 2

√
U + α − γ − βE

2βI
, (5.95)

where U can (alternative to Eq. (5.88)) expressed like

U = [βE + γ − α]2
4

+ βIα . (5.96)

Introducing e = βE + γ − α, Eq. (5.95) can be written like

ΔI

ΔE
≈ f (e) = −e + √

e2 + 4βIα

2βI
, (5.97)

where f (e) is a function with respect to e that decays monotonically from
√

α/βI

for e = 0 to zero for e → ∞ (note: the first derivative of f with respect to e is
negative). Consequently, in general, when increasing βE while holding all other
model parameters constant, the ratioΔI/ΔE characterizing the initial stage becomes
smaller and, conversely, ΔE/ΔI becomes larger. Returning to Fig. 5.6, in panel (c)
of Fig. 5.6 the trajectories of the simulated 1β and 2β epidemics are shown in the full
three-dimensional state space (dotted and solid lines hold for the 1β and 2β scenarios,
respectively). Again, the epidemic in the case of the 2β scenario is described by a loop
that is inflated relative to the 1β scenario (due to larger values of Emax and Imax).
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The order parameters v2 were computed from Eq. (5.90) and are shown for both
scenarios. It can be seen that the simulated epidemics during their respective initial
stages follow their respective order parameters, as expected. Comparing the order
parameters, by visual inspection, the βE parameter changes the orientation of v2 not
only in the E-I subspace but also in the entire three-dimensional state space. Panel
(d) shows the same graphs and order parameters as depicted in panel (c). However,
panel (d) presents these graphs from a different viewing point that focuses more on
the S-I plane. From this viewing point it can be seen that the ratio ΔS/ΔI < 0 that
is determined by v2 (see Eq. (5.86)) is affected by βE . Increasing βE seems to make
ΔS/ΔI smaller in the amount and, consequently, ΔI/ΔS larger in the amount. That
is, ΔI when measured in units of |ΔS| becomes larger.

5.7.3 SEIR-Type Models: 3D Autonomous Amplitude
Descriptions

Equation (5.5) formally describes epidemic models of the SEIR-type as defined by
Eq. (5.3) and k0 given by k0 = β I/N or k0 = (βI I + βE E)/N with the help of an
amplitude space description that involves a three-dimensional autonomous ampli-
tude space. From the results derived in the previous sections, it follows that in the
absence of demographic terms (i.e., for B = μ = 0) the amplitude space description
is explicitly given by

d

dt
A1 = C1 p2(A1, A2, A3) ,

d

dt
A2 = λ2A2 + C2 p2(A1, A2, A3) ,

d

dt
A3 = λ3A3 + C3 p2(A1, A2, A3) ,

d

dt
Xk = Nk(S(A), E(A), I (A), X4, . . . , Xn) , for k = 4, . . . , n (5.98)

with A = (A1, A2, A3) and

C1 = v3,Sv2,I − v2,Sv3,I

|M | − 1 , C2 = v3,I

|M | , C3 = −v2,I

|M | ,

p2 = δ(A)k0(A) =
(

3∑

k=1

vk,S Ak

)
1

N

⎡

⎣βI

∑

k=2,3

vk,I Ak + βE

∑

k=2,3

vk,E Ak

⎤

⎦ , (5.99)

where vk,S, vk,E , vk,I correspond to the eigenvector components defined by Eq.
(5.90) for k = 2, 3 and v1 = (1, 0, 0). Moreover, the eigenvalues λ2 and λ3 are
defined by Eq. (5.88) and λ1 = 0 holds. The amplitude description in terms of
Eqs. (5.98) and (5.99) describes the epidemic under consideration from the perspec-
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tive of the fixed point Xst with X1,st = Sst = N , X2,st = Est = 0, X3,st = Ist = 0.
The initial conditions A1(t0), A2(t0), A3(t0) are related to the initial state X0 by
Ai (t0) = wi (X

(3)
0 − X(3)

st ) withX(3)
0 = (S0, E0, I0) andX

(3)
st = (N , 0, 0). In this con-

text, the biorthogonal vectors wi are defined by Eqs. (5.74) and (5.91) with |M | =
v2,Ev3,I − v3,Ev2,I = βIλ2λ3(λ3 − λ2)/(Z2Z3) and Zi as shown below Eq. (5.90).
The amplitude description by means of Eqs. (5.98) and (5.99) and the state space
description bymeans of Eq. (5.3) are equivalent in the sense thatX(t) can be obtained
from solution A1(t), A2(t), A3(t) by computing X(3)(t) = (X1(t), X2(t), X3(t)) =
X(3)

st + ∑3
i=1 Ai (t)vi and solving the evolution equations for Xk with k = 4, . . . , n

listed in Eq. (5.98). For 1β models with k0 = β I/N we put βI = β and βE = 0.
The following holds both for 1β and 2β SEIR-type models. For any parameter set

λ3 < 0 holds. Therefore, close to the fixed point Xst with X1,st = Sst = N , X2,st =
Est = 0, X3,st = Ist = 0, the amplitude A3 describes the evolution of the state along
the stable eigenvector (direction) v3 with dA3/dt = λ3A3. The eigenvalue λ2 is
positive (negative) for βw > γ (βw < γ) with βw = βI + γβE/α (see Eq. (5.41))
such that for βw > γ the fixed point Xst is unstable. For βw > γ the fixed point Xst

in the subspace S, E, I corresponds to a saddle point with a neutrally stable direction
v1, an unstable direction v2, and a stable direction v3. Close to the fixed point, the
amplitude A2 describes the epidemic outbreak of interest as an increase of the disease
state along the unstable direction (or order parameter) v2. Equations (5.81) and (5.83)
hold for t ∈ [Ti , TL ] (i.e., after A3 decayed to a sufficiently low value) when X, Xst ,
and X0 in Eqs. (5.81) and (5.83) are replaced by the corresponding subspace vectors
X(3) = (S, E, I ), X(3)

st , and X(3)
0 . Likewise, if X(3)

0 is sufficiently close to X(3)
st , then

Eqs. (5.81) and (5.83) with X,Xst ,X0 → X(3),X(3)
st ,X(3)

0 for models of the SEIR-
type reduce to the respective simplified expressions in terms of Eqs. (5.84) and (5.85)
with X,Xst ,X0 → X(3),X(3)

st ,X(3)
0 .

For βw < γ the fixed point Xst is neutrally stable provided that for vanishing
amplitudes, that is, for A1 = A2 = A3 = 0, the driven dynamical system defined by
the variables Xk with k = 4, . . . , n converges in the n − 3 dimensional subspace
(X4, . . . , Xn) to a neutrally stable or asymptotically stable fixed point.

5.8 COVID-19 Outbreak in Wuhan city 2020 and its SEI
Order Parameter

The events that took place at the end of the year 2019 in the city of Wuhan, located
in the Hubei province of China, played a key role in the origin of the COVID-19
pandemic [35]. Different publications present different timelines about those events.
Therefore, no attempt will be made to present here a clear report of the history of the
beginning of the COVID-19 pandemic. Some timelines can be found in Refs. [10, 15,
18, 36–39]. In what follows the study by Pang et al. [10] and the timeline of events
reported there will be reviewed. Pang et al. considered December 31, 2019, as the day
on which the first COVID-19 case in Wuhan city was reported, which is consistent
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with an initial WHO report [35]. As such, Pang et al., considered the period from
December 2019 to March 25, 2020 and decomposed the period into three phases.
The first phase starts at a certain day in December 2019, on which the first individual
living presumably in the area of Wuhan city was infected by SARS-CoV-2. The
phase lasts until January 22, 2020. During this phase several COVID-19 cases were
confirmed. On January 23, the city of Wuhan was put on lockdown [10, 15, 40, 41].
The second phase covers the 20 days period from January 23 to February 11. During
the second phase people could not enter or leave the city. Diagnosed COVID-19
cases were quarantined. However, more rigorous quarantining procedures were not
put in place. According to Pang et al., around February 11, 2020, such more rigorous
quarantining procedures were imposed on the citizens of Wuhan city. In addition to
diagnosed COVID-19 cases, all individuals with pneumonia-related fever [10] and
all individuals who had contact with diagnosed COVID-19 cases were quarantined
[42]. Consequently, Pang et al. considered the phase from February 12 to the end of
their data analysis period, which was March 25, as the third phase.

Data about the number of confirmed COVID-19 individuals in Wuhan city can
be found in Ref. [39] for the second phase from January 23 to February 11, 2020.
Furthermore, for some selected days of the second phase some data can also be found
in Refs. [10, 15].

The second phase was modeled by Pang et al. [10] and Frank [31] with a 2β
model of SEIR-type. The model can be simplified such that it corresponds to the 2β
SEIR-model defined by Eq. (5.34) and (5.35) with a fourth variable R that satisfies
dR/dt = bI . The compartment R is interpreted as the number of cumulativeCOVID-
19 cases (for a similar idea on the level of a SIR-type model, see the discussion of Eq.
(4.82) in Sect. 4.4) and includes COVID-19 associated deaths. For sake of clarity,
let us replace R in Eq. (5.35) by C in order to indicate that C denotes the diagnosed
cases. The SEIR model (5.35) becomes the SEIC model

d

dt
S = −k0S ,

d

dt
E = k0S − αE ,

d

dt
I = αE − γ I ,

d

dt
C = bI (5.100)

with k0 defined by Eq. (5.34). Accordingly, the parameter γ denotes the removal
rate of individuals in compartment I . In this context note that the model considers
individuals in the compartment I as non-diagnosed symptomatic cases. The model
assumes that such individuals either decease due to COVID-19 with a certain death
rate a or they are diagnosed with a particular rate b and, subsequently, recover
or decease due to COVID-19. The parameter γ = a + b reflects both possibilities.
Importantly, the model assumes that as soon as individuals are diagnosed they are
quarantined (see the description of phase 2 above) such that they cannot infect others.
Note that themodel could be completedwith the variable R2 that denotes the deceased
non-diagnosed cases and satisfies dR2/dt = aI . If so, N = S(t) + E(t) + I (t) +
C(t) + R2(t) holds. As far as the interpretation of N is concerned, N will be taken
below from demographic records and is in the order of millions. Consequently,
although the number of COVID-19 associated death during the first wave in Wuhan
is a tragic number, it makes a negligibly small contribution to N . This implies that
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N can be considered as the proper population size occurring in the factor β/N . For
more details see Refs. [10, 13].

The best-fit parameters of the 2β model taken from Ref. [31] (which are related to
those reported in Ref. [10]) are: βI = 0.25/d, βE = 0.12/d, α = 0.17/d, γ = 0.26/d,
a = 0.04/d, and b = 0.22/d. A population of N = 9 · 106 was assumed based on
demographic records [10, 31]. From the model parameters it follows βw = 0.45/d,
which is larger than the removal rate γ. Consequently, the model-based analysis
suggests that during the phase 2 the disease-free fixed point for the population of
Wuhan was unstable [13, 31]. In particular, from Eq. (5.88) and the aforementioned
parameter estimates, it follows that the COVID-19 outbreak in Wuhan during phase
2 was characterized by the eigenvalues λ2 = 0.08/d and λ3 = −0.39/d [31]. The
time constant τ = 1/λ2 was τ = 12.4 days. Accordingly, the unstable amplitude
A2 increased in 12.4 days by a factor e ≈ 2.72. Moreover, λ3 was in the amount
five times larger than λ2. Therefore, the dynamics evolved quickly along the stable
direction v3 of the saddle towards the unstable direction v2. The notion of A2 as
slowly evolving unstable amplitude and A3 as fast evolving stable amplitudes as
discussed in Sect. 2.10 was supported.

The 2β SEIR model defined by Eq. (5.34) and (5.100) was solved numerically
[31]. January 23 was used as the initial time point and was referred to as day t = 0.
The initial conditions were taken from Ref. [10] as E(0) = 3251, I (0) = 2731,
R(0) = 354, and S(0) = N − E(0) − I (0) − R(0). Figure5.7 shows the simulation
results obtained in Ref. [31] and the reported confirmed COVID-19 cases.

Panel (a) shows the trajectories S(t) (top subpanel), E(t) and I (t) (bottom sub-
panel) obtained from the simulation. Accordingly, during phase 2 the number of
susceptibles S(t) decayed monotonically, while the number of exposed and possibly
asymptomatic infectious E and the number of symptomatic infectious I increased
monotonically. Panel (b) shows the model solution C(t) as function of time and
the data as reported in Ref. [39] assuming 496 COVID-19 cases on January 23 as
reported in Ref. [10]. The model fits the data with moderate accuracy.

In panel (c) the trajectories E(t) and I (t) shown in panel (a) are plotted in the
E-I plane as phase curve I (E). The order parameter v2 computed from Eq. (5.90)
located at (E, I ) = (0, 0) and projected into the E-I plane is depicted in panel (c)
as well. As can be seen in panel (c), during an intermediate period Ti the trajectory
approaches the direction defined by the order parameter. A detailed analysis based
on the amplitude equations shows that during the intermediate period the amplitude
A3 converges from its finite initial value to a value close to zero, consistent with the
linearized amplitude equation dA3/dt = λ3A3 with λ3 < 0. Such an intermediate
period during which A3 decays in magnitude has been discussed in the context of
Figs. 5.4 and 5.5 (in particular, see panel (b) of Fig. 5.4).

Panel (d) shows the trajectory of the SEIR-type model in the three-dimensional
state space. The order parameter v2 is shown centered at three different locations.
First, v2 is shown located at the fixed point X(3)

st = (N , 0, 0) (dashed-dotted black
line). By visual inspection, the trajectoryX(3)(t) evolves parallel to this vector after an
intermediate period Ti . The parallel shift is quantitatively given by the term A1(t0)v1
occurring in Eq. (5.81). The order parameter v2 is also plotted in panel (d) at the loca-
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tion Xst + A1(0)v1 (see dotted black line), which accounts for the aforementioned
shift. As can be seen, as expected, after the intermediate period Ti , the trajectory
X(3)(t) evolves along the direction specified by (Xst + A1(0)v1) + A2v2, where A2

plays the role of a coordinate. Simulation of the amplitude equations (5.92) reveals
that the intermediate period Ti of the epidemic in Wuhan took about 5 days. Panel
(d) shows a third option for plotting the order parameter v2. Accordingly, the vector
v2 is shifted to the end stateX(3)(Ti ) of the intermediate period (see dotted gray line).
Panel (d) reveals that the trajectory X(3)(t) followed the order parameter direction
v2 depicted in this way. The second and third options to plot v2 suggest that the
epidemic inWuhan city as measured in terms of S, E , and I approximately followed
the order parameter v2 after the amplitude A3 converged to zero.

In summary, the model-based analysis of the COVID-19 outbreak in Wuhan city
supports the notion that the epidemic during phase 2 evolved along the SEI order
parameter v2 defined by Eq. (5.90) and shown in panels (c) and (d) of Fig. 5.7. The

Fig. 5.7 Eigenvector analysis of the COVID-19 outbreak in Wuhan, China, based on the 2β SEIR
model (5.100). Panel a shows the solutions S(t) (top subpanel), E(t) (solid line, bottom subpanel),
and I (t) (dashed line, bottom subpanel) of Eq. (5.100). Panel b: Confirmed COVID-19 cases during
the observation period starting January 23, 2020 (gray circles) reconstructed fromRefs. [10, 39] (see
text) and C(t) as computed from Eq. (5.100). Panel c: Phase curve I (E) (solid line) obtained from
E(t) and I (t) plotted in the E-I subspace. The projection of the order parameter v2 (magnified by
a certain factor) in the E-I subspace is shown as well (dotted line). Panel d: The disease state X(t)
is shown as phase curve in the 3D (S, E, I ) state space together with v2 (dotted and dashed-dotted
gray and black lines). v2 was magnified for visualization purposes and is shown at three different
locations. See text for parameters and initial conditions
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analysis also reveals that Eq. (5.84) only holds if A3(t0) is sufficiently small as stated
in Sect. 5.7.1. This was not the case for the COVID-19 outbreak in Wuhan – at least
when analyzing the outbreak within a SEIR modeling framework. The epidemic
outbreak in Wuhan followed the unstable direction of a saddle as described by Eq.
(5.81) that takes the impact of A3(t0) into account. Alternatively, it was shown that
the saddle point characterizing the COVID-19 outbreak in Wuhan can be described
with the help of ΔX(3) ≈ v2ΔA2 (see Eq. (5.84)) when interpreting state changes
ΔX(3) and amplitude changesΔA2 in a different way. Accordingly,ΔX(3) ≈ v2ΔA2

reflects the dynamics of the epidemic along the unstable saddle direction subsequent
to the intermediate period Ti with

ΔX(3) = X(3)(t) − X(3)(Ti ) , ΔA2 = A2(t) − A2(Ti ) . (5.101)

In this context, X(3)(Ti ) and A2(Ti ) act as reference state and reference amplitude,
respectively.
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Chapter 6
Nonlinear Physics of Epidemics: Part C

This chapter addresses compartmental, epidemiologicalmodels, in general, and high-
dimensional models featuring a relatively large number of variables, in particular.
It begins with the introduction of the minimal subspace of variables leading to an
autonomous amplitude space description in the linear domain. Such autonomous
amplitude space descriptions are worked out in detail for the SIR and SEIR models.
The benefit of this approach is demonstrated for high-dimensional models for which
the autonomous amplitude space description in the linear domain allows for a stability
analysis, on the one hand, but, on the other hand, involves a relatively small number of
variables. Applications to the COVID-19 outbreaks during the year 2020 in Wuhan,
China, and West Africa are also presented.

6.1 Higher-Dimensional Models and Non-autonomous
Amplitude Equation Descriptions

In Chaps. 4 and 5 amplitude space descriptions of epidemics are presented that
involve closed sets of amplitude equations. As explained in Sect. 5.1, in order to
arrive at such descriptions, it is plausible to focus on the variables that describe
infectious individuals who are actually in the position to infect others. In order to
arrive at closed descriptions that address those variables, typically auxiliary vari-
ables need to be added. For example, for models of the SIR-type and SEIR-type
the size of the susceptible population needs to be added to derive closed descrip-
tions that address the evolution of the relevant infectious individuals. By adding
auxiliary variables, the dimensionality of the problem at hand increases. In general,
higher-dimensional problems are more difficult to analyze than lower-dimensional
problems. Therefore, in order to study epidemics fromhigh-dimensional perspectives
but keep the respective amplitude spaces low-dimensional, an approach alternative
to the approach discussed in Chaps. 4 and 5 may be considered.
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In such an alternative approach, the objective no longer is the derivation of ampli-
tude equations that reflect autonomous systems. Instead, the objective is to derive
amplitude equations that are autonomous in the linear domain. It is then accepted
that in the nonlinear domain the amplitude space descriptions come in terms of non-
autonomous systems. Following this idea, in what follows, amplitude equations that
depend on state variables and, consequently, describe non-autonomous systems will
be considered. More precisely, just as in Chaps. 4 and 5, amplitude descriptions will
be considered that capture all compartment variables of infectious individuals who
are in the position to infect others (i.e., belong to the class of actually infectious
individuals). Unlike the approach used in Chaps. 4 and 5, non-infected variables are
typically not addressed from the amplitude space perspective and additional vari-
ables describing infected but non-infectious individuals may be added (i) if they are
of interest or (ii) if they are needed to arrive at linearized autonomous systems (see
below).

Let D0 denote the n-dimensional state space that describes all possible disease
states of a population of interest. Let D+ denote the subspace that involves the
actually infectious individuals (i.e., those who are the sources of new infections)
and some supplemental variables, if necessary. The remaining variables span the
space D−. The subspace D+ is then transformed into an amplitude space, that is,
described with the help of a new basis. The alternative approach has the benefit that
the dimension of the amplitude space can be kept relatively small. The subspace
D+ has to be selected in such a way that the linearized system at the fixed point
Xst of interest corresponds to an autonomous system. Therefore, the additional (i.e.,
supplemental) variables can be selected for two reasons: (i) they are of interest or
(ii) they are needed to establish an autonomous linearized dynamical systems that
describes accurately the dynamics in the subspace D+ as long as the state X ∈ D0

is close to Xst . If so, close to the fixed point the amplitude space description allows
for a convenient discussion of the stability of the fixed point projection in D+. That
is, for the components X+ of X that belong to D+ the dynamics close to Xst can be
inferred from the amplitude dynamics. Typically, the supplemental variables reflect
infected but non-infectious variables (see below).

6.1.1 Model Formulation and Decomposition of States

Our departure point is an epidemic that can be described in terms of a compartmental
model of the formdX/dt = N(X) (seeEq. (2.1))with state vectorX = (X1, . . . , Xn).
The state space D0 is given by lRn

+. Without loss of generality, let the firstm compart-
mentswithm ≥ 1 andm < n denote various types of infectious individualswho actu-
ally infect others and other individuals who are selected because they are needed to
establish a linearized autonomous model or are of particular interest. That is, the first
m variables span the space D+ introduced above. Accordingly,X+ = (X1, . . . , Xm)

and X− = (Xm+1, . . . , Xn) denote vectors of the respective subspaces D+ and D−
(with D0 = D+ ∪ D−) and X = (X+,X−).
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Note that this approach to decompose the original state space includes as a special
case the approach that will be discussed in Chap. 7 and has been briefly addressed in
Sect. 5.1. In this case, the state space is decomposed into infected and non-infected
compartments and the first m variables denote the variables that describe infected
individuals [1, 2].

Let us return to the more general case that does not require that D+ contains all
infected compartments. The disease-free state Xst is defined by Xst = (X+

st ,X
−
st ). If

D+ only contains infectious and infected variables, then X+
st = (0, . . . , 0). If D−

contains infected or infectious variables (e.g., infectious hospitalized patients that
are perfectly isolated and cannot infect others), then some components ofX−

st vanish
for the disease-free state. As indicated, it is assumed that the disease-free state is a
fixed point (or stationary state) of the dynamics dX/dt = N(X). Let us split the right-
hand side functionN intoN = (N+,N−). Then the dynamical system of interest can
equivalently be expressed in terms of two coupled dynamical systems like

d

dt
X+ = N+(X = (X+,X−)) ,

d

dt
X− = N−(X = (X+,X−)). (6.1)

6.1.2 Non-autonomous Amplitude Equation Descriptions

Using the vector and matrix calculation methods described in Sects. 2.9.3 and 2.9.4,
let us map the m-dimensional subspace D+ with state vector X to a m-dimensional
amplitude space described by the amplitude vector A = (A1, . . . , Am). In this con-
text, it is frequently assumed that the linearized dynamics of the infected subsystems
at the disease-free fixed point is independent of the the variables of the non-infected
subsystem [1, 2].

Likewise, in Sect. 6.1.1 it has been explained that supplemental variables may be
added to obtain an autonomous linearized model at Xst , where those supplemen-
tal variables typically correspond to infected variables. In general, let u = X − Xst

denote a perturbation in D0 and du/dt = Lu (see Eq. (2.16)) describe the linearized
system atXst with linearization matrix L composed of coefficients Lik . Then the two
aforementioned assumptions that (i) the linearized infected system atXst is indepen-
dent of the non-infected system and (ii) supplemental, infected variables are added to
obtain an autonomous linearized system, implies that L can be expressed by means
of the three matrices L+, A, and B like

L =
(
L+ 0
A B

)
. (6.2)

In Eq. (6.2) thematrix L+ is the upper, left-cornerm × mmatrixwith coefficients Lik

and i, k ≤ m. The zero entry in the upper, right corner of L stands for Lik = 0 with
i ≤ m and k ≥ m + 1. From Eq. (6.2) the linearized equation of dX+/dt = N+(X)

at Xst is given by



172 6 Nonlinear Physics of Epidemics: Part C

d

dt
X+ = L+X+ , L+

ik = ∂

∂X+
k

Ni (Xst ), (6.3)

where L+ is the linearizationmatrix in D+. It is fair to say that Eq. (6.3) should not be
considered as a conclusion. Rather, Eq. (6.3) should be considered as starting point
for decomposing D0 into D+ and D−. That is, given an epidemic described in terms of
n variables X1, . . . , Xn , the first step is to select all variables describing (individuals
who act as) sources of new infections (i.e., actually infectious individuals) and to
add additional variables (which are typically variables of infected individuals) such
that Eqs. (6.2) and (6.3) hold. In this sense, Eq. (6.3) describes a key assumption of
the approach that will be presented below.

Irrespective whether Eq. (6.3) is regarded as conclusion or starting point, in what
follows, it is further assumed that the matrix L+ exhibits m linearly independent
eigenvectors vk associated with the eigenvalues λk . As pointed out in Sections 2.6.2
and 5.6, if the vectors vk are taken as column vectors, then they constitute the matrix
M+ defined by

M+ = (v1, . . . , vm) , (6.4)

whose inverse matrix M−1
+ exists. Letwk describe the rows of the inverse matrix like

M−1
+ =

⎛
⎝ w1

. . .

wm

⎞
⎠ . (6.5)

Then, wivk = δik holds and wi and vk form a biorthogonal basis. In what follows,
for sake of simplicity, it will be assumed that all supplemental variables are infected
variables or they vanish at the fixed point of interest such that X+

st = (0, . . . , 0). In
this case, there is no need to distinguish between the relative state u+ in D+ and
the state X+ because u+ = X+ − X+

st = X+. The amplitude space spanned by the
amplitude variables A1, . . . , Am can be defined with the help of the mapping

X+ =
m∑

k=1

vk Ak ⇔ X+ = M+A , (6.6)

which implies
Ak = wkX+ ⇔ A = M−1

+ X+ . (6.7)

Equation (6.6) describes the superposition of a stateX+ ∈ D+ in terms of the ampli-
tude variables A1, . . . , Am . In other words, Eq. (6.6) defines the mapping of the
amplitude space to the state space D+. Vice versa, Eq. (6.7) describes the mapping
of the state space D+ to the amplitude space. In order to derive the amplitude equa-
tions defining the dynamics of A1, . . . , Am , the dynamical system dX+/dt = N+(X)

is decomposed into the linear part (6.3) and a remainder term R such that

d

dt
X+ = N+(X) = L+X+ + R(X+,X−) (6.8)
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(see Sect. 2.9.3). Let us multiply Eq. (6.8) by M−1
+ . Then, with the help of

M−1
+ X+ = A we obtain

d

dt
A = M−1

+ L+X+ + M−1
+ R(X+,X−) . (6.9)

Finally,X+ occurring in Eq. (6.9) can be expressed likeX+ = M+A and the identity
M−1

+ L+M+ = D can be exploited. From Eq. (6.9) it then follows

d

dt
A = DA + M−1

+ R(M+A,X−) . (6.10)

As far as the dynamics in D− is concerned, fromEq. (6.1) it follows that the evolution
equation for X− can be expressed like

d

dt
X− = N−(X+,X−) = N−(M+A,X−) . (6.11)

Equations (6.10) and (6.11) read in components

d

dt
Ak = λk Ak + wkR(M+A,X−) , (6.12)

d

dt
X−

j = N−
j (M+A,X−) (6.13)

with k = 1, . . . ,m and j = m + 1, . . . , n, respectively. Equation (6.10) as a vector
equation or Eqs. (6.12) in component form describe the epidemic of interest in terms
of a m-dimensional amplitude space description that captures all actually infectious
individuals. In addition, the amplitude space description may address additional
individuals (e.g., infected but non-infectious individuals). The evolution of the entire
state of the epidemic of interest is described byEqs. (6.10) and (6.11) or, alternatively,
by Eqs. (6.12) and (6.13).

In general, the amplitude space description does not correspond to an autonomous
system. Due to the nonlinear terms wkR occurring in Eqs. (6.10) and (6.12), the
amplitude dynamics depends in general on the variables X− ∈ D−. However, the
linearized system at Xst in the subspace D+ is described in terms of the linear parts
of the amplitude equation description. That is, the evolution equations dAk/dt =
λk Ak (see Eq. (6.12)) capture the dynamics in D+ close to the fixed point. They are
sufficient to discuss the evolution of the state X+ in D+ close to the fixed point. To
this end, X+ = ∑m

k=1 vk Ak can be used (see Eq. (6.6)).

6.1.3 Epidemic Outbreaks and Subsiding Epidemics

Let λmax denote the eigenvalue of L+ with the largest real part. Then, we can distin-
guish between two cases.
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Epidemic outbreaks

If lR{λmax} > 0 holds, then the disease-free fixed point X+
st = (0, . . . , 0) in D+ is

an unstable fixed point. Let k(max) denote the index of the eigenvalue with the
largest real part: λk(max) = λmax. In order to discuss the main aspects of the case
lR{λmax} > 0, let us assume that there is only a single positive eigenvalue (for an
example in this regard see the SEIR model below). In this case, the fixed point
X+

st ∈ D+ corresponds to a saddle point that exhibits one unstable direction given by
vk(max). All other directions in D+ correspond to stable directions characterized by
stable eigenvectors. Consequently, the dominant dynamics takes place along vk(max).
The amplitude Ak(max) describing the dynamics along this direction increases in
magnitude during the initial stage of an epidemic [3, 4]. The unstable eigenvector
vk(max) corresponds to the order parameter of the disease outbreak and the amplitude
Ak(max) denotes the order parameter amplitude [5, 6].

Subsiding epidemic driven by the linear system

If lR{λmax} > 0 holds, nevertheless, it is possible that due to the impact of the non-
linear terms the amplitudes A1, . . . , Am converge to zero and the epidemic subsides.
In contrast to this kind of subsiding of an epidemic driven by nonlinear terms, let us
consider the case λmax < 0 and let us assume that the linear terms in Eq. (6.12) dom-
inate over the nonlinear terms. Furthermore, just as in the case of a single positive
eigenvalueλmax discussed above that is qualitatively different from all other (negative
eigenvalues) λ j with j �= k(max), let us assume that there exist a gap in the eigen-
value spectrum between λmax and the remaining eigenvalues λ j with j �= k(max).
In order to describe this gap, we consider the time constants τmax = 1/λmax and
τ j = 1/lR(λ j ). If |λmax| � |lR(λ j )| then τ j 	 τmax holds. Consequently, the dynam-
ics of Ak(max) along vk(max) is slow relative to the dynamics of the amplitudes in other
directions. In other words, the amplitudes A j with j �= k(max) quickly decay to zero,
while Ak(max) decreases slowly. If so, the subsiding of an epidemic is determined by
the dynamics of Ak(max) and the direction vk(max).

6.2 SIR and SEIR Models: Non-autonomous Amplitude
Equation Descriptions

6.2.1 SIR Model: Trivial Case m = 1

Let us briefly consider the trivial case m = 1. This case can be illustrated for the
SIR model (3.16). In this case, we have m = 1, n = 3, and X = (I, S, R). The
space D+ is one-dimensional with X+ = I . The space D− is described by the state
vector X− = (S, R). In order to introduce an amplitude space, let us use the fixed
point Xst = (0, N , 0) with Sst = N . Accordingly, the relative state u = (u1, u2, u3)
with respect to the fixed point Xst = (0, N , 0) exhibits the components u1 = I ,
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u2 = S − N , u3 = R. The linearization of the evolution equation of I (see Eq. (3.16))
at Xst = (0, N , 0) is given by Eq. (6.3) for m = 1 and, consequently, yields a 1 × 1
matrix L+ with a single coefficient: the eigenvalueλ = β − γ [7]. Next, the subspace
D+ can be mapped to a one-dimensional amplitude space described by the variable
A1. In fact, Eq. (6.6) for m = 1 reduces to the identity I = A1 because the one-
dimensional eigenvector v1 corresponds to the scalar 1. Substituting I = A1 and S =
N + u2 into the evolution equation of I (see Eq. (3.16) again), the amplitude equation

d

dt
A1 = λA1 + u2k0(A1) (6.14)

can be obtained, where the rate constant (i.e., “force of infection”) k0 is given in
terms of the linear function k0(A1) = βA1/N . From the evolution equations of S
and R (see Eq. (3.16)), it follows that

d

dt
u2 = −(N + u2)k0(A1) ,

d

dt
R = γA1 . (6.15)

Equations (6.14) and (6.15) exemplify Eqs. (6.12) and (6.13), respectively, for the
case of the SIR model.

6.2.2 1β and 2β SEIR Models and m = 2

Next, let us consider the case m = 2 for the SEIR model (3.43). This case was
discussed inRefs. [3, 4]. In this case,we havem = 2, n = 4,X = (E, I, S, R),X+ =
(E, I ), and X− = (S, R). That is, the system variables are split into the infected
and non-infected variables. In what follows, let us consider the fixed point Xst =
(0, 0, N , 0) with Sst = N . In this case, the linearization matrix L+ reads

L+ =
(−α β

α −γ

)
(6.16)

and exhibits the eigenvalues

λ1,2 = −α + γ

2
±

√
(α + γ)2

4
+ α(β − γ) (6.17)

(see Eq. (5.67)). The plus (minus) sign holds for λ1 (λ2). Equation (6.17) implies that
for arbitrary parameters valuesα,β, γ > 0we haveλ2 < 0 andλ1 = λmax > λ2. For
β > γ (β < γ) we have λ1 > 0 (λ1 < 0). The eigenvectors of L+ read
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vi =
(

vi,E
vi,I

)
= 1√

(λi + α)2 + β2

(
β

λi + α

)
(6.18)

andhavebeenderived inSect. 5.5.2 (seeEq. (5.45)). The relative stateu = X − Xst =
(E, I, u3, R) involves u3 = S − N ≤ 0. The amplitude equations can be obtained
as outlined in Sect. 6.1.2 and read [3, 4, 8]

d

dt
A1 = λ1A1 + C1u3k0(A1, A2) ,

d

dt
A2 = λ2A2 + C2u3k0(A1, A2) (6.19)

with

C1 = v2,I

|M+| , C2 = − v1,I

|M+| , k0 = β

N
(v1,I A1 + v2,I A2) . (6.20)

In Eq. (6.20) the determinant |M+| = v1,Ev2,I − v2,Ev1,I of M+ reads explicity
|M+| = β(λ2 − λ1)/(Z1Z2)with Zi = √

(λi + α)2 + β2. The dynamics of the non-
infected system is given by

d

dt
u3 = −(N + u3)k0(A1, A2) ,

d

dt
R = γ(v1,I A1 + v2,I A2) . (6.21)

Furthermore, from Eqs. (6.6) and (6.18) the mappings (A1, A2) → (E, I ) and
(E, I ) → (A1, A2) can be found as

E = v1,E A1 + v2,E A2 , I = v1,I A1 + v2,I A2 (6.22)

and

A1 = v2,I E − v2,E I

|M+| , A2 = v1,I E − v1,I I

|M+| . (6.23)

Equation (6.19) shows that the amplitude equations depend on u3, that is, the
state variable S = N + u3. Consequently, the amplitude equations describe a non-
autonomous system. However, u3 only occurs in the nonlinear parts of the amplitude
equations. Close to the fixed point, the amplitude equations are independent of u3
(and R) and describe the dynamics of an autonomous system.

The SEIR amplitude equations given by Eqs. (6.19) and (6.21) have already
been derived in Sect. 2.9.2 (see Eq. (2.84)). While in Sect. 2.9.2 the scalar cal-
culation method was used, in the derivation above the vector calculation method was
used. Importantly, in Sect. 2.9.2 the amplitude equations were derived in order to
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demonstrate the scalar calculation method. An explanation why only the variables E
and I are transformed into amplitude space was not given. This motivation has been
given in Sect. 6.1.

Let us briefly compare the autonomous systems approach with the non-
autonomous systems approach in the context of the SEIR model. That is, let us
compare the autonomous three-variable amplitude equation description (5.80) of
the SEIR model with the non-autonomous two-variable amplitude equation descrip-
tion (6.19) of the SEIR model. In fact, the evolution equations of both descriptions
exhibit the same structure: dAi/dt = λi A1 + Ci yk0, where y = δ = S − N in Eq.
(5.80) and y = u3 = S − N in Eq. (6.19) holds. That is, while the deviation S − N
is denoted by δ in Eq. (5.80), it is denoted by u3 in Eq. (6.19). The key difference
between the two descriptions is that Eq. (5.80) describes a three-variable autonomous
system, whereas Eq. (6.19) describes a two-variable non-autonomous systems. The
variable y = δ in Eq. (5.80) is expressed in terms of amplitudes like δ(A), which
yields a closed description in terms of amplitudes. In contrast, the variable y = u3 in
Eq. (6.19) corresponds to a variable external to the amplitude space description. The
amplitude dynamics depends on this external time-dependent variable. Of course,
when taking A1, A2, and u3 together, a closed set of evolution equations is obtained.
That is, the triplet A1, A2, and u3 that evolves according to Eqs. (6.19) and (6.21)
describes an autonomous system. Importantly, the 3D eigenvectors v2 and v3 of the
autonomous description are related to the 2D eigenvectors v1 and v2. The components
of the 3Dvectors v2 and v3 point in the E-I space in the same direction as their respec-
tive 2D eigenvectors v1 and v2. That is, v2,E (3D)/v2,I (3D) = v1,E (2D)/v1,I (2D)

and v3,E (3D)/v3,I (3D) = v2,E (2D)/v2,I (2D) holds. However, since the 3D vec-
tors have three components, while the 2D vectors only exhibit two components, the
normalization of the vectors to unity implies that the components of v2(3D) and
v3(3D) in the E-I space are smaller in magnitude than the respective components of
v1(2D) and v2(2D). This also affects the coefficients Ci occurring in the amplitude
equations of the form dAi/dt = λi A1 + Ci yk0 and the weights vi,E and vi,I occur-
ring in k0. In particular, the autonomous approach yields a 3D unstable eigenvector
v2 (or SEI order parameter) that determines in the three-dimensional state space
spanned by S, E , and I the initial dynamics of an epidemic close to an unstable
disease-free fixed point (see Sects. 5.7.1 and 5.7.2 and Figs. 5.4 and 5.6). In con-
trast, the non-autonomous approach yields a 2D unstable eigenvector v1 (or EI order
parameter) that determines in the two-dimensional subspace spanned by E and I the
initial dynamics of an epidemic emerging from the unstable disease-free fixed point
E = I = 0. Both descriptions are consistent. As mentioned above, the 3D eigenvec-
tor v2 points in the E-I subspaces in the same direction as its 2D counterpart vector
v1. This issue has been discussed and illustrated explicitly in Sect. 5.5 (e.g., compare
panel (c) of Fig. 5.2) with panel (b) of Fig. 5.4).

The benefit of the non-autonomous approach to the SEIR model is that the
approach produces an amplitude space description that is reduced by 1 dimension.
Moreover, the closed description in terms of A1, A2, and u3 involves the perturbation
or relative state u3 = S − N that is directly linked to the number of susceptibles. u3
describes the change of susceptibleswith respect to thefixedpoint value Sst = N . The
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disadvantage is that the evolution equation of u3 contains linear terms in A1 and A2

like du3/dt = −Nk0(A1, A2) + nonlinear terms. That is, the three-variable system
A1, A2, u3 does not exhibit diagonal form close to the fixed point A1 = A2 = u3 = 0.

So far, the 1β SEIR model was discussed. The 2β SEIR model defined by Eqs.
(5.34) and (5.35) with dR/dt = γ I can be discussed by analogy. The following
results can be obtained [3, 8]. The eigenvalues λ1,2 are given by Eq. (5.38), which
we copy here for sake of completeness as

λ1,2 = βE − α − γ

2
± √

U , U = [βE − α − γ]2
4

+ (βE − α)γ + βIα , (6.24)

where the plus (minus) sign holds for λ1 (λ2). The eigenvectors v1 and v2 read

vi =
(

vi,E
vi,I

)
= 1

Zi

(
βI

λi + α − βE

)
(6.25)

with Zi =
√

(λi + α − βE )2 + β2
I (see also the E , I components in Eq. (5.90)). The

evolution equations for the amplitudes A1 and A2 and the non-infected variables u3
and R are given by Eqs. (6.19) and (6.21), respectively, with C1 and C2 as defined
in Eq. (6.20), |M+| = βI (λ2 − λ1)/(Z1Z2), and

k0(A1, A2) = 1

N

(
βI

∑
k=1,2

vk,I Ak + βE

∑
k=1,2

vk,E Ak

)
= h1A1 + h2A2 (6.26)

(see alsoEq. (5.92))withh1 = (βIv1,I + βEv1,E )/N andh2 = (βIv2,I + βEv2,E )/N
[3, 8]. The mappings given by Eqs. (6.22) and (6.23) also hold for the 2β case pro-
vided that the eigenvectors components listed in Eq. (6.25) are used.

6.2.3 SEIR-Type Models and Their Non-autonomous m = 2
Amplitude Equation Descriptions

Model of SEIR-type as defined by Eq. (5.3) in the absence of demographic terms
(i.e., for B = μ = 0) can be studied using the 2D amplitude equation description.
To this end, the compartment variables are listed like X = (E, I, S, X4, . . . , Xn). In
this case, Eq. (5.3) reads

d

dt
E = k0S − αE ,

d

dt
I = αE − γ I ,
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d

dt
S = −k0S ,

d

dt
Xk = Nk(E, I, S, X4, . . . , Xn) for k = 4, . . . , n (6.27)

with k0 = β I/N or k0 = (βI I + βE E)/N . Subsequently, the three state variable S,
E , and I are transformed into the variables A1, A2, and u3 by means of Eq. (6.22)
and u3 = S − N . In analogy to Eqs. (6.19) and (6.21), the corresponding evolution
equations read

d

dt
u3 = −(N + u3)k0(A1, A2) ,

d

dt
A1 = λ1A1 + C1u3k0(A1, A2) ,

d

dt
A2 = λ2A2 + C2u3k0(A1, A2) . (6.28)

For the 1β and 2β cases the coefficientsC1 andC2 and the rate constant k0 are defined
as discussed in Sect. 6.2.2. The evolution equations for the remaining variables Xk

become
d

dt
Xk = Nk(E(A), I (A), S = N + u3, X4, . . . , Xn) (6.29)

with k = 4, . . . , n. Equations (6.28) and (6.29) include the 1β and 2β SEIR models
discussed in the previous section as special cases.

The three-variablemodel (6.28) has been used inRefs. [3, 4, 8] to discussCOVID-
19 epidemics in China and Italy (see also Sect. 6.3 below). In particular, in Ref. [3]
a detailed discussion of the properties of the coupled set of differential equations
(6.28) can be found.

Accordingly, let us first discuss the signs of the variables A1, A2, and u3. From S =
N + u3 it follows that u3 ≤ 0. Furthermore, for any parameter set α,βI ,βE , γ > 0
the following inequalities hold:

λ2 < 0 , k0 ≥ 0 , λ1 > λ2 ⇒ |M+| < 0 , vi,E > 0 ,

λ1 + α − βE > 0 ⇒ v1,I > 0 ,

λ2 + α − βE < 0 ⇒ v2,I < 0 . (6.30)

They also hold for 1β models (i.e., for βI = β and βE = 0). In particular, from
Eqs. (6.24) and (6.25) and the alternative way to express U shown in Eq. (5.39), it
follows that

λi + α − βE = − e

2
±

√
e2

4
+ βIα (6.31)

with e = βE + γ − α, where the plus (minus) sign holds for i = 1 (i = 2), which
implies that λ1 + α − βE > 0 and λ2 + α − βE < 0 holds as listed in Eq. (6.30).
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From Eq. (6.30), the mapping A1 = (v2,I E − v2,E I )/|M+|, and E, I ≥ 0 it fol-
lows that A1(t) ≥ 0 at any time. In contrast, A2 can assume both positive and negative
values as can be shown by numerical calculations.

Let us studynext the dynamics of awave-solution of theSEIRmodel.Accordingly,
let us consider the caseβ > γ (1β model) orβw > γ (2β model) such thatλ1 > 0 and
λ2 < 0holds. Furthermore, it is assumed that the disease (or health) stateXof the pop-
ulation under consideration is sufficiently close to the fixed pointXst with E = I = 0
and Sst = N (i.e., u3 = S − N , A1, A2 are sufficiently small such that the nonlin-
ear terms Gi = Ciu3k0 of the amplitude equations can be neglected). Accordingly
X+

st = (E, I ) = (0, 0) is an unstable fixed point (a saddle point). From the linear parts
of the amplitude equations listed in Eq. (6.28) it follows that initially A1 increases
exponentially like A1(t) = A1(t0) exp{λ1(t − t0)}. In contrast, the amplitude A2 ini-
tially decays in the amount like |A2(t)| = |A2(t0)| exp{−|λ2|(t − t0)}. Consequently,
the amplitude A1(t) describes the outbreak of the epidemic in the direction specified
by v1. In other words, in the space spanned by E and I the dominant dynamics takes
place in the direction v1. The vector v1 can be regarded as the EI order parameter of
the disease outbreak and A1 as its order parameter amplitude (see Sect. 2.8).

In particular, for bifurcations [5, 6] typically the inequality |λ2| 	 λ1 holds. In
terms of the time constants τi = 1/|λi | related to the eigenvalues λi the condition
|λ2| 	 λ1 implies that τ2 � τ1 holds. In this case A2 decays in magnitude to zero
faster than A1 increases over time. For epidemic outbreaks that satisfy this kind of
time scale separation, after an intermediate period Ti the contribution of A2 to the
dynamics in the E-I can be neglected. From Eq. (6.6) it then follows that

d

dt
X+ ≈ v1

d

dt
A1 ⇒ ΔX+ ≈ v1ΔA1 (6.32)

with ΔX+ = X+(t + Δt) − X+(t) and ΔA1 = A1(t + Δt) − A1(t). Consequently,

ΔE

ΔI
≈ v1,E

v1,I
. (6.33)

holds. Eq. (6.33) states that the order parameter describes the ratio of the changes in
the size of the compartments E and I . In particular, using t0 as reference point, from
Eq. (6.32) and dA1/dt ≈ λ1A1 it follows that

X+(t) = v1A1(t0) exp{λ1(t − t0)} (6.34)

consistent with the general discussion in Sect. 2.7 (see also Eq. (2.47)). Equations
(6.32) and (6.34) state that the precise initial conditions E(t0) and I (t0)of an epidemic
do not matter [4, 9]. The dynamics is pushed towards the trajectory X+(t) described
by Eqs. (6.32) and (6.34). For similar considerations see also Sect. 5.7.1.

Having discussed the initial dynamics of a wave-solution close to the unstable
disease-free fixed point, let us consider next the long term dynamics. In this case, the
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nonlinearities Gi = Ciu3k0 play a role. In this context note that for any parameters
α,βI ,βE , γ > 0 the following inequalities hold:

C1 > 0 ,C2 > 0 , u3 ≤ 0 , k0 ≥ 0 ⇒ Gi = Ciu3k0 ≤ 0 . (6.35)

In particular, the inequalities C1 > 0 and C2 > 0 follow from Eq. (6.20) and the
inequalities listed in Eq. (6.30). As stated in Eq. (6.35), the nonlinearities are neg-
ative functions Gi = Ciu3k0 < 0 for u3 �= 0 and k0 �= 0 or vanish like Gi = 0 for
u3 = 0 or k0 = 0. As mentioned above, A1 > 0 increases initially like an exponen-
tial function, whereas A2 decease in magnitude during the intermediate period Ti .
However, A2 may increase in magnitude at a later time point t > Ti . In the long time
limit, A1 decays in magnitude due to the impact of the nonlinearity G1 < 0, whereas
A2 decays in magnitude due to the combined impacts of the linear term λ2A2 and
the nonlinear term G2 < 0. Eventually, A1 and A2 vanish. That is, the amplitudes
converge to the fixed point A1 = A2 = 0, which corresponds in state space to the
location X+

st = (E, I ) = (0, 0).

6.3 COVID-19 Outbreak in Wuhan City 2020 and Its EI
Order Parameter

In Sect. 5.8 the COVID-19 outbreak in Wuhan city during January and February
2020 was discussed using a SEIR modeling perspective. The 3D amplitude space
description of the SEIR model was used. In what follows, the COVID-19 outbreak
will be discussed using the 2D amplitude space description as presented in Ref. [8].
Just as in Sect. 5.8, the 2β SEIR model equations (5.34) and (5.100) were solved
numerically for the parameters and initial conditions reported in Sect. 5.8. Panel (a)
of Fig. 6.1 shows the trajectories S, E , and I thus obtained. They are identical to
those presented in panel (a) of Fig. 5.7. Unlike the steps taken in Sect. 5.8 for the 3D
amplitude equation approach, for the 2D amplitude equation approach, the model
equations (6.28) for the amplitudes A1 and A2 and the relative state u3 were solved.
The initial values A1(t0) and A2(t0) were obtained from Eq. (6.22) and u3(t0) was
computed from u(t0) = S0 − N . Panel (b) of Fig. 6.1 shows the numerical solutions
A1(t) (solid line) and A2(t) (dashed line). As expected, A1 increased in amore or less
exponential manner. In contrast, A2 decayed monotonically in magnitude. Panel (c)
presents the eigenvectors v1 and v2 as computed from Eq. (6.25) in the E-I plane. In
particular, panel (c) demonstrates that v1 points at an positive angle in the E-I plane
such that changes along v1 imply an increase of both E and I . In contrast, v2 points
in a negative angle such that changes along v2 imply that when E increases then I
decreases or vice versa. Therefore, v1 can capture most of the COVID-19 outbreak
in Wuhan city during which supposedly the population sizes of both compartments
E and I increased over time. The dotted line in panel (c) is the unit circle. Panel
(d) shows the trajectory X+(t) as phase curve I (E) in the E-I plane (solid thick
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Fig. 6.1 State space and amplitude space description of the COVID-19 outbreak in Wuhan city,
China, during 2020, using a reduced 2D amplitude space approach. Panel a shows solutions S(t)
(top subpanel), E(t) (solid line, bottom subpanel), and I (t) (dashed line, bottom subpanel) of the
2β SEIR model given by Eqs. (5.34) and (5.100). Panel b shows the amplitudes A1 (solid line) and
A2 (dashed line) computed from Eq. (6.28). Panel c shows the eigenvectors v1 and v2 computed
from Eq. (6.18) that constituted the 2D amplitude space basis of the outbreak in Wuhan city. Panel
d shows the phase curve I (E) (solid line) and eigenvectors v1 and v2 (dotted lines) magnified for
visualization purposes. Panel d illustrates that v1 was the EI order parameter of the COVID-19
outbreak in Wuhan city

black line). The square indicates the initial value of the simulation. The eigenvectors
v1 and v2 are shown there as well. It can be seen that the trajectory X+(t) follows
the direction specified by v1. Consequently, panel (d) illustrates that the COVID-
19 outbreak in Wuhan city, when described from the perspective of a SEIR model,
followed the EI order parameter v1 during the period from January 23 to February
11, 2020. As such, the eigenvector v1(2D) shown in panels (c) and (d) points in the
same direction as the eigenvector projection of v2(3D) shown in panel (c) of Fig. 5.7.
Moreover, since in panel (c) of Fig. 5.7 and in panel (d) of Fig. 6.1 the eigenvectors
are increased in magnitude for the sake of visibility, panel (c) of Fig. 5.7 and panel
(d) of Fig. 6.1 actually show the same results except for the fact that in panel (d) of
Fig. 6.1 the eigenvector v2 is presented as well.

In order to demonstrate the equivalence of the amplitude description via Eq. (6.28)
and the state space description given by Eq. (5.35) the variables S, E , and I were
computed from the amplitudes A1 and A2 and the relative state u3. That is, the
solutions A1(t) and A2(t) of Eq. (6.28) as shown in panel (c) were substituted



6.3 COVID-19 Outbreak in Wuhan City 2020 and Its EI Order Parameter 183

Fig. 6.2 Phase portrait of the dynamical system that determined the COVID-19 outbreak in the
year of 2020 in Wuhan city, China, when taking a SEIR modeling perspective. The phase portrait
illustrates that the outbreak followed a narrow path that was determined by the order parameter v1
(dotted gray line)

into Eq. (6.22) and u3(t) (not shown) obtained from Eq. (6.28) was used to com-
pute S(t) = N + u3(t). In doing so, the time-dependent functions E(A1(t), A2(t)),
I (A1(t), A2(t)) and S(u3(t)) were obtained. They are plotted in the respective sub-
panels in panel (a) as full circles. As expected, the two approaches produced identical
solutions.

Figure6.2 present the phase portrait of the dynamical system that determined the
disease state of the population of Wuhan city during January and February 2020 as
it can be inferred from the analysis conducted so far. In order to produce the phase
portrait, the SEIR model equations (5.34) and (5.35) were solved numerically for
various initial conditions but for the fixed model parameters mentioned in Sect. 5.8.
The order parameter v1 is shown as dotted gray line. The two components v1,E and
v1,I (magnified by a factor 8000) are illustrated aswell as gray bars. The phase portrait
illustrates the statement made above, namely, that under appropriate circumstances
epidemics approach their order parameters irrespective of the initial conditions at
hand and, subsequently, evolve along those order parameters [4, 9]. The appropriate
circumstances are the requirement thatλ2 is larger in the amount thanλ1. Thiswas the
case for the epidemic outbreak in Wuhan with λ1 = 0.08/d and λ2 = −0.39/d (see
Sect. 5.8). In view of Fig. 6.2, it is fair to say that to some extent the initial numbers
of infected individuals in the compartments E and I on the initial day January 23
considered in Fig. 6.1 did not play a crucial role. Irrespective of those numbers, the
epidemic followed the “narrow path” [4] defined by the order parameter v1 shown
in Fig. 6.2.

Finally, Fig. 6.2 can also be used to illustrate the application of Eq. (6.33) in a
quantitative way. Substituting the model parameters listed in Sect. 5.8 into Eq. (6.25)
for v1, the vector components are obtained as v1,E = 0.90 and v1,I = 0.45 [8]. From
Eq. (6.33) and v1,E = 0.90 and v11,I = 0.45 it then follows that the outbreak evolved
along v1 such that the compartment sizes of E and I varied likeΔE/ΔI ≈ 2.Accord-
ingly, when during the COVID-19 outbreak in Wuhan city in a certain period the
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population of symptomatic infectious individuals increased by 1, then in the same
period the population of exposed and possibly asymptomatic infectious individuals
increased by 2.

6.4 COVID-19 Outbreak in West Africa 2020 and Its EIA
Order Parameter

Taboe et al. [10] studied the COVID-19 outbreak of the year 2020 in the region of
West Africa. To this end, a SEIARmodel [11] with compartments similar to themod-
els that are discussed in Sect. 5.3.2 was used. The six-variable model by Taboe et al.
[10] accounts for susceptible individuals (S), exposed individuals (E), asymptomatic
infectious individuals (Ia), symptomatic infectious individuals (Is), and recovered
individuals (R). It also accounts for quarantined individuals or individuals in clinical
treatment that are taken together in a single compartment (Ic). Exposed individuals
are considered as individuals in their latent phase who cannot infect others. Individu-
als under treatment and quarantined individuals are assumed to be perfectly isolated
such that they cannot infect others. Consequently, the model involves only two com-
partments of actually infectious individuals: Ia and Is . Accordingly, the rate constant
k0 of reactions S → Y , where Y are infected individuals, reads

k0 = (1 − Ψ )
βa Ia + βs Is

N
. (6.36)

In Eq. (6.36) the variable N is given by N = S + E + Ia + Is + Ic + R and denotes
the size of the total population. N is constant. In the original study by Taboe et al.
[10] the parameter N in Eq. (6.36) is replaced by N − Ic. However, as argued in
Ref. [4], N 	 Ic holds such that the number of individuals Ic makes a negligibly
small contribution to N . Therefore, in what follows, the contact rate as defined by
Eq. (6.36) will be used with N being constant. The parameterΨ ∈ [0, 1] occurring in
Eq. (6.36) measures the impact of intervention measures. The parameters βa and βs

denote the effective contact rates for contacts between susceptibles and asymptomatic
infectious individuals (βa) and susceptibles and symptomatic infectious individuals
(βs), respectively. The evolution equations for the compartments read [10]

d

dt
S = −k0S ,

d

dt
E = k0S − k1E ,

d

dt
Ia = pk1E − k2 Ia ,

d

dt
Is = (1 − p)k1E − k3 Is ,

d

dt
Ic = ρa Ia + ρs Is − k4 Ic ,

d

dt
R = γa Ia + γs Is + γc Ic . (6.37)

In Eq. (6.37) the model parameters are presented using a simplified notation sug-
gested in Ref. [4]. The factor p ∈ [0, 1] describes the proportion of exposed individ-
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uals for which COVID-19 develops in an asymptomatic manner. The parameters ρa
and ρs denote diagnosis rates for asymptomatic and symptomatic individuals, respec-
tively. The parameters γa , γs , and γc stand for recovery rates. Finally, the parameters
k1, . . . , k4 describe removal rates. In particular, k2, . . . , k4 can be expressed in terms
of the other model parameters like [10]

k2 = ρa + γa , k3 = ρs + γs + ds , k4 = γc + dc , (6.38)

where ds and dc are the death rates due to COVID-19 of non-diagnosed symptomatic
individuals (Is) and individuals of compartment (Ic). While COVID-19 associated
deaths as such decrease the population size, the argument can again be made that the
effect of such deaths on N can be neglected. In other words, N can be considered
as constant despite the fact that the model addresses COVID-19 associated deaths.
Note that a compartment of COVID-19 associated deaths could be added but would
not change the following considerations.

In Ref. [4] the non-autonomous amplitude space description discussed in
Sect. 6.1.1 was worked out for the model (6.37). To this end, the six-dimensional
state spacewas decomposed into the three-variable subspace vectorX+ = (E, Ia, Is)
describing actually infectious individuals and exposed individuals and the three-
variable subspace vector X− = (S, Is, R) describing the remaining variables. The
rationale for this approach is that the variables Ic and R can be considered as vari-
ables driven by the remaining variables. They do not feed back and do not play a
role for the instability of the epidemiological system described by Eq. (6.37). Con-
sequently, when considering a linearized system of the four variables (S, E, Ia, Is)
they will not show up in the linearized evolution equation. As far as the variable S
is concerned, as shown in Sect. 6.2.1 in the context of the 1β SEIR model, the sus-
ceptible variable S does not occur in the linearized evolution equations for E and I .
Likewise, in the context of the epidemiological model (6.37), S or its corresponding
deviation variable uS = S − N does not occur in the linearized evolution equations
for E , Ia , and Is . Consequently, the decomposition of X into X = (X+,X−) with
X+ = (E, Ia, Is) and X− = (S, Is, R) leads to a 6 × 6 linearization matrix L that
exhibits the required form (6.2).

Let X = (E, Ia, Is, S, Is, R) denote the state vector. Then, the disease-free fixed
point of interest reads Xst = (0, 0, 0, N , 0, 0) and exhibits the projection X+

st =
(0, 0, 0) in the subspace D+. From Eq. (6.37) it follows that the 3 × 3 submatrix
L+ relevant for the dynamics in D+ reads

L+ =
⎛
⎝ −k1 (1 − Ψ )βa (1 − Ψ )βs

pk1 −k2 0
(1 − p)k1 0 −k3

⎞
⎠ . (6.39)

The eigenvalues λ1, λ2, and λ3 of L+ satisfy a cubic polynomial and for given
model parameters can be obtained by numerical methods. In order to determine the
eigenvectors vi of L+, the matrix J = L+ − λE can be considered that assumes the
form
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J =
⎛
⎝ J11 J12 J13

J21 J22 0
J31 0 J33

⎞
⎠ (6.40)

with off-diagonal elements Jik = L+
ik and diagonal elements Jkk = L+

kk − λ that
depend on λ. Note that by definition, the rows are linearly dependent. Therefore,
it is sufficient to evaluate only two rows. Due to the special structure of J , it is con-
venient to evaluate the second and third rows of J . Then, the vectors vi that satisfy
Jvi = (0, 0, 0) can be written like

vi = x

⎛
⎝ 1

−J21/J22
−J31/J33

⎞
⎠ ⇒ vi = x ′

⎛
⎝ J22 J33

−J21 J33
−J31 J22

⎞
⎠ , (6.41)

where x or x ′ are determined by the normalization condition |vi | = 1. Let v j =
(v j,E , v j,Ia , v j,Is ) denote the eigenvectors of L

+ in D+ with j = 1, 2, 3. Then, from
Eqs. (6.39), (6.40), and (6.41) the analytical expressions [4]

v j = 1

Wj

⎛
⎝ (λ j + k2)(λ j + k3)

pk1(λ j + k3)
(1 − p)k1(λ j + k2)

⎞
⎠ (6.42)

for j = 1, 2, 3 can be obtained, where Wj are normalization constants. As a result,
X+ can be expressed like

X+ =
3∑
j=1

A jv j (6.43)

(see Eq. (6.6)). Using the cross-product approach suggested in Sect. 5.6 for the
case n = 3 (e.g., w1 = (v2 × v3)/Z ), the biorthogonal vectors may be obtained.
Subsequently, following the procedure in Sect. 6.1.2, from Eqs. (6.37) and (6.43) the
amplitude equations

d

dt
A j = λ j A j − C juSk0(A1, A2, A3) (6.44)

with j = 1, 2, 3 and the rate constant

k0 = (1 − Ψ )

N

3∑
k=1

(βavk,Ia + βsvk,Is )Ak (6.45)

can be obtained [4]. In Eq. (6.44) the coefficients C j are functions of the model
parameters and do not depend on the amplitudes A1, . . . , A3. They can be written
like
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C j = (k2 − k3)Wj

f j,1 + f j,2 + f j,3
(6.46)

with

f j,1 = (k2 − k3)(λ j + k2)(λ j + k3) ,

f j,2 = −(λs + k2)(λu + k2)(λ j + k3) ,

f j,3 = (λs + k3)(λu + k2)(λ j + k2) (6.47)

and indices (s, u) = (2, 3) for j = 1, (s, u) = (1, 3) for j = 2, and (s, u) = (1, 2)
for j = 3. The evolution equation for uS = S − N reads

d

dt
uS = −(N + uS)k0(A1, A2, A3) . (6.48)

As expected, in the linear domain, the amplitude equations (6.44) constitute an
autonomous system. However, in the full nonlinear domain, they describe a non-
autonomous system that depends on uS (whose dynamics, in turn, depends on the
amplitude vector A = (A1, A2, A3)). The four-variable model defined Eqs. (6.44)
and (6.48) provides a closed description of the disease dynamics in the subspace
E, Ia, Is, S of the original six-dimensional space. The dynamics of the two remain-
ing variables Ic and R can then be obtained from the dynamics in the subspace
E, Ia, Is, S.

As mentioned at the beginning of this paragraph, Taboe et al. [10] applied the
model defined by Eq. (6.37) to describe the outbreak of COVID-19 in West Africa.
In this context, let us briefly review the discussion in Ref. [10] about the role of
the intervention parameter Ψ . It was assumed that for Ψ = 0 the model describes
the COVID-19 outbreak in the absence of intervention measures and, consequently,
features an unstable fixed point. In contrast, for Ψ = 1 the rate constant k0 vanishes
and, consequently, the disease-free fixed point is stable. In Ref. [10] the existence of a
critical parameter Ψc was shown such that for Ψ < Ψc the disease-free fixed point is
unstable, whereas for Ψ > Ψc the fixed point is stable. This implies that for Ψ < Ψc

at least one eigenvalue with j = 1, 2, 3 is positive or has positive real part, whereas
for Ψ > Ψc all eigenvalues j = 1, 2, 3 are negative or have negative real part. In
particular, Taboe et al. fitted the model to the data of the outbreak in the 16 countries
region of West Africa for the period from February 28 to June 26, 2020, which is
a 120 days period. They found a best-fit estimate of Ψ = 0.261 with Ψ > 0 and
Ψ < Ψc indicating that the disease-free fixed point during that period was unstable.
Using the model parameters reported in Ref. [10], in Ref. [4] the eigenvalues λ1,
λ2, and λ3 were computed. They were found to be real-valued with λ1 = 0.031/d,
λ2 = −0.365/d, and λ3 = −0.547/d. The eigenvalues confirm that the disease-free
fixed point was unstable.

Figure6.3 shows simulation results obtained from themodel (6.37) and confirmed
COVID-19 cases [12]. In order to compute the graphs shown in Fig. 6.3, the model
(6.37) was solved numerically for the period from February 28 to June 26, 2020 and
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Fig. 6.3 State space and amplitude space descriptions of the COVID-19 outbreak in West Africa
during the first half of the year 2020. Panel a: State space solutions of the SEIAR-like model (6.37).
Panel b: Confirmed cases (gray circles) [12] and the model solutionC(t) (solid line) computed from
Eq. (6.50). Panel c: Amplitudes A1, A2, and A3 computed from Eqs. (6.44) and (6.48) indicating
that A1 after an intermediate period of less than 10 days was the dominant amplitude during the
remaining observation period

the parameters reported in Ref. [10]. Panel (a) shows S(t) (top subpanel) and E(t),
Is(t), and Ia(t) (bottom subpanel) as functions of time. The graphs E(t), Is(t), and
Ia(t) exhibit amonotonic increase consistent with the notion that they are determined
by the exponentially increasing order parameter amplitude like

X+(t) ≈ v1A1(t) = v1A1(t0) exp{λ1(t − t0)} . (6.49)

Panel (b) shows the cumulative confirmedCOVID-19 cases of the 16 countries region
ofWest Africa [12]. With respect to the model (6.37) the diagnosed cumulative cases
C satisfy

d

dt
C = ρa Ia(t) + ρs Is(t) . (6.50)

That is, C corresponds to the cumulative cases in the compartment Ic (compare Eq.
(6.50) with the evolution equation of Ic in Eq. (6.37)). The function C(t) was com-
puted numerically from Eq. (6.50) and Ia(t) and Is(t) shown in panel (a). The result
is plotted in panel (b). The model solution C(t) fits the data with moderate accuracy.
Panel (c) shows the amplitudes A1, A2, and A3 as function of time as computed from
the amplitude equation description given by Eqs. (6.44) and (6.48). As expected,
the model-based analysis suggests that initially during the COVID-19 outbreak all
amplitudes showed an exponential dynamics like Ai = Ai (t0) exp{λi (t − t0)}. How-
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Fig. 6.4 Visualization of the amplitude dynamics of the COVID-19 outbreak in West Africa by
means of the outbreak-specific EIA order parameter and phase curves. Panel (a): The trajectory
X(t) (as shown in panel (a) of Fig. 6.3) is shown as phase curve in the (E, Ia, Is) space for the first
17 days since February 28, 2020. Panel (b): X(t) is shown in the (E, Ia, Is) space for the whole
120 days period. Panels (a) and (b): The EIA order parameter v1 (gray dotted line) computed from
Eq. (6.42) is shown in a magnified scale

ever, A1 increased monotonically during the whole 120 days observation period. In
contrast, A2 and A3 decayed quickly during an intermediate period Ti of about 10
days. During the following 80 to 90 days, the amplitudes remained close to zero.
Only in a late stage starting at about 90 to 100 days after February 28, the amplitudes
started to deviate from zero. Finally, panel (a) also demonstrates the equivalence
between amplitude space and state space descriptions. The variables S,E ,Ia ,Is were
computed from the solutions us and A1, A2, A3 using S = N + uS and Eq. (6.43) and
are shown as full circles. The solutions S,E ,Ia ,Is as presented in panel (a) as solid
lines are obtained directly from Eq. (6.37). As expected, both approaches produced
identical results.

Let us illustrate the role of the order parameter v1 for the COVID-19 outbreak in
West Africa. Figure6.4 shows phase curves in the 3D subspace D+ for the first 10
days following February 28 (panel (a)) and the full observation period of 120 days
(panel (b)). The 3D EIA order parameter v1 computed from Eq. (6.42) is depicted
as well (magnified in size for visualization purposes). As can be seen in panel (a),
during the period Ti = 10d the dynamics was not solely determined by the direction
v1. Rather, other directions as described by v2 and v3 played a role. As shown in
panel (c) of Fig. 6.3, during this 10 days period A2 and A3 decayed in magnitude.
In the 3D subspace D+ this dynamics correspond to an approach of the trajectory
X+(t) (or its phase curve) towards the direction specified by v1. As shown in panel
(b) of Fig. 6.4, after the intermediate period Ii , for the remaining observation period,
the disease dynamics followed closely the direction determined by v1.

Let us illustrate graphically this approach towards the axis specified by v1. To
this end, Eq. (6.37) was solved numerically for various initial conditions. In doing
so, the phase portraits shown in Fig. 6.5 were obtained. In Fig. 6.5 two-dimensional
phase portraits are presented in the E-Ia plane (panel (a)), E-Is plane (panel (b)),
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Fig. 6.5 Phase portrait of the dynamical system that determined the COVID-19 outbreak in West
Africa, 2020, as seen in the context of the SEIARmodel (6.37). Panels (a), (b), and (c) show possible
disease dynamics phase curves in the planes (E, Ia), (E, Is), and (Ia, Is), respectively. The axis
specified by the order parameter v1 is shown in all planes (dotted gray lines) as computed from
Eq. (6.42)

and Ia-Is plane (panel (c)). In order to interpret the phase portraits, let us return to the
eigenvalues. As mentioned above, the disease-free fixed point was characterized by
λ1 = 0.031/d, λ2 = −0.365/d, λ3 = −0.547/d. That is, λ1 > 0, λ2 < 0, and λ3 < 0.
Consequently, the outbreak was consistent with the classical picture of a bifurcation
exhibiting a single positive eigenvalue [5, 6]. The dynamics in D+ was characterized
by a saddle with one unstable direction v1 and two stable directions v2 and v3. The
time constants of the eigenvalues were τ1 = 32.1d, τ2 = 2.7d, and τ3 = 1.8d. This
implies that during the outbreak A1 evolved slowly relative to A2 and A3. In other
words, the amplitudes A2 and A3 evolved fast (τ3 = 2.7d, and τ4 = 1.8d) relative to
A1 (τ2 = 32.1d). Since A2 and A3 decayed (λ2 < 0, λ3 < 0) in the amount relatively
quickly to zero all trajectories converged during the intermediate period Ti towards
the v1-axis. As shown in the panels of Fig. 6.5, irrespective of the initial conditions,
the disease dynamics converged relatively quickly towards the v1-axis (indicated
in each panel by a dotted gray line) and, subsequently, evolved along the v1-axis.
Figures6.3, 6.4, and 6.5 demonstrates that after a short intermediate period Ti of
about 10 days the disease state X+(t) of the COVID-19 outbreak in West Africa
evolved along the order parameter v1 such that the disease state satisfied Eq. (6.49).
Alternative to Eq. (6.49), the dynamics for t > Ti may be described by

d

dt
X+ ≈ v1

d

dt
A1 ⇒ ΔX+ ≈ v1ΔA1 . (6.51)

From Eq. (6.51) it follows that the compartment sizes changed relative to each other
like

⎛
⎝ ΔE

ΔIa
ΔIs

⎞
⎠ ≈

⎛
⎝ v2,E

v2,Ia
v2,Is

⎞
⎠ ΔA1 . (6.52)
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For the model parameters reported in Ref. [10] and used throughout this section, the
components of v1 read

v1 =
⎛
⎝ 0.78
0.62
0.06

⎞
⎠ ⇒

⎛
⎝ ΔE

ΔIa
ΔIs

⎞
⎠ ≈

⎛
⎝ 0.78
0.62
0.06

⎞
⎠ ΔA1 . (6.53)

The numerical values presented in Eq. (6.53) suggest that during the first-wave
COVID-19 epidemic during Spring 2020 in West Africa when the number of symp-
tomatic infectious individuals increased by 6, then in the same period the number
of asymptomatic infectious individuals increased by 62 and the number of exposed
individuals increased by 78. In other words, approximately for every symptomatic
infectious person who appeared in the epidemic approximately ten asymptomatic
infectious individuals and somewhat more than ten exposed individuals appeared as
well.

Just as in the previous example presented in Sect. 6.3 and illustrated in Fig. 6.2,
Fig. 6.5 demonstrates that the COVID-19 outbreak inWest Africa exhibited a certain
order. The dynamics followed a specific direction given by the unstable eigenvector
v1. The outbreak in West Africa followed a “narrow path” just as the outbreak in
Wuhan city (see Sect. 6.3). The order parameter concept, the notion of a “narrow
path”, and the phase portraits in Fig. 6.5 also suggest that the initial conditions are not
necessarily crucial for understanding an epidemic. Under appropriate circumstances
(e.g., a single positive eigenvalue), an epidemic evolves in a certain way or order
irrespective of the precise initial conditions.
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Chapter 7
Model-Based Reproduction Numbers

This chapter introduces the concept of reproduction numbers in the context of com-
partmental models. Heuristic approaches to determine reproduction numbers of the
SIR and SEIR models are presented. Subsequently, the next generation method
is presented that allows to determine reproduction numbers for a variety of high-
dimensional compartmental model. It is discussed that reproduction numbers can be
regarded as bifurcation parameters that determine the stability of disease-free fixed
points. Applications to the COVID-19 outbreaks during the year 2020 in Wuhan,
China, and Pakistan are also presented.

7.1 Basic and Effective Reproduction Numbers

Reproduction numbers are frequently used quantities in epidemiology. The basic
reproduction number R0 is defined as the number of secondary infected cases in
a completely susceptible population produced by a typically infectious individual
[1–5]. Let N denote the size of a population. Then the basic reproduction number
considers the situation S = N , which, for example, frequently holds when a novel
infectious disease emerges in the population. In contrast, the effective reproduction
number Re refers to the expected number of secondary infected cases produced by a
typically infectious individual when the epidemic is underway or when intervention
measures have been put into place or both [5, 6]. In particular, when the epidemic is
underway, part of the population has been infected by the virus under consideration
such that the population is not completely susceptible. That is, S < N holds. Let
us consider an epidemic outbreak that has infected a non-negligible portion of the
population such that the factor x = S/N differs considerably from 1. However, no
intervention measures have been put into place. Then x denotes the probability that
an infectious individual in a contact meets with a susceptible individual. Likewise,
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1 − x denotes the probability that the infectious individual meets with an individual
that is infected or immune.Consequently, the effective reproduction number is related
to the basic reproduction number like [6]

Re = x R0. (7.1)

If intervention measures have been implemented, then typically Re < R0 holds even
if x ≈ 1. In this case, Re < R0 indicates that the spread of the infectious disease is
reduced due to the impact of the intervention measures and not primarily due to a
reduction of the number of susceptibles.

The basic reproduction number has also been called basic reproduction ratio,
basic reproductive number, and basic reproductive ratio [1, 3]. As such reproduc-
tion numbers correspond to gain coefficients and amplification factors that have
been extensively studied in physics (e.g., laser physics) and engineering (e.g., elec-
tronics). That is, a reproduction number describes how much the size of a certain
generation i of infected individuals is amplified (or weakened) such that the ampli-
fied (or decreased) size corresponds to the size of the follow-up generation i + 1 of
infected individuals.

Reproduction numbers have been used as threshold values [2]. Let us assume
we could track the generations of infected individuals. Accordingly, the first infected
individual describes the first generation. The infected individuals by that first infected
individual correspond to the second generation. The infected individuals infected by
the second generation correspond to the third generation individuals, and so on. Let ci
denote the size of the infected individuals in generation i . Then, let us assume c1 = 1.
Assuming that there are no intervention measures and that the decrease in suscep-
tible is negligible (i.e., x ≈ 1) during the first p generations, then c2 = R0c1 = R0,
c3 = R0c2 = (R0)

2c1 = (R0)
2 and cp = (R0)

p−1c1 = (R0)
p−1. Likewise, if inter-

ventions are implemented but do not vary during the epidemic that covers the first p
generations, then we have cp = (Re)

p−1. This implies that for amplification factors
R0,e > 1, R0,e = 1, and R0,e < 1, respectively, generation sizes ci increase, stay the
same, and decrease over time. Consequently, if a single infected individual can infect
more than one individual (i.e., if R0,e > 1 holds), then the infectious disease spreads
out. Conversely, if an infected individual can infect less than one other individual (i.e.,
R0,e < 1 holds) or more realistically if an initial number of 100 infectious individuals
can infect less than 100 other individuals, then the epidemic dies out. In other words,
for R0,e > 1 an infection can invade a population and there is an epidemic outbreak.
For R0,e < 1 the infectious disease subsides in the population. The threshold value
of interest is R0,e = 1.

In the context of this definition and utilization of reproduction numbers two ques-
tions arises. First, how can they be derived for epidemics that satisfy evolution equa-
tions of the formdX/dt = N (seeEq. (2.1))? Second, howare the conditions R0,e > 1
and R0,e < 1 related to the nonlinear physics perspective according to which the sta-
bility of disease-free fixed points determines whether or not there is an epidemic
wave or a subsiding epidemic? Let us address these questions in the subsequent
Sects. 7.2, 7.3, and 7.4.
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7.2 Case of a Single Infected Compartment

7.2.1 Heuristic Approach

Let us consider the spread of an infectious disease that can be described with the help
of a single infected compartment. The infected compartment describes the infected
and infectious individuals. For an example, let us consider the SIRmodel (3.16) with
the compartment I of infectious individuals. As in Sect. 3.2, let ν denote the contact
rate (i.e., contacts per day) of infectious individuals with other individuals. Let us
consider the case in which all other individuals are susceptibles. Let p denote the
probability of virus transmission per contact. Then β = pν is the effective contact
rate (see Eq. (3.3)). Consequently, if T is the duration of the infectious period, then
the number of secondary infections caused by a single infectious individuals is given
by [4, 6]

R0,e = pνT = βT . (7.2)

7.2.2 SIR Model: Heuristic Approach

Let us apply Eq. (7.2) to the SIR model (3.16). In the context of the SIR model, the
infectious period T is given by the recovery period, which, in turn, is related to the
rate of recovery γ like T = 1/γ (see Sect. 3.4). Consequently, in the absence of inter-
ventions and for a completely susceptible population (S = N ) the basic reproduction
number reads

R0 = βT = β

γ
. (7.3)

Interventions may affect the effective contact rate β or the recovery rate γ. If so,
assuming that the epidemic under consideration has just started such that S ≈ N , Eq.
(7.3) holds again but the ratio β/γ should be interpreted as effective reproduction
number

Re = β

γ
. (7.4)

Finally, if a time point t is considered at which the number of susceptibles has
decreased considerably such that x = S/N is no longer close to 1, then the course of
the epidemic is characterized by Eqs. (7.3) or (7.4) multiplied by x . Consequently,
the reproduction number

Re = S

N

β

γ
(7.5)

is obtained. As indicated, this number is considered as an effective reproduction
number regardless whether or not intervention measures are put in place. The repro-
duction numbers R0 and Re shown in Eqs. (7.3), (7.4), and (7.5) correspond to the
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stability parameters ξ of the SIR model derived in Sect. 3.5.1 (see Eqs. (3.24) and
(3.26)) when replacing S by S0. That is, the conditions R0,e > 1 and R0,e < 1 for
an epidemic outbreak and subsiding epidemic, respectively, correspond to the con-
ditions ξ > 1 and ξ < 1 that imply that the SIR model exhibits wave-solutions and
monotonically decaying solutions, respectively. Likewise, Eqs. (7.3), (7.4), and (7.5)
correspond to the bifurcation parameters α of the SIR model derived in Sect. 4.2.3
(see Eqs. (4.27) and (4.30)) when replacing S by Sst . That is, the conditions R0,e > 1
and R0,e < 1 correspond the conditions α > 1 ⇒ λ2 > 0 and α < 1 ⇒ λ2 < 0
that indicate the stability of the disease-free fixed point and again imply that the SIR
model exhibits wave-solutions and monotonically decaying solutions, respectively.
In other words, the amplification factor R0,e of the SIRmodel may be interpreted as a
bifurcation parameter of the SIRmodel that exhibits a critical value 1 and determines
the sign of the eigenvalue λ2 of the SIR model.

7.2.3 SIR Model: Towards a Next Generation Approach

Let us determine R0,e in a more direct way from the SIR model defined by Eq.
(3.16). The procedure that applies to the SIR model can then be generalized to more
comprehensive epidemicmodels aswill be shown in Sects. 7.3 and 7.4. To beginwith,
let I1(t) and I2(t) denote the numbers of infectious individuals of the first and second
generations. In general, let Ip(t)describe the size of the pth infectious generation over
time. Furthermore, let us introduce the cumulative numbers of infectious individuals
I1,c(t), I2,c(t), and Ip,c(t) of the first, second, and pth generation as functions of
time. The total number of infectious individuals in a generation p is denoted by i p
and corresponds to i p = Ip,c(∞).

The key idea is to consider the dynamics of a disease state close to an appropriately
defined fixed point such that the dynamics satisfies linearized evolution equations
[1]. Accordingly, let us consider the disease-free fixed point with Sst = N . In order
to simplify the presentation, in what follows, t1 will denote the begin of the epidemic
(rather than t0 as used in other parts of this book). The following initial conditions
hold

I1(t1) = I1,0, I2(t1) = I2,c(t1) = 0. (7.6)

Furthermore, for the first generation i1 = I1,0 holds, which means, that the initially
present number of infectious individuals corresponds to the cumulative number
of first-generation infectious individuals. The evolution equation of I of the SIR
model (3.16) reads dI/dt = βSI/N − γ I . The linearization at Sst = N implies that
βSI/N ≈ β I . The term−γ I describes the decrease of the first-generation infectious
individuals like

d

dt
I1 = −γ I1. (7.7)
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The evolution of the second-generation infectious individuals is determined by the
production term β I that becomes β I1 and the decay term −γ I that becomes −γ I2
such that

d

dt
I2 = β I1 − γ I2. (7.8)

From Eq. (7.8) it follows that the number of cumulative second-generation infectious
individuals increases like

d

dt
I2,c = β I1(t). (7.9)

Solving Eq. (7.7) gives us I1(t) = I1,0 exp{−γ(t − t1)} = i1 exp{−γ(t − t1)}. Sub-
stituting this result into Eq. (7.9) and integrating over time, Eq. (7.9) becomes

I2,c(t) = βi1

∫ t

t1

exp{−γ(t ′ − t1)}dt ′, (7.10)

where I2,c(t1) = 0 has beenused (seeEq. (7.6)).Consequently, the second-generation
infectious individuals i2 = I2,c(∞) can be computed from

i2 = I2,c(∞) = βi1

∫ ∞

t1

exp{−γ(t ′ − t1)}dt ′ = β

γ
i1. (7.11)

The infectious individuals of second generation occur in time at different time points
t ≥ t1. In order to proceedwith the derivation of R0,e within a deterministic, analytical
framework, the following simplification can be made. It is assumed that all second-
generation infectious individuals occur in the population of interest at the same time
point t2 > t1. That is, just as the first generation individuals show up at the time point
t1 at once, all second generation individuals show up together at the time point t2. This
simplification allows us to repeat the procedure described above in order to determine
the third generation infectious individuals. Accordingly, at t2 the conditions

I2(t2) = I2,0 = i2, I3(t2) = I3,c(t2) = 0 (7.12)

hold.Equations (7.7) becomesdI2/dt = −γ I2,which leads to I2(t) = i2 exp{−γ(t −
t2)}. Equation (7.9) becomes dI3,c/dt = β I2(t) such that Eq. (7.10) reads

I3,c(t) = βi2

∫ t

t2

exp{−γ(t ′ − t2)}dt ′, (7.13)

which eventually leads to

i3 = I3,c(∞) = β

γ
i2. (7.14)
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In general, when taking the simplified notion that the pth generation of infectious
individuals occurs at time tp with a size i p, then epidemics described by the SIR
model satisfy at later time points t ≥ tp the following relations:

Ip(t) = i p exp{−γ(t − tp)},
d

dt
Ip+1,c(t) = β Ip(t) = βi p exp{−γ(t − tp)},

i p+1 = Ip+1,c(∞) = βi p

∫ ∞

tp

exp{−γ(t ′ − tp)}dt ′ = β

γ
i p. (7.15)

For theSIRmodel, the size cp of the infected generation p corresponds to i p (i.e., cp =
i p) because the model exhibits only a single infected compartment. Consequently,
the iterative equation i p+1 = βi p/γ occurring in Eq. (7.15) is equivalent to cp+1 =
βcp/γ, which implies that the ratio β/γ can be identified as amplification factors R0

or Re depending whether or not intervention measures are put into place that affect
β and γ. As a by-product, the iterative equation for i p can be written like

i p+1 = R0,ei p, R0,e = β

γ
. (7.16)

In summary, the more explicit approach re-produces Eq. (7.3) that was obtained
above using a somewhat heuristic approach. The explicit procedure can also be
applied to the disease-free fixed pointwith Sst < N . In this case, the iterative equation
i p+1 = Sstβi p/(Nγ) is obtained, which implies Re = βSst/(Nγ).

7.2.4 Next Generation Time Grid

The following considerations apply to all kind of epidemiological models (including
the SIR model as a special case). Let us define a time grid t1, t2, t3, . . . in terms of
the occurrence time points tp of the generations p = 1, 2, 3, . . . . At tp the infected
individuals of the pth generation are present. For t > tp theymake transitions through
or out of infected compartments (for the SIR model, they only make transitions
out of the compartment I ). During that period, they also infect others and cause
the build-up of the generation p + 1 of infected individuals. That is, the period
t > tp describes the subsiding of the pth generation of infected individuals and the
emergence of the (p + 1)th generation of infected individuals. The notion is that if
we wait for a sufficiently long time, that is, if tp+1 − tp is sufficiently large, then the
pth generation has disappeared and, consequently, all individuals of the (p + 1)th
generation have emerged. The simplified point of view is that during the interval
[tp, tp+1] the individuals of the (p + 1)th generation do not make any transitions out
or through compartments. The individuals are “frozen”. At the time point tp+1 the
procedure starts againwith the (p + 1)th generation of individuals as thosewhomake
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transitions and the (p + 2)th generation of individuals as individuals who appear in
the epidemic under consideration. In reality, the transition phases of two (or more
than two) subsequent generations overlap and are not clearly separated. Likewise,
the build-up phases overlap in time.

7.3 Two Infected Compartments

As an example of an epidemic model that involves two infected compartments let
us consider the 1β SEIR model (3.43). However, let us take demographic terms into
account. Then Eq. (3.43) reads [3]

d

dt
S = − β

N
I S + B − μS,

d

dt
E = β

N
I S − (α + μ)E,

d

dt
I = αE − (γ + μ)I,

d

dt
R = γ I − μR (7.17)

(see also Eq. (5.3) with n = 4, βI = β, and X4 = R). For μ > 0 and B = μN the
model exhibits the disease-free fixed point Xst = (N , 0, 0, 0). In contrast, for μ =
B = 0 (i.e., in the absence of demographic terms) fixed points are given by Xst =
(Sst , 0, 0, Rst ) with Sst + Rst = N . Furthermore, the infected compartments of the
SEIR model are E and I

Following [3], let us define the probability p of infected individuals to stay
infected as the probability to make transition from E to I without deceasing as
p = α/(α + μ). In the special case μ = 0, we have p = 1. In the general case of
S < N susceptibles, the rate with which a single infectious individual infects suscep-
tibles is given by the product of the effective contact rate β and the factor x = S/N
(see Sect. 7.1), which yields the product xβ. Since the SEIRmodel with demographic
terms takes death events into account, the infectious period becomes shorter than
T = 1/γ. We obtain T = 1/(γ + μ). The reproduction number R0,e (which either
corresponds to the basic or effective one) is given by the product of the probability
to stay infected (p), the rate of infection (xβ) by a single infectious individual, and
the infectious period (T ). Consequently, we obtain [3]

R0,e = α

α + μ

S

N
β

1

γ + μ
= S

N

αβ

(α + μ)(γ + μ)
. (7.18)

Let us consider a few special cases. In the case of the outbreak of a novel infectious
disease, that is, if the entire population is susceptible and there are no intervention
measures put into place, S = N holds and R0,e reflects the basic reproduction number
such that Eq. (7.18) becomes

R0 = αβ

(α + μ)(γ + μ)
. (7.19)
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For a wave-like outbreak that occurs over a relatively short period demographic
terms can be neglected (μ = 0). If we assume that S ≈ N holds and no intervention
measures have been implemented, then Eq. (7.18) yields the basic reproduction
number

R0 = β

γ
. (7.20)

In contrast, if we assume that the epidemic is underway (i.e., S < N holds) and
neglect again demographic terms (μ = 0), then fromEq. (7.18)weobtain the effective
reproduction number

Re = S

N

β

γ
. (7.21)

According to the discussion in Sect. 7.1, for R0,e > 1 and R0,e < 1 solutions of the
SEIR model describe epidemic outbreaks and subsiding epidemics, respectively. In
fact, in Sect. 3.7 the expressions (7.20) and (7.21) have been derived as stability
parameters ξ. It has been shown in Sect. 3.7 that for ξ > 1 the SEIR model (7.17)
without demographic terms exhibits wave-solutions, whereas for ξ < 1 the model
describes subsiding epidemics. Likewise, using a nonlinear physics perspective, in
Sect. 5.5.1 the expressions (7.20) and (7.21) have been derived as bifurcation param-
eters κ (see Eq. (5.42)) and κr (see Eq. (5.44)), respectively, when replacing S in
Eq. (7.21) by Sst . Accordingly, the condition R0,e < 1 implies that the fixed point
E = I = 0 in the E-I subspace exhibits two negative eigenvalues and is asymp-
totically stable, which implies that solutions of the SEIR model describe subsiding
epidemics. In contrast, for R0,e > 1 the fixed point E = I = 0 exhibits a positive
eigenvalue and corresponds to a saddle point, which implies that the SEIR model
exhibits wave-solutions. The reproduction number R0,e corresponds to a bifurcation
parameter with critical value 1.

Let us use the (next generation) approachpresented inSect. 7.3 to deriveEqs. (7.20)
and (7.21) in a more explicit manner from the evolution equation (7.17) of the 1β
SEIR model. For sake of simplicity, the analysis is conducted first for the fixed
point Sst = N and the case μ = 0 is considered. In this case, the linearized evolution
equations for E and I read

d

dt
E = β I − αE,

d

dt
I = αE − γ I (7.22)

(see also Eq. (5.37) with βE = 0 and βI = β). The SEIR model does not account
for deaths due to the infectious diseases or due to other causes. This implies that
eventually all exposed individuals become infectious. In analogy to the discus-
sion in Sect. 7.2.3, let us define Ep(t) and Ip(t) as the numbers of the pth gen-
erations of exposed and infectious individuals, respectively. Let ep and i p denote
the (final, cumulative) sizes of the pth generations of exposed and infectious indi-
viduals, respectively. Then, for any generation p ≥ 2 we have ep = i p because all
infected individuals of the second and higher generations begin as exposed indi-
viduals and eventually turn into infectious individuals. As far as the first genera-
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tion of infected individuals is concerned, if I1(t1) = 0 and E1(t1) > 0 holds, then
we have e1 = i1 = E1(t1). In contrast, if I1(t1) > 0 and E1(t1) ≥ 0 holds, then we
have e1 = E(t1) and i1 = I1(t1) + e1 > e1. Let Ep,c(t) denote the cumulative num-
ber of pth-generation exposed individuals with ep = i p = Ep,c(∞) for p ≥ 2. For
the initial time points tp the initial conditions are denoted by Ep(tp) = Ep,0 and
Ip(tp) = Ip,0. For all p ≥ 2 we have Ep,0 + Ip,0 = ep = i p. For the argument that
will be developed in the remainder of this section, the precise decomposition (e.g.,
E2,0 = 0.9e2, I2,0 = 0.1e2, E3,0 = 0.8e3, I3,0 = 0.2e3, etc.) is irrelevant (as it will
become clear in a moment). From Eq. (7.22) it follows that

d

dt
E p = −αEp ⇒ Ep(t) = Ep,0 exp{−α(t − tp)} (7.23)

and

d

dt
Ip = αEp − γ Ip ⇒

Ip(t) = Ip,0 exp{−γ(t − tp)} + αEp,0

γ − α

[
exp{−α(t − tp)} − exp{−γ(t − tp)}

]
(7.24)

holds (assuming α �= γ). As in Sect. 7.2.3, the initial condition Ep,c(tp) = 0 holds
for the cumulative number Ep,c. From Eq. (7.22) it follows that the evolution equa-
tion of Ep+1 reads dEp+1/dt = β Ip − αEp+1. Consequently, the evolution of the
corresponding cumulative number Ep+1,c(t) can be determined like

d

dt
E p+1,c = β Ip(t) ⇒ Ep+1,c = β

∫ t

tp

Ip(t
′) dt ′. (7.25)

Solving the integral in Eq. (7.25) for t → ∞, the cumulative final size of the (p +
1)th-generation exposed individuals can be computed like

ep+1 = Ep+1,c(∞) = β

∫ ∞

tp

Ip(t
′)dt ′

= β

[
Ip,0
γ

+ αEp,0

γ − α

(
1

α
− 1

γ

)]
= β

γ
(Ip,0 + Ep,0). (7.26)

Consequently, for p ≥ 2 the iterative equation

ep+1 = β

γ
ep (7.27)

can be obtained. Since the size of the infected individuals cp equals ep = i p for
p ≥ 2, Eq. (7.27) implies cp+1 = βcp/γ for p ≥ 2. For p = 1 the size c1 of infected
individuals is given by c1 = I1,0 + E1,0. Consequently, from Eq. (7.26) it follows
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c2 = βc1/γ. In total, the iterative equation cp+1 = βcp/γ holds for any p ≥ 1. The
ratio β/γ can be identified as R0 or Re. The interpretation of β/γ as R0 or Re depends
onwhether an epidemic is considered under the impact of interventionmeasures (Re)
or not (R0).

So far, the amplification factor R0,e has beenderived for the disease-freefixedpoint
with Sst = N . By analogy, the amplification factor z in ep+1 = zep can be derived for
a disease-free fixed point with Sst < N . If so, a factor of z = βSst/(γN ) is obtained,
which implies that Re = βSst/(γN ) holds in this case. In conclusions, the next
generation approach that takes the SEIRmodel equationsmore explicitly into account
re-produces the amplification factors or reproduction numbers that are defined by
Eqs. (7.20) and (7.21) and have been derived above in a more heuristic manner.

7.4 m Infected Compartments

7.4.1 Next Generation Approach

In order to discuss the general case of m infected compartments, it is convenient to
use a matrix approach [4, 7]. In what follows, this matrix approach is introduced by
revisiting the example of the SEIR model discussed in Sect. 7.3.

The departure point is the set of coupled, linear differential equations defined in
Eq. (7.22). From this set the evolution equations for Ep and Ip as listed in Eqs. (7.23)
and (7.24) are obtained. They can be written in vector and matrix notation as

d

dt

(
Ep

Ip

)
= −V

(
Ep

Ip

)
, V =

(
α 0

−α γ

)
, (7.28)

where V will be referred to as transition matrix. Note the there is a minus sign in
front of V . The solution of Eq. (7.28) reads

(
Ep(t)
Ip(t)

)
= exp{−V (t − tp)}

(
Ep,0

Ip,0

)
. (7.29)

The exponential function is used here as a function of a matrix. Next, the evolution
equation for Ep+1,c listed in Eq. (7.25) can be equivalently expressed by introducing
the vector F = (0,β) like

d

dt
E p+1,c = F

(
Ep(t)
Ip(t)

)
. (7.30)

By analogy, the integral solution shown in Eq. (7.25) can be written in terms of a dot
product (scalar product) involving F like
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Ep+1,c(t) = F
∫ t

tp

(
Ep(t ′)
Ip(t ′)

)
dt ′, (7.31)

which with the help of Eq. (7.29) leads to

Ep+1,c(t) = F

[∫ t

tp

exp{−V (t − tp)} dt ′
] (

Ep,0

Ip,0

)
. (7.32)

Consequently, ep+1 = Ep+1,c(∞) can be computed from

ep+1 = Ep+1,c(∞) = F

[∫ ∞

tp

exp{−V (t − tp)} dt ′
] (

Ep,0

Ip,0

)

= FV−1

(
Ep,0

Ip,0

)
, (7.33)

where V−1 is the inverse matrix of V . Note that just as the integral

∫ ∞

tp

exp{−γ(t ′ − tp)} dt ′ = 1

γ
= γ−1 = T (7.34)

used in Eq. (7.15) yields 1/γ, as indicated, where γ is a scalar, the integral relation

∫ ∞

tp

exp{−V (t ′ − tp)} dt ′ = V−1 = Tmat (7.35)

holds and involves the inverse matrix V−1 of V . Furthermore, as indicated in Eq.
(7.34), the fraction 1/γ can be interpretation as a duration T (see Sect. 3.4). Likewise,
V−1 can be interpreted as a matrix Tmat of durations (see Eq. (7.35)).

The vector F can be generalized further to yield a matrix. In order to demonstrate
this step let us generalize the SIR model (3.16) by assuming that there are two virus
transmission mechanisms. One mechanism involves a non-infectious intermediate
period. The second does not involve such a period. After being infected, suscep-
tibles become immediately infectious. Let f ∈ [0, 1] denote the probability that a
susceptible gets infected by means of the first mechanism. Then, Eq. (3.16) reads

d

dt
S = − β

N
SI,

d

dt
E = f

β

N
SI − αE,

d

dt
I = (1 − f )

β

N
SI + αE − γ I (7.36)

and R(t) = N − S(t) − E(t) − I (t) (or dR/dt = γ I ). Since for f < 1 there is a
direct route from susceptibles to infectious individuals, we have i p < ep for p ≥ 2,
which indicates that there are infectious individuals in the pth generation that have
not passed through the stage of being exposed (i.e., being infected but not infec-
tious). Only if f = 1 holds (i.e., if the model reduces to Eq. (3.16)) we have i p = ep.



204 7 Model-Based Reproduction Numbers

Let Ip,c,N .E .(t) denote the cumulative infectious individuals that have emerged via
the second route, where N .E . stands for “not exposed”, that is, not having passed
through the exposed stage.Likewise, let i p,N .E . denote the size of the pth generationof
such infectious individuals with i p,N .E . = Ip,c,N .E .(∞). Then the evolution equation
dEp+1,c/dt = β Ip in Eq. (7.25) must be revised to take the factor f into account like
dEp+1,c/dt = f β Ip. Importantly, a second evolution equation should be added to
describe the emergence of new infected individuals given in terms of infectious indi-
viduals that have skipped the exposed stage. That is, dIp+1,c,N .E ./dt = (1 − f )β Ip
should be added to our description of the epidemic under consideration. Conse-
quently, Eq. (7.30) is generalized like

d

dt

(
Ep+1,c

Ip+1,c,N .E .

)
= F

(
Ep(t)
Ip(t)

)
, F =

(
0 f β
0 (1− f )β

)
. (7.37)

Accordingly, the vector F in the general case becomes a matrix F . Note that Eqs.
(7.28) and (7.29) still hold for the generalized SEIR model (7.36). Therefore, Eq.
(7.32) in the general case when F denotes a matrix becomes

(
Ep+1,c(t)

Ip+1,c,N .E .(t)

)
= F

[∫ t

tp

exp{−V (t − tp)} dt ′
] (

Ep,0

Ip,0

)
. (7.38)

From Eq. (7.38) it follows that

(
ep+1

i p+1,N .E .

)
=

(
Ep+1,c(∞)

Ip+1,c,N .E .(∞)

)
= F

[∫ ∞

tp

exp{−V (t − tp)} dt ′
](

Ep,0

Ip,0

)

= FV−1

(
Ep,0

Ip,0

)
, (7.39)

which is the generalization of Eq. (7.33). Let us return to the inequality i p > ep that
holds for f < 1. For f < 1 we have i p = i p,N .E . + ep > ep. All exposed individuals
eventually turn into infectious individuals. However, there are infectious individuals
that have skipped the exposed stage. The size cp of the infected pth generation is
given by cp = i p = i p,N .E . + ep. Furthermore, at any initial time point tp the num-
ber of exposed (Ep,0) and number of infectious (Ip,0) individuals add up to the total
size cp of infected individuals of the generation p (see also Sect. 7.2.4). That is,
cp = Ep,0 + Ip,0 holds. In summary, the identity cp = i p,N .E . + ep = Ep,0 + Ip,0
holds. Importantly, Eqs. (7.28) reads in components dEp/dt = −αEp and dIp/dt =
αEp − γ Ip (see also Eqs. (7.23) and (7.24)), which means that given a time tp, an
initial number Ep,0 of exposed individuals, and an initial number Ip,0 of infectious
individuals, then Ep decays monotonically, whereas Ip may increase due to transi-
tions of exposed individuals to infectious individuals. However, the notion pointed
out in Sect. 7.2.4 is that new infectious individuals of the generation p do not show
up. In particular, while Ip may increase during a transient period, the cumulative
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number of infectious individuals who skipped the exposed stage does not increase
and is fixed by i p,N .E .. These individuals emerged during the transition dynamics
of the generation p − 1 of infected individuals took place (see Sect. 7.2.4 again). In
other words, it can be motivated to put Ep,0 = ep and Ip,0 = i p,N .E .. In doing so,
Eq. (7.39) becomes a closed iterative equation of the form

(
ep+1

i p+1,N .E .

)
= G

(
ep

i p,N .E .

)
, G = FV−1 (7.40)

The matrix G has been referred to a next generation matrix [4, 7]. F is a matrix
composed of rates that describe new infections [4] and may be called infection
transmission matrix [8].

Let us consider the eigenvalues of G. Let us assume for sake of simplicity that G
exhibits only real-valued, semi-positive eigenvalues. If so, let

λmax(G) = largest eigenvalue of G (7.41)

denote the largest eigenvalue among all possible eigenvalues, as indicated. Note that
in the context of the SEIR model, G is a 2 × 2 matrix and exhibits two eigenvalues.
Therefore, in this context, the discussion is centered about two eigenvalues only.
However, the concept of a next generation matrix G holds in higher dimensions as
well (see below). Therefore, in general, G exhibits more than two eigenvalues.

If λmax(G) < 1 holds (but λmax(G) > 0), all solutions of the iterative equation
(7.40) converge to ep = i p,N .E . = 0 for p → ∞, that is, cp satisfies lim p→∞ cp = 0.
This indicates that the disease-free fixed point E = I = 0 is asymptotically stable.
In contrast, if λmax(G) > 1 holds, then Eq. (7.40) exhibits solutions ep and i p,N .E .

that increase as a power law of p. This indicates that E = I = 0 is an unstable fixed
point. In particular, for p → ∞ it is known that the dynamics of iterative maps such
as Eq. (7.40) is determined by the largest eigenvalue λmax(G) and its corresponding
eigenvector vmax(G) such that

(
ep+1

i p+1,N .E .

)
≈ C vmax(G)[λmax(G)]p−1 (7.42)

holds if p is sufficiently large, where C is a coefficient independent of p. Conse-
quently, for sufficiently large p the iterative equation (7.42) that describes how the
sizes of the relevant infected compartments evolve over generations reads

(
ep+1

i p+1,N .E .

)
≈ λmax(G)

(
ep

i p,N .E .

)
. (7.43)

Therefore, it has been suggested to identify the basic reproduction number R0 as
λmax(G) [1, 4, 7] like

R0 = λmax(G). (7.44)
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In addition, depending on the context in which an epidemic model is used, λmax(G)

may be used to compute the effective reproduction number. In fact, in the COVID-19
modeling literature, frequently, Re has been computed as Re = λmax(G).

Let us return to the SEIR model defined by (7.36). The inverse matrix V−1 of V
reported in Eq. (7.28) reads

V−1 = 1

αγ

(
γ 0
α α

)
(7.45)

(see Eq. (5.52)). Consequently, G = FV−1 with F given in Eq. (7.37) reads

G = β

γ

(
f f

1 − f 1 − f

)
. (7.46)

For arbitrary f ∈ [0, 1] the matrix G when putting the pre-factor β/γ = 1 exhibits
the eigenvalues 0 and 1 (which may be shown by noticing that the rows of G −
λE become linearly dependent for λ = 0 and λ = 1 or can be derived by using
Eq. (5.27)). Consequently, when taking the pre-factor β/γ into account, the matrix
G exhibits as largest eigenvalue λmax (G) = β/γ. This implies that the SEIR model
(7.36) exhibits the reproduction number

R0,e = β

γ
, (7.47)

which is equivalent with the reproduction number (7.20) obtained in Sect. 7.3 for the
special case f = 1 by means of a more heuristic approach.

We are now in the position to consider the general case of an epidemic that can
be described in terms of a compartment model involving m infected compartments.
The following procedure has been suggested [4, 7].

Epidemics are considered that satisfy evolution equations of the form dX/dt =
N(X) (see Eq. (2.1)), whereX = (X1, . . . , Xn) is a n-dimensional state vector of suit-
ably defined compartments (i.e., compartment sizes). The first step is to rearrange the
variables occurring in the state vector such that the first m variables denote infected
compartments. At this stage, let us return to the approach discussed in Sect. 6.1.1.
Using the notation suggested there, let the upper indices + and − denote variables
reflecting infected and non-infected compartments, respectively. Consequently, the
state vector X = (X1, . . . , Xn) reads X = (X+,X−) = (X+

1 , . . . , X
+
m , X

−
1 , ..., X

−
r )

with r = n − m and X+ = (X1, . . . , Xm) ⇒ X+
i = Xi for i = 1, . . . ,m, X− =

(Xm+1, ..., Xn) ⇒ X+
i = Xm+i for i = 1, . . . , r . However, note that the approach

presented in Sect. 6.1.1 allows for more flexibility. While in Sect. 6.1.1 it is sug-
gested to separate state variables intom variables that contain all infectious variables
describing individuals who actually infect others and add certain additional variables,
the next generation procedure as such comes with a strict (less flexible) decomposi-
tion into infected and non-infected compartments.
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Let us return to the derivation of R0 by means of the next generation approach. To
this end, the disease-free fixed point Xst with X1 = · · · = Xm = 0 is considered. As
mentioned in Sect. 6.1.2, it is frequently assumed [4] (and can be tested explicitly for
a given model) that linearizing the evolution equation dX/dt = N(X) at Xst yields
a linearization matrix of the form (6.2) such that the linearized dynamics in the
subspace spanned by the infected variables is given by Eq. (6.3). For convenience,
let us repeat equation (6.3) as

d

dt

⎛
⎝ X+

1
. . .

X+
m

⎞
⎠ = L+

⎛
⎝ X+

1
. . .

X+
m

⎞
⎠ . (7.48)

In general, the linearization matrix L+ depends on X−
1,st , . . . , X

−
r,st . Importantly,

Eq. (7.48) corresponds to a closed set of coupled first-order differential equations.
Following the ideas presented above in the context of the SEIR model, the matrix
L+ is decomposed into the two matrixes F and V like

L+ = F − V . (7.49)

The matrix F describes processes leading to new infections. In particular, it is
required that the models dX/dt = N(X) involve matrices F such that all elements of
F are semi-positive (i.e., Fi j ≥ 0) [4]. The matrix V describes transitions between
compartments that are not related to new infections. In the absence of new infections
F = 0 holds (e.g., put β = 0 in Eq. (7.37)) and the infected compartments evolve
like

d

dt
X+ = −VX+. (7.50)

It is required that in this case the dynamics in the subspace D+ exhibits the asymptoti-
cally stable disease-free fixed pointX+

st = (0, . . . , 0) [4]. Consequently,−V exhibits
only eigenvalues that exhibit negative real parts and, conversely, V exhibits eigenval-
ues that only exhibit positive real parts. Moreover, V is assumed to be non-singular
and invertible [4] such that V−1 exists. In addition, off-diagonal elements of −V
describe transitions into compartments and for this reason are semi-positive. This
implies that off-diagonal elements of V are semi-negative (i.e., Vi j ≤ 0 for i �= j)
[4]. An example in this regard is the coefficient V21 = −α in Eq. (7.28). In sum-
mary, the matrices F and V are assumed to satisfy the following properties. F is a
matrix with semi-positive coefficients such that Fik ≥ 0 holds for all i, k. V exhibits
eigenvalues with positive real parts, is invertible, and Vik ≤ 0 holds for i �= k. For
examples of F and V see Eqs. (7.28) and (7.37).

Let us illustrate that the requirement that V is invertible and exhibits only eigen-
values with positive real parts implies that X+ converges to the disease-free state
defined by the zero vector. A matrix V for which V−1 exist and that exhibits only
eigenvalues with positive real parts corresponds to a positive definite matrix V in
the sense that X+VX+ > 0 holds for any X+, which is not zero. Note again that
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positive definite does not mean that V has only positive elements (in fact, V exhibits
negative off-diagonal elements, see above). Let us consider the evolution of |X+(t)|2.
From Eq. (7.50) it follows that d|X+|2/dt = −X+VX+ < 0. Therefore, |X| decays
over time to zero. The convergence to the disease-free state can be explicitly demon-
strated for the linearized equations (7.22) of the SEIR model that involves the matrix
V defined in Eq. (7.28). Let us put β = 0 in Eq. (7.22), then the solutions E(t) and
I (t) are given by Ep(t) and Ip(t) defined in Eqs. (7.23) and (7.24), respectively.
Clearly, for any initial conditions Ep,0 and Ip,0 the functions Ep and Ip converge to
zero over time.

Following the decomposition of L+ into F and V , the next step is to define the
inverse matrix V−1 of V as in Eq. (7.35) as a m × m matrix of durations

Tmat = V−1. (7.51)

The final step is to construct the m × m next generation matrix G from F and Tmat

(or V−1) like

G = FV−1 = FTmat , Gik =
m∑
j=1

Fi j Tjk . (7.52)

The basic reproduction number R0 can then be defined in linewith Eq. (7.44). In order
to simplify the definition, it is useful to consider the case in which all eigenvalues of
G are real and semi-positive definite (i.e., they are allowed to be equal to zero). If so,
R0 is defined as the largest eigenvalue of G [1, 4, 7]. As mentioned in the context of
Eq. (7.44), in the literature, this definition has also been used to determine effective
reproduction numbers of epidemics that evolved under the impact of intervention
measures and/or evolved in populations that were no longer completely susceptible.
Consequently, in linewithEq. (7.44) the reproduction numbers R0,e maybedefined as

R0,e = λmax(G). (7.53)

In the literature, R0 has been defined as the spectral radius ofG [1, 4, 7]. The spec-
tral radius of G applies to eigenvalues that might be complex-valued and is defined
as the absolute value of the largest eigenvalue of G. The largest eigenvalue, in turn,
is defined as the eigenvalue that exhibits the largest absolute value. If the matrix G
exhibits only real-valued, semi-positive eigenvalues (as it is the case in many appli-
cations) then the spectral radius is given by the largest eigenvalue. Consequently, the
definition of R0 in Eq. (7.53) is a special case of the more general definition of R0

in terms of the spectral radius.
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7.4.2 Theorems Involving Reproduction Numbers

In the literature, Theorem 6.13 of Ref. [7] and Theorem 2 of Ref. [4] make key state-
ments about reproductionnumbers.Accordingly, if R0,e > 1holds then L+ = F − V
exhibits at least one eigenvalue with positive real part. Consequently, the disease-free
fixed pointX+

st = (0, . . . , 0) corresponds to an unstable fixed point. This also implies
that under appropriate conditions the disease-free fixed pointXst referring to the full
n-dimensional description of a population is an unstable fixed point.

In contrast, if R0,e < 1holds, then all eigenvalues of L+ = F − V exhibit negative
real parts. This implies that X+

st = (0, . . . , 0) is an asymptotically stable fixed point
(provided that X is sufficiently close to Xst ). Consequently, Xst either corresponds
to a neutrally stable fixed point or an asymptotically stable fixed point.

The third statement concerns the critical case R0,e = 1. If R0,e = 1 holds then
L+ = F − V exhibits at least one real-valued eigenvalue λ = 0. All other eigenval-
ues exhibit real parts zero or negative real parts. This third statement can be exploited
for a particular application that will be discussed in Sect. 7.5.4

7.5 Applications

7.5.1 SIR Model and 1β SEIR Model

The SIR model (3.16) with dS/dt = −β I S/N , dI/dt = −β I S/N − γ I , and
dR/dt = γ I corresponds to a three variable model with a single infected compart-
ment I . Using the decomposition discussed in Sect. 7.4.1, the three-dimensional state
vector readsX = (I, R, S)with X+

1 = I , X−
1 = R, and X−

2 = S. Fixed points of the
model read Xst = (0, 0, Sst ) for Sst ≤ N . Linearizing the nonlinear term SI like
SI = Sst I , then the linearized equation for I can be expressed like

d

dt
I =

(
Sst
N

β − γ

)
I = L+ I = (F − V )I. (7.54)

Consequently, the expressions F and V read F = βSst/N and V = γ, respectively,
and correspond to scalars rather than matrices. The dwelling time of an individual
in the infectious state I is given by T = V−1 = 1/γ. The next generation matrix G
reduces to the factor G = FT = βSst/(Nγ). Accordingly, the reproduction number
(basic or effective) equals the next generation factor and reads

R0,e = Sst
N

β

γ
. (7.55)
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In doing so, the results presented in Eqs. (7.3) to (7.5) are re-obtained within the next
generation approach.

The SEIR model (7.17) with B = μN features two infected compartments E
and I . The state vector can be written like X = (E, I, R, S) with X+

1 = E , X+
2 = I ,

X−
1 = R, and X−

2 = S. Ifμ = 0 themodel exhibits fixed pointsXst = (0, 0, Rst , Sst )
with Rst + Sst = N . For μ > 0 it is required that Sst = N and Rst = 0. Let us
consider both cases simultaneously. To this end, let us consider the disease-free
fixed point with Sst ≤ N . Linearizing Eq. (7.17) with B = μN for S = Sst , the cor-
responding linearized equations in the subspace E-I read

d

dt
E = βSst

N
I − (α + μ)E,

d

dt
I = αE − (γ + μ)I (7.56)

and generalize Eq. (7.22). The linearized model can equivalently be expressed in
matrix notation like

d

dt

(
E
I

)
= L+

(
E
I

)
=

(−(α + μ) βSst/N
α −(γ + μ)

) (
E
I

)
(7.57)

The matrix L+ in Eq. (7.57) can be decomposed into the square matrices F and V
like

d

dt

(
E
I

)
=

(
0 βSst/N
0 0

) (
E
I

)
−

(
(α + μ) 0

−α (γ + μ)

) (
E
I

)
(7.58)

with

F =
(
0 βSst/N
0 0

)
, V =

(
(α + μ) 0

−α (γ + μ)

)
. (7.59)

The durations square matrix can be obtained by inverting V (see Eq. 5.52)) and reads

Tmat = V−1 = 1

(α + μ)(γ + μ)

(
(γ + μ) 0

α (α + μ)

)
. (7.60)

Consequently, the next generation matrix becomes

G = FTmat = 1

(α + μ)(γ + μ)

(
αβSst/N β(α + μ)Sst/N

0 0

)
. (7.61)

The matrix exhibits two real-valued eigenvalues: a zero eigenvalue and λmax =
αβSst/[N (α + μ)(γ + μ)]. Consequently, the (basic or effective) reproduction num-
ber reads

R0,e = λmax (G) = Sst
N

αβ

(α + μ)(γ + μ)
. (7.62)
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The result is equivalent with the reproduction number that is presented in Eq. (7.18)
provided S in Eq. (7.18) is replaced by Sst .

7.5.2 2β SEIR Model and COVID-19 Outbreak in Wuhan
City 2020

The 2β SEIR model defined by Eq. (5.35) and (5.36) can be treated in analogy to the
1β SEIR model discussed above. Let X = (E, I, R, S) denote the state vector and
Xst = (0, 0, 0, N ) the disease-freefixedpoint of a completely susceptible population.
The relevant two-dimensional linearized system is given by Eq. (5.37), which is
repeated here as

d

dt

(
E
I

)
= L+

(
E
I

)
, L+ = F − V =

(
βE − α βI

α −γ

)
,

⇒ F =
(

βE βI

0 0

)
, V =

(
α 0

−α γ

)
. (7.63)

Consequently, Tmat = V−1 is given by Eq. (7.60) when putting μ = 0. Multiplying
F by Tmat thus obtained, the next generation matrix reads

G = FTmat = 1

αγ

(
αβI + γβE αβI

0 0

)
. (7.64)

The matrix exhibit a zero eigenvalue and λmax (G) = βw/γ with βw = βI + γβE/α
(see Eq. (5.41)). Accordingly, R0 and Re can be obtained as

R0,e = λmax (G) = βw

γ
. (7.65)

Equation (7.65) can be generalized to take μ > 0 into account [9]. Moreover, the 2β
model can be considered as a staged progression model (see Sect. 5.2.3). For such
staged progression models Eq. (7.65) has been derived, again, for the more general
case of μ > 0 in Ref. [4].

In Sect. 5.5.1 the cases βw > γ and βw < γ were examined and it was shown that
the matrix L+ exhibits a positive eigenvalue for βw > γ and two negative eigenval-
ues for βw < γ. Consequently, the disease-free fixed point E = I = 0 is unstable
for βw > γ and asymptotically stable for βw < γ (assuming X is sufficiently close
to Xst ). These findings are consistent with the fact that for βw > γ and βw < γ we
have R0,e > 1 and R0,e < 1, respectively, and the interpretation of R0,e as a thresh-
old parameter that indicates whether there is an epidemic outbreak (R0,e > 1) or a
subsiding epidemic (R0,e < 1).
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The reproduction number (7.65) (in its generalized form that takes μ > 0 into
account) was used in the study by Pang et al. [9] that was reviewed in Sect. 5.8.
Pang et al. studied the COVID-19 outbreak in Wuhan city, China, during the period
from December 2019 to March 25, 2020. They distinguished between the first phase
from December 2019 to January 22, the second phase from January 23 to February
11 and the third phase from February 12 to March 25. Across these three phases
the intervention measures to stop to spread of COVID-19 were increased in severity.
Consequently, one should observe a decay of the reproduction number from phase
to phase. For all three phases it was assumed that the disease (or health) state of the
population of Wuhan was relatively close to the disease-free fixed point. The first
phase was assumed to reflect the spread of the disease under negligible impact of
interventionmeasures and, consequently,was characterized by the basic reproduction
number of COVID-19 inWuhan city. In contrast, phases two and three were assumed
to reflect the dynamics of the COVID-19 epidemic under the impact of intervention
measures. Accordingly, they were characterized by effective reproduction numbers.
Pang et al. [9] found R0 = 4.6 for the first phase, Re = 1.8 for the second phase,
and Re = 0.2 for the third phase. As expected, R0,e decreased across the phases.
Importantly, while the first and second phases were characterized by reproduction
numbers larger than 1, the third phase exhibited an effective reproduction number
smaller than the threshold value of 1. Consequently, the results suggest that the inter-
vention measures implemented during the third phase of the COVID-19 epidemic
in Wuhan city were able to stabilized the disease-free fixed point. This stabilization
phenomenon was investigated in a follow-up study [10]. In Ref. [10] the maximal
eigenvalue λmax = λ2 (see Eq. (5.88)) of the 2β SEIR model was computed for the
three phases. Accordingly, the eigenvalue changed from λ2 = 0.19/d in phase 1 to
λ2 = 0.09/d in phase 2 and λ2 = −0.14/d in phase 3 [10]. Consistent with the analy-
sis of the epidemic via the reproduction number, the eigenvalue analysis reveals that
in phase 1 and 2 the disease-free fixed point was unstable but in phase 3 it became a
stable fixed point. We will return to this issue in Sect. 8.2.3.

7.5.3 SIR- and SEIR-Type Models and Beyond

Models of SIR-type, SEIR-type and various other models that involve a single sus-
ceptible compartment S can be cast into the following form. LetX = (S, X2, ..., Xn)

denote the (original) state vector. For models of SIR-type X2 = I and m = 1 holds.
For models of SEIR-type X2 = E , X3 = I , and m = 2 holds. Let us assume there
are m infected compartments. Then, the original state vector can be re-arranged like
X = (X+

1 , . . . , X
+
m , X

−
1 , . . . , X

−
r )with X−

r = S and r = n − m. For models of SIR-
type we have X+

1 = I . For models of SEIR-type we have X+
1 = E and X+

2 = I .
Importantly, let us consider models for which the rate constant k0 of transforma-
tion reactions form susceptibles to infected individuals (i.e., the “force of infection”)
reads like
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k0(X+) =
m∑

k=1

bk X
+
k = bX+,b = (b1, . . . , bm). (7.66)

The coefficients bk may be written like bk = βk/N , where βk denote the respective
effective contact rates. Note that some of the coefficients bk might vanishes (e.g.,
for 1β SEIR-type models b1 = 0 and b2 = β/N ). In summary, the models under
consideration read

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

X+
1

. . .

X+
m

X−
1

. . .

X−
r

⎞
⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎝

X+
1

. . .

X+
m

X−
1

. . .

X−
r

⎞
⎟⎟⎟⎟⎟⎟⎠

+ k0(X+)X−
r

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
·

· · ·
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
·

· · ·
0
B

⎞
⎟⎟⎟⎟⎟⎟⎠
, (7.67)

where A is a matrix describing transitions between different compartments. The
matrix coefficients of A do not describe the emergence of new infections. Further-
more, in what follows it is assumed that A exhibits the block structure

A =
(
A+ 0
C D

)
, (7.68)

where A+ is the upper, left-corner m × m submatrix. In the absence of demographic
terms (i.e., for μ = B = 0) the model is assumed to exhibit the disease-free fixed
points Xst with X+ = (0, . . . , 0) and Sst = X−

r,st ≤ N . If demographic terms with
B = μN are taken into consideration, it is assumed that the matrix A is such that
Xst with X+ = (0, . . . , 0) and Sst = X−

r,st = N is a fixed point. In both cases, the
linearized model in the subspace of the infected variables reads

d

dt

⎛
⎝ X+

1
. . .

X+
m

⎞
⎠ = (F − V )

⎛
⎝ X+

1
. . .

X+
m

⎞
⎠ ,

F = Sst

⎛
⎜⎜⎝

b1 · · · bm
0 · · · 0
. . . · · · · · ·
0 ... 0

⎞
⎟⎟⎠ , V = −A+ (7.69)

where A+ is aforementionedm × m submatrix of A. It is assumed that A+ is invertible
such that V−1 exists. Let c1, c2, ... , cm denote the columns of V−1. Then

G = FTmat = FV−1 = Sst

⎛
⎜⎜⎝
b c1 · · · b cm
0 · · · 0
. . . · · · · · ·
0 ... 0

⎞
⎟⎟⎠ (7.70)
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holds. The matrix G exhibits m − 1 zero eigenvalues and one non-vanishing eigen-
value λmax (G) with λmax (G) = Sstb c1. Consequently, for models of SIR-type and
SEIR-type and for all other n-dimensional models defined by Eqs. (7.66) and (7.67),
the (basic or effective) reproduction number reads

R0,e = Sstb c1. (7.71)

7.5.4 Determining Critical Effective Contact Rates

In Theorem2 of Ref. [4] the third statement listed in Sect. 7.4.2 can be found. Accord-
ingly, if R0,e = 1holds, then L+ exhibits at least one real-valued vanishing eigenvalue
and all other eigenvalues exhibit negative real parts. In what follows, a proof for the
first part of this statement will be presented. Let us define the matrix P like

P = FV−1 − E ⇒ L+ = F − V = PV, (7.72)

where E is the identity matrix. Next, we consider the case Re,0 = 1, which means
that the largest eigenvalue of G = FV−1 is real-valued and equal to 1. Then, it fol-
lows that P = G − E has at least one real-valued zero eigenvalue. The reason for
this is that from λ(G) = 1 is follows that the determinant of G − λE equals zero
for λ = 1: det(G − E) = 0. Consequently, det(G − E − λE) = det(P − λE) = 0
has the solution λ = 0, which means that P exhibits a zero eigenvalue. Let v0
denote the eigenvector of P with λ = 0 such that Pv0 = 0. Consequently, let us put
X+ = V−1v0. Then, the following calculation holds: L+X+ = (F − V )V−1v0 =
PVV−1v0 = Pv0 = 0. This is tantamount to say that L+ exhibits a zero eigenvalue.
The corresponding eigenvector is V−1v0.

As discussed in Sects. 2.7 and 2.9.1, when an eigenvalue changes its sign, then
under appropriate condition the stability of a fixed point changes (from stable to
unstable or vice versa) and a bifurcation occurs. Consequently, the critical condition
at which the bifurcation occurs is characterized by a zero eigenvalue. The critical
value R0,e = 1 of the amplification factor R0,e describes such a critical condition.

Let us assume that the matrices L and L+ depend on a parameter of interest
for which it is plausible to assume that it is affected by intervention measures. For
example, let us consider the effective contact rate β. Intervention measures are likely
to affect and lower the effective contact rate β. In the context of the COVID-19
pandemic, measures that have been used to lower the effective contact rate were
business shutdowns, school closures, and face mask wearing mandates. If so, the
question arises how the critical parameter value βcri t can be determined at which a
bifurcation takes place such that the epidemic starts to subside? That is, it is assumed
that the initial stage of an epidemic exhibits an effective contact rate β > βcri t such
that the disease-free state is unstable. The epidemic evolves. Intervention measures
are put into effect that decrease β. In order to find the critical βcri t at which the
disease-free state becomes stable, the condition R0,e = 1 can be used. Since R0,e
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depends on L+, L+ depends on k0, and k0 depends on β, the reproduction number
R0,e can be regarded as a function of β. In a first step, an analytical expression for
R0,e(β) is determined. In a second step, R0,e(β) is set to 1 like

R0,e(β) = 1 ⇒ β = βcri t . (7.73)

As indicted in Eq. (7.73), solving R0,e(β) = 1 for β yields the to-be-determined
critical value of β.

7.5.5 COVID-19 Epidemic in Pakistan 2020

Ullah andKhan (2020) investigated the COVID-19 epidemic in Pakistan fromMarch
1 to May 28, 2020 [11]. During that period, confirmed COVID-19 cases increased
monotonically in a more or less exponential manner. In order to describe the spread
of the disease in terms of the observed increase of confirmed COVID-19 cases, Ullah
and Khan [11] used an epidemic model with n = 8 compartments involving m = 6
infected compartments. The model satisfies the general model structure defined by
Eqs. (7.66) and (7.67). Ullah and Khan estimated model parameters by fitting the
model solution to the confirmedCOVID-19 cases. Using the next generationmethod,
they derived an analytical expression for R0. They obtained a value of R0 = 1.9
suggesting that the disease-free state was unstable during that period. The model
used by Ullah and Khan involves an overall effective contact rate parameter β. The
best fit estimate for β was found to be β = 0.66/d. The authors suggested in their
study that intervention measures would be able to lower β and simulated various
possible scenarios.

The analytical expression for R0 derived by Ullah and Khan [11] can be cast into
the form

R0 = β f, (7.74)

where f is an expression that involves other model parameters but not β. In a sub-
sequent study [12], model solutions were fitted to a longer observation period from
March 1 to September 30, 2020. COVID-19 case data from Pakistan suggest that the
first-wave epidemic started to subside during the summer of 2020 and, in particular,
at the end of the observation period (i.e., during August and September 2020). Fol-
lowing the suggestion by Ullah and Khan [11], the overall effective contact rate β
was varied in three steps to fit the entire period from March 1 to September 30. To
this end, it was assumed that in the second step intervention measures were able to
decrease the overall effective contact rate such that it reached its critical valueβcri t . In
order to determine βcri t , R0 in Eq. (7.74) was interpreted as Re for the circumstances
during the summer 2020. Subsequently, Eq. (7.74) was solved like

Re = 1 ⇒ βcri t = 1/ f. (7.75)
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A critical value of βcri t = 0.35/dwas obtained. In contrast, the best-fit parameter of β
for the first step capturing the exponent increase of COVID-19 cases was β = 0.60/d.
This value was close to the value estimated by Khan and Ullah [11]. Importantly, as
expected it was larger than the critical value. In doing so, the first step parameter β
with β > βcri t indicates again that the disease-free fixed point was unstable during
the first few months of the COVID-19 epidemic in Pakistan. In fact, the eigenvalues
of L+ were determined for that initial period of time and a positive eigenvalue was
found [12]. The first COVID-19 wave in Pakistan and the eigenvalue analysis will
be discussed in Sect. 8.7.2.
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Chapter 8
Modeling Interventions

This chapter discusses the impact of interventionmeasures on the course of epidemics
from a nonlinear physics perspective. It is discussed how intervention measures
can affect structural properties of populations and, in doing so, induce bifurcations
from unstable disease-free states towards stable disease-free states. As a result of
such bifurcations, epidemics begin to subside. The sign switching phenomenon of
maximal eigenvalues is explored that indicates the occurrence of a bifurcation. The
bifurcation scenario and sign switching phenomenon is demonstrated for several
COVID-19 waves from Europe, Thailand, Pakistan, and the USA that took place
during the year 2020 and exhibited a subsiding stage.A three-stagemodel of epidemic
waves is discussed in this context.

8.1 Motivation

Intervention measures or protective measures against an infectious disease typically
have three goals. First, they should lower the total number of infections. Second, if
an infectious disease can cause the death of infected individuals (e.g., as it is the case
for AIDS and COVID-19) the goal is to reduce the number of deaths caused by the
disease. Third, intervention measures may be put into place to lower the peak of an
emerging epidemic wave.

Let us illustrate these goals from a mechanistic perspective. In particular, let us
illustrate that lowering the number of virus infections is oneway to reduce the number
of deaths caused by a virus disease. Let us consider an epidemic described by a 1β
SEIR-type model (5.3) that captures both recovered individuals (R) and individuals
deceased due to the disease (D). It is assumed that infectious individuals of the
compartment I either recover with a rate a or decease with a rate b. In this case, Eq.
(5.3) becomes
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d

dt
S = −β I

N
S ,

d

dt
E = β I

N
S − αE ,

d

dt
I = αE − (a + b)I ,

d

dt
R = aI ,

d

dt
D = bI . (8.1)

Let us consider an infectious disease that results in a given population in a effective
contact rate β80 that requires that the number of susceptibles S drops by 20%, that is,
reaches 80%of the initial total population before the disease-free fixed point becomes
stable. From the critical valueκr = 1, the definition ofκr asκr = Sstβ/(γN ) (seeEq.
(5.44)), and Sst/N = 0.8 it then follows that β80 = γ/0.8with γ = a + b. Figure8.1
shows a simulation of Eq. (8.1) for this scenario. For this simulation the parameters
a = 0.4/d, b = 0.1/d (⇒ γ = 0.5/d), α = 0.5/d, and N = 100,000 and initial con-
ditions I (0) = 10, E(0) = 0, and S(0) = N − I (0) have been used. Panel (a) shows
the decrease of S (top subpanel) from 100,000 (more precisely: 99,990) to the crit-
ical value 80,000 and eventually to a stationary value slightly larger than 60,000.
Panel (a) also shows the number of infected individuals C(t) = E(t) + I (t). The
wave of infected individuals reaches its peak at the moment when S reaches the
critical value of 80%. The reason for this is that the disease-free fixed point under
that critical condition S/N = 80% becomes stable. C begins to decrease (see Sects.
3.7 and 5.5.1). In panel (b) E and I as functions of time are shown. The waves in
E and I approximately reach their maxima at the time point when the disease-free
fixed point becomes stable. A close inspection shows that the wave of exposed indi-
viduals E is slightly leading the wave of infectious individuals I . In summary, E(t)
reaches its maximum first, C(t) follows, and I (t) reaches its maximum at last. Panel
(c) presents the cumulative infectious cases Ic(t) as computed from dIc/dt = αE
with Ic(0) = I (0). Panel (c) also presents the recovered and simulated individuals
deceased due to the virus disease. Panel (c) illustrates that the curve of the deaths fol-
lows qualitatively the curve of the cumulative infectious individuals. In other words,
when the cumulative number of infectious cases increases, then the number of deaths
caused by the disease increases as well. Consequently, the number of deaths can be
decreased by decreasing the total (or cumulative) number of infections.

Figure8.1 illustrates a no-intervention scenario. The epidemic eventually subsides
because the number of susceptibles S decreases below the critical value Scrit forwhich
the disease-free fixed point with Sst = Scrit and all fixed points with Sst < Scrit are
neutrally stable. Let us assume at a time t intervention measures are implemented
that reduce the effective contact rate β (e.g., in the context of a COVID-19 epidemic
taking place in a certain region by mask mandates or lockdown/shutdown orders).
If β is decreased below its critical value γ (assuming S ≈ N ) then the disease-free
fixed point becomes stable and the epidemic under consideration subsides. Figure8.2
shows results of a simulation of this intervention scenario. The same parameters and
initial conditions as for the simulation presented in Fig. 8.1 have been used. However,
at t = 60 days, the effective contact rate was lowered to 95% of the value of γ.
Consequently, at t = 60 days the disease-free state becomes stable in the simulated
epidemic. Panel (a) of Fig. 8.2 shows E and I as functions of time.Whenβ is switched
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Fig. 8.1 Simulated epidemic in the absence of interventions to stop the epidemic. Panel (a): Solu-
tions S(t) andC(t) = E(t) + I (t) of the SEIR-type model (8.1) over a 200 days period. The dotted
horizontal line indicates the required decay in S for the disease-free fixed point to become stable.
The vertical dashed line indicates the corresponding time point. Panel (b): Solutions E(t) and I (t)
of Eq. (8.1). Panel (c): Cumulative measures Icum(t), R(t), and D(t) of the simulated epidemics as
computed from Eq. (8.1) and dIcum/dt = αE . See text for parameters and initial conditions

from β = γ/0.8 > γ to β = 0.95γ < γ, then the number of exposed individuals
E(t) immediately decays. After a short delay, I (t) decays as well. Panel (b) shows
Ic, R, and D for the intervention scenario. Again D mimics the time course of Ic.
Importantly, the final death toll is lower as compared to the no-intervention scenarios
(compare D(∞) ≈ 1050 in panel (b) of Fig. 8.2 with D(∞) ≈ 7400 in panel (c) of
Fig. 8.1).

As mentioned above, a third goal of intervention measures is to lower the peak
of an emerging epidemic wave of infections. The reason for this is that typically
there is a proportion of the infectious individuals that requires intensive treatment.
In general, infectious individuals who develop severe clinical symptoms need to be
hospitalized. Hospitalization capacities have limits. A peak in infections may cause a
situation in which hospitals reach their limits and health care systems partially break
down.

For example, the COVID-19 pandemic has caused repeatedly breakdowns of
health care systems all around the globe. When the first wave of COVID-19 hit
Italy in March 2020, hospitals ran out of ventilators. Some COVID-19 patients in
need for ventilators could not receive one [1]. In general, chances of such patients
to survive without ventilation are very low [2]. During the first-wave COVID-19
epidemic in New York city in the Spring of 2020 the number of intensive care units
(ICU) could not meet the demand. Hospitals in New York city had to convert non-
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Fig. 8.2 Simulated epidemic when interventions measures are implemented and become effective
at time t = 60 days. Panel (a): Solutions E(t) and I (t) of Eq. (8.1). The vertical dotted line indicates
the time point t = 60 days when the effective contact rate β is lowered, which reflects the impact
of intervention measures. Panel (b): Cumulative measures Icum(t), R(t), and D(t) of the simulated
epidemics as computed from Eq. (8.1). Parameters and initial conditions as for the simulation in
Fig. 8.1 but with β lowered at t = 60 days to a below-critical value

ICU rooms into ICU rooms [3]. Moreover, the ICU nursing staff was no longer
sufficient. For example, before the beginning of the COVID-19 pandemic, the New
York city hospital NYU-Tisch had one ICU team. During the first-wave of COVID-
19 the hospital increased the number of teams to 11 in order to be able to deal with
the dramatically increasing number of COVID-19 ICU patients [3]. The Brazilian
health care system collapse both during the first COVID-19 wave during Spring of
2020 [4] and the second COVID-19 wave during Spring of 2021 [5]. During Spring
of 2021 the so-called delta-variant of SARS-CoV-2 was driving an unprecedented
second COVID-19 wave in India. This second wave caused a collapse of India’s
health care system. In particular, hospitals were running out of oxygen needed by
COVID-19 patients and patients were dying as a result of that shortage [6].

When health care systems become overburdened and intensive care units become
unavailable to patients, then chances are high that patients, who can be saved with
proper treatment, lose their lives.

Figure8.3 illustrates the goal to lower the peak of an epidemic wave by means
of intervention measures. Figure8.3 shows the rise and decay of the number of
infectious individuals I (t) as obtained in the no-intervention scenario (solid line)
and the intervention scenario (dashed line). Let us assume that the health care system
capacity can be measured on the basis of infectious individuals. That is, on the one
hand, the burden of a typical infectious individual on the health care system can be
determined and, on the other hand, it can be determined for howmany of such typical
infectious individuals a given health care system can provide appropriate service and
treatment. This capacitymeasure corresponds to a threshold. For illustration purposes
let us assume this threshold is at a level of 500 infectious individuals. In this case, the
demand created by the simulated epidemic for the no-intervention scenario would
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Fig. 8.3 Comparison of the solutions I (t) (solid line) of the no-intervention scenario shown in
Fig. 8.1 and I (t) (full circles) of the intervention scenario shown in Fig. 8.2. The dashed line
describes the assumed health care system capacity as measured in infectious individuals. In the
no-intervention scenario the health care system is overburdened during the peak of the epidemic

exceed the health care system capacity—at least during a certain peak period. In
contrast, for the simulated intervention scenario the peak of infectious individuals
falls below the health care system capacity. Comparing the two curves with respect to
the health care system capacity, the hypothesized interventionmeasures that decrease
the effective contact rate below its critical value are such that they push the peak of
the epidemicwave below the capacity threshold. In this context, frequently the phrase
is used that during an epidemic intervention measures should “flatten the epidemic
curve” such that hospitals can continue to provide sufficient care for their patients.

8.2 Types of Intervention Models

8.2.1 Overview

8.2.1.1 Discrete Versus Continuous

Interventions may be described with the help of stage models. To this end, the course
of an epidemic may be decomposed into a number of stages. That is, the observa-
tion period may be partitioned into several intervals reflecting stages. Within each
stage the impact of interventions is constant. Parameters describing the impact of
interventions when plotted over the whole observation period are then given in terms
of step-functions (i.e., piecewise-constant functions). Stage models of interventions
may be regarded as time-discrete intervention models.

Alternatively, time-continuous intervention models may be used. In such
approaches model parameters become explicitly time-dependent and are given in
terms of time-continuous functions. Stage modes may be considered as approxima-



222 8 Modeling Interventions

tion of time-continuous intervention models (i.e., step-functions may be considered
as approximation of time-continuous functions) [7, 8]. Time-continuous intervention
models can also come in terms of compartmental models that introduce compart-
ments specific to intervention measures. For example, models that take the effect of
vaccination on the dynamics of epidemics into account typically feature a compart-
ment of vaccinated individuals [9].

8.2.1.2 Two Types of Stage Models (Time-Discrete InterventionModels)

The stages or intervals of stage models can be defined in two qualitatively differ-
ent ways. They can be defined based on the history of events that presumably have
affected the course of an epidemic. That is, they can be event-based. Alternatively,
intervals may be defined based on the data describing an epidemic under considera-
tion. For example, the time course of diagnosed infected individuals may be used to
define a sequence of stages. This approach can be regarded as a data-driven approach.

8.2.1.3 Two Types of Time-Continuous Intervention Models

As mentioned above, there are two types of time-continuous intervention models.
On the one hand, it might be assumed that model parameters such as the effective
contact rate change in a continuous way due to the impact of intervention measures.
On the other hand, compartments may be introduced that account for the effect of
interventions.

In this context, the analysis of epidemiological models requires an additional
level of caution. When model parameters become explicitly time-dependent, the
models do no longer belong to the class of autonomous models. The analysis of fixed
points described in previous chapters and themodel-based derivation of reproduction
numbers discussed in this chapter was carried out for autonomous epidemiological
models (i.e., models that do not explicitly depend on time). Models of the second
type that describe an sheltering of susceptibles from the infectious disease (e.g., due
to vaccination) as in Eq. (4.85) or in some of the studies that will be reviewed below
typically do not exhibit a disease-free fixed point with Sst > 0. Consequently, it
might be not possible to apply the concepts and approaches discussed in the previous
chapters that assume the existence of a fixed point Xst with Sst > 0.

8.2.1.4 Special Case: Vaccination Model SIRV

The rate constant k0 that describes the rate with which susceptible individuals get
infected (see Sect. 3.2) plays a crucial role for the stability of the disease-free fixed
point. For the SIR model (3.16), the rate constant reads k0 = βS/N . Intervention
measures may be designed to decrease k0. In Sect. 8.1 it has been exemplified that
lowering the contact rate β can lead to the desired result of stabilizing the disease
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free-fixed point. An alternative approach is to decrease the size S of the susceptible
population. Vaccination is one approach in this regard.

Vaccination can reduce the probability of individuals to get infected. In the ideal
case, the infection probability becomes zero. Susceptible individuals who get vacci-
nated against a certain virus fall out of the group of susceptible and enter the group of
vaccinated individuals. Epidemiological model may be supplemented by a compart-
ment V of vaccinated individuals. For example, the SIRmodel that takes vaccination
into account reads [9]

d

dt
S = −β

I S

N
− ν

S

N
,

d

dt
I = β

I S

N
− γ I ,

d

dt
R = γ I ,

d

dt
V = −ν

S

N
. (8.2)

Epidemiological models may be used to calculate the degree of vaccination of a
population such that the disease free-fixed point becomes stable [10]. In this context,
the phrase herd-immunity has been coined. Herd-immunity begins when S is suffi-
ciently low such that the disease-free fixed point for an infectious disease in a given
population with particular parameters becomes (neutrally) stable. For example, in
Sect. 8.1, the case of a virus infection with a contact rate β80 has been considered. In
this case, the fixed point becomes stable when the susceptible population decreases
to 80% of the total population such that S/N = 0.8. Consequently, an infectious
disease in a population with β80 requires that 20% of the population becomes vac-
cinated. In this example, herd-immunity begins at 20%. Worked out examples for
diseases ranging from measles to chickenpox can be found in Ref. [10]. In those
examples, vaccination between 80% and 95% of the whole populations is required
for herd-immunity.

8.2.2 SIR-Type Models Used in Studies Examining the
Impact of Interventions

Several studies used SIR-type models as defined by Eq. (4.1) to study the impact of
interventions (see also Table 3.1).

8.2.2.1 Event-Based SIR-Type Stage Models

Wangping et al. [11] used an event-based three-stage model to describe the first-
wave COVID-19 outbreak in the Hunan district, China. The Hunan district is the
neighborhood district to the Hubei district which includes Wuhan city. They studied
the period from January to March 2020. Based on the effective dates of intervention
measures they distinguished between the following three stages. The stages were
given by stage 1 from January 23 to February 4 during which Chinese provinces
were put on lockdown, stage 2 from February 4 to February 8 during which enhanced
quarantine measures were implemented, and stage 3 from February 8 to March
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17 during which even more strict quarantine rules were put into effect in Hunan.
Wangping et al. [11] assumed that during the stages the effective contact rate of
the SIR model was constant with β = xβ0, where β0 denotes the baseline effective
contact rate in the absence of any containmentmeasures. Fitting SIR-model solutions
to COVID-19 case data, they obtained the following estimates for x : x = 0.9 for
stage 1, x = 0.5 for stage 2, and x = 0.1 for stage 3. Their analysis suggests that
the effective contact rate decayed due to the impact of intervention measures. In the
same study, Wangping et al. [11] proposed a three stage description of the first-wave
COVID-19 epidemic in Italy for the period from January 31 toMarch 31. Again, they
identified stages on basis of the dates when specific intervention measures came into
effect. The stages were given by stage 1 from January 31 to March10 during which a
number of Italian cities were blocked and isolated, stage 2 from March 10 to March
22 during which a nationwide blockade of all cities and regions was implemented,
and stage 3 fromMarch 22 toMarch 31 during which all non-essential business were
shut down. For those stages they estimated the parameter x as follows: x = 0.95 for
stage 1, x = 0.90 for stage 2, and x = 0.1 for stage 3. Again, the factor x decayed
in time across the stages suggesting that increasing the gravity of the intervention
measures led during that period to a decrease of the effective contact rate.

8.2.2.2 Data-Driven SIR-Type Stage Models

Pedersen and Meneghini [12] used a data-driven two-stage model to describe first-
wave COVID-19 epidemics in various countries. To this end, the SIQR model (4.82)
(which belongs to the class of SIR-type models, see Sect. 4.4) was used. The study
will be reviewed in Sects. 8.3.1 and 8.4.4.

8.2.2.3 SIR-Type Time-Continuous Intervention Models With
Time-Dependent Contact Rates

As reviewed in Sects. 3.6.2 and 4.5, Fanelli and Piazza used the SIRD model (4.3)
to analyze first COVID-19 waves in China and Italy [13]. As reviewed in Sect.
3.6.2, for the COVID-19 outbreak in Italy the period from February 11 to March
15, 2020 was examined in order to estimate SIRD model parameters. In addition,
several simulations were conducted in order to predict possible impacts of inter-
vention measure on the COVID-19 epidemic in Italy. To this end, it was assumed
the intervention measures result in an exponential decrease of the effective contact
rate like β ∝ exp(−a(t − t0)) with a > 0, where t0 denotes the starting point of the
implementation of the measures interventions. Since this time-dependency results
in an unrealistic long time dynamics like β → 0, a more sophisticate relationship
was suggested. Accordingly, it was assumed that intervention measures may result
in a decay of β like β = β0(1 − x) exp(−a(t − t0)) + xβ0 with x in [0, 1] such that
t → ∞ ⇒ β = xβ0. In other words, β was assumed to decay from β0 at t0 to xβ0

for t → ∞.
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A similar suggestion was made by Willis et al. [14]. In the context of a SIR
modeling framework it was suggested that containment measures could decrease the
effective contact rate like β = β0 − K (1 − exp(−a(t − t0))) with K , a > 0 such
that t → ∞ ⇒ β = β0 − K .

Zareie et al. [15] conducted a data driven approach to determine the presumed
decay of the effective contact rate β due to interventionmeasures. To this end, a time-
discrete version of the SIR model was used. Since N was large and the situation of a
COVID-19 outbreak in a completely susceptible population was considered, it was
assumed that variation in S can be neglected (see also Sect. 8.4.3). For S = N , the
SIR model reduces to a single variable model for I that reads I (t + 1) = I (t) +
β(t)I (t) − k(t)I (t) with β(t) and k(t) denote the time-dependent effective contact
rate and the time-dependent removal rate, respectively. For the first-wave COVID-19
epidemic in China from January 22 to March 23, 2020 Zareie et al. [15] computed
β(t) and k(t). They found that β(t) as function of time approximately exhibited the
shape of an exponential decaying function like β = β0 exp(−a(t − t0)).

8.2.2.4 SIR-Type Time-Continuous Intervention Models With
Vaccination-Like Sheltering

Barmparis and Tsironis [16] fitted SIR model solutions to first-wave COVID-19
epidemics observed in theUSAand sevenEuropean countries.Rather than computing
S from the evolution equation dS/dt = −β I S/N it was assumed that S decayed
linearly during those COVID-19 waves as a result of intervention measures that
protected (i.e., sheltered) more and more susceptible individuals from becoming
infected. That is, it was assumed that S evolved like S = a − bt with a, b > 0.
Using this linear ansatz, the SIR model yields an analytical solution for I (t) in terms
of a Gaussian function like I (t) = I0 exp{−c(t − t0)2 + d(t − t0)} with c, d > 0.

Asmentioned in Sect. 4.4, an SIQRmodel defined by Eq. (4.85) was used to study
the COVID-19 outbreak in Brazil in early 2020 [17], Accordingly, the evolution
equation for S involves a term −wS as used to describe vaccination [9] describing
a sheltering effect of individuals from getting infected by COVID-19. Explicitly,
the evolution equation reads dS/dt = −βSI/N − wS (see Eq. (4.85)). As argued
in Ref. [17], it is plausible to assume that during the initial stage of the COVID-
19 epidemic in Brazil the approximations S ≈ N and I ≈ 0 were satisfied. This
implies that the evolution of S was determined by the linearized equations is dS/dt =
−β I − wS. Neglect the impact of the infection term β I relative to the impact of the
interventionwS, it follows that the population of susceptibles S decays exponentially
like S = S0 exp(−wt) for t0 = 0. For short time periods, the exponential law implies
a linear decay of S like S = S0(1 − wt) as assumed by Barmparis and Tsironis [16]
(see above). In general, substituting the ansatz S = S0 exp(−wt) into the linearized
evolution equation dS/dt = −β I − wS and analytical solution for I (t) can be found
[17].
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8.2.3 Modeling COVID-19 Interventions Beyond SIR Models

In this section let us briefly review a few studies that are about the impact of COVID-
19 intervention measures and based on epidemiological models with two or more
than two infectious compartments.

8.2.3.1 Event-Based Stage Models

In Sect. 5.8, the study by Pang et al. [18] was introduced. Pang et al. investigated
the epidemic in Wuhan city at the beginning of the year 2020. They used a 2β
SEIR model. As described in Sect. 5.8, they conducted an event-based stage model
approach and introduced three stages of the epidemic. These stages were stage 1
from December 2019 to January 22 (pre-lockdown stage), stage 2 from January 23
to February 11 (lockdown stage), and stage 3 from February 12 to the end of their
data analysis period, which was March 25 (lockdown stage with strict quarantine
measures). As part of their comprehensive study, they determined the effective con-
tact rates and the basic and effective reproduction numbers of the stages. Table8.1
summarizes their results. They found that the effective contact rates decayed across
the stages. As discussed in Sect. 7.5.2, Pang et al. also found that the reproduction
number decayed from an above-threshold value to a below-threshold value. The
maximal eigenvalue of the three stages shown in Table8.1 was computed in Ref.
[19]. The eigenvalue switched from a positive to a negative value across the three
stages, indicating that the disease-free fixed point was stabilized over the course of
the observation period.

Gatto et al. [20] used an extended SEIAR model as discussed in Sect. 5.3.2 to
study the emerging COVID-19 epidemic in Italy. They used an event-based three-
stage approach. Based on measures implemented by the Italian government that
restricted the mobility of individuals and the contacts between individuals, Gatto et
al. defined the following three stages: stage 1 (February 21 to February 24/26), stage
2 (February 24/26 toMarch 8/10), and stage 3 (March 8/10 toMarch 25). From stage
to stage the severity of the intervention measures increased [20]. The model uses the
effective contact ratesβP ,βA, andβI (see Eq. (5.17)). The parametersβA andβI were
expressed as certain fixed multipliers of βP like βA = xβP and βI = yβP , where x
and y did not change across the stages. The parameter βP was estimated for the three

Table 8.1 Parameters of the 2β SEIR model describing the first COVID-19 wave in Wuhan city,
China, as obtained in Refs. [18, 19]

Stage βI [1/d] βE [1/d] R0,e λmax [1/d]

1 0.29 0.17 4.64 0.19

2 0.26 0.13 1.75 0.09

3 0.02 0.02 0.16 −0.14
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stages. In particular, the change of βP across the stages was determined. Gatto et al.
found that βP decayed across the stages like βP(Stage 2)/βP(Stage 1) = 0.82 and
βP(Stage 3)/βP(Stage 2) = 0.66.

Sun et al. [21] discussed the inverse problem. They studied events that took place
in the Heilongjiang province, China, during Spring 2020. As part of the general
COVID-19 related lockdown that was implemented in several regions of China at the
beginning of the year 2020, during Spring 2020 initially strict intervention measure
were implemented in the Heilongjiang province. These measures were subsequently
relaxed. Sun et al. [21] studied the effect of relaxing intervention measures. More
precisely, they used an event-based two-stage approach. Stage 1 was defined as the
period from January 23 to March 25, 2020, during which of few local COVID-
19 outbreaks occurred and subsided relative quickly due to the strict intervention
measures. Stage 2 was defined as the period from April 9 to April 29, 2020 that was
characterized by relaxed intervention measures. During that period another local
COVID-19 outbreak took place. Sun et al. used a five-variable compartmental model
involving three actually infectious compartments and, consequently, three effective
contact rate parameters β1, β2, and β3. They determined the effective contact rate
parameters for stage 1. Subsequently, they assumed that in stage 2 all three parameters
were increased by a factor F like βk(Stage 2) = Fβk(Stage 1). They estimated that
the factor F was in the range from 6 to 8.

Zhao et al. [22] conducted a theoretical study using a SEIAR-like compartmen-
tal model. Their considerations focused on an event-based stage description of the
COVID-19 pandemic when intervention measures are implemented during certain
periods and change across periods. Importantly, they discussed the possibility of
implementing different intervention measures during the same period for different
subgroups of a population.

8.2.3.2 Data-Driven Stage Models

Dickman [7] used a data-driven three-stage SEIAR-like model to study the COVID-
19 epidemics during the first half of the year 2020 in Brazil, USA, and more than 100
regions and countries around the globe. The model involves three actually infectious
compartments with effective contact rates β1, β2, and β3 that are related to a reference
effective contact rate β like βi = xiβ, where xi were fixed across the stages. The ref-
erence contact rate β was varied from stage to stage. That is, β was modeled in terms
of a piecewise-constant step-function. Dickman pointed out that such step-functions
may be considered as approximation of smooth and continuously varying functions
as mentioned in Sect. 8.2.1. The time points t1 and t2 of the stage boundaries were
estimated from the data together with the β(Stage 1), β(Stage 2), and β(Stage 3)
to obtain an optimal fit between of the respective model solutions. Consequently, a
data-driven stage approach was used.

Oliveira et al. [23] used an eight-variable compartmentmodel to study theCOVID-
19 epidemic in the 14 million population of the state of Bahia, Brazil, during the
period from March to September 2020. The model involves two actually infectious
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compartments with effective contact rates β and ζβ, respectively. In order to account
for the impact of intervention measures that were implemented during their obser-
vation period, Oliveira et al. [23] conducted a data-driven three-stage analysis. The
factor ζ was fixed across the stages. In contrast, β varied and was estimated for the
three stages together with the stage boundaries t1 and t2 to obtain an optimal fit of
the model to the available data. Accordingly, the first stage [t0, t1] was from March
6 to April 3, the second stage [t1, t2] was the period from April 3 to June 11, and
the third stage [t2, t3] was the period from June 11 to the end of the observation
period, which was September 13, 2020. They found that the effective contact rate β
decreased during the three stages from β(Stage 1) = 1.40/d to β(Stage 2) = 0.96/d
and β(Stage 3) = 0.66/d. This decrease was presumably due to the implemented
intervention measures.

Serhani and Labbardi [24] used an SIAR-likemodel to study the first threemonths
of the COVID-19 epidemic in Morocco of the year 2020. The model involves two
actually infectious compartments with effective contact rates β and ζβ. Serhani
and Labbardi first determined a baseline effective contact rate β0 in the absence of
intervention measures. Using β0 = ν p (see Eq. (3.3)), they assumed that individuals
had ν = 40 contacts per day and that the probability of infection was p = 3%. The
parameter ζ was taken from the literature. The effective contact rate β that accounts
for intervention measures was then assumed to be proportional to β0 like β = hβ0.
Serhani and Labbardi [24] used a data-driven three-stage approach to fit the solution
of their epidemiological model to the observed COVID-19 data from Morocco. In
particular, theywere interested to explain a seemingly secondary peak in the COVID-
19 cases. According to their analysis, in stage 1 the factor h was h = 0.844 such that
after the number of susceptibles decreased to a sufficiently low level the disease-
free fixed point became stable and the epidemic started to subside. However, in
the subsequent stage (stage 2), intervention measures were relaxed or ignored by
the population such that h increased to h = 0.846. In stage 3, this relaxation or
ignorance was even more pronounced such that h increased again to h = 0.851.
According to the simulation and analysis conducted by Serhani and Labbardi, in
stage 3 the disease-free fixed point became unstable again, which was the reason
why a secondary peak in the epidemic curve of COVID-19 cases occurred.

A series of data-driven three-stage studies were conducted for several European
countries [25], Thailand [8], Pakistan [26], and the USA [27]. They will be reviewed
in more detail in Sects. 8.4 and 8.5.

8.2.3.3 Time-Continuous Intervention Models with Time-Dependent
Contact Rates

Garba et al. [28] used a SEIAR-like model to examine the spread of COVID-19
in South Africa during the first half of the year 2020. The model involves a time-
dependent effective contact rate β(t). It was assumed that during the first 25 days
since March 5, when the first COVID-19 case was confirmed in South Africa, the
contact ratewas constant atβ(t) = β0.However, onMarch 26 a nationwide lockdown
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was ordered [28]. Therefore, Garba et al. assumed that after that initial t0 = 25 days
period intervention measures showed an effect such that β(t) decayed like β(t) =
β1 + (β0 − β1)/[1 + ω(t − t0)] with β1 < β0 and ω > 0. The function describes a
monotonic decay from β0 at t = t0 towards β1 for t → ∞.

Ivorra et al. [29] used a similar approach to describe the first wave of the COVID-
19 epidemic in China during the period from December 2019 to the end of March
2020. A comprehensive multi-variable compartmental model was used that involved
three actually infectious compartments. The respective effective contact rates were
assumed to be constant during an initial period. Subsequent to that period, they were
assumed to vary in a smooth (i.e., time-continuous) manner. In particular, all three
effective contact rates were assumed to be proportional to an intervention factor
m(t) that was modeled with the help of two stages. The first stage was given by
the period from December 1, 2019 to January 23, 2020. During that period m was
fixed at m = 1. The second stage was given by the period from January 23 to the
end of the observation period (i.e., end of March 2020). It was assumed that m
decayed exponentially during that period like m(t) = exp(−κ(t − t0)) with κ > 0
and t0 = 23 January. This decay of the factor m should reflect the impact of the
lockdown of the region around Wuhan and several neighboring regions that was
ordered on January 23, 2020, by the Chinese government.

8.2.3.4 Time-Continuous Intervention Models with Vaccination-Like
Sheltering

Zhao et al. [30] used a 1β SEIR model with a vaccination-like sheltering term such
that the evolution equation of S was given as shown in Eq. (8.2) like dS/dt =
−βSI/N − νS. The initial COVID-19 epidemics of six African countries during
March 21 to April 13 were examined. To this end, the sheltering factor ν was varied
and observed infections were compared with model solutions for various values of
ν. In doing so, the African countries could be compared to each other on the basis
of the parameter ν. For example, the data from South Africa was consistent with
all larger sheltering factor ν as compared to the data from Egypt. This result could
be interpreted to assume that during that initial period of the COVID-19 pandemic
in Africa, the government of South Africa was more successful in implementing
intervention measures than the government of Egypt.

Mandal et al. [31] fittedmodel solutions of aSEIQRmodel toCOVID-19data from
several regions of India as observed during March/April 2020. An objective of the
study was to predict the epidemics in those regions when assuming that intervention
measures could shelter and protect people such that S evolves like dS/dt = −k0S −
νS. That is, a vaccination-like term was used to model the impacts of measures to
prevent the spread of COVID-19.

Nabi [32] used an eight-variable compartmental model to describe early COVID-
19 epidemics inRussia, Brazil, India, Bangladesh, andUK. In order to address actions
taken by the populations and governments to protect against the spread of the disease,
in the model a fixed quarantine term −νS was introduced that effectively reads like
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the vaccination-term in Eq. (8.2). That is, it was assumed that the susceptibles were
quarantined at a fixed rate ν. After they finished quarantine, they returned to the group
of susceptibles provided they were not infected. From amodeling point of view, such
as linear term −νS in the evolution equation of S makes that the epidemiological
model no longer exhibits a disease-free fixed point with Sst = N , where N is the
population size. An alternative approach to describe the impact of quarantining will
be presented in Sect. 8.7.1 on the basis of the study by Ngonghala et al. [33]. In
this alternative approach, quarantining only takes place when a population exhibits
a non-zero number of infected individuals. Consequently, the disease-free state with
Sst = N remains a fixed point of the model.

8.3 Models with Analytical Solutions

Analytical solutionsmay be obtained under the assumption that the disease dynamics
evolves close to the disease-free fixed point. In this case, the evolution is determined
by linearized equations for which analytical solutions can often be obtained. Models
exhibiting analytical solutions can be conveniently used as stage models. The reason
for this is that it is often less tedious to estimate model parameters with the help
of analytical solutions as compared to numerical solutions. For models exhibiting
analytical solutions, the solutions can be fitted conveniently for each stage of an
observed trajectory or data set under consideration.

8.3.1 SIR-Type Models

Analytical solutions for the SIQR models (4.82) and (4.85) have been derived and
used to describe COVID-19 epidemics in Italy and Brazil in studies by Pedersen and
Meneghini [12] and Crokidakis [17, 34], respectively. Pedersen and Meneghini [12]
also studied 2020 COVID-19 outbreaks in Europe, Canada, Australia, and the USA
with the help of similar analytical SIQR model solutions. The SIQR models are
models of the SIR type. In particular, the model (4.82) has the benefit that individuals
in the compartments Q and R taken together correspond to the cumulative reported
(i.e., diagnosed) COVID-19 cases such that the model can be conveniently fitted
to data (see Sect. 4.4). The analytical solutions of the SIQR model (4.82) will be
presented in Sect. 8.4.3.

8.3.2 SEIR-Type Models

Let us consider the 2β SEIR-type model suggested in Refs. [8, 25]. Figure8.4 shows
a schematic of the model (top part). Accordingly, the model involves the populations
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Fig. 8.4 Panel (a):
Compartments and flow
chart of the 2β SEIR-type
model described by Eq. (8.3).
Panel (b): Compartments and
flow chart of the simplified
version of the model as
described by Eq. (8.4)

of susceptible (S), exposed and possibly asymptomatic infectious individuals (E),
and symptomatic infectious but non-diagnosed individuals (I ) and several types
of removed individuals. These removed individuals are recovered individuals (RE )
from the class E , recovered individuals (RI ) from the class I , individuals who are
diagnosed with COVID-19 and removed (e.g., hospitalized or quarantined) but not
recovered or deceased (RC,0), diagnosed recovered individuals (RC,+), and diagnosed
deceased individuals (RC,−). The individuals in the compartment RC,0 cannot infect
others (e.g., due to perfect isolation). The total population is given by N = S +
E + I + RE + RI + RC,0 + RC,+. Moreover, N (t) + RC,−(t) = N0, where N0 is a
constant. The model equation reads [25]

d

dt
S = −βE

ES

N
− βI

I S

N
,

d

dt
E = βE

ES

N
+ βI

I S

N
− (α + γE )E ,

d

dt
I = αE − (γI + γC)I ,

d

dt
RE = γE E ,

d

dt
RI = γI I ,

d

dt
RC,0 = γC I − (a + b)RC,0 ,

d

dt
RC,+ = aRC,0 ,

d

dt
RC,− = bRC,0 . (8.3)
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All parameters are semi-positive. They denote the effective contact rate between indi-
viduals of class E and susceptible individuals (βE ), the effective contact rate between
symptomatic infectious and susceptible individuals (βI ), the rate of progression from
class E to I (α), the recovery rate of exposed and possibly asymptomatic infectious
individuals (γE ) and, likewise, the recovery rate of symptomatic infectious individ-
uals (γI ). Moreover, the parameters describe the diagnoses rate (γC ), the recovery
rate of diagnosed individuals (a) and the death rate of diagnosed individuals (b).

The total population of individuals diagnosed with COVID-19 is given C =
RC,0 + RC,+ + RC,−. The model (8.3) can be simplified as shown in Fig. 8.4 (see
bottom part). To this end, the recovered individuals from class E and I are taken
together RE+I = RE + RI and the variable C is used. In this case, Eq. (8.3) reads
[8]

d

dt
S = −βE

ES

N
− βI

I S

N
,

d

dt
E = βE

ES

N
+ βI

I S

N
− (α + γE )E ,

d

dt
I = αE − (γI + γC)I ,

d

dt
RE+I = γE E + γI I ,

d

dt
C = γC I . (8.4)

Consequently, C evolves like

C(t) = C(t ′) + γC

∫ t

t ′
I (s) ds . (8.5)

The key assumptions that allow to use linearized equations, is to assume that N
is approximately constant and the S = N holds in good approximation [25] (see
also Refs. [12, 15, 17]). Let us motivate these assumptions. First, while the number
of COVID-19 associated deaths is a tragic number, it is typically a negligibly small
number relative to the total population under consideration. For example, inGermany,
as a result of the first-wave of COVID-19, in July 2020, about RC,− = 9,000 deaths
were reported. Note that RC,− does not describe daily deaths or “new deaths” but the
total number of deaths until the time point under consideration. The population of
Germany in 2020was about N = 83,000,000 [35]. Consequently, RC,− � N , which
implies that N ≈ N0. The variable N occurring in Eqs. (8.3) and (8.4) is constant.
Second, the approximation S = N holds for first-waves of COVID-19 assuming
that such waves are relative short in time. This implies that the diagnosed cases
are relatively small (C � N ). Moreover, it can be assumed that the unknown non-
diagnosed infected cases E and I and the corresponding recovered cases RE and
RI correspond to relatively small numbers as well (E + I + RE + RI � N ). For
example, in July 2020, in Germany a cumulative number of confirmed cases C ≈
200,000 was observed, which is 0.24% of the population with N = 83,000,000 such
that the assumption C � N is satisfied.

If we put S = N then the rate constant k0 = (βE E + βI I )S/N reads k0 = βE E +
βI I and the models (8.3) and (8.4) becomes linear. The linear evolution equations
for E and I read
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d

dt
E = β∗

E E + βI I ,
d

dt
I = αE − γ∗

I I (8.6)

with β∗
E = βE − (α + γE ) and γ∗

I = γI + γC .
In summary, the compartmental model sketched in Fig. 8.4 and described by Eq.

(8.3) or alternatively by Eq. (8.4) reduces under the circumstances described above
to a three-variable model for E , I , and C defined by Eqs. (8.5) and (8.6), which is
linear and can be solved analytically. The linear model (8.6) has been discussed in
Sect. 5.5.1. In particular, Eq. (8.6) corresponds to Eq. (5.37) if in Eq. (5.37) γ is
substituted like γ = γ∗

I and βE − α is replaced by β∗
E , that is, by βE − (α + γE ). In

analogy to Eq. (5.38), the eigenvalues of Eq. (8.6) read

λ1,2 = β∗
E − γ∗

I

2
±

√
(β∗

E − γ∗
I )

2

4
+ β∗

Eγ∗
I + βIα , (8.7)

where the upper (lower) sign holds for λ1 (λ2). Both eigenvalues are real-valued.
The stability analysis can be conducted as in Sect. 5.5.1. In particular, in analogy to
βw as defined in Eq. (5.41), the weighted parameter

βw = βI + γ∗
I

α
(βE − γE ) (8.8)

can be defined. If so, the determinant D̂ = −(β∗
Eγ∗

I + βIα) occurring in Eq. (8.7)
reads D̂ = α(γ∗

I − βw) such that for

βw > γ∗
I ⇒ λ1 > 0 , λ2 < 0 (8.9)

the fixed point Est = Ist = 0 corresponds to a saddle point (as long as the linear
approximation is valid, i.e., S ≈ N ), for

βw = γ∗
I ⇒ λ1 = 0 , λ2 < 0 (8.10)

the disease is at its bifurcation point, and for

βw < γ∗
I ⇒ λ1 < 0 , λ2 < 0 (8.11)

Est = Ist = 0 corresponds to a stable node. Alternatively, the bifurcation parameter
[8, 25]

βtot = βE + α

γ∗
I

βI (8.12)

with D̂ = −(β∗
Eγ∗

I + βIα) = γ∗
I (α + γE − βtot ) can be introduced such that for

βtot > α + γE ⇒ λ1 > 0 , λ2 < 0 (8.13)
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the fixed point Est = Ist = 0 is a saddle point, for

βtot = α + γE ⇒ λ1 = 0 , λ2 < 0 (8.14)

the disease is at its bifurcation point, and for

βtot < α + γE ⇒ λ1 < 0 , λ2 < 0 (8.15)

Est = Ist = 0 corresponds to a stable node. The basic and effective reproduction
numbers of the SEIR model can be computed using the techniques described in
Chap. 7. With the help of βtot the reproduction numbers can be expressed like [8]

R0,e = βtot

βtot,c
, (8.16)

where βtot,c = α + γE is the critical value of the bifurcation parameter βtot . Con-
sequently, R0,e > 1 and R0,e < 1 corresponds to the two cases described by Eqs.
(8.13) to (8.15), respectively. This implies that for R0,e > 1 (R0,e < 1) the fixed
point Est = Ist = 0 corresponds to an unstable (asymptotically stable) state, which
is consistent with the general considerations made in Chap. 7 about reproduction
numbers.

Let X+ = (E, I ) denote the two-dimensional subspace vector of the E-I plane
D+. Then, the amplitude space description of the subsystem dynamics (8.7) in D+
reads

X+(t) =
(
E(t)
I (t)

)
= A1(t)v1 + A2(t)v2 , (8.17)

where v1 and v2 denote the eigenvectors related to λ1 and λ2, respectively. The
eigenvectors will be determined explicitly below. The amplitudes themselves satisfy
the linear equations

d

dt
A j = λ j A j (8.18)

and, consequently, evolve like A j (t) = A j (t0) exp{−λ j (t − t0)}. Finally, if the over-
all dynamics is dominated by the term A1v1 of the amplitude and eigenvector related
to the maximal eigenvalue λ1, then Eq. (8.17) reduces to

X+(t) =
(
E(t)
I (t)

)
≈ A1(t)v1 . (8.19)

For λ1 > 0 the vector v1 is the EI order parameter that determines in combination
with the order parameter amplitude A1 the disease subsystem dynamics X+ in the
infected E-I subspace. Forλ1 < 0 the vector v1 is the remnant of the order parameter.
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8.3.2.1 Single λ Approach

From Eq. (8.7) it follows that λ1 > λ2 and that λ2 < 0 holds in any case. Conse-
quently, the amplitude A1 can be considered as the dominant amplitude. In particular,
as discussed in Sect. 6.1.3, for λ1 > 0 the amplitude A1 corresponds to the order
parameter amplitude and increases over time, while A2 decays in magnitude. More-
over, for λ1 < 0 there might be a time-scale separation as discussed in Sect. 6.1.3
such that A1 slowly decays in magnitude, whereas A2 decays relatively quickly. If
so, A1 determines the subsiding dynamics of an epidemic wave under consideration.
Taken these considerations together, it has been suggested to neglect the evolution of
the amplitude A2 [25]. This leads to a single λ approach or single λ approximation.
Let v1 be given in components like v1 = (v1,E , v1,I ), then from Eq. (8.19) it follows
that I/E = g with g = v1,I /v1,E > 0. Consequently, the SEIR-type model (8.4) in
the linear approximation reduces to

S = N0 ,
d

dt
E = λ1E , I = gE ,

d

dt
C = γC I = g∗E (8.20)

with g∗ = gγC . In Eq. (8.20) the dynamics of RE+I that is described in Eq. (8.4)
has been neglected because it will be of no concern in what follows. For λ1 
= 0 Eq.
(8.20) exhibits the analytical solutions [25]

E(t) = E(t0) exp{λ1(t − t0)} ⇒ I (t) = I (t0) exp{λ1(t − t0)}
⇒ C(t) = C(t0) + V [exp{λ1(t − t0)} − 1] (8.21)

with V = γC I (t0)/λ1. The advantage of the single λ approach is that the unknown
parameters V and λ1 occurring in Eq. (8.21) can be estimated from data given in
terms ofC(t) conveniently andwith high accuracy. The disadvantage of the approach
is that v1 (and v2) cannot be estimated solely on the basis of data C(t).

8.3.2.2 Two λ Approach

In order to estimate the eigenvectors v1 and v2 the following procedure has been
suggested [8]. Let us assume that all model parameters are known except for the
effective contact rates βE and βI . In other words, literature values for α, γI , γE , and
γC are taken. In this case, if λ1 and λ2 can be estimated from data, then βE and βI can
be computed from λ1 and λ2 by solving Eq. (8.7). Consequently, the eigenvectors
v1 and v2 can be determined. This two λ approach works explicitly as follows. First,
Eq. (8.6) for the subsystem X+ = (E, I ) can be written like

d

dt

(
E
I

)
= L+

(
E
I

)
, L+ =

(
β∗
E βI

α −γ∗
I

)
. (8.22)
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The matrix equation can equivalently be expressed as the second order differential
equation

d2

dt2
I = T̂ (L+)

d

dt
I − D̂(L+)I , (8.23)

where T̂ and D̂ denote the trace and determinant of L+, respectively. For λ1,λ2 
= 0
the analytical solution of Eq. (8.23) is given by [8]

I (t) = B1 exp{λ1(t − t0)} + B2 exp{λ2(t − t0)} , (8.24)

where B1 and B2 are parameters related to initial conditions. Likewise, forλ1,λ2 
= 0
using Eqs. (8.5) and (8.6) the analytical solutions for E and C can be obtained and
read [8]

E(t) = 1

α

[
(λ1+γ∗

I )B1 exp{λ1(t − t0)} + (λ2+γ∗
I )B2 exp{λ2(t − t0)}

]
,

C(t) = C(t0) + V1[exp{λ1(t − t0)} − 1] + V2[1 − exp{λ2(t − t0)}] ,

(8.25)

where V1 and V2 are certain parameters. Finally, from the matrix L+ the eigenvectors
can be obtained (see Eq. (5.30)) and read

v1 = 1

Z1

(
βI

λ1 − β∗
E

)
, v2 = 1

Z2

(
βI

λ2 − β∗
E

)
(8.26)

with Z j =
√

β2
I + (λ j − β∗

E )2 for j = 1, 2.
The two λ approach has been used in the study by Frank and Chiangga [8] to

discuss the first-wave COVID-19 epidemic in Thailand during the year 2020 (see
Sect. 8.4.5). In Frank and Chiangga [8] only λ1 could be estimated with satisfactory
accuracy based on case data C(t). That is, the data of the first-wave epidemic in
Thailand were such that the analytical solution for C(t) involving two eigenvalues
λ1 and λ2 could not be used to estimate λ2. Nevertheless, the two λ approach could
be used to determine the eigenvectors v1 and v2. To this end, a theoretical assumption
about the relationship between βE and βI was made (see again Sect. 8.4.5 below).
This example illustrates that, as such, the double-exponential function forC(t) shown
in Eq. (8.25) allows to estimate the eigenvalues λ1 and λ2 independently from each
other from given cumulative COVID-19 case data C(t). However, for any given data
set C(t) it should be checked whether or not the data is such that both parameters
can indeed be estimated in a reliable way.
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8.4 Three-Stage Models and the Bifurcation Scenario
Underlying Epidemic Waves

8.4.1 Bifurcation Scenario of Epidemic Waves

Let us continue the discussion about interventions that was presented in Sect. 8.1.
Accordingly, intervention measures may change structural population parameters
such that unstable disease-free fixed points change their stability and become stable.
Such a switch in stability describes a bifurcation (see Sect. 2.5). In this context,
Fig. 8.5 illustrates two scenarios in this context. On the left, the disease-free state
is shown. In what follows the case is considered in which the disease-free state in
the presence of a virus corresponds to an unstable state (see Chaps. 1, 3–7) which is
typically the case if a novel virus such as COVID-19 invades a population. In the very
bottom part of Fig. 8.5, the unstable state is characterized in terms of eigenvalues.
For sake of simplicity, the case is illustrated in which there is a single eigenvalue that
is positive. In fact, this case applies to the SIR and SEIR compartmental models (see
Chaps. 4 and 5) and this case holds for all other applications that have been discussed

Fig. 8.5 No-intervention and intervention scenarios of an epidemic. In both scenarios the disease
state of a population evolves initially away from an unstable diseases-free fixed point Xst towards
a high cases/high deaths state. In the no-intervention scenario (scenario A) this state is reached. In
the intervention scenario (scenario B) this state is not reached due to a change in the dynamics of
the individuals that triggers a bifurcation and stabilizes the disease-free fixed point. Consequently,
a low cases/low deaths state is reached. The real part of the maximal eigenvalue of the diseases-free
state at the beginning of the epidemic is positive (i.e., Re(λ(max)) > 0) indicating that the state
is unstable. In contrast, the final states in the two scenarios when seen in a subspace D+ (e.g., of
infected individuals) exhibit a maximal eigenvalue that is negative or exhibit a negative real part
(i.e., Re(λ(max)) < 0). The final state is asymptotically stable in D+ and typically neutrally stable
when considering the entire state space. Note that the dynamics of the intervention scenario is an
example of a dynamics that takes place, in general, in D1 systems [36] (compare with Fig. 8.6)



238 8 Modeling Interventions

in Chap. 6. The remaining eigenvalues are assumed to exhibit negative real parts or
real parts equal to zero. On the far right in Fig. 8.5, the final (stationary) states of the
two scenarios are shown. These states are assumed to be stable (just as the stationary
states shown in Fig. 8.1 and 8.2). They are again characterized by eigenvalues. For
the stable states all eigenvalues exhibit real parts that are negative or zero.

The top part of Fig. 8.5 illustrates the scenario, in which no interventions are
put into place, which is called the scenario A. Due to the instability of the disease-
free fixed point, the disease (or health) state of a population evolves away from the
unstable fixed point. The infectious disease invades the population and spreads out.
Since no interventions are implemented, a relative large portion of the population
becomes infected. Without an intervention, not only a relatively large number of
individuals become infected but the disease also causes a relatively large number
of disease-associated deaths (e.g., compare Figs. 8.1 and 8.2). Therefore, the stable
fixed point of the dynamics of the disease under the no-intervention scenario A is
referred to as the high cases/high deaths state.

In contrast, when interventionmeasures are implemented that reduce the spread of
an infectious disease, the intervention scenario (scenario B) shown in the lower part
of Fig. 8.5 is likely to take place. While initially the disease state evolves towards
the high cases/high deaths state, after a certain period intervention measures are
implemented and show an effect. In particular, the bifurcation scenario assumes that
intervention measures affect the positive eigenvalue and shift it towards a negative
value. Consequently, an intervention or treatment bifurcation takes place in which
the disease dynamics converges to a state with a relative low number of infected
cases and disease-associated deaths. In Fig. 8.5 this stable state is referred to as the
low cases/low deaths state. This stabilization of the disease-free fixed point has been
documented indirectly in various studies on the COVID-19 pandemic that deter-
mined the reproduction number before and after the implementation of intervention
measures in certain regions and countries.

An examplewas given inSect. 7.5.2. In the study byPang et al. [18] on theCOVID-
19 epidemic in Wuhan city the conclusion was drawn that intervention measures
decreased the reproduction number from an above-threshold value R0 = 4.6 > 1 to
a below-threshold value Re = 0.2 < 1, which indicates that the intervention mea-
sures caused a stabilization of the disease-free fixed point. More explicity examples
supporting the bifurcation scenario of COVID-19 waves will be given in the remain-
der of this chapter.

8.4.2 Bigger Picture: Dynamical Diseases and D1-Systems

8.4.2.1 Dynamical Diseases

The notion that diseases on the level of individuals emerge via bifurcations is at
least 40 years old. In a seminal study, Mackey and Glass [37] argued that increas-
ing the travel durations of feedback signals in humans can induce bifurcations in
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which states that are considered as healthy states become unstable and states that
are considered as diseases states emerge. Clinical tremor [38], epileptic seizures [39,
40], Parkinson disease [41], falls of elderly individuals [42], and certain respiratory
and hematological disorders [37, 43–45] may arise from bifurcations. Certain condi-
tions that are considered in clinical psychology as disorders such as mood disorders
[46–51] and, in particular, schizophrenia [52] may emerge via bifurcations as well
(for short reviews see, e.g., Refs. [36, 53]).

In general, the possible health (or disease) states of an individual may be described
by means of an appropriately defined n-dimensional state space. The state of an
healthy individual may correspond to an attractor located in the n-dimensional state
space [36]. If a bifurcation occurs such that the attractor becomes unstable and
an another attractor emerges that corresponds to a condition less favorable for the
individual, we may talk about a disease emerging in the individual [36]. Importantly,
if such a bifurcation involves a single eigenvalue that changes its sign from a negative
to a positive value then there is a single unstable eigenvector vk in the n-dimensional
state space that dominates at least initially the disease dynamics (see Chap. 2). This
order parameter vk and its amplitude Ak characterize the initial-stage progression of
the disease under consideration.

It has been suggested that this bifurcation perspective does not only apply to the
emergence of a disease but also to the decline of a disease due to treatment [36, 49,
54–56]. Accordingly, a treatment (or therapy) bifurcation takes place that brings the
individual from the disease state either back to the original healthy state or to a new
kind of healthy state [36]. Several clinical observations have been reported consistent
with this bifurcation perspective of treatment and therapy of patients [57–61].

The instability-induced outbreaks of infectious diseases described in the previous
section that lead to epidemics in populations may be seen as counterparts to bifurca-
tions of health or disease states that lead to the emergence of diseases in individuals.
Likewise, the intervention bifurcations described in the previous section that sta-
bilize unstable disease-free fixed points and lead to the subsiding of epidemics in
populations may be seen as counterparts to treatment and therapy bifurcations that
lead to a disease decline in patients.

8.4.2.2 D1 Systems

In Ref. [36] a classification of humans and animals into five system classes with
certain properties has been worked out. This five-system classes scheme allows to
put phenomena in a systematic order. The classification scheme is not restricted
to individual humans and animals. It applies to all kind of biological and physical
system. In particular, it might be applied to epidemics spreading in populations. In
the context of the five-system classes scheme, the intervention scenario (scenario
B, see Fig. 8.5) can be considered as a phenomenon that typical occurs in D1 sys-
tems. In general, D1 systems are composed of structure, state, and environment.
Figure8.6 illustrates these components in the context of the intervention scenario. In
this context, structure can be described in terms of parameters such as the maximal
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Fig. 8.6 Components of D1 systems and interactions between those components when applied to
describe intervention scenarios of epidemics

eigenvalue or effective contact rate parameters. State is given in terms of the disease
(or health) state of a population. Environment covers elements that do not occur in
the state vector. For example, environment addresses the breakdown of clinics and
the health care system due to dramatically rising numbers of COVID-19 patients, the
suffering of the population due to the deaths associated with the infectious disease
under consideration, and the reaction of politicians and lawmakers to those events.
For a D1 system the evolution of the state is determined by the structure (as indicated
by the arrow). Furthermore, the state affects the environment (as indicated again by
the arrow). Importantly, the environmental circumstances affect the structure. In the
context of the intervention scenario, this implies that the implementation of interven-
tion measures affects parameters such as the maximal eigenvalue or effective contact
rate parameters. Due to the such structural changes, the evolution of the disease (or
health) state changes. D1 systems exhibit a circular causality loop. More sophisti-
cated intervention scenarios may be discussed using higher system classes such as
D2 and D3 systems or E systems (for details see Ref. [36]). Finally note that the no
intervention scenario (scenario A, see Fig. 8.5) corresponds within the five-system
classes scheme to a phenomenon occurring in an A1 system. Such A1 systems form
the lowest (or most basic) class of systems. In classical mechanics, an example of an
A1 system is a ball that rolls on flat surface.

8.4.3 Three-Stage Epidemic Waves

Interventions measures are assumed to affect virus transmission parameters. For
example, with respect to the SEIR model (8.3) such measures may lower the effec-
tive contact rates βE and βI like βE = βE,B < βE,A, βI = βI,B < βI,A and increase
the diagnosis rate γC like γC = γC,B > γC,A, where the subindices “A” and “B” refer
to the parameter values in the absence (scenarioA) and presence (scenario B) of inter-
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Fig. 8.7 Three-stage model
of an epidemic wave
illustrated for the evolution
of cumulative diagnosed
infected cases over time (as
suggested, e.g., in
Refs. [8, 25])

ventions, respectively. In the context of the COVID-19 pandemic, effective contact
rates may decay, for example, due to measures like physical distancing and wear-
ing face masks and the diagnoses rate may increase, for example, due to increased
COVID-19 testing.

Let us pursue a parsimony approach. Accordingly, let us focus on the fact that
the stability of a fixed point is determined by its eigenvalues. Therefore, while it
is worth while to study how interventions affect specific model parameters such as
βE , βI , and γC the key issue is that in the end they change eigenvalues. This can
be shown explicitly. For example, Eq. (8.7) illustrates that the eigenvalues of the
SEIR model (8.3) depend on the model parameters βE , βI , and γC . Consequently,
intervention measures that change the model parameters βE , βI , and γC also change
the eigenvalues λ1 and λ2 (except for rare situations in which the changes in βE , βI ,
and γC cancel out on the level of the eigenvalues).

When focusing on eigenvalues, then the evolution of an epidemic wave involves
three stages that can be defined using a combined nonlinear physics and data-driven
approach. Figure8.7 illustrates the stages thus obtained. From a nonlinear physics
perspective, stage 1 is characterized by an unstable fixed point with an positive
eigenvalue (λ > 0). Stage 2 is the bifurcation stage at which the eigenvalue becomes
zero (λ = 0). Stage 3 is the stage for which the disease-free fixed point has been
stabilized. That is, the eigenvalue λ that was positive in stage 1, becomes negative
in stage 3 (λ < 0) at least when considering a suitably defined subspace D+ (see
Chaps. 5, 6, and 7 for examples of D+). From a data-driven perspective, stage 1 is
defined by an approximately exponential increase (i.e., a first bend) of the cumulative
diagnosed casesC as function of time t . Stage 2 is defined as an approximately linear
increase of C , which is related to the fact that λ = 0 holds (see Sect. 4.2.4 and the
worked out examples below). Finally, stage 3 is defined as the convergence towards
the low cases/low deaths stationary state. Consequently, in stage 3 the cumulative
cases as a function of time exhibit a second bend with dC/dt > 0 but d2C/dt2 < 0.
In short, the stages of an epidemic wave from a data-driven perspective are given by
a stage of exponential increase (S1), a stage of linear increase (S2), and a stage of
de-accelerating increases (S3).
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8.4.3.1 SIR-Type Model

In order to exemplify the three-stage scenario of epidemic waves by means of a SIR-
typemodel, let us consider the SIQRmodel defined by Eq. (4.82) with the cumulative
disease cases C(t) defined by Eq. (4.83). Putting S = N , the linearized model reads

S = N ,
d

dt
I = λI ,

d

dt
C = bI (8.27)

with λ = β − γ and γ = a + b. Equation (8.27) exhibits basically the same structure
as Eq. (8.20) that describes the single λ approach of the SEIR model (8.3). For
λ 
= 0 the analytical solutions of Eq. (8.27) read I (t) = I (t0) exp{λ(t − t0)} and
C(t) = C(t0) + V [exp{λ(t − t0)} − 1]with the slope parameter V = bI (t0)/λ, (see
Eq. (4.86)). Let [t0, t1], [t1, t2], and [t2, t3] denote the consecutive time intervals of
the three stages S1, S2, and S3 under consideration. Then, from Eq. (8.27) and the
requirements λ > 0, λ = 0, λ < 0 for the three stages it follows that (see also Ref.
[12])

S1 , t ∈ [t0, t1] , λ = λS1 > 0 :
C(t) = C(t0) + VS1 (exp{λS1(t − t0)} − 1) , (8.28)

S2 , t ∈ [t1, t2] , λ = λS2 = 0 : C(t) = C(t1) + VS2(t − t1) , (8.29)

S3, t ∈ [t2, t3] , λ = λS3 < 0 :
C(t) = C(t2) + VS3 (1 − exp{λS3(t − t2)}) (8.30)

with VS1 = bS1 I (t0)/λS1, VS2 = bS2 I (t1), and VS3 = bS3 I (t2)/|λS3|. The notation is
such that λS1,λS2,λS3 describe the eigenvalue λ in the stages S1, S2, S3. Likewise,
bS1, bS2, bS3 and VS1, VS2, VS3 describe the parameters b and V , respectively, in the
stages S1, S2, S3. In particular, Eq. (8.29) demonstrates the linear increase of cases
in stage 2 as illustrated in Fig. 8.7. Equations (8.28) and (8.30) have been used in
the context of a two-stage approach (skipping the stage λ = 0) to describe COVID-
19 outbreaks in the year 2020 in Canada, Australia, USA, and several European
countries [12]. Some results of the study will be presented in Sect. 8.4.4.

8.4.3.2 Single λ Approach and SEIR Model

As discussed in Sect. 8.3.2, the single λ approach of the SEIR model (8.3) yields
the evolution equation (8.20) that is equivalent to Eq. (8.27) for E and I and, in
particular, for the cumulative cases C(t). Consequently, for the three stages with
λ1 > 0, λ1 = 0, and λ1 < 0 of an epidemic wave the cumulative cases C(t) evolve
like [25]
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S1 , t ∈ [t0, t1] , λ1 = λ1,S1 > 0 :
C(t) = C(t0) + VS1

(
exp{λ1,S1(t − t0)} − 1

)
, (8.31)

S2 , t ∈ [t1, t2] , λ1 = λ1,S2 = 0 : C(t) = C(t1) + VS2(t − t1) , (8.32)

S3, t ∈ [t2, t3] , λ1 = λ1,S3 < 0 :
C(t) = C(t2) + VS3

(
1 − exp{λ1,S3(t − t2)}

)
. (8.33)

with VS1 = γC,S1 I (t0)/λ1,S1, VS2 = γC,S2 I (t1), and VS3 = γC,S3 I (t2)/|λ1,S3|. The
stage equations (8.31)–(8.33) describe the sigmoid pattern shown in Fig. 8.7. The
eigenvalue λ shown in Fig. 8.7 corresponds to λ1. Equations (8.31)–(8.33) have been
used in a study on 2020 COVID-19 first-waves in Europe that will be reviewed in
Sect. 8.4.4.

8.4.3.3 Two λ Approach and SEIR Model

As discussed in Sect. 8.3.2, the two λ approach of the SEIR model (8.3) yields the
evolution equation for I (t) given by Eq. (8.23) and the elementary solutions of I , E ,
and C in terms of exponential functions as listed in Eqs. (8.24) and (8.25) assuming
that λ1 
= 0 and λ2 
= 0 holds. In analogy to those elementary solutions, analytical
expressions for C(t) can be obtained for all three stages. In particular, for stage 2
that exhibits λ1 = 0 but λ2 < 0 an analytical solution can be obtained. The solutions
read [8]

S1 , t ∈ [t0, t1] , λ1 > 0 ∧ λ2 < 0 :
C(t) = C(t0) + V1,S1[exp{λ1(t − t0)} − 1] + V2,S1[1 − exp{λ2(t − t0)}] , (8.34)

S2 , t ∈ [t1, t2] , λ1 = 0 ∧ λ2 < 0 :
C(t) = C(t1) + V1,S2(t − t1) + V2,S2[1 − exp{λ2(t − t1)}] , (8.35)

S3 , t ∈ [t1, t2] , λ1 < 0 ∧ λ2 < 0 :
C(t) = C(t2) + V1,S3[1 − exp{λ1(t − t2)}] + V2,S3[1 − exp{λ2(t − t2)}] . (8.36)

The stage-1 equation (8.34) states thatC(t) increases approximately exponential due
to the λ1 term. The exponential term U2 = V2,S1[1 − exp{λ2(t − t0)}] involving λ2

increase in magnitude over time from U2 = 0 at t = t0 to U2 = V2,S1 for t → ∞.
That is, if t − t0 becomes larger relative to the time constant τ2 = 1/λ2, then the
second term becomes constant and the first term U1 = V1,S1[exp{λ1(t − t0)} − 1]
describes an exponential increase (assuming V1,S1 > 0). Equation (8.34) describes
the first bend or exponential increase of C(t) shown in Fig. 8.7. Consistent with
Fig. 8.7, the stage-2 equation (8.35) states that the increase of C is approximately
linear provided that the linear term dominates the exponential term, that is, if V1,S2 

|V2,S2| holds, where it is assumed that V1,S2 is positive while V2,S2 can be positive
or negative. Finally, Eq. (8.36) describes that C(t) converges to the stationary value
C(∞) = C(t2) + V1,S3 + V2,S3. For the SEIR model λ2 > λ1 holds in general. If, in
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addition, there is a time-scale separation such that |λ1| is much smaller than |λ2|, then
(when assuming V1,S3 > 0) the eigenvalue λ1 determines the speed or time scale of
the subsiding of the epidemic (see also Sect. 6.1.3). As far as Fig. 8.7 is concerned,
under appropriate circumstances, Eqs. (8.34)–(8.36) reproduce the sigmoid pattern
shown in Fig. 8.7. In this context, the eigenvalue λ listed in Fig. 8.7 corresponds to
λ1. Equations (8.34)–(8.36) have been used in a study on the COVID-19 first-wave
of 2020 in Thailand that will be reviewed in Sect. 8.4.5.

8.4.4 COVID-19 First-Waves of 2020 in Europe: Stabilization
Bifurcations and the Sign Switching Phenomenon

8.4.4.1 Three-Stage Approach

In what follows, a study on the COVID-19 epidemics in 20 European countries [25]
will be reviewed. The study considered the following countries: Austria, Belgium,
Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary,
Italy, Ireland, Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Sweden,
and United Kingdom. Data from January 1, 2020, to June 15, 2020 were analyzed.
During the first-wave epidemic from January to June 2020 in Europe, countries of
the European Union closed their borders in order to reduce the spread of SARS-
CoV-2 infections. The end date, June 15, of the study period was chosen because
around June 15, 2020 the countries of the European Union started to open their
borderswithin theEuropeanUnion [62].Daily, cumulative reportedCOVID-19 cases
were used as reported by the Johns Hopkins University and listed on the COVID-
19 tracker website [63]. The reported COVID-19 cumulative cases were fitted to
Eqs. (8.31)–(8.33) using a standard nonlinear fitting algorithm (for stages 1 and 3)
and linear regression analysis (for stage 2). In doing so, the eigenvalues λS1 and
λS3 were estimated and corresponding confidence intervals (CIs) were obtained. If a
confidence interval of a stage 3 eigenvalue λS3 included zero, then the eigenvalue λS3

was not significantly different from zero. In such as case, the country was not able to
stabilize in stage 3 the disease-free low cases/low deaths state (at least up to June 15,
2020). For one country, Bulgaria, a negative value for λS3 could not be determined
because the COVID-19 case trajectory did not exhibit the sigmoid pattern shown
in Fig. 8.7. Rather, the trajectory followed a three-stage pattern with an exponential
increase (S1), linear increase (S2), and another exponential or at least nonlinear
increase (S3). Therefore, for this country, Eq. (8.33) was replaced by: λ1 = λS3 >

0 : C(t) = C(t2) + VS3(exp{λS3(t − t2)} − 1).
For all countries, the time points t0, t1, t2 of the stages were determined as follows.

The beginning of stage 1 (t0) was defined as the time point for which there was at least
1 new reported infection on every day of the two weeks period following t0. That is,
t0 was the first time point for which COVID-19 cases increased monotonically on
every day at least for a two weeks period. The stage boundaries t1 and t2 were varied
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Fig. 8.8 Cumulative confirmed COVID-19 cases observed in 20 European countries during the
period from January 1, 2020 to June 15, 2020 (gray circles) and three-stage model solutions C(t)
(solid black lines) defined by Eqs. (8.31), (8.32), and (8.33) of the single-λ 2β SEIR modeling
approach. Panels (a), (b), (c), and (d) show groups of five countries. Within each group countries
showed similar numbers of cases

under the constraint t0 < t1 < t2. For each pair t1, t2 the model was fitted to the data
of the country under consideration. The boundaries values t1 and t2 were selected as
best-fit parameters that produced the best fit to the data as measured in terms of the
root-mean-square error.

Figure8.8 present the cumulative COVID-19 cases as functions of time for the
20 European countries (gray circles) and the model fits C(t) (solid black lines) as
obtained from Eqs. (8.33)–(8.35). As can be seen in Fig. 8.8, while for all countries
the study period was January 1 to June 15, the case trajectories differ in length. The
reason for this is that in general the parameter t0 varied across countries. In order to
easy the presentation, countries that showed similar numbers of COVID-19 cases as
of June 15, 2020 were placed into the same group. In total, four country groups were
formed.

Panel (a) shows the five countries with the highest numbers of confirmed COVID-
19 infections up to June 15, 2020. The total confirmed infections ranged from200,000
(France and Germany) to 270,000 (UK). Panel (b) presents the second country group
for which diagnosed COVID-19 cases ranged from 30,000 (Poland) to 60,000 (Fin-
land) cases. Panel (c) presents the cumulative case trajectories for the third group of
countries which observed on June 15 between 8,000 (Austria) to 25,000 (Ireland)
cases. Finally, panel (d) shows the remaining five countries that reported on June 15
between 2,000 (Slovakia) and 7,000 (Finland) total infections. By visual inspection,
the model fits C(t) (solid lines) were able to captured the characteristic sigmoid pat-
terns of observed COVID-19 cases in all countries. Importantly, the epidemics of 15
of the 20 investigated countries exhibited the third stages with clearly de-accelerating
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Table 8.2 Results of the three-stage analysis conducted in Ref. [25]: countries, eigenvalues, confi-
dence intervals, and time constants for stages 1 and 3 are shown (“pos.” and “n.s.” stand for positive
and not statistically significant, respectively)

Country λmax
[1/d]

λmax [1/d] τ [d]

Stage 1 CI Stage 3 CI Stage 1 Stage 3

Austria 0.15 [0.14, 0.17] −0.035 [−0.038,−0.032] 6.62 28.46

Belgium 0.12 [0.11, 0.14] −0.041 [−0.042,−0.039] 8.10 24.66

Bulgaria 0.014 [0.010, 0.018] 0.10 pos. [0.09, 0.11] 72.41 10.27

Czech R. 0.14 [0.13, 0.15] −0.012 [−0.013,−0.010] 7.28 86.95

Denmark 0.054 [0.050, 0.059] −0.040 [−0.041,−0.039] 18.38 24.95

Finland 0.046 [0.042, 0.051] −0.046 [−0.048,−0.043] 21.51 21.83

France 0.051 [0.043, 0.059] −0.035 [−0.038,−0.032] 19.75 28.67

Germany 0.18 [0.17, 0.19] −0.045 [−0.046,−0.044] 5.47 22.31

Greece 0.04 [0.03, 0.05] −0.027 [−0.029,−0.024] 25.21 37.65

Hungary 0.082 [0.075, 0.089] −0.034 [−0.036,−0.033] 12.23 29.16

Ireland 0.064 [0.058, 0.069] −0.063 [−0.064,−0.061] 15.69 15.98

Italy 0.124 [0.117, 0.131] −0.045 [−0.046,−0.044] 8.06 22.19

Netherlands 0.128 [0.123, 0.133] −0.028 [−0.030,−0.026] 7.83 35.21

Poland 0.115 [0.109, 0.120] −0.0006 n.s. [−0.005, 0.003] 8.72 N.A.

Portugal 0.086 [0.075, 0.097] −0.0002 n.s. [−0.002, 0.002] 11.64 N.A.

Romania 0.15 [0.14, 0.16] −0.0007 n.s. [−0.003, 0.002] 6.79 N.A.

Slovakia 0.045 [0.040, 0.049] −0.032 [−0.036,−0.028] 22.42 31.52

Spain 0.089 [0.078, 0.099] −0.030 [−0.033,−0.027] 11.29 33.43

Sweden 0.081 [0.077, 0.084] −0.011 n.s. [−0.034, 0.011] 12.41 N.A.

UK 0.15 [0.14, 0.16] −0.0365 [−0.0371, 0.0358] 6.66 27.41

increasing cumulative cases. The remaining five countries did not show a third stage
with a clearly subsiding epidemic. These countries were Poland, Sweden, and Por-
tugal (panel (b)), Romania (panel (c)), and Bulgaria (panel (d)). The four countries
Poland, Sweden, Portugal, and Romania exhibited a more or less linear increase of
the cumulative COVID-19 cases in the weeks preceding June 15 (panels (b) and (c)).
As mentioned above, Bulgaria showed an exponential or nonlinear increase in this
period (panel (d)).

Table8.2 presents for all countries the eigenvalues λmax = λ1 occurring in Eqs.
(8.31) and (8.33) for stage 1 and 3, respectively, and their confidence intervals. As
mentioned above, if for a stage 3 eigenvalue the confidence interval included zero,
then the eigenvalue was regarded to be not different from zero in a statistically sig-
nificant sense. This is indicated “n.s.” in Table8.2. Table8.2 also reports the time
constants τ = 1/λ1 of the eigenvalues.A small time constant τ (i.e., large eigenvalue)
in stage 1 implies a fast exponential increase of infections. A small time constant τ
in stage 3 implies a relatively strong stabilization of the desirable disease-free low
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cases/low deaths state and a relatively fast disease dynamics toward that fixed point.
Note that the stage-3 time constants τ are not shown for Poland, Portugal, Romania,
and Sweden because (according to the model-based analysis) these countries exhib-
ited in stage 3 linearly increasing epidemics rather than subsiding epidemics (see the
discussion below).

Table8.2 illustrates for 15 countries the stage 2 bifurcations that were presum-
ably induced by intervention measures and caused the epidemics in those countries
to subside. These bifurcations can be revealed by comparing the signs of the eigen-
values of stages 1 and 3 as shown in columns 2 and 4 of Table8.2. It was found
that for all countries the eigenvalues λ1 were positive in stage 1, as expected. For
15 countries λ1 became negative in stage 3, consistent with the notion that in those
countries intervention measures caused a stabilization of the low cases/low deaths
state with Ist = Est = 0. These countries were Austria, Belgium, Czech Republic,
Denmark, Finland, France, Germany, Greece, Hungary, Italy, Ireland, Netherlands,
Slovakia, Spain, and the United Kingdom. Table8.2 illustrates explicitly that the
sign of the leading (or maximal) eigenvalue λ1 switched during the first-wave epi-
demics for those countries. In doing so, the results reported in Table8.2 illustrate
the bifurcation scenario and sign switching phenomenon that underlies under certain
circumstances epidemic waves as discussed in Sect. 8.4.1 and 8.4.3. The eigenvalues
of those countries reported in Table8.2 and the corresponding COVID-19 trajectories
shown Fig. 8.8 exemplify how the schematic Fig. 8.7 looks like in applications.

As far as the five remaining countries are concerned, Bulgaria showed a statis-
tically significant positive eigenvalue λ1 in stage 3. Furthermore, Poland, Portugal,
and Romania exhibited negative eigenvalues λ1 in stage 3 that were much smaller in
the amount than those of the remaining countries. The confidence intervals of those
eigenvalues indicate that they were not statistically significant different from zero.
Accordingly, during the days and weeks around June 15 the COVID-19 pandemic
still followed a linear increase in those countries. The populations of those countries
were still in the bifurcation stage 2. Sweden exhibited a negative stage 3 eigenvalue
λ1,S3 that was small but in the same range as the eigenvalue λ1,S3 of the Czech
Republic (−0.011/d versus −0.012/d). However, while the eigenvalue λ1,S3 of the
epidemic in the Czech Republic was statistically significant different from zero, this
was not the case for the eigenvalue λ1,S3 of the COVID-19 epidemic in Sweden.

8.4.4.2 Two-Stage Approach by Pedersen and Meneghini

Pedersen and Meneghini [12] used a two-stage approach based on the SIQR model
(4.82) to describe early COVID-19 outbreaks of 2020 in Australia, Canada, USA,
and several European countries. To this end, cumulative COVID-19 cases reported
in the period from February 1 to April 2, 2020 were analyzed. The data were fitted
to Eqs. (8.28) and (8.30) like
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S1 , t ∈ [t0, t1] , λ = λS1 > 0 :
C(t) = C(t0) + VS1 (exp{λS1(t − t0)} − 1) , (8.37)

S2 , t ∈ [t1, t2] , λ = λS2 :
C(t) = C(t1) + W (exp{λS2(t − t1)} − 1)

= C(t1) + VS2 (1 − exp{λS2(t − t1)}) (8.38)

with W = −VS2. For each country or region, the initial day t0 was given by the first
day in February 2020 when the number of confirmed COVID-19 cases exceeded
50 in the respective country or region. The end day t2 was April 2, 2020, for all
countries and regions. For every given country or region the stage boundary t1 was
varied to find the optimal time point t1 for which Eqs. (8.37) and (8.38) produced
the best fit to the country or regional data. The overall aim of the study was to show
that the eigenvalue λ decayed from the first stage to the second stage due to the
impact of intervention measures. No specific hypothesis about the sign of λS2 was
made. Table8.3 reports the eigenvalues obtained in the study. It was observed that
the eigenvalues of all countries and regions either decreased and stayed positive or
switch their signs and became negative. For Austria, Switzerland, and the region of
British Columbia (Canada) the sign of the eigenvalue switched and values of λS2

in the range of −0.03/d to −0.01/d was found. For the region of New South Wales
(Australia) the eigenvalue switched the sign and a negative stage-2 eigenvalue of
λS2 = −0.08/d that was relatively large in the amount was observed. In view of the
relatively short data set in stage 2 (i.e., short intervals [t1, t2]), in Ref. [12] it was
questioned whether the negative values in the range of −0.03/d to −0.01/d were
statistically different from zero. In contrast the eigenvalue of λS2 = −0.08/d was
identified as statistically different from zero. In summary, the eigenvalue analysis
suggests that for those four countries and regions the disease-free fixed point was
about to become stable (i.e., the populations were at their bifurcation points with
λS2 = 0) or was stabilized (λS2 < 0) at the beginning of April, 2020.

It is difficult to compare the results of the three-stage study [25] discussed above
and the two-stage study by Pedersen and Meneghini [12] because they used a differ-
ent number of stages. Importantly, the three-stage study examined a longer period,
namely, from the beginning of the pandemic to June 15. That is, the three-stage study
looked at a two-months longer period. Comparing the results reported in Tables8.2
and 8.3, the study with the longer observation period suggests that the COVID-19
dynamics in France, Germany, Italy, Spain, and UK exhibited a stable disease-free
fixed point by the end of June 2020, while the study with the shorter observation
period suggests that in those countries this stabilizationwas not yet achieved byApril
2, 2020. Both studies suggest that in some countries and regions of the world the
subsiding of first-wave COVID-19 epidemics was due to bifurcations that changed
positive eigenvalues of disease-free fixed points towards critical values of zero and,
eventually, switched them to negative ones. These bifurcations presumably were
caused by the implementation of intervention measures.
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Table 8.3 Results of the two-stage analysis conducted in Ref. [12]: regions under consideration
and eigenvalues λS1 and λS2 of stages 1 and 2 are listed

Country/Region/City λS1 [1/d] λS2 [1/d]

Austria 0.250 −0.013

France 0.252 0.108

Germany 0.248 0.043

Italy 0.210 0.032

Spain 0.316 0.082

Switzerland 0.225 −0.022

UK 0.213 0.107

British Columbia (Canada) 0.347 −0.032

New York City (USA) 0.505 0.061

New South Wales (Australia) 0.217 −0.080

8.4.5 First-Wave COVID-19 Epidemic in Thailand, 2020: EI
Order Parameter and Its Remnant

When COVID-19 cases were first reported in China in early 2020, Thailand was one
of the first countries that reported patients with COVID-19 outside of China [64].
Despite being one of the first countries outside China that was confronted with the
disease, in contrast to many countries around the globe in which COVID-19 spread
out quickly during the year 2020 and caused high infections among their populations
and a large number of COVID-19 associated deaths, the Thai government and the
Thai population managed to stop the COVID-19 epidemic entirely in their country
during the first three quarters of 2020. That is, Thailand belongs to the few countries
in which the COVID-19 epidemic subsided completely in the year 2020. During
the summer months June, July, August, and September no local transmission of
COVID-19 were observed in Thailand [65, 66].

The COVID-19 first-wave in Thailand was studied by means of the SEIR model
(8.3) using the two λ approach [8]. In what follows the study will be briefly reviewed.
As such Fig. 8.7 captures the basic notion of the three-stage model used in Ref. [8].
However, the two λ approach allows to determine the pair of eigenvectors v1 and
v2. In particular, the approach allows to determine the eigenvector v1 related to the
maximal eigenvalue λ1 that by theoretical reasonings should play the key role for
rise and decay of an epidemic wave. Taking the role of v1 into account, Fig. 8.7 may
be revised as shown in Fig. 8.9. Figure8.9 presents schematically the eigenvector
v1 throughout the assumed three stages of the epidemic wave. λ1 is shown as well
and the sigmoid shape of the wave is presented. The vertical axis shows cumulative
cases as percentage values of the cumulative cases observed at the end of the wave.
Just as in Fig. 8.7, the stages S1, S2, and S3 are characterized by an exponential
increase, a linear increase, and a de-accelerating increases of cases. The eigenvalues
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Fig. 8.9 Three-stage model of an epidemic wave in the context of a two-λ approach that addresses
the eigenvector v1 of the maximal eigenvalue λ1. The top part shows the evolution of the cumulative
confirmed (or diagnosed) cases across the three stages. The bottom part shows v1 in the E-I plane
and the disease state dynamics along v1 for the three stages

λ1 that produce such three-stage pattern are shown as λ1 > 0, λ1 = 0, and λ1 < 0,
respectively.

The inserts on the bottom of Fig. 8.9 describe schematically the eigenvector v1
in the E-I plane for the three stages. The eigenvector forms an angle θ with respect
to the E axis. Since v1 is the unstable eigenvector and should dominate the disease
dynamics in stage 1, during stage 1 the dynamics in the E-I plane should evolve
away from the disease-free fixed point along the eigenvector v1. The vector v1 is
the EI order parameter of the disease-free state. In stage 2, the eigenvector v1 points
towards a certain location in the E-I plane around which the state is almost constant
(because dA1/dt ≈ 0). In stage 3, under the assumption that v1 (the remnant of
the order parameter) makes the major contribution such that Eq. (8.19) holds, the
dynamics X+(t) should approach the disease-free state along v1 (as indicated by the
arrow).

Let us compare stage 1 and 3. For stage 1, since λ1 > 0 and λ2 < 0 holds, it
is expected that the direction v1 captures most of the dynamics (at least after the
transient period with time constant τ2 = 1/λ2) such thatX+(t) ≈ A1(t)v1 holds and
C(t) ≈ C(t0) + V1,S1[exp{λ1(t − t0) − 1] (see the discussion inSect. 8.4.3 aboutEq.
(8.36))). That is, the schematic shown in the insert of stage 1 should hold in general.
In contrast, as discussed in Sect. 6.1.3, the schematic shown in the insert of stage 3
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holds only under the assumption that there is a time scale separation with τ2 = 1/|λ2|
much shorter than τ1 = 1/|λ1|. Therefore, for the COVID-19 first-wave in Thailand
it must be checked to what extent the stage-3 dynamics in the E-I subspace evolves
along the remnant vector v1 of the order parameter.

In Ref. [8] the cumulative COVID-19 infections as reported from Thailand in the
data repository of the Johns Hopkins University and published on the COVID-19
tracker website [63] were analyzed. The period from January 1 to May 31, 2020 was
considered. The beginning of stage 1 (t0) was defined as the first day that showed
new daily infections and for which in the consecutive seven days daily new infections
were reported. This date t0 fell on March 10, 2020. The final time point t3 was fixed
as May 31. This end day was selected because the last infection related to the Spring
2020 COVID-19 outbreak due to community transmission was reported on May 26.
All COVID-19 cases that were reported after May 26, 2020, until end of September
2020 were imported cases from outside of Thailand [65, 66]. The time points t1 and
t2 were varied (just as in the study reviewed in Sect. 8.4.4) in order to find optimal
time points for the beginning of stages 2 and 3.

Themodel parametersα, γE , γI , γd were fixed.As suggested inRefs. [18, 67], the
parameter α was taken as the reciprocal of the incubation time T : α = 1/T . Incuba-
tion times T for COVID-19 in the range from 5 to 9 days are typically reported [18,
20, 30, 67, 68]. As in Pang et al. [18] TI = 5.9 days (⇒ α = 0.17/d) was used.
COVID-19 recovery rates vary considerably in the literature (i.e., values from 0.03/d
to 0.3/d can be found in Refs. [13, 18, 28, 32, 69]). Again, followed Pang et al. [18]
γE = γI = 0.1/d was used. Finally, again motivated by the study by Pang et al. [18],
a diagnoses rate of γd = 0.5/d was used (for details see Ref. [8]).

An explorative analysis of the COVID-19 data from Thailand showed that the
single λ approach given in terms of Eqs. (8.31) to (8.33) produced reliable estimates
for λ1 (just as in the study reviewed in Sect. 8.4.4). In contrast, when applying the
two λ approach given in terms of Eqs. (8.34) to (8.36) reliable estimates for λ2 could
not be obtained. Consequently, the approach to compute βE and βI from independent
estimates of λ1 and λ2 could not be pursued.

Therefore, an ordinary two-step fitting process was used. In a first step, λ1 and V1

were estimated using Eqs. (8.31) and (8.33) for stages 1 and 3. V1,S2 was estimated
using Eq. (8.32). βE , βI were then computed from the estimates of λ1 using an
addition theoretical assumption about the relationship between βE and βI . To this
end, an overall reference value for βE was taken from the literature. More precisely,
the stage-2 effective contact rate βE,S2 = 0.2/dwas used in linewith effective contact
rates reported in Refs. [18, 28, 32, 70, 71] (for details see Ref. [8] again). Given
βE,S2 the corresponding parameter βI,S2 was obtained by solving βtot = βtot,cri t (see
Eq. (8.14)). It was then assumed that the effective contact rates approximately showed
a fixed ratio in all three stages. That is, it was assumed that the ratio βI /βE = r
remained constant across the epidemic wave. The precise value for r was computed
from r = βI,S2/βE,S2. Given λ1 in all three stages and the fixed parameters α, γI ,
γE , γC , and r , the effective contact rates βE and βI = rβE were computed from Eq.
(8.7) by solving Eq. (8.7) numerically for βE . As a by-product, the eigenvalue λ2

could be computed as well from Eq. (8.7). In the second step of the two-step fitting
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Fig. 8.10 Panel (a): Cumulative confirmed COVID-19 cases (gray circles) observed in Thailand
during the period from March to May, 2020, and the three-stage model solution C(t) (solid line)
computed from Eqs. (8.34), (8.35), and (8.36). Panel (b): The corresponding trajectories of E(t)
and I (t) are shown across the three stages as computed from Eqs. (8.24) and (8.25)

procedure V2 was estimated for all three stages using Eqs. (8.34) to (8.36) given the
previously obtained values for λ1 and λ2.

In Ref. [8] the cumulative cases C were computed from Eqs. (8.34) to (8.36).
Panel (a) of Fig. 8.10 shows the cumulative COVID-19 cases (gray circles) reported
in the database [63] and the solution C(t) (solid black line) of the SEIR model (8.3)
obtained from the analytical expressions (8.34) to (8.36) for the period from t0 (March
10) to t3 (May 31). Overall, the three-stage SEIRmodel captured the sigmoid pattern
of the observed COVID-19 cumulative cases with moderate accuracy. The graph
of cumulative COVID-19 cases observed in Thailand shows the typical first “up-
swinging bend” in the days after March 10 that is captured by the stage-1 equation
(8.34). The middle part of the graph can be interpreted as a linear increase that is
captured by the stage-2 equation (8.35). Following the linear increase, the graph of
observed cumulative COVID-19 cases shows a second “de-accelerating bend” that
describes the convergence of the disease (or health) state of the Thai population to
an almost stationary plateau at the end of March 2020. This part is captured by the
stage-3 equation (8.36). The stage boundaries t1 and t2 were found as March 20
and April 3, respectively. As expected, the estimated maximal eigenvalue λ1 was
positive in stage 1 with λ1 = 0.24 and negative in stage 3 with λ1 = −0.08. That is,
the sign switching phenomenon was observed. The epidemic wave was consistent
with the bifurcation scenario according to which intervention measures performed
by the Thai population triggered a bifurcation and switched the sign of λ1 such that
the disease-free fixed point Ist = Est = 0 turned from an unstable fixed point to a
stable one.

Panel (b) of Fig. 8.10 shows the functions E and I as computed from Eqs. (8.24)
and (8.25). Panel (b) demonstrates that in stage 1 the number of exposed and infected
individuals followed an exponential increase. This is consistent with the amplitude
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Table 8.4 Results of the three-stage analysis of the first-wave COVID-19 epidemic in Thailand
from January to May 2020. Eigenvalues λ1 and λ2, eigenvectors angles θ1 and θ2, and effective
contact rates βE and βI are shown for the three stages. The ratio ΔE/ΔI is reported as well

Stage Eigenvalues Eigenvectors Contact rates ΔE/ΔI

λ1 λ2 θ1 θ2 βE βI

Stage 1 0.24/d −0.70/d 11.4◦ −59.0◦ 0.41/d 0.51/d 5:1

Stage 2 0/d −0.67/d 15.8◦ −67.6◦ 0.20/d 0.25/d N.A.

Stage 3 −0.08/d −0.65/d 18.1◦ −72.2◦ 0.13/d 0.17/d 3:1

equation (8.19) which states that the term A1(t)v1 makes the dominant contribution.
In otherwords, it is consistentwith the assumption that theλ1 terms play the dominant
role in Eqs. (8.24) and (8.25). In stage 2 the numbers of both populations remained
constant, which is again consistent with Eq. (8.19) and assuming that A1(t) = A1(t1)
is a constant value because of λ1 = 0. That is, for the 2020 first-wave epidemic in
Thailand the time-varying dynamics along the eigenvector v2 during the bifurcation
stage 2 did notmake an essential contribution. Finally, in stage 3 the E and I functions
shown in panel (b) correspond to exponential decaying functions consistent with Eq.
(8.19) and A1(t) = A1(t2) exp{λ1(t − t2)}.

In Ref. [8] the eigenvectors v1 and v2 were computed from Eq. (8.26) and the
corresponding angles θ1 and θ2 with the horizontal axis (i.e., the E axis) were deter-
mined. Table8.4 reports the angles θ1, θ2 for the stages 1, 2, and 3. The contact rates
βE and βI are listed there as well. The ratios ΔE/ΔI shown in Table8.4 will be
discussed below.

The angle θ1 of v1 was positive, while θ2 was negative. This indicates that v1
captures segments of the Thai 2020 COVID-19wave duringwhich E and I increased
or decreased simultaneously. In contrast, the direction by v2 describes situation in
which one of the two variables E and I increased while the other decreased. In
view of these angles, it follows that v1 specifies the direction in the E-I subspace
that was most relevant for the initial and subsiding stages of the 2020 COVID-
19 wave in Thailand. In order to illustrate this issue, panel (a) of Fig. 8.11 shows
v1 in the E-I plane for the three stages 1, 2, 3. As anticipated from the values
shown in Table8.4, the eigenvector v1 of the first-wave COVID-19 epidemic in
Thailand gradually rotated from smaller to larger angles during the course of the
epidemic. Panel (b) of Fig. 8.11 presents the trajectoryX+(t) = (E(t), I (t)) (shown
in panel (b) of Fig. 8.10) as phase curve I (E) in the E-I plane (thick solid line).
In addition, the eigenvector v1 (dotted lines) magnified for illustration purposes is
shown for the three stages. Panel (b) of Fig. 8.11 reveals that in stage 1 of the first-
wave COVID-19 epidemic in Thailand the disease stateX+(t) closely evolved in the
direction specified by the unstable eigenvector v1. Accordingly, v1 was the EI order
parameter that determined in combination with the corresponding amplitude A1(t)
the initial evolution of the first-wave COVID-19 epidemic in Thailand. From panel
(b) of Fig. 8.11 it also follows that in stage 2 the trajectory X+(t) branched off from
the direction specified by v1(S1) and evolved towards the location labeled S2. That
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Fig. 8.11 Panel (a): Eigenvector v1 in stages 1, 2, 3. Panel (b): Dynamics of the disease stateX+(t)
in the E-I plane across the three stages of the first COVID-19 wave of Thailand. The phase curve
I (E) (solid line) and the eigenvector v1 (dotted line) for the three stages 1, 2, 3 are shown. v1 is
shown in a magnified scale

location corresponds to the plateaus of the E(t) and I (t) functions shown in panel
(b) of Fig. 8.10. The vector v1 of stage 2 points to that location. At the end of stage 2
the trajectory X+(t) abandoned the S2 location and evolved towards a point on the
direction specified by the stage-3 eigenvector v1. Subsequently, the disease dynamics
X+(t) evolved along v1(S3) towards the disease-free state with Est = Ist = 0. Just
as for stage 1, for stage 3, the dynamics in the direction of the second eigenvector v2
was negligible. In doing so, panel (b) of Fig. 8.11 illustrates graphically that not only
for the initial stage but also for the final stage of the first-wave COVID-19 epidemic
in Thailand Eq. (8.19) is a useful approximative description.

Quantitatively, the eigenvalues λ1 and λ2 of stage 3 may be compared. Table8.4
shows the eigenvalues in all three stages. For stage 3 λ2 was in magnitude 10 times
larger than λ1. Consequently, the dynamics underlying the subsiding epidemic in
Thailand showed a time-scale separation (as discussed in Sect. 6.1.3)) in the sense
that it exhibited a fast subsiding component in terms of A2 and a slowly subsiding
component in terms of A1. The slowly evolving component determined the overall
subsiding stage of the first-wave COVID-19 epidemic.

As argued above, the numerical and graphical analysis suggests that Eq. (8.19)
accurately describes stages 1 and 3 of the first COVID-19wave in Thailand. Practical
insights based on Eq. (8.19) can be obtained as pointed out earlier in Chaps. 4, 5, and
6 the context of Eqs. (4.61), (5.86), (6.33), and (6.53), respectively. The eigenvector
v1 defined by Eq. (8.26) can be expressed like v1 = (cos(θ1), sin(θ1)) with the help
of the angle θ1. From Eq. (8.19) it then follows that

(
ΔE
ΔI

)
≈ v1ΔA1 =

(
cos(θ1)
sin(θ1)

)
ΔA1 ⇒ ΔI

ΔE
= tan(θ1) (8.39)
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holds in states 1 and 3 with ΔE = E(t + Δt) − E(t), ΔI = I (t + Δt) − I (t), and
ΔA = A(t + Δt) − A(t), where Δt > 0 is a time interval. Equation (8.39) states
that v1 determines the relationship between the changes of the compartment sizes
E and I . Using the angles θ1 reported in Table8.4, for stage 1 it follows that θ1 =
11.4◦ ⇒ ΔI/ΔE = 0.20 ⇒ ΔE/ΔI = 5. Accordingly, the analysis suggests that
when during stage 1 of the 2020 epidemic in Thailand the number of individuals
in class I increased by 1, then in the same period the number of individuals in
the class E increased by 5. Graphically, this 5:1 ratio is illustrated by the stage-1
order parameter v1(S1) shown in panel (b) of Fig. 8.11. For stage 3 the analogous
calculation reads θ1 = 18.1◦ ⇒ ΔI/ΔE = 0.32 ⇒ ΔE/ΔI = 3.05. That is, when
during the subsiding period of the 2020 COVID-19 wave in Thailand the class I
decreased by 1 individual, then during the same period the class E decreased by
approximately 3 individuals. Again, graphically, this 3:1 relationship is illustrated
by the stage-3-remnant v1(S3) shown in panel (b) of Fig. 8.11. These 5:1 and 3:1
ratios have also been reported in Table8.4.

In closing this discussion of the first-wave COVID-19 epidemic in Thailand, let
us return to the effective contact rates shown in Table8.4. Both parameter βE and
βI decreased from stage 1 to stage 3. This decrease is assumed to be due to the
change in the daily routines of the Thai population in order to reduce the spread of
COVID-19 as a result of intervention measures. As discussed in Sect. 8.2.3, similar
observations were made by Pang et al. [18] for the COVID-19 epidemic in Wuhan
city. Effective contact rate parameters decreased from βI = 0.30/d and βE = 0.17/d
toβI = βE = 0.02/d presumably due to the implementation of interventionmeasures
(see Table8.1). Likewise, the study byGatto et al. [20] concludes that the intervention
measures imposed by the Italian government during the first COVID-19wave in Italy
in Spring 2020 caused effective contact rate parameters to decrease to lower levels.
Further examples of model-based studies that have suggested that intervention or
containment measures have been successful in reducing effective contact rates can
be found in Sects. 8.2.2 and 8.2.3.

8.5 Three-Stage Models and the Bifurcation Scenario in
Higher Dimensions

The bifurcation scenario and three-stage approach can be applied to address the non-
linear physics of epidemic waves in arbitrary dimensions. Figure8.12 illustrates the
bifurcation scenario and three-stage approachwhen applied to observed disease cases
(panel (a)) and observed disease-associated deaths (panel (b)). Our departure point is
the fundamental equation dX/dt = N (see Eq. (2.1)) describing the evolution of the
n-dimensional disease (or health) state of a population. As in Chaps. 6 and 7 the state
is split into two subsystems using different criteria. In what follows, a data-focused
viewwill be taken. The objective is to relatemodel solutions to cumulative confirmed
infected cases or deaths that show patterns as illustrated in Fig. 8.12. Confirmed (or
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diagnosed) cases only count infected individuals (when neglecting false positives
and other diagnoses issues). Consequently, we either follow the idea of Chap. 7 and
decompose the state X such that the first m variables X1, . . . , Xm denote infected
compartments, whereas remaining variables Xm+1, . . . , Xn denote non-infected vari-
ables. Alternatively, the first m variables X1, . . . , Xm denote infected variables of
those individuals that are diagnosed with the infectious disease of interest and form
at least in linear approximation an autonomous subsystem, whereas Xm+1, . . . , Xn

denote the remaining variables. The alternative approach leads to a smaller number
m of variables in the first group (and a lower dimension m of D+). For example,
if models distinguish between hospitalized cases and ICU cases (as the models that
will be reviewed in Sect. 8.7) and all hospitalized cases are confirmed cases and only
hospitalized cases can become ICU cases, then the compartment of ICU cases is not
needed for counting the confirmed cases because the confirmed infected cases that
receive ICU treatment are a subset of the confirmed hospitalized cases. Decomposing
the disease (or health) state of a population into two classes implies that on the level of
the amplitude space description X+ = (X1, . . . , Xm) with X+(t) = ∑m

k=1 Ak(t)vk
evolves like dAk/dt = λk Ak + wkR(MA,X−) and the remaining variables evolve
like dX−

j /dt = N−
j (MA,X−) (see Eqs. (6.12) and (6.13)).

Panel (a) of Fig. 8.12 shows schematically the time course of the cumulative
confirmed infected cases (here: over a period of one month) during the three model
stages of an epidemic wave under consideration. The stages are denoted by S1, S2,
and S3. The stages are characterized in terms of the eigenvalues of the disease-free
fixed point X+ = (0, . . . , 0) as discussed in Sect. 8.4.1. Stage 1 is characterized by
an unstable fixed point. For sake of simplicity, it is assumed that the fixed point is

Fig. 8.12 Three-stage descriptions of epidemic waves in subspaces D+ of arbitrary dimensions.
Panels (a) and (b) refer to descriptions based on cumulative confirmed (or diagnosed) cases and
disease-associated deaths, respectively
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characterized by a single (real-valued) positive eigenvalue λmax > 0. Without loss
of generality, the eigenvalues λ1, . . . ,λm are arranged in descending order with
respect to the values of their real parts (i.e., λ1 > lR{λ2} ≥ · · · ≥ lR{λm}) such that
λ1 = λmax. Stage 2 is the bifurcation stage defined byλmax = λ1 = 0. Finally, stage 3
is the subsiding stage defined byλmax = λ1 < 0 forwhich the disease-free fixed point
X+ = (0, . . . , 0) is asymptotically stable in D+ (provided the linearized dynamics
holds). As far as the disease-free fixed point in the entire state space is concerned, in
stage 3 the stateXst = (X+,X−) withX+ = (0, . . . , 0) and Xi,st ≥ 0 for i ≥ m + 1
does typically not correspond to an asymptotically stable fixed point. Rather, when
neglecting the impact of demographic terms, it typically corresponds to a neutrally
stable fixed point.

The two inserts on the top of panel (a) of Fig. 8.12 illustrate schematically the
dynamics in the outbreak (S1) and subsiding (S3) stages as seen in the infected
m-dimensional subspace D+. As far as stage 1 is concerned, the eigenvector v1
corresponding to λ1 = λmax > 0 describes the unstable direction of the saddle point
located atX+ = (0, . . . , 0). As indicated, the dynamics in D+ is assumed to converge
towards the direction specified by v1 and, subsequently, evolves along v1 away from
the disease-free fixed point. In contrast, in stage 3 assuming there is a gap in the
eigenvalue spectrum such that |λmax| = |λ1| is small relative to |lR{λ j }| for j =
2, . . . ,m (i.e., there is a time scale separation, see Sect. 6.1.3), then the subsiding
dynamics in D+ quickly converges to the direction specified by v1 and, subsequently,
evolves along v1 towards the disease-free fixed point. This is indicated in panel (a)
in the insert related to the stage 3. If the epidemic wave under consideration evolves
sufficiently close to the disease-free fixed point such that it can be described in terms
of linearized evolution equations, then the amplitude A1 related to the maximal
eigenvalue λmax = λ1 exhibits in the three stages the following dynamics:

S1 , t ∈ [t0, t1] , λ1 = λ1,S1 > 0 :
A1(t) = A1(t0) exp{λ1,S1(t − t0)} ⇒ d

dt
|A1| > 0 , (8.40)

S2 , t ∈ [t1, t2] , λ1 = λ1,S2 = 0 :
A1(t) = A1(t1) = const ⇒ d

dt
A1 = 0 , (8.41)

S3 , t ∈ [t2, t3] , λ1 = λ1,S3 < 0 :
A1(t) = A1(t2) exp{λ1,S3(t − t2)} ⇒ d

dt
|A1| < 0 . (8.42)

This three-stage sequence in which the maximal eigenvalue λ1 = λmax changes
across the stages like λ1,S1 > λ1,S2 = 0 > λ1,S3 and the dominant amplitude A1

exhibits a dynamics as shown in Eqs. (8.40) to (8.42) produces under appropri-
ate circumstances a sigmoid shape of the cumulative confirmed disease cases C(t)
sketched in panel (a) of Fig. 8.12: the function C(t) shows an exponential increase
in stage 1, a linear increase in stage 2, and a de-accelerating increases in stage 3. Let
us derive this sigmoid pattern in a more quantitative way.
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LetC(t) denote the number of cumulative diagnosed (or confirmed) disease cases.
Assuming linear diagnoses mechanisms, infected individuals of the compartment j
are diagnosed at rates s j , which implies that C(t) evolves like

d

dt
C =

m∑
k=1

sk Xk(t) = sX+(t) . (8.43)

Special cases of Eq. (8.43) have been addressed previously in form of Eqs. (4.83),
(5.100), (6.50), (8.4), (8.20), and (8.27). Assuming that vmax = v1 is dominant in
all three stages, the superposition X+(t) = ∑m

k=1 Ak(t)vk reduces to X+ ≈ A1v1.
Consequently, from Eq. (8.43) it follows that

d

dt
C = sv1A1(t) . (8.44)

An example of Eq. (8.44) was discussed in Sect. 4.5 and is given by Eq. (4.87). In
analogy to Eqs. (8.28) to (8.30), from Eq. (8.44) and Eqs. (8.40) to (8.42) it follows
that

S1 , t ∈ [t0, t1] , λ1 = λ1,S1 > 0 :
C(t) = C(t0) + sv1,S1

λ1,S1
A1(t0)

(
exp{λ1,S1(t − t0)} − 1

)
, (8.45)

S2 , t ∈ [t1, t2] , λ1 = λ1,S2 = 0 :
C(t) = C(t1) + sv1,S2A1(t1)(t − t1) , (8.46)

S3 , t ∈ [t2, t3] , λ1 = λ1,S3 < 0 :
C(t) = C(t2) + sv1,S3

|λ1,S3| A1(t2)
(
1 − exp{λ1,S3(t − t2)}

)
, (8.47)

where λ1,S1,λ1,S2,λ1,S3 and v1,S1, v1,S2, v1,S3 denote the eigenvalues λ1 and eigen-
vectors v1 in the respective stages. The evolution equations describe an exponential
increase (Eq. (8.45)) for stage 1, a linear increase (Eq. (8.46)) for stage 2, and a
de-accelerating increase (Eq. (8.47)) for stage 3 as shown schematically in panel (a)
of Fig. 8.12. Equation (8.45) can equivalently be expressed as

C(t)

z
= A1(t) + h (8.48)

for t ∈ [t0, t1] with z = sv1,S1/λ1,S1 and h = C(t0)/z − A1(t0). Accordingly, the
order parameter amplitude A1(t) determines quantitatively up to a additive constant h
the confirmed infected casesC(t) in the stage 1of an epidemic provided the confirmed
cases are rescaled appropriately by the parameter z. Equation (4.89) discussed in
Sect. 4.5 and illustrated in panel (d) of Fig. 4.6 is a special case of Eq. (8.48).
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The same argumentation can be made when considering disease-related deaths as
addressed in panel (b) of Fig. 8.12. Again, linear transmission mechanisms between
the various types of infected individuals and deceased individuals are assumed. It
is assumed that infected individuals decease due to the infectious disease at certain
rates m j . Consequently, the number of deaths D(t) evolves like

d

dt
D =

m∑
k=1

mkXk(t) = mX+(t) = mv1A1(t) , (8.49)

where it has been assumed again that X+(t) = A1(t)v1 is a useful approximation. It
then follows, that D(t) in the three stages 1, 2, 3 is given by

S1 , t ∈ [t0, t1] , λ1 = λ1,S1 > 0 :
D(t) = D(t0) + mv1,S1

λ1,S1
A1(t0)

(
exp{λ1,S1(t − t0)} − 1

)
, (8.50)

S2 , t ∈ [t1, t2] , λ1 = λ1,S2 = 0 :
D(t) = D(t1) + mv1,S2A1(t1)(t − t1) , (8.51)

S3 , t ∈ [t2, t3] , λ1 = λ1,S3 < 0 :
D(t) = D(t2) + mv1,S3

|λ1,S3| A1(t2)
(
1 − exp{λ1,S3(t − t2)}

)
. (8.52)

Consistent with the sigmoid pattern shown in panel (b) of Fig. 8.12, the evolution
equations describe an exponential increase (Eq. (8.50)) for stage 1, a linear increase
(Eq. (8.51)) for stage 2, and a de-accelerating increase (Eq. (8.52)) for stage 3.
Equation (8.50) may be expressed as

D(t)

z
= A1(t) + h (8.53)

for t ∈ [t0, t1] with z = mv1,S1/λ1,S1 and h = D(t0)/z − A1(t0). Accordingly, the
order parameter amplitude A1(t) determines quantitatively up to a additive constant
h the number D(t) of individuals deceased from the infectious disease in the stage
1 of an epidemic provided D(t) is rescaled appropriately by the parameter z.

8.6 Sequences of Stages in Amplitude Space

8.6.1 Semi-analytical Approach

The objective in this section is to follow an epidemic that can be described in terms
of s stages through all stages i = 1, . . . , s using the amplitude space description.
Let us consider an epidemiological model dX/dt = N in terms of the two-classes
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amplitude space description given by Eqs. (6.12) and (6.13), which read dAk/dt =
λk Ak + wkR(MA,X−) and dX−

j /dt = N−
j (MA,X−). For sake of simplicity these

basic equations are repeated as
d

dt
X = N(X) (8.54)

and

d

dt
Ak = λk Ak + wkR(MA,X−) ,

d

dt
X−

j = N−
j (MA,X−) . (8.55)

The following considerations hold in general but for illustration purposes the SEIR
model discussed in Sect. 6.2.2will be used that comeswith the state space description
(3.43) and the amplitude space description in form of Eqs. (6.19) and (6.21).

For stage 1 from the initial state X(t0) and the corresponding state X+(t0) in the
subspace D+ (e.g., X+(t0) = (E(t0), I (t0))) the initial amplitude vector A(t0) can
be computed from

A(t0, S1) = M−1
+ (Stage 1)X+(t0) (8.56)

(which for the SEIR model is given by Eq. (6.23)). Subsequently, the state space
equation (8.54) and the evolution equations (8.55) of the amplitude space description
can be solved numerically for stage 1. At the end of stage 1, that is, at the time point
t1, it is assumed that at least one of the model parameters changes (e.g., in case of
the SEIR model, one of the parameters α,β, γ varies). The new initial state of stage
2 is defined by the final state X+(t1) of stage 1. That is, the final state X+(t1) serves
as initial state of stage 2. Consequently, let A(t1, S2) denote the initial amplitudes
of stage 2, then

A(t1, S2) = M−1
+ (Stage 2)X+(t1) . (8.57)

In general, this implies thatA(t) exhibits a discontinuity at the stage boundary t1. That
is, let A(t, S1) denote the vector function A(t) computed in stage 1, then typically

A(t1, S2) 
= A(t1, S1) . (8.58)

This discontinuity is due to the fact that the basis of the amplitude space (e.g., the
eigenvectors v1 and v2 in the case of the SEIR model) in stage 2 in general differs
from the basis of the amplitude space used in stage 1.

Having determined the initial states X+(t1) and A(t1, S2) for stage 2, Eqs. (8.54)
and (8.55) can be solved again numerically. In doing so, the state dynamics and
amplitude dynamics for stage 2 is obtained. For example, in the context of the SEIR
model, Eq. (3.43) and Eqs. (6.19) and (6.23) are solved numerically for stage 2.
If s = 2, then the analysis is completed after the second stage. If s > 2, then the
procedure is repeated until all stages have been processed.
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Fig. 8.13 Illustration of a simulated two-stage epidemic in state space. Panels (a) and (b) show E(t)
and I (t) (solid lines) as computed from the 1β SEIR model (3.43), respectively. In the simulation,
at t = 20 days the contact rate parameter β is decreased but still assumes a above-critical value.
The dashed lines indicate the evolution of E(t) and I (t) when ignoring the change in β. See text
for model parameters and initial conditions

Let us illustrate these considerations by means of a simulated two-stage epidemic
that involves two stages S1 and S2 characterized by positive eigenvalues using the
SEIR model (3.43). Let us assume that λ1(S1) > λ1(S2) > 0 holds. For example,
at the end of stage 1, the effective contact rate β is reduced (which mimics the
impact of intervention measures) such that λ1 decreases but is still positive in stage
2. As far as α and γ are concerned, we assume that they are constant across S1 and
S2. For the following simulation the parameters α = 0.1/d, γ = 0.4/d, N = 10000,
β(S1) = 2.0/d for the first 20 days (S1) and β(S2) = 1.0/d after day 20 (S2) were
used. In this case, from Eq. (6.17) it follows that the maximal eigenvalue of the
SEIRmodel is λ1(S1) = 0.22/d and λ1(S2) = 0.10/d in S1 and S2, respectively. The
entire simulation period was 100 days and t0 = 0. Furthermore, the initial conditions
E(0) = 10, I (0) = 0 and S(0) = N − E(0) − I (0) were used.

Different aspects of the simulation are illustrated in Figs. 8.13 and 8.14. Panels
(a) and (b) of Fig. 8.13 show the trajectories E(t) and I (t), respectively, as computed
from Eq. (3.43) as solid lines. The dashed lines indicate how E(t) and I (t) evolve if
β would be kept constant for the whole simulation period. Comparing the solutions
for constant β and an effective contact rates that decreases in stage 2, the impact
of the decrease of the effective contact rate can be seen. Accordingly, the increase
of the exposed and infectious individuals becomes less dramatic when β is changed
from β(S1) to β(S2) < β(S1). As in Sect. 8.1, the scenario for which β is kept
constant corresponds to a no-intervention scenario, whereas the two-stage scenario
with β(S2) < β(S1) exemplifies an intervention scenario.

Panel (a) of Fig. 8.14 presents the amplitudes A1 and A2 computed from Eqs.
(6.19) and (6.21) as functions of time.At t1 = 20 days the amplitudes have been put to
their respective new initial values A1(t1, S2) and A2(t1, S2) of stage 2. Accordingly,
A1 exhibits a discontinuity at t1. However, on the relatively large scale of 2000
individuals this discontinuity is hardly visible (see top subpanel). In contrast, the
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Fig. 8.14 Amplitude and state space description of the simulated two-stage epidemic that was
introduced in Fig. 8.13 and exhibits a sudden change in β at t = 20 days. Panel (a) shows the
amplitudes A1 and A2 as functions of time. Panel (b) presents the phase curve I (E) in the E-I
subspace. The unstable eigenvector v1 is presented for stages 1 and 2 (dotted lines). Panel (c) shows
a detail of panel (b) in which the evolution of the disease state X+(t) quickly switches from a
dynamics along the axis specified by v1(S1) to a dynamics along the axis specified by v1(S2)

discontinuity of A2 at the stage boundary t1 is visible as a small spike in the time
course of A2 at t = 20 days (see bottom subpanel). Panel (b) of Fig. 8.14 presents
the trajectory X+(t) = (E(t), I (t)) as phase curve I (E) in the E-I subspace. The
curve describes a loop that starts close to the disease-free state E = I = 0 and after
an excursion returns to E = I = 0. The axes defined by unstable eigenvector v1 in
stages 1 and 2 are depicted in panel (b) as well (dotted lines). Panel (b) demonstrates
that in stage 1 the trajectory X+(t) follows the axis specified by v1 of stage 1. When
β is switched to a lower value at t1, then the trajectory quickly converges towards
the new axis as defined by the stage-2 eigenvector v1. Subsequently, the trajectory
branches off that axis, completes the excursion, and returns to the disease-free fixed
point. Panel (c) highlights the transition dynamics at the beginning of stage 2. The
unstable eigenvector v1 and its amplitude A1 primarily determine the evolution of
the state X+ in stage 1 and part of the dynamics in stage 2. The stable eigenvector v2
plays a negligible role during these periods. In particular, as can be seen in panel (a),
the amplitude A1 during the first 20 to 30 days is large as compared to |A2| and in
this sense dominates the dynamics during that initial period. A2 makes an essential
contribution to the dynamics when A1 reaches its maximum value at about 50 days
(see panel (a)) and the E(I ) phase curve is close to its turning point (see panel (b)).

The equivalence of the description (8.54) and (8.55) throughout the different
stages of an epidemic can be illustrated in two ways.
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First, the trajectory X+(t) of the subspace state vector X+ can be computed from
the amplitude vector A(t) in each stage j like

X+(t) =
m∑

k=1

vk(Stage j)Ak(t) = M+(Stage j)A(t) . (8.59)

For example, the state variables E(t) and I (t) can be computed from the amplitude
functions A1(t) and A2(t) of the SEIR model. Substituting the functions A1(t) and
A2(t) shown in panel (a) of Fig. 8.14 into Eq. (8.59), the graphs E(t) and I (t)
indicated by full circles in panels (a) and (b) of Fig. 8.13 have been obtained. As
expected, the solutions computed via Eq. (8.59) (full circles) and obtained directly
by solving the SEIR model Eq. (3.43) (solid lines) are identical.

A second way to demonstrate the equivalence of the state space and amplitude
space descriptions is to derive the amplitude vector A from the state vector X+
without solving the amplitude equations (8.55). Accordingly, A in each stage j can
be obtained from

A(t) = M−1
+ (Stage j)X+(t) ⇔ Ak(t) = wk(Stage j)X+(t) . (8.60)

When applying this procedure to the SEIR model simulations presented in Figs. 8.13
and 8.14, the state functions E(t) and I (t) shown Fig. 8.13 are substituted in Eq.
(8.60). In doing so, the amplitude functions shown in Fig. 8.14 as full circles can
be obtained. As expected, computing A1 and A2 from Eq. (8.60) (full circles) or
computing A1 and A2 directly fromEqs. (6.19) and (6.21) (solid lines) yields identical
results.

As a second example let us consider a two-stage epidemic for which the effective
contact rate drops in the second stage to a sufficiently low level such that a bifurcation
occurs and the disease-free fixed point becomes stable. That is, let us consider the
case λmax = λ1(S1) > 0 and λmax = λ1(S2) < 0. For the following simulation the
parameters α = 0.1/d, γ = 0.4/d, β(S1) = 2.0/d, and β(S2) = 0.3/d were used. A
small population of N = 10, 000 individuals was considered. Stage 1 was again 20
days long and the total simulationperiodwas100days. FromEq. (6.17) it then follows
that λ1(S1) = 0.22/d and λ1(S2) = −0.02/d. The same initial conditions were used
as in the previous simulation. The simulation results are presented in Fig. 8.15. Panels
(a) shows E(t) and I (t) as functions of time as obtained from Eq. (3.43). At day 20
due to change of β the increasing trend of the number of exposed individuals E(t)
turns into a decreasing one. The function I (t) exhibits the same qualitative pattern
as E(t). However, I (t) switches from an increasing to a decreasing function with
a short delay. Panel (b) shows the amplitudes A1 and A2 as computed from Eqs.
(6.19) and (6.21) as functions of time. As expected, A1 dominates the amplitude
dynamics and increases exponentially in stage 1, while A2 remains almost constant.
At day 20, both amplitude functions exhibit discontinuities. In stage 2 the fixed point
E = I = 0 exhibits two negative eigenvalues. The simulation reveals that for the
selected model parameters the linearized model in state space dE/dt = −αE + β I ,
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Fig. 8.15 Illustration of a simulated two-stage epidemic involving a relatively strong intervention
measures. In this simulation, at time t = 20 days a sudden change in β to a sufficiently low below-
critical value stabilize the disease-free fixed point. Panels (a): State space trajectories as computed
from Eq. (3.43). Panel (b): Amplitude space trajectories as computed from Eqs. (6.19) and (6.21).
Panel (c) shows the phase curve I (E) (solid line) in the E-I plane and the eigenvector v1 (magnified
for visualization purposes) for stages 1 and 2 (dotted lines)

dI/dt = αE − γ I (see Eq. (6.16)) and amplitude space dA j/dt = λ j A j captures
the essential dynamics in stage 2. Accordingly, both amplitudes approach zero in
a more or less exponential manner (see panel (b)) indicating that the epidemic is
vanishing.

Panel (c) presents the trajectory X+(t) as phase curve I (E) in the E-I subspace.
The axes given by the eigenvector v1 for stages 1 and 2 are shown as well. As can be
seen in panel (c), during stage 1,X+(t) follows the axis of the unstable eigenvector v1.
When λmax becomes negative at t1 = 20 days, the trajectory quickly converges to the
new axis specified by v1 in stage 2. The fast approach towards this direction specified
by v1 indicates that there is gap in the eigenvalue spectrum as discussed in Sect. 6.1.3.
In fact, for stage 2 the eigenvalues read λ1 = λmax = −0.02/d and λ2 = −0.48/d and
the corresponding time constants τ j = 1/|λ j | read τ1 = 47.9 days and τ2 = 2.1 days,
respectively. That is, A2 exhibits a time constants that is by a factor 24 smaller than the
time constant of A1. In this sense, A2 describes a fast dynamics, while A1 describes
a slow dynamics, which can also seen in panel (b) when comparing the dynamics of
amplitudes for t > 20 days. As can be seen in panels (b) and (c), the slow dynamics
of A1, which is the amplitude of the remnant of the order parameter, determines the
vanishing of the simulated epidemic.

Note that E and I are continuous functions at the stage boundary t1, whereas
A1 and A2 exhibit jumps at that boundary. Nevertheless, A1 captures not only qual-
itatively but also quantitatively most of the dynamics of E . This relation between
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E and A1 follows from the selected simulation parameters. From the simulation
parameters it follows that v1,E = 0.99 holds in stage 1 and v1,E = 0.97 in stage
2. Since E = v1,E A1 + v2,E A2 holds (see Eq. (6.22)) and |A2| � A1, we have
E(t) ≈ v1,E A1(t) ⇒ E(t) ≈ A1(t).

Finally, in order to demonstrate the equivalence of the state space and amplitude
space descriptions, just as for the previous example, we computed states from Eq.
(8.59) and amplitudes from Eq. (8.60). The states and amplitudes thus obtained are
shown as filled circles in panels (a) and (b) of Fig. 8.15. As can be seen, the solutions
obtained in an indirect way (full circles) from Eqs. (8.59) and (8.60) were identical
to those obtained directly (solid lines) from the respective model equations (3.43),
(6.19), and (6.21).

8.6.2 Numerical Stage Analysis

From the discussion in the previous section it follows that a completely numerical
stage analysis can be conducted for any given epidemiological model of the form
(2.1) [72]. This numerical approach is based on Eqs. (2.1), (6.3), (6.4), and (8.60).
For sake of conveniency, let us rewrite them as

d

dt
X = N(X) ,

L+
ik = ∂

∂X+
k

Ni (Xst ) ,

M+ = (v1, . . . , vm) ,

A(t) = M−1
+ (Stage j)X+(t) . (8.61)

Accordingly, a given epidemiologic model in terms of dX/dt = N(X) is solved
numerically. The linearization matrix L+ of the (infected) compartmentsX+ and the
eigenvector matrix M+ are determined numerically for each stage j of the epidemic
under consideration. Subsequently, the amplitudes A1, . . . , Am in terms of the vector
A are computed for each stage j with the help of the state vectorX+(t) and the inverse
matrix M−1

+ . This numerical approach will be illustrated by means of two examples
in Sect. 8.7.

8.7 Examples of Three-Stage COVID-19 Waves and 5D
Order Parameters

Let us consider two examples of COVID-19 first-waves that have been analyzed in
relative high-dimensional state spaces using a three-stage approach. Both example
involve five-dimensional unstable stage-1 eigenvectors.
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Fig. 8.16 Compartments and flow chart of the epidemiological model described by Eq. (8.62)

8.7.1 First COVID-19 Wave of 2020 in the State of New York

The study by Ngonghala et al. [33] used a generalized SEIAR model to describe the
first few months of the COVID-19 outbreak in the state of New York, USA. More
precisely, in the study, the period from March 1 to April 7, 2020 was considered.
Figure8.16 shows a flow chart of the model. The model makes a general distinction
between non-quarantined and quarantined individuals. As far as non-quarantined
individuals are concerned, the model describes susceptible (Su), exposed (Eu), and
symptomatic infectious (Iu) non-quarantined individuals. With respect to the quar-
antined individuals, the model considers susceptible (Sq ), exposed (Eq ), and symp-
tomatic infectious (Ih) quarantined individuals. Quarantined symptomatic infectious
individuals may be hospitalized, whence the subindex h of the compartment vari-
able Ih . In addition, the model accounts for isolated symptomatic individuals that
are hospitalized and require intensive care Iicu . They do not belong to the com-
partment Ih . Asymptomatic infectious COVID-19 cases (Ia) form a compartment
of their own. Finally, the model involves the compartment of individuals recovered
fromCOVID-19 (R) and the compartment of individuals deceased due to COVID-19
(D). Exposed individuals are in their latent phase and cannot infect others. Individ-
uals staying in intensive care units are perfectly isolated and cannot infect others.
The infectious compartments that describe individuals who can infect others (i.e.,
the compartments of actually infectious individuals) are Iu , Ia , and Ih .

As indicated in Fig. 8.16, non-quarantine susceptibles (Su) can get quarantined
(Su → Sq ) or they can get infected and become exposed quarantined individuals
(Eq ) or exposed non-quarantined individuals (Eu). The quarantined susceptible indi-
viduals (Sq ) either complete quarantine and return to the class of non-quarantined
susceptibles (Su) or they become infected during quarantine and become quaran-
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tined exposed individuals (Eq ). Non-quarantined exposed individuals (Eu) either
become quarantined exposed individuals (Eq ), non-quarantined symptomatic indi-
viduals (Iu), quarantined symptomatic individuals (Ih), or asymptomatic infectious
individuals (Ia). In contrast, quarantined exposed individuals (Eq ) either become
quarantined symptomatic individuals (Ih) or asymptomatic infectious individuals
(Ia). As far as non-quarantined symptomatic individuals (Iu) are concerned, they
become quarantined cases (Ih) or they recover (Iu → R), or decease due to COVID-
19 (Iu → D). Likewise, quarantined symptomatic individuals (Ih) become ICUcases
(Iicu), recover (R), or decease due to COVID-19 (D). ICU cases either recover (R)
or decease due to COVID-19 (D). Finally, asymptomatic infectious individuals (Ia)
either recover (R), decease due to COVID-19 (D), or develop symptoms and, con-
sequently, become quarantined symptomatic cases (Ih). The model equations read
[27, 33]

d

dt
Su = −k0Su + k1Sq ,

d

dt
Sq = (1 − p)k0Su − (θ j k0 + k1)Sq ,

d

dt
Eu = (1 − q)pk0Su − k2Eu ,

d

dt
Eq = qpk0Su + αEu + θ j k0Sq − k3Eq ,

d

dt
Iu = f1σu Eu − k4 Iu ,

d

dt
Ih = f2σu Eu + rσq Eq + φIu + σa Ia − k5 Ih ,

d

dt
Ia = (1 − f1 − f2)σu Eu + (1 − r)σq Eq − k6 Ia ,

d

dt
Iicu = = ν Ih − k7 Iicu ,

d

dt
D = mu Iu + mh Ih + ma Ia + micu Iicu , (8.62)

where k0 denotes the rate constant

k0 = β
Iu + ηa Ia + ηh Ih

N − θq(Eq + Ih + Iicu)
. (8.63)

The model involves the parameters p, q, f1, f2, θ j , θq , α, σu , σq , φ, r , ν, δu , δh ,
δa , δicu , ηa , ηh , k1, . . . , k7, and β, which are semi-positive. The parameters denote
the probability of an infection per contact (p), proportion of being quarantined (q),
proportion of exposed Eu who transition to Iu ( f1), proportion of exposed Eu who
transition to Ih ( f2), efficacy of quarantine (θ j ), general efficacy of quarantine (θq ),
quarantine rate of exposed Eu (α), latent period of exposed Eu (1/σu), latent period
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of exposed Eq (1/σq ), quarantine rate of Iu (φ), proportion of exposed Eq who tran-
sition to Ih (r ), rate of progression to ICU case (ν), and two reduced infectiousness
parameters for asymptomatic cases (ηa) and quarantined symptomatic cases Ih (ηh).
The model involves several death rate parameters m j : death rate of non-quarantined
infectious Iu (mu), death rate of quarantined infectious Ih (mh), death rate of asymp-
tomatic cases Ia (ma), death rate of ICU patients (micu). The model involves several
removal rate parameters: removal rate of Sq (k1), removal rate of Eu (k2), removal
rate of Eq (k3), removal rate of Iu (k4), removal rate of Ih (k5), removal rate of Ia (k6),
and the removal rate of Iicu (k7). Note that the model parameters are not independent
from each other. For example, some of the removal rate parameters include deaths
parameters. Note also that the model equation for the recovered is not presented
above because it does not play a role for the subsequent discussion.

Ngonghala et al. [33] determined the effective reproduction number Re using the
next generation method described in Chap. 7. For the model (8.62), Re assumes the
form Re = β f , where f depends on other model parameters but is independent of
β. As discussed in Sect. 7.5.4, by putting Re = 1 and solving Re = β f for β, the
critical effective contact rate βcri t = 1/ f can be obtained for which λmax = 0 holds
and the population of the state of New York is at its bifurcation point. This procedure
yields [27]

βcri t = k2k4k5k6
p(Bu + ηa Ba + ηh Bh)

(8.64)

where Bu , Ba , and Bh are expressions of the model parameters that can be found
in Ref. [33]. Finally, in the study by Ngonghala et al. [33], COVID-19 associated
deaths were considered in order to fit the model parameters. As mentioned above,
to this end, the period from March 1 to April 7, 2020, was used. Subsequently, the
study examined possible impacts of intervention measures that among other things
would affect the effective contact rate β.

In a study [27] subsequent to the original work by Ngonghala et al. [33], the
three-stage scheme shown in panel (b) of Fig. 8.12 was applied to study the entire
COVID-19 first-wave in the state of New York during the four months period from
March 1 to June 30. All parameters were fixed as in the study by Ngonghala et al.
[33]. The effective contact rate β was varied across the three stages like βS1, βS2,
and βS3. Accordingly, βS1 > βS2 = βcri t > βS3 was assumed for the stages 1, 2, 3,
respectively. In order to obtain βS1 and βS3 a standard nonlinear fitting procedure
was used tominimize the error between the numerical model solutions D(t) obtained
fromEq. (8.62) and the observed deaths. For stage 2 the parameter βS2 was computed
from Eq. (8.64). While t0 with March 1 and t3 with June 30 were fixed, the stage
boundaries t1 and t2 were varied to find optimal time intervals [t0, t1], [t1, t2], [t2, t3]
that produced the best fit between the model solution D(t) and the observed deaths.
Data were taken from the website [63].

Figure8.17 shows the COVID-19 deaths data of the state of New York and the
model solution D(t). Panel (a) shows the cumulative confirmed deaths (gray circles)
in the 4 months period from March 1 to June 30 and the model solution D(t) (solid
black line) obtained via the three-stage approach. D(t) fits the data with moderate
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Fig. 8.17 Model-based analysis of the first COVID-19 wave of the state of New York during 2020.
Panel (a): Cumulative deaths that occurred during the period fromMarch 1 to June 30 (gray circles)
and solution D(t) (solid line) of Eq. (8.62) using a three-stage approach. Vertical dashed lines
indicate stage boundaries. Panel (b): Daily death data (gray circles) during the same period and
model fit (solid line)

accuracy and reflects the characteristic sigmoid shape of the trajectory. The two
vertical lines indicate stage boundaries t1 and t2 at t1 = 29 days (March 30) and
t2 = 31 days (April 1) since March 1st. Panel (b) presents the daily new deaths as
reported (gray circles) and obtained from the model solution D(t) (solid black line).
The stage boundaries are indicated again by vertical lines. The results presented in
Fig. 8.17 suggest that the bifurcation stage (i.e., stage 2) was relatively short. Overall,
COVID-19 emerged in the population of the state of New York during March 2020
due to an instability (see also the eigenvalue analysis below). COVID-19 associated
deaths increased dramatically. However, the model-based analysis suggests that the
dynamics of the epidemic changed within the month of March such that at the end
of March the dynamics entered stage 2 (i.e., the bifurcation stage) and the unstable
disease-free fixed point was about to become stable. This bifurcation stage 2 was
relatively short. Beginning ofApril, the dynamics of the spread of COVID-19 entered
stage 3. The disease-free fixed point was stabilized. Panel (b) illustrates that the
stabilization effect on the trajectory of daily deaths occurred somewhat later. The
tragic peak of about 1000 new deaths per day occurred around days 35 to 40 (April
5 to April 10), that is, a few days after the epidemic entered stage 3.

In order to conduct an eigenvalue analysis and identify the relevant unsta-
ble eigenvector of the COVID-19 outbreak the five dimensional state X+ =
(Eu, Eq , Iu, Iu, Ih) of infected individuals was considered. The variable Iicu was
neglected in those considerations because according to the model (8.62) and (8.63) it
did not affect the stability of the disease-free fixed point. From Eq. (8.62) and (8.63)
it follows that the linearization matrix L+ of the dynamics in D+ reads
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Table 8.5 Results of the three-stage analysis of the first COVID-19 wave in the state of New
York, 2020, based on an infected five-dimensional subspace (Eu , Eq , Iu , Iu , Ih): the eigenvalues
λ1, . . . ,λ5 and the effective contact rate β are shown

Stage Eigenvalues [1/d] β [1/d]

λ1 λ2 λ3 λ4 λ5

1 0.02 −0.28 −0.32 −0.42 −0.64 1.81

2 0 −0.28 −0.33 −0.42 + i0.04/d −0.42 − i0.04 0.43

3 −0.06 −0.27 −0.33 −0.39 + i0.04 −0.39 − i0.04 0.23

L+ =

⎛
⎜⎜⎜⎜⎝

−k2 0 (1 − q)pβ (1 − q)pβηh (1 − q)pηa
α −k3 qpβ qpβηh qpβηa
f1σu 0 −k4 0 0
f2σu rσq φ −k5 σa

(1 − f1 − f2)σu (1 − r)σq 0 0 −k6

⎞
⎟⎟⎟⎟⎠ .

(8.65)
As far as the eigenvalues are concerned, in stage 1, from β > βcri t it follows that the
5 × 5 matrix exhibits at least one eigenvalue with positive real part, whereas in stage
3, for β < βcri t it follows that all eigenvalues exhibit eigenvalues with negative real
parts. In the special case of β = βcri t , there is at least one zero eigenvalue parameter.
All remaining eigenvalues exhibit real parts equal to zero or negative real parts.

Table8.5 shows the eigenvalues of L+ for the stages 1 (outbreak stage), 2 (bifur-
cation stage), and 3 (subsiding stage). As expected, stage 1 was characterized by a
positive eigenvalue, whereas stage 3 showed a set of eigenvalues that were either real-
valued and negative or had negative real parts. This illustrates that (as expected) the
disease-free fixed point was unstable in stage 1 and asymptotically stable (assum-
ing X ≈ Xst ) in stage 3. Qualitatively, Table8.5 demonstrates the sign-switching
phenomenon of the bifurcation scenario of epidemic waves: the positive eigenvalue
λ1 = 0.02/d indicating that during stage 1 the disease-free state of the state of New
York’s population was unstable turned into a negative one.

The estimated effective contact rates are reported in Table8.5 as well. For stages 1
and 3 the parameters β(S1) = 1.81/d and β(S3) = 0.23/d, respectively, were found.
The critical value, which was the stage-2 value, was β(S2) = βcri t = 0.43/d.

The eigenvectors v1(S1) and v1(S3) were computed from the matrix L+ (see Eq.
(8.65)). Figure8.18 shows the phase curves of the COVID-19 epidemic in terms of
the solutions Eu, Eq , Iu, Ih, Ia of Eq. (8.62) in the two-dimensional subspaces Eu-
Eq , Eu-Iu , Eu-Ih , and Eu − Ia . The projections of v1(S1) and v1(S3) are plotted in
the respective two-dimensional subspaces as well. As can be seen, during stage 1
the disease state X+(t) in D+ of the population of the state of New York followed
closely the unstable eigenvector v1(S1). Accordingly, v1 in stage 1 was the 5D order
parameter of the COVID-19 outbreak of the state of New York. Likewise, during
stage 3 the disease state followed v1(S3) (i.e., the remnant of the order parameter).

The amplitude description of the first COVID-19 wave of the state of New York
was derived using the numerical approach discussed in Sect. 8.6.2. To this end, the
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Fig. 8.18 State of New York phase curves (solid lines) in two-dimensional subspaces and the
directions specified by the dominant eigenvector v1 in stage 1 (i.e., v1(S1)) and stage 3 (i.e.,
v1(S3)) (dotted lines). In all subpanels, the lower and upper directions refer to v1(S1) and v1(S3),
respectively

trajectories Eu, Eq , Iu, Ih, Ia were substituted intoEq. (8.60) to obtain the amplitudes
A1, . . . , A5 as functions of time over the three stages. In this context, A j was defined
as the amplitude related to the eigenvalue λ j listed in Table8.5.

Figure8.19 presents the amplitudes A1, . . . , A5 as functions of time. Panel (a)
shows the real-valued amplitudes A1, A2, A3 related to the eigenvalues λ1, λ2, λ3

that were real-valued in all three stages and exhibited the largest real parts (see
Table8.5). Panels (b) and (c) show the real- and imaginary-parts of the two remaining
amplitudes A4 and A5. The corresponding eigenvalues λ4 and λ5 were real-valued
in stage 1 but assumed complex numbers in stages 2 and 3 (see Table8.5 again).
Consequently, A4 and A5 were real-valued in stage 1 but formed a complex-valued
pair in stages 2 and 3. Comparing A1 with the remaining amplitudes, it can be seen
that A1 was by several order ofmagnitudes larger in stages 1 and 3 than the remaining
amplitudes. That is, A1 played the dominant role. This observation is consistent with
the phase curves shown in Fig. 8.18 that suggest that the epidemic evolved primarily
along the eigenvector v1 in stages 1 and 3. Returning to Fig. 8.19, in stage 2, A1 was
still the largest amplitude. However, A1 remaining almost constant over time (due
to its eigenvalue λ1 = 0). During stage 2, the amplitudes A2 and A3 (panel (a)) and
the imaginary parts of A4 and A5 (panel (c)) decayed in magnitude. Interestingly,
the real parts of A4 and A5 (panel (b)) increased in magnitude during the very short
bifurcation period of stage 2. Overall, changes of the state X+(t) in stage 2 were
determined by variations in A2, A3, A4, and A5. In other words, the stage 2 dynamics
shown in the phase curves in Fig. 8.18 was primarily due to changes of the A2, A3,
A4, and A5 related to eigenvalues with non-zero real parts.
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Fig. 8.19 Three-stage amplitude description of the first COVID-19 wave of the state of New York
during 2020. Panel (a): Amplitudes A1(t) (thick solid line), A2(t) (thin solid line), and A3(t) (dotted
line) are shown across the stages S1, S2, and S3. Panels (b) and (c): The real parts (panel (b)) and
imaginary parts (panel (c)) of A4(t) (solid line) and A5(t) (full circles) are shown for stages S1,
S2, and S3

In closing these considerations on the first COVID-19 wave in the state of New
York, let us return to the analytical solutions (8.50) of D(t). For the model (8.62) the
variable Iicu makes a contribution to D(t) via the rate constant micu . Let use denote
L+ as defined in Eq. (8.65) by L+

5×5.When taking the variable Iicu into consideration,
the linearization matrix becomes a 6 × 6 square matrix defined by

L+
6×6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

L+
5×5 0

0
0

0 0 0 0 ν −k7

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.66)

Thematrix L+
6×6 exhibits the same eigenvalues as listed in Table8.5 and an additional

eigenvalue λ6 = −k7. Moreover, let v(5)
j denote the five-dimensional eigenvectors of

L+
5×5 andw

(5)
j the corresponding biorthogonal vectors. Then, thematrix L+

6×6 exhibits

the six-dimensional eigenvectors v(6)
j defined by

v(6)
j = 1

Z j

(
v(5)
j

c j

)
(8.67)
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for j = 1, . . . , 5 with c j determined by the sixth row of L+
6×6 like νv

(5)
j,5 − (k7 +

λ1)c j = 0, which implies c j = νv
(5)
j,5/(k7 + λ1) and Z j =

√
1 + c2j . The sixth eigen-

vector reads v(6)
6 = (0, 0, 0, 0, 0, 1). Importantly, since the w(5)

j v(5)
k = δ jk holds for

j = 1, . . . , 5 and k = 1, . . . , 5, it follows that the biorthogonal vectors w(6)
j for

j = 1, . . . , 5 are given by

w(6)
j = Z j

(
w(5)

j

0

)
. (8.68)

For j = 6 we have w(6)
6 = v(6)

6 = (0, 0, 0, 0, 0, 1). That is, from Eqs. (8.67) and
(8.68) and the biorthogonality of the respective five-dimensional vectors, it fol-
lows that w(6)

j v(6)
k = δ jk holds for j = 1, . . . , 6 and k = 1, . . . , 6. Consequently,

let X(6,+) = (Eu, Eq , Iu, Iu, Ih, Iicu) and A(6)
1 denote six-dimensional state vector

and the order parameter amplitude related to λ1 in stage 1, then

A(6)
1 = w(6)

1 X(6,+)(t) = Z1w
(5)
1 X+(t) = Z1A1 (8.69)

with the five-dimensional vector X+ = (Eu, Eq , Iu, Ih, Ia) and A1 shown in
Fig. 8.19. Equation (8.49) becomes

d

dt
D = mv(6)

1 Z1A1(t) , (8.70)

where again A1 is shown in Fig. 8.19. Likewise, Eq. (8.50) becomes

S1 , t ∈ [t0, t1] , λ1 = λ1,S1 > 0 :

D(t) = D(t0) + mv(6)
1,S1

λ1,S1
Z1A1(t0)

(
exp{λ1,S1(t − t0)} − 1

)
.

= D(t0) + mv(6)
1,S1

λ1,S1
Z1 (A1(t) − A1(t0)) . (8.71)

Accordingly, the exponential increase of A1(t) shown in Fig. 8.19 during the first 29
days (stage 1) of the epidemic in the state of New York determined the increase of
deaths shown in panel (a) of Fig. 8.18 in that first 29 days period.

8.7.2 First COVID-19 Wave of 2020 in Pakistan

Ullah and Khan [71] developed an epidemiological model to describe the increas-
ing COVID-19 cases during the first few months of the COVID-19 epidemic in
Pakistan of the year 2020. In a subsequent study, the model was used to work out
a three-stage description of the increasing and subsiding infection numbers of the
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first COVID-19 wave in Pakistan during the period March to September 2020 [26].
The model for the COVID-19 epidemic in Pakistan involves eight compartments,
which are the compartments of susceptible individuals (S), exposed individuals (E),
symptomatic infectious individuals (Is), asymptomatic infectious individuals (Ia),
hospitalized infectious individuals (Ih), and infectious individuals who require treat-
ment in intensive care units (Iicu). The model also addresses infected quarantined
individuals (Q) as well as recovered individuals (R). The model reads [26, 71]

d

dt
S = −k0S ,

d

dt
E = k0S − k1E ,

d

dt
Is = ρωE − k2 Is ,

d

dt
Ia = (1 − ρ)ωE − k3 Ia ,

d

dt
Ih = η Is + δQ − k5 Ih ,

d

dt
Q = κE − k4Q ,

d

dt
Iicu = φIh − k6 Iicu (8.72)

with the rate constant k0 defined by

k0 = β
Is + ψ Ia + ν Ih

N
. (8.73)

The model parameters describe the latent period of exposed individuals (1/ω), the
hospitalization rate of symptomatic infectious individuals (η), the hospitalization
rate of quarantined individuals (δ), the quarantine rate of exposed individuals (κ),
the rate at which hospitalized individuals require ICU care (φ), and the proportion
of asymptomatic infections (ρ). The parameters k1, . . . , k6 denote removal rates of
individuals out of certain compartments. The parameters occurring in Eq. (8.73)
are the effective contact rate (β), the relative transmissibility of the asymptomatic
individuals (ψ), and the relative transmissibility of hospitalized individuals (ν). In Eq.
(8.72) the evolution equation of the recovered individuals is not listed because it will
be of no concern in the following considerations. Furthermore, note that the original
study by Ullah and Khan [71] takes demographic terms into account. In contrast, in
Ref. [26] and in Eq. (8.72) those terms have been neglected because on the relative
short period (March to September) they do not affect the disease dynamics [73].

Model parameterswerefitted by introducing the variableC of cumulativeCOVID-
19 cases. To this end, the assumption was made that symptomatic individuals were
diagnosed quickly by health authorities as being infected with COVID-19. How-
ever, an expression like dC/dt = gIs with g large was not used. Rather, it was
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assumed thatC increased when exposed individuals became symptomatic infectious
like dC/dt = ρωE , where ρω denotes the transition rate of E → Is transitions (see
Eq. (8.72)). Moreover, it was assumed that quarantined individuals who became hos-
pitalized because they developed severe COVID-19 symptoms increased the number
of confirmed cumulative COVID-19 cases. From these considerations it follows that
C(t) satisfies [26]

d

dt
C = sE E + sQQ . (8.74)

with sE = ρω and sQ = δ (see Eq. (8.44)).
The key parameter of the model defined by Eqs. (8.72) and (8.73) is the effective

contact rate β. As discussed in Sect. 7.5.5, the critical value βcri t at which according
to the model (8.72) a bifurcation from an unstable to a stable disease-free fixed point
takes place can be determined with the help of Eq. (7.75). The result reads [26]

βcri t = k1k2k3k4k5
Z

, Z = k4ω[ρk3(ην + k5) + (1 − ρ)k2k5ψ] + κδk2k3ν . (8.75)

The three-stage model shown in panel (a) of Fig. 8.12 was applied. To this end, it
was assumed that β changed across the three stages βS1 > βS2 = βcri t > βS3 (see
also the previous example in Sect. 8.7.1). For all three stages the model parameters as
determined by Ullah and Khan [71] were used except for the values of β. Solutions
of Eqs. (8.72) and (8.74) were then fitted in the three-stage study [26] to observed
cumulative COVID-19 case from Pakistan [63]. The time points t1 and t2 of the
beginnings of stages 2 and 3 were varied. The parameters βS1 and βS3 were estimated
for stages 1 and 3 as the optimal parameters that produced the best model fit given a
the time points (t1, t2). For stage 2 the parameterβ = β(cri t)was used and computed
from Eq. (8.75). In summary, in Ref. [26] the four model parameters t1, t2, βS1, and
βS3 were estimated using COVID-19 case data from Pakistan.

Figure8.20 present the confirmed COVID-19 cases in Pakistan and the best-fit
model solution C(t). Panel (a) shows the cumulative COVID-19 cases (gray circles)
during the 7-months period (about 210 days) from March 1 to September 30 as
reported on the website [63]. The data showed the typically sigmoid, three-stage
pattern: a first (accelerating) bend, a linear stage, and a second (de-accelerating)
bend. The optimal stage boundaries were t1 as June 10 for the beginning of stage 2
and t2 as July 1 for the beginning of stage 3. The solid black line in panel (a) shows
the model solution C(t) computed from Eqs. (8.72) and (8.74). The model captures
the sigmoid shape of the first COVID-19 wave in Pakistan with moderate accuracy.
Panel (b) of Fig. 8.20 shows daily new COVID-19 cases (gray circles) as reported in
the database [63] and the model fit (solid black line). The three stages of the model
are clearly visible. In stage 1 there is a rapid increase of daily new infections. In stage
2 there is a relative fast decrease of daily new infections to a plateau. In stage 3 a
decay of daily new infections can be seen from the aforementioned plateau towards
a low level of about 500 confirmed daily new infections.
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Fig. 8.20 Model-based analysis of the first COVID-19 wave in Pakistan, 2020. Panel (a): Cumu-
lative COVID-19 cases confirmed during the period from March 1 to September 30 (gray circles)
and solution C(t) (solid line) computed from Eqs. (8.72) and (8.74) using a three-stage approach.
Vertical dotted lines indicate stage boundaries. Panel (b): Daily new confirmed cases (gray circles)
during the same period and model fit (solid line)

In Ref. [26], in order to determine the eigenvalues and eigenvectors that deter-
mined the three stages of the 2020 COVID-19 first-wave in Pakistan, the infected
compartments E , Is , Ia , Ih , and Q were considered. They span the subspace D+.
Individuals in intensive care units were neglected in Ref. [26] because according to
the model (8.72) they did affect the stability of the disease-free fixed point. In the
five-dimensional space D+ the linearization matrix of Eq. (8.72) reads

L+ =

⎛
⎜⎜⎜⎜⎝

−k1 β βψ βν 0
ρω −k2 0 0 0

(1 − ρ)ω 0 −k3 0 0
0 η 0 −k5 δ
κ 0 0 0 −k4

⎞
⎟⎟⎟⎟⎠ . (8.76)

The eigenvalues of L+ are listed in Table8.6 for all three stages. As can be seen in
Table8.6, the largest eigenvalue of stage 1was positivewith 0.05/d, indicating that the
disease-free fixed point was unstable. In contrast, the largest eigenvalue was negative
in stage 3 with−0.03/d, indicating that the fixed point was stabilized presumably due
to the implementation of intervention measures. For sake of completeness, Table8.6
also presents the effective contact rates β. As expected, the order β(S1) > β(S2) =
β(cri t) > β(S3) was found.

In order to demonstrate the role of the eigenvector v1 related to the maximal
eigenvalue λ1, the vector v1 was computed numerically from L+ for stages 1
and 3. Subsequently, phase curves were plotted and compared with v1(S1) and
v1(S3). Figure 8.21 shows the phase curves of the COVID-19 epidemic as obtained
from the solutions E, Is, Ia, Ih, Q of Eq. (8.72) in the two-dimensional subspaces
E − Ia, Is − Ia, Ih − Ia , and Q − Ia . The eigenvector v1 for stages 1 and 3 is shown
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Table 8.6 Results of the three-stage analysis of the first COVID-19 wave in Pakistan, 2020, as
obtained for the infected five-dimensional subspace (E, Is , Ia, Ih , Q): the eigenvalues λ1, . . . ,λ5
and the effective contact rate β are shown

Stage Eigenvalues [1/d] β [1/d]

λ1 λ2 λ3 λ4 λ5

1 0.05 −0.49 −0.81 −1.31 + i0.18 −1.31 − i0.18 0.60

2 0 −0.51 −0.78 −1.10 + i0.14 −1.10 − i0.14 0.35

3 −0.03 −0.53 −0.75 −1.10 + i0.10 −1.10 − i0.10 0.21

Fig. 8.21 Phase curves (solid lines) of the COVID-19 epidemic (March 1 to September 30, 2020)
in Pakistan shown in two-dimensional subspaces. The directions (dotted lines) defined by the 5D
order parameter v1(S1) of stage 1 and its stage-3 remnant v1(S3) are shown as well. In all four
subpanels, the lower and upper directions refer to v1(S1) and v1(S3), respectively

there as well. As can be seen, the epidemic followed closely v1 in both stages 1 and
3. Accordingly, v1 was the five-dimensional order parameter in the first stage of the
2020 COVID-19 outbreak in Pakistan. Moreover, the remnant v1(S3) of the order
parameter v1(S1) determined the way the first COVID-19wave subsided in Pakistan.

Following the numerical approach discussed in Sect. 8.6.2, the amplitudes
A1, . . . , A5 related to the eigenvalues listed in Table8.5 were computed from Eq.
(8.60) for all three stages using the numerical solutions E(t), Is(t), Ia(t), Ih(t), Q(t)
of Eq. (8.72). Figure 8.22 presents the amplitudes as functions of time. Panel (a)
presents the three real-valued amplitudes A1, A2, A3. Panels (b) and (c) show the
real- and imaginary-parts of the amplitudes A4 and A5 related to the two remaining
eigenvalues that were complex-valued in all three stages. Figure8.22 reveals that at
any point in time A1 was at least by a factor 10 larger in magnitude than the other
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Fig. 8.22 Three-stage amplitude description of the first COVID-19 wave in Pakistan during 2020.
Panel (a): Amplitudes A1(t) (thick solid line), A2(t) (dotted line), and A3(t) (thin solid line) are
shown across the stages S1, S2, and S3. Panels (b) and (c): The real parts (panel (b)) and imaginary
parts (panel (c)) of A4(t) (solid line) and A5(t) (full circles) are shown for stages S1, S2, and S3

amplitudes. In particular, the dynamics in stages 1 and 3 was completely determined
by A1. That is, the contributions of the remaining amplitudes to the dynamics were
negligible. As far as the bifurcation stage 2 was concerned, A1 was larger than all
other amplitudes. However, A1 did not vary much over time. Therefore, during the
stage at which the epidemic in Pakistan reached its bifurcation (or turning) point,
changes of the state X+(t) were determined primarily by the remaining amplitudes
A2 to A5.
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Chapter 9
Models of Virus Dynamics

This chapter is about mechanistic, biophysical and biochemical processes of viral
infectious diseases in the human body as seen from a nonlinear physics perspective.
These processes can be described by a variety of nonlinear physics models. They
apply to virus infections in general. Before reviewing some of the benchmarkmodels,
some facts and hypotheses about the SARS coronavirus 2 (SARS-CoV-2) that causes
COVID-19 are presented.

9.1 Coronaviruses

9.1.1 Classification

Coronaviruses are a family of viruses that cause several diseases in humans. Some of
the viruses of the coronavirus family have been named with respect to the diseases
that they cause. Figure9.1 provides an overview over some members of the family
of coronavirus.

As it is shown in Fig. 9.1, there are four types of coronaviruses that cause only
mild to moderate respiratory diseases: 229E, NL63, OC43, and KHU1 [1, 2]. Fur-
thermore, there are three types of coronaviruses that can lead to death: SARS-CoV,
MERS-CoV, and SARS-CoV-2 [1–3]. The severe acute respiratory syndrome coro-
navirus is a coronavirus that causes the viral respiratory disease called severe acute
respiratory syndrome. The phrase severe acute respiratory syndrome is abbreviated
as SARS [4]. Accordingly, the severe acute respiratory syndrome coronavirus has
been abbreviated SARS-CoV. The virus was first detected in 2002 in China. Sub-
sequently, infections with SARS-CoV in Hong Kong and Vietnam were reported.
The SARS-CoV infections spread out to other countries as well [5, 6]. However, the
epidemic stopped by July 2003 [5]. The SARS-CoV 2002–2003 epidemic claimed
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Fig. 9.1 Overview over some of the coronaviruses

about 770 deaths worldwide [5]. Another type of a coronavirus causes the viral res-
piratory disease called Middle East respiratory syndrome (abbreviated MERS). The
virus has been named accordingly as Middle East respiratory syndrome coronavirus
(MERS-CoV) [7]. The outbreak of the virus disease took place in 2012 primarily
in countries of the Middle East, Africa, and South Asia. Eighty percent of all cases
occurred in Saudi Arabia [7]. About 850 people died worldwide due to the disease
[8]. Finally, SARS coronavirus 2 (SARS-CoV-2) causes the disease nowadays called
coronavirus disease 2019 (COVID-19) [9]. According to an early report by theWorld
Health Organization, first cases of the disease were reported in December 2019 from
Wuhan city, China [10] (see also Sects. 1.1 and 5.8). The virus spread out globally
during the year 2020. By 2021 the COVID-19 pandemic was still ongoing. As stated
in Sect. 1.1, by July 2021 the worldwide COVID-19 death toll reached the mark of
4,000,000 lives.

9.1.2 Possible SARS-CoV-2 Target Cells

When a virus enters a human or animal body it typically invades certain cells. The
infected cells subsequently produce the virus and release the produced virus particles.
These newly produced particles invade other cells such that a circular causal loop
is created. Viruses typically affect certain types of cells. That is, different viruses
affect different types of cells. In what follows the type of cells that are affected by
a virus will be called target cells. In the context of COVID-19, the question arises
which cells does the SARS coronavirus 2 affect? Related to that question, we may
ask where does SARS-CoV-2 go in the human body?

SARS-CoV-2 just as the 2002 emerging SARS-CoV seems to enter cells bymeans
of a specific cell receptor called ACE2 [11–18]. Consequently, the virus travels in
the human body via the airway or in the blood stream to parts of the body that
exhibit cells with ACE2 receptors. Such parts featuring ACE2 receptor cells are the
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human nose, lung, and brain [11, 18, 19]. COVID-19 has caused in some patients
temporary loss of taste and smell or an altered sense of taste and smell [20]. SARS-
CoV-2 entering the human brain or the olfactory bulb may explain such experiences
[11]. SARS-CoV-2 entering the human lung causes respiratory conditions that may
lead to respiratory failure and death [3, 14, 21, 22] and multiple organ failure and
death [3, 14, 15].

9.1.3 Target Cells in SARS-CoV-2 Infections of the Human
Lung

Respiratory failure is a major cause of COVID-19 associated deaths [3, 14, 21, 22].
The human lung consists of a plenitude of branches (bronchia) that end in small
cavities or “bags”: the alveoli. In these alveoli gas exchange takes place. Oxygen
carried into the lung when breathing in enters alveoli, passes through the walls
of the alveoli and reaches the blood stream. In opposite direction, carbon dioxide
from the blood stream passes through the alveolar walls and enters the alveoli. It
leaves the lung and human body when breathing out. The walls of alveoli consists
of epithelial cells of type 1 and 2, which are also called pneumocytes cells of type
1 and 2. These epithelial cells play an important role for the aforementioned gas
exchange. The state-of-the-art hypothesis is that SARS-CoV-2 invades epithelial
respiratory cells, in general [23–26]. That is, SARS-CoV-2 invades upper respiratory
tract epithelial cells (e.g., in the nose) as well as lower respiratory tract epithelial cells
(e.g., in the lung). In particular, it has been hypothesized that SARS-CoV-2 invades
pneumocytes (i.e., epithelial cells in the alveoli of the lung) [14, 15, 27, 28]. The
pneumocytes target cell hypothesis is supported by studies that showed that the
2002 SARS coronavirus affects pneumocytes [12, 29]. It is supported by studies
that showed that epithelial cells exhibit ACE2 receptors [18, 19]. Furthermore, the
hypothesis is supported by direct findings that in COVID-19 patients epithelial cells
of the airway are affected by the disease [30]. Finally, the pneumocytes target cell
hypothesis is supported by pathological studies on deceased COVID-19 patients in
which affected (i.e., damaged) pneumocytes were found [21, 22] and SARS-CoV-2
particles in pneumocytes cells could be observed [2].

9.2 Models Overview

Models of the dynamics of viruses in the human body apply to various infectious
diseases such as influenza, HIV/AIDs, hepatitis, and COVID-19. In what follows,
the virus dynamics within an individual will be described by means of a discrete
description in terms of set of n variables X1, . . . , Xn . The variables describe the
virus concentration and the numbers of cells of different types (e.g., the number of



286 9 Models of Virus Dynamics

target cells). That is, the disease state (or health state) of an individual is described in
terms of a finite set of variables X1, . . . , Xn and the corresponding state vector X =
(X1, . . . , Xn). The virus dynamics models that will be considered in what follows
assume the general form of Eq. (2.1), which for sake of conveniency is repeated as

d

dt
X = N(X) . (9.1)

The key entities that allow for the description of the disease state of an individual are
the non-infected target cells (T ), the infected target cells (I ), and the virus particles
(V ). The variables T , I , and V stand for these entities. In addition, they describe
quantitatively how many items are in the respective categories. That is, T and I
describe the number of non-infected and infected target cells, respectively. Likewise,
V describes the number of virus particles. Frequently, the units are densities or
concentrations. For example, cell counts are typically given in cells per microliter.
The amount of virus is typicallymeasured in particles per milliliter (e.g., RNA copies
per milliliter [31]). For sake of simplicity, T and I will be simply referred to as target
cells and infected cells.

The entities T , I , and V have counterparts in epidemiological models. Accord-
ingly, target cells and infected cells can be regarded as counterparts to suscepti-
ble individuals and exposed, non-infectious individuals, respectively. Virus particles
can be considered as counterparts to infectious individuals. In the following sections,
three benchmark virus dynamics models will be considered: TIV, TV, and TIIV. They
can be regarded as counterparts to SIR and SEIR epidemiological models (TIV and
TV) or can be derived in analogy to those models (TIIV). The relationship between
the virus dynamics models and epidemiological models is summarized in Table9.1.

Acute Infections Versus Long-Term Infections

In the context of epidemiological models, in Sect. 3.1 a distinctionwasmade between
epidemics on short and long time scales. For example, for epidemic waves on short
time scales, typically, demographic terms can be neglected, whereas when epidemics
on the time scale of generations are considered such terms should be taken into
account. A similar distinction can be made for virus infections.

Table 9.1 Some basic virus dynamics models and their counterparts in epidemiology

Virus dynamics models Epidemiological models

TIV ⇔ SEIR without R

TV ⇔ SIR without R

TIIV as generalization of TIV ⇔ SEIR as generalization of SIR
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As such, virus dynamics in the body of individuals is affected by the production of
target cells and the natural cell death (i.e., death that is not induced by the virus). Con-
sequently, virus dynamics models may take such processes into account. However,
for acute infections that take place on relative short periods (e.g., period less than
30 days) cell reproduction processes and non-disease related cell death processes
(i.e., natural death processes) frequently play a negligible role and for this reason
are often neglected in the respective models [32, 33]. This implies that acute infec-
tions only exhibit virus-free stationary states (which does not necessarily imply that
the individual under consideration survives the disease). Furthermore, such models
typically describe situations in which the infection period ends and the virus dies
out when most of the target cells in the affected region of the body have been turned
into infected cells and have died out themselves. Since there is no noteworthy pro-
duction of target cells over the time scale under consideration, when target cells and
infected cells disappear, then the virus disappears as well. Such models are called
target cell-limited models (see Sect. 9.3.2). In fact, the TIV, TV, and TIIV models in
the absence of cell production terms and cell natural death terms of cells belong to
the class of target cell-limited models. Influenza and COVID-19 are two examples
of acute virus infections.

Long-term infections or persistent infections take place over longer periods (e.g.,
several years) or stay with individuals over their lifetimes. Consequently, cell death
and cell production plays an important role and needs to be taken into account in
virus dynamics models addressing long term infections. Long term infections may
exhibit stationary states with non-vanishing viral load and the corresponding models
typically account for that possibility.An example of long term infections are untreated
HIV infections [31, 34–36].

9.3 TIV Model

9.3.1 Model Formulation

The TIV model describes infections in individuals in terms of the three aforemen-
tioned variables T , I , and V , that is, in terms of the numbers (or concentrations)
of target cells and infected cells and the number (or concentration) of virus parti-
cles. V is also called the viral load. Figure9.2 shows a flow chart of the mechanistic
processes described by the model.

Fig. 9.2 Flow chart of the
TIV model
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Accordingly, one or several virus particles infect a target cell. The target cell
turns into an infected cell and begins to produce and release virus particles [16,
37]. The released virus particles increase the viral load (i.e., virus concentration).
In particular, the released virus particles infect other target cells (see also Sect. 1.3).
However, infected cells differ from target cells not only by the fact that they produce
virus. They also tend to have a shortened lifetime. Due to the altered biochemical
processes, frequently, they die relatively quickly as compared to the non-infected
target cells. The evolution equations for T , I , and V of the TIV model for acute
infections read [32, 33, 35, 38, 39]

d

dt
T = −βV T ,

d

dt
I = βVT − k1 I ,

d

dt
V = pI − k2V . (9.2)

Equation (9.2) assumes the general from described by Eq. (9.1). The state vector
reads X = (T, I, V ) and we have n = 3. In Eq. (9.2) the parameter β denotes the
infectivity rate, while p denotes the production rate of virus particles. The parameters
k1 and k2 denote decay rates in the sense that they describe an exponential decrease
of I and V for β = 0 and p = 0, respectively. As such, they denote the death rate of
infected cells (k1) and the clearance rate of the virus (k2).

9.3.2 Target Cell-Limited Models

The TIV model can be used to demonstrate the aforementioned idea of acute infec-
tions as target cell-limited infections [32, 33, 35, 38]. Accordingly, the virus infects
most of the target cells at the affected sites (e.g., sites in the human lung). The thus
infected target cells produce new virus. The virus concentration increases towards a
peak value. At the same time, the infected cells die out and the turnover from target
cells to infected cells becomes small since there is only a small portion of target cells
left and there is no noteworthy production of new target cells. The decay of infected
cells implies that the production of new virus particles is reduced and eventually
stops. The virus dies out. A key feature of this scenario is that the affected parts of
the human body come with a limited number of target cells and do not produce new
target cells with a sufficiently fast rate.

As far as the depletion of target cells is concerned, for example, it has been
hypothesized that in the case of severe and fatal COVID-19 most of the target cells
(i.e., pneumocytes) in affected areas of the human lung get lost [23], which is
consistent with the aforementioned pathological studies on deceased COVID-19
patients that found damaged pneumocytes [21, 22] and SARS-CoV-2 particles in
pneumocytes [2].

Figure9.3 illustrates this basic mechanism underlying target cell-limited models
by means of a simulation of the TIV model (9.2). Panel (a) of Fig. 9.3 shows T and I
as functions of time. During the initial stage of the infection, the number of infected
cells I sharply increases at the cost of the target cells. That is, when I increases the
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number of target cells T rapidly decreases. For the selected parameters, T decreases
to an almost negligibly small level. The sharp increase of I in the TIV model is due
to the βVT term in the evolution equation of I listed in Eq. (9.2), while the rapid
decay of T is due to the counterpart term−βV T in the evolution equation of T listed
in Eq. (9.2). As soon as T has decayed towards the low level plateau, the number
of infected cells decays at a rate k1 due to the −k1 I term in evolution equation of
I . Panel (b) shows the viral load. While I initially increases (here during the first
two days after the infection), the viral load increases as well. The production of V is
described mathematically by the pI term in the evolution equation of V . When the
number of infected cells begins to decline, the viral load may continue to increase for
some period of time. Eventually, V reaches its maximum value at a somewhat later
time point as compared to I . In particular, when the number of infected cells has
reached a negligibly low level, the evolution of the viral load is entirely determined
by the decay term −k2V in Eq. (9.2). That is, V decays exponentially at a rate k2.

As such, the TIV models allows for two scenarios according to which a non-
negligible viral load can be present in the presence or absence of infected cells and
the decayof the viral load is determinedby either k1 or k2 (or both). Let us dwell on this
issue. For sake of simplicity, let us assume that the target cells have been completely
depleted such that Eq. (9.2) becomes dI/dt = −k1 I , dV/dt = pI − k2V . If k1 > k2
holds (as for the simulation shown in Fig. 9.3) then the decay of infected cells takes
place on a faster time scale then the clearance of virus (i.e., the decay of viral load).
Moreover, as long as there exists a substantial pool of infected cells virus particles
are produced, such that viral load may increase or decay at a rate slower than k2.
Once I has decayed to a negligibly small level, the dynamics of V is given by
dV/dt = −k2V . In summary, under the conditions that (i) k1 > k2 holds, (ii) target
cells have been wiped out in a certain region of the body due to the infection (T ≈ 0),
and (iii) the virus dynamics can appropriately be described by the TIV model, then
the viral load V (t) can be relatively high for a certain period even in the absence

Fig. 9.3 Simulation results of the TIV model (9.2). Panel a: T and I as functions of time. Panel
b: V (t) shown on a logarithmic scale. Parameters and initial conditions: T (0) = 10, 000 cells/μl,
I (0) = 0, V (0) = 0.1 particles/ml, β = 10−4/(d × particles/ml), k1 = 10/d, k2 = 2.0/d, p = 20
(particles/ml) × (μl/cells) /d



290 9 Models of Virus Dynamics

of infected cells and the period of decline of the disease as measured in terms of
the viral load V (t) is characterized by the rate constant k2. In contrast, as will be
demonstrated below by numerical simulations, if k1 < k2 holds then the speed of
the decay of viral load may be determined by k1 rather than by k2 and the viral load
decays in the presence of infected cells. As far as the decay rate of V in both scenarios
is concerned, roughly speaking, the smaller value of the two parameters k1 and k2
determines the dynamics of the disease decline.

As will be shown in Sect. 9.3.3 and has been anticipated in Table9.1, the TIV
model is mathematically equivalent to the SEIR model. Therefore, the phenomenon
of a target cell-limited infection can be compared with an epidemic wave without
intervention as described by the SEIR model. As discussed in Sect. 8.1, the epi-
demic wave in the no intervention scenario begins to subside when the number of
susceptibles has reached a sufficiently low number such that the disease-free fixed
point becomes stable. The same principle holds for the TIV model. The decline
stage of the infection begins when the number of target cells T decreases to a suffi-
ciently low level such that the virus-free fixed point becomes stable. More explicitly,
when T decreases towards Tcrit such that eigenvalue λmax of the virus-free fixed
point Vst = Ist = 0 becomes zero, then the system is at its bifurcation point. Since
dT/dt < 0 holds for V > 0 and T > 0, in the next moment of time, the system
exhibits a negative maximal eigenvalue λmax. The virus-free fixed point is stable.
The infection enters the decline stage.

Note that the viral load is typically shown on a logarithmic scale, while cell
counts (or concentrations) are typically presented on linear scales. Therefore, when
comparing panels (a) and (b) of Fig. 9.3 it seems that V decays relatively slowly as
compared to I . This impression is deceiving. In fact, if T is negligibly small, then I
decays exponentially at a rate of k1. Likewise, if I is negligibly small, then V decays
exponentially at a rate of k2. In particular, as argued above, for k1 > k2 the infected
cells decay faster than the viral load. Panel (a) of Fig. 9.4 shows all variables T , I , and
V for the simulation presented in Fig. 9.3 in linear scales. In this case k1 > k2 holds
and k1 is larger than k2 by a factor 5. As mentioned in the context of Fig. 9.3 and can
be seen in panel (a) of Fig. 9.4, I (t) reaches its peak value Imax earlier in time than
V (t). Importantly, since k1 is considerably larger than k2, the function I (t) decays
from its peak value Imax faster to zero as compared to the function V (t). In contrast,
for k2 > k1 the viral load follows the decay of the infected cells. That is, as long
as I is substantially large, V is produced. Therefore, I and V approximately decay
at the same rate. Panel (b) of Fig. 9.4 illustrates this case k2 > k1. In the example,
k2 is larger than k1 by a factor 5. The functions I (t) and V (t) show approximately
the same kind of decay. A mathematically worked out example of this case will be
given in Sect. 9.5.1 in the context of the TV model. Let us return to the presentation
issue of V (t) in a logarithmic scale. If k2 > k1 holds due to the presentation of I
on a linear scale and the presentation of V on a logarithmic scale, one may get the
incorrect impression that V decays slowly as compared to I .
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Fig. 9.4 Impact of decay rates k1 and k2 on the I, V dynamics. Panel a: Solutions T (top subpanel),
I (solid line, bottom subpanel), and V (t) (dotted line, bottom subpanel) of Eq. (9.2) are shown for
the simulation with k1 > k2 presented in Fig. 9.3. V is presented on a linear scale. Parameters and
initial conditions as for the simulation shown in Fig. 9.3. Panel b: As in panel (a) but for k2 > k1.
All parameters and initial conditions are kept the same except for k1 and k2, which are given by
k1 = 2.0/d, k2 = 10/d

9.3.3 Equivalence of TIV and SEIR Models

In order to compare the TIV model (9.2) with the SEIR model defined by Eq. (3.43),
let us write the evolution equations of both models next to each other like

d

dt
T = −βV T ,

d

dt
I = βV T − k1 I ,

d

dt
V = pI − k2V ,

d

dt
S = − β

N
I S ,

d

dt
E = β

N
I S − αE ,

d

dt
I = αE − γ I . (9.3)

In Eq. (9.3) for the purpose of the model comparison the evolution equation of R of
the SEIRmodel is ignored. In view of Eq. (9.3), the variables T , I , V can be assigned
to the variables S, E , I like T ↔ S, I ↔ E , and V ↔ I . Moreover, as far as the
parameters are concerned, the following assignments can be made: β ↔ β/N and
k2 ↔ γ. Themodels differ in terms of the transitions E → I and the virus production
stage I → V involving the species I . With respect to the SEIR model, transitions
from E to I are described by the term −αE in the evolution equation of E and the
term αE in the evolution equation of I . Both terms are of the same magnitude. With
respect to the TIV model, there are two terms with independent parameters k1 and
p, respectively. In the evolution equation of I the decay term reads −k1 I , whereas
in the evolution equation for V the production term reads pI . This implies that the
SEIR model is a three-parametric model with parameters β/N , α and γ. In contrast,
the TIV model is a four-parametric model with parameters β, k1, p, and k2.

Asmentioned in Sect. 9.2, viral load and cells are frequently quantified in terms of
concentrations. However, the respective concentrations are not necessarily measured
in the same units (e.g., see Ref. [31]). Frequently, cells are measured in cells per
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microliter (which is equivalent to cells per cubic millimeter), whereas viral load is
measured in virus particles (or copies) per milliliter (where 1 RNA copy may reflect
1 virus particle [40]). The units microliter and milliliter differ by a factor 1000.
Moreover, cells and virus particles may or may not be regarded as entities of the
same category. In contrast, the SEIR model features the variables S, E , I that all
refer to population sizes. They are measured in the same units. In order to map the
TIV model to the SEIR model, the viral load may be converted into a cell equivalent
viral load V ′ using

V ′ = k1
p
V . (9.4)

From the evolution equation of V listed in Eq. (9.2) it follows that the terms pI and
k2V exhibit the same units. Since k2 and k1 exhibit the same units it then follows that
V ′ as defined by Eq. (9.4) exhibits the same units as T and I . Substituting Eq. (9.4)
in form of V = V ′ p/k1 into Eq. (9.2), the TIV model becomes

d

dt
T = −β′V ′T ,

d

dt
I = β′V ′T − k1 I ,

d

dt
V ′ = k1 I − k2V

′ (9.5)

with β′ = β p/k1. The TIV model in form of Eq. (9.5) exhibits three variables T ,
I , V ′ measured in the same units. Importantly, only three independent parameters
β′, k1, and k2 occur in Eq. (9.5). Consequently, using the mappings T ↔ S, I ↔ E ,
V ′ ↔ I , β′ ↔ β/N , α ↔ k1, and γ ↔ k2, the TIV model (9.5) turns into the SEIR
model (3.43) when ignoring the dynamics of the recovered individuals R. In other
words, the two models are mathematically equivalent. This also implies that the
original TIV model defined by Eq. (9.2) is mathematically equivalent to the SEIR
model (3.43) provided that the variable transformation (9.4) is used. Finally, note
that while Eq. (9.5) involves only three parameters β′, k1, and k2, the overall model
involves four parameters: β′, k1, k2, and p. The model solutions V ′ are related to
viral load concentrations V and observed viral load data by means of Eq. (9.4) that
features the virus production rate parameter p.

9.4 Viral Load Patterns, Infection Order Parameters, and
Order Parameter Amplitudes

The rise and decay of viral load forms a temporal pattern that exhibits some charac-
teristic features [33]. Figure9.5 shows the typical shape of a viral load pattern and
illustrates four pattern features. First, the pattern shows an initial phase of viral load
increase, on the one hand, and a final phase of viral load decay, on the other hand.
As discussed in Sect. 8.5 in the context of epidemiological models, the initial stage
of an epidemic is determined by the largest eigenvalue λmax when assuming that
the system under consideration exhibits only one positive real-valued eigenvalue.
As pointed out in Chap. 2, the principles of nonlinear physics and, in particular,
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Fig. 9.5 Illustration of some
key features of viral load
patterns

the amplitude equation description, holds for all kind of systems. In particular, the
principles apply to systems described by Eq. (9.1). Therefore, the considerations
presented in Sect. 8.5 also hold for virus dynamical models of the form (9.1) such
as the TIV, TV, and TIIV models. The state vector X can be expressed in terms of a
superpositionX = ∑n

k=1 Akvk . At the beginning of the infection, that is, in the initial
stage, the disease (or health) state of an individual (or the disease/health state of the
affected body sites of the individual) is close to the virus-free fixed point Xst , which
is unstable. As discussed in Chap. 2, the amplitudes A j related to eigenvalues with
positive real parts dominate the initial dynamics away from an unstable fixed point.
For sake of simplicity, let us consider the situation of a single positive (real-valued)
eigenvalue, which is the case that holds for the TIV, TV, and TIIV models (see Chap.
10). Let k(max) denote the index of this largest, real-valued eigenvalue. Let vk(max)

denote the associated eigenvector and vk(max),V denote the coefficient in the direction
of the V -axis in the state space spanned by X1, . . . , Xn (which includes the variable
V ). Then, for an infection starting at time t = 0, it follows that during the initial
stage of the infection

X(t) ≈ Ak(max)(t)vk(max) ⇒ V (t) ≈ vk(max),V Ak(max)(t) (9.6)

and Ak(max)(t) = Ak(max)(0) exp{λk(max)t} such that

V (t) ≈ vk(max),V Ak(max)(0) exp{λk(max)(t)} (9.7)

or
V (t) ≈ b exp{λk(max)t} (9.8)

with b = vk(max),V Ak(max)(0). Consequently, the eigenvalue λk(max) describes the rate
of increase of V . In the logarithmic scale of V it corresponds to the slope of the graph
V (t). The vector vk is the order parameter of the infection. The amplitude Ak(max)(t)
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is the order parameter amplitude. The special case of the TIV model will be worked
out in Sect. 10.1 (see also Refs. [39, 41–43]). Equation (9.8) will be derived more
explicitly for the more comprehensive TIIV model in Sect. 10.4.4 and the simplified
TV model in Sect. 10.6.2.

As discussed in Sect. 9.3.2, with respect to the TIV model for k1 > k2 the final
viral decay is determined by the rate constant k2. That is, when V is presented in
a logarithmic scale, then the declining slope of the graph V equals −k2. Two more
characteristic features of viral load patterns as the one shown in Fig. 9.5 are the peak
viral load Vmax (i.e., the maximal value of V ) and the time it takes for the disease
dynamics to reach the peak value (i.e., the time to peak). Since the TV model is
mathematically equivalent to the SIR model, for the TV model the value Vmax can
be obtained from the analytical expression Imax defined by Eq. (3.25), which will be
discussed in Sect. 9.5.2. Finally, depending on the virus dynamics model at hand, the
time to peak may be given in terms of approximate analytical expressions [33] or
needs to be determined by means of numerical simulations.

9.5 TV Model

9.5.1 Model Derivation

The TV model is a simplified version of the TIV model [33]. It is assumed that a
time-scale separation holds such that I (t) and V (t) can be regarded as slow and fast
dynamics, respectively. Consequently, one of the two variables can be eliminated
and the three-variable TIV model reduces to a two-variable model. More precisely,
the main ideas are the following. If I in the TIV model (9.2) is constant over time,
then V (t) approaches the fixed point

d

dt
V = pI − k2V = −k2

(

V − p

k2
I

)

⇒ V → p

k2
I . (9.9)

The approach towards the fixed point exhibits the time constant τ = 1/k2. If k2 is
large, then τ is small. Let us assume that k2 is sufficiently large such that I (t) varies
only slowly on the time scale defined by τ . Then, V (t) is approximately given by
the fixed point value if I would be constant like

V (t) = p

k2
I (t) . (9.10)

Eliminate I in TIVmodel (9.2) by substituting Eq. (9.10) into the evolution equation
of I in Eq. (9.2), we obtain

d

dt
T = −βVT ,

d

dt
V = rβVT − k1V (9.11)



9.5 TV Model 295

Fig. 9.6 The accuracy of the TV model approximation of the TIV model depends on the choice
of suitable initial conditions and the k1, k2 relationship. Panels a, b, and c show solutions V (t)
obtained from the TIV model (9.2) (solid lines) and the TV model (9.11) (dotted lines) for various
initial conditions and parameter values of k1 and k2. See text for details

with r = p/k2. The model has been referred to as TV model [33]. The TV model
exhibits the fixed points (i.e., stationary states) Xst = (Tst , Vst ) with Tst ≥ 0 and
Vst = 0. From the evolution equation of V (t) presented in Eq. (9.11) it follows that
the fixed point Xst = (Tst , 0) is unstable for rβTst > k1 and neutrally stable for
rβTst < k1.

Figure9.6 shows simulations of the TIV and TV model for the same parameter
sets to compare their solutions. Panel (a) uses k2 > k1 where k2 is five times larger
than k1. Obviously, the solutions of the TIV and TV model differ. They differ for
two reasons. First, the initial conditions V (0) and I (0) used in the simulation were
not consistent with Eq. (9.10). Second, the time scale separation was not sufficiently
large. In order to fix the first issue, in a second simulation k2/k1 = 5 was used again
but V (0) and I (0) were selected such that they satisfied Eq. (9.10). Panel (b) shows
the simulation results. As expected, the solutions of the TV and TIV model initially
are close together due to the consistent initial values. However, the solutions diverge
because the two variables I and V cannot be regarded as slow and fast variables that
evolve on clearly different time scales. In a third simulation the parameter k2 was
increased to obtain a ratio of k2/k1 = 25. The initial values were the same as for the
second simulation (i.e., consistent with Eq. (9.10)). The simulation results are shown
in panel (c). The solutions of the TV model can be regarded as an approximation of
the solution of the TIV model with moderate accuracy.

As stated in the context of Eq. (9.8) and Fig. 9.5, the initial slope of V (t) is
determined by λmax. Therefore, the simulations in panels (a) and (b) reveal that the
eigenvalues λmax of the TV and TIV models for the parameter ratio k2/k1 = 5 differ
considerably. In contrast, when increasing the ratio to k2/k1 = 25, the difference
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Fig. 9.7 TV model solution
describing the viral load
pattern of participant 1 of an
influenza research study.
V (t) describes the solution
of the TV model (9.11) for
T (0) = 4 · 108 cells,
I (0) = 0, V (0) = 0.023
TCID50/ml, β = 2.67 · 10−5

/(d × (TCID50/ml)),
rβ = 3.32 · 108/(d × cell),
k1 = 5.59/d

becomes smaller and the maximal eigenvalues of the two models become approxi-
mately the same.

The TV model was applied in Ref. [33] to describe acute influenza infections of
twelve volunteers that participated in two different research studies on influenza
infections. The nasal sections of the volunteers were infected with a particular
influenza virus on day 0. The viral concentration found in nasal swabs was mea-
sured on several days after the infection. To this end, viral load was measured in
units of 50% tissue culture infectious dose (TCID50) per milliliter. The TV model
(9.11) was fitted to the observed data. Figure9.7 shows the model solution for partic-
ipant 1 of the first research study mentioned in Ref. [33]. The dashed line in Fig. 9.7
indicates the peak viral load as computed from an analytical expression that will be
derived in Sect. 9.5.2 below.

9.5.2 Equivalence of TV and SIR Models

The TV model (9.11) can be compared with the SIR model (3.16). To this end, it is
convenient to consider the two-variable version of the SIR model (3.22) for which
R is ignored or given by R = N − S − I . In order to ease the presentation, the
respective TV and SIR model equations (Eq. (9.11) and Eq. (3.22)) are listed below
next to each other like

d

dt
T = −βV T ,

d

dt
V = rβVT − k1V ,

d

dt
S = − β

N
I S ,

d

dt
I = β

N
I S − γ I . (9.12)

Consequently, the variables T and V may be assigned to the variables S and I
like T ↔ S and V ↔ I . Moreover, the TV model parameter k1 can be regarded
as the counterpart of SIR parameter γ: k1 ↔ γ. The difference between the two
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models can be found in the transition mechanisms S → I of the SIR model and
the virus production process T → V of the TV model. With respect to the SIR
model, transitions from S to I are described by means of the terms −β I S/N and
β I S/N that occur in the evolution equations for S and I , respectively, and are of
the same magnitude. In contrast, the TV model features two terms with independent
parameters β and r . In the evolution equations for T and V the terms −βV T and
rβVT occur. The parameter r typically differs from 1 (e.g., see the interpretation of
r as r = p/k2 in the context of the derivation of the TVmodel from the TIV model).
Consequently, the SIR model is a two-parametric model with parameters β/N and
γ, whereas the TV model is a three-parametric model with parameters β, r , and k1.

Nevertheless, the approach used in Sect. 9.3.3 can be applied to the TV model.
In doing so, it can be shown that the TV model is equivalent to the SIR model. Let
us dwell on this issue. First of all, the TV model involves two variables that are not
necessarily measured in the same units. Therefore, it would be desirable to replace
V by a variable that measures virus concentration in cell equivalents. Second, in the
derivation of the TVmodel, the variable I was eliminated using Eq. (9.10). However,
Eq. (9.10) can alternatively be used to eliminate V . In doing so, a model that involves
the variables T and I that reflect cells is obtained.More precisely, given the TVmodel
in the form of Eq. (9.11), let us introduce the infected cell variable I like

I = V

r
. (9.13)

Note that as such Eq. (9.13) simply corresponds to Eq. (9.10). However, Eq. (9.13)
should be regarded as an equation independent of the derivation of the TV model
from the TIV model. To reiterate, the departure point is the TVmodel defined by Eq.
(9.11) featuring the parameters β, r , and k1. Subsequently, the variable I is defined by
Eq. (9.13) and may be interpreted as viral load measured in cell units or alternatively
interpreted as the concentration (or number) of infected cells within a TIV modeling
framework. Substituting Eq. (9.13) into Eq. (9.11), the TV model becomes

d

dt
T = −β′ I T ,

d

dt
I = β′ I T − k1 I (9.14)

with β′ = rβ. Equation (9.14) involves only two independent parameters β′ and k1.
TheTVmodel in the form (9.14) is equivalent to the SIRmodel (3.22)when replacing
the cell variables T and I by the human population variables S and I , respectively,
and, likewise, when replacing β′ and k1 by β/N and γ, respectively. As such the
TVmodel described by Eqs. (9.13) and (9.14) corresponds still to a three-parametric
model with parameter β′, k1, and r because in order to relate the solutions I (t) to
viral load counts V (t) Eq. (9.13) is used that features the third parameter r .

For the SIRmodel an analytical expression for Imax is given by Eq. (3.25).Making
the aforementioned replacements, from Eq. (3.25) it follows that Imax (i.e., the peak
viral load measured in cell units) of the TV model (9.14) is given by
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Imax = I0 + T0

(

1 − 1

ξ
[1 + ln(ξ)]

)

(9.15)

with ξ = β′T0/k1 = rβT0/k1, where I0 = I (t0) and T0 = T (t0) are the initial values
of T and I at time t0. Using Eq. (9.13) again, from Eq. (9.15) it follows that the peak
viral load Vmax can be computed from

Vmax = V0 + rT0

(

1 − 1

ξ
[1 + ln(ξ)]

)

(9.16)

(see also Ref. [33] for an alternative derivation of Eq. (9.16)). As an example, Vmax

was computed from Eq. (9.16) for the viral load trajectory of patient 1 shown in
Fig. 9.7. The value Vmax thus obtained is indicated in Fig. 9.7 by means of a dashed
line and is identical with the peak value of the numerical solution V (t) of the TV
model.

9.6 TIIV Model

The TIIV model is a generalization of the TIV model. The motivation for that gener-
alization is the general observation that being infected does not imply to be infectious.
In epidemiology, this idea motivates to generalize the SIR model to the SEIR model
by introducing a latent class: the compartment of exposed individuals who are not
infectious. As far as the virus dynamics in individuals is concerned, models may
be constructed that account for a transient phase or transient period during which
infected cells do not release virus. This phase is sometime referred to as eclipse phase
or latent infection period [44] (although strictly speaking the two are not the same
and the eclipse phase is part of the latent infection period). The additional class that
refers to the latent stage or latent period of infected cells (i.e., the stage or period
in which they do not release virus particles) turns the three-variable TIV model into
a four-variable model: the TIIV model [35, 38, 45]. The rationale to introduce an
additional variable is to obtain a biologically more accurate model of virus dynamics
[32, 45–47].

For example, Sedmak and Grossberg [48] infected chicken embryo cell cultures
with the influenza virus A/Hong Kong/t/68 (H3N2). They found that the infected
cells did not produce virus for about 6h [48]. In a similar experimental study, Madin-
Darby canine kidney (MDCK) cell cultures were infected by the equine influenza
virusA/Equi/2 (H3N8). Itwas found that infected cells did not produce virus for about
4.5h [49]. The TIIV model has been used as a tool for determining the rate constant
of I1 → I2 transitions from infected, not yet virus-producing cells to virus-producing
cells. For example, Beauchemin et al. [46] found in a TIIV model-based study on
MDCK cell cultures that were infected by the influenza virus A/Albany/1/98 (H3N2)
that the rate constantwas about 0.31/hour (or 7.44/d),which can be interpreted in term
of amean duration of the latent infection period of 3.2h. Baccamet al. [32] andCanini
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and Carrat [50] determined TIIV model rate constants for influenza A infections in
human volunteers and found values of about 4.0/d and 2.8/d, respectively. Moreover,
using the TIIV model as an analytical tool, Patel et al. [51] examined the virus
dynamics of the respiratory syncytial virus (RSV) in human volunteers and found a
rate constant for infected cells to turn into virus-producing cells of about 0.07/hour
or 1.7/d. In summary, the two advantages of the TIIV model with respect to the TIV
model is that it increases the biological realism of the virus dynamics description at
hand [32, 45] and allows to obtain insights into the I1 → I2 transition dynamics that
turns infected, not yet virus-producing cells into virus-producing cells.

The variables of the TIIV model are the number of target cells (T ), the number of
infected, not yet virus-producing cells (I1), the number of virus producing infected
cells (I2), and the viral load (V ). The model itself reads

d

dt
T = −βVT ,

d

dt
I1 = βVT − k1 I1 ,

d

dt
I2 = k1 I1 − k2 I2 ,

d

dt
V = pI2 − k3V . (9.17)

The rate parameter k1 describes the transition speed of the I1 → I2 transitions of
cells. The terms −k1 I1 and k1 I1 that describe in Eq. (9.17) this transition match each
other in magnitude. In contrast, just as for the TIV model, for the TIIV model the
terms that describe the virus production at the cost of I2 cells, namely, pI2 and−k2 I2,
in general, are not of the same magnitude.

The phrases not yet virus-producing and virus-producing that are used above to
characterize cells of type I1 and I2, respectively, should be understood in the context
of Eq. (9.17). That is, I1 cells do not release virus, while I2 cells do so (see the pI2
term). Virus particlesmay be assembled in I1 cells and in this sensemay be produced.
The key point is that I1 cells are in a transient stage in which they do not release
virus as it is described by Eq. (9.17). For sake of simplicity, in the above and in what
follows the phrases not yet virus-producing and virus-producing are used (instead of
the phrases not virus-releasing and virus-releasing) to indicate that in the evolution
equation of V there is no pI1 term but there is a pI2 term.

Introducing the variable

V ′ = k2
p
V (9.18)

that measures viral load in cell equivalents, Eq. (9.17) becomes

d

dt
T = −β′V ′T ,

d

dt
I1 = β′V ′T − k1 I1 ,

d

dt
I2 = k1 I1 − k2 I2 ,

d

dt
V ′ = k2 I2 − k3V

′ (9.19)

with β′ = pβ/k2. Equations (9.18) and (9.19) involve the parameters β′, k1, k2, and
p and provide an alternative description of the TIIV model (9.17) with the advantage
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Fig. 9.8 Viral load data fromvolunteer 1 (gray circles) are shown togetherwith theTIVmodel (solid
line) and TIIV model (dotted line) solutions describing the viral load pattern of volunteer 1. V (t)
(solid line) describes the solution of the TIVmodel (9.2) for T (0) = 4 · 108 cells, I (0) = 0, V (0) =
0.35 TCID50/ml, β = 3.4 · 10−5 /(d × (TCID50/ml)), k1 = 3.4/d, k2 = 3.3/d, and p = 7.9 · 10−3

(TCID50/ml) /(d × cell). V (t) (dotted line) describes the solution of the TIIV model (9.17) for
T (0) = 4 · 108 cells, I (0) = 0, V (0) = 0.043 TCID50/ml, β = 4.9 · 10−5 /(d × (TCID50/ml)),
k1 = 3.9/d, k2 = 4.2/d, k3 = 4.3/d, and p = 2.8 · 10−2 (TCID50/ml) /(d × cell)

that the variables T , I1, I2, and V ′ are all cell-like variables measured in the same
units.

The TIIV model (9.17) has been extensively used in the literature. For example,
the TIIV model was applied in Ref. [32] to describe acute influenza infections in a
sample of six volunteers. Just as in Ref. [33], the nasal sections of the volunteers were
infected with a particular influenza virus. For the first week after the infection, daily
TCID50 measurements were made to determine the time course of the viral load. The
TIV model (9.2) was fitted to the observed data. The data (gray circles) and the TIV
model solution (solid line) are shown in Fig. 9.8 for volunteer 1. The data were also
fitted to the TIIV model (9.17) (see the dashed line). The solutions of both models
exhibit the general temporal pattern depicted in Fig. 9.5 and, accordingly, interpret
the observed data in terms of such a pattern.

9.7 Beyond Acute Virus Infections

Virus dynamics in individuals that evolves over longer periods is affected by the
natural death of target cells, on the one hand, and the production of target cells, on
the other hand. In order to take such processes into account, virus dynamics models
can be supplemented with the respective terms. For example, the TIV model (9.2)
for long term infections becomes [31, 37]

d

dt
T = B − μT − βVT ,

d

dt
I = βV T − k1 I ,

d

dt
V = pI − k2V . (9.20)
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Just as in the case of epidemiological models, in Eq. (9.20) the parameter B describes
the constant production rate of target cells, whereas μ describes the natural death
rate of target cells. In contrast, k1 describes the total death rate that includes the
natural death rate μ of (non-infected) target cells. That is, k1 takes into account
that due to the virus infection the death rate is increased from its baseline level μ
of the natural death rate to a higher level k1 > μ. In the absence of an infection
(i.e., for I = V = 0), the concentration of target cells approaches the non-vanishing
stationary value Tst = B/μ. Likewise, under appropriate circumstances the model
exhibits an asymptotically stationary fixed point with a non-vanishing viral load
Vst > 0 and Tst > 0, Ist > 0 [31]. This fixed point reflects a chronic virus infection.
Themodel (9.20) and similarmodels taking target cell death and target cell production
into account have been frequently used to discuss viral load dynamics of HIV and
the disease progression of AIDS (e.g., see Refs. [31, 34–36]).

9.8 Modeling Studies of SARS-CoV-2 Dynamics in
COVID-19 Patients

The study of the viral load dynamics of SARS-CoV-2 in the human body from a
nonlinear physics perspective is an active field of research. Only a few studies will
be mentioned in what follows. In Ref. [41, 52, 53] the TIV model (9.2) was applied
to describe the time course of the SARS-CoV-2 load in the upper and lower tracts in
a sample of COVID-19 patients. Panel (a) of Fig. 9.9 shows the viral load measured
in the lower tract of patient 1 discussed in Ref. [41, 53, 54]. The graph was obtained
in Ref. [41]. The viral load reflects SARS-CoV-2 concentrations in the human lung
of that patient. The best-fit model solution V (t) obtained from the TIV model (9.2)
describing the time course of the infection is shown as well. The studies [41, 53, 54]
and the application of the TIV model to COVID-19 patient data will be discussed
in Sect. 10.2.1. In Ref. [52, 53] TIV model solutions were compared to solutions of
the more comprehensive TIIV model (9.17) with respect to the COVID-19 patients
from the aforementioned sample. The TIIV model produced qualitatively the same
kind of fits and viral load patterns as the TIV model [52, 53]. Panel (b) of Fig. 9.9
shows the best-fit solution of the TIIV model for the patient 1 data as re-obtained in
Ref. [55].When comparing the TIV andTIIVmodeling approach, the TIIVmodeling
approach comes with the advantage that it allows to study the role of latently infected
cells in the disease progression of COVID-19 patients [55]. The TIIV model and its
application to COVID-19 patient data will be discussed in Sect. 10.5.

The TIIV model (9.17) was also applied to viral load data of COVID-19 patients
in a study by Goncalves et al. [56]. However, in this study the evolution equation of
V as shown in Eq. (9.17) was modified by adding a −βT V . Consequently, an evo-
lution equation of the form dV/dt = pI − k3V − βVT was considered. As such
the additional term may be motivated by chemical reaction equations. For exam-
ple, the synthesis reaction in which molecules A and B produce a molecule C like
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Fig. 9.9 SARS-CoV-2 viral load trajectory (gray circles) of patient 1 and its description in terms
of TIV model (panel (a)) and TIIV model (panel (b)) solutions V (t) (solid lines)

A + B → C can be described with the chemical reaction equations da/dt = −kab,
db/dt = −kab, anddc/dt = kab,wherea,b, and c denote the concentrations ofA,B,
and C [57]. By analogy, if T and V are considered as two variables measured in the
same units then the chemical reaction T + V → I leads to the evolution equations
dT/dt = −βT V , dI/dt = βT V , and dV/dt = −βT V . However, as mentioned in
the context of the TIV, TV, and TIIV models, cell concentrations and viral load are
frequently measured in different units. Therefore, writing the βT V term in the evolu-
tion equation of T and the evolution equation of V typically leads to a contradiction.
A possible solution is to make the explicit assumption that a virus particle can be
considered as an equivalent to a cell such that V and the cell variables are measured
in the same units. An alternative solution is to consider the TIIV model in terms of
Eq. (9.19). Having said that the suggested term−βV T in Ref. [56] describes a decay
of the viral load due to the fact that a virus particle or a few virus particles invade a
non-infected target cell and turn it into an infected cell. However, the concentration
of virus typically decays to a negligible amount due to the infection of cells. Themain
cause of a decay of the viral load is the clearance of the virus [46] (as described by
the −kV V terms in the TIV, TV, and TIIV models). Consequently, in good approxi-
mation the chemical reaction scheme describing the production of infected cells does
not read T + V → I but T + V → I + V , which is a reaction equation of a cat-
alytic reaction. In this case, from the chemical reaction scheme T + V → I + V the
following kinetic reaction equations are obtained: dT/dt = −βT V , dI/dt = βT V ,
and dV/dt = 0. This approach leads to the standard TIIV model presented in Eq.
(9.17).

A generalized TIIV model was considered by Neant et al. [58] and Czuppon et al.
[59] to describe the dynamics of SARS-CoV-2 concentrations in COVID-19 patients.
Themodel takes into account that not all virus particlesmaybe infectious.Whenvirus
particles are produced inside infected cells mutations may occur or virus particles
may be assembled in an non-functional way such that the produced particles do not
possess the ability to infect other cells. Let VI and VN I denote the concentrations (or
numbers) of the infectious and non-infectious virus particles, respectively. Then, the
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TIIV model (9.17) turns into a TIIVV model and reads [58]

d

dt
T = −βT VI ,

d

dt
I1 = βT VI − k1 I1 ,

d

dt
I2 = k1 I1 − k2 I2 ,

d

dt
VI = η pI2 − k3VI ,

d

dt
VN I = (1 − η)pI2 − k3VN I . (9.21)

In Eq. (9.21) the parameter η ∈ [0, 1] describes the fraction of produced infectious
virus particles. Note that in Ref. [59] a −βT VI term was added in the evolution
equation of VI . As argued above and can be seen in the literature [35, 58], this term,
however, is frequently not considered and may lead to modeling inconsistencies.
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Chapter 10
Virus Dynamics in Humans: Unstable
Directions and Order Parameters

This chapter applies the nonlinear physics perspective reviewed inChap. 2 to the virus
dynamics in humans. Accordingly, it is shown that the disease state of an infected
individual evolves in a certain way: it evolves along an unstable direction or order
parameter that defines how the affected cells and the virus concentration change
relative to each other over time. The corresponding unstable amplitude or order
parameter amplitude describes the exponential increase or decay of all variables
in the initial stage of the infection. These key characteristics of virus infections
are worked out for the virus dynamics models introduced in the previous chapter.
The characteristics are also demonstrated for SARS-CoV-2 infections observed in a
sample of COVID-19 patients.

10.1 Analysis of the TIV Model

10.1.1 3D Approach: Original Model

The TIV model is defined by Eq. (9.2). Equation (9.2) is repeated as

d

dt
T = −βVT,

d

dt
I = βV T − k1 I,

d

dt
V = pI − k2V (10.1)

with k1, k2,β, p > 0. Due to the analogy between the TIV and SEIRmodel (see Sect.
9.3.3), the analysis of the TIV model can be conducted in the same way as the analy-
sis of the SEIR model presented in Sect. 5.7.1. The following analysis can be found,
for example, in Ref. [1]. The state vector of the TIV model reads X = (T, I, V ).
The virus-free fixed point (i.e., stationary state) is given by Xst = (Tst , 0, 0), where
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Tst > 0 denotes the target cell concentration characteristic for healthy adults. Let δ
denote the relative state of target cell concentrations defined by T = Tst + δ. The rel-
ative state vector reads u = X − Xst = (δ, I, V ). Assuming u is small in magnitude,
Eq. (10.1) is approximately described by the linearized model

d

dt
u = L u , L =

⎛
⎝
0 0 −βTst
0 −k1 βTst
0 p −k2

⎞
⎠ . (10.2)

The linearization matrix L exhibits the eigenvalue λ1 = 0. The two remaining eigen-
values are defined by the characteristic equation [1–3]

(λ + k1)(λ + k2) = pβTst , (10.3)

which yields [1, 2]

λ2,3 = −k1 + k2
2

±
√

(k1 + k2)2

4
+ βw − βw,cri t ,

βw = pTstβ , βw,cri t = k1k2 (10.4)

withλ2,3 ∈ lR. In Eq. (10.4)βw denotes theweighted infectivity parameter andβw,cri t

is its critical value. Equation (10.4) assumes the form of Eq. (5.27). From the general
discussion of Eq. (5.27) presented in Sect. 5.4.3 it follows that λ3 < 0 holds for any
parameters values and

βw > βw,cri t ⇒ λ2 > 0 ⇒ Xst saddle (i.e., unstable) ,

βw = βw,cri t ⇒ λ2 = 0 ⇒ system at bifurcation point ,

βw < βw,cri t ⇒ λ2 < 0 ⇒ Xst neutrally stable node . (10.5)

Note that if λ2 < 0 (i.e., βw < βw,cri t ) holds for Xst = (Tst , 0, 0), then λ2 < 0 also
holds for any stationary stateXst = (Y, 0, 0)with Y < Tst . Consequently, for λ2 < 0
perturbations that move the state X out of Xst = (Tst , 0, 0) along the T -axis do not
decay in magnitude over time, which makes that Xst is neutrally stable rather than
asymptotically stable.

Let us derive next the amplitude equations of the TIV model. To this end, the
simplified picture will be taken in which all variables of the TIV model are assumed
to be measured in the same units. This implies that 1 virus particle is considered
as equivalent to 1 cell. Let v j = (v j,T , v j,I , v j,V )T denote the eigenvectors of L
with j = 1, 2, 3. For λ1 = 0 the eigenvector reads v1 = (1, 0, 0). For the remaining
eigenvalues the eigenvectors can be determined in analogy to the procedure discussed
in Sect. 5.7.1. The result reads [1]

v j = 1

Z j

⎛
⎝

−βTst (λ j + k1)
βTstλ j

λ j (λ j + k1)

⎞
⎠ (10.6)
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for j = 2, 3 with Z j =
√

(βTst )2[(λ j + k1)2 + λ2
j ] + λ2

j (λ j + k1)2. These eigen-

vectors correspond to the SEIR model eigenvectors (5.71) when replacing βTst by
β. The TIV state X can then be expressed in terms of the eigenvectors v j and their
corresponding amplitudes A j in the usual way like

X = Xst +
3∑
j=1

A jv j . (10.7)

Equation (10.7) describes the mapping from amplitude space (A1, A2, A3) to state
space X = (T, I, V ) (as discussed in general in Sect. 2.6.3) that can be cast into the
form

X − Xst = u = M

⎛
⎝

A1

A2

A3

⎞
⎠ , M =

⎛
⎝
1 v2,T v3,T
0 v2,I v3,I
0 v2,V v3,V

⎞
⎠ . (10.8)

The matrix M exhibits the determinant

|M | = βTst
λ2λ3(λ3 − λ2)

Z2Z3
(10.9)

with |M | �= 0 for βw �= βcri t (i.e., λ2 �= 0). The inverse mapping from state space
X = (T, I, V ) to the amplitude space (A1, A2, A3) is given by the inverse matrix
M−1 like ⎛

⎝
A1

A2

A3

⎞
⎠ = M−1u = M−1(X − Xst ) . (10.10)

As discussed in Sect. 5.6, the rows of M−1 correspond to the biorthogonal vectorswi

with wivk = δik . Since the TIV model matrix M defined by Eq. (10.8) exhibits the
same structure as the SEIR model matrix M defined by Eq. (5.73), the biorthogonal
vectors wi of the TIV model assume the same form as the corresponding vectors wi

defined by Eqs. (5.74) and (5.75) of the SEIR model. Explicitly, wi read

w1 = 1

λ2λ3

⎛
⎝

λ2λ3

(λ2 + k1)(λ3 + k1)
−k1βTst

⎞
⎠ (10.11)

and

w2 = 1

|M |

⎛
⎝

0
v3,V
−v3,I

⎞
⎠ , w3 = 1

|M |

⎛
⎝

0
−v2,V
v2,I

⎞
⎠ . (10.12)

The biorthogonal eigenvectors can be used to apply the vector calculation methods
(see Sect. 2.9.3) to derive the amplitude equations of the TIV model. Using the
relative state u = X − Xst the TIV model (10.1) can be cast into the form
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d

dt

⎛
⎝

δ
I
V

⎞
⎠ =

⎛
⎝
0 0 −βTst
0 −k1 βTst
0 p −k2

⎞
⎠

⎛
⎝

δ
I
V

⎞
⎠ + βδV

⎛
⎝

−1
1
0

⎞
⎠

= L

⎛
⎝

δ
I
V

⎞
⎠ + βδV

⎛
⎝

−1
1
0

⎞
⎠ (10.13)

(see also the SEIRmodel counterpart given by Eq. (5.64)). Equation (10.13) assumes
the structure of the general relative state equation du/dt = Lu + R (see Eq. (2.89))
discussed in Sect. 2.9.3 with the remainder term R given by

R(u) = βδV

⎛
⎝

−1
1
0

⎞
⎠ . (10.14)

As previously discussed in Sect. 2.9.3, multiplying Eq. (10.13) by wi , we obtain the
evolution equation for the amplitude Ai in form of dAi/dt = λi Ai + Gi with

Gi = wiR = βδVwi

⎛
⎝

−1
1
0

⎞
⎠ = CiβδV , Ci = wi,I − wi,T . (10.15)

The product δV can be expressed in terms of amplitudes A1, A2, A3 using Eq. (10.8).
From dAi/dt = λi Ai + Gi , Eqs. (10.8) and (10.15) it then follows that the amplitude
equations of the TIV model read [1]

d

dt
Ai = λi Ai + Ci p2(A1, A2, A3) ,

p2 = β

(
3∑

k=1

vk,T Ak

) (
3∑

k=1

vk,V Ak

)
,

C1 = k1(λ2 + λ3 + k1)

λ2λ3
, C2 = v3,V

|M | , C3 = −v2,V

|M | (10.16)

for i = 1, 2, 3 with λ1 = 0 and λ2,3 defined by Eq. (10.4). For the initial state X0 =
(Tst , 0, V (0)) at t0 = 0 the initial amplitudes can be computed from

⎛
⎝

A1(0)
A2(0)
A3(0)

⎞
⎠ = M−1(X(0) − Xst ) = M−1

⎛
⎝

0
0

V (0)

⎞
⎠ ⇒ Ai (0) = wi,V V (0) .

(10.17)
Solving Eq. (10.16) under the initial conditions (10.17) produces the amplitude
dynamics that corresponds to the state dynamics defined by Eq. (10.1) for the initial
state X0 = (Tst , 0, V (0)).
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Forβw > βw,cri t the infectious disease in the humanbody emerges in a certainway
that will be discussed in what follows. The virus-free fixed point Xst = (Tst , 0, 0)
corresponds to a saddle with an unstable direction v2 (λ2 > 0), a stable direction
v3 (λ3 < 0), and a neutrally stable direction v1 (λ1 = 0). Consequently, A3 initially
decays exponentially with a time constant τ3 = 1/|λ3|, A2 increase exponentially,
A1 can be regarded as constant relative to A3 and A2. As argued in Sect. 5.7.1, there
is an intermediate period denoted by Ti characterized by the time constant τ3 during
which A3(t) decays in magnitude. It is assumed that at Ti the contribution of A3 to
X as defined by Eq. (10.7) becomes negligibly small. Furthermore, let TL denote the
period for which the linear approximation holds. The case is considered in which τ3
is sufficiently short such that TL > Ti holds. Consequently, for t ∈ [Ti , TL ]Eq. (10.7)
reduces to

X(t) ≈ Xst + A1(0)v1 + v2A2(t) (10.18)

(see Eq. (5.81)), where it has been taken into account that variations of A1 can be
neglected. Let Va(t) denote the approximation of the solution V (t) of the TIVmodel.
Then, Eq. (10.18) implies

V (t) ≈ Va(t) = v1,V A1(0) + v2,V A2(t) = a + b exp{λ2t} (10.19)

with a = v1,V A1(0) and b = v2,V A2(0). The exact solution for V (0) is given by
V (0) = ∑3

k=1 vk,V Ak(0) = a + b + v3,V A3(0). Consequently, the approximation
Va(t) defined by Eq. (10.19) exhibits an initial mismatch with Va(0) = a + b �=
V (0). However, if the term b exp{λ2t} increases sufficiently fast with respect to the
constant v3,V A3(0), then the initial mismatch can be neglected after a relative short
period.

Alternatively, from the aforementioned considerations about the eigenvalues λ1,
λ2, and λ3, it follows that the state dynamics approximately is given by [1]

d

dt
X ≈ v2

d

dt
A2 (10.20)

such that
ΔX ≈ v2ΔA2 (10.21)

with ΔX = X(t) − X(t ′) and ΔA2 = A2(t) − A2(t ′) with t > t ′ for t ′, t ∈ [Ti , TL ].
Finally, if the initial state X is located sufficiently close to the fixed point Xst such
that all initial amplitudes are relatively small in magnitude, then the fundamental
approximation

X(t) ≈ Xst + v2A2(t) (10.22)

holds (see Sect. 2.7). All three approximations given by Eqs. (10.18), (10.21), and
(10.22) imply that the unstable eigenvector v2 characterizes how the variables T , I ,
and V evolve relative to each other during the initial stage of the disease. The vector
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v2 characterizes the emerging disease and corresponds to the order parameter of the
disease. The order parameter amplitude A2 increasing exponentially like

A2(t) = A2(0) exp{λ2t} (10.23)

and captures explicitly the temporal aspects of the dynamics during this initial stage.
Let us return to the approximations (10.21) and (10.22). From Eq. (10.21) it

follows that in the initial disease stage the changes of the subsystems Xi relative
to each other over time, where Xi describing the disease (or health) state of an
individual, are determined by the order parameter likeΔXi/ΔXk ≈ v2,i/v2,k , which
reads explicitly

ΔT

ΔI
≈ v2,T

v2,I
,

ΔT

ΔV
≈ v2,T

v2,V
,

ΔI

ΔV
≈ v2,I

v2,V
. (10.24)

From Eq. (10.22) it follows that the approximation Va(t) of V (t) reads

Va(t) = b exp{λ2t} (10.25)

with b = v2,V A2(0) (i.e., b is defined just as in the case of Eq. (10.19)). Again
the approximative solution exhibits an initial mismatch Va(0) = b �= V (0). Impor-
tantly, Eqs. (10.19) and (10.25) demonstrate that in good approximation the viral
load increases exponentially with a rate constant λ2 of the unstable eigenvector as
previously discussed in Sect. 9.4. For the TIV model, the eigenvalue λ2 corresponds
to the maximal eigenvalue λmax. That is, λ2 determines the initial slope of the pattern
V (t) shown in Fig. 9.5.

10.1.2 3D Approach: Scaled Model

Let us consider the scaled TIV model (9.5) that is repeated as

d

dt
T = −β′V ′T ,

d

dt
I = β′V ′T − k1 I ,

d

dt
V ′ = k1 I − k2V

′ (10.26)

with V = pV ′/k1, β′ = β p/k1 > 0, k1, k2,β, p > 0, and state vector
X = (T, I, V ′). The amplitude equations can be derived in two ways. First, since
the scaled TIV model is equivalent to the SEIR model, the amplitude equations can
directly be obtained from the SEIR model amplitude equations. For the sake of con-
veniency, let βSE I R denote the effective contact rate β of the SEIR model defined
by Eq. (3.43). Then, as stated in Sect. 9.3.3, the SEIR model variables S, E , I are
replaced by the TIV model variables like S → T , E → I , and I → V ′. Moreover,
in the equations of the SEIR model the following substitutions have to be made:
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N = Tst , α = k1 , γ = k2 ,
βSE I R

N
= β′ ⇒ βSE I R = β′Tst . (10.27)

In particular, substituting Eq. (10.27) into Eq. (5.67), the eigenvalues λ2,3 of the
scaled TIV model read

λ2,3 = −k1 + k2
2

±
√

(k1 + k2)2

4
+ k1(β′Tst − k2) . (10.28)

Furthermore, λ1 = 0 holds. Substituting Eq. (10.27) into Eq. (5.71), the eigenvectors
v2,3 of the scaled TIV model read

vi = 1

Zi

⎛
⎝

−β′Tst (λi + k1)
β′Tstλi

λi (λi + k1)

⎞
⎠ =

⎛
⎝

vi,T
vi,I
vi,V ′

⎞
⎠ (10.29)

with Zi =
√

(β′Tst )2[(λi + k1)2 + λ2
i ] + λ2

i (λi + k1)2 for i = 2, 3. Furthermore,
v1 = (1, 0, 0) holds. Substituting Eq. (10.27) into Eqs. (5.78) and (5.80), the ampli-
tude equations of the scaled TIV model read

d

dt
Ai = λi Ai + Ci p2(A1, A2, A3) ,

p2 = β′
(

3∑
k=1

vk,T Ak

) ( ∑
k=2,3

vk,V ′ Ak

)
, (10.30)

with

C1 = k1
λ2 + λ3 + k1

λ2λ3
, C2 = v3,V ′

|M | , C3 = −v2,V ′

|M | (10.31)

with |M | = v2,Iv3,V ′ − v3,Iv2,V ′ . As usual, the dynamics of the state X(t) can then
be computed from the amplitude dynamics likeX(t) = Xst + ∑3

k=1 Ak(t)vk . Substi-
tuting Eq. (10.27) into Eqs. (5.74) and (5.75), the biorthogonal vectors of the scaled
TIV model read

w1 = 1

λ2λ3

⎛
⎝

λ2λ3

(λ2 + k1)(λ3 + k1)
−k1β′Tst

⎞
⎠ (10.32)

and

w2 = 1

|M |

⎛
⎝

0
v3,V ′

−v3,I

⎞
⎠ , w3 = 1

|M |

⎛
⎝

0
−v2,V ′

v2,I

⎞
⎠ . (10.33)

In analogy to Eq. (10.17), the initial amplitudes can then be obtained from
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Ai (0) = wi,V ′V ′(0) = wi,V ′
k1
p
V (0) . (10.34)

The second way to derive Eqs. (10.28) to (10.33) is to acknowledge that the scaled
TIVmodel (10.26) from amathematical point of view is a special case of the original
TIV model (10.1). That is, if the substitutions V = V ′, β = β′, and p = k1 are made
in the original TIV model (10.1), then Eq. (10.1) becomes Eq. (10.26). Likewise, if
the substitutions V = V ′, β = β′, and p = k1 are used in the relevant equations of
Sect. 10.1.1 then Eqs. (10.28) to (10.33) can be obtained. In particular, substituting
β = β′ and p = k1 into Eq. (10.4), we obtain βw = k1β′Tst such that Eq. (10.4)
becomes the eigenvalue equation (10.28). Substituting V = V ′ and β = β′ into Eq.
(10.6) yields the eigenvector equation (10.29). Substituting V = V ′ and β = β′ into
Eq. (10.16) yields the amplitude equation (10.30). Substituting V = V ′ and β = β′
into Eqs. (10.11) and (10.12) yields the biorthogonal vectors (10.32) and (10.33),
respectively.

The scaled model (10.26) is equivalent to the original model (10.1) when using
the variable and parameter transformations V = pV ′/k1 and β = k1β′/p, respec-
tively. Therefore, for any parameter set k1, k2, p, and β (or β′) the models exhibit the
same eigenvalues. This can be shown explicitly. When substituting β′ = pβ/k1 into
the eigenvalue equation (10.28) of the scaled TIV model, then Eq. (10.28) becomes
the eigenvalue equation (10.4) of the original TIV model. In other words, the eigen-
value equations (10.4) and (10.28) produce the same eigenvalues for any parameters
k1, k2, p,β and β′ = pβ/k1.

Let us return to the scaled TIV model and the eigenvalue equation (10.28). In
analogy to Eq. (10.5), for the scaled TIV model and the virus-free fixed point Xst =
(Tst , 0, 0) based on Eq. (10.28) the following conclusions can be drawn:

β′Tst > k2 ⇒ λ2 > 0 ⇒ Xst saddle (i.e., unstable) ,

β′Tst = k2 ⇒ λ2 = 0 ⇒ system at bifurcation point ,

β′Tst < k2 ⇒ λ2 < 0 ⇒ Xst neutrally stable node . (10.35)

10.1.3 2D Approach

In Chap. 6 in the context of epidemiological models it was discussed a stability
analysis may be restricted to a subset of the original variables of interest. In the
context of epidemiological models, the stability analysis may focus only on the
variables describing actually infectious individuals (i.e., infectious individuals who
are in the position to infect others) and some auxiliary variables that allow to construct
an autonomous linearized model (see Sect. 6.1.1). In particular, in Sect. 6.2.2 an
amplitude equation description of the SEIR model has been developed that is based
only on the infectious compartment variables E and I . In a similar vain, let us
evaluate the dynamics of the TIV model when focusing on the dynamics in the I -V
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subspace [4]. To this end, the variables T , I , V are arranged in the state vectorX like
X = (I, V, T ). Subsequently, the subspace vector X+ = (I, V ) and the subspace
variable X− = T are introduced such that X = (X+, X−). Let us consider the fixed
pointXst = (0, 0, Tst )withX+

st = (0, 0). FromEq. (10.1) it follows that the dynamics
close to the fixed point in the two-dimensional I -V subspace D+ is determined by
the linearized evolution equations

d

dt
I = βVTst − k1 I ,

d

dt
V = pI − k2V . (10.36)

The linearized equations form an autonomous dynamical system. They can bewritten
like

d

dt
X+ = L+ X+ , L+ =

(−k1 βTst
p −k2

)
. (10.37)

In what follows the simplified perspective will be taken according to which a virus
particle can be considered as the equivalent counterpart of a cell such that I and V
are measured in the same units. If so, the eigenvalues of the matrix L+ are given by
Eq. (10.4) when changing the indices from 2,3 to 1,2 such that

λ1,2 = −k1 + k2
2

±
√

(k1 + k2)2

4
+ βw − βw,cri t , (10.38)

where the upper (lower) sign holds for λ1 (λ2) such that λ2 < 0 holds for any
parameter set k1, k2, β, p, and Tst . Close to the fixed point, the amplitudes evolve
like A1(t) = A1(0) exp{λ1t} and A2(t) = A2(0) exp{−|λ2|t}, which implies that A2

decays in magnitude in any case, whereas A1 increases (decreases) in magnitude for
βw > βw,cri t (βw < βw,cri t ). The state X+(t) evolves like

X+(t) =
∑
j=1,2

A j (t)v j , v j = 1

Z j

(
βTst

λ j + k1

)
, (10.39)

where v j denote the eigenvectors v j = (v j,I , v j,V ) for j = 1, 2 and
Z j = √

(βTst )2 + (λ j + k1)2. The 2D eigenvectors v1,2 point in the I -V space in
the same directions as the 3D eigenvectors v2,3 defined by Eq. (10.6). That is,
by comparing Eqs. (10.6) and (10.39) it can be seen that v2,I (3D)/v2,V (3D) =
v1,I (2D)/v1,V (2D) and v3,I (3D)/v3,V (3D) = v2,I (2D)/v2,V (2D) holds, which
indicates that the 2D approach is consistent with the 3D approach.

Let us consider the case λ1 > 0 for which A1 increases exponentially during the
initial stage of the infection. When assuming that the linearized model still holds
when A2 has decayed towards a negligible small value, then the evolution of the
state X+ is entirely determined by A1 such that

ΔX+ ≈ v1ΔA1 (10.40)
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holds withΔX = X(t + Δt) − X(t),ΔA1 = A1(t + Δt) − A1(t), andΔt > 0. The
vectorv1 forλ1 > 0 corresponds to anunstable eigenvector anddescribes the IVorder
parameter of the infectious disease under consideration.

10.1.4 2D Versus 3D Approach

As discussed in Chap. 6 for epidemiological models, the 2D approach to ana-
lyze the TIV model has the advantage that it reduces the dimensionality of the
problem at hand. In general, analytical solutions can frequently be derived for
lower dimensional problems but not for higher dimensional problems. Another
advantage of the 2D approach of the TIV model presented in Sect. 10.1.3 is that
the superposition X = ∑2

k=1 Akvk (see Eq. (10.39)) holds at the bifurcation point
βw = βw,cri t for which λ1 = 0 and λ2 = −(k1 + k2). In this case the eigenvectors
read v1 = (βTst , k1)/Z1 and v2 = (βTst ,−k2)/Z1 and are linearly independent. In
contrast, the superpositionX = Xst + ∑3

k=1 Akvk of the 3Dapproach (seeEq. (10.7))
involving the 3D eigenvectors vk defined by Eq. (10.6) has only been worked out for
βw �= βw,cri t . At the bifurcation point βw = βw,cri t the linearization matrix (10.2)
exhibits in addition to the first eigenvalue λ1 = 0 a second eigenvalue λ2 = 0. This
implies that |M | = 0 (see Eq. (10.9)), which means that the three eigenvectors vk
are no longer linearly independent. In other words, the 3D approach requires that
the special case βw = βw,cri t needs to be worked out separately if this case is explic-
itly considered from an amplitude space perspective. An example of how such an
analysis can be performed is given in Sect. 4.2.4 in the context of the SIR model.
As illustrated explicitly in Chap. 6, the disadvantage of the 2D approach is that the
set of nonlinear amplitude equations do not constitute an autonomous system. The
2D approach produces a non-autonomous amplitude equation description when the
nonlinear terms are taken into account.

10.2 TIV Model and Viral Load in a Sample of COVID-19
Patients

10.2.1 3D Approach: TIV Order Parameters of COVID-19
Patients

In what follows data from eight COVID-19 patients will be considered. The patients
are described in Refs. [5, 6]. Using the notation of Ref. [6] they are referred to
as patients 1, 2, 3, 4, 7, 8, 10, and 14. The patients developed symptoms during
January/February 2020.That time theywere located inGermany. For all eight patients
the disease was considered to be mild. SARS-CoV-2 viral load was measured in
the sputum of the patients. Consequently, the measured viral load reflected virus
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concentrations in the lungs of the patients.Dailymeasurementsweremade for periods
up to 25 days after symptoms onset. Wang et al. [7] fitted the viral load trajectories to
the TIV model (10.1). In doing so, estimates for the TIV model parameters β, p, k1,
and k2 occurring in Eq. (10.1) were obtained for each patient. In a subsequent study
[1], the model parameters β, p, k1, and k2 were used to compute for each patient the
unstable eigenvector v2, the eigenvalues λ2, λ3, and amplitude equation coefficients
C1,C2,C3 from Eqs. (10.4), (10.6), and (10.15).

In what follows the results presented in Ref. [1] will be reviewed. Figure10.1
shows the analysis results for patient 1. Panel (a) shows the viral load data (gray
circles) [6] of patient 1 and the model solution V (t) (solid line) by solving the TIV
model (10.1). The viral load pattern of patient 1 reached a peak at about 5 to 6
days after symptoms onset. Subsequently, the viral load decayed in a more or less
monotonic fashion. The period of decline was longer as compare to the initial stage
of increasing viral load, which is a general feature of SARS-CoV-2 infections in
COVID-19 patients [8, 9]. The model solution V (t) captures the relatively short
period of viral load increase and the longer period of disease decline.

Fig. 10.1 Progression of COVID-19 in patient 1 in state and amplitude space as seen within a
TIV modeling framework. Panel a: Viral load trajectory V (t) over time of patient 1 (gray circles)
solution V (t) (solid line) computed from Eq. (10.1). Panels b and c: The evolution of the disease
state X(t) is shown as phase curves (solid lines) in the V -I subspace and the full 3D TIV model
space. The order parameter v2 (thick dotted line) is presented as well as computed from Eq. (10.6)
and magnified in length for the sake of visibility. Panel d: Amplitude dynamics computed from
Eq. (10.31). Parameters and initial conditions [7]: β = 9.8 · 10−7/(d × (particles/ml)), p = 970
particles/(d × cell), k1 = 2/d, k2 = 0.67/d, Tst = 6 · 104 cells/ml, V (0) = 10−4 particles/ml
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Panels (b) and (c) show the evolution of the stateX = (T, I, V ) in terms of phase
curves in the 2D V -I subspace (panel (b)) and full 3D state space (panel (c)). The
variables are presented in relative units of their respective maximal values. Note that
in panels (b) and (c) the viral load is shown on a linear scale (in contrast to panel (a),
where it is shown on a logarithmic scale).

The initial state was given by T (0) = 100%Tmax ⇒ T (0) = Tmax (with Tmax =
Tst ), I (0) = 0%Imax ⇒ I (0) = 0, and V (0) = (V (0)/Vmax)Vmax. For patient 1,
V (0)was less than 1%of Vmax. As discussed in Sect. 9.3.2 in the context of target cell-
limited models, according to the TIV model (10.1) the infection initially converted
relatively quickly target cells into infected cells such that the number of infected cells
I in patient 1 increased. At the same time, the infected cells produced free virus such
that the virus concentration V increased as well (see panel (b)). During this initial
stage the number of target cells dropped (see panel (c)). The lack of the target cells
resulted in a de-acceleration of the increase in infected cells. At some point in time,
I reached the maximum I = 100%Imax (see panel (b)). At that time point, the viral
load was approximately at a 50% level of its maximum value (see panel (b)). After
I (t) passed in time its maximum value Imax, the infected cells were removed at a rate
k1 faster than new infected cells were produced. As a result, the number of infected
cells I decayed. Virus was still produced by the remaining infected cells such that the
viral load increased until it eventually reached its maximum value V = 100%Vmax

(see panel (b)). For patient 1 the peak was at about 5 to 6 days as shown in panel (a)
and corresponds to the locations at which V reached the 100%mark in the respective
2D and 3D spaces shown in panels (b) and (c). After the viral load had reached its
maximum value, the viral load decayed. In this stage of disease decline, the number
of infected cells decreased even further.

Let us dwell on the role of the unstable eigenvector v2 for the course of the
SARS-CoV-2 infection in patient 1. Panel (b) shows the projection of v2 into the I -V
plane. As can be seen, the phase curve I (V ) of X(2)(t) = (I, V ) initially evolved
along the direction defined by v2, as expected. Likewise, panel (c) presents the
unstable eigenvector v2 in the full three-dimensional state space. Consistent with the
observationmade in the two-dimensional I -V plane, panel (c) shows that initially the
disease stateX = (T, I, V ) followed the unstable eigenvector or order parameter v2.

The amplitude equations (10.16) were solved numerically for the model parame-
ters obtained for patient 1 and the initial conditions defined by Eq. (10.17) [1]. Panel
(d) shows the amplitudes A j (t) thus obtained in terms of a phase curve in the three-
dimensional amplitude space. The amplitudes are shown as variables rescaled to the
maximum A2,max of the order parameter amplitude A2. That is, in panel (d) the vari-
ables A j (rel) = 100A j/A2,max for j = 1, 2, 3 are shown. Note that the simulation
of Eq. (10.16) shows that the amplitudes A2 and A3 were positive during the SARS-
CoV-2 infection of patient 1. In contrast, A1 was negative. For this reason A1(rel) is
shown in negative percentage values. As far as the hypothesized dominant role of the
order parameter amplitude A2 is concerned, in panel (d) it can be seen that initially
only A2 varied over time and increased, while A1 and A3 remained approximately
constant at a level close to zero percent. This initial increase of A2 corresponds to
the initial evolution of the state X = (T (t), I (t), V (t)) along the eigenvector v2 as
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Fig. 10.2 COVID-19 TIV model dynamics of patient 3 in state and amplitude space. Panels as
in Fig. 10.1. Parameters and initial conditions [7]: β = 5 · 10−4/(d × (particles/ml)), p = 19 parti-
cles/(d × cell), k1 = 2/d, k2 = 0.3/d, Tst = 6 · 104 cells/ml, V (0) = 10−4 particles/ml

shown in panels (b) and (c). At the end of the period during which A2 entirely dom-
inated the amplitude dynamics, the amplitude A3 began to increase. A1 eventually
showed some variations as well and assumed negative values. However, during the
whole course of the infection, A1 remained at a level less than 1% of the maximum
value A2,max, see panel (d). In summary, panel (d) illustrates the dominant role of the
amplitude A2 of the unstable eigenvector during the initial disease stage.

For all eight patients the modeling results looked qualitatively similar as in
Fig. 10.1. Patient data showed some quantitative differences across patients. For
example, the model-based analysis of the data from patient 3 suggest that the viral
load increased during the initial stage of the infection more rapidly for patient 3 as
compared to patient 1. In this context, Fig. 10.2 presents the sputum viral load data [6]
and the modeling results of patient 3. In panels (a), (b), (c), (d) of Fig. 10.2 the same
variables are presented as in the corresponding panels of Fig. 10.1. Visual inspec-
tion of the panels (a) presented in Figs. 10.1 and 10.2 reveals the aforementioned
observation that for patient 3 the initial stage of the infection was characterized by a
more rapid increase of viral load. As a result, the trajectory X(t) = (T, I, V ) in the
2D subspace I -V and the 3D state space exhibits a more square-edged shape (see
panels (b) and (c) of Fig. 10.2). The phase curve A(t) = (A1, A2, A3) in amplitude
space looks edgy as well (see panel (d)). It resembles the shape of an inverted V.
Irrespective of these differences between patients 1 and 3, for patient 3 the initial
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Fig. 10.3 Details of the progression of COVID-19 as seen from an amplitude space perspective.
The amplitude dynamics presented in panels (d) of Figs. 10.1 and 10.2 for patients 1 and 3 is shown
as 2D phase curves A2(A3) in panel (a) and panel (b), respectively

infection dynamics in state space followed closely the order parameter v2 (see pan-
els (b) and (c)). Likewise, the amplitude dynamics was initially dominated by the
evolution of A2 (see panel (d)). The pair v2 and A2 determined the initial stage of
the SARS-CoV-2 infection of patient 3.

In order to highlight the dominant role of the order parameter amplitude A2,
Fig. 10.3 presents the amplitude dynamics obtained for patients 1 and 3 in the ampli-
tude subspace A2-A3. That is, Fig. 10.3 presents projections of the three-dimensional
plots of panels (d) shown in Figs. 10.1 and 10.2 into the respective A2-A3 planes.
Panels (a) for patient 1 and (b) for patient 3 visualize that in the initial stage of the
disease A2 increased, while A3 remained almost constant at a zero level. This is
consistent with the theoretical consideration according to which the fixed point of
interest Xst = (Tst , 0, 0) from which the infectious disease emerges corresponds to
a saddle with an unstable direction in v2 (λ2 > 0), a stable direction in v3 (λ3 < 0),
and a neutrally stable direction in v1 (λ1 = 0).

Let us present the analysis of the remaining patients 2,4,7,8,10,14 in a somewhat
condensed form. Figure10.4 shows the viral load trajectories observed (gray circles)
[6] and computed fromEq. (10.1) (solid lines). Panels (a) to (f) correspond to patients
2 to 14. For all patients Tst = 6 · 104 cells/ml and V (0) = 10−4 particles/ml was used
[7]. As mentioned at the beginning of this section (i.e., Sect. 10.2.1), parameters
(here listed as referring to a 1 ml volume) for patient 2 (β = 18 · 10−7/(d× particle),
p = 625 particles/(d × cell), k1 = 2/d, k2 = 0.65/d), patient 4 (β = 0.00065/(d ×
particle), p = 2200 particles/(d × cell), k1 = 2/d, k2 = 1/d), patient 7 (β = 19 ·
10−7/(d × particle), p = 430 particles/(d × cell), k1 = 2/d, k2 = 0.6/d), patient 8
(β = 0.000091/(d × particle), p = 5800 particles/(d × cell), k1 = 2/d, k2 = 0.6/d),
patient 10 (β = 9.7 · 10−7/(d × particle), p = 940 particles/(d × cell), k1 = 2/d,
k2 = 0.5/d), and patient 14 (β = 0.000047/(d × particle), p = 120 particles/(d ×
cell), k1 = 2/d, k2 = 2/d) were taken from Ref. [7]. All patients showed the same
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Fig. 10.4 Viral load dynamics observed (gray circles) and computed (solid lines) for the six patients
2 (a), 4 (b), 7 (c), 8 (d), 10 (e), and 14 (f). See text for parameters and initial conditions

Fig. 10.5 Phase curves (solid lines) computed from Eq. (10.1) for the six patients 2 (a), 4 (b), 7 (c),
8 (d), 10 (e), and 14 (f). The patient-specific order parameters v2 (thick dotted lines) were computed
from Eq. (10.6)

characteristic temporal pattern composed of a relatively short (or fast) period of
increase and a relatively long (or slow) period of decay of viral load.

Figure10.5 shows the corresponding phase curves for the six patients as com-
puted from Eq. (10.1). The patient-specific order parameters v2 are shown as well.
Figure10.6 presents the amplitude descriptions of the SARS-CoV-2 infections of the
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Fig. 10.6 Amplitude dynamics computed from Eq. (10.31) for the six patients 2 (a), 4 (b), 7 (c),
8 (d), 10 (e), and 14 (f)

six patients as computed from Eq. (10.16). Note that in Figs. 10.5 and 10.6 the same
kind of rescaled variables have been used as in Figs. 10.1 and 10.2.

Figures10.5 and 10.6 demonstrate that for all remaining patients the initial stages
of their SARS-CoV-2 infections were determined by their respective TIV order
parameters v2 and the evolution of their respective order parameter amplitudes A2.
As far as the shape of the phase curves is concerned, patients 4 and 8 (just as patient
3) exhibited phase curves that were more square-edged in state space and looked
more like inverted Vs in amplitude space as compared to the remaining patients.

10.2.2 Illustrations of λmax Increase of Viral Load and k2
Disease Decline in COVID-19 Patients

According to Eq. (10.25) the maximal eigenvalue λ2 determines the initial growth
rate of the viral load V (t). When presenting V (t) in a logarithmic scale, then λmax

corresponds to the slope of the function V (t). Figure10.7 shows again the viral load
trajectories of patients 1 and 3 (as presented in panels (a) of Figs. 10.16 to 10.19).
The approximation (10.25) is shown as well as dotted gray line. As expected, λmax

describes the slope of the viral load increase.
Let us address the decline period of the disease. As can be seen in panels (c)

of Figs. 10.1 and 10.2, the disease state of patients 1 and 3 in the final stages of
their diseases evolved along the V -axis. Likewise, Fig. 10.5 shows that for all of the
remaining patients except for patient 14 the disease dynamics evolved along the V -
axis during the final stages of their diseases. As discussed in Sect. 9.3.2, this features



10.2 TIV Model and Viral Load in a Sample of COVID-19 Patients 323

Fig. 10.7 The phase of initial viral load increase is determined by λmax (i.e., λ2), whereas the
decay of viral load is determined by k2. Panels a and b refer to patients 1 and 3, respectively

follows from the TIV model equation (10.1) for k1 < k2. If k1 < k2 then I decays
faster relative to V such that the final stage is determined by the decay of V and
the phase curve of X(t) evolves along the V -axis. In fact, for all patients except
for patient 14 the relation k2 < k1 was satisfied. For patient 14 the parameters were
of the same magnitude (i.e., k1 = k2), which explains why the disease state X did
not evolve in the final stage along the V -axis. More explicitly, if k2 determines the
decline of viral load then V (t) can be approximated by Va(t) defined by

Va = Vmax exp{−k2(t − tp)} , (10.41)

where Vmax denotes the maximal (or peak) viral load (as obtained from the model fit
V (t)) and tp denotes the time point at which V (t) becomes maximal. The approxi-
mation (10.41) is plotted in Fig. 10.7 for patients 1 and 3 in panels (a) and (b), respec-
tively. For patients 1 and 3, the approximative function Va(t) fits the exact solution
V (t) in good approximation. In summary, the viral load trajectories for patients 1 and
3 can approximately be described by V (t) = b exp{λmaxt} (see Eq. (10.25)) in the
acute phase (i.e., initial stage of viral load increase) and Va = Vmax exp{−k2(t − tp)
(see Eq. (10.41) in the stage of viral load decrease. Similar considerations on two-
phase approximations of viral load patterns can be found, for example, in Ref. [10].

Themodel-based analysis of viral loaddata ofCOVID-19patients presented above
and the model-based analysis that will be presented below is subjected to limitations.
In general, fitting a model with a relatively small number of data points results in
situations for which several parameter sets can be found that fit the data with the
same kind of accuracy. While theoretical considerations suggest that the increase of
viral load in the initial stage of a SARS-CoV-2 infection increases with a rate given
by λmax, the viral load decay in the stage of disease decline may not be determined
entirely by k2 (see Sect. 9.3.2). The analysis presented in Fig. 10.7 demonstrate how
a k2 disease decline could look like in COVID-19 patients. Figure10.7 does not
provide any evidence that such a disease decline is a characteristic feature of the
disease progression of COVID-19.
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As a second note, it should be pointed out that for all patients but one patient the
estimated parameters k1 and k2 were such that k2 < k1 holds, which leads to the k2
decay that was discussed above and is illustrated in Figs. 10.1 (panel (c)), 10.2 (panel
(c)), 10.5, and 10.7. That is, the estimated parameters suggest that for those patients
with k2 < k1 the viral dynamics was slow as compared to the cell dynamics or at least
evolved on a similar time scale as the cell dynamics. However, this finding is just
opposite to the assumption that motivates the TV model. As discussed in Sect. 9.5.1,
the TVmodel can be derived from the TIVmodel under the assumption that the viral
dynamics is much faster than the cell dynamics (i.e., k2 � k1).

10.2.3 2D Approach: Initiation of Disease Decline
by Self-induced Bifurcations

In this section, the 2D approach discussed in Sect. 10.1.3 will be applied to describe
the time course of SARS coronavirus 2 load in COVID-19 patients. In particular, the
role of the maximal eigenvalue will be discussed. In the context of the 2D approach,
the maximal eigenvalue is given by λ1, see Eq. (10.38). According to the nonlinear
physics perspective of SARS-CoV-2 infections, the virus-free state of an infected
individual is unstable at the beginning of an infection. With respect to the 2D per-
spective of the TIV model the circumstances at the time of infection are given by
βw = pTstβ > βw,cri t = k1k2 andλ1 > 0. Note that as such any stateX = (X+, X−)

with X− = T ≥ 0 andX+ = (I, V ) = (0, 0) is a fixed point of the TIV model. Dur-
ing the course of the disease, the number of target cells T (t) decays over time from the
starting value T (0) = Tst . Consequently, the state X = (0, 0, T (t)) can be consid-
ered as a sliding fixed point, whose stability changes when the number of target cells
T falls below a critical value such that pTβ < k1k2. When the fixed point becomes
stable, the infection subsides in the sense that the viral load V begins to decay. There-
fore, the eigenvalue λ1 may be considered as an (implicitly) time-dependent variable.
If so, the function λ1(t) can capture the switch from an unstable to a stable virus-free
fixed point. In order to conduct a time-resolved eigenvalue analysis, in Eq. (10.38)
the parameter Tst is replaced by T (t) such that Eq. (10.38) becomes

λ1(t) = −k1 + k2
2

+
√

(k1 + k2)2

4
+ pT (t)β − k1k2 . (10.42)

In what follows, the 2D approach and the time-resolved eigenvalue analysis will
be applied to the data from the sample of eight patients discussed in Sect. 10.2.1.
From the patient-specific TIV model parameters reported in Sect. 10.2.1, for each
patient the fixed eigenvalue λ1 was computed from Eq. (10.38) and the correspond-
ing unstable 2D eigenvector v1 was computed from Eq. (10.39). Subsequently, the
dynamics of the disease state X was computed from Eq. (10.1) (just as for the 3D
approach conducted in Sect. 10.2.1). The subspace variable X+ was plotted in the
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Fig. 10.8 Two-dimensional eigenvalue and eigenvector analysis of the viral load dynamics of
patient 1. Panel a: Observed viral load trajectory (gray circles) and TIV model solution V (t) (solid
line) computed from Eq. (10.1). Panel b: Phase curve V (I ) (solid line) in logarithmic scales and
order parameter v1 (thick dashed line) computed from Eq. (10.39). The vector v1 is shown in a
magnified scale for the sake of visibility. Panel (c): Time-course of the eigenvalue λmax (i.e., λ1)
(solid line) as computed from Eq. (10.38). The viral load graph V (t) shown in panel (a) is depicted
in panel (c) (dotted line) in a rescaled manner such that its peak corresponds to the maximum value
of λmax

I -V plane and compared with the 2D eigenvector v1. Finally, the time-resolved
eigenvalue λ1(t) was computed from Eq. (10.42) using the solution T (t) of the TIV
model (10.1).

Figure10.8 shows the results of the eigenvalue analysis for patient 1 [4]. Panel (a)
repeats panel (a) of Fig. 10.1, that is, it shows the measured viral load over time (gray
circles) and the model fit V (t) (solid line) obtained from the TIVmodel (10.1). Panel
(b) of Fig. 10.8 presents the functions V (t) versus I (t) as computed from Eq. (10.1)
as V (I ) phase curve (solid thin line). The circle indicates the initial state. The order
parameter v1 is plotted as well (dashed thick line). The disease dynamics X+(t)
closely followed the order parameter while the viral load increased over time. After
the number of infected cells reached its maximum value (and shortly after that the
viral load reached its peak value) the dynamics branched off in a different direction.
As such, panel (b) of Fig. 10.8 is the projection of panel (c) of Fig. 10.1 into the V -I
plane. However, in panel (c) of Fig. 10.1 linear scales and relative variables are used,
while in panel (b) of Fig. 10.8 logarithmic scales are used and the variables are not
scaled.

Panel (c) of Fig. 10.8 shows λmax (i.e., λ1) (solid line) as function of time as
computed from Eq. (10.42). The viral load graph V (t) as presented in panel (a) (solid
black line) is presented in panel (c) as a rescaled function (dotted line) such that Vmax

is at the same height as λmax(0). Note that V (t) is presented on the logarithmic
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Fig. 10.9 As in Fig. 10.8 but for patient 2

scale (not shown in panel (c)), whereas λmax(t) is presented on a linear scale. As
can be seen in panel (c), according to the TIV model-based analysis, the eigenvalue
λmax of the affected sites of patient 1 dropped from a positive to a negative value at
around day 5. Subsequent to this switch of the sign of λmax, the viral load reached
its peak and began to decay. Consequently, the course of the disease for patient 1
was characterized by an initial period during which the maximal eigenvalue λmax

was positive and the virus-free fixed point unstable. During this initial period, viral
load increased and the number of target cells decayed. There was a switching point
at around day 5 when the number of target cells in the affected regions of the lung
of patient 1 were depleted and reached a sufficiently low value such that λmax turned
from a positive to a negative value. The virus-free fixed point became neutrally stable.
The viral load decayed.

Figure10.9 presents the same kind of analysis for patient 2. Panel (a) of Fig. 10.9
corresponds to panel (a) of Fig. 10.4 and shows the viral load data and the model
solution V (t). Panel (b) of Fig. 10.9 reveals that during the initial stage with an
increasing number of infected cells and an increasing viral load the disease dynamics
X+(t) followed the order parameter v1. After the number of infected cells reached
its maximum value, the disease state X+ branched off from the order parameter
v1. Viral load increased slightly at the turning point. Subsequently, the number of
infected cells and the viral load decreased. With the help of panel (c), the two stages
can be explained using the time-resolved eigenvalue analysis. As can be seen in panel
(c), during the initial stage of the disease the eigenvalue λmax (i.e. λ1) was positive,
while in the stage of disease decline the eigenvalue was negative. According to the
TIV model, the switch of the eigenvalue was caused by the decrease in the number
of target cells in the affected regions of the lung of patient 2.

The viral load trajectories of the remaining six patients 3,4,7,8,10 and 14 can be
found in Figs. 10.2 and 10.4. Figures10.10 and 10.11 present the results of the time-
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Fig. 10.10 Panels a, c, and e show the disease progression in terms of phase curves V (I ) computed
from Eq. (10.1) for patients 3, 4, and 7, respectively. The patient-specific order parameters v1 (thick
dashed lines) are shown as well as computed from Eq. (10.39). Panels b, d, and f present the graphs
λ1(t) (solid lines) obtained fromEq. (10.38). For comparison purposes, the corresponding viral load
trajectories V (t) are shown as well (dotted lines) as functions rescaled to the maximum values of λ1

Fig. 10.11 As in Fig. 10.10 but for patients 8 (a and b), 10 (c and d), and 14 (e and f)
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fixed and time-resolved analysis methods for the remaining six patients 3,4,7,8,10
and 14 in a condensed form. Figure10.10 shows the results of the two analysis
methods for patients 3, 4, and 7. Panels (a), (c), (e) and (b), (d), (f) present the results
of the fixed eigenvalue analysis and time-resolved eigenvalue analysis, respectively.
Likewise, Fig. 10.11 reports the results of the two methods for patients 8, 10, and 14.
Again, panels (a), (c), (e) and (b), (d), (f) present the results of the fixed eigenvalue
analysis and time-resolved eigenvalue analysis, respectively.

As shown in panels (a), (c), and (e) of Figs. 10.10 and 10.11, the 2D IV order
parameters v1 (dashed thick lines) determined the disease progressions of all remain-
ing COVID-19 patients during the initial disease stages of their diseases. Close to the
time points when the numbers of infected cells became maximal, the disease states
X+ branched off from their respective order parameters. The diseases progressions
of the patients entered a turning point dynamics during which the patient-specific
viral loads increased slightly and reached peak loads. Subsequently, viral loads and
infected cell numbers decayed.Consequently, the results of the remaining patients are
consistent with those of patients 1 and 2. Overall, the results of the fixed eigenvalue
and fixed eigenvector analysis concerning the role of the order parameter obtained
by means of the 2D approach are consistent with the corresponding results of the 3D
approach presented in Sect. 10.2.1.

As shown in panels (b), (d), and (f) of Figs. 10.10 and 10.11, the time-resolved
eigenvalue analysis shows that for all but two patients the switch of the leading
eigenvalue from a positive to a negative value took place after at least 1day after
symptoms onset. Accordingly, the initial stage of increasing viral load was at least
1day long. The two exceptions were patients 4 and 8. The respective eigenvalues
switched at about 0.10 days (i.e., about two-and-a-half hours) and 0.15 days (i.e.,
about three-and-a-half hours). In order to make these very early switching dynamics
visible, panel (d) of Fig. 10.10 (patient 4) and panel (b) of Fig. 10.11 (patient 8) only
show 1day on the horizontal axis. For all patients (i.e., including patients 4 and 8)
the initial stages of increasing viral load and the final stages of decreasing viral load
were characterized by a positive and negative eigenvalue λ2, respectively. The two
stages were characterized by unstable and stable virus-free fixed points, respectively.

10.3 Initial-Stage Disease and Disease Decline: Nonlinear
Physics Perspective

In Sect. 8.4.2 the concept of a disease as a state emerging in a bifurcation was
reviewed. Accordingly, the initial stage of such a disease is characterized by an
instability of an appropriately defined healthy state. From a nonlinear physics per-
spective, infectious diseases belong to the class of diseases emerging from unstable
healthy states. The TIV model that has been discussed above and the TIIV model
that will be discussed in the following sections are two descriptions of the nonlinear
physics of infectious diseases that reveal this feature of infectious diseases. When
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acknowledging the pivot role of instabilities for the emergence of diseases, in general,
and infectious diseases, in particular, then it becomes clear that undoing a disease
requires either making the original healthy state stable again or stabilizing a different
favorable (i.e., healthy) state [11]. As reviewed briefly in Sect. 8.4.2, this notion that
treatment and therapy is a form of bifurcation has been supported by a number of
clinical studies.

On the level of infectious diseases spreading in populations (rather than presenting
themselves in individuals), a fundamental principle of the mathematical modeling of
epidemics and pandemics [12, 13] is in fact that infectious disease outbreaks are insta-
bility phenomena. Again, when acknowledging the pivot role of instabilities for the
emergence of infectious diseases in population, then the impact of intervention mea-
sures on epidemics as it has been discussed from the nonlinear physics perspective
in Chap. 8 becomes clear. Accordingly, intervention measures (when implemented
successfully) switch the sign of positive (real-valued) eigenvalues of disease-free
states of populations such that these eigenvalues become negative. In other words,
intervention measures can induced bifurcations. The sign switching phenomenon
and, in doing so, evidence for bifurcations induced by interventions was observed
for the COVID-19 epidemics in Europe (see Sect. 8.4.4), Thailand (see Sect. 8.4.5),
the state of New York (see Sect. 8.7.1), and Pakistan (see Sect. 8.7.2). Returning to
the level of infectious diseases in individuals, such bifurcations leading to disease
decline in individuals are either self-induced or assisted by medication.

In Sect. 10.2.3, in the context of the TIV model, bifurcations have been addressed
that are induced by a dramatic decay of the number of target cells. In this case, the
disease decline is initiated by self-induced bifurcations. More sophisticated virus
dynamics models have been suggested to take the immune reaction of the human
body [14–17] andmedication of patients into account [14, 18–20]. The time-resolved
eigenvalue analysis presented in Sect. 10.2.3 may be applied to obtain insights into
the stabilization of the virus-free fixed point induced by the natural immune reaction
and/or medication.

10.4 Analysis of the TIIV Model

10.4.1 Stability Analysis

The TIIV model is defined by Eq. (9.17) which is here repeated as

d

dt
T = −βV T ,

d

dt
I1 = βV T − k1 I1 ,

d

dt
I2 = k1 I1 − k2 I2 ,

d

dt
V = pI2 − k3V

(10.43)
with k1, k2, k3,β, p > 0.Accordingly, the disease state (or health state) of an individ-
ual is describedby the state vectorX = (T, I1, I2, V ). Themodel exhibits fixedpoints
of the form Xst = (Y, 0, 0, 0) with Y ≥ 0 that describe virus-free states. The virus-
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free fixed point Xst = (Tst , 0, 0, 0) denotes the virus-free state of healthy adults,
where Tst > 0 corresponds to their target cell concentrations in the absence of the
virus infection under consideration. Just as for the TIV model, let us introduce the
relative target concentration δ and the relative state vector u by T = Tst + δ and
u = (δ, I1, I2, V ), respectively. Then, the TIIV model equations (10.43) can be lin-
earized around Xst = (Tst , 0, 0, 0) like

d

dt
u = L u , L =

⎛
⎜⎜⎝
0 0 0 −βTst
0 −k1 0 βTst
0 k1 −k2 0
0 0 p −k3

⎞
⎟⎟⎠ . (10.44)

The linearizationmatrix L exhibits the eigenvalueλ1 = 0.The remaining three eigen-
values can be obtained from the determinant of the appropriate 3 × 3 submatrix of
L like ∣∣∣∣∣∣

−k1 − λ 0 βTst
k1 −k2 − λ 0
0 p −k3 − λ

∣∣∣∣∣∣
= 0 . (10.45)

Equation (10.45) leads to the cubic characteristic equation

(λ + k1)(λ + k2)(λ + k3) = pβTst k1 . (10.46)

Before discussing the roots of Eq. (10.46), let us consider the special case inwhich the
TIIVmodel reduces to the TIVmodel. To this end, let us assume that the dynamics of
the variable I1 reflecting the non-virus producing infected cells can be regarded as fast
relative to all remaining variables. Then,wemayput k1 I1 = βVT ⇒ I1 = βVT/k1.
Substituting this quasi-stationary state into Eq. (10.43), the TIV model of the form
dT/dt = −βVT , dI2/dt = βVT − k2 I2, and dV/dt = pI2 − k3V is obtained. In
particular, let us assume that k1 � k2, k3 such that I1 can be considered as fast
variable relative to I2 and V . If k1 is of an order of magnitude larger than k2 and
k3 like k1 ∝ O(2), while k2, k3 ∝ O(1), then solutions λ of Eq. (10.46) that are
of the order of k2 and k3 can be obtained by assuming that λ + k1 ≈ k1 (because
λ ∝ O(1) � k2 ∝ O(2)). Consequently, Eq. (10.46) becomes (λ + k2)(λ + k3) =
pβTst , which corresponds to the quadratic eigenvalue equation (10.3) of the TIV
model that involves k1 and k2 rather than k2 and k3.

Let us return to the general case of roots λ defined by Eq. (10.46). Let λmax

define the largest, real-valued eigenvalue. A graphical analysis of Eq. (10.46) can be
conducted to discuss the roots of Eq. (10.46) and, in particular, λmax. To this end,
Eq. (10.46) is split into two functions f1 and f2 of a variable x , respectively, whose
function values must intersect each other like

f1(x) = f2 , f1(x) = (x + k1)(x + k2)(x + k3) , f2 = pβTst k1 . (10.47)
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Fig. 10.12 Graphical illustration of real-valued solutions of the cubic equation (10.47) for k1 = 1,
k2 = 2, and k3 = 3

The left-hand side function f1 corresponds to a cubic function with zeros at −k1,
−k2, and −k3, while the right-hand side function f2 corresponds to a constant. Real-
valued solutions of Eq. (10.47) correspond to intersection points of f1 and f2. Let
kmin denote the smallest of parameters of k1, k2, k3. Then, for x > −kmin the function
f1 increases monotonically (e.g., see Fig. 10.12).
Figure10.12 demonstrates four fundamental cases. Case 1 is given by f2 = 0 and

illustrated in panel (a). In this case, there are three real-valued eigenvalues λi =
−ki < 0 with i = 1, 2, 3. The largest eigenvalue corresponds to λmax = −kmin. In
general, the function f2 describes a “horizontal bar”. Let us increase this “bar”
gradually. In case 2 (see panel (b)), the “bar” is lifted such that it hits the local
maximum of f2. There is a double real-valued eigenvalue λ2 = λ3 that corresponds
to the location of the local maximum and another real-value eigenvalue λ1 with λ1 >

λ2,3 but λ1 < 0. This eigenvalue correspond to the maximal eigenvalue. Increasing
f2 further, Eq. (10.47) exhibits two complex-valued and one real-valued solution. It
can be shown that the complex-valued eigenvalues exhibit negative real parts (see
Sect. 10.7). Case 3 (see panel (c)) corresponds to the critical case (i.e., the bifurcation
point) at which the maximal eigenvalue becomes zero and a positive eigenvalue
emerges. In case 3 the constant f2 is just as large as the intersection point of f1 with
the vertical axis. That is, f2 = f1(0) holds. In this case, Eq. (10.47) reads

f1(0) = k1k2k3 = pβTst k1 ⇒ k2k3 = pβTst . (10.48)
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If increasing f2 even further, case 4 (see panel (d)) occurs for which there is a single
real-valued positive eigenvalue λmax > 0 and two complex valued eigenvalues with
negative real parts. Note that the critical condition at which λmax = 0 holds corre-
sponds to the critical condition of the TIV model (i.e., βw = βw,cri t when replacing
k1 and k2 by k2 and k3).

In summary, from the graphical analysis it follows that there are two main cases.
In the first case, there is one real-valued eigenvalue and a pair of complex-conjugated
eigenvalues. In this case, the real-valued eigenvalue corresponds to λmax and can be
positive or negative. The complex-valued pair of eigenvalues exhibits a negative real
part. The second case was not addressed in the discussion above. Let us assume that
the local maximum of f1(xmax) exceeds the interception value f1(0). In this case as
long as f2 < f1(xmax) all eigenvalues are real: λ2,3,4 ∈ lR. The maximal eigenvalue
can be positive or negative. However, the remaining two eigenvalue (as can be seen
from the graphical constructions in Fig. 10.10) are negative. Consequently, in the
second main case, we have either λmax > 0 or λmax ≤ 0 but the two remaining real-
valued eigenvalues are negative. Irrespective which of the twomain cases applies, the
critical case for which λmax = 0 holds is given by Eq. (10.48) such that (in analogy
to the TIV model) the weighted infectivity parameter βw and its critical value βw,cri t

can be defined like [21]

βw = pβTst , βw,cri t = k2k3 . (10.49)

Forβw > βw,cri t wehaveλmax > 0,while forβw < βw,cri t wehaveλmax < 0.Conse-
quently, the virus-free fixed point is unstable for βw > βw,cri t and describes a saddle
with a single unstable direction. In addition to the unstable direction, the saddle
either exhibits two stable directions or a plane with a stable focus [22]. Furthermore,
there is a neutrally stable direction (namely, the axis given by T ) as indicated by the
eigenvalue λ1 = 0.

Figure10.13 illustrates solutions of the TIIV model for βw > βw,cri t (panel (a))
and βw < βw,cri t (panel (b)). In the former case (βw > βw,cri t ), the model describes
a patient with an unstable virus-free fixed point. The viral load plotted in a linear
scale shows a wave-like pattern. For the selected parameters, during the course of
the disease the target cells decay almost to zero. In the latter case (βw < βw,cri t ), the
virus-free fixed point is neutrally stable, V decays from its initial value. Only a small
portion of target cells get infected during the time it takes to clear the virus out of
the body.

10.4.2 TIIV Model Amplitude Equations

As mentioned in Sect. 9.6, the TIIV model involves variables that are typically not
measured in the same units: the cell variables T , I1, I2, on the one hand, and the
viral load V , on the other hand. The rescaled model presented in Sect. 9.6 may be
used to solve this issue. In what follows, the simplified perspective will be used
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Fig. 10.13 Panel a: Wave-solution of the TIIV model (10.43) reflecting exposure to a virus that
leads to an initial increase of viral load. T (top subpanel), I1 and I2 (middle subpanel with I2 given
by the dotted line), and V (bottom subpanel) are shown as functions of time. Parameters and initial
conditions: T (0) = Tst = 10, 000, V (0) = 10, I (0) = 0, β = 0.01/d, k1 = 2.0/d, k2 = 3.0/d, k3 =
1.5/d, and p = 0.5, which leads to βw,cri t = 4.5 and βcri t = βw,cri t/(pTst ) = 0.0009/d. Panel b:
Solution of the TIIV model for the case in which a virus invades an area of the body of an individual
that exhibits a stable virus-free state. Parameters and initial conditions as for the simulation shown
in panel (a) but with β = 0.0002/d, which implies β < βcri t ⇒ βw < βw,cri t

according to which one virus particle will be considered as equivalent to 1 cell.
In order to derive the amplitude equations of the TIIV model (10.43) the standard
procedure (e.g., as used for the TIV model) outlined in Chap. 2 can be applied. First,
the eigenvectors v j = (v j,1, v j,2, v j,3, v j,4) with j = 1, 2, 3, 4 of L defined by Eq.
(10.44) are determined. The eigenvector v1 related to λ1 = 0 reads v1 = (1, 0, 0, 0).
The remaining eigenvectors for j = 2, 3, 4 read [21]

v j = 1

Z j

⎛
⎜⎜⎝

−βTst p(λ j + k1)
βTst pλ j

λ j (λ j + k1)(λ j + k3)
pλ j (λ j + k1)

⎞
⎟⎟⎠ , (10.50)

as can be shown by a detailed calculation. In Eq. (10.50) the parameter Z j is a
normalization factor that has to be chosen carefully. If λ j is complex, then the cor-
responding eigenvector is complex as well. In this case, the complex-valued vector

is normalized such that the dot product (scalar product) yields
√
v jv∗

j = 1, where

v∗
j is the complex-conjugate of v j . It is assumed that the eigenvectors are linearly

independent. Having obtained the eigenvectors, the amplitudes A1, A2, A3, A4 of the
four-dimensional amplitude space are introduced by means of the superposition

X(t) = Xst +
4∑
j=1

A j (t)v j . (10.51)
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Note that the eigenvectors are dimensionless. This implies that if, for example, the cell
variables and viral load are measured in cell/ml and RNA copies/ml, respectively,
where 1 RNA copy may reflect 1 virus particle [23], and if we put 1 RNA copy
as equivalent to a cell, then A j are measured in cell/ml (or alternatively in RNA
copies/ml). Equation (10.51) maps the amplitude space (A1, A2, A3, A4) to the state
space X = (T, I1, I2, V ) and can be written like

X − Xst = u = M

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝
1 v2,1 v3,1 v4,1
0 v2,2 v3,2 v4,2
0 v2,3 v3,3 v4,3
0 v2,4 v3,4 v4,4

⎞
⎟⎟⎠ , (10.52)

as discussed in Chap. 2. The inverse M−1 of M yields the mapping

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ = M−1u = M−1(X − Xst ) (10.53)

from state space to amplitude space. The matrix M is composed of the biorthogonal
vectors wi like

M−1 =

⎛
⎜⎜⎝
w1

w2

w3

w4

⎞
⎟⎟⎠ (10.54)

(see Sects. 2.6.2 and 5.6) for which w jvk = δ jk holds. The amplitude equations
may be derived using the vector calculation method (see Sect. 2.9.3). To this end,
from Eq. (10.43) the evolution equation of the relative state of the form du/dt =
L(Xst )u + R(u) may be derived. In analogy to Eq. (10.13), the result reads

d

dt

⎛
⎜⎜⎝

δ
I1
I2
V

⎞
⎟⎟⎠ = L

⎛
⎜⎜⎝

δ
I1
I2
V

⎞
⎟⎟⎠ + βδV

⎛
⎜⎜⎝

−1
1
0
0

⎞
⎟⎟⎠ . (10.55)

Multiplying Eq. (10.55) by wi yields

d

dt
A j = λ j A j + G j (A1, A2, A3, A4) , Gi = βδVwi

⎛
⎜⎜⎝

−1
1
0
0

⎞
⎟⎟⎠ = βδV (wi,2 − wi,1)

(10.56)
for j = 1, 2, 3, 4. Replacing δ and V by means of the amplitudes, leads to the closed
set of amplitude equations [21]
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d

dt
Ai = λi Ai + Ci p2(A1, A2, A3, A4) ,

p2 = β

(
4∑

k=1

vk,1Ak

) (
4∑

k=2

vk,4Ak

)
,

Ci = wi,2 − wi,1 (10.57)

with λ1 = 0 and λi for i = 2, 3, 4 given by the solutions of Eq. (10.46). The initial
conditions for the amplitude equation model (10.57) are derived from the initial state
X(0) = (Tst , 0, 0, V (0)) at t = 0 with an initial viral load V (0). From Eq. (10.53) it
follows that

⎛
⎜⎜⎝

A1(0)
A2(0)
A3(0)
A4(0)

⎞
⎟⎟⎠ = M−1(X(0) − Xst ) = M−1

⎛
⎜⎜⎝

0
0
0

V (0)

⎞
⎟⎟⎠ ⇒ Ai (0) = wi,4V (0) .

(10.58)
In summary, solvingEq. (10.57) for the initial conditions (10.58) yields the amplitude
dynamics that corresponds to the state dynamics defined by Eq. (10.43) for the initial
conditions X(0) = (Tst , 0, 0, V (0)).

As discussed above, for βw > βw,cri t the virus-free fixed point X(0) =
(Tst , 0, 0, V (0)) is unstable and the virus canmultiply in the human body. The disease
emerges in the human body from the virus-free fixed point Xst = (Tst , 0, 0, 0) that
corresponds to a saddle characterized by one unstable direction vk(max) related to the
real-valued eigenvalue λmax > 0, a neutrally stable direction v1 (related to λ1 = 0),
and two stable directions vm and vl with two real-valued negative eigenvalues or a
two-dimensional plane spanned by two complex conjugated eigenvectors vm = v∗

l
with complex eigenvalues exhibiting a negative real part. The amplitude equation
model (10.58) describes the dynamics away from this saddle point as seen in the
four-dimensional amplitude space.

10.4.3 The TIIV Unstable Eigenvector and Order Parameter

Let us consider the classical scenario of dynamical systems that satisfy dX/dt =
N(X) (see Eq. (2.1)) and evolve close to an unstable fixed point as discussed in
Chap. 2. Accordingly, in the context of the TIIV model, a virus infection begins in
the human body as a disease state close to a saddle point characterized by the eigen-
values λ1 = 0, λk(max) = λmax > 0, and λm,λl < 0 or lR{λm} = lR{λl} < 0, where
m, l describe the indices of the two remaining eigenvalues other than λ1 and λmax.
Without loss of generality, let λ4 denote the maximal eigenvalue such thatm = 2 and
l = 3. The virus-free fixed pointXst = (Tst , 0, 0, 0) is defined in amplitude space by
A = (A1, A2, A3, A4) = (0, 0, 0, 0). This implies that in the aforementioned classi-
cal scenario the initial amplitudes A j (0) correspond to small perturbations. In this
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case, A4(t) increases exponentially in magnitude like A4(t) = A4(0) exp{λ4t} with
an e-folding time τ = 1/λ4 and a doubling time of the amplitude T2 = ln(2)τ . A2

and A3 decay in the amount (λ2,3 < 0 or lR{λ2} = lR{λ3} < 0). A1 can be regarded
as constant relative to A2, A3, A4 because the linearized evolution equation of A1 is
characterized by λ1 = 0 and reads dA1/dt = 0. In summary, after an intermediate
period Ti during which A2 and A3 have decayed in magnitude to negligibly small
values, the initial dynamics of the disease state is given by

X(t) = Xst + A1(0)v1 + A4(t)v4 . (10.59)

Alternatively, the approximation dX/dt ≈ v4dA4/dt may be considered, which
leads to

d

dt
X ≈ v4

d

dt
A4 ⇒ ΔX ≈ v4ΔA4 (10.60)

withΔX = X(t + Δt) − X(t),ΔA4 = A4(t + Δt) − A4(t), andΔt > 0. Equations
(10.59) and (10.60) are the counterparts to Eqs. (10.18) and (10.21), respectively,
that hold for the TIV model. Accordingly, the unstable eigenvector or order param-
eter v4 and the corresponding amplitude A4 determine the emergence of the disease
in the human body. From Eq. (10.60) it follows that during the initial stage of the
infectious disease changes of the state variables relative to each other are determined
by ΔX j/ΔXk ≈ v4, j/v4,k , For example, cell concentrations change relative to the
viral load V like

ΔT

ΔV
≈ v4,1

v4,4
,

ΔI1
ΔV

≈ v4,2

v4,4
,

ΔI2
ΔV

≈ v4,3

v4,4
. (10.61)

In particular, the order parameter v4 determines how the number of virus-producing
infected cells I2 and the number of infected, not yet virus-producing cells I1 change
relative to each other:

ΔI2
ΔI1

≈ v4,3

v4,2
⇒ θ = arctan

(
v4,3

v4,2

)
. (10.62)

The angle θ defined by Eq. (10.62) describes the direction of the order parameter v4
in the I1-I2 plane with respect to the I1 axis. In particular, the angle θ determines the
qualitative relationship between changes in these two cell populations like

θ > 45◦ ⇒ ΔI2
ΔI1

> 1 ,

θ < 45◦ ⇒ ΔI2
ΔI1

< 1 . (10.63)

This means that if θ > 45◦ holds, then during the initial disease stage the number
of virus-producing cells (I2) increases faster than the number of cells in the latent
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period (I1). In contrast, if θ < 45◦ holds, then the number of cells in the latent period
(I1) increases faster than the number of the virus-producing cells (I2).

10.4.4 Dominant Role of the TIIV Order Parameter During
Initial Infection and Disease Decline

Let us demonstrate the role ofv4 for the twocases presented inFig. 10.13. Figure10.14
refers to the first case βw > βw,cri t and λmax > 0 shown in panel (a) of Fig. 10.13.
For illustration purposes panel (a) of Fig. 10.13 is repeated in Fig. 10.14 as panel (a).
The phase curve in the three-dimensional I1-I2-V subspace is shown in panel (b)
of Fig. 10.14. The order parameter v4 is plotted (in a magnified scale) as well. As
expected, the disease state evolves initially along v4.

The second caseβw > βw,cri t andλmax < 0 is shown in Fig. 10.15 and refers to the
simulation results shown in panel (b) of Fig. 10.13. Panel (b) of Fig. 10.13 is repeated
as panel (a) of Fig. 10.15. Panel (b) of Fig. 10.15 shows X(t) as phase curve in the
I1-I2-V subspace together with the eigenvector v4. The eigenvector (or remnant order
parameter) v4 of λmax describes a stable direction. Importantly, for this simulation
the eigenvalues λ2 and λ3 exhibit negative real parts that are relatively larger in the
amount. Consequently, v4 describes a direction characterized by a slowly decaying
dynamics. While initially the disease state does not evolve along v4 (see panel (b) of
Fig. 10.15), as soon as the amplitudes A2 and A3 have decayed to zero at rates |λ2|
and |λ3|, respectively, the dynamics of the disease decline in the I1-I2-V subspace
is entirely determined by the direction v4 and the temporal aspects of the decline are
determined by the exponential decay A4(t) = A4(0) exp{λ4t} of the amplitude A4

Fig. 10.14 Eigenvector analysis of an infection of an unstable area. Panel a repeats the simulation
results presented in panel (a) of Fig. 10.13. Panel b presents the corresponding phase curve (solid
line) and the TIIV model order parameter (dotted line). As it can be seen, the phase curve follows
during the initial stage of the disease the order parameter. See Fig. 10.13 for parameters and initial
conditions
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Fig. 10.15 Eigenvector analysis of an infection of a stable area. Panel a repeats the simulation
results presented in panel (b) of Fig. 10.13. Panel b presents the corresponding phase curve (solid
line) and the remnant of the order parameter (dotted line). As it can be seen, the phase curve follows
the order parameter remnant during the final disease decline. See Fig. 10.13 for parameters and
initial conditions

of the maximal eigenvalue. Equation (10.59) holds and implies that the viral load
decays at a rate |λ4| like

V (t) = b exp{−|λ4|t} (10.64)

with b = v4,4A4(0). Note that as far as the dynamics in the I1-I2-V subspace is
concerned, the amplitude A1 does not play a role because the term A1v1 in the
superposition given by Eq. (10.51) does not make any contribution to the variables
of that subspace. This is also the reason why the v1A1(0) does not occur in (10.64)
although it occurs in Eq. (10.59).

The dominant role of the stable eigenvector of the maximal eigenvalue (i.e., rem-
nant order parameter) and its amplitude during the decline stage of an infectious
disease should be seen in analogy to the dominant role of the remnant order param-
eter and its amplitude in subsiding epidemics as it was discussed for epidemics in
general in Sect. 6.1.3 and in the context of three-stage and multi-stage epidemics in
Sects. 8.5 and 8.6.1. In other words, just as the dynamics of epidemics during their
subsiding (third) stages is characterized (under appropriate circumstances such as
the existing of a gap in the eigenvalue spectrum, see Sects. 8.5 and 8.6.1) by the
order parameter remnant and its amplitude, the leveling off of viral load during the
decline of an infectious disease and the decline of the disease as such is characterized
(under appropriate circumstances) by the remnant order parameter and its amplitude
as well. The simulation results shown in panel (b) of Fig. 10.15 should be seen in
analogy to the simulation results presented in panel (d) of Fig. 8.18 and the observed
subsiding dynamics of the first-wave epidemics in Thailand (panel (b) of Fig. 8.14),
state of New York (see Fig. 8.18), and Pakistan (see Fig. 8.21).

In the context of the TIV model and self-induced bifurcations leading to disease
decline, these considerations have been worked out in Sect. 10.3. While in the sim-
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ulation shown in Fig. 10.15 the bifurcation parameter βw has been put to a value
smaller than the critical value such that λmax < 0 holds, as argued in Sect. 10.3, the
eigenvalue λmax may be considered as an (implicitly) time-dependent quantity. Dur-
ing the course of an infectious disease λmax may change due to a disease-related
decrease in the number of target cells from a positive to a negative value. If this is
the case and if, in addition, the time scales of the amplitudes of the virus-cell system
are separated (i.e., there is a gap between λmax and the real-part of the remaining
non-zero eigenvalues), then the scenario demonstrated in Fig. 10.15 applies.

10.5 TIIV Model and Viral Load in a Sample of COVID-19
Patients

In the study by Wang et al. [7] the data of the sample of eight COVID-19 patients
described in Sect. 10.2.1 was interpreted in the context of the TIIV model (10.43).
Wang et al. fitted for each patient the TIIV model parameters β, p, k1, k2, and k3
of Eq. (10.43) to the sputum viral load data. In a subsequent study [21], based on
the estimates obtained by Wang et al., for each patient the unstable eigenvector v4,
the eigenvalues λ2, λ3, λ4, and the amplitude equation coefficients C1,C2,C3,C4

were computed from Eqs. (10.46), (10.50), and (10.57), respectively. To this end, the
cubic equation (10.46) was solved numerically. Subsequently, the state space TIIV
model (10.43) and the amplitude space TIIV model (10.57) were solved numerically
for each patient.

10.5.1 Main Results Illustrated for Four Patients

Figure10.16 shows the viral load measurements [6] of patient 1 as well as the TIIV
modeling results. Panel (a) shows the course of the infection of patient 1 in terms of
the measured viral load (gray circles) as shown in previous panels (e.g., panel (a) of
Fig. 10.1). It also shows the best-fit solution V (t) of Eq. (10.43). Just as in the context
of theTIVmodel, the solutionV (t)of theTIIVmodel captures the qualitative features
of the viral load pattern of patient 1 by showing a relatively quickly increasing viral
load dynamics and a relatively slowly leveling off dynamics.

Panels (b) and (c) show the phase curves (T, I1, I2, V ) computed fromEq. (10.43)
in two subspaces: the two-dimensional I1-I2 subspace (panel (b)) and the three-
dimensional I1-I2-V subspace (panel (c)). All variables are shown as percentage
values of their respective maximum values Xmax like Xr = 100 X/Xmax. As can
be seen in panel (b), at the beginning of the infection target cells were turned into
latently infected cells (I1) and infected virus-producing cells (I2), that is, I1 and
I2 increased. At a certain point in time the number of cells I1 in the latent period
reached a maximum value (I1,r = 100%). Subsequently, I1 decreased over time,
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Fig. 10.16 Progression of COVID-19 in patient 1 in state and amplitude space as seen within a
TIIV modeling framework. Panel a: Viral load trajectory V (t) over time of patient 1 (gray circles)
solution V (t) (solid line) computed from Eq. (10.43). Panels b and c: The evolution of the disease
state X(t) is shown as phase curves (solid lines) in the I1-I2 and (I1, I2, V ) subspaces. The order
parameter v4 (thick dotted line) is also shown (magnified in length) as obtained from Eq. (10.50).
Panel d: Amplitude dynamics computed from Eq. (10.57). The three panels show A4 versus A1, A2,
and A3, respectively. Parameters and initial conditions [7]: β = 1.9 · 10−6/(d× (particles/ml)), p =
590 particles/(d × cell), k1 = 33/d, k2 = 2/d, k3 = 0.6/d, T (0) = Tst = 6 · 104 cells/ml, I1(0) =
I2(0) = 0, V (0) = 10−4 particles/ml

while I2 (i.e., the number of virus-producing cells) still increased until I2 assumed
its maximum value (I2,r = 100%). Subsequently, both I1 and I2 decreased towards
zero. Panel (c) presents the dynamics of the two types of infected cells together with
the dynamics of the viral load. The two-dimensional phase curve shown in panel (b)
corresponds to the projection of the three-dimensional phase curve shown in panel
(c) onto the I1-I2 plane. Note that the top view presented in panel (c) may create a
somewhat deceiving impression about the dynamics of V (t). Therefore, panel (c)
should be viewed together with panel (a). As shown in panel (a) of Fig. 10.16 the
viral load V (t) increasedmonotonically until it reached its maximumvalue Vmax and,
subsequently, decreased. Panel (c) demonstrates that the viral load V continuously
increased while the infected cells of type I1 and I2 increased and, subsequently,
decreased. At the time point tp, when the viral load reached its peak value (Vmax in
panel (a) or Vr = 100% in panel (c)), the concentrations of the two types of infected
cells were decaying. Finally, the number of target cells decayed during the whole
course of the infection (graph not shown).
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Table 10.1 Results of the TIIV model-based analysis of SARS-CoV-2 infections in a sample of
eight patients (“P.” stands for patient)

P. λ2 [1/d] λ3 [1/d] λ4
[1/d]

τ [d] τ
[h]

T2
[h]

Vmax
[copies/ml]

A4,max
[copies/ml]

θ[◦]

(λmax)

1 −30.4 −11.5 6.3 0.16 3.8 2.7 1.0 · 107 5.6 · 106 76

2 −14.9 − 6.7i −14.9 + 6.7i 7.2 0.14 3.3 2.3 7.9 · 106 4.0 · 106 4

3 −70.9 −35.1 21.7 0.05 1.1 0.8 3.9 · 105 4.7 · 105 1

4 −6.5 + 7.8i −6.5 − 7.8i 7.0 0.14 3.4 2.4 9.4 · 106 4.0 · 106 13

7 −4.7 + 5.9i −4.7 − 5.9i 5.6 0.18 4.3 3.0 7.6 · 106 3.1 · 106 0.5

8 −65.5 + 8.8i −65.5 − 8.8i 31.4 0.03 0.8 0.5 7.2 · 107 3.3 · 107 49

10 −6.1 − 8.7i −6.1 + 8.7i 9.1 0.11 2.7 1.8 6.9 · 106 2.8 · 106 3

14 −73.0 −28.1 17.1 0.06 1.4 1.0 1.4 · 106 7.2 · 105 6

Importantly, the unstable eigenvector v4 is plotted in panels (b) and (c). As can
be seen in both panels, the disease state of the SARS-CoV-2 infection of patient 1
evolved during the initial stage of the disease closely along the direction specified
by v4. That is, at the beginning of the infection the disease state X(t) satisfied a
saddle dynamics characterized by the direction v4 and the amplitude A4(t). After
the initial period, the dynamics branched off from the v4 direction. Panels (b) and
(c) demonstrate that the SARS-CoV-2 initial stage infection dynamics in patient 1
followed a disease order parameter.

The eigenvaluesλ2,λ3,λ4 of patient 1 are reported in Table10.1 and are discussed
in more detail in Sect. 10.5.2. At this stage, it should only be mentioned that the
saddle dynamics of patient 1 exhibited three real-valued eigenvalues λ2, λ3, and λ4

(in addition to λ1 = 0). Consequently, the four amplitudes A1, . . . , A4 were real-
valued. Panel (d) presents the amplitude dynamicsA(t) = (A1, A2, A3, A4) in terms
of several phase curves. Since the order parameter amplitude A4 is supposed to play
the dominate role, the amplitude dynamics is illustrated in terms of phase curves A4

versus A1, A4 versus A2, and A4 versus A3. All amplitudes A1, . . . , A4 were rescaled
by the maximum value A4,max of A4 like A j (rel) = 100A j/A4,max.

Note that in general the sign of an amplitude depends on the selected sign of
its corresponding eigenvector. Without loss of generality, any eigenvector may be
multiplied by −1 in order to obtain an eigenvector again. Such a multiplication by
−1 implies that the corresponding amplitude is multiplied by −1 as well. That is,
the substitution vk → −vk implies Ak → −Ak . Throughout this book the signs of
some of the eigenvectors vk have been chosen to obtain for the sake of presentation
purposes amplitude functions Ak that are positive,

The amplitude A1 of patient 1 (and in fact for all patients)was found to be negative.
This is consistentwith the fact that A1 corresponds to the amplitude of the eigenvector
v1 = (1, 0, 0, 0) and, consequently, primarily describes the decay of target cells. In
line with the comment from above, an eigenvector v1 = (−1, 0, 0, 0) would have
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produced a positive amplitude A1 rather than a negative one. Regardless of the choice
of the sign of v1, the amplitude A1 captures the decay of the target cells. For patient 1
(and in fact for all patients) A4 was positive. A2 and A3 assumed positive or negative
values. In all two-dimensional plots, the amplitude A4 was plotted on the vertical
axis. Consequently, if A4 increases while its to-be-compared amplitude A j with j =
1, 2, 3 varies only little, then a vertical graph in the A j -A4 plane under consideration
occurs. The two-dimensional phase curves shown in panel (d) demonstrate that in
the very beginning of the infection of patient 1, A4 increased while variations of
the remaining amplitudes A j with j = 1, 2, 3 were negligibly small. That is, it was
found that all three phase curves A4(A1), A4(A2), and A4(A3) of the initial stage
SARS-CoV-2 infection of patient 1 were given by vertical lines close to the unstable
virus-free fixed point Ast = (0, 0, 0, 0). This initial increase of A4 that was not
accompaniedby any substantial dynamics of oneof the remaining amplitudes, reflects
again that the disease state X of the SARS-CoV-2 infection of patient 1 initially
evolved along the order parameter v4 (as can be seen in panels (b) and (c)).

When taking a more quantitative view, it was found that the amplitude A2 over
the whole course of the SARS-CoV-2 infection attained a maximum value of about
20% of A4,max (see the top-right subpanel in panel (d)). The amplitude A3 attained
a maximum value of about 106% of A4,max (see the bottom subpanel in panel (d)).
That is, while A3 did not make an initial contribution to the evolution of the disease
state X(t), A3 played an essential role over the whole course of the disease.

As mentioned above, fixed points of the TIIV model assume the form X =
(Y, 0, 0, 0) with Y = T (∞) ≥ 0, which implies

Xst = (Y, 0, 0, 0) ⇔ Ast = (A1,st , 0, 0, 0) (10.65)

(for a counterpart on the level of epidemiologicalmodels seeEq. (4.55)). In particular,
from Eq. (10.51) it follows that

T (∞) = Tst + A1,st ⇒ Tst − T (∞) = −A1,st , (10.66)

where Tst correspond to the concentration of target cells of healthy adults before
the infection takes place. Consequently, A1,st measures the decay of target cells
during the infection (see also Eq. (4.56) for a counterpart on the epidemiological
level). Returning to Fig. 10.16, the drop of A1 to a stationary value A1,st of about
2% of A4,max as shown in panel (d) of Fig. 10.16 (see the top left subpanel) reflects
that eventually the disease state of patient 1 approached a neutrally stable fixed point
Xst = (Y, 0, 0, 0) (i.e., the coronavirus disease 2019 of patient 1 eventually declined).
The target cell concentration in the affected areas dropped during the course of the
disease by |A1,st | (i.e., 2% of A4,max).

Figure10.17 presents data and modeling results for patient 2. As in Fig. 10.16, in
Fig. 10.17 panels (a), (b), (c), and (d) present the viral load dynamics (panel (a)), the
state space dynamics (panels (b) and (c)), and the amplitude dynamics (panel (d)) of
the coronavirus disease 2019 of patient 2 as seen from a TIIV modeling perspective.
In particular, in panels (b) and (c) the unstable eigenvector v4 of the virus-free state
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Fig. 10.17 COVID-19 TIIV model dynamics of patient 2 in state and amplitude space. Panels as
in Fig. 10.16. Parameters and initial conditions [7]: β = 3.6 · 10−6/(d × (particles/ml)), p = 1.5 ·
104 particles/(d × cell), k1 = 0.6/d, k2 = 2/d, k3 = 20/d, T (0) = Tst = 6 · 104 cells/ml, I1(0) =
I2(0) = 0, V (0) = 10−4 particles/ml

of the affected regions in the lung of patient 2 is shown. As can be seen in panels (b)
and (c), as expected, the initial dynamics of COVID-19 in patient 2 followed closely
the unstable eigenvector v4.

The unstable virus-free state of patient 2 was given in terms of a saddle point
involving two complex-conjugated eigenvalues with negative real parts [22] in addi-
tion to the eigenvalues λ1 = 0 and λ4 = λmax > 0 (see Table10.1 for details). Con-
sequently, the eigenvectors v2 and v3 and their corresponding amplitudes A2 and A3

satisfied v3 = v∗
2, A3 = A∗

2, and

A2v2 + A3v3 = 2Re(A2v2) (10.67)

As a result, the real and imaginary parts of A2 (or alternatively A3) can be considered
as the two independent quantities occurring in the superposition A2v2 + A3v3. For
this reason, in panel (d) the dynamics of the amplitudes A1, A2, A3, A4 is shown in
terms of the phase curves A4 versus A1, A4 versus the imaginary part of A2, and A4

versus the real part of A2.
Visual inspection of the three phase curves reveals that close to the disease onset

only A4 increased in magnitude while variations in A1, Imag(A2), and Re(A2) were
negligibly small.Due to this phenomenon the initial SARS-CoV-2 infection of patient
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Fig. 10.18 COVID-19 disease of patient 3 described in state and amplitude space of the TIIV
model (10.43). Panels as in Fig. 10.16. Parameters and initial conditions [7]: β = 6 · 10−4/(d ×
(particles/ml)), p = 5000 particles/(d × cell), k1 = 0.3/d, k2 = 2/d, k3 = 82/d, T (0) = Tst = 6 ·
104 cells/ml, I1(0) = I2(0) = 0, V (0) = 10−3 particles/ml

2 was characterized by vertical lines – just as for patient 1. Panels (b), (c), and
(d) taken together illustrate that the TIIV model order parameter v4 and its order
parameter amplitude A4 determined entirely the SARS-CoV-2 initial stage infection
in the affected regions of patient 2.

Panel (d) of Fig. 10.17maybe used to conduct amore quantitative discussion of the
SARS-CoV-2 infection of patient 2. Accordingly, the imaginary part of the amplitude
A2 (or A3) played a minor role during the course of the infection of patient 2. It only
reached a maximum value of 2% of A4,max (see top-right subpanel). In contrast, the
real part of A2 (or A3) attained a maximum value of about 76% of A4,max (see bottom
subpanel) and contributed substantially to the progression of COVID-19 in patient
2 when considering the whole 25 days time span until the viral load decreased to
non-detectable levels.

Figures10.18 and 10.19 present data and the results of the model-based analyses
for patients 3 and 4. Panels (a), (b), (c), and (d) show the respective viral load
dynamics, the state space dynamics, and amplitude dynamics. The order parameters
v4 of the two patients are shown in panels (b) and (c) of the respective figures. As can
be seen, the SARS-CoV-2 infections for both patients followed in their initial stages
their respective order parameters and subsequently branched off. The eigenvalues
λ2, λ3, λ4 of patients 3 and 4 will be discussed in Sect. 10.5.2 and are reported
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Fig. 10.19 COVID-19 disease of patient 4 described in state and amplitude space of the TIIV
model (10.43). Panels as in Fig. 10.16. Parameters and initial conditions [7]: β = 5.1 · 10−6/(d ×
(particles/ml)), p = 1200 particles/(d × cell), k1 = k2 = k3 = 2/d, T (0) = Tst = 6 · 104 cells/ml,
I1(0) = I2(0) = 0, V (0) = 10−4 particles/ml

in Table10.1. The SARS-CoV-2 infection of the affected lung regions of patient
3 was characterized by real-valued eigenvalues. In contrast, the infection of the
affected lower respiratory tract regions of patient 4 exhibited a pair of complex-
conjugated eigenvalues. Accordingly, for patient 3 panel (d) shows the dynamics
of A1, A2, A3, A4 by means of two-variable phase curves, whereas for patient 4
panel (d) shows the dynamics of A1, Re(A2), Imag(A2), and A4. Irrespective of this
difference, panels (d) in Figs. 10.18 and 10.19 illustrates that for patients 3 and 4
initially only A4 increased substantially over time, whereas the remaining amplitude
variables stayed almost constant. That is, the initial multiplication of the virus in the
bodies of patients 3 and 4 was characterized by amplitude phase curves that started
off as vertical lines.

10.5.2 Eigenvalues, Doubling Times, and Peak Viral Loads

The results obtained for the remaining four patients were qualitatively similar to
those shown in Figs. 10.16, 10.17, 10.18 and 10.19 [21]. Table10.1 reports the
eigenvalues λ2,λ3,λ4 for all eight patients. The virus-free fixed points of three
patients exhibited only real-valued eigenvalues. The fixed points of the remain-
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ing five patients were characterized by a maximal real-valued eigenvalue and
two eigenvalues that were complex-conjugated to each other. On average, the
largest (positive) eigenvalue λmax was M = 13.2/d (SD = 9.4/d). Table10.1 also
shows the e-folding times τ of the dominant (order parameter) amplitude A4 in
days and hours as computed from τ = 1/λmax. Accordingly, on average it took
M=0.11days (SD = 0.06 days) or M = 2.6h (SD = 1.3h) for A4 to increase by a
factor e (i.e., 2.71). The corresponding doubling times in hours can be found in
Table10.1 as well. On average, the amplitudes A4 that determined how quickly
the SARS coronavirus 2 infected the lower respiratory tracts (i.e., the lungs) of
the patients doubled every 1.8h (SD = 0.9h), that is every 110 minutes. For the
sample of eight patients, the doubling times varied from 0.5h (i.e., 30 minutes)
to 3h.

10.5.3 λmax Increase of Viral Load

According to Eq. (9.8) the maximal eigenvalue λ4 determines the initial growth
rate of the viral load V (t). When presenting V (t) in a logarithmic scale, then λmax

corresponds to the slope of the function V (t). Figure10.20 shows again the viral
load trajectories of patients 1 to 4 (as presented in panels (a) of Figs. 10.16 to 10.19).
The approximation (9.8) is shown as well as dotted gray line. As expected, λmax as
listed in Table10.1 corresponds to the slope of the viral load increase.

10.5.4 Peak Viral Load Vmax Determined by Order Parameter
Amplitude A4,max

Table10.1 reports the model peak viral loads Vmax of the patients. For a given patient
Vmax was defined as the maximal value of the TIIV model solutions V (t) obtained
for that patient. The patient specific values A4,max are reported as well. Figure10.21
shows two scatter plots of Vmax versus A4,max . Patient 8 showed a Vmax value that was
by a factor 7 to 180 larger than the Vmax values of all remaining patients. In panel
(a) of Fig. 10.21 the (Vmax, A4,max) data point of patient 8 appears as an isolated
point in the scatter plot. For this reason the data from patient 8 was excluded [24].
Panel (b) of Fig. 10.21 shows the scatter plot thus obtained. A correlation analysis
based on the data of the remaining seven patients as shown in panel (b) revealed a
positive linear correlation between Vmax and A4,max with R2 = 0.93. Accordingly,
the maximal value Amax of the order parameter amplitude determined the peak viral
load Vmax in the sample of COVID-19 patients under consideration.
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Fig. 10.20 The eigenvalue λmax (i.e., λ4) determines for patients 1 to 4 entirely the rate of the
initial viral load increase. Gray circles and solid black lines show data and TIIV model solutions
V (t), respectively, as presented in panels (a) of Figs. 10.16 to 10.19. Dotted gray lines show the
approximation defined by Eq. (9.8). Panels a, b, c, and d refer to patients 1,2,3, and 4, respectively

Fig. 10.21 Correlation between Vmax and A4,max illustrated by means of scatter plots. Panels a and
b present data from all patients (panel (a)) and when patient 8 is excluded (panel (b)), respectively.
In panel b the regression line (dashed line) is shown as well

10.5.5 Latent Stage Determined by Order Parameter

In Table10.1 the order parameter angles θ are reported, which according to
Eqs. (10.62) and (10.63) determine quantitatively and qualitatively the relationship
between variations in the number of latently infected cells ΔI1 and the number of
virus-producing infected cells ΔI2. Angles larger than 45◦ were found for patients 1
and 8. The disease progression of the remaining patients was characterized by angles
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smaller than 45◦. Consequently, during the initial COVID-19 stage of patients 1 and
8 the number of virus-producing cells increased faster than the number of latently
infected cells. For the remaining patients, the opposite was true.

10.6 Other Models

10.6.1 TIIVV Model

The TIIVV model is defined by Eq. (9.21) and here repeated as

d

dt
T = −βT VI ,

d

dt
I1 = βT VI − k1 I1 ,

d

dt
I2 = k1 I1 − k2 I2 ,

d

dt
VI = η pI2 − k3VI ,

d

dt
VN I = (1 − η)pI2 − k3VN I , (10.68)

where VI and VN I denote infectious and non-infectious virus particles (see Sect.
9.8). The dynamics of the non-infectious virus particles VN I does not affect the
stability of the virus-free fixed point. Consequently, the stability properties of the
virus-free fixed point of the TIIVV model are like those of the TIIV model when
considering the coefficient η p in the evolution equation of VI as counterpart to the
parameter p in the evolution equation of V of the TIIV model. More explicitly, let
Xst = (Tst , 0, 0, 0, 0) denote the fixed point of healthy adults not affected by the virus
under consideration. Let δ denote the relative state of target cells defined in the usual
way by T = Tst + δ. Then, using T VI = (Tst + δ)VI ≈ Tst VI and dT/dt = dδ/dt ,
for small perturbations out of the fixed point Xst the TIIVV model (10.68) can be
linearized like

d

dt
δ = −βTst VI ,

d

dt
I1 = βTst VI − k1 I1 ,

d

dt
I2 = k1 I1 − k2 I2 ,

d

dt
VI = η pI2 − k3VI ,

d

dt
VN I = (1 − η)pI2 − k3VN I . (10.69)

Consequently, the relative state vector u = (δ, I1, I2, VI , VN I ) in the case of small
perturbations evolves like

d

dt
u = L u , L =

⎛
⎜⎜⎜⎜⎝

0 0 0 −βTst 0
0 −k1 0 βTst 0
0 k1 −k2 0 0
0 0 η p −k3 0
0 0 (1 − η)p 0 −k4

⎞
⎟⎟⎟⎟⎠

. (10.70)

The linearization matrix exhibits five eigenvalues. Two eigenvalues are given by
λ1 = 0 with eigenvector v = (1, 0, 0, 0, 0) and λ5 = −k4 with eigenvector v =
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(0, 0, 0, 0, 1). The remaining three eigenvalues can be computed from a 3 × 3matrix
similar to the 3 × 3 submatrix of the matrix L defined in Eq. (10.44) of the TIIV
model. In particular, the three remaining eigenvalues can be computed from the deter-
minant (10.45) when replacing p by η p. From Eq. (10.46) it then follows that the
eigenvalues are given by the cubic equation

(λ + k1)(λ + k2)(λ + k3) = η pβTst k1 . (10.71)

Consequently, for the TIIVV model the bifurcation parameter βw and its critical
value βw,cri t read

βw = η pβTst , βw,cri t = k2k3 . (10.72)

For βw > βw,cri t (βw < βw,cri t ) the virus-free fixed point Xst = (Tst , 0, 0, 0, 0) of
the TIIVV is unstable (neutrally stable).

10.6.2 TV Model

The scaled TV model is defined by

V = r I (10.73)

(see Eq. (9.13)) and

d

dt
T = −β′ I T ,

d

dt
I = β′ I T − k1 I . (10.74)

(see Eq. (9.14)) with β′ = rβ. As discussed in Sect. 9.5.2, the scaled TV model
(10.74) is equivalent to the SIR model (3.22). Exploiting this equivalence, the ampli-
tude space description of the scaled TVmodel can be conveniently obtained. For sake
of clarity, let βSI R denote the effective contact rate β occurring in the SIR model
(3.22). Then, when S and I in the SIR model (3.22) are replaced by T and I (where
I denotes the equivalent of the number of virus particles when measured in cells)
and the substitutions

γ = k1 ,
βSI R

N
= β′ (10.75)

are made, then the SIR model (3.22) becomes the scaled TV model (10.74). In order
to derive the amplitude equations of the scaled TV model (10.74) for the virus-free
fixed point with T = Tst and Vst = 0 ⇒ Ist = 0, the additional substitutions

N = Tst ⇒ βSI R = β′Tst (10.76)
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can be used. Let us summarize the results. The state vector X = (T, I ) of the scaled
TV model reads (

T
I

)
=

(
Tst
0

)
+

2∑
i=1

Aivi (10.77)

with the eigenvector v1 = (1, 0) and

v2 = 1√
1 + g2

(−1
g

)
(10.78)

with

g = β′Tst − k1
β′Tst

, (10.79)

which can be shown by using the substitutions listed in Eqs. (10.75) and (10.76)
in combination with Eqs. (4.19) and (4.20) that are referring to the SIR model. For
β′Tst > k1 the virus-free fixed point is unstable (see Sect. 9.5.1). In this case v2
denotes the unstable eigenvector of the TV model, that is, the TV order parameter.

The amplitudes A1 and A2 of the scaled TVmodel that occur in Eq. (10.77) satisfy
the evolution equations

d

dt
A1 = 1 − g√

1 + g2
A2 p(A1, A2) ,

d

dt
A2 = λ2A2 + A2 p ,

p = β′
(
A1 − A2

1 + g2

)
, (10.80)

which can be shownby substituting the relations listed in (10.75) and (10.76) intoEqs.
(4.38), (4.39), and (4.42). The eigenvalue λ2 that occurs in the amplitude equation
description of the scaled TV model in Eq. (10.80) reads

λ2 = β′Tst − k1 (10.81)

(see again Eq. (4.19)). The initial amplitudes A1(0) and A2(0) can be computed from
the initial states T (0) = Tst and I (0) = V (0)/r by inverting Eq. (10.77), which leads
to

A1(0) = I (0)

g
, A2(0) =

√
1 + g2

g
I (0) , (10.82)

which can be shown by putting S0 − N = T (0) − Tst = 0 in Eqs. (4.50). For an acute
infection for which λ2 > 0 holds it follows that during the initial stage A2 dominates
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over A1 (see Sect. 4.2.6) such that X ≈ Xst + v2A2 (see Eq. (4.60)), which implies
V (t) can be approximated by Va(t) defined by

Va(t) = r I (t) = rv2,I A2(t) = b exp{λ2t} (10.83)

with b = rv2,I A2(0). Accordingly, λ2 corresponds to λmax shown in Fig. 9.5.

10.7 Complex-Valued Eigenvalues λ of the TIIV Model
and Analytical Expressions for λ

Let λ = x + iy denote a complex-valued solution of Eq. (10.46), where x and y
denote the real and imaginary parts of λ. Substituting this ansatz into Eq. (10.46),
a complex-valued equation is obtained. When solving the imaginary part of the
equation, the relation

y2 = (x + k2)(x + k3) + (x + k1)(2x + k2 + k3) (10.84)

is obtained. Substituting this expression for y2 into the real part of the aforementioned
complex-valued equation, yields a cubic equation for x that reads

(x + γ12)(x + γ13)(x + γ23) = −pβTst k1 (10.85)

with γ12 = k1 + k2, γ13 = k1 + k3, γ23 = k2 + k3, which implies γi j > 0. Since the
right-hand side of Eq. (10.85) is negative for any parameters p, Tst , and k1 larger than
zero, it follows that Eq. (10.85) does not exhibit a solution for x ≥ 0. Consequently,
any complex-valued eigenvalue λ of the virus-free fixed point of the TIIV model as
defined by Eq. (10.46) exhibits a negative real part.

In general, roots of cubic equations such as Eq. (10.46) may be determined using
analytical rather than numerical approaches. In particular, analytical expressions for
the solutions of Eq. (10.46) can be found in Ref. [10].
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